
RTI Data Distribution Service C++ API

Version 4.5c

Generated by Doxygen 1.5.5

Wed Jun 9 20:12:01 2010

Contents

1 RTI Data Distribution Service 1

1.1 Feedback and Support for this Release. 1

1.2 Available Documentation. 2

2 Module Index 5

2.1 Modules . 5

3 Class Index 9

3.1 Class Hierarchy . 9

4 Class Index 15

4.1 Class List . 15

5 Module Documentation 29

5.1 Clock Selection . 29

5.2 Domain Module . 32

5.3 DomainParticipantFactory . 34

5.4 DomainParticipants . 36

5.5 Built-in Topics . 41

5.6 Topic Module . 48

5.7 Topics . 49

5.8 User Data Type Support . 50

5.9 Type Code Support . 55

5.10 Built-in Types . 70

ii CONTENTS

5.11 Dynamic Data . 75

5.12 Publication Module . 80

5.13 Publishers . 81

5.14 Data Writers . 84

5.15 Flow Controllers . 86

5.16 Subscription Module . 92

5.17 Subscribers . 95

5.18 DataReaders . 98

5.19 Read Conditions . 101

5.20 Query Conditions . 102

5.21 Data Samples . 103

5.22 Sample States . 104

5.23 View States . 106

5.24 Instance States . 108

5.25 Infrastructure Module . 111

5.26 Built-in Sequences . 113

5.27 Multi-channel DataWriters . 115

5.28 Pluggable Transports . 117

5.29 Using Transport Plugins . 123

5.30 Built-in Transport Plugins . 129

5.31 Configuration Utilities . 131

5.32 Unsupported Utilities . 135

5.33 Durability and Persistence . 136

5.34 Configuring QoS Profiles with XML 142

5.35 Publication Example . 145

5.36 Subscription Example . 146

5.37 Participant Use Cases . 147

5.38 Topic Use Cases . 150

5.39 FlowController Use Cases . 152

5.40 Publisher Use Cases . 156

5.41 DataWriter Use Cases . 157

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

CONTENTS iii

5.42 Subscriber Use Cases . 159

5.43 DataReader Use Cases . 163

5.44 Entity Use Cases . 167

5.45 Waitset Use Cases . 170

5.46 Transport Use Cases . 172

5.47 Filter Use Cases . 177

5.48 Creating Custom Content Filters 182

5.49 Large Data Use Cases . 186

5.50 Documentation Roadmap . 188

5.51 Conventions . 189

5.52 Using DDS:: Namespace . 192

5.53 DDS API Reference . 194

5.54 Queries and Filters Syntax . 199

5.55 RTI Data Distribution Service API Reference 207

5.56 Programming How-To’s . 208

5.57 Programming Tools . 210

5.58 rtiddsgen . 211

5.59 rtiddsping . 223

5.60 rtiddsspy . 230

5.61 Class Id . 237

5.62 Address . 240

5.63 Attributes . 245

5.64 Shared Memory Transport . 247

5.65 UDPv4 Transport . 255

5.66 UDPv6 Transport . 265

5.67 Participant Built-in Topics . 275

5.68 Topic Built-in Topics . 277

5.69 Publication Built-in Topics . 279

5.70 Subscription Built-in Topics . 281

5.71 String Built-in Type . 283

5.72 KeyedString Built-in Type . 284

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

iv CONTENTS

5.73 Octets Built-in Type . 285

5.74 KeyedOctets Built-in Type . 286

5.75 DDS-Specific Primitive Types . 287

5.76 Time Support . 292

5.77 GUID Support . 296

5.78 Sequence Number Support . 298

5.79 Exception Codes . 300

5.80 Return Codes . 302

5.81 Status Kinds . 305

5.82 Thread Settings . 316

5.83 QoS Policies . 319

5.84 USER DATA . 332

5.85 TOPIC DATA . 333

5.86 GROUP DATA . 334

5.87 DURABILITY . 335

5.88 PRESENTATION . 337

5.89 DEADLINE . 339

5.90 LATENCY BUDGET . 340

5.91 OWNERSHIP . 341

5.92 OWNERSHIP STRENGTH . 343

5.93 LIVELINESS . 344

5.94 TIME BASED FILTER . 346

5.95 PARTITION . 347

5.96 RELIABILITY . 348

5.97 DESTINATION ORDER . 350

5.98 HISTORY . 352

5.99 DURABILITY SERVICE . 355

5.100RESOURCE LIMITS . 356

5.101TRANSPORT PRIORITY . 358

5.102LIFESPAN . 359

5.103WRITER DATA LIFECYCLE 360

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

CONTENTS v

5.104READER DATA LIFECYCLE 361

5.105ENTITY FACTORY . 362

5.106Extended Qos Support . 363

5.107Unicast Settings . 364

5.108Multicast Settings . 365

5.109TRANSPORT SELECTION . 366

5.110TRANSPORT UNICAST . 367

5.111TRANSPORT MULTICAST . 368

5.112DISCOVERY . 370

5.113NDDS DISCOVERY PEERS . 371

5.114TRANSPORT BUILTIN . 379

5.115WIRE PROTOCOL . 383

5.116DATA READER RESOURCE LIMITS 389

5.117DATA WRITER RESOURCE LIMITS 391

5.118DATA READER PROTOCOL 395

5.119DATA WRITER PROTOCOL 396

5.120SYSTEM RESOURCE LIMITS 397

5.121DOMAIN PARTICIPANT RESOURCE LIMITS 398

5.122EVENT . 399

5.123DATABASE . 400

5.124RECEIVER POOL . 401

5.125PUBLISH MODE . 402

5.126DISCOVERY CONFIG . 405

5.127TYPESUPPORT . 410

5.128ASYNCHRONOUS PUBLISHER 411

5.129EXCLUSIVE AREA . 412

5.130BATCH . 413

5.131LOCATORFILTER . 414

5.132MULTICHANNEL . 415

5.133PROPERTY . 416

5.134Entity Support . 422

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

vi CONTENTS

5.135Conditions and WaitSets . 423

5.136ENTITY NAME . 424

5.137PROFILE . 425

5.138Octet Buffer Support . 426

5.139Sequence Support . 430

5.140String Support . 431

6 Class Documentation 439

6.1 DDS AllocationSettings t Struct Reference 439

6.2 DDS AsynchronousPublisherQosPolicy Struct Reference 441

6.3 DDS BatchQosPolicy Struct Reference 446

6.4 DDS BooleanSeq Struct Reference 450

6.5 DDS BuiltinTopicKey t Struct Reference 451

6.6 DDS BuiltinTopicReaderResourceLimits t Struct Reference . . . 452

6.7 DDS ChannelSettings t Struct Reference 455

6.8 DDS ChannelSettingsSeq Struct Reference 457

6.9 DDS CharSeq Struct Reference 458

6.10 DDS ContentFilterProperty t Struct Reference 459

6.11 DDS DatabaseQosPolicy Struct Reference 461

6.12 DDS DataReaderCacheStatus Struct Reference 466

6.13 DDS DataReaderProtocolQosPolicy Struct Reference 467

6.14 DDS DataReaderProtocolStatus Struct Reference 471

6.15 DDS DataReaderQos Struct Reference 481

6.16 DDS DataReaderResourceLimitsQosPolicy Struct Reference . . . 487

6.17 DDS DataWriterCacheStatus Struct Reference 498

6.18 DDS DataWriterProtocolQosPolicy Struct Reference 499

6.19 DDS DataWriterProtocolStatus Struct Reference 504

6.20 DDS DataWriterQos Struct Reference 516

6.21 DDS DataWriterResourceLimitsQosPolicy Struct Reference . . . 523

6.22 DDS DeadlineQosPolicy Struct Reference 528

6.23 DDS DestinationOrderQosPolicy Struct Reference 531

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

CONTENTS vii

6.24 DDS DiscoveryConfigQosPolicy Struct Reference 534

6.25 DDS DiscoveryQosPolicy Struct Reference 542

6.26 DDS DomainParticipantFactoryQos Struct Reference 546

6.27 DDS DomainParticipantQos Struct Reference 548

6.28 DDS DomainParticipantResourceLimitsQosPolicy Struct Refer-
ence . 553

6.29 DDS DoubleSeq Struct Reference 571

6.30 DDS DurabilityQosPolicy Struct Reference 572

6.31 DDS DurabilityServiceQosPolicy Struct Reference 576

6.32 DDS Duration t Struct Reference 579

6.33 DDS DynamicData Struct Reference 580

6.34 DDS DynamicDataInfo Struct Reference 677

6.35 DDS DynamicDataMemberInfo Struct Reference 678

6.36 DDS DynamicDataProperty t Struct Reference 681

6.37 DDS DynamicDataSeq Struct Reference 683

6.38 DDS DynamicDataTypeProperty t Struct Reference 684

6.39 DDS DynamicDataTypeSerializationProperty t Struct Reference 685

6.40 DDS EntityFactoryQosPolicy Struct Reference 687

6.41 DDS EntityNameQosPolicy Struct Reference 689

6.42 DDS EnumMember Struct Reference 691

6.43 DDS EnumMemberSeq Struct Reference 692

6.44 DDS EventQosPolicy Struct Reference 693

6.45 DDS ExclusiveAreaQosPolicy Struct Reference 696

6.46 DDS FloatSeq Struct Reference 699

6.47 DDS FlowControllerProperty t Struct Reference 700

6.48 DDS FlowControllerTokenBucketProperty t Struct Reference . . 702

6.49 DDS GroupDataQosPolicy Struct Reference 706

6.50 DDS GUID t Struct Reference 708

6.51 DDS HistoryQosPolicy Struct Reference 709

6.52 DDS InconsistentTopicStatus Struct Reference 713

6.53 DDS InstanceHandleSeq Struct Reference 715

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

viii CONTENTS

6.54 DDS KeyedOctets Struct Reference 716

6.55 DDS KeyedOctetsSeq Struct Reference 718

6.56 DDS KeyedString Struct Reference 719

6.57 DDS KeyedStringSeq Struct Reference 721

6.58 DDS LatencyBudgetQosPolicy Struct Reference 722

6.59 DDS LifespanQosPolicy Struct Reference 724

6.60 DDS LivelinessChangedStatus Struct Reference 726

6.61 DDS LivelinessLostStatus Struct Reference 728

6.62 DDS LivelinessQosPolicy Struct Reference 730

6.63 DDS Locator t Struct Reference 734

6.64 DDS LocatorFilter t Struct Reference 736

6.65 DDS LocatorFilterQosPolicy Struct Reference 738

6.66 DDS LocatorFilterSeq Struct Reference 740

6.67 DDS LocatorSeq Struct Reference 741

6.68 DDS LongDoubleSeq Struct Reference 742

6.69 DDS LongLongSeq Struct Reference 743

6.70 DDS LongSeq Struct Reference 744

6.71 DDS MultiChannelQosPolicy Struct Reference 745

6.72 DDS Octets Struct Reference . 748

6.73 DDS OctetSeq Struct Reference 750

6.74 DDS OctetsSeq Struct Reference 751

6.75 DDS OfferedDeadlineMissedStatus Struct Reference 752

6.76 DDS OfferedIncompatibleQosStatus Struct Reference 754

6.77 DDS OwnershipQosPolicy Struct Reference 756

6.78 DDS OwnershipStrengthQosPolicy Struct Reference 763

6.79 DDS ParticipantBuiltinTopicData Struct Reference 765

6.80 DDS ParticipantBuiltinTopicDataSeq Struct Reference 768

6.81 DDS PartitionQosPolicy Struct Reference 769

6.82 DDS PresentationQosPolicy Struct Reference 772

6.83 DDS ProductVersion t Struct Reference 777

6.84 DDS ProfileQosPolicy Struct Reference 779

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

CONTENTS ix

6.85 DDS Property t Struct Reference 782

6.86 DDS PropertyQosPolicy Struct Reference 783

6.87 DDS PropertySeq Struct Reference 786

6.88 DDS ProtocolVersion t Struct Reference 787

6.89 DDS PublicationBuiltinTopicData Struct Reference 788

6.90 DDS PublicationBuiltinTopicDataSeq Struct Reference 796

6.91 DDS PublicationMatchedStatus Struct Reference 797

6.92 DDS PublisherQos Struct Reference 800

6.93 DDS PublishModeQosPolicy Struct Reference 802

6.94 DDS QosPolicyCount Struct Reference 805

6.95 DDS QosPolicyCountSeq Struct Reference 806

6.96 DDS ReaderDataLifecycleQosPolicy Struct Reference 807

6.97 DDS ReceiverPoolQosPolicy Struct Reference 810

6.98 DDS ReliabilityQosPolicy Struct Reference 813

6.99 DDS ReliableReaderActivityChangedStatus Struct Reference . . 817

6.100DDS ReliableWriterCacheChangedStatus Struct Reference 819

6.101DDS ReliableWriterCacheEventCount Struct Reference 822

6.102DDS RequestedDeadlineMissedStatus Struct Reference 823

6.103DDS RequestedIncompatibleQosStatus Struct Reference 825

6.104DDS ResourceLimitsQosPolicy Struct Reference 827

6.105DDS RtpsReliableReaderProtocol t Struct Reference 832

6.106DDS RtpsReliableWriterProtocol t Struct Reference 835

6.107DDS RtpsWellKnownPorts t Struct Reference 849

6.108DDS SampleInfo Struct Reference 855

6.109DDS SampleInfoSeq Struct Reference 863

6.110DDS SampleLostStatus Struct Reference 864

6.111DDS SampleRejectedStatus Struct Reference 865

6.112DDS SequenceNumber t Struct Reference 867

6.113DDS ShortSeq Struct Reference 868

6.114DDS StringSeq Struct Reference 869

6.115DDS StructMember Struct Reference 871

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

x CONTENTS

6.116DDS StructMemberSeq Struct Reference 873

6.117DDS SubscriberQos Struct Reference 874

6.118DDS SubscriptionBuiltinTopicData Struct Reference 876

6.119DDS SubscriptionBuiltinTopicDataSeq Struct Reference 884

6.120DDS SubscriptionMatchedStatus Struct Reference 885

6.121DDS SystemResourceLimitsQosPolicy Struct Reference 888

6.122DDS ThreadSettings t Struct Reference 890

6.123DDS Time t Struct Reference . 893

6.124DDS TimeBasedFilterQosPolicy Struct Reference 894

6.125DDS TopicBuiltinTopicData Struct Reference 898

6.126DDS TopicBuiltinTopicDataSeq Struct Reference 902

6.127DDS TopicDataQosPolicy Struct Reference 903

6.128DDS TopicQos Struct Reference 905

6.129DDS TransportBuiltinQosPolicy Struct Reference 909

6.130DDS TransportMulticastQosPolicy Struct Reference 911

6.131DDS TransportMulticastSettings t Struct Reference 913

6.132DDS TransportMulticastSettingsSeq Struct Reference 915

6.133DDS TransportPriorityQosPolicy Struct Reference 916

6.134DDS TransportSelectionQosPolicy Struct Reference 918

6.135DDS TransportUnicastQosPolicy Struct Reference 920

6.136DDS TransportUnicastSettings t Struct Reference 922

6.137DDS TransportUnicastSettingsSeq Struct Reference 924

6.138DDS TypeCode Struct Reference 925

6.139DDS TypeCodeFactory Struct Reference 951

6.140DDS TypeSupportQosPolicy Struct Reference 964

6.141DDS UnionMember Struct Reference 966

6.142DDS UnionMemberSeq Struct Reference 968

6.143DDS UnsignedLongLongSeq Struct Reference 969

6.144DDS UnsignedLongSeq Struct Reference 970

6.145DDS UnsignedShortSeq Struct Reference 971

6.146DDS UserDataQosPolicy Struct Reference 972

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

CONTENTS xi

6.147DDS ValueMember Struct Reference 974

6.148DDS ValueMemberSeq Struct Reference 976

6.149DDS VendorId t Struct Reference 977

6.150DDS WaitSetProperty t Struct Reference 978

6.151DDS WcharSeq Struct Reference 980

6.152DDS WireProtocolQosPolicy Struct Reference 981

6.153DDS WriterDataLifecycleQosPolicy Struct Reference 989

6.154DDS WstringSeq Struct Reference 991

6.155DDSCondition Class Reference 992

6.156DDSConditionSeq Struct Reference 993

6.157DDSContentFilter Class Reference 994

6.158DDSContentFilteredTopic Class Reference 998

6.159DDSDataReader Class Reference 1004

6.160DDSDataReaderListener Class Reference 1023

6.161DDSDataReaderSeq Class Reference 1027

6.162DDSDataWriter Class Reference 1028

6.163DDSDataWriterListener Class Reference 1048

6.164DDSDomainEntity Class Reference 1053

6.165DDSDomainParticipant Class Reference 1054

6.166DDSDomainParticipantFactory Class Reference 1123

6.167DDSDomainParticipantListener Class Reference 1147

6.168DDSDynamicDataReader Class Reference 1149

6.169DDSDynamicDataTypeSupport Class Reference 1150

6.170DDSDynamicDataWriter Class Reference 1156

6.171DDSEntity Class Reference . 1157

6.172DDSFlowController Class Reference 1163

6.173DDSGuardCondition Class Reference 1167

6.174DDSKeyedOctetsDataReader Class Reference 1169

6.175DDSKeyedOctetsDataWriter Class Reference 1179

6.176DDSKeyedOctetsTypeSupport Class Reference 1190

6.177DDSKeyedStringDataReader Class Reference 1194

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

xii CONTENTS

6.178DDSKeyedStringDataWriter Class Reference 1204

6.179DDSKeyedStringTypeSupport Class Reference 1213

6.180DDSListener Class Reference . 1217

6.181DDSMultiTopic Class Reference 1221

6.182DDSOctetsDataReader Class Reference 1225

6.183DDSOctetsDataWriter Class Reference 1230

6.184DDSOctetsTypeSupport Class Reference 1234

6.185DDSParticipantBuiltinTopicDataDataReader Class Reference . . 1238

6.186DDSParticipantBuiltinTopicDataTypeSupport Class Reference . 1239

6.187DDSPropertyQosPolicyHelper Class Reference 1240

6.188DDSPublicationBuiltinTopicDataDataReader Class Reference . . 1241

6.189DDSPublicationBuiltinTopicDataTypeSupport Class Reference . 1242

6.190DDSPublisher Class Reference 1243

6.191DDSPublisherListener Class Reference 1265

6.192DDSPublisherSeq Class Reference 1266

6.193DDSQueryCondition Class Reference 1267

6.194DDSReadCondition Class Reference 1269

6.195DDSStatusCondition Class Reference 1271

6.196DDSStringDataReader Class Reference 1274

6.197DDSStringDataWriter Class Reference 1278

6.198DDSStringTypeSupport Class Reference 1280

6.199DDSSubscriber Class Reference 1284

6.200DDSSubscriberListener Class Reference 1306

6.201DDSSubscriberSeq Class Reference 1308

6.202DDSSubscriptionBuiltinTopicDataDataReader Class Reference . 1309

6.203DDSSubscriptionBuiltinTopicDataTypeSupport Class Reference 1310

6.204DDSTopic Class Reference . 1311

6.205DDSTopicBuiltinTopicDataDataReader Class Reference 1317

6.206DDSTopicBuiltinTopicDataTypeSupport Class Reference 1318

6.207DDSTopicDescription Class Reference 1319

6.208DDSTopicListener Class Reference 1322

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

CONTENTS xiii

6.209DDSTypeSupport Class Reference 1324

6.210DDSWaitSet Class Reference . 1325

6.211Foo Struct Reference . 1333

6.212FooDataReader Struct Reference 1334

6.213FooDataWriter Struct Reference 1361

6.214FooSeq Struct Reference . 1377

6.215FooTypeSupport Struct Reference 1392

6.216NDDS Config LibraryVersion t Struct Reference 1401

6.217NDDS Transport Address t Struct Reference 1403

6.218NDDS Transport Property t Struct Reference 1404

6.219NDDS Transport Shmem Property t Struct Reference 1412

6.220NDDS Transport UDPv4 Property t Struct Reference 1415

6.221NDDS Transport UDPv6 Property t Struct Reference 1422

6.222NDDSConfigLogger Class Reference 1430

6.223NDDSConfigVersion Class Reference 1434

6.224NDDSTransportSupport Class Reference 1436

6.225NDDSUtility Class Reference . 1443

6.226TransportAllocationSettings t Struct Reference 1444

7 Example Documentation 1445

7.1 HelloWorld.cxx . 1445

7.2 HelloWorld.idl . 1451

7.3 HelloWorld publisher.cxx . 1452

7.4 HelloWorld subscriber.cxx . 1457

7.5 HelloWorldPlugin.cxx . 1463

7.6 HelloWorldSupport.cxx . 1483

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

Chapter 1

RTI Data Distribution
Service

Real-Time Innovations, Inc.

RTI Data Distribution Service is a data-centric communications middleware
that allows developers to build high-performance distributed communications
in a heterogeneous computer environment.

The Application Programming Interface (API) of RTI Data Distribution Service
4 is based on the OMG’s Data Distribution Service (DDS) specification. The
most recent publication of this specification can be found in the Catalog of
OMG Specifications under ”Middleware Specifications”.

1.1 Feedback and Support for this Release.

For more information, visit our knowledge base, accessible from
http://www.rti.com/support, to see sample code, general information
on RTI Data Distribution Service, performance information, troubleshooting
tips, and technical details.

By its very nature, the knowledge base is continuously evolving and improv-
ing. We hope that you will find it helpful. If there are questions that
you would like to see addressed or comments you would like to share, please
send e-mail to support@rti.com. We can only guarantee a response for cus-
tomers with a current maintenance contract or subscription. To purchase a
maintenance contract or subscription, contact your local RTI representative
(see http://www.rti.com/company/contact.html), send an email request to
sales@rti.com, or call +1 (408) 990-7400.

2 RTI Data Distribution Service

Please do not hesitate to contact RTI with questions or comments about this
release. We welcome any input on how to improve RTI Data Distribution Service
to suit your needs.

1.2 Available Documentation.

The documentation of this release is provided in two forms: the HTML API
reference and PDF documents. If you are new to RTI Data Distribution Service
4, the Documentation Roadmap (p. 188) will provide direction on how to
learn about this product.

1.2.1 The PDF documents are:

ˆ What’s New. An overview of the new features in this release.

ˆ Release Notes. System requirements, compatibility, what’s fixed in this
release, and known issues.

ˆ Getting Started Guide. Download and installation instructions. It also
lays out the core value and concepts behind the product and takes you
step-by-step through the creation of a simple example application. Devel-
opers should read this document first.

ˆ Getting Started Guide, Database Addendum. Additional installation
and setup information for database usage.

ˆ Getting Started Guide, Embedded Systems Addendum. Additional in-
stallation and setup information for embedded systems.

ˆ User’s Manual. Introduction to RTI Data Distribution Service, product
tour and conceptual presentation of the functionality of RTI Data Distri-
bution Service.

ˆ Platform Notes. Specific details, such as compilation setting and li-
braries, related to building and using RTI Data Distribution Service on
the various supported platforms.

ˆ C API Reference Manual. PDF version of the online HTML documen-
tation for the C API.

ˆ C++ API Reference Manual. PDF version of the online HTML docu-
mentation for the C++ API.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1.2 Available Documentation. 3

ˆ Java API Reference Manual. PDF version of the online HTML docu-
mentation for the Java API.

ˆ .NET API Reference Manual. PDF version of the online HTML docu-
mentation for the .NET API.

1.2.2 The HTML API reference contains:

ˆ DDS API Reference (p. 194) - The DDS API reference.

ˆ RTI Data Distribution Service API Reference (p. 207) - RTI Data
Distribution Service API’s independent of the DDS standard.

ˆ Programming How-To’s (p. 208) - Describes and shows the common
tasks done using the API.

ˆ Programming Tools (p. 210) - RTI Data Distribution Service helper
tools.

The HTML API documentation can be accessed through the tree view in the
left frame of the web browser window. The bulk of the documentation is found
under the entry labeled ”Modules”.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

4 RTI Data Distribution Service

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

Chapter 2

Module Index

2.1 Modules

Here is a list of all modules:

Documentation Roadmap . 188
Conventions . 189
Using DDS:: Namespace . 192
DDS API Reference . 194

Domain Module . 32
DomainParticipantFactory . 34
DomainParticipants . 36
Built-in Topics . 41

Participant Built-in Topics 275
Topic Built-in Topics . 277
Publication Built-in Topics 279
Subscription Built-in Topics 281

Topic Module . 48
Topics . 49
User Data Type Support . 50
Type Code Support . 55
Built-in Types . 70

String Built-in Type . 283
KeyedString Built-in Type 284
Octets Built-in Type . 285
KeyedOctets Built-in Type 286

Dynamic Data . 75
DDS-Specific Primitive Types 287

Publication Module . 80
Publishers . 81

6 Module Index

Data Writers . 84
Flow Controllers . 86

Subscription Module . 92
Subscribers . 95
DataReaders . 98

Read Conditions . 101
Query Conditions . 102

Data Samples . 103
Sample States . 104
View States . 106
Instance States . 108

Infrastructure Module . 111
Time Support . 292
GUID Support . 296
Sequence Number Support . 298
Exception Codes . 300
Return Codes . 302
Status Kinds . 305
QoS Policies . 319

USER DATA . 332
TOPIC DATA . 333
GROUP DATA . 334
DURABILITY . 335
PRESENTATION . 337
DEADLINE . 339
LATENCY BUDGET . 340
OWNERSHIP . 341
OWNERSHIP STRENGTH 343
LIVELINESS . 344
TIME BASED FILTER . 346
PARTITION . 347
RELIABILITY . 348
DESTINATION ORDER . 350
HISTORY . 352
DURABILITY SERVICE . 355
RESOURCE LIMITS . 356
TRANSPORT PRIORITY 358
LIFESPAN . 359
WRITER DATA LIFECYCLE 360
READER DATA LIFECYCLE 361
ENTITY FACTORY . 362
Extended Qos Support . 363

Thread Settings . 316
TRANSPORT SELECTION 366
TRANSPORT UNICAST . 367

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

2.1 Modules 7

Unicast Settings . 364
TRANSPORT MULTICAST 368

Multicast Settings . 365
DISCOVERY . 370

NDDS DISCOVERY PEERS 371
TRANSPORT BUILTIN . 379
WIRE PROTOCOL . 383
DATA READER RESOURCE LIMITS 389
DATA WRITER RESOURCE LIMITS 391
DATA READER PROTOCOL 395
DATA WRITER PROTOCOL 396
SYSTEM RESOURCE LIMITS 397
DOMAIN PARTICIPANT RESOURCE LIMITS 398
EVENT . 399
DATABASE . 400
RECEIVER POOL . 401
PUBLISH MODE . 402
DISCOVERY CONFIG . 405
TYPESUPPORT . 410
ASYNCHRONOUS PUBLISHER 411
EXCLUSIVE AREA . 412
BATCH . 413
LOCATORFILTER . 414
MULTICHANNEL . 415
PROPERTY . 416
ENTITY NAME . 424
PROFILE . 425

Entity Support . 422
Conditions and WaitSets . 423
Octet Buffer Support . 426
Sequence Support . 430

Built-in Sequences . 113
String Support . 431

Queries and Filters Syntax . 199
RTI Data Distribution Service API Reference 207

Clock Selection . 29
Multi-channel DataWriters . 115
Pluggable Transports . 117

Using Transport Plugins . 123
Built-in Transport Plugins . 129

Shared Memory Transport . 247
UDPv4 Transport . 255
UDPv6 Transport . 265

Configuration Utilities . 131
Unsupported Utilities . 135

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

8 Module Index

Durability and Persistence . 136
Configuring QoS Profiles with XML 142

Programming How-To’s . 208
Publication Example . 145
Subscription Example . 146
Participant Use Cases . 147
Topic Use Cases . 150
FlowController Use Cases . 152
Publisher Use Cases . 156
DataWriter Use Cases . 157
Subscriber Use Cases . 159
DataReader Use Cases . 163
Entity Use Cases . 167
Waitset Use Cases . 170
Transport Use Cases . 172
Filter Use Cases . 177
Creating Custom Content Filters 182
Large Data Use Cases . 186

Programming Tools . 210
rtiddsgen . 211
rtiddsping . 223
rtiddsspy . 230

Class Id . 237
Address . 240
Attributes . 245

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

Chapter 3

Class Index

3.1 Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

DDS AllocationSettings t . 439
DDS AsynchronousPublisherQosPolicy 441
DDS BatchQosPolicy . 446
DDS BooleanSeq . 450
DDS BuiltinTopicKey t . 451
DDS BuiltinTopicReaderResourceLimits t 452
DDS ChannelSettings t . 455
DDS ChannelSettingsSeq . 457
DDS CharSeq . 458
DDS ContentFilterProperty t . 459
DDS DatabaseQosPolicy . 461
DDS DataReaderCacheStatus . 466
DDS DataReaderProtocolQosPolicy 467
DDS DataReaderProtocolStatus . 471
DDS DataReaderQos . 481
DDS DataReaderResourceLimitsQosPolicy 487
DDS DataWriterCacheStatus . 498
DDS DataWriterProtocolQosPolicy . 499
DDS DataWriterProtocolStatus . 504
DDS DataWriterQos . 516
DDS DataWriterResourceLimitsQosPolicy 523
DDS DeadlineQosPolicy . 528
DDS DestinationOrderQosPolicy . 531
DDS DiscoveryConfigQosPolicy . 534
DDS DiscoveryQosPolicy . 542

10 Class Index

DDS DomainParticipantFactoryQos 546
DDS DomainParticipantQos . 548
DDS DomainParticipantResourceLimitsQosPolicy 553
DDS DoubleSeq . 571
DDS DurabilityQosPolicy . 572
DDS DurabilityServiceQosPolicy . 576
DDS Duration t . 579
DDS DynamicData . 580
DDS DynamicDataInfo . 677
DDS DynamicDataMemberInfo . 678
DDS DynamicDataProperty t . 681
DDS DynamicDataSeq . 683
DDS DynamicDataTypeProperty t . 684
DDS DynamicDataTypeSerializationProperty t 685
DDS EntityFactoryQosPolicy . 687
DDS EntityNameQosPolicy . 689
DDS EnumMember . 691
DDS EnumMemberSeq . 692
DDS EventQosPolicy . 693
DDS ExclusiveAreaQosPolicy . 696
DDS FloatSeq . 699
DDS FlowControllerProperty t . 700
DDS FlowControllerTokenBucketProperty t 702
DDS GroupDataQosPolicy . 706
DDS GUID t . 708
DDS HistoryQosPolicy . 709
DDS InconsistentTopicStatus . 713
DDS InstanceHandleSeq . 715
DDS KeyedOctets . 716
DDS KeyedOctetsSeq . 718
DDS KeyedString . 719
DDS KeyedStringSeq . 721
DDS LatencyBudgetQosPolicy . 722
DDS LifespanQosPolicy . 724
DDS LivelinessChangedStatus . 726
DDS LivelinessLostStatus . 728
DDS LivelinessQosPolicy . 730
DDS Locator t . 734
DDS LocatorFilter t . 736
DDS LocatorFilterQosPolicy . 738
DDS LocatorFilterSeq . 740
DDS LocatorSeq . 741
DDS LongDoubleSeq . 742
DDS LongLongSeq . 743
DDS LongSeq . 744
DDS MultiChannelQosPolicy . 745

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

3.1 Class Hierarchy 11

DDS Octets . 748
DDS OctetSeq . 750
DDS OctetsSeq . 751
DDS OfferedDeadlineMissedStatus . 752
DDS OfferedIncompatibleQosStatus 754
DDS OwnershipQosPolicy . 756
DDS OwnershipStrengthQosPolicy . 763
DDS ParticipantBuiltinTopicData . 765
DDS ParticipantBuiltinTopicDataSeq 768
DDS PartitionQosPolicy . 769
DDS PresentationQosPolicy . 772
DDS ProductVersion t . 777
DDS ProfileQosPolicy . 779
DDS Property t . 782
DDS PropertyQosPolicy . 783
DDS PropertySeq . 786
DDS ProtocolVersion t . 787
DDS PublicationBuiltinTopicData . 788
DDS PublicationBuiltinTopicDataSeq 796
DDS PublicationMatchedStatus . 797
DDS PublisherQos . 800
DDS PublishModeQosPolicy . 802
DDS QosPolicyCount . 805
DDS QosPolicyCountSeq . 806
DDS ReaderDataLifecycleQosPolicy 807
DDS ReceiverPoolQosPolicy . 810
DDS ReliabilityQosPolicy . 813
DDS ReliableReaderActivityChangedStatus 817
DDS ReliableWriterCacheChangedStatus 819
DDS ReliableWriterCacheEventCount 822
DDS RequestedDeadlineMissedStatus 823
DDS RequestedIncompatibleQosStatus 825
DDS ResourceLimitsQosPolicy . 827
DDS RtpsReliableReaderProtocol t . 832
DDS RtpsReliableWriterProtocol t . 835
DDS RtpsWellKnownPorts t . 849
DDS SampleInfo . 855
DDS SampleInfoSeq . 863
DDS SampleLostStatus . 864
DDS SampleRejectedStatus . 865
DDS SequenceNumber t . 867
DDS ShortSeq . 868
DDS StringSeq . 869
DDS StructMember . 871
DDS StructMemberSeq . 873
DDS SubscriberQos . 874

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

12 Class Index

DDS SubscriptionBuiltinTopicData . 876
DDS SubscriptionBuiltinTopicDataSeq 884
DDS SubscriptionMatchedStatus . 885
DDS SystemResourceLimitsQosPolicy 888
DDS ThreadSettings t . 890
DDS Time t . 893
DDS TimeBasedFilterQosPolicy . 894
DDS TopicBuiltinTopicData . 898
DDS TopicBuiltinTopicDataSeq . 902
DDS TopicDataQosPolicy . 903
DDS TopicQos . 905
DDS TransportBuiltinQosPolicy . 909
DDS TransportMulticastQosPolicy . 911
DDS TransportMulticastSettings t . 913
DDS TransportMulticastSettingsSeq 915
DDS TransportPriorityQosPolicy . 916
DDS TransportSelectionQosPolicy . 918
DDS TransportUnicastQosPolicy . 920
DDS TransportUnicastSettings t . 922
DDS TransportUnicastSettingsSeq . 924
DDS TypeCode . 925
DDS TypeCodeFactory . 951
DDS TypeSupportQosPolicy . 964
DDS UnionMember . 966
DDS UnionMemberSeq . 968
DDS UnsignedLongLongSeq . 969
DDS UnsignedLongSeq . 970
DDS UnsignedShortSeq . 971
DDS UserDataQosPolicy . 972
DDS ValueMember . 974
DDS ValueMemberSeq . 976
DDS VendorId t . 977
DDS WaitSetProperty t . 978
DDS WcharSeq . 980
DDS WireProtocolQosPolicy . 981
DDS WriterDataLifecycleQosPolicy 989
DDS WstringSeq . 991
DDSCondition . 992

DDSGuardCondition . 1167
DDSReadCondition . 1269

DDSQueryCondition . 1267
DDSStatusCondition . 1271

DDSConditionSeq . 993
DDSContentFilter . 994
DDSDataReaderSeq . 1027

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

3.1 Class Hierarchy 13

DDSDomainParticipantFactory . 1123
DDSEntity . 1157

DDSDomainEntity . 1053
DDSDataReader . 1004

DDSDynamicDataReader . 1149
DDSKeyedOctetsDataReader 1169
DDSKeyedStringDataReader 1194
DDSOctetsDataReader . 1225
DDSParticipantBuiltinTopicDataDataReader 1238
DDSPublicationBuiltinTopicDataDataReader 1241
DDSStringDataReader . 1274
DDSSubscriptionBuiltinTopicDataDataReader 1309
DDSTopicBuiltinTopicDataDataReader 1317
FooDataReader . 1334

DDSDataWriter . 1028
DDSDynamicDataWriter . 1156
DDSKeyedOctetsDataWriter 1179
DDSKeyedStringDataWriter 1204
DDSOctetsDataWriter . 1230
DDSStringDataWriter . 1278
FooDataWriter . 1361

DDSPublisher . 1243
DDSSubscriber . 1284
DDSTopic . 1311

DDSDomainParticipant . 1054
DDSFlowController . 1163
DDSListener . 1217

DDSDataReaderListener . 1023
DDSSubscriberListener . 1306

DDSDomainParticipantListener 1147
DDSDataWriterListener . 1048

DDSPublisherListener . 1265
DDSDomainParticipantListener 1147

DDSTopicListener . 1322
DDSDomainParticipantListener 1147

DDSParticipantBuiltinTopicDataTypeSupport 1239
DDSPropertyQosPolicyHelper . 1240
DDSPublicationBuiltinTopicDataTypeSupport 1242
DDSPublisherSeq . 1266
DDSSubscriberSeq . 1308
DDSSubscriptionBuiltinTopicDataTypeSupport 1310
DDSTopicBuiltinTopicDataTypeSupport 1318
DDSTopicDescription . 1319

DDSContentFilteredTopic . 998

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

14 Class Index

DDSMultiTopic . 1221
DDSTopic . 1311

DDSTypeSupport . 1324
DDSDynamicDataTypeSupport . 1150
DDSKeyedOctetsTypeSupport . 1190
DDSKeyedStringTypeSupport . 1213
DDSOctetsTypeSupport . 1234
DDSStringTypeSupport . 1280
FooTypeSupport . 1392

DDSWaitSet . 1325
Foo . 1333
FooSeq . 1377
NDDS Config LibraryVersion t . 1401
NDDS Transport Address t . 1403
NDDS Transport Property t . 1404
NDDS Transport Shmem Property t 1412
NDDS Transport UDPv4 Property t 1415
NDDS Transport UDPv6 Property t 1422
NDDSConfigLogger . 1430
NDDSConfigVersion . 1434
NDDSTransportSupport . 1436
NDDSUtility . 1443
TransportAllocationSettings t . 1444

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

Chapter 4

Class Index

4.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

DDS AllocationSettings t (Resource allocation settings) 439
DDS AsynchronousPublisherQosPolicy (Configures the mecha-

nism that sends user data in an external middleware thread
) . 441

DDS BatchQosPolicy (Used to configure batching of multiple sam-
ples into a single network packet in order to increase through-
put for small samples) . 446

DDS BooleanSeq (Instantiates FooSeq (p. 1377) < DDS Boolean
(p. 291) >) . 450

DDS BuiltinTopicKey t (The key type of the built-in topic types) 451
DDS BuiltinTopicReaderResourceLimits t (Built-in topic

reader’s resource limits) . 452
DDS ChannelSettings t (Type used to configure the properties of

a channel) . 455
DDS ChannelSettingsSeq (Declares IDL sequence< DDS -

ChannelSettings t (p. 455) >) 457
DDS CharSeq (Instantiates FooSeq (p. 1377) < DDS Char

(p. 289) >) . 458
DDS ContentFilterProperty t (<<eXtension>> (p. 190) Type

used to provide all the required information to enable content
filtering) . 459

DDS DatabaseQosPolicy (Various threads and resource limits set-
tings used by RTI Data Distribution Service to control its
internal database) . 461

16 Class Index

DDS DataReaderCacheStatus (<<eXtension>> (p. 190) The
status of the reader’s cache) 466

DDS DataReaderProtocolQosPolicy (Along with DDS -
WireProtocolQosPolicy (p. 981) and DDS -
DataWriterProtocolQosPolicy (p. 499), this QoS policy
configures the DDS on-the-network protocol (RTPS)) 467

DDS DataReaderProtocolStatus (<<eXtension>> (p. 190)
The status of a reader’s internal protocol related metrics, like
the number of samples received, filtered, rejected; and status
of wire protocol traffic) . 471

DDS DataReaderQos (QoS policies supported by a DDS-
DataReader (p. 1004) entity) 481

DDS DataReaderResourceLimitsQosPolicy (Various settings
that configure how a DDSDataReader (p. 1004) allocates
and uses physical memory for internal resources) 487

DDS DataWriterCacheStatus (<<eXtension>> (p. 190) The
status of the writer’s cache) 498

DDS DataWriterProtocolQosPolicy (Protocol that applies only
to DDSDataWriter (p. 1028) instances) 499

DDS DataWriterProtocolStatus (<<eXtension>> (p. 190)
The status of a writer’s internal protocol related metrics, like
the number of samples pushed, pulled, filtered; and status of
wire protocol traffic) . 504

DDS DataWriterQos (QoS policies supported by a DDS-
DataWriter (p. 1028) entity) 516

DDS DataWriterResourceLimitsQosPolicy (Various settings
that configure how a DDSDataWriter (p. 1028) allocates
and uses physical memory for internal resources) 523

DDS DeadlineQosPolicy (Expresses the maximum duration (dead-
line) within which an instance is expected to be updated) . . 528

DDS DestinationOrderQosPolicy (Controls how the middleware
will deal with data sent by multiple DDSDataWriter
(p. 1028) entities for the same instance of data (i.e., same
DDSTopic (p. 1311) and key)) 531

DDS DiscoveryConfigQosPolicy (Settings for discovery configura-
tion) . 534

DDS DiscoveryQosPolicy (Configures the mechanism used by the
middleware to automatically discover and connect with new
remote applications) . 542

DDS DomainParticipantFactoryQos (QoS policies supported by
a DDSDomainParticipantFactory (p. 1123)) 546

DDS DomainParticipantQos (QoS policies supported by a DDS-
DomainParticipant (p. 1054) entity) 548

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

4.1 Class List 17

DDS DomainParticipantResourceLimitsQosPolicy (Various
settings that configure how a DDSDomainParticipant
(p. 1054) allocates and uses physical memory for internal
resources, including the maximum sizes of various properties) 553

DDS DoubleSeq (Instantiates FooSeq (p. 1377) < DDS Double
(p. 290) >) . 571

DDS DurabilityQosPolicy (This QoS policy specifies whether or
not RTI Data Distribution Service will store and deliver pre-
viously published data samples to new DDSDataReader
(p. 1004) entities that join the network later) 572

DDS DurabilityServiceQosPolicy (Various settings to con-
figure the external RTI Persistence Service used by
RTI Data Distribution Service for DataWriters with a
DDS DurabilityQosPolicy (p. 572) setting of DDS -
PERSISTENT DURABILITY QOS (p. 336) or DDS -
TRANSIENT DURABILITY QOS (p. 336)) 576

DDS Duration t (Type for duration representation) 579
DDS DynamicData (A sample of any complex data type, which can

be inspected and manipulated reflectively) 580
DDS DynamicDataInfo (A descriptor for a DDS DynamicData

(p. 580) object) . 677
DDS DynamicDataMemberInfo (A descriptor for a single member

(i.e. field) of dynamically defined data type) 678
DDS DynamicDataProperty t (A collection of attributes used to

configure DDS DynamicData (p. 580) objects) 681
DDS DynamicDataSeq (An ordered collection of DDS -

DynamicData (p. 580) elements) 683
DDS DynamicDataTypeProperty t (A collection of attributes

used to configure DDSDynamicDataTypeSupport
(p. 1150) objects) . 684

DDS DynamicDataTypeSerializationProperty t (Properties
that govern how data of a certain type will be serialized on
the network) . 685

DDS EntityFactoryQosPolicy (A QoS policy for all DDSEntity
(p. 1157) types that can act as factories for one or more other
DDSEntity (p. 1157) types) 687

DDS EntityNameQosPolicy (Assigns a name to a DDSDomain-
Participant (p. 1054). This name will be visible during the
discovery process and in RTI tools to help you visualize and
debug your system) . 689

DDS EnumMember (A description of a member of an enumeration) 691
DDS EnumMemberSeq (Defines a sequence of enumerator mem-

bers) . 692
DDS EventQosPolicy (Settings for event) 693
DDS ExclusiveAreaQosPolicy (Configures multi-thread concur-

rency and deadlock prevention capabilities) 696

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

18 Class Index

DDS FloatSeq (Instantiates FooSeq (p. 1377) < DDS Float
(p. 290) >) . 699

DDS FlowControllerProperty t (Determines the flow control
characteristics of the DDSFlowController (p. 1163)) . . . 700

DDS FlowControllerTokenBucketProperty t
(DDSFlowController (p. 1163) uses the popular token
bucket approach for open loop network flow control. The flow
control characteristics are determined by the token bucket
properties) . 702

DDS GroupDataQosPolicy (Attaches a buffer of opaque data that
is distributed by means of Built-in Topics (p. 41) during
discovery) . 706

DDS GUID t (Type for GUID (Global Unique Identifier) represen-
tation) . 708

DDS HistoryQosPolicy (Specifies the behavior of RTI Data Distri-
bution Service in the case where the value of a sample changes
(one or more times) before it can be successfully communi-
cated to one or more existing subscribers) 709

DDS InconsistentTopicStatus (DDS INCONSISTENT -
TOPIC STATUS (p. 310)) 713

DDS InstanceHandleSeq (Instantiates FooSeq (p. 1377) <
DDS InstanceHandle t (p. 52) >) 715

DDS KeyedOctets (Built-in type consisting of a variable-length ar-
ray of opaque bytes and a string that is the key) 716

DDS KeyedOctetsSeq (Instantiates FooSeq (p. 1377) < DDS -
KeyedOctets (p. 716) >) 718

DDS KeyedString (Keyed string built-in type) 719
DDS KeyedStringSeq (Instantiates FooSeq (p. 1377) < DDS -

KeyedString (p. 719) >) . 721
DDS LatencyBudgetQosPolicy (Provides a hint as to the maxi-

mum acceptable delay from the time the data is written to
the time it is received by the subscribing applications) 722

DDS LifespanQosPolicy (Specifies how long the data written by the
DDSDataWriter (p. 1028) is considered valid) 724

DDS LivelinessChangedStatus (DDS LIVELINESS -
CHANGED STATUS (p. 313)) 726

DDS LivelinessLostStatus (DDS LIVELINESS LOST -
STATUS (p. 313)) . 728

DDS LivelinessQosPolicy (Specifies and configures the mechanism
that allows DDSDataReader (p. 1004) entities to detect
when DDSDataWriter (p. 1028) entities become discon-
nected or ”dead.”) . 730

DDS Locator t (<<eXtension>> (p. 190) Type used to represent
the addressing information needed to send a message to an
RTPS Endpoint using one of the supported transports) . . . 734

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

4.1 Class List 19

DDS LocatorFilter t (Specifies the configuration of an individual
channel within a MultiChannel DataWriter) 736

DDS LocatorFilterQosPolicy (The QoS policy used to report the
configuration of a MultiChannel DataWriter as part of DDS -
PublicationBuiltinTopicData (p. 788)) 738

DDS LocatorFilterSeq (Declares IDL sequence< DDS -
LocatorFilter t (p. 736) >) 740

DDS LocatorSeq (Declares IDL sequence < DDS Locator t
(p. 734) >) . 741

DDS LongDoubleSeq (Instantiates FooSeq (p. 1377) < DDS -
LongDouble (p. 290) >) . 742

DDS LongLongSeq (Instantiates FooSeq (p. 1377) < DDS -
LongLong (p. 290) >) . 743

DDS LongSeq (Instantiates FooSeq (p. 1377) < DDS Long
(p. 290) >) . 744

DDS MultiChannelQosPolicy (Configures the ability of a
DataWriter to send data on different multicast groups (ad-
dresses) based on the value of the data) 745

DDS Octets (Built-in type consisting of a variable-length array of
opaque bytes) . 748

DDS OctetSeq (Instantiates FooSeq (p. 1377) < DDS Octet
(p. 289) >) . 750

DDS OctetsSeq (Instantiates FooSeq (p. 1377) < DDS Octets
(p. 748) >) . 751

DDS OfferedDeadlineMissedStatus (DDS OFFERED -
DEADLINE MISSED STATUS (p. 311)) 752

DDS OfferedIncompatibleQosStatus (DDS OFFERED -
INCOMPATIBLE QOS STATUS (p. 311)) 754

DDS OwnershipQosPolicy (Specifies whether it is allowed for mul-
tiple DDSDataWriter (p. 1028) (s) to write the same in-
stance of the data and if so, how these modifications should
be arbitrated) . 756

DDS OwnershipStrengthQosPolicy (Specifies the value of the
strength used to arbitrate among multiple DDSDataWriter
(p. 1028) objects that attempt to modify the same instance of
a data type (identified by DDSTopic (p. 1311) + key)) . . . 763

DDS ParticipantBuiltinTopicData (Entry created when a Do-
mainParticipant object is discovered) 765

DDS ParticipantBuiltinTopicDataSeq (Instantiates FooSeq
(p. 1377) < DDS ParticipantBuiltinTopicData (p. 765)
>) . 768

DDS PartitionQosPolicy (Set of strings that introduces a logi-
cal partition among the topics visible by a DDSPublisher
(p. 1243) and a DDSSubscriber (p. 1284)) 769

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

20 Class Index

DDS PresentationQosPolicy (Specifies how the samples represent-
ing changes to data instances are presented to a subscribing
application) . 772

DDS ProductVersion t (<<eXtension>> (p. 190) Type used to
represent the current version of RTI Data Distribution Service)777

DDS ProfileQosPolicy (Configures the way that XML documents
containing QoS profiles are loaded by RTI Data Distribution
Service) . 779

DDS Property t (Properties are name/value pairs objects) 782
DDS PropertyQosPolicy (Stores name/value(string) pairs that can

be used to configure certain parameters of RTI Data Distribu-
tion Service that are not exposed through formal QoS policies.
Can also be used to store and propagate application-specific
name/value pairs that can be retrieved by user code during
discovery) . 783

DDS PropertySeq (Declares IDL sequence < DDS Property t
(p. 782) >) . 786

DDS ProtocolVersion t (<<eXtension>> (p. 190) Type used to
represent the version of the RTPS protocol) 787

DDS PublicationBuiltinTopicData (Entry created when a DDS-
DataWriter (p. 1028) is discovered in association with its
Publisher) . 788

DDS PublicationBuiltinTopicDataSeq (Instantiates FooSeq
(p. 1377) < DDS PublicationBuiltinTopicData (p. 788)
>) . 796

DDS PublicationMatchedStatus (DDS PUBLICATION -
MATCHED STATUS (p. 313)) 797

DDS PublisherQos (QoS policies supported by a DDSPublisher
(p. 1243) entity) . 800

DDS PublishModeQosPolicy (Specifies how RTI Data Distribu-
tion Service sends application data on the network. This QoS
policy can be used to tell RTI Data Distribution Service to
use its own thread to send data, instead of the user thread) . 802

DDS QosPolicyCount (Type to hold a counter for a DDS -
QosPolicyId t (p. 328)) . 805

DDS QosPolicyCountSeq (Declares IDL sequence < DDS -
QosPolicyCount (p. 805) >) 806

DDS ReaderDataLifecycleQosPolicy (Controls how a
DataReader manages the lifecycle of the data that it
has received) . 807

DDS ReceiverPoolQosPolicy (Configures threads used by RTI
Data Distribution Service to receive and process data from
transports (for example, UDP sockets)) 810

DDS ReliabilityQosPolicy (Indicates the level of reliability of-
fered/requested by RTI Data Distribution Service) 813

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

4.1 Class List 21

DDS ReliableReaderActivityChangedStatus
(<<eXtension>> (p. 190) Describes the activity (i.e.
are acknowledgements forthcoming) of reliable readers
matched to a reliable writer) 817

DDS ReliableWriterCacheChangedStatus (<<eXtension>>
(p. 190) A summary of the state of a data writer’s cache of
unacknowledged samples written) 819

DDS ReliableWriterCacheEventCount (<<eXtension>>
(p. 190) The number of times the number of unacknowl-
edged samples in the cache of a reliable writer hit a certain
well-defined threshold) . 822

DDS RequestedDeadlineMissedStatus (DDS -
REQUESTED DEADLINE MISSED STATUS
(p. 311)) . 823

DDS RequestedIncompatibleQosStatus (DDS -
REQUESTED INCOMPATIBLE QOS STATUS
(p. 311)) . 825

DDS ResourceLimitsQosPolicy (Controls the amount of physical
memory allocated for DDS entities, if dynamic allocations are
allowed, and how they occur. Also controls memory usage
among different instance values for keyed topics) 827

DDS RtpsReliableReaderProtocol t (Qos related to reliable
reader protocol defined in RTPS) 832

DDS RtpsReliableWriterProtocol t (QoS related to the reliable
writer protocol defined in RTPS) 835

DDS RtpsWellKnownPorts t (RTPS well-known port mapping
configuration) . 849

DDS SampleInfo (Information that accompanies each sample that
is read or taken) . 855

DDS SampleInfoSeq (Declares IDL sequence < DDS -
SampleInfo (p. 855) >) . 863

DDS SampleLostStatus (DDS SAMPLE LOST STATUS
(p. 312)) . 864

DDS SampleRejectedStatus (DDS SAMPLE REJECTED -
STATUS (p. 312)) . 865

DDS SequenceNumber t (Type for sequence number representa-
tion) . 867

DDS ShortSeq (Instantiates FooSeq (p. 1377) < DDS Short
(p. 289) >) . 868

DDS StringSeq (Instantiates FooSeq (p. 1377) < char∗ > with
value type semantics) . 869

DDS StructMember (A description of a member of a struct) . . . 871
DDS StructMemberSeq (Defines a sequence of struct members) . 873
DDS SubscriberQos (QoS policies supported by a DDSSubscriber

(p. 1284) entity) . 874

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

22 Class Index

DDS SubscriptionBuiltinTopicData (Entry created when a
DDSDataReader (p. 1004) is discovered in association with
its Subscriber) . 876

DDS SubscriptionBuiltinTopicDataSeq (Instantiates FooSeq
(p. 1377) < DDS SubscriptionBuiltinTopicData (p. 876)
>) . 884

DDS SubscriptionMatchedStatus (DDS SUBSCRIPTION -
MATCHED STATUS (p. 314)) 885

DDS SystemResourceLimitsQosPolicy (Configures DDSDo-
mainParticipant (p. 1054)-independent resources used by
RTI Data Distribution Service. Mainly used to change the
maximum number of DDSDomainParticipant (p. 1054) en-
tities that can be created within a single process (address
space)) . 888

DDS ThreadSettings t (The properties of a thread of execution) . 890
DDS Time t (Type for time representation) 893
DDS TimeBasedFilterQosPolicy (Filter that allows a DDS-

DataReader (p. 1004) to specify that it is interested only
in (potentially) a subset of the values of the data) 894

DDS TopicBuiltinTopicData (Entry created when a Topic object
discovered) . 898

DDS TopicBuiltinTopicDataSeq (Instantiates FooSeq (p. 1377)
< DDS TopicBuiltinTopicData (p. 898) >) 902

DDS TopicDataQosPolicy (Attaches a buffer of opaque data that
is distributed by means of Built-in Topics (p. 41) during
discovery) . 903

DDS TopicQos (QoS policies supported by a DDSTopic (p. 1311)
entity) . 905

DDS TransportBuiltinQosPolicy (Specifies which built-in trans-
ports are used) . 909

DDS TransportMulticastQosPolicy (Specifies the multicast ad-
dress on which a DDSDataReader (p. 1004) wants to receive
its data. It can also specify a port number as well as a subset
of the available (at the DDSDomainParticipant (p. 1054)
level) transports with which to receive the multicast data) . 911

DDS TransportMulticastSettings t (Type representing a list of
multicast locators) . 913

DDS TransportMulticastSettingsSeq (Declares IDL sequence<
DDS TransportMulticastSettings t (p. 913) >) 915

DDS TransportPriorityQosPolicy (This QoS policy allows the ap-
plication to take advantage of transports that are capable of
sending messages with different priorities) 916

DDS TransportSelectionQosPolicy (Specifies the physical trans-
ports a DDSDataWriter (p. 1028) or DDSDataReader
(p. 1004) may use to send or receive data) 918

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

4.1 Class List 23

DDS TransportUnicastQosPolicy (Specifies a subset of transports
and a port number that can be used by an Entity to receive
data) . 920

DDS TransportUnicastSettings t (Type representing a list of uni-
cast locators) . 922

DDS TransportUnicastSettingsSeq (Declares IDL sequence<
DDS TransportUnicastSettings t (p. 922) >) 924

DDS TypeCode (The definition of a particular data type, which you
can use to inspect the name, members, and other properties
of types generated with rtiddsgen (p. 211) or to modify types
you define yourself at runtime) 925

DDS TypeCodeFactory (A singleton factory for creating, copying,
and deleting data type definitions dynamically) 951

DDS TypeSupportQosPolicy (Allows you to attach application-
specific values to a DataWriter or DataReader that are passed
to the serialization or deserialization routine of the associated
data type) . 964

DDS UnionMember (A description of a member of a union) 966
DDS UnionMemberSeq (Defines a sequence of union members) . 968
DDS UnsignedLongLongSeq (Instantiates FooSeq (p. 1377) <

DDS UnsignedLongLong (p. 290) >) 969
DDS UnsignedLongSeq (Instantiates FooSeq (p. 1377) < DDS -

UnsignedLong (p. 290) >) 970
DDS UnsignedShortSeq (Instantiates FooSeq (p. 1377) < DDS -

UnsignedShort (p. 289) >) 971
DDS UserDataQosPolicy (Attaches a buffer of opaque data that

is distributed by means of Built-in Topics (p. 41) during
discovery) . 972

DDS ValueMember (A description of a member of a value type) . 974
DDS ValueMemberSeq (Defines a sequence of value members) . . 976
DDS VendorId t (<<eXtension>> (p. 190) Type used to repre-

sent the vendor of the service implementing the RTPS protocol)977
DDS WaitSetProperty t (<<eXtension>> (p. 190) Specifies the

DDSWaitSet (p. 1325) behavior for multiple trigger events) 978
DDS WcharSeq (Instantiates FooSeq (p. 1377) < DDS Wchar

(p. 289) >) . 980
DDS WireProtocolQosPolicy (Specifies the wire-protocol-related

attributes for the DDSDomainParticipant (p. 1054)) . . . 981
DDS WriterDataLifecycleQosPolicy (Controls how a DDS-

DataWriter (p. 1028) handles the lifecycle of the instances
(keys) that it is registered to manage) 989

DDS WstringSeq (Instantiates FooSeq (p. 1377) < DDS Wchar
(p. 289)∗ >) . 991

DDSCondition (<<interface>> (p. 190) Root class for all the con-
ditions that may be attached to a DDSWaitSet (p. 1325)) . 992

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

24 Class Index

DDSConditionSeq (Instantiates FooSeq (p. 1377) < DDSCondi-
tion (p. 992) >) . 993

DDSContentFilter (<<interface>> (p. 190) Interface to be used
by a custom filter of a DDSContentFilteredTopic (p. 998)) 994

DDSContentFilteredTopic (<<interface>> (p. 190) Specializa-
tion of DDSTopicDescription (p. 1319) that allows for
content-based subscriptions) 998

DDSDataReader (<<interface>> (p. 190) Allows the application
to: (1) declare the data it wishes to receive (i.e. make a
subscription) and (2) access the data received by the attached
DDSSubscriber (p. 1284)) 1004

DDSDataReaderListener (<<interface>> (p. 190) DDSLis-
tener (p. 1217) for reader status) 1023

DDSDataReaderSeq (Declares IDL sequence < DDS-
DataReader (p. 1004) >) 1027

DDSDataWriter (<<interface>> (p. 190) Allows an application
to set the value of the data to be published under a given
DDSTopic (p. 1311)) . 1028

DDSDataWriterListener (<<interface>> (p. 190) DDSLis-
tener (p. 1217) for writer status) 1048

DDSDomainEntity (<<interface>> (p. 190) Abstract base class
for all DDS entities except for the DDSDomainParticipant
(p. 1054)) . 1053

DDSDomainParticipant (<<interface>> (p. 190) Container for
all DDSDomainEntity (p. 1053) objects) 1054

DDSDomainParticipantFactory (<<singleton>> (p. 190)
<<interface>> (p. 190) Allows creation and destruction of
DDSDomainParticipant (p. 1054) objects) 1123

DDSDomainParticipantListener (<<interface>> (p. 190) Lis-
tener for participant status) 1147

DDSDynamicDataReader (Reads (subscribes to) objects of type
DDS DynamicData (p. 580)) 1149

DDSDynamicDataTypeSupport (A factory for registering a dy-
namically defined type and creating DDS DynamicData
(p. 580) objects) . 1150

DDSDynamicDataWriter (Writes (publishes) objects of type
DDS DynamicData (p. 580)) 1156

DDSEntity (<<interface>> (p. 190) Abstract base class for all the
DDS objects that support QoS policies, a listener, and a status
condition) . 1157

DDSFlowController (<<interface>> (p. 190) A flow controller
is the object responsible for shaping the network traffic by
determining when attached asynchronous DDSDataWriter
(p. 1028) instances are allowed to write data) 1163

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

4.1 Class List 25

DDSGuardCondition (<<interface>> (p. 190) A specific
DDSCondition (p. 992) whose trigger value is completely
under the control of the application) 1167

DDSKeyedOctetsDataReader (<<interface>> (p. 190) Instan-
tiates DataReader < DDS KeyedOctets (p. 716) >) 1169

DDSKeyedOctetsDataWriter (<<interface>> (p. 190) Instan-
tiates DataWriter < DDS KeyedOctets (p. 716) >) 1179

DDSKeyedOctetsTypeSupport (<<interface>> (p. 190)
DDS KeyedOctets (p. 716) type support) 1190

DDSKeyedStringDataReader (<<interface>> (p. 190) Instan-
tiates DataReader < DDS KeyedString (p. 719) >) 1194

DDSKeyedStringDataWriter (<<interface>> (p. 190) Instanti-
ates DataWriter < DDS KeyedString (p. 719) >) 1204

DDSKeyedStringTypeSupport (<<interface>> (p. 190) Keyed
string type support) . 1213

DDSListener (<<interface>> (p. 190) Abstract base class for all
Listener interfaces) . 1217

DDSMultiTopic ([Not supported (optional)] <<interface>>
(p. 190) A specialization of DDSTopicDescrip-
tion (p. 1319) that allows subscriptions that com-
bine/filter/rearrange data coming from several topics
) . 1221

DDSOctetsDataReader (<<interface>> (p. 190) Instantiates
DataReader < DDS Octets (p. 748) >) 1225

DDSOctetsDataWriter (<<interface>> (p. 190) Instantiates
DataWriter < DDS Octets (p. 748) >) 1230

DDSOctetsTypeSupport (<<interface>> (p. 190) DDS -
Octets (p. 748) type support) 1234

DDSParticipantBuiltinTopicDataDataReader (Instantiates
DataReader < DDS ParticipantBuiltinTopicData
(p. 765) >) . 1238

DDSParticipantBuiltinTopicDataTypeSupport (Instantiates
TypeSupport < DDS ParticipantBuiltinTopicData
(p. 765) >) . 1239

DDSPropertyQosPolicyHelper (Policy Helpers which facilitate
management of the properties in the input policy) 1240

DDSPublicationBuiltinTopicDataDataReader (Instantiates
DataReader < DDS PublicationBuiltinTopicData
(p. 788) >) . 1241

DDSPublicationBuiltinTopicDataTypeSupport (Instantiates
TypeSupport < DDS PublicationBuiltinTopicData
(p. 788) >) . 1242

DDSPublisher (<<interface>> (p. 190) A publisher is the object
responsible for the actual dissemination of publications) . . . 1243

DDSPublisherListener (<<interface>> (p. 190) DDSListener
(p. 1217) for DDSPublisher (p. 1243) status) 1265

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

26 Class Index

DDSPublisherSeq (Declares IDL sequence < DDSPublisher
(p. 1243) >) . 1266

DDSQueryCondition (<<interface>> (p. 190) These are spe-
cialised DDSReadCondition (p. 1269) objects that allow
the application to also specify a filter on the locally available
data) . 1267

DDSReadCondition (<<interface>> (p. 190) Conditions specifi-
cally dedicated to read operations and attached to one DDS-
DataReader (p. 1004)) . 1269

DDSStatusCondition (<<interface>> (p. 190) A specific
DDSCondition (p. 992) that is associated with each
DDSEntity (p. 1157)) . 1271

DDSStringDataReader (<<interface>> (p. 190) Instantiates
DataReader < char∗ >) . 1274

DDSStringDataWriter (<<interface>> (p. 190) Instantiates
DataWriter < char∗ >) . 1278

DDSStringTypeSupport (<<interface>> (p. 190) String type
support) . 1280

DDSSubscriber (<<interface>> (p. 190) A subscriber is the ob-
ject responsible for actually receiving data from a subscription
) . 1284

DDSSubscriberListener (<<interface>> (p. 190) DDSListener
(p. 1217) for status about a subscriber) 1306

DDSSubscriberSeq (Declares IDL sequence < DDSSubscriber
(p. 1284) >) . 1308

DDSSubscriptionBuiltinTopicDataDataReader (Instantiates
DataReader < DDS SubscriptionBuiltinTopicData
(p. 876) >) . 1309

DDSSubscriptionBuiltinTopicDataTypeSupport (Instantiates
TypeSupport < DDS SubscriptionBuiltinTopicData
(p. 876) >) . 1310

DDSTopic (<<interface>> (p. 190) The most basic description of
the data to be published and subscribed) 1311

DDSTopicBuiltinTopicDataDataReader (Instantiates
DataReader < DDS TopicBuiltinTopicData (p. 898)
>) . 1317

DDSTopicBuiltinTopicDataTypeSupport (Instantiates
TypeSupport < DDS TopicBuiltinTopicData (p. 898) >) 1318

DDSTopicDescription (<<interface>> (p. 190) Base class for
DDSTopic (p. 1311), DDSContentFilteredTopic (p. 998),
and DDSMultiTopic (p. 1221)) 1319

DDSTopicListener (<<interface>> (p. 190) DDSListener
(p. 1217) for DDSTopic (p. 1311) entities) 1322

DDSTypeSupport (<<interface>> (p. 190) An abstract marker
interface that has to be specialized for each concrete user data
type that will be used by the application) 1324

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

4.1 Class List 27

DDSWaitSet (<<interface>> (p. 190) Allows an application to
wait until one or more of the attached DDSCondition
(p. 992) objects has a trigger value of DDS BOOLEAN -
TRUE (p. 288) or else until the timeout expires) 1325

Foo (A representative user-defined data type) 1333
FooDataReader (<<interface>> (p. 190) <<generic>>

(p. 190) User data type-specific data reader) 1334
FooDataWriter (<<interface>> (p. 190) <<generic>> (p. 190)

User data type specific data writer) 1361
FooSeq (<<interface>> (p. 190) <<generic>> (p. 190) A type-

safe, ordered collection of elements. The type of these ele-
ments is referred to in this documentation as Foo (p. 1333)
) . 1377

FooTypeSupport (<<interface>> (p. 190) <<generic>>
(p. 190) User data type specific interface) 1392

NDDS Config LibraryVersion t (The version of a single library
shipped as part of an RTI Data Distribution Service distribu-
tion) . 1401

NDDS Transport Address t (Addresses are stored individually as
network-ordered bytes) . 1403

NDDS Transport Property t (Base structure that must be inher-
ited by derived Transport Plugin classes) 1404

NDDS Transport Shmem Property t (Subclass of NDDS -
Transport Property t (p. 1404) allowing specification of
parameters that are specific to the shared-memory transport) 1412

NDDS Transport UDPv4 Property t (Configurable IPv4/UDP
Transport-Plugin properties) 1415

NDDS Transport UDPv6 Property t (Configurable IPv6/UDP
Transport-Plugin properties) 1422

NDDSConfigLogger (<<interface>> (p. 190) The singleton type
used to configure RTI Data Distribution Service logging) . . 1430

NDDSConfigVersion (<<interface>> (p. 190) The version of an
RTI Data Distribution Service distribution) 1434

NDDSTransportSupport (<<interface>> (p. 190) The utility
class used to configure RTI Data Distribution Service plug-
gable transports) . 1436

NDDSUtility (Unsupported utility APIs) 1443
TransportAllocationSettings t (Allocation settings used by various

internal buffers) . 1444

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

28 Class Index

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

Chapter 5

Module Documentation

5.1 Clock Selection

APIs related to clock selection. RTI Data Distribution Service uses clocks to
measure time and generate timestamps.

The middleware uses two clocks, an internal clock and an external clock. The
internal clock is used to measure time and handles all timing in the middleware.
The external clock is used solely to generate timestamps, such as the source
timestamp and the reception timestamp, in addition to providing the time given
by DDSDomainParticipant::get current time (p. 1104).

5.1.1 Available Clocks

Two clock implementations are generally available, the monotonic clock and the
realtime clock.

The monotonic clock provides times that are monotonic from a clock that is not
adjustable. This clock is useful to use in order to not be subject to changes in
the system or realtime clock, which may be adjusted by the user or via time
synchronization protocols. However, this time generally starts from an arbitrary
point in time, such as system startup. Note that this clock is not available for
all architectures. Please see the Platform Notes for the architectures on which
it is supported. For the purposes of clock selection, this clock can be referenced
by the name ”monotonic”.

The realtime clock provides the realtime of the system. This clock may generally
be monotonic but may not be guaranteed to be so. It is adjustable and may be
subject to small and large changes in time. The time obtained from this clock
is generally a meaningful time in that it is the amount of time from a known

30 Module Documentation

epoch. For the purposes of clock selection, this clock can be referenced by the
names ”realtime” or ”system”.

5.1.2 Clock Selection Strategy

By default, both the internal and external clocks use the realtime clock. If you
want your application to be robust to changes in the system time, you may use
the monotonic clock as the internal clock, and leave the system clock as the
external clock. Note, however, that this may slightly diminish performance in
that both the send and receive paths may need to obtain times from both clocks.
Since the monotonic clock is not available on all architectures, you may want
to specify ”monotonic,realtime” for the internal clock (see the table below). By
doing so, the middleware will attempt to use the monotonic clock if available,
and will fall back to the realtime clock if the monotonic clock is not available.

If you want your application to be robust to changes in the system time, you
are not relying on source timestamps, and you want to avoid obtaining times
from both clocks, you may use the monotonic clock for both the internal and
external clocks.

5.1.3 Configuring Clock Selection

To configure the clock selection, use the PROPERTY (p. 416) QoS policy
associated with the DDSDomainParticipant (p. 1054).

See also:

DDS PropertyQosPolicy (p. 783)

The following table lists the supported clock selection properties.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.1 Clock Selection 31

Property Description
dds.clock.external clock Comma-delimited list of clocks to

use for the external clock, in the
order of preference. Valid clock
names are ”realtime”, ”system”,
and ”monotonic”.
Default: ”realtime”

dds.clock.internal clock Comma-delimited list of clocks to
use for the internal clock, in the
order of preference. Valid clock
names are ”realtime”, ”system”,
and ”monotonic”.
Default: ”realtime”

Table 5.1: Clock Selection Properties

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

32 Module Documentation

5.2 Domain Module

Contains the DDSDomainParticipant (p. 1054) class that acts as an entry-
point of RTI Data Distribution Service and acts as a factory for many of the
classes. The DDSDomainParticipant (p. 1054) also acts as a container for
the other objects that make up RTI Data Distribution Service.

Modules

ˆ DomainParticipantFactory

DDSDomainParticipantFactory (p. 1123) entity and associated elements

ˆ DomainParticipants

DDSDomainParticipant (p. 1054) entity and associated elements

ˆ Built-in Topics

Built-in objects created by RTI Data Distribution Service but accessible to
the application.

Defines

ˆ #define DDSTheParticipantFactory DDSDomainParticipantFac-
tory::get instance()

Can be used as an alias for the singleton factory returned by the operation
DDSDomainParticipantFactory::get instance() (p. 1127).

Typedefs

ˆ typedef DDS DOMAINID TYPE NATIVE DDS DomainId t

An integer that indicates in which domain a DDSDomainParticipant
(p. 1054) communicates.

5.2.1 Detailed Description

Contains the DDSDomainParticipant (p. 1054) class that acts as an entry-
point of RTI Data Distribution Service and acts as a factory for many of the
classes. The DDSDomainParticipant (p. 1054) also acts as a container for
the other objects that make up RTI Data Distribution Service.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.2 Domain Module 33

5.2.2 Define Documentation

5.2.2.1 #define DDSTheParticipantFactory DDSDomainPartici-
pantFactory::get instance()

Can be used as an alias for the singleton factory returned by the operation
DDSDomainParticipantFactory::get instance() (p. 1127).

See also:

DDSDomainParticipantFactory::get instance (p. 1127)

Examples:

HelloWorld publisher.cxx, and HelloWorld subscriber.cxx.

5.2.3 Typedef Documentation

5.2.3.1 typedef DDS DOMAINID TYPE NATIVE
DDS DomainId t

An integer that indicates in which domain a DDSDomainParticipant
(p. 1054) communicates.

Participants with the same DDS DomainId t (p. 33) are said to be in the
same domain, and can thus communicate with one another.

The lower limit for a domain ID is 0. The upper limit for a domain ID is de-
termined by the guidelines stated in DDS RtpsWellKnownPorts t (p. 849)
(specifically DDS RtpsWellKnownPorts t::domain id gain (p. 851))

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

34 Module Documentation

5.3 DomainParticipantFactory

DDSDomainParticipantFactory (p. 1123) entity and associated elements

Classes

ˆ class DDSDomainParticipantFactory

<<singleton>> (p. 190) <<interface>> (p. 190) Allows creation and de-
struction of DDSDomainParticipant (p. 1054) objects.

ˆ struct DDS DomainParticipantFactoryQos

QoS policies supported by a DDSDomainParticipantFactory (p. 1123).

Variables

ˆ struct DDS DomainParticipantQos DDS PARTICIPANT QOS -
DEFAULT

Special value for creating a DomainParticipant with default QoS.

5.3.1 Detailed Description

DDSDomainParticipantFactory (p. 1123) entity and associated elements

5.3.2 Variable Documentation

5.3.2.1 struct DDS DomainParticipantQos
DDS PARTICIPANT QOS DEFAULT

Special value for creating a DomainParticipant with default QoS.

When used in DDSDomainParticipantFactory::create participant
(p. 1140), this special value is used to indicate that the DDSDomainPartici-
pant (p. 1054) should be created with the default DDSDomainParticipant
(p. 1054) QoS by means of the operation DDSDomainParticipantFac-
tory::get default participant qos() (p. 1130) and using the resulting QoS
to create the DDSDomainParticipant (p. 1054).

When used in DDSDomainParticipantFactory::set default -
participant qos (p. 1129), this special value is used to indicate that the
default QoS should be reset back to the initial value that would be used if the

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.3 DomainParticipantFactory 35

DDSDomainParticipantFactory::set default participant qos (p. 1129)
operation had never been called.

When used in DDSDomainParticipant::set qos (p. 1110), this special value
is used to indicate that the QoS of the DDSDomainParticipant (p. 1054)
should be changed to match the current default QoS set in the DDSDomain-
ParticipantFactory (p. 1123) that the DDSDomainParticipant (p. 1054)
belongs to.

RTI Data Distribution Service treats this special value as a constant.

Note: You cannot use this value to get the default QoS values from the do-
main participant factory; for this purpose, use DDSDomainParticipantFac-
tory::get default participant qos (p. 1130).

See also:

NDDS DISCOVERY PEERS (p. 371)
DDSDomainParticipantFactory::create participant() (p. 1140)
DDSDomainParticipantFactory::set default participant qos()
(p. 1129)
DDSDomainParticipant::set qos() (p. 1110)

Examples:

HelloWorld publisher.cxx, and HelloWorld subscriber.cxx.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

36 Module Documentation

5.4 DomainParticipants

DDSDomainParticipant (p. 1054) entity and associated elements

Classes

ˆ class DDSDomainParticipantListener

<<interface>> (p. 190) Listener for participant status.

ˆ class DDSDomainParticipant

<<interface>> (p. 190) Container for all DDSDomainEntity (p. 1053)
objects.

ˆ struct DDS DomainParticipantQos

QoS policies supported by a DDSDomainParticipant (p. 1054) entity.

Variables

ˆ struct DDS TopicQos DDS TOPIC QOS DEFAULT

Special value for creating a DDSTopic (p. 1311) with default QoS.

ˆ struct DDS PublisherQos DDS PUBLISHER QOS DEFAULT

Special value for creating a DDSPublisher (p. 1243) with default QoS.

ˆ struct DDS SubscriberQos DDS SUBSCRIBER QOS -
DEFAULT

Special value for creating a DDSSubscriber (p. 1284) with default QoS.

ˆ struct DDS FlowControllerProperty t DDS FLOW -
CONTROLLER PROPERTY DEFAULT

<<eXtension>> (p. 190) Special value for creating a DDSFlowCon-
troller (p. 1163) with default property.

ˆ const char ∗const DDS SQLFILTER NAME

<<eXtension>> (p. 190) The name of the built-in SQL filter that can be
used with ContentFilteredTopics and MultiChannel DataWriters.

ˆ const char ∗const DDS STRINGMATCHFILTER NAME

<<eXtension>> (p. 190) The name of the built-in StringMatch filter that
can be used with ContentFilteredTopics and MultiChannel DataWriters.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.4 DomainParticipants 37

5.4.1 Detailed Description

DDSDomainParticipant (p. 1054) entity and associated elements

5.4.2 Variable Documentation

5.4.2.1 struct DDS TopicQos DDS TOPIC QOS DEFAULT

Special value for creating a DDSTopic (p. 1311) with default QoS.

When used in DDSDomainParticipant::create topic (p. 1089), this special
value is used to indicate that the DDSTopic (p. 1311) should be created with
the default DDSTopic (p. 1311) QoS by means of the operation get default -
topic qos and using the resulting QoS to create the DDSTopic (p. 1311).

When used in DDSDomainParticipant::set default topic qos (p. 1075),
this special value is used to indicate that the default QoS should be reset back
to the initial value that would be used if the DDSDomainParticipant::set -
default topic qos (p. 1075) operation had never been called.

When used in DDSTopic::set qos (p. 1313), this special value is used to in-
dicate that the QoS of the DDSTopic (p. 1311) should be changed to match
the current default QoS set in the DDSDomainParticipant (p. 1054) that the
DDSTopic (p. 1311) belongs to.

See also:

DDSDomainParticipant::create topic (p. 1089)
DDSDomainParticipant::set default topic qos (p. 1075)
DDSTopic::set qos (p. 1313)

Examples:

HelloWorld publisher.cxx, and HelloWorld subscriber.cxx.

5.4.2.2 struct DDS PublisherQos DDS PUBLISHER QOS -
DEFAULT

Special value for creating a DDSPublisher (p. 1243) with default QoS.

When used in DDSDomainParticipant::create publisher (p. 1083), this
special value is used to indicate that the DDSPublisher (p. 1243) should be cre-
ated with the default DDSPublisher (p. 1243) QoS by means of the operation
get default publisher qos and using the resulting QoS to create the DDSPub-
lisher (p. 1243).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

38 Module Documentation

When used in DDSDomainParticipant::set default publisher qos
(p. 1078), this special value is used to indicate that the default QoS should
be reset back to the initial value that would be used if the DDSDomain-
Participant::set default publisher qos (p. 1078) operation had never been
called.

When used in DDSPublisher::set qos (p. 1262), this special value is used to
indicate that the QoS of the DDSPublisher (p. 1243) should be changed to
match the current default QoS set in the DDSDomainParticipant (p. 1054)
that the DDSPublisher (p. 1243) belongs to.

See also:

DDSDomainParticipant::create publisher (p. 1083)
DDSDomainParticipant::set default publisher qos (p. 1078)
DDSPublisher::set qos (p. 1262)

Examples:

HelloWorld publisher.cxx.

5.4.2.3 struct DDS SubscriberQos DDS SUBSCRIBER QOS -
DEFAULT

Special value for creating a DDSSubscriber (p. 1284) with default QoS.

When used in DDSDomainParticipant::create subscriber (p. 1085), this
special value is used to indicate that the DDSSubscriber (p. 1284) should
be created with the default DDSSubscriber (p. 1284) QoS by means of the
operation get default subscriber qos and using the resulting QoS to create the
DDSSubscriber (p. 1284).

When used in DDSDomainParticipant::set default subscriber qos
(p. 1081), this special value is used to indicate that the default QoS should be
reset back to the initial value that would be used if the DDSDomainPar-
ticipant::set default subscriber qos (p. 1081) operation had never been
called.

When used in DDSSubscriber::set qos (p. 1303), this special value is used to
indicate that the QoS of the DDSSubscriber (p. 1284) should be changed to
match the current default QoS set in the DDSDomainParticipant (p. 1054)
that the DDSSubscriber (p. 1284) belongs to.

See also:

DDSDomainParticipant::create subscriber (p. 1085)
DDSDomainParticipant::get default subscriber qos (p. 1080)
DDSSubscriber::set qos (p. 1303)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.4 DomainParticipants 39

Examples:

HelloWorld subscriber.cxx.

5.4.2.4 struct DDS FlowControllerProperty t
DDS FLOW CONTROLLER PROPERTY DEFAULT

<<eXtension>> (p. 190) Special value for creating a DDSFlowController
(p. 1163) with default property.

When used in DDSDomainParticipant::create flowcontroller (p. 1098),
this special value is used to indicate that the DDSFlowController (p. 1163)
should be created with the default DDSFlowController (p. 1163) property by
means of the operation get default flowcontroller property and using the result-
ing QoS to create the DDS FlowControllerProperty t (p. 700).

When used in DDSDomainParticipant::set default flowcontroller -
property (p. 1069), this special value is used to indicate that the default
QoS should be reset back to the initial value that would be used if the
DDSDomainParticipant::set default flowcontroller property (p. 1069)
operation had never been called.

When used in DDSFlowController::set property (p. 1164), this special
value is used to indicate that the property of the DDSFlowController
(p. 1163) should be changed to match the current default property set in the
DDSDomainParticipant (p. 1054) that the DDSFlowController (p. 1163)
belongs to.

See also:

DDSDomainParticipant::create flowcontroller (p. 1098)
DDSDomainParticipant::set default flowcontroller property
(p. 1069)
DDSFlowController::set property (p. 1164)

5.4.2.5 const char∗ const DDS SQLFILTER NAME

<<eXtension>> (p. 190) The name of the built-in SQL filter that can be
used with ContentFilteredTopics and MultiChannel DataWriters.

See also:

Queries and Filters Syntax (p. 199)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

40 Module Documentation

5.4.2.6 const char∗ const DDS STRINGMATCHFILTER NAME

<<eXtension>> (p. 190) The name of the built-in StringMatch filter that
can be used with ContentFilteredTopics and MultiChannel DataWriters.

The StringMatch Filter is a subset of the SQL filter; it only supports the
MATCH relational operator on a single string field.

See also:

Queries and Filters Syntax (p. 199)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.5 Built-in Topics 41

5.5 Built-in Topics

Built-in objects created by RTI Data Distribution Service but accessible to the
application.

Modules

ˆ Participant Built-in Topics

Builtin topic for accessing information about the DomainParticipants discov-
ered by RTI Data Distribution Service.

ˆ Topic Built-in Topics

Builtin topic for accessing information about the Topics discovered by RTI
Data Distribution Service.

ˆ Publication Built-in Topics

Builtin topic for accessing information about the Publications discovered by
RTI Data Distribution Service.

ˆ Subscription Built-in Topics

Builtin topic for accessing information about the Subscriptions discovered by
RTI Data Distribution Service.

Classes

ˆ struct DDS Locator t

<<eXtension>> (p. 190) Type used to represent the addressing information
needed to send a message to an RTPS Endpoint using one of the supported
transports.

ˆ struct DDS LocatorSeq

Declares IDL sequence < DDS Locator t (p. 734) >.

ˆ struct DDS ProtocolVersion t

<<eXtension>> (p. 190) Type used to represent the version of the RTPS
protocol.

ˆ struct DDS VendorId t

<<eXtension>> (p. 190) Type used to represent the vendor of the service
implementing the RTPS protocol.

ˆ struct DDS ProductVersion t

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

42 Module Documentation

<<eXtension>> (p. 190) Type used to represent the current version of RTI
Data Distribution Service.

ˆ struct DDS BuiltinTopicKey t

The key type of the built-in topic types.

ˆ struct DDS ContentFilterProperty t

<<eXtension>> (p. 190) Type used to provide all the required information
to enable content filtering.

Defines

ˆ #define DDS LOCATOR ADDRESS LENGTH MAX 16

Declares length of address field in locator.

ˆ #define DDS PROTOCOLVERSION 1 0 { 1, 0 }
The protocol version 1.0.

ˆ #define DDS PROTOCOLVERSION 1 1 { 1, 1 }
The protocol version 1.1.

ˆ #define DDS PROTOCOLVERSION 1 2 { 1, 2 }
The protocol version 1.2.

ˆ #define DDS PROTOCOLVERSION 2 0 { 2, 0 }
The protocol version 2.0.

ˆ #define DDS PROTOCOLVERSION 2 1 { 2, 1 }
The protocol version 2.1.

ˆ #define DDS PROTOCOLVERSION { 2, 1 }
The most recent protocol version. Currently 1.2.

ˆ #define DDS VENDOR ID LENGTH MAX 2

Length of vendor id.

ˆ #define DDS PRODUCTVERSION UNKNOWN { 0, 0, ’0’, 0 }
The value used when the product version is unknown.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.5 Built-in Topics 43

Variables

ˆ struct DDS Locator t DDS LOCATOR INVALID

An invalid locator.

ˆ const DDS Long DDS LOCATOR KIND INVALID

Locator of this kind is invalid.

ˆ const DDS UnsignedLong DDS LOCATOR PORT INVALID

An invalid port.

ˆ const DDS Octet DDS LOCATOR ADDRESS INVALID [DDS -
LOCATOR ADDRESS LENGTH MAX]

An invalid address.

ˆ const DDS Long DDS LOCATOR KIND UDPv4

A locator for a UDPv4 address.

ˆ const DDS Long DDS LOCATOR KIND SHMEM

A locator for an address acessed via shared memory.

ˆ const DDS Long DDS LOCATOR KIND UDPv6

A locator for a UDPv6 address.

ˆ const DDS Long DDS LOCATOR KIND RESERVED

Locator of this kind is reserved.

5.5.1 Detailed Description

Built-in objects created by RTI Data Distribution Service but accessible to the
application.

RTI Data Distribution Service must discover and keep track of the remote en-
tities, such as new participants in the domain. This information may also be
important to the application, which may want to react to this discovery, or else
access it on demand.

A set of built-in topics and corresponding DDSDataReader (p. 1004) objects
are introduced to be used by the application to access these discovery informa-
tion.

The information can be accessed as if it was normal application data. This allows
the application to know when there are any changes in those values by means
of the DDSListener (p. 1217) or the DDSCondition (p. 992) mechanisms.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

44 Module Documentation

The built-in data-readers all belong to a built-in DDSSubscriber (p. 1284),
which can be retrieved by using the method DDSDomainParticipant::get -
builtin subscriber (p. 1100). The built-in DDSDataReader (p. 1004) ob-
jects can be retrieved by using the operation DDSSubscriber::lookup -
datareader (p. 1298), with the topic name as a parameter.

Built-in entities have default listener settings as well. The built-in DDSSub-
scriber (p. 1284) and all of its built-in topics have ’nil’ listeners with all statuses
appearing in their listener masks (acting as a NO-OP listener that does not reset
communication status). The built-in DataReaders have null listeners with no
statuses in their masks.

The information that is accessible about the remote entities by means of the
built-in topics includes all the QoS policies that apply to the corresponding
remote Entity. This QoS policies appear as normal ’data’ fields inside the data
read by means of the built-in Topic. Additional information is provided to
identify the Entity and facilitate the application logic.

The built-in DDSDataReader (p. 1004) will not provide data pertaining to
entities created from the same DDSDomainParticipant (p. 1054) under the
assumption that such entities are already known to the application that created
them.

Refer to DDS ParticipantBuiltinTopicData (p. 765), DDS -
TopicBuiltinTopicData (p. 898), DDS SubscriptionBuiltinTopicData
(p. 876) and DDS PublicationBuiltinTopicData (p. 788) for a description
of all the built-in topics and their contents.

The QoS of the built-in DDSSubscriber (p. 1284) and DDSDataReader
(p. 1004) objects is given by the following table:

5.5.2 Define Documentation

5.5.2.1 #define DDS LOCATOR ADDRESS LENGTH MAX 16

Declares length of address field in locator.

5.5.2.2 #define DDS PROTOCOLVERSION 1 0 { 1, 0 }

The protocol version 1.0.

5.5.2.3 #define DDS PROTOCOLVERSION 1 1 { 1, 1 }

The protocol version 1.1.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.5 Built-in Topics 45

5.5.2.4 #define DDS PROTOCOLVERSION 1 2 { 1, 2 }

The protocol version 1.2.

5.5.2.5 #define DDS PROTOCOLVERSION 2 0 { 2, 0 }

The protocol version 2.0.

5.5.2.6 #define DDS PROTOCOLVERSION 2 1 { 2, 1 }

The protocol version 2.1.

5.5.2.7 #define DDS PROTOCOLVERSION { 2, 1 }

The most recent protocol version. Currently 1.2.

5.5.2.8 #define DDS VENDOR ID LENGTH MAX 2

Length of vendor id.

5.5.2.9 #define DDS PRODUCTVERSION UNKNOWN { 0, 0,
’0’, 0 }

The value used when the product version is unknown.

5.5.3 Variable Documentation

5.5.3.1 struct DDS Locator t DDS LOCATOR INVALID

An invalid locator.

5.5.3.2 const DDS Long DDS LOCATOR KIND INVALID

Locator of this kind is invalid.

5.5.3.3 const DDS UnsignedLong DDS LOCATOR PORT -
INVALID

An invalid port.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

46 Module Documentation

5.5.3.4 const DDS Octet DDS LOCATOR ADDRESS -
INVALID[DDS LOCATOR ADDRESS LENGTH MAX]

An invalid address.

5.5.3.5 const DDS Long DDS LOCATOR KIND UDPv4

A locator for a UDPv4 address.

5.5.3.6 const DDS Long DDS LOCATOR KIND SHMEM

A locator for an address acessed via shared memory.

5.5.3.7 const DDS Long DDS LOCATOR KIND UDPv6

A locator for a UDPv6 address.

5.5.3.8 const DDS Long DDS LOCATOR KIND RESERVED

Locator of this kind is reserved.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.5 Built-in Topics 47

QoS Value
DDS UserDataQosPolicy
(p. 972)

0-length sequence

DDS TopicDataQosPolicy
(p. 903)

0-length sequence

DDS GroupDataQosPolicy
(p. 706)

0-length sequence

DDS DurabilityQosPolicy
(p. 572)

DDS TRANSIENT LOCAL -
DURABILITY QOS
(p. 336)

DDS -
DurabilityServiceQosPolicy
(p. 576)

Does not apply as
DDS DurabilityQosPolicyKind
(p. 335) is DDS TRANSIENT -
LOCAL DURABILITY QOS
(p. 336)

DDS PresentationQosPolicy
(p. 772)

access scope = DDS TOPIC -
PRESENTATION QOS (p. 338)
coherent access =
DDS BOOLEAN FALSE
(p. 289) ordered access =
DDS BOOLEAN FALSE
(p. 289)

DDS DeadlineQosPolicy (p. 528) Period = infinite
DDS LatencyBudgetQosPolicy
(p. 722)

duration = 0

DDS OwnershipQosPolicy
(p. 756)

DDS SHARED -
OWNERSHIP QOS
(p. 342)

DDS -
OwnershipStrengthQosPolicy
(p. 763)

value = 0

DDS LivelinessQosPolicy
(p. 730)

kind = DDS AUTOMATIC -
LIVELINESS QOS (p. 345)
lease duration = 0

DDS -
TimeBasedFilterQosPolicy
(p. 894)

minimum separation = 0

DDS PartitionQosPolicy (p. 769) 0-length sequence
DDS ReliabilityQosPolicy
(p. 813)

kind = DDS RELIABLE -
RELIABILITY QOS (p. 349)
max blocking time = 100
milliseconds

DDS -
DestinationOrderQosPolicy
(p. 531)

DDS BY RECEPTION -
TIMESTAMP -
DESTINATIONORDER QOS
(p. 351)

DDS HistoryQosPolicy (p. 709) kind = DDS KEEP LAST -
HISTORY QOS (p. 353) depth =
1

DDS ResourceLimitsQosPolicy
(p. 827)

max samples =
DDS LENGTH UNLIMITED
(p. 356) max instances =
DDS LENGTH UNLIMITED
(p. 356) max samples per instance =
DDS LENGTH UNLIMITED
(p. 356)

DDS -
ReaderDataLifecycleQosPolicy
(p. 807)

autopurge nowriter samples delay =
infinite
autopurge disposed samples delay =
infinite

DDS EntityFactoryQosPolicy
(p. 687)

autoenable created entities =
DDS BOOLEAN TRUE (p. 288)

Table 5.2: QoS of built-in DDSSubscriber (p. 1284) and DDSDataReader
(p. 1004)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

48 Module Documentation

5.6 Topic Module

Contains the DDSTopic (p. 1311), DDSContentFilteredTopic (p. 998), and
DDSMultiTopic (p. 1221) classes, the DDSTopicListener (p. 1322) inter-
face, and more generally, all that is needed by an application to define
DDSTopic (p. 1311) objects and attach QoS policies to them.

Modules

ˆ Topics

DDSTopic (p. 1311) entity and associated elements

ˆ User Data Type Support

Defines generic classes and macros to support user data types.

ˆ Type Code Support

<<eXtension>> (p. 190) A DDS TypeCode (p. 925) is a mechanism for
representing a type at runtime. RTI Data Distribution Service can use type
codes to send type definitions on the network. You will need to understand
this API in order to use the Dynamic Data (p. 75) capability or to inspect
the type information you receive from remote readers and writers.

ˆ Built-in Types

<<eXtension>> (p. 190) RTI Data Distribution Service provides a set of
very simple data types for you to use with the topics in your application.

ˆ Dynamic Data

<<eXtension>> (p. 190) The Dynamic Data API provides a way to inter-
act with arbitrarily complex data types at runtime without the need for code
generation.

ˆ DDS-Specific Primitive Types

Basic DDS value types for use in user data types.

5.6.1 Detailed Description

Contains the DDSTopic (p. 1311), DDSContentFilteredTopic (p. 998), and
DDSMultiTopic (p. 1221) classes, the DDSTopicListener (p. 1322) inter-
face, and more generally, all that is needed by an application to define
DDSTopic (p. 1311) objects and attach QoS policies to them.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.7 Topics 49

5.7 Topics

DDSTopic (p. 1311) entity and associated elements

Classes

ˆ class DDSTopicDescription

<<interface>> (p. 190) Base class for DDSTopic (p. 1311), DDSCon-
tentFilteredTopic (p. 998), and DDSMultiTopic (p. 1221).

ˆ class DDSContentFilteredTopic

<<interface>> (p. 190) Specialization of DDSTopicDescription
(p. 1319) that allows for content-based subscriptions.

ˆ class DDSMultiTopic

[Not supported (optional)] <<interface>> (p. 190) A specialization
of DDSTopicDescription (p. 1319) that allows subscriptions that com-
bine/filter/rearrange data coming from several topics.

ˆ class DDSTopic

<<interface>> (p. 190) The most basic description of the data to be pub-
lished and subscribed.

ˆ class DDSTopicListener

<<interface>> (p. 190) DDSListener (p. 1217) for DDSTopic (p. 1311)
entities.

ˆ class DDSContentFilter

<<interface>> (p. 190) Interface to be used by a custom filter of a
DDSContentFilteredTopic (p. 998)

ˆ struct DDS InconsistentTopicStatus

DDS INCONSISTENT TOPIC STATUS (p. 310)

ˆ struct DDS TopicQos

QoS policies supported by a DDSTopic (p. 1311) entity.

5.7.1 Detailed Description

DDSTopic (p. 1311) entity and associated elements

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

50 Module Documentation

5.8 User Data Type Support

Defines generic classes and macros to support user data types.

Classes

ˆ struct FooTypeSupport

<<interface>> (p. 190) <<generic>> (p. 190) User data type specific in-
terface.

ˆ class DDSTypeSupport

<<interface>> (p. 190) An abstract marker interface that has to be spe-
cialized for each concrete user data type that will be used by the application.

ˆ struct Foo

A representative user-defined data type.

ˆ struct DDS InstanceHandleSeq

Instantiates FooSeq (p. 1377) < DDS InstanceHandle t (p. 52) > .

Defines

ˆ #define DDS TYPESUPPORT CPP(TTypeSupport, TData)

Declares the interface required to support a user data type.

ˆ #define DDS DATAWRITER CPP METP(TDataWriter, TData)

Declares the interface required to support a user data type specific data writer.

ˆ #define DDS DATAREADER CPP METP(TDataReader,
TDataSeq, TData)

Declares the interface required to support a user data type-specific data
reader.

Typedefs

ˆ typedef DDS HANDLE TYPE NATIVE DDS InstanceHandle t

Type definition for an instance handle.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.8 User Data Type Support 51

Functions

ˆ DDS Boolean DDS InstanceHandle equals (const DDS -
InstanceHandle t ∗self, const DDS InstanceHandle t ∗other)

Compares this instance handle with another handle for equality.

ˆ DDS Boolean DDS InstanceHandle is nil (const DDS -
InstanceHandle t ∗self)

Compare this handle to DDS HANDLE NIL (p. 54).

Variables

ˆ const DDS InstanceHandle t DDS HANDLE NIL

The NIL instance handle.

5.8.1 Detailed Description

Defines generic classes and macros to support user data types.

DDS specifies strongly typed interfaces to read and write user data. For each
data class defined by the application, there is a number of specialised classes
that are required to facilitate the type-safe interaction of the application with
RTI Data Distribution Service.

RTI Data Distribution Service provides an automatic means to generate all
these type-specific classes with the rtiddsgen (p. 211) utility. The complete
set of automatic classes created for a hypothetical user data type named Foo
(p. 1333) are shown below.

The macros defined here declare the strongly typed APIs needed to support an
arbitrary user defined data of type Foo (p. 1333).

See also:

rtiddsgen (p. 211)

5.8.2 Define Documentation

5.8.2.1 #define DDS TYPESUPPORT CPP(TTypeSupport,
TData)

Declares the interface required to support a user data type.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

52 Module Documentation

Defines:

FooTypeSupport (p. 1392) TypeSupport of type Foo (p. 1333), i.e.
FooTypeSupport (p. 1392)

Examples:

HelloWorldSupport.cxx.

5.8.2.2 #define DDS DATAWRITER CPP METP(TDataWriter,
TData)

Declares the interface required to support a user data type specific data writer.

Uses:

FooTypeSupport (p. 1392) user data type, Foo (p. 1333)

Defines:

FooDataWriter (p. 1361) DDSDataWriter (p. 1028) of type Foo
(p. 1333), i.e. FooDataWriter (p. 1361)

5.8.2.3 #define DDS DATAREADER CPP METP(TDataReader,
TDataSeq, TData)

Declares the interface required to support a user data type-specific data reader.

Uses:

FooTypeSupport (p. 1392) user data type, Foo (p. 1333) FooSeq
(p. 1377) sequence of user data type, sequence<::Foo>

Defines:

FooDataReader (p. 1334) DDSDataReader (p. 1004) of type Foo
(p. 1333), i.e. FooDataReader (p. 1334)

See also:

FooSeq (p. 1377)

5.8.3 Typedef Documentation

5.8.3.1 typedef DDS HANDLE TYPE NATIVE
DDS InstanceHandle t

Type definition for an instance handle.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.8 User Data Type Support 53

Handle to identiy different instances of the same DDSTopic (p. 1311) of a
certain type.

See also:

FooDataWriter::register instance (p. 1363)
DDS SampleInfo::instance handle (p. 860)

Examples:

HelloWorld publisher.cxx.

5.8.4 Function Documentation

5.8.4.1 DDS Boolean DDS InstanceHandle equals (const
DDS InstanceHandle t ∗ self, const DDS InstanceHandle t
∗ other)

Compares this instance handle with another handle for equality.

Parameters:

self <<in>> (p. 191) This handle. Cannot be NULL.
other <<in>> (p. 191) The other handle to be compared with this han-

dle. Cannot be NULL.

Returns:

DDS BOOLEAN TRUE (p. 288) if the two handles have equal values,
or DDS BOOLEAN FALSE (p. 289) otherwise.

See also:

DDS InstanceHandle is nil (p. 53)

5.8.4.2 DDS Boolean DDS InstanceHandle is nil (const
DDS InstanceHandle t ∗ self)

Compare this handle to DDS HANDLE NIL (p. 54).

Returns:

DDS BOOLEAN TRUE (p. 288) if the given instance handle is equal
to DDS HANDLE NIL (p. 54) or DDS BOOLEAN FALSE (p. 289)
otherwise.

See also:

DDS InstanceHandle equals (p. 53)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

54 Module Documentation

5.8.5 Variable Documentation

5.8.5.1 const DDS InstanceHandle t DDS HANDLE NIL

The NIL instance handle.

Special DDS InstanceHandle t (p. 52) value

See also:

DDS InstanceHandle is nil (p. 53)

Examples:

HelloWorld publisher.cxx.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.9 Type Code Support 55

5.9 Type Code Support

<<eXtension>> (p. 190) A DDS TypeCode (p. 925) is a mechanism for
representing a type at runtime. RTI Data Distribution Service can use type
codes to send type definitions on the network. You will need to understand this
API in order to use the Dynamic Data (p. 75) capability or to inspect the
type information you receive from remote readers and writers.

Classes

ˆ struct DDS TypeCode
The definition of a particular data type, which you can use to inspect the
name, members, and other properties of types generated with rtiddsgen
(p. 211) or to modify types you define yourself at runtime.

ˆ struct DDS StructMember
A description of a member of a struct.

ˆ struct DDS StructMemberSeq
Defines a sequence of struct members.

ˆ struct DDS UnionMember
A description of a member of a union.

ˆ struct DDS UnionMemberSeq
Defines a sequence of union members.

ˆ struct DDS EnumMember
A description of a member of an enumeration.

ˆ struct DDS EnumMemberSeq
Defines a sequence of enumerator members.

ˆ struct DDS ValueMember
A description of a member of a value type.

ˆ struct DDS ValueMemberSeq
Defines a sequence of value members.

ˆ struct DDS TypeCodeFactory
A singleton factory for creating, copying, and deleting data type definitions
dynamically.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

56 Module Documentation

Defines

ˆ #define DDS TYPECODE MEMBER ID INVALID

A sentinel indicating an invalid DDS TypeCode (p. 925) member ID.

ˆ #define DDS TYPECODE INDEX INVALID

A sentinel indicating an invalid DDS TypeCode (p. 925) member index.

ˆ #define DDS TYPECODE NOT BITFIELD

Indicates that a member of a type is not a bitfield.

ˆ #define DDS VM NONE

Constant used to indicate that a value type has no modifiers.

ˆ #define DDS VM CUSTOM

Constant used to indicate that a value type has the custom modifier.

ˆ #define DDS VM ABSTRACT

Constant used to indicate that a value type has the abstract modifier.

ˆ #define DDS VM TRUNCATABLE

Constant used to indicate that a value type has the truncatable modifier.

ˆ #define DDS PRIVATE MEMBER

Constant used to indicate that a value type member is private.

ˆ #define DDS PUBLIC MEMBER

Constant used to indicate that a value type member is public.

ˆ #define DDS TYPECODE NONKEY MEMBER

A flag indicating that a type member is optional and not part of the key.

ˆ #define DDS TYPECODE KEY MEMBER

A flag indicating that a type member is part of the key for that type, and
therefore required.

ˆ #define DDS TYPECODE NONKEY REQUIRED MEMBER

A flag indicating that a type member is not part of the key but is nevertheless
required.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.9 Type Code Support 57

Typedefs

ˆ typedef short DDS ValueModifier
Modifier type for a value type.

ˆ typedef short DDS Visibility
Type to indicate the visibility of a value type member.

Enumerations

ˆ enum DDS TCKind {
DDS TK NULL,

DDS TK SHORT,

DDS TK LONG,

DDS TK USHORT,

DDS TK ULONG,

DDS TK FLOAT,

DDS TK DOUBLE,

DDS TK BOOLEAN,

DDS TK CHAR,

DDS TK OCTET,

DDS TK STRUCT,

DDS TK UNION,

DDS TK ENUM,

DDS TK STRING,

DDS TK SEQUENCE,

DDS TK ARRAY,

DDS TK ALIAS,

DDS TK LONGLONG,

DDS TK ULONGLONG,

DDS TK LONGDOUBLE,

DDS TK WCHAR,

DDS TK WSTRING,

DDS TK VALUE,

DDS TK SPARSE }
Enumeration type for DDS TypeCode (p. 925) kinds.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

58 Module Documentation

Variables

ˆ DDS TypeCode DDS g tc null

Basic NULL type.

ˆ DDS TypeCode DDS g tc long

Basic 32-bit signed integer type.

ˆ DDS TypeCode DDS g tc ushort

Basic unsigned 16-bit integer type.

ˆ DDS TypeCode DDS g tc ulong

Basic unsigned 32-bit integer type.

ˆ DDS TypeCode DDS g tc float

Basic 32-bit floating point type.

ˆ DDS TypeCode DDS g tc double

Basic 64-bit floating point type.

ˆ DDS TypeCode DDS g tc boolean

Basic Boolean type.

ˆ DDS TypeCode DDS g tc octet

Basic octet/byte type.

ˆ DDS TypeCode DDS g tc longlong

Basic 64-bit integer type.

ˆ DDS TypeCode DDS g tc ulonglong

Basic unsigned 64-bit integer type.

ˆ DDS TypeCode DDS g tc longdouble

Basic 128-bit floating point type.

ˆ DDS TypeCode DDS g tc wchar

Basic four-byte character type.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.9 Type Code Support 59

5.9.1 Detailed Description

<<eXtension>> (p. 190) A DDS TypeCode (p. 925) is a mechanism for
representing a type at runtime. RTI Data Distribution Service can use type
codes to send type definitions on the network. You will need to understand this
API in order to use the Dynamic Data (p. 75) capability or to inspect the
type information you receive from remote readers and writers.

Type codes are values that are used to describe arbitrarily complex types at
runtime. Type code values are manipulated via the DDS TypeCode (p. 925)
class, which has an analogue in CORBA.

A DDS TypeCode (p. 925) value consists of a type code kind (represented by
the DDS TCKind (p. 65) enumeration) and a list of members (that is, fields).
These members are recursive: each one has its own DDS TypeCode (p. 925),
and in the case of complex types (structures, arrays, and so on), these contained
type codes contain their own members.

There are a number of uses for type codes. The type code mechanism can be used
to unambiguously match type representations. The DDS TypeCode::equal
(p. 929) method is a more reliable test than comparing the string type names,
requiring equivalent definitions of the types.

5.9.2 Accessing a Local ::DDS TypeCode

When generating types with rtiddsgen (p. 211), type codes are enabled by
default. (The -notypecode option can be used to disable generation of DDS -
TypeCode (p. 925) information.) For these types, a DDS TypeCode (p. 925)
may be accessed by calling the Foo get typecode function for a type ”Foo”,
which returns a DDS TypeCode (p. 925) pointer.

This API also includes support for dynamic creation of DDS TypeCode
(p. 925) values, typically for use with the Dynamic Data (p. 75) API. You
can create a DDS TypeCode (p. 925) using the DDS TypeCodeFactory
(p. 951) class. You will construct the DDS TypeCode (p. 925) recursively,
from the outside in: start with the type codes for primitive types, then compose
them into complex types like arrays, structures, and so on. You will find the
following methods helpful:

ˆ DDS TypeCodeFactory::get primitive tc (p. 955), which provides
the DDS TypeCode (p. 925) instances corresponding to the primitive
types (e.g. DDS TK LONG (p. 65), DDS TK SHORT (p. 65), and
so on).

ˆ DDS TypeCodeFactory::create string tc (p. 959) and DDS -
TypeCodeFactory::create wstring tc (p. 960) create a DDS -
TypeCode (p. 925) representing a text string with a certain bound (i.e.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

60 Module Documentation

maximum length).

ˆ DDS TypeCodeFactory::create array tc (p. 961) and DDS -
TypeCodeFactory::create sequence tc (p. 960) create a DDS -
TypeCode (p. 925) for a collection based on the DDS TypeCode
(p. 925) for its elements.

ˆ DDS TypeCodeFactory::create struct tc (p. 956), DDS -
TypeCodeFactory::create value tc (p. 956), and DDS -
TypeCodeFactory::create sparse tc (p. 962) create a DDS -
TypeCode (p. 925) for a structured type.

5.9.3 Accessing a Remote ::DDS TypeCode

In addition to being used locally, RTI Data Distribution Service can transmit
DDS TypeCode (p. 925) on the network between participants. This informa-
tion can be used to access information about types used remotely at runtime,
for example to be able to publish or subscribe to topics of arbitrarily types
(see Dynamic Data (p. 75)). This functionality is useful for a generic system
monitoring tool like rtiddsspy.

Remote DDS TypeCode (p. 925) information is shared during discovery over
the publication and subscription built-in topics and can be accessed using the
built-in readers for these topics; see Built-in Topics (p. 41). Discovered DDS -
TypeCode (p. 925) values are not cached by RTI Data Distribution Service
upon receipt and are therefore not available from the built-in topic data re-
turned by DDSDataWriter::get matched subscription data (p. 1039) or
DDSDataReader::get matched publication data (p. 1012).

The space available locally to deserialize a discovered remote DDS -
TypeCode (p. 925) is specified by the DDSDomainParticipant (p. 1054)’s
DDS DomainParticipantResourceLimitsQosPolicy::type code max -
serialized length (p. 568) QoS parameter. To support especially complex
type codes, it may be necessary for you to increase the value of this parameter.

See also:

DDS TypeCode (p. 925)
Dynamic Data (p. 75)
rtiddsgen (p. 211)
DDS SubscriptionBuiltinTopicData (p. 876)
DDS PublicationBuiltinTopicData (p. 788)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.9 Type Code Support 61

5.9.4 Define Documentation

5.9.4.1 #define DDS TYPECODE MEMBER ID INVALID

A sentinel indicating an invalid DDS TypeCode (p. 925) member ID.

5.9.4.2 #define DDS TYPECODE INDEX INVALID

A sentinel indicating an invalid DDS TypeCode (p. 925) member index.

5.9.4.3 #define DDS TYPECODE NOT BITFIELD

Indicates that a member of a type is not a bitfield.

5.9.4.4 #define DDS VM NONE

Constant used to indicate that a value type has no modifiers.

See also:

DDS ValueModifier (p. 64)

Examples:

HelloWorld.cxx.

5.9.4.5 #define DDS VM CUSTOM

Constant used to indicate that a value type has the custom modifier.

This modifier is used to specify whether the value type uses custom marshaling.

See also:

DDS ValueModifier (p. 64)

5.9.4.6 #define DDS VM ABSTRACT

Constant used to indicate that a value type has the abstract modifier.

An abstract value type may not be instantiated.

See also:

DDS ValueModifier (p. 64)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

62 Module Documentation

5.9.4.7 #define DDS VM TRUNCATABLE

Constant used to indicate that a value type has the truncatable modifier.

A value with a state that derives from another value with a state can be declared
as truncatable. A truncatable type means the object can be truncated to the
base type.

See also:

DDS ValueModifier (p. 64)

5.9.4.8 #define DDS PRIVATE MEMBER

Constant used to indicate that a value type member is private.

See also:

DDS Visibility (p. 64)
DDS PUBLIC MEMBER (p. 62)

Examples:

HelloWorld.cxx.

5.9.4.9 #define DDS PUBLIC MEMBER

Constant used to indicate that a value type member is public.

See also:

DDS Visibility (p. 64)
DDS PRIVATE MEMBER (p. 62)

5.9.4.10 #define DDS TYPECODE NONKEY MEMBER

A flag indicating that a type member is optional and not part of the key.

Only sparse value types (i.e. types of DDS TCKind (p. 65) DDS -
TK SPARSE (p. 65)) support this flag. Non-key members of other type
kinds should use the flag DDS TYPECODE NONKEY REQUIRED -
MEMBER (p. 63).

If a type is used with the Dynamic Data (p. 75) facility, a DDS -
DynamicData (p. 580) sample of the type will only contain a value for a

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.9 Type Code Support 63

DDS TYPECODE NONKEY MEMBER (p. 62) field if one has been ex-
plicitly set (see, for example, DDS DynamicData::set long (p. 642)). The
middleware will not assume any default value.

See also:

DDS TYPECODE KEY MEMBER (p. 63)
DDS TYPECODE NONKEY REQUIRED MEMBER (p. 63)
DDS TYPECODE KEY MEMBER (p. 63)
DDS TypeCode::add member (p. 947)
DDS TypeCode::add member ex (p. 949)
DDS TypeCode::is member key (p. 935)
DDS TypeCode::is member required (p. 936)
DDS StructMember::is key (p. 872)
DDS ValueMember::is key (p. 975)

5.9.4.11 #define DDS TYPECODE KEY MEMBER

A flag indicating that a type member is part of the key for that type, and
therefore required.

If a type is used with the Dynamic Data (p. 75) facility, all DDS -
DynamicData (p. 580) samples of the type will contain a value for all DDS -
TYPECODE KEY MEMBER (p. 63) fields, even if the type is a sparse
value type (i.e. of kind DDS TK SPARSE (p. 65)). If you do not set a value
of the member explicitly (see, for example, DDS DynamicData::set long
(p. 642)), the middleware will assume a default ”zero” value: numeric values
will be set to zero; strings and sequences will be of zero length.

See also:

DDS TYPECODE NONKEY REQUIRED MEMBER (p. 63)
DDS TYPECODE NONKEY MEMBER (p. 62)
DDS TypeCode::add member (p. 947)
DDS TypeCode::add member ex (p. 949)
DDS TypeCode::is member key (p. 935)
DDS TypeCode::is member required (p. 936)
DDS StructMember::is key (p. 872)
DDS ValueMember::is key (p. 975)

5.9.4.12 #define DDS TYPECODE NONKEY REQUIRED -
MEMBER

A flag indicating that a type member is not part of the key but is nevertheless
required.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

64 Module Documentation

This is the most common kind of member.

If a type is used with the Dynamic Data (p. 75) facility, all DDS -
DynamicData (p. 580) samples of the type will contain a value for all DDS -
TYPECODE NONKEY REQUIRED MEMBER (p. 63) fields, even if
the type is a sparse value type (i.e. of kind DDS TK SPARSE (p. 65)). If
you do not set a value of the member explicitly (see, for example, DDS -
DynamicData::set long (p. 642)), the middleware will assume a default
”zero” value: numeric values will be set to zero; strings and sequences will
be of zero length.

See also:

DDS TYPECODE KEY MEMBER (p. 63)
DDS TYPECODE NONKEY MEMBER (p. 62)
DDS TYPECODE KEY MEMBER (p. 63)
DDS TypeCode::add member (p. 947)
DDS TypeCode::add member ex (p. 949)
DDS TypeCode::is member key (p. 935)
DDS TypeCode::is member required (p. 936)
DDS StructMember::is key (p. 872)
DDS ValueMember::is key (p. 975)

5.9.5 Typedef Documentation

5.9.5.1 typedef short DDS ValueModifier

Modifier type for a value type.

See also:

DDS VM NONE (p. 61)
DDS VM CUSTOM (p. 61)
DDS VM ABSTRACT (p. 61)
DDS VM TRUNCATABLE (p. 62)

5.9.5.2 typedef short DDS Visibility

Type to indicate the visibility of a value type member.

See also:

DDS PRIVATE MEMBER (p. 62)
DDS PUBLIC MEMBER (p. 62)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.9 Type Code Support 65

5.9.6 Enumeration Type Documentation

5.9.6.1 enum DDS TCKind

Enumeration type for DDS TypeCode (p. 925) kinds.

Type code kinds are modeled as values of this type.

Enumerator:

DDS TK NULL Indicates that a type code does not describe anything.

DDS TK SHORT short type.

DDS TK LONG long type.

DDS TK USHORT unsigned short type.

DDS TK ULONG unsigned long type.

DDS TK FLOAT float type.

DDS TK DOUBLE double type.

DDS TK BOOLEAN boolean type.

DDS TK CHAR char type.

DDS TK OCTET octet type.

DDS TK STRUCT struct type.

DDS TK UNION union type.

DDS TK ENUM enumerated type.

DDS TK STRING string type.

DDS TK SEQUENCE sequence type.

DDS TK ARRAY array type.

DDS TK ALIAS alias (typedef) type.

DDS TK LONGLONG long long type.

DDS TK ULONGLONG unsigned long long type.

DDS TK LONGDOUBLE long double type.

DDS TK WCHAR wide char type.

DDS TK WSTRING wide string type.

DDS TK VALUE value type.

DDS TK SPARSE A sparse value type.
A sparse value type is one in which all of the fields are not necessarily
sent on the network as a part of every sample.
Fields of a sparse value type fall into one of three categories:

ˆ Key fields (see DDS TYPECODE KEY MEMBER (p. 63))

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

66 Module Documentation

ˆ Non-key, but required members (see DDS TYPECODE -
NONKEY REQUIRED MEMBER (p. 63))

ˆ Non-key, optional members (see DDS TYPECODE -
NONKEY MEMBER (p. 62))

Fields of the first two kinds must appear in every sample. These are
also the only kinds of fields on which you can perform content filtering
(see DDSContentFilteredTopic (p. 998)), because filter evaluation
on a non-existent field is not well defined.

5.9.7 Variable Documentation

5.9.7.1 DDS TypeCode DDS g tc null

Basic NULL type.

For new code, DDS TypeCodeFactory::get primitive tc (p. 955) is pre-
ferred to using this global variable.

See also:

DDS TypeCodeFactory::get primitive tc (p. 955)

5.9.7.2 DDS TypeCode DDS g tc long

Basic 32-bit signed integer type.

For new code, DDS TypeCodeFactory::get primitive tc (p. 955) is pre-
ferred to using this global variable.

See also:

DDS TypeCodeFactory::get primitive tc (p. 955)
DDS Long (p. 290)

5.9.7.3 DDS TypeCode DDS g tc ushort

Basic unsigned 16-bit integer type.

For new code, DDS TypeCodeFactory::get primitive tc (p. 955) is pre-
ferred to using this global variable.

See also:

DDS TypeCodeFactory::get primitive tc (p. 955)
DDS UnsignedShort (p. 289)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.9 Type Code Support 67

5.9.7.4 DDS TypeCode DDS g tc ulong

Basic unsigned 32-bit integer type.

For new code, DDS TypeCodeFactory::get primitive tc (p. 955) is pre-
ferred to using this global variable.

See also:

DDS TypeCodeFactory::get primitive tc (p. 955)
DDS UnsignedLong (p. 290)

5.9.7.5 DDS TypeCode DDS g tc float

Basic 32-bit floating point type.

For new code, DDS TypeCodeFactory::get primitive tc (p. 955) is pre-
ferred to using this global variable.

See also:

DDS TypeCodeFactory::get primitive tc (p. 955)
DDS Float (p. 290)

5.9.7.6 DDS TypeCode DDS g tc double

Basic 64-bit floating point type.

For new code, DDS TypeCodeFactory::get primitive tc (p. 955) is pre-
ferred to using this global variable.

See also:

DDS TypeCodeFactory::get primitive tc (p. 955)
DDS Double (p. 290)

5.9.7.7 DDS TypeCode DDS g tc boolean

Basic Boolean type.

For new code, DDS TypeCodeFactory::get primitive tc (p. 955) is pre-
ferred to using this global variable.

See also:

DDS TypeCodeFactory::get primitive tc (p. 955)
DDS Boolean (p. 291)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

68 Module Documentation

5.9.7.8 DDS TypeCode DDS g tc octet

Basic octet/byte type.

For new code, DDS TypeCodeFactory::get primitive tc (p. 955) is pre-
ferred to using this global variable.

See also:

DDS TypeCodeFactory::get primitive tc (p. 955)
DDS Octet (p. 289)

5.9.7.9 DDS TypeCode DDS g tc longlong

Basic 64-bit integer type.

For new code, DDS TypeCodeFactory::get primitive tc (p. 955) is pre-
ferred to using this global variable.

See also:

DDS TypeCodeFactory::get primitive tc (p. 955)
DDS LongLong (p. 290)

5.9.7.10 DDS TypeCode DDS g tc ulonglong

Basic unsigned 64-bit integer type.

For new code, DDS TypeCodeFactory::get primitive tc (p. 955) is pre-
ferred to using this global variable.

See also:

DDS TypeCodeFactory::get primitive tc (p. 955)
DDS UnsignedLongLong (p. 290)

5.9.7.11 DDS TypeCode DDS g tc longdouble

Basic 128-bit floating point type.

For new code, DDS TypeCodeFactory::get primitive tc (p. 955) is pre-
ferred to using this global variable.

See also:

DDS TypeCodeFactory::get primitive tc (p. 955)
DDS LongDouble (p. 290)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.9 Type Code Support 69

5.9.7.12 DDS TypeCode DDS g tc wchar

Basic four-byte character type.

For new code, DDS TypeCodeFactory::get primitive tc (p. 955) is pre-
ferred to using this global variable.

See also:

DDS TypeCodeFactory::get primitive tc (p. 955)
DDS Wchar (p. 289)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

70 Module Documentation

5.10 Built-in Types

<<eXtension>> (p. 190) RTI Data Distribution Service provides a set of very
simple data types for you to use with the topics in your application.

Modules

ˆ String Built-in Type

Built-in type consisting of a single character string.

ˆ KeyedString Built-in Type

Built-in type consisting of a string payload and a second string that is the
key.

ˆ Octets Built-in Type

Built-in type consisting of a variable-length array of opaque bytes.

ˆ KeyedOctets Built-in Type

Built-in type consisting of a variable-length array of opaque bytes and a string
that is the key.

5.10.1 Detailed Description

<<eXtension>> (p. 190) RTI Data Distribution Service provides a set of very
simple data types for you to use with the topics in your application.

The middleware provides four built-in types:

ˆ String: A payload consisting of a single string of characters. This type
has no key.

ˆ DDS KeyedString (p. 719): A payload consisting of a single string of
characters and a second string, the key, that identifies the instance to
which the sample belongs.

ˆ DDS Octets (p. 748): A payload consisting of an opaque variable-length
array of bytes. This type has no key.

ˆ DDS KeyedOctets (p. 716): A payload consisting of an opaque variable-
length array of bytes and a string, the key, that identifies the instance to
which the sample belongs.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.10 Built-in Types 71

The String and DDS KeyedString (p. 719) types are appropriate for simple
text-based applications. The DDS Octets (p. 748) and DDS KeyedOctets
(p. 716) types are appropriate for applications that perform their own custom
data serialization, such as legacy applications still in the process of migrating to
RTI Data Distribution Service. In most cases, string-based or structured data is
preferable to opaque data, because the latter cannot be easily visualized in tools
or used with content-based filters (see DDSContentFilteredTopic (p. 998)).

The built-in types are very simple in order to get you up and running as quickly
as possible. If you need a structured data type you can define your own type
with exactly the fields you need in one of two ways:

ˆ At compile time, by generating code from an IDL or XML file using the
rtiddsgen (p. 211) utility

ˆ At runtime, by using the Dynamic Data (p. 75) API

5.10.2 Managing Memory for Builtin Types

When a sample is written, the DataWriter serializes it and stores the result in
a buffer obtained from a pool of preallocated buffers. In the same way, when
a sample is received, the DataReader deserializes it and stores the result in a
sample coming from a pool of preallocated samples.

For builtin types, the maximum size of the buffers/samples and depends on the
nature of the application using the builtin type.

You can configure the maximum size of the builtin types on a per-DataWriter
and per-DataReader basis using the DDS PropertyQosPolicy (p. 783) in
DataWriters, DataReaders or Participants.

The following table lists the supported builtin type properties to configure mem-
ory allocation. When the properties are defined in the DomainParticipant, they
are applicable to all DataWriters and DataReaders belonging to the Domain-
Participant unless they are overwrittem in the DataWriters and DataReaders.

The previous properties must be set consistently with respect to the correspond-
ing ∗.max size properties that set the maximum size of the builtin types in the
typecode.

5.10.3 Typecodes for Builtin Types

The typecodes associated with the builtin types are generated from the following
IDL type definitions:

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

72 Module Documentation

module DDS {

struct String {

string value;

};

struct KeyedString {

string key;

string value;

};

struct Octets {

sequence<octet> value;

};

struct KeyedOctets {

string key;

sequence<octet> value;

};

};

The maximum size of the strings and sequences that will be included in the type
code definitions can be configured on a per-DomainParticipant-basis by using
the properties in following table.

For more information about the built-in types, including how to control mem-
ory usage and maximum lengths, please see chapter 3, Data Types and Data
Samples, in the RTI Data Distribution Service User’s Manual.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.10 Built-in Types 73

Property Description
dds.builtin type.string.alloc size Maximum size of the strings

published by the
DDSStringDataWriter (p. 1278)
or received the
DDSStringDataReader (p. 1274)
(includes the NULL-terminated
character).
Default:
dds.builtin type.string.max size if
defined. Otherwise, 1024.

dds.builtin type.keyed string.alloc -
key size

Maximum size of the keys used by
the
DDSKeyedStringDataWriter
(p. 1204) or
DDSKeyedStringDataReader
(p. 1194) (includes the
NULL-terminated character).
Default: dds.builtin type.keyed -
string.max key size if defined.
Otherwise, 1024.

dds.builtin type.keyed string.alloc -
size

Maximum size of the strings
published by the
DDSKeyedStringDataWriter
(p. 1204) or received by the
DDSKeyedStringDataReader
(p. 1194) (includes the
NULL-terminated character).
Default: dds.builtin type.keyed -
string.max size if defined.
Otherwise, 1024.

dds.builtin type.octets.alloc size Maximum size of the octet
sequences published the
DDSOctetsDataWriter (p. 1230)
or received by the
DDSOctetsDataReader
(p. 1225).
Default:
dds.builtin type.octets.max size if
defined. Otherwise, 2048.

dds.builtin type.keyed octets.alloc -
key size

Maximum size of the key published
by the
DDSKeyedOctetsDataWriter
(p. 1179) or received by the
DDSKeyedOctetsDataReader
(p. 1169) (includes the
NULL-terminated character).
Default: dds.builtin type.keyed -
octets.max key size if defined.
Otherwise, 1024.

dds.builtin type.keyed octets.alloc -
size

Maximum size of the octets
sequences published by a
DDSKeyedOctetsDataWriter
(p. 1179) or received by a
DDSKeyedOctetsDataReader
(p. 1169).
Default: dds.builtin type.keyed -
octets.max size if defined.
Otherwise, 2048.

Table 5.3: Builtin Types Allocation Properties

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

74 Module Documentation

Property Description
dds.builtin type.string.max size Maximum size of the strings

published by the StringDataWriters
and received by the
StringDataReaders belonging to a
DomainParticipant (includes the
NULL-terminated character).
Default: 1024.

dds.builtin type.keyed string.max -
key size

Maximum size of the keys used by
the KeyedStringDataWriters and
KeyedStringDataReaders belonging
to a DomainParticipant (includes
the NULL-terminated character).
Default: 1024.

dds.builtin type.keyed string.max -
size

Maximum size of the strings
published by the
KeyedStringDataWriters and
received by the
KeyedStringDataReaders belonging
to a DomainParticipant using the
builtin type (includes the
NULL-terminated character).
Default: 1024

dds.builtin type.octets.max size Maximum size of the octet
sequences published by the
OctetsDataWriters and received by
the OctetsDataReader belonging to
a DomainParticipant.
Default: 2048

dds.builtin type.keyed octets.max -
key size

Maximum size of the keys used by
the KeyedOctetsStringDataWriters
and KeyedOctetsStringDataReaders
belonging to a DomainParticipant
(includes the NULL-terminated
character).
Default: 1024.

dds.builtin type.keyed octets.max -
size

Maximum size of the octet
sequences published by the
KeyedOctetsDataWriters and
received by the
KeyedOctetsDataReaders belonging
to a DomainParticipant.
Default: 2048

Table 5.4: Properties for Allocating Size of Builtin Types, per DomainPartici-
pant

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.11 Dynamic Data 75

5.11 Dynamic Data

<<eXtension>> (p. 190) The Dynamic Data API provides a way to inter-
act with arbitrarily complex data types at runtime without the need for code
generation.

Classes

ˆ class DDSDynamicDataTypeSupport

A factory for registering a dynamically defined type and creating DDS -
DynamicData (p. 580) objects.

ˆ class DDSDynamicDataReader

Reads (subscribes to) objects of type DDS DynamicData (p. 580).

ˆ class DDSDynamicDataWriter

Writes (publishes) objects of type DDS DynamicData (p. 580).

ˆ struct DDS DynamicDataProperty t

A collection of attributes used to configure DDS DynamicData (p. 580)
objects.

ˆ struct DDS DynamicDataInfo

A descriptor for a DDS DynamicData (p. 580) object.

ˆ struct DDS DynamicDataMemberInfo

A descriptor for a single member (i.e. field) of dynamically defined data type.

ˆ struct DDS DynamicData

A sample of any complex data type, which can be inspected and manipulated
reflectively.

ˆ struct DDS DynamicDataSeq

An ordered collection of DDS DynamicData (p. 580) elements.

ˆ struct DDS DynamicDataTypeSerializationProperty t

Properties that govern how data of a certain type will be serialized on the
network.

ˆ struct DDS DynamicDataTypeProperty t

A collection of attributes used to configure DDSDynamicDataTypeSup-
port (p. 1150) objects.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

76 Module Documentation

Defines

ˆ #define DDS DYNAMIC DATA MEMBER ID -
UNSPECIFIED

A sentinel value that indicates that no member ID is needed in order to
perform some operation.

Typedefs

ˆ typedef DDS Long DDS DynamicDataMemberId

An integer that uniquely identifies some member of a data type within that
type.

Variables

ˆ struct DDS DynamicDataProperty t DDS DYNAMIC DATA -
PROPERTY DEFAULT

Sentinel constant indicating default values for DDS -
DynamicDataProperty t (p. 681).

ˆ struct DDS DynamicDataTypeProperty t DDS DYNAMIC -
DATA TYPE PROPERTY DEFAULT

Sentinel constant indicating default values for DDS -
DynamicDataTypeProperty t (p. 684).

5.11.1 Detailed Description

<<eXtension>> (p. 190) The Dynamic Data API provides a way to inter-
act with arbitrarily complex data types at runtime without the need for code
generation.

This API allows you to define new data types, modify existing data types, and
interact reflectively with samples. To use it, you will take the following steps:

1. Obtain a DDS TypeCode (p. 925) (see Type Code Support (p. 55))
that defines the type definition you want to use.

A DDS TypeCode (p. 925) includes a type’s kind (DDS TCKind (p. 65)),
name, and members (that is, fields). You can create your own DDS TypeCode
(p. 925) using the DDS TypeCodeFactory (p. 951) class – see, for example,
the DDS TypeCodeFactory::create struct tc (p. 956) method. Alterna-
tively, you can use a remote DDS TypeCode (p. 925) that you discovered

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.11 Dynamic Data 77

on the network (see Built-in Topics (p. 41)) or one generated by rtiddsgen
(p. 211).

2. Wrap the DDS TypeCode (p. 925) in a DDSDynamicDataType-
Support (p. 1150) object.

See the constructor DDSDynamicDataTypeSup-
port::DDSDynamicDataTypeSupport (p. 1151). This object lets you
connect the type definition to a DDSDomainParticipant (p. 1054) and
manage data samples (of type DDS DynamicData (p. 580)).

3. Register the DDSDynamicDataTypeSupport (p. 1150) with one or
more domain participants.

See DDSDynamicDataTypeSupport::register type (p. 1153). This action
associates the data type with a logical name that you can use to create topics.
(Starting with this step, working with a dynamically defined data type is almost
exactly the same as working with a generated one.)

4. Create a DDSTopic (p. 1311) from the DDSDomainParticipant
(p. 1054).

Use the name under which you registered your data type – see DDSDomain-
Participant::create topic (p. 1089). This DDSTopic (p. 1311) is what you
will use to produce and consume data.

5. Create a DDSDynamicDataWriter (p. 1156) and/or DDSDynam-
icDataReader (p. 1149).

These objects will produce and/or consume data (of type DDS DynamicData
(p. 580)) on the DDSTopic (p. 1311). You can create these objects directly
from the DDSDomainParticipant (p. 1054) – see DDSDomainPartici-
pant::create datawriter (p. 1115) and DDSDomainParticipant::create -
datareader (p. 1119) – or by first creating intermediate DDSPublisher
(p. 1243) and DDSSubscriber (p. 1284) objects – see DDSDomainPartic-
ipant::create publisher (p. 1083) and DDSDomainParticipant::create -
subscriber (p. 1085).

6. Write and/or read the data of interest.

7. Tear down the objects described above.

You should delete them in the reverse order in which you created them. Note
that unregistering your data type with the DDSDomainParticipant (p. 1054)
is optional; all types are automatically unregistered when the DDSDomain-
Participant (p. 1054) itself is deleted.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

78 Module Documentation

5.11.2 Define Documentation

5.11.2.1 #define DDS DYNAMIC DATA MEMBER ID -
UNSPECIFIED

A sentinel value that indicates that no member ID is needed in order to perform
some operation.

Most commonly, this constant will be used in ”get” operations to indicate that
a lookup should be performed based on a name, not on an ID.

See also:

DDS DynamicDataMemberId (p. 78)

5.11.3 Typedef Documentation

5.11.3.1 typedef DDS Long DDS DynamicDataMemberId

An integer that uniquely identifies some member of a data type within that
type.

The range of a member ID is the range of an unsigned short integer, except for
the value 0, which is reserved.

See also:

DDS DYNAMIC DATA MEMBER ID UNSPECIFIED (p. 78)

5.11.4 Variable Documentation

5.11.4.1 struct DDS DynamicDataProperty t
DDS DYNAMIC DATA PROPERTY DEFAULT

Sentinel constant indicating default values for DDS -
DynamicDataProperty t (p. 681).

Pass this object instead of your own DDS DynamicDataProperty t (p. 681)
object to use the default property values:

DDS_DynamicData* sample = new DDS_DynamicData(

myTypeCode,

&DDS_DYNAMIC_DATA_PROPERTY_DEFAULT);

See also:

DDS DynamicDataProperty t (p. 681)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.11 Dynamic Data 79

5.11.4.2 struct DDS DynamicDataTypeProperty t
DDS DYNAMIC DATA TYPE PROPERTY DEFAULT

Sentinel constant indicating default values for DDS -
DynamicDataTypeProperty t (p. 684).

Pass this object instead of your own DDS DynamicDataTypeProperty t
(p. 684) object to use the default property values:

DDS_DynamicDataTypeSupport* support = new DDS_DynamicDataTypeSupport(

myTypeCode,

&DDS_DYNAMIC_DATA_TYPE_PROPERTY_DEFAULT);

See also:

DDS DynamicDataTypeProperty t (p. 684)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

80 Module Documentation

5.12 Publication Module

Contains the DDSFlowController (p. 1163), DDSPublisher (p. 1243), and
DDSDataWriter (p. 1028) classes as well as the DDSPublisherListener
(p. 1265) and DDSDataWriterListener (p. 1048) interfaces, and more gen-
erally, all that is needed on the publication side.

Modules

ˆ Publishers

DDSPublisher (p. 1243) entity and associated elements

ˆ Data Writers

DDSDataWriter (p. 1028) entity and associated elements

ˆ Flow Controllers

<<eXtension>> (p. 190) DDSFlowController (p. 1163) and associated
elements

5.12.1 Detailed Description

Contains the DDSFlowController (p. 1163), DDSPublisher (p. 1243), and
DDSDataWriter (p. 1028) classes as well as the DDSPublisherListener
(p. 1265) and DDSDataWriterListener (p. 1048) interfaces, and more gen-
erally, all that is needed on the publication side.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.13 Publishers 81

5.13 Publishers

DDSPublisher (p. 1243) entity and associated elements

Classes

ˆ class DDSPublisherListener

<<interface>> (p. 190) DDSListener (p. 1217) for DDSPublisher
(p. 1243) status.

ˆ class DDSPublisherSeq

Declares IDL sequence < DDSPublisher (p. 1243) > .

ˆ class DDSPublisher

<<interface>> (p. 190) A publisher is the object responsible for the actual
dissemination of publications.

ˆ struct DDS PublisherQos

QoS policies supported by a DDSPublisher (p. 1243) entity.

Variables

ˆ struct DDS DataWriterQos DDS DATAWRITER QOS -
DEFAULT

Special value for creating DDSDataWriter (p. 1028) with default QoS.

ˆ struct DDS DataWriterQos DDS DATAWRITER QOS USE -
TOPIC QOS

Special value for creating DDSDataWriter (p. 1028) with a combination
of the default DDS DataWriterQos (p. 516) and the DDS TopicQos
(p. 905).

5.13.1 Detailed Description

DDSPublisher (p. 1243) entity and associated elements

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

82 Module Documentation

5.13.2 Variable Documentation

5.13.2.1 struct DDS DataWriterQos DDS DATAWRITER QOS -
DEFAULT

Special value for creating DDSDataWriter (p. 1028) with default QoS.

When used in DDSPublisher::create datawriter (p. 1252), this special value
is used to indicate that the DDSDataWriter (p. 1028) should be created
with the default DDSDataWriter (p. 1028) QoS by means of the operation
get default datawriter qos and using the resulting QoS to create the DDS-
DataWriter (p. 1028).

When used in DDSPublisher::set default datawriter qos (p. 1247), this
special value is used to indicate that the default QoS should be reset back
to the initial value that would be used if the DDSPublisher::set default -
datawriter qos (p. 1247) operation had never been called.

When used in DDSDataWriter::set qos (p. 1041), this special value is used
to indicate that the QoS of the DDSDataWriter (p. 1028) should be changed
to match the current defualt QoS set in the DDSPublisher (p. 1243) that the
DDSDataWriter (p. 1028) belongs to.

See also:

DDSPublisher::create datawriter (p. 1252)
DDSPublisher::set default datawriter qos (p. 1247)
DDSDataWriter::set qos (p. 1041)

Examples:

HelloWorld publisher.cxx.

5.13.2.2 struct DDS DataWriterQos DDS DATAWRITER QOS -
USE TOPIC QOS

Special value for creating DDSDataWriter (p. 1028) with a combination of
the default DDS DataWriterQos (p. 516) and the DDS TopicQos (p. 905).

The use of this value is equivalent to the application obtaining the default
DDS DataWriterQos (p. 516) and the DDS TopicQos (p. 905) (by means
of the operation DDSTopic::get qos (p. 1315)) and then combining these
two QoS using the operation DDSPublisher::copy from topic qos (p. 1260)
whereby any policy that is set on the DDS TopicQos (p. 905) ”overrides” the
corresponding policy on the default QoS. The resulting QoS is then applied to
the creation of the DDSDataWriter (p. 1028).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.13 Publishers 83

This value should only be used in DDSPublisher::create datawriter
(p. 1252).

See also:

DDSPublisher::create datawriter (p. 1252)
DDSPublisher::get default datawriter qos (p. 1247)
DDSTopic::get qos (p. 1315)
DDSPublisher::copy from topic qos (p. 1260)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

84 Module Documentation

5.14 Data Writers

DDSDataWriter (p. 1028) entity and associated elements

Classes

ˆ struct FooDataWriter

<<interface>> (p. 190) <<generic>> (p. 190) User data type specific
data writer.

ˆ class DDSDataWriterListener

<<interface>> (p. 190) DDSListener (p. 1217) for writer status.

ˆ class DDSDataWriter

<<interface>> (p. 190) Allows an application to set the value of the data
to be published under a given DDSTopic (p. 1311).

ˆ struct DDS OfferedDeadlineMissedStatus

DDS OFFERED DEADLINE MISSED STATUS (p. 311)

ˆ struct DDS LivelinessLostStatus

DDS LIVELINESS LOST STATUS (p. 313)

ˆ struct DDS OfferedIncompatibleQosStatus

DDS OFFERED INCOMPATIBLE QOS STATUS (p. 311)

ˆ struct DDS PublicationMatchedStatus

DDS PUBLICATION MATCHED STATUS (p. 313)

ˆ struct DDS ReliableWriterCacheEventCount

<<eXtension>> (p. 190) The number of times the number of unacknowl-
edged samples in the cache of a reliable writer hit a certain well-defined
threshold.

ˆ struct DDS ReliableWriterCacheChangedStatus

<<eXtension>> (p. 190) A summary of the state of a data writer’s cache
of unacknowledged samples written.

ˆ struct DDS ReliableReaderActivityChangedStatus

<<eXtension>> (p. 190) Describes the activity (i.e. are acknowledgements
forthcoming) of reliable readers matched to a reliable writer.

ˆ struct DDS DataWriterCacheStatus

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.14 Data Writers 85

<<eXtension>> (p. 190) The status of the writer’s cache.

ˆ struct DDS DataWriterProtocolStatus

<<eXtension>> (p. 190) The status of a writer’s internal protocol related
metrics, like the number of samples pushed, pulled, filtered; and status of
wire protocol traffic.

ˆ struct DDS DataWriterQos

QoS policies supported by a DDSDataWriter (p. 1028) entity.

5.14.1 Detailed Description

DDSDataWriter (p. 1028) entity and associated elements

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

86 Module Documentation

5.15 Flow Controllers

<<eXtension>> (p. 190) DDSFlowController (p. 1163) and associated el-
ements

Classes

ˆ class DDSFlowController

<<interface>> (p. 190) A flow controller is the object responsible for shap-
ing the network traffic by determining when attached asynchronous DDS-
DataWriter (p. 1028) instances are allowed to write data.

ˆ struct DDS FlowControllerTokenBucketProperty t

DDSFlowController (p. 1163) uses the popular token bucket approach for
open loop network flow control. The flow control characteristics are deter-
mined by the token bucket properties.

ˆ struct DDS FlowControllerProperty t

Determines the flow control characteristics of the DDSFlowController
(p. 1163).

Enumerations

ˆ enum DDS FlowControllerSchedulingPolicy {
DDS RR FLOW CONTROLLER SCHED POLICY,

DDS EDF FLOW CONTROLLER SCHED POLICY }
Kinds of flow controller scheduling policy.

Variables

ˆ char ∗ DDS DEFAULT FLOW CONTROLLER NAME

[default] Special value of DDS PublishModeQosPolicy::flow -
controller name (p. 804) that refers to the built-in default flow controller.

ˆ char ∗ DDS FIXED RATE FLOW CONTROLLER NAME

Special value of DDS PublishModeQosPolicy::flow controller name
(p. 804) that refers to the built-in fixed-rate flow controller.

ˆ char ∗ DDS ON DEMAND FLOW CONTROLLER NAME

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.15 Flow Controllers 87

Special value of DDS PublishModeQosPolicy::flow controller name
(p. 804) that refers to the built-in on-demand flow controller.

5.15.1 Detailed Description

<<eXtension>> (p. 190) DDSFlowController (p. 1163) and associated el-
ements

DDSFlowController (p. 1163) provides the network traffic shaping ca-
pability to asynchronous DDSDataWriter (p. 1028) instances. For use
cases and advantages of publishing asnychronously, please refer to DDS -
PublishModeQosPolicy (p. 802) of DDS DataWriterQos (p. 516).

See also:

DDS PublishModeQosPolicy (p. 802)
DDS DataWriterQos::publish mode (p. 521)
DDS AsynchronousPublisherQosPolicy (p. 441)

5.15.2 Enumeration Type Documentation

5.15.2.1 enum DDS FlowControllerSchedulingPolicy

Kinds of flow controller scheduling policy.

Samples written by an asynchronous DDSDataWriter (p. 1028) are not sent
in the context of the FooDataWriter::write (p. 1368) call. Instead, the mid-
dleware puts the samples in a queue for future processing. The DDSFlow-
Controller (p. 1163) associated with each asynchronous DataWriter instance
determines when the samples are actually sent.

Each DDSFlowController (p. 1163) maintains a separate FIFO queue for
each unique destination (remote application). Samples written by asynchronous
DDSDataWriter (p. 1028) instances associated with the flow controller, are
placed in the queues that correspond to the intended destinations of the sample.

When tokens become available, a flow controller must decide which queue(s)
to grant tokens first. This is determined by the flow controller’s scheduling
policy. Once a queue has been granted tokens, it is serviced by the asynchronous
publishing thread. The queued up samples will be coalesced and sent to the
corresponding destination. The number of samples sent depends on the data
size and the number of tokens granted.

QoS:

DDS FlowControllerProperty t (p. 700)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

88 Module Documentation

Enumerator:

DDS RR FLOW CONTROLLER SCHED POLICY Indicates to
flow control in a round-robin fashion.

Whenever tokens become available, the flow controller distributes the
tokens uniformly across all of its (non-empty) destination queues.
No destinations are prioritized. Instead, all destinations are treated
equally and are serviced in a round-robin fashion.

DDS EDF FLOW CONTROLLER SCHED POLICY Indicates
to flow control in an earliest-deadline-first fashion.

A sample’s deadline is determined by the time it was written plus
the latency budget of the DataWriter at the time of the write call
(as specified in the DDS LatencyBudgetQosPolicy (p. 722)). The
relative priority of a flow controller’s destination queue is determined
by the earliest deadline across all samples it contains.

When tokens become available, the DDSFlowController (p. 1163)
distributes tokens to the destination queues in order of their priority.
In other words, the queue containing the sample with the earliest dead-
line is serviced first. The number of tokens granted equals the number
of tokens required to send the first sample in the queue. Note that the
priority of a queue may change as samples are sent (i.e. removed from
the queue). If a sample must be sent to multiple destinations or two
samples have an equal deadline value, the corresponding destination
queues are serviced in a round-robin fashion.

Hence, under the default DDS -
LatencyBudgetQosPolicy::duration (p. 723) setting, an EDF -
FLOW CONTROLLER SCHED POLICY DDSFlowController (p. 1163)
preserves the order in which the user calls FooDataWriter::write
(p. 1368) across the DataWriters associated with the flow controller.

Since the DDS LatencyBudgetQosPolicy (p. 722) is mutable, a
sample written second may contain an earlier deadline than the sam-
ple written first if the DDS LatencyBudgetQosPolicy::duration
(p. 723) value is sufficiently decreased in between writing the two sam-
ples. In that case, if the first sample is not yet written (still in queue
waiting for its turn), it inherits the priority corresponding to the (ear-
lier) deadline from the second sample.

In other words, the priority of a destination queue is always determined
by the earliest deadline among all samples contained in the queue. This
priority inheritance approach is required in order to both honor the up-
dated DDS LatencyBudgetQosPolicy::duration (p. 723) and ad-
here to the DDSDataWriter (p. 1028) in-order data delivery guar-
antee.

[default] for DDSDataWriter (p. 1028)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.15 Flow Controllers 89

5.15.3 Variable Documentation

5.15.3.1 char∗ DDS DEFAULT FLOW CONTROLLER NAME

[default] Special value of DDS PublishModeQosPolicy::flow controller -
name (p. 804) that refers to the built-in default flow controller.

RTI Data Distribution Service provides several built-in DDSFlowController
(p. 1163) for use with an asynchronous DDSDataWriter (p. 1028). The user
can choose to use the built-in flow controllers and optionally modify their prop-
erties or can create a custom flow controller.

By default, flow control is disabled. That is, the built-in DDS DEFAULT -
FLOW CONTROLLER NAME (p. 89) flow controller does not apply any
flow control. Instead, it allows data to be sent asynchronously as soon as it is
written by the DDSDataWriter (p. 1028).

Essentially, this is equivalent to a user-created DDSFlowController (p. 1163)
with the following DDS FlowControllerProperty t (p. 700) settings:

- DDS FlowControllerProperty t::scheduling policy (p. 701) = DDS -
EDF FLOW CONTROLLER SCHED POLICY (p. 88)

- DDS FlowControllerProperty t::token bucket (p. 701) max tokens =
DDS LENGTH UNLIMITED (p. 356)

- DDS FlowControllerProperty t::token bucket (p. 701) tokens added -
per period = DDS LENGTH UNLIMITED (p. 356)

- DDS FlowControllerProperty t::token bucket (p. 701) tokens -
leaked per period = 0

- DDS FlowControllerProperty t::token bucket (p. 701) period = 1 sec-
ond

- DDS FlowControllerProperty t::token bucket (p. 701) bytes per -
token = DDS LENGTH UNLIMITED (p. 356)

See also:

DDSPublisher::create datawriter (p. 1252)
DDSDomainParticipant::lookup flowcontroller (p. 1099)
DDSFlowController::set property (p. 1164)
DDS PublishModeQosPolicy (p. 802)
DDS AsynchronousPublisherQosPolicy (p. 441)

5.15.3.2 char∗ DDS FIXED RATE FLOW CONTROLLER NAME

Special value of DDS PublishModeQosPolicy::flow controller name
(p. 804) that refers to the built-in fixed-rate flow controller.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

90 Module Documentation

RTI Data Distribution Service provides several builtin DDSFlowController
(p. 1163) for use with an asynchronous DDSDataWriter (p. 1028). The user
can choose to use the built-in flow controllers and optionally modify their prop-
erties or can create a custom flow controller.

The built-in DDS FIXED RATE FLOW CONTROLLER NAME
(p. 89) flow controller shapes the network traffic by allowing data to be sent
only once every second. Any accumulated samples destined for the same
destination are coalesced into as few network packets as possible.

Essentially, this is equivalent to a user-created DDSFlowController (p. 1163)
with the following DDS FlowControllerProperty t (p. 700) settings:

- DDS FlowControllerProperty t::scheduling policy (p. 701) = DDS -
EDF FLOW CONTROLLER SCHED POLICY (p. 88)

- DDS FlowControllerProperty t::token bucket (p. 701) max tokens =
DDS LENGTH UNLIMITED (p. 356)

- DDS FlowControllerProperty t::token bucket (p. 701) tokens added -
per period = DDS LENGTH UNLIMITED (p. 356)

- DDS FlowControllerProperty t::token bucket (p. 701) tokens -
leaked per period = DDS LENGTH UNLIMITED (p. 356)

- DDS FlowControllerProperty t::token bucket (p. 701) period = 1 sec-
ond

- DDS FlowControllerProperty t::token bucket (p. 701) bytes per -
token = DDS LENGTH UNLIMITED (p. 356)

See also:

DDSPublisher::create datawriter (p. 1252)
DDSDomainParticipant::lookup flowcontroller (p. 1099)
DDSFlowController::set property (p. 1164)
DDS PublishModeQosPolicy (p. 802)
DDS AsynchronousPublisherQosPolicy (p. 441)

5.15.3.3 char∗ DDS ON DEMAND FLOW CONTROLLER -
NAME

Special value of DDS PublishModeQosPolicy::flow controller name
(p. 804) that refers to the built-in on-demand flow controller.

RTI Data Distribution Service provides several builtin DDSFlowController
(p. 1163) for use with an asynchronous DDSDataWriter (p. 1028). The user
can choose to use the built-in flow controllers and optionally modify their prop-
erties or can create a custom flow controller.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.15 Flow Controllers 91

The built-in DDS ON DEMAND FLOW CONTROLLER NAME
(p. 90) allows data to be sent only when the user calls DDSFlowCon-
troller::trigger flow (p. 1165). With each trigger, all accumulated data
since the previous trigger is sent (across all DDSPublisher (p. 1243) or
DDSDataWriter (p. 1028) instances). In other words, the network traffic
shape is fully controlled by the user. Any accumulated samples destined for
the same destination are coalesced into as few network packets as possible.

This external trigger source is ideal for users who want to implement some form
of closed-loop flow control or who want to only put data on the wire every so
many samples (e.g. with the number of samples based on NDDS Transport -
Property t::gather send buffer count max (p. 1407)).

Essentially, this is equivalent to a user-created DDSFlowController (p. 1163)
with the following DDS FlowControllerProperty t (p. 700) settings:

- DDS FlowControllerProperty t::scheduling policy (p. 701) = DDS -
EDF FLOW CONTROLLER SCHED POLICY (p. 88)

- DDS FlowControllerProperty t::token bucket (p. 701) max tokens =
DDS LENGTH UNLIMITED (p. 356)

- DDS FlowControllerProperty t::token bucket (p. 701) tokens added -
per period = DDS LENGTH UNLIMITED (p. 356)

- DDS FlowControllerProperty t::token bucket (p. 701) tokens -
leaked per period = DDS LENGTH UNLIMITED (p. 356)

- DDS FlowControllerProperty t::token bucket (p. 701) period =
DDS DURATION INFINITE (p. 295)

- DDS FlowControllerProperty t::token bucket (p. 701) bytes per -
token = DDS LENGTH UNLIMITED (p. 356)

See also:

DDSPublisher::create datawriter (p. 1252)
DDSDomainParticipant::lookup flowcontroller (p. 1099)
DDSFlowController::trigger flow (p. 1165)
DDSFlowController::set property (p. 1164)
DDS PublishModeQosPolicy (p. 802)
DDS AsynchronousPublisherQosPolicy (p. 441)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

92 Module Documentation

5.16 Subscription Module

Contains the DDSSubscriber (p. 1284), DDSDataReader (p. 1004),
DDSReadCondition (p. 1269), and DDSQueryCondition (p. 1267) classes,
as well as the DDSSubscriberListener (p. 1306) and DDSDataReaderLis-
tener (p. 1023) interfaces, and more generally, all that is needed on the sub-
scription side.

Modules

ˆ Subscribers
DDSSubscriber (p. 1284) entity and associated elements

ˆ DataReaders
DDSDataReader (p. 1004) entity and associated elements

ˆ Data Samples
DDS SampleInfo (p. 855), DDS SampleStateKind (p. 104), DDS -
ViewStateKind (p. 106), DDS InstanceStateKind (p. 109) and associ-
ated elements

5.16.1 Detailed Description

Contains the DDSSubscriber (p. 1284), DDSDataReader (p. 1004),
DDSReadCondition (p. 1269), and DDSQueryCondition (p. 1267) classes,
as well as the DDSSubscriberListener (p. 1306) and DDSDataReaderLis-
tener (p. 1023) interfaces, and more generally, all that is needed on the sub-
scription side.

5.16.2 Access to data samples

Data is made available to the application by the following operations on
DDSDataReader (p. 1004) objects: FooDataReader::read (p. 1337),
FooDataReader::read w condition (p. 1344), FooDataReader::take
(p. 1338), FooDataReader::take w condition (p. 1345), and the other
variants of read() and take().

The general semantics of the read() operation is that the application only gets
access to the corresponding data (i.e. a precise instance value); the data remains
the responsibility of RTI Data Distribution Service and can be read again.

The semantics of the take() operations is that the application takes full respon-
sibility for the data; that data will no longer be available locally to RTI Data

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.16 Subscription Module 93

Distribution Service. Consequently, it is possible to access the same information
multiple times only if all previous accesses were read() operations, not take().

Each of these operations returns a collection of Data values and associated
DDS SampleInfo (p. 855) objects. Each data value represents an atom of data
information (i.e., a value for one instance). This collection may contain samples
related to the same or different instances (identified by the key). Multiple
samples can refer to the same instance if the settings of the HISTORY (p. 352)
QoS allow for it.

To return the memory back to the middleware, every read() or take()
that retrieves a sequence of samples must be followed with a call to
FooDataReader::return loan (p. 1358).

See also:

Interpretation of the SampleInfo (p. 856)

5.16.2.1 Data access patterns

The application accesses data by means of the operations read or take on the
DDSDataReader (p. 1004). These operations return an ordered collection of
DataSamples consisting of a DDS SampleInfo (p. 855) part and a Data part.

The way RTI Data Distribution Service builds the collection depends on QoS
policies set on the DDSDataReader (p. 1004) and DDSSubscriber (p. 1284),
as well as the source timestamp of the samples, and the parameters passed to
the read() / take() operations, namely:

ˆ the desired sample states (any combination of DDS SampleStateKind
(p. 104))

ˆ the desired view states (any combination of DDS ViewStateKind
(p. 106))

ˆ the desired instance states (any combination of DDS -
InstanceStateKind (p. 109))

The read() and take() operations are non-blocking and just deliver what is
currently available that matches the specified states.

The read w condition() and take w condition() operations take a
DDSReadCondition (p. 1269) object as a parameter instead of sample, view
or instance states. The behaviour is that the samples returned will only be
those for which the condition is DDS BOOLEAN TRUE (p. 288). These
operations, in conjunction with DDSReadCondition (p. 1269) objects and a
DDSWaitSet (p. 1325), allow performing waiting reads.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

94 Module Documentation

Once the data samples are available to the data readers, they can be read or
taken by the application. The basic rule is that the application may do this in
any order it wishes. This approach is very flexible and allows the application
ultimate control.

To access data coherently, or in order, the PRESENTATION (p. 337) QoS
must be set properly.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.17 Subscribers 95

5.17 Subscribers

DDSSubscriber (p. 1284) entity and associated elements

Classes

ˆ class DDSSubscriberListener

<<interface>> (p. 190) DDSListener (p. 1217) for status about a sub-
scriber.

ˆ class DDSSubscriberSeq

Declares IDL sequence < DDSSubscriber (p. 1284) > .

ˆ class DDSSubscriber

<<interface>> (p. 190) A subscriber is the object responsible for actually
receiving data from a subscription.

ˆ struct DDS SubscriberQos

QoS policies supported by a DDSSubscriber (p. 1284) entity.

Variables

ˆ struct DDS DataReaderQos DDS DATAREADER QOS -
DEFAULT

Special value for creating data reader with default QoS.

ˆ struct DDS DataReaderQos DDS DATAREADER QOS USE -
TOPIC QOS

Special value for creating DDSDataReader (p. 1004) with a combination
of the default DDS DataReaderQos (p. 481) and the DDS TopicQos
(p. 905).

5.17.1 Detailed Description

DDSSubscriber (p. 1284) entity and associated elements

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

96 Module Documentation

5.17.2 Variable Documentation

5.17.2.1 struct DDS DataReaderQos DDS DATAREADER QOS -
DEFAULT

Special value for creating data reader with default QoS.

When used in DDSSubscriber::create datareader (p. 1293), this special
value is used to indicate that the DDSDataReader (p. 1004) should be created
with the default DDSDataReader (p. 1004) QoS by means of the operation
get default datareader qos and using the resulting QoS to create the DDS-
DataReader (p. 1004).

When used in DDSSubscriber::set default datareader qos (p. 1289), this
special value is used to indicate that the default QoS should be reset back
to the initial value that would be used if the DDSSubscriber::set default -
datareader qos (p. 1289) operation had never been called.

When used in DDSDataReader::set qos (p. 1017), this special value is used
to indicate that the QoS of the DDSDataReader (p. 1004) should be changed
to match the current defualt QoS set in the DDSSubscriber (p. 1284) that the
DDSDataReader (p. 1004) belongs to.

See also:

DDSSubscriber::create datareader (p. 1293)
DDSSubscriber::set default datareader qos (p. 1289)
DDSDataReader::set qos (p. 1017)

Examples:

HelloWorld subscriber.cxx.

5.17.2.2 struct DDS DataReaderQos DDS DATAREADER QOS -
USE TOPIC QOS

Special value for creating DDSDataReader (p. 1004) with a combination of
the default DDS DataReaderQos (p. 481) and the DDS TopicQos (p. 905).

The use of this value is equivalent to the application obtaining the default
DDS DataReaderQos (p. 481) and the DDS TopicQos (p. 905) (by means
of the operation DDSTopic::get qos (p. 1315)) and then combining these two
QoS using the operation DDSSubscriber::copy from topic qos (p. 1302)
whereby any policy that is set on the DDS TopicQos (p. 905) ”overrides”
the corresponding policy on the default QoS. The resulting QoS is then applied
to the creation of the DDSDataReader (p. 1004).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.17 Subscribers 97

This value should only be used in DDSSubscriber::create datareader
(p. 1293).

See also:

DDSSubscriber::create datareader (p. 1293)
DDSSubscriber::get default datareader qos (p. 1288)
DDSTopic::get qos (p. 1315)
DDSSubscriber::copy from topic qos (p. 1302)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

98 Module Documentation

5.18 DataReaders

DDSDataReader (p. 1004) entity and associated elements

Modules

ˆ Read Conditions

DDSReadCondition (p. 1269) and associated elements

ˆ Query Conditions

DDSQueryCondition (p. 1267) and associated elements

Classes

ˆ struct FooDataReader

<<interface>> (p. 190) <<generic>> (p. 190) User data type-specific
data reader.

ˆ class DDSDataReaderSeq

Declares IDL sequence < DDSDataReader (p. 1004) > .

ˆ class DDSDataReaderListener

<<interface>> (p. 190) DDSListener (p. 1217) for reader status.

ˆ class DDSDataReader

<<interface>> (p. 190) Allows the application to: (1) declare the data it
wishes to receive (i.e. make a subscription) and (2) access the data received
by the attached DDSSubscriber (p. 1284).

ˆ struct DDS RequestedDeadlineMissedStatus

DDS REQUESTED DEADLINE MISSED STATUS (p. 311)

ˆ struct DDS LivelinessChangedStatus

DDS LIVELINESS CHANGED STATUS (p. 313)

ˆ struct DDS RequestedIncompatibleQosStatus

DDS REQUESTED INCOMPATIBLE QOS STATUS (p. 311)

ˆ struct DDS SampleLostStatus

DDS SAMPLE LOST STATUS (p. 312)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.18 DataReaders 99

ˆ struct DDS SampleRejectedStatus

DDS SAMPLE REJECTED STATUS (p. 312)

ˆ struct DDS SubscriptionMatchedStatus

DDS SUBSCRIPTION MATCHED STATUS (p. 314)

ˆ struct DDS DataReaderCacheStatus

<<eXtension>> (p. 190) The status of the reader’s cache.

ˆ struct DDS DataReaderProtocolStatus

<<eXtension>> (p. 190) The status of a reader’s internal protocol related
metrics, like the number of samples received, filtered, rejected; and status of
wire protocol traffic.

ˆ struct DDS DataReaderQos

QoS policies supported by a DDSDataReader (p. 1004) entity.

Enumerations

ˆ enum DDS SampleRejectedStatusKind {

DDS NOT REJECTED,

DDS REJECTED BY INSTANCES LIMIT,

DDS REJECTED BY SAMPLES LIMIT,

DDS REJECTED BY SAMPLES PER INSTANCE LIMIT,

DDS REJECTED BY REMOTE WRITERS LIMIT,

DDS REJECTED BY REMOTE WRITERS PER -
INSTANCE LIMIT,

DDS REJECTED BY SAMPLES PER REMOTE WRITER -
LIMIT }

Kinds of reasons for rejecting a sample.

5.18.1 Detailed Description

DDSDataReader (p. 1004) entity and associated elements

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

100 Module Documentation

5.18.2 Enumeration Type Documentation

5.18.2.1 enum DDS SampleRejectedStatusKind

Kinds of reasons for rejecting a sample.

Enumerator:

DDS NOT REJECTED Samples are never rejected.
See also:

ResourceLimitsQosPolicy

DDS REJECTED BY INSTANCES LIMIT A resource limit on
the number of instances was reached.
See also:

ResourceLimitsQosPolicy

DDS REJECTED BY SAMPLES LIMIT A resource limit on the
number of samples was reached.
See also:

ResourceLimitsQosPolicy

DDS REJECTED BY SAMPLES PER INSTANCE LIMIT A
resource limit on the number of samples per instance was reached.
See also:

ResourceLimitsQosPolicy

DDS REJECTED BY REMOTE WRITERS LIMIT A resource
limit on the number of remote writers from which a DDSDataReader
(p. 1004) may read was reached.
This constant is an extension to the DDS standard.
See also:

DDS DataReaderResourceLimitsQosPolicy (p. 487)

DDS REJECTED BY REMOTE WRITERS PER INSTANCE LIMIT
A resource limit on the number of remote writers for a single instance
from which a DDSDataReader (p. 1004) may read was reached.
This constant is an extension to the DDS standard.
See also:

DDS DataReaderResourceLimitsQosPolicy (p. 487)

DDS REJECTED BY SAMPLES PER REMOTE WRITER LIMIT
A resource limit on the number of samples from a given remote writer
that a DDSDataReader (p. 1004) may store was reached.
This constant is an extension to the DDS standard.
See also:

DDS DataReaderResourceLimitsQosPolicy (p. 487)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.19 Read Conditions 101

5.19 Read Conditions

DDSReadCondition (p. 1269) and associated elements

Classes

ˆ class DDSReadCondition

<<interface>> (p. 190) Conditions specifically dedicated to read operations
and attached to one DDSDataReader (p. 1004).

5.19.1 Detailed Description

DDSReadCondition (p. 1269) and associated elements

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

102 Module Documentation

5.20 Query Conditions

DDSQueryCondition (p. 1267) and associated elements

Classes

ˆ class DDSQueryCondition

<<interface>> (p. 190) These are specialised DDSReadCondition
(p. 1269) objects that allow the application to also specify a filter on the
locally available data.

5.20.1 Detailed Description

DDSQueryCondition (p. 1267) and associated elements

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.21 Data Samples 103

5.21 Data Samples

DDS SampleInfo (p. 855), DDS SampleStateKind (p. 104), DDS -
ViewStateKind (p. 106), DDS InstanceStateKind (p. 109) and associated
elements

Modules

ˆ Sample States

DDS SampleStateKind (p. 104) and associated elements

ˆ View States

DDS ViewStateKind (p. 106) and associated elements

ˆ Instance States

DDS InstanceStateKind (p. 109) and associated elements

Classes

ˆ struct DDS SampleInfo

Information that accompanies each sample that is read or taken.

ˆ struct DDS SampleInfoSeq

Declares IDL sequence < DDS SampleInfo (p. 855) > .

5.21.1 Detailed Description

DDS SampleInfo (p. 855), DDS SampleStateKind (p. 104), DDS -
ViewStateKind (p. 106), DDS InstanceStateKind (p. 109) and associated
elements

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

104 Module Documentation

5.22 Sample States

DDS SampleStateKind (p. 104) and associated elements

Typedefs

ˆ typedef DDS UnsignedLong DDS SampleStateMask

A bit-mask (list) of sample states, i.e. DDS SampleStateKind (p. 104).

Enumerations

ˆ enum DDS SampleStateKind {
DDS READ SAMPLE STATE = 0x0001 << 0,

DDS NOT READ SAMPLE STATE = 0x0001 << 1 }
Indicates whether or not a sample has ever been read.

Variables

ˆ const DDS SampleStateMask DDS ANY SAMPLE STATE

Any sample state DDS READ SAMPLE STATE (p. 105) | DDS -
NOT READ SAMPLE STATE (p. 105).

5.22.1 Detailed Description

DDS SampleStateKind (p. 104) and associated elements

5.22.2 Typedef Documentation

5.22.2.1 typedef DDS UnsignedLong DDS SampleStateMask

A bit-mask (list) of sample states, i.e. DDS SampleStateKind (p. 104).

5.22.3 Enumeration Type Documentation

5.22.3.1 enum DDS SampleStateKind

Indicates whether or not a sample has ever been read.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.22 Sample States 105

For each sample received, the middleware internally maintains a sample state
relative to each DDSDataReader (p. 1004). The sample state can be either:

ˆ DDS READ SAMPLE STATE (p. 105) indicates that the DDS-
DataReader (p. 1004) has already accessed that sample by means of a
read or take operation.

ˆ DDS NOT READ SAMPLE STATE (p. 105) indicates that the
DDSDataReader (p. 1004) has not accessed that sample before.

The sample state will, in general, be different for each sample in the collection
returned by read or take.

Enumerator:

DDS READ SAMPLE STATE Sample has been read.

DDS NOT READ SAMPLE STATE Sample has not been read.

5.22.4 Variable Documentation

5.22.4.1 const DDS SampleStateMask DDS ANY SAMPLE -
STATE

Any sample state DDS READ SAMPLE STATE (p. 105) | DDS NOT -
READ SAMPLE STATE (p. 105).

Examples:

HelloWorld subscriber.cxx.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

106 Module Documentation

5.23 View States

DDS ViewStateKind (p. 106) and associated elements

Typedefs

ˆ typedef DDS UnsignedLong DDS ViewStateMask

A bit-mask (list) of view states, i.e. DDS ViewStateKind (p. 106).

Enumerations

ˆ enum DDS ViewStateKind {
DDS NEW VIEW STATE = 0x0001 << 0,

DDS NOT NEW VIEW STATE = 0x0001 << 1 }
Indicates whether or not an instance is new.

Variables

ˆ const DDS ViewStateMask DDS ANY VIEW STATE

Any view state DDS NEW VIEW STATE (p. 107) | DDS NOT -
NEW VIEW STATE (p. 107).

5.23.1 Detailed Description

DDS ViewStateKind (p. 106) and associated elements

5.23.2 Typedef Documentation

5.23.2.1 typedef DDS UnsignedLong DDS ViewStateMask

A bit-mask (list) of view states, i.e. DDS ViewStateKind (p. 106).

5.23.3 Enumeration Type Documentation

5.23.3.1 enum DDS ViewStateKind

Indicates whether or not an instance is new.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.23 View States 107

For each instance (identified by the key), the middleware internally maintains
a view state relative to each DDSDataReader (p. 1004). The view state can
be either:

ˆ DDS NEW VIEW STATE (p. 107) indicates that either this is the
first time that the DDSDataReader (p. 1004) has ever accessed samples
of that instance, or else that the DDSDataReader (p. 1004) has accessed
previous samples of the instance, but the instance has since been reborn
(i.e. become not-alive and then alive again). These two cases are distin-
guished by examining the DDS SampleInfo::disposed generation -
count (p. 860) and the DDS SampleInfo::no writers generation -
count (p. 860).

ˆ DDS NOT NEW VIEW STATE (p. 107) indicates that the DDS-
DataReader (p. 1004) has already accessed samples of the same instance
and that the instance has not been reborn since.

The view state available in the DDS SampleInfo (p. 855) is a snapshot of the
view state of the instance relative to the DDSDataReader (p. 1004) used to
access the samples at the time the collection was obtained (i.e. at the time read
or take was called). The view state is therefore the same for all samples in the
returned collection that refer to the same instance.

Once an instance has been detected as not having any ”live” writers and all the
samples associated with the instance are ”taken” from the DDSDataReader
(p. 1004), the middleware can reclaim all local resources regarding the instance.
Future samples will be treated as ”never seen.”

Enumerator:

DDS NEW VIEW STATE New instance. This latest generation of
the instance has not previously been accessed.

DDS NOT NEW VIEW STATE Not a new instance. This latest
generation of the instance has previously been accessed.

5.23.4 Variable Documentation

5.23.4.1 const DDS ViewStateMask DDS ANY VIEW STATE

Any view state DDS NEW VIEW STATE (p. 107) | DDS NOT NEW -
VIEW STATE (p. 107).

Examples:

HelloWorld subscriber.cxx.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

108 Module Documentation

5.24 Instance States

DDS InstanceStateKind (p. 109) and associated elements

Typedefs

ˆ typedef DDS UnsignedLong DDS InstanceStateMask

A bit-mask (list) of instance states, i.e. DDS InstanceStateKind (p. 109).

Enumerations

ˆ enum DDS InstanceStateKind {

DDS ALIVE INSTANCE STATE = 0x0001 << 0,

DDS NOT ALIVE DISPOSED INSTANCE STATE = 0x0001
<< 1,

DDS NOT ALIVE NO WRITERS INSTANCE STATE =
0x0001 << 2 }

Indicates is the samples are from a live DDSDataWriter (p. 1028) or not.

Variables

ˆ const DDS InstanceStateMask DDS ANY INSTANCE STATE

Any instance state ALIVE INSTANCE STATE | NOT ALIVE -
DISPOSED INSTANCE STATE | NOT ALIVE NO WRITERS -
INSTANCE STATE.

ˆ const DDS InstanceStateMask DDS NOT ALIVE INSTANCE -
STATE

Not alive instance state NOT ALIVE DISPOSED INSTANCE STATE |
NOT ALIVE NO WRITERS INSTANCE STATE.

5.24.1 Detailed Description

DDS InstanceStateKind (p. 109) and associated elements

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.24 Instance States 109

5.24.2 Typedef Documentation

5.24.2.1 typedef DDS UnsignedLong DDS InstanceStateMask

A bit-mask (list) of instance states, i.e. DDS InstanceStateKind (p. 109).

5.24.3 Enumeration Type Documentation

5.24.3.1 enum DDS InstanceStateKind

Indicates is the samples are from a live DDSDataWriter (p. 1028) or not.

For each instance, the middleware internally maintains an instance state. The
instance state can be:

ˆ DDS ALIVE INSTANCE STATE (p. 110) indicates that (a) samples
have been received for the instance, (b) there are live DDSDataWriter
(p. 1028) entities writing the instance, and (c) the instance has not been
explicitly disposed (or else more samples have been received after it was
disposed).

ˆ DDS NOT ALIVE DISPOSED INSTANCE STATE (p. 110) indi-
cates the instance was explicitly disposed by a DDSDataWriter (p. 1028)
by means of the dispose operation.

ˆ DDS NOT ALIVE NO WRITERS INSTANCE STATE (p. 110)
indicates the instance has been declared as not-alive by the DDS-
DataReader (p. 1004) because it detected that there are no live DDS-
DataWriter (p. 1028) entities writing that instance.

The precise behavior events that cause the instance state to change depends on
the setting of the OWNERSHIP QoS:

ˆ If OWNERSHIP (p. 341) is set to DDS EXCLUSIVE -
OWNERSHIP QOS (p. 342), then the instance state becomes
DDS NOT ALIVE DISPOSED INSTANCE STATE (p. 110) only
if the DDSDataWriter (p. 1028) that ”owns” the instance explicitly
disposes it. The instance state becomes DDS ALIVE INSTANCE -
STATE (p. 110) again only if the DDSDataWriter (p. 1028) that owns
the instance writes it.

ˆ If OWNERSHIP (p. 341) is set to DDS SHARED OWNERSHIP -
QOS (p. 342), then the instance state becomes DDS NOT ALIVE -
DISPOSED INSTANCE STATE (p. 110) if any DDSDataWriter

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

110 Module Documentation

(p. 1028) explicitly disposes the instance. The instance state becomes
DDS ALIVE INSTANCE STATE (p. 110) as soon as any DDS-
DataWriter (p. 1028) writes the instance again.

The instance state available in the DDS SampleInfo (p. 855) is a snapshot of
the instance state of the instance at the time the collection was obtained (i.e.
at the time read or take was called). The instance state is therefore the same
for all samples in the returned collection that refer to the same instance.

Enumerator:

DDS ALIVE INSTANCE STATE Instance is currently in existence.

DDS NOT ALIVE DISPOSED INSTANCE STATE Not alive
disposed instance. The instance has been disposed by a DataWriter.

DDS NOT ALIVE NO WRITERS INSTANCE STATE Not
alive no writers for instance. None of the DDSDataWriter (p. 1028)
objects are currently alive (according to the LIVELINESS (p. 344))
are writing the instance.

5.24.4 Variable Documentation

5.24.4.1 const DDS InstanceStateMask DDS ANY INSTANCE -
STATE

Any instance state ALIVE INSTANCE STATE | NOT ALIVE DISPOSED -
INSTANCE STATE | NOT ALIVE NO WRITERS INSTANCE STATE.

Examples:

HelloWorld subscriber.cxx.

5.24.4.2 const DDS InstanceStateMask DDS NOT ALIVE -
INSTANCE STATE

Not alive instance state NOT ALIVE DISPOSED INSTANCE STATE | NOT -
ALIVE NO WRITERS INSTANCE STATE.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.25 Infrastructure Module 111

5.25 Infrastructure Module

Defines the abstract classes and the interfaces that are refined by the other
modules. Contains common definitions such as return codes, status values, and
QoS policies.

Modules

ˆ Time Support

Time and duration types and defines.

ˆ GUID Support

<<eXtension>> (p. 190) GUID type and defines.

ˆ Sequence Number Support

<<eXtension>> (p. 190) Sequence number type and defines.

ˆ Exception Codes

<<eXtension>> (p. 190) Exception codes.

ˆ Return Codes

Types of return codes.

ˆ Status Kinds

Kinds of communication status.

ˆ QoS Policies

Quality of Service (QoS) policies.

ˆ Entity Support

DDSEntity (p. 1157), DDSListener (p. 1217) and related items.

ˆ Conditions and WaitSets

DDSCondition (p. 992) and DDSWaitSet (p. 1325) and related items.

ˆ Octet Buffer Support

<<eXtension>> (p. 190) Octet buffer creation, cloning, and deletion.

ˆ Sequence Support

The FooSeq (p. 1377) interface allows you to work with variable-length col-
lections of homogeneous data.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

112 Module Documentation

ˆ String Support

<<eXtension>> (p. 190) String creation, cloning, assignment, and dele-
tion.

5.25.1 Detailed Description

Defines the abstract classes and the interfaces that are refined by the other
modules. Contains common definitions such as return codes, status values, and
QoS policies.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.26 Built-in Sequences 113

5.26 Built-in Sequences

Defines sequences of primitive data type.

Classes

ˆ struct DDS CharSeq

Instantiates FooSeq (p. 1377) < DDS Char (p. 289) >.

ˆ struct DDS WcharSeq

Instantiates FooSeq (p. 1377) < DDS Wchar (p. 289) >.

ˆ struct DDS OctetSeq

Instantiates FooSeq (p. 1377) < DDS Octet (p. 289) >.

ˆ struct DDS ShortSeq

Instantiates FooSeq (p. 1377) < DDS Short (p. 289) >.

ˆ struct DDS UnsignedShortSeq

Instantiates FooSeq (p. 1377) < DDS UnsignedShort (p. 289) >.

ˆ struct DDS LongSeq

Instantiates FooSeq (p. 1377) < DDS Long (p. 290) >.

ˆ struct DDS UnsignedLongSeq

Instantiates FooSeq (p. 1377) < DDS UnsignedLong (p. 290) >.

ˆ struct DDS LongLongSeq

Instantiates FooSeq (p. 1377) < DDS LongLong (p. 290) >.

ˆ struct DDS UnsignedLongLongSeq

Instantiates FooSeq (p. 1377) < DDS UnsignedLongLong (p. 290) >.

ˆ struct DDS FloatSeq

Instantiates FooSeq (p. 1377) < DDS Float (p. 290) >.

ˆ struct DDS DoubleSeq

Instantiates FooSeq (p. 1377) < DDS Double (p. 290) >.

ˆ struct DDS LongDoubleSeq

Instantiates FooSeq (p. 1377) < DDS LongDouble (p. 290) >.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

114 Module Documentation

ˆ struct DDS BooleanSeq

Instantiates FooSeq (p. 1377) < DDS Boolean (p. 291) >.

ˆ struct DDS StringSeq

Instantiates FooSeq (p. 1377) < char∗ > with value type semantics.

ˆ struct DDS WstringSeq

Instantiates FooSeq (p. 1377) < DDS Wchar (p. 289)∗ >.

5.26.1 Detailed Description

Defines sequences of primitive data type.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.27 Multi-channel DataWriters 115

5.27 Multi-channel DataWriters

APIs related to Multi-channel DataWriters.

5.27.1 What is a Multi-channel DataWriter?

A Multi-channel DDSDataWriter (p. 1028) is a DDSDataWriter (p. 1028)
that is configured to send data over multiple multicast addresses, according to
some filtering criteria applied to the data.

To determine which multicast addresses will be used to send the data, the mid-
dleware evaluates a set of filters that are configured for the DDSDataWriter
(p. 1028). Each filter ”guards” a channel (a set of multicast addresses). Each
time a multi-channel DDSDataWriter (p. 1028) writes data, the filters are
applied. If a filter evaluates to true, the data is sent over that filter’s associated
channel (set of multicast addresses). We refer to this type of filter as a Channel
Guard filter.

5.27.2 Configuration on the Writer Side

To configure a multi-channel DDSDataWriter (p. 1028), simply define a list
of all its channels in the DDS MultiChannelQosPolicy (p. 745).

The DDS MultiChannelQosPolicy (p. 745) is propagated along with
discovery traffic. The value of this policy is available in DDS -
PublicationBuiltinTopicData::locator filter (p. 795).

5.27.3 Configuration on the Reader Side

No special changes are required in a subscribing application to get data from a
multichannel DDSDataWriter (p. 1028). If you want the DDSDataReader
(p. 1004) to subscribe to only a subset of the channels, use a DDSContentFil-
teredTopic (p. 998).

For more information on Multi-channel DataWriters, refer to the User’s Manual.

5.27.4 Reliability with Multi-Channel DataWriters

5.27.4.1 Reliable Delivery

Reliable delivery is only guaranteed when the DDS -
PresentationQosPolicy::access scope (p. 775) is set to DDS -
INSTANCE PRESENTATION QOS (p. 338) and the filters in DDS -
MultiChannelQosPolicy (p. 745) are keyed-only based.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

116 Module Documentation

If any of the guard filters are based on non-key fields, RTI Data Distribution
Service only guarantees reception of the most recent data from the MultiChannel
DataWriter.

5.27.4.2 Reliable Protocol Considerations

Reliability is maintained on a per-channel basis. Each channel has its
own reliability channel send queue. The size of that queue is limited
by DDS ResourceLimitsQosPolicy::max samples (p. 829) and/or DDS -
DataWriterResourceLimitsQosPolicy::max batches (p. 525).

The protocol parameters described in DDS DataWriterProtocolQosPolicy
(p. 499) are applied per channel, with the following exceptions:

DDS RtpsReliableWriterProtocol t::low watermark (p. 837) and
DDS RtpsReliableWriterProtocol t::high watermark (p. 838): The low
watermark and high watermark control the queue levels (in number of samples)
that determine when to switch between regular and fast heartbeat rates. With
MultiChannel DataWriters, high watermark and low watermark refer to the
DataWriter’s queue (not the reliability channel queue). Therefore, periodic
heartbeating cannot be controlled on a per-channel basis.

Important: With MultiChannel DataWriters, low watermark and high -
watermark refer to application samples even if batching is enabled. This be-
havior differs from the one without MultiChannel DataWriters (where low -
watermark and high watermark refer to batches).

DDS RtpsReliableWriterProtocol t::heartbeats per max samples
(p. 841): This field defines the number of heartbeats per send queue. For
MultiChannel DataWriters, the value is applied per channel. However, the send
queue size that is used to calculate the a piggyback heartbeat rate is defined per
DataWriter (see DDS ResourceLimitsQosPolicy::max samples (p. 829))

Important: With MultiChannel DataWriters, heartbeats per max samples
refers to samples even if batching is enabled. This behavior differs from the one
without MultiChannels DataWriters (where heartbeats per max samples refers
to batches).

With batching and MultiChannel DataWriters, the size of the
DataWriter’s send queue should be configured using DDS -
ResourceLimitsQosPolicy::max samples (p. 829) instead of max batches
DDS DataWriterResourceLimitsQosPolicy::max batches (p. 525) in
order to take advantage of heartbeats per max samples.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.28 Pluggable Transports 117

5.28 Pluggable Transports

APIs related to RTI Data Distribution Service pluggable transports.

Modules

ˆ Using Transport Plugins

Configuring transports used by RTI Data Distribution Service.

ˆ Built-in Transport Plugins

Transport plugins delivered with RTI Data Distribution Service.

5.28.1 Detailed Description

APIs related to RTI Data Distribution Service pluggable transports.

5.28.2 Overview

RTI Data Distribution Service has a pluggable transports architecture. The core
of RTI Data Distribution Service is transport agnostic; it does not make any
assumptions about the actual transports used to send and receive messages.
Instead, the RTI Data Distribution Service core uses an abstract ”transport
API” to interact with the transport plugins which implement that API.

A transport plugin implements the abstract transport API and performs the
actual work of sending and receiving messages over a physical transport. A
collection of builtin plugins (see Built-in Transport Plugins (p. 129)) is
delivered with RTI Data Distribution Service for commonly used transports.
New transport plugins can easily be created, thus enabling RTI Data Distribu-
tion Service applications to run over transports that may not even be conceived
yet. This is a powerful capability and that distinguishes RTI Data Distribution
Service from competing middleware approaches.

RTI Data Distribution Service also provides a set of APIs for installing and con-
figuring transport plugins to be used in an application. So that RTI Data Distri-
bution Service applications work out of the box, a subset of the builtin transport
plugins is preconfigured by default (see DDS TransportBuiltinQosPolicy
(p. 909)). You can ”turn-off” some or all of the builtin transport plugins. In
addition, you can configure other transport plugins for use by the application.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

118 Module Documentation

5.28.3 Transport Aliases

In order to use a transport plugin instance in an RTI Data Distribution Service
application, it must be registered with a DDSDomainParticipant (p. 1054).
When you register a transport, you specify a sequence of ”alias” strings to
symbolically refer to the transport plugin. The same alias strings can be used
to register more than one transport plugin.

You can register multiple transport plugins with a DDSDomainParticipant
(p. 1054). An alias symbolically refers to one or more transport plugins regis-
tered with the DDSDomainParticipant (p. 1054). Builtin transport plugin
instances can be referred to using preconfigured aliases (see TRANSPORT -
BUILTIN (p. 379)).

A transport plugin’s class name is automatically used as an implicit alias. It
can be used to refer to all the transport plugin instances of that class.

You can use aliases to refer to transport plugins, in order to specify:

- the transport plugins to use for discovery (see DDS -
DiscoveryQosPolicy::enabled transports (p. 543)), and for DDS-
DataWriter (p. 1028) and DDSDataReader (p. 1004) entities (see DDS -
TransportSelectionQosPolicy (p. 918)).

- the multicast addresses on which to receive discovery messages (see DDS -
DiscoveryQosPolicy::multicast receive addresses (p. 544)), and the mul-
ticast addresses and ports on which to receive user data (see DDS -
DataReaderQos::multicast (p. 485)).

- the unicast ports used for user data (see DDS -
TransportUnicastQosPolicy (p. 920)) on both DDSDataWriter (p. 1028)
and DDSDataReader (p. 1004) entities.

- the transport plugins used to parse an address string in a locator (Locator
Format (p. 372) and NDDS DISCOVERY PEERS (p. 371)).

A DDSDomainParticipant (p. 1054) (and contained its entities) start using a
transport plugin after the DDSDomainParticipant (p. 1054) is enabled (see
DDSEntity::enable (p. 1160)). An entity will use all the transport plugins
that match the specified transport QoS policy. All transport plugins are treated
uniformly, regardless of how they were created or registered; there is no notion
of some transports being more ”special” that others.

5.28.4 Transport Lifecycle

A transport plugin is owned by whoever created it. Thus, if you create and
register a transport plugin with a DDSDomainParticipant (p. 1054), you are
responsible for deleting it by calling its destructor. Note that builtin transport
plugins (TRANSPORT BUILTIN (p. 379)) and transport plugins that are

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.28 Pluggable Transports 119

loaded through the PROPERTY (p. 416) QoS policy (see Loading Trans-
port Plugins through Property QoS Policy of Domain Participant
(p. 124)) are automatically managed by RTI Data Distribution Service.

A user-created transport plugin must not be deleted while it is still in use by a
DDSDomainParticipant (p. 1054). This generally means that a user-created
transport plugin instance can only be deleted after the DDSDomainPartici-
pant (p. 1054) with which it was registered is deleted (see DDSDomainPar-
ticipantFactory::delete participant (p. 1143)). Note that a transport plugin
cannot be ”unregistered” from a DDSDomainParticipant (p. 1054).

A transport plugin instance cannot be registered with more than one DDS-
DomainParticipant (p. 1054) at a time. This requirement is necessary to
guarantee the multi-threaded safety of the transport API.

If the same physical transport resources are to be used with more than one
DDSDomainParticipant (p. 1054) in the same address space, the transport
plugin should be written in such a way so that it can be instantiated multiple
times—once for each DDSDomainParticipant (p. 1054) in the address space.
Note that it is always possible to write the transport plugin so that multiple
transport plugin instances share the same underlying resources; however the
burden (if any) of guaranteeing multi-threaded safety to access shared resource
shifts to the transport plugin developer.

5.28.5 Transport Class Attributes

A transport plugin instance is associated with two kinds of attributes:

- the class attributes that are decided by the plugin writer; these are invariant
across all instances of the transport plugin class, and

- the instance attributes that can be set on a per instance basis by the transport
plugin user.

Every transport plugin must specify the following class attributes.

transport class id (see NDDS Transport Property t::classid (p. 1406))
Identifies a transport plugin implementation class. It denotes a unique
”class” to which the transport plugin instance belongs. The class is
used to distinguish between different transport plugin implementations.
Thus, a transport plugin vendor should ensure that its transport plugin
implementation has a unique class.

Two transport plugin instances report the same class iff they have com-
patible implementations. Transport plugin instances with mismatching
classes are not allowed (by the RTI Data Distribution Service Core) to
communicate with one another.

Multiple implementations (possibly from different vendors) for a physical

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

120 Module Documentation

transport mechanism can co-exist in an RTI Data Distribution Service
application, provided they use different transport class IDs.

The class ID can also be used to distinguish between different transport
protocols over the same physical transport network (e.g., UDP vs. TCP
over the IP routing infrastructure).

transport significant address bit count (see NDDS Transport Property t::address bit count (p. 1406))
RTI Data Distribution Service’s addressing is modeled after the IPv6 and
uses 128-bit addresses (Address (p. 240)) to route messages.

A transport plugin is expected to map the transport’s internal addressing
scheme to 128-bit addresses. In general, this mapping is likely to use only
N least significant bits (LSB); these are specified by this attribute.

>-------------- netmask ----------------<

+---------------------------------------+----------------------------+

| Network Address | Transport Local Address |

+---------------------------------------+----------------------------+

>------------ N ------------<

address_bits_count

Only these bits are used

by the transport plugin.

The remaining bits of an address using the 128-bit address representa-
tion will be considered as part of the ”network address” (see Transport
Network Address (p. 121)) and thus ignored by the transport plugin’s
internal addressing scheme.

For unicast addresses, the transport plugin is expected to ignore the higher
(128 - NDDS Transport Property t::address bit count (p. 1406))
bits. RTI Data Distribution Service is free to manipulate those bits freely
in the addresses passed in/out to the transport plugin APIs.

Theoretically, the significant address bits count, N is related to the size of
the underlying transport network as follows:

address bits count >= ceil(log2(total addressable transport unicast interfaces))

The equality holds when the most compact (theoretical) internal address
mapping scheme is used. A practical address mapping scheme may waste
some bits.

5.28.6 Transport Instance Attributes

The per instance attributes to configure the plugin instance are generally passed
in to the plugin constructor. These are defined by the transport plugin writer,
and can be used to:

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.28 Pluggable Transports 121

- customize the behavior of an instance of a transport plugin, including the send
and the receiver buffer sizes, the maximum message size, various transport level
classes of service (CoS), and so on.

- specify the resource values, network interfaces to use, various transport level
policies, and so on.

RTI Data Distribution Service requires that every transport plugin in-
stance must specify the NDDS Transport Property t::message size max
(p. 1407) and NDDS Transport Property t::gather send buffer count -
max (p. 1407).

It is up to the transport plugin developer to make these available for configura-
tion to transport plugin user.

Note that it is important that the instance attributes are ”compatible” between
the sending side and the receiving side of communicating applications using
different instances of a transport plugin class. For example, if one side is con-
figured to send messages larger than can be received by the other side, then
communications via the plugin may fail.

5.28.7 Transport Network Address

The address bits not used by the transport plugin for its internal addressing
constitute its network address bits.

In order for RTI Data Distribution Service to properly route the messages,
each unicast interface in the RTI Data Distribution Service domain must have
a unique address. RTI Data Distribution Service allows the user to specify
the value of the network address when installing a transport plugin via the
NDDSTransportSupport::register transport() (p. 1437) API.

The network address for a transport plugin should be chosen such that the re-
sulting fully qualified 128-bit address will be unique in the RTI Data Distribution
Service domain. Thus, if two instances of a transport plugin are registered with
a DDSDomainParticipant (p. 1054), they will be at different network ad-
dresses in order for their unicast interfaces to have unique fully qualified 128-bit
addresses. It is also possible to create multiple transports with the same net-
work address, as it can be useful for certain use cases; note that this will require
special entity configuration for most transports to avoid clashes in resource use
(e.g. sockets for UDPv4 transport).

5.28.8 Transport Send Route

By default, a transport plugin is configured to send outgoing messages destined
to addresses in the network address range at which the plugin was registered.

RTI Data Distribution Service allows the user to configure the routing of outgo-

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

122 Module Documentation

ing messages via the NDDSTransportSupport::add send route() (p. 1439)
API, so that a transport plugin will be used to send messages only to certain
ranges of destination addresses. The method can be called multiple times for a
transport plugin, with different address ranges.

+--+

| Outgoing Address Range 1 -> Transport Plugin |

+--+

| : -> : |

+--+

| Outgoing Address Range K -> Transport Plugin |

+--+

The user can set up a routing table to restrict the use of a transport plugin to
send messages to selected addresses ranges.

5.28.9 Transport Receive Route

By default, a transport plugin is configured to receive incoming messages des-
tined to addresses in the network address range at which the plugin was regis-
tered.

RTI Data Distribution Service allows the user to configure the routing of in-
coming messages via the NDDSTransportSupport::add receive route()
(p. 1440) API, so that a transport plugin will be used to receive messages only
on certain ranges of addresses. The method can be called multiple times for a
transport plugin, with different address ranges.

+--+

| Transport Plugin <- Incoming Address Range 1 |

+--+

| : <- : |

+--+

| Transport Plugin <- Incoming Address Range M |

+--+

The user can set up a routing table to restrict the use of a transport plugin
to receive messages from selected ranges. For example, the user may restrict a
transport plugin to

- receive messages from a certain multicast address range.

- receive messages only on certain unicast interfaces (when multiple unicast
interfaces are available on the transport plugin).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.29 Using Transport Plugins 123

5.29 Using Transport Plugins

Configuring transports used by RTI Data Distribution Service.

Classes

ˆ class NDDSTransportSupport

<<interface>> (p. 190) The utility class used to configure RTI Data Dis-
tribution Service pluggable transports.

Typedefs

ˆ typedef NDDS TRANSPORT HANDLE TYPE NATIVE NDDS -
Transport Handle t

An opaque type representing the handle to a transport plugin registered with
a DDSDomainParticipant (p. 1054).

ˆ typedef NDDS Transport Plugin ∗(∗ NDDS Transport create plugin
)(NDDS Transport Address t ∗default network address out, const
struct DDS PropertyQosPolicy ∗property in)

Function prototype for creating plugin through DDS PropertyQosPolicy
(p. 783).

Functions

ˆ DDS Boolean NDDS Transport Handle is nil (const NDDS -
Transport Handle t ∗self)

Is the given transport handle the NIL transport handle?

Variables

ˆ const NDDS Transport Handle t NDDS TRANSPORT -
HANDLE NIL

The NIL transport handle.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

124 Module Documentation

5.29.1 Detailed Description

Configuring transports used by RTI Data Distribution Service.

There is more than one way to install a transport plugin for use with RTI Data
Distribution Service:

ˆ If it is a builtin transport plugin, by specifying a bitmask in DDS -
TransportBuiltinQosPolicy (p. 909) (see Built-in Transport Plu-
gins (p. 129))

ˆ For all other non-builtin transport plugins, by dynamically loading the plu-
gin through PROPERTY (p. 416) QoS policy settings of DDSDomain-
Participant (p. 1054) (on UNIX, Solaris and Windows systems only) (see
Loading Transport Plugins through Property QoS Policy of Do-
main Participant (p. 124))

ˆ By explicitly creating a transport plugin and registering the plugin with
a DDSDomainParticipant (p. 1054) through NDDSTransportSup-
port::register transport (p. 1437) (for both builtin and non-builtin plu-
gins)

In the first two cases, the lifecycle of the transport plugin is automatically
managed by RTI Data Distribution Service. In the last case, user is responsible
for deleting the transport plugin after the DDSDomainParticipant (p. 1054)
is deleted. See Transport Lifecycle (p. 118) for details.

5.29.2 Loading Transport Plugins through Property QoS
Policy of Domain Participant

On UNIX, Solaris and Windows operating systems, a non-builtin transport plu-
gin written in C/C++ and built as a dynamic-link library (∗.dll/∗.so) can be
loaded by RTI Data Distribution Service through the PROPERTY (p. 416)
QoS policy settings of the DDSDomainParticipant (p. 1054). The dynamic-
link library (and all the dependent libraries) need to be in the path during run-
time (in LD LIBRARY PATH environment variable on Linux/Solaris sys-
tems,and in PATH environment variable for Windows systems).

To allow dynamic loading of the transport plugin, the transport plugin must
implement the RTI Data Distribution Service abstract transport API and
must provide a function with the signature NDDS Transport create plugin
(p. 125) that can be called by RTI Data Distribution Service to create an in-
stance of the transport plugin. The name of the dynamic library that contains
the transport plugin implementation, the name of the function and properties
that can be used to create the plugin, and the aliases and network address that

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.29 Using Transport Plugins 125

are used to register the plugin can all be specified through the PROPERTY
(p. 416) QoS policy of the DDSDomainParticipant (p. 1054).

The following table lists the property names that are used to load the transport
plugins dynamically:

A transport plugin is dynamically created and registered to the DDSDomain-
Participant (p. 1054) by RTI Data Distribution Service when:

ˆ the DDSDomainParticipant (p. 1054) is enabled,

ˆ the first DataWriter/DataReader is created, or

ˆ you lookup a builtin DataReader (DDSSubscriber::lookup -
datareader (p. 1298)),

whichever happens first.

Any changes to the transport plugin related properties in PROPERTY (p. 416)
QoS policy after the transport plugin has been registered with the DDSDo-
mainParticipant (p. 1054) will have no effect.

See also:

Transport Use Cases (p. 172)

5.29.3 Typedef Documentation

5.29.3.1 typedef NDDS TRANSPORT HANDLE TYPE NATIVE
NDDS Transport Handle t

An opaque type representing the handle to a transport plugin registered with a
DDSDomainParticipant (p. 1054).

A transport handle represents the association between a DDSDomainPartic-
ipant (p. 1054) and a transport plugin.

5.29.3.2 typedef NDDS Transport Plugin∗(∗ NDDS -
Transport create plugin)(NDDS Transport Address t
∗default network address out, const struct
DDS PropertyQosPolicy ∗property in)

Function prototype for creating plugin through DDS PropertyQosPolicy
(p. 783).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

126 Module Documentation

By specifying some predefined property names in DDS PropertyQosPolicy
(p. 783), RTI Data Distribution Service can call a function from a dynamic
library to create a transport plugin and register the returned plugin with a
DDSDomainParticipant (p. 1054).

This is the function prototype of the function as specified in ”<TRANSPORT -
PREFIX>.create function” of DDS PropertyQosPolicy (p. 783) QoS policy
that will be called by RTI Data Distribution Service to create the transport
plugin. See Loading Transport Plugins through Property QoS Policy
of Domain Participant (p. 124) for details.

Parameters:

network address out <<out>> (p. 191) Optional output parameter.
If the network address is not specified in ”<TRANSPORT -
PREFIX>.network address” in DDS PropertyQosPolicy (p. 783),
this is the default network address that is used to regis-
ter the returned transport plugin using NDDSTransportSup-
port::register transport (p. 1437). This parameter will never be
null. The default value is a zeroed-out network address.

property in <<in>> (p. 191) property in contains all the name-
value pair properties that matches the format ”<TRANSPORT -
PREFIX>.<property name>” in DDS PropertyQosPolicy
(p. 783) that can be used to create the transport plugin. Only
<property name> is passed in - the plugin prefix will be stripped out
in the property name. Note: predefined <TRANSPORT PREFIX>
properties ”library”, ”create function”, ”aliases” and ”network -
address” will not be passed to this function. This parameter will
never be null.

Returns:

Upon success, a valid non-NIL transport plugin. NIL upon failure.

5.29.4 Function Documentation

5.29.4.1 DDS Boolean NDDS Transport Handle is nil (const
NDDS Transport Handle t ∗ self)

Is the given transport handle the NIL transport handle?

Returns:

DDS BOOLEAN TRUE (p. 288) if the given transport handle is
equal to NDDS TRANSPORT HANDLE NIL (p. 127) or DDS -
BOOLEAN FALSE (p. 289) otherwise.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.29 Using Transport Plugins 127

5.29.5 Variable Documentation

5.29.5.1 const NDDS Transport Handle t
NDDS TRANSPORT HANDLE NIL

The NIL transport handle.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

128 Module Documentation

Property Name Description Required?
dds.transport.load -
plugins

Comma-separated
strings indicating the
prefix names of all
plugins that will be
loaded by RTI Data
Distribution Service.
Up to 8 plugins may be
specified. For example,
”dds.transport.WAN.wan1,
dds.transport.DTLS.dtls1”,
In the following
examples,
<TRANSPORT -
PREFIX> is used to
indicate one element of
this string that is used
as a prefix in the
property names for all
the settings that are
related to the plugin.
<TRANSPORT -
PREFIX> must begin
with ”dds.transport.”
(such as
”dds.transport.mytransport”).

YES

<TRANSPORT -
PREFIX>.library

Should be set to the
name of the dynamic
library (∗.so for
Unix/Solaris, and ∗.dll
for Windows) that
contains the transport
plugin implementation.
This library (and all
the other dependent
dynamic libraries)
needs to be in the path
during run time for
used by RTI Data
Distribution Service
(in the LD -
LIBRARY PATH
environment variable
on UNIX/Solaris
systems, in PATH for
Windows systems).

YES

<TRANSPORT -
PREFIX>.create -
function

Should be set to the
name of the function
with the prototype of
NDDS Transport -
create plugin (p. 125)
that can be called by
RTI Data Distribution
Service to create an
instance of the plugin.
The resulting transport
plugin will then be
registered by RTI Data
Distribution Service
through
NDDSTransport-
Support::register -
transport
(p. 1437)

YES

<TRANSPORT -
PREFIX>.aliases

Used to register the
transport plugin
returned by
NDDS Transport -
create plugin (p. 125)
(as specified by
<TRANSPORT -
PREFIX>.create -
function) to the
DDSDomainPartici-
pant (p. 1054). Refer
to aliases in
parameter in
NDDSTransport-
Support::register -
transport (p. 1437)
for details. Aliases
should be specified as
comma separated
string, with each
comma delimiting an
alias. If it is not
specified,
<TRANSPORT -
PREFIX> is used as
the default alias for the
plugin

NO

<TRANSPORT -
PREFIX>.network -
address

Used to register the
transport plugin
returned by
NDDS Transport -
create plugin (p. 125)
(as specified by
<TRANSPORT -
PREFIX>.create -
function) to the
DDSDomainPartici-
pant (p. 1054). Refer
to
network address in
parameter in
NDDSTransport-
Support::register -
transport (p. 1437)
for details. If it is not
specified, the net-
work address out
output parameter from
NDDS Transport -
create plugin (p. 125)
is used. The default
value is a zeroed out
network address.

NO

<TRANSPORT -
PREFIX>.<property -
name>

Property that is passed
into
NDDS Transport -
create plugin (p. 125)
(as specified by
<TRANSPORT -
PREFIX>.create -
function) for creating
the transport plugin.
This property
name-value pair will be
passed to
NDDS Transport -
create plugin (p. 125)
after stripping out
<TRANSPORT -
PREFIX> from the
property name. The
parsing of this property
and configuring the
transport using this
property should be
handled by the
implementation of each
transport plugin.
Multiple
<TRANSPORT -
PREFIX>.<property -
name> can be
specified.
Note: ”library”,
”create function”,
”aliases” and
”network address”
cannot be used as the
<property name> due
to conflicts with other
builtin property names.

NO

Table 5.5: Properties for dynamically loading and registering transport plugins

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.30 Built-in Transport Plugins 129

5.30 Built-in Transport Plugins

Transport plugins delivered with RTI Data Distribution Service.

Modules

ˆ Shared Memory Transport

Built-in transport plug-in for inter-process communications using shared
memory (NDDS TRANSPORT CLASSID SHMEM (p. 251)).

ˆ UDPv4 Transport

Built-in transport plug-in using UDP/IPv4 (NDDS TRANSPORT -
CLASSID UDPv4 (p. 258)).

ˆ UDPv6 Transport

Built-in transport plug-in using UDP/IPv6 (NDDS TRANSPORT -
CLASSID UDPv6 (p. 268)).

5.30.1 Detailed Description

Transport plugins delivered with RTI Data Distribution Service.

The TRANSPORT BUILTIN (p. 379) specifies the collection of transport
plugins that can be automatically configured and managed by RTI Data Distri-
bution Service as a convenience to the user.

These transport plugins can simply be turned ”on” or ”off” by a specifying
a bitmask in DDS TransportBuiltinQosPolicy (p. 909), thus bypassing the
steps for setting up a transport plugin. RTI Data Distribution Service precon-
figures the transport plugin properties, the network address, and the aliases to
”factory defined” values.

If a builtin transport plugin is turned ”on” in DDS -
TransportBuiltinQosPolicy (p. 909), the plugin is implicitly created
and registered to the corresponding DDSDomainParticipant (p. 1054) by
RTI Data Distribution Service when:

ˆ the DDSDomainParticipant (p. 1054) is enabled,

ˆ the first DataWriter/DataReader is created, or

ˆ you lookup a builtin DataReader (DDSSubscriber::lookup -
datareader (p. 1298)),

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

130 Module Documentation

whichever happens first.

Each builtin transport contains its own set of properties. For example, the
::UDPv4 Transport (p. 255) allows the application to specify whether or not
multicast is supported, the maximum size of the message, and provides a mech-
anism for the application to filter out network interfaces.

The builtin transport plugin properties can be changed by the method
NDDSTransportSupport::set builtin transport property() (p. 1441) or
by using the PROPERTY (p. 416) QoS policy associated with the DDS-
DomainParticipant (p. 1054). Builtin transport plugin properties speci-
fied in DDS PropertyQosPolicy (p. 783) always overwrite the ones speci-
fied through NDDSTransportSupport::set builtin transport property()
(p. 1441). Refer to the specific builtin transport for the list of property names
that can be specified through PROPERTY (p. 416) QoS policy.

Any changes to the builtin transport properties after the builtin transports have
been registered with will have no effect.

See also:

NDDSTransportSupport::set builtin transport property()
(p. 1441) DDS PropertyQosPolicy (p. 783)

The built-in transport plugins can also be instantiated and registered by the
user, following the steps for Registering a transport with a participant
(p. 174). This is useful when the application needs different values for the net-
work addresses.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.31 Configuration Utilities 131

5.31 Configuration Utilities

Utility API’s independent of the DDS standard.

Classes

ˆ class NDDSConfigVersion

<<interface>> (p. 190) The version of an RTI Data Distribution Service
distribution.

ˆ class NDDSConfigLogger

<<interface>> (p. 190) The singleton type used to configure RTI Data Dis-
tribution Service logging.

ˆ struct NDDS Config LibraryVersion t

The version of a single library shipped as part of an RTI Data Distribution
Service distribution.

Enumerations

ˆ enum NDDS Config LogVerbosity {
NDDS CONFIG LOG VERBOSITY SILENT,

NDDS CONFIG LOG VERBOSITY ERROR,

NDDS CONFIG LOG VERBOSITY WARNING,

NDDS CONFIG LOG VERBOSITY STATUS LOCAL,

NDDS CONFIG LOG VERBOSITY STATUS REMOTE,

NDDS CONFIG LOG VERBOSITY STATUS ALL }
The verbosities at which RTI Data Distribution Service diagnostic informa-
tion is logged.

ˆ enum NDDS Config LogCategory {
NDDS CONFIG LOG CATEGORY PLATFORM,

NDDS CONFIG LOG CATEGORY COMMUNICATION,

NDDS CONFIG LOG CATEGORY DATABASE,

NDDS CONFIG LOG CATEGORY ENTITIES,

NDDS CONFIG LOG CATEGORY API }
Categories of logged messages.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

132 Module Documentation

ˆ enum NDDS Config LogPrintFormat { ,

NDDS CONFIG LOG PRINT FORMAT DEFAULT,

NDDS CONFIG LOG PRINT FORMAT TIMESTAMPED,

NDDS CONFIG LOG PRINT FORMAT VERBOSE,

NDDS CONFIG LOG PRINT FORMAT VERBOSE -
TIMESTAMPED,

NDDS CONFIG LOG PRINT FORMAT DEBUG,

NDDS CONFIG LOG PRINT FORMAT MINIMAL,

NDDS CONFIG LOG PRINT FORMAT MAXIMAL }
The format used to output RTI Data Distribution Service diagnostic infor-
mation.

5.31.1 Detailed Description

Utility API’s independent of the DDS standard.

5.31.2 Enumeration Type Documentation

5.31.2.1 enum NDDS Config LogVerbosity

The verbosities at which RTI Data Distribution Service diagnostic information
is logged.

Enumerator:

NDDS CONFIG LOG VERBOSITY SILENT No further output
will be logged.

NDDS CONFIG LOG VERBOSITY ERROR Only error mes-
sages will be logged.
An error indicates something wrong in the functioning of RTI Data
Distribution Service. The most common cause of errors is incorrect
configuration.

NDDS CONFIG LOG VERBOSITY WARNING Both error and
warning messages will be logged.
A warning indicates that RTI Data Distribution Service is taking an
action that may or may not be what you intended. Some configuration
information is also logged at this verbosity to aid in debugging.

NDDS CONFIG LOG VERBOSITY STATUS LOCAL Errors,
warnings, and verbose information about the lifecycles of local RTI
Data Distribution Service objects will be logged.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.31 Configuration Utilities 133

NDDS CONFIG LOG VERBOSITY STATUS REMOTE
Errors, warnings, and verbose information about the lifecycles of
remote RTI Data Distribution Service objects will be logged.

NDDS CONFIG LOG VERBOSITY STATUS ALL Errors,
warnings, verbose information about the lifecycles of local and remote
RTI Data Distribution Service objects, and periodic information
about RTI Data Distribution Service threads will be logged.

5.31.2.2 enum NDDS Config LogCategory

Categories of logged messages.

The DDSLogger::get verbosity by category and DDSLogger::set verbosity by -
category can be used to specify different verbosities for different categories of
messages.

Enumerator:

NDDS CONFIG LOG CATEGORY PLATFORM Log messages
pertaining to the underlying platform (hardware and OS) on which
RTI Data Distribution Service is running are in this category.

NDDS CONFIG LOG CATEGORY COMMUNICATION Log
messages pertaining to data serialization and deserialization and
network traffic are in this category.

NDDS CONFIG LOG CATEGORY DATABASE Log messages
pertaining to the internal database in which RTI Data Distribution
Service objects are stored are in this category.

NDDS CONFIG LOG CATEGORY ENTITIES Log messages
pertaining to local and remote entities and to the discovery process
are in this category.

NDDS CONFIG LOG CATEGORY API Log messages pertaining
to the API layer of RTI Data Distribution Service (such as method
argument validation) are in this category.

5.31.2.3 enum NDDS Config LogPrintFormat

The format used to output RTI Data Distribution Service diagnostic informa-
tion.

Enumerator:

NDDS CONFIG LOG PRINT FORMAT DEFAULT Print mes-
sage, method name, and activity context (default).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

134 Module Documentation

NDDS CONFIG LOG PRINT FORMAT TIMESTAMPED
Print message, method name, activity context, and timestamp.

NDDS CONFIG LOG PRINT FORMAT VERBOSE Print mes-
sage with all available context information (includes thread identifier,
activity context).

NDDS CONFIG LOG PRINT FORMAT VERBOSE TIMESTAMPED
Print message with all available context information, and timestamp.

NDDS CONFIG LOG PRINT FORMAT DEBUG Print a set of
field that may be useful for internal debug.

NDDS CONFIG LOG PRINT FORMAT MINIMAL Print only
message number and method name.

NDDS CONFIG LOG PRINT FORMAT MAXIMAL Print all
available fields.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.32 Unsupported Utilities 135

5.32 Unsupported Utilities

Unsupported APIs used by examples in the RTI Data Distribution Service dis-
tribution as well as in rtiddsgen-generated examples.

Classes

ˆ class NDDSUtility

Unsupported utility APIs.

5.32.1 Detailed Description

Unsupported APIs used by examples in the RTI Data Distribution Service dis-
tribution as well as in rtiddsgen-generated examples.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

136 Module Documentation

5.33 Durability and Persistence

APIs related to RTI Data Distribution Service Durability and Persistence. RTI
Data Distribution Service offers the following mechanisms for achieving dura-
bility and persistence:

ˆ Durable Writer History (p. 136)

ˆ Durable Reader State (p. 136)

ˆ Data Durability (p. 137)

To use any of these features, you need a relational database, which is not in-
cluded with RTI Data Distribution Service. Supported databases are listed in
the Release Notes.

These three features can be used separately or in combination.

5.33.1 Durable Writer History

This feature allows a DDSDataWriter (p. 1028) to locally persist its local his-
tory cache so that it can survive shutdowns, crashes and restarts. When an
application restarts, each DDSDataWriter (p. 1028) that has been configured
to have durable writer history automatically loads all the data in its history
cache from disk and can carry on sending data as if it had never stopped ex-
ecuting. To the rest of the system, it will appear as if the DDSDataWriter
(p. 1028) had been temporarily disconnected from the network and then reap-
peared.

See also:

Configuring Durable Writer History (p. 138)

5.33.2 Durable Reader State

This feature allows a DDSDataReader (p. 1004) to locally persists its state
and remember the data it has already received. When an application restarts,
each DDSDataReader (p. 1004) that has been configured to have durable
reader state automatically loads its state from disk and can carry on receiving
data as if it had never stopped executing. Data that had already been received
by the DDSDataReader (p. 1004) before the restart will be suppressed so it
is not sent over the network.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.33 Durability and Persistence 137

5.33.3 Data Durability

This feature is a full implementation of the OMG DDS Persistence Profile. The
DURABILITY (p. 335) QoS lets an application configure a DDSDataWriter
(p. 1028) such that the information written by the DDSDataWriter (p. 1028)
survives beyond the lifetime of the DDSDataWriter (p. 1028). In this man-
ner, a late-joining DDSDataReader (p. 1004) can subscribe and receive the
information even after the DDSDataWriter (p. 1028) application is no longer
executing. To use this feature, you need RTI Persistence Service – an optional
product that can be purchased separately.

5.33.4 Durability and Persistence Based on Virtual GUID

Every modification to the global dataspace made by a DDSDataWriter
(p. 1028) is identified by a pair (virtual GUID, sequence number).

ˆ The virtual GUID (Global Unique Identifier) is a 16-byte character identi-
fier associated with a DDSDataWriter (p. 1028) or DDSDataReader
(p. 1004); it is used to uniquely identify this entity in the global data space.

ˆ The sequence number is a 64-bit identifier that identifies changes published
by a specific DDSDataWriter (p. 1028).

Several DDSDataWriter (p. 1028) entities can be configured with the same
virtual GUID. If each of these DDSDataWriter (p. 1028) entities publishes a
sample with sequence number ’0’, the sample will only be received once by the
DDSDataReader (p. 1004) entities subscribing to the content published by
the DDSDataWriter (p. 1028) entities.

RTI Data Distribution Service also uses the virtual GUID (Global Unique Iden-
tifier) to associate a persisted state (state in permanent storage) to the corre-
sponding DDS entity.

For example, the history of a DDSDataWriter (p. 1028) will be persisted in
a database table with a name generated from the virtual GUID of the DDS-
DataWriter (p. 1028). If the DDSDataWriter (p. 1028) is restarted, it must
have associated the same virtual GUID to restore its previous history.

Likewise, the state of a DDSDataReader (p. 1004) will be persisted in a
database table whose name is generated from the DDSDataReader (p. 1004)
virtual GUID

A DDSDataWriter (p. 1028)’s virtual GUID can be configured using DDS -
DataWriterProtocolQosPolicy::virtual guid (p. 500). Similarly, a DDS-
DataReader (p. 1004)’s virtual GUID can be configured using DDS -
DataReaderProtocolQosPolicy::virtual guid (p. 468).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

138 Module Documentation

The DDS PublicationBuiltinTopicData (p. 788) and DDS -
SubscriptionBuiltinTopicData (p. 876) structures include the virtual
GUID associated with the discovered publication or subscription.

Refer to the User’s Manual for additional use cases.

See also:

DDS DataWriterProtocolQosPolicy::virtual guid (p. 500) DDS -
DataReaderProtocolQosPolicy::virtual guid (p. 468).

5.33.5 Configuring Durable Writer History

To configure a DDSDataWriter (p. 1028) to have durable writer history, use
the PROPERTY (p. 416) QoS policy associated with the DDSDataWriter
(p. 1028) or the DDSDomainParticipant (p. 1054).

Properties defined for the DDSDomainParticipant (p. 1054) will be ap-
plied to all the DDSDataWriter (p. 1028) objects belonging to the DDSDo-
mainParticipant (p. 1054), unless the property is overwritten by the DDS-
DataWriter (p. 1028).

See also:

DDS PropertyQosPolicy (p. 783)

The following table lists the supported durable writer history properties.

5.33.6 Configuring Durable Reader State

To configure a DDSDataReader (p. 1004) with durable reader state, use
the PROPERTY (p. 416) QoS policy associated with the DDSDataReader
(p. 1004) or DDSDomainParticipant (p. 1054).

A property defined in the DDSDomainParticipant (p. 1054) will be applica-
ble to all the DDSDataReader (p. 1004) belonging to the DDSDomainPar-
ticipant (p. 1054) unless it is overwritten by the DDSDataReader (p. 1004).

See also:

DDS PropertyQosPolicy (p. 783)

The following table lists the supported durable reader state properties.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.33 Durability and Persistence 139

5.33.7 Configuring Data Durability

RTI Data Distribution Service implements DDS TRANSIENT -
DURABILITY QOS (p. 336) and DDS PERSISTENT -
DURABILITY QOS (p. 336) durability using RTI Persistence Service,
available for purchase as a separate RTI product.

For more information on RTI Persistence Service, refer to the User’s Manual,
or the RTI Persistence Service online documentation.

See also:

DURABILITY (p. 335)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

140 Module Documentation

Property Description
dds.data writer.history.plugin name Must be set to ”dds.data -

writer.history.odbc plugin.builtin”
to enable durable writer history in
the DataWriter. This property is
required.

dds.data writer.history.odbc -
plugin.dsn

The ODBC DSN (Data Source
Name) associated with the database
where the writer history must be
persisted. This property is required.

dds.data writer.history.odbc -
plugin.driver

This property tells RTI Data
Distribution Service which ODBC
driver to load. If the property is not
specified, RTI Data Distribution
Service will try to use the standard
ODBC driver manager library:
UnixOdbc (odbc32.dll) on
UNIX/Linux systems; the Windows
ODBC driver manager (libodbc.so)
on Windows systems).

dds.data writer.history.odbc -
plugin.username

Configures the username used to
connect to the database. This
property is not used if it is
unspecified. There is no default
value.

dds.data writer.history.odbc -
plugin.password

Configures the password used to
connect to the database. This
property is not used if it is
unspecified. There is no default
value.

dds.data writer.history.odbc -
plugin.shared

If set to 1, RTI Data Distribution
Service creates a single connection
per DSN that will be shared across
DataWriters within the same
Publisher.
If set to 0 (the default), a
DDSDataWriter (p. 1028) will
create its own database connection.
Default: 0 (false)

dds.data writer.history.odbc -
plugin.instance cache max size

These properties configure the
resource limits associated with the
ODBC writer history caches. To
minimize the number of accesses to
the database, RTI Data Distribution
Service uses two caches, one for
samples and one for instances. The
initial and maximum sizes of these
caches are configured using these
properties. The resource limits
initial instances, max instances,
initial samples, max samples and
max samples per instance in the
DDS ResourceLimitsQosPolicy
(p. 827) are used to configure the
maximum number of samples and
instances that can be stored in the
relational database. Default: DDS -
ResourceLimitsQosPolicy::max -
instances
(p. 830)

dds.data writer.history.odbc -
plugin.instance cache init size

See description above. Default:
DDS -
ResourceLimitsQosPolicy::initial -
instances
(p. 831)

dds.data writer.history.odbc -
plugin.sample cache max size

See description above. Default: 32
(the minimum)

dds.data writer.history.odbc -
plugin.sample cache init size

See description above. Default: 32

dds.data writer.history.odbc -
plugin.restore

This property indicates whether or
not the persisted writer history
must be restored once the
DDSDataWriter (p. 1028) is
restarted. If the value is 0, the
content of the database associated
with the DDSDataWriter
(p. 1028) being restarted will be
deleted. If the value is 1, the
DDSDataWriter (p. 1028) will
restore its previous state from the
database content. Default: 1

dds.data writer.history.odbc -
plugin.in memory state

This property determines how much
state will be kept in memory by the
ODBC writer history in order to
avoid accessing the database.
When in memory state is equal to
1, instance cache max size is always
equal to DDS -
ResourceLimitsQosPolicy::max -
instances (p. 830) (it cannot be
changed). In addition, the ODBC
writer history will keep in memory a
fixed state overhead of 24 bytes per
sample. In this operating mode, the
ODBC writer history provides the
best performance. However, the
restore operation will be slower and
the maximum number of samples
that the writer history can manage
will be limited by the available
physical memory.
If in memory state is equal to 0, all
the state will be kept in the
underlying database. In this
operating mode, the maximum
number of samples in the writer
history will not be limited by the
physical memory available unless
the underlying database is an
in-memory database (TimesTen).
Default: 1

Table 5.6: Durable Writer History Properties

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.33 Durability and Persistence 141

Property Description
dds.data reader.state.odbc.dsn The ODBC DSN (Data Source

Name) associated with the database
where the DDSDataReader
(p. 1004) state must be persisted.
This property is required.

dds.data reader.state.filter -
redundant samples

To enable durable reader state, this
property must be set to 1.
Otherwise, the reader state will not
be kept and/or persisted. When the
reader state is not maintained, RTI
Data Distribution Service does not
filter duplicate samples that may be
coming from the same virtual writer.
By default, this property is set to 1.

dds.data reader.state.odbc.driver This property is used to indicate
which ODBC driver to load. If the
property is not specified, RTI Data
Distribution Service will try to use
the standard ODBC driver manager
library: UnixOdbc (odbc32.dll) on
UNIX/Linux systems; the Windows
ODBC driver manager (libodbc.so)
on Windows systems).

dds.data -
reader.state.odbc.username

This property configures the
username used to connect to the
database. This property is not used
if it is unspecified. There is no
default value.

dds.data reader.state.odbc.password This property configures the
password used to connect to the
database. This property is not used
if it is unspecified. There is no
default value.

dds.data reader.state.restore This property indicates if the
persisted DDSDataReader
(p. 1004) state must be restored or
not once the DDSDataReader
(p. 1004) is restarted. If this
property is 0, the previous state will
be deleted from the database. If it is
1, the DDSDataReader (p. 1004)
will restore its previous state from
the database content. Default: 1

dds.data reader.state.checkpoint -
frequency

This property controls how often
the reader state is stored in the
database. A value of N means to
store the state once every N
samples.
A high frequency will provide better
performance. However, if the reader
is restarted it may receive some
duplicate samples. These samples
will be filtered by the middleware
and they will not be propagated to
the application.
Default: 1

dds.data reader.state.persistence -
service.request depth

This property indicates the number
of most recent historical samples
that the persisted
DDSDataReader (p. 1004) wants
to receive when it starts up.
Default: 0

Table 5.7: Durable Reader State Properties

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

142 Module Documentation

5.34 Configuring QoS Profiles with XML

APIs related to XML QoS Profiles.

5.34.1 Loading QoS Profiles from XML Resources

A ’QoS profile’ is a group of QoS settings, specified in XML format. By using
QoS profiles, you can change QoS settings without recompiling the application.

The Qos profiles are loaded when the following operations are called:

ˆ DDSDomainParticipantFactory::create participant (p. 1140)

ˆ DDSDomainParticipantFactory::create participant with profile
(p. 1141)

ˆ DDSDomainParticipantFactory::set default participant qos -
with profile (p. 1129)

ˆ DDSDomainParticipantFactory::get default participant qos
(p. 1130)

ˆ DDSDomainParticipantFactory::set default library (p. 1131)

ˆ DDSDomainParticipantFactory::set default profile (p. 1132)

ˆ DDSDomainParticipantFactory::get participant qos from -
profile (p. 1134)

ˆ DDSDomainParticipantFactory::get topic qos from profile
(p. 1138)

ˆ DDSDomainParticipantFactory::get topic qos from profile w -
topic name (p. 1139)

ˆ DDSDomainParticipantFactory::get publisher qos from profile
(p. 1134)

ˆ DDSDomainParticipantFactory::get subscriber qos from profile
(p. 1135)

ˆ DDSDomainParticipantFactory::get datawriter qos from -
profile (p. 1135)

ˆ DDSDomainParticipantFactory::get datawriter qos from -
profile w topic name (p. 1136)

ˆ DDSDomainParticipantFactory::get datareader qos from -
profile (p. 1137)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.34 Configuring QoS Profiles with XML 143

ˆ DDSDomainParticipantFactory::get datareader qos from -
profile w topic name (p. 1137)

ˆ DDSDomainParticipantFactory::get qos profile libraries
(p. 1139)

ˆ DDSDomainParticipantFactory::get qos profiles (p. 1140)

ˆ DDSDomainParticipantFactory::load profiles (p. 1145)

The QoS profiles are reloaded replacing previously loaded profiles when the
following operations are called:

ˆ DDSDomainParticipantFactory::set qos (p. 1144)

ˆ DDSDomainParticipantFactory::reload profiles (p. 1145)

The DDSDomainParticipantFactory::unload profiles() (p. 1146) opera-
tion will free the resources associated with the XML QoS profiles.

There are five ways to configure the XML resources (listed by load order):

ˆ The file NDDS QOS PROFILES.xml in $NDDSHOME/resource/qos -
profiles 4.5c/xml is loaded if it exists and DDS -
ProfileQosPolicy::ignore resource profile (p. 781) in DDS -
ProfileQosPolicy (p. 779) is set to DDS BOOLEAN FALSE (p. 289)
(first to be loaded). An example file, NDDS QOS PROFILES.example.xml,
is available for reference.

ˆ The URL groups separated by semicolons referenced by the enviroment
variable NDDS QOS PROFILES are loaded if they exist and DDS -
ProfileQosPolicy::ignore environment profile (p. 780) in DDS -
ProfileQosPolicy (p. 779) is set to DDS BOOLEAN FALSE (p. 289).

ˆ The file USER QOS PROFILES.xml in the working directory will
be loaded if it exists and DDS ProfileQosPolicy::ignore user -
profile (p. 780) in DDS ProfileQosPolicy (p. 779) is set to DDS -
BOOLEAN FALSE (p. 289).

ˆ The URL groups referenced by DDS ProfileQosPolicy::url profile
(p. 780) in DDS ProfileQosPolicy (p. 779) will be loaded if specified.

ˆ The sequence of XML strings referenced by DDS -
ProfileQosPolicy::string profile (p. 780) will be loaded if specified
(last to be loaded).

The above methods can be combined together.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

144 Module Documentation

5.34.2 URL

The location of the XML resources (only files and strings are supported) is
specified using a URL (Uniform Resource Locator) format. For example:

File Specification: file:///usr/local/default dds.xml

String Specification: str://”<dds><qos library> . . . lt;/qos -
library></dds>”

If the URL schema name is omitted, RTI Data Distribution Service will assume
a file name. For example:

File Specification: /usr/local/default dds.xml

5.34.2.1 URL groups

To provide redundancy and fault tolerance, you can specify multiple locations
for a single XML document via URL groups. The syntax of a URL group is as
follows:

[URL1 | URL2 | URL2 | . . .| URLn]

For example:

[file:///usr/local/default dds.xml | file:///usr/local/alternative -
default dds.xml]

Only one of the elements in the group will be loaded by RTI Data Distribution
Service, starting from the left.

Brackets are not required for groups with a single URL.

5.34.2.2 NDDS QOS PROFILES environment variable

The environment variable NDDS QOS PROFILES contains a list of URL
groups separated by ’;’

The URL groups referenced by the enviroment variable are loaded if they exist
and DDS ProfileQosPolicy::ignore environment profile (p. 780) is set to
DDS BOOLEAN FALSE (p. 289)

For more information on XML Configuration, refer to the User’s Manual.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.35 Publication Example 145

5.35 Publication Example

A data publication example.

5.35.1 A typical publication example

Prep

ˆ Create user data types using rtiddsgen (p. 211)

Set up

ˆ Get the factory (p. 147)

ˆ Set up participant (p. 147)

ˆ Set up publisher (p. 156)

ˆ Register user data type(s) (p. 150)

ˆ Set up topic(s) (p. 150)

ˆ Set up data writer(s) (p. 157)

Adjust the desired quality of service (QoS)

ˆ Adjust QoS on entities as necessary (p. 167)

Send data

ˆ Send data (p. 158)

Tear down

ˆ Tear down data writer(s) (p. 158)

ˆ Tear down topic(s) (p. 151)

ˆ Tear down publisher (p. 156)

ˆ Tear down participant (p. 148)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

146 Module Documentation

5.36 Subscription Example

A data subscription example.

5.36.1 A typical subscription example

Prep

ˆ Create user data types using rtiddsgen (p. 211)

Set up

ˆ Get the factory (p. 147)

ˆ Set up participant (p. 147)

ˆ Set up subscriber (p. 159)

ˆ Register user data type(s) (p. 150)

ˆ Set up topic(s) (p. 150)

ˆ Set up data reader(s) (p. 163)

ˆ Set up data reader (p. 164) OR Set up subscriber (p. 159) to receive
data

Adjust the desired quality of service (QoS)

ˆ Adjust QoS on entities as necessary (p. 167)

Receive data

ˆ Access received data either via a reader (p. 164) OR via a subscriber
(p. 160) (possibly in a ordered or coherent (p. 161) manner)

Tear down

ˆ Tear down data reader(s) (p. 166)

ˆ Tear down topic(s) (p. 151)

ˆ Tear down subscriber (p. 161)

ˆ Tear down participant (p. 148)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.37 Participant Use Cases 147

5.37 Participant Use Cases

Working with domain partcipants. Working with domain participants.

5.37.1 Turning off auto-enable of newly created partici-
pant(s)

ˆ Get the factory (p. 147)

ˆ Change the value of the ENTITY FACTORY (p. 362) for the DDS-
DomainParticipantFactory (p. 1123)

DDS_DomainParticipantFactoryQos factory_qos;

if (factory->get_qos(factory_qos) != DDS_RETCODE_OK) {

printf("***Error: failed to get domain participant factory qos\n");

}

/* Change the QosPolicy to create disabled participants */

factory_qos.entity_factory.autoenable_created_entities = DDS_BOOLEAN_FALSE;

if (factory->set_qos(factory_qos) != DDS_RETCODE_OK) {

printf("***Error: failed to set domain participant factory qos\n");

}

5.37.2 Getting the factory

ˆ Get the DDSDomainParticipantFactory (p. 1123) instance:

DDSDomainParticipantFactory* factory = NULL;

factory = DDSDomainParticipantFactory::get_instance();

if (factory == NULL) {

// ... error

}

5.37.3 Setting up a participant

ˆ Get the factory (p. 147)

ˆ Create DDSDomainParticipant (p. 1054):

struct DDS_DomainParticipantQos participant_qos;

DDS_DomainParticipant* participant;

struct DDS_DomainParticipantListener participant_listener;

DDS_ReturnCode_t retcode;

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

148 Module Documentation

/* Set the initial peers. These list all the computers the application

may communicate with along with the maximum number of RTI Data

Distribution Service participants that can concurrently run on that

computer. This list only needs to be a superset of the actual list of

computers and participants that will be running at any time.

*/

const char* NDDS_DISCOVERY_INITIAL_PEERS[] = {

"host1",

"10.10.30.192",

"1@localhost",

"2@host2",

"my://", /* all unicast addresses on transport plugins with alias "my" */

"2@shmem://", /* shared memory */

"FF00:ABCD::0",

"sf://0/0/R", /* StarFabric transport plugin */

"1@FF00:0:1234::0",

"225.1.2.3",

"3@225.1.0.55",

"FAA0::0#0/0/R",

};

/* initialize participant_qos with default values */

retcode = DDS_DomainParticipantFactory_get_default_participant_qos(factory,

&participant_qos);

if (retcode != DDS_RETCODE_OK) {

printf("***Error: failed to get default participant qos\n");

}

if (!DDS_StringSeq_from_array(&participant_qos.discovery.initial_peers,

NDDS_DISCOVERY_INITIAL_PEERS,

NDDS_DISCOVERY_INITIAL_PEERS_LENGTH)) {

printf("***Error: failed to set discovery.initial_peers qos\n");

}

// Create the participant

DDSDomainParticipant* participant =

factory->create_participant(domain_id,

participant_qos,

participant_listener,

DDS_STATUS_MASK_NONE);

if (participant == NULL) {

printf("***Error: failed to create domain participant\n");

};

return participant;

5.37.4 Tearing down a participant

ˆ Get the factory (p. 147)

ˆ Delete DDSDomainParticipant (p. 1054):

DDS_ReturnCode_t retcode;

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.37 Participant Use Cases 149

retcode = factory->delete_participant(participant);

if (retcode != DDS_RETCODE_OK) {

// ... check for cause of failure

}

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

150 Module Documentation

5.38 Topic Use Cases

Working with topics.

5.38.1 Registering a user data type

ˆ Set up participant (p. 147)

ˆ Register user data type of type T under the name ”My Type”

const char* type_name = "My_Type";

DDS_ReturnCode_t retcode;

retcode = FooTypeSupport::register_type(participant, type_name);

if (retcode != DDS_RETCODE_OK) {

// ... error

}

5.38.2 Setting up a topic

ˆ Set up participant (p. 147)

ˆ Ensure user data type is registered (p. 150)

ˆ Create a DDSTopic (p. 1311) under the name ”my topic”

const char* topic_name = "my_topic";

const char* type_type = "My_Type"; // user data type

DDS_TopicQos topic_qos;

DDS_ReturnCode_t retcode;

// MyTopicListener is user defined and

// extends DDSTopicListener

DDSTopicListener* topic_listener = new MyTopicListener(); // or = NULL

retcode = participant->get_default_topic_qos(topic_qos);

if (retcode != DDS_RETCODE_OK) {

// ... error

}

DDSTopic* topic = participant->create_topic(topic_name, type_name,

topic_qos, topic_listener,

DDS_STATUS_MASK_ALL);

if (topic == NULL) {

// ... error

};

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.38 Topic Use Cases 151

5.38.3 Tearing down a topic

ˆ Delete DDSTopic (p. 1311):

DDS_ReturnCode_t retcode;

retcode = participant->delete_topic(topic);

if (retcode != DDS_RETCODE_OK) {

// ... check for cause of failure

}

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

152 Module Documentation

5.39 FlowController Use Cases

Working with flow controllers.

5.39.1 Creating a flow controller

ˆ Set up participant (p. 147)

ˆ Create a flow controller

DDS_ReturnCode_t retcode;

DDSFlowController *controller = NULL;

DDS_FlowControllerProperty_t property;

retcode = participant->get_default_flowcontroller_property(property);

if (retcode != DDS_RETCODE_OK) {

printf("***Error: failed to get default flow controller property\n");

}

// optionally modify flow controller property values

controller = participant->create_flowcontroller(

"my flow controller name", property);

if (controller == NULL) {

printf("***Error: failed to create flow controller\n");

}

5.39.2 Flow controlling a data writer

ˆ Set up participant (p. 147)

ˆ Create flow controller (p. 152)

ˆ Create an asynchronous data writer, FooDataWriter (p. 1361), of user
data type Foo (p. 1333):

DDS_DataWriterQos writer_qos;

DDS_ReturnCode_t retcode;

// MyWriterListener is user defined and

// extends DDSDataWriterListener

MyWriterListener* writer_listener = new MyWriterListener(); // or = NULL

retcode = publisher->get_default_datawriter_qos(writer_qos);

if (retcode != DDS_RETCODE_OK) {

// ... error

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.39 FlowController Use Cases 153

}

/* Change the writer QoS to publish asnychronously */

writer_qos.publish_mode.kind = DDS_ASYNCHRONOUS_PUBLISH_MODE_QOS;

/* Setup to use the previously created flow controller */

writer_qos.publish_mode.flow_controller_name =

DDS_String_dup("my flow controller name");

/* Samples queued for asynchronous write are subject to the History Qos policy */

writer_qos.history.kind = DDS_KEEP_ALL_HISTORY_QOS;

FooDataWriter* writer = publisher->create_datawriter(topic,

writer_qos,

writer_listener,

DDS_STATUS_MASK_ALL);

if (writer == NULL) {

// ... error

};

/* Send data asynchronously... */

/* Wait for asynchronous send completes, if desired */

retcode = writer->wait_for_asynchronous_publishing(timout);

if (retcode != DDS_RETCODE_OK) {

printf("***Error: failed to wait for asynchronous publishing\n");

}

5.39.3 Using the built-in flow controllers

RTI Data Distribution Service provides several built-in flow controllers.

The DDS DEFAULT FLOW CONTROLLER NAME (p. 89) built-
in flow controller provides the basic asynchronous writer behavior.
When calling FooDataWriter::write (p. 1368), the call signals the
DDSPublisher (p. 1243) asynchronous publishing thread (DDS -
PublisherQos::asynchronous publisher (p. 801)) to send the actual
data. As with any DDS ASYNCHRONOUS PUBLISH MODE QOS
(p. 403) DDSDataWriter (p. 1028), the FooDataWriter::write (p. 1368)
call returns immediately afterwards. The data is sent immediately in the
context of the DDSPublisher (p. 1243) asynchronous publishing thread.

When using the DDS FIXED RATE FLOW CONTROLLER NAME
(p. 89) flow controller, data is also sent in the context of the DDSPub-
lisher (p. 1243) asynchronous publishing thread, but at a regular fixed in-
terval. The thread accumulates samples from different DDSDataWriter
(p. 1028) instances and generates data on the wire only once per DDS -
FlowControllerTokenBucketProperty t::period (p. 704).

In contrast, the DDS ON DEMAND FLOW CONTROLLER NAME
(p. 90) flow controller permits flow only when DDSFlowController::trigger -

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

154 Module Documentation

flow (p. 1165) is called. The data is still sent in the context of the DDSPub-
lisher (p. 1243) asynchronous publishing thread. The thread accumulates sam-
ples from different DDSDataWriter (p. 1028) instances (across any DDSPub-
lisher (p. 1243)) and sends all data since the previous trigger.

The properties of the built-in DDSFlowController (p. 1163) instances can be
adjusted.

ˆ Set up participant (p. 147)

ˆ Lookup built-in flow controller

DDSFlowController *controller = NULL;

controller = participant->lookup_flowcontroller(

DDS_DEFAULT_FLOW_CONTROLLER_NAME);

/* This should never happen, built-in flow controllers are always created */

if (controller == NULL) {

printf("***Error: failed to lookup flow controller\n");

}

ˆ Change property of built-in flow controller, if desired

DDS_ReturnCode_t retcode;

DDS_FlowControllerProperty_t property;

/* Get the property of the flow controller */

retcode = controller->get_property(property);

if (retcode != DDS_RETCODE_OK) {

printf("***Error: failed to get flow controller property\n");

}

/* Change the property value as desired */

property.token_bucket.period.sec = 2;

property.token_bucket.period.nanosec = 0;

/* Update the flow controller property */

retcode = controller->set_property(property);

if (retcode != DDS_RETCODE_OK) {

printf("***Error: failed to set flow controller property\n");

}

ˆ Create a data writer using the correct flow controller name
(p. 152)

5.39.4 Shaping the network traffic for a particular trans-
port

ˆ Set up participant (p. 147)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.39 FlowController Use Cases 155

ˆ Create the transports (p. 172)

ˆ Create a separate flow controller for each transport (p. 152)

ˆ Configure DDSDataWriter (p. 1028) instances to only use a single trans-
port

ˆ Associate all data writers using the same transport to the cor-
responding flow controller (p. 152)

ˆ For each transport, the corresponding flow controller limits the network
traffic based on the token bucket properties

5.39.5 Coalescing multiple samples in a single network
packet

ˆ Set up participant (p. 147)

ˆ Create a flow controller with a desired token bucket period
(p. 152)

ˆ Associate the data writer with the flow controller (p. 152)

ˆ Multiple samples written within the specified period will be coalesced
into a single network packet (provided that tokens added per period
and bytes per token permit).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

156 Module Documentation

5.40 Publisher Use Cases

Working with publishers.

5.40.1 Setting up a publisher

ˆ Set up participant (p. 147)

ˆ Create a DDSPublisher (p. 1243)

DDS_PublisherQos publisher_qos;

// MyPublisherListener is user defined and

// extends DDSPublisherListener

DDSPublisherListener* publisher_listener =

= new MyPublisherListener(); // or = NULL

participant->get_default_publisher_qos(publisher_qos);

DDSPublisher* publisher = participant->create_publisher(publisher_qos,

publisher_listener,

DDS_STATUS_MASK_ALL);

if (publisher == NULL) {

// ... error

};

5.40.2 Tearing down a publisher

ˆ Delete DDSPublisher (p. 1243):

DDS_ReturnCode_t retcode;

retcode = participant->delete_publisher(publisher);

if (retcode != DDS_RETCODE_OK) {

// ... check for cause of failure

}

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.41 DataWriter Use Cases 157

5.41 DataWriter Use Cases

Working with data writers.

5.41.1 Setting up a data writer

ˆ Set up publisher (p. 156)

ˆ Set up a topic (p. 150)

ˆ Create a data writer, FooDataWriter (p. 1361), of user data type Foo
(p. 1333):

DDS_DataWriterQos writer_qos;

DDS_ReturnCode_t retcode;

// MyWriterListener is user defined and

// extends DDSDataWriterListener

MyWriterListener* writer_listener = new MyWriterListener(); // or = NULL

retcode = publisher->get_default_datawriter_qos(writer_qos);

if (retcode != DDS_RETCODE_OK) {

// ... error

}

FooDataWriter* writer = publisher->create_datawriter(topic,

writer_qos,

writer_listener,

DDS_STATUS_MASK_ALL);

if (writer == NULL) {

// ... error

};

5.41.2 Managing instances

ˆ Getting an instance ”key” value of user data type Foo (p. 1333)

Foo* data = ...; // user data

retcode = writer->get_key_value(*data, instance_handle);

if (retcode != DDS_RETCODE_OK) {

// ... check for cause of failure

}

ˆ Registering an instance of type Foo (p. 1333)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

158 Module Documentation

DDS_InstanceHandle_t instance_handle = DDS_HANDLE_NIL;

instance_handle = writer->register_instance(data);

ˆ Unregistering an instance of type Foo (p. 1333)

retcode = writer->unregister_instance(data, instance_handle);

if (retcode != DDS_RETCODE_OK) {

// ... check for cause of failure

}

ˆ Disposing of an instance of type Foo (p. 1333)

retcode = writer->dispose(data, instance_handle);

if (retcode != DDS_RETCODE_OK) {

// ... check for cause of failure

}

5.41.3 Sending data

ˆ Set up data writer (p. 157)

ˆ Register instance (p. 157)

ˆ Write instance of type Foo (p. 1333)

Foo* data; // user data

DDS_InstanceHandle_t instance_handle =

DDS_HANDLE_NIL; // or a valid registered handle

DDS_ReturnCode_t retcode;

retcode = writer->write(data, instance_handle);

if (retcode != DDS_RETCODE_OK) {

// ... check for cause of failure

}

5.41.4 Tearing down a data writer

ˆ Delete DDSDataWriter (p. 1028):

DDS_ReturnCode_t retcode;

retcode = publisher->delete_datawriter(writer);

if (retcode != DDS_RETCODE_OK) {

// ... check for cause of failure

}

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.42 Subscriber Use Cases 159

5.42 Subscriber Use Cases

Working with subscribers.

5.42.1 Setting up a subscriber

ˆ Set up participant (p. 147)

ˆ Create a DDSSubscriber (p. 1284)

DDS_SubscriberQos subscriber_qos;

DDS_ReturnCode_t retcode;

// MySubscriberListener is user defined and

// extends DDSSubscriberListener

DDSSubscriberListener* subscriber_listener =

new MySubscriberListener(); // or = NULL

retcode = participant->get_default_subscriber_qos(subscriber_qos);

if (retcode != DDS_RETCODE_OK) {

// ... error

};

DDSSubscriber* subscriber =

participant->create_subscriber(subscriber_qos,

subscriber_listener,

DDS_STATUS_MASK_ALL);

if (subscriber == NULL) {

// ... error

};

5.42.2 Set up subscriber to access received data

ˆ Set up subscriber (p. 159)

ˆ Set up to handle the DDS DATA ON READERS STATUS status, in one
or both of the following two ways.

ˆ Enable DDS DATA ON READERS STATUS for the DDSSub-
scriberListener associated with the subscriber (p. 168)

– The processing to handle the status change is done in the DDSSub-
scriberListener::on data on readers() (p. 1307) method of the
attached listener.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

160 Module Documentation

– Typical processing will access the received data (p. 160), either in
arbitrary order or in a coherent and ordered manner (p. 161).

ˆ Enable DDS DATA ON READERS STATUS for the DDSSta-
tusCondition associated with the subscriber (p. 169)

– The processing to handle the status change is done when the sub-
scriber’s attached status condition is triggered (p. 170) and
the DDS DATA ON READERS STATUS status on the subscriber
is changed.

– Typical processing will access the received data (p. 160), either in
an arbitrary order or in a coherent and ordered manner (p. 161).

5.42.3 Access received data via a subscriber

ˆ Ensure subscriber is set up to access received data (p. 159)

ˆ Get the list of readers that have data samples available:

DDSDataReaderSeq reader_seq; // holder for list/set of readers

DDS_SampleStateMask sample_state_mask = DDS_NOT_READ_SAMPLE_STATE;

DDS_ViewStateMask view_state_mask = DDS_ANY_VIEW_STATE;

DDS_InstanceStateMask instance_state_mask = DDS_ANY_INSTANCE_STATE;

DDS_ReturnCode_t retcode;

// get_datareadersX is not supported yet.

retcode = subscriber->get_datareaders(reader_seq,

sample_state_mask,

view_state_mask,

instance_state_mask);

if (retcode != DDS_RETCODE_OK) {

// ... check for cause of failure

}

ˆ Upon successfully getting the list of readers with data, process the data
readers to either:

– Read the data in each reader (p. 165), OR

– Take the data in each reader (p. 164)

If the intent is to access the data coherently or in order (p. 161), the
list of data readers must be processed in the order returned:

for(int i = 0; i < reader_seq.length(); ++i) {

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.42 Subscriber Use Cases 161

TDataReader* reader = reader_seq[i];

// Take the data from reader,

// OR

// Read the data from reader

}

ˆ Alternatively, call DDSSubscriber::notify datareaders() (p. 1301)
to invoke the DDSDataReaderListener (p. 1023) for each of the data
readers.

retcode = subscriber->notify_datareaders();

if (retcode != DDS_RETCODE_OK) {

// ... check for cause of failure

}

5.42.4 Access received data coherently and/or in order

To access the received data coherently and/or in an ordered manner, according
to the settings of the DDS PresentationQosPolicy (p. 772) attached to a
DDSSubscriber (p. 1284):

ˆ Ensure subscriber is set up to access received data (p. 159)

ˆ Indicate that data will be accessed via the subscriber:

retcode = subscriber->begin_access();

if (retcode != DDS_RETCODE_OK) {

// ... check for cause of failure

}

ˆ Access received data via the subscriber, making sure that the
data readers are processed in the order returned. (p. 160)

ˆ Indicate that the data access via the subscriber is done:

retcode = subscriber->end_access();

if (retcode != DDS_RETCODE_OK) {

// ... check for cause of failure

}

5.42.5 Tearing down a subscriber

ˆ Delete DDSSubscriber (p. 1284):

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

162 Module Documentation

DDS_ReturnCode_t retcode;

retcode = participant->delete_subscriber(subscriber);

if (retcode != DDS_RETCODE_OK) {

// ... check for cause of failure

}

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.43 DataReader Use Cases 163

5.43 DataReader Use Cases

Working with data readers.

5.43.1 Setting up a data reader

ˆ Set up subscriber (p. 159)

ˆ Set up a topic (p. 150)

ˆ Create a data reader, FooDataReader (p. 1334), of user data type Foo
(p. 1333):

DDS_DataReaderQos reader_qos;

DDS_ReturnCode_t retcode;

// MyReaderListener is user defined and

// extends DDSDataReaderListener

DDSDataReaderListener* reader_listener =

new MyReaderListener(); // or = NULL

retcode = subscriber->get_default_datareader_qos(reader_qos);

if (retcode != DDS_RETCODE_OK) {

// ... error

};

FooDataReader* reader = subscriber->create_datareader(topic,

reader_qos,

reader_listener,

DDS_STATUS_MASK_ALL);

if (reader == NULL) {

// ... error

};

5.43.2 Managing instances

ˆ Given a data reader

FooDataReader* reader = ...;

ˆ Getting an instance ”key” value of user data type Foo (p. 1333)

Foo data; // user data of type Foo

// ...

retcode = reader->get_key_value(data, instance_handle);

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

164 Module Documentation

if (retcode != DDS_RETCODE_OK) {

// ... check for cause of failure

}

5.43.3 Set up reader to access received data

ˆ Set up data reader (p. 163)

ˆ Set up to handle the DDS DATA AVAILABLE STATUS status, in one or
both of the following two ways.

ˆ Enable DDS DATA AVAILABLE STATUS for the DDS-
DataReaderListener associated with the data reader (p. 168)

– The processing to handle the status change is done in the DDS-
DataReaderListener::on data available (p. 1025) method of the
attached listener.

– Typical processing will access the received data (p. 164).

ˆ Enable DDS DATA AVAILABLE STATUS for the DDSStatus-
Condition associated with the data reader (p. 169)

– The processing to handle the status change is done when the data
reader’s attached status condition is triggered (p. 170) and
the DDS DATA AVAILABLE STATUS status on the data reader is
changed.

– Typical processing will access the received data (p. 164).

5.43.4 Access received data via a reader

ˆ Ensure reader is set up to access received data (p. 164)

ˆ Access the received data, by either:

– Taking the received data in the reader (p. 164), OR

– Reading the received data in the reader (p. 165)

5.43.5 Taking data

ˆ Ensure reader is set up to access received data (p. 164)

ˆ Take samples of user data type T. The samples are removed from the
Service. The caller is responsible for deallocating the buffers.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.43 DataReader Use Cases 165

FooSeq data_seq; // holder for sequence of user data type Foo

DDS_SampleInfoSeq info_seq; // holder for sequence of DDS_SampleInfo

long max_samples = DDS_LENGTH_UNLIMITED;

DDS_SampleStateMask sample_state_mask = DDS_ANY_SAMPLE_STATE;

DDS_ViewStateMask view_state_mask = DDS_ANY_VIEW_STATE;

DDS_InstanceStateMask instance_state_mask = DDS_ANY_INSTANCE_STATE;

DDS_ReturnCode_t retcode;

retcode = reader->take(data_seq, info_seq,

max_samples,

sample_state_mask,

view_state_mask,

instance_state_mask);

if (retcode == DDS_RETCODE_NO_DATA) {

return;

} else if (retcode != DDS_RETCODE_OK) {

// ... check for cause of failure

}

ˆ Use the received data

// Use the received data samples ’data_seq’ and associated information ’info_seq’

for(int i = 0; i < data_seq.length(); ++i) {

// use... data_seq[i] ...

// use... info_seq[i] ...

}

ˆ Return the data samples and the information buffers back to the mid-
dleware. IMPORTANT : Once this call returns, you must not retain any
pointers to any part of any sample or sample info object.

retcode = reader->return_loan(data_seq, info_seq);

if (retcode != DDS_RETCODE_OK) {

// ... check for cause of failure

}

5.43.6 Reading data

ˆ Ensure reader is set up to access received data (p. 164)

ˆ Read samples of user data type Foo (p. 1333). The samples are not
removed from the Service. It remains responsible for deallocating the
buffers.

FooSeq data_seq; // holder for sequence of user data type Foo

DDS_SampleInfoSeq info_seq; // holder for sequence of DDS_SampleInfo

long max_samples = DDS_LENGTH_UNLIMITED;

DDS_SampleStateMask sample_state_mask = DDS_NOT_READ_SAMPLE_STATE;

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

166 Module Documentation

DDS_ViewStateMask view_state_mask = DDS_ANY_VIEW_STATE;

DDS_InstanceStateMask instance_state_mask = DDS_ANY_INSTANCE_STATE;

DDS_ReturnCode_t retcode;

retcode = reader->read(data_seq, info_seq,

max_samples,

sample_state_mask,

view_state_mask,

instance_state_mask);

if (retcode == DDS_RETCODE_NO_DATA) {

return;

} else if (retcode != DDS_RETCODE_OK) {

// ... check for cause of failure

}

ˆ Use the received data

// Use the received data samples ’data_seq’ and associated

// information ’info_seq’

for(int i = 0; i < data_seq.length(); ++i) {

// use... data_seq[i] ...

// use... info_seq[i] ...

}

ˆ Return the data samples and the information buffers back to the middle-
ware

retcode = reader->return_loan(data_seq, info_seq);

if (retcode != DDS_RETCODE_OK) {

// ... check for cause of failure

}

5.43.7 Tearing down a data reader

ˆ Delete DDSDataReader (p. 1004):

DDS_ReturnCode_t retcode;

retcode = subscriber->delete_datareader(reader);

if (retcode != DDS_RETCODE_OK) {

// ... check for cause of failure

}

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.44 Entity Use Cases 167

5.44 Entity Use Cases

Working with entities.

5.44.1 Enabling an entity

ˆ To enable an DDSEntity (p. 1157)

if (entity->enable() != DDS_RETCODE_OK) {

printf("***Error: failed to enable entity\n");

}

5.44.2 Checking if a status changed on an entity.

ˆ Given an DDSEntity (p. 1157) and a DDS StatusKind (p. 310) to
check for, get the list of statuses that have changed since the last time
they were respectively cleared.

DDS_StatusMask status_changes_mask = entity->get_status_changes();

ˆ Check if status kind was changed since the last time it was cleared.
A plain communication status change is cleared when the status is read
using the entity’s get <plain communication status>() method. A
read communication status change is cleared when the data is taken from
the middleware via a TDataReader take() call [see Changes in Status
(p. 307) for details].

if (status_changes_mask & status_kind) {

return true;

} else { /* ... YES, status_kind changed ... */

return false; /* ... NO, status_kind did NOT change ... */

}

5.44.3 Changing the QoS for an entity

The QoS for an entity can be specified at the entity creation time. Once an
entity has been created, its QoS can be manipulated as follows.

ˆ Get an entity’s QoS settings using get qos (abstract) (p. 1159)

if (entity->get_qos(qos) != DDS_RETCODE_OK) {

printf("***Error: failed to get qos\n");

}

ˆ Change the desired qos policy fields

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

168 Module Documentation

/* Change the desired qos policies */

/* qos.policy.field = ... */

ˆ Set the qos using set qos (abstract) (p. 1158).

switch (entity->set_qos(qos)) {

case DDS_RETCODE_OK: { /* success */

} break;

case DDS_RETCODE_IMMUTABLE_POLICY: {

printf("***Error: tried changing a policy that can only be"

" set at entity creation time\n");

} break;

case DDS_RETCODE_INCONSISTENT_POLICY: {

printf("***Error: tried changing a policy to a value inconsistent"

" with other policy settings\n");

} break;

default: {

printf("***Error: some other failure\n");

}

}

5.44.4 Changing the listener and enabling/disabling sta-
tuses associated with it

The listener for an entity can be specified at the entity creation time. By default
the listener is enabled for all the statuses supported by the entity.

Once an entity has been created, its listener and/or the statuses for which it is
enabled can be manipulated as follows.

ˆ User defines entity listener methods

/* ... methods defined by EntityListener ... */

public class MyEntityListener implements DDSListener {

// ... methods defined by EntityListener ...

}

ˆ Get an entity’s listener using get listener (abstract) (p. 1160)

entity_listener = entity->get_listener();

ˆ Enable status kind for the listener

enabled_status_list |= status_kind;

ˆ Disable status kind for the listener

enabled_status_list &= ~status_kind;

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.44 Entity Use Cases 169

ˆ Set an entity’s listener to entity listener using set listener (ab-
stract) (p. 1159). Only enable the listener for the statuses specified by
the enabled status list.

if (entity->set_listener(entity_listener, enabled_status_list)

!= DDS_RETCODE_OK) {

printf("***Error: setting entity listener\n");

}

5.44.5 Enabling/Disabling statuses associated with a sta-
tus condition

Upon entity creation, by default, all the statuses are enabled for the DDS -
StatusCondition associated with the entity.

Once an entity has been created, the list of statuses for which the DDS -
StatusCondition is triggered can be manipulated as follows.

ˆ Given an entity, a status kind, and the associated status condition:

statuscondition = entity->get_statuscondition();

ˆ Get the list of statuses enabled for the status condition

enabled_status_list = statuscondition->get_enabled_statuses();

ˆ Check if the given status kind is enabled for the status condition

if (enabled_status_list & status_kind) {

/*... YES, status_kind is enabled ... */

} else {

/* ... NO, status_kind is NOT enabled ... */

}

ˆ Enable status kind for the status condition

if (statuscondition->set_enabled_statuses(enabled_status_list | status_kind)

!= DDS_RETCODE_OK) {

/* ... check for cause of failure */

}

ˆ Disable status kind for the status condition

if (statuscondition->set_enabled_statuses(enabled_status_list & ~status_kind)

!= DDS_RETCODE_OK) {

/* ... check for cause of failure */

}

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

170 Module Documentation

5.45 Waitset Use Cases

Using wait-sets and conditions.

5.45.1 Setting up a wait-set

ˆ Create a wait-set

DDSWaitSet* waitset = new DDSWaitSet();

ˆ Attach conditions

DDSCondition* cond1 = ...;

DDSCondition* cond2 = entity->get_statuscondition();

DDSCondition* cond3 = reader->create_readcondition(DDS_NOT_READ_SAMPLE_STATE,

DDS_ANY_VIEW_STATE,

DDS_ANY_INSTANCE_STATE);

DDSCondition* cond4 = new DDSGuardCondition();

DDSCondition* cond5 = ...;

DDS_ReturnCode_t retcode;

retcode = waitset->attach_condition(cond1);

if (retcode != DDS_RETCODE_OK) {

// ... error

}

retcode = waitset->attach_condition(cond2);

if (retcode != DDS_RETCODE_OK) {

// ... error

}

retcode = waitset->attach_condition(cond3);

if (retcode != DDS_RETCODE_OK) {

// ... error

}

retcode = waitset->attach_condition(cond4);

if (retcode != DDS_RETCODE_OK) {

// ... error

}

retcode = waitset->attach_condition(cond5);

if (retcode != DDS_RETCODE_OK) {

// ... error

}

5.45.2 Waiting for condition(s) to trigger

ˆ Set up a wait-set (p. 170)

ˆ Wait for a condition to trigger or timeout, whichever occurs first

DDS_Duration_t timeout = { 0, 1000000 }; // 1ms

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.45 Waitset Use Cases 171

DDSConditionSeq active_conditions; // holder for active conditions

bool is_cond1_triggered = false;

bool is_cond2_triggered = false;

DDS_ReturnCode_t retcode;

retcode = waitset->wait(active_conditions, timeout);

if (retcode != DDS_RETCODE_OK) {

// ... check for cause of failure

} else {

// success

if (active_conditions.length() == 0) {

// timeout!

printf("Wait timed out!! None of the conditions was triggered.\n");

} else {

// check if "cond1" or "cond2" are triggered:

for(int i = 0; i < active_conditions.length(); ++i) {

if (active_conditions[i] == cond1) {

printf("Cond1 was triggered!");

is_cond1_triggered = true;

}

if (active_conditions[i] == cond2) {

printf("Cond2 was triggered!");

is_cond2_triggered = true;

}

if (is_cond1_triggered && is_cond2_triggered) {

break;

}

}

}

}

if (is_cond1_triggered) {

// ... do something because "cond1" was triggered ...

}

if (is_cond2_triggered) {

// ... do something because "cond2" was triggered ...

}

5.45.3 Tearing down a wait-set

ˆ Delete the wait-set

delete waitset;

waitset = NULL;

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

172 Module Documentation

5.46 Transport Use Cases

Working with pluggable transports.

5.46.1 Changing the automatically registered built-in
transports

ˆ The DDS TRANSPORTBUILTIN MASK DEFAULT (p. 380)
specifies the transport plugins that will be automatically registered with
a newly created DDSDomainParticipant (p. 1054) by default.

ˆ This default can be changed by changing the value of the value of
TRANSPORT BUILTIN (p. 379) Qos Policy on the DDSDomain-
Participant (p. 1054)

ˆ To change the DDS DomainParticipantQos::transport builtin
(p. 550) Qos Policy:

DDS_DomainParticipantQos participant_qos;

factory->get_default_participant_qos(participant_qos);

participant_qos.transport_builtin.mask = DDS_TRANSPORTBUILTIN_SHMEM |

DDS_TRANSPORTBUILTIN_UDPv4;

5.46.2 Changing the properties of the automatically reg-
istered builtin transports

The behavior of the automatically registered builtin transports can be altered
by changing their properties.

ˆ Tell the DDSDomainParticipantFactory (p. 1123) to create the par-
ticipants disabled, as described in Turning off auto-enable of newly
created participant(s) (p. 147)

ˆ Get the property of the desired builtin transport plugin, say ::UDPv4
Transport (p. 255)

struct NDDS_Transport_UDPv4_Property_t property = NDDS_TRANSPORT_UDPV4_PROPERTY_DEFAULT;

if (NDDSTransportSupport::get_builtin_transport_property(

participant,

DDS_TRANSPORTBUILTIN_UDPv4,

(struct NDDS_Transport_Property_t&)property)

!= DDS_RETCODE_OK) {

printf("***Error: get builtin transport property\n");

}

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.46 Transport Use Cases 173

ˆ Change the property fields as desired. Note that the properties should
be changed carefully, as inappropriate values may prevent communica-
tions. For example, the ::UDPv4 Transport (p. 255) properties can be
changed to support large messages (assuming the underlying operating
system’s UDPv4 stack supports the large message size). Note: if mes-
sage size max is increased from the default for any of the built-in trans-
ports, then the DDS ReceiverPoolQosPolicy::buffer size (p. 812) on
the DomainParticipant should also be changed.

/* Increase the UDPv4 maximum message size to 64K (large messages). */

property.parent.message_size_max = 65535;

property.recv_socket_buffer_size = 65535;

property.send_socket_buffer_size = 65535;

ˆ Set the property of the desired builtin transport plugin, say ::UDPv4
Transport (p. 255)

if (NDDSTransportSupport::set_builtin_transport_property(

participant,

DDS_TRANSPORTBUILTIN_UDPv4,

(struct NDDS_Transport_Property_t&)property)

!= DDS_RETCODE_OK) {

printf("***Error: set builtin transport property\n");

}

ˆ Enable the participant (p. 167) to turn on communications with other
participants in the domain using the new properties for the automatically
registered builtin transport plugins.

5.46.3 Creating a transport

ˆ A transport plugin is created using methods provided by the supplier of
the transport plugin.

ˆ For example to create an instance of the ::UDPv4 Transport (p. 255)

NDDS_Transport_Plugin* transport = NULL;

struct NDDS_Transport_UDPv4_Property_t property = NDDS_TRANSPORT_UDPV4_PROPERTY_DEFAULT;

transport = NDDS_Transport_UDPv4_new(&property);

if (transport == NULL) {

printf("***Error: creating transport plugin\n");

}

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

174 Module Documentation

5.46.4 Deleting a transport

ˆ A transport plugin can only be deleted only after the DDSDomainPar-
ticipant (p. 1054) with which it is registered is deleted.

ˆ The virtual destructor provided by the abstract transport plugin API can
be used to delete a transport plugin.

transport->delete_cEA(transport, NULL);

5.46.5 Registering a transport with a participant

The basic steps for setting up transport plugins for use in an RTI Data Distri-
bution Service application are described below.

ˆ Tell the DDSDomainParticipantFactory (p. 1123) to create the par-
ticipants disabled, as described in Turning off auto-enable of newly
created participant(s) (p. 147)

Optionally Changing the automatically registered built-in transports (p. 172)

Optionally Changing the properties of the automatically registered builtin
transports (p. 172)

ˆ Create a disabled DDSDomainParticipant (p. 1054), as described in
Setting up a participant (p. 147)

ˆ Decide on the network address (p. 121) for the transport plugin. The
network address should be chosen so that the resulting fully qualified ad-
dress is globally unique (across all transports used in the domain).

/* Decide on a network address (96 bits for UDPv4), such that the fully

qualified unicast address for the transport’s interfaces will be

globally unique. For example, we use the network address:

1234:1234:1234:0000

It will be prepended to the unicast addresses of the transport plugin’s

interfaces, to give a fully qualified address that is unique in the

domain.

*/

NDDS_Transport_Address_t network_address = {{1,2,3,4, 1,2,3,4, 1,2,3,4, 0,0,0,0}};

ˆ Decide on the aliases (p. 118) for the transport plugin. An alias can refer
to one or more transport plugins. The transport class name (see Builtin
Transport Class Names (p. 377)) are automatically appended to the
user-provided aliases. Alias names are useful in creating logical groupings
of transports, e.g. all the transports that are configured to support large
messages may be given the alias ”large message”.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.46 Transport Use Cases 175

/* Decide aliases, i.e. the names by which this transport plugin will be known */

const char* ALIASES[] = {

"my",

"large_message",

};

const DDS_Long ALIASES_LENGTH = sizeof(ALIASES)/sizeof(const char*);

/* Initialize the aliases StringSeq */

DDS_StringSeq aliases;

if (!aliases.from_array(ALIASES, ALIASES_LENGTH)) {

printf("***Error: creating initializing aliases\n");

}

ˆ Register the transport plugin with the DDSDomainParticipant
(p. 1054). Note that a transport plugin should NOT be registered with
more than one DomainParticipant. It is the responsibility of the ap-
plication programmer to ensure that this requirement is not violated.

NDDS_Transport_Handle_t handle = NDDS_TRANSPORT_HANDLE_NIL;

handle = NDDSTransportSupport::register_transport(

participant, /* Disabled Domain Participant */

transport, /* Transport plugin */

aliases, /* Transport aliases */

network_address); /* Transport network address */

if (NDDS_Transport_Handle_is_nil(&handle)) {

printf("***Error: registering transport\n");

}

Optionally Adding receive routes for a transport (p. 175)

Optionally Adding send routes for a transport (p. 176)

ˆ Enable the participant (p. 167) to turn on communications with other
participants in the domain, using the newly registered transport plugins,
and automatically registered builtin transport plugins (if any).

5.46.6 Adding receive routes for a transport

ˆ Receive routes can be added to restrict address ranges on which incoming
messages can be received. Any number of receive routes can be added,
but these must be done before the participant is enabled.

ˆ To restrict the address range from which incoming messages can be re-
ceived by the transport plugin:

/* Restrict to receiving messages only on interfaces

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

176 Module Documentation

1234:1234:1234:10.10.*.*

*/

NDDS_Transport_Address_t subnet = {{1,2,3,4, 1,2,3,4, 1,2,3,4, 10,10,0,0}};

if (NDDSTransportSupport::add_receive_route(handle, subnet, 112)

!= DDS_RETCODE_OK) {

printf("***Error: adding receive route\n");

}

5.46.7 Adding send routes for a transport

ˆ Send routes can be added to restrict the address ranges to which outgoing
messages can be sent by the transport plugin. Any number of send routes
can be added, but these must be done before the participant is enabled.

ˆ To restrict address ranges to which outgoing messages can be sent by the
transport plugin:

/* Restrict to sending messages only to addresses (subnets)

1234:1234:1234:10.10.30.*

*/

NDDS_Transport_Address_t subnet = {{1,2,3,4, 1,2,3,4, 1,2,3,4, 10,10,30,0}};

if (NDDSTransportSupport::add_send_route(handle, subnet, 120)

!= DDS_RETCODE_OK) {

printf("***Error: adding send route\n");

}

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.47 Filter Use Cases 177

5.47 Filter Use Cases

Working with data filters.

5.47.1 Introduction

RTI Data Distribution Service supports filtering data either during the exchange
from DDSDataWriter (p. 1028) to DDSDataReader (p. 1004), or after the
data has been stored at the DDSDataReader (p. 1004).

Filtering during the exchange process is performed by a DDSContentFil-
teredTopic (p. 998), which is created by the DDSDataReader (p. 1004) as a
way of specifying a subset of the data samples that it wishes to receive.

Filtering samples that have already been received by the DDSDataReader
(p. 1004) is performed by creating a DDSQueryCondition (p. 1267), which
can then used to check for matching samples, be alerted when match-
ing samples arrive, or retrieve matching samples through use of the
FooDataReader::read w condition (p. 1344) or FooDataReader::take -
w condition (p. 1345) functions. (Conditions may also be used with
the APIs FooDataReader::read next instance w condition (p. 1355) and
FooDataReader::take next instance w condition (p. 1356).)

Filtering may be performed on any topic, either keyed or un-keyed, except
the Built-in Topics (p. 41). Filtering may be perfomed on any field, subset
of fields, or combination of fields, subject only to the limitations of the filter
syntax, and some restrictions against filtering some sparse value types of the
Dynamic Data (p. 75) API.

RTI Data Distribution Service contains built in support for filtering using SQL
syntax, described in the Queries and Filters Syntax (p. 199) module.

5.47.1.1 Overview of ContentFilteredTopic

Each DDSContentFilteredTopic (p. 998) is created based on an exist-
ing DDSTopic (p. 1311). The DDSTopic (p. 1311) specifies the field -
names and field types of the data contained within the topic. The
DDSContentFilteredTopic (p. 998), by means of its filter expression
and expression parameters, futher specifies the values of the data which the
DDSDataReader (p. 1004) wishes to receive.

Custom filters may also be constructed and utilized as described in the Creat-
ing Custom Content Filters (p. 182) module.

Once the DDSContentFilteredTopic (p. 998) has been created, a DDS-
DataReader (p. 1004) can be created using the filtered topic. The filter’s
characteristics are exchanged between the DDSDataReader (p. 1004) and any

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

178 Module Documentation

matching DDSDataWriter (p. 1028) during the discovery processs.

If the DDSDataWriter (p. 1028) allows (by DDS -
DataWriterResourceLimitsQosPolicy::max remote reader filters
(p. 525)) and the number of filtered DDSDataReader (p. 1004) is less
than or equal to 32, and the DDSDataReader (p. 1004) ’s DDS -
TransportMulticastQosPolicy (p. 911) is empty, then the DDS-
DataWriter (p. 1028) will performing filtering and send to the DDS-
DataReader (p. 1004) only those samples that meet the filtering criteria.

If disallowed by the DDSDataWriter (p. 1028), or if more than 32 DDS-
DataReader (p. 1004) require filtering, or the DDSDataReader (p. 1004)
has set the DDS TransportMulticastQosPolicy (p. 911), then the DDS-
DataWriter (p. 1028) sends all samples to the DDSDataReader (p. 1004),
and the DDSDataReader (p. 1004) discards any samples that do not meet
the filtering criteria.

Although the filter expression cannot be changed once the DDSContent-
FilteredTopic (p. 998) has been created, the expression parameters can be
modified using DDSContentFilteredTopic::set expression parameters
(p. 1001). Any changes made to the filtering criteria by means of DDSCon-
tentFilteredTopic::set expression parameters (p. 1001), will be conveyed
to any connected DDSDataWriter (p. 1028). New samples will be subject to
the modified filtering criteria, but samples that have already been accepted or
rejected are unaffected. However, if the DDSDataReader (p. 1004) connects
to a DDSDataWriter (p. 1028) that re-sends its data, the re-sent samples will
be subjected to the new filtering criteria.

5.47.1.2 Overview of QueryCondition

DDSQueryCondition (p. 1267) combine aspects of the content filtering capa-
bilities of DDSContentFilteredTopic (p. 998) with state filtering capabilities
of DDSReadCondition (p. 1269) to create a reconfigurable means of filtering
or searching data in the DDSDataReader (p. 1004) queue.

DDSQueryCondition (p. 1267) may be created on a disabled DDS-
DataReader (p. 1004), or after the DDSDataReader (p. 1004) has been en-
abled. If the DDSDataReader (p. 1004) is enabled, and has already recevied
and stored samples in its queue, then all data samples in the are filtered against
the DDSQueryCondition (p. 1267) filter criteria at the time that the DDS-
QueryCondition (p. 1267) is created. (Note that an exclusive lock is held on
the DDSDataReader (p. 1004) sample queue for the duration of the DDS-
QueryCondition (p. 1267) creation).

Once created, incoming samples are filtered against all DDSQueryCondition
(p. 1267) filter criteria at the time of their arrival and storage into the DDS-
DataReader (p. 1004) queue.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.47 Filter Use Cases 179

The number of DDSQueryCondition (p. 1267) filters that an in-
dividual DDSDataReader (p. 1004) may create is set by DDS -
DataReaderResourceLimitsQosPolicy::max query condition filters
(p. 497), to an upper maximum of 32.

5.47.2 Filtering with ContentFilteredTopic

ˆ Set up subscriber (p. 159)

ˆ Set up a topic (p. 150)

ˆ Create a ContentFilteredTopic, of user data type Foo (p. 1333):

DDS_ContentFilteredTopic *cft = NULL;

DDS_StringSeq parameters(2);

const char* cft_param_list[] = {"1", "100"};

cft_parameters.from_array(cft_param_list, 2);

cft = participant->create_contentfilteredtopic("ContentFilteredTopic",

Foo_topic,

"value > %0 AND value < %1",

cft_parameters);

if (cft == NULL) {

printf("create_contentfilteredtopic error\n");

subscriber_shutdown(participant);

return -1;

}

ˆ Create a FooReader using the ContentFilteredTopic:

DDSDataReader *reader = NULL;

reader = subscriber->create_datareader(cft,

datareader_qos, // or DDS_DATAREADER_QOS_DEFAULT

reader_listener, // or NULL

DDS_STATUS_MASK_ALL);

if (reader == NULL) {

printf("create_datareader error\n");

subscriber_shutdown(participant);

return -1;

}

FooDataReader *Foo_reader = FooDataReader::narrow(reader);

if (Foo_reader == NULL) {

printf("DataReader narrow error\n");

subscriber_shutdown(participant);

return -1;

}

Once setup, reading samples with a DDSContentFilteredTopic (p. 998)
is exactly the same as normal reads or takes, as decribed in DataReader
Use Cases (p. 163).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

180 Module Documentation

ˆ Changing filter crieria using set expression parameters:

cft->get_expression_parameters(cft_parameters);

DDS_String_free(cft_parameters[0]);

DDS_String_free(cft_parameters[1]);

cft_parameters[0] = DDS_String_dup("5");

cft_arameters[1] = DDS_String_dup("9");

retcode = cft->set_expression_parameters(cft_arameters);

if (retcode != DDS_RETCODE_OK) {

printf("set_expression_parameters error\n");

subscriber_shutdown(participant);

return -1;

}

5.47.3 Filtering with Query Conditions

ˆ Given a data reader of type Foo (p. 1333)

DDSDataReader *reader = ...;

FooDataReader *Foo_reader = FooDataReader::narrow(reader);

ˆ Creating a QueryCondition

DDSQueryCondition *queryCondition = NULL;

DDS_StringSeq qc_parameters(2);

const char *qc_param_list[] = {"0","100"};

qc_parameters.from_array(qc_param_list,2);

queryCondition = reader->create_querycondition(DDS_NOT_READ_SAMPLE_STATE,

DDS_ANY_VIEW_STATE,

DDS_ALIVE_INSTANCE_STATE,

"value > %0 AND value < %1",

qc_parameters);

if (queryCondition == NULL) {

printf("create_query_condition error\n");

goto error_exit;

}

ˆ Reading matching samples with a DDSQueryCondition (p. 1267)

FooSeq data_seq;

DDS_SampleInfoSeq info_seq;

retcode = Foo_reader->read_w_condition(data_seq, info_seq,

DDS_LENGTH_UNLIMITED,

queryCondition);

if (retcode == DDS_RETCODE_NO_DATA) {

printf("no matching data\n");

} else if (retcode != DDS_RETCODE_OK) {

printf("read_w_condition error %d\n", retcode);

subscriber_shutdown(participant);

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.47 Filter Use Cases 181

return -1;

} else {

for (i = 0; i < data_seq.length(); ++i) {

if (info_seq[i].valid_data) {

/* process your data here */

}

retcode = Foo_reader->return_loan(data_seq, info_seq);

if (retcode != DDS_RETCODE_OK) {

printf("return loan error %d\n", retcode);

subscriber_shutdown(participant);

return -1;

}

}

ˆ DDSQueryCondition::set query parameters (p. 1268) is used sim-
ilarly to DDSContentFilteredTopic::set expression parameters
(p. 1001), and the same coding techniques can be used.

ˆ Any DDSQueryCondition (p. 1267) that have been created must be
deleted before the DDSDataReader (p. 1004) can be deleted. This can
be done using DDSDataReader::delete contained entities (p. 1010)
or manually as in:

retcode = reader->delete_readcondition(queryCondition);

5.47.4 Filtering Performance

Although RTI Data Distribution Service supports filtering on any field or combi-
nation of fields using the SQL syntax of the built-in filter, filters for keyed topics
that filter solely on the contents of key fields have the potential for much higher
performance. This is because for key field only filters, the DDSDataReader
(p. 1004) caches the results of the filter (pass or not pass) for each instance.
When another sample of the same instance is seen at the DDSDataReader
(p. 1004), the filter results are retrieved from cache, dispensing with the need to
call the filter function.

This optimization applies to all filtering using the built-in SQL filter, performed
by the DDSDataReader (p. 1004), for either DDSContentFilteredTopic
(p. 998) or DDSQueryCondition (p. 1267). This does not apply to filtering
perfomed for DDSContentFilteredTopic (p. 998) by the DDSDataWriter
(p. 1028).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

182 Module Documentation

5.48 Creating Custom Content Filters

Working with custom content filters.

5.48.1 Introduction

By default, RTI Data Distribution Service creates content filters with the DDS -
SQL FILTER, which implements a superset of the DDS-specified SQL WHERE
clause. However, in many cases this filter may not be what you want. Some
examples are:

ˆ The default filter can only filter based on the content of a sample, not on a
computation on the content of a sample. You can use a custom filter that
is customized for a specific type and can filter based on a computation of
the type members.

ˆ You want to use a different filter language then SQL

This HOWTO explains how to write your own custom filter and is divided into
the following sections:

ˆ The Custom Content Filter API (p. 182)

ˆ Example Using C format strings (p. 183)

5.48.2 The Custom Content Filter API

A custom content filter is created by calling the DDSDomainPartici-
pant::register contentfilter (p. 1070) function with a DDSContentFilter
(p. 994) that contains a compile, an evaluate function and a finalize function.
DDSContentFilteredTopic (p. 998) can be created with DDSDomainPar-
ticipant::create contentfilteredtopic with filter (p. 1093) to use this filter.

A custom content filter is used by RTI Data Distribution Service at the follow-
ing times during the life-time of a DDSContentFilteredTopic (p. 998) (the
function called is shown in parenthesis).

ˆ When a DDSContentFilteredTopic (p. 998) is created (compile
(p. 183))

ˆ When the filter parameters are changed on the DDSContentFil-
teredTopic (p. 998) (compile (p. 183)) with DDSContentFiltered-
Topic::set expression parameters (p. 1001)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.48 Creating Custom Content Filters 183

ˆ When a sample is filtered (evaluate (p. 183)). This function is called by
the RTI Data Distribution Service core with a de-serialized sample

ˆ When a DDSContentFilteredTopic (p. 998) is deleted (finalize
(p. 183))

5.48.2.1 The compile function

The compile (p. 183) function is used to compile a filter expression and ex-
pression parameters. Please note that the term compile is intentionally loosely
defined. It is up to the user to decide what this function should do and return.

See DDSContentFilter::compile (p. 995) for details.

5.48.2.2 The evaluate function

The evaluate (p. 184) function is called each time a sample is received to de-
termine if a sample should be filtered out and discarded.

See DDSContentFilter::evaluate (p. 996) for details.

5.48.2.3 The finalize function

The finalize (p. 184) function is called when an instance of the custom content
filter is no longer needed. When this function is called, it is safe to free all
resources used by this particular instance of the custom content filter.

See DDSContentFilter::finalize (p. 997) for details.

5.48.3 Example Using C format strings

Assume that you have a type Foo (p. 1333).

You want to write a custom filter function that will drop all samples where the
value of Foo.x > x and x is a value determined by an expression parameter. The
filter will only be used to filter samples of type Foo (p. 1333).

5.48.3.1 Writing the Compile Function

The first thing to note is that we can ignore the filter expression, since we
already know what the expression is. The second is that x is a parameter that
can be changed. By using this information, the compile function is very easy to
implement. Simply return the parameter string. This string will then be passed
to the evaluate function every time a sample of this type is filtered.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

184 Module Documentation

Below is the entire compile (p. 183) function.

DDS_ReturnCode_t MyContentFilter::compile(

void** new_compile_data, const char * /* expression */,

const DDS_StringSeq& parameters,const DDS_TypeCode* /* type_code */,

const char * /* type_class_name */,

void * /* old_compile_data */) {

new_compile_data = (void)DDS_String_dup(parameters[0]);

return DDS_RETCODE_OK;

}

5.48.3.2 Writing the Evaluate Function

The next step is to implement the evaluate function. The evaluate function
receives the parameter string with the actual value to test against. Thus the
evaluate function must read the actual value from the parameter string before
evaluating the expression. Below is the entire evaluate (p. 183) function.

DDS_Boolean MyContentFilter::evaluate(

void* compile_data,const void* sample) {

char *parameter = (char*)compile_data;

DDS_Long x;

Foo *foo_sample = (Foo*)sample;

sscanf(parameter,"%d",&x);

return (foo_sample->x > x ? DDS_BOOLEAN_FALSE : DDS_BOOLEAN_TRUE);

}

5.48.3.3 Writing the Finalize Function

The last function to write is the finalize function. It is safe to free all resources
used by this particular instance of the custom content filter that is allocated in
compile. Below is the entire finalize (p. 183) function.

void MyContentFilter::finalize(

void* compile_data) {

/* free parameter string from compile function */

DDS_String_free((char *)compile_data);

}

5.48.3.4 Registering the Filter

Before the custom filter can be used, it must be registered with RTI Data
Distribution Service:

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.48 Creating Custom Content Filters 185

DDSDomainParticipant *myParticipant=NULL;

/* myParticipant = */

DDSContentFilter *myCustomFilter = new MyContentFilter();

if (myParticipant->register_contentfilter(

(char*)"MyCustomFilter",

myCustomFilter) != DDS_RETCODE_OK) {

printf("Failed to register custom filter\n");

}

5.48.3.5 Unregistering the Filter

When the filter is no longer needed, it can be unregistered from RTI Data
Distribution Service:

DDSDomainParticipant *myParticipant = NULL;

/* myParticipant = */

DDSContentFilter *myCustomFilter =

myParticipant->lookup_contentfilter((char*)"MyCustomFilter");

if (myCustomFilter != NULL) {

if (myParticipant->unregister_contentfilter(

(char*)"MyCustomFilter") != DDS_RETCODE_OK) {

printf("Failed to unregister custom filter\n");

}

delete myCustomFilter;

}

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

186 Module Documentation

5.49 Large Data Use Cases

Working with large data types.

5.49.1 Introduction

RTI Data Distribution Service supports data types whose size exceeds the maxi-
mum message size of the underlying transports. A DDSDataWriter (p. 1028)
will fragment data samples when required. Fragments are automatically re-
assembled at the receiving end.

Once all fragments of a sample have been received, the new sample is
passed to the DDSDataReader (p. 1004) which can then make it avail-
able to the user. Note that the new sample is treated as a regular sam-
ple at that point and its availability depends on standard QoS settings such
as DDS ResourceLimitsQosPolicy::max samples (p. 829) and DDS -
KEEP LAST HISTORY QOS (p. 353).

The large data feature is fully supported by all DDS API’s, so its use is mostly
transparent. Some additional considerations apply as explained below.

5.49.2 Writing Large Data

In order to use the large data feature with the DDS RELIABLE -
RELIABILITY QOS (p. 349) setting, the DDSDataWriter (p. 1028) must
be configured as an asynchronous writer (DDS ASYNCHRONOUS -
PUBLISH MODE QOS (p. 403)) with associated DDSFlowController
(p. 1163).

While the use of an asynchronous writer and flow controller is optional when us-
ing the DDS BEST EFFORT RELIABILITY QOS (p. 349) setting, most
large data use cases will benefit from the use of a flow controller to prevent
flooding the network when fragments are being sent.

ˆ Set up writer (p. 157)

ˆ Add flow control (p. 152)

5.49.3 Receiving Large Data

Large data is supported by default and in most cases, no further changes are
required.

The DDS DataReaderResourceLimitsQosPolicy (p. 487) allows tuning

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.49 Large Data Use Cases 187

the resources available to the DDSDataReader (p. 1004) for reassembling frag-
mented large data.

ˆ Set up reader (p. 163)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

188 Module Documentation

5.50 Documentation Roadmap

This section contains a roadmap for the new user with pointers on what to read
first.

If you are new to RTI Data Distribution Service, we recommend starting in the
following order:

ˆ See the Getting Started Guide. This document provides download and
installation instructions. It also lays out the core value and concepts
behind the product and takes you step-by-step through the creation of a
simple example application.

ˆ The User’s Manual describes the features of the product and how to use
them. It is organized around the structure of the DDS APIs and certain
common high-level tasks.

ˆ The documentation in the DDS API Reference (p. 194) provides an
overview of API classes and modules for the DDS data-centric publish-
subscribe (DCPS) package from a programmer’s perspective. Start by
reading the documentation on the main page.

ˆ After reading the high level module documentation, look at the Publi-
cation Example (p. 145) and Subscription Example (p. 146) for step-
by-step examples of creating a publication and subscription. These are
hyperlinked code snippets to the full API documentation, and provide a
good place to begin learning the APIs.

ˆ Next, work through your own application using the example code files
generated by rtiddsgen (p. 211).

ˆ To integrate similar code into your own application and build system, you
will likely need to refer to the Platform Notes.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.51 Conventions 189

5.51 Conventions

This section describes the conventions used in the API documentation.

5.51.1 Unsupported Features

[Not supported (optional)] This note means that the optional feature from
the DDS specification is not supported in the current release.

5.51.2 API Naming Conventions

5.51.2.1 Structure & Class Names

RTI Data Distribution Service 4 makes a distinction between value types and
interface types. Value types are types such as primitives, enumerations, strings,
and structures whose identity and equality are determined solely by explicit
state. Interface types are those abstract opaque data types that conceptually
have an identity apart from their explicit state. Examples include all of the
DDSEntity (p. 1157) subtypes, the DDSCondition (p. 992) subtypes, and
DDSWaitSet (p. 1325). Instances of value types are frequently transitory and
are declared on the stack. Instances of interface types typically have longer
lifecycles, are accessible by pointer only, and may be managed by a factory
object.

Value and interface types are distinguished by their names: value types have
names beginning with ”DDS ” (i.e. with an underscore); interface types have
names beginning with ”DDS” (i.e. with no underscore). Another way to think
of it: C-style types – structures, enumerations, etc. – have names beginning
with ”DDS ”; C++ classes have names beginning with ”DDS.”

5.51.3 API Documentation Terms

In the API documentation, the term module refers to a logical grouping of
documentation and elements in the API.

At this time, typedefs that occur in the API, such as DDS ReturnCode -
t (p. 303) do not show up in the compound list or indices. This is a known
limitation in the generated HTML.

5.51.4 Stereotypes

Commonly used stereotypes in the API documentation include the following.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

190 Module Documentation

5.51.4.1 Extensions

ˆ <<eXtension>> (p. 190)

– An RTI Data Distribution Service product extension to the DDS
standard specification.

– The extension APIs complement the standard APIs specified by the
OMG DDS specification. They are provided to improve product
usability and enable access to product-specific features such as plug-
gable transports.

5.51.4.2 Types

ˆ <<interface>> (p. 190)

– Pure interface type with no state.

– Languages such as Java natively support the concept of an inter-
face type, which is a collection of method signatures devoid of any
dynamic state.

– In C++, this is achieved via a class with all pure virtual methods
and devoid of any instance variables (ie no dynamic state).

– Interfaces are generally organized into a type hierarchy. Static type-
casting along the interface type hierarchy is ”safe” for valid objects.

ˆ <<generic>> (p. 190)

– A generic type is a skeleton class written in terms of generic pa-
rameters. Type-specific instantiations of such types are convention-
ally referred to in this documentation in terms of the hypothetical
type ”Foo”; for example: FooSeq (p. 1377), FooDataType, Foo-
DataWriter (p. 1361), and FooDataReader (p. 1334).

– For portability and efficiency, we implement generics using C prepro-
cessor macros, rather than using C++ templates.

– A generic type interface is declared via a #define macro.

– Concrete types are generated from the generic type statically at com-
pile time. The implementation of the concrete types is provided via
the generic macros which can then be compiled as normal C or C++
code.

ˆ <<singleton>> (p. 190)

– Singleton class. There is a single instance of the class.

– Generally acccessed via a get instance() static method.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.51 Conventions 191

5.51.4.3 Method Parameters

ˆ <<in>> (p. 191)

– An input parameter.

ˆ <<out>> (p. 191)

– An output parameter.

ˆ <<inout>> (p. 191)

– An input and output parameter.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

192 Module Documentation

5.52 Using DDS:: Namespace

This section describes the C++ namespace support in the DDS API.

5.52.1 DDS Namespace Support

In this documentation, all C++ classes, value types, interface types and con-
stants have names beginning with either ”DDS ” or ”DDS”. Alternatively,
DDS namespace can also be used to refer to all these classes, types or constant.

All the C++ API that begins with either ”DDS ” or ”DDS” can be re-
placed with its namespace equivalent. For example, DDSDomainPartici-
pant (p. 1054) has a namespace equivalent of DDS::DomainParticipant,
and DDS DomainParticipantQos (p. 548) has a namespace equivalent of
DDS::DomainParticipantQos.

In order to use the DDS namespace, an additional header file, ndds -
namespace cpp.h , will need to be included in your source file:

#include "ndds/ndds_cpp.h"

#include "ndds/ndds_namespace_cpp.h"

DDS::DomainParticipant *participant = NULL;

DDS::DomainParticipantQos participant_qos;

DDS::DomainParticipantListener *listener = NULL;

DDS::StatusKind status_kind = DDS::INCONSISTENT_TOPIC_STATUS;

DDS::Long counter = 0L;

If the namespace header file is not included in the source file, DDS namespace
cannot be used in the RTI Data Distribution Service API.

5.52.2 DDS Namespace and Primitive Types

By default, DDS namespace support for primitive types are included. With
DDS namespace support, the difference between DDS types and native types
can just be the capitalization in some cases:

#include "ndds/ndds_cpp.h"

#include "ndds/ndds_namespace_cpp.h"

using namespace DDS;

Long ddsCounter = 0L;

long nativeCounter = 0L;

If you want to exclude the DDS namespace support for primitive
types, you can define NDDS EXCLUDE PRIMITIVE TYPES FROM -

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.52 Using DDS:: Namespace 193

NAMESPACE in you application before including the namespace header file.
DDS namespace support for primitive types will then be excluded:

#include "ndds/ndds_cpp.h"

#define NDDS_EXCLUDE_PRIMITIVE_TYPES_FROM_NAMESPACE

#include "ndds/ndds_namespace_cpp.h"

using namespace DDS;

DDS_Long ddsCounter = 0;

long nativeCounter = 0;

For the rest of the documentation, the DDS prefix is used for all class
/types/constants names. However, all the API with the DDS prefix can be
replaced with DDS namespace instead if the namespace header file is included.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

194 Module Documentation

5.53 DDS API Reference

RTI Data Distribution Service modules following the DDS module definitions.

Modules

ˆ Domain Module

Contains the DDSDomainParticipant (p. 1054) class that acts as an en-
trypoint of RTI Data Distribution Service and acts as a factory for many
of the classes. The DDSDomainParticipant (p. 1054) also acts as a con-
tainer for the other objects that make up RTI Data Distribution Service.

ˆ Topic Module

Contains the DDSTopic (p. 1311), DDSContentFilteredTopic (p. 998),
and DDSMultiTopic (p. 1221) classes, the DDSTopicListener (p. 1322)
interface, and more generally, all that is needed by an application to define
DDSTopic (p. 1311) objects and attach QoS policies to them.

ˆ Publication Module

Contains the DDSFlowController (p. 1163), DDSPublisher (p. 1243),
and DDSDataWriter (p. 1028) classes as well as the DDSPublisherLis-
tener (p. 1265) and DDSDataWriterListener (p. 1048) interfaces, and
more generally, all that is needed on the publication side.

ˆ Subscription Module

Contains the DDSSubscriber (p. 1284), DDSDataReader (p. 1004),
DDSReadCondition (p. 1269), and DDSQueryCondition (p. 1267)
classes, as well as the DDSSubscriberListener (p. 1306) and DDS-
DataReaderListener (p. 1023) interfaces, and more generally, all that is
needed on the subscription side.

ˆ Infrastructure Module

Defines the abstract classes and the interfaces that are refined by the other
modules. Contains common definitions such as return codes, status values,
and QoS policies.

ˆ Queries and Filters Syntax

5.53.1 Detailed Description

RTI Data Distribution Service modules following the DDS module definitions.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.53 DDS API Reference 195

5.53.2 Overview

Information flows with the aid of the following constructs: DDSPublisher
(p. 1243) and DDSDataWriter (p. 1028) on the sending side, DDSSub-
scriber (p. 1284) and DDSDataReader (p. 1004) on the receiving side.

ˆ A DDSPublisher (p. 1243) is an object responsible for data distribution.
It may publish data of different data types. A TDataWriter acts as a typed
(i.e. each DDSDataWriter (p. 1028) object is dedicated to one applica-
tion data type) accessor to a publisher. A DDSDataWriter (p. 1028)
is the object the application must use to communicate to a publisher the
existence and value of data objects of a given type. When data object
values have been communicated to the publisher through the appropriate
data-writer, it is the publisher’s responsibility to perform the distribution
(the publisher will do this according to its own QoS, or the QoS attached
to the corresponding data-writer). A publication is defined by the associ-
ation of a data-writer to a publisher. This association expresses the intent
of the application to publish the data described by the data-writer in the
context provided by the publisher.

ˆ A DDSSubscriber (p. 1284) is an object responsible for receiving pub-
lished data and making it available (according to the Subscriber’s QoS)
to the receiving application. It may receive and dispatch data of different
specified types. To access the received data, the application must use a
typed TDataReader attached to the subscriber. Thus, a subscription is
defined by the association of a data-reader with a subscriber. This as-
sociation expresses the intent of the application to subscribe to the data
described by the data-reader in the context provided by the subscriber.

DDSTopic (p. 1311) objects conceptually fit between publications and sub-
scriptions. Publications must be known in such a way that subscriptions can re-
fer to them unambiguously. A DDSTopic (p. 1311) is meant to fulfill that pur-
pose: it associates a name (unique in the domain i.e. the set of applications that
are communicating with each other), a data type, and QoS related to the data
itself. In addition to the topic QoS, the QoS of the DDSDataWriter (p. 1028)
associated with that Topic and the QoS of the DDSPublisher (p. 1243) as-
sociated to the DDSDataWriter (p. 1028) control the behavior on the pub-
lisher’s side, while the corresponding DDSTopic (p. 1311), DDSDataReader
(p. 1004) and DDSSubscriber (p. 1284) QoS control the behavior on the sub-
scriber’s side.

When an application wishes to publish data of a given type, it must create
a DDSPublisher (p. 1243) (or reuse an already created one) and a DDS-
DataWriter (p. 1028) with all the characteristics of the desired publication.
Similarly, when an application wishes to receive data, it must create a DDSSub-

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

196 Module Documentation

scriber (p. 1284) (or reuse an already created one) and a DDSDataReader
(p. 1004) to define the subscription.

5.53.3 Conceptual Model

The overall conceptual model is shown below.

Notice that all the main communication objects (the specializations of Entity)
follow unified patterns of:

ˆ Supporting QoS (made up of several QosPolicy); QoS provides a generic
mechanism for the application to control the behavior of the Service and
tailor it to its needs. Each DDSEntity (p. 1157) supports its own spe-
cialized kind of QoS policies (see QoS Policies (p. 319)).

ˆ Accepting a DDSListener (p. 1217); listeners provide a generic mecha-
nism for the middleware to notify the application of relevant asynchronous
events, such as arrival of data corresponding to a subscription, violation of
a QoS setting, etc. Each DDSEntity (p. 1157) supports its own special-
ized kind of listener. Listeners are related to changes in status conditions
(see Status Kinds (p. 305)).

Note that only one Listener per entity is allowed (instead of a list of
them). The reason for that choice is that this allows a much simpler (and,
thus, more efficient) implementation as far as the middleware is concerned.
Moreover, if it were required, the application could easily implement a
listener that, when triggered, triggers in return attached ’sub-listeners’.

ˆ Accepting a DDSStatusCondition (p. 1271) (and a set of DDSRead-
Condition (p. 1269) objects for the DDSDataReader (p. 1004)); condi-
tions (in conjunction with DDSWaitSet (p. 1325) objects) provide sup-
port for an alternate communication style between the middleware and
the application (i.e., wait-based rather than notification-based).

All DCPS entities are attached to a DDSDomainParticipant (p. 1054). A
domain participant represents the local membership of the application in a do-
main. A domain is a distributed concept that links all the applications able to
communicate with each other. It represents a communication plane: only the
publishers and the subscribers attached to the same domain may interact.

DDSDomainEntity (p. 1053) is an intermediate object whose only purpose is
to state that a DomainParticipant cannot contain other domain participants.

At the DCPS level, data types represent information that is sent atomically.
For performance reasons, only plain data structures are handled by this level.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.53 DDS API Reference 197

By default, each data modification is propagated individually, independently,
and uncorrelated with other modifications. However, an application may re-
quest that several modifications be sent as a whole and interpreted as such at
the recipient side. This functionality is offered on a Publisher/Subscriber ba-
sis. That is, these relationships can only be specified among DDSDataWriter
(p. 1028) objects attached to the same DDSPublisher (p. 1243) and retrieved
among DDSDataReader (p. 1004) objects attached to the same DDSSub-
scriber (p. 1284).

By definition, a DDSTopic (p. 1311) corresponds to a single data type. How-
ever, several topics may refer to the same data type. Therefore, a DDSTopic
(p. 1311) identifies data of a single type, ranging from one single instance to a
whole collection of instances of that given type. This is shown below for the
hypothetical data type Foo (p. 1333).

In case a set of instances is gathered under the same topic, different instances
must be distinguishable. This is achieved by means of the values of some data
fields that form the key to that data set. The key description (i.e., the list of
data fields whose value forms the key) has to be indicated to the middleware.
The rule is simple: different data samples with the same key value represent
successive values for the same instance, while different data samples with differ-
ent key values represent different instances. If no key is provided, the data set
associated with the DDSTopic (p. 1311) is restricted to a single instance.

Topics need to be known by the middleware and potentially propagated. Topic
objects are created using the create operations provided by DDSDomainPar-
ticipant (p. 1054).

The interaction style is straightforward on the publisher’s side: when the appli-
cation decides that it wants to make data available for publication, it calls the
appropriate operation on the related DDSDataWriter (p. 1028) (this, in turn,
will trigger its DDSPublisher (p. 1243)).

On the subscriber’s side however, there are more choices: relevant information
may arrive when the application is busy doing something else or when the appli-
cation is just waiting for that information. Therefore, depending on the way the
application is designed, asynchronous notifications or synchronous access may
be more appropriate. Both interaction modes are allowed, a DDSListener
(p. 1217) is used to provide a callback for synchronous access and a DDSWait-
Set (p. 1325) associated with one or several DDSCondition (p. 992) objects
provides asynchronous data access.

The same synchronous and asynchronous interaction modes can also be used
to access changes that affect the middleware communication status (see Sta-
tus Kinds (p. 305)). For instance, this may occur when the middleware asyn-
chronously detects an inconsistency. In addition, other middleware information
that may be relevant to the application (such as the list of the existing topics)
is made available by means of built-in topics (p. 41) that the application can
access as plain application data, using built-in data-readers.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

198 Module Documentation

5.53.4 Modules

DCPS consists of five modules:

ˆ Infrastructure module (p. 111) defines the abstract classes and the
interfaces that are refined by the other modules. It also provides support
for the two interaction styles (notification-based and wait-based) with the
middleware.

ˆ Domain module (p. 32) contains the DDSDomainParticipant
(p. 1054) class that acts as an entrypoint of the Service and acts as a
factory for many of the classes. The DDSDomainParticipant (p. 1054)
also acts as a container for the other objects that make up the Service.

ˆ Topic module (p. 48) contains the DDSTopic (p. 1311) class, the
DDSTopicListener (p. 1322) interface, and more generally, all that is
needed by the application to define DDSTopic (p. 1311) objects and at-
tach QoS policies to them.

ˆ Publication module (p. 80) contains the DDSPublisher (p. 1243) and
DDSDataWriter (p. 1028) classes as well as the DDSPublisherLis-
tener (p. 1265) and DDSDataWriterListener (p. 1048) interfaces, and
more generally, all that is needed on the publication side.

ˆ Subscription module (p. 92) contains the DDSSubscriber (p. 1284),
DDSDataReader (p. 1004), DDSReadCondition (p. 1269), and
DDSQueryCondition (p. 1267) classes, as well as the DDSSub-
scriberListener (p. 1306) and DDSDataReaderListener (p. 1023) in-
terfaces, and more generally, all that is needed on the subscription side.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.54 Queries and Filters Syntax 199

5.54 Queries and Filters Syntax

5.54.1 Syntax for DDS Queries and Filters

A subset of SQL syntax is used in several parts of the specification:

ˆ The filter expression in the DDSContentFilteredTopic (p. 998)

ˆ The query expression in the DDSQueryCondition (p. 1267)

ˆ The topic expression in the DDSMultiTopic (p. 1221)

Those expressions may use a subset of SQL, extended with the possibility to
use program variables in the SQL expression. The allowed SQL expressions are
defined with the BNF-grammar below.

The following notational conventions are made:

ˆ NonTerminals are typeset in italics.

ˆ ’Terminals’ are quoted and typeset in a fixed width font. They are
written in upper case in most cases in the BNF-grammar below, but should
be case insensitive.

ˆ TOKENS are typeset in bold.

ˆ The notation (element // ’,’) represents a non-empty comma-separated
list of elements.

5.54.2 SQL grammar in BNF

Expression ::= FilterExpression

| TopicExpression

| QueryExpression

.
FilterExpression ::= Condition

TopicExpression ::= SelectFrom { Where } ’;’

QueryExpression ::= { Condition }{ ’ORDER BY’ (FIELD-
NAME // ’,’) }

.

SelectFrom ::= ’SELECT’ Aggregation ’FROM’ Selection

.
Aggregation ::= ’*’

| (SubjectFieldSpec // ’,’)

.
SubjectFieldSpec ::= FIELDNAME

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

200 Module Documentation

| FIELDNAME ’AS’ IDENTIFIER
| FIELDNAME IDENTIFIER
.

Selection ::= TOPICNAME
| TOPICNAME NaturalJoin JoinItem

.
JoinItem ::= TOPICNAME

| TOPICNAME NaturalJoin JoinItem

| ’(’ TOPICNAME NaturalJoin JoinItem ’)’

.
NaturalJoin ::= ’INNER JOIN’

| ’INNER NATURAL JOIN’

| ’NATURAL JOIN’

| ’NATURAL INNER JOIN’

.
Where ::= ’WHERE’ Condition

.
Condition ::= Predicate

| Condition ’AND’ Condition

| Condition ’OR’ Condition

| ’NOT’ Condition

| ’(’ Condition ’)’

.
Predicate ::= ComparisonPredicate

| BetweenPredicate

.
ComparisonPredicate ::= ComparisonTerm RelOp ComparisonTerm

.
ComparisonTerm ::= FieldIdentifier

| Parameter

.
BetweenPredicate ::= FieldIdentifier ’BETWEEN’ Range

| FieldIdentifier ’NOT BETWEEN’ Range

.
FieldIdentifier ::= FIELDNAME

| IDENTIFIER
.

RelOp ::= ’=’ | ’>’ | ’>=’ | ’<’ | ’<=’ | ’<>’ | ’LIKE’ | ’MATCH’

.
Range ::= Parameter ’AND’ Parameter

.
Parameter ::= INTEGERVALUE

| CHARVALUE
| FLOATVALUE
| STRING
| ENUMERATEDVALUE
| BOOLEANVALUE
| PARAMETER
.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.54 Queries and Filters Syntax 201

Note – INNER JOIN, INNER NATURAL JOIN, NATURAL JOIN, and NAT-
URAL INNER JOIN are all aliases, in the sense that they have the same se-
mantics. They are all supported because they all are part of the SQL standard.

5.54.3 Token expression

The syntax and meaning of the tokens used in the SQL grammar is described
as follows:

ˆ IDENTIFIER - An identifier for a FIELDNAME, and is defined as any
series of characters ’a’, ..., ’z’, ’A’, ..., ’Z’, ’0’, ..., ’9’, ’ ’ but may not start
with a digit.

Formal notation:

IDENTIFIER: LETTER (PART LETTER)*

where LETTER : ["A"-"Z"," ","a"-"z"]

PART LETTER : ["A"-"Z"," ","a"-"z","0"-"9"]

ˆ FIELDNAME - A fieldname is a reference to a field in the data structure.
The dot ’.’ is used to navigate through nested structures. The number of
dots that may be used in a FIELDNAME is unlimited. The FIELDNAME
can refer to fields at any depth in the data structure. The names of the field
are those specified in the IDL definition of the corresponding structure,
which may or may not match the fieldnames that appear on the language-
specific (e.g., C/C++, Java) mapping of the structure. To reference to the
n+1 element in an array or sequence, use the notation ’[n]’, where n is a
natural number (zero included). FIELDNAME must resolve to a primitive
IDL type; that is either boolean, octet, (unsigned) short, (unsigned) long,
(unsigned) long long, float double, char, wchar, string, wstring, or enum.

Formal notation:

FIELDNAME: FieldNamePart ("." FieldNamePart)*

where FieldNamePart : IDENTIFIER ("[" Index "]")*

Index> : (["0"-"9"])+

| ["0x","0X"](["0"-"9", "A"-"F", "a"-"f"])+

Primitive IDL types referenced by FIELDNAME are treated as different types
in Predicate according to the following table:

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

202 Module Documentation

Predicate Data Type IDL Type
BOOLEANVALUE boolean
INTEGERVALUE octet, (unsigned) short, (unsigned)

long, (unsigned) long long
FLOATVALUE float, double
CHARVALUE char, wchar
STRING string, wstring
ENUMERATEDVALUE enum

ˆ TOPICNAME - A topic name is an identifier for a topic, and is defined
as any series of characters ’a’, ..., ’z’, ’A’, ..., ’Z’, ’0’, ..., ’9’, ’ ’ but may
not start with a digit.

Formal notation:

TOPICNAME : IDENTIFIER

ˆ INTEGERVALUE - Any series of digits, optionally preceded by a plus
or minus sign, representing a decimal integer value within the range of the
system. A hexadecimal number is preceded by 0x and must be a valid
hexadecimal expression.

Formal notation:

INTEGERVALUE : (["+","-"])? (["0"-"9"])+ [("L","l")]?

| (["+","-"])? ["0x","0X"](["0"-"9", "A"-"F", "a"-"f"])+ [("L","l")]?

ˆ CHARVALUE - A single character enclosed between single quotes.

Formal notation:

CHARVALUE : "’" (~["’"])? "’"

ˆ FLOATVALUE - Any series of digits, optionally preceded by a plus or
minus sign and optionally including a floating point (’.’). A power-of-ten
expression may be postfixed, which has the syntax en or En, where n is
a number, optionally preceded by a plus or minus sign.

Formal notation:

FLOATVALUE : (["+","-"])? (["0"-"9"])* (".")? (["0"-"9"])+ (EXPONENT)?

where EXPONENT : ["e","E"] (["+","-"])? (["0"-"9"])+

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.54 Queries and Filters Syntax 203

ˆ STRING - Any series of characters encapsulated in single quotes, except
the single quote itself.

Formal notation:

STRING : "’" (~["’"])* "’"

ˆ ENUMERATEDVALUE - An enumerated value is a reference to a
value declared within an enumeration. Enumerated values consist of the
name of the enumeration label enclosed in single quotes. The name used
for the enumeration label must correspond to the label names specified in
the IDL definition of the enumeration.

Formal notation:

ENUMERATEDVALUE : "’" ["A" - "Z", "a" - "z"] ["A" - "Z", "a" - "z", " ", "0" - "9"]* "’"

ˆ BOOLEANVALUE - Can either be ’TRUE’ or ’FALSE’, case insensi-
tive.

Formal notation (case insensitive):

BOOLEANVALUE : ["TRUE","FALSE"]

ˆ PARAMETER - A parameter is of the form %n, where n represents a
natural number (zero included) smaller than 100. It refers to the n + 1
th argument in the given context. Argument can only in primitive type
value format. It cannot be a FIELDNAME.

Formal notation:

PARAMETER : "%" (["0"-"9"])+

5.54.4 Type compatability in Predicate

Only certain combination of type comparisons are valid in Predicate. The fol-
lowing table marked all the compatible pairs with ’YES’:

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

204 Module Documentation

BOOLEAN-
VALUE

INTE-
GERVALUEFLOAT-

VALUE
CHAR-
VALUE

STRING
ENU-
MER-
ATED-
VALUE

BOOLEAN
YES

INTE-
GERVALUE

YES YES

FLOAT-
VALUE

YES YES

CHAR-
VALUE

YES YES YES

STRING
YES

YES(∗1)
YES

ENU-
MER-
ATED-
VALUE

YES
YES(∗2) YES(∗2) YES(∗3)

ˆ (∗1) See SQL Extension: Regular Expression Matching (p. 204)

ˆ (∗2) Because the formal notation of the Enumeration values, they are
compatible with string and char literals, but they are not compatible with
string or char variables, i.e., ”MyEnum=’EnumValue’” would be correct,
but ”MyEnum=MyString” is not allowed.

ˆ (∗3) Only for same type Enums.

5.54.5 SQL Extension: Regular Expression Matching

The relational operator MATCH may only be used with string fields. The right-
hand operator is a string pattern. A string pattern specifies a template that
the left-hand field value must match. The characters ,/?∗[]-∧!% have special
meanings.

MATCH is case-sensitive.

The pattern allows limited ”wild card” matching under the following rules:

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.54 Queries and Filters Syntax 205

Character Meaning
, ”,” separates a list of alternate

patterns. The field string is
matched if it matches one or more
of the patterns.

/ ”/” in the pattern string matches a
/ in the field string. This character
is used to separate a sequence of
mandatory substrings.

? ”?” in the pattern string matches
any single non-special characters in
the field string.

∗ ”∗” in the pattern string matches 0
or more non-special characters in
field string.

[charlist] Matches any one of the characters
from the list of characters in
charlist .

[s-e] Matches any character any
character from s to e, inclusive.

% ”%” is used to designate filter
expressions parameters.

[!charlist] or [∧charlist] Matches any characters not in
charlist (not supported).

[!s-e] or [∧s-e] Matches any characters not in the
interval [s-e] (not supported).

\ Escape character for special
characters (not supported)

The syntax is similar to the POSIX fnmatch syntax (1003.2-1992 section B.6).
The MATCH syntax is also similar to the ’subject’ strings of TIBCO Ren-
dezvous.

5.54.6 Examples

Assuming Topic ”Location” has as an associated type a structure with fields
”flight id, x, y, z”, and Topic ”FlightPlan” has as fields ”flight id, source, des-
tination”. The following are examples of using these expressions.

Example of a filter expression (for DDSContentFilteredTopic (p. 998)) or
a query expression (for DDSQueryCondition (p. 1267)):

ˆ "z < 1000 AND x < 23"

Examples of a filter expression using MATCH (for DDSContentFiltered-
Topic (p. 998)) operator:

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

206 Module Documentation

ˆ "symbol MATCH ’NASDAQ/GOOG’"

ˆ "symbol MATCH ’NASDAQ/[A-M]∗’"

Example of a topic expression (for DDSMultiTopic (p. 1221) [Not sup-
ported (optional)]):

ˆ "SELECT flight id, x, y, z AS height FROM ’Location’ NATURAL JOIN

’FlightPlan’ WHERE height < 1000 AND x <23"

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.55 RTI Data Distribution Service API Reference 207

5.55 RTI Data Distribution Service API Refer-
ence

RTI Data Distribution Service product specific API’s.

Modules

ˆ Clock Selection

APIs related to clock selection.

ˆ Multi-channel DataWriters

APIs related to Multi-channel DataWriters.

ˆ Pluggable Transports

APIs related to RTI Data Distribution Service pluggable transports.

ˆ Configuration Utilities

Utility API’s independent of the DDS standard.

ˆ Unsupported Utilities

Unsupported APIs used by examples in the RTI Data Distribution Service
distribution as well as in rtiddsgen-generated examples.

ˆ Durability and Persistence

APIs related to RTI Data Distribution Service Durability and Persistence.

ˆ Configuring QoS Profiles with XML

APIs related to XML QoS Profiles.

5.55.1 Detailed Description

RTI Data Distribution Service product specific API’s.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

208 Module Documentation

5.56 Programming How-To’s

These ”How To”s illustrate how to apply RTI Data Distribution Service APIs
to common use cases.

Modules

ˆ Publication Example

A data publication example.

ˆ Subscription Example

A data subscription example.

ˆ Participant Use Cases

Working with domain partcipants.

ˆ Topic Use Cases

Working with topics.

ˆ FlowController Use Cases

Working with flow controllers.

ˆ Publisher Use Cases

Working with publishers.

ˆ DataWriter Use Cases

Working with data writers.

ˆ Subscriber Use Cases

Working with subscribers.

ˆ DataReader Use Cases

Working with data readers.

ˆ Entity Use Cases

Working with entities.

ˆ Waitset Use Cases

Using wait-sets and conditions.

ˆ Transport Use Cases

Working with pluggable transports.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.56 Programming How-To’s 209

ˆ Filter Use Cases

Working with data filters.

ˆ Creating Custom Content Filters

Working with custom content filters.

ˆ Large Data Use Cases

Working with large data types.

5.56.1 Detailed Description

These ”How To”s illustrate how to apply RTI Data Distribution Service APIs
to common use cases.

These are a good starting point to familiarize yourself with DDS. You can use
these code fragments as ”templates” for writing your own code.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

210 Module Documentation

5.57 Programming Tools

Modules

ˆ rtiddsgen

Generates source code from data types declared in IDL, XML, XSD, or
WSDL files.

ˆ rtiddsping

Sends or receives simple messages using RTI Data Distribution Service.

ˆ rtiddsspy

Debugging tool which receives all RTI Data Distribution Service communi-
cation.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.58 rtiddsgen 211

5.58 rtiddsgen

Generates source code from data types declared in IDL, XML, XSD, or WSDL
files. Generates code necessary to allocate, send, receive, and print user-defined
data types.

5.58.1 Usage

rtiddsgen [-d <outdir>]

[-language <C|C++|Java|C++/CLI|C#>]

[-namespace]

[-package <packagePrefix>]

[-example <arch>]

[-replace]

[-debug]

[-corba [client header file] [-orb <CORBA ORB>]]

[-optimization <level of optimization>]

[-stringSize <Unbounded strings size>]

[-sequenceSize <Unbounded sequences size>]

[-notypecode]

[-ppDisable]

[-ppPath <preprocessor executable>]

[-ppOption <option>]

[-D <name>[=<value>]]

[-U <name>]

[-I <directory>]

[-noCopyable]

[-use42eAlignment]

[-enableEscapeChar]

[-typeSequenceSuffix <Suffix>]

[-convertToXml |

-convertToXsd |

-convertToWsdl |

-convertToIdl]

[-convertToCcl]

[-convertToCcs]

[-version]

[-help]

[-verbosity [1-3]]

[[-inputIdl] <IDLInputFile.idl> |

[-inputXml] <XMLInputFile.xml> |

[-inputXsd] <XSDInputFile.xsd> |

[-inputWsdl] <WSDLInputFile.wsdl>]

-d Specifies where to put the generated files. If omitted, the input file’s directory
is used.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

212 Module Documentation

-language Generates output for only the language specified. The default is
C++.

-namespace Specifies the use of C++ namespaces (for C++ only).

-package Specifies a packagePrefix to use as the root package (for Java only).

-example Generates example programs and makefiles (for UNIX-based sys-
tems) or workspace and project files (for Windows systems) based on the input
types description file.

The <arch> parameter specifies the architecture for the example makefiles.

For -language C/C++, valid options for <arch> are:

sparcSol2.8gcc3.2, sparcSol2.8cc5.2, sparcSol2.9gcc3.2, sparcSol2.9gcc3.3,
sparcSol2.9cc5.3, sparcSol2.9cc5.4, sparc64Sol2.10cc5.8, sparc-
Sol2.10gcc3.4.2, sparc64Sol2.10gcc3.4.2, i86Sol2.9gcc3.3.2, i86Sol2.10gcc3.4.4,
x64Sol2.10gcc3.4.3

i86Linux2.4gcc3.2, i86Linux2.4gcc3.2.2, x64Linux2.4gcc3.2.3,
i86Linux2.6gcc3.4.3, x64Linux2.6gcc3.4.5, i86Linux2.6gcc4.1.1,
x64Linux2.6gcc4.1.1, i86Linux2.6gcc4.1.2, x64Linux2.6gcc4.1.2,
x64Linux2.6gcc4.3.2, i86Linux2.6gcc3.4.6, i86RedHawk5.1gcc4.1.2,
i86Suse9.5gcc3.3.3, x64Suse9.5gcc3.3.3, i86Suse10.1gcc4.1.0,
x64Suse10.1gcc4.1.0, armv7leLinux2.6gcc4.4.1, ppc64Linux2.6gcc4.1.2,
ppc64Linux2.6gcc4.3.0, ppc7400Linux2.6gcc3.3.3

i86Win32VC60, i86Win32VC70, i86Win32VS2003, i86Win32VS2005,
x64Win64VS2005, i86Win32VS2008, x64Win64VS2008
armv4WinCE5.0VS2005, i86WinCE5.0eVC40, armv4WinCE6.0VS2005,
i86WinCE6.0VS2005

ppc7400Lynx4.0.0gcc3.2.2, ppc7400Lynx4.2.0gcc3.2.2,
ppc750Lynx4.0.0gcc3.2.2, ppc750Lynx4.2.0gcc3.2.2, ppc7400Lynx4.2.0gcc3.4.3,
ppc7400Lynx5.0.0gcc3.4.3, i86Lynx4.0.0gcc2.95.3, i86Lynx4.0.0gcc3.2.2,
i86Lynx4.2.0gcc3.2.2, i86LynxOS SE3.0.0gcc3.4.3

ppc604Vx5.4gcc, pentiumVx5.5gcc, ppc405Vx5.5gcc, ppc604Vx5.5gcc,
ppc603Vx5.5gcc, pentiumVx6.0gcc3.3.2, ppc604Vx6.0gcc3.3.2, pen-
tiumVx6.0gcc3.3.2 rtp, ppc604Vx6.0gcc3.3.2 rtp, pentiumVx6.3gcc3.4.4,
ppc604Vx6.3gcc3.4.4, pentiumVx6.3gcc3.4.4 rtp, ppc604Vx6.3gcc3.4.4 rtp,
pentiumVx6.5gcc3.4.4, ppc604Vx6.5gcc3.4.4, pentiumVx6.5gcc3.4.4 rtp,
ppc604Vx6.5gcc3.4.4 rtp, pentiumVx6.6gcc4.1.2, pentiumVx6.6gcc4.1.2 -
rtp, ppc405Vx6.6gcc4.1.2, ppc405Vx6.6gcc4.1.2 rtp, ppc604Vx6.6gcc4.1.2,
ppc604Vx6.6gcc4.1.2 rtp, ppc604Vx6.7gcc4.1.2, ppc604Vx6.7gcc4.1.2 rtp,

ppc7400Inty5.0.7.mvme5100-7400, ppc7400Inty5.0.7.mvme5100-7400-
ipk, ppc7400Inty5.0.9.mvme5100-7400-ghnet2, cellInty5.1.0.ibmpxcab,
p5AIX5.3xlc9.0, 64p5AIX5.3xlc9.0

For -language C++/CLI and C#, valid option for <arch> is i86Win32dotnet2.0

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.58 rtiddsgen 213

For -language java, valid options for <arch> are:

i86Sol2.9jdk, i86Sol2.10jdk, x64Sol2.10jdk, sparcSol2.8jdk, sparcSol2.9jdk,
sparcSol2.10jdk, sparc64Sol2.10jdk

i86Linux2.4gcc3.2jdk, i86Linux2.4gcc3.2.2jdk, x64Linux2.4gcc3.2.3jdk,
i86Linux2.6gcc3.4.3jdk, x64Linux2.6gcc3.4.5jdk, i86Linux2.6gcc4.1.1jdk,
x64Linux2.6gcc4.1.1jdk, i86Linux2.6gcc4.1.2jdk, x64Linux2.6gcc4.1.2jdk,
x64Linux2.6gcc4.3.2jdk, i86Linux2.6gcc3.4.6jdk, i86RedHawk5.1gcc4.1.2jdk
i86Suse9.5gcc3.3.3jdk, x64Suse9.5gcc3.3.3jdk, i86Suse10.1gcc4.1.0jdk,
x64Suse10.1gcc4.1.0jdk

ppc64Linux2.6gcc4.1.2jdk, ppc64Linux2.6gcc4.3.0jdk

i86Win32jdk, x64Win64jdk

ppc7400Lynx4.0.0gcc3.2.2jdk, ppc750Lynx4.0.0gcc3.2.2jdk,
ppc7400Lynx4.2.0gcc3.4.3jdk, ppc7400Lynx5.0.0gcc3.4.3jdk,
i86Lynx4.0.0gcc2.95.3jdk, i86Lynx4.0.0gcc3.2.2jdk,
p5AIX5.3xlc9.0jdk,64p5AIX5.3xlc9.0jdk

-replace Overwrites any existing output files. Warning: This removes any
changes you may have made to the original files.

-debug Generates intermediate files for debugging purposes.

-corba [client header file] [-orb <CORBA ORB>] Specifies that you want to
produce CORBA-compliant code.

Use [client header file] and [-orb <CORBA ORB>] for C++ only. The majority
of code generated is independent of the ORB. However, for some IDL features,
the code generated depends on the ORB. This version of rtiddsgen generates
code compatible with ACE-TAO or JacORB. To pick the ACE TAO version,
use the -orb parameter; the default is ACE TAO1.6.

client header file: the name of the header file for the IDL types generated by the
CORBA IDL compiler. This file will be included in the rtiddsgen type header
file instead of generating type definitions.

CORBA support requires the RTI CORBA Compatibility Kit, an add-
on product that provides a different version of rtiddsgen. Please contact
support@rti.com for more information.

-optimization Sets the optimization level. (Only applies to C/C++)

ˆ 0 (default): No optimization.

ˆ 1: Compiler generates extra code for typedefs but optimizes its use. If the
type that is used is a typedef that can be resolved either to a primitive type
or to another type defined in the same file, the generated code will invoke
the code of the most basic type to which the typedef can be resolved,
unless the most basic type is an array or a sequence. This level can be
used if the generated code is not expected to be modified.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

214 Module Documentation

ˆ 2: Maximum optimization. Functionally the same as level 1, but extra
code for typedef is not generated. This level can be used if the typedefs
are only referred by types within the same file.

-typeSequenceSuffix Assigns a suffix to the name of the implicit sequence
defined for IDL types. (Only applies to CORBA)

By default, the suffix is ’Seq’. For example, given the type ’Foo’ the name of
the implicit sequence will be ’FooSeq’.

-stringSize Sets the size for unbounded strings. Default: 255 bytes.

-sequenceSize Sets the size for unbounded sequences. Default: 100 elements.

-notypecode: Disables the generation of type code information.

-ppDisable: Disables the preprocessor.

-ppPath <preprocessor executable>: Specifies the preprocessor path. If you
only specify the name of an executable (not a complete path to that executable),
the executable must be found in your Path.

The default value is ”cpp” for non-Windows architectures, ”cl.exe” for Windows
architectures.

If the default preprocessor is not found in your Path and you use -ppPath
to provide its full path and filename, you must also use -ppOption (described
below) to set the following preprocessor options:

ˆ If you use a non-default path for cl.exe, you also need to set:

-ppOption /nologo -ppOption /C -ppOption /E -ppOption /X

ˆ If you use a non-default path for cpp, you also need to set:

-ppOption -C

-ppOption <option>: Specifies a preprocessor option. This parameter can
be used multiple times to provide the command-line options for the specified
preprocessor. See -ppPath (above).

-D <name>[=<value>]: Defines preprocessor macros.

-U <name>: Cancels any previous definition of name.

-I <directory>: Adds to the list of directories to be searched for type-definition
files (IDL, XML, XSD or WSDL files). Note: A type-definition file in one format
cannot include a file in another format.

-noCopyable: Forces rtiddsgen to put copy logic into the corresponding Type-
Support class rather than the type itself (for Java code generation only).

This option is not compatible with the use of ndds standalone type.jar.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.58 rtiddsgen 215

-use42eAlignment: Generates code compliant with RTI Data Distribution
Service 4.2e.

If your RTI Data Distribution Service applications data type uses a ’dou-
ble’,’long long’,’unsigned long long’, or ’long double’ it will not be backwards
compatible with RTI Data Distribution Service 4.2e applications, unless you use
the -use42eAlignment flag when generating code with rtiddsgen.

-enableEscapeChar: Enables use of the escape character ’ ’ in IDL identifiers.
With CORBA this option is always enabled.

-convertToXml: Converts the input type-description file to XML format.

-convertToIdl: Converts the input type-description file to IDL format.

-convertToXsd: Converts the input type-description file to XSD format.

-convertToWsdl: Converts the input type-description file to WSDL format.

-convertToCcl: Converts the input type-description file to CCL format.

-convertToCcs: Converts the input type-description file to CCS format.

-version: Prints the version.

-help: Prints out this rtiddsgen usage help.

-verbosity: rtiddsgen verbosity.

ˆ 1: exceptions

ˆ 2: exceptions and warnings

ˆ 3 (default): exceptions, warnings and information

-inputIdl: Indicates that the input file is an IDL file, regardless of the file
extension.

-inputXml: Indicates that the input file is a XML file, regardless of the file
extension.

-inputXsd: Indicates that the input file is a XSD file, regardless of the file
extension.

-inputWsdl: Indicates that the input file is a WSDL file, regardless of the file
extension.

IDLInputFile.idl: File containing IDL descriptions of your data types. If
-inputIdl is not used, the file must have an .idl extension.

XMLInputFile.xml: File containing XML descriptions of your data types. If
-inputXml is not used, the file must have an .xml extension.

XSDInputFile.xsd: File containing XSD descriptions of your data types. If
-inputXsd is not used, the file must have an .xsd extension.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

216 Module Documentation

XSDInputFile.wsdl: WSDL file containing XSD descriptions of your data
types. If -inputWsdl is not used, the file must have an .wsdl extension.

5.58.2 Description

rtiddsgen takes a language-independent specification of the data (in IDL, XML,
XSD or WSDL notation) and generates supporting classes and code to distribute
instances of the data over RTI Data Distribution Service.

To use rtiddsgen, you first write a description of your data types in IDL, XML,
XSD or WSDL format.

5.58.3 C++ Example

The following is an example generating the RTI Data Distribution Service type
myDataType:

IDL notation

struct myDataType {
long value;

};

XML notation

<?xml version="1.0" encoding="UTF-8"?>

<types xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="rti dds topic types.xsd">

<struct name="myDataType">

<member name="value" type="long"/>

</struct>

</types>

XSD notation

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:dds="http://www.omg.org/dds"

xmlns:tns="http://www.omg.org/IDL-Mapped/"

targetNamespace="http://www.omg.org/IDL-Mapped/">

<xsd:import namespace="http://www.omg.org/dds" schemaLocation="rti dds topic types common.xsd"/>

<xsd:complexType name="myDataType">

<xsd:sequence>

<xsd:element name="value" minOccurs="1" maxOccurs="1" type="xsd:int"/>

</xsd:sequence>

</xsd:complexType>

</xsd:schema>

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.58 rtiddsgen 217

WSDL notation

<?xml version="1.0" encoding="UTF-8"?>

<definitions xmlns="http://schemas.xmlsoap.org/wsdl/" xmlns:dds="http://www.omg.org/dds" xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:tns="http://www.omg.org/IDL-Mapped/" targetNamespace="http://www.omg.org/IDL-Mapped/">

<types>

<xsd:schema targetNamespace="http://www.omg.org/IDL-Mapped/">

<xsd:import namespace="http://www.omg.org/dds" schemaLocation="rti dds topic types common.xsd"/>

<xsd:complexType name="myDataType">

<xsd:sequence>

<xsd:element name="value" minOccurs="1" maxOccurs="1" type="xsd:int"/>

</xsd:sequence>

</xsd:complexType>

</xsd:schema>

</types>

</definitions>

Assuming the name of the idl file is myFileName.(idl|xml|xsd|wsdl) then all you
need to do is type:

rtiddsgen myFileName.(idl|xml|xsd|wsdl)

This generates myFileName.cxx, myFileName.h, myFileNamePlugin.cxx, my-
FileNamePlugin.h, myFileNameSupport.cxx and myFileNameSupport.h. By
default, rtiddsgen will not overwrite these files. You must use the -replace
argument to do that.

5.58.4 IDL Language

In the IDL language, data types are described in a fashion almost identical to
structures in ”C.” The complete description of the language can be found at the
OMG website.

rtiddsgen does not support the full IDL language.

For detailed information about the IDL support in RTI Data Distribution Ser-
vice see Chapter 3 of the user manual.

Below are the IDL types that are currently supported:

ˆ char

ˆ wchar

ˆ octet

ˆ short

ˆ unsigned short

ˆ long

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

218 Module Documentation

ˆ unsigned long

ˆ long long

ˆ unsigned long long

ˆ float

ˆ double

ˆ long double

ˆ boolean

ˆ bounded string

ˆ unbounded string

ˆ bounded wstring

ˆ unbounded wstring

ˆ enum

ˆ typedef

ˆ struct

ˆ valuetypes (limited support)

ˆ union

ˆ sequences

ˆ unbounded sequences

ˆ arrays

ˆ array of sequences

ˆ constant

The following non-IDL types are also supported by rtiddsgen:

ˆ bitfield

ˆ valued enum

Use of Unsupported Types in an IDL File

You may include unsupported data types in the IDL file. rtiddsgen does not
consider this an error. This allows you to use types that are defined in non-
IDL languages with either hand-written or non-rtiddsgen written plug-ins. For
example, the following is allowable:

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.58 rtiddsgen 219

//@copy #include "Bar.h"

//@copy #include "BarHandGeneratedPlugin.h"

struct Foo {

short height;

Bar barMember;

};

In the above case, Bar is defined externally by the user.

Multiple Types in a Single File

You can specify multiple types in a single idl file. This can simplify management
of files in your distributed program.

Use of Directives in an IDL File

The following directives can be used in your IDL file: Note: Do not put a space
between the slashes and the @ sign. Note: Directives are case-sensitive (for
example: use key, not Key).

ˆ //@key The field declared just before this directive in the enclosing struc-
ture is part of the key. Any number of a structure’s fields may be declared
part of the key.

ˆ //@copy This copies a line of text into the generated code verbatim (for all
languages). The text is copied into all of the type-specific files generated
by rtiddsgen (except the examples).

ˆ //@copy-c Same as //@copy, but for C++/C-only code.

ˆ //@copy-java Same as //@copy, but for Java-only code.

ˆ //@copy-declaration This is like //@copy, but only copies the text into
the file where the type is declared (<type>.h for C++/C, or <type>.java
for Java).

ˆ //@copy-c-declaration Same as //@copy-declaration, but for C++/C-only
code.

ˆ //@copy-java-declaration Same as //@copy-declaration, but for Java-only
code.

ˆ //@resolve-name [true|false] This specifies whether or not rtiddsgen should
resolve the scope of a type. If this directive is not present or set to true,
rtiddsgen resolves the scope. Otherwise rtiddsgen delegates the resolution
of a type to the user.

ˆ //@top-level [true|false] This specifies whether or not rtiddsgen should
generate type-support code for a particular struct or union. The default
is true.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

220 Module Documentation

5.58.5 XML Language

The data types can be described using XML.

RTI Data Distribution Service provides DTD and XSD files that describe the
XML format.

The DTD definition of the XML elements can be found in ../../../re-
source/dtd/rti dds topic types.dtd” under <NDDSHOME>/resource/dtd.

The XSD definition of the XML elements can be found in ../../../re-
source/dtd/rti dds topic types.dtd” under <NDDSHOME>/resource/xsd.

The XML validation performed by rtiddsgen always uses the DTD definition.
If the <!DOCTYPE> tag is not present in the XML file, rtiddsgen will look for
the DTD document under <NDDSHOME>/resource/dtd. Otherwise, it will
use the location specified in <!DOCTYPE>.

For detailed information about the mapping between IDL and XML see Chapter
3 of the RTI Data Distribution Service User Manual.

5.58.6 XSD Language

The data types can be described using XML schemas (XSD files). The XSD
specification is based on the standard IDL to WSDL mapping described in the
OMG document CORBA to WSDL/SOAP Interworking Specification

For detailed information about the mapping between IDL and XML see Chapter
3 of the RTI Data Distribution Service User Manual.

5.58.7 WSDL Language

The data types can be described using XML schemas contained in WSDL
files. The XSD specification is based on the standard IDL to WSDL map-
ping described in the OMG document CORBA to WSDL/SOAP Interworking
Specification

For detailed information about the mapping between IDL and XML see Chapter
3 of the RTI Data Distribution Service User Manual.

5.58.8 Using Generated Types Without RTI Data Distri-
bution Service (Standalone)

You can use the generated type-specific source and header files without linking
the RTI Data Distribution Service libraries or even including the RTI Data
Distribution Service header files. That is, the generated files for your data
types can be used standalone.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.58 rtiddsgen 221

The directory <NDDSHOME>/resource/standalone contains the helper files
required to work in standalone mode:

ˆ include: header and templates files for C/C++.

ˆ src: source files for C/C++.

ˆ class: Java jar file.

Using Standalone Types in C

The generated files that can be used standalone are:

ˆ <idl file name>.c : Types source file

ˆ <idl file name>.h : Types header file

You cannot use the type plug-in (<idl file>Plugin.c <idl file>Plugin.h) or the
type support (<idl file>Support.c <idl file>Support.h) code standalone.

To use the rtiddsgen-generated types in a standalone manner:

ˆ Include the directory <NDDSHOME>/resource/standalone/include in
the list of directories to be searched for header files.

ˆ Add the source files ndds standalone type.c and <idl file name>.c to your
project.

ˆ Include the file <idl file name>.h in the source files that will use the
generated types in a standalone way.

ˆ Compile the project using the two following preprocessor definitions:

– NDDS STANDALONE TYPE

– The definition for your platform: RTI VXWORKS, RTI QNX, RTI -
WIN32, RTI INTY, RTI LYNX or RTI UNIX

Using Standalone Types in C++

The generated files that can be used standalone are:

ˆ <idl file name>.cxx : Types source file

ˆ <idl file name>.h : Types header file

You cannot use the type plugin (<idl file>Plugin.cxx <idl file>Plugin.h) or the
type support (<idl file>Support.cxx <idl file>Support.h) code standalone.

To use the generated types in a standalone manner:

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

222 Module Documentation

ˆ Include the directory <NDDSHOME>/resource/standalone/include in
the list of directories to be searched for header files.

ˆ Add the source files ndds standalone type.cxx and <idl file name>.cxx to
your project.

ˆ Include the file <idl file name>.h in the source files that will use the
generated types in a standalone way.

ˆ Compile the project using the two following preprocessor definitions:

– NDDS STANDALONE TYPE

– The definition for your platform: RTI VXWORKS, RTI QNX, RTI -
WIN32, RTI INTY, RTI LYNX or RTI UNIX

Standalone Types in Java

The generated files that can be used standalone are:

ˆ <idl type>.java

ˆ <idl type>Seq.java

You cannot use the type code (<idl file>TypeCode.java), the type support
(<idl type>TypeSupport.java), the data reader (<idl file>DataReader.java) or
the data writer code (<idl file>DataWriter.java) standalone.

To use the generated types in a standalone manner:

ˆ Include the file ndds standalone type.jar in the classpath of your project.

ˆ Compile the project using the standalone types files (<idl type>.java <idl
type>Seq.java).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.59 rtiddsping 223

5.59 rtiddsping

Sends or receives simple messages using RTI Data Distribution Service. The
rtiddsping utility uses RTI Data Distribution Service to send and receive precon-
figured ”Ping” messages to other rtiddsping applications which can be running
in the same or different computers.

The rtiddsping utility can used to test the network and/or computer config-
uration and the environment settings that affect the operation of RTI Data
Distribution Service.

Usage

rtiddsping [-help] [-version]

[-domainId <domainId>] ... defaults to 0

[-index <NN>] ... defaults to -1 (auto)

[-appId <ID>] ... defaults to a middleware-selected value

[-Verbosity <NN>] ... can be 0..5

[-peer <PEER>] ... PEER format is NN@TRANSPORT://ADDRESS

[-discoveryTTL <NN>] ... can be 0..255

[-transport <MASK>] ... defaults to DDS TRANSPORTBUILTIN MASK DEFAULT

[-msgMaxSize <SIZE>] ... defaults to -1 (transport default)

[-shmRcvSize <SIZE>] ... defaults to -1 (transport default)

[-deadline <SS>] ... defaults to -1 (no deadline)

[-durability <TYPE>] ... TYPE can be VOLATILE or TRANSIENT LOCAL

[-multicast <ADDRESS>] ... defaults to no multicast

[-numSamples <NN>] ... defaults to infinite

[-publisher] ... this is the default

[-queueSize <NN>] ... defaults to 1

[-reliable] ... defaults to best-efforts

[-sendPeriod <SS>] ... SS is in seconds, defaults to 1

[-subscriber]

[-timeFilter <SS>] ... defaults to 0 (no filter)

[-timeout <SS>] ... SS is in seconds, defaults to infinite

[-topicName <NAME>] ... defaults to PingTopic

[-typeName <NAME>] ... defaults to PingType

[-useKeys <NN>] ... defaults to PingType

[-qosFile <file>]

[-qosProfile <lib::prof>]

Example: rtiddsping -domainId 3 -publisher -numSamples 100

VxWorks Usage

rtiddsping "[<options>]"

The options use the same syntax as above.

Example rtiddsping "-domainId 3 -publisher -numSamples 100"

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

224 Module Documentation

If the stack of the shell is not large enough to run rtiddsping, use "taskSpawn":

taskSpawn <name>,<priority>,<taskspawn options>,<stack size in bytes>,rtiddsping,"[\<options\>]"
The options use the same syntax as above.

Example taskSpawn "rtiddsping",100,0x8,50000,rtiddsping,"-domainId 3 -publisher -numSamples 100"

Options:

-help Prints a help message and exits.

-version Prints the version and exits.

-Verbosity <NN> Sets the verbosity level. The range is 0 to 5.

0 has minimal output and does not echo the fact that data is being sent or
received.

1 prints the most relevant statuses, including the sending and receiving of data.
This is the default.

2 prints a summary of the parameters that are in use and echoes more detailed
status messages.

3-5 Mostly affects the verbosity used by the internal RTI Data Distribution
Service modules that implement rtiddsping. The output is not always readable;
its main purpose is to provide information that may be useful to RTI’s support
team.

Example: rtiddsping -Verbosity 2

-domainId <NN>

Sets the domain ID. The valid range is 0 to 100.

Example: rtiddsping -domainId 31

-appId <ID>

Sets the application ID. If unspecified, the system will pick one automatically.

This option is rarely used.

Example: rtiddsping -appId 34556

-index <NN>

Sets the participantIndex. If participantIndex is not -1 (auto), it must be dif-
ferent than the one used by all other applications in the same computer and
domainId. If this is not respected, rtiddsping (or the application that starts
last) will get an initialization error.

Example: rtiddsping -index 2

-peer <PEER>

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.59 rtiddsping 225

Specifies a PEER to be used for discovery. Like any RTI Data Distribution Ser-
vice application, it defaults to the setting of the environment variable NDDS -
DISCOVERY PEERS or a preconfigured multicast address if the environment
is not set.

The format used for PEER is the same one used for NDDS DISCOVERY -
PEERS and is described in detail in NDDS DISCOVERY PEERS (p. 371).
A brief summary follows:

The general format is: NN@TRANSPORT://ADDRESS where:

ˆ ADDRESS is an address (in name form or using the IP notation
xxx.xxx.xxx.xxx). ADDRESS may be a multicast address.

ˆ TRANSPORT represents the kind of transport to use and NN is the max-
imum participantIndex expected at that location. NN can be omitted and
it is defaulted to ’4’

ˆ Valid settings for TRANSPORT are ’udpv4’ and ’shmem’. The default
setting if the transport is omitted is ’udpv4’.

ˆ ADDRESS cannot be omitted if the ’-peer’ option is specified.

The -peer option may be repeated to specify multiple peers.

Example: rtiddsping -peer 10.10.1.192 -peer mars -peer 4@pluto

-discoveryTTL <TTL>

Sets the TTL (time-to-live) used for multicast discovery. If not specified, it
defaults to the built-in RTI Data Distribution Service default.

The valid range is 0 to 255. The value ’0’ limits multicast to the node itself
(i.e., can only discover applications running on the same computer). The value
’1’ limits multicast discovery to computers on the same subnet. Values higher
than 1 generally indicate the maximum number of routers that may be traversed
(although some routers may be configured differently).

Example: rtiddsping -discoveryTTL 16

-transport <MASK>

A bit-mask that sets the enabled builtin transports. If not specified, the default
set of transports is used (UDPv4 + shmem). The bit values are: 1=UDPv4,
2=shmem, 8=UDPv6.

-msgMaxSize <SIZE>

Configure the maximum message size allowed by the installed transports. This
is needed if you are using rtiddsping to communicate with an application that
has set these transport parameters to larger than default values.

-shmRcvSize <SIZE>

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

226 Module Documentation

Increase the shared memory receive-buffer size. This is needed if you are using
rtiddsping to communicate with an application that has set these transport
parameters to larger than default values.

-deadline <SS>

This option only applies if the ’-subscriber’ option is also specified.

Sets the DEADLINE QoS for the subscriptions made by rtiddsping.

Note that this may cause the subscription QoS to be incompatible with the
publisher if the publisher did not specify a sendPeriod greater than the deadline.
If the QoS is incompatible, rtiddsping will not receive updates.

Each time a deadline is detected, rtiddsping will print a message indicating the
number of deadlines received so far.

Example: rtiddsping -deadline 3.5

-durability <TYPE>

Sets the DURABILITY QoS used for publishing or subscribing. Valid settings
are: VOLATILE and TRANSIENT LOCAL (default). The effect of this setting
can only be observed when it is used in in conjunction with reliability and a
queueSize larger than 1. If all these conditions are met, a late-joining subscriber
will be able to see up to queueSize samples that were previously written by the
publisher.

Example: rtiddsping -durability VOLATILE

-multicast <ADDRESS>

This option only applies if the ’-subscriber’ option is also specified.

Configures ping to receive messages over multicast. The <ADDRESS> param-
eter indicates the address to use. ADDRESS must be in the valid range for mul-
ticast addresses. For IP version 4 the valid range is 224.0.0.1 to 239.255.255.255

Example: rtiddsping -multicast 225.1.1.1

-numSamples <NN>

Sets the number of samples that will be sent by rtiddsping. After those samples
are sent, rtiddsping will exit. messages.

Example: rtiddsping -numSamples 10

-publisher

Causes rtiddsping to send ping messages. This is the default.

Example: rtiddsping -publisher

-queueSize <NN>

Specifies the maximal number of samples to hold in the queue. In the case of the
publisher, it affects the samples that are available for a late-joining subscriber.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.59 rtiddsping 227

Example: rtiddsping -queueSize 100

-reliable

Configures the RELIABILITY QoS for publishing or subscribing. The default
setting (if -reliable is not used) is BEST EFFORT

Example: rtiddsping -reliable

-sendPeriod <SS>

Sets the period (in seconds) at which rtiddsping sends the messages.

Example: rtiddsping -sendPeriod 0.5

-subscriber

Causes rtiddsping to listen for ping messages. This option cannot be specified
if ’-publisher’ is also specified.

Example: rtiddsping -subscriber

-timeFilter <SS>

This option only applies if the ’-subscriber’ option is also specified.

Sets the TIME BASED FILTER QoS for the subscriptions made by rtiddsping.
This QoS causes RTI Data Distribution Service to filter out messages that are
published at a rate faster than what the filter duration permits. For example,
if the filter duration is 10 seconds, messages will be printed no faster than once
every 10 seconds.

Example: rtiddsping -timeFilter 5.5

-timeout <SS>

This option only applies if the ’-subscriber’ option is also specified.

Sets a timeout (in seconds) that will cause rtiddsping to exit if no samples are
received for a duration that exceeds the timeout.

Example: rtiddsping -timeout 30

-topicName <NAME>

Sets the topic name used by rtiddsping. The default is ’RTIddsPingTopic’. To
communicate, both the publisher and subscriber must specify the same topic
name.

Example: rtiddsping -topicName Alarm

-typeName <NAME>

Sets the type name used by rtiddsping. The default is ’RTIddsPingType’. To
communicate, both publisher and subscriber must specify the same type name.

Example: rtiddsping -typeName AlarmDescription

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

228 Module Documentation

-useKeys <NN>

This option causes rtiddsping to use a topic whose data contains a key. The
value of the NN parameter indicates the number of different data objects (each
identified by a different value of the key) that will be published by rtiddsping.
The value of NN only affects the publishing behavior. However NN still needs
to be specified when the -useKeys option is used with the -subscriber option.

For communication to occur, both the publisher and subscriber must agree on
whether the topic that they publish/subscribe contains a key. Consequently, if
you specify the -useKeys parameter for the publisher, you must do the same
with the subscriber. Otherwise communication will not be stablished.

Example: rtiddsping -useKeys 20

-qosFile <file>

Allow you to specify additional QoS XML settings using url profile. For more
information on the syntax, see Chapter 15 in the RTI Data Distribution Service
User’s Manual.

Example: rtiddsping -qosFile /home/user/QoSProfileFile.xml

-qosProfile <lib::prof>

This option specifies the library name and profile name that the tool should use.

QoS settings

rtiddsping is configured internally using a special set of QoS settings in a pro-
file called InternalPingLibrary::InternalPingProfile. This is the default profile
unless a profile called DefaultPingLibrary::DefaultPingProfile is found. You
can use the command-line option -qosProfile to tell rtiddsping to use a differ-
ent lib::profile instead of DefaultPingLibrary::DefaultPingProfile. Like all the
other RTI Data Distribution Service applications, rtiddsping loads all the pro-
files specified using the environment variable NDDS QOS PROFILES or the file
named USER QOS PROFILES found in the current working directory.

The QoS settings used internally are available in the file RTIDDSSPING QOS -
PROFILES.example.xml.

Description

The usage depends on the operating system from which rtiddsping is executed.

Examples for UNIX, Linux, and Windows Systems

On UNIX, Linux, Windows and other operating systems that have a shell, the
syntax matches the one of the regular commands available in the shell. In the
examples below, the string ’shell prompt>’ represents the prompt that the shell
prints and are not part of the command that must be typed.

shell prompt> rtiddsping -domainId 3 -publisher -numSamples 100

shell prompt> rtiddsping -domainId 5 -subscriber -timeout 20

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.59 rtiddsping 229

shell prompt> rtiddsping -help

VxWorks examples:

On VxWorks systems, the libraries libnddscore.so, libnddsc.so and libnddscpp.so
must first be loaded. The rtiddsping command must be typed to the VxWorks
shell (either an rlogin shell, a target-server shell, or the serial line prompt). The
arguments are passed embedded into a single string, but otherwise have the
same syntax as for Unix/Windows. In the Unix, Linux, Windows and other
operating systems that have a shell, the syntax matches the one of the regular
commands available in the shell. In the examples below, the string ’vxworks
prompt>’ represents the prompt that the shell prints and are not part of the
command that must be typed.

vxworks prompt> rtiddsping "-domainId 3 -publisher -numSamples 100"

vxworks prompt> rtiddsping "-domainId 5 -subscriber -timeout 20"

vxworks prompt> rtiddsping "-help"

or, alternatively (to avoid overflowing the stack):

vxworks prompt> taskSpawn "rtiddsping", 100, 0x8, 50000, rtiddsping, "-domainId 3 -publisher -numSamples 100"

vxworks prompt> taskSpawn "rtiddsping", 100, 0x8, 50000, rtiddsping, "-domainId 5 -subscriber -timeout 20"

vxworks prompt> taskSpawn "rtiddsping", 100, 0x8, 50000, rtiddsping, "-help"

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

230 Module Documentation

5.60 rtiddsspy

Debugging tool which receives all RTI Data Distribution Service communication.
The rtiddsspy utility allows the user to monitor groups of publications available
on any RTI Data Distribution Service domain.

Note: If you have more than one DataWriter for the same Topic, and these
DataWriters have different settings for the Ownership QoS, then rtiddsspy will
only receive (and thus report on) the samples from the first DataWriter.

To run rtiddsspy, like any RTI Data Distribution Service application, you must
have the NDDS DISCOVERY PEERS environment variable that defines your
RTI Data Distribution Service domain; otherwise you must specify the peers as
command line parameters.

Usage

rtiddsspy [-help] [-version]

[-domainId <domainId>] ... defaults to 0

[-index <NN>] ... defaults to -1 (auto)

[-appId <ID>] ... defaults to a middleware-selected value

[-Verbosity <NN>] ... can be 0..5

[-peer <PEER>] ... PEER format is NN@TRANSPORT://ADDRESS

[-discoveryTTL <NN>] ... can be 0..255

[-transport <MASK>] ... defaults to DDS TRANSPORTBUILTIN MASK DEFAULT

[-msgMaxSize <SIZE>] ... defaults to -1 (transport default)

[-shmRcvSize <SIZE>] ... defaults to -1 (transport default)

[-tcMaxSize <SIZE>] ... defaults to 4096

[-hOutput]

[-deadline <SS>] ... defaults to -1 (no deadline)

[-history <DEPTH>] ... defaults to 8192

[-timeFilter <SS>] ... defaults to 0 (no filter)

[-useFirstPublicationQos]

[-showHandle]

[-typeRegex <REGEX>] ... defaults to "*"

[-topicRegex <REGEX>] ... defaults to "*"

[-typeWidth <WIDTH>] ... can be 1..255

[-topicWidth <WIDTH>] ... can be 1..255

[-truncate]

[-printSample]

[-qosFile <file>]

[-qosProfile <lib::prof>]

Example: rtiddsspy -domainId 3 -topicRegex "Alarm*"

VxWorks Usage

rtiddsspy "[<options>]"

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.60 rtiddsspy 231

The options use the same syntax as above.

Example rtiddsspy "-domainId 3 -topicRegex Alarm*"

rtiddsspy requires about 25 kB of stack. If the stack size of the shell from which it is invoked is not large enough, use "taskSpawn":

taskSpawn <name>, <priority>, <taskspawn options>, <stack size in bytes>, rtiddsspy, "[\<options\>]"

The options use the same syntax as above.

Example taskSpawn "rtiddsspy", 100, 0x8, 50000, rtiddsspy, "-domainId 3 -topicRegex Alarm*"

Options:

-help Prints a help message and exits.

-version Prints the version and exits.

-Verbosity <NN> Sets the verbosity level. The range is 0 to 5.

0 has minimal output and does not echo the fact that data is being sent or
received.

1 prints the most relevant statuses, including the sending and receiving of data.
This is the default.

2 prints a summary of the parameters being used and echoes more detailed
status messages.

3-5 Mostly affect the verbosity used by the internal RTI Data Distribution
Service modules that implement rtiddsspy. The output is not always readable;
its main purpose is to provide information that may be useful to RTI’s support
team.

Example: rtiddsspy -Verbosity 2

-domainId <NN>

Sets the domain ID. The valid range is 0 to 100.

Example: rtiddsspy -domainId 31

-appId <ID>

Sets the application ID. If unspecified, the system will pick one automatically.

This option is rarely used.

Example: rtiddsspy -appId 34556

-index <NN>

Sets the participantIndex. If participantIndex is not -1 (auto), it must be dif-
ferent than the one used by all other applications in the same computer and

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

232 Module Documentation

domainId. If this is not respected, rtiddsspy (or the application that starts last)
will get an initialization error.

Example: rtiddsspy -index 2

-peer <PEER>

Specifies a PEER to be used for discovery. Like any RTI Data Distribution Ser-
vice application, it defaults to the setting of the environment variable NDDS -
DISCOVERY PEERS or a preconfigured multicast address if the environment
is not set.

The format used for PEER is the same used for the NDDS DISCOVERY -
PEERS and is described in detail in NDDS DISCOVERY PEERS (p. 371).
A brief summary follows:

The general format is: NN@TRANSPORT://ADDRESS where:

ˆ ADDRESS is an address (in name form or using the IP notation
xxx.xxx.xxx.xxx). ADDRESS may be a multicast address.

ˆ TRANSPORT represents the kind of transport to use and NN is the max-
imum participantIndex expected at that location. NN can be omitted and
it is defaulted to ’4’

ˆ Valid settings for TRANSPORT are ’udpv4’ and ’shmem’. The default
setting if the transport is omitted is ’udpv4’

ˆ ADDRESS cannot be omitted if the ’-peer’ option is specified.

The -peer option may be repeated to specify multiple peers.

Example: rtiddsspy -peer 10.10.1.192 -peer mars -peer 4@pluto

-discoveryTTL <TTL>

Sets the TTL (time-to-live) used for multicast discovery. If not specified, it
defaults to the built-in RTI Data Distribution Service default.

The valid range is 0 to 255. The value ’0’ limits multicast to the node itself (i.e.
can only discover applications running on the same computer). The value ’1’
limits multicast discovery to computers on the same subnet. Settings greater
than 1 generally indicate the maximum number of routers that may be traversed
(although some routers may be configured differently).

Example: rtiddsspy -discoveryTTL 16

-transport <MASK>

SPecifies a bit-mask that sets the enabled builtin transports. If not specified,
the default set of transports is used (UDPv4 + shmem). The bit values are:
1=UDPv4, 2=shmem, 8=UDPv6.

-msgMaxSize <SIZE>

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.60 rtiddsspy 233

Configures the maximum message size allowed by the installed transports. This
is needed if you are using rtiddsspy to communicate with an application that
has set these transport parameters to larger than default values.

-shmRcvSize <SIZE>

Increases the shared memory receive-buffer size. This is needed if you are us-
ing rtiddsspy to communicate with an application that has set these transport
parameters to larger than default values.

-tcMaxSize <SIZE>

Configures the maximum size, in bytes, of a received type code.

-hOutput

Prints information on the output format used by rtiddsspy.

This option prints an explanation of the output and then exits.

Example: rtiddsspy -hOutput

-deadline <SS>

Sets the requested DEADLINE QoS for the subscriptions made by rtiddsspy.

Note that this may cause the subscription QoS to be incompatible with the
publisher if the publisher did not specify an offered deadline that is greater or
equal to the one requested by rtiddsspy. If the QoS is incompatible rtiddsspy
will not receive updates from that writer.

Each time a deadline is detected rtiddsspy will print a message that indicates
the number of deadlines received so far.

Example: rtiddsspy -deadline 3.5

-timeFilter <SS>

Sets the TIME BASED FILTER QoS for the subscriptions made by rtiddsspy.
This QoS causes RTI Data Distribution Service to filter-out messages that are
published at a rate faster than what the filter duration permits. For example if
the filter duration is 10 seconds, messages will be printed no faster than once
each 10 seconds.

Example: rtiddsspy -timeFilter 10.0

-history <DEPTH>

Sets the HISTORY depth QoS for the subscriptions made by rtiddsspy.

This may be relevant if the publisher has batching turned on, or if the -
useFirstPublicationQos option is used that is causing a reliable or durable sub-
scription to be created.

Example: rtiddsspy -history 1

-useFirstPublicationQos

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

234 Module Documentation

Sets the RELIABILITY and DURABILITY QoS of the subscription based on
the first discovered publication of that topic.

See also -history option.

Example: rtiddsspy -useFirstPublicationQos

-showHandle

Prints additional information about each sample received. The additional infor-
mation is the ’instance handle’ field in the SampleHeader, which can be used to
distinguish among multiple instances of data objects published under the same
topic and type names.

Samples displayed that share the topic and type names and also have the same
value for the instance handle represent value updates to the same data object.
On the other hand, samples that share the topic and type names but display
different values for the instance handle.

This option causes rtiddsspy to print an explanation of updates to the values of
different data objects.

Example: rtiddsspy -showHandle

-typeRegex <REGEX>

Subscribe only to types that match the REGEX regular expression. The syntax
of the regular expression is defined by the POSIX regex function.

When typing a regular expression to a command-line shell, some symbols may
need to be escaped to avoid interpretation by the shell. In general, it is safest
to include the expression in double quotes.

This option may be repeated to specify multiple topic expressions.

Example: rtiddsspy -typeRegex ”SensorArray∗”

-topicRegex <REGEX>

Subscribe only to topics that match the REGEX regular expression. The syntax
of the regular expression is defined by the POSIX regex function.

When typing a regular expression to a command-line shell, some symbols may
need to be escaped to avoid interpretation by the shell. In general, it is safest
to include the expression in double quotes.

This option may be repeated to specify topic multiple expressions.

Example: rtiddsspy -topicRegex ”Alarm∗”

-typeWidth <WIDTH>

Sets the maximum width of the Type name column. Names wider than this will
wrap around, unless -truncate is specified. Can be 1..255.

-topicWidth <WIDTH>

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.60 rtiddsspy 235

Sets the maximum width of the Topic name column. Names wider than this
will wrap around, unless -truncate is specified. Can be 1..255.

-truncate

Specifies that names exceeding the maximum number of characters should be
truncated.

-printSample

Prints the value of the received samples.

-qosFile <file>

Allows you to specify additional QoS XML settings using url profile. For more
information on the syntax, see Chapter 15 in the RTI Data Distribution Service
User’s Manual.

Example: rtiddsspy -qosFile /home/user/QoSProfileFile.xml

-qosProfile <lib::prof>

Specifies the library name and profile name to be used.

QoS settings

rtiddsspy is configured to discover as many entities as possible. To do so, an
internal profile is defined, called InternalSpyLibrary::InternalSpyProfile. This is
the default profile, unless a profile called DefaultSpyLibrary::DefaultSpyProfile
is found. You can use the command-line option -qosProfile to tell rtiddsspy to
use a speficied lib::profile instead of DefaultSpyLibrary::DefaultSpyProfile. Like
all the other RTI Data Distribution Service applications, rtiddsspy loads all the
profiles specified using the environment variable NDDS QOS PROFILES or the
file named USER QOS PROFILES found in the current working directory.

The QoS settings used internally are available in the file RTIDDSSPY QOS -
PROFILES.example.xml.

Usage Examples

The usage depends on the operating system from which rtiddsspy is executed.

Examples for UNIX, Linux, Windows systems

On UNIX, Linux, Windows and other operating systems that have a shell, the
syntax matches the one of the regular commands available in the shell. In the
examples below, the string ’shell prompt>’ represents the prompt that the shell
prints and are not part of the command that must be typed.

shell prompt> rtiddsspy -domainId 3

shell prompt> rtiddsspy -domainId 5 -topicRegex "Alarm*"

shell prompt> rtiddsspy -help

Examples for VxWorks Systems

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

236 Module Documentation

On VxWorks systems, the libraries libnddscore.so, libnddsc.so and libnddscpp.so
must first be loaded. The rtiddsspy command must be typed to the VxWorks
shell (either an rlogin shell, a target-server shell, or the serial line prompt).
The arguments are passed embedded into a single string, but otherwise have
the same syntax as for Unix/Windows. In UNIX, Linux, Windows and other
operating systems that have a shell, the syntax matches the one of the regular
comamnds available in the shell. In the examples below, the string ’vxworks
prompt>’ represents the prompt that the shell prints and are not part of the
command that must be typed.

vxworks prompt> rtiddsspy "-domainId 3"

vxworks prompt> rtiddsspy "-domainId 5 5 -topicRegex "Alarm*"

vxworks prompt> rtiddsspy "-help"

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.61 Class Id 237

5.61 Class Id

Transport class ID. Specifies the ID of a Transport-Plugin ’class’.

Defines

ˆ #define NDDS TRANSPORT CLASSID INVALID (-1)

Invalid Transport Class ID.

ˆ #define NDDS TRANSPORT CLASSID DTLS (6)

DTLS Secure Transport-Plugin class ID.

ˆ #define NDDS TRANSPORT CLASSID WAN (7)

WAN Transport-Plugin class ID.

ˆ #define NDDS TRANSPORT CLASSID TCPV4 LAN (8)

IPv4 TCP/IP Transport-Plugin class ID for LAN case.

ˆ #define NDDS TRANSPORT CLASSID TCPV4 WAN (9)

IPv4 TCP/IP Transport-Plugin class ID for WAN case.

ˆ #define NDDS TRANSPORT CLASSNAME TCPV4 -
WAN ”tcpv4 wan”

IPv4 TCP/IP Transport-Plugin class name for WAN case.

ˆ #define NDDS TRANSPORT CLASSID TLSV4 LAN (10)

IPv4 TCP/IP Transport-Plugin class ID for LAN case with TLS enabled.

ˆ #define NDDS TRANSPORT CLASSID TLSV4 WAN (11)

IPv4 TCP/IP Transport-Plugin class ID for WAN case with TLS enabled.

ˆ #define NDDS TRANSPORT CLASSID PCIE (12)

PCIE Transport-Plugin class ID.

ˆ #define NDDS TRANSPORT CLASSID RESERVED -
RANGE (1000)

Transport-Plugin class IDs below this are reserved by RTI.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

238 Module Documentation

Typedefs

ˆ typedef RTI INT32 NDDS Transport ClassId t

Type for storing RTI Data Distribution Service Transport-Plugin class IDs.

5.61.1 Detailed Description

Transport class ID. Specifies the ID of a Transport-Plugin ’class’.

Each implementation of a Transport Plugin must have a unique ID. For example,
a UDP/IP Transport-Plugin implemenation must have a different ID than a
Shared Memory Transport Plugin.

User-implemented Transport Plugins must have an ID higher than NDDS -
TRANSPORT CLASSID RESERVED RANGE (p. 239).

5.61.2 Define Documentation

5.61.2.1 #define NDDS TRANSPORT CLASSID INVALID (-1)

Invalid Transport Class ID.

Transport-Plugins implementations should set their class ID to a value different
than this.

5.61.2.2 #define NDDS TRANSPORT CLASSID DTLS (6)

DTLS Secure Transport-Plugin class ID.

5.61.2.3 #define NDDS TRANSPORT CLASSID WAN (7)

WAN Transport-Plugin class ID.

5.61.2.4 #define NDDS TRANSPORT CLASSID TCPV4 LAN (8)

IPv4 TCP/IP Transport-Plugin class ID for LAN case.

5.61.2.5 #define NDDS TRANSPORT CLASSID TCPV4 -
WAN (9)

IPv4 TCP/IP Transport-Plugin class ID for WAN case.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.61 Class Id 239

5.61.2.6 #define NDDS TRANSPORT CLASSNAME TCPV4 -
WAN ”tcpv4 wan”

IPv4 TCP/IP Transport-Plugin class name for WAN case.

5.61.2.7 #define NDDS TRANSPORT CLASSID TLSV4 -
LAN (10)

IPv4 TCP/IP Transport-Plugin class ID for LAN case with TLS enabled.

5.61.2.8 #define NDDS TRANSPORT CLASSID TLSV4 -
WAN (11)

IPv4 TCP/IP Transport-Plugin class ID for WAN case with TLS enabled.

5.61.2.9 #define NDDS TRANSPORT CLASSID PCIE (12)

PCIE Transport-Plugin class ID.

5.61.2.10 #define NDDS TRANSPORT CLASSID RESERVED -
RANGE (1000)

Transport-Plugin class IDs below this are reserved by RTI.

User-defined Transport-Plugins should use a class ID greater than this number.

5.61.3 Typedef Documentation

5.61.3.1 typedef RTI INT32 NDDS Transport ClassId t

Type for storing RTI Data Distribution Service Transport-Plugin class IDs.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

240 Module Documentation

5.62 Address

Transport-independent addressing scheme using IPv6 presentation strings and
numerically stored in network-ordered format.

Classes

ˆ struct NDDS Transport Address t

Addresses are stored individually as network-ordered bytes.

Defines

ˆ #define NDDS TRANSPORT ADDRESS INVALID {{0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}}

An invalid transport address. Used as an initializer.

ˆ #define NDDS TRANSPORT ADDRESS STRING BUFFER -
SIZE (40)

The minimum size of the buffer that should be passed to NDDS Transport -
Address to string (p. 242).

Functions

ˆ RTI INT32 NDDS Transport Address to string (const NDDS -
Transport Address t ∗self, char ∗buffer inout, RTI INT32 buffer -
length in)

Converts a numerical address to a printable string representation.

ˆ RTI INT32 NDDS Transport Address from string (NDDS -
Transport Address t ∗address out, const char ∗address in)

Converts an address (IPv4 dotted notation or IPv6 presentation string) into
a numerical address.

ˆ void NDDS Transport Address print (const NDDS Transport -
Address t ∗address in, const char ∗desc in, RTI INT32 indent in)

Prints an address to standard out.

ˆ RTI INT32 NDDS Transport Address is ipv4 (const NDDS -
Transport Address t ∗address in)

Checks if an address is an IPv4 address.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.62 Address 241

ˆ RTI INT32 NDDS Transport Address is multicast (const NDDS -
Transport Address t ∗address in)

Checks if an address is an IPv4 or IPv6 multicast address.

5.62.1 Detailed Description

Transport-independent addressing scheme using IPv6 presentation strings and
numerically stored in network-ordered format.

The APIs of RTI Data Distribution Service uses IPv6 address notation for all
transports.

Transport-Plugin implementations that are not IP-based are required to map
whatever addressing scheme natively used by the physical transport (if any) to
an address in IPv6 notation and vice versa.

IPv6 addresses are numerically stored in 16 bytes. An IPv6 address can be
presented In string notation in a variety of ways. For example,

"00AF:0000:0037:FE01:0000:0000:034B:0089"

"AF:0:37:FE01:0:0:34B:89"

"AF:0:37:FE01::34B:89"

are all valid IPv6 presentation of the same address.

IPv4 address in dot notation can be used to specify the last 4 bytes of the
address. For example,

"0000:0000:0000:0000:0000:0000:192.168.0.1"

"0:0:0:0:0:0:192.168.0.1"

"::192.168.0.1"

are all valid IPv6 presentation of the same address.

For a complete description of valid IPv6 address notation, consult the IPv6
Addressing Architecture (RFC 2373).

Addresses are divided into unicast addresses and multicast addresses.

Multicast addresses are defined as

ˆ Addresses that start with 0xFF. That is
FFxx:xxxx:xxxx:xxxx:xxxx:xxxx:xxxx:xxxx.

or an IPv4 multicast address

ˆ Address in the range [::224.0.0.0, ::239.255.255.255]

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

242 Module Documentation

Multicast addresses do not refer to any specific destination (network interface).
Instead, they usually refer to a group of network interfaces, often called a ”mul-
ticast group”.

Unicast addresses always refer to a specific network interface.

5.62.2 Define Documentation

5.62.2.1 #define NDDS TRANSPORT ADDRESS INVALID {{0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}}

An invalid transport address. Used as an initializer.

For example: NDDS Transport Address t (p. 1403) address = NDDS -
TRANSPORT ADDRESS INVALID

5.62.2.2 #define NDDS TRANSPORT ADDRESS STRING -
BUFFER SIZE (40)

The minimum size of the buffer that should be passed to NDDS Transport -
Address to string (p. 242).

The string size includes space for 8 tuples of 4 characters each plus 7 delimiting
colons plus a terminating NULL.

5.62.3 Function Documentation

5.62.3.1 RTI INT32 NDDS Transport Address to string (const
NDDS Transport Address t ∗ self, char ∗ buffer inout,
RTI INT32 buffer length in)

Converts a numerical address to a printable string representation.

Precondition:

The buffer inout provided must be at least NDDS TRANSPORT -
ADDRESS STRING BUFFER SIZE (p. 242) characters long.

Parameters:

self <<in>> (p. 191) The address to be converted.
buffer inout <<inout>> (p. 191) Storage passed in which to return the

string corresponding to the address.
buffer length in <<in>> (p. 191) The length of the storage buffer.

Must be >= NDDS TRANSPORT ADDRESS STRING -
BUFFER SIZE (p. 242)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.62 Address 243

Returns:

1 upon success; 0 upon failure (not enough space in the provided buffer)

5.62.3.2 RTI INT32 NDDS Transport Address from string
(NDDS Transport Address t ∗ address out, const char ∗
address in)

Converts an address (IPv4 dotted notation or IPv6 presentation string) into a
numerical address.

The address string must be in IPv4 dotted notation (X.X.X.X) or IPv6 presen-
tation notation. The string cannot be a hostname since this function does not
perform a hostname lookup.

Parameters:

address out <<out>> (p. 191) Numerical value of the address.
address in <<in>> (p. 191) String representation of an address.

Returns:

1 if address out contains a valid address
0 if it was not able to convert the string into an address.

5.62.3.3 void NDDS Transport Address print (const
NDDS Transport Address t ∗ address in, const char ∗
desc in, RTI INT32 indent in)

Prints an address to standard out.

Parameters:

address in <<in>> (p. 191) Address to be printed.
desc in <<in>> (p. 191) A prefix to be printed before the address.
indent in <<in>> (p. 191) Indentation level for the printout.

5.62.3.4 RTI INT32 NDDS Transport Address is ipv4 (const
NDDS Transport Address t ∗ address in)

Checks if an address is an IPv4 address.

Parameters:

address in <<in>> (p. 191) Address to be tested.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

244 Module Documentation

Note:

May be implemented as a macro for efficiency.

Returns:

1 if address is an IPv4 address
0 otherwise.

5.62.3.5 RTI INT32 NDDS Transport Address is multicast (const
NDDS Transport Address t ∗ address in)

Checks if an address is an IPv4 or IPv6 multicast address.

Parameters:

address in <<in>> (p. 191) Address to be tested.

May be implemented as a macro for efficiency.

Returns:

1 if address is a multicast address
0 otherwise.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.63 Attributes 245

5.63 Attributes

Base ”class” of the properties of any Transport Plugin.

Classes

ˆ struct NDDS Transport Property t

Base structure that must be inherited by derived Transport Plugin classes.

Defines

ˆ #define NDDS TRANSPORT PROPERTY BIT BUFFER -
ALWAYS LOANED (0x2)

Specified zero-copy behavior of transport.

ˆ #define NDDS TRANSPORT PROPERTY GATHER SEND -
BUFFER COUNT MIN (3)

Minimum number of gather-send buffers that must be supported by a Trans-
port Plugin implementation.

5.63.1 Detailed Description

Base ”class” of the properties of any Transport Plugin.

5.63.2 Define Documentation

5.63.2.1 #define NDDS TRANSPORT PROPERTY BIT -
BUFFER ALWAYS LOANED (0x2)

Specified zero-copy behavior of transport.

A Transport Plugin may commit to one of three behaviors for zero copy receives:

1. Always does zero copy.

2. Sometimes does zero copy, up to the transport discretion.

3. Never does zero copy.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

246 Module Documentation

This bit should be set only if the Transport Plugin commits to always doing
a zero copy receive, or more specifically, always loaning a buffer through its
receive rEA() call.

In that case, the NDDS core will not need to allocate storage for a message that
it retrieves with the receive rEA() call.

5.63.2.2 #define NDDS TRANSPORT PROPERTY GATHER -
SEND BUFFER COUNT MIN (3)

Minimum number of gather-send buffers that must be supported by a Transport
Plugin implementation.

For the NDDS Transport Property t (p. 1404) structure to be valid, the
value of NDDS Transport Property t::gather send buffer count max
(p. 1407) must be greater than or equal to this value.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.64 Shared Memory Transport 247

5.64 Shared Memory Transport

Built-in transport plug-in for inter-process communications using shared mem-
ory (NDDS TRANSPORT CLASSID SHMEM (p. 251)).

Classes

ˆ struct NDDS Transport Shmem Property t

Subclass of NDDS Transport Property t (p. 1404) allowing specification
of parameters that are specific to the shared-memory transport.

Defines

ˆ #define NDDS TRANSPORT CLASSID SHMEM (2)
Builtin Shared-Memory Transport-Plugin class ID.

ˆ #define NDDS TRANSPORT SHMEM ADDRESS BIT -
COUNT (0)

Default value of NDDS Transport Property t::address bit count
(p. 1406).

ˆ #define NDDS TRANSPORT SHMEM PROPERTIES -
BITMAP DEFAULT (NDDS TRANSPORT PROPERTY BIT -
BUFFER ALWAYS LOANED)

Default value of NDDS Transport Property t::properties bitmap
(p. 1406).

ˆ #define NDDS TRANSPORT SHMEM GATHER SEND -
BUFFER COUNT MAX DEFAULT (1024)

Default value of NDDS Transport Property t::gather send buffer -
count max (p. 1407).

ˆ #define NDDS TRANSPORT SHMEM MESSAGE SIZE -
MAX DEFAULT (9216)

Default value of NDDS Transport Property t::message size max
(p. 1407).

ˆ #define NDDS TRANSPORT SHMEM RECEIVED -
MESSAGE COUNT MAX DEFAULT (32)

Default value of NDDS Transport Shmem Property t::received -
message count max (p. 1412).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

248 Module Documentation

ˆ #define NDDS TRANSPORT SHMEM RECEIVE BUFFER -
SIZE DEFAULT

Default value of NDDS Transport Shmem Property t::receive buffer -
size (p. 1413).

ˆ #define NDDS TRANSPORT SHMEM PROPERTY -
DEFAULT

Use this to initialize stack variable.

Functions

ˆ NDDS Transport Plugin ∗ NDDS Transport Shmem new (const
struct NDDS Transport Shmem Property t ∗property in)

Create a new shmem process transport.

ˆ NDDS Transport Plugin ∗ NDDS Transport Shmem create
(NDDS Transport Address t ∗default network address out, const
struct DDS PropertyQosPolicy ∗property in)

Create a new shmem process transport, using PropertyQosPolicy.

5.64.1 Detailed Description

Built-in transport plug-in for inter-process communications using shared mem-
ory (NDDS TRANSPORT CLASSID SHMEM (p. 251)).

This plugin uses System Shared Memory to send messages between processes
on the same node.

The transport plugin has exactly one ”receive interface”; since the address -
bit count is 0, it can be assigned any address. Thus the interface is located by
the ”network address” associated with the transport plugin.

5.64.2 Compatibility of Sender and Receiver Transports

Opening a receiver ”port” on shared memory corresponds to creating a shared
memory segment using a name based on the port number. The transport plu-
gin’s properties are embedded in the shared memory segment.

When a sender tries to send to the shared memory port, it verifies that properties
of the receiver’s shared memory transport are compatible with those specified
in its transport plugin. If not, the sender will fail to attach to the port and will
output messages such as below (with numbers appropriate to the properties of
the transport plugins involved).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.64 Shared Memory Transport 249

NDDS_Transport_Shmem_attachShmem:failed to initialize incompatible properties

NDDS_Transport_Shmem_attachShmem:countMax 0 > -19417345 or max size -19416188 > 2147482624

In this scenario, the properties of the sender or receiver transport plugin in-
stances should be adjusted, so that they are compatible.

5.64.3 Crashing and Restarting Programs

If a process using shared memory crashes (say because the user typed in ∧C),
resources associated with its shared memory ports may not be properly cleaned
up. Later, if another RTI Data Distribution Service process needs to open the
same ports (say, the crashed program is restarted), it will attempt to reuse the
shared memory segment left behind by the crashed process.

The reuse is allowed iff the properties of transport plugin are compatible with
those embedded in the shared memory segment (i.e., of the original creator).
Otherwise, the process will fail to open the ports, and will output messages such
as below (with numbers appropriate to the properties of the transport plugins
involved).

NDDS_Transport_Shmem_create_recvresource_rrEA:failed to initialize shared

memory resource Cannot recycle existing shmem: size not compatible for key 0x1234

In this scenario, the shared memory segments must be cleaned up using ap-
propriate platform specific commands. For details, please refer to the platform
notes.

5.64.4 Shared Resource Keys

The transport uses the shared memory segment keys, given by the formula
below.

0x400000 + port

The transport also uses signaling shared semaphore keys given by the formula
below.

0x800000 + port

The transport also uses mutex shared semaphore keys given by the formula
below.

0xb00000 + port

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

250 Module Documentation

wher the port is a function of the domain id and the participant id, as
described in DDS WireProtocolQosPolicy::participant id (p. 985)

See also:

DDS WireProtocolQosPolicy::participant id (p. 985)
NDDSTransportSupport::set builtin transport property()
(p. 1441)

5.64.5 Creating and Registering Shared Memory Trans-
port Plugin

RTI Data Distribution Service can implicitly create this plugin and register
with the DDSDomainParticipant (p. 1054) if this transport is specified in
DDS TransportBuiltinQosPolicy (p. 909).

To specify the properties of the builtin shared memory transport that is implic-
itly registered, you can either:

ˆ call NDDSTransportSupport::set builtin transport property
(p. 1441) or

ˆ specify the pre-defined property names in DDS PropertyQosPolicy
(p. 783) associated with the DDSDomainParticipant (p. 1054). (see
Shared Memory Transport Property Names in Property QoS
Policy of Domain Participant (p. 251)).

Builtin transport plugin properties specified in DDS PropertyQosPolicy
(p. 783) always overwrite the ones specified through NDDSTransportSup-
port::set builtin transport property() (p. 1441). The default value is as-
sumed on any unspecified property.

Note that all properties should be set before the transport is implicitly created
and registered by RTI Data Distribution Service. See Built-in Transport
Plugins (p. 129) for details on when a builtin transport is registered.

To explicitly create an instance of this plugin, NDDS Transport -
Shmem new() (p. 252) should be called. The instance should be reg-
istered with RTI Data Distribution Service, see NDDSTransportSup-
port::register transport (p. 1437). In some configurations, you may have
to disable the builtin shared memory transport plugin instance (DDS -
TransportBuiltinQosPolicy (p. 909), DDS TRANSPORTBUILTIN -
SHMEM (p. 381)), to avoid port conflicts with the newly created plugin in-
stance.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.64 Shared Memory Transport 251

5.64.6 Shared Memory Transport Property Names in
Property QoS Policy of Domain Participant

The following table lists the predefined property names that can be set in the
DDS PropertyQosPolicy (p. 783) of a DDSDomainParticipant (p. 1054)
to configure the builtin shared memory transport plugin.

5.64.7 Define Documentation

5.64.7.1 #define NDDS TRANSPORT CLASSID SHMEM (2)

Builtin Shared-Memory Transport-Plugin class ID.

5.64.7.2 #define NDDS TRANSPORT SHMEM ADDRESS BIT -
COUNT (0)

Default value of NDDS Transport Property t::address bit count
(p. 1406).

5.64.7.3 #define NDDS TRANSPORT SHMEM -
PROPERTIES BITMAP DEFAULT (
NDDS TRANSPORT PROPERTY BIT BUFFER -
ALWAYS LOANED)

Default value of NDDS Transport Property t::properties bitmap
(p. 1406).

5.64.7.4 #define NDDS TRANSPORT SHMEM GATHER -
SEND BUFFER COUNT MAX DEFAULT (1024)

Default value of NDDS Transport Property t::gather send buffer -
count max (p. 1407).

5.64.7.5 #define NDDS TRANSPORT SHMEM MESSAGE -
SIZE MAX DEFAULT (9216)

Default value of NDDS Transport Property t::message size max
(p. 1407).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

252 Module Documentation

5.64.7.6 #define NDDS TRANSPORT SHMEM RECEIVED -
MESSAGE COUNT MAX DEFAULT (32)

Default value of NDDS Transport Shmem Property t::received -
message count max (p. 1412).

5.64.7.7 #define NDDS TRANSPORT SHMEM RECEIVE -
BUFFER SIZE DEFAULT

Value:

(NDDS_TRANSPORT_SHMEM_RECEIVED_MESSAGE_COUNT_MAX_DEFAULT * \

NDDS_TRANSPORT_SHMEM_MESSAGE_SIZE_MAX_DEFAULT / 4)

Default value of NDDS Transport Shmem Property t::receive buffer -
size (p. 1413).

5.64.7.8 #define NDDS TRANSPORT SHMEM PROPERTY -
DEFAULT

Use this to initialize stack variable.

5.64.8 Function Documentation

5.64.8.1 NDDS Transport Plugin∗ NDDS Transport Shmem new
(const struct NDDS Transport Shmem Property t ∗
property in)

Create a new shmem process transport.

An application may create multiple transports, possibly for use in different
domains.

Parameters:

property in <<in>> (p. 191) Desired behavior of this transport. May
be NULL for default property. The transport plugin can only support
one unicast receive interface; therefore the interface selection lists are
ignored.

Returns:

handle to a Shmem inter-process Transport Plugin on success
NULL on failure.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.64 Shared Memory Transport 253

5.64.8.2 NDDS Transport Plugin∗ NDDS Transport Shmem create
(NDDS Transport Address t ∗ default network -
address out, const struct DDS PropertyQosPolicy ∗
property in)

Create a new shmem process transport, using PropertyQosPolicy.

An application may create multiple transports, possibly for use in different
domains.

Parameters:

default network address out <<out>> (p. 191) Network address to
be used when registering the transport.

property in <<in>> (p. 191) Desired behavior of this transport. May
be NULL for default property. The transport plugin can only support
one unicast receive interface; therefore the interface selection lists are
ignored.

Returns:

handle to a Shmem inter-process Transport Plugin on success
NULL on failure.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

254 Module Documentation

Name Descriptions

dds.transport.shmem.builtin.parent.address -
bit count

See NDDS Transport -
Property t::address bit count
(p. 1406)

dds.transport.shmem.builtin.parent.properties -
bitmap

See NDDS Transport -
Property t::properties bitmap
(p. 1406)

dds.transport.shmem.builtin.parent.gather -
send buffer count max

See NDDS Transport -
Property t::gather send -
buffer count max
(p. 1407)

dds.transport.shmem.builtin.parent.message -
size max

See NDDS Transport -
Property t::message size max
(p. 1407)

dds.transport.shmem.builtin.parent.allow -
interfaces

See NDDS Transport -
Property t::allow interfaces list
(p. 1408) and
NDDS Transport Property -
t::allow interfaces list length
(p. 1408).
Interfaces should be specified as
comma-separated strings, with each
comma delimiting an interface. For
example: 127.0.0.1,eth0

dds.transport.shmem.builtin.parent.deny -
interfaces

See NDDS Transport -
Property t::deny interfaces list
(p. 1409) and
NDDS Transport Property -
t::deny interfaces list length
(p. 1409).
Interfaces should be specified as
comma-separated strings, with each
comma delimiting an interface. For
example: 127.0.0.1,eth0

dds.transport.shmem.builtin.parent.allow -
multicast interfaces

See
NDDS Transport Property -
t::allow multicast interfaces list
(p. 1409) and NDDS Transport -
Property t::allow multicast -
interfaces list length
(p. 1410).
Interfaces should be specified as
comma-separated strings, with each
comma delimiting an interface. For
example: 127.0.0.1,eth0

dds.transport.shmem.builtin.parent.deny -
multicast interfaces

See
NDDS Transport Property -
t::deny multicast interfaces list
(p. 1410) and NDDS Transport -
Property t::deny multicast -
interfaces list length (p. 1411).
Interfaces should be specified as
comma-separated strings, with each
comma delimiting an interface. For
example: 127.0.0.1,eth0

dds.transport.shmem.builtin.received -
message count max

See NDDS Transport Shmem -
Property t::received message -
count max
(p. 1412)

dds.transport.shmem.builtin.receive -
buffer size

See NDDS Transport Shmem -
Property t::receive buffer size
(p. 1413)

Table 5.8: Property Strings for Shared Memory Transport

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.65 UDPv4 Transport 255

5.65 UDPv4 Transport

Built-in transport plug-in using UDP/IPv4 (NDDS TRANSPORT -
CLASSID UDPv4 (p. 258)).

Classes

ˆ struct NDDS Transport UDPv4 Property t

Configurable IPv4/UDP Transport-Plugin properties.

Defines

ˆ #define NDDS TRANSPORT CLASSID UDPv4 (1)

Builtin IPv4 UDP/IP Transport-Plugin class ID.

ˆ #define NDDS TRANSPORT UDPV4 ADDRESS BIT -
COUNT (32)

Default value of NDDS Transport Property t::address bit count
(p. 1406).

ˆ #define NDDS TRANSPORT UDPV4 PROPERTIES -
BITMAP DEFAULT (0)

Default value of NDDS Transport Property t::properties bitmap
(p. 1406).

ˆ #define NDDS TRANSPORT UDPV4 GATHER SEND -
BUFFER COUNT MAX DEFAULT (16)

Default value of NDDS Transport Property t::gather send buffer -
count max (p. 1407).

ˆ #define NDDS TRANSPORT UDPV4 SOCKET BUFFER -
SIZE OS DEFAULT (-1)

Used to specify that os default be used to specify socket buffer size.

ˆ #define NDDS TRANSPORT UDPV4 MESSAGE SIZE -
MAX DEFAULT (9216)

Default value of NDDS Transport Property t::message size max
(p. 1407).

ˆ #define NDDS TRANSPORT UDPV4 MULTICAST TTL -
DEFAULT (1)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

256 Module Documentation

Default value of NDDS Transport UDPv4 Property t::multicast ttl
(p. 1418).

ˆ #define NDDS TRANSPORT UDPV4 BLOCKING NEVER

Value for NDDS Transport UDPv4 Property t::send blocking
(p. 1420) to specify non-blocking sockets.

ˆ #define NDDS TRANSPORT UDPV4 BLOCKING ALWAYS

[default] Value for NDDS Transport UDPv4 Property t::send -
blocking (p. 1420) to specify blocking sockets.

ˆ #define NDDS TRANSPORT UDPV4 BLOCKING -
DEFAULT NDDS TRANSPORT UDPV4 BLOCKING ALWAYS

Default value for NDDS Transport UDPv4 Property t::send blocking
(p. 1420) to specify blocking sockets.

ˆ #define NDDS TRANSPORT UDPV4 PROPERTY -
DEFAULT

Use this to initialize a NDDS Transport UDPv4 Property t (p. 1415)
structure.

Functions

ˆ NDDS Transport Plugin ∗ NDDS Transport UDPv4 new (const
struct NDDS Transport UDPv4 Property t ∗property in)

Create an instance of a UDPv4 Transport Plugin.

ˆ RTI INT32 NDDS Transport UDPv4 string to address cEA
(NDDS Transport Plugin ∗self, NDDS Transport Address t
∗address out, const char ∗address in)

Realization of NDDS Transport String To Address Fcn cEA for IP trans-
ports.

ˆ RTI INT32 NDDS Transport UDPv4 get receive interfaces cEA
(NDDS Transport Plugin ∗self, RTI INT32 ∗found more than provided -
for out, RTI INT32 ∗interface reported count out, NDDS Transport -
Interface t interface array inout[], RTI INT32 interface array size in)

Realization of NDDS Transport Get Receive Interfaces Fcn cEA for IP
transports.

ˆ NDDS Transport Plugin ∗ NDDS Transport UDPv4 create
(NDDS Transport Address t ∗default network address out, const
struct DDS PropertyQosPolicy ∗property in)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.65 UDPv4 Transport 257

Create an instance of a UDPv4 Transport Plugin, using PropertyQosPolicy.

5.65.1 Detailed Description

Built-in transport plug-in using UDP/IPv4 (NDDS TRANSPORT -
CLASSID UDPv4 (p. 258)).

This transport plugin uses UDPv4 sockets to send and receive messages. It
supports both unicast and multicast communications in a single instance of the
plugin. By default, this plugin will use all interfaces that it finds enabled and
”UP” at instantiation time to send and receive messages.

The user can configure an instance of this plugin to only use unicast or only use
multicast, see NDDS Transport UDPv4 Property t::unicast enabled
(p. 1417) and NDDS Transport UDPv4 Property t::multicast enabled
(p. 1418).

In addition, the user can configure an instance of this plugin to selectively use
the network interfaces of a node (and restrict a plugin from sending multicast
messages on specific interfaces) by specifying the ”white” and ”black” lists in the
base property’s fields (NDDS Transport Property t::allow interfaces list
(p. 1408), NDDS Transport Property t::deny interfaces list (p. 1409),
NDDS Transport Property t::allow multicast interfaces list (p. 1409),
NDDS Transport Property t::deny multicast interfaces list (p. 1410)).

RTI Data Distribution Service can implicitly create this plugin and register
with the DDSDomainParticipant (p. 1054) if this transport is specified in
DDS TransportBuiltinQosPolicy (p. 909).

To specify the properties of the builtin UDPv4 transport that is implicitly reg-
istered, you can either:

ˆ call NDDSTransportSupport::set builtin transport property
(p. 1441) or

ˆ specify the predefined property names in DDS PropertyQosPolicy
(p. 783) associated with the DDSDomainParticipant (p. 1054). (see
UDPv4 Transport Property Names in Property QoS Policy of
Domain Participant (p. 258)).

Builtin transport plugin properties specified in DDS PropertyQosPolicy
(p. 783) always overwrite the ones specified through NDDSTransportSup-
port::set builtin transport property() (p. 1441). The default value is as-
sumed on any unspecified property.

Note that all properties should be set before the transport is implicitly cre-
ated and registered by RTI Data Distribution Service. Any properties set after

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

258 Module Documentation

the builtin transport is registered will be ignored. See Built-in Transport
Plugins (p. 129) for details on when a builtin transport is registered.

To explicitly create an instance of this plugin, NDDS Transport UDPv4 -
new() (p. 260) should be called. The instance should be registered with
RTI Data Distribution Service, see NDDSTransportSupport::register -
transport (p. 1437). In some configurations one may have to disable the
builtin UDPv4 transport plugin instance (DDS TransportBuiltinQosPolicy
(p. 909), DDS TRANSPORTBUILTIN UDPv4 (p. 381)), to avoid port
conflicts with the newly created plugin instance.

5.65.2 UDPv4 Transport Property Names in Property
QoS Policy of Domain Participant

The following table lists the predefined property names that can be set in DDS -
PropertyQosPolicy (p. 783) of a DDSDomainParticipant (p. 1054) to con-
figure the builtin UDPv4 transport plugin.

See also:

NDDSTransportSupport::set builtin transport property()
(p. 1441)

5.65.3 Define Documentation

5.65.3.1 #define NDDS TRANSPORT CLASSID UDPv4 (1)

Builtin IPv4 UDP/IP Transport-Plugin class ID.

5.65.3.2 #define NDDS TRANSPORT UDPV4 ADDRESS BIT -
COUNT (32)

Default value of NDDS Transport Property t::address bit count
(p. 1406).

5.65.3.3 #define NDDS TRANSPORT UDPV4 PROPERTIES -
BITMAP DEFAULT (0)

Default value of NDDS Transport Property t::properties bitmap
(p. 1406).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.65 UDPv4 Transport 259

5.65.3.4 #define NDDS TRANSPORT UDPV4 GATHER SEND -
BUFFER COUNT MAX DEFAULT (16)

Default value of NDDS Transport Property t::gather send buffer -
count max (p. 1407).

This is also the maximum value that can be used when instantiating the udp
transport.

16 is sufficient for RTI Data Distribution Service, but more may improve dis-
covery and reliable performance. Porting note: find out what the maximum
gather buffer count is on your OS!

5.65.3.5 #define NDDS TRANSPORT UDPV4 SOCKET -
BUFFER SIZE OS DEFAULT (-1)

Used to specify that os default be used to specify socket buffer size.

5.65.3.6 #define NDDS TRANSPORT UDPV4 MESSAGE SIZE -
MAX DEFAULT (9216)

Default value of NDDS Transport Property t::message size max
(p. 1407).

5.65.3.7 #define NDDS TRANSPORT UDPV4 MULTICAST -
TTL DEFAULT (1)

Default value of NDDS Transport UDPv4 Property t::multicast ttl
(p. 1418).

5.65.3.8 #define NDDS TRANSPORT UDPV4 BLOCKING -
NEVER

Value for NDDS Transport UDPv4 Property t::send blocking (p. 1420)
to specify non-blocking sockets.

5.65.3.9 #define NDDS TRANSPORT UDPV4 BLOCKING -
ALWAYS

[default] Value for NDDS Transport UDPv4 Property t::send -
blocking (p. 1420) to specify blocking sockets.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

260 Module Documentation

5.65.3.10 #define NDDS TRANSPORT UDPV4 BLOCKING -
DEFAULT NDDS TRANSPORT UDPV4 BLOCKING -
ALWAYS

Default value for NDDS Transport UDPv4 Property t::send blocking
(p. 1420) to specify blocking sockets.

5.65.3.11 #define NDDS TRANSPORT UDPV4 PROPERTY -
DEFAULT

Value:

{ \

{ NDDS_TRANSPORT_CLASSID_UDPv4, \

NDDS_TRANSPORT_UDPV4_ADDRESS_BIT_COUNT, \

NDDS_TRANSPORT_UDPV4_PROPERTIES_BITMAP_DEFAULT, \

NDDS_TRANSPORT_UDPV4_GATHER_SEND_BUFFER_COUNT_MAX_DEFAULT, \

NDDS_TRANSPORT_UDPV4_MESSAGE_SIZE_MAX_DEFAULT, \

NULL, 0, /* allow_interfaces_list */ \

NULL, 0, /* deny_interfaces_list */ \

NULL, 0, /* allow_multicast_interfaces_list */ \

NULL, 0, /* deny_multicast_interfaces_list */ \

}, \

NDDS_TRANSPORT_UDPV4_MESSAGE_SIZE_MAX_DEFAULT, \

NDDS_TRANSPORT_UDPV4_MESSAGE_SIZE_MAX_DEFAULT, \

1, /* use unicast */ \

NDDS_TRANSPORT_UDPV4_USE_MULTICAST_DEFAULT, /* use multicast */ \

NDDS_TRANSPORT_UDPV4_MULTICAST_TTL_DEFAULT, \

0, /* multicast loopback enabled */ \

-1, /* (auto-)ignore loopback */ \

0, /* do not ignore non-RUNNING */ \

0, /* no_zero_copy */ \

NDDS_TRANSPORT_UDPV4_BLOCKING_DEFAULT, \

0, 0, 0xff /* no mapping to IP_TOS by default */, \

1 }

Use this to initialize a NDDS Transport UDPv4 Property t (p. 1415)
structure.

5.65.4 Function Documentation

5.65.4.1 NDDS Transport Plugin∗ NDDS Transport UDPv4 new
(const struct NDDS Transport UDPv4 Property t ∗
property in)

Create an instance of a UDPv4 Transport Plugin.

An application may create and register multiple instances of this Transport Plu-
gin with RTI Data Distribution Service. This may be to partition the network

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.65 UDPv4 Transport 261

interfaces across multiple RTI Data Distribution Service domains. However,
note that the underlying transport, the operating system’s IP layer, is still a
”singleton”. For example, if a unicast transport has already bound to a port,
and another unicast transport tries to bind to the same port, the second attempt
will fail.

The transport plugin honors the interface/multicast ”white” and ”black” lists
specified in the NDDS Transport UDPv4 Property t::parent (p. 1416):

ˆ NDDS Transport Property t::allow interfaces list (p. 1408),

ˆ NDDS Transport Property t::deny interfaces list (p. 1409),

ˆ NDDS Transport Property t::allow multicast interfaces list
(p. 1409),

ˆ NDDS Transport Property t::deny multicast interfaces list
(p. 1410)

The format of a string in these lists is assumed to be in standard IPv4 dot
notation, possibly containing wildcards. For example:

ˆ 10.10.30.232

ˆ 10.10.∗.∗

ˆ 192.168.1.∗

ˆ etc. Strings not in the correct format will be ignored.

Parameters:

property in <<in>> (p. 191) Desired behavior of this transport. May
be NULL for default property.

Returns:

A UDPv4 Transport Plugin instance on success; or NULL on failure.

5.65.4.2 RTI INT32 NDDS Transport UDPv4 string to -
address cEA (NDDS Transport Plugin ∗ self,
NDDS Transport Address t ∗ address out, const char ∗
address in)

Realization of NDDS Transport String To Address Fcn cEA for IP transports.

Converts a host name string to a IPv4 address.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

262 Module Documentation

Parameters:

self NOT USED. May be NULL.
address out <<out>> (p. 191) The corresponding numerical value in

IPv6 format.
address in <<in>> (p. 191) The name of the IPv4 address. It can be a

dot notation name or a host name. If NULL, then the IP address of
the localhost will be returned.

See also:

NDDS Transport String To Address Fcn cEA for complete documenta-
tion.

5.65.4.3 RTI INT32 NDDS Transport UDPv4 get receive -
interfaces cEA (NDDS Transport Plugin ∗ self,
RTI INT32 ∗ found more than provided for out,
RTI INT32 ∗ interface reported count out,
NDDS Transport Interface t interface array inout[],
RTI INT32 interface array size in)

Realization of NDDS Transport Get Receive Interfaces Fcn cEA for IP trans-
ports.

Retrieves a list of available IPv4 network interfaces. The addresses returned
from IPv4 plugin will be of the pattern 0.0.0.0.0.0.0.0.0.0.0.0.x.x.x.x.

See also:

NDDS Transport Get Receive Interfaces Fcn cEA for complete documen-
tation.

5.65.4.4 NDDS Transport Plugin∗ NDDS Transport -
UDPv4 create (NDDS Transport Address t
∗ default network address out, const struct
DDS PropertyQosPolicy ∗ property in)

Create an instance of a UDPv4 Transport Plugin, using PropertyQosPolicy.

An application may create and register multiple instances of this Transport Plu-
gin with RTI Data Distribution Service. This may be to partition the network
interfaces across multiple RTI Data Distribution Service domains. However,
note that the underlying transport, the operating system’s IP layer, is still a
”singleton”. For example, if a unicast transport has already bound to a port,
and another unicast transport tries to bind to the same port, the second attempt
will fail.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.65 UDPv4 Transport 263

The transport plugin honors the interface/multicast ”white” and ”black” lists
specified in the NDDS Transport UDPv4 Property t::parent (p. 1416):

ˆ NDDS Transport Property t::allow interfaces list (p. 1408),

ˆ NDDS Transport Property t::deny interfaces list (p. 1409),

ˆ NDDS Transport Property t::allow multicast interfaces list
(p. 1409),

ˆ NDDS Transport Property t::deny multicast interfaces list
(p. 1410)

The format of a string in these lists is assumed to be in standard IPv4 dot
notation, possibly containing wildcards. For example:

ˆ 10.10.30.232

ˆ 10.10.∗.∗

ˆ 192.168.1.∗

ˆ etc. Strings not in the correct format will be ignored.

Parameters:

default network address out <<out>> (p. 191) Network address to
be used when registering the transport.

property in <<in>> (p. 191) Desired behavior of this transport,
through the property field in DDS DomainParticipantQos
(p. 548).

Returns:

A UDPv4 Transport Plugin instance on success; or NULL on failure.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

264 Module Documentation

Property Name Description

dds.transport.UDPv4.builtin.parent.address -
bit count

See NDDS Transport -
Property t::address bit count
(p. 1406)

dds.transport.UDPv4.builtin.parent.properties -
bitmap

See NDDS Transport -
Property t::properties bitmap
(p. 1406)

dds.transport.UDPv4.builtin.parent.gather -
send buffer count max

See NDDS Transport -
Property t::gather send -
buffer count max
(p. 1407)

dds.transport.UDPv4.builtin.parent.message -
size max

See NDDS Transport -
Property t::message size max
(p. 1407)

dds.transport.UDPv4.builtin.parent.allow -
interfaces

See NDDS Transport -
Property t::allow interfaces list
(p. 1408) and
NDDS Transport Property -
t::allow interfaces list length
(p. 1408).
Interfaces should be specified as
comma-separated strings, with each
comma delimiting an interface. For
example, 127.0.0.1,eth0

dds.transport.UDPv4.builtin.parent.deny -
interfaces

See NDDS Transport -
Property t::deny interfaces list
(p. 1409) and
NDDS Transport Property -
t::deny interfaces list length
(p. 1409).
Interfaces should be specified as
comma-separated strings, with each
comma delimiting an interface. For
example: 127.0.0.1,eth0

dds.transport.UDPv4.builtin.parent.allow -
multicast interfaces

See
NDDS Transport Property -
t::allow multicast interfaces list
(p. 1409) and NDDS Transport -
Property t::allow multicast -
interfaces list length
(p. 1410).
Interfaces should be specified as
comma-separated strings, with each
comma delimiting an interface. For
example: 127.0.0.1,eth0

dds.transport.UDPv4.builtin.parent.deny -
multicast interfaces

See
NDDS Transport Property -
t::deny multicast interfaces list
(p. 1410) and NDDS Transport -
Property t::deny multicast -
interfaces list length (p. 1411).
Interfaces should be specified as
comma-separated strings, with each
comma delimiting an interface. For
example: 127.0.0.1,eth0

dds.transport.UDPv4.builtin.send -
socket buffer size

See NDDS Transport UDPv4 -
Property t::send socket buffer -
size
(p. 1416)

dds.transport.UDPv4.builtin.recv -
socket buffer size

See NDDS Transport UDPv4 -
Property t::recv socket buffer -
size
(p. 1417)

dds.transport.UDPv4.builtin.unicast -
enabled

See NDDS Transport UDPv4 -
Property t::unicast enabled
(p. 1417)

dds.transport.UDPv4.builtin.multicast -
enabled

See NDDS Transport UDPv4 -
Property t::multicast enabled
(p. 1418)

dds.transport.UDPv4.builtin.multicast -
ttl

See NDDS Transport UDPv4 -
Property t::multicast ttl
(p. 1418)

dds.transport.UDPv4.builtin.multicast -
loopback disabled

See NDDS Transport UDPv4 -
Property t::multicast -
loopback disabled
(p. 1418)

dds.transport.UDPv4.builtin.ignore -
loopback interface

See NDDS Transport UDPv4 -
Property t::ignore loopback -
interface
(p. 1418)

dds.transport.UDPv4.builtin.ignore -
nonrunning interfaces

See NDDS Transport UDPv4 -
Property t::ignore -
nonrunning interfaces
(p. 1419)

dds.transport.UDPv4.builtin.no -
zero copy

See NDDS Transport UDPv4 -
Property t::no zero copy
(p. 1420)

dds.transport.UDPv4.builtin.send -
blocking

See NDDS Transport UDPv4 -
Property t::send blocking
(p. 1420)

dds.transport.UDPv4.builtin.transport -
priority mask

See NDDS Transport UDPv4 -
Property t::transport priority -
mask
(p. 1420)

dds.transport.UDPv4.builtin.transport -
priority mapping low

See NDDS Transport UDPv4 -
Property t::transport priority -
mapping low
(p. 1421)

dds.transport.UDPv4.builtin.transport -
priority mapping high

See NDDS Transport UDPv4 -
Property t::transport priority -
mapping high
(p. 1421)

Table 5.9: Property Names for UDPv4 Transport Plugin

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.66 UDPv6 Transport 265

5.66 UDPv6 Transport

Built-in transport plug-in using UDP/IPv6 (NDDS TRANSPORT -
CLASSID UDPv6 (p. 268)).

Classes

ˆ struct NDDS Transport UDPv6 Property t

Configurable IPv6/UDP Transport-Plugin properties.

Defines

ˆ #define NDDS TRANSPORT CLASSID UDPv6 (5)

Builtin IPv6 UDP/IP Transport-Plugin class ID.

ˆ #define NDDS TRANSPORT UDPV6 ADDRESS BIT -
COUNT (128)

Default value of NDDS Transport Property t::address bit count
(p. 1406).

ˆ #define NDDS TRANSPORT UDPV6 PROPERTIES -
BITMAP DEFAULT (0)

Default value of NDDS Transport Property t::properties bitmap
(p. 1406).

ˆ #define NDDS TRANSPORT UDPV6 GATHER SEND -
BUFFER COUNT MAX DEFAULT (16)

Default value of NDDS Transport Property t::gather send buffer -
count max (p. 1407).

ˆ #define NDDS TRANSPORT UDPV6 SOCKET BUFFER -
SIZE OS DEFAULT (-1)

Used to specify that os default be used to specify socket buffer size.

ˆ #define NDDS TRANSPORT UDPV6 MESSAGE SIZE -
MAX DEFAULT (9216)

Default value of NDDS Transport Property t::message size max
(p. 1407).

ˆ #define NDDS TRANSPORT UDPV6 MULTICAST TTL -
DEFAULT (1)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

266 Module Documentation

Default value of NDDS Transport UDPv6 Property t::multicast ttl
(p. 1425).

ˆ #define NDDS TRANSPORT UDPV6 BLOCKING NEVER

Value for NDDS Transport UDPv6 Property t::send blocking
(p. 1427) to specify non-blocking sockets.

ˆ #define NDDS TRANSPORT UDPV6 BLOCKING ALWAYS

[default] Value for NDDS Transport UDPv6 Property t::send -
blocking (p. 1427) to specify blocking sockets.

ˆ #define NDDS TRANSPORT UDPV6 PROPERTY -
DEFAULT

Use this to initialize a NDDS Transport UDPv6 Property t (p. 1422)
structure.

Functions

ˆ NDDS Transport Plugin ∗ NDDS Transport UDPv6 new (const
struct NDDS Transport UDPv6 Property t ∗property in)

Create an instance of a UDPv6 Transport Plugin.

ˆ RTI INT32 NDDS Transport UDPv6 string to address cEA
(NDDS Transport Plugin ∗self, NDDS Transport Address t
∗address out, const char ∗address in)

Realization of NDDS Transport String To Address Fcn cEA for IP trans-
ports.

ˆ RTI INT32 NDDS Transport UDPv6 get receive interfaces cEA
(NDDS Transport Plugin ∗self, RTI INT32 ∗found more than provided -
for out, RTI INT32 ∗interface reported count out, NDDS Transport -
Interface t interface array inout[], RTI INT32 interface array size in)

Realization of NDDS Transport Get Receive Interfaces Fcn cEA for IP
transports.

ˆ NDDS Transport Plugin ∗ NDDS Transport UDPv6 create
(NDDS Transport Address t ∗default network address out, const
struct DDS PropertyQosPolicy ∗property in)

Create an instance of a UDPv6 Transport Plugin, using PropertyQosPolicy.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.66 UDPv6 Transport 267

5.66.1 Detailed Description

Built-in transport plug-in using UDP/IPv6 (NDDS TRANSPORT -
CLASSID UDPv6 (p. 268)).

This transport plugin uses UDPv6 sockets to send and receive messages. It
supports both unicast and multicast communications in a single instance of the
plugin. By default, this plugin will use all interfaces that it finds enabled and
”UP” at instantiation time to send and receive messages.

The user can configure an instance of this plugin to only use unicast or only use
multicast, see NDDS Transport UDPv6 Property t::unicast enabled
(p. 1424) and NDDS Transport UDPv6 Property t::multicast enabled
(p. 1425).

In addition, the user can configure an instance of this plugin to selectively use
the network interfaces of a node (and restrict a plugin from sending multicast
messages on specific interfaces) by specifying the ”white” and ”black” lists in the
base property’s fields (NDDS Transport Property t::allow interfaces list
(p. 1408), NDDS Transport Property t::deny interfaces list (p. 1409),
NDDS Transport Property t::allow multicast interfaces list (p. 1409),
NDDS Transport Property t::deny multicast interfaces list (p. 1410)).

RTI Data Distribution Service can implicitly create this plugin and register it
with the DDSDomainParticipant (p. 1054) if this transport is specified in
the DDS TransportBuiltinQosPolicy (p. 909).

To specify the properties of the builtin UDPv6 transport that is implicitly reg-
istered, you can either:

ˆ call NDDSTransportSupport::set builtin transport property
(p. 1441) or

ˆ specify the predefined property names in DDS PropertyQosPolicy
(p. 783) associated with the DDSDomainParticipant (p. 1054). (see
UDPv6 Transport Property Names in Property QoS Policy of
Domain Participant (p. 268)).

Builtin transport plugin properties specified in DDS PropertyQosPolicy
(p. 783) always overwrite the ones specified through NDDSTransportSup-
port::set builtin transport property() (p. 1441). The default value is as-
sumed on any unspecified property.

Note that all properties should be set before the transport is implicitly created
and registered by RTI Data Distribution Service. Any properties that are set
after the builtin transport is registered will be ignored. See Built-in Transport
Plugins (p. 129) for details on when a builtin transport is registered.

To explicitly create an instance of this plugin, NDDS Transport UDPv6 -
new() (p. 270) should be called. The instance should be registered with

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

268 Module Documentation

RTI Data Distribution Service, see NDDSTransportSupport::register -
transport (p. 1437). In some configurations, you may have to disable the
builtin UDPv6 transport plugin instance (DDS TransportBuiltinQosPolicy
(p. 909), DDS TRANSPORTBUILTIN UDPv6 (p. 381)), to avoid port
conflicts with the newly created plugin instance.

5.66.2 UDPv6 Transport Property Names in Property
QoS Policy of Domain Participant

The following table lists the predefined property names that can be set in DDS -
PropertyQosPolicy (p. 783) of a DDSDomainParticipant (p. 1054) to con-
figure the builtin UDPv6 transport plugin.

See also:

NDDSTransportSupport::set builtin transport property()
(p. 1441)

5.66.3 Define Documentation

5.66.3.1 #define NDDS TRANSPORT CLASSID UDPv6 (5)

Builtin IPv6 UDP/IP Transport-Plugin class ID.

5.66.3.2 #define NDDS TRANSPORT UDPV6 ADDRESS BIT -
COUNT (128)

Default value of NDDS Transport Property t::address bit count
(p. 1406).

5.66.3.3 #define NDDS TRANSPORT UDPV6 PROPERTIES -
BITMAP DEFAULT (0)

Default value of NDDS Transport Property t::properties bitmap
(p. 1406).

5.66.3.4 #define NDDS TRANSPORT UDPV6 GATHER SEND -
BUFFER COUNT MAX DEFAULT (16)

Default value of NDDS Transport Property t::gather send buffer -
count max (p. 1407).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.66 UDPv6 Transport 269

This is also the maximum value that can be used when instantiating the udp
transport.

16 is sufficient for NDDS, but more may improve discovery and reliable perfor-
mance. Porting note: find out what the maximum gather buffer count is on
your OS!

5.66.3.5 #define NDDS TRANSPORT UDPV6 SOCKET -
BUFFER SIZE OS DEFAULT (-1)

Used to specify that os default be used to specify socket buffer size.

5.66.3.6 #define NDDS TRANSPORT UDPV6 MESSAGE SIZE -
MAX DEFAULT (9216)

Default value of NDDS Transport Property t::message size max
(p. 1407).

5.66.3.7 #define NDDS TRANSPORT UDPV6 MULTICAST -
TTL DEFAULT (1)

Default value of NDDS Transport UDPv6 Property t::multicast ttl
(p. 1425).

5.66.3.8 #define NDDS TRANSPORT UDPV6 BLOCKING -
NEVER

Value for NDDS Transport UDPv6 Property t::send blocking (p. 1427)
to specify non-blocking sockets.

5.66.3.9 #define NDDS TRANSPORT UDPV6 BLOCKING -
ALWAYS

[default] Value for NDDS Transport UDPv6 Property t::send -
blocking (p. 1427) to specify blocking sockets.

5.66.3.10 #define NDDS TRANSPORT UDPV6 PROPERTY -
DEFAULT

Value:

{ \

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

270 Module Documentation

{ NDDS_TRANSPORT_CLASSID_UDPv6, \

NDDS_TRANSPORT_UDPV6_ADDRESS_BIT_COUNT, \

NDDS_TRANSPORT_UDPV6_PROPERTIES_BITMAP_DEFAULT, \

NDDS_TRANSPORT_UDPV6_GATHER_SEND_BUFFER_COUNT_MAX_DEFAULT, \

NDDS_TRANSPORT_UDPV6_MESSAGE_SIZE_MAX_DEFAULT, \

NULL, 0, /* allow_interfaces_list */ \

NULL, 0, /* deny_interfaces_list */ \

NULL, 0, /* allow_multicast_interfaces_list */ \

NULL, 0, /* deny_multicast_interfaces_list */ \

}, \

NDDS_TRANSPORT_UDPV6_MESSAGE_SIZE_MAX_DEFAULT, \

NDDS_TRANSPORT_UDPV6_MESSAGE_SIZE_MAX_DEFAULT, \

1, /* use unicast */ \

NDDS_TRANSPORT_UDPV6_USE_MULTICAST_DEFAULT, /* use multicast */ \

NDDS_TRANSPORT_UDPV6_MULTICAST_TTL_DEFAULT, \

0, /* multicast loopback enabled */ \

-1, /* (auto-)ignore loopback */ \

0, /* do not ignore non-RUNNING */ \

0, /* no_zero_copy */ \

NDDS_TRANSPORT_UDPV6_BLOCKING_DEFAULT, \

0, /* enable_v4mapped */ \

0, 0, 0xff /* no mapping to IPV6_TCLASS by default */ }

Use this to initialize a NDDS Transport UDPv6 Property t (p. 1422)
structure.

5.66.4 Function Documentation

5.66.4.1 NDDS Transport Plugin∗ NDDS Transport UDPv6 new
(const struct NDDS Transport UDPv6 Property t ∗
property in)

Create an instance of a UDPv6 Transport Plugin.

An application may create and register multiple instances of this Transport Plu-
gin with RTI Data Distribution Service. This may be to partition the network
interfaces across multiple RTI Data Distribution Service domains. However,
note that the underlying transport, the operating system’s IP layer, is still a
”singleton”. For example, if a unicast transport has already bound to a port,
and another unicast transport tries to bind to the same port, the second attempt
will fail.

The transport plugin honors the interface/multicast ”white” and ”black” lists
specified in the NDDS Transport UDPv6 Property t::parent (p. 1423):

ˆ NDDS Transport Property t::allow interfaces list (p. 1408),

ˆ NDDS Transport Property t::deny interfaces list (p. 1409),

ˆ NDDS Transport Property t::allow multicast interfaces list
(p. 1409),

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.66 UDPv6 Transport 271

ˆ NDDS Transport Property t::deny multicast interfaces list
(p. 1410)

The format of a string in these lists is assumed to be in standard IPv6 dot
notation, possibly containing wildcards. For example:

ˆ 10.10.30.232

ˆ 10.10.∗.∗

ˆ 192.168.1.∗

ˆ etc. Strings not in the correct format will be ignored.

Parameters:

property in <<in>> (p. 191) Desired behavior of this transport. May
be NULL for default property.

Returns:

A UDPv6 Transport Plugin instance on success; or NULL on failure.

5.66.4.2 RTI INT32 NDDS Transport UDPv6 string to -
address cEA (NDDS Transport Plugin ∗ self,
NDDS Transport Address t ∗ address out, const char ∗
address in)

Realization of NDDS Transport String To Address Fcn cEA for IP transports.

Converts a host name string to a IPv6 address.

Parameters:

self NOT USED. May be NULL.

address out <<out>> (p. 191) The corresponding numerical value in
IPv6 format.

address in <<in>> (p. 191) The name of the IPv6 address. It can be a
dot notation name or a host name. If NULL, then the IP address of
the localhost will be returned.

See also:

NDDS Transport String To Address Fcn cEA for complete documenta-
tion.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

272 Module Documentation

5.66.4.3 RTI INT32 NDDS Transport UDPv6 get receive -
interfaces cEA (NDDS Transport Plugin ∗ self,
RTI INT32 ∗ found more than provided for out,
RTI INT32 ∗ interface reported count out,
NDDS Transport Interface t interface array inout[],
RTI INT32 interface array size in)

Realization of NDDS Transport Get Receive Interfaces Fcn cEA for IP trans-
ports.

Retrieves a list of available IPv6 network interfaces. The addresses returned
from IPv6 plugin will be full 128-bit addresses.

See also:

NDDS Transport Get Receive Interfaces Fcn cEA for complete documen-
tation.

5.66.4.4 NDDS Transport Plugin∗ NDDS Transport -
UDPv6 create (NDDS Transport Address t
∗ default network address out, const struct
DDS PropertyQosPolicy ∗ property in)

Create an instance of a UDPv6 Transport Plugin, using PropertyQosPolicy.

An application may create and register multiple instances of this Transport Plu-
gin with RTI Data Distribution Service. This may be to partition the network
interfaces across multiple RTI Data Distribution Service domains. However,
note that the underlying transport, the operating system’s IP layer, is still a
”singleton”. For example, if a unicast transport has already bound to a port,
and another unicast transport tries to bind to the same port, the second attempt
will fail.

The transport plugin honors the interface/multicast ”white” and ”black” lists
specified in the NDDS Transport UDPv6 Property t::parent (p. 1423):

ˆ NDDS Transport Property t::allow interfaces list (p. 1408),

ˆ NDDS Transport Property t::deny interfaces list (p. 1409),

ˆ NDDS Transport Property t::allow multicast interfaces list
(p. 1409),

ˆ NDDS Transport Property t::deny multicast interfaces list
(p. 1410)

The format of a string in these lists is assumed to be in standard IPv6 dot
notation, possibly containing wildcards. For example:

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.66 UDPv6 Transport 273

ˆ 10.10.30.232

ˆ 10.10.∗.∗

ˆ 192.168.1.∗

ˆ etc. Strings not in the correct format will be ignored.

Parameters:

default network address out <<out>> (p. 191) Network address to
be used when registering the transport.

property in <<in>> (p. 191) Desired behavior of this transport,
through the property field in DDS DomainParticipantQos
(p. 548).

Returns:

A UDPv6 Transport Plugin instance on success; or NULL on failure.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

274 Module Documentation

Property Name Description

dds.transport.UDPv6.builtin.parent.address -
bit count

See NDDS Transport -
Property t::address bit count
(p. 1406)

dds.transport.UDPv6.builtin.parent.properties -
bitmap

See NDDS Transport -
Property t::properties bitmap
(p. 1406)

dds.transport.UDPv6.builtin.parent.gather -
send buffer count max

See NDDS Transport -
Property t::gather send -
buffer count max
(p. 1407)

dds.transport.UDPv6.builtin.parent.message -
size max

See NDDS Transport -
Property t::message size max
(p. 1407)

dds.transport.UDPv6.builtin.parent.allow -
interfaces

See NDDS Transport -
Property t::allow interfaces list
(p. 1408) and
NDDS Transport Property -
t::allow interfaces list length
(p. 1408).
Interfaces should be specified as
comma-separated strings, with each
comma delimiting an interface. For
example: 127.0.0.1,eth0

dds.transport.UDPv6.builtin.parent.deny -
interfaces

See NDDS Transport -
Property t::deny interfaces list
(p. 1409) and
NDDS Transport Property -
t::deny interfaces list length
(p. 1409).
Interfaces should be specified as
comma-separated strings, with each
comma delimiting an interface. For
example: 127.0.0.1,eth0

dds.transport.UDPv6.builtin.parent.allow -
multicast interfaces

See
NDDS Transport Property -
t::allow multicast interfaces list
(p. 1409) and NDDS Transport -
Property t::allow multicast -
interfaces list length
(p. 1410).
Interfaces should be specified as
comma-separated strings, with each
comma delimiting an interface. For
example: 127.0.0.1,eth0

dds.transport.UDPv6.builtin.parent.deny -
multicast interfaces

See
NDDS Transport Property -
t::deny multicast interfaces list
(p. 1410) and NDDS Transport -
Property t::deny multicast -
interfaces list length (p. 1411).
Interfaces should be specified as
comma-separated strings, with each
comma delimiting an interface. For
example: 127.0.0.1,eth0

dds.transport.UDPv6.builtin.send -
socket buffer size

See NDDS Transport UDPv6 -
Property t::send socket buffer -
size
(p. 1423)

dds.transport.UDPv6.builtin.recv -
socket buffer size

See NDDS Transport UDPv6 -
Property t::recv socket buffer -
size
(p. 1424)

dds.transport.UDPv6.builtin.unicast -
enabled

See NDDS Transport UDPv6 -
Property t::unicast enabled
(p. 1424)

dds.transport.UDPv6.builtin.multicast -
enabled

See NDDS Transport UDPv6 -
Property t::multicast enabled
(p. 1425)

dds.transport.UDPv6.builtin.multicast -
ttl

See NDDS Transport UDPv6 -
Property t::multicast ttl
(p. 1425)

dds.transport.UDPv6.builtin.multicast -
loopback disabled

See NDDS Transport UDPv6 -
Property t::multicast -
loopback disabled
(p. 1425)

dds.transport.UDPv6.builtin.ignore -
loopback interface

See NDDS Transport UDPv6 -
Property t::ignore loopback -
interface
(p. 1425)

dds.transport.UDPv6.builtin.ignore -
nonrunning interfaces

See NDDS Transport UDPv6 -
Property t::ignore -
nonrunning interfaces
(p. 1426)

dds.transport.UDPv6.builtin.no -
zero copy

See NDDS Transport UDPv6 -
Property t::no zero copy
(p. 1427)

dds.transport.UDPv6.builtin.send -
blocking

See NDDS Transport UDPv6 -
Property t::send blocking
(p. 1427)

dds.transport.UDPv6.builtin.enable -
v4mapped

See NDDS Transport UDPv6 -
Property t::enable v4mapped
(p. 1427)

dds.transport.UDPv6.builtin.transport -
priority mask

See NDDS Transport UDPv6 -
Property t::transport priority -
mask
(p. 1428)

dds.transport.UDPv6.builtin.transport -
priority mapping low

See NDDS Transport UDPv6 -
Property t::transport priority -
mapping low
(p. 1428)

dds.transport.UDPv6.builtin.transport -
priority mapping high

See NDDS Transport UDPv6 -
Property t::transport priority -
mapping high
(p. 1428)

Table 5.10: Property Names for UDPv6 Transport Plugin

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.67 Participant Built-in Topics 275

5.67 Participant Built-in Topics

Builtin topic for accessing information about the DomainParticipants discovered
by RTI Data Distribution Service.

Classes

ˆ class DDSParticipantBuiltinTopicDataTypeSupport

Instantiates TypeSupport < DDS ParticipantBuiltinTopicData (p. 765)
> .

ˆ class DDSParticipantBuiltinTopicDataDataReader

Instantiates DataReader < DDS ParticipantBuiltinTopicData (p. 765)
> .

ˆ struct DDS ParticipantBuiltinTopicData

Entry created when a DomainParticipant object is discovered.

ˆ struct DDS ParticipantBuiltinTopicDataSeq

Instantiates FooSeq (p. 1377) < DDS ParticipantBuiltinTopicData
(p. 765) > .

Variables

ˆ const char ∗ DDS PARTICIPANT TOPIC NAME

Participant topic name.

5.67.1 Detailed Description

Builtin topic for accessing information about the DomainParticipants discovered
by RTI Data Distribution Service.

5.67.2 Variable Documentation

5.67.2.1 const char∗ DDS PARTICIPANT TOPIC NAME

Participant topic name.

Topic name of DDSParticipantBuiltinTopicDataDataReader (p. 1238)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

276 Module Documentation

See also:

DDS ParticipantBuiltinTopicData (p. 765)
DDSParticipantBuiltinTopicDataDataReader (p. 1238)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.68 Topic Built-in Topics 277

5.68 Topic Built-in Topics

Builtin topic for accessing information about the Topics discovered by RTI Data
Distribution Service.

Classes

ˆ class DDSTopicBuiltinTopicDataTypeSupport
Instantiates TypeSupport < DDS TopicBuiltinTopicData (p. 898) > .

ˆ class DDSTopicBuiltinTopicDataDataReader
Instantiates DataReader < DDS TopicBuiltinTopicData (p. 898) > .

ˆ struct DDS TopicBuiltinTopicData
Entry created when a Topic object discovered.

ˆ struct DDS TopicBuiltinTopicDataSeq
Instantiates FooSeq (p. 1377) < DDS TopicBuiltinTopicData (p. 898)
> .

Variables

ˆ const char ∗ DDS TOPIC TOPIC NAME
Topic topic name.

5.68.1 Detailed Description

Builtin topic for accessing information about the Topics discovered by RTI Data
Distribution Service.

5.68.2 Variable Documentation

5.68.2.1 const char∗ DDS TOPIC TOPIC NAME

Topic topic name.

Topic name of DDSTopicBuiltinTopicDataDataReader (p. 1317)

See also:

DDS TopicBuiltinTopicData (p. 898)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

278 Module Documentation

DDSTopicBuiltinTopicDataDataReader (p. 1317)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.69 Publication Built-in Topics 279

5.69 Publication Built-in Topics

Builtin topic for accessing information about the Publications discovered by RTI
Data Distribution Service.

Classes

ˆ class DDSPublicationBuiltinTopicDataTypeSupport

Instantiates TypeSupport < DDS PublicationBuiltinTopicData (p. 788)
> .

ˆ class DDSPublicationBuiltinTopicDataDataReader

Instantiates DataReader < DDS PublicationBuiltinTopicData (p. 788)
> .

ˆ struct DDS PublicationBuiltinTopicData

Entry created when a DDSDataWriter (p. 1028) is discovered in associa-
tion with its Publisher.

ˆ struct DDS PublicationBuiltinTopicDataSeq

Instantiates FooSeq (p. 1377) < DDS PublicationBuiltinTopicData
(p. 788) > .

Variables

ˆ const char ∗ DDS PUBLICATION TOPIC NAME

Publication topic name.

5.69.1 Detailed Description

Builtin topic for accessing information about the Publications discovered by RTI
Data Distribution Service.

5.69.2 Variable Documentation

5.69.2.1 const char∗ DDS PUBLICATION TOPIC NAME

Publication topic name.

Topic name of DDSPublicationBuiltinTopicDataDataReader (p. 1241)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

280 Module Documentation

See also:

DDS PublicationBuiltinTopicData (p. 788)
DDSPublicationBuiltinTopicDataDataReader (p. 1241)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.70 Subscription Built-in Topics 281

5.70 Subscription Built-in Topics

Builtin topic for accessing information about the Subscriptions discovered by
RTI Data Distribution Service.

Classes

ˆ class DDSSubscriptionBuiltinTopicDataTypeSupport

Instantiates TypeSupport < DDS SubscriptionBuiltinTopicData
(p. 876) > .

ˆ class DDSSubscriptionBuiltinTopicDataDataReader

Instantiates DataReader < DDS SubscriptionBuiltinTopicData (p. 876)
> .

ˆ struct DDS SubscriptionBuiltinTopicData

Entry created when a DDSDataReader (p. 1004) is discovered in associa-
tion with its Subscriber.

ˆ struct DDS SubscriptionBuiltinTopicDataSeq

Instantiates FooSeq (p. 1377) < DDS SubscriptionBuiltinTopicData
(p. 876) > .

Variables

ˆ const char ∗ DDS SUBSCRIPTION TOPIC NAME

Subscription topic name.

5.70.1 Detailed Description

Builtin topic for accessing information about the Subscriptions discovered by
RTI Data Distribution Service.

5.70.2 Variable Documentation

5.70.2.1 const char∗ DDS SUBSCRIPTION TOPIC NAME

Subscription topic name.

Topic name of DDSSubscriptionBuiltinTopicDataDataReader (p. 1309)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

282 Module Documentation

See also:

DDS SubscriptionBuiltinTopicData (p. 876)
DDSSubscriptionBuiltinTopicDataDataReader (p. 1309)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.71 String Built-in Type 283

5.71 String Built-in Type

Built-in type consisting of a single character string.

Classes

ˆ class DDSStringTypeSupport

<<interface>> (p. 190) String type support.

ˆ class DDSStringDataReader

<<interface>> (p. 190) Instantiates DataReader < char∗ >.

ˆ class DDSStringDataWriter

<<interface>> (p. 190) Instantiates DataWriter < char∗ >.

5.71.1 Detailed Description

Built-in type consisting of a single character string.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

284 Module Documentation

5.72 KeyedString Built-in Type

Built-in type consisting of a string payload and a second string that is the key.

Classes

ˆ class DDSKeyedStringTypeSupport

<<interface>> (p. 190) Keyed string type support.

ˆ class DDSKeyedStringDataReader

<<interface>> (p. 190) Instantiates DataReader < DDS KeyedString
(p. 719) >.

ˆ class DDSKeyedStringDataWriter

<<interface>> (p. 190) Instantiates DataWriter < DDS KeyedString
(p. 719) >.

ˆ struct DDS KeyedString

Keyed string built-in type.

ˆ struct DDS KeyedStringSeq

Instantiates FooSeq (p. 1377) < DDS KeyedString (p. 719) > .

5.72.1 Detailed Description

Built-in type consisting of a string payload and a second string that is the key.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.73 Octets Built-in Type 285

5.73 Octets Built-in Type

Built-in type consisting of a variable-length array of opaque bytes.

Classes

ˆ class DDSOctetsTypeSupport

<<interface>> (p. 190) DDS Octets (p. 748) type support.

ˆ class DDSOctetsDataReader

<<interface>> (p. 190) Instantiates DataReader < DDS Octets (p. 748)
>.

ˆ class DDSOctetsDataWriter

<<interface>> (p. 190) Instantiates DataWriter < DDS Octets (p. 748)
>.

ˆ struct DDS Octets

Built-in type consisting of a variable-length array of opaque bytes.

ˆ struct DDS OctetsSeq

Instantiates FooSeq (p. 1377) < DDS Octets (p. 748) > .

5.73.1 Detailed Description

Built-in type consisting of a variable-length array of opaque bytes.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

286 Module Documentation

5.74 KeyedOctets Built-in Type

Built-in type consisting of a variable-length array of opaque bytes and a string
that is the key.

Classes

ˆ class DDSKeyedOctetsTypeSupport

<<interface>> (p. 190) DDS KeyedOctets (p. 716) type support.

ˆ class DDSKeyedOctetsDataReader

<<interface>> (p. 190) Instantiates DataReader < DDS KeyedOctets
(p. 716) >.

ˆ class DDSKeyedOctetsDataWriter

<<interface>> (p. 190) Instantiates DataWriter < DDS KeyedOctets
(p. 716) >.

ˆ struct DDS KeyedOctets

Built-in type consisting of a variable-length array of opaque bytes and a string
that is the key.

ˆ struct DDS KeyedOctetsSeq

Instantiates FooSeq (p. 1377) < DDS KeyedOctets (p. 716) >.

5.74.1 Detailed Description

Built-in type consisting of a variable-length array of opaque bytes and a string
that is the key.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.75 DDS-Specific Primitive Types 287

5.75 DDS-Specific Primitive Types

Basic DDS value types for use in user data types.

Defines

ˆ #define DDS BOOLEAN TRUE

Defines ”true” value of DDS Boolean (p. 291) data type.

ˆ #define DDS BOOLEAN FALSE

Defines ”false” value of DDS Boolean (p. 291) data type.

Typedefs

ˆ typedef RTICdrChar DDS Char

Defines a character data type, equivalent to IDL/CDR char.

ˆ typedef RTICdrWchar DDS Wchar

Defines a wide character data type, equivalent to IDL/CDR wchar.

ˆ typedef RTICdrOctet DDS Octet

Defines an opaque byte data type, equivalent to IDL/CDR octet.

ˆ typedef RTICdrShort DDS Short

Defines a short integer data type, equivalent to IDL/CDR short.

ˆ typedef RTICdrUnsignedShort DDS UnsignedShort

Defines an unsigned short integer data type, equivalent to IDL/CDR
unsigned short.

ˆ typedef RTICdrLong DDS Long

Defines a long integer data type, equivalent to IDL/CDR long.

ˆ typedef RTICdrUnsignedLong DDS UnsignedLong

Defines an unsigned long integer data type, equivalent to IDL/CDR unsigned

long.

ˆ typedef RTICdrLongLong DDS LongLong

Defines an extra-long integer data type, equivalent to IDL/CDR long long.

ˆ typedef RTICdrUnsignedLongLong DDS UnsignedLongLong

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

288 Module Documentation

Defines an unsigned extra-long data type, equivalent to IDL/CDR unsigned

long long.

ˆ typedef RTICdrFloat DDS Float

Defines a single-precision floating-point data type, equivalent to IDL/CDR
float.

ˆ typedef RTICdrDouble DDS Double

Defines a double-precision floating-point data type, equivalent to IDL/CDR
double.

ˆ typedef RTICdrLongDouble DDS LongDouble

Defines an extra-precision floating-point data type, equivalent to IDL/CDR
long double.

ˆ typedef RTICdrBoolean DDS Boolean

Defines a Boolean data type, equivalent to IDL/CDR boolean.

ˆ typedef RTICdrEnum DDS Enum

Defines an enumerated data type.

5.75.1 Detailed Description

Basic DDS value types for use in user data types.

As part of the finalization of the DDS standard, a number of DDS-specific
primitive types will be introduced. By using these types, you will ensure that
your data is serialized consistently across platforms even if the C/C++ built-in
types have different sizes on those platforms.

In this version of RTI Data Distribution Service, the DDS primitive types are
defined using the OMG’s Common Data Representation (CDR) standard. In a
future version of RTI Data Distribution Service, you will be given the choice of
whether to use these CDR-based types or C/C++ built-in types through a flag
provided to the rtiddsgen tool.

5.75.2 Define Documentation

5.75.2.1 #define DDS BOOLEAN TRUE

Defines ”true” value of DDS Boolean (p. 291) data type.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.75 DDS-Specific Primitive Types 289

5.75.2.2 #define DDS BOOLEAN FALSE

Defines ”false” value of DDS Boolean (p. 291) data type.

Examples:

HelloWorld.cxx.

5.75.3 Typedef Documentation

5.75.3.1 typedef RTICdrChar DDS Char

Defines a character data type, equivalent to IDL/CDR char.

An 8-bit quantity that encodes a single byte charater from any byte-oriented
code set.

5.75.3.2 typedef RTICdrWchar DDS Wchar

Defines a wide character data type, equivalent to IDL/CDR wchar.

An 16-bit quantity that encodes a wide character from any character set.

5.75.3.3 typedef RTICdrOctet DDS Octet

Defines an opaque byte data type, equivalent to IDL/CDR octet.

An 8-bit quantity that is guaranteed not to undergo any conversion when trans-
mitted by the middleware.

5.75.3.4 typedef RTICdrShort DDS Short

Defines a short integer data type, equivalent to IDL/CDR short.

A 16-bit signed short integer value.

5.75.3.5 typedef RTICdrUnsignedShort DDS UnsignedShort

Defines an unsigned short integer data type, equivalent to IDL/CDR unsigned
short.

A 16-bit unsigned short integer value.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

290 Module Documentation

5.75.3.6 typedef RTICdrLong DDS Long

Defines a long integer data type, equivalent to IDL/CDR long.

A 32-bit signed long integer value.

5.75.3.7 typedef RTICdrUnsignedLong DDS UnsignedLong

Defines an unsigned long integer data type, equivalent to IDL/CDR unsigned
long.

A 32-bit unsigned long integer value.

5.75.3.8 typedef RTICdrLongLong DDS LongLong

Defines an extra-long integer data type, equivalent to IDL/CDR long long.

A 64-bit signed long long integer value.

5.75.3.9 typedef RTICdrUnsignedLongLong
DDS UnsignedLongLong

Defines an unsigned extra-long data type, equivalent to IDL/CDR unsigned
long long.

An 64-bit unsigned long long integer value.

5.75.3.10 typedef RTICdrFloat DDS Float

Defines a single-precision floating-point data type, equivalent to IDL/CDR
float.

A 32-bit floating-point value.

5.75.3.11 typedef RTICdrDouble DDS Double

Defines a double-precision floating-point data type, equivalent to IDL/CDR
double.

A 64-bit floating-point value.

5.75.3.12 typedef RTICdrLongDouble DDS LongDouble

Defines an extra-precision floating-point data type, equivalent to IDL/CDR
long double.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.75 DDS-Specific Primitive Types 291

A 128-bit floating-point value.

Since some architectures do not support long double, RTI has defined character
arrays that match the expected size of this type. On systems that do have
native long double, you have to define RTI CDR SIZEOF LONG DOUBLE as
16 to map them to native types.

5.75.3.13 typedef RTICdrBoolean DDS Boolean

Defines a Boolean data type, equivalent to IDL/CDR boolean.

An 8-bit Boolean value that is used to denote a data item that can only take one
of the values DDS BOOLEAN TRUE (p. 288) (1) or DDS BOOLEAN -
FALSE (p. 289) (0).

5.75.3.14 typedef RTICdrEnum DDS Enum

Defines an enumerated data type.

Encoded as unsigned long value. By default, the first enum identifier has the
numeric value zero (0). Successive enum identifiers take ascending numeric
values, in order of declaration from left to right.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

292 Module Documentation

5.76 Time Support

Time and duration types and defines.

Classes

ˆ struct DDS Time t

Type for time representation.

ˆ struct DDS Duration t

Type for duration representation.

Defines

ˆ #define DDS TIME ZERO

The default instant in time: zero seconds and zero nanoseconds.

Functions

ˆ DDS Boolean DDS Time is zero (const struct DDS Time t
∗time)

Check if time is zero.

ˆ DDS Boolean DDS Time is invalid (const struct DDS Time t
∗time)

ˆ DDS Boolean DDS Duration is infinite (const struct DDS -
Duration t ∗duration)

ˆ DDS Boolean DDS Duration is zero (const struct DDS -
Duration t ∗duration)

Variables

ˆ const DDS Long DDS TIME INVALID SEC

A sentinel indicating an invalid second of time.

ˆ const DDS UnsignedLong DDS TIME INVALID NSEC

A sentinel indicating an invalid nano-second of time.

ˆ struct DDS Time t DDS TIME INVALID

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.76 Time Support 293

A sentinel indicating an invalid time.

ˆ const DDS Long DDS DURATION INFINITE SEC
An infinite second period of time.

ˆ const DDS UnsignedLong DDS DURATION INFINITE -
NSEC

An infinite nano-second period of time.

ˆ struct DDS Duration t DDS DURATION INFINITE
An infinite period of time.

ˆ const DDS Long DDS DURATION ZERO SEC
A zero-length second period of time.

ˆ const DDS UnsignedLong DDS DURATION ZERO NSEC
A zero-length nano-second period of time.

ˆ struct DDS Duration t DDS DURATION ZERO
A zero-length period of time.

5.76.1 Detailed Description

Time and duration types and defines.

5.76.2 Define Documentation

5.76.2.1 #define DDS TIME ZERO

The default instant in time: zero seconds and zero nanoseconds.

5.76.3 Function Documentation

5.76.3.1 DDS Boolean DDS Time is zero (const struct
DDS Time t ∗ time)

Check if time is zero.

Returns:

DDS BOOLEAN TRUE (p. 288) if the given time is equal to DDS -
TIME ZERO (p. 293) or DDS BOOLEAN FALSE (p. 289) otherwise.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

294 Module Documentation

5.76.3.2 DDS Boolean DDS Time is invalid (const struct
DDS Time t ∗ time)

Returns:

DDS BOOLEAN TRUE (p. 288) if the given time is not valid (i.e. is
negative)

5.76.3.3 DDS Boolean DDS Duration is infinite (const struct
DDS Duration t ∗ duration)

Returns:

DDS BOOLEAN TRUE (p. 288) if the given duration is of infinite
length.

5.76.3.4 DDS Boolean DDS Duration is zero (const struct
DDS Duration t ∗ duration)

Returns:

DDS BOOLEAN TRUE (p. 288) if the given duration is of zero length.

5.76.4 Variable Documentation

5.76.4.1 const DDS Long DDS TIME INVALID SEC

A sentinel indicating an invalid second of time.

5.76.4.2 const DDS UnsignedLong DDS TIME INVALID NSEC

A sentinel indicating an invalid nano-second of time.

5.76.4.3 struct DDS Time t DDS TIME INVALID

A sentinel indicating an invalid time.

5.76.4.4 const DDS Long DDS DURATION INFINITE SEC

An infinite second period of time.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.76 Time Support 295

5.76.4.5 const DDS UnsignedLong DDS DURATION INFINITE -
NSEC

An infinite nano-second period of time.

5.76.4.6 struct DDS Duration t DDS DURATION INFINITE

An infinite period of time.

5.76.4.7 const DDS Long DDS DURATION ZERO SEC

A zero-length second period of time.

5.76.4.8 const DDS UnsignedLong DDS DURATION ZERO NSEC

A zero-length nano-second period of time.

5.76.4.9 struct DDS Duration t DDS DURATION ZERO

A zero-length period of time.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

296 Module Documentation

5.77 GUID Support

<<eXtension>> (p. 190) GUID type and defines.

Classes

ˆ struct DDS GUID t

Type for GUID (Global Unique Identifier) representation.

Functions

ˆ DDS Boolean DDS GUID equals (const struct DDS GUID t ∗self,
const struct DDS GUID t ∗other)

Compares this GUID with another GUID for equality.

ˆ void DDS GUID copy (struct DDS GUID t ∗self, const struct
DDS GUID t ∗other)

Copies another GUID into this GUID.

Variables

ˆ struct DDS GUID t DDS GUID AUTO

Indicates that RTI Data Distribution Service should choose an appropriate
virtual GUID.

ˆ struct DDS GUID t DDS GUID UNKNOWN

Unknown GUID.

5.77.1 Detailed Description

<<eXtension>> (p. 190) GUID type and defines.

5.77.2 Function Documentation

5.77.2.1 DDS Boolean DDS GUID equals (const struct
DDS GUID t ∗ self, const struct DDS GUID t ∗ other)

Compares this GUID with another GUID for equality.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.77 GUID Support 297

Parameters:

self <<in>> (p. 191) This GUID. Cannot be NULL.

other <<in>> (p. 191) The other GUID to be compared with this GUID.
Cannot be NULL.

Returns:

DDS BOOLEAN TRUE (p. 288) if the two GUIDs have equal values,
or DDS BOOLEAN FALSE (p. 289) otherwise.

5.77.2.2 void DDS GUID copy (struct DDS GUID t ∗ self, const
struct DDS GUID t ∗ other)

Copies another GUID into this GUID.

Parameters:

self <<in>> (p. 191) This GUID. Cannot be NULL.

other <<in>> (p. 191) The other GUID to be copied.

5.77.3 Variable Documentation

5.77.3.1 struct DDS GUID t DDS GUID AUTO

Indicates that RTI Data Distribution Service should choose an appropriate vir-
tual GUID.

If this special value is assigned to DDS -
DataWriterProtocolQosPolicy::virtual guid (p. 500) or DDS -
DataReaderProtocolQosPolicy::virtual guid (p. 468), RTI Data Dis-
tribution Service will assign the virtual GUID automatically based on the
RTPS or physical GUID.

5.77.3.2 struct DDS GUID t DDS GUID UNKNOWN

Unknown GUID.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

298 Module Documentation

5.78 Sequence Number Support

<<eXtension>> (p. 190) Sequence number type and defines.

Classes

ˆ struct DDS SequenceNumber t

Type for sequence number representation.

Functions

ˆ int DDS SequenceNumber compare (const struct DDS -
SequenceNumber t ∗sn1, const struct DDS SequenceNumber t
∗sn2)

Compares two sequence numbers.

Variables

ˆ struct DDS SequenceNumber t DDS SEQUENCE NUMBER -
UNKNOWN

Unknown sequence number.

ˆ struct DDS SequenceNumber t DDS SEQUENCE NUMBER -
ZERO

Zero value for the sequence number.

ˆ struct DDS SequenceNumber t DDS SEQUENCE NUMBER -
MAX

Highest, most positive value for the sequence number.

5.78.1 Detailed Description

<<eXtension>> (p. 190) Sequence number type and defines.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.78 Sequence Number Support 299

5.78.2 Function Documentation

5.78.2.1 int DDS SequenceNumber compare (const struct
DDS SequenceNumber t ∗ sn1, const struct
DDS SequenceNumber t ∗ sn2)

Compares two sequence numbers.

Parameters:

sn1 <<in>> (p. 191) Sequence number to compare. Cannot be NULL.

sn2 <<in>> (p. 191) Sequence number to compare. Cannot be NULL.

Returns:

If the two sequence numbers are equal, the function returns 0. If sn1 is
greater than sn2 the function returns a positive number; otherwise, it re-
turns a negative number.

5.78.3 Variable Documentation

5.78.3.1 struct DDS SequenceNumber t DDS SEQUENCE -
NUMBER UNKNOWN

Unknown sequence number.

5.78.3.2 struct DDS SequenceNumber t DDS SEQUENCE -
NUMBER ZERO

Zero value for the sequence number.

5.78.3.3 struct DDS SequenceNumber t DDS SEQUENCE -
NUMBER MAX

Highest, most positive value for the sequence number.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

300 Module Documentation

5.79 Exception Codes

<<eXtension>> (p. 190) Exception codes.

Enumerations

ˆ enum DDS ExceptionCode t {
DDS NO EXCEPTION CODE,

DDS USER EXCEPTION CODE,

DDS SYSTEM EXCEPTION CODE,

DDS BAD PARAM SYSTEM EXCEPTION CODE,

DDS NO MEMORY SYSTEM EXCEPTION CODE,

DDS BAD TYPECODE SYSTEM EXCEPTION CODE,

DDS BADKIND USER EXCEPTION CODE,

DDS BOUNDS USER EXCEPTION CODE,

DDS IMMUTABLE TYPECODE SYSTEM EXCEPTION -
CODE = 8,

DDS BAD MEMBER NAME USER EXCEPTION CODE = 9,

DDS BAD MEMBER ID USER EXCEPTION CODE = 10 }
Error codes used by the DDS TypeCode (p. 925) class.

5.79.1 Detailed Description

<<eXtension>> (p. 190) Exception codes.

These exceptions are used for error handling by the Type Code Support
(p. 55) API.

5.79.2 Enumeration Type Documentation

5.79.2.1 enum DDS ExceptionCode t

Error codes used by the DDS TypeCode (p. 925) class.

Exceptions are modeled via a special parameter passed to the operations.

Enumerator:

DDS NO EXCEPTION CODE No failure occurred.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.79 Exception Codes 301

DDS USER EXCEPTION CODE User exception.
This class is based on a similar class in CORBA.

DDS SYSTEM EXCEPTION CODE System exception.
This class is based on a similar class in CORBA.

DDS BAD PARAM SYSTEM EXCEPTION CODE Exception
thrown when a parameter passed to a call is considered illegal.

DDS NO MEMORY SYSTEM EXCEPTION CODE Exception
thrown when there is not enough memory for a dynamic memory
allocation.

DDS BAD TYPECODE SYSTEM EXCEPTION CODE
Exception thrown when a malformed type code is found (for example,
a type code with an invalid TCKind value).

DDS BADKIND USER EXCEPTION CODE The exception
BadKind is thrown when an inappropriate operation is invoked on a
TypeCode object.

DDS BOUNDS USER EXCEPTION CODE A user exception
thrown when a parameter is not within the legal bounds.

DDS IMMUTABLE TYPECODE SYSTEM EXCEPTION CODE
An attempt was made to modify a DDS TypeCode (p. 925) that
was received from a remote object.
The built-in publication and subscription readers provide access to
information about the remote DDSDataWriter (p. 1028) and DDS-
DataReader (p. 1004) entities in the distributed system. Among
other things, the data from these built-in readers contains the DDS -
TypeCode (p. 925) for these entities. Modifying this received DDS -
TypeCode (p. 925) is not permitted.

DDS BAD MEMBER NAME USER EXCEPTION CODE The
specified DDS TypeCode (p. 925) member name is invalid.
This failure can occur, for example, when querying a field by name
when no such name is defined in the type.
See also:

DDS BAD MEMBER ID USER EXCEPTION CODE
(p. 301)

DDS BAD MEMBER ID USER EXCEPTION CODE The
specified DDS TypeCode (p. 925) member ID is invalid.
This failure can occur, for example, when querying a field by ID when
no such ID is defined in the type.
See also:

DDS BAD MEMBER NAME USER EXCEPTION -
CODE (p. 301)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

302 Module Documentation

5.80 Return Codes

Types of return codes.

Enumerations

ˆ enum DDS ReturnCode t {
DDS RETCODE OK,

DDS RETCODE ERROR,

DDS RETCODE UNSUPPORTED,

DDS RETCODE BAD PARAMETER,

DDS RETCODE PRECONDITION NOT MET,

DDS RETCODE OUT OF RESOURCES,

DDS RETCODE NOT ENABLED,

DDS RETCODE IMMUTABLE POLICY,

DDS RETCODE INCONSISTENT POLICY,

DDS RETCODE ALREADY DELETED,

DDS RETCODE TIMEOUT,

DDS RETCODE NO DATA,

DDS RETCODE ILLEGAL OPERATION }
Type for return codes.

5.80.1 Detailed Description

Types of return codes.

5.80.2 Standard Return Codes

Any operation with return type DDS ReturnCode t (p. 303) may re-
turn DDS RETCODE OK (p. 303) DDS RETCODE ERROR (p. 303)
or DDS RETCODE ILLEGAL OPERATION (p. 304). Any operation
that takes one or more input parameters may additionally return DDS -
RETCODE BAD PARAMETER (p. 303). Any operation on an object
created from any of the factories may additionally return DDS RETCODE -
ALREADY DELETED (p. 304). Any operation that is stated as optional
may additionally return DDS RETCODE UNSUPPORTED (p. 303).

Thus, the standard return codes are:

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.80 Return Codes 303

ˆ DDS RETCODE ERROR (p. 303)

ˆ DDS RETCODE ILLEGAL OPERATION (p. 304)

ˆ DDS RETCODE ALREADY DELETED (p. 304)

ˆ DDS RETCODE BAD PARAMETER (p. 303)

ˆ DDS RETCODE UNSUPPORTED (p. 303)

Operations that may return any of the additional return codes will state so
explicitly.

5.80.3 Enumeration Type Documentation

5.80.3.1 enum DDS ReturnCode t

Type for return codes.

Errors are modeled as operation return codes of this type.

Enumerator:

DDS RETCODE OK Successful return.

DDS RETCODE ERROR Generic, unspecified error.

DDS RETCODE UNSUPPORTED Unsupported operation. Can
only returned by operations that are unsupported.

DDS RETCODE BAD PARAMETER Illegal parameter value.
The value of the parameter that is passed in has llegal value. Things
that falls into this category includes NULL parameters and parameter
values that are out of range.

DDS RETCODE PRECONDITION NOT MET A pre-condition
for the operation was not met.
The system is not in the expected state when the function is called,
or the parameter itself is not in the expected state when the function
is called.

DDS RETCODE OUT OF RESOURCES RTI Data Distribution
Service ran out of the resources needed to complete the operation.

DDS RETCODE NOT ENABLED Operation invoked on a
DDSEntity (p. 1157) that is not yet enabled.

DDS RETCODE IMMUTABLE POLICY Application attempted
to modify an immutable QoS policy.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

304 Module Documentation

DDS RETCODE INCONSISTENT POLICY Application speci-
fied a set of QoS policies that are not consistent with each other.

DDS RETCODE ALREADY DELETED The object target of this
operation has already been deleted.

DDS RETCODE TIMEOUT The operation timed out.

DDS RETCODE NO DATA Indicates a transient situation where the
operation did not return any data but there is no inherent error.

DDS RETCODE ILLEGAL OPERATION The operation was
called under improper circumstances.
An operation was invoked on an inappropriate object or at an inap-
propriate time. This return code is similar to DDS RETCODE -
PRECONDITION NOT MET (p. 303), except that there is no
precondition that could be changed to make the operation succeed.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.81 Status Kinds 305

5.81 Status Kinds

Kinds of communication status.

Defines

ˆ #define DDS STATUS MASK NONE
No bits are set.

ˆ #define DDS STATUS MASK ALL
All bits are set.

Typedefs

ˆ typedef DDS UnsignedLong DDS StatusMask
A bit-mask (list) of concrete status types, i.e. DDS StatusKind (p. 310)[].

Enumerations

ˆ enum DDS StatusKind {
DDS INCONSISTENT TOPIC STATUS,

DDS OFFERED DEADLINE MISSED STATUS,

DDS REQUESTED DEADLINE MISSED STATUS,

DDS OFFERED INCOMPATIBLE QOS STATUS,

DDS REQUESTED INCOMPATIBLE QOS STATUS,

DDS SAMPLE LOST STATUS,

DDS SAMPLE REJECTED STATUS,

DDS DATA ON READERS STATUS,

DDS DATA AVAILABLE STATUS,

DDS LIVELINESS LOST STATUS,

DDS LIVELINESS CHANGED STATUS,

DDS PUBLICATION MATCHED STATUS,

DDS SUBSCRIPTION MATCHED STATUS ,

DDS RELIABLE WRITER CACHE CHANGED STATUS,

DDS RELIABLE READER ACTIVITY CHANGED STATUS,

DDS DATA WRITER CACHE STATUS,

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

306 Module Documentation

DDS DATA WRITER PROTOCOL STATUS,

DDS DATA READER CACHE STATUS,

DDS DATA READER PROTOCOL STATUS }
Type for status kinds.

5.81.1 Detailed Description

Kinds of communication status.

Entity:

DDSEntity (p. 1157)

QoS:

QoS Policies (p. 319)

Listener:

DDSListener (p. 1217)

Each concrete DDSEntity (p. 1157) is associated with a set of Status objects
whose value represents the communication status of that entity. Each sta-
tus value can be accessed with a corresponding method on the DDSEntity
(p. 1157).

When these status values change, the corresponding DDSStatusCondition
(p. 1271) objects are activated and the proper DDSListener (p. 1217) objects
are invoked to asynchronously inform the application.

An application is notified of communication status by means of the DDSLis-
tener (p. 1217) or the DDSWaitSet (p. 1325) / DDSCondition (p. 992)
mechanism. The two mechanisms may be combined in the application (e.g.,
using DDSWaitSet (p. 1325) (s) / DDSCondition (p. 992) (s) to access the
data and DDSListener (p. 1217) (s) to be warned asynchronously of erroneous
communication statuses).

It is likely that the application will choose one or the other mechanism for each
particular communication status (not both). However, if both mechanisms are
enabled, then the DDSListener (p. 1217) mechanism is used first and then the
DDSWaitSet (p. 1325) objects are signalled.

The statuses may be classified into:

ˆ read communication statuses: i.e., those that are related to arrival of data,
namely DDS DATA ON READERS STATUS (p. 312) and DDS -
DATA AVAILABLE STATUS (p. 312).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.81 Status Kinds 307

ˆ plain communication statuses: i.e., all the others.

Read communication statuses are treated slightly differently than the others be-
cause they don’t change independently. In other words, at least two changes will
appear at the same time (DDS DATA ON READERS STATUS (p. 312)
and DDS DATA AVAILABLE STATUS (p. 312)) and even several of the
last kind may be part of the set. This ’grouping’ has to be communicated to
the application.

For each plain communication status, there is a corresponding structure to hold
the status value. These values contain the information related to the change of
status, as well as information related to the statuses themselves (e.g., contains
cumulative counts).

5.81.2 Changes in Status

Associated with each one of an DDSEntity (p. 1157)’s communication status
is a logical StatusChangedFlag. This flag indicates whether that particular
communication status has changed since the last time the status was read by
the application. The way the status changes is slightly different for the Plain
Communication Status and the Read Communication status.

5.81.2.1 Changes in plain communication status

For the plain communication status, the StatusChangedFlag flag is initially
set to FALSE. It becomes TRUE whenever the plain communication status
changes and it is reset to DDS BOOLEAN FALSE (p. 289) each time the
application accesses the plain communication status via the proper get <plain
communication status>() operation on the DDSEntity (p. 1157).

The communication status is also reset to FALSE whenever the associated lis-
tener operation is called as the listener implicitly accesses the status which is
passed as a parameter to the operation. The fact that the status is reset prior
to calling the listener means that if the application calls the get <plain commu-
nication status> from inside the listener it will see the status already reset.

An exception to this rule is when the associated listener is the ’nil’ listener. The
’nil’ listener is treated as a NOOP and the act of calling the ’nil’ listener does
not reset the communication status.

For example, the value of the StatusChangedFlag associated with the
DDS REQUESTED DEADLINE MISSED STATUS (p. 311) will be-
come TRUE each time new deadline occurs (which increases the DDS -
RequestedDeadlineMissedStatus::total count (p. 823) field). The value
changes to FALSE when the application accesses the status via the
corresponding DDSDataReader::get requested deadline missed status

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

308 Module Documentation

(p. 1014) method on the proper Entity

5.81.2.2 Changes in read communication status

For the read communication status, the StatusChangedFlag flag is initially set
to FALSE. The StatusChangedFlag becomes TRUE when either a data-sample
arrives or else the DDS ViewStateKind (p. 106), DDS SampleStateKind
(p. 104), or DDS InstanceStateKind (p. 109) of any existing sample changes
for any reason other than a call to FooDataReader::read (p. 1337), Foo-
DataReader::take (p. 1338) or their variants. Specifically any of the following
events will cause the StatusChangedFlag to become TRUE:

ˆ The arrival of new data.

ˆ A change in the DDS InstanceStateKind (p. 109) of a contained in-
stance. This can be caused by either:

– The arrival of the notification that an instance has been disposed by:

* the DDSDataWriter (p. 1028) that owns it if OWNERSHIP
(p. 341) QoS kind= DDS EXCLUSIVE OWNERSHIP -
QOS (p. 342)

* or by any DDSDataWriter (p. 1028) if OWNERSHIP
(p. 341) QoS kind= DDS SHARED OWNERSHIP QOS
(p. 342)

– The loss of liveliness of the DDSDataWriter (p. 1028) of an instance
for which there is no other DDSDataWriter (p. 1028).

– The arrival of the notification that an instance has been unregistered
by the only DDSDataWriter (p. 1028) that is known to be writing
the instance.

Depending on the kind of StatusChangedFlag, the flag transitions to FALSE
again as follows:

ˆ The DDS DATA AVAILABLE STATUS (p. 312)
StatusChangedFlag becomes FALSE when either the corresponding
listener operation (on data available) is called or the read or take oper-
ation (or their variants) is called on the associated DDSDataReader
(p. 1004).

ˆ The DDS DATA ON READERS STATUS (p. 312)
StatusChangedFlag becomes FALSE when any of the following
events occurs:

– The corresponding listener operation (on data on readers) is called.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.81 Status Kinds 309

– The on data available listener operation is called on any DDS-
DataReader (p. 1004) belonging to the DDSSubscriber (p. 1284).

– The read or take operation (or their variants) is called on any DDS-
DataReader (p. 1004) belonging to the DDSSubscriber (p. 1284).

See also:

DDSListener (p. 1217)
DDSWaitSet (p. 1325), DDSCondition (p. 992)

5.81.3 Define Documentation

5.81.3.1 #define DDS STATUS MASK NONE

No bits are set.

Examples:

HelloWorld publisher.cxx, and HelloWorld subscriber.cxx.

5.81.3.2 #define DDS STATUS MASK ALL

All bits are set.

Examples:

HelloWorld subscriber.cxx.

5.81.4 Typedef Documentation

5.81.4.1 typedef DDS UnsignedLong DDS StatusMask

A bit-mask (list) of concrete status types, i.e. DDS StatusKind (p. 310)[].

The bit-mask is an efficient and compact representation of a fixed-length list of
DDS StatusKind (p. 310) values.

Bits in the mask correspond to different statuses. You can choose which changes
in status will trigger a callback by setting the corresponding status bits in this
bit-mask and installing callbacks for each of those statuses.

The bits that are true indicate that the listener will be called back for changes
in the corresponding status.

For example:

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

310 Module Documentation

DDS_StatusMask mask = DDS_REQUESTED_DEADLINE_MISSED_STATUS |

DDS_DATA_AVAILABLE_STATUS;

datareader->set_listener(listener, mask);

or

DDS_StatusMask mask = DDS_REQUESTED_DEADLINE_MISSED_STATUS |

DDS_DATA_AVAILABLE_STATUS;

datareader = subscriber->create_datareader(topic,

DDS_DATAREADER_QOS_DEFAULT,

listener, mask);

5.81.5 Enumeration Type Documentation

5.81.5.1 enum DDS StatusKind

Type for status kinds.

Each concrete DDSEntity (p. 1157) is associated with a set of ∗Status objects
whose values represent the communication status of that DDSEntity (p. 1157).

The communication statuses whose changes can be communicated to the appli-
cation depend on the DDSEntity (p. 1157).

Each status value can be accessed with a corresponding method on the DDSEn-
tity (p. 1157). The changes on these status values cause activation of the cor-
responding

DDSStatusCondition (p. 1271) objects and trigger invocation of

the proper DDSListener (p. 1217) objects to asynchronously inform the appli-
cation.

See also:

DDSEntity (p. 1157), DDSStatusCondition (p. 1271), DDSListener
(p. 1217)

Enumerator:

DDS INCONSISTENT TOPIC STATUS Another topic exists with
the same name but different characteristics.
Entity:

DDSTopic (p. 1311)
Status:

DDS InconsistentTopicStatus (p. 713)
Listener:

DDSTopicListener (p. 1322)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.81 Status Kinds 311

DDS OFFERED DEADLINE MISSED STATUS The deadline
that the DDSDataWriter (p. 1028) has committed through its
DDS DeadlineQosPolicy (p. 528) was not respected for a specific
instance.
Entity:

DDSDataWriter (p. 1028)
QoS:

DEADLINE (p. 339)
Status:

DDS OfferedDeadlineMissedStatus (p. 752)
Listener:

DDSDataWriterListener (p. 1048)

DDS REQUESTED DEADLINE MISSED STATUS The dead-
line that the DDSDataReader (p. 1004) was expecting through its
DDS DeadlineQosPolicy (p. 528) was not respected for a specific
instance.
Entity:

DDSDataReader (p. 1004)
QoS:

DEADLINE (p. 339)
Status:

DDS RequestedDeadlineMissedStatus (p. 823)
Listener:

DDSDataReaderListener (p. 1023)

DDS OFFERED INCOMPATIBLE QOS STATUS A QosPolicy
value was incompatible with what was requested.
Entity:

DDSDataWriter (p. 1028)
Status:

DDS OfferedIncompatibleQosStatus (p. 754)
Listener:

DDSDataWriterListener (p. 1048)

DDS REQUESTED INCOMPATIBLE QOS STATUS A
QosPolicy value was incompatible with what is offered.
Entity:

DDSDataReader (p. 1004)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

312 Module Documentation

Status:

DDS RequestedIncompatibleQosStatus (p. 825)

Listener:

DDSDataReaderListener (p. 1023)

DDS SAMPLE LOST STATUS A sample has been lost (i.e. was
never received).

Entity:

DDSSubscriber (p. 1284)

Status:

DDS SampleLostStatus (p. 864)

Listener:

DDSSubscriberListener (p. 1306)

DDS SAMPLE REJECTED STATUS A (received) sample has been
rejected.
Entity:

DDSDataReader (p. 1004)

QoS:

RESOURCE LIMITS (p. 356)

Status:

DDS SampleRejectedStatus (p. 865)

Listener:

DDSDataReaderListener (p. 1023)

DDS DATA ON READERS STATUS New data is available.
Entity:

DDSSubscriber (p. 1284)

Listener:

DDSSubscriberListener (p. 1306)

DDS DATA AVAILABLE STATUS One or more new data samples
have been received.
Entity:

DDSDataReader (p. 1004)

Listener:

DDSDataReaderListener (p. 1023)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.81 Status Kinds 313

DDS LIVELINESS LOST STATUS The liveliness that the DDS-
DataWriter (p. 1028) has committed to through its DDS -
LivelinessQosPolicy (p. 730) was not respected, thus DDS-
DataReader (p. 1004) entities will consider the DDSDataWriter
(p. 1028) as no longer alive.

Entity:

DDSDataWriter (p. 1028)

QoS:

LIVELINESS (p. 344)

Status:

DDS LivelinessLostStatus (p. 728)

Listener:

DDSDataWriterListener (p. 1048)

DDS LIVELINESS CHANGED STATUS The liveliness of one or
more DDSDataWriter (p. 1028) that were writing instances read
through the DDSDataReader (p. 1004) has changed. Some DDS-
DataWriter (p. 1028) have become alive or not alive.

Entity:

DDSDataReader (p. 1004)

QoS:

LIVELINESS (p. 344)

Status:

DDS LivelinessChangedStatus (p. 726)

Listener:

DDSDataReaderListener (p. 1023)

DDS PUBLICATION MATCHED STATUS The DDS-
DataWriter (p. 1028) has found DDSDataReader (p. 1004)
that matches the DDSTopic (p. 1311) and has compatible QoS.

Entity:

DDSDataWriter (p. 1028)

Status:

DDS PublicationMatchedStatus (p. 797)

Listener:

DDSDataWriterListener (p. 1048)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

314 Module Documentation

DDS SUBSCRIPTION MATCHED STATUS The DDS-
DataReader (p. 1004) has found DDSDataWriter (p. 1028)
that matches the DDSTopic (p. 1311) and has compatible QoS.

Entity:

DDSDataReader (p. 1004)

Status:

DDS SubscriptionMatchedStatus (p. 885)

Listener:

DDSDataReaderListener (p. 1023)

DDS RELIABLE WRITER CACHE CHANGED STATUS
<<eXtension>> (p. 190) The number of unacknowledged samples
in a reliable writer’s cache has changed such that it has reached a
pre-defined trigger point.
This status is considered changed at the following times: the
cache is empty (i.e. contains no unacknowledge samples),
full (i.e. the sample count has reached the value specified
in DDS ResourceLimitsQosPolicy::max samples (p. 829)),
or the number of samples has reached a high (see DDS -
RtpsReliableWriterProtocol t::high watermark (p. 838)) or
low (see DDS RtpsReliableWriterProtocol t::low watermark
(p. 837)) watermark.

Entity:

DDSDataWriter (p. 1028)

Status:

DDS ReliableWriterCacheChangedStatus (p. 819)

Listener:

DDSDataWriterListener (p. 1048)

DDS RELIABLE READER ACTIVITY CHANGED STATUS
<<eXtension>> (p. 190) One or more reliable readers has become
active or inactive.
A reliable reader is considered active by a reliable writer with which
it is matched if that reader acknowledges the samples it has been
sent in a timely fashion. For the definition of ”timely” in this
case, see DDS RtpsReliableWriterProtocol t (p. 835) and DDS -
ReliableReaderActivityChangedStatus (p. 817).

See also:

DDS RtpsReliableWriterProtocol t (p. 835)
DDS ReliableReaderActivityChangedStatus (p. 817)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.81 Status Kinds 315

DDS DATA WRITER CACHE STATUS <<eXtension>>
(p. 190) The status of the writer’s cache.

DDS DATA WRITER PROTOCOL STATUS <<eXtension>>
(p. 190) The status of a writer’s internal protocol related metrics
The status of a writer’s internal protocol related metrics, like the num-
ber of samples pushed, pulled, filtered; and status of wire protocol
traffic.

DDS DATA READER CACHE STATUS <<eXtension>>
(p. 190) The status of the reader’s cache.

DDS DATA READER PROTOCOL STATUS <<eXtension>>
(p. 190) The status of a reader’s internal protocol related metrics
The status of a reader’s internal protocol related metrics, like the num-
ber of samples received, filtered, rejected; and status of wire protocol
traffic.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

316 Module Documentation

5.82 Thread Settings

The properties of a thread of execution.

Classes

ˆ struct DDS ThreadSettings t

The properties of a thread of execution.

Defines

ˆ #define DDS THREAD SETTINGS KIND MASK DEFAULT

The mask of default thread options.

Typedefs

ˆ typedef DDS UnsignedLong DDS ThreadSettingsKindMask

A mask of which each bit is taken from DDS ThreadSettingsKind (p. 317).

Enumerations

ˆ enum DDS ThreadSettingsKind {

DDS THREAD SETTINGS FLOATING POINT,

DDS THREAD SETTINGS STDIO,

DDS THREAD SETTINGS REALTIME PRIORITY,

DDS THREAD SETTINGS PRIORITY ENFORCE }
A collection of flags used to configure threads of execution.

ˆ enum DDS ThreadSettingsCpuRotationKind {

DDS THREAD SETTINGS CPU NO ROTATION,

DDS THREAD SETTINGS CPU RR ROTATION }
Determines how DDS ThreadSettings t::cpu list (p. 891) affects proces-
sor affinity for thread-related QoS policies that apply to multiple threads.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.82 Thread Settings 317

5.82.1 Detailed Description

The properties of a thread of execution.

5.82.2 Define Documentation

5.82.2.1 #define DDS THREAD SETTINGS KIND MASK -
DEFAULT

The mask of default thread options.

5.82.3 Typedef Documentation

5.82.3.1 typedef DDS UnsignedLong DDS -
ThreadSettingsKindMask

A mask of which each bit is taken from DDS ThreadSettingsKind (p. 317).

See also:

DDS ThreadSettings t (p. 890)

5.82.4 Enumeration Type Documentation

5.82.4.1 enum DDS ThreadSettingsKind

A collection of flags used to configure threads of execution.

Not all of these options may be relevant for all operating systems.

See also:

DDS ThreadSettingsKindMask (p. 317)

Enumerator:

DDS THREAD SETTINGS FLOATING POINT Code executed
within the thread may perform floating point operations.

DDS THREAD SETTINGS STDIO Code executed within the
thread may access standard I/O.

DDS THREAD SETTINGS REALTIME PRIORITY The
thread will be schedule on a real-time basis.

DDS THREAD SETTINGS PRIORITY ENFORCE Strictly en-
force this thread’s priority.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

318 Module Documentation

5.82.4.2 enum DDS ThreadSettingsCpuRotationKind

Determines how DDS ThreadSettings t::cpu list (p. 891) affects processor
affinity for thread-related QoS policies that apply to multiple threads.

5.82.5 Controlling CPU Core Affinity for RTI Threads

Most thread-related QoS settings apply to a single thread (such as for the
DDS EventQosPolicy (p. 693), DDS DatabaseQosPolicy (p. 461), and
DDS AsynchronousPublisherQosPolicy (p. 441)). However, the thread
settings in the DDS ReceiverPoolQosPolicy (p. 810) control every receive
thread created. In this case, there are several schemes to map M threads to N
processors; the rotation kind controls which scheme is used.

If DDS ThreadSettings t::cpu list (p. 891) is empty, the rotation is irrel-
evant since no affinity adjustment will occur. Suppose instead that DDS -
ThreadSettings t::cpu list (p. 891) = {0, 1} and that the middleware creates
three receive threads: {A, B, C}. If DDS ThreadSettings t::cpu rotation
(p. 891) is DDS THREAD SETTINGS CPU NO ROTATION (p. 318),
threads A, B and C will have the same processor affinities (0-1), and the OS
will control thread scheduling within this bound. It is common to denote CPU
affinities as a bitmask, where set bits represent allowed processors to run on.
This mask is printed in hex, so a CPU core affinity of 0-1 can be represented
by the mask 0x3.

If DDS ThreadSettings t::cpu rotation (p. 891) is DDS THREAD -
SETTINGS CPU RR ROTATION (p. 318), each thread will be assigned
in round-robin fashion to one of the processors in DDS ThreadSettings -
t::cpu list (p. 891); perhaps thread A to 0, B to 1, and C to 0. Note that the
order in which internal middleware threads spawn is unspecified.

Not all of these options may be relevant for all operating systems.

Enumerator:

DDS THREAD SETTINGS CPU NO ROTATION Any thread
controlled by this QoS can run on any listed processor, as determined
by OS scheduling.

DDS THREAD SETTINGS CPU RR ROTATION Threads con-
trolled by this QoS will be assigned one processor from the list in
round-robin order.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.83 QoS Policies 319

5.83 QoS Policies

Quality of Service (QoS) policies.

Modules

ˆ USER DATA
Attaches a buffer of opaque data that is distributed by means of Built-in
Topics (p. 41) during discovery.

ˆ TOPIC DATA
Attaches a buffer of opaque data that is distributed by means of Built-in
Topics (p. 41) during discovery.

ˆ GROUP DATA
Attaches a buffer of opaque data that is distributed by means of Built-in
Topics (p. 41) during discovery.

ˆ DURABILITY
This QoS policy specifies whether or not RTI Data Distribution Service will
store and deliver previously published data samples to new DDSDataReader
(p. 1004) entities that join the network later.

ˆ PRESENTATION
Specifies how the samples representing changes to data instances are pre-
sented to a subscribing application.

ˆ DEADLINE
Expresses the maximum duration (deadline) within which an instance is ex-
pected to be updated.

ˆ LATENCY BUDGET
Provides a hint as to the maximum acceptable delay from the time the data
is written to the time it is received by the subscribing applications.

ˆ OWNERSHIP
Specifies whether it is allowed for multiple DDSDataWriter (p. 1028) (s)
to write the same instance of the data and if so, how these modifications
should be arbitrated.

ˆ OWNERSHIP STRENGTH
Specifies the value of the strength used to arbitrate among multiple DDS-
DataWriter (p. 1028) objects that attempt to modify the same instance of
a data type (identified by DDSTopic (p. 1311) + key).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

320 Module Documentation

ˆ LIVELINESS

Specifies and configures the mechanism that allows DDSDataReader
(p. 1004) entities to detect when DDSDataWriter (p. 1028) entities be-
come disconnected or ”dead.”.

ˆ TIME BASED FILTER

Filter that allows a DDSDataReader (p. 1004) to specify that it is inter-
ested only in (potentially) a subset of the values of the data.

ˆ PARTITION

Set of strings that introduces a logical partition among the topics visible by
a DDSPublisher (p. 1243) and a DDSSubscriber (p. 1284).

ˆ RELIABILITY

Indicates the level of reliability offered/requested by RTI Data Distribution
Service.

ˆ DESTINATION ORDER

Controls the criteria used to determine the logical order among changes made
by DDSPublisher (p. 1243) entities to the same instance of data (i.e.,
matching DDSTopic (p. 1311) and key).

ˆ HISTORY

Specifies the behavior of RTI Data Distribution Service in the case where the
value of an instance changes (one or more times) before it can be successfully
communicated to one or more existing subscribers.

ˆ DURABILITY SERVICE

Various settings to configure the external RTI Persistence Service used
by RTI Data Distribution Service for DataWriters with a DDS -
DurabilityQosPolicy (p. 572) setting of DDS PERSISTENT -
DURABILITY QOS (p. 336) or DDS TRANSIENT -
DURABILITY QOS (p. 336).

ˆ RESOURCE LIMITS

Controls the amount of physical memory allocated for DDS entities, if dy-
namic allocations are allowed, and how they occur. Also controls memory
usage among different instance values for keyed topics.

ˆ TRANSPORT PRIORITY

This QoS policy allows the application to take advantage of transports that
are capable of sending messages with different priorities.

ˆ LIFESPAN

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.83 QoS Policies 321

Specifies how long the data written by the DDSDataWriter (p. 1028) is
considered valid.

ˆ WRITER DATA LIFECYCLE

Controls how a DataWriter handles the lifecycle of the instances (keys) that
it is registered to manage.

ˆ READER DATA LIFECYCLE

Controls how a DataReader manages the lifecycle of the data that it has
received.

ˆ ENTITY FACTORY

A QoS policy for all DDSEntity (p. 1157) types that can act as factories
for one or more other DDSEntity (p. 1157) types.

ˆ Extended Qos Support

<<eXtension>> (p. 190) Types and defines used in extended QoS policies.

ˆ TRANSPORT SELECTION

<<eXtension>> (p. 190) Specifies the physical transports a DDS-
DataWriter (p. 1028) or DDSDataReader (p. 1004) may use to send or
receive data.

ˆ TRANSPORT UNICAST

<<eXtension>> (p. 190) Specifies a subset of transports and a port number
that can be used by an Entity to receive data.

ˆ TRANSPORT MULTICAST

<<eXtension>> (p. 190) Specifies the multicast address on which a DDS-
DataReader (p. 1004) wants to receive its data. It can also specify a port
number as well as a subset of the available (at the DDSDomainParticipant
(p. 1054) level) transports with which to receive the multicast data.

ˆ DISCOVERY

<<eXtension>> (p. 190) Specifies the attributes required to discover par-
ticipants in the domain.

ˆ TRANSPORT BUILTIN

<<eXtension>> (p. 190) Specifies which built-in transports are used.

ˆ WIRE PROTOCOL

<<eXtension>> (p. 190) Specifies the wire protocol related attributes for
the DDSDomainParticipant (p. 1054).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

322 Module Documentation

ˆ DATA READER RESOURCE LIMITS
<<eXtension>> (p. 190) Various settings that configure how DataReaders
allocate and use physical memory for internal resources.

ˆ DATA WRITER RESOURCE LIMITS
<<eXtension>> (p. 190) Various settings that configure how a DDS-
DataWriter (p. 1028) allocates and uses physical memory for internal re-
sources.

ˆ DATA READER PROTOCOL
<<eXtension>> (p. 190) Specifies the DataReader-specific protocol QoS.

ˆ DATA WRITER PROTOCOL
<<eXtension>> (p. 190) Along with DDS WireProtocolQosPolicy
(p. 981) and DDS DataReaderProtocolQosPolicy (p. 467), this QoS pol-
icy configures the DDS on-the-network protocol (RTPS).

ˆ SYSTEM RESOURCE LIMITS
<<eXtension>> (p. 190) Configures DomainParticipant-independent re-
sources used by RTI Data Distribution Service.

ˆ DOMAIN PARTICIPANT RESOURCE LIMITS
<<eXtension>> (p. 190) Various settings that configure how a DDSDo-
mainParticipant (p. 1054) allocates and uses physical memory for internal
resources, including the maximum sizes of various properties.

ˆ EVENT
<<eXtension>> (p. 190) Configures the internal thread in a DomainPar-
ticipant that handles timed events.

ˆ DATABASE
<<eXtension>> (p. 190) Various threads and resource limits settings used
by RTI Data Distribution Service to control its internal database.

ˆ RECEIVER POOL
<<eXtension>> (p. 190) Configures threads used by RTI Data Distribu-
tion Service to receive and process data from transports (for example, UDP
sockets).

ˆ PUBLISH MODE
<<eXtension>> (p. 190) Specifies how RTI Data Distribution Service
sends application data on the network. This QoS policy can be used to tell
RTI Data Distribution Service to use its own thread to send data, instead of
the user thread.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.83 QoS Policies 323

ˆ DISCOVERY CONFIG
<<eXtension>> (p. 190) Specifies the discovery configuration QoS.

ˆ TYPESUPPORT
<<eXtension>> (p. 190) Allows you to attach application-specific values
to a DataWriter or DataReader that are passed to the serialization or dese-
rialization routine of the associated data type.

ˆ ASYNCHRONOUS PUBLISHER
<<eXtension>> (p. 190) Specifies the asynchronous publishing settings of
the DDSPublisher (p. 1243) instances.

ˆ EXCLUSIVE AREA
<<eXtension>> (p. 190) Configures multi-thread concurrency and dead-
lock prevention capabilities.

ˆ BATCH
<<eXtension>> (p. 190) Batch QoS policy used to enable batching in
DDSDataWriter (p. 1028) instances.

ˆ LOCATORFILTER
<<eXtension>> (p. 190) The QoS policy used to report the
configuration of a MultiChannel DataWriter as part of DDS -
PublicationBuiltinTopicData (p. 788).

ˆ MULTICHANNEL
<<eXtension>> (p. 190) Configures the ability of a DataWriter to send
data on different multicast groups (addresses) based on the value of the data.

ˆ PROPERTY
<<eXtension>> (p. 190) Stores name/value (string) pairs that can be used
to configure certain parameters of RTI Data Distribution Service that are not
exposed through formal QoS policies. Can also be used to store and propagate
application-specific name/value pairs that can be retrieved by user code during
discovery.

ˆ ENTITY NAME
<<eXtension>> (p. 190) Assigns a name to a DDSDomainParticipant
(p. 1054). This name will be visible during the discovery process and in RTI
tools to help you visualize and debug your system.

ˆ PROFILE
<<eXtension>> (p. 190) Configures the way that XML documents con-
taining QoS profiles are loaded by RTI Data Distribution Service.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

324 Module Documentation

Classes

ˆ struct DDS QosPolicyCount
Type to hold a counter for a DDS QosPolicyId t (p. 328).

ˆ struct DDS QosPolicyCountSeq
Declares IDL sequence < DDS QosPolicyCount (p. 805) >.

Enumerations

ˆ enum DDS QosPolicyId t {
DDS INVALID QOS POLICY ID,

DDS USERDATA QOS POLICY ID,

DDS DURABILITY QOS POLICY ID,

DDS PRESENTATION QOS POLICY ID,

DDS DEADLINE QOS POLICY ID,

DDS LATENCYBUDGET QOS POLICY ID,

DDS OWNERSHIP QOS POLICY ID,

DDS OWNERSHIPSTRENGTH QOS POLICY ID,

DDS LIVELINESS QOS POLICY ID,

DDS TIMEBASEDFILTER QOS POLICY ID,

DDS PARTITION QOS POLICY ID,

DDS RELIABILITY QOS POLICY ID,

DDS DESTINATIONORDER QOS POLICY ID,

DDS HISTORY QOS POLICY ID,

DDS RESOURCELIMITS QOS POLICY ID,

DDS ENTITYFACTORY QOS POLICY ID,

DDS WRITERDATALIFECYCLE QOS POLICY ID,

DDS READERDATALIFECYCLE QOS POLICY ID,

DDS TOPICDATA QOS POLICY ID,

DDS GROUPDATA QOS POLICY ID,

DDS TRANSPORTPRIORITY QOS POLICY ID,

DDS LIFESPAN QOS POLICY ID,

DDS DURABILITYSERVICE QOS POLICY ID,

DDS WIREPROTOCOL QOS POLICY ID,

DDS DISCOVERY QOS POLICY ID,

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.83 QoS Policies 325

DDS DATAREADERRESOURCELIMITS QOS POLICY ID,

DDS DATAWRITERRESOURCELIMITS QOS POLICY ID,

DDS DATAREADERPROTOCOL QOS POLICY ID,

DDS DATAWRITERPROTOCOL QOS POLICY ID,

DDS DOMAINPARTICIPANTRESOURCELIMITS QOS -
POLICY ID,

DDS EVENT QOS POLICY ID,

DDS DATABASE QOS POLICY ID,

DDS RECEIVERPOOL QOS POLICY ID,

DDS DISCOVERYCONFIG QOS POLICY ID,

DDS EXCLUSIVEAREA QOS POLICY ID ,

DDS SYSTEMRESOURCELIMITS QOS POLICY ID,

DDS TRANSPORTSELECTION QOS POLICY ID,

DDS TRANSPORTUNICAST QOS POLICY ID,

DDS TRANSPORTMULTICAST QOS POLICY ID,

DDS TRANSPORTBUILTIN QOS POLICY ID,

DDS TYPESUPPORT QOS POLICY ID,

DDS PROPERTY QOS POLICY ID,

DDS PUBLISHMODE QOS POLICY ID,

DDS ASYNCHRONOUSPUBLISHER QOS POLICY ID,

DDS ENTITYNAME QOS POLICY ID ,

DDS BATCH QOS POLICY ID,

DDS PROFILE QOS POLICY ID,

DDS LOCATORFILTER QOS POLICY ID,

DDS MULTICHANNEL QOS POLICY ID }
Type to identify QosPolicies.

5.83.1 Detailed Description

Quality of Service (QoS) policies.

Data Distribution Service (DDS) relies on the use of QoS. A QoS is a set of
characteristics that controls some aspect of the behavior of DDS. A QoS is
comprised of individual QoS policies (objects conceptually deriving from an
abstract QosPolicy class).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

326 Module Documentation

The QosPolicy provides the basic mechanism for an application to specify quality
of service parameters. It has an attribute name that is used to uniquely identify
each QosPolicy.

QosPolicy implementation is comprised of a name, an ID, and a type. The type
of a QosPolicy value may be atomic, such as an integer or float, or compound
(a structure). Compound types are used whenever multiple parameters must
be set coherently to define a consistent value for a QosPolicy.

QoS (i.e., a list of QosPolicy objects) may be associated with all DDSEntity
(p. 1157) objects in the system such as DDSTopic (p. 1311), DDSDataWriter
(p. 1028), DDSDataReader (p. 1004), DDSPublisher (p. 1243), DDSSub-
scriber (p. 1284), and DDSDomainParticipant (p. 1054).

5.83.2 Specifying QoS on entities

QosPolicies can be set programmatically when an DDSEntity (p. 1157) is cre-
ated, or modified with the DDSEntity (p. 1157)’s set qos (abstract) (p. 1158)
method.

QosPolicies can also be configured from XML resources (files, strings). With
this approach, you can change the QoS without recompiling the application.
For more information, see Configuring QoS Profiles with XML (p. 142).

To customize a DDSEntity (p. 1157)’s QoS before creating the entity, the cor-
rect pattern is:

ˆ First, initialize a QoS object with the appropriate INITIALIZER con-
structor.

ˆ Call the relevant get <entity> default qos() method.

ˆ Modify the QoS values as desired.

ˆ Finally, create the entity.

Each QosPolicy is treated independently from the others. This approach has
the advantage of being very extensible. However, there may be cases where
several policies are in conflict. Consistency checking is performed each time the
policies are modified via the set qos (abstract) (p. 1158) operation, or when
the DDSEntity (p. 1157) is created.

When a policy is changed after being set to a given value, it is not required that
the new value be applied instantaneously; RTI Data Distribution Service is al-
lowed to apply it after a transition phase. In addition, some QosPolicy have im-
mutable semantics, meaning that they can only be specified either at DDSEn-
tity (p. 1157) creation time or else prior to calling the DDSEntity::enable
(p. 1160) operation on the entity.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.83 QoS Policies 327

Each DDSEntity (p. 1157) can be configured with a list of QosPolicy ob-
jects. However, not all QosPolicies are supported by each DDSEntity (p. 1157).
For instance, a DDSDomainParticipant (p. 1054) supports a different set of
QosPolicies than a DDSTopic (p. 1311) or a DDSPublisher (p. 1243).

5.83.3 QoS compatibility

In several cases, for communications to occur properly (or efficiently), a QosPol-
icy on the publisher side must be compatible with a corresponding policy on
the subscriber side. For example, if a DDSSubscriber (p. 1284) requests to
receive data reliably while the corresponding DDSPublisher (p. 1243) defines
a best-effort policy, communication will not happen as requested.

To address this issue and maintain the desirable decoupling of publication
and subscription as much as possible, the QosPolicy specification follows the
subscriber-requested, publisher-offered pattern.

In this pattern, the subscriber side can specify a ”requested” value for a par-
ticular QosPolicy. The publisher side specifes an ”offered” value for that
QosPolicy. RTI Data Distribution Service will then determine whether the
value requested by the subscriber side is compatible with what is offered by
the publisher side. If the two policies are compatible, then communication
will be established. If the two policies are not compatible, RTI Data Distri-
bution Service will not establish communications between the two DDSEn-
tity (p. 1157) objects and will record this fact by means of the DDS -
OFFERED INCOMPATIBLE QOS STATUS (p. 311) on the publisher
end and DDS REQUESTED INCOMPATIBLE QOS STATUS (p. 311)
on the subscriber end. The application can detect this fact by means of a
DDSListener (p. 1217) or a DDSCondition (p. 992).

The following properties are defined on a QosPolicy.

ˆ RxO (p. 327) property

The QosPolicy objects that need to be set in a compatible manner between
the publisher and subscriber end are indicated by the setting of the
RxO (p. 327) property:

– RxO (p. 327) = YES indicates that the policy can be set both at
the publishing and subscribing ends and the values must be set in a
compatible manner. In this case the compatible values are explicitly
defined.

– RxO (p. 327) = NO indicates that the policy can be set both at the
publishing and subscribing ends but the two settings are independent.
That is, all combinations of values are compatible.

– RxO (p. 327) = N/A indicates that the policy can only be specified
at either the publishing or the subscribing end, but not at both ends.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

328 Module Documentation

So compatibility does not apply.

ˆ Changeable (p. 328) property

Determines whether a QosPolicy can be changed.

NO (p. 328) – policy can only be specified at DDSEntity (p. 1157)
creation time.

UNTIL ENABLE (p. 328) – policy can only be changed before the
DDSEntity (p. 1157) is enabled.

YES (p. 328) – policy can be changed at any time.

5.83.4 Enumeration Type Documentation

5.83.4.1 enum DDS QosPolicyId t

Type to identify QosPolicies.

Enumerator:

DDS INVALID QOS POLICY ID Identifier for an invalid QoS pol-
icy.

DDS USERDATA QOS POLICY ID Identifier for DDS -
UserDataQosPolicy (p. 972).

DDS DURABILITY QOS POLICY ID Identifier for DDS -
DurabilityQosPolicy (p. 572).

DDS PRESENTATION QOS POLICY ID Identifier for DDS -
PresentationQosPolicy (p. 772).

DDS DEADLINE QOS POLICY ID Identifier for DDS -
DeadlineQosPolicy (p. 528).

DDS LATENCYBUDGET QOS POLICY ID Identifier for
DDS LatencyBudgetQosPolicy (p. 722).

DDS OWNERSHIP QOS POLICY ID Identifier for DDS -
OwnershipQosPolicy (p. 756).

DDS OWNERSHIPSTRENGTH QOS POLICY ID Identifier for
DDS OwnershipStrengthQosPolicy (p. 763).

DDS LIVELINESS QOS POLICY ID Identifier for DDS -
LivelinessQosPolicy (p. 730).

DDS TIMEBASEDFILTER QOS POLICY ID Identifier for
DDS TimeBasedFilterQosPolicy (p. 894).

DDS PARTITION QOS POLICY ID Identifier for DDS -
PartitionQosPolicy (p. 769).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.83 QoS Policies 329

DDS RELIABILITY QOS POLICY ID Identifier for DDS -
ReliabilityQosPolicy (p. 813).

DDS DESTINATIONORDER QOS POLICY ID Identifier for
DDS DestinationOrderQosPolicy (p. 531).

DDS HISTORY QOS POLICY ID Identifier for DDS -
HistoryQosPolicy (p. 709).

DDS RESOURCELIMITS QOS POLICY ID Identifier for
DDS ResourceLimitsQosPolicy (p. 827).

DDS ENTITYFACTORY QOS POLICY ID Identifier for DDS -
EntityFactoryQosPolicy (p. 687).

DDS WRITERDATALIFECYCLE QOS POLICY ID Identifier
for DDS WriterDataLifecycleQosPolicy (p. 989).

DDS READERDATALIFECYCLE QOS POLICY ID Identifier
for DDS ReaderDataLifecycleQosPolicy (p. 807).

DDS TOPICDATA QOS POLICY ID Identifier for DDS -
TopicDataQosPolicy (p. 903).

DDS GROUPDATA QOS POLICY ID Identifier for DDS -
GroupDataQosPolicy (p. 706).

DDS TRANSPORTPRIORITY QOS POLICY ID Identifier for
DDS TransportPriorityQosPolicy (p. 916).

DDS LIFESPAN QOS POLICY ID Identifier for DDS -
LifespanQosPolicy (p. 724).

DDS DURABILITYSERVICE QOS POLICY ID Identifier for
DDS DurabilityServiceQosPolicy (p. 576).

DDS WIREPROTOCOL QOS POLICY ID <<eXtension>>
(p. 190) Identifier for DDS WireProtocolQosPolicy (p. 981)

DDS DISCOVERY QOS POLICY ID <<eXtension>> (p. 190)
Identifier for DDS DiscoveryQosPolicy (p. 542)

DDS DATAREADERRESOURCELIMITS QOS POLICY ID
<<eXtension>> (p. 190) Identifier for DDS -
DataReaderResourceLimitsQosPolicy (p. 487)

DDS DATAWRITERRESOURCELIMITS QOS POLICY ID
<<eXtension>> (p. 190) Identifier for DDS -
DataWriterResourceLimitsQosPolicy (p. 523)

DDS DATAREADERPROTOCOL QOS POLICY ID
<<eXtension>> (p. 190) Identifier for DDS -
DataReaderProtocolQosPolicy (p. 467)

DDS DATAWRITERPROTOCOL QOS POLICY ID
<<eXtension>> (p. 190) Identifier for DDS -
DataWriterProtocolQosPolicy (p. 499)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

330 Module Documentation

DDS DOMAINPARTICIPANTRESOURCELIMITS QOS POLICY ID
<<eXtension>> (p. 190) Identifier for DDS -
DomainParticipantResourceLimitsQosPolicy (p. 553)

DDS EVENT QOS POLICY ID <<eXtension>> (p. 190) Identi-
fier for DDS EventQosPolicy (p. 693)

DDS DATABASE QOS POLICY ID <<eXtension>> (p. 190)
Identifier for DDS DatabaseQosPolicy (p. 461)

DDS RECEIVERPOOL QOS POLICY ID <<eXtension>>
(p. 190) Identifier for DDS ReceiverPoolQosPolicy (p. 810)

DDS DISCOVERYCONFIG QOS POLICY ID
<<eXtension>> (p. 190) Identifier for DDS -
DiscoveryConfigQosPolicy (p. 534)

DDS EXCLUSIVEAREA QOS POLICY ID <<eXtension>>
(p. 190) Identifier for DDS ExclusiveAreaQosPolicy (p. 696)

DDS SYSTEMRESOURCELIMITS QOS POLICY ID
<<eXtension>> (p. 190) Identifier for DDS -
SystemResourceLimitsQosPolicy (p. 888)

DDS TRANSPORTSELECTION QOS POLICY ID
<<eXtension>> (p. 190) Identifier for DDS -
TransportSelectionQosPolicy (p. 918)

DDS TRANSPORTUNICAST QOS POLICY ID
<<eXtension>> (p. 190) Identifier for DDS -
TransportUnicastQosPolicy (p. 920)

DDS TRANSPORTMULTICAST QOS POLICY ID
<<eXtension>> (p. 190) Identifier for DDS -
TransportMulticastQosPolicy (p. 911)

DDS TRANSPORTBUILTIN QOS POLICY ID
<<eXtension>> (p. 190) Identifier for DDS -
TransportBuiltinQosPolicy (p. 909)

DDS TYPESUPPORT QOS POLICY ID <<eXtension>>
(p. 190) Identifier for DDS TypeSupportQosPolicy (p. 964)

DDS PROPERTY QOS POLICY ID <<eXtension>> (p. 190)
Identifier for DDS PropertyQosPolicy (p. 783)

DDS PUBLISHMODE QOS POLICY ID <<eXtension>>
(p. 190) Identifier for DDS PublishModeQosPolicy (p. 802)

DDS ASYNCHRONOUSPUBLISHER QOS POLICY ID
<<eXtension>> (p. 190) Identifier for DDS -
AsynchronousPublisherQosPolicy (p. 441)

DDS ENTITYNAME QOS POLICY ID <<eXtension>>
(p. 190) Identifier for DDS EntityNameQosPolicy (p. 689)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.83 QoS Policies 331

DDS BATCH QOS POLICY ID <<eXtension>> (p. 190) Identi-
fier for DDS BatchQosPolicy (p. 446)

DDS PROFILE QOS POLICY ID <<eXtension>> (p. 190)
Identifier for DDS ProfileQosPolicy (p. 779)

DDS LOCATORFILTER QOS POLICY ID <<eXtension>>
(p. 190) Identifier for DDS LocatorFilterQosPolicy (p. 738)

DDS MULTICHANNEL QOS POLICY ID <<eXtension>>
(p. 190) Identifier for DDS MultiChannelQosPolicy (p. 745)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

332 Module Documentation

5.84 USER DATA

Attaches a buffer of opaque data that is distributed by means of Built-in
Topics (p. 41) during discovery.

Classes

ˆ struct DDS UserDataQosPolicy

Attaches a buffer of opaque data that is distributed by means of Built-in
Topics (p. 41) during discovery.

Variables

ˆ const char ∗const DDS USERDATA QOS POLICY NAME

Stringified human-readable name for DDS UserDataQosPolicy (p. 972).

5.84.1 Detailed Description

Attaches a buffer of opaque data that is distributed by means of Built-in
Topics (p. 41) during discovery.

5.84.2 Variable Documentation

5.84.2.1 const char∗ const DDS USERDATA QOS POLICY -
NAME

Stringified human-readable name for DDS UserDataQosPolicy (p. 972).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.85 TOPIC DATA 333

5.85 TOPIC DATA

Attaches a buffer of opaque data that is distributed by means of Built-in
Topics (p. 41) during discovery.

Classes

ˆ struct DDS TopicDataQosPolicy

Attaches a buffer of opaque data that is distributed by means of Built-in
Topics (p. 41) during discovery.

Variables

ˆ const char ∗const DDS TOPICDATA QOS POLICY NAME

Stringified human-readable name for DDS TopicDataQosPolicy (p. 903).

5.85.1 Detailed Description

Attaches a buffer of opaque data that is distributed by means of Built-in
Topics (p. 41) during discovery.

5.85.2 Variable Documentation

5.85.2.1 const char∗ const DDS TOPICDATA QOS POLICY -
NAME

Stringified human-readable name for DDS TopicDataQosPolicy (p. 903).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

334 Module Documentation

5.86 GROUP DATA

Attaches a buffer of opaque data that is distributed by means of Built-in
Topics (p. 41) during discovery.

Classes

ˆ struct DDS GroupDataQosPolicy

Attaches a buffer of opaque data that is distributed by means of Built-in
Topics (p. 41) during discovery.

Variables

ˆ const char ∗const DDS GROUPDATA QOS POLICY NAME

Stringified human-readable name for DDS GroupDataQosPolicy (p. 706).

5.86.1 Detailed Description

Attaches a buffer of opaque data that is distributed by means of Built-in
Topics (p. 41) during discovery.

5.86.2 Variable Documentation

5.86.2.1 const char∗ const DDS GROUPDATA QOS POLICY -
NAME

Stringified human-readable name for DDS GroupDataQosPolicy (p. 706).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.87 DURABILITY 335

5.87 DURABILITY

This QoS policy specifies whether or not RTI Data Distribution Service will
store and deliver previously published data samples to new DDSDataReader
(p. 1004) entities that join the network later.

Classes

ˆ struct DDS DurabilityQosPolicy
This QoS policy specifies whether or not RTI Data Distribution Service will
store and deliver previously published data samples to new DDSDataReader
(p. 1004) entities that join the network later.

Enumerations

ˆ enum DDS DurabilityQosPolicyKind {
DDS VOLATILE DURABILITY QOS,

DDS TRANSIENT LOCAL DURABILITY QOS,

DDS TRANSIENT DURABILITY QOS,

DDS PERSISTENT DURABILITY QOS }
Kinds of durability.

Variables

ˆ const char ∗const DDS DURABILITY QOS POLICY NAME
Stringified human-readable name for DDS DurabilityQosPolicy (p. 572).

5.87.1 Detailed Description

This QoS policy specifies whether or not RTI Data Distribution Service will
store and deliver previously published data samples to new DDSDataReader
(p. 1004) entities that join the network later.

5.87.2 Enumeration Type Documentation

5.87.2.1 enum DDS DurabilityQosPolicyKind

Kinds of durability.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

336 Module Documentation

QoS:

DDS DurabilityQosPolicy (p. 572)

Enumerator:

DDS VOLATILE DURABILITY QOS [default] RTI Data Distri-
bution Service does not need to keep any samples of data instances
on behalf of any DDSDataReader (p. 1004) that is unknown by the
DDSDataWriter (p. 1028) at the time the instance is written.
In other words, RTI Data Distribution Service will only attempt to
provide the data to existing subscribers.

DDS TRANSIENT LOCAL DURABILITY QOS RTI Data Dis-
tribution Service will attempt to keep some samples so that they can
be delivered to any potential late-joining DDSDataReader (p. 1004).
Which particular samples are kept depends on other QoS
such as DDS HistoryQosPolicy (p. 709) and DDS -
ResourceLimitsQosPolicy (p. 827). RTI Data Distribution Service
is only required to keep the data in memory of the DDSDataWriter
(p. 1028) that wrote the data.
Data is not required to survive the DDSDataWriter (p. 1028).
For this setting to be effective, you must also set the
DDS ReliabilityQosPolicy::kind (p. 815) to DDS RELIABLE -
RELIABILITY QOS (p. 349).

DDS TRANSIENT DURABILITY QOS RTI Data Distribution
Service will attempt to keep some samples so that they can be de-
livered to any potential late-joining DDSDataReader (p. 1004).
Which particular samples are kept depends on other QoS
such as DDS HistoryQosPolicy (p. 709) and DDS -
ResourceLimitsQosPolicy (p. 827). RTI Data Distribution
Service is only required to keep the data in memory and not in
permanent storage.
Data is not tied to the lifecycle of the DDSDataWriter (p. 1028).
Data will survive the DDSDataWriter (p. 1028).

DDS PERSISTENT DURABILITY QOS Data is kept on perma-
nent storage, so that they can outlive a system session.

5.87.3 Variable Documentation

5.87.3.1 const char∗ const DDS DURABILITY QOS POLICY -
NAME

Stringified human-readable name for DDS DurabilityQosPolicy (p. 572).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.88 PRESENTATION 337

5.88 PRESENTATION

Specifies how the samples representing changes to data instances are presented
to a subscribing application.

Classes

ˆ struct DDS PresentationQosPolicy
Specifies how the samples representing changes to data instances are pre-
sented to a subscribing application.

Enumerations

ˆ enum DDS PresentationQosPolicyAccessScopeKind {
DDS INSTANCE PRESENTATION QOS,

DDS TOPIC PRESENTATION QOS,

DDS GROUP PRESENTATION QOS }
Kinds of presentation ”access scope”.

Variables

ˆ const char ∗const DDS PRESENTATION QOS POLICY -
NAME

Stringified human-readable name for DDS PresentationQosPolicy
(p. 772).

5.88.1 Detailed Description

Specifies how the samples representing changes to data instances are presented
to a subscribing application.

5.88.2 Enumeration Type Documentation

5.88.2.1 enum DDS PresentationQosPolicyAccessScopeKind

Kinds of presentation ”access scope”.

Access scope determines the largest scope spanning the entities for which the
order and coherency of changes can be preserved.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

338 Module Documentation

QoS:

DDS PresentationQosPolicy (p. 772)

Enumerator:

DDS INSTANCE PRESENTATION QOS [default] Scope spans
only a single instance.
Indicates that changes to one instance need not be coherent nor or-
dered with respect to changes to any other instance. In other words,
order and coherent changes apply to each instance separately.

DDS TOPIC PRESENTATION QOS Scope spans to all instances
within the same DDSDataWriter (p. 1028) (or DDSDataReader
(p. 1004)), but not across instances in different DDSDataWriter
(p. 1028) (or DDSDataReader (p. 1004)).

DDS GROUP PRESENTATION QOS [Not supported (op-
tional)] Scope spans to all instances belonging to DDSDataWriter
(p. 1028) (or DDSDataReader (p. 1004)) entities within the same
DDSPublisher (p. 1243) (or DDSSubscriber (p. 1284)).

5.88.3 Variable Documentation

5.88.3.1 const char∗ const DDS PRESENTATION QOS POLICY -
NAME

Stringified human-readable name for DDS PresentationQosPolicy (p. 772).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.89 DEADLINE 339

5.89 DEADLINE

Expresses the maximum duration (deadline) within which an instance is ex-
pected to be updated.

Classes

ˆ struct DDS DeadlineQosPolicy

Expresses the maximum duration (deadline) within which an instance is ex-
pected to be updated.

Variables

ˆ const char ∗const DDS DEADLINE QOS POLICY NAME

Stringified human-readable name for DDS DeadlineQosPolicy (p. 528).

5.89.1 Detailed Description

Expresses the maximum duration (deadline) within which an instance is ex-
pected to be updated.

5.89.2 Variable Documentation

5.89.2.1 const char∗ const DDS DEADLINE QOS POLICY NAME

Stringified human-readable name for DDS DeadlineQosPolicy (p. 528).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

340 Module Documentation

5.90 LATENCY BUDGET

Provides a hint as to the maximum acceptable delay from the time the data is
written to the time it is received by the subscribing applications.

Classes

ˆ struct DDS LatencyBudgetQosPolicy

Provides a hint as to the maximum acceptable delay from the time the data
is written to the time it is received by the subscribing applications.

Variables

ˆ const char ∗const DDS LATENCYBUDGET QOS POLICY -
NAME

Stringified human-readable name for DDS LatencyBudgetQosPolicy
(p. 722).

5.90.1 Detailed Description

Provides a hint as to the maximum acceptable delay from the time the data is
written to the time it is received by the subscribing applications.

5.90.2 Variable Documentation

5.90.2.1 const char∗ const DDS LATENCYBUDGET QOS -
POLICY NAME

Stringified human-readable name for DDS LatencyBudgetQosPolicy
(p. 722).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.91 OWNERSHIP 341

5.91 OWNERSHIP

Specifies whether it is allowed for multiple DDSDataWriter (p. 1028) (s) to
write the same instance of the data and if so, how these modifications should
be arbitrated.

Classes

ˆ struct DDS OwnershipQosPolicy

Specifies whether it is allowed for multiple DDSDataWriter (p. 1028) (s)
to write the same instance of the data and if so, how these modifications
should be arbitrated.

Enumerations

ˆ enum DDS OwnershipQosPolicyKind {

DDS SHARED OWNERSHIP QOS,

DDS EXCLUSIVE OWNERSHIP QOS }
Kinds of ownership.

Variables

ˆ const char ∗const DDS OWNERSHIP QOS POLICY NAME

Stringified human-readable name for DDS OwnershipQosPolicy (p. 756).

5.91.1 Detailed Description

Specifies whether it is allowed for multiple DDSDataWriter (p. 1028) (s) to
write the same instance of the data and if so, how these modifications should
be arbitrated.

5.91.2 Enumeration Type Documentation

5.91.2.1 enum DDS OwnershipQosPolicyKind

Kinds of ownership.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

342 Module Documentation

QoS:

DDS OwnershipQosPolicy (p. 756)

Enumerator:

DDS SHARED OWNERSHIP QOS [default] Indicates shared
ownership for each instance.
Multiple writers are allowed to update the same instance and all the
updates are made available to the readers. In other words there is no
concept of an owner for the instances.
This is the default behavior if the OWNERSHIP (p. 341) policy is
not specified or supported.

DDS EXCLUSIVE OWNERSHIP QOS Indicates each instance
can only be owned by one DDSDataWriter (p. 1028), but the owner
of an instance can change dynamically.
The selection of the owner is controlled by the setting of the OWN-
ERSHIP STRENGTH (p. 343) policy. The owner is always set to
be the highest-strength DDSDataWriter (p. 1028) object among the
ones currently active (as determined by the LIVELINESS (p. 344)).

5.91.3 Variable Documentation

5.91.3.1 const char∗ const DDS OWNERSHIP QOS POLICY -
NAME

Stringified human-readable name for DDS OwnershipQosPolicy (p. 756).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.92 OWNERSHIP STRENGTH 343

5.92 OWNERSHIP STRENGTH

Specifies the value of the strength used to arbitrate among multiple DDS-
DataWriter (p. 1028) objects that attempt to modify the same instance of a
data type (identified by DDSTopic (p. 1311) + key).

Classes

ˆ struct DDS OwnershipStrengthQosPolicy

Specifies the value of the strength used to arbitrate among multiple DDS-
DataWriter (p. 1028) objects that attempt to modify the same instance of
a data type (identified by DDSTopic (p. 1311) + key).

Variables

ˆ const char ∗const DDS OWNERSHIPSTRENGTH QOS -
POLICY NAME

Stringified human-readable name for DDS OwnershipStrengthQosPolicy
(p. 763).

5.92.1 Detailed Description

Specifies the value of the strength used to arbitrate among multiple DDS-
DataWriter (p. 1028) objects that attempt to modify the same instance of a
data type (identified by DDSTopic (p. 1311) + key).

5.92.2 Variable Documentation

5.92.2.1 const char∗ const DDS OWNERSHIPSTRENGTH QOS -
POLICY NAME

Stringified human-readable name for DDS OwnershipStrengthQosPolicy
(p. 763).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

344 Module Documentation

5.93 LIVELINESS

Specifies and configures the mechanism that allows DDSDataReader (p. 1004)
entities to detect when DDSDataWriter (p. 1028) entities become discon-
nected or ”dead.”.

Classes

ˆ struct DDS LivelinessQosPolicy

Specifies and configures the mechanism that allows DDSDataReader
(p. 1004) entities to detect when DDSDataWriter (p. 1028) entities be-
come disconnected or ”dead.”.

Enumerations

ˆ enum DDS LivelinessQosPolicyKind {
DDS AUTOMATIC LIVELINESS QOS,

DDS MANUAL BY PARTICIPANT LIVELINESS QOS,

DDS MANUAL BY TOPIC LIVELINESS QOS }
Kinds of liveliness.

Variables

ˆ const char ∗const DDS LIVELINESS QOS POLICY NAME

Stringified human-readable name for DDS LivelinessQosPolicy (p. 730).

5.93.1 Detailed Description

Specifies and configures the mechanism that allows DDSDataReader (p. 1004)
entities to detect when DDSDataWriter (p. 1028) entities become discon-
nected or ”dead.”.

5.93.2 Enumeration Type Documentation

5.93.2.1 enum DDS LivelinessQosPolicyKind

Kinds of liveliness.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.93 LIVELINESS 345

QoS:

DDS LivelinessQosPolicy (p. 730)

Enumerator:

DDS AUTOMATIC LIVELINESS QOS [default] The infrastruc-
ture will automatically signal liveliness for the DDSDataWriter
(p. 1028) (s) at least as often as required by the lease duration.
A DDSDataWriter (p. 1028) with this setting does not need to
take any specific action in order to be considered ’alive.’ The DDS-
DataWriter (p. 1028) is only ’not alive’ when the participant to which
it belongs terminates (gracefully or not), or when there is a network
problem that prevents the current participant from contacting that
remote participant.

DDS MANUAL BY PARTICIPANT LIVELINESS QOS RTI
Data Distribution Service will assume that as long as at least one
DDSDataWriter (p. 1028) belonging to the DDSDomainPartic-
ipant (p. 1054) (or the DDSDomainParticipant (p. 1054) itself)
has asserted its liveliness, then the other Entities belonging to that
same DDSDomainParticipant (p. 1054) are also alive.
The user application takes responsibility to signal liveliness
to RTI Data Distribution Service either by calling DDS-
DomainParticipant::assert liveliness (p. 1105), or by call-
ing DDSDataWriter::assert liveliness (p. 1036), or Foo-
DataWriter::write (p. 1368) on any DDSDataWriter (p. 1028)
belonging to the DDSDomainParticipant (p. 1054).

DDS MANUAL BY TOPIC LIVELINESS QOS RTI Data Dis-
tribution Service will only assume liveliness of the DDSDataWriter
(p. 1028) if the application has asserted liveliness of that DDS-
DataWriter (p. 1028) itself.
The user application takes responsibility to signal liveliness to RTI
Data Distribution Service using the DDSDataWriter::assert -
liveliness (p. 1036) method, or by writing some data.

5.93.3 Variable Documentation

5.93.3.1 const char∗ const DDS LIVELINESS QOS POLICY -
NAME

Stringified human-readable name for DDS LivelinessQosPolicy (p. 730).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

346 Module Documentation

5.94 TIME BASED FILTER

Filter that allows a DDSDataReader (p. 1004) to specify that it is interested
only in (potentially) a subset of the values of the data.

Classes

ˆ struct DDS TimeBasedFilterQosPolicy

Filter that allows a DDSDataReader (p. 1004) to specify that it is inter-
ested only in (potentially) a subset of the values of the data.

Variables

ˆ const char ∗const DDS TIMEBASEDFILTER QOS POLICY -
NAME

Stringified human-readable name for DDS TimeBasedFilterQosPolicy
(p. 894).

5.94.1 Detailed Description

Filter that allows a DDSDataReader (p. 1004) to specify that it is interested
only in (potentially) a subset of the values of the data.

5.94.2 Variable Documentation

5.94.2.1 const char∗ const DDS TIMEBASEDFILTER QOS -
POLICY NAME

Stringified human-readable name for DDS TimeBasedFilterQosPolicy
(p. 894).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.95 PARTITION 347

5.95 PARTITION

Set of strings that introduces a logical partition among the topics visible by a
DDSPublisher (p. 1243) and a DDSSubscriber (p. 1284).

Classes

ˆ struct DDS PartitionQosPolicy

Set of strings that introduces a logical partition among the topics visible by
a DDSPublisher (p. 1243) and a DDSSubscriber (p. 1284).

Variables

ˆ const char ∗const DDS PARTITION QOS POLICY NAME

Stringified human-readable name for DDS PartitionQosPolicy (p. 769).

5.95.1 Detailed Description

Set of strings that introduces a logical partition among the topics visible by a
DDSPublisher (p. 1243) and a DDSSubscriber (p. 1284).

5.95.2 Variable Documentation

5.95.2.1 const char∗ const DDS PARTITION QOS POLICY -
NAME

Stringified human-readable name for DDS PartitionQosPolicy (p. 769).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

348 Module Documentation

5.96 RELIABILITY

Indicates the level of reliability offered/requested by RTI Data Distribution
Service.

Classes

ˆ struct DDS ReliabilityQosPolicy

Indicates the level of reliability offered/requested by RTI Data Distribution
Service.

Enumerations

ˆ enum DDS ReliabilityQosPolicyKind {
DDS BEST EFFORT RELIABILITY QOS,

DDS RELIABLE RELIABILITY QOS }
Kinds of reliability.

Variables

ˆ const char ∗const DDS RELIABILITY QOS POLICY NAME

Stringified human-readable name for DDS ReliabilityQosPolicy (p. 813).

5.96.1 Detailed Description

Indicates the level of reliability offered/requested by RTI Data Distribution
Service.

5.96.2 Enumeration Type Documentation

5.96.2.1 enum DDS ReliabilityQosPolicyKind

Kinds of reliability.

QoS:

DDS ReliabilityQosPolicy (p. 813)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.96 RELIABILITY 349

Enumerator:

DDS BEST EFFORT RELIABILITY QOS Indicates that it is ac-
ceptable to not retry propagation of any samples.
Presumably new values for the samples are generated often enough
that it is not necessary to re-send or acknowledge any samples.
[default] for DDSDataReader (p. 1004) and DDSTopic (p. 1311)

DDS RELIABLE RELIABILITY QOS Specifies RTI Data Distri-
bution Service will attempt to deliver all samples in its history. Missed
samples may be retried.
In steady-state (no modifications communicated via the DDS-
DataWriter (p. 1028)) RTI Data Distribution Service guarantees that
all samples in the DDSDataWriter (p. 1028) history will eventu-
ally be delivered to all the DDSDataReader (p. 1004) objects (sub-
ject to timeouts that indicate loss of communication with a particular
DDSSubscriber (p. 1284)).
Outside steady state the HISTORY (p. 352) and RESOURCE -
LIMITS (p. 356) policies will determine how samples become part of
the history and whether samples can be discarded from it.
[default] for DDSDataWriter (p. 1028)

5.96.3 Variable Documentation

5.96.3.1 const char∗ const DDS RELIABILITY QOS POLICY -
NAME

Stringified human-readable name for DDS ReliabilityQosPolicy (p. 813).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

350 Module Documentation

5.97 DESTINATION ORDER

Controls the criteria used to determine the logical order among changes made by
DDSPublisher (p. 1243) entities to the same instance of data (i.e., matching
DDSTopic (p. 1311) and key).

Classes

ˆ struct DDS DestinationOrderQosPolicy

Controls how the middleware will deal with data sent by multiple DDS-
DataWriter (p. 1028) entities for the same instance of data (i.e., same
DDSTopic (p. 1311) and key).

Enumerations

ˆ enum DDS DestinationOrderQosPolicyKind {

DDS BY RECEPTION TIMESTAMP -
DESTINATIONORDER QOS,

DDS BY SOURCE TIMESTAMP DESTINATIONORDER -
QOS }

Kinds of destination order.

Variables

ˆ const char ∗const DDS DESTINATIONORDER QOS POLICY -
NAME

Stringified human-readable name for DDS DestinationOrderQosPolicy
(p. 531).

5.97.1 Detailed Description

Controls the criteria used to determine the logical order among changes made by
DDSPublisher (p. 1243) entities to the same instance of data (i.e., matching
DDSTopic (p. 1311) and key).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.97 DESTINATION ORDER 351

5.97.2 Enumeration Type Documentation

5.97.2.1 enum DDS DestinationOrderQosPolicyKind

Kinds of destination order.

QoS:

DDS DestinationOrderQosPolicy (p. 531)

Enumerator:

DDS BY RECEPTION TIMESTAMP DESTINATIONORDER QOS
[default] Indicates that data is ordered based on the reception time
at each DDSSubscriber (p. 1284).
Since each subscriber may receive the data at different times there is
no guaranteed that the changes will be seen in the same order. Con-
sequently, it is possible for each subscriber to end up with a different
final value for the data.

DDS BY SOURCE TIMESTAMP DESTINATIONORDER QOS
Indicates that data is ordered based on a time-stamp placed at the
source (by RTI Data Distribution Service or by the application).
In any case this guarantees a consistent final value for the data in all
subscribers.
See also:

Special Instructions if Using Timestamp APIs and BY -
SOURCE TIMESTAMP Destination Ordering: (p. 1255)

5.97.3 Variable Documentation

5.97.3.1 const char∗ const DDS DESTINATIONORDER QOS -
POLICY NAME

Stringified human-readable name for DDS DestinationOrderQosPolicy
(p. 531).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

352 Module Documentation

5.98 HISTORY

Specifies the behavior of RTI Data Distribution Service in the case where the
value of an instance changes (one or more times) before it can be successfully
communicated to one or more existing subscribers.

Classes

ˆ struct DDS HistoryQosPolicy

Specifies the behavior of RTI Data Distribution Service in the case where the
value of a sample changes (one or more times) before it can be successfully
communicated to one or more existing subscribers.

Enumerations

ˆ enum DDS HistoryQosPolicyKind {
DDS KEEP LAST HISTORY QOS,

DDS KEEP ALL HISTORY QOS }
Kinds of history.

ˆ enum DDS RefilterQosPolicyKind {
DDS NONE REFILTER QOS,

DDS ALL REFILTER QOS,

DDS ON DEMAND REFILTER QOS }
<<eXtension>> (p. 190) Kinds of Refiltering

Variables

ˆ const char ∗const DDS HISTORY QOS POLICY NAME

Stringified human-readable name for DDS HistoryQosPolicy (p. 709).

5.98.1 Detailed Description

Specifies the behavior of RTI Data Distribution Service in the case where the
value of an instance changes (one or more times) before it can be successfully
communicated to one or more existing subscribers.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.98 HISTORY 353

5.98.2 Enumeration Type Documentation

5.98.2.1 enum DDS HistoryQosPolicyKind

Kinds of history.

QoS:

DDS HistoryQosPolicy (p. 709)

Enumerator:

DDS KEEP LAST HISTORY QOS [default] Keep the last depth
samples.
On the publishing side, RTI Data Distribution Service will only at-
tempt to keep the most recent depth samples of each instance of data
(identified by its key) managed by the DDSDataWriter (p. 1028).
On the subscribing side, the DDSDataReader (p. 1004) will only
attempt to keep the most recent depth samples received for each in-
stance (identified by its key) until the application takes them via the
DDSDataReader (p. 1004) ’s take() operation.

DDS KEEP ALL HISTORY QOS Keep all the samples.
On the publishing side, RTI Data Distribution Service will attempt to
keep all samples (representing each value written) of each instance
of data (identified by its key) managed by the DDSDataWriter
(p. 1028) until they can be delivered to all subscribers.
On the subscribing side, RTI Data Distribution Service will attempt
to keep all samples of each instance of data (identified by its key)
managed by the DDSDataReader (p. 1004). These samples are kept
until the application takes them from RTI Data Distribution Service
via the take() operation.

5.98.2.2 enum DDS RefilterQosPolicyKind

<<eXtension>> (p. 190) Kinds of Refiltering

QoS:

DDS HistoryQosPolicy (p. 709)

Enumerator:

DDS NONE REFILTER QOS [default] Do not filter existing sam-
ples for a new reader

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

354 Module Documentation

On the publishing side, when a new reader matches a writer, the writer
can be configured to filter previously written samples stored in the
writer queue for the new reader. This option configures the writer to
not filter any existing samples for the reader and the reader will do
the filtering.

DDS ALL REFILTER QOS Filter all existing samples for a new
reader.
On the publishing side, when a new reader matches a writer, the writer
can be configured to filter previously written samples stored in the
writer queue. This option configures the writer to filter all existing
samples for the reader when a new reader is matched to the writer.

DDS ON DEMAND REFILTER QOS Filter existing samples only
when they are requested by the reader.
On the publishing side, when a new reader matches a writer, the writer
can be configured to filter previously written samples stored in the
writer queue. This option configures the writer to filter only existing
samples that are requested by the reader.

5.98.3 Variable Documentation

5.98.3.1 const char∗ const DDS HISTORY QOS POLICY NAME

Stringified human-readable name for DDS HistoryQosPolicy (p. 709).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.99 DURABILITY SERVICE 355

5.99 DURABILITY SERVICE

Various settings to configure the external RTI Persistence Service used by RTI
Data Distribution Service for DataWriters with a DDS DurabilityQosPolicy
(p. 572) setting of DDS PERSISTENT DURABILITY QOS (p. 336) or
DDS TRANSIENT DURABILITY QOS (p. 336).

Classes

ˆ struct DDS DurabilityServiceQosPolicy

Various settings to configure the external RTI Persistence Service used
by RTI Data Distribution Service for DataWriters with a DDS -
DurabilityQosPolicy (p. 572) setting of DDS PERSISTENT -
DURABILITY QOS (p. 336) or DDS TRANSIENT -
DURABILITY QOS (p. 336).

Variables

ˆ const char ∗const DDS DURABILITYSERVICE QOS POLICY -
NAME

Stringified human-readable name for DDS DurabilityServiceQosPolicy
(p. 576).

5.99.1 Detailed Description

Various settings to configure the external RTI Persistence Service used by RTI
Data Distribution Service for DataWriters with a DDS DurabilityQosPolicy
(p. 572) setting of DDS PERSISTENT DURABILITY QOS (p. 336) or
DDS TRANSIENT DURABILITY QOS (p. 336).

5.99.2 Variable Documentation

5.99.2.1 const char∗ const DDS DURABILITYSERVICE QOS -
POLICY NAME

Stringified human-readable name for DDS DurabilityServiceQosPolicy
(p. 576).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

356 Module Documentation

5.100 RESOURCE LIMITS

Controls the amount of physical memory allocated for DDS entities, if dynamic
allocations are allowed, and how they occur. Also controls memory usage among
different instance values for keyed topics.

Classes

ˆ struct DDS ResourceLimitsQosPolicy
Controls the amount of physical memory allocated for DDS entities, if dy-
namic allocations are allowed, and how they occur. Also controls memory
usage among different instance values for keyed topics.

Variables

ˆ const char ∗const DDS RESOURCELIMITS QOS POLICY -
NAME

Stringified human-readable name for DDS ResourceLimitsQosPolicy
(p. 827).

ˆ const DDS Long DDS LENGTH UNLIMITED
A special value indicating an unlimited quantity.

5.100.1 Detailed Description

Controls the amount of physical memory allocated for DDS entities, if dynamic
allocations are allowed, and how they occur. Also controls memory usage among
different instance values for keyed topics.

5.100.2 Variable Documentation

5.100.2.1 const char∗ const DDS RESOURCELIMITS QOS -
POLICY NAME

Stringified human-readable name for DDS ResourceLimitsQosPolicy
(p. 827).

5.100.2.2 const DDS Long DDS LENGTH UNLIMITED

A special value indicating an unlimited quantity.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.100 RESOURCE LIMITS 357

Examples:

HelloWorld subscriber.cxx.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

358 Module Documentation

5.101 TRANSPORT PRIORITY

This QoS policy allows the application to take advantage of transports that are
capable of sending messages with different priorities.

Classes

ˆ struct DDS TransportPriorityQosPolicy

This QoS policy allows the application to take advantage of transports that
are capable of sending messages with different priorities.

Variables

ˆ const char ∗const DDS TRANSPORTPRIORITY QOS -
POLICY NAME

Stringified human-readable name for DDS TransportPriorityQosPolicy
(p. 916).

5.101.1 Detailed Description

This QoS policy allows the application to take advantage of transports that are
capable of sending messages with different priorities.

5.101.2 Variable Documentation

5.101.2.1 const char∗ const DDS TRANSPORTPRIORITY QOS -
POLICY NAME

Stringified human-readable name for DDS TransportPriorityQosPolicy
(p. 916).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.102 LIFESPAN 359

5.102 LIFESPAN

Specifies how long the data written by the DDSDataWriter (p. 1028) is con-
sidered valid.

Classes

ˆ struct DDS LifespanQosPolicy

Specifies how long the data written by the DDSDataWriter (p. 1028) is
considered valid.

Variables

ˆ const char ∗const DDS LIFESPAN QOS POLICY NAME

Stringified human-readable name for DDS LifespanQosPolicy (p. 724).

5.102.1 Detailed Description

Specifies how long the data written by the DDSDataWriter (p. 1028) is con-
sidered valid.

5.102.2 Variable Documentation

5.102.2.1 const char∗ const DDS LIFESPAN QOS POLICY NAME

Stringified human-readable name for DDS LifespanQosPolicy (p. 724).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

360 Module Documentation

5.103 WRITER DATA LIFECYCLE

Controls how a DataWriter handles the lifecycle of the instances (keys) that it
is registered to manage.

Classes

ˆ struct DDS WriterDataLifecycleQosPolicy

Controls how a DDSDataWriter (p. 1028) handles the lifecycle of the in-
stances (keys) that it is registered to manage.

Variables

ˆ const char ∗const DDS WRITERDATALIFECYCLE QOS -
POLICY NAME

Stringified human-readable name for DDS -
WriterDataLifecycleQosPolicy (p. 989).

5.103.1 Detailed Description

Controls how a DataWriter handles the lifecycle of the instances (keys) that it
is registered to manage.

5.103.2 Variable Documentation

5.103.2.1 const char∗ const DDS WRITERDATALIFECYCLE -
QOS POLICY NAME

Stringified human-readable name for DDS WriterDataLifecycleQosPolicy
(p. 989).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.104 READER DATA LIFECYCLE 361

5.104 READER DATA LIFECYCLE

Controls how a DataReader manages the lifecycle of the data that it has received.

Classes

ˆ struct DDS ReaderDataLifecycleQosPolicy

Controls how a DataReader manages the lifecycle of the data that it has
received.

Variables

ˆ const char ∗const DDS READERDATALIFECYCLE QOS -
POLICY NAME

Stringified human-readable name for DDS -
ReaderDataLifecycleQosPolicy (p. 807).

5.104.1 Detailed Description

Controls how a DataReader manages the lifecycle of the data that it has received.

5.104.2 Variable Documentation

5.104.2.1 const char∗ const DDS READERDATALIFECYCLE -
QOS POLICY NAME

Stringified human-readable name for DDS ReaderDataLifecycleQosPolicy
(p. 807).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

362 Module Documentation

5.105 ENTITY FACTORY

A QoS policy for all DDSEntity (p. 1157) types that can act as factories for
one or more other DDSEntity (p. 1157) types.

Classes

ˆ struct DDS EntityFactoryQosPolicy

A QoS policy for all DDSEntity (p. 1157) types that can act as factories
for one or more other DDSEntity (p. 1157) types.

Variables

ˆ const char ∗const DDS ENTITYFACTORY QOS POLICY -
NAME

Stringified human-readable name for DDS EntityFactoryQosPolicy
(p. 687).

5.105.1 Detailed Description

A QoS policy for all DDSEntity (p. 1157) types that can act as factories for
one or more other DDSEntity (p. 1157) types.

5.105.2 Variable Documentation

5.105.2.1 const char∗ const DDS ENTITYFACTORY QOS -
POLICY NAME

Stringified human-readable name for DDS EntityFactoryQosPolicy (p. 687).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.106 Extended Qos Support 363

5.106 Extended Qos Support

<<eXtension>> (p. 190) Types and defines used in extended QoS policies.

Modules

ˆ Thread Settings

The properties of a thread of execution.

Classes

ˆ struct DDS RtpsReliableReaderProtocol t

Qos related to reliable reader protocol defined in RTPS.

ˆ struct DDS RtpsReliableWriterProtocol t

QoS related to the reliable writer protocol defined in RTPS.

5.106.1 Detailed Description

<<eXtension>> (p. 190) Types and defines used in extended QoS policies.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

364 Module Documentation

5.107 Unicast Settings

Unicast communication settings.

Classes

ˆ struct DDS TransportUnicastSettings t

Type representing a list of unicast locators.

ˆ struct DDS TransportUnicastSettingsSeq

Declares IDL sequence< DDS TransportUnicastSettings t (p. 922) >.

5.107.1 Detailed Description

Unicast communication settings.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.108 Multicast Settings 365

5.108 Multicast Settings

Multicast communication settings.

Classes

ˆ struct DDS TransportMulticastSettings t

Type representing a list of multicast locators.

ˆ struct DDS TransportMulticastSettingsSeq

Declares IDL sequence< DDS TransportMulticastSettings t (p. 913) >.

5.108.1 Detailed Description

Multicast communication settings.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

366 Module Documentation

5.109 TRANSPORT SELECTION

<<eXtension>> (p. 190) Specifies the physical transports a DDS-
DataWriter (p. 1028) or DDSDataReader (p. 1004) may use to send or re-
ceive data.

Classes

ˆ struct DDS TransportSelectionQosPolicy

Specifies the physical transports a DDSDataWriter (p. 1028) or DDS-
DataReader (p. 1004) may use to send or receive data.

Variables

ˆ const char ∗const DDS TRANSPORTSELECTION QOS -
POLICY NAME

Stringified human-readable name for DDS TransportSelectionQosPolicy
(p. 918).

5.109.1 Detailed Description

<<eXtension>> (p. 190) Specifies the physical transports a DDS-
DataWriter (p. 1028) or DDSDataReader (p. 1004) may use to send or re-
ceive data.

5.109.2 Variable Documentation

5.109.2.1 const char∗ const DDS TRANSPORTSELECTION -
QOS POLICY NAME

Stringified human-readable name for DDS TransportSelectionQosPolicy
(p. 918).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.110 TRANSPORT UNICAST 367

5.110 TRANSPORT UNICAST

<<eXtension>> (p. 190) Specifies a subset of transports and a port number
that can be used by an Entity to receive data.

Modules

ˆ Unicast Settings

Unicast communication settings.

Classes

ˆ struct DDS TransportUnicastQosPolicy

Specifies a subset of transports and a port number that can be used by an
Entity to receive data.

Variables

ˆ const char ∗const DDS TRANSPORTUNICAST QOS POLICY -
NAME

Stringified human-readable name for DDS TransportUnicastQosPolicy
(p. 920).

5.110.1 Detailed Description

<<eXtension>> (p. 190) Specifies a subset of transports and a port number
that can be used by an Entity to receive data.

5.110.2 Variable Documentation

5.110.2.1 const char∗ const DDS TRANSPORTUNICAST QOS -
POLICY NAME

Stringified human-readable name for DDS TransportUnicastQosPolicy
(p. 920).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

368 Module Documentation

5.111 TRANSPORT MULTICAST

<<eXtension>> (p. 190) Specifies the multicast address on which a DDS-
DataReader (p. 1004) wants to receive its data. It can also specify a port
number as well as a subset of the available (at the DDSDomainParticipant
(p. 1054) level) transports with which to receive the multicast data.

Modules

ˆ Multicast Settings

Multicast communication settings.

Classes

ˆ struct DDS TransportMulticastQosPolicy

Specifies the multicast address on which a DDSDataReader (p. 1004) wants
to receive its data. It can also specify a port number as well as a subset of
the available (at the DDSDomainParticipant (p. 1054) level) transports
with which to receive the multicast data.

Variables

ˆ const char ∗const DDS TRANSPORTMULTICAST QOS -
POLICY NAME

Stringified human-readable name for DDS TransportMulticastQosPolicy
(p. 911).

5.111.1 Detailed Description

<<eXtension>> (p. 190) Specifies the multicast address on which a DDS-
DataReader (p. 1004) wants to receive its data. It can also specify a port
number as well as a subset of the available (at the DDSDomainParticipant
(p. 1054) level) transports with which to receive the multicast data.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.111 TRANSPORT MULTICAST 369

5.111.2 Variable Documentation

5.111.2.1 const char∗ const DDS TRANSPORTMULTICAST -
QOS POLICY NAME

Stringified human-readable name for DDS TransportMulticastQosPolicy
(p. 911).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

370 Module Documentation

5.112 DISCOVERY

<<eXtension>> (p. 190) Specifies the attributes required to discover partic-
ipants in the domain.

Modules

ˆ NDDS DISCOVERY PEERS

Environment variable or a file that specifies the default values
of DDS DiscoveryQosPolicy::initial peers (p. 543) and DDS -
DiscoveryQosPolicy::multicast receive addresses (p. 544) contained in
the DDS DomainParticipantQos::discovery (p. 551) qos policy.

Classes

ˆ struct DDS DiscoveryQosPolicy

Configures the mechanism used by the middleware to automatically discover
and connect with new remote applications.

Variables

ˆ const char ∗const DDS DISCOVERY QOS POLICY NAME

Stringified human-readable name for DDS DiscoveryQosPolicy (p. 542).

5.112.1 Detailed Description

<<eXtension>> (p. 190) Specifies the attributes required to discover partic-
ipants in the domain.

5.112.2 Variable Documentation

5.112.2.1 const char∗ const DDS DISCOVERY QOS POLICY -
NAME

Stringified human-readable name for DDS DiscoveryQosPolicy (p. 542).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.113 NDDS DISCOVERY PEERS 371

5.113 NDDS DISCOVERY PEERS

Environment variable or a file that specifies the default values
of DDS DiscoveryQosPolicy::initial peers (p. 543) and DDS -
DiscoveryQosPolicy::multicast receive addresses (p. 544) contained
in the DDS DomainParticipantQos::discovery (p. 551) qos policy.

The default value of the DDS DomainParticipantQos (p. 548) is obtained by
calling DDSDomainParticipantFactory::get default participant qos()
(p. 1130).

NDDS DISCOVERY PEERS specifies the default value of the
DDS DiscoveryQosPolicy::initial peers (p. 543) and DDS -
DiscoveryQosPolicy::multicast receive addresses (p. 544) fields, when
the default participant QoS policies have not been explictly set by the user
(i.e., DDSDomainParticipantFactory::set default participant qos()
(p. 1129) has never been called or was called using DDS PARTICIPANT -
QOS DEFAULT (p. 34)).

If NDDS DISCOVERY PEERS does not contain a multicast address, then the
string sequence DDS DiscoveryQosPolicy::multicast receive addresses
(p. 544) is cleared and the RTI discovery process will not listen for discovery
messages via multicast.

If NDDS DISCOVERY PEERS contains one or more multicast addresses, the
addresses will be stored in DDS DiscoveryQosPolicy::multicast receive -
addresses (p. 544), starting at element 0. They will be stored in the order in
which they appear in NDDS DISCOVERY PEERS.

Note: IPv4 multicast addresses must have a prefix. Therefore, when using the
UDPv6 transport: if there are any IPv4 multicast addresses in the peers list,
make sure they have ”udpv4://” in front of them (such as udpv4://239.255.0.1).

Note: Currently, RTI Data Distribution Service will only listen for
discovery traffic on the first multicast address (element 0) in DDS -
DiscoveryQosPolicy::multicast receive addresses (p. 544).

NDDS DISCOVERY PEERS provides a mechanism to dynamically switch the
discovery configuration of an RTI Data Distribution Service application without
recompilation. The application programmer is free to not use the default values;
instead use values supplied by other means.

NDDS DISCOVERY PEERS can be specified either in an environment variable
as comma (’,’) separated "peer descriptors" (see Peer Descriptor Format
(p. 372)) or in a file. These formats are described below.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

372 Module Documentation

5.113.1 Peer Descriptor Format

A peer descriptor string specifies a range of participants at a given locator.
Peer descriptor strings are used in the DDS DiscoveryQosPolicy::initial -
peers (p. 543) field and the DDSDomainParticipant::add peer() (p. 1111)
operation.

The anatomy of a peer descriptor is illustrated below using a special ”StarFab-
ric” transport example.

A peer descriptor consists of:

optional Maximum Participant ID. Specifies the maximum participant ID that
is contacted by the RTI Data Distribution Service discovery mechanism
at the given locator. If omitted, a default value of 4 is implied.

ˆ Locator. See Locator Format (p. 372).

These are separated by the ’@’ character. The separator may be omitted if a
participant ID limit is not explictly specified.

Note that the ”participant ID limit” only applies to unicast locators, and is
ignored for multicast locators (and therefore should be omitted for multicast
peer descriptors).

5.113.1.1 Locator Format

A locator string specifies a transport and an address in string format. Locators
are used to form peer descriptors. A locator is equivalent to a peer descriptor
with the default maximum participant ID.

A locator consists of:

optional Transport name (alias or class). This identifies the set of transport plu-
gins (Transport Aliases (p. 118)) that may be used to parse the address
portion of the locator. Note that a transport class name is an implicit alias
that used to refer to all the transport plugin instances of that class.

optional Address. See Address Format (p. 373).

These are separated by the ”//:” string. The separator is specified if and only
if a transport name is specified.

If a transport name is specified, the address may be omitted; in that case all
the unicast addresses (across all transport plugin instances) associated with the
transport class are implied. Thus, a locator string may specify several addresses.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.113 NDDS DISCOVERY PEERS 373

If an address is specified, the transport name and the separator string may be
omitted; in that case all the available transport plugins (for the DDSEntity
(p. 1157)) may be used to parse the address string.

5.113.1.2 Address Format

An address string specifies a transport independent network address that qual-
ifies an transport dependent address string. Addresses are used to form
locators. Addresses are also used in DDS DiscoveryQosPolicy::multicast -
receive addresses (p. 544), and DDS TransportMulticastSettings -
t::receive address (p. 914) fields. An address is equivalent to a locator in
which the transport name and separator are omitted.

An address consists of:

optional Network Address. An address in IPv4 or IPv6 string notation. If omit-
ted, the network address of the transport is implied (Transport Network
Address (p. 121)).

optional Transport Address. A string that is passed to the transport for process-
ing. The transport maps this string into NDDS Transport Property -
t::address bit count (p. 1406) bits. If omitted the network address is
used as the fully qualified address.

These are separated by the ’#’ character. If a separator is specified, it must be
followed by a non-empty string which is passed to the transport plugin.

The bits resulting from the transport address string are prepended with
the network address. The least significant NDDS Transport Property -
t::address bit count (p. 1406) bits of the network address are ignored
(Transport Network Address (p. 121)).

If the separator is omitted and the string is not a valid IPv4 or IPv6 address,
it is treated as a transport address with an implicit network address (of the
transport plugin).

5.113.2 NDDS DISCOVERY PEERS Environment Vari-
able Format

NDDS DISCOVERY PEERS can be specified via an environment variable of
the same name, consisting of a sequence of peer descriptors separated by the
comma (’,’) character.

Examples

Multicast (maximum participant ID is irrelevant)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

374 Module Documentation

ˆ 239.255.0.1

Default maximum participant ID on localhost

ˆ localhost

Default maximum participant ID on host 192.168.1.1 (IPv4)

ˆ 192.168.1.1

Default maximum participant ID on host FAA0::0 (IPv6)

ˆ FAA0::1

Default maximum participant ID on host FAA0::0#localhost (could be a UDPv4
transport plugin registered at network address of FAA0::0) (IPv6)

ˆ FAA0::0#localhost

Default maximum participant ID on host himalaya accessed using the ”udpv4”
transport plugin(s) (IPv4)

ˆ udpv4://himalaya

Default maximum participant ID on localhost using the ”udpv4” transport plu-
gin(s) registered at network address FAA0::0

ˆ udpv4://FAA0::0#localhost

Default maximum participant ID on all unicast addresses accessed via the
”udpv4” (UDPv4) transport plugin(s)

ˆ udpv4://

Default maximum participant ID on host 0/0/R (StarFabric)

ˆ 0/0/R

ˆ #0/0/R

Default maximum participant ID on host 0/0/R (StarFabric) using the ”star-
fabric” (StarFabric) transport plugin(s)

ˆ starfabric://0/0/R

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.113 NDDS DISCOVERY PEERS 375

ˆ starfabric://#0/0/R

Default maximum participant ID on host 0/0/R (StarFabric) using the ”star-
fabric” (StarFabric) transport plugin(s) registered at network address FAA0::0

ˆ starfabric://FBB0::0#0/0/R

Default maximum participant ID on all unicast addresses accessed via the ”star-
fabric” (StarFabric) transport plugin(s)

ˆ starfabric://

Default maximum participant ID on all unicast addresses accessed via the
”shmem” (shared memory) transport plugin(s)

ˆ shmem://

Default maximum participant ID on all unicast addresses accessed via the
”shmem” (shared memory) transport plugin(s) registered at network address
FCC0::0

ˆ shmem://FCC0::0

Default maximum participant ID on hosts himalaya and gangotri

ˆ himalaya,gangotri

Maximum participant ID of 1 on hosts himalaya and gangotri

ˆ 1@himalaya,1@gangotri

Combinations of above

ˆ 239.255.0.1,localhost,192.168.1.1,0/0/R

ˆ FAA0::1,FAA0::0#localhost,FBB0::0#0/0/R

ˆ udpv4://himalaya,udpv4://FAA0::0#localhost,#0/0/R

ˆ starfabric://0/0/R,starfabric://FBB0::0#0/0/R,shmem://

ˆ starfabric://,shmem://FCC0::0,1@himalaya,1@gangotri

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

376 Module Documentation

5.113.3 NDDS DISCOVERY PEERS File Format

NDDS DISCOVERY PEERS can be specified via a file of the same name in the
program’s current working directory. A NDDS DISCOVERY PEERS file would
contain a sequence of peer descriptors separated by whitespace or the comma
(’,’) character. The file may also contain comments starting with a semicolon
(’;’) character till the end of the line.

Example:

;; NDDS_DISCOVERY_PEERS - Default Discovery Configuration File

;;

;;

;; NOTE:

;; 1. This file must be in the current working directory, i.e.

;; in the folder from which the application is launched.

;;

;; 2. This file takes precedence over the environment variable NDDS_DISCOVERY_PEERS

;;

;; Multicast

239.255.0.1 ; The default RTI Data Distribution Service discovery multicast address

;; Unicast

localhost,192.168.1.1 ; A comma can be used a separator

FAA0::1 FAA0::0#localhost ; Whitespace can be used as a separator

1@himalaya ; Maximum participant ID of 1 on ’himalaya’

1@gangotri

;; UDPv4

udpv4://himalaya ; ’himalaya’ via ’udpv4’ transport plugin(s)

udpv4://FAA0::0#localhost ; ’localhost’ via ’updv4’ transport

; plugin registered at network address FAA0::0

;; Shared Memory

shmem:// ; All ’shmem’ transport plugin(s)

builtin.shmem:// ; The builtin ’shmem’ transport plugin

shmem://FCC0::0 ; Shared memory transport plugin registered

; at network address FCC0::0

;; StarFabric

0/0/R ; StarFabric node 0/0/R

starfabric://0/0/R ; 0/0/R accessed via ’starfabric’

; transport plugin(s)

starfabric://FBB0::0#0/0/R ; StarFabric transport plugin registered

; at network address FBB0::0

starfabric:// ; All ’starfabric’ transport plugin(s)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.113 NDDS DISCOVERY PEERS 377

5.113.4 NDDS DISCOVERY PEERS Precedence

If the current working directory from which the RTI Data Distribution Service
application is launched contains a file called NDDS DISCOVERY PEERS, and
an environment variable named NDDS DISCOVERY PEERS is also defined,
the file takes precedence; the environment variable is ignored.

5.113.5 NDDS DISCOVERY PEERS Default Value

If NDDS DISCOVERY PEERS is not specified (either as a file in the current
working directory, or as an environment variable), it implicitly defaults to the
following.

;; Multicast (only on platforms which allow UDPv4 multicast out of the box)

;;

;; This allows any RTI Data Distribution Service applications anywhere on the local network to

;; discover each other over UDPv4.

builtin.udpv4://239.255.0.1 ; RTI Data Distribution Service’s default discovery multicast address

;; Unicast - UDPv4 (on all platforms)

;;

;; This allows two RTI Data Distribution Service applications using participant IDs up to the maximum

;; default participant ID on the local host and domain to discover each

;; other over UDP/IPv4.

builtin.udpv4://127.0.0.1

;; Unicast - Shared Memory (only on platforms that support shared memory)

;;

;; This allows two RTI Data Distribution Service applications using participant IDs up to the maximum

;; default participant ID on the local host and domain to discover each

;; other over shared memory.

builtin.shmem://

5.113.6 Builtin Transport Class Names

The class names for the builtin transport plugins are:

ˆ shmem - ::Shared Memory Transport (p. 247)

ˆ udpv4 - ::UDPv4 Transport (p. 255)

ˆ udpv6 - ::UDPv6 Transport (p. 265)

These may be used as the transport names in the Locator Format (p. 372).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

378 Module Documentation

5.113.7 NDDS DISCOVERY PEERS and Local Host
Communication

Suppose you want to communicate with other RTI Data Distribution Service
applications on the same host and you are setting NDDS DISCOVERY PEERS
explicitly (generally in order to use unicast discovery with applications on other
hosts)

If the local host platform does not support the shared memory transport, then
you can include the name of the local host in the NDDS DISCOVERY PEERS
list.

If the local host platform supports the shared memory transport, then you can
do one of the following:

ˆ Include ”shmem://” in the NDDS DISCOVERY PEERS list. This will
cause shared memory to be used for discovery and data traffic for appli-
cations on the same host.

or:

ˆ Include the name of the local host in the NDDS DISCOVERY -
PEERS list, and disable the shared memory transport in the DDS -
TransportBuiltinQosPolicy (p. 909) of the DDSDomainParticipant
(p. 1054). This will cause UDP loopback to be used for discovery and data
traffic for applications on the same host.

(To check if your platform supports shared memory, see the Platform Notes
document.)

See also:

DDS DiscoveryQosPolicy::multicast receive addresses (p. 544)
DDS DiscoveryQosPolicy::initial peers (p. 543)
DDSDomainParticipant::add peer() (p. 1111)
DDS PARTICIPANT QOS DEFAULT (p. 34)
DDSDomainParticipantFactory::get default participant qos()
(p. 1130)
Transport Aliases (p. 118)
Transport Network Address (p. 121)
NDDSTransportSupport::register transport() (p. 1437)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.114 TRANSPORT BUILTIN 379

5.114 TRANSPORT BUILTIN

<<eXtension>> (p. 190) Specifies which built-in transports are used.

Classes

ˆ struct DDS TransportBuiltinQosPolicy

Specifies which built-in transports are used.

Defines

ˆ #define DDS TRANSPORTBUILTIN MASK NONE

None of the built-in transports will be registered automatically when the
DDSDomainParticipant (p. 1054) is enabled. The user must explictly
register transports using NDDSTransportSupport::register transport
(p. 1437).

ˆ #define DDS TRANSPORTBUILTIN MASK DEFAULT

The default value of DDS TransportBuiltinQosPolicy::mask (p. 909).

ˆ #define DDS TRANSPORTBUILTIN MASK ALL

All the available built-in transports are registered automatically when the
DDSDomainParticipant (p. 1054) is enabled.

Typedefs

ˆ typedef DDS Long DDS TransportBuiltinKindMask

A mask of DDS TransportBuiltinKind (p. 381) bits.

Enumerations

ˆ enum DDS TransportBuiltinKind {
DDS TRANSPORTBUILTIN UDPv4,

DDS TRANSPORTBUILTIN SHMEM ,

DDS TRANSPORTBUILTIN UDPv6 }
Built-in transport kind.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

380 Module Documentation

Variables

ˆ const char ∗const DDS TRANSPORTBUILTIN QOS POLICY -
NAME

Stringified human-readable name for DDS TransportBuiltinQosPolicy
(p. 909).

ˆ const char ∗const DDS TRANSPORTBUILTIN SHMEM -
ALIAS

Alias name for the shared memory built-in transport.

ˆ const char ∗const DDS TRANSPORTBUILTIN UDPv4 ALIAS
Alias name for the UDPv4 built-in transport.

ˆ const char ∗const DDS TRANSPORTBUILTIN UDPv6 ALIAS
Alias name for the UDPv6 built-in transport.

5.114.1 Detailed Description

<<eXtension>> (p. 190) Specifies which built-in transports are used.

See also:

Changing the automatically registered built-in transports (p. 172)

5.114.2 Define Documentation

5.114.2.1 #define DDS TRANSPORTBUILTIN MASK NONE

None of the built-in transports will be registered automatically when the DDS-
DomainParticipant (p. 1054) is enabled. The user must explictly register
transports using NDDSTransportSupport::register transport (p. 1437).

See also:

DDS TransportBuiltinKindMask (p. 381)

5.114.2.2 #define DDS TRANSPORTBUILTIN MASK DEFAULT

The default value of DDS TransportBuiltinQosPolicy::mask (p. 909).

The set of builtin transport plugins that will be automatically registered with
the participant by default. The user can register additional transports using
NDDSTransportSupport::register transport (p. 1437).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.114 TRANSPORT BUILTIN 381

See also:

DDS TransportBuiltinKindMask (p. 381)

5.114.2.3 #define DDS TRANSPORTBUILTIN MASK ALL

All the available built-in transports are registered automatically when the DDS-
DomainParticipant (p. 1054) is enabled.

See also:

DDS TransportBuiltinKindMask (p. 381)

5.114.3 Typedef Documentation

5.114.3.1 typedef DDS Long DDS TransportBuiltinKindMask

A mask of DDS TransportBuiltinKind (p. 381) bits.

QoS:

DDS TransportBuiltinQosPolicy (p. 909)

5.114.4 Enumeration Type Documentation

5.114.4.1 enum DDS TransportBuiltinKind

Built-in transport kind.

See also:

DDS TransportBuiltinKindMask (p. 381)

Enumerator:

DDS TRANSPORTBUILTIN UDPv4 Built-in UDPv4 transport,
::UDPv4 Transport (p. 255).

DDS TRANSPORTBUILTIN SHMEM Built-in shared memory
transport, ::Shared Memory Transport (p. 247).

DDS TRANSPORTBUILTIN UDPv6 Built-in UDPv6 transport,
::UDPv6 Transport (p. 265).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

382 Module Documentation

5.114.5 Variable Documentation

5.114.5.1 const char∗ const DDS TRANSPORTBUILTIN QOS -
POLICY NAME

Stringified human-readable name for DDS TransportBuiltinQosPolicy
(p. 909).

5.114.5.2 const char∗ const DDS TRANSPORTBUILTIN -
SHMEM ALIAS

Alias name for the shared memory built-in transport.

5.114.5.3 const char∗ const DDS TRANSPORTBUILTIN UDPv4 -
ALIAS

Alias name for the UDPv4 built-in transport.

5.114.5.4 const char∗ const DDS TRANSPORTBUILTIN UDPv6 -
ALIAS

Alias name for the UDPv6 built-in transport.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.115 WIRE PROTOCOL 383

5.115 WIRE PROTOCOL

<<eXtension>> (p. 190) Specifies the wire protocol related attributes for the
DDSDomainParticipant (p. 1054).

Classes

ˆ struct DDS RtpsWellKnownPorts t

RTPS well-known port mapping configuration.

ˆ struct DDS WireProtocolQosPolicy

Specifies the wire-protocol-related attributes for the DDSDomainPartici-
pant (p. 1054).

Defines

ˆ #define DDS RTPS RESERVED PORT MASK DEFAULT

The default value of DDS WireProtocolQosPolicy::rtps reserved port -
mask (p. 987).

ˆ #define DDS RTPS RESERVED PORT MASK NONE

No bits are set.

ˆ #define DDS RTPS RESERVED PORT MASK ALL

All bits are set.

Typedefs

ˆ typedef DDS Long DDS RtpsReservedPortKindMask

A mask of DDS RtpsReservedPortKind (p. 386) bits.

Enumerations

ˆ enum DDS RtpsReservedPortKind {
DDS RTPS RESERVED PORT BUILTIN UNICAST = 0x0001
<< 0,

DDS RTPS RESERVED PORT BUILTIN MULTICAST =
0x0001 << 1,

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

384 Module Documentation

DDS RTPS RESERVED PORT USER UNICAST = 0x0001 <<
2,

DDS RTPS RESERVED PORT USER MULTICAST = 0x0001
<< 3 }

RTPS reserved port kind, used to identify the types of ports that can be re-
served on domain participant enable.

ˆ enum DDS WireProtocolQosPolicyAutoKind {
DDS RTPS AUTO ID FROM IP,

DDS RTPS AUTO ID FROM MAC }
Kind of auto mechanism used to calculate the GUID prefix.

Variables

ˆ struct DDS RtpsWellKnownPorts t DDS RTI BACKWARDS -
COMPATIBLE RTPS WELL KNOWN PORTS

Assign to use well-known port mappings which are compatible with previous
versions of the RTI Data Distribution Service middleware.

ˆ struct DDS RtpsWellKnownPorts t DDS INTEROPERABLE -
RTPS WELL KNOWN PORTS

Assign to use well-known port mappings which are compliant with OMG’s
DDS Interoperability Wire Protocol.

ˆ const char ∗const DDS WIREPROTOCOL QOS POLICY -
NAME

Stringified human-readable name for DDS WireProtocolQosPolicy
(p. 981).

5.115.1 Detailed Description

<<eXtension>> (p. 190) Specifies the wire protocol related attributes for the
DDSDomainParticipant (p. 1054).

5.115.2 Define Documentation

5.115.2.1 #define DDS RTPS RESERVED PORT MASK -
DEFAULT

Value:

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.115 WIRE PROTOCOL 385

((DDS_RtpsReservedPortKindMask) DDS_RTPS_RESERVED_PORT_BUILTIN_UNICAST \

| DDS_RTPS_RESERVED_PORT_BUILTIN_MULTICAST | DDS_RTPS_RESERVED_PORT_USER_UNICAST)

The default value of DDS WireProtocolQosPolicy::rtps reserved port -
mask (p. 987).

Most of the ports that may be needed by DDS will be reserved by the transport
when the participant is enabled. With this value set, failure to allocate a port
that is computed based on the DDS RtpsWellKnownPorts t (p. 849) will
be detected at this time and the enable operation will fail.

This setting will avoid reserving the usertraffic multicast port, which is not
actually used unless there are DataReaders that enable multicast but fail to
specify a port.

Automatic participant ID selection will be based on finding a participant index
with both the discovery (metatraffic) unicast port and usertraffic unicast port
available.

See also:

DDS RtpsReservedPortKindMask (p. 386)

5.115.2.2 #define DDS RTPS RESERVED PORT MASK NONE

No bits are set.

None of the ports that are needed by DDS will be allocated until they are
specifically required. With this value set, automatic participant Id selection
will be based on selecting a port for discovery (metatraffic) unicast traffic on a
single transport.

See also:

DDS RtpsReservedPortKindMask (p. 386)

5.115.2.3 #define DDS RTPS RESERVED PORT MASK ALL

All bits are set.

All of the ports that may be needed by DDS will be reserved when the partici-
pant is enabled. With this value set, failure to allocate a port that is computed
based on the DDS RtpsWellKnownPorts t (p. 849) will be detected at this
time, and the enable operation will fail.

Note that this will also reserve the usertraffic multicast port which is not
actually used unless there are DataReaders that enable multicast but fail to

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

386 Module Documentation

specify a port. To avoid unnecesary resource usage for these ports, use RTPS -
RESERVED PORT MASK DEFAULT.

Automatic participant ID selection will be based on finding a participant index
with both the discovery (metatraffic) unicast port and usertraffic unicast port
available.

See also:

DDS RtpsReservedPortKindMask (p. 386)

5.115.3 Typedef Documentation

5.115.3.1 typedef DDS Long DDS RtpsReservedPortKindMask

A mask of DDS RtpsReservedPortKind (p. 386) bits.

QoS:

DDS WireProtocolQosPolicy (p. 981)

5.115.4 Enumeration Type Documentation

5.115.4.1 enum DDS RtpsReservedPortKind

RTPS reserved port kind, used to identify the types of ports that can be reserved
on domain participant enable.

See also:

DDS WireProtocolQosPolicy::rtps reserved port mask (p. 987)

Enumerator:

DDS RTPS RESERVED PORT BUILTIN UNICAST Select the
metatraffic unicast port.

DDS RTPS RESERVED PORT BUILTIN MULTICAST Select
the metatraffic multicast port.

DDS RTPS RESERVED PORT USER UNICAST Select the
usertraffic unicast port.

DDS RTPS RESERVED PORT USER MULTICAST Select the
usertraffic multicast port.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.115 WIRE PROTOCOL 387

5.115.4.2 enum DDS WireProtocolQosPolicyAutoKind

Kind of auto mechanism used to calculate the GUID prefix.

See also:

DDS WireProtocolQosPolicy::rtps auto id kind (p. 988)

Enumerator:

DDS RTPS AUTO ID FROM IP Select the IPv4 based algorithm.

DDS RTPS AUTO ID FROM MAC Select the MAC based algo-
rithm.
Note to Solaris Users: To use DDS RTPS AUTO ID FROM MAC,
you must run the RTI Data Distribution Service application while
logged in as root.

5.115.5 Variable Documentation

5.115.5.1 struct DDS RtpsWellKnownPorts t
DDS RTI BACKWARDS COMPATIBLE RTPS -
WELL KNOWN PORTS

Assign to use well-known port mappings which are compatible with previous
versions of the RTI Data Distribution Service middleware.

Assign DDS WireProtocolQosPolicy::rtps well known ports (p. 987) to
this value to remain compatible with previous versions of the RTI Data Distri-
bution Service middleware that used fixed port mappings.

The following are the rtps well known ports values for DDS RTI -
BACKWARDS COMPATIBLE RTPS WELL KNOWN PORTS
(p. 387):

port base = 7400

domain id gain = 10

participant id gain = 1000

builtin multicast port offset = 2

builtin unicast port offset = 0

user multicast port offset = 1

user unicast port offset = 3

These settings are not compliant with OMG’s DDS Interoperability Wire Proto-
col. To comply with the specification, please use DDS INTEROPERABLE -
RTPS WELL KNOWN PORTS (p. 388).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

388 Module Documentation

See also:

DDS WireProtocolQosPolicy::rtps well known ports (p. 987)
DDS INTEROPERABLE RTPS WELL KNOWN PORTS
(p. 388)

5.115.5.2 struct DDS RtpsWellKnownPorts t DDS -
INTEROPERABLE RTPS WELL KNOWN PORTS

Assign to use well-known port mappings which are compliant with OMG’s DDS
Interoperability Wire Protocol.

Assign DDS WireProtocolQosPolicy::rtps well known ports (p. 987) to
this value to use well-known port mappings which are compliant with OMG’s
DDS Interoperability Wire Protocol.

The following are the rtps well known ports values for DDS -
INTEROPERABLE RTPS WELL KNOWN PORTS (p. 388):

port base = 7400

domain id gain = 250

participant id gain = 2

builtin multicast port offset = 0

builtin unicast port offset = 10

user multicast port offset = 1

user unicast port offset = 11

Assuming a maximum port number of 65535 (UDPv4), the above settings enable
the use of about 230 domains with up to 120 Participants per node per domain.

These settings are not backwards compatible with previous versions of
the RTI Data Distribution Service middleware that used fixed port map-
pings. For backwards compability, please use DDS RTI BACKWARDS -
COMPATIBLE RTPS WELL KNOWN PORTS (p. 387).

See also:

DDS WireProtocolQosPolicy::rtps well known ports (p. 987)
DDS RTI BACKWARDS COMPATIBLE RTPS WELL -
KNOWN PORTS (p. 387)

5.115.5.3 const char∗ const DDS WIREPROTOCOL QOS -
POLICY NAME

Stringified human-readable name for DDS WireProtocolQosPolicy (p. 981).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.116 DATA READER RESOURCE LIMITS 389

5.116 DATA READER RESOURCE LIMITS

<<eXtension>> (p. 190) Various settings that configure how DataReaders
allocate and use physical memory for internal resources.

Classes

ˆ struct DDS DataReaderResourceLimitsQosPolicy

Various settings that configure how a DDSDataReader (p. 1004) allocates
and uses physical memory for internal resources.

Variables

ˆ const char ∗const DDS DATAREADERRESOURCELIMITS -
QOS POLICY NAME

Stringified human-readable name for DDS -
DataReaderResourceLimitsQosPolicy (p. 487).

ˆ const DDS Long DDS AUTO MAX TOTAL INSTANCES

<<eXtension>> (p. 190) This value is used to make DDS -
DataReaderResourceLimitsQosPolicy::max total instances (p. 495)
equal to DDS ResourceLimitsQosPolicy::max instances (p. 830).

5.116.1 Detailed Description

<<eXtension>> (p. 190) Various settings that configure how DataReaders
allocate and use physical memory for internal resources.

5.116.2 Variable Documentation

5.116.2.1 const char∗ const DDS -
DATAREADERRESOURCELIMITS -
QOS POLICY NAME

Stringified human-readable name for DDS -
DataReaderResourceLimitsQosPolicy (p. 487).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

390 Module Documentation

5.116.2.2 const DDS Long DDS AUTO MAX TOTAL -
INSTANCES

<<eXtension>> (p. 190) This value is used to make DDS -
DataReaderResourceLimitsQosPolicy::max total instances (p. 495)
equal to DDS ResourceLimitsQosPolicy::max instances (p. 830).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.117 DATA WRITER RESOURCE LIMITS 391

5.117 DATA WRITER RESOURCE LIMITS

<<eXtension>> (p. 190) Various settings that configure how a DDS-
DataWriter (p. 1028) allocates and uses physical memory for internal re-
sources.

Classes

ˆ struct DDS DataWriterResourceLimitsQosPolicy

Various settings that configure how a DDSDataWriter (p. 1028) allocates
and uses physical memory for internal resources.

Enumerations

ˆ enum DDS DataWriterResourceLimitsInstanceReplacementKind
{

DDS UNREGISTERED INSTANCE REPLACEMENT,

DDS ALIVE INSTANCE REPLACEMENT,

DDS DISPOSED INSTANCE REPLACEMENT,

DDS ALIVE THEN DISPOSED INSTANCE -
REPLACEMENT,

DDS DISPOSED THEN ALIVE INSTANCE -
REPLACEMENT,

DDS ALIVE OR DISPOSED INSTANCE REPLACEMENT
}

Sets the kinds of instances that can be replaced when instance resource limits
are reached.

Variables

ˆ const char ∗const DDS DATAWRITERRESOURCELIMITS -
QOS POLICY NAME

Stringified human-readable name for DDS -
DataWriterResourceLimitsQosPolicy (p. 523).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

392 Module Documentation

5.117.1 Detailed Description

<<eXtension>> (p. 190) Various settings that configure how a DDS-
DataWriter (p. 1028) allocates and uses physical memory for internal re-
sources.

5.117.2 Enumeration Type Documentation

5.117.2.1 enum DDS -
DataWriterResourceLimitsInstanceReplacementKind

Sets the kinds of instances that can be replaced when instance resource limits
are reached.

When DDS ResourceLimitsQosPolicy::max instances (p. 830) is reached,
a DDSDataWriter (p. 1028) will try to make room for a new instance by
attempting to reclaim an existing instance based on the instance replacement
kind specified by DDS DataWriterResourceLimitsQosPolicy::instance -
replacement (p. 526).

Only instances whose states match the specified kinds are eligible to be replaced.
In addition, an instance must have had all of its samples fully acknowledged for
it to be considered replaceable.

For all kinds, a DDSDataWriter (p. 1028) will replace the oldest instance sat-
isfying that kind. For example, when the kind is DDS UNREGISTERED -
INSTANCE REPLACEMENT (p. 393), a DDSDataWriter (p. 1028) will
remove the oldest fully acknowledged unregistered instance, if such an instance
exists.

If no replaceable instance exists, the invoked function will either return with
an appropriate out-of-resources return code, or in the case of a write, it may
first block to wait for an instance to be acknowledged. Otherwise, the DDS-
DataWriter (p. 1028) will replace the old instance with the new instance, and
invoke, if available, the DDS DataWriterListener InstanceReplacedCallback to
notify the user about an instance being replaced.

A DDSDataWriter (p. 1028) checks for replaceable instances in the following
order, stopping once a replaceable instance is found:

If DDS DataWriterResourceLimitsQosPolicy::replace empty -
instances (p. 526) is DDS BOOLEAN TRUE (p. 288), a DDSDataWriter
(p. 1028) first tries replacing instances that have no samples. These
empty instances can be unregistered, disposed, or alive. Next, a DDS-
DataWriter (p. 1028) tries replacing unregistered instances. Since an
unregistered instance indicates that the DDSDataWriter (p. 1028) is
done modifying it, unregistered instances are replaced before instances
of any other state (alive, disposed). This is the same as the DDS -

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.117 DATA WRITER RESOURCE LIMITS 393

UNREGISTERED INSTANCE REPLACEMENT (p. 393) kind. Then,
a DDSDataWriter (p. 1028) tries replacing what is specified by DDS -
DataWriterResourceLimitsQosPolicy::instance replacement (p. 526).
With unregistered instances already checked, this leaves alive and disposed
instances. When both alive and disposed instances may be replaced, the kind
specifies whether the particular order matters (e.g. DISPOSED THEN ALIVE,
ALIVE THEN DISPOSED) or not (ALIVE OR DISPOSED).

QoS:

DDS DataWriterResourceLimitsQosPolicy (p. 523)

Enumerator:

DDS UNREGISTERED INSTANCE REPLACEMENT Allows
a DDSDataWriter (p. 1028) to reclaim unregistered acknowledged
instances.
By default all instance replacement kinds first attempt to re-
claim an unregistered acknowledged instance. Used in DDS -
DataWriterResourceLimitsQosPolicy::instance replacement
(p. 526) [default]

DDS ALIVE INSTANCE REPLACEMENT Allows a DDS-
DataWriter (p. 1028) to reclaim alive acknowledged instances.
When an unregistered acknowledged instance is not available to re-
claim, this kind allows a DDSDataWriter (p. 1028) to reclaim an
alive acknowledged instance, where an alive instance is a registered,
non-disposed instance. The least recently registered or written alive
instance will be reclaimed.

DDS DISPOSED INSTANCE REPLACEMENT Allows a DDS-
DataWriter (p. 1028) to reclaim disposed acknowledged instances.
When an unregistered acknowledged instance is not available to re-
claim, this kind allows a DDSDataWriter (p. 1028) to reclaim a dis-
posed acknowledged instance. The least recently disposed instance
will be reclaimed.

DDS ALIVE THEN DISPOSED INSTANCE REPLACEMENT
Allows a DDSDataWriter (p. 1028) first to reclaim an alive ac-
knowledged instance, and then if necessary a disposed acknowledged
instance.
When an unregistered acknowledged instance is not available to re-
claim, this kind allows a DDSDataWriter (p. 1028) first try reclaim-
ing an alive acknowledged instance. If no instance is reclaimable, then
it trys reclaiming a disposed acknowledged instance. The least recently
used (i.e. registered, written, or disposed) instance will be reclaimed.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

394 Module Documentation

DDS DISPOSED THEN ALIVE INSTANCE REPLACEMENT
Allows a DDSDataWriter (p. 1028) first to reclaim a disposed ac-
knowledged instance, and then if necessary an alive acknowledged
instance.
When an unregistered acknowledged instance is not available to re-
claim, this kind allows a DDSDataWriter (p. 1028) first try reclaim-
ing a disposed acknowledged instance. If no instance is reclaimable,
then it trys reclaiming an alive acknowledged instance. The least
recently used (i.e. disposed, registered, or written) instance will be
reclaimed.

DDS ALIVE OR DISPOSED INSTANCE REPLACEMENT
Allows a DDSDataWriter (p. 1028) to reclaim a either an alive
acknowledged instance or a disposed acknowledged instance.
When an unregistered acknowledged instance is not available to re-
claim, this kind allows a DDSDataWriter (p. 1028) to reclaim either
an alive acknowledged instance or a disposed acknowledged instance.
If both instance kinds are available to reclaim, the DDSDataWriter
(p. 1028) will reclaim the least recently used (i.e. disposed, registered,
or written) instance.

5.117.3 Variable Documentation

5.117.3.1 const char∗ const DDS -
DATAWRITERRESOURCELIMITS -
QOS POLICY NAME

Stringified human-readable name for DDS -
DataWriterResourceLimitsQosPolicy (p. 523).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.118 DATA READER PROTOCOL 395

5.118 DATA READER PROTOCOL

<<eXtension>> (p. 190) Specifies the DataReader-specific protocol QoS.

Classes

ˆ struct DDS DataReaderProtocolQosPolicy

Along with DDS WireProtocolQosPolicy (p. 981) and DDS -
DataWriterProtocolQosPolicy (p. 499), this QoS policy configures
the DDS on-the-network protocol (RTPS).

Variables

ˆ const char ∗const DDS DATAREADERPROTOCOL QOS -
POLICY NAME

Stringified human-readable name for DDS -
DataReaderProtocolQosPolicy (p. 467).

5.118.1 Detailed Description

<<eXtension>> (p. 190) Specifies the DataReader-specific protocol QoS.

5.118.2 Variable Documentation

5.118.2.1 const char∗ const DDS DATAREADERPROTOCOL -
QOS POLICY NAME

Stringified human-readable name for DDS DataReaderProtocolQosPolicy
(p. 467).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

396 Module Documentation

5.119 DATA WRITER PROTOCOL

<<eXtension>> (p. 190) Along with DDS WireProtocolQosPolicy
(p. 981) and DDS DataReaderProtocolQosPolicy (p. 467), this QoS pol-
icy configures the DDS on-the-network protocol (RTPS).

Classes

ˆ struct DDS DataWriterProtocolQosPolicy

Protocol that applies only to DDSDataWriter (p. 1028) instances.

Variables

ˆ const char ∗const DDS DATAWRITERPROTOCOL QOS -
POLICY NAME

Stringified human-readable name for DDS -
DataWriterProtocolQosPolicy (p. 499).

5.119.1 Detailed Description

<<eXtension>> (p. 190) Along with DDS WireProtocolQosPolicy
(p. 981) and DDS DataReaderProtocolQosPolicy (p. 467), this QoS pol-
icy configures the DDS on-the-network protocol (RTPS).

5.119.2 Variable Documentation

5.119.2.1 const char∗ const DDS DATAWRITERPROTOCOL -
QOS POLICY NAME

Stringified human-readable name for DDS DataWriterProtocolQosPolicy
(p. 499).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.120 SYSTEM RESOURCE LIMITS 397

5.120 SYSTEM RESOURCE LIMITS

<<eXtension>> (p. 190) Configures DomainParticipant-independent re-
sources used by RTI Data Distribution Service.

Classes

ˆ struct DDS SystemResourceLimitsQosPolicy

Configures DDSDomainParticipant (p. 1054)-independent resources used
by RTI Data Distribution Service. Mainly used to change the maximum
number of DDSDomainParticipant (p. 1054) entities that can be created
within a single process (address space).

Variables

ˆ const char ∗const DDS SYSTEMRESOURCELIMITS QOS -
POLICY NAME

Stringified human-readable name for DDS -
SystemResourceLimitsQosPolicy (p. 888).

5.120.1 Detailed Description

<<eXtension>> (p. 190) Configures DomainParticipant-independent re-
sources used by RTI Data Distribution Service.

5.120.2 Variable Documentation

5.120.2.1 const char∗ const DDS SYSTEMRESOURCELIMITS -
QOS POLICY NAME

Stringified human-readable name for DDS -
SystemResourceLimitsQosPolicy (p. 888).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

398 Module Documentation

5.121 DOMAIN PARTICIPANT -
RESOURCE LIMITS

<<eXtension>> (p. 190) Various settings that configure how a DDSDo-
mainParticipant (p. 1054) allocates and uses physical memory for internal
resources, including the maximum sizes of various properties.

Classes

ˆ struct DDS AllocationSettings t

Resource allocation settings.

ˆ struct DDS DomainParticipantResourceLimitsQosPolicy

Various settings that configure how a DDSDomainParticipant (p. 1054)
allocates and uses physical memory for internal resources, including the max-
imum sizes of various properties.

Variables

ˆ const char ∗const DDS DOMAINPARTICIPANTRESOURCELIMITS -
QOS POLICY NAME

Stringified human-readable name for DDS -
DomainParticipantResourceLimitsQosPolicy (p. 553).

5.121.1 Detailed Description

<<eXtension>> (p. 190) Various settings that configure how a DDSDo-
mainParticipant (p. 1054) allocates and uses physical memory for internal
resources, including the maximum sizes of various properties.

5.121.2 Variable Documentation

5.121.2.1 const char∗ const DDS -
DOMAINPARTICIPANTRESOURCELIMITS QOS -
POLICY NAME

Stringified human-readable name for DDS -
DomainParticipantResourceLimitsQosPolicy (p. 553).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.122 EVENT 399

5.122 EVENT

<<eXtension>> (p. 190) Configures the internal thread in a DomainPartici-
pant that handles timed events.

Classes

ˆ struct DDS EventQosPolicy

Settings for event.

Variables

ˆ const char ∗const DDS EVENT QOS POLICY NAME

Stringified human-readable name for DDS EventQosPolicy (p. 693).

5.122.1 Detailed Description

<<eXtension>> (p. 190) Configures the internal thread in a DomainPartici-
pant that handles timed events.

5.122.2 Variable Documentation

5.122.2.1 const char∗ const DDS EVENT QOS POLICY NAME

Stringified human-readable name for DDS EventQosPolicy (p. 693).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

400 Module Documentation

5.123 DATABASE

<<eXtension>> (p. 190) Various threads and resource limits settings used
by RTI Data Distribution Service to control its internal database.

Classes

ˆ struct DDS DatabaseQosPolicy

Various threads and resource limits settings used by RTI Data Distribution
Service to control its internal database.

Variables

ˆ const char ∗const DDS DATABASE QOS POLICY NAME

Stringified human-readable name for DDS DatabaseQosPolicy (p. 461).

5.123.1 Detailed Description

<<eXtension>> (p. 190) Various threads and resource limits settings used
by RTI Data Distribution Service to control its internal database.

5.123.2 Variable Documentation

5.123.2.1 const char∗ const DDS DATABASE QOS POLICY -
NAME

Stringified human-readable name for DDS DatabaseQosPolicy (p. 461).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.124 RECEIVER POOL 401

5.124 RECEIVER POOL

<<eXtension>> (p. 190) Configures threads used by RTI Data Distribution
Service to receive and process data from transports (for example, UDP sockets).

Classes

ˆ struct DDS ReceiverPoolQosPolicy

Configures threads used by RTI Data Distribution Service to receive and pro-
cess data from transports (for example, UDP sockets).

Variables

ˆ const char ∗const DDS RECEIVERPOOL QOS POLICY -
NAME

Stringified human-readable name for DDS ReceiverPoolQosPolicy
(p. 810).

5.124.1 Detailed Description

<<eXtension>> (p. 190) Configures threads used by RTI Data Distribution
Service to receive and process data from transports (for example, UDP sockets).

5.124.2 Variable Documentation

5.124.2.1 const char∗ const DDS RECEIVERPOOL QOS -
POLICY NAME

Stringified human-readable name for DDS ReceiverPoolQosPolicy (p. 810).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

402 Module Documentation

5.125 PUBLISH MODE

<<eXtension>> (p. 190) Specifies how RTI Data Distribution Service sends
application data on the network. This QoS policy can be used to tell RTI Data
Distribution Service to use its own thread to send data, instead of the user
thread.

Classes

ˆ struct DDS PublishModeQosPolicy
Specifies how RTI Data Distribution Service sends application data on the
network. This QoS policy can be used to tell RTI Data Distribution Service
to use its own thread to send data, instead of the user thread.

Enumerations

ˆ enum DDS PublishModeQosPolicyKind {
DDS SYNCHRONOUS PUBLISH MODE QOS,
DDS ASYNCHRONOUS PUBLISH MODE QOS }

Kinds of publishing mode.

Variables

ˆ const char ∗const DDS PUBLISHMODE QOS POLICY NAME
Stringified human-readable name for DDS PublishModeQosPolicy
(p. 802).

5.125.1 Detailed Description

<<eXtension>> (p. 190) Specifies how RTI Data Distribution Service sends
application data on the network. This QoS policy can be used to tell RTI Data
Distribution Service to use its own thread to send data, instead of the user
thread.

5.125.2 Enumeration Type Documentation

5.125.2.1 enum DDS PublishModeQosPolicyKind

Kinds of publishing mode.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.125 PUBLISH MODE 403

QoS:

DDS PublishModeQosPolicy (p. 802)

Enumerator:

DDS SYNCHRONOUS PUBLISH MODE QOS Indicates to send
data synchronously.
If DDS DataWriterProtocolQosPolicy::push on write (p. 501)
is DDS BOOLEAN TRUE (p. 288), data is sent immediately in
the context of FooDataWriter::write (p. 1368).
As data is sent immediately in the context of the user thread, no flow
control is applied.
See also:

DDS DataWriterProtocolQosPolicy::push on write
(p. 501)

[default] for DDSDataWriter (p. 1028)
DDS ASYNCHRONOUS PUBLISH MODE QOS Indicates to

send data asynchronously.
Configures the DDSDataWriter (p. 1028) to delegate the task
of data transmission to a separate publishing thread. The Foo-
DataWriter::write (p. 1368) call does not send the data, but instead
schedules the data to be sent later by its associated DDSPublisher
(p. 1243).
Each DDSPublisher (p. 1243) uses its dedicated publishing thread
(DDS PublisherQos::asynchronous publisher (p. 801)) to send
data for all its asynchronous DataWriters. For each asynchronous
DataWriter, the associated DDSFlowController (p. 1163) deter-
mines when the publishing thread is allowed to send the data.
DDSDataWriter::wait for asynchronous publishing (p. 1041)
and DDSPublisher::wait for asynchronous publishing
(p. 1261) enable you to determine when the data has actually
been sent.
Note: DDS DataWriterProtocolQosPolicy::push on write
(p. 501) must be TRUE for Asynchronous DataWriters. Otherwise,
samples will never be sent.
See also:

DDSFlowController (p. 1163)
DDS HistoryQosPolicy (p. 709)
DDSDataWriter::wait for asynchronous publishing
(p. 1041)
DDSPublisher::wait for asynchronous publishing
(p. 1261)
NDDS Transport Property t::gather send buffer count -
max (p. 1407)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

404 Module Documentation

5.125.3 Variable Documentation

5.125.3.1 const char∗ const DDS PUBLISHMODE QOS -
POLICY NAME

Stringified human-readable name for DDS PublishModeQosPolicy (p. 802).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.126 DISCOVERY CONFIG 405

5.126 DISCOVERY CONFIG

<<eXtension>> (p. 190) Specifies the discovery configuration QoS.

Classes

ˆ struct DDS BuiltinTopicReaderResourceLimits t
Built-in topic reader’s resource limits.

ˆ struct DDS DiscoveryConfigQosPolicy
Settings for discovery configuration.

Defines

ˆ #define DDS DISCOVERYCONFIG BUILTIN PLUGIN -
MASK ALL

All bits are set.

ˆ #define DDS DISCOVERYCONFIG BUILTIN PLUGIN -
MASK NONE

No bits are set.

ˆ #define DDS DISCOVERYCONFIG -
BUILTIN PLUGIN MASK DEFAULT (DDS -
DiscoveryConfigBuiltinPluginKindMask)DDS -
DISCOVERYCONFIG BUILTIN SDP

The default value of DDS DiscoveryConfigQosPolicy::builtin -
discovery plugins (p. 541).

Typedefs

ˆ typedef DDS Long DDS DiscoveryConfigBuiltinPluginKindMask

A bit-mask (list) of built-in discovery plugins.

Enumerations

ˆ enum DDS DiscoveryConfigBuiltinPluginKind { , DDS -
DISCOVERYCONFIG BUILTIN SDP }

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

406 Module Documentation

Built-in discovery plugins that can be used.

ˆ enum DDS RemoteParticipantPurgeKind {
DDS LIVELINESS BASED REMOTE PARTICIPANT -
PURGE,

DDS NO REMOTE PARTICIPANT PURGE }
Available behaviors for halting communication with remote participants (and
their contained entities) with which discovery communication has been lost.

Variables

ˆ const char ∗const DDS DISCOVERYCONFIG QOS POLICY -
NAME

Stringified human-readable name for DDS DiscoveryConfigQosPolicy
(p. 534).

5.126.1 Detailed Description

<<eXtension>> (p. 190) Specifies the discovery configuration QoS.

5.126.2 Define Documentation

5.126.2.1 #define DDS DISCOVERYCONFIG BUILTIN -
PLUGIN MASK ALL

All bits are set.

See also:

DDS DiscoveryConfigBuiltinPluginKindMask (p. 407)

5.126.2.2 #define DDS DISCOVERYCONFIG BUILTIN -
PLUGIN MASK NONE

No bits are set.

See also:

DDS DiscoveryConfigBuiltinPluginKindMask (p. 407)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.126 DISCOVERY CONFIG 407

5.126.2.3 #define DDS DISCOVERYCONFIG -
BUILTIN PLUGIN MASK DEFAULT (DDS -
DiscoveryConfigBuiltinPluginKindMask)DDS -
DISCOVERYCONFIG BUILTIN SDP

The default value of DDS DiscoveryConfigQosPolicy::builtin -
discovery plugins (p. 541).

See also:

DDS DiscoveryConfigBuiltinPluginKindMask (p. 407)

5.126.3 Typedef Documentation

5.126.3.1 typedef DDS Long DDS -
DiscoveryConfigBuiltinPluginKindMask

A bit-mask (list) of built-in discovery plugins.

The bit-mask is an efficient and compact representation of a fixed-length list of
DDS DiscoveryConfigBuiltinPluginKind (p. 407) values.

QoS:

DDS DiscoveryConfigQosPolicy (p. 534)

5.126.4 Enumeration Type Documentation

5.126.4.1 enum DDS DiscoveryConfigBuiltinPluginKind

Built-in discovery plugins that can be used.

See also:

DDS DiscoveryConfigBuiltinPluginKindMask (p. 407)

Enumerator:

DDS DISCOVERYCONFIG BUILTIN SDP [default] Simple dis-
covery plugin.

5.126.4.2 enum DDS RemoteParticipantPurgeKind

Available behaviors for halting communication with remote participants (and
their contained entities) with which discovery communication has been lost.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

408 Module Documentation

When discovery communication with a remote participant has been lost, the
local participant must make a decision about whether to continue attempting
to communicate with that participant and its contained entities. This ”kind” is
used to select the desired behavior.

This ”kind” does not pertain to the situation in which a remote participant has
been gracefully deleted and notification of that deletion have been successfully
received by its peers. In that case, the local participant will immediately stop
attempting to communicate with those entities and will remove the associated
remote entity records from its internal database.

See also:

DDS DiscoveryConfigQosPolicy::remote participant purge kind
(p. 537)

Enumerator:

DDS LIVELINESS BASED REMOTE PARTICIPANT PURGE
[default] Maintain knowledge of the remote participant for as long
as it maintains its liveliness contract.
A participant will continue attempting communication with its peers,
even if discovery communication with them is lost, as long as the re-
mote participants maintain their liveliness. If both discovery commu-
nication and participant liveliness are lost, however, the local partici-
pant will remove all records of the remote participant and its contained
endpoints, and no further data communication with them will occur
until and unless they are rediscovered.
The liveliness contract a participant promises to its peers –
its ”liveliness lease duration” – is specified in its DDS -
DiscoveryConfigQosPolicy::participant liveliness lease -
duration (p. 536) QoS field. It maintains that contract by writing
data to those other participants with a writer that has a DDS -
LivelinessQosPolicyKind (p. 344) of DDS AUTOMATIC -
LIVELINESS QOS (p. 345) or DDS MANUAL BY -
PARTICIPANT LIVELINESS QOS (p. 345) and by asserting
itself (at the DDS DiscoveryConfigQosPolicy::participant -
liveliness assert period (p. 536)) over the Simple Discovery
Protocol.

DDS NO REMOTE PARTICIPANT PURGE Never ”forget” a
remote participant with which discovery communication has been lost.
If a participant with this behavior loses discovery communication with
a remote participant, it will nevertheless remember that remote par-
ticipant and its endpoints and continue attempting to communicate
with them indefinitely.
This value has consequences for a participant’s resource usage. If
discovery communication with a remote participant is lost, but the

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.126 DISCOVERY CONFIG 409

same participant is later rediscovered, any relevant records that remain
in the database will be reused. However, if it is not rediscovered, the
records will continue to take up space in the database for as long as
the local participant remains in existence.

5.126.5 Variable Documentation

5.126.5.1 const char∗ const DDS DISCOVERYCONFIG QOS -
POLICY NAME

Stringified human-readable name for DDS DiscoveryConfigQosPolicy
(p. 534).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

410 Module Documentation

5.127 TYPESUPPORT

<<eXtension>> (p. 190) Allows you to attach application-specific values to a
DataWriter or DataReader that are passed to the serialization or deserialization
routine of the associated data type.

Classes

ˆ struct DDS TypeSupportQosPolicy

Allows you to attach application-specific values to a DataWriter or
DataReader that are passed to the serialization or deserialization routine
of the associated data type.

Variables

ˆ const char ∗const DDS TYPESUPPORT QOS POLICY NAME

Stringified human-readable name for DDS TypeSupportQosPolicy
(p. 964).

5.127.1 Detailed Description

<<eXtension>> (p. 190) Allows you to attach application-specific values to a
DataWriter or DataReader that are passed to the serialization or deserialization
routine of the associated data type.

5.127.2 Variable Documentation

5.127.2.1 const char∗ const DDS TYPESUPPORT QOS -
POLICY NAME

Stringified human-readable name for DDS TypeSupportQosPolicy (p. 964).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.128 ASYNCHRONOUS PUBLISHER 411

5.128 ASYNCHRONOUS PUBLISHER

<<eXtension>> (p. 190) Specifies the asynchronous publishing settings of
the DDSPublisher (p. 1243) instances.

Classes

ˆ struct DDS AsynchronousPublisherQosPolicy

Configures the mechanism that sends user data in an external middleware
thread.

Variables

ˆ const char ∗const DDS ASYNCHRONOUSPUBLISHER QOS -
POLICY NAME

Stringified human-readable name for DDS -
AsynchronousPublisherQosPolicy (p. 441).

5.128.1 Detailed Description

<<eXtension>> (p. 190) Specifies the asynchronous publishing settings of
the DDSPublisher (p. 1243) instances.

5.128.2 Variable Documentation

5.128.2.1 const char∗ const DDS -
ASYNCHRONOUSPUBLISHER QOS POLICY NAME

Stringified human-readable name for DDS -
AsynchronousPublisherQosPolicy (p. 441).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

412 Module Documentation

5.129 EXCLUSIVE AREA

<<eXtension>> (p. 190) Configures multi-thread concurrency and deadlock
prevention capabilities.

Classes

ˆ struct DDS ExclusiveAreaQosPolicy

Configures multi-thread concurrency and deadlock prevention capabilities.

Variables

ˆ const char ∗const DDS EXCLUSIVEAREA QOS POLICY -
NAME

Stringified human-readable name for DDS ExclusiveAreaQosPolicy
(p. 696).

5.129.1 Detailed Description

<<eXtension>> (p. 190) Configures multi-thread concurrency and deadlock
prevention capabilities.

5.129.2 Variable Documentation

5.129.2.1 const char∗ const DDS EXCLUSIVEAREA QOS -
POLICY NAME

Stringified human-readable name for DDS ExclusiveAreaQosPolicy
(p. 696).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.130 BATCH 413

5.130 BATCH

<<eXtension>> (p. 190) Batch QoS policy used to enable batching in DDS-
DataWriter (p. 1028) instances.

Classes

ˆ struct DDS BatchQosPolicy

Used to configure batching of multiple samples into a single network packet
in order to increase throughput for small samples.

Variables

ˆ const char ∗const DDS BATCH QOS POLICY NAME

Stringified human-readable name for DDS BatchQosPolicy (p. 446).

5.130.1 Detailed Description

<<eXtension>> (p. 190) Batch QoS policy used to enable batching in DDS-
DataWriter (p. 1028) instances.

5.130.2 Variable Documentation

5.130.2.1 const char∗ const DDS BATCH QOS POLICY NAME

Stringified human-readable name for DDS BatchQosPolicy (p. 446).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

414 Module Documentation

5.131 LOCATORFILTER

<<eXtension>> (p. 190) The QoS policy used to report the configuration of
a MultiChannel DataWriter as part of DDS PublicationBuiltinTopicData
(p. 788).

Classes

ˆ struct DDS LocatorFilter t

Specifies the configuration of an individual channel within a MultiChannel
DataWriter.

ˆ struct DDS LocatorFilterSeq

Declares IDL sequence< DDS LocatorFilter t (p. 736) >.

ˆ struct DDS LocatorFilterQosPolicy

The QoS policy used to report the configuration of a MultiChannel
DataWriter as part of DDS PublicationBuiltinTopicData (p. 788).

Variables

ˆ const char ∗const DDS LOCATORFILTER QOS POLICY -
NAME

Stringified human-readable name for DDS LocatorFilterQosPolicy
(p. 738).

5.131.1 Detailed Description

<<eXtension>> (p. 190) The QoS policy used to report the configuration of
a MultiChannel DataWriter as part of DDS PublicationBuiltinTopicData
(p. 788).

5.131.2 Variable Documentation

5.131.2.1 const char∗ const DDS LOCATORFILTER QOS -
POLICY NAME

Stringified human-readable name for DDS LocatorFilterQosPolicy (p. 738).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.132 MULTICHANNEL 415

5.132 MULTICHANNEL

<<eXtension>> (p. 190) Configures the ability of a DataWriter to send data
on different multicast groups (addresses) based on the value of the data.

Classes

ˆ struct DDS ChannelSettings t

Type used to configure the properties of a channel.

ˆ struct DDS ChannelSettingsSeq

Declares IDL sequence< DDS ChannelSettings t (p. 455) >.

ˆ struct DDS MultiChannelQosPolicy

Configures the ability of a DataWriter to send data on different multicast
groups (addresses) based on the value of the data.

Variables

ˆ const char ∗const DDS MULTICHANNEL QOS POLICY -
NAME

Stringified human-readable name for DDS MultiChannelQosPolicy
(p. 745).

5.132.1 Detailed Description

<<eXtension>> (p. 190) Configures the ability of a DataWriter to send data
on different multicast groups (addresses) based on the value of the data.

5.132.2 Variable Documentation

5.132.2.1 const char∗ const DDS MULTICHANNEL QOS -
POLICY NAME

Stringified human-readable name for DDS MultiChannelQosPolicy (p. 745).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

416 Module Documentation

5.133 PROPERTY

<<eXtension>> (p. 190) Stores name/value (string) pairs that can be used
to configure certain parameters of RTI Data Distribution Service that are not
exposed through formal QoS policies. Can also be used to store and propagate
application-specific name/value pairs that can be retrieved by user code during
discovery.

Classes

ˆ class DDSPropertyQosPolicyHelper

Policy Helpers which facilitate management of the properties in the input
policy.

ˆ struct DDS Property t

Properties are name/value pairs objects.

ˆ struct DDS PropertySeq

Declares IDL sequence < DDS Property t (p. 782) >.

ˆ struct DDS PropertyQosPolicy

Stores name/value(string) pairs that can be used to configure certain param-
eters of RTI Data Distribution Service that are not exposed through formal
QoS policies. Can also be used to store and propagate application-specific
name/value pairs that can be retrieved by user code during discovery.

Functions

ˆ static DDS Long DDSPropertyQosPolicyHelper::get number -
of properties (DDS PropertyQosPolicy &policy)

Gets the number of properties in the input policy.

ˆ static DDS ReturnCode t DDSPropertyQosPolicy-
Helper::assert property (DDS PropertyQosPolicy &policy, const
char ∗name, const char ∗value, DDS Boolean propagate)

Asserts the property identified by name in the input policy.

ˆ static DDS ReturnCode t DDSPropertyQosPolicyHelper::add -
property (DDS PropertyQosPolicy &policy, const char ∗name, const
char ∗value, DDS Boolean propagate)

Adds a new property to the input policy.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.133 PROPERTY 417

ˆ static struct DDS Property t ∗ DDSPropertyQosPolicy-
Helper::lookup property (DDS PropertyQosPolicy &policy,
const char ∗name)

Searches for a property in the input policy given its name.

ˆ static DDS ReturnCode t DDSPropertyQosPolicy-
Helper::remove property (DDS PropertyQosPolicy &policy,
const char ∗name)

Removes a property from the input policy.

ˆ static DDS ReturnCode t DDSPropertyQosPolicyHelper::get -
properties (DDS PropertyQosPolicy &policy, struct DDS -
PropertySeq &properties, const char ∗name prefix)

Retrieves a list of properties whose names match the input prefix.

Variables

ˆ const char ∗const DDS PROPERTY QOS POLICY NAME

Stringified human-readable name for DDS PropertyQosPolicy (p. 783).

5.133.1 Detailed Description

<<eXtension>> (p. 190) Stores name/value (string) pairs that can be used
to configure certain parameters of RTI Data Distribution Service that are not
exposed through formal QoS policies. Can also be used to store and propagate
application-specific name/value pairs that can be retrieved by user code during
discovery.

See DDS PropertyQosPolicy (p. 783)

5.133.2 Function Documentation

5.133.2.1 static DDS Long DDSPropertyQosPolicyHelper::get -
number of properties (DDS PropertyQosPolicy & policy)
[static, inherited]

Gets the number of properties in the input policy.

Precondition:

policy cannot be NULL.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

418 Module Documentation

Parameters:

policy <<in>> (p. 191) Input policy.

Returns:

Number of properties.

5.133.2.2 static DDS ReturnCode t DDSPropertyQosPolicy-
Helper::assert property (DDS PropertyQosPolicy
& policy, const char ∗ name, const char ∗ value,
DDS Boolean propagate) [static, inherited]

Asserts the property identified by name in the input policy.

If the property already exists, this function replaces its current value with the
new one.

If the property identified by name does not exist, this function adds it to the
property set.

This function increases the maximum number of elements of the policy sequence
when this number is not enough to store the new property.

Precondition:

policy, name and value cannot be NULL.

Parameters:

policy <<in>> (p. 191) Input policy.

name <<in>> (p. 191) Property name.

value <<in>> (p. 191) Property value.

propagate <<in>> (p. 191) Indicates if the property will be propagated
on discovery.

Returns:

One of the Standard Return Codes (p. 302) or DDS RETCODE -
OUT OF RESOURCES (p. 303).

5.133.2.3 static DDS ReturnCode t DDSPropertyQosPolicy-
Helper::add property (DDS PropertyQosPolicy & policy,
const char ∗ name, const char ∗ value, DDS Boolean
propagate) [static, inherited]

Adds a new property to the input policy.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.133 PROPERTY 419

This function will allocate memory to store the (name,value) pair. The memory
allocated is owned by RTI Data Distribution Service.

If the maximum number of elements of the policy sequence is not enough to
store the new property, this function will increase it.

If the property already exists the function fails with DDS RETCODE -
PRECONDITION NOT MET (p. 303).

Precondition:

policy, name and value cannot be NULL.
The property is not in the policy.

Parameters:

policy <<in>> (p. 191) Input policy.
name <<in>> (p. 191) Property name.
value <<in>> (p. 191) Property value.
propagate <<in>> (p. 191) Indicates if the property will be propagated

on discovery.

Returns:

One of the Standard Return Codes (p. 302) or DDS -
RETCODE OUT OF RESOURCES (p. 303) or DDS RETCODE -
PRECONDITION NOT MET (p. 303)

5.133.2.4 static struct DDS Property t∗
DDSPropertyQosPolicyHelper::lookup property
(DDS PropertyQosPolicy & policy, const char ∗ name)
[static, read, inherited]

Searches for a property in the input policy given its name.

Precondition:

policy, name and value cannot be NULL.

Parameters:

policy <<in>> (p. 191) Input policy.
name <<in>> (p. 191) Property name.

Returns:

On success, the function returns the first property with the given name.
Otherwise, the function returns NULL.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

420 Module Documentation

5.133.2.5 static DDS ReturnCode t DDSPropertyQosPolicy-
Helper::remove property (DDS PropertyQosPolicy &
policy, const char ∗ name) [static, inherited]

Removes a property from the input policy.

If the property does not exist, the function fails with DDS RETCODE -
PRECONDITION NOT MET (p. 303).

Precondition:

policy and name cannot be NULL.
The property is in the policy.

Parameters:

policy <<in>> (p. 191) Input policy.

name <<in>> (p. 191) Property name.

Returns:

One of the Standard Return Codes (p. 302) or DDS RETCODE -
PRECONDITION NOT MET (p. 303).

5.133.2.6 static DDS ReturnCode t DDSPropertyQosPolicy-
Helper::get properties (DDS PropertyQosPolicy &
policy, struct DDS PropertySeq & properties, const
char ∗ name prefix) [static, inherited]

Retrieves a list of properties whose names match the input prefix.

If the properties sequence doesn’t own its buffer, and its maximum is less
than the total number of properties matching the input prefix, it will be filled
up to its maximum and fail with an error of DDS RETCODE OUT OF -
RESOURCES (p. 303).

Precondition:

policy, properties and name prefix cannot be NULL.

Parameters:

policy <<in>> (p. 191) Input policy.

properties <<inout>> (p. 191) A DDS PropertySeq (p. 786) object
where the set or list of properties will be returned.

name prefix Name prefix.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.133 PROPERTY 421

Returns:

One of the Standard Return Codes (p. 302) or DDS RETCODE -
OUT OF RESOURCES (p. 303).

5.133.3 Variable Documentation

5.133.3.1 const char∗ const DDS PROPERTY QOS POLICY -
NAME

Stringified human-readable name for DDS PropertyQosPolicy (p. 783).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

422 Module Documentation

5.134 Entity Support

DDSEntity (p. 1157), DDSListener (p. 1217) and related items.

Classes

ˆ class DDSListener

<<interface>> (p. 190) Abstract base class for all Listener interfaces.

ˆ class DDSEntity

<<interface>> (p. 190) Abstract base class for all the DDS objects that
support QoS policies, a listener, and a status condition.

ˆ class DDSDomainEntity

<<interface>> (p. 190) Abstract base class for all DDS entities except for
the DDSDomainParticipant (p. 1054).

5.134.1 Detailed Description

DDSEntity (p. 1157), DDSListener (p. 1217) and related items.

DDSEntity (p. 1157) subtypes are created and destroyed by factory objects.
With the exception of DDSDomainParticipant (p. 1054), whose factory is
DDSDomainParticipantFactory (p. 1123), all DDSEntity (p. 1157) factory
objects are themselves DDSEntity (p. 1157) subtypes as well.

Important: all DDSEntity (p. 1157) delete operations are inherently thread-
unsafe. The user must take extreme care that a given DDSEntity (p. 1157)
is not destroyed in one thread while being used concurrently (including being
deleted concurrently) in another thread. An operation’s effect in the presence
of the concurrent deletion of the operation’s target DDSEntity (p. 1157) is
undefined.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.135 Conditions and WaitSets 423

5.135 Conditions and WaitSets

DDSCondition (p. 992) and DDSWaitSet (p. 1325) and related items.

Classes

ˆ struct DDSConditionSeq

Instantiates FooSeq (p. 1377) < DDSCondition (p. 992) >.

ˆ class DDSCondition

<<interface>> (p. 190) Root class for all the conditions that may be at-
tached to a DDSWaitSet (p. 1325).

ˆ class DDSGuardCondition

<<interface>> (p. 190) A specific DDSCondition (p. 992) whose
trigger value is completely under the control of the application.

ˆ class DDSStatusCondition

<<interface>> (p. 190) A specific DDSCondition (p. 992) that is asso-
ciated with each DDSEntity (p. 1157).

ˆ class DDSWaitSet

<<interface>> (p. 190) Allows an application to wait until one or more
of the attached DDSCondition (p. 992) objects has a trigger value of
DDS BOOLEAN TRUE (p. 288) or else until the timeout expires.

ˆ struct DDS WaitSetProperty t

<<eXtension>> (p. 190) Specifies the DDSWaitSet (p. 1325) behavior
for multiple trigger events.

5.135.1 Detailed Description

DDSCondition (p. 992) and DDSWaitSet (p. 1325) and related items.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

424 Module Documentation

5.136 ENTITY NAME

<<eXtension>> (p. 190) Assigns a name to a DDSDomainParticipant
(p. 1054). This name will be visible during the discovery process and in RTI
tools to help you visualize and debug your system.

Classes

ˆ struct DDS EntityNameQosPolicy

Assigns a name to a DDSDomainParticipant (p. 1054). This name will
be visible during the discovery process and in RTI tools to help you visualize
and debug your system.

Variables

ˆ const char ∗const DDS ENTITYNAME QOS POLICY NAME

Stringified human-readable name for DDS EntityNameQosPolicy
(p. 689).

5.136.1 Detailed Description

<<eXtension>> (p. 190) Assigns a name to a DDSDomainParticipant
(p. 1054). This name will be visible during the discovery process and in RTI
tools to help you visualize and debug your system.

5.136.2 Variable Documentation

5.136.2.1 const char∗ const DDS ENTITYNAME QOS POLICY -
NAME

Stringified human-readable name for DDS EntityNameQosPolicy (p. 689).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.137 PROFILE 425

5.137 PROFILE

<<eXtension>> (p. 190) Configures the way that XML documents contain-
ing QoS profiles are loaded by RTI Data Distribution Service.

Classes

ˆ struct DDS ProfileQosPolicy

Configures the way that XML documents containing QoS profiles are loaded
by RTI Data Distribution Service.

Variables

ˆ const char ∗const DDS PROFILE QOS POLICY NAME

Stringified human-readable name for DDS ProfileQosPolicy (p. 779).

5.137.1 Detailed Description

<<eXtension>> (p. 190) Configures the way that XML documents contain-
ing QoS profiles are loaded by RTI Data Distribution Service.

5.137.2 Variable Documentation

5.137.2.1 const char∗ const DDS PROFILE QOS POLICY NAME

Stringified human-readable name for DDS ProfileQosPolicy (p. 779).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

426 Module Documentation

5.138 Octet Buffer Support

<<eXtension>> (p. 190) Octet buffer creation, cloning, and deletion.

Functions

ˆ unsigned char ∗ DDS OctetBuffer alloc (unsigned int size)
Create a new empty OctetBuffer that can hold up to size octets.

ˆ unsigned char ∗ DDS OctetBuffer dup (const unsigned char ∗buffer,
unsigned int size)

Clone an OctetBuffer.

ˆ void DDS OctetBuffer free (unsigned char ∗buffer)
Delete an OctetBuffer.

5.138.1 Detailed Description

<<eXtension>> (p. 190) Octet buffer creation, cloning, and deletion.

The methods in this class ensure consistent cross-platform implementa-
tions for OctetBuffer creation (DDS OctetBuffer alloc() (p. 428)), deletion
(DDS OctetBuffer free() (p. 428)), and cloning (DDS OctetBuffer dup()
(p. 428)) that preserve the mutable value type semantics. These are to be viewed
as methods that define an OctetBuffer class whose data is represented by a
’unsigned char∗’.

5.138.2 Conventions

The following conventions govern the memory management of OctetBuffers in
RTI Data Distribution Service.

ˆ The DDS implementation ensures that when value types containing Octet-
Buffers are passed back and forth to the DDS APIs, the OctetBuffers are
created/deleted/cloned using the OctetBuffer class methods.

– Value types containing OctetBuffers have ownership of the contained
OctetBuffer. Thus, when a value type is deleted, the contained octet
buffer field is also deleted.

ˆ The user must ensure that when value types containing OctetBuffers
are passed back and forth to the DDS APIs, the OctetBuffers are cre-
ated/deleted/cloned using the OctetBuffer class methods.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.138 Octet Buffer Support 427

The representation of an OctetBuffer in C/C++ unfortunately does not allow
programs to detect how much memory has been allocated for a OctetBuffer.
RTI Data Distribution Service must therefore make some assumptions when a
user requests that a OctetBuffer be copied into. The following rules apply when
RTI Data Distribution Service is copying into an OctetBuffer.

ˆ If the ’unsigned char∗’ is NULL, RTI Data Distribution Service will allo-
cate a new OctetBuffer on behalf of the user. To avoid leaking memory,
you must ensure that the OctetBuffer will be freed (see Usage (p. 427) be-
low) in C. For C++, the destructor of the valuetype containing the Octet-
Buffer will free it automatically..

ˆ If the ’unsigned char∗’ is not NULL, RTI Data Distribution Service will
assume that you are managing the OctetBuffer’s memory yourself and
have allocated enough memory to store the OctetBuffer to be copied. RTI
Data Distribution Service will copy into your memory; to avoid memory
corruption, be sure to allocate enough of it. Also, do not pass structures
containing junk pointers into RTI Data Distribution Service; you are likely
to crash.

5.138.3 Usage

This requirement can generally be assured by adhering to the following idiom
for manipulating OctetBuffers.

Always use

DDS_OctetBuffer_alloc() to create,

DDS_OctetBuffer_dup() to clone,

DDS_OctetBuffer_free() to delete

a ’unsigned char*’ that is passed back and forth between

user code and the DDS C/C++ APIs.

Not adhering to this idiom can result in bad pointers, and incorrect memory
being freed.

In addition, the user code should be vigilant to avoid memory leaks. It is good
practice to:

ˆ Balance occurrences of DDS OctetBuffer alloc() (p. 428), with match-
ing occurrences of DDS OctetBuffer free() (p. 428) in the code.

ˆ Finalize value types containing OctetBuffer. In C++ the destructor ac-
complishes this automatically. in C, explicit ”destructor” functions are
provided.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

428 Module Documentation

5.138.4 Function Documentation

5.138.4.1 unsigned char∗ DDS OctetBuffer alloc (unsigned int size)

Create a new empty OctetBuffer that can hold up to size octets.

An OctetBuffer created by this method must be deleted using DDS -
OctetBuffer free() (p. 428).

This function will allocate enough memory to hold an OctetBuffer of size octets.

Parameters:

size <<in>> (p. 191) Size of the buffer.

Returns:

A newly created non-NULL OctetBuffer upon success or NULL upon fail-
ure.

5.138.4.2 unsigned char∗ DDS OctetBuffer dup (const unsigned
char ∗ buffer, unsigned int size)

Clone an OctetBuffer.

An OctetBuffer created by this method must be deleted using DDS -
OctetBuffer free() (p. 428)

Parameters:

buffer <<in>> (p. 191) The OctetBuffer to duplicate.

size <<in>> (p. 191) Size of the OctetBuffer to duplicate.

Returns:

If src == NULL or size <0, this method always returns NULL. Otherwise,
upon success it returns a newly created OctetBuffer whose value is src;
upon failure it returns NULL.

5.138.4.3 void DDS OctetBuffer free (unsigned char ∗ buffer)

Delete an OctetBuffer.

Precondition:

buffer must be either NULL, or must have been created using DDS -
OctetBuffer alloc() (p. 428), DDS OctetBuffer dup() (p. 428)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.138 Octet Buffer Support 429

Parameters:

buffer <<in>> (p. 191) The buffer to delete.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

430 Module Documentation

5.139 Sequence Support

The FooSeq (p. 1377) interface allows you to work with variable-length collec-
tions of homogeneous data.

Modules

ˆ Built-in Sequences

Defines sequences of primitive data type.

Classes

ˆ struct FooSeq

<<interface>> (p. 190) <<generic>> (p. 190) A type-safe, ordered col-
lection of elements. The type of these elements is referred to in this docu-
mentation as Foo (p. 1333).

5.139.1 Detailed Description

The FooSeq (p. 1377) interface allows you to work with variable-length collec-
tions of homogeneous data.

This interface is instantiated for each concrete element type in order to provide
compile-time type safety to applications. The Built-in Sequences (p. 113) are
pre-defined instantiations for the primitive data types.

When you use the rtiddsgen (p. 211) code generation tool, it will automatically
generate concrete sequence instantiations for each of your own custom types.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.140 String Support 431

5.140 String Support

<<eXtension>> (p. 190) String creation, cloning, assignment, and deletion.

Functions

ˆ char ∗ DDS String alloc (size t length)

Create a new empty string that can hold up to length characters.

ˆ char ∗ DDS String dup (const char ∗str)
Clone a string. Creates a new string that duplicates the value of string.

ˆ void DDS String free (char ∗str)
Delete a string.

ˆ DDS Wchar ∗ DDS Wstring alloc (DDS UnsignedLong length)

Create a new empty string that can hold up to length wide characters.

ˆ DDS UnsignedLong DDS Wstring length (const DDS Wchar
∗str)

Get the number of wide characters in the given string.

ˆ DDS Wchar ∗ DDS Wstring copy (DDS Wchar ∗dst, const DDS -
Wchar ∗src)

Copy the source string over the destination string reallocating the space if
it’s necessary.

ˆ DDS Wchar ∗ DDS Wstring copy and widen (DDS Wchar ∗dst,
const char ∗src)

Copy the source string over the destination string, widening each character.

ˆ DDS Wchar ∗ DDS Wstring dup (const DDS Wchar ∗str)
Clone a string of wide characters. Creates a new string that duplicates the
value of string.

ˆ DDS Wchar ∗ DDS Wstring dup and widen (const char ∗str)
Clone a string of characters as a string of wide characters.

ˆ void DDS Wstring free (DDS Wchar ∗str)
Delete a string.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

432 Module Documentation

5.140.1 Detailed Description

<<eXtension>> (p. 190) String creation, cloning, assignment, and deletion.

The methods in this class ensure consistent cross-platform implementations for
string creation (DDS String alloc() (p. 433)), deletion (DDS String free()
(p. 434)), and cloning (DDS String dup() (p. 434)) that preserve the mutable
value type semantics. These are to be viewed as methods that define a string
class whose data is represented by a ’char∗’.

5.140.2 Conventions

The following conventions govern the memory management of strings in RTI
Data Distribution Service.

ˆ The DDS implementation ensures that when value types containing
strings are passed back and forth to the DDS APIs, the strings are cre-
ated/deleted/assigned/cloned using the string class methods.

– Value types containing strings have ownership of the contained string.
Thus, when a value type is deleted, the contained string field is also
deleted.

– DDS StringSeq (p. 869) is a value type that contains strings;
it owns the memory for the contained strings. When a DDS -
StringSeq (p. 869) is assigned or deleted, the contained strings are
also assigned or deleted respectively.

ˆ The user must ensure that when value types containing strings
are passed back and forth to the DDS APIs, the strings are cre-
ated/deleted/assigned/cloned using the String class methods.

The representation of a string in C/C++ unfortunately does not allow programs
to detect how much memory has been allocated for a string. RTI Data Distribu-
tion Service must therefore make some assumptions when a user requests that
a string be copied into. The following rules apply when RTI Data Distribution
Service is copying into a string or string sequence:

ˆ If the ’char∗’ is NULL, RTI Data Distribution Service will log a warning
and allocate a new string on behalf of the user. To avoid leaking memory,
you must ensure that the string will be freed (see Usage (p. 433) below).

ˆ If the ’char∗’ is not NULL, RTI Data Distribution Service will assume
that you are managing the string’s memory yourself and have allocated
enough memory to store the string to be copied. RTI Data Distribution
Service will copy into your memory; to avoid memory corruption, be sure
to allocate enough of it. Also, do not pass structures containing junk
pointers into RTI Data Distribution Service; you are likely to crash.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.140 String Support 433

5.140.3 Usage

This requirement can generally be assured by adhering to the following idiom
for manipulating strings.

Always use

DDS_String_alloc() to create,

DDS_String_dup() to clone,

DDS_String_free() to delete

a string ’char*’ that is passed back and forth between

user code and the DDS C/C++ APIs.

Not adhering to this idiom can result in bad pointers, and incorrect memory
being freed.

In addition, the user code should be vigilant to avoid memory leaks. It is good
practice to:

ˆ Balance occurrences of DDS String alloc() (p. 433), DDS String -
dup() (p. 434), with matching occurrences of DDS String free()
(p. 434) in the code.

ˆ Finalize value types containing strings. In C++ the destructor accom-
plishes this automatically. in C, explicit ”destructor” functions are pro-
vided; these functions are typically called ”finalize.”

See also:

DDS StringSeq (p. 869)

5.140.4 Function Documentation

5.140.4.1 char∗ DDS String alloc (size t length)

Create a new empty string that can hold up to length characters.

A string created by this method must be deleted using DDS String free()
(p. 434).

This function will allocate enough memory to hold a string of length characters,
plus one additional byte to hold the NULL terminating character.

Parameters:

length <<in>> (p. 191) Capacity of the string.

Returns:

A newly created non-NULL string upon success or NULL upon failure.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

434 Module Documentation

Examples:

HelloWorld.cxx.

5.140.4.2 char∗ DDS String dup (const char ∗ str)

Clone a string. Creates a new string that duplicates the value of string.

A string created by this method must be deleted using DDS String free()
(p. 434)

Parameters:

str <<in>> (p. 191) The string to duplicate.

Returns:

If string == NULL, this method always returns NULL. Otherwise, upon
success it returns a newly created string whose value is string; upon failure
it returns NULL.

5.140.4.3 void DDS String free (char ∗ str)

Delete a string.

Precondition:

string must be either NULL, or must have been created using DDS -
String alloc() (p. 433), DDS String dup() (p. 434)

Parameters:

str <<in>> (p. 191) The string to delete.

Examples:

HelloWorld.cxx.

5.140.4.4 DDS Wchar∗ DDS Wstring alloc (DDS UnsignedLong
length)

Create a new empty string that can hold up to length wide characters.

A string created by this method must be deleted using DDS Wstring free()
(p. 437)

This function will allocate enough memory to hold a string of length characters,
plus one additional wide character to hold the NULL terminator.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.140 String Support 435

Parameters:

length <<in>> (p. 191) Capacity of the string.

Returns:

A newly created non-NULL string upon success or NULL upon failure.

5.140.4.5 DDS UnsignedLong DDS Wstring length (const
DDS Wchar ∗ str)

Get the number of wide characters in the given string.

The result does not count the terminating zero character.

Parameters:

str <<in>> (p. 191) A non-NULL string.

Returns:

The number of wide characters in the string.

5.140.4.6 DDS Wchar∗ DDS Wstring copy (DDS Wchar ∗ dst,
const DDS Wchar ∗ src)

Copy the source string over the destination string reallocating the space if it’s
necessary.

Parameters:

dst

src

Returns:

dst

5.140.4.7 DDS Wchar∗ DDS Wstring copy and widen
(DDS Wchar ∗ dst, const char ∗ src)

Copy the source string over the destination string, widening each character.

Parameters:

dst <<in>> (p. 191) A non-NULL string to be overwritten by src.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

436 Module Documentation

src <<in>> (p. 191) A non-NULL string to be copied over dst

Returns:

dst

5.140.4.8 DDS Wchar∗ DDS Wstring dup (const DDS Wchar ∗
str)

Clone a string of wide characters. Creates a new string that duplicates the value
of string.

A string created by this method must be deleted using DDS Wstring free()
(p. 437).

Parameters:

str <<in>> (p. 191) The string to duplicate.

Returns:

If string == NULL, this method always returns NULL. Otherwise, upon
success it returns a newly created string whose value is string; upon failure
it returns NULL.

5.140.4.9 DDS Wchar∗ DDS Wstring dup and widen (const char ∗
str)

Clone a string of characters as a string of wide characters.

A string created by this method must be deleted using DDS Wstring free()
(p. 437)

Parameters:

str <<in>> (p. 191) The string to duplicate.

Returns:

If string == NULL, this method always returns NULL. Otherwise, upon
success it returns a newly created string whose value is string; upon failure
it returns NULL.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

5.140 String Support 437

5.140.4.10 void DDS Wstring free (DDS Wchar ∗ str)

Delete a string.

Precondition:

string must either NULL, or must have been created using DDS -
Wstring alloc() (p. 434), DDS Wstring dup() (p. 436), or DDS -
Wstring replace()

Parameters:

str <<in>> (p. 191) The string to delete.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

438 Module Documentation

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

Chapter 6

Class Documentation

6.1 DDS AllocationSettings t Struct Reference

Resource allocation settings.

Public Attributes

ˆ DDS Long initial count

The initial count of resources.

ˆ DDS Long max count

The maximum count of resources.

ˆ DDS Long incremental count

The incremental count of resources.

6.1.1 Detailed Description

Resource allocation settings.

QoS:

DDS DomainParticipantResourceLimitsQosPolicy (p. 553)

440 Class Documentation

6.1.2 Member Data Documentation

6.1.2.1 DDS Long DDS AllocationSettings t::initial count

The initial count of resources.

The initial resources to be allocated.

[default] It depends on the case.

[range] [0, 1 million], < max count, or (= max count only if increment count
== 0)

6.1.2.2 DDS Long DDS AllocationSettings t::max count

The maximum count of resources.

The maximum resources to be allocated.

[default] It depends on the case.

[range] [1, 1 million] or DDS LENGTH UNLIMITED (p. 356), > initial -
count or (= initial count only if increment count == 0)

6.1.2.3 DDS Long DDS AllocationSettings t::incremental count

The incremental count of resources.

The resource to be allocated when more resources are needed.

[default] It depends on the case.

[range] -1 or [1,1 million] or (= 0 only if initial count == max count)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.2 DDS AsynchronousPublisherQosPolicy Struct Reference 441

6.2 DDS AsynchronousPublisherQosPolicy
Struct Reference

Configures the mechanism that sends user data in an external middleware
thread.

Public Attributes

ˆ DDS Boolean disable asynchronous write

Disable asynchronous publishing.

ˆ struct DDS ThreadSettings t thread

Settings of the publishing thread.

ˆ DDS Boolean disable asynchronous batch

Disable asynchronous batch flushing.

ˆ struct DDS ThreadSettings t asynchronous batch thread

Settings of the batch flushing thread.

6.2.1 Detailed Description

Configures the mechanism that sends user data in an external middleware
thread.

Specifies the asynchronous publishing and asynchronous batch flushing settings
of the DDSPublisher (p. 1243) instances.

The QoS policy specifies whether asynchronous publishing and asynchronous
batch flushing are enabled for the DDSDataWriter (p. 1028) entities belong-
ing to this DDSPublisher (p. 1243). If so, the publisher will spawn up to
two threads, one for asynchronous publishing and one for asynchronous batch
flushing.

See also:

DDS BatchQosPolicy (p. 446).
DDS PublishModeQosPolicy (p. 802).

Entity:

DDSPublisher (p. 1243)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

442 Class Documentation

Properties:

RxO (p. 327) = N/A

Changeable (p. 328) = NO (p. 328)

6.2.2 Usage

You can use this QoS policy to reduce the amount of time your application
thread spends sending data.

You can also use it, along with DDS PublishModeQosPolicy (p. 802) and
a DDSFlowController (p. 1163), to send large data reliably. ”Large” in this
context means that the data that cannot be sent as a single packet by a network
transport. For example, to send data larger than 63K reliably using UDP/IP,
you must configure RTI Data Distribution Service to fragment the data and
send it asynchronously.

The asynchronous publisher thread is shared by all DDS -
ASYNCHRONOUS PUBLISH MODE QOS (p. 403) DDSDataWriter
(p. 1028) instances that belong to this publisher and handles their data
transmission chores.

The asynchronous batch flushing thread is shared by all DDSDataWriter
(p. 1028) instances with batching enabled that belong to this publisher.

This QoS policy also allows you to adjust the settings of the asynchronous
publishing and the asynchronous batch flushing threads. To use different threads
for two different DDSDataWriter (p. 1028) entities, the instances must belong
to different DDSPublisher (p. 1243) instances.

A DDSPublisher (p. 1243) must have asynchronous publishing enabled for its
DDSDataWriter (p. 1028) instances to write asynchronously.

A DDSPublisher (p. 1243) must have asynchronous batch flushing enabled in
order to flush the batches of its DDSDataWriter (p. 1028) instances asyn-
chronously. However, no asynchronous batch flushing thread will be started
until the first DDSDataWriter (p. 1028) instance with batching enabled is
created from this DDSPublisher (p. 1243).

6.2.3 Member Data Documentation

6.2.3.1 DDS Boolean DDS -
AsynchronousPublisherQosPolicy::disable -
asynchronous write

Disable asynchronous publishing.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.2 DDS AsynchronousPublisherQosPolicy Struct Reference 443

If set to DDS BOOLEAN TRUE (p. 288), any DDSDataWriter (p. 1028)
created with DDS ASYNCHRONOUS PUBLISH MODE QOS (p. 403)
will fail with DDS RETCODE INCONSISTENT POLICY (p. 304).

[default] DDS BOOLEAN FALSE (p. 289)

6.2.3.2 struct DDS ThreadSettings t DDS -
AsynchronousPublisherQosPolicy::thread
[read]

Settings of the publishing thread.

There is only one asynchronous publishing thread per DDSPublisher (p. 1243).

[default] priority below normal.

The actual value depends on your architecture:

For Windows: -2

For Solaris: OS default priority

For Linux: OS default priority

For LynxOS: 13

For Integrity: 80

For VxWorks: 110

For all others: OS default priority.

[default] The actual value depends on your architecture:

For Windows: OS default stack size

For Solaris: OS default stack size

For Linux: OS default stack size

For LynxOS: 4∗16∗1024

For Integrity: 4∗20∗1024

For VxWorks: 4∗16∗1024

For all others: OS default stack size.

[default] mask = DDS THREAD SETTINGS KIND MASK -
DEFAULT (p. 317)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

444 Class Documentation

6.2.3.3 DDS Boolean DDS -
AsynchronousPublisherQosPolicy::disable -
asynchronous batch

Disable asynchronous batch flushing.

If set to DDS BOOLEAN TRUE (p. 288), any DDSDataWriter
(p. 1028) created with batching enabled will fail with DDS RETCODE -
INCONSISTENT POLICY (p. 304).

If DDS BatchQosPolicy::max flush delay (p. 448) is dif-
ferent than DDS DURATION INFINITE (p. 295), DDS -
AsynchronousPublisherQosPolicy::disable asynchronous batch
(p. 444) must be set DDS BOOLEAN FALSE (p. 289).

[default] DDS BOOLEAN FALSE (p. 289)

6.2.3.4 struct DDS ThreadSettings t DDS -
AsynchronousPublisherQosPolicy::asynchronous batch -
thread [read]

Settings of the batch flushing thread.

There is only one asynchronous batch flushing thread per DDSPublisher
(p. 1243).

[default] priority below normal.

The actual value depends on your architecture:

For Windows: -2

For Solaris: OS default priority

For Linux: OS default priority

For LynxOS: 13

For Integrity: 80

For VxWorks: 110

For all others: OS default priority.

[default] The actual value depends on your architecture:

For Windows: OS default stack size

For Solaris: OS default stack size

For Linux: OS default stack size

For LynxOS: 4∗16∗1024

For Integrity: 4∗20∗1024

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.2 DDS AsynchronousPublisherQosPolicy Struct Reference 445

For VxWorks: 4∗16∗1024

For all others: OS default stack size.

[default] mask = DDS THREAD SETTINGS KIND MASK -
DEFAULT (p. 317)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

446 Class Documentation

6.3 DDS BatchQosPolicy Struct Reference

Used to configure batching of multiple samples into a single network packet in
order to increase throughput for small samples.

Public Attributes

ˆ DDS Boolean enable
Specifies whether or not batching is enabled.

ˆ DDS Long max data bytes
The maximum cumulative length of all serialized samples in a batch.

ˆ DDS Long max samples
The maximum number of samples in a batch.

ˆ struct DDS Duration t max flush delay
The maximum flush delay.

ˆ struct DDS Duration t source timestamp resolution
Batch source timestamp resolution.

ˆ DDS Boolean thread safe write
Determines whether or not the write operation is thread safe.

6.3.1 Detailed Description

Used to configure batching of multiple samples into a single network packet in
order to increase throughput for small samples.

This QoS policy configures the ability of the middleware to collect multiple user
data samples to be sent in a single network packet, to take advantage of the
efficiency of sending larger packets and thus increase effective throughput.

This QoS policy can be used to dramatically increase effective throughput for
small data samples. Usually, throughput for small samples (size < 2048 bytes) is
limited by CPU capacity and not by network bandwidth. Batching many smaller
samples to be sent in a single large packet will increase network utilization, and
thus throughput, in terms of samples per second.

Entity:

DDSDataWriter (p. 1028)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.3 DDS BatchQosPolicy Struct Reference 447

Properties:

RxO (p. 327) = NO
Changeable (p. 328) = UNTIL ENABLE (p. 328)

6.3.2 Member Data Documentation

6.3.2.1 DDS Boolean DDS BatchQosPolicy::enable

Specifies whether or not batching is enabled.

[default] DDS BOOLEAN FALSE (p. 289)

6.3.2.2 DDS Long DDS BatchQosPolicy::max data bytes

The maximum cumulative length of all serialized samples in a batch.

A batch is flushed automatically when this maximum is reached.

max data bytes does not include the meta data associated with the batch sam-
ples. Each sample has at least 8 bytes of meta data containing information such
as the timestamp and sequence number. The meta data can be as large as 52
bytes for keyed topics and 20 bytes for unkeyed topics.

Note: Batches must contain whole samples. If a new batch is started and its
initial sample causes the serialized size to exceed max data bytes, RTI Data
Distribution Service will send the sample in a single batch.

[default] 1024

[range] [1,DDS LENGTH UNLIMITED (p. 356)]

6.3.3 Consistency

The setting of DDS BatchQosPolicy::max data bytes (p. 447) must be
consistent with DDS BatchQosPolicy::max samples (p. 447). For these two
values to be consistent, they cannot be both DDS LENGTH UNLIMITED
(p. 356).

6.3.3.1 DDS Long DDS BatchQosPolicy::max samples

The maximum number of samples in a batch.

A batch is flushed automatically when this maximum is reached.

[default] DDS LENGTH UNLIMITED (p. 356)

[range] [1,DDS LENGTH UNLIMITED (p. 356)]

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

448 Class Documentation

6.3.4 Consistency

The setting of DDS BatchQosPolicy::max samples (p. 447) must be con-
sistent with DDS BatchQosPolicy::max data bytes (p. 447). For these two
values to be consistent, they cannot be both DDS LENGTH UNLIMITED
(p. 356).

6.3.4.1 struct DDS Duration t DDS BatchQosPolicy::max flush -
delay [read]

The maximum flush delay.

A batch is flushed automatically after the delay specified by this parameter.

The delay is measured from the time the first sample in the batch is written by
the application.

[default] DDS DURATION INFINITE (p. 295)

[range] [0,DDS DURATION INFINITE (p. 295)]

6.3.5 Consistency

The setting of DDS BatchQosPolicy::max flush delay (p. 448) must
be consistent with DDS AsynchronousPublisherQosPolicy::disable -
asynchronous batch (p. 444) and DDS BatchQosPolicy::thread safe -
write (p. 449). If the delay is different than DDS DURATION -
INFINITE (p. 295), DDS AsynchronousPublisherQosPolicy::disable -
asynchronous batch (p. 444) must be set to DDS BOOLEAN FALSE
(p. 289) and DDS BatchQosPolicy::thread safe write (p. 449) must be set
to DDS BOOLEAN TRUE (p. 288).

6.3.5.1 struct DDS Duration t DDS BatchQosPolicy::source -
timestamp resolution [read]

Batch source timestamp resolution.

The value of this field determines how the source timestamp is associated with
the samples in a batch.

A sample written with timestamp ’t’ inherits the source timestamp ’t2’ associ-
ated with the previous sample unless (’t’ - ’t2’) > source timestamp resolution.

If source timestamp resolution is set to DDS DURATION INFINITE
(p. 295), every sample in the batch will share the source timestamp associated
with the first sample.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.3 DDS BatchQosPolicy Struct Reference 449

If source timestamp resolution is set to zero, every sample in the batch will
contain its own source timestamp corresponding to the moment when the sample
was written.

The performance of the batching process is better when source timestamp -
resolution is set to DDS DURATION INFINITE (p. 295).

[default] DDS DURATION INFINITE (p. 295)

[range] [0,DDS DURATION INFINITE (p. 295)]

6.3.6 Consistency

The setting of DDS BatchQosPolicy::source timestamp resolution
(p. 448) must be consistent with DDS BatchQosPolicy::thread safe write
(p. 449). If DDS BatchQosPolicy::thread safe write (p. 449) is set to
DDS BOOLEAN FALSE (p. 289), DDS BatchQosPolicy::source -
timestamp resolution (p. 448) must be set to DDS DURATION -
INFINITE (p. 295).

6.3.6.1 DDS Boolean DDS BatchQosPolicy::thread safe write

Determines whether or not the write operation is thread safe.

If this parameter is set to DDS BOOLEAN TRUE (p. 288), multiple threads
can call write on the DDSDataWriter (p. 1028) concurrently.

[default] DDS BOOLEAN TRUE (p. 288)

6.3.7 Consistency

The setting of DDS BatchQosPolicy::thread safe write (p. 449) must
be consistent with DDS BatchQosPolicy::source timestamp resolution
(p. 448). If DDS BatchQosPolicy::thread safe write (p. 449) is set
to DDS BOOLEAN FALSE (p. 289), DDS BatchQosPolicy::source -
timestamp resolution (p. 448) must be set to DDS DURATION -
INFINITE (p. 295).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

450 Class Documentation

6.4 DDS BooleanSeq Struct Reference

Instantiates FooSeq (p. 1377) < DDS Boolean (p. 291) >.

6.4.1 Detailed Description

Instantiates FooSeq (p. 1377) < DDS Boolean (p. 291) >.

Instantiates:

<<generic>> (p. 190) FooSeq (p. 1377)

See also:

DDS Boolean (p. 291)
FooSeq (p. 1377)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.5 DDS BuiltinTopicKey t Struct Reference 451

6.5 DDS BuiltinTopicKey t Struct Reference

The key type of the built-in topic types.

Public Attributes

ˆ DDS BUILTIN TOPIC KEY TYPE NATIVE value [DDS BUILTIN -
TOPIC KEY TYPE NATIVE LENGTH]

An array of four integers that uniquely represents a remote DDSEntity
(p. 1157).

6.5.1 Detailed Description

The key type of the built-in topic types.

Each remote DDSEntity (p. 1157) to be discovered is can be uniquely identified
by this key. This is the key of all the built-in topic data types.

See also:

DDS ParticipantBuiltinTopicData (p. 765)
DDS TopicBuiltinTopicData (p. 898)
DDS PublicationBuiltinTopicData (p. 788)
DDS SubscriptionBuiltinTopicData (p. 876)

6.5.2 Member Data Documentation

6.5.2.1 DDS BUILTIN TOPIC KEY TYPE NATIVE
DDS BuiltinTopicKey t::value[DDS BUILTIN TOPIC -
KEY TYPE NATIVE LENGTH]

An array of four integers that uniquely represents a remote DDSEntity
(p. 1157).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

452 Class Documentation

6.6 DDS BuiltinTopicReaderResourceLimits t
Struct Reference

Built-in topic reader’s resource limits.

Public Attributes

ˆ DDS Long initial samples

Initial number of samples.

ˆ DDS Long max samples

Maximum number of samples.

ˆ DDS Long initial infos

Initial number of sample infos.

ˆ DDS Long max infos

Maximum number of sample infos.

ˆ DDS Long initial outstanding reads

The initial number of outstanding reads that have not call finish yet on the
same built-in topic DDSDataReader (p. 1004).

ˆ DDS Long max outstanding reads

The maximum number of outstanding reads that have not called finish yet on
the same built-in topic DDSDataReader (p. 1004).

ˆ DDS Long max samples per read

Maximum number of samples that can be read/taken on a same built-in topic
DDSDataReader (p. 1004).

6.6.1 Detailed Description

Built-in topic reader’s resource limits.

Defines the resources that can be used for a built-in-topic data reader.

A built-in topic data reader subscribes reliably to built-in topics containing
declarations of new entities or updates to existing entities in the domain. Keys
are used to differentiate among entities of the same type. RTI Data Distribution
Service assigns a unique key to each entity in a domain.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.6 DDS BuiltinTopicReaderResourceLimits t Struct Reference 453

Properties:

RxO (p. 327) = N/A
Changeable (p. 328) = NO (p. 328)

QoS:

DDS DiscoveryConfigQosPolicy (p. 534)

6.6.2 Member Data Documentation

6.6.2.1 DDS Long DDS BuiltinTopicReaderResourceLimits -
t::initial samples

Initial number of samples.

This should be a value between 1 and initial number of instance of the built-in-
topic reader, depending on how many instances are sending data concurrently.

[default] 64

[range] [1, 1 million], <= max samples

6.6.2.2 DDS Long DDS BuiltinTopicReaderResourceLimits -
t::max samples

Maximum number of samples.

This should be a value between 1 and max number of instance of the built-in-
topic reader, depending on how many instances are sending data concurrently.
Also, it should not be less than initial samples.

[default] DDS LENGTH UNLIMITED (p. 356)

[range] [1, 1 million] or DDS LENGTH UNLIMITED (p. 356), >= initial -
samples

6.6.2.3 DDS Long DDS BuiltinTopicReaderResourceLimits -
t::initial infos

Initial number of sample infos.

The initial number of info units that a built-in topic DDSDataReader
(p. 1004) can have. Info units are used to store DDS SampleInfo (p. 855).

[default] 64

[range] [1, 1 million] <= max infos

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

454 Class Documentation

6.6.2.4 DDS Long DDS BuiltinTopicReaderResourceLimits -
t::max infos

Maximum number of sample infos.

The maximum number of info units that a built-in topic DDSDataReader
(p. 1004) can use to store DDS SampleInfo (p. 855).

[default] DDS LENGTH UNLIMITED (p. 356)

[range] [1, 1 million] or DDS LENGTH UNLIMITED (p. 356), >= initial -
infos

6.6.2.5 DDS Long DDS BuiltinTopicReaderResourceLimits -
t::initial outstanding reads

The initial number of outstanding reads that have not call finish yet on the
same built-in topic DDSDataReader (p. 1004).

[default] 2

[range] [1, 65536] or DDS LENGTH UNLIMITED (p. 356) <= max -
outstanding reads

6.6.2.6 DDS Long DDS BuiltinTopicReaderResourceLimits -
t::max outstanding reads

The maximum number of outstanding reads that have not called finish yet on
the same built-in topic DDSDataReader (p. 1004).

[default] DDS LENGTH UNLIMITED (p. 356)

[range] [1, 65536] or DDS LENGTH UNLIMITED (p. 356), >= initial -
outstanding reads

6.6.2.7 DDS Long DDS BuiltinTopicReaderResourceLimits -
t::max samples per read

Maximum number of samples that can be read/taken on a same built-in topic
DDSDataReader (p. 1004).

[default] 1024

[range] [1, 65536]

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.7 DDS ChannelSettings t Struct Reference 455

6.7 DDS ChannelSettings t Struct Reference

Type used to configure the properties of a channel.

Public Attributes

ˆ struct DDS TransportMulticastSettingsSeq multicast settings

A sequence of DDS TransportMulticastSettings t (p. 913) used to con-
figure the multicast addresses associated with a channel.

ˆ char ∗ filter expression

A logical expression used to determine the data that will be published in the
channel.

6.7.1 Detailed Description

Type used to configure the properties of a channel.

QoS:

DDS MultiChannelQosPolicy (p. 745)

6.7.2 Member Data Documentation

6.7.2.1 struct DDS TransportMulticastSettingsSeq
DDS ChannelSettings t::multicast settings [read]

A sequence of DDS TransportMulticastSettings t (p. 913) used to config-
ure the multicast addresses associated with a channel.

The sequence cannot be empty.

The maximum number of multicast locators in a channel is limited to four (A
locator is defined by a transport alias, a multicast address and a port)

[default] Empty sequence (invalid value)

6.7.2.2 char∗ DDS ChannelSettings t::filter expression

A logical expression used to determine the data that will be published in the
channel.

If the expression evaluates to TRUE, a sample will be published on the channel.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

456 Class Documentation

An empty string always evaluates the expression to TRUE.

A NULL value is not allowed.

The syntax of the expression will depend on the value of DDS -
MultiChannelQosPolicy::filter name (p. 747)

Important: This value must be an allocated string with DDS String alloc
(p. 433) or DDS String dup (p. 434). It should not be assigned to a string
constant.

The filter expression length (including NULL-
terminated character) cannot be greater than DDS -
DomainParticipantResourceLimitsQosPolicy::channel filter -
expression max length (p. 569).

See also:

Queries and Filters Syntax (p. 199)

[default] NULL (invalid value)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.8 DDS ChannelSettingsSeq Struct Reference 457

6.8 DDS ChannelSettingsSeq Struct Reference

Declares IDL sequence< DDS ChannelSettings t (p. 455) >.

6.8.1 Detailed Description

Declares IDL sequence< DDS ChannelSettings t (p. 455) >.

A sequence of DDS ChannelSettings t (p. 455) used to configure the
channels’ properties. If the length of the sequence is zero, the DDS -
MultiChannelQosPolicy (p. 745) has no effect.

Instantiates:

<<generic>> (p. 190) FooSeq (p. 1377)

See also:

DDS ChannelSettings t (p. 455)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

458 Class Documentation

6.9 DDS CharSeq Struct Reference

Instantiates FooSeq (p. 1377) < DDS Char (p. 289) >.

6.9.1 Detailed Description

Instantiates FooSeq (p. 1377) < DDS Char (p. 289) >.

Instantiates:

<<generic>> (p. 190) FooSeq (p. 1377)

See also:

DDS Char (p. 289)
FooSeq (p. 1377)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.10 DDS ContentFilterProperty t Struct Reference 459

6.10 DDS ContentFilterProperty t Struct Ref-
erence

<<eXtension>> (p. 190) Type used to provide all the required information
to enable content filtering.

Public Attributes

ˆ char ∗ content filter topic name

Name of the Content-filtered Topic associated with the Reader.

ˆ char ∗ related topic name

Name of the Topic related to the Content-filtered Topic.

ˆ char ∗ filter class name

Identifies the filter class this filter belongs to. RTPS can support multiple
filter classes (SQL, regular expressions, custom filters, etc).

ˆ char ∗ filter expression

The actual filter expression. Must be a valid expression for the filter class
specified using filterClassName.

ˆ struct DDS StringSeq expression parameters

Defines the value for each parameter in the filter expression.

6.10.1 Detailed Description

<<eXtension>> (p. 190) Type used to provide all the required information
to enable content filtering.

6.10.2 Member Data Documentation

6.10.2.1 char∗ DDS ContentFilterProperty t::content filter topic -
name

Name of the Content-filtered Topic associated with the Reader.

6.10.2.2 char∗ DDS ContentFilterProperty t::related topic name

Name of the Topic related to the Content-filtered Topic.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

460 Class Documentation

6.10.2.3 char∗ DDS ContentFilterProperty t::filter class name

Identifies the filter class this filter belongs to. RTPS can support multiple filter
classes (SQL, regular expressions, custom filters, etc).

6.10.2.4 char∗ DDS ContentFilterProperty t::filter expression

The actual filter expression. Must be a valid expression for the filter class
specified using filterClassName.

6.10.2.5 struct DDS StringSeq DDS ContentFilterProperty -
t::expression parameters [read]

Defines the value for each parameter in the filter expression.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.11 DDS DatabaseQosPolicy Struct Reference 461

6.11 DDS DatabaseQosPolicy Struct Reference

Various threads and resource limits settings used by RTI Data Distribution
Service to control its internal database.

Public Attributes

ˆ struct DDS ThreadSettings t thread

Database thread settings.

ˆ struct DDS Duration t shutdown timeout

The maximum wait time during a shutdown.

ˆ struct DDS Duration t cleanup period

The database thread will wake up at this rate to clean up the database.

ˆ struct DDS Duration t shutdown cleanup period

The clean-up period used during database shut-down.

ˆ DDS Long initial records

The initial number of total records.

ˆ DDS Long max skiplist level

The maximum level of the skiplist.

ˆ DDS Long max weak references

The maximum number of weak references.

ˆ DDS Long initial weak references

The initial number of weak references.

6.11.1 Detailed Description

Various threads and resource limits settings used by RTI Data Distribution
Service to control its internal database.

RTI uses an internal in-memory ”database” to store information about entities
created locally as well as remote entities found during the discovery process.
This database uses a background thread to garbage-collect records related to
deleted entities. When the DDSDomainParticipant (p. 1054) that maintains
this database is deleted, it shuts down this thread.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

462 Class Documentation

The Database QoS policy is used to configure how RTI Data Distribution Ser-
vice manages its database, including how often it cleans up, the priority of the
database thread, and limits on resources that may be allocated by the database.

You may be interested in modifying the DDS -
DatabaseQosPolicy::shutdown timeout (p. 463) and DDS -
DatabaseQosPolicy::shutdown cleanup period (p. 463) parameters
to decrease the time it takes to delete a DDSDomainParticipant (p. 1054)
when your application is shutting down.

The DDS DomainParticipantResourceLimitsQosPolicy (p. 553) controls
the memory allocation for elements stored in the database.

This QoS policy is an extension to the DDS standard.

Entity:

DDSDomainParticipant (p. 1054)

Properties:

RxO (p. 327) = N/A
Changeable (p. 328) NO (p. 328)

6.11.2 Member Data Documentation

6.11.2.1 struct DDS ThreadSettings t DDS -
DatabaseQosPolicy::thread [read]

Database thread settings.

There is only one database thread: the clean-up thread.

[default] priority low.

The actual value depends on your architecture:

For Windows: -3

For Solaris: OS default priority

For Linux: OS default priority

For LynxOS: 10

For INTEGRITY: 60

For VxWorks: 120

For all others: OS default priority.

[default] The actual value depends on your architecture:

For Windows: OS default stack size

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.11 DDS DatabaseQosPolicy Struct Reference 463

For Solaris: OS default stack size

For Linux: OS default stack size

For LynxOS: 16∗1024

For INTEGRITY: 20∗1024

For VxWorks: 16∗1024

For all others: OS default stack size.

[default] mask DDS THREAD SETTINGS STDIO (p. 317)

6.11.2.2 struct DDS Duration t DDS -
DatabaseQosPolicy::shutdown timeout
[read]

The maximum wait time during a shutdown.

The domain participant will exit after the timeout, even if the database has not
been fully cleaned up.

[default] 15 seconds

[range] [0,DDS DURATION INFINITE (p. 295)]

6.11.2.3 struct DDS Duration t DDS DatabaseQosPolicy::cleanup -
period [read]

The database thread will wake up at this rate to clean up the database.

[default] 61 seconds

[range] [0,1 year]

6.11.2.4 struct DDS Duration t DDS -
DatabaseQosPolicy::shutdown cleanup period
[read]

The clean-up period used during database shut-down.

[default] 1 second

[range] [0,1 year]

6.11.2.5 DDS Long DDS DatabaseQosPolicy::initial records

The initial number of total records.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

464 Class Documentation

[default] 1024

[range] [1,10 million]

6.11.2.6 DDS Long DDS DatabaseQosPolicy::max skiplist level

The maximum level of the skiplist.

The skiplist is used to keep records in the database. Usually, the search time is
log2(N), where N is the total number of records in one skiplist. However, once N
exceeds 2∧n, where n is the maximum skiplist level, the search time will become
more and more linear. Therefore, the maximum level should be set such that
2∧n is larger than the maximum(N among all skiplists). Usually, the maximum
N is the maximum number of remote and local writers or readers.

[default] 14

[range] [1,31]

6.11.2.7 DDS Long DDS DatabaseQosPolicy::max weak references

The maximum number of weak references.

A weak reference is an internal data structure that refers to a record within RTI
Data Distribution Service’ internal database. This field configures the maximum
number of such references that RTI Data Distribution Service may create.

The actual number of weak references is permitted to grow from an initial value
(indicated by DDS DatabaseQosPolicy::initial weak references (p. 465))
to this maximum. To prevent RTI Data Distribution Service from allocating
any weak references after the system has reached a steady state, set the initial
and maximum values equal to one another. To indicate that the number of
weak references should continue to grow as needed indefinitely, set this field
to DDS LENGTH UNLIMITED (p. 356). Be aware that although a single
weak reference occupies very little memory, allocating a very large number of
them can have a significant impact on your overall memory usage.

Tuning this value precisely is difficult without intimate knowledge of the struc-
ture of RTI Data Distribution Service’ database; doing so is an advanced feature
not required by most applications. The default value has been chosen to be suf-
ficient for reasonably large systems. If you believe you may need to modify this
value, please consult with RTI support personnel for assistance.

[default] DDS LENGTH UNLIMITED (p. 356)

[range] [1, 100 million] or DDS LENGTH UNLIMITED (p. 356), >= ini-
tial weak references

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.11 DDS DatabaseQosPolicy Struct Reference 465

See also:

DDS DatabaseQosPolicy::initial weak references (p. 465)

6.11.2.8 DDS Long DDS DatabaseQosPolicy::initial weak -
references

The initial number of weak references.

See DDS DatabaseQosPolicy::max weak references (p. 464) for more in-
formation about what a weak reference is.

If the QoS set contains an initial weak references value that is too small to
ever grow to DDS DatabaseQosPolicy::max weak references (p. 464) us-
ing RTI Data Distribution Service’ internal algorithm, this value will be adjusted
upwards as necessary. Subsequent accesses of this value will reveal the actual
initial value used.

Changing the value of this field is an advanced feature; it is recommended that
you consult with RTI support personnel before doing so.

[default] 2049, which is the minimum initial value imposed by REDA when the
maximum is unlimited. If a lower value is specified, it will simply be increased
to 2049 automatically.

[range] [1, 100 million], <= max weak references

See also:

DDS DatabaseQosPolicy::max weak references (p. 464)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

466 Class Documentation

6.12 DDS DataReaderCacheStatus Struct Ref-
erence

<<eXtension>> (p. 190) The status of the reader’s cache.

Public Attributes

ˆ DDS LongLong sample count peak

The highest number of samples in the reader’s queue over the lifetime of the
reader.

ˆ DDS LongLong sample count

The number of samples in the reader’s queue.

6.12.1 Detailed Description

<<eXtension>> (p. 190) The status of the reader’s cache.

Entity:

DDSDataReader (p. 1004)

6.12.2 Member Data Documentation

6.12.2.1 DDS LongLong DDS DataReaderCacheStatus::sample -
count peak

The highest number of samples in the reader’s queue over the lifetime of the
reader.

6.12.2.2 DDS LongLong DDS DataReaderCacheStatus::sample -
count

The number of samples in the reader’s queue.

includes samples that may not yet be available to be read or taken by the user,
due to samples being received out of order or PRESENTATION (p. 337)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.13 DDS DataReaderProtocolQosPolicy Struct Reference 467

6.13 DDS DataReaderProtocolQosPolicy
Struct Reference

Along with DDS WireProtocolQosPolicy (p. 981) and DDS -
DataWriterProtocolQosPolicy (p. 499), this QoS policy configures the
DDS on-the-network protocol (RTPS).

Public Attributes

ˆ struct DDS GUID t virtual guid

The virtual GUID (Global Unique Identifier).

ˆ DDS UnsignedLong rtps object id

The RTPS Object ID.

ˆ DDS Boolean expects inline qos

Specifies whether this DataReader expects inline QoS with every sample.

ˆ DDS Boolean disable positive acks

Whether the reader sends positive acknowledgements to writers.

ˆ DDS Boolean propagate dispose of unregistered instances

Indicates whether or not an instance can move to the DDS NOT ALIVE -
DISPOSED INSTANCE STATE (p. 110) state without being in the
DDS ALIVE INSTANCE STATE (p. 110) state.

ˆ struct DDS RtpsReliableReaderProtocol t rtps reliable reader

The reliable protocol defined in RTPS.

6.13.1 Detailed Description

Along with DDS WireProtocolQosPolicy (p. 981) and DDS -
DataWriterProtocolQosPolicy (p. 499), this QoS policy configures the
DDS on-the-network protocol (RTPS).

DDS has a standard protocol for packet (user and meta data) exchange be-
tween applications using DDS for communications. This QoS policy and DDS -
DataReaderProtocolQosPolicy (p. 467) give you control over configurable
portions of the protocol, including the configuration of the reliable data delivery
mechanism of the protocol on a per DataWriter or DataReader basis.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

468 Class Documentation

These configuration parameters control timing, timeouts, and give you the abil-
ity to tradeoff between speed of data loss detection and repair versus network
and CPU bandwidth used to maintain reliability.

It is important to tune the reliability protocol (on a per DDSDataWriter
(p. 1028) and DDSDataReader (p. 1004) basis) to meet the requirements of
the end-user application so that data can be sent between DataWriters and
DataReaders in an efficient and optimal manner in the presence of data loss.

You can also use this QoS policy to control how RTI Data Distribution Service
responds to ”slow” reliable DataReaders or ones that disconnect or are otherwise
lost. See DDS ReliabilityQosPolicy (p. 813) for more information on the per-
DataReader/DataWriter reliability configuration. DDS HistoryQosPolicy
(p. 709) and DDS ResourceLimitsQosPolicy (p. 827) also play an impor-
tant role in the DDS reliable protocol.

This QoS policy is an extension to the DDS standard.

Entity:

DDSDataReader (p. 1004)

Properties:

RxO (p. 327) = N/A
Changeable (p. 328) = NO (p. 328)

6.13.2 Member Data Documentation

6.13.2.1 struct DDS GUID t DDS -
DataReaderProtocolQosPolicy::virtual guid
[read]

The virtual GUID (Global Unique Identifier).

The virtual GUID is used to uniquely identify different incarnations of the same
DDSDataReader (p. 1004).

The association between a DDSDataReader (p. 1004) and its persisted state
is done using the virtual GUID.

[default] DDS GUID AUTO (p. 297)

6.13.2.2 DDS UnsignedLong DDS -
DataReaderProtocolQosPolicy::rtps object id

The RTPS Object ID.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.13 DDS DataReaderProtocolQosPolicy Struct Reference 469

This value is used to determine the RTPS object ID of a data reader according
to the DDS-RTPS Interoperability Wire Protocol.

Only the last 3 bytes are used; the most significant byte is ignored.

If the default value is specified, RTI Data Distribution Service will automatically
assign the object ID based on a counter value (per participant) starting at
0x00800000. That value is incremented for each new data reader.

A rtps object id value in the interval [0x00800000,0x00ffffff] may collide with
the automatic values assigned by RTI Data Distribution Service. In those cases,
the recomendation is not to use automatic object ID assigment.

[default] DDS RTPS AUTO ID (p. ??)

[range] [0,0x00ffffff]

6.13.2.3 DDS Boolean DDS -
DataReaderProtocolQosPolicy::expects inline qos

Specifies whether this DataReader expects inline QoS with every sample.

In RTI Data Distribution Service, a DDSDataReader (p. 1004) nominally
relies on Discovery to propagate QoS on a matched DDSDataWriter (p. 1028).
Alternatively, a DDSDataReader (p. 1004) may get information on a matched
DDSDataWriter (p. 1028) through QoS sent inline with a sample.

Asserting DDS DataReaderProtocolQosPolicy::expects inline qos
(p. 469) indicates to a matching DDSDataWriter (p. 1028) that this DDS-
DataReader (p. 1004) expects to receive inline QoS with every sample. The
complete set of inline QoS that a DDSDataWriter (p. 1028) may send inline
is specified by the Real-Time Publish-Subscribe (RTPS) Wire Interoperability
Protocol.

Because RTI Data Distribution Service DDSDataWriter (p. 1028) and DDS-
DataReader (p. 1004) cache Discovery information, inline QoS are largely re-
dundant and thus unecessary. Only for other stateless implementations whose
DDSDataReader (p. 1004) does not cache Discovery information is inline QoS
necessary.

Also note that inline QoS are additional wire-payload that consume additional
bandwidth and serialization and deserialization time.

[default] DDS BOOLEAN FALSE (p. 289)

6.13.2.4 DDS Boolean DDS -
DataReaderProtocolQosPolicy::disable positive acks

Whether the reader sends positive acknowledgements to writers.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

470 Class Documentation

If set to DDS BOOLEAN TRUE (p. 288), the reader does not send positive
acknowledgments (ACKs) in response to Heartbeat messages. The reader will
send negative acknowledgements (NACKs) when a Heartbeat advertises samples
that it has not received.

Otherwise, if set to DDS BOOLEAN FALSE (p. 289) (the default),
the reader will send ACKs to writers that expect ACKs (DDS -
DataWriterProtocolQosPolicy::disable positive acks (p. 501) = DDS -
BOOLEAN FALSE (p. 289)) and it will not send ACKs to writers that dis-
able ACKs (DDS DataWriterProtocolQosPolicy::disable positive acks
(p. 501) = DDS BOOLEAN TRUE (p. 288))

[default] DDS BOOLEAN FALSE (p. 289)

6.13.2.5 DDS Boolean DDS -
DataReaderProtocolQosPolicy::propagate -
dispose of unregistered instances

Indicates whether or not an instance can move to the DDS NOT ALIVE -
DISPOSED INSTANCE STATE (p. 110) state without being in the
DDS ALIVE INSTANCE STATE (p. 110) state.

This field only applies to keyed readers.

When the field is set to DDS BOOLEAN TRUE (p. 288), the DataReader
will receive dispose notifications even if the instance is not alive.

To guarantee the key availability through the usage of the API Foo-
DataReader::get key value (p. 1359), this option should be used in combi-
nation DDS DataWriterProtocolQosPolicy::serialize key with dispose
(p. 502) on the DataWriter that should be set to DDS BOOLEAN TRUE
(p. 288).

[default] DDS BOOLEAN FALSE (p. 289)

6.13.2.6 struct DDS RtpsReliableReaderProtocol t
DDS DataReaderProtocolQosPolicy::rtps reliable reader
[read]

The reliable protocol defined in RTPS.

[default] min heartbeat response delay 0 seconds; max heartbeat response -
delay 0.5 seconds

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.14 DDS DataReaderProtocolStatus Struct Reference 471

6.14 DDS DataReaderProtocolStatus Struct
Reference

<<eXtension>> (p. 190) The status of a reader’s internal protocol related
metrics, like the number of samples received, filtered, rejected; and status of
wire protocol traffic.

Public Attributes

ˆ DDS LongLong received sample count
The number of user samples from a remote DataWriter received for the first
time by a local DataReader.

ˆ DDS LongLong received sample count change
The incremental change in the number of user samples from a remote
DataWriter received for the first time by a local DataReader since the last
time the status was read.

ˆ DDS LongLong received sample bytes
The number of bytes of user samples from a remote DataWriter received for
the first time by a local DataReader.

ˆ DDS LongLong received sample bytes change
The incremental change in the number of bytes of user samples from a remote
DataWriter received for the first time by a local DataReader since the last
time the status was read.

ˆ DDS LongLong duplicate sample count
The number of samples from a remote DataWriter received, not for the first
time, by a local DataReader.

ˆ DDS LongLong duplicate sample count change
The incremental change in the number of samples from a remote DataWriter
received, not for the first time, by a local DataReader since the last time the
status was read.

ˆ DDS LongLong duplicate sample bytes
The number of bytes of samples from a remote DataWriter received, not for
the first time, by a local DataReader.

ˆ DDS LongLong duplicate sample bytes change
The incremental change in the number of bytes of samples from a remote
DataWriter received, not for the first time, by a local DataReader since the
last time the status was read.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

472 Class Documentation

ˆ DDS LongLong filtered sample count
The number of user samples filtered by the local DataReader due to Content-
Filtered Topics or Time-Based Filter.

ˆ DDS LongLong filtered sample count change
The incremental change in the number of user samples filtered by the local
DataReader due to Content-Filtered Topics or Time-Based Filter since the
last time the status was read.

ˆ DDS LongLong filtered sample bytes
The number of bytes of user samples filtered by the local DataReader due to
Content-Filtered Topics or Time-Based Filter.

ˆ DDS LongLong filtered sample bytes change
The incremental change in the number of bytes of user samples filtered by
the local DataReader due to Content-Filtered Topics or Time-Based Filter
since the last time the status was read.

ˆ DDS LongLong received heartbeat count
The number of Heartbeats from a remote DataWriter received by a local
DataReader.

ˆ DDS LongLong received heartbeat count change
The incremental change in the number of Heartbeats from a remote
DataWriter received by a local DataReader since the last time the status
was read.

ˆ DDS LongLong received heartbeat bytes
The number of bytes of Heartbeats from a remote DataWriter received by a
local DataReader.

ˆ DDS LongLong received heartbeat bytes change
The incremental change in the number of bytes of Heartbeats from a remote
DataWriter received by a local DataReader since the last time the status was
read.

ˆ DDS LongLong sent ack count
The number of ACKs sent from a local DataReader to a matching remote
DataWriter.

ˆ DDS LongLong sent ack count change
The incremental change in the number of ACKs sent from a local DataReader
to a matching remote DataWriter since the last time the status was read.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.14 DDS DataReaderProtocolStatus Struct Reference 473

ˆ DDS LongLong sent ack bytes
The number of bytes of ACKs sent from a local DataReader to a matching
remote DataWriter.

ˆ DDS LongLong sent ack bytes change
The incremental change in the number of bytes of ACKs sent from a local
DataReader to a matching remote DataWriter since the last time the status
was read.

ˆ DDS LongLong sent nack count
The number of NACKs sent from a local DataReader to a matching remote
DataWriter.

ˆ DDS LongLong sent nack count change
The incremental change in the number of NACKs sent from a local
DataReader to a matching remote DataWriter since the last time the sta-
tus was read.

ˆ DDS LongLong sent nack bytes
The number of bytes of NACKs sent from a local DataReader to a matching
remote DataWriter.

ˆ DDS LongLong sent nack bytes change
The incremental change in the number of bytes of NACKs sent from a local
DataReader to a matching remote DataWriter since the last time the status
was read.

ˆ DDS LongLong received gap count
The number of GAPs received from remote DataWriter to this DataReader.

ˆ DDS LongLong received gap count change
The incremental change in the number of GAPs received from remote
DataWriter to this DataReader since the last time the status was read.

ˆ DDS LongLong received gap bytes
The number of bytes of GAPs received from remote DataWriter to this
DataReader.

ˆ DDS LongLong received gap bytes change
The incremental change in the number of bytes of GAPs received from remote
DataWriter to this DataReader since the last time the status was read.

ˆ DDS LongLong rejected sample count
The number of times a sample is rejected due to exceptions in the receive
path.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

474 Class Documentation

ˆ DDS LongLong rejected sample count change
The incremental change in the number of times a sample is rejected due to
exceptions in the receive path since the last time the status was read.

ˆ struct DDS SequenceNumber t first available sample sequence -
number

Sequence number of the first available sample in a matched Datawriters reli-
ability queue. Applicable only when retrieving matched DataWriter statuses.

ˆ struct DDS SequenceNumber t last available sample sequence -
number

Sequence number of the last available sample in a matched Datawriters reli-
ability queue. Applicable only when retrieving matched DataWriter statuses.

ˆ struct DDS SequenceNumber t last committed sample -
sequence number

Sequence number of the newest sample received from the matched DataWriter
committed to the DataReader’s queue. Applicable only when retrieving
matched DataWriter statuses.

ˆ DDS Long uncommitted sample count
Number of received samples that are not yet available to be read or taken,
due to being received out of order. Applicable only when retrieving matched
DataWriter statuses.

6.14.1 Detailed Description

<<eXtension>> (p. 190) The status of a reader’s internal protocol related
metrics, like the number of samples received, filtered, rejected; and status of
wire protocol traffic.

Entity:

DDSDataReader (p. 1004)

6.14.2 Member Data Documentation

6.14.2.1 DDS LongLong DDS -
DataReaderProtocolStatus::received sample count

The number of user samples from a remote DataWriter received for the first
time by a local DataReader.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.14 DDS DataReaderProtocolStatus Struct Reference 475

6.14.2.2 DDS LongLong DDS -
DataReaderProtocolStatus::received sample count change

The incremental change in the number of user samples from a remote DataWriter
received for the first time by a local DataReader since the last time the status
was read.

6.14.2.3 DDS LongLong DDS -
DataReaderProtocolStatus::received sample bytes

The number of bytes of user samples from a remote DataWriter received for the
first time by a local DataReader.

6.14.2.4 DDS LongLong DDS -
DataReaderProtocolStatus::received sample bytes change

The incremental change in the number of bytes of user samples from a remote
DataWriter received for the first time by a local DataReader since the last time
the status was read.

6.14.2.5 DDS LongLong DDS -
DataReaderProtocolStatus::duplicate sample count

The number of samples from a remote DataWriter received, not for the first
time, by a local DataReader.

Such samples can be redundant, out-of-order, etc. and are not stored in the
reader’s queue.

6.14.2.6 DDS LongLong DDS -
DataReaderProtocolStatus::duplicate -
sample count change

The incremental change in the number of samples from a remote DataWriter
received, not for the first time, by a local DataReader since the last time the
status was read.

Such samples can be redundant, out-of-order, etc. and are not stored in the
reader’s queue.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

476 Class Documentation

6.14.2.7 DDS LongLong DDS -
DataReaderProtocolStatus::duplicate sample bytes

The number of bytes of samples from a remote DataWriter received, not for the
first time, by a local DataReader.

Such samples can be redundant, out-of-order, etc. and are not stored in the
reader’s queue.

6.14.2.8 DDS LongLong DDS -
DataReaderProtocolStatus::duplicate sample bytes change

The incremental change in the number of bytes of samples from a remote
DataWriter received, not for the first time, by a local DataReader since the
last time the status was read.

Such samples can be redundant, out-of-order, etc. and are not stored in the
reader’s queue.

6.14.2.9 DDS LongLong DDS DataReaderProtocolStatus::filtered -
sample count

The number of user samples filtered by the local DataReader due to Content-
Filtered Topics or Time-Based Filter.

6.14.2.10 DDS LongLong DDS -
DataReaderProtocolStatus::filtered sample count change

The incremental change in the number of user samples filtered by the local
DataReader due to Content-Filtered Topics or Time-Based Filter since the last
time the status was read.

6.14.2.11 DDS LongLong DDS -
DataReaderProtocolStatus::filtered sample bytes

The number of bytes of user samples filtered by the local DataReader due to
Content-Filtered Topics or Time-Based Filter.

6.14.2.12 DDS LongLong DDS -
DataReaderProtocolStatus::filtered sample bytes change

The incremental change in the number of bytes of user samples filtered by the
local DataReader due to Content-Filtered Topics or Time-Based Filter since the
last time the status was read.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.14 DDS DataReaderProtocolStatus Struct Reference 477

6.14.2.13 DDS LongLong DDS -
DataReaderProtocolStatus::received heartbeat count

The number of Heartbeats from a remote DataWriter received by a local
DataReader.

6.14.2.14 DDS LongLong DDS -
DataReaderProtocolStatus::received -
heartbeat count change

The incremental change in the number of Heartbeats from a remote DataWriter
received by a local DataReader since the last time the status was read.

6.14.2.15 DDS LongLong DDS -
DataReaderProtocolStatus::received heartbeat bytes

The number of bytes of Heartbeats from a remote DataWriter received by a
local DataReader.

6.14.2.16 DDS LongLong DDS -
DataReaderProtocolStatus::received -
heartbeat bytes change

The incremental change in the number of bytes of Heartbeats from a remote
DataWriter received by a local DataReader since the last time the status was
read.

6.14.2.17 DDS LongLong DDS DataReaderProtocolStatus::sent -
ack count

The number of ACKs sent from a local DataReader to a matching remote
DataWriter.

6.14.2.18 DDS LongLong DDS DataReaderProtocolStatus::sent -
ack count change

The incremental change in the number of ACKs sent from a local DataReader
to a matching remote DataWriter since the last time the status was read.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

478 Class Documentation

6.14.2.19 DDS LongLong DDS DataReaderProtocolStatus::sent -
ack bytes

The number of bytes of ACKs sent from a local DataReader to a matching
remote DataWriter.

6.14.2.20 DDS LongLong DDS DataReaderProtocolStatus::sent -
ack bytes change

The incremental change in the number of bytes of ACKs sent from a local
DataReader to a matching remote DataWriter since the last time the status
was read.

6.14.2.21 DDS LongLong DDS DataReaderProtocolStatus::sent -
nack count

The number of NACKs sent from a local DataReader to a matching remote
DataWriter.

6.14.2.22 DDS LongLong DDS DataReaderProtocolStatus::sent -
nack count change

The incremental change in the number of NACKs sent from a local DataReader
to a matching remote DataWriter since the last time the status was read.

6.14.2.23 DDS LongLong DDS DataReaderProtocolStatus::sent -
nack bytes

The number of bytes of NACKs sent from a local DataReader to a matching
remote DataWriter.

6.14.2.24 DDS LongLong DDS DataReaderProtocolStatus::sent -
nack bytes change

The incremental change in the number of bytes of NACKs sent from a local
DataReader to a matching remote DataWriter since the last time the status
was read.

6.14.2.25 DDS LongLong DDS -
DataReaderProtocolStatus::received gap count

The number of GAPs received from remote DataWriter to this DataReader.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.14 DDS DataReaderProtocolStatus Struct Reference 479

6.14.2.26 DDS LongLong DDS -
DataReaderProtocolStatus::received gap count change

The incremental change in the number of GAPs received from remote
DataWriter to this DataReader since the last time the status was read.

6.14.2.27 DDS LongLong DDS -
DataReaderProtocolStatus::received gap bytes

The number of bytes of GAPs received from remote DataWriter to this
DataReader.

6.14.2.28 DDS LongLong DDS -
DataReaderProtocolStatus::received gap bytes change

The incremental change in the number of bytes of GAPs received from remote
DataWriter to this DataReader since the last time the status was read.

6.14.2.29 DDS LongLong DDS -
DataReaderProtocolStatus::rejected sample count

The number of times a sample is rejected due to exceptions in the receive path.

6.14.2.30 DDS LongLong DDS -
DataReaderProtocolStatus::rejected -
sample count change

The incremental change in the number of times a sample is rejected due to
exceptions in the receive path since the last time the status was read.

6.14.2.31 struct DDS SequenceNumber t
DDS DataReaderProtocolStatus::first available sample -
sequence number [read]

Sequence number of the first available sample in a matched Datawriters relia-
bility queue. Applicable only when retrieving matched DataWriter statuses.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

480 Class Documentation

6.14.2.32 struct DDS SequenceNumber t
DDS DataReaderProtocolStatus::last available sample -
sequence number [read]

Sequence number of the last available sample in a matched Datawriters relia-
bility queue. Applicable only when retrieving matched DataWriter statuses.

6.14.2.33 struct DDS SequenceNumber t
DDS DataReaderProtocolStatus::last -
committed sample sequence number
[read]

Sequence number of the newest sample received from the matched DataWriter
committed to the DataReader’s queue. Applicable only when retrieving
matched DataWriter statuses.

6.14.2.34 DDS Long DDS -
DataReaderProtocolStatus::uncommitted sample count

Number of received samples that are not yet available to be read or taken,
due to being received out of order. Applicable only when retrieving matched
DataWriter statuses.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.15 DDS DataReaderQos Struct Reference 481

6.15 DDS DataReaderQos Struct Reference

QoS policies supported by a DDSDataReader (p. 1004) entity.

Public Attributes

ˆ struct DDS DurabilityQosPolicy durability

Durability policy, DURABILITY (p. 335).

ˆ struct DDS DeadlineQosPolicy deadline

Deadline policy, DEADLINE (p. 339).

ˆ struct DDS LatencyBudgetQosPolicy latency budget

Latency budget policy, LATENCY BUDGET (p. 340).

ˆ struct DDS LivelinessQosPolicy liveliness

Liveliness policy, LIVELINESS (p. 344).

ˆ struct DDS ReliabilityQosPolicy reliability

Reliability policy, RELIABILITY (p. 348).

ˆ struct DDS DestinationOrderQosPolicy destination order

Destination order policy, DESTINATION ORDER (p. 350).

ˆ struct DDS HistoryQosPolicy history

History policy, HISTORY (p. 352).

ˆ struct DDS ResourceLimitsQosPolicy resource limits

Resource limits policy, RESOURCE LIMITS (p. 356).

ˆ struct DDS UserDataQosPolicy user data

User data policy, USER DATA (p. 332).

ˆ struct DDS OwnershipQosPolicy ownership

Ownership policy, OWNERSHIP (p. 341).

ˆ struct DDS TimeBasedFilterQosPolicy time based filter

Time-based filter policy, TIME BASED FILTER (p. 346).

ˆ struct DDS ReaderDataLifecycleQosPolicy reader data -
lifecycle

Reader data lifecycle policy, READER DATA LIFECYCLE (p. 361).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

482 Class Documentation

ˆ struct DDS DataReaderResourceLimitsQosPolicy reader -
resource limits

<<eXtension>> (p. 190) DDSDataReader (p. 1004) resource limits pol-
icy, DATA READER RESOURCE LIMITS (p. 389). This policy is an
extension to the DDS standard.

ˆ struct DDS DataReaderProtocolQosPolicy protocol

<<eXtension>> (p. 190) DDSDataReader (p. 1004) protocol policy,
DATA READER PROTOCOL (p. 395)

ˆ struct DDS TransportSelectionQosPolicy transport selection

<<eXtension>> (p. 190) Transport selection policy, TRANSPORT -
SELECTION (p. 366).

ˆ struct DDS TransportUnicastQosPolicy unicast

<<eXtension>> (p. 190) Unicast transport policy, TRANSPORT -
UNICAST (p. 367).

ˆ struct DDS TransportMulticastQosPolicy multicast

<<eXtension>> (p. 190) Multicast transport policy, TRANSPORT -
MULTICAST (p. 368).

ˆ struct DDS PropertyQosPolicy property

<<eXtension>> (p. 190) Property policy, PROPERTY (p. 416).

ˆ struct DDS TypeSupportQosPolicy type support

<<eXtension>> (p. 190) type support data, TYPESUPPORT (p. 410).

6.15.1 Detailed Description

QoS policies supported by a DDSDataReader (p. 1004) entity.

You must set certain members in a consistent manner:

DDS DataReaderQos::deadline.period >= DDS DataReaderQos::time based -
filter.minimum separation

DDS DataReaderQos::history.depth <= DDS DataReaderQos::resource -
limits.max samples per instance

DDS DataReaderQos::resource limits.max samples per instance <= DDS -
DataReaderQos::resource limits.max samples DDS DataReaderQos::resource -
limits.initial samples <= DDS DataReaderQos::resource limits.max samples

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.15 DDS DataReaderQos Struct Reference 483

DDS DataReaderQos::resource limits.initial instances <= DDS -
DataReaderQos::resource limits.max instances

DDS DataReaderQos::reader resource limits.initial remote writers per -
instance <= DDS DataReaderQos::reader resource limits.max remote -
writers per instance

DDS DataReaderQos::reader resource limits.initial infos <= DDS -
DataReaderQos::reader resource limits.max infos

DDS DataReaderQos::reader resource limits.max remote writers per instance
<= DDS DataReaderQos::reader resource limits.max remote writers

DDS DataReaderQos::reader resource limits.max samples per remote writer
<= DDS DataReaderQos::resource limits.max samples

length of DDS DataReaderQos::user data.value <= DDS -
DomainParticipantQos::resource limits.reader user data max length

If any of the above are not true, DDSDataReader::set qos (p. 1017)
and DDSDataReader::set qos with profile (p. 1018) will fail with DDS -
RETCODE INCONSISTENT POLICY (p. 304)

6.15.2 Member Data Documentation

6.15.2.1 struct DDS DurabilityQosPolicy
DDS DataReaderQos::durability [read]

Durability policy, DURABILITY (p. 335).

6.15.2.2 struct DDS DeadlineQosPolicy DDS -
DataReaderQos::deadline [read]

Deadline policy, DEADLINE (p. 339).

6.15.2.3 struct DDS LatencyBudgetQosPolicy
DDS DataReaderQos::latency budget [read]

Latency budget policy, LATENCY BUDGET (p. 340).

6.15.2.4 struct DDS LivelinessQosPolicy
DDS DataReaderQos::liveliness [read]

Liveliness policy, LIVELINESS (p. 344).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

484 Class Documentation

6.15.2.5 struct DDS ReliabilityQosPolicy
DDS DataReaderQos::reliability [read]

Reliability policy, RELIABILITY (p. 348).

6.15.2.6 struct DDS DestinationOrderQosPolicy
DDS DataReaderQos::destination order [read]

Destination order policy, DESTINATION ORDER (p. 350).

6.15.2.7 struct DDS HistoryQosPolicy DDS -
DataReaderQos::history [read]

History policy, HISTORY (p. 352).

6.15.2.8 struct DDS ResourceLimitsQosPolicy
DDS DataReaderQos::resource limits [read]

Resource limits policy, RESOURCE LIMITS (p. 356).

6.15.2.9 struct DDS UserDataQosPolicy
DDS DataReaderQos::user data [read]

User data policy, USER DATA (p. 332).

6.15.2.10 struct DDS OwnershipQosPolicy
DDS DataReaderQos::ownership [read]

Ownership policy, OWNERSHIP (p. 341).

6.15.2.11 struct DDS TimeBasedFilterQosPolicy
DDS DataReaderQos::time based filter [read]

Time-based filter policy, TIME BASED FILTER (p. 346).

6.15.2.12 struct DDS ReaderDataLifecycleQosPolicy
DDS DataReaderQos::reader data lifecycle [read]

Reader data lifecycle policy, READER DATA LIFECYCLE (p. 361).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.15 DDS DataReaderQos Struct Reference 485

6.15.2.13 struct DDS DataReaderResourceLimitsQosPolicy
DDS DataReaderQos::reader resource limits [read]

<<eXtension>> (p. 190) DDSDataReader (p. 1004) resource limits policy,
DATA READER RESOURCE LIMITS (p. 389). This policy is an exten-
sion to the DDS standard.

6.15.2.14 struct DDS DataReaderProtocolQosPolicy
DDS DataReaderQos::protocol [read]

<<eXtension>> (p. 190) DDSDataReader (p. 1004) protocol policy,
DATA READER PROTOCOL (p. 395)

6.15.2.15 struct DDS TransportSelectionQosPolicy
DDS DataReaderQos::transport selection [read]

<<eXtension>> (p. 190) Transport selection policy, TRANSPORT -
SELECTION (p. 366).

Specifies the transports available for use by the DDSDataReader (p. 1004).

6.15.2.16 struct DDS TransportUnicastQosPolicy
DDS DataReaderQos::unicast [read]

<<eXtension>> (p. 190) Unicast transport policy, TRANSPORT -
UNICAST (p. 367).

Specifies the unicast transport interfaces and ports on which messages can be
received.

The unicast interfaces are used to receive messages from DDSDataWriter
(p. 1028) entities in the domain.

6.15.2.17 struct DDS TransportMulticastQosPolicy
DDS DataReaderQos::multicast [read]

<<eXtension>> (p. 190) Multicast transport policy, TRANSPORT -
MULTICAST (p. 368).

Specifies the multicast group addresses and ports on which messages can be
received.

The multicast addresses are used to receive messages from DDSDataWriter
(p. 1028) entities in the domain.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

486 Class Documentation

6.15.2.18 struct DDS PropertyQosPolicy
DDS DataReaderQos::property [read]

<<eXtension>> (p. 190) Property policy, PROPERTY (p. 416).

6.15.2.19 struct DDS TypeSupportQosPolicy
DDS DataReaderQos::type support [read]

<<eXtension>> (p. 190) type support data, TYPESUPPORT (p. 410).

Optional value that is passed to a type plugin’s on endpoint attached and de-
serialization functions.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.16 DDS DataReaderResourceLimitsQosPolicy Struct Reference487

6.16 DDS DataReaderResourceLimitsQosPolicy
Struct Reference

Various settings that configure how a DDSDataReader (p. 1004) allocates and
uses physical memory for internal resources.

Public Attributes

ˆ DDS Long max remote writers

The maximum number of remote writers from which a DDSDataReader
(p. 1004) may read, including all instances.

ˆ DDS Long max remote writers per instance

The maximum number of remote writers from which a DDSDataReader
(p. 1004) may read a single instance.

ˆ DDS Long max samples per remote writer

The maximum number of out-of-order samples from a given remote DDS-
DataWriter (p. 1028) that a DDSDataReader (p. 1004) may store when
maintaining a reliable connection to the DDSDataWriter (p. 1028).

ˆ DDS Long max infos

The maximum number of info units that a DDSDataReader (p. 1004) can
use to store DDS SampleInfo (p. 855).

ˆ DDS Long initial remote writers

The initial number of remote writers from which a DDSDataReader
(p. 1004) may read, including all instances.

ˆ DDS Long initial remote writers per instance

The initial number of remote writers from which a DDSDataReader
(p. 1004) may read a single instance.

ˆ DDS Long initial infos

The initial number of info units that a DDSDataReader (p. 1004) can have,
which are used to store DDS SampleInfo (p. 855).

ˆ DDS Long initial outstanding reads

The initial number of outstanding calls to read/take (or one of their variants)
on the same DDSDataReader (p. 1004) for which memory has not been
returned by calling FooDataReader::return loan (p. 1358).

ˆ DDS Long max outstanding reads

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

488 Class Documentation

The maximum number of outstanding read/take calls (or one of their vari-
ants) on the same DDSDataReader (p. 1004) for which memory has not
been returned by calling FooDataReader::return loan (p. 1358).

ˆ DDS Long max samples per read
The maximum number of data samples that the application can receive from
the middleware in a single call to FooDataReader::read (p. 1337) or Foo-
DataReader::take (p. 1338). If more data exists in the middleware, the
application will need to issue multiple read/take calls.

ˆ DDS Boolean disable fragmentation support
Determines whether the DDSDataReader (p. 1004) can receive fragmented
samples.

ˆ DDS Long max fragmented samples
The maximum number of samples for which the DDSDataReader (p. 1004)
may store fragments at a given point in time.

ˆ DDS Long initial fragmented samples
The initial number of samples for which a DDSDataReader (p. 1004) may
store fragments.

ˆ DDS Long max fragmented samples per remote writer
The maximum number of samples per remote writer for which a DDS-
DataReader (p. 1004) may store fragments.

ˆ DDS Long max fragments per sample
Maximum number of fragments for a single sample.

ˆ DDS Boolean dynamically allocate fragmented samples
Determines whether the DDSDataReader (p. 1004) pre-allocates storage
for storing fragmented samples.

ˆ DDS Long max total instances
Maximum number of instances for which a DataReader will keep state.

ˆ DDS Long max remote virtual writers per instance
The maximum number of virtual remote writers that can be associated with
an instance.

ˆ DDS Long initial remote virtual writers per instance
The initial number of virtual remote writers per instance.

ˆ DDS Long max query condition filters
The maximum number of query condition filters a reader is allowed.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.16 DDS DataReaderResourceLimitsQosPolicy Struct Reference489

6.16.1 Detailed Description

Various settings that configure how a DDSDataReader (p. 1004) allocates and
uses physical memory for internal resources.

DataReaders must allocate internal structures to handle the maximum number
of DataWriters that may connect to it, whether or not a DDSDataReader
(p. 1004) handles data fragmentation and how many data fragments that it may
handle (for data samples larger than the MTU of the underlying network trans-
port), how many simultaneous outstanding loans of internal memory holding
data samples can be provided to user code, as well as others.

Most of these internal structures start at an initial size and, by default, will
be grown as needed by dynamically allocating additional memory. You may
set fixed, maximum sizes for these internal structures if you want to bound
the amount of memory that can be used by a DDSDataReader (p. 1004).
By setting the initial size to the maximum size, you will prevent RTI Data
Distribution Service from dynamically allocating any memory after the creation
of the DDSDataReader (p. 1004).

This QoS policy is an extension to the DDS standard.

Entity:

DDSDataReader (p. 1004)

Properties:

RxO (p. 327) = N/A
Changeable (p. 328) = NO (p. 328)

6.16.2 Member Data Documentation

6.16.2.1 DDS Long DDS -
DataReaderResourceLimitsQosPolicy::max remote writers

The maximum number of remote writers from which a DDSDataReader
(p. 1004) may read, including all instances.

[default] DDS LENGTH UNLIMITED (p. 356)

[range] [1, 1 million] or DDS LENGTH UNLIMITED (p. 356), >= initial -
remote writers, >= max remote writers per instance

For unkeyed types, this value has to be equal to max remote writers per -
instance if max remote writers per instance is not equal to DDS LENGTH -
UNLIMITED (p. 356).

Note: For efficiency, set max remote writers >= DDS -

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

490 Class Documentation

DataReaderResourceLimitsQosPolicy::max remote writers per -
instance (p. 490).

6.16.2.2 DDS Long DDS -
DataReaderResourceLimitsQosPolicy::max -
remote writers per instance

The maximum number of remote writers from which a DDSDataReader
(p. 1004) may read a single instance.

[default] DDS LENGTH UNLIMITED (p. 356)

[range] [1, 1024] or DDS LENGTH UNLIMITED (p. 356), <= max -
remote writers or DDS LENGTH UNLIMITED (p. 356), >= initial -
remote writers per instance

For unkeyed types, this value has to be equal to max remote writers if it is not
DDS LENGTH UNLIMITED (p. 356).

Note: For efficiency, set max remote writers per instance <= DDS -
DataReaderResourceLimitsQosPolicy::max remote writers (p. 489)

6.16.2.3 DDS Long DDS -
DataReaderResourceLimitsQosPolicy::max -
samples per remote writer

The maximum number of out-of-order samples from a given remote DDS-
DataWriter (p. 1028) that a DDSDataReader (p. 1004) may store when
maintaining a reliable connection to the DDSDataWriter (p. 1028).

[default] DDS LENGTH UNLIMITED (p. 356)

[range] [1, 100 million] or DDS LENGTH UNLIMITED (p. 356), <=
DDS ResourceLimitsQosPolicy::max samples (p. 829)

6.16.2.4 DDS Long DDS -
DataReaderResourceLimitsQosPolicy::max infos

The maximum number of info units that a DDSDataReader (p. 1004) can use
to store DDS SampleInfo (p. 855).

When read/take is called on a data reader, the data reader passes a sequence of
data samples and an associated sample info sequence. The sample info sequence
contains additional information for each data sample.

max infos determines the resources allocated for storing sample info. This mem-
ory is loaned to the application when passing a sample info sequence.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.16 DDS DataReaderResourceLimitsQosPolicy Struct Reference491

Note that sample info is a snapshot, generated when read/take is called.

max infos should not be less than max samples.

[default] DDS LENGTH UNLIMITED (p. 356)

[range] [1, 1 million] or DDS LENGTH UNLIMITED (p. 356), >= initial -
infos

6.16.2.5 DDS Long DDS -
DataReaderResourceLimitsQosPolicy::initial remote -
writers

The initial number of remote writers from which a DDSDataReader (p. 1004)
may read, including all instances.

[default] 2

[range] [1, 1 million], <= max remote writers

For unkeyed types this value has to be equal to initial remote writers per -
instance.

Note: For efficiency, set initial remote writers >= DDS -
DataReaderResourceLimitsQosPolicy::initial remote writers per -
instance (p. 491).

6.16.2.6 DDS Long DDS -
DataReaderResourceLimitsQosPolicy::initial remote -
writers per instance

The initial number of remote writers from which a DDSDataReader (p. 1004)
may read a single instance.

[default] 2

[range] [1,1024], <= max remote writers per instance

For unkeyed types this value has to be equal to initial remote writers.

Note: For efficiency, set initial remote writers per instance <= DDS -
DataReaderResourceLimitsQosPolicy::initial remote writers (p. 491).

6.16.2.7 DDS Long DDS -
DataReaderResourceLimitsQosPolicy::initial infos

The initial number of info units that a DDSDataReader (p. 1004) can have,
which are used to store DDS SampleInfo (p. 855).

[default] 32

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

492 Class Documentation

[range] [1,1 million], <= max infos

6.16.2.8 DDS Long DDS -
DataReaderResourceLimitsQosPolicy::initial outstanding -
reads

The initial number of outstanding calls to read/take (or one of their variants) on
the same DDSDataReader (p. 1004) for which memory has not been returned
by calling FooDataReader::return loan (p. 1358).

[default] 2

[range] [1, 65536], <= max outstanding reads

6.16.2.9 DDS Long DDS -
DataReaderResourceLimitsQosPolicy::max -
outstanding reads

The maximum number of outstanding read/take calls (or one of their variants)
on the same DDSDataReader (p. 1004) for which memory has not been re-
turned by calling FooDataReader::return loan (p. 1358).

[default] DDS LENGTH UNLIMITED (p. 356)

[range] [1, 65536] or DDS LENGTH UNLIMITED (p. 356), >= initial -
outstanding reads

6.16.2.10 DDS Long DDS -
DataReaderResourceLimitsQosPolicy::max samples per -
read

The maximum number of data samples that the application can receive from
the middleware in a single call to FooDataReader::read (p. 1337) or Foo-
DataReader::take (p. 1338). If more data exists in the middleware, the appli-
cation will need to issue multiple read/take calls.

When reading data using listeners, the expected number of samples available
for delivery in a single take call is typically small: usually just one, in the
case of unbatched data, or the number of samples in a single batch, in the case
of batched data. (See DDS BatchQosPolicy (p. 446) for more information
about this feature.) When polling for data or using a DDSWaitSet (p. 1325),
however, multiple samples (or batches) could be retrieved at once, depending
on the data rate.

A larger value for this parameter makes the API simpler to use at the expense
of some additional memory consumption.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.16 DDS DataReaderResourceLimitsQosPolicy Struct Reference493

[default] 1024

[range] [1,65536]

6.16.2.11 DDS Boolean DDS -
DataReaderResourceLimitsQosPolicy::disable -
fragmentation support

Determines whether the DDSDataReader (p. 1004) can receive fragmented
samples.

When fragmentation support is not needed, disabling fragmentation support
will save some memory resources.

[default] DDS BOOLEAN FALSE (p. 289)

6.16.2.12 DDS Long DDS -
DataReaderResourceLimitsQosPolicy::max fragmented -
samples

The maximum number of samples for which the DDSDataReader (p. 1004)
may store fragments at a given point in time.

At any given time, a DDSDataReader (p. 1004) may store fragments for up to
max fragmented samples samples while waiting for the remaining fragments.
These samples need not have consecutive sequence numbers and may have been
sent by different DDSDataWriter (p. 1028) instances.

Once all fragments of a sample have been received, the sample is treated as a
regular sample and becomes subject to standard QoS settings such as DDS -
ResourceLimitsQosPolicy::max samples (p. 829).

The middleware will drop fragments if the max fragmented samples limit has
been reached. For best-effort communication, the middleware will accept a
fragment for a new sample, but drop the oldest fragmented sample from the
same remote writer. For reliable communication, the middleware will drop
fragments for any new samples until all fragments for at least one older sample
from that writer have been received.

Only applies if DDS DataReaderResourceLimitsQosPolicy::disable -
fragmentation support (p. 493) is DDS BOOLEAN FALSE (p. 289).

[default] 1024

[range] [1, 1 million]

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

494 Class Documentation

6.16.2.13 DDS Long DDS -
DataReaderResourceLimitsQosPolicy::initial -
fragmented samples

The initial number of samples for which a DDSDataReader (p. 1004) may
store fragments.

Only applies if DDS DataReaderResourceLimitsQosPolicy::disable -
fragmentation support (p. 493) is DDS BOOLEAN FALSE (p. 289).

[default] 4

[range] [1,1024], <= max fragmented samples

6.16.2.14 DDS Long DDS -
DataReaderResourceLimitsQosPolicy::max fragmented -
samples per remote writer

The maximum number of samples per remote writer for which a DDS-
DataReader (p. 1004) may store fragments.

Logical limit so a single remote writer cannot consume all available resources.

Only applies if DDS DataReaderResourceLimitsQosPolicy::disable -
fragmentation support (p. 493) is DDS BOOLEAN FALSE (p. 289).

[default] 256

[range] [1, 1 million], <= max fragmented samples

6.16.2.15 DDS Long DDS -
DataReaderResourceLimitsQosPolicy::max fragments -
per sample

Maximum number of fragments for a single sample.

Only applies if DDS DataReaderResourceLimitsQosPolicy::disable -
fragmentation support (p. 493) is DDS BOOLEAN FALSE (p. 289).

[default] 512

[range] [1, 1 million] or DDS LENGTH UNLIMITED (p. 356)

6.16.2.16 DDS Boolean DDS -
DataReaderResourceLimitsQosPolicy::dynamically -
allocate fragmented samples

Determines whether the DDSDataReader (p. 1004) pre-allocates storage for
storing fragmented samples.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.16 DDS DataReaderResourceLimitsQosPolicy Struct Reference495

By default, the middleware will allocate memory upfront for storing frag-
ments for up to DDS DataReaderResourceLimitsQosPolicy::initial -
fragmented samples (p. 494) samples. This memory may grow up to DDS -
DataReaderResourceLimitsQosPolicy::max fragmented samples
(p. 493) if needed.

If dynamically allocate fragmented samples is set to DDS BOOLEAN -
TRUE (p. 288), the middleware does not allocate memory upfront, but instead
allocates memory from the heap upon receiving the first fragment of a new
sample. The amount of memory allocated equals the amount of memory needed
to store all fragments in the sample. Once all fragments of a sample have been
received, the sample is deserialized and stored in the regular receive queue. At
that time, the dynamically allocated memory is freed again.

This QoS setting may be useful for large, but variable-sized data types where
upfront memory allocation for multiple samples based on the maximum possible
sample size may be expensive. The main disadvantage of not pre-allocating
memory is that one can no longer guarantee the middleware will have sufficient
resources at run-time.

Only applies if DDS DataReaderResourceLimitsQosPolicy::disable -
fragmentation support (p. 493) is DDS BOOLEAN FALSE (p. 289).

[default] DDS BOOLEAN FALSE (p. 289)

6.16.2.17 DDS Long DDS -
DataReaderResourceLimitsQosPolicy::max total -
instances

Maximum number of instances for which a DataReader will keep state.

The maximum number of instances actively managed by a DataReader is de-
termined by DDS ResourceLimitsQosPolicy::max instances (p. 830).

These instances have associated DataWriters or samples in the DataReader’s
queue and are visible to the user through operations such as Foo-
DataReader::take (p. 1338), FooDataReader::read (p. 1337), and Foo-
DataReader::get key value (p. 1359).

The features Durable Reader State, MultiChannel DataWriters and RTI Per-
sistence Service require RTI Data Distribution Service to keep some internal
state even for instances without DataWriters or samples in the DataReader’s
queue. The additional state is used to filter duplicate samples that could be
coming from different DataWriter channels or from multiple executions of RTI
Persistence Service.

The total maximum number of instances that will be managed by the middle-
ware, including instances without associated DataWriters or samples, is deter-
mined by max total instances.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

496 Class Documentation

When a new instance is received, RTI Data Distribution Service will check the
resource limit DDS ResourceLimitsQosPolicy::max instances (p. 830). If
the limit is exceeded, RTI Data Distribution Service will drop the sample and
report it as lost and rejected. If the limit is not exceeded, RTI Data Distribution
Service will check max total instances. If max total instances is exceeded, RTI
Data Distribution Service will replace an existing instance without DataWriters
and samples with the new one. The application could receive duplicate samples
for the replaced instance if it becomes alive again.

[default] DDS AUTO MAX TOTAL INSTANCES (p. 390)

[range] [1, 1 million] or DDS LENGTH UNLIMITED (p. 356) or
DDS AUTO MAX TOTAL INSTANCES (p. 390), >= DDS -
ResourceLimitsQosPolicy::max instances (p. 830)

6.16.2.18 DDS Long DDS -
DataReaderResourceLimitsQosPolicy::max remote -
virtual writers per instance

The maximum number of virtual remote writers that can be associated with an
instance.

[default] DDS LENGTH UNLIMITED (p. 356)

[range] [1, 1024] or DDS LENGTH UNLIMITED (p. 356), >= initial -
remote virtual writers per instance

For unkeyed types, this value is ignored.

The features of Durable Reader State and MultiChannel DataWriters, and RTI
Persistence Service require RTI Data Distribution Service to keep some internal
state per virtual writer and instance that is used to filter duplicate samples.
These duplicate samples could be coming from different DataWriter channels or
from multiple executions of RTI Persistence Service.

Once an association between a remote virtual writer and an instance is es-
tablished, it is permanent - it will not disappear even if the physical writer
incarnating the virtual writer is destroyed.

If max remote virtual writers per instance is exceeded for an instance, RTI
Data Distribution Service will not associate this instance with new virtual writ-
ers. Duplicates samples from these virtual writers will not be filtered on the
reader.

If you are not using Durable Reader State, MultiChannel DataWriters or RTI
Persistence Service in your system, you can set this property to 1 to optimize
resources.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.16 DDS DataReaderResourceLimitsQosPolicy Struct Reference497

6.16.2.19 DDS Long DDS -
DataReaderResourceLimitsQosPolicy::initial remote -
virtual writers per instance

The initial number of virtual remote writers per instance.

[default] 2

[range] [1, 1024], <= max remote virtual writers per instance

For unkeyed types, this value is ignored.

6.16.2.20 DDS Long DDS -
DataReaderResourceLimitsQosPolicy::max query -
condition filters

The maximum number of query condition filters a reader is allowed.

[default] 4

[range] [0, 32]

This value determines the maximum number of unique query condition content
filters that a reader may create.

Each query condition content filter is comprised of both its query expression
and query parameters. Two query conditions that have the same query -
expression will require unique query condition filters if their query paramters
differ. Query conditions that differ only in their state masks will share the same
query condition filter.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

498 Class Documentation

6.17 DDS DataWriterCacheStatus Struct Ref-
erence

<<eXtension>> (p. 190) The status of the writer’s cache.

Public Attributes

ˆ DDS LongLong sample count peak

Highest number of samples in the writer’s queue over the lifetime of the
writer.

ˆ DDS LongLong sample count

Number of samples in the writer’s queue.

6.17.1 Detailed Description

<<eXtension>> (p. 190) The status of the writer’s cache.

Entity:

DDSDataWriter (p. 1028)

6.17.2 Member Data Documentation

6.17.2.1 DDS LongLong DDS DataWriterCacheStatus::sample -
count peak

Highest number of samples in the writer’s queue over the lifetime of the writer.

6.17.2.2 DDS LongLong DDS DataWriterCacheStatus::sample -
count

Number of samples in the writer’s queue.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.18 DDS DataWriterProtocolQosPolicy Struct Reference 499

6.18 DDS DataWriterProtocolQosPolicy Struct
Reference

Protocol that applies only to DDSDataWriter (p. 1028) instances.

Public Attributes

ˆ struct DDS GUID t virtual guid
The virtual GUID (Global Unique Identifier).

ˆ DDS UnsignedLong rtps object id
The RTPS Object ID.

ˆ DDS Boolean push on write
Whether to push sample out when write is called.

ˆ DDS Boolean disable positive acks
Controls whether or not the writer expects positive acknowledgements from
matching readers.

ˆ DDS Boolean disable inline keyhash
Controls whether or not a keyhash is propagated on the wire with each sample.

ˆ DDS Boolean serialize key with dispose
Controls whether or not the serialized key is propagated on the wire with
dispose samples.

ˆ struct DDS RtpsReliableWriterProtocol t rtps reliable writer
The reliable protocol defined in RTPS.

6.18.1 Detailed Description

Protocol that applies only to DDSDataWriter (p. 1028) instances.

DDS has a standard protocol for packet (user and meta data) exchange between
applications using DDS for communications. This QoS policy and DDS -
DataWriterProtocolQosPolicy (p. 499) give you control over configurable
portions of the protocol, including the configuration of the reliable data deliv-
ery mechanism of the protocol on a per DataWriter or DataReader basis.

These configuration parameters control timing, timeouts, and give you the abil-
ity to tradeoff between speed of data loss detection and repair versus network
and CPU bandwidth used to maintain reliability.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

500 Class Documentation

It is important to tune the reliability protocol (on a per DDSDataWriter
(p. 1028) and DDSDataReader (p. 1004) basis) to meet the requirements of
the end-user application so that data can be sent between DataWriters and
DataReaders in an efficient and optimal manner in the presence of data loss.

You can also use this QoS policy to control how RTI Data Distribution Service
responds to ”slow” reliable DataReaders or ones that disconnect or are otherwise
lost. See DDS ReliabilityQosPolicy (p. 813) for more information on the per-
DataReader/DataWriter reliability configuration. DDS HistoryQosPolicy
(p. 709) and DDS ResourceLimitsQosPolicy (p. 827) also play an impor-
tant role in the DDS reliable protocol.

This QoS policy is an extension to the DDS standard.

Entity:

DDSDataWriter (p. 1028)

Properties:

RxO (p. 327) = N/A
Changeable (p. 328) = NO (p. 328)

6.18.2 Member Data Documentation

6.18.2.1 struct DDS GUID t DDS -
DataWriterProtocolQosPolicy::virtual guid
[read]

The virtual GUID (Global Unique Identifier).

The virtual GUID is used to uniquely identify different incarnations of the same
DDSDataWriter (p. 1028).

RTI Data Distribution Service uses the virtual GUID to associate a persisted
writer history to a specific DDSDataWriter (p. 1028).

The RTI Data Distribution Service Persistence Service uses the virtual GUID
to send samples on behalf of the original DDSDataWriter (p. 1028).

[default] DDS GUID AUTO (p. 297)

6.18.2.2 DDS UnsignedLong DDS -
DataWriterProtocolQosPolicy::rtps object id

The RTPS Object ID.

This value is used to determine the RTPS object ID of a data writer according
to the DDS-RTPS Interoperability Wire Protocol.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.18 DDS DataWriterProtocolQosPolicy Struct Reference 501

Only the last 3 bytes are used; the most significant byte is ignored.

If the default value is specified, RTI Data Distribution Service will automatically
assign the object ID based on a counter value (per participant) starting at
0x00800000. That value is incremented for each new data writer.

A rtps object id value in the interval [0x00800000,0x00ffffff] may collide with
the automatic values assigned by RTI Data Distribution Service. In those cases,
the recomendation is not to use automatic object ID assigment.

[default] DDS RTPS AUTO ID (p. ??)

[range] [0,0x00ffffff]

6.18.2.3 DDS Boolean DDS DataWriterProtocolQosPolicy::push -
on write

Whether to push sample out when write is called.

If set to DDS BOOLEAN TRUE (p. 288) (the default), the writer will send
a sample every time write is called. Otherwise, the sample is put into the queue
waiting for a NACK from remote reader(s) to be sent out.

Note: push on write must be TRUE for Asynchronous DataWriters (those with
DDS ASYNCHRONOUS PUBLISH MODE QOS (p. 403)). Otherwise,
samples will never be sent.

[default] DDS BOOLEAN TRUE (p. 288)

6.18.2.4 DDS Boolean DDS -
DataWriterProtocolQosPolicy::disable positive acks

Controls whether or not the writer expects positive acknowledgements from
matching readers.

If set to DDS BOOLEAN TRUE (p. 288), the writer does not expect readers
to send send positive acknowledgments to the writer. Consequently, instead of
keeping a sample queued until all readers have positively acknowledged it, the
writer will keep a sample for at least DDS RtpsReliableWriterProtocol -
t::disable positive acks min sample keep duration (p. 843), after which
the sample is logically considered as positively acknowledged.

If set to DDS BOOLEAN FALSE (p. 289) (the default), the writer expects
to receive positive acknowledgements from its acknowledging readers (DDS -
DataReaderProtocolQosPolicy::disable positive acks (p. 469) = DDS -
BOOLEAN FALSE (p. 289)) and it applies the keep-duration to its non-
acknowledging readers (DDS DataReaderProtocolQosPolicy::disable -
positive acks (p. 469) = DDS BOOLEAN TRUE (p. 288)).

A writer with both acknowledging and non-acknowledging readers keeps a sam-

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

502 Class Documentation

ple queued until acknowledgements have been received from all acknowledging
readers and the keep-duration has elapsed for non-acknowledging readers.

[default] DDS BOOLEAN FALSE (p. 289)

6.18.2.5 DDS Boolean DDS -
DataWriterProtocolQosPolicy::disable inline keyhash

Controls whether or not a keyhash is propagated on the wire with each sample.

This field only applies to keyed writers.

With each key, RTI Data Distribution Service associates an internal 16-byte
representation, called a keyhash.

When this field is DDS BOOLEAN FALSE (p. 289), the keyhash is sent on
the wire with every data instance.

When this field is DDS BOOLEAN TRUE (p. 288), the keyhash is not sent
on the wire and the readers must compute the value using the received data.

If the reader is CPU bound, sending the keyhash on the wire may increase
performance, because the reader does not have to get the keyhash from the
data.

If the writer is CPU bound, sending the keyhash on the wire may decrease
performance, because it requires more bandwidth (16 more bytes per sample).

Note: Setting disable inline keyhash to DDS BOOLEAN TRUE (p. 288) is
not compatible with using RTI Real-Time Connect or RTI Recorder.

[default] DDS BOOLEAN FALSE (p. 289)

6.18.2.6 DDS Boolean DDS -
DataWriterProtocolQosPolicy::serialize key with dispose

Controls whether or not the serialized key is propagated on the wire with dispose
samples.

This field only applies to keyed writers.

We recommend setting this field to DDS BOOLEAN -
TRUE (p. 288) if there are DataReaders where DDS -
DataReaderProtocolQosPolicy::propagate dispose of unregistered -
instances (p. 470) is also DDS BOOLEAN TRUE (p. 288).

Important: When this field is DDS BOOLEAN TRUE (p. 288), batching
will not be compatible with RTI Data Distribution Service 4.3e, 4.4b, or 4.4c.
The DDSDataReader (p. 1004) entities will receive incorrect data and/or en-
counter deserialization errors.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.18 DDS DataWriterProtocolQosPolicy Struct Reference 503

[default] DDS BOOLEAN FALSE (p. 289)

6.18.2.7 struct DDS RtpsReliableWriterProtocol t
DDS DataWriterProtocolQosPolicy::rtps reliable writer
[read]

The reliable protocol defined in RTPS.

[default] low watermark 0;

high watermark 1;

heartbeat period 3.0 seconds;

fast heartbeat period 3.0 seconds;

late joiner heartbeat period 3.0 seconds;

max heartbeat retries 10;

inactivate nonprogressing readers DDS BOOLEAN FALSE;

heartbeats per max samples 8;

min nack response delay 0.0 seconds;

max nack response delay 0.2 seconds;

max bytes per nack response 131072

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

504 Class Documentation

6.19 DDS DataWriterProtocolStatus Struct
Reference

<<eXtension>> (p. 190) The status of a writer’s internal protocol related
metrics, like the number of samples pushed, pulled, filtered; and status of wire
protocol traffic.

Public Attributes

ˆ DDS LongLong pushed sample count
The number of user samples pushed on write from a local DataWriter to a
matching remote DataReader.

ˆ DDS LongLong pushed sample count change
The incremental change in the number of user samples pushed on write from
a local DataWriter to a matching remote DataReader since the last time the
status was read.

ˆ DDS LongLong pushed sample bytes
The number of bytes of user samples pushed on write from a local DataWriter
to a matching remote DataReader.

ˆ DDS LongLong pushed sample bytes change
The incremental change in the number of bytes of user samples pushed on
write from a local DataWriter to a matching remote DataReader since the
last time the status was read.

ˆ DDS LongLong filtered sample count
The number of user samples preemptively filtered by a local DataWriter due
to Content-Filtered Topics.

ˆ DDS LongLong filtered sample count change
The incremental change in the number of user samples preemptively filtered
by a local DataWriter due to Content-Filtered Topics since the last time the
status was read.

ˆ DDS LongLong filtered sample bytes
The number of user samples preemptively filtered by a local DataWriter due
to Content-Filtered Topics.

ˆ DDS LongLong filtered sample bytes change
The incremental change in the number of user samples preemptively filtered
by a local DataWriter due to Content-Filtered Topics since the last time the
status was read.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.19 DDS DataWriterProtocolStatus Struct Reference 505

ˆ DDS LongLong sent heartbeat count

The number of Heartbeats sent between a local DataWriter and matching
remote DataReader.

ˆ DDS LongLong sent heartbeat count change

The incremental change in the number of Heartbeats sent between a local
DataWriter and matching remote DataReader since the last time the status
was read.

ˆ DDS LongLong sent heartbeat bytes

The number of bytes of Heartbeats sent between a local DataWriter and
matching remote DataReader.

ˆ DDS LongLong sent heartbeat bytes change

The incremental change in the number of bytes of Heartbeats sent between
a local DataWriter and matching remote DataReader since the last time the
status was read.

ˆ DDS LongLong pulled sample count

The number of user samples pulled from local DataWriter by matching
DataReaders.

ˆ DDS LongLong pulled sample count change

The incremental change in the number of user samples pulled from local
DataWriter by matching DataReaders since the last time the status was read.

ˆ DDS LongLong pulled sample bytes

The number of bytes of user samples pulled from local DataWriter by match-
ing DataReaders.

ˆ DDS LongLong pulled sample bytes change

The incremental change in the number of bytes of user samples pulled from
local DataWriter by matching DataReaders since the last time the status was
read.

ˆ DDS LongLong received ack count

The number of ACKs from a remote DataReader received by a local
DataWriter.

ˆ DDS LongLong received ack count change

The incremental change in the number of ACKs from a remote DataReader
received by a local DataWriter since the last time the status was read.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

506 Class Documentation

ˆ DDS LongLong received ack bytes

The number of bytes of ACKs from a remote DataReader received by a local
DataWriter.

ˆ DDS LongLong received ack bytes change

The incremental change in the number of bytes of ACKs from a remote
DataReader received by a local DataWriter since the last time the status was
read.

ˆ DDS LongLong received nack count

The number of NACKs from a remote DataReader received by a local
DataWriter.

ˆ DDS LongLong received nack count change

The incremental change in the number of NACKs from a remote DataReader
received by a local DataWriter since the last time the status was read.

ˆ DDS LongLong received nack bytes

The number of bytes of NACKs from a remote DataReader received by a local
DataWriter.

ˆ DDS LongLong received nack bytes change

The incremental change in the number of bytes of NACKs from a remote
DataReader received by a local DataWriter since the last time the status was
read.

ˆ DDS LongLong sent gap count

The number of GAPs sent from local DataWriter to matching remote
DataReaders.

ˆ DDS LongLong sent gap count change

The incremental change in the number of GAPs sent from local DataWriter
to matching remote DataReaders since the last time the status was read.

ˆ DDS LongLong sent gap bytes

The number of bytes of GAPs sent from local DataWriter to matching remote
DataReaders.

ˆ DDS LongLong sent gap bytes change

The incremental change in the number of bytes of GAPs sent from local
DataWriter to matching remote DataReaders since the last time the status
was read.

ˆ DDS LongLong rejected sample count

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.19 DDS DataWriterProtocolStatus Struct Reference 507

The number of times a sample is rejected due to exceptions in the send path.

ˆ DDS LongLong rejected sample count change

The incremental change in the number of times a sample is rejected due to
exceptions in the send path since the last time the status was read.

ˆ DDS Long send window size

Current maximum number of outstanding samples allowed in the
DataWriter’s queue.

ˆ struct DDS SequenceNumber t first available sample sequence -
number

The sequence number of the first available sample currently queued in the
local DataWriter.

ˆ struct DDS SequenceNumber t last available sample sequence -
number

The sequence number of the last available sample currently queued in the
local DataWriter.

ˆ struct DDS SequenceNumber t first unacknowledged sample -
sequence number

The sequence number of the first unacknowledged sample currently queued in
the local DataWriter.

ˆ struct DDS SequenceNumber t first available sample virtual -
sequence number

The virtual sequence number of the first available sample currently queued in
the local DataWriter.

ˆ struct DDS SequenceNumber t last available sample virtual -
sequence number

The virtual sequence number of the last available sample currently queued in
the local DataWriter.

ˆ struct DDS SequenceNumber t first unacknowledged sample -
virtual sequence number

The virtual sequence number of the first unacknowledged sample currently
queued in the local DataWriter.

ˆ DDS InstanceHandle t first unacknowledged sample -
subscription handle

The handle of a remote DataReader that has not acknowledged the first un-
acknowledged sample of the local DataWriter.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

508 Class Documentation

ˆ struct DDS SequenceNumber t first unelapsed keep duration -
sample sequence number

The sequence number of the first sample whose keep du-
ration has not yet elapsed. Applicable only when DDS -
DataWriterProtocolQosPolicy::disable positive acks (p. 501) is
set.

6.19.1 Detailed Description

<<eXtension>> (p. 190) The status of a writer’s internal protocol related
metrics, like the number of samples pushed, pulled, filtered; and status of wire
protocol traffic.

Entity:

DDSDataWriter (p. 1028)

6.19.2 Member Data Documentation

6.19.2.1 DDS LongLong DDS DataWriterProtocolStatus::pushed -
sample count

The number of user samples pushed on write from a local DataWriter to a
matching remote DataReader.

6.19.2.2 DDS LongLong DDS DataWriterProtocolStatus::pushed -
sample count change

The incremental change in the number of user samples pushed on write from
a local DataWriter to a matching remote DataReader since the last time the
status was read.

6.19.2.3 DDS LongLong DDS DataWriterProtocolStatus::pushed -
sample bytes

The number of bytes of user samples pushed on write from a local DataWriter
to a matching remote DataReader.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.19 DDS DataWriterProtocolStatus Struct Reference 509

6.19.2.4 DDS LongLong DDS DataWriterProtocolStatus::pushed -
sample bytes change

The incremental change in the number of bytes of user samples pushed on write
from a local DataWriter to a matching remote DataReader since the last time
the status was read.

6.19.2.5 DDS LongLong DDS DataWriterProtocolStatus::filtered -
sample count

The number of user samples preemptively filtered by a local DataWriter due to
Content-Filtered Topics.

6.19.2.6 DDS LongLong DDS DataWriterProtocolStatus::filtered -
sample count change

The incremental change in the number of user samples preemptively filtered by
a local DataWriter due to Content-Filtered Topics since the last time the status
was read.

6.19.2.7 DDS LongLong DDS DataWriterProtocolStatus::filtered -
sample bytes

The number of user samples preemptively filtered by a local DataWriter due to
Content-Filtered Topics.

6.19.2.8 DDS LongLong DDS DataWriterProtocolStatus::filtered -
sample bytes change

The incremental change in the number of user samples preemptively filtered by
a local DataWriter due to Content-Filtered Topics since the last time the status
was read.

6.19.2.9 DDS LongLong DDS DataWriterProtocolStatus::sent -
heartbeat count

The number of Heartbeats sent between a local DataWriter and matching re-
mote DataReader.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

510 Class Documentation

6.19.2.10 DDS LongLong DDS DataWriterProtocolStatus::sent -
heartbeat count change

The incremental change in the number of Heartbeats sent between a local
DataWriter and matching remote DataReader since the last time the status
was read.

6.19.2.11 DDS LongLong DDS DataWriterProtocolStatus::sent -
heartbeat bytes

The number of bytes of Heartbeats sent between a local DataWriter and match-
ing remote DataReader.

6.19.2.12 DDS LongLong DDS DataWriterProtocolStatus::sent -
heartbeat bytes change

The incremental change in the number of bytes of Heartbeats sent between
a local DataWriter and matching remote DataReader since the last time the
status was read.

6.19.2.13 DDS LongLong DDS DataWriterProtocolStatus::pulled -
sample count

The number of user samples pulled from local DataWriter by matching
DataReaders.

Pulled samples are samples sent for repairs, for late joiners,
and all samples sent by the local DataWriter when DDS -
DataWriterProtocolQosPolicy::push on write (p. 501) is DDS -
BOOLEAN FALSE (p. 289).

6.19.2.14 DDS LongLong DDS DataWriterProtocolStatus::pulled -
sample count change

The incremental change in the number of user samples pulled from local
DataWriter by matching DataReaders since the last time the status was read.

Pulled samples are samples sent for repairs, for late joiners,
and all samples sent by the local DataWriter when DDS -
DataWriterProtocolQosPolicy::push on write (p. 501) is DDS -
BOOLEAN FALSE (p. 289).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.19 DDS DataWriterProtocolStatus Struct Reference 511

6.19.2.15 DDS LongLong DDS DataWriterProtocolStatus::pulled -
sample bytes

The number of bytes of user samples pulled from local DataWriter by matching
DataReaders.

Pulled samples are samples sent for repairs, for late joiners,
and all samples sent by the local DataWriter when DDS -
DataWriterProtocolQosPolicy::push on write (p. 501) is DDS -
BOOLEAN FALSE (p. 289).

6.19.2.16 DDS LongLong DDS DataWriterProtocolStatus::pulled -
sample bytes change

The incremental change in the number of bytes of user samples pulled from local
DataWriter by matching DataReaders since the last time the status was read.

Pulled samples are samples sent for repairs, for late joiners,
and all samples sent by the local DataWriter when DDS -
DataWriterProtocolQosPolicy::push on write (p. 501) is DDS -
BOOLEAN FALSE (p. 289).

6.19.2.17 DDS LongLong DDS -
DataWriterProtocolStatus::received ack count

The number of ACKs from a remote DataReader received by a local DataWriter.

6.19.2.18 DDS LongLong DDS -
DataWriterProtocolStatus::received ack count change

The incremental change in the number of ACKs from a remote DataReader
received by a local DataWriter since the last time the status was read.

6.19.2.19 DDS LongLong DDS -
DataWriterProtocolStatus::received ack bytes

The number of bytes of ACKs from a remote DataReader received by a local
DataWriter.

6.19.2.20 DDS LongLong DDS -
DataWriterProtocolStatus::received ack bytes change

The incremental change in the number of bytes of ACKs from a remote
DataReader received by a local DataWriter since the last time the status was

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

512 Class Documentation

read.

6.19.2.21 DDS LongLong DDS -
DataWriterProtocolStatus::received nack count

The number of NACKs from a remote DataReader received by a local
DataWriter.

6.19.2.22 DDS LongLong DDS -
DataWriterProtocolStatus::received nack count change

The incremental change in the number of NACKs from a remote DataReader
received by a local DataWriter since the last time the status was read.

6.19.2.23 DDS LongLong DDS -
DataWriterProtocolStatus::received nack bytes

The number of bytes of NACKs from a remote DataReader received by a local
DataWriter.

6.19.2.24 DDS LongLong DDS -
DataWriterProtocolStatus::received nack bytes change

The incremental change in the number of bytes of NACKs from a remote
DataReader received by a local DataWriter since the last time the status was
read.

6.19.2.25 DDS LongLong DDS DataWriterProtocolStatus::sent -
gap count

The number of GAPs sent from local DataWriter to matching remote DataRead-
ers.

6.19.2.26 DDS LongLong DDS DataWriterProtocolStatus::sent -
gap count change

The incremental change in the number of GAPs sent from local DataWriter to
matching remote DataReaders since the last time the status was read.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.19 DDS DataWriterProtocolStatus Struct Reference 513

6.19.2.27 DDS LongLong DDS DataWriterProtocolStatus::sent -
gap bytes

The number of bytes of GAPs sent from local DataWriter to matching remote
DataReaders.

6.19.2.28 DDS LongLong DDS DataWriterProtocolStatus::sent -
gap bytes change

The incremental change in the number of bytes of GAPs sent from local
DataWriter to matching remote DataReaders since the last time the status
was read.

6.19.2.29 DDS LongLong DDS -
DataWriterProtocolStatus::rejected sample count

The number of times a sample is rejected due to exceptions in the send path.

6.19.2.30 DDS LongLong DDS -
DataWriterProtocolStatus::rejected sample count change

The incremental change in the number of times a sample is rejected due to
exceptions in the send path since the last time the status was read.

6.19.2.31 DDS Long DDS DataWriterProtocolStatus::send -
window size

Current maximum number of outstanding samples allowed in the DataWriter’s
queue.

Spans the range from DDS RtpsReliableWriterProtocol t::min send -
window size (p. 845) to DDS RtpsReliableWriterProtocol t::max -
send window size (p. 846).

6.19.2.32 struct DDS SequenceNumber t
DDS DataWriterProtocolStatus::first available sample -
sequence number [read]

The sequence number of the first available sample currently queued in the local
DataWriter.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

514 Class Documentation

6.19.2.33 struct DDS SequenceNumber t
DDS DataWriterProtocolStatus::last available sample -
sequence number [read]

The sequence number of the last available sample currently queued in the local
DataWriter.

6.19.2.34 struct DDS SequenceNumber t
DDS DataWriterProtocolStatus::first -
unacknowledged sample sequence number
[read]

The sequence number of the first unacknowledged sample currently queued in
the local DataWriter.

6.19.2.35 struct DDS SequenceNumber t
DDS DataWriterProtocolStatus::first -
available sample virtual sequence number
[read]

The virtual sequence number of the first available sample currently queued in
the local DataWriter.

6.19.2.36 struct DDS SequenceNumber t
DDS DataWriterProtocolStatus::last -
available sample virtual sequence number
[read]

The virtual sequence number of the last available sample currently queued in
the local DataWriter.

6.19.2.37 struct DDS SequenceNumber t
DDS DataWriterProtocolStatus::first -
unacknowledged sample virtual sequence number
[read]

The virtual sequence number of the first unacknowledged sample currently
queued in the local DataWriter.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.19 DDS DataWriterProtocolStatus Struct Reference 515

6.19.2.38 DDS InstanceHandle t DDS -
DataWriterProtocolStatus::first unacknowledged -
sample subscription handle

The handle of a remote DataReader that has not acknowledged the first unac-
knowledged sample of the local DataWriter.

6.19.2.39 struct DDS SequenceNumber t
DDS DataWriterProtocolStatus::first unelapsed -
keep duration sample sequence number
[read]

The sequence number of the first sample whose keep du-
ration has not yet elapsed. Applicable only when DDS -
DataWriterProtocolQosPolicy::disable positive acks (p. 501) is set.

Sequence number of the first sample kept in the DataWriters queue whose keep -
duration (applied when DDS DataWriterProtocolQosPolicy::disable -
positive acks (p. 501) is set) has not yet elapsed.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

516 Class Documentation

6.20 DDS DataWriterQos Struct Reference

QoS policies supported by a DDSDataWriter (p. 1028) entity.

Public Attributes

ˆ struct DDS DurabilityQosPolicy durability

Durability policy, DURABILITY (p. 335).

ˆ struct DDS DurabilityServiceQosPolicy durability service

DurabilityService policy, DURABILITY SERVICE (p. 355).

ˆ struct DDS DeadlineQosPolicy deadline

Deadline policy, DEADLINE (p. 339).

ˆ struct DDS LatencyBudgetQosPolicy latency budget

Latency budget policy, LATENCY BUDGET (p. 340).

ˆ struct DDS LivelinessQosPolicy liveliness

Liveliness policy, LIVELINESS (p. 344).

ˆ struct DDS ReliabilityQosPolicy reliability

Reliability policy, RELIABILITY (p. 348).

ˆ struct DDS DestinationOrderQosPolicy destination order

Destination order policy, DESTINATION ORDER (p. 350).

ˆ struct DDS HistoryQosPolicy history

History policy, HISTORY (p. 352).

ˆ struct DDS ResourceLimitsQosPolicy resource limits

Resource limits policy, RESOURCE LIMITS (p. 356).

ˆ struct DDS TransportPriorityQosPolicy transport priority

Transport priority policy, TRANSPORT PRIORITY (p. 358).

ˆ struct DDS LifespanQosPolicy lifespan

Lifespan policy, LIFESPAN (p. 359).

ˆ struct DDS UserDataQosPolicy user data

User data policy, USER DATA (p. 332).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.20 DDS DataWriterQos Struct Reference 517

ˆ struct DDS OwnershipQosPolicy ownership

Ownership policy, OWNERSHIP (p. 341).

ˆ struct DDS OwnershipStrengthQosPolicy ownership strength

Ownership strength policy, OWNERSHIP STRENGTH (p. 343).

ˆ struct DDS WriterDataLifecycleQosPolicy writer data lifecycle

Writer data lifecycle policy, WRITER DATA LIFECYCLE (p. 360).

ˆ struct DDS DataWriterResourceLimitsQosPolicy writer -
resource limits

<<eXtension>> (p. 190) Writer resource limits policy, DATA -
WRITER RESOURCE LIMITS (p. 391).

ˆ struct DDS DataWriterProtocolQosPolicy protocol

<<eXtension>> (p. 190) DDSDataWriter (p. 1028) protocol policy,
DATA WRITER PROTOCOL (p. 396)

ˆ struct DDS TransportSelectionQosPolicy transport selection

<<eXtension>> (p. 190) Transport plugin selection policy, TRANS-
PORT SELECTION (p. 366).

ˆ struct DDS TransportUnicastQosPolicy unicast

<<eXtension>> (p. 190) Unicast transport policy, TRANSPORT -
UNICAST (p. 367).

ˆ struct DDS PublishModeQosPolicy publish mode

<<eXtension>> (p. 190) Publish mode policy, PUBLISH MODE
(p. 402).

ˆ struct DDS PropertyQosPolicy property

<<eXtension>> (p. 190) Property policy, PROPERTY (p. 416).

ˆ struct DDS BatchQosPolicy batch

<<eXtension>> (p. 190) Batch policy, BATCH (p. 413).

ˆ struct DDS MultiChannelQosPolicy multi channel

<<eXtension>> (p. 190) Multi channel policy, MULTICHANNEL
(p. 415).

ˆ struct DDS TypeSupportQosPolicy type support

<<eXtension>> (p. 190) Type support data, TYPESUPPORT (p. 410).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

518 Class Documentation

6.20.1 Detailed Description

QoS policies supported by a DDSDataWriter (p. 1028) entity.

You must set certain members in a consistent manner:

- DDS DataWriterQos::history.depth <= DDS DataWriterQos::resource -
limits.max samples per instance

- DDS DataWriterQos::resource limits.max samples per instance <= DDS -
DataWriterQos::resource limits.max samples

- DDS DataWriterQos::resource limits.initial samples <= DDS -
DataWriterQos::resource limits.max samples

- DDS DataWriterQos::resource limits.initial instances <= DDS -
DataWriterQos::resource limits.max instances

- length of DDS DataWriterQos::user data.value <= DDS -
DomainParticipantQos::resource limits (p. 551) .writer user data -
max length

If any of the above are not true, DDSDataWriter::set qos (p. 1041)
and DDSDataWriter::set qos with profile (p. 1042) and DDSPub-
lisher::set default datawriter qos (p. 1247) and DDSPublisher::set -
default datawriter qos with profile (p. 1248) will fail with DDS -
RETCODE INCONSISTENT POLICY (p. 304) and DDSPub-
lisher::create datawriter (p. 1252) and DDSPublisher::create -
datawriter with profile (p. 1253) and will return NULL.

Entity:

DDSDataWriter (p. 1028)

See also:

QoS Policies (p. 319) allowed ranges within each Qos.

6.20.2 Member Data Documentation

6.20.2.1 struct DDS DurabilityQosPolicy
DDS DataWriterQos::durability [read]

Durability policy, DURABILITY (p. 335).

6.20.2.2 struct DDS DurabilityServiceQosPolicy
DDS DataWriterQos::durability service [read]

DurabilityService policy, DURABILITY SERVICE (p. 355).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.20 DDS DataWriterQos Struct Reference 519

6.20.2.3 struct DDS DeadlineQosPolicy DDS -
DataWriterQos::deadline [read]

Deadline policy, DEADLINE (p. 339).

6.20.2.4 struct DDS LatencyBudgetQosPolicy
DDS DataWriterQos::latency budget [read]

Latency budget policy, LATENCY BUDGET (p. 340).

6.20.2.5 struct DDS LivelinessQosPolicy
DDS DataWriterQos::liveliness [read]

Liveliness policy, LIVELINESS (p. 344).

6.20.2.6 struct DDS ReliabilityQosPolicy
DDS DataWriterQos::reliability [read]

Reliability policy, RELIABILITY (p. 348).

6.20.2.7 struct DDS DestinationOrderQosPolicy
DDS DataWriterQos::destination order [read]

Destination order policy, DESTINATION ORDER (p. 350).

6.20.2.8 struct DDS HistoryQosPolicy DDS -
DataWriterQos::history [read]

History policy, HISTORY (p. 352).

6.20.2.9 struct DDS ResourceLimitsQosPolicy
DDS DataWriterQos::resource limits [read]

Resource limits policy, RESOURCE LIMITS (p. 356).

6.20.2.10 struct DDS TransportPriorityQosPolicy
DDS DataWriterQos::transport priority [read]

Transport priority policy, TRANSPORT PRIORITY (p. 358).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

520 Class Documentation

6.20.2.11 struct DDS LifespanQosPolicy
DDS DataWriterQos::lifespan [read]

Lifespan policy, LIFESPAN (p. 359).

6.20.2.12 struct DDS UserDataQosPolicy
DDS DataWriterQos::user data [read]

User data policy, USER DATA (p. 332).

6.20.2.13 struct DDS OwnershipQosPolicy
DDS DataWriterQos::ownership [read]

Ownership policy, OWNERSHIP (p. 341).

6.20.2.14 struct DDS OwnershipStrengthQosPolicy
DDS DataWriterQos::ownership strength [read]

Ownership strength policy, OWNERSHIP STRENGTH (p. 343).

6.20.2.15 struct DDS WriterDataLifecycleQosPolicy
DDS DataWriterQos::writer data lifecycle [read]

Writer data lifecycle policy, WRITER DATA LIFECYCLE (p. 360).

6.20.2.16 struct DDS DataWriterResourceLimitsQosPolicy
DDS DataWriterQos::writer resource limits [read]

<<eXtension>> (p. 190) Writer resource limits policy, DATA WRITER -
RESOURCE LIMITS (p. 391).

6.20.2.17 struct DDS DataWriterProtocolQosPolicy
DDS DataWriterQos::protocol [read]

<<eXtension>> (p. 190) DDSDataWriter (p. 1028) protocol policy,
DATA WRITER PROTOCOL (p. 396)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.20 DDS DataWriterQos Struct Reference 521

6.20.2.18 struct DDS TransportSelectionQosPolicy
DDS DataWriterQos::transport selection [read]

<<eXtension>> (p. 190) Transport plugin selection policy, TRANS-
PORT SELECTION (p. 366).

Specifies the transports available for use by the DDSDataWriter (p. 1028).

6.20.2.19 struct DDS TransportUnicastQosPolicy
DDS DataWriterQos::unicast [read]

<<eXtension>> (p. 190) Unicast transport policy, TRANSPORT -
UNICAST (p. 367).

Specifies the unicast transport interfaces and ports on which messages can be
received.

The unicast interfaces are used to receive messages from DDSDataReader
(p. 1004) entities in the domain.

6.20.2.20 struct DDS PublishModeQosPolicy
DDS DataWriterQos::publish mode [read]

<<eXtension>> (p. 190) Publish mode policy, PUBLISH MODE (p. 402).

Determines whether the DDSDataWriter (p. 1028) publishes data syn-
chronously or asynchronously and how.

6.20.2.21 struct DDS PropertyQosPolicy
DDS DataWriterQos::property [read]

<<eXtension>> (p. 190) Property policy, PROPERTY (p. 416).

6.20.2.22 struct DDS BatchQosPolicy DDS DataWriterQos::batch
[read]

<<eXtension>> (p. 190) Batch policy, BATCH (p. 413).

6.20.2.23 struct DDS MultiChannelQosPolicy
DDS DataWriterQos::multi channel [read]

<<eXtension>> (p. 190) Multi channel policy, MULTICHANNEL
(p. 415).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

522 Class Documentation

6.20.2.24 struct DDS TypeSupportQosPolicy
DDS DataWriterQos::type support [read]

<<eXtension>> (p. 190) Type support data, TYPESUPPORT (p. 410).

Optional value that is passed to a type plugin’s on endpoint attached and seri-
alization functions.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.21 DDS DataWriterResourceLimitsQosPolicy Struct Reference523

6.21 DDS DataWriterResourceLimitsQosPolicy
Struct Reference

Various settings that configure how a DDSDataWriter (p. 1028) allocates and
uses physical memory for internal resources.

Public Attributes

ˆ DDS Long initial concurrent blocking threads

The initial number of threads that are allowed to concurrently block on write
call on the same DDSDataWriter (p. 1028).

ˆ DDS Long max concurrent blocking threads

The maximum number of threads that are allowed to concurrently block on
write call on the same DDSDataWriter (p. 1028).

ˆ DDS Long max remote reader filters

The maximum number of remote readers for which the writer will perform
content-based filtering.

ˆ DDS Long initial batches

Represents the initial number of batches a DDSDataWriter (p. 1028) will
manage.

ˆ DDS Long max batches

Represents the maximum number of batches a DDSDataWriter (p. 1028)
will manage.

ˆ DDS DataWriterResourceLimitsInstanceReplacementKind
instance replacement

Sets the kinds of instances allowed to be replaced when instance resource
limits are reached.

ˆ DDS Boolean replace empty instances

Whether or not to replace empty instances during instance replacement.

ˆ DDS Boolean autoregister instances

Whether or not to automatically register new instances.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

524 Class Documentation

6.21.1 Detailed Description

Various settings that configure how a DDSDataWriter (p. 1028) allocates and
uses physical memory for internal resources.

DataWriters must allocate internal structures to handle the simultaneously
blocking of threads trying to call FooDataWriter::write (p. 1368) on the same
DDSDataWriter (p. 1028), for the storage used to batch small samples, and
for content-based filters specified by DataReaders.

Most of these internal structures start at an initial size and, by default, will
be grown as needed by dynamically allocating additional memory. You may
set fixed, maximum sizes for these internal structures if you want to bound
the amount of memory that can be used by a DDSDataWriter (p. 1028).
By setting the initial size to the maximum size, you will prevent RTI Data
Distribution Service from dynamically allocating any memory after the creation
of the DDSDataWriter (p. 1028).

This QoS policy is an extension to the DDS standard.

Entity:

DDSDataWriter (p. 1028)

Properties:

RxO (p. 327) = N/A
Changeable (p. 328) = NO (p. 328)

6.21.2 Member Data Documentation

6.21.2.1 DDS Long DDS -
DataWriterResourceLimitsQosPolicy::initial concurrent -
blocking threads

The initial number of threads that are allowed to concurrently block on write
call on the same DDSDataWriter (p. 1028).

This value only applies if DDS HistoryQosPolicy (p. 709) has its
kind set to DDS KEEP ALL HISTORY QOS (p. 353) and DDS -
ReliabilityQosPolicy::max blocking time (p. 816) is > 0.

[default] 1

[range] [1, 10000], <= max concurrent blocking threads

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.21 DDS DataWriterResourceLimitsQosPolicy Struct Reference525

6.21.2.2 DDS Long DDS -
DataWriterResourceLimitsQosPolicy::max -
concurrent blocking threads

The maximum number of threads that are allowed to concurrently block on
write call on the same DDSDataWriter (p. 1028).

This value only applies if DDS HistoryQosPolicy (p. 709) has its
kind set to DDS KEEP ALL HISTORY QOS (p. 353) and DDS -
ReliabilityQosPolicy::max blocking time (p. 816) is > 0.

[default] DDS LENGTH UNLIMITED (p. 356)

[range] [1, 10000] or DDS LENGTH UNLIMITED (p. 356), >= initial -
concurrent blocking threads

6.21.2.3 DDS Long DDS -
DataWriterResourceLimitsQosPolicy::max -
remote reader filters

The maximum number of remote readers for which the writer will perform
content-based filtering.

[default] 32

[range] [0, 32]

6.21.2.4 DDS Long DDS -
DataWriterResourceLimitsQosPolicy::initial batches

Represents the initial number of batches a DDSDataWriter (p. 1028) will
manage.

[default] 8

[range] [1,100 million]

See also:

DDS BatchQosPolicy (p. 446)

6.21.2.5 DDS Long DDS -
DataWriterResourceLimitsQosPolicy::max batches

Represents the maximum number of batches a DDSDataWriter (p. 1028) will
manage.

[default] DDS LENGTH UNLIMITED (p. 356)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

526 Class Documentation

When batching is enabled, the maximum number of samples that a DDS-
DataWriter (p. 1028) can store is limited by this value and DDS -
ResourceLimitsQosPolicy::max samples (p. 829).

[range] [1,100 million] or DDS LENGTH UNLIMITED (p. 356) >=
DDS RtpsReliableWriterProtocol t::heartbeats per max samples
(p. 841) if batching is enabled

See also:

DDS BatchQosPolicy (p. 446)

6.21.2.6 DDS -
DataWriterResourceLimitsInstanceReplacementKind
DDS DataWriterResourceLimitsQosPolicy::instance -
replacement

Sets the kinds of instances allowed to be replaced when instance resource limits
are reached.

When a DDSDataWriter (p. 1028)’s number of active instances is greater
than DDS ResourceLimitsQosPolicy::max instances (p. 830), it will try
to make room by replacing an existing instance. This field specifies the kinds
of instances allowed to be replaced.

If a replaceable instance is not available, either an out-of-resources exception
will be returned, or the writer may block if the instance reclamation was done
when writing.

[default] DDS UNREGISTERED INSTANCE REPLACEMENT
(p. 393)

See also:

DDS DataWriterResourceLimitsInstanceReplacementKind
(p. 392)

6.21.2.7 DDS Boolean DDS -
DataWriterResourceLimitsQosPolicy::replace empty -
instances

Whether or not to replace empty instances during instance replacement.

When a DDSDataWriter (p. 1028) has more active instances than allowed
by DDS ResourceLimitsQosPolicy::max instances (p. 830), it tries to
make room by replacing an existing instance. This field configures whether

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.21 DDS DataWriterResourceLimitsQosPolicy Struct Reference527

empty instances (i.e. instances with no samples) may be replaced. If
set DDS BOOLEAN TRUE (p. 288), then a DDSDataWriter (p. 1028)
will first try reclaiming empty instances, before trying to replace whatever
is specified by DDS DataWriterResourceLimitsQosPolicy::instance -
replacement (p. 526).

[default] DDS BOOLEAN FALSE (p. 289)

See also:

DDS DataWriterResourceLimitsInstanceReplacementKind
(p. 392)

6.21.2.8 DDS Boolean DDS -
DataWriterResourceLimitsQosPolicy::autoregister -
instances

Whether or not to automatically register new instances.

[default] DDS BOOLEAN TRUE (p. 288)

When set to true, it is possible to write with a non-NIL handle of an instance
that is not registered: the write operation will succeed and the instance will be
registered. Otherwise, that write operation would fail.

See also:

FooDataWriter::write (p. 1368)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

528 Class Documentation

6.22 DDS DeadlineQosPolicy Struct Reference

Expresses the maximum duration (deadline) within which an instance is ex-
pected to be updated.

Public Attributes

ˆ struct DDS Duration t period
Duration of the deadline period.

6.22.1 Detailed Description

Expresses the maximum duration (deadline) within which an instance is ex-
pected to be updated.

A DDSDataReader (p. 1004) expects a new sample updating the value of each
instance at least once every period. That is, period specifies the maximum
expected elapsed time between arriving data samples.

A DDSDataWriter (p. 1028) indicates that the application commits to write
a new value (using the DDSDataWriter (p. 1028)) for each instance managed
by the DDSDataWriter (p. 1028) at least once every period.

This QoS can be used during system integration to ensure that applications
have been coded to meet design specifications.

It can also be used during run time to detect when systems are performing
outside of design specifications. Receiving applications can take appropriate
actions to prevent total system failure when data is not received in time. For
topics on which data is not expected to be periodic, period should be set to an
infinite value.

Entity:

DDSTopic (p. 1311), DDSDataReader (p. 1004), DDSDataWriter
(p. 1028)

Status:

DDS OFFERED DEADLINE MISSED STATUS (p. 311), DDS -
REQUESTED DEADLINE MISSED STATUS (p. 311), DDS -
OFFERED INCOMPATIBLE QOS STATUS (p. 311), DDS -
REQUESTED INCOMPATIBLE QOS STATUS (p. 311)

Properties:

RxO (p. 327) = YES

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.22 DDS DeadlineQosPolicy Struct Reference 529

Changeable (p. 328) = YES (p. 328)

6.22.2 Usage

This policy is useful for cases where a DDSTopic (p. 1311) is expected to
have each instance updated periodically. On the publishing side this setting
establishes a contract that the application must meet. On the subscribing side
the setting establishes a minimum requirement for the remote publishers that
are expected to supply the data values.

When RTI Data Distribution Service ’matches’ a DDSDataWriter (p. 1028)
and a DDSDataReader (p. 1004) it checks whether the settings are compatible
(i.e., offered deadline <= requested deadline); if they are not, the two entities are
informed (via the DDSListener (p. 1217) or DDSCondition (p. 992) mech-
anism) of the incompatibility of the QoS settings and communication will not
occur.

Assuming that the reader and writer ends have compatible settings, the fulfil-
ment of this contract is monitored by RTI Data Distribution Service and the
application is informed of any violations by means of the proper DDSListener
(p. 1217) or DDSCondition (p. 992).

6.22.3 Compatibility

The value offered is considered compatible with the value requested if and only
if the inequality offered period <= requested period holds.

6.22.4 Consistency

The setting of the DEADLINE (p. 339) policy must be set consistently with
that of the TIME BASED FILTER (p. 346).

For these two policies to be consistent the settings must be such that deadline
period >= minimum separation.

An attempt to set these policies in an inconsistent manner will result in DDS -
RETCODE INCONSISTENT POLICY (p. 304) in set qos (abstract)
(p. 1158), or the DDSEntity (p. 1157) will not be created.

For a DDSDataReader (p. 1004), the DEADLINE (p. 339) policy and
DDS TimeBasedFilterQosPolicy (p. 894) may interact such that even
though the DDSDataWriter (p. 1028) is writing samples fast enough to
fulfill its commitment to its own deadline, the DDSDataReader (p. 1004)
may see violations of its deadline. This happens because RTI Data
Distribution Service will drop any samples received within the DDS -
TimeBasedFilterQosPolicy::minimum separation (p. 896). To avoid trig-

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

530 Class Documentation

gering the DDSDataReader (p. 1004)’s deadline, even though the matched
DDSDataWriter (p. 1028) is meeting its own deadline, set the two QoS pa-
rameters so that:

reader deadline >= reader minimum separation + writer deadline

See DDS TimeBasedFilterQosPolicy (p. 894) for more information about
the interactions between deadlines and time-based filters.

See also:

DDS TimeBasedFilterQosPolicy (p. 894)

6.22.5 Member Data Documentation

6.22.5.1 struct DDS Duration t DDS DeadlineQosPolicy::period
[read]

Duration of the deadline period.

[default] DDS DURATION INFINITE (p. 295)

[range] [1 nanosec, 1 year] or DDS DURATION INFINITE (p. 295), >=
DDS TimeBasedFilterQosPolicy::minimum separation (p. 896)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.23 DDS DestinationOrderQosPolicy Struct Reference 531

6.23 DDS DestinationOrderQosPolicy Struct
Reference

Controls how the middleware will deal with data sent by multiple DDS-
DataWriter (p. 1028) entities for the same instance of data (i.e., same
DDSTopic (p. 1311) and key).

Public Attributes

ˆ DDS DestinationOrderQosPolicyKind kind

Specifies the desired kind of destination order.

ˆ struct DDS Duration t source timestamp tolerance

<<eXtension>> (p. 190) Allowed tolerance between source timestamps of
consecutive samples.

6.23.1 Detailed Description

Controls how the middleware will deal with data sent by multiple DDS-
DataWriter (p. 1028) entities for the same instance of data (i.e., same
DDSTopic (p. 1311) and key).

Entity:

DDSTopic (p. 1311), DDSDataReader (p. 1004), DDSDataWriter
(p. 1028)

Status:

DDS OFFERED INCOMPATIBLE QOS STATUS (p. 311),
DDS REQUESTED INCOMPATIBLE QOS STATUS (p. 311)

Properties:

RxO (p. 327) = YES
Changeable (p. 328) = UNTIL ENABLE (p. 328)

6.23.2 Usage

When multiple DataWriters send data for the same topic, the order in which
data from different DataWriters are received by the applications of different

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

532 Class Documentation

DataReaders may be different. So different DataReaders may not receive the
same ”last” value when DataWriters stop sending data.

This QoS policy controls how each subscriber resolves the final value of a data
instance that is written by multiple DDSDataWriter (p. 1028) entities (which
may be associated with different DDSPublisher (p. 1243) entities) running on
different nodes.

The default setting, DDS BY RECEPTION TIMESTAMP -
DESTINATIONORDER QOS (p. 351), indicates that (assuming the
OWNERSHIP STRENGTH (p. 343) policy allows it) the latest received
value for the instance should be the one whose value is kept. That is, data
will be delivered by a DDSDataReader (p. 1004) in the order in which it was
received (which may lead to inconsistent final values).

The setting DDS BY SOURCE TIMESTAMP -
DESTINATIONORDER QOS (p. 351) indicates that (assuming the
OWNERSHIP STRENGTH (p. 343) allows it, within each instance) the
source timestamp of the change shall be used to determine the most recent
information. That is, data will be delivered by a DDSDataReader (p. 1004)
in the order in which it was sent . If data arrives on the network with a source
timestamp that is later than the source timestamp of the last data delivered,
the new data will be dropped. This ’by source timestamp’ ordering therefore
works best when system clocks are relatively synchronized among writing
machines.

When using DDS BY SOURCE TIMESTAMP -
DESTINATIONORDER QOS (p. 351), not all data sent by multiple
DDSDataWriter (p. 1028) entities may be delivered to a DDSDataReader
(p. 1004) and not all DataReaders will see the same data sent by DataWriters.
However, all DataReaders will see the same ”final” data when DataWriters
”stop” sending data. This is the only setting that, in the case of concurrently
publishing DDSDataWriter (p. 1028) entities updating the same instance of
a shared-ownership topic, ensures all subscribers will end up with the same
final value for the instance.

This QoS can be used to create systems that have the property of ”eventual
consistency.” Thus intermediate states across multiple applications may be in-
consistent, but when DataWriters stop sending changes to the same topic, all
applications will end up having the same state.

6.23.3 Compatibility

The value offered is considered compatible with the value requested
if and only if the inequality offered kind >= requested kind eval-
uates to ’TRUE’. For the purposes of this inequality, the values
of DDS DestinationOrderQosPolicy::kind (p. 533) are consid-

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.23 DDS DestinationOrderQosPolicy Struct Reference 533

ered ordered such that DDS BY RECEPTION TIMESTAMP -
DESTINATIONORDER QOS (p. 351) < DDS BY SOURCE -
TIMESTAMP DESTINATIONORDER QOS (p. 351)

6.23.4 Member Data Documentation

6.23.4.1 DDS DestinationOrderQosPolicyKind
DDS DestinationOrderQosPolicy::kind

Specifies the desired kind of destination order.

[default] DDS BY RECEPTION TIMESTAMP -
DESTINATIONORDER QOS (p. 351),

6.23.4.2 struct DDS Duration t DDS -
DestinationOrderQosPolicy::source timestamp tolerance
[read]

<<eXtension>> (p. 190) Allowed tolerance between source timestamps of
consecutive samples.

When a DDSDataWriter (p. 1028) sets DDS -
DestinationOrderQosPolicyKind (p. 351) to DDS BY SOURCE -
TIMESTAMP DESTINATIONORDER QOS (p. 351), when when
writing a sample, its timestamp must not be less than the timestamp of the
previously written sample. However, if it is less than the timestamp of the
previously written sample but the difference is less than this tolerance, the
sample will use the previously written sample’s timestamp as its timestamp.
Otherwise, if the difference is greater than this tolerance, the write will fail.

When a DDSDataReader (p. 1004) sets DDS -
DestinationOrderQosPolicyKind (p. 351) to DDS BY SOURCE -
TIMESTAMP DESTINATIONORDER QOS (p. 351), the DDS-
DataReader (p. 1004) will accept a sample only if the difference between
its source timestamp and the reception timestamp is no greater than this
tolerance. Otherwise, the sample is rejected.

[default] 100 milliseconds for DDSDataWriter (p. 1028), 30 seconds for
DDSDataReader (p. 1004)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

534 Class Documentation

6.24 DDS DiscoveryConfigQosPolicy Struct
Reference

Settings for discovery configuration.

Public Attributes

ˆ struct DDS Duration t participant liveliness lease duration
The liveliness lease duration for the participant.

ˆ struct DDS Duration t participant liveliness assert period
The period to assert liveliness for the participant.

ˆ DDS RemoteParticipantPurgeKind remote participant purge -
kind

The participant’s behavior for maintaining knowledge of remote participants
(and their contained entities) with which discovery communication has been
lost.

ˆ struct DDS Duration t max liveliness loss detection period
The maximum amount of time between when a remote entity stops maintain-
ing its liveliness and when the matched local entity realizes that fact.

ˆ DDS Long initial participant announcements
The number of initial announcements sent when a participant is first enabled
or when a remote participant is newly discovered.

ˆ struct DDS Duration t min initial participant announcement -
period

The minimum period between initial announcements when a participant is
first enabled or when a remote participant is newly discovered.

ˆ struct DDS Duration t max initial participant announcement -
period

The maximum period between initial announcements when a participant is
first enabled or when a remote participant is newly discovered.

ˆ struct DDS BuiltinTopicReaderResourceLimits t participant -
reader resource limits

Resource limits.

ˆ struct DDS RtpsReliableReaderProtocol t publication reader
RTPS protocol-related configuration settings for a built-in publication reader.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.24 DDS DiscoveryConfigQosPolicy Struct Reference 535

ˆ struct DDS BuiltinTopicReaderResourceLimits t publication -
reader resource limits

Resource limits.

ˆ struct DDS RtpsReliableReaderProtocol t subscription reader

RTPS protocol-related configuration settings for a built-in subscription
reader.

ˆ struct DDS BuiltinTopicReaderResourceLimits t subscription -
reader resource limits

Resource limits.

ˆ struct DDS RtpsReliableWriterProtocol t publication writer

RTPS protocol-related configuration settings for a built-in publication writer.

ˆ struct DDS RtpsReliableWriterProtocol t subscription writer

RTPS protocol-related configuration settings for a built-in subscription
writer.

ˆ DDS DiscoveryConfigBuiltinPluginKindMask builtin -
discovery plugins

The kind mask for built-in discovery plugins.

ˆ struct DDS RtpsReliableReaderProtocol t participant message -
reader

RTPS protocol-related configuration settings for a built-in participant mes-
sage reader.

ˆ struct DDS RtpsReliableWriterProtocol t participant message -
writer

RTPS protocol-related configuration settings for a built-in participant mes-
sage writer.

6.24.1 Detailed Description

Settings for discovery configuration.

This QoS policy is an extension to the DDS standard.

This QoS policy controls the amount of delay in discovering entities in the
system and the amount of discovery traffic in the network.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

536 Class Documentation

The amount of network traffic required by the discovery process can vary widely,
based on how your application has chosen to configure the middleware’s network
addressing (e.g., unicast vs. multicast, multicast TTL, etc.), the size of the
system, whether all applications are started at the same time or whether start
times are staggered, and other factors. Your application can use this policy
to make tradeoffs between discovery completion time and network bandwidth
utilization. In addition, you can introduce random back-off periods into the
discovery process to decrease the probability of network contention when many
applications start simultaneously.

Entity:

DDSDomainParticipant (p. 1054)

Properties:

RxO (p. 327) = N/A
Changeable (p. 328) = NO (p. 328)

6.24.2 Member Data Documentation

6.24.2.1 struct DDS Duration t DDS -
DiscoveryConfigQosPolicy::participant liveliness lease -
duration [read]

The liveliness lease duration for the participant.

This is the same as the expiration time of the DomainParticipant as defined in
the RTPS protocol.

If the participant has not refreshed its own liveliness to other participants at
least once within this period, it may be considered as stale by other participants
in the network.

Should be strictly greater than DDS DiscoveryConfigQosPolicy::participant -
liveliness assert period (p. 536).

[default] 100 seconds

[range] [1 nanosec,1 year], > participant liveliness assert period

6.24.2.2 struct DDS Duration t DDS -
DiscoveryConfigQosPolicy::participant liveliness assert -
period [read]

The period to assert liveliness for the participant.

The period at which the participant will refresh its liveliness to all the peers.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.24 DDS DiscoveryConfigQosPolicy Struct Reference 537

Should be strictly less than DDS DiscoveryConfigQosPolicy::participant -
liveliness lease duration (p. 536).

[default] 30 seconds

[range] [1 nanosec,1 year), < participant liveliness lease duration

6.24.2.3 DDS RemoteParticipantPurgeKind DDS -
DiscoveryConfigQosPolicy::remote participant purge kind

The participant’s behavior for maintaining knowledge of remote participants
(and their contained entities) with which discovery communication has been
lost.

Most users will not need to change this value from its default, DDS -
LIVELINESS BASED REMOTE PARTICIPANT PURGE (p. 408).
However, DDS NO REMOTE PARTICIPANT PURGE (p. 408) may be
a good choice if the following conditions apply:

1. Discovery communication with a remote participant may be lost while
data communication remains intact. Such will not typically be the case if
discovery takes place over the Simple Discovery Protocol, but may be the
case if the RTI Enterprise Discovery Service is used.

2. Extensive and prolonged lack of discovery communication between partic-
ipants is not expected to be common, either because participant loss itself
is expected to be rare, or because participants may be lost sporadically
but will typically return again.

3. Maintaining inter-participant liveliness is problematic, perhaps be-
cause a participant has no writers with the appropriate DDS -
LivelinessQosPolicyKind (p. 344).

[default] DDS LIVELINESS BASED REMOTE PARTICIPANT -
PURGE (p. 408)

6.24.2.4 struct DDS Duration t DDS -
DiscoveryConfigQosPolicy::max liveliness loss detection -
period [read]

The maximum amount of time between when a remote entity stops maintaining
its liveliness and when the matched local entity realizes that fact.

Notification of the loss of liveliness of a remote entity may come more quickly
that this duration, depending on the liveliness contract between the local and
remote entities and the capabilities of the discovery mechanism in use. For
example, a DDSDataReader (p. 1004) will learn of the loss of liveliness of a

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

538 Class Documentation

matched DDSDataWriter (p. 1028) within the reader’s offered liveliness lease
duration.

Shortening this duration will increase the responsiveness of entities to communi-
cation failures. However, it will also increase the CPU usage of the application,
as the liveliness of remote entities will be examined more frequently.

[default] 60 seconds

[range] [0, 1 year]

6.24.2.5 DDS Long DDS DiscoveryConfigQosPolicy::initial -
participant announcements

The number of initial announcements sent when a participant is first enabled
or when a remote participant is newly discovered.

Also, when a new remote participant appears, the local participant can announce
itself to the peers multiple times controlled by this parameter.

[default] 5

[range] [0,1 million]

6.24.2.6 struct DDS Duration t DDS -
DiscoveryConfigQosPolicy::min initial participant -
announcement period [read]

The minimum period between initial announcements when a participant is first
enabled or when a remote participant is newly discovered.

A random delay between this and DDS DiscoveryConfigQosPolicy::max -
initial participant announcement period (p. 539) is introduced in between
initial announcements when a new remote participant is discovered.

The setting of DDS DiscoveryConfigQosPolicy::min initial -
participant announcement period (p. 538) must be consistent with DDS -
DiscoveryConfigQosPolicy::max initial participant announcement -
period (p. 539). For these two values to be consistent, they must verify
that:

DDS DiscoveryConfigQosPolicy::min initial -
participant announcement period (p. 538) <= DDS -
DiscoveryConfigQosPolicy::max initial participant announcement -
period (p. 539).

[default] 1 second

[range] [1 nanosec,1 year]

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.24 DDS DiscoveryConfigQosPolicy Struct Reference 539

6.24.2.7 struct DDS Duration t DDS -
DiscoveryConfigQosPolicy::max initial participant -
announcement period [read]

The maximum period between initial announcements when a participant is first
enabled or when a remote participant is newly discovered.

A random delay between DDS DiscoveryConfigQosPolicy::min initial -
participant announcement period (p. 538) and this is introduced in be-
tween initial announcements when a new remote participant is discovered.

The setting of DDS DiscoveryConfigQosPolicy::max initial -
participant announcement period (p. 539) must be consistent with DDS -
DiscoveryConfigQosPolicy::min initial participant announcement -
period (p. 538). For these two values to be consistent, they must verify
that:

DDS DiscoveryConfigQosPolicy::min initial -
participant announcement period (p. 538) <= DDS -
DiscoveryConfigQosPolicy::max initial participant announcement -
period (p. 539).

[default] 1 second

[range] [1 nanosec,1 year]

6.24.2.8 struct DDS BuiltinTopicReaderResourceLimits t
DDS DiscoveryConfigQosPolicy::participant reader -
resource limits [read]

Resource limits.

Resource limit of the built-in topic participant reader. For details, see DDS -
BuiltinTopicReaderResourceLimits t (p. 452).

6.24.2.9 struct DDS RtpsReliableReaderProtocol t
DDS DiscoveryConfigQosPolicy::publication reader
[read]

RTPS protocol-related configuration settings for a built-in publication reader.

For details, refer to the DDS DataReaderQos (p. 481)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

540 Class Documentation

6.24.2.10 struct DDS BuiltinTopicReaderResourceLimits t
DDS DiscoveryConfigQosPolicy::publication reader -
resource limits [read]

Resource limits.

Resource limit of the built-in topic publication reader. For details, see DDS -
BuiltinTopicReaderResourceLimits t (p. 452).

6.24.2.11 struct DDS RtpsReliableReaderProtocol t
DDS DiscoveryConfigQosPolicy::subscription reader
[read]

RTPS protocol-related configuration settings for a built-in subscription reader.

For details, refer to the DDS DataReaderQos (p. 481)

6.24.2.12 struct DDS BuiltinTopicReaderResourceLimits t
DDS DiscoveryConfigQosPolicy::subscription reader -
resource limits [read]

Resource limits.

Resource limit of the built-in topic subscription reader. For details, see DDS -
BuiltinTopicReaderResourceLimits t (p. 452).

6.24.2.13 struct DDS RtpsReliableWriterProtocol t
DDS DiscoveryConfigQosPolicy::publication writer
[read]

RTPS protocol-related configuration settings for a built-in publication writer.

For details, refer to the DDS DataWriterQos (p. 516)

6.24.2.14 struct DDS RtpsReliableWriterProtocol t
DDS DiscoveryConfigQosPolicy::subscription writer
[read]

RTPS protocol-related configuration settings for a built-in subscription writer.

For details, refer to the DDS DataWriterQos (p. 516)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.24 DDS DiscoveryConfigQosPolicy Struct Reference 541

6.24.2.15 DDS DiscoveryConfigBuiltinPluginKindMask DDS -
DiscoveryConfigQosPolicy::builtin discovery plugins

The kind mask for built-in discovery plugins.

There are several built-in discovery plugin. This mask enables the different
plugins. Any plugin not enabled will not be created.

[default] DDS DISCOVERYCONFIG BUILTIN SDP (p. 407)

6.24.2.16 struct DDS RtpsReliableReaderProtocol t DDS -
DiscoveryConfigQosPolicy::participant message reader
[read]

RTPS protocol-related configuration settings for a built-in participant message
reader.

For details, refer to the DDS DataReaderQos (p. 481)

6.24.2.17 struct DDS RtpsReliableWriterProtocol t DDS -
DiscoveryConfigQosPolicy::participant message writer
[read]

RTPS protocol-related configuration settings for a built-in participant message
writer.

For details, refer to the DDS DataWriterQos (p. 516)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

542 Class Documentation

6.25 DDS DiscoveryQosPolicy Struct Reference

Configures the mechanism used by the middleware to automatically discover
and connect with new remote applications.

Public Attributes

ˆ struct DDS StringSeq enabled transports
The transports available for use by the Discovery mechanism.

ˆ struct DDS StringSeq initial peers
Determines the initial list of peers that will be contacted by the Discovery
mechanism to send announcements about the presence of this participant.

ˆ struct DDS StringSeq multicast receive addresses
Specifies the multicast group addresses on which discovery-related metatraf-
fic can be received by the domain participant.

ˆ DDS Long metatraffic transport priority
The transport priority to use for the Discovery meta-traffic.

ˆ DDS Boolean accept unknown peers
Whether to accept a new participant that is not in the initial peers list.

6.25.1 Detailed Description

Configures the mechanism used by the middleware to automatically discover
and connect with new remote applications.

Entity:

DDSDomainParticipant (p. 1054)

Properties:

RxO (p. 327) = N/A
Changeable (p. 328) = NO (p. 328)

6.25.2 Usage

This QoS policy identifies where on the network this application can potentially
discover other applications with which to communicate.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.25 DDS DiscoveryQosPolicy Struct Reference 543

The middleware will periodically send network packets to these locations, an-
nouncing itself to any remote applications that may be present, and will listen
for announcements from those applications.

This QoS policy is an extension to the DDS standard.

See also:

NDDS DISCOVERY PEERS (p. 371)
DDS DiscoveryConfigQosPolicy (p. 534)

6.25.3 Member Data Documentation

6.25.3.1 struct DDS StringSeq DDS DiscoveryQosPolicy::enabled -
transports [read]

The transports available for use by the Discovery mechanism.

Only these transports can be used by the discovery mechanism to send meta-
traffic via the builtin endpoints (built-in DDSDataReader (p. 1004) and
DDSDataWriter (p. 1028)).

Also determines the unicast addresses on which the Discovery mechanism will
listen for meta-traffic. These along with the domain id and participant id
determine the unicast locators on which the Discovery mechanism can receive
meta-data.

The memory for the strings in this sequence is managed according to the con-
ventions described in Conventions (p. 432). In particular, be careful to avoid
a situation in which RTI Data Distribution Service allocates a string on your
behalf and you then reuse that string in such a way that RTI Data Distribution
Service believes it to have more memory allocated to it than it actually does.

Alias names for the builtin transports are defined in TRANSPORT -
BUILTIN (p. 379).

[default] Empty sequence. All the transports available to the DomainPartici-
pant are available for use by the Discovery mechanism.

[range] Sequence of non-null,non-empty strings.

6.25.3.2 struct DDS StringSeq DDS DiscoveryQosPolicy::initial -
peers [read]

Determines the initial list of peers that will be contacted by the Discovery
mechanism to send announcements about the presence of this participant.

If there is a remote peer DDSDomainParticipant (p. 1054) such as is de-
scribed this list, it will become aware of this participant and will engage in the

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

544 Class Documentation

Discovery protocol to exchange meta-data with this participant.

Each element of this list must be a peer descriptor in the proper format (see
Peer Descriptor Format (p. 372)).

[default] See NDDS DISCOVERY PEERS (p. 371)

[range] Sequence of arbitrary length.

See also:

Peer Descriptor Format (p. 372)
DDSDomainParticipant::add peer() (p. 1111)

6.25.3.3 struct DDS StringSeq DDS -
DiscoveryQosPolicy::multicast receive addresses
[read]

Specifies the multicast group addresses on which discovery-related metatraffic
can be received by the domain participant.

The multicast group addresses on which the Discovery mechanism will listen for
meta-traffic.

Each element of this list must be a valid multicast address (IPv4 or IPv6) in
the proper format (see Address Format (p. 373)).

The domain id determines the multicast port on which the Discovery mecha-
nism can receive meta-data.

If NDDS DISCOVERY PEERS does not contain a multicast address, then the
string sequence DDS DiscoveryQosPolicy::multicast receive addresses
(p. 544) is cleared and the RTI discovery process will not listen for discovery
messages via multicast.

If NDDS DISCOVERY PEERS contains one or more multicast addresses, the
addresses will be stored in DDS DiscoveryQosPolicy::multicast receive -
addresses (p. 544), starting at element 0. They will be stored in the order they
appear NDDS DISCOVERY PEERS.

Note: Currently, RTI Data Distribution Service will only listen for
discovery traffic on the first multicast address (element 0) in DDS -
DiscoveryQosPolicy::multicast receive addresses (p. 544).

[default] See NDDS DISCOVERY PEERS (p. 371)

[range] Sequence of length [0,1], whose elements are multicast addresses. Cur-
rently only the first multicast address (if any) is used. The rest are ignored.

See also:

Address Format (p. 373)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.25 DDS DiscoveryQosPolicy Struct Reference 545

6.25.3.4 DDS Long DDS DiscoveryQosPolicy::metatraffic -
transport priority

The transport priority to use for the Discovery meta-traffic.

The discovery metatraffic will be sent by the built-in DDSDataWriter
(p. 1028) using this transport priority.

[default] 0

6.25.3.5 DDS Boolean DDS DiscoveryQosPolicy::accept unknown -
peers

Whether to accept a new participant that is not in the initial peers list.

If DDS BOOLEAN FALSE (p. 289), the participant will only communicate
with those in the initial peers list and those added via DDSDomainPartici-
pant::add peer() (p. 1111).

If DDS BOOLEAN TRUE (p. 288), the participant will also communicate
with all discovered remote participants.

Note: If accept unknown peers is DDS BOOLEAN FALSE (p. 289) and
shared memory is disabled, applications on the same node will not communicate
if only localhost is specified in the peers list. If shared memory is disabled or
shmem:// is not specified in the peers list, to communicate with other applica-
tions on the same node through the loopback interface, you must put the actual
node address or hostname in NDDS DISCOVERY PEERS (p. 371).

[default] DDS BOOLEAN TRUE (p. 288)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

546 Class Documentation

6.26 DDS DomainParticipantFactoryQos
Struct Reference

QoS policies supported by a DDSDomainParticipantFactory (p. 1123).

Public Attributes

ˆ struct DDS EntityFactoryQosPolicy entity factory

Entity factory policy, ENTITY FACTORY (p. 362).

ˆ struct DDS SystemResourceLimitsQosPolicy resource limits

<<eXtension>> (p. 190) System resource limits, SYSTEM -
RESOURCE LIMITS (p. 397).

ˆ struct DDS ProfileQosPolicy profile

<<eXtension>> (p. 190) Qos profile policy, PROFILE (p. 425).

6.26.1 Detailed Description

QoS policies supported by a DDSDomainParticipantFactory (p. 1123).

Entity:

DDSDomainParticipantFactory (p. 1123)

See also:

QoS Policies (p. 319) and allowed ranges within each Qos.

6.26.2 Member Data Documentation

6.26.2.1 struct DDS EntityFactoryQosPolicy DDS -
DomainParticipantFactoryQos::entity factory
[read]

Entity factory policy, ENTITY FACTORY (p. 362).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.26 DDS DomainParticipantFactoryQos Struct Reference 547

6.26.2.2 struct DDS SystemResourceLimitsQosPolicy
DDS DomainParticipantFactoryQos::resource limits
[read]

<<eXtension>> (p. 190) System resource limits, SYSTEM -
RESOURCE LIMITS (p. 397).

6.26.2.3 struct DDS ProfileQosPolicy DDS -
DomainParticipantFactoryQos::profile
[read]

<<eXtension>> (p. 190) Qos profile policy, PROFILE (p. 425).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

548 Class Documentation

6.27 DDS DomainParticipantQos Struct Refer-
ence

QoS policies supported by a DDSDomainParticipant (p. 1054) entity.

Public Attributes

ˆ struct DDS UserDataQosPolicy user data

User data policy, USER DATA (p. 332).

ˆ struct DDS EntityFactoryQosPolicy entity factory

Entity factory policy, ENTITY FACTORY (p. 362).

ˆ struct DDS WireProtocolQosPolicy wire protocol

<<eXtension>> (p. 190) Wire Protocol policy, WIRE PROTOCOL
(p. 383).

ˆ struct DDS TransportBuiltinQosPolicy transport builtin

<<eXtension>> (p. 190) Transport Builtin policy, TRANSPORT -
BUILTIN (p. 379).

ˆ struct DDS TransportUnicastQosPolicy default unicast

<<eXtension>> (p. 190) Default Unicast Transport policy, TRANS-
PORT UNICAST (p. 367).

ˆ struct DDS DiscoveryQosPolicy discovery

<<eXtension>> (p. 190) Discovery policy, DISCOVERY (p. 370).

ˆ struct DDS DomainParticipantResourceLimitsQosPolicy re-
source limits

<<eXtension>> (p. 190) Domain participant resource limits policy, DO-
MAIN PARTICIPANT RESOURCE LIMITS (p. 398).

ˆ struct DDS EventQosPolicy event

<<eXtension>> (p. 190) Event policy, EVENT (p. 399).

ˆ struct DDS ReceiverPoolQosPolicy receiver pool

<<eXtension>> (p. 190) Receiver pool policy, RECEIVER POOL
(p. 401).

ˆ struct DDS DatabaseQosPolicy database

<<eXtension>> (p. 190) Database policy, DATABASE (p. 400).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.27 DDS DomainParticipantQos Struct Reference 549

ˆ struct DDS DiscoveryConfigQosPolicy discovery config

<<eXtension>> (p. 190) Discovery config policy, DISCOVERY -
CONFIG (p. 405).

ˆ struct DDS PropertyQosPolicy property

<<eXtension>> (p. 190) Property policy, PROPERTY (p. 416).

ˆ struct DDS EntityNameQosPolicy participant name

<<eXtension>> (p. 190) The participant name. ENTITY NAME
(p. 424)

ˆ struct DDS TypeSupportQosPolicy type support

<<eXtension>> (p. 190) Type support data, TYPESUPPORT (p. 410).

6.27.1 Detailed Description

QoS policies supported by a DDSDomainParticipant (p. 1054) entity.

Certain members must be set in a consistent manner:

Length of DDS DomainParticipantQos::user data (p. 550) .value <=
DDS DomainParticipantQos::resource limits (p. 551) .participant user -
data max length

For DDS DomainParticipantQos::discovery config (p. 551) .publication -
writer

high watermark <= DDS DomainParticipantQos::resource limits
(p. 551) .local writer allocation .max count heartbeats per max samples <=
DDS DomainParticipantQos::resource limits (p. 551) .local writer -
allocation.max count

For DDS DomainParticipantQos::discovery config (p. 551) .suscription -
writer

high watermark <= DDS DomainParticipantQos::resource limits
(p. 551) .local reader allocation.max count heartbeats per max samples <=
DDS DomainParticipantQos::resource limits (p. 551) .local reader -
allocation.max count

If any of the above are not true, DDSDomainParticipant::set qos (p. 1110)
and DDSDomainParticipant::set qos with profile (p. 1110) and DDSDo-
mainParticipantFactory::set default participant qos (p. 1129) will fail
with DDS RETCODE INCONSISTENT POLICY (p. 304), and DDS-
DomainParticipantFactory::create participant (p. 1140) will fail.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

550 Class Documentation

Entity:

DDSDomainParticipant (p. 1054)

See also:

QoS Policies (p. 319) and allowed ranges within each Qos.
NDDS DISCOVERY PEERS (p. 371)

6.27.2 Member Data Documentation

6.27.2.1 struct DDS UserDataQosPolicy
DDS DomainParticipantQos::user data [read]

User data policy, USER DATA (p. 332).

6.27.2.2 struct DDS EntityFactoryQosPolicy
DDS DomainParticipantQos::entity factory [read]

Entity factory policy, ENTITY FACTORY (p. 362).

6.27.2.3 struct DDS WireProtocolQosPolicy
DDS DomainParticipantQos::wire protocol [read]

<<eXtension>> (p. 190) Wire Protocol policy, WIRE PROTOCOL
(p. 383).

The wire protocol (RTPS) attributes associated with the participant.

6.27.2.4 struct DDS TransportBuiltinQosPolicy
DDS DomainParticipantQos::transport builtin [read]

<<eXtension>> (p. 190) Transport Builtin policy, TRANSPORT -
BUILTIN (p. 379).

6.27.2.5 struct DDS TransportUnicastQosPolicy
DDS DomainParticipantQos::default unicast [read]

<<eXtension>> (p. 190) Default Unicast Transport policy, TRANS-
PORT UNICAST (p. 367).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.27 DDS DomainParticipantQos Struct Reference 551

6.27.2.6 struct DDS DiscoveryQosPolicy
DDS DomainParticipantQos::discovery [read]

<<eXtension>> (p. 190) Discovery policy, DISCOVERY (p. 370).

6.27.2.7 struct DDS DomainParticipantResourceLimitsQosPolicy
DDS DomainParticipantQos::resource limits [read]

<<eXtension>> (p. 190) Domain participant resource limits policy, DO-
MAIN PARTICIPANT RESOURCE LIMITS (p. 398).

6.27.2.8 struct DDS EventQosPolicy DDS -
DomainParticipantQos::event [read]

<<eXtension>> (p. 190) Event policy, EVENT (p. 399).

6.27.2.9 struct DDS ReceiverPoolQosPolicy
DDS DomainParticipantQos::receiver pool [read]

<<eXtension>> (p. 190) Receiver pool policy, RECEIVER POOL
(p. 401).

6.27.2.10 struct DDS DatabaseQosPolicy
DDS DomainParticipantQos::database [read]

<<eXtension>> (p. 190) Database policy, DATABASE (p. 400).

6.27.2.11 struct DDS DiscoveryConfigQosPolicy
DDS DomainParticipantQos::discovery config [read]

<<eXtension>> (p. 190) Discovery config policy, DISCOVERY CONFIG
(p. 405).

6.27.2.12 struct DDS PropertyQosPolicy
DDS DomainParticipantQos::property [read]

<<eXtension>> (p. 190) Property policy, PROPERTY (p. 416).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

552 Class Documentation

6.27.2.13 struct DDS EntityNameQosPolicy
DDS DomainParticipantQos::participant name [read]

<<eXtension>> (p. 190) The participant name. ENTITY NAME (p. 424)

6.27.2.14 struct DDS TypeSupportQosPolicy
DDS DomainParticipantQos::type support [read]

<<eXtension>> (p. 190) Type support data, TYPESUPPORT (p. 410).

Optional value that is passed to a type plugin’s on participant attached func-
tion.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.28 DDS DomainParticipantResourceLimitsQosPolicy Struct
Reference 553

6.28 DDS DomainParticipantResourceLimitsQosPolicy
Struct Reference

Various settings that configure how a DDSDomainParticipant (p. 1054) allo-
cates and uses physical memory for internal resources, including the maximum
sizes of various properties.

Public Attributes

ˆ struct DDS AllocationSettings t local writer allocation

Allocation settings applied to local DataWriters.

ˆ struct DDS AllocationSettings t local reader allocation

Allocation settings applied to local DataReaders.

ˆ struct DDS AllocationSettings t local publisher allocation

Allocation settings applied to local Publisher.

ˆ struct DDS AllocationSettings t local subscriber allocation

Allocation settings applied to local Subscriber.

ˆ struct DDS AllocationSettings t local topic allocation

Allocation settings applied to local Topic.

ˆ struct DDS AllocationSettings t remote writer allocation

Allocation settings applied to remote DataWriters.

ˆ struct DDS AllocationSettings t remote reader allocation

Allocation settings applied to remote DataReaders.

ˆ struct DDS AllocationSettings t remote participant allocation

Allocation settings applied to remote DomainParticipants.

ˆ struct DDS AllocationSettings t matching writer reader pair -
allocation

Allocation settings applied to matching local writer and remote/local reader
pairs.

ˆ struct DDS AllocationSettings t matching reader writer pair -
allocation

Allocation settings applied to matching local reader and remote/local writer
pairs.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

554 Class Documentation

ˆ struct DDS AllocationSettings t ignored entity allocation
Allocation settings applied to ignored entities.

ˆ struct DDS AllocationSettings t content filtered topic -
allocation

Allocation settings applied to content filtered topic.

ˆ struct DDS AllocationSettings t content filter allocation
Allocation settings applied to content filter.

ˆ struct DDS AllocationSettings t read condition allocation
Allocation settings applied to read condition pool.

ˆ struct DDS AllocationSettings t query condition allocation
Allocation settings applied to query condition pool.

ˆ struct DDS AllocationSettings t outstanding asynchronous -
sample allocation

Allocation settings applied to the maximum number of samples (from all
DDSDataWriter (p. 1028)) waiting to be asynchronously written.

ˆ struct DDS AllocationSettings t flow controller allocation
Allocation settings applied to flow controllers.

ˆ DDS Long local writer hash buckets
Hash Buckets settings applied to local DataWriters.

ˆ DDS Long local reader hash buckets
Number of hash buckets for local DataReaders.

ˆ DDS Long local publisher hash buckets
Number of hash buckets for local Publisher.

ˆ DDS Long local subscriber hash buckets
Number of hash buckets for local Subscriber.

ˆ DDS Long local topic hash buckets
Number of hash buckets for local Topic.

ˆ DDS Long remote writer hash buckets
Number of hash buckets for remote DataWriters.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.28 DDS DomainParticipantResourceLimitsQosPolicy Struct
Reference 555

ˆ DDS Long remote reader hash buckets

Number of hash buckets for remote DataReaders.

ˆ DDS Long remote participant hash buckets

Number of hash buckets for remote DomainParticipants.

ˆ DDS Long matching writer reader pair hash buckets

Number of hash buckets for matching local writer and remote/local reader
pairs.

ˆ DDS Long matching reader writer pair hash buckets

Number of hash buckets for matching local reader and remote/local writer
pairs.

ˆ DDS Long ignored entity hash buckets

Number of hash buckets for ignored entities.

ˆ DDS Long content filtered topic hash buckets

Number of hash buckets for content filtered topics.

ˆ DDS Long content filter hash buckets

Number of hash buckets for content filters.

ˆ DDS Long flow controller hash buckets

Number of hash buckets for flow controllers.

ˆ DDS Long max gather destinations

Maximum number of destinations per RTI Data Distribution Service send.

ˆ DDS Long participant user data max length

Maximum length of user data in DDS DomainParticipantQos (p. 548)
and DDS ParticipantBuiltinTopicData (p. 765).

ˆ DDS Long topic data max length

Maximum length of topic data in DDS TopicQos (p. 905), DDS -
TopicBuiltinTopicData (p. 898), DDS PublicationBuiltinTopicData
(p. 788) and DDS SubscriptionBuiltinTopicData (p. 876).

ˆ DDS Long publisher group data max length

Maximum length of group data in DDS PublisherQos (p. 800) and DDS -
PublicationBuiltinTopicData (p. 788).

ˆ DDS Long subscriber group data max length

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

556 Class Documentation

Maximum length of group data in DDS SubscriberQos (p. 874) and
DDS SubscriptionBuiltinTopicData (p. 876).

ˆ DDS Long writer user data max length

Maximum length of user data in DDS DataWriterQos (p. 516) and
DDS PublicationBuiltinTopicData (p. 788).

ˆ DDS Long reader user data max length

Maximum length of user data in DDS DataReaderQos (p. 481) and
DDS SubscriptionBuiltinTopicData (p. 876).

ˆ DDS Long max partitions

Maximum number of partition name strings allowable in a DDS -
PartitionQosPolicy (p. 769).

ˆ DDS Long max partition cumulative characters

Maximum number of combined characters allowable in all partition names
in a DDS PartitionQosPolicy (p. 769).

ˆ DDS Long type code max serialized length

Maximum size of serialized string for type code.

ˆ DDS Long contentfilter property max length

This field is the maximum length of all data related to a Content-filtered
topic.

ˆ DDS Long channel seq max length

Maximum number of channels that can be specified in DDS -
MultiChannelQosPolicy (p. 745) for MultiChannel DataWriters.

ˆ DDS Long channel filter expression max length

Maximum length of a channel DDS ChannelSettings t::filter expression
(p. 455) in a MultiChannel DataWriter.

ˆ DDS Long participant property list max length

Maximum number of properties associated with the DDSDomainPartici-
pant (p. 1054).

ˆ DDS Long participant property string max length

Maximum string length of the properties associated with the DDSDomain-
Participant (p. 1054).

ˆ DDS Long writer property list max length

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.28 DDS DomainParticipantResourceLimitsQosPolicy Struct
Reference 557

Maximum number of properties associated with a DDSDataWriter
(p. 1028).

ˆ DDS Long writer property string max length

Maximum string length of the properties associated with a DDSDataWriter
(p. 1028).

ˆ DDS Long reader property list max length

Maximum number of properties associated with a DDSDataReader
(p. 1004).

ˆ DDS Long reader property string max length

Maximum string length of the properties associated with a DDSDataReader
(p. 1004).

6.28.1 Detailed Description

Various settings that configure how a DDSDomainParticipant (p. 1054) allo-
cates and uses physical memory for internal resources, including the maximum
sizes of various properties.

This QoS policy sets maximum size limits on variable-length parameters used
by the participant and its contained Entities. It also controls the initial and
maximum sizes of data structures used by the participant to store informa-
tion about locally-created and remotely-discovered entities (such as DataWrit-
ers/DataReaders), as well as parameters used by the internal database to size
the hash tables it uses.

By default, a DDSDomainParticipant (p. 1054) is allowed to dynamically
allocate memory as needed as users create local Entities such as DDS-
DataWriter (p. 1028) and DDSDataReader (p. 1004) objects or as the par-
ticipant discovers new applications. By setting fixed values for the maximum
parameters in this QoS policy, you can bound the memory that can be al-
located by a DDSDomainParticipant (p. 1054). In addition, by setting the
initial values to the maximum values, you can prevent DomainParticipants from
allocating memory after the initialization period.

The maximum sizes of different variable-length parameters such as the number
of partitions that can be stored in the DDS PartitionQosPolicy (p. 769),
the maximum length of data store in the DDS UserDataQosPolicy (p. 972)
and DDS GroupDataQosPolicy (p. 706), and many others can be changed
from their defaults using this QoS policy. However, it is important that all
DomainParticipants that need to communicate with each other use the same set
of maximum values. Otherwise, when these parameters are propagated from one
DDSDomainParticipant (p. 1054) to another, a DDSDomainParticipant

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

558 Class Documentation

(p. 1054) with a smaller maximum length may reject the parameter, resulting
in an error.

An important parameter in this QoS policy that is often changed
by users is DDS DomainParticipantResourceLimitsQosPolicy::type -
code max serialized length (p. 568).

This QoS policy is an extension to the DDS standard.

Entity:

DDSDomainParticipant (p. 1054)

Properties:

RxO (p. 327) = N/A
Changeable (p. 328) = NO (p. 328)

6.28.2 Member Data Documentation

6.28.2.1 struct DDS AllocationSettings t
DDS DomainParticipantResourceLimitsQosPolicy::local -
writer allocation [read]

Allocation settings applied to local DataWriters.

[default] initial count = 16; max count = DDS LENGTH UNLIMITED
(p. 356); incremental count = -1

[range] See allowed ranges in struct DDS AllocationSettings t (p. 439)

6.28.2.2 struct DDS AllocationSettings t
DDS DomainParticipantResourceLimitsQosPolicy::local -
reader allocation [read]

Allocation settings applied to local DataReaders.

[default] initial count = 16; max count = DDS LENGTH UNLIMITED
(p. 356); incremental count = -1

[range] See allowed ranges in struct DDS AllocationSettings t (p. 439)

6.28.2.3 struct DDS AllocationSettings t
DDS DomainParticipantResourceLimitsQosPolicy::local -
publisher allocation [read]

Allocation settings applied to local Publisher.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.28 DDS DomainParticipantResourceLimitsQosPolicy Struct
Reference 559

[default] initial count = 4; max count = DDS LENGTH UNLIMITED
(p. 356); incremental count = -1

[range] See allowed ranges in struct DDS AllocationSettings t (p. 439)

6.28.2.4 struct DDS AllocationSettings t
DDS DomainParticipantResourceLimitsQosPolicy::local -
subscriber allocation [read]

Allocation settings applied to local Subscriber.

[default] initial count = 4; max count = DDS LENGTH UNLIMITED
(p. 356); incremental count = -1

[range] See allowed ranges in struct DDS AllocationSettings t (p. 439)

6.28.2.5 struct DDS AllocationSettings t
DDS DomainParticipantResourceLimitsQosPolicy::local -
topic allocation [read]

Allocation settings applied to local Topic.

[default] initial count = 16; max count = DDS LENGTH UNLIMITED
(p. 356); incremental count = -1

[range] See allowed ranges in struct DDS AllocationSettings t (p. 439)

6.28.2.6 struct DDS AllocationSettings t DDS -
DomainParticipantResourceLimitsQosPolicy::remote -
writer allocation [read]

Allocation settings applied to remote DataWriters.

Remote DataWriters include all DataWriters, both local and remote.

[default] initial count = 64; max count = DDS LENGTH UNLIMITED
(p. 356); incremental count = -1

[range] See allowed ranges in struct DDS AllocationSettings t (p. 439)

6.28.2.7 struct DDS AllocationSettings t DDS -
DomainParticipantResourceLimitsQosPolicy::remote -
reader allocation [read]

Allocation settings applied to remote DataReaders.

Remote DataReaders include all DataReaders, both local and remote.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

560 Class Documentation

[default] initial count = 64; max count = DDS LENGTH UNLIMITED
(p. 356); incremental count = -1

[range] See allowed ranges in struct DDS AllocationSettings t (p. 439)

6.28.2.8 struct DDS AllocationSettings t DDS -
DomainParticipantResourceLimitsQosPolicy::remote -
participant allocation [read]

Allocation settings applied to remote DomainParticipants.

Remote DomainParticipants include all DomainParticipants, both local and re-
mote.

[default] initial count = 16; max count = DDS LENGTH UNLIMITED
(p. 356); incremental count = -1

[range] See allowed ranges in struct DDS AllocationSettings t (p. 439)

6.28.2.9 struct DDS AllocationSettings t DDS -
DomainParticipantResourceLimitsQosPolicy::matching -
writer reader pair allocation [read]

Allocation settings applied to matching local writer and remote/local reader
pairs.

[default] initial count = 32; max count = DDS LENGTH UNLIMITED
(p. 356); incremental count = -1

[range] See allowed ranges in struct DDS AllocationSettings t (p. 439)

6.28.2.10 struct DDS AllocationSettings t DDS -
DomainParticipantResourceLimitsQosPolicy::matching -
reader writer pair allocation [read]

Allocation settings applied to matching local reader and remote/local writer
pairs.

[default] initial count = 32; max count = DDS LENGTH UNLIMITED
(p. 356); incremental count = -1

[range] See allowed ranges in struct DDS AllocationSettings t (p. 439)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.28 DDS DomainParticipantResourceLimitsQosPolicy Struct
Reference 561

6.28.2.11 struct DDS AllocationSettings t DDS -
DomainParticipantResourceLimitsQosPolicy::ignored -
entity allocation [read]

Allocation settings applied to ignored entities.

[default] initial count = 8; max count = DDS LENGTH UNLIMITED
(p. 356); incremental count = -1

[range] See allowed ranges in struct DDS AllocationSettings t (p. 439)

6.28.2.12 struct DDS AllocationSettings t DDS -
DomainParticipantResourceLimitsQosPolicy::content -
filtered topic allocation [read]

Allocation settings applied to content filtered topic.

[default] initial count = 4; max count = DDS LENGTH UNLIMITED
(p. 356); incremental count = -1

[range] See allowed ranges in struct DDS AllocationSettings t (p. 439)

6.28.2.13 struct DDS AllocationSettings t DDS -
DomainParticipantResourceLimitsQosPolicy::content -
filter allocation [read]

Allocation settings applied to content filter.

[default] initial count = 4; max count = DDS LENGTH UNLIMITED
(p. 356); incremental count = -1

[range] See allowed ranges in struct DDS AllocationSettings t (p. 439)

6.28.2.14 struct DDS AllocationSettings t
DDS DomainParticipantResourceLimitsQosPolicy::read -
condition allocation [read]

Allocation settings applied to read condition pool.

[default] initial count = 4; max count = DDS LENGTH UNLIMITED
(p. 356), incremental count = -1

[range] See allowed ranges in struct DDS AllocationSettings t (p. 439)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

562 Class Documentation

6.28.2.15 struct DDS AllocationSettings t DDS -
DomainParticipantResourceLimitsQosPolicy::query -
condition allocation [read]

Allocation settings applied to query condition pool.

[default] initial count = 4; max count = DDS LENGTH UNLIMITED
(p. 356), incremental count = -1

[range] See allowed ranges in struct DDS AllocationSettings t (p. 439)

6.28.2.16 struct DDS AllocationSettings t DDS -
DomainParticipantResourceLimitsQosPolicy::outstanding -
asynchronous sample allocation [read]

Allocation settings applied to the maximum number of samples (from all DDS-
DataWriter (p. 1028)) waiting to be asynchronously written.

[default] initial count = 64; max count = DDS LENGTH UNLIMITED
(p. 356), incremental count = -1

[range] See allowed ranges in struct DDS AllocationSettings t (p. 439)

6.28.2.17 struct DDS AllocationSettings t
DDS DomainParticipantResourceLimitsQosPolicy::flow -
controller allocation [read]

Allocation settings applied to flow controllers.

[default] initial count = 4; max count = DDS LENGTH UNLIMITED
(p. 356), incremental count = -1

[range] See allowed ranges in struct DDS AllocationSettings t (p. 439)

6.28.2.18 DDS Long DDS -
DomainParticipantResourceLimitsQosPolicy::local -
writer hash buckets

Hash Buckets settings applied to local DataWriters.

[default] 4

[range] [1, 10000]

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.28 DDS DomainParticipantResourceLimitsQosPolicy Struct
Reference 563

6.28.2.19 DDS Long DDS -
DomainParticipantResourceLimitsQosPolicy::local -
reader hash buckets

Number of hash buckets for local DataReaders.

[default] 4

[range] [1, 10000]

6.28.2.20 DDS Long DDS -
DomainParticipantResourceLimitsQosPolicy::local -
publisher hash buckets

Number of hash buckets for local Publisher.

[default] 1

[range] [1, 10000]

6.28.2.21 DDS Long DDS -
DomainParticipantResourceLimitsQosPolicy::local -
subscriber hash buckets

Number of hash buckets for local Subscriber.

[default] 1

[range] [1, 10000]

6.28.2.22 DDS Long DDS -
DomainParticipantResourceLimitsQosPolicy::local -
topic hash buckets

Number of hash buckets for local Topic.

[default] 4

[range] [1, 10000]

6.28.2.23 DDS Long DDS -
DomainParticipantResourceLimitsQosPolicy::remote -
writer hash buckets

Number of hash buckets for remote DataWriters.

Remote DataWriters include all DataWriters, both local and remote.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

564 Class Documentation

[default] 16

[range] [1, 10000]

6.28.2.24 DDS Long DDS -
DomainParticipantResourceLimitsQosPolicy::remote -
reader hash buckets

Number of hash buckets for remote DataReaders.

Remote DataReaders include all DataReaders, both local and remote.

[default] 16

[range] [1, 10000]

6.28.2.25 DDS Long DDS -
DomainParticipantResourceLimitsQosPolicy::remote -
participant hash buckets

Number of hash buckets for remote DomainParticipants.

Remote DomainParticipants include all DomainParticipants, both local and re-
mote.

[default] 4

[range] [1, 10000]

6.28.2.26 DDS Long DDS -
DomainParticipantResourceLimitsQosPolicy::matching -
writer reader pair hash buckets

Number of hash buckets for matching local writer and remote/local reader pairs.

[default] 32

[range] [1, 10000]

6.28.2.27 DDS Long DDS -
DomainParticipantResourceLimitsQosPolicy::matching -
reader writer pair hash buckets

Number of hash buckets for matching local reader and remote/local writer pairs.

[default] 32

[range] [1, 10000]

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.28 DDS DomainParticipantResourceLimitsQosPolicy Struct
Reference 565

6.28.2.28 DDS Long DDS -
DomainParticipantResourceLimitsQosPolicy::ignored -
entity hash buckets

Number of hash buckets for ignored entities.

[default] 1

[range] [1, 10000]

6.28.2.29 DDS Long DDS -
DomainParticipantResourceLimitsQosPolicy::content -
filtered topic hash buckets

Number of hash buckets for content filtered topics.

[default] 1

[range] [1, 10000]

6.28.2.30 DDS Long DDS -
DomainParticipantResourceLimitsQosPolicy::content -
filter hash buckets

Number of hash buckets for content filters.

[default] 1

[range] [1, 10000]

6.28.2.31 DDS Long DDS -
DomainParticipantResourceLimitsQosPolicy::flow -
controller hash buckets

Number of hash buckets for flow controllers.

[default] 1

[range] [1, 10000]

6.28.2.32 DDS Long DDS -
DomainParticipantResourceLimitsQosPolicy::max -
gather destinations

Maximum number of destinations per RTI Data Distribution Service send.

When RTI Data Distribution Service sends out a message, it has the capability
to send to multiple destinations to be more efficient. The maximum number

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

566 Class Documentation

of destinations per RTI Data Distribution Service send is specified by max -
gather destinations.

[default] 8

[range] [4, 1 million]

6.28.2.33 DDS Long DDS -
DomainParticipantResourceLimitsQosPolicy::participant -
user data max length

Maximum length of user data in DDS DomainParticipantQos (p. 548) and
DDS ParticipantBuiltinTopicData (p. 765).

[default] 256

[range] [0,0x7fffffff]

6.28.2.34 DDS Long DDS -
DomainParticipantResourceLimitsQosPolicy::topic data -
max length

Maximum length of topic data in DDS TopicQos (p. 905), DDS -
TopicBuiltinTopicData (p. 898), DDS PublicationBuiltinTopicData
(p. 788) and DDS SubscriptionBuiltinTopicData (p. 876).

[default] 256

[range] [0,0x7fffffff]

6.28.2.35 DDS Long DDS -
DomainParticipantResourceLimitsQosPolicy::publisher -
group data max length

Maximum length of group data in DDS PublisherQos (p. 800) and DDS -
PublicationBuiltinTopicData (p. 788).

[default] 256

[range] [0,0x7fffffff]

6.28.2.36 DDS Long DDS -
DomainParticipantResourceLimitsQosPolicy::subscriber -
group data max length

Maximum length of group data in DDS SubscriberQos (p. 874) and DDS -
SubscriptionBuiltinTopicData (p. 876).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.28 DDS DomainParticipantResourceLimitsQosPolicy Struct
Reference 567

[default] 256

[range] [0,0x7fffffff]

6.28.2.37 DDS Long DDS -
DomainParticipantResourceLimitsQosPolicy::writer -
user data max length

Maximum length of user data in DDS DataWriterQos (p. 516) and DDS -
PublicationBuiltinTopicData (p. 788).

[default] 256

[range] [0,0x7fffffff]

6.28.2.38 DDS Long DDS -
DomainParticipantResourceLimitsQosPolicy::reader -
user data max length

Maximum length of user data in DDS DataReaderQos (p. 481) and DDS -
SubscriptionBuiltinTopicData (p. 876).

[default] 256

[range] [0,0x7fffffff]

6.28.2.39 DDS Long DDS -
DomainParticipantResourceLimitsQosPolicy::max -
partitions

Maximum number of partition name strings allowable in a DDS -
PartitionQosPolicy (p. 769).

This value cannot exceed 64.

[default] 64

[range] [0,64]

6.28.2.40 DDS Long DDS -
DomainParticipantResourceLimitsQosPolicy::max -
partition cumulative characters

Maximum number of combined characters allowable in all partition names in a
DDS PartitionQosPolicy (p. 769).

The maximum number of combined characters should account for a terminating
NULL (’\0’) character for each partition name string.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

568 Class Documentation

This value cannot exceed 256.

[default] 256

[range] [0,256]

6.28.2.41 DDS Long DDS -
DomainParticipantResourceLimitsQosPolicy::type code -
max serialized length

Maximum size of serialized string for type code.

This parameter limits the size of the type code that a DDSDomainPartici-
pant (p. 1054) is able to store and propagate for user data types. Type codes
can be used by external applications to understand user data types without
having the data type predefined in compiled form. However, since type codes
contain all of the information of a data structure, including the strings that
define the names of the members of a structure, complex data structures can
result in type codes larger than the default maximum of 2048 bytes. So it is
common for users to set this parameter to a larger value. However, as with all
parameters in this QoS policy defining maximum sizes for variable-length ele-
ments, all DomainParticipants in the same domain should use the same value
for this parameter.

[default] 2048

[range] [0,0xffff]

6.28.2.42 DDS Long DDS -
DomainParticipantResourceLimitsQosPolicy::contentfilter -
property max length

This field is the maximum length of all data related to a Content-filtered topic.

This is the sum of the length of the content filter name, the length of the related
topic name, the length of the filter expression, the length of the filter parameters,
and the length of the filter name. The maximum number of combined characters
should account for a terminating NULL (’\0’) character for each string.

[default] 256

[range] [0,0xffff]

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.28 DDS DomainParticipantResourceLimitsQosPolicy Struct
Reference 569

6.28.2.43 DDS Long DDS -
DomainParticipantResourceLimitsQosPolicy::channel -
seq max length

Maximum number of channels that can be specified in DDS -
MultiChannelQosPolicy (p. 745) for MultiChannel DataWriters.

[default] 32

[range] [0,0xffff]

6.28.2.44 DDS Long DDS -
DomainParticipantResourceLimitsQosPolicy::channel -
filter expression max length

Maximum length of a channel DDS ChannelSettings t::filter expression
(p. 455) in a MultiChannel DataWriter.

The length should account for a terminating NULL (’\0’) character.

[default] 256

[range] [0,0xffff]

6.28.2.45 DDS Long DDS -
DomainParticipantResourceLimitsQosPolicy::participant -
property list max length

Maximum number of properties associated with the DDSDomainParticipant
(p. 1054).

[default] 32

[range] [0,0xffff]

6.28.2.46 DDS Long DDS -
DomainParticipantResourceLimitsQosPolicy::participant -
property string max length

Maximum string length of the properties associated with the DDSDomain-
Participant (p. 1054).

The string length is defined as the cumulative length in bytes of all the pair
(name,value) associated with the DDSDomainParticipant (p. 1054) proper-
ties.

[default] 1024

[range] [0,0xffff]

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

570 Class Documentation

6.28.2.47 DDS Long DDS -
DomainParticipantResourceLimitsQosPolicy::writer -
property list max length

Maximum number of properties associated with a DDSDataWriter (p. 1028).

[range] [0,0xffff]

[default] 32

6.28.2.48 DDS Long DDS -
DomainParticipantResourceLimitsQosPolicy::writer -
property string max length

Maximum string length of the properties associated with a DDSDataWriter
(p. 1028).

The string length is defined as the cumulative length in bytes of all the pair
(name,value) associated with the data writer properties.

[default] 1024

[range] [0,0xffff]

6.28.2.49 DDS Long DDS -
DomainParticipantResourceLimitsQosPolicy::reader -
property list max length

Maximum number of properties associated with a DDSDataReader (p. 1004).

[default] 32

[range] [0,0xffff]

6.28.2.50 DDS Long DDS -
DomainParticipantResourceLimitsQosPolicy::reader -
property string max length

Maximum string length of the properties associated with a DDSDataReader
(p. 1004).

The string length is defined as the cumulative length in bytes of all the pair
(name,value) associated with a DDSDataReader (p. 1004) properties.

[default] 1024

[range] [0,0xffff]

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.29 DDS DoubleSeq Struct Reference 571

6.29 DDS DoubleSeq Struct Reference

Instantiates FooSeq (p. 1377) < DDS Double (p. 290) >.

6.29.1 Detailed Description

Instantiates FooSeq (p. 1377) < DDS Double (p. 290) >.

Instantiates:

<<generic>> (p. 190) FooSeq (p. 1377)

See also:

DDS Double (p. 290)
FooSeq (p. 1377)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

572 Class Documentation

6.30 DDS DurabilityQosPolicy Struct Refer-
ence

This QoS policy specifies whether or not RTI Data Distribution Service will
store and deliver previously published data samples to new DDSDataReader
(p. 1004) entities that join the network later.

Public Attributes

ˆ DDS DurabilityQosPolicyKind kind

The kind of durability.

ˆ DDS Boolean direct communication

<<eXtension>> (p. 190) Indicates whether or not a TRANSIENT or
PERSISTENT DDSDataReader (p. 1004) should receive samples directly
from a TRANSIENT or PERSISTENT DDSDataWriter (p. 1028)

6.30.1 Detailed Description

This QoS policy specifies whether or not RTI Data Distribution Service will
store and deliver previously published data samples to new DDSDataReader
(p. 1004) entities that join the network later.

Entity:

DDSTopic (p. 1311), DDSDataReader (p. 1004), DDSDataWriter
(p. 1028)

Status:

DDS OFFERED INCOMPATIBLE QOS STATUS (p. 311),
DDS REQUESTED INCOMPATIBLE QOS STATUS (p. 311)

Properties:

RxO (p. 327) = YES
Changeable (p. 328) = UNTIL ENABLE (p. 328)

See also:

DURABILITY SERVICE (p. 355)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.30 DDS DurabilityQosPolicy Struct Reference 573

6.30.2 Usage

It is possible for a DDSDataWriter (p. 1028) to start publishing data before
all (or any) DDSDataReader (p. 1004) entities have joined the network.

Moreover, a DDSDataReader (p. 1004) that joins the network after some data
has been written could potentially be interested in accessing the most current
values of the data, as well as potentially some history.

This policy makes it possible for a late-joining DDSDataReader (p. 1004) to
obtain previously published samples.

By helping to ensure that DataReaders get all data that was sent by DataWrit-
ers, regardless of when it was sent, using this QoS policy can increase system
tolerance to failure conditions.

Note that although related, this does not strictly control what data RTI Data
Distribution Service will maintain internally. That is, RTI Data Distribution
Service may choose to maintain some data for its own purposes (e.g., flow con-
trol) and yet not make it available to late-joining readers if the DURABILITY
(p. 335) policy is set to DDS VOLATILE DURABILITY QOS (p. 336).

6.30.2.1 Transient and Persistent Durability

For the purpose of implementing the DURABILITY QoS kind TRANSIENT or
PERSISTENT, RTI Data Distribution Service behaves as if for each Topic that
has DDS DurabilityQosPolicy::kind (p. 575) of DDS TRANSIENT -
DURABILITY QOS (p. 336) or DDS PERSISTENT DURABILITY -
QOS (p. 336) there is a corresponding ”built-in” DDSDataReader (p. 1004)
and DDSDataWriter (p. 1028) configured with the same DURABILITY kind.
In other words, it is as if somewhere in the system, independent of the origi-
nal DDSDataWriter (p. 1028), there is a built-in durable DDSDataReader
(p. 1004) subscribing to that Topic and a built-in durable DataWriter re-
publishing it as needed for the new subscribers that join the system. This
functionality is provided by the RTI Persistence Service.

The Persistence Service can configure itself based on the QoS of your appli-
cation’s DDSDataWriter (p. 1028) and DDSDataReader (p. 1004) entities.
For each transient or persistent DDSTopic (p. 1311), the built-in fictitious Per-
sistence Service DDSDataReader (p. 1004) and DDSDataWriter (p. 1028)
have their QoS configured from the QoS of your application’s DDSDataWriter
(p. 1028) and DDSDataReader (p. 1004) entities that communicate on that
DDSTopic (p. 1311).

For a given DDSTopic (p. 1311), the usual request/offered semantics apply
to the matching between any DDSDataWriter (p. 1028) in the domain that
writes the DDSTopic (p. 1311) and the built-in transient/persistent DDS-
DataReader (p. 1004) for that DDSTopic (p. 1311); similarly for the built-

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

574 Class Documentation

in transient/persistent DDSDataWriter (p. 1028) for a DDSTopic (p. 1311)
and any DDSDataReader (p. 1004) for the DDSTopic (p. 1311). As a con-
sequence, a DDSDataWriter (p. 1028) that has an incompatible QoS will not
send its data to the RTI Persistence Service, and a DDSDataReader (p. 1004)
that has an incompatible QoS will not get data from it.

Incompatibilities between local DDSDataReader (p. 1004) and DDS-
DataWriter (p. 1028) entities and the corresponding fictitious built-
in transient/persistent entities cause the DDS REQUESTED -
INCOMPATIBLE QOS STATUS (p. 311) and DDS OFFERED -
INCOMPATIBLE QOS STATUS (p. 311) to change and the corresponding
Listener invocations and/or signaling of DDSCondition (p. 992) objects as
they would with your application’s own entities.

The value of DDS DurabilityServiceQosPolicy::service cleanup delay
(p. 577) controls when RTI Persistence Service is able to remove all information
regarding a data instances.

Information on a data instance is maintained until the following conditions are
met:

1. The instance has been explicitly disposed (instance state = NOT ALIVE -
DISPOSED),

and

2. While in the NOT ALIVE DISPOSED state, the system detects that there
are no more ’live’ DDSDataWriter (p. 1028) entities writing the instance.
That is, all existing writers either unregister the instance (call unregister) or
lose their liveliness,

and

3. A time interval longer that DDS DurabilityServiceQosPolicy::service -
cleanup delay (p. 577) has elapsed since the moment RTI Data Distribution
Service detected that the previous two conditions were met.

The utility of DDS DurabilityServiceQosPolicy::service cleanup delay
(p. 577) is apparent in the situation where an application disposes an instance
and it crashes before it has a chance to complete additional tasks related to
the disposition. Upon restart, the application may ask for initial data to regain
its state and the delay introduced by the service cleanup delay will allow the
restarted application to receive the information on the disposed instance and
complete the interrupted tasks.

6.30.3 Compatibility

The value offered is considered compatible with the value requested if and
only if the inequality offered kind >= requested kind evaluates to ’TRUE’.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.30 DDS DurabilityQosPolicy Struct Reference 575

For the purposes of this inequality, the values of DURABILITY kind are con-
sidered ordered such that DDS VOLATILE DURABILITY QOS (p. 336)
< DDS TRANSIENT LOCAL DURABILITY QOS (p. 336) < DDS -
TRANSIENT DURABILITY QOS (p. 336) < DDS PERSISTENT -
DURABILITY QOS (p. 336).

6.30.4 Member Data Documentation

6.30.4.1 DDS DurabilityQosPolicyKind DDS -
DurabilityQosPolicy::kind

The kind of durability.

[default] DDS VOLATILE DURABILITY QOS (p. 336)

6.30.4.2 DDS Boolean DDS DurabilityQosPolicy::direct -
communication

<<eXtension>> (p. 190) Indicates whether or not a TRANSIENT or PER-
SISTENT DDSDataReader (p. 1004) should receive samples directly from a
TRANSIENT or PERSISTENT DDSDataWriter (p. 1028)

When direct communication is set to DDS BOOLEAN TRUE (p. 288), a
TRANSIENT or PERSISTENT DDSDataReader (p. 1004) will receive sam-
ples from both the original DDSDataWriter (p. 1028) configured with TRAN-
SIENT or PERSISTENT durability and the DDSDataWriter (p. 1028) cre-
ated by the persistence service. This peer-to-peer communication pattern pro-
vides low latency between end-points.

If the same sample is received from the original DDSDataWriter (p. 1028)
and the persistence service, the middleware will discard the duplicate.

When direct communication is set to DDS BOOLEAN FALSE (p. 289), a
TRANSIENT or PERSISTENT DDSDataReader (p. 1004) will only receive
samples from the DDSDataWriter (p. 1028) created by the persistence service.
This brokered communication pattern provides a way to guarantee eventual
consistency.

[default] DDS BOOLEAN TRUE (p. 288)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

576 Class Documentation

6.31 DDS DurabilityServiceQosPolicy Struct
Reference

Various settings to configure the external RTI Persistence Service used by RTI
Data Distribution Service for DataWriters with a DDS DurabilityQosPolicy
(p. 572) setting of DDS PERSISTENT DURABILITY QOS (p. 336) or
DDS TRANSIENT DURABILITY QOS (p. 336).

Public Attributes

ˆ struct DDS Duration t service cleanup delay

[Not supported (optional)] Controls when the service is able to remove
all information regarding a data instances.

ˆ DDS HistoryQosPolicyKind history kind

The kind of history to apply in recouping durable data.

ˆ DDS Long history depth

Part of history QoS policy to apply when feeding a late joiner.

ˆ DDS Long max samples

Part of resource limits QoS policy to apply when feeding a late joiner.

ˆ DDS Long max instances

Part of resource limits QoS policy to apply when feeding a late joiner.

ˆ DDS Long max samples per instance

Part of resource limits QoS policy to apply when feeding a late joiner.

6.31.1 Detailed Description

Various settings to configure the external RTI Persistence Service used by RTI
Data Distribution Service for DataWriters with a DDS DurabilityQosPolicy
(p. 572) setting of DDS PERSISTENT DURABILITY QOS (p. 336) or
DDS TRANSIENT DURABILITY QOS (p. 336).

Entity:

DDSTopic (p. 1311), DDSDataWriter (p. 1028)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.31 DDS DurabilityServiceQosPolicy Struct Reference 577

Properties:

RxO (p. 327) = NO
Changeable (p. 328) = UNTIL ENABLE (p. 328)

See also:

DURABILITY (p. 335)
HISTORY (p. 352)
RESOURCE LIMITS (p. 356)

6.31.2 Usage

When a DataWriter’s DDS DurabilityQosPolicy::kind (p. 575) is DDS -
PERSISTENT DURABILITY QOS (p. 336) or DDS TRANSIENT -
DURABILITY QOS (p. 336), an external service, the RTI Persistence Ser-
vice, is used to store and possibly forward the data sent by the DDS-
DataWriter (p. 1028) to DDSDataReader (p. 1004) objects that are created
after the data was initially sent.

This QoS policy is used to configure certain parameters of the Persistence Service
when it operates on the behalf of the DDSDataWriter (p. 1028), such as how
much data to store. For example, it configures the HISTORY (p. 352) and
the RESOURCE LIMITS (p. 356) used by the fictitious DataReader and
DataWriter used by the Persistence Service. Note, however, that the Persistence
Service itself may be configured to ignore these values and instead use values
from its own configuration file.

6.31.3 Member Data Documentation

6.31.3.1 struct DDS Duration t DDS -
DurabilityServiceQosPolicy::service cleanup delay
[read]

[Not supported (optional)] Controls when the service is able to remove all
information regarding a data instances.

[default] 0

6.31.3.2 DDS HistoryQosPolicyKind DDS -
DurabilityServiceQosPolicy::history kind

The kind of history to apply in recouping durable data.

[default] DDS KEEP LAST HISTORY QOS (p. 353)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

578 Class Documentation

6.31.3.3 DDS Long DDS DurabilityServiceQosPolicy::history -
depth

Part of history QoS policy to apply when feeding a late joiner.

[default] 1

6.31.3.4 DDS Long DDS DurabilityServiceQosPolicy::max samples

Part of resource limits QoS policy to apply when feeding a late joiner.

[default] DDS LENGTH UNLIMITED (p. 356)

6.31.3.5 DDS Long DDS DurabilityServiceQosPolicy::max -
instances

Part of resource limits QoS policy to apply when feeding a late joiner.

[default] DDS LENGTH UNLIMITED (p. 356)

6.31.3.6 DDS Long DDS DurabilityServiceQosPolicy::max -
samples per instance

Part of resource limits QoS policy to apply when feeding a late joiner.

[default] DDS LENGTH UNLIMITED (p. 356)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.32 DDS Duration t Struct Reference 579

6.32 DDS Duration t Struct Reference

Type for duration representation.

Public Attributes

ˆ DDS Long sec

seconds

ˆ DDS UnsignedLong nanosec

nanoseconds

6.32.1 Detailed Description

Type for duration representation.

Represents a time interval.

Examples:

HelloWorld publisher.cxx, and HelloWorld subscriber.cxx.

6.32.2 Member Data Documentation

6.32.2.1 DDS Long DDS Duration t::sec

seconds

Examples:

HelloWorld subscriber.cxx.

6.32.2.2 DDS UnsignedLong DDS Duration t::nanosec

nanoseconds

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

580 Class Documentation

6.33 DDS DynamicData Struct Reference

A sample of any complex data type, which can be inspected and manipulated
reflectively.

Public Member Functions

ˆ DDS DynamicData (const DDS TypeCode ∗type, const DDS -
DynamicDataProperty t &property)

The constructor for new DDS DynamicData (p. 580) objects.

ˆ DDS Boolean is valid () const

Indicates whether the object was constructed properly.

ˆ DDS ReturnCode t copy (const DDS DynamicData &src)

Deeply copy from the given object to this object.

ˆ DDS Boolean equal (const DDS DynamicData &other) const

Indicate whether the contents of another DDS DynamicData (p. 580) sam-
ple are the same as those of this one.

ˆ DDS DynamicData & operator= (const DDS DynamicData
&src)

Deeply copy from the given object to this object.

ˆ DDS Boolean operator== (const DDS DynamicData &other)
const

Indicate whether the contents of another DDS DynamicData (p. 580) sam-
ple are the same as those of this one.

ˆ DDS ReturnCode t clear all members ()

Clear the contents of all data members of this object, including key members.

ˆ DDS ReturnCode t clear nonkey members ()

Clear the contents of all data members of this object, not including key mem-
bers.

ˆ DDS ReturnCode t clear member (const char ∗member name,
DDS DynamicDataMemberId member id)

Clear the contents of a single data member of this object.

ˆ DDS ReturnCode t print (FILE ∗fp, int indent) const

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.33 DDS DynamicData Struct Reference 581

Output a textual representation of this object and its contents to the given
file.

ˆ void get info (DDS DynamicDataInfo &info out) const

Fill in the given descriptor with information about this DDS DynamicData
(p. 580).

ˆ DDS ReturnCode t bind type (const DDS TypeCode ∗type)

If this DDS DynamicData (p. 580) object is not yet associated with a data
type, set that type now to the given DDS TypeCode (p. 925).

ˆ DDS ReturnCode t unbind type ()

Dissociate this DDS DynamicData (p. 580) object from any particular
data type.

ˆ DDS ReturnCode t bind complex member (DDS -
DynamicData &value out, const char ∗member name, DDS -
DynamicDataMemberId member id)

Use another DDS DynamicData (p. 580) object to provide access to a com-
plex field of this DDS DynamicData (p. 580) object.

ˆ DDS ReturnCode t unbind complex member (DDS -
DynamicData &value)

Tear down the association created by a DDS DynamicData::bind -
complex member (p. 603) operation, committing any changes to the outer
object since then.

ˆ const DDS TypeCode ∗ get type () const

Get the data type, of which this DDS DynamicData (p. 580) represents an
instance.

ˆ DDS TCKind get type kind () const

Get the kind of this object’s data type.

ˆ DDS UnsignedLong get member count () const

Get the number of members in this sample.

ˆ DDS Boolean member exists (const char ∗member name, DDS -
DynamicDataMemberId member id) const

Indicates whether a member of a particular name/ID exists in this data sam-
ple.

ˆ DDS Boolean member exists in type (const char ∗member name,
DDS DynamicDataMemberId member id) const

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

582 Class Documentation

Indicates whether a member of a particular name/ID exists in this data sam-
ple’s type.

ˆ DDS ReturnCode t get member info (DDS -
DynamicDataMemberInfo &info, const char ∗member name,
DDS DynamicDataMemberId member id) const

Fill in the given descriptor with information about the identified member of
this DDS DynamicData (p. 580) sample.

ˆ DDS ReturnCode t get member info by index (struct DDS -
DynamicDataMemberInfo &info, DDS UnsignedLong index)
const

Fill in the given descriptor with information about the identified member of
this DDS DynamicData (p. 580) sample.

ˆ DDS ReturnCode t get member type (const DDS -
TypeCode ∗&type out, const char ∗member name, DDS -
DynamicDataMemberId member id) const

Get the type of the given member of this sample.

ˆ DDS ReturnCode t is member key (DDS Boolean &is key out,
const char ∗member name, DDS DynamicDataMemberId member -
id) const

Indicates whether a given member forms part of the key of this sample’s data
type.

ˆ DDS ReturnCode t get long (DDS Long &value out, const char
∗member name, DDS DynamicDataMemberId member id) const

Get the value of the given field, which is of type DDS Long (p. 290) or
another type implicitly convertible to it.

ˆ DDS ReturnCode t get short (DDS Short &value out, const char
∗member name, DDS DynamicDataMemberId member id) const

Get the value of the given field, which is of type DDS Short (p. 289) or
another type implicitly convertible to it.

ˆ DDS ReturnCode t get ulong (DDS UnsignedLong &value out,
const char ∗member name, DDS DynamicDataMemberId member -
id) const

Get the value of the given field, which is of type DDS UnsignedLong
(p. 290) or another type implicitly convertible to it.

ˆ DDS ReturnCode t get ushort (DDS UnsignedShort &value out,
const char ∗member name, DDS DynamicDataMemberId member -
id) const

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.33 DDS DynamicData Struct Reference 583

Get the value of the given field, which is of type DDS UnsignedShort
(p. 289) or another type implicitly convertible to it.

ˆ DDS ReturnCode t get float (DDS Float &value out, const char
∗member name, DDS DynamicDataMemberId member id) const

Get the value of the given field, which is of type DDS Float (p. 290) or
another type implicitly convertible to it.

ˆ DDS ReturnCode t get double (DDS Double &value out, const
char ∗member name, DDS DynamicDataMemberId member id)
const

Get the value of the given field, which is of type DDS Double (p. 290) or
another type implicitly convertible to it.

ˆ DDS ReturnCode t get boolean (DDS Boolean &value out, const
char ∗member name, DDS DynamicDataMemberId member id)
const

Get the value of the given field, which is of type DDS Boolean (p. 291).

ˆ DDS ReturnCode t get char (DDS Char &value out, const char
∗member name, DDS DynamicDataMemberId member id) const

Get the value of the given field, which is of type DDS Char (p. 289) or
another type implicitly convertible to it.

ˆ DDS ReturnCode t get octet (DDS Octet &value out, const char
∗member name, DDS DynamicDataMemberId member id) const

Get the value of the given field, which is of type DDS Octet (p. 289) or
another type implicitly convertible to it.

ˆ DDS ReturnCode t get longlong (DDS LongLong &value out,
const char ∗member name, DDS DynamicDataMemberId member -
id) const

Get the value of the given field, which is of type DDS LongLong (p. 290)
or another type implicitly convertible to it.

ˆ DDS ReturnCode t get ulonglong (DDS UnsignedLongLong
&value out, const char ∗member name, DDS -
DynamicDataMemberId member id) const

Get the value of the given field, which is of type DDS UnsignedLongLong
(p. 290) or another type implicitly convertible to it.

ˆ DDS ReturnCode t get longdouble (DDS LongDouble &value -
out, const char ∗member name, DDS DynamicDataMemberId mem-
ber id) const

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

584 Class Documentation

Get the value of the given field, which is of type DDS LongDouble (p. 290)
or another type implicitly convertible to it.

ˆ DDS ReturnCode t get wchar (DDS Wchar &value out, const char
∗member name, DDS DynamicDataMemberId member id) const

Get the value of the given field, which is of type DDS Wchar (p. 289) or
another type implicitly convertible to it.

ˆ DDS ReturnCode t get string (char ∗&value, DDS UnsignedLong
∗size, const char ∗member name, DDS DynamicDataMemberId
member id) const

Get the value of the given field, which is of type char∗.

ˆ DDS ReturnCode t get wstring (DDS Wchar ∗&value,
DDS UnsignedLong ∗size, const char ∗member name, DDS -
DynamicDataMemberId member id) const

Get the value of the given field, which is of type DDS Wchar (p. 289)∗.

ˆ DDS ReturnCode t get complex member (DDS -
DynamicData &value out, const char ∗member name, DDS -
DynamicDataMemberId member id) const

Get a copy of the value of the given field, which is of some composed type.

ˆ DDS ReturnCode t get long array (DDS Long ∗array, DDS -
UnsignedLong ∗length, const char ∗member name, DDS -
DynamicDataMemberId member id) const

Get a copy of the given array member.

ˆ DDS ReturnCode t get short array (DDS Short ∗array,
DDS UnsignedLong ∗length, const char ∗member name, DDS -
DynamicDataMemberId member id) const

Get a copy of the given array member.

ˆ DDS ReturnCode t get ulong array (DDS UnsignedLong ∗array,
DDS UnsignedLong ∗length, const char ∗member name, DDS -
DynamicDataMemberId member id) const

Get a copy of the given array member.

ˆ DDS ReturnCode t get ushort array (DDS UnsignedShort
∗array, DDS UnsignedLong ∗length, const char ∗member name,
DDS DynamicDataMemberId member id) const

Get a copy of the given array member.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.33 DDS DynamicData Struct Reference 585

ˆ DDS ReturnCode t get float array (DDS Float ∗array, DDS -
UnsignedLong ∗length, const char ∗member name, DDS -
DynamicDataMemberId member id) const

Get a copy of the given array member.

ˆ DDS ReturnCode t get double array (DDS Double ∗array,
DDS UnsignedLong ∗length, const char ∗member name, DDS -
DynamicDataMemberId member id) const

Get a copy of the given array member.

ˆ DDS ReturnCode t get boolean array (DDS Boolean ∗array,
DDS UnsignedLong ∗length, const char ∗member name, DDS -
DynamicDataMemberId member id) const

Get a copy of the given array member.

ˆ DDS ReturnCode t get char array (DDS Char ∗array, DDS -
UnsignedLong ∗length, const char ∗member name, DDS -
DynamicDataMemberId member id) const

Get a copy of the given array member.

ˆ DDS ReturnCode t get octet array (DDS Octet ∗array,
DDS UnsignedLong ∗length, const char ∗member name, DDS -
DynamicDataMemberId member id) const

Get a copy of the given array member.

ˆ DDS ReturnCode t get longlong array (DDS LongLong ∗array,
DDS UnsignedLong ∗length, const char ∗member name, DDS -
DynamicDataMemberId member id) const

Get a copy of the given array member.

ˆ DDS ReturnCode t get ulonglong array (DDS -
UnsignedLongLong ∗array, DDS UnsignedLong ∗length, const
char ∗member name, DDS DynamicDataMemberId member id)
const

Get a copy of the given array member.

ˆ DDS ReturnCode t get longdouble array (DDS LongDouble
∗array, DDS UnsignedLong ∗length, const char ∗member name,
DDS DynamicDataMemberId member id) const

Get a copy of the given array member.

ˆ DDS ReturnCode t get wchar array (DDS Wchar ∗array,
DDS UnsignedLong ∗length, const char ∗member name, DDS -
DynamicDataMemberId member id) const

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

586 Class Documentation

Get a copy of the given array member.

ˆ DDS ReturnCode t get long seq (DDS LongSeq &seq, const char
∗member name, DDS DynamicDataMemberId member id) const

Get a copy of the given sequence member.

ˆ DDS ReturnCode t get short seq (DDS ShortSeq &seq, const char
∗member name, DDS DynamicDataMemberId member id) const

Get a copy of the given sequence member.

ˆ DDS ReturnCode t get ulong seq (DDS UnsignedLongSeq &seq,
const char ∗member name, DDS DynamicDataMemberId member -
id) const

Get a copy of the given sequence member.

ˆ DDS ReturnCode t get ushort seq (DDS UnsignedShortSeq
&seq, const char ∗member name, DDS DynamicDataMemberId
member id) const

Get a copy of the given sequence member.

ˆ DDS ReturnCode t get float seq (DDS FloatSeq &seq, const char
∗member name, DDS DynamicDataMemberId member id) const

Get a copy of the given sequence member.

ˆ DDS ReturnCode t get double seq (DDS DoubleSeq &seq, const
char ∗member name, DDS DynamicDataMemberId member id)
const

Get a copy of the given sequence member.

ˆ DDS ReturnCode t get boolean seq (DDS BooleanSeq &seq,
const char ∗member name, DDS DynamicDataMemberId member -
id) const

Get a copy of the given sequence member.

ˆ DDS ReturnCode t get char seq (DDS CharSeq &seq, const char
∗member name, DDS DynamicDataMemberId member id) const

Get a copy of the given sequence member.

ˆ DDS ReturnCode t get octet seq (DDS OctetSeq &seq, const char
∗member name, DDS DynamicDataMemberId member id) const

Get a copy of the given sequence member.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.33 DDS DynamicData Struct Reference 587

ˆ DDS ReturnCode t get longlong seq (DDS LongLongSeq &seq,
const char ∗member name, DDS DynamicDataMemberId member -
id) const

Get a copy of the given sequence member.

ˆ DDS ReturnCode t get ulonglong seq (DDS -
UnsignedLongLongSeq &seq, const char ∗member name, DDS -
DynamicDataMemberId member id) const

Get a copy of the given sequence member.

ˆ DDS ReturnCode t get longdouble seq (DDS LongDoubleSeq
&seq, const char ∗member name, DDS DynamicDataMemberId
member id) const

Get a copy of the given sequence member.

ˆ DDS ReturnCode t get wchar seq (DDS WcharSeq &seq, const
char ∗member name, DDS DynamicDataMemberId member id)
const

Get a copy of the given sequence member.

ˆ DDS ReturnCode t set long (const char ∗member name, DDS -
DynamicDataMemberId member id, DDS Long value)

Set the value of the given field, which is of type DDS Long (p. 290).

ˆ DDS ReturnCode t set short (const char ∗member name, DDS -
DynamicDataMemberId member id, DDS Short value)

Set the value of the given field, which is of type DDS Short (p. 289).

ˆ DDS ReturnCode t set ulong (const char ∗member name, DDS -
DynamicDataMemberId member id, DDS UnsignedLong value)

Set the value of the given field, which is of type DDS UnsignedLong
(p. 290).

ˆ DDS ReturnCode t set ushort (const char ∗member name, DDS -
DynamicDataMemberId member id, DDS UnsignedShort value)

Set the value of the given field, which is of type DDS UnsignedShort
(p. 289).

ˆ DDS ReturnCode t set float (const char ∗member name, DDS -
DynamicDataMemberId member id, DDS Float value)

Set the value of the given field, which is of type DDS Float (p. 290).

ˆ DDS ReturnCode t set double (const char ∗member name, DDS -
DynamicDataMemberId member id, DDS Double value)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

588 Class Documentation

Set the value of the given field, which is of type DDS Double (p. 290).

ˆ DDS ReturnCode t set boolean (const char ∗member name, DDS -
DynamicDataMemberId member id, DDS Boolean value)

Set the value of the given field, which is of type DDS Boolean (p. 291).

ˆ DDS ReturnCode t set char (const char ∗member name, DDS -
DynamicDataMemberId member id, DDS Char value)

Set the value of the given field, which is of type DDS Char (p. 289).

ˆ DDS ReturnCode t set octet (const char ∗member name, DDS -
DynamicDataMemberId member id, DDS Octet value)

Set the value of the given field, which is of type DDS Octet (p. 289).

ˆ DDS ReturnCode t set longlong (const char ∗member name, DDS -
DynamicDataMemberId member id, DDS LongLong value)

Set the value of the given field, which is of type DDS LongLong (p. 290).

ˆ DDS ReturnCode t set ulonglong (const char ∗member -
name, DDS DynamicDataMemberId member id, DDS -
UnsignedLongLong value)

Set the value of the given field, which is of type DDS UnsignedLongLong
(p. 290).

ˆ DDS ReturnCode t set longdouble (const char ∗member name,
DDS DynamicDataMemberId member id, DDS LongDouble
value)

Set the value of the given field, which is of type DDS LongDouble (p. 290).

ˆ DDS ReturnCode t set wchar (const char ∗member name, DDS -
DynamicDataMemberId member id, DDS Wchar value)

Set the value of the given field, which is of type DDS Wchar (p. 289).

ˆ DDS ReturnCode t set string (const char ∗member name, DDS -
DynamicDataMemberId member id, const char ∗value)

Set the value of the given field of type char∗.

ˆ DDS ReturnCode t set wstring (const char ∗member name, DDS -
DynamicDataMemberId member id, const DDS Wchar ∗value)

Set the value of the given field of type DDS Wchar (p. 289)∗.

ˆ DDS ReturnCode t set complex member (const char ∗member -
name, DDS DynamicDataMemberId member id, const DDS -
DynamicData &value)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.33 DDS DynamicData Struct Reference 589

Copy the state of the given DDS DynamicData (p. 580) object into a mem-
ber of this object.

ˆ DDS ReturnCode t set long array (const char ∗member name,
DDS DynamicDataMemberId member id, DDS UnsignedLong
length, const DDS Long ∗array)

Set the contents of the given array member.

ˆ DDS ReturnCode t set short array (const char ∗member name,
DDS DynamicDataMemberId member id, DDS UnsignedLong
length, const DDS Short ∗array)

Set the contents of the given array member.

ˆ DDS ReturnCode t set ulong array (const char ∗member name,
DDS DynamicDataMemberId member id, DDS UnsignedLong
length, const DDS UnsignedLong ∗array)

Set the contents of the given array member.

ˆ DDS ReturnCode t set ushort array (const char ∗member name,
DDS DynamicDataMemberId member id, DDS UnsignedLong
length, const DDS UnsignedShort ∗array)

Set the contents of the given array member.

ˆ DDS ReturnCode t set float array (const char ∗member name,
DDS DynamicDataMemberId member id, DDS UnsignedLong
length, const DDS Float ∗array)

Set the contents of the given array member.

ˆ DDS ReturnCode t set double array (const char ∗member name,
DDS DynamicDataMemberId member id, DDS UnsignedLong
length, const DDS Double ∗array)

Set the contents of the given array member.

ˆ DDS ReturnCode t set boolean array (const char ∗member name,
DDS DynamicDataMemberId member id, DDS UnsignedLong
length, const DDS Boolean ∗array)

Set the contents of the given array member.

ˆ DDS ReturnCode t set char array (const char ∗member name,
DDS DynamicDataMemberId member id, DDS UnsignedLong
length, const DDS Char ∗array)

Set the contents of the given array member.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

590 Class Documentation

ˆ DDS ReturnCode t set octet array (const char ∗member name,
DDS DynamicDataMemberId member id, DDS UnsignedLong
length, const DDS Octet ∗array)

Set the contents of the given array member.

ˆ DDS ReturnCode t set longlong array (const char ∗member name,
DDS DynamicDataMemberId member id, DDS UnsignedLong
length, const DDS LongLong ∗array)

Set the contents of the given array member.

ˆ DDS ReturnCode t set ulonglong array (const char ∗member -
name, DDS DynamicDataMemberId member id, DDS -
UnsignedLong length, const DDS UnsignedLongLong ∗array)

Set the contents of the given array member.

ˆ DDS ReturnCode t set longdouble array (const char ∗member -
name, DDS DynamicDataMemberId member id, DDS -
UnsignedLong length, const DDS LongDouble ∗array)

Set the contents of the given array member.

ˆ DDS ReturnCode t set wchar array (const char ∗member name,
DDS DynamicDataMemberId member id, DDS UnsignedLong
length, const DDS Wchar ∗array)

Set the contents of the given array member.

ˆ DDS ReturnCode t set long seq (const char ∗member name, DDS -
DynamicDataMemberId member id, const DDS LongSeq &value)

Set the contents of the given sequence member.

ˆ DDS ReturnCode t set short seq (const char ∗member name,
DDS DynamicDataMemberId member id, const DDS ShortSeq
&value)

Set the contents of the given sequence member.

ˆ DDS ReturnCode t set ulong seq (const char ∗member -
name, DDS DynamicDataMemberId member id, const DDS -
UnsignedLongSeq &value)

Set the contents of the given sequence member.

ˆ DDS ReturnCode t set ushort seq (const char ∗member -
name, DDS DynamicDataMemberId member id, const DDS -
UnsignedShortSeq &value)

Set the contents of the given sequence member.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.33 DDS DynamicData Struct Reference 591

ˆ DDS ReturnCode t set float seq (const char ∗member name, DDS -
DynamicDataMemberId member id, const DDS FloatSeq &value)

Set the contents of the given sequence member.

ˆ DDS ReturnCode t set double seq (const char ∗member name,
DDS DynamicDataMemberId member id, const DDS DoubleSeq
&value)

Set the contents of the given sequence member.

ˆ DDS ReturnCode t set boolean seq (const char ∗member name,
DDS DynamicDataMemberId member id, const DDS BooleanSeq
&value)

Set the contents of the given sequence member.

ˆ DDS ReturnCode t set char seq (const char ∗member name, DDS -
DynamicDataMemberId member id, const DDS CharSeq &value)

Set the contents of the given sequence member.

ˆ DDS ReturnCode t set octet seq (const char ∗member name,
DDS DynamicDataMemberId member id, const DDS OctetSeq
&value)

Set the contents of the given sequence member.

ˆ DDS ReturnCode t set longlong seq (const char ∗member -
name, DDS DynamicDataMemberId member id, const DDS -
LongLongSeq &value)

Set the contents of the given sequence member.

ˆ DDS ReturnCode t set ulonglong seq (const char ∗member -
name, DDS DynamicDataMemberId member id, const DDS -
UnsignedLongLongSeq &value)

Set the contents of the given sequence member.

ˆ DDS ReturnCode t set longdouble seq (const char ∗member -
name, DDS DynamicDataMemberId member id, const DDS -
LongDoubleSeq &value)

Set the contents of the given sequence member.

ˆ DDS ReturnCode t set wchar seq (const char ∗member name,
DDS DynamicDataMemberId member id, const DDS WcharSeq
&value)

Set the contents of the given sequence member.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

592 Class Documentation

6.33.1 Detailed Description

A sample of any complex data type, which can be inspected and manipulated
reflectively.

Objects of type DDS DynamicData (p. 580) represent corresponding objects
of the type identified by their DDS TypeCode (p. 925). Because the definition
of these types may not have existed at compile time on the system on which the
application is running, you will interact with the data using an API of reflective
getters and setters.

For example, if you had access to your data types at compile time, you could
do this:

theValue = theObject.theField;

Instead, you will do something like this:

theValue = get(theObject, "theField");

DDS DynamicData (p. 580) objects can represent any complex data
type, including those of type kinds DDS TK ARRAY (p. 65), DDS -
TK SEQUENCE (p. 65), DDS TK STRUCT (p. 65), DDS TK UNION
(p. 65), DDS TK VALUE (p. 65), and DDS TK SPARSE (p. 65). They
cannot represent objects of basic types (e.g. integers and strings). Since those
type definitions always exist on every system, you can examine their objects
directly.

6.33.2 Member Names and IDs

The members of a data type can be identified in one of two ways: by their name
or by their numeric ID. The former is often more transparent to human users;
the latter is typically faster.

You define the name and ID of a type member when you add that member
to that type. When you define a sparse type, you will typically choose both
explicitly. If you define your type in IDL or XML, the name will be the field
name that appears in the type definition; the ID will be the one-based index of
the field in declaration order. For example, in the following IDL structure, the
ID of theLong is 2.

struct MyType {

short theShort;

long theLong;

};

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.33 DDS DynamicData Struct Reference 593

IDs work the same way for DDS DynamicData (p. 580) objects representing
arrays and sequences, since the elements of these collections have no explicit
IDs: the ID is one more than the index. (The first element is ID 1, the second
is 2, etc.) Array and sequence elements do not have names.

Multi-dimensional arrays are effectively flattened by the DDS DynamicData
(p. 580) API. For example, for an array theArray[4][5], accessing ID 7 is equiv-
alent to index 6, or the second element of the second group of 5.

For unions (DDS TK UNION (p. 65)), the ID of a member is the discrimi-
nator value corresponding to that member.

6.33.3 Available Functionality

The Dynamic Data API is large when measured by the number of methods it
contains. But each method falls into one of a very small number of categories.
You will find it easier to navigate this documentation if you understand these
categories.

6.33.3.1 Lifecycle and Utility Methods

Managing the lifecycle of DDS DynamicData (p. 580) objects is simple. You
have two choices:

1. Usually, you will go through a DDSDynamicDataTypeSupport
(p. 1150) factory object, which will ensure that the type and property in-
formation for the new DDS DynamicData (p. 580) object corresponds
to a registered type in your system.

2. In certain advanced cases, such as when you’re navigating a nested struc-
ture, you will want to have a DDS DynamicData (p. 580) object that
is not bound up front to any particular type, or you will want to initialize
the object in a custom way. In that case, you can call the constructor
directly.

DDSDynamicDataTypeSupport
(p. 1150)

DDS DynamicData (p. 580)

DDSDynamicDataTypeSup-
port::create data
(p. 1154)

DDS DynamicData::DDS -
DynamicData

DDSDynamicDataTypeSup-
port::delete data
(p. 1155)

DDS DynamicData::∼DDS -
DynamicData

Table 6.1: Lifecycle

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

594 Class Documentation

You can also copy DDS DynamicData (p. 580) objects:

ˆ DDS DynamicData::copy (p. 598)

ˆ DDS DynamicData::operator= (p. 599)

You can test them for equality:

ˆ DDS DynamicData::equal (p. 598)

ˆ DDS DynamicData::operator== (p. 599)

And you can print their contents:

ˆ DDS DynamicData::print (p. 601)

ˆ DDSDynamicDataTypeSupport::print data (p. 1155)

6.33.3.2 Getters and Setters

Most methods get or set the value of some field. These methods are named
according to the type of the field they access.

When working with a DDS DynamicData (p. 580) object representing an
array or sequence, calling one of the ”get” methods below for an index that is
out of bounds will result in DDS RETCODE NO DATA (p. 304). Calling
”set” for an index that is past the end of a sequence will cause that sequence to
automatically lengthen (filling with default contents).

In addition to getting or setting a field, you can ”clear” its value; that is, set it
to a default zero value.

ˆ DDS DynamicData::clear member (p. 600)

ˆ DDS DynamicData::clear all members (p. 599)

ˆ DDS DynamicData::clear nonkey members (p. 600)

6.33.3.3 Query and Iteration

Not all components of your application will have static knowledge of all of the
fields of your type. Sometimes, you will want to query meta-data about the
fields that appear in a given data sample.

ˆ DDS DynamicData::get type (p. 606)

ˆ DDS DynamicData::get type kind (p. 606)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.33 DDS DynamicData Struct Reference 595

ˆ DDS DynamicData::get member type (p. 609)

ˆ DDS DynamicData::get member info (p. 608)

ˆ DDS DynamicData::get member count (p. 606)

ˆ DDS DynamicData::get member info by index (p. 609)

ˆ DDS DynamicData::member exists (p. 607)

ˆ DDS DynamicData::member exists in type (p. 607)

ˆ DDS DynamicData::is member key (p. 610)

6.33.3.4 Type/Object Association

Sometimes, you may want to change the association between a data object and
its type. This is not something you can do with a typical object, but with
DDS DynamicData (p. 580) objects, it is a powerful capability. It allows
you to, for example, examine nested structures without copying them by using
a ”bound” DDS DynamicData (p. 580) object as a view into an enclosing
DDS DynamicData (p. 580) object.

ˆ DDS DynamicData::bind type (p. 602)

ˆ DDS DynamicData::unbind type (p. 603)

ˆ DDS DynamicData::bind complex member (p. 603)

ˆ DDS DynamicData::unbind complex member (p. 605)

6.33.3.5 Keys

Keys can be specified in dynamically defined types just as they can in types
defined in generated code. However, there are some minor restrictions when
sparse value types are involved (see DDS TK SPARSE (p. 65)).

ˆ If a type has a member that is of a sparse value type, that member cannot
be a key for the enclosing type.

ˆ Sparse value types themselves may have at most a single key field. That
field may itself be of any type.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

596 Class Documentation

6.33.4 Performance

Due to the way in which DDS DynamicData (p. 580) objects manage their
internal state, it is typically more efficient, when setting the field values of a
DDS DynamicData (p. 580) for the first time, to do so in the declared order
of those fields.

For example, suppose a type definition like the following:

struct MyType {

float my_float;

sequence<octet> my_bytes;

short my_short;

};

The richness of the type system makes it difficult to fully characterize the per-
formance differences between all access patterns. Nevertheless, the following are
generally true:

ˆ It will be most performant to set the value of my float, then my bytes,
and finally my short.

ˆ The order of modification has a greater impact for types of kind DDS -
TK STRUCT (p. 65) and DDS TK VALUE (p. 65) than it does for
types of kind DDS TK SPARSE (p. 65).

ˆ Modifications to variable-sized types (i.e. those containing strings, se-
quences, unions, or optional members) are more expensive than modifica-
tions to fixed-size types.

MT Safety:

UNSAFE. In general, using a single DDS DynamicData (p. 580) object
concurrently from multiple threads is unsafe.

6.33.5 Constructor & Destructor Documentation

6.33.5.1 DDS DynamicData::DDS DynamicData (const DDS -
TypeCode ∗ type, const DDS DynamicDataProperty t &
property)

The constructor for new DDS DynamicData (p. 580) objects.

The type parameter may be NULL. In that case, this DDS DynamicData
(p. 580) must be bound with DDS DynamicData::bind type (p. 602) or
DDS DynamicData::bind complex member (p. 603) before it can be used.

If the DDS TypeCode (p. 925) is not NULL, the newly constructed DDS -
DynamicData (p. 580) object will retain a reference to it. It is not safe to

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.33 DDS DynamicData Struct Reference 597

delete the DDS TypeCode (p. 925) until all samples that use it have them-
selves been deleted.

In most cases, it is not necessary to call this constructor explicitly. Instead, use
DDSDynamicDataTypeSupport::create data (p. 1154), and the DDS -
TypeCode (p. 925) and properties will be specified for you. Using the factory
method also ensures that the memory management contract documented above
is followed correctly, because the DDSDynamicDataTypeSupport (p. 1150)
object maintains the DDS TypeCode (p. 925) used by the samples it creates.

However you create a DDS DynamicData (p. 580) object, you must delete it
when you are finished with it. If you choose to use this constructor, delete the
object with the destructor: DDS DynamicData::∼DDS DynamicData.

DDS_DynamicData* sample = new DDS_DynamicData(

myType, myProperties);

// Failure indicated by is_valid() method.

// Do something...

delete sample;

NOTE that RTI Data Distribution Service does not explicitly generate any
exceptions in this constructor, because C++ exception support is not con-
sistent across all platforms on which RTI Data Distribution Service runs.
Therefore, to check whether construction succeeded, you must use the DDS -
DynamicData::is valid (p. 597) method. Alternatively, you can create an
DDS DynamicData (p. 580) object with DDSDynamicDataTypeSup-
port::create data (p. 1154), which returns NULL on failure, eliminating the
need to call DDS DynamicData::is valid (p. 597).

Parameters:

type <<in>> (p. 191) The type of which the new object will represent
an object.

property <<in>> (p. 191) Properties that configure the behavior of the
new object. Most users can simply use DDS DYNAMIC DATA -
PROPERTY DEFAULT (p. 78).

See also:

DDS DynamicData::is valid (p. 597)
DDS DynamicData::∼DDS DynamicData
DDSDynamicDataTypeSupport::create data (p. 1154)

6.33.6 Member Function Documentation

6.33.6.1 DDS Boolean DDS DynamicData::is valid () const

Indicates whether the object was constructed properly.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

598 Class Documentation

This method returns DDS BOOLEAN TRUE (p. 288) if the constructor suc-
ceeded; it returns DDS BOOLEAN FALSE (p. 289) if the constructor failed
for any reason, which should also have resulted in a log message. It is only
necessary to call this method if you created the DDS DynamicData (p. 580)
object using the constructor, DDS DynamicData::DDS DynamicData.

Possible failure reasons include passing an invalid type or invalid properties to
the constructor.

This method is necessary because C++ exception support is not consistent
across all of the platforms on which RTI Data Distribution Service runs. There-
fore, the implementation does not throw any exceptions in the constructor.

MT Safety:

UNSAFE.

See also:

DDS DynamicData::DDS DynamicData

6.33.6.2 DDS ReturnCode t DDS DynamicData::copy (const
DDS DynamicData & src)

Deeply copy from the given object to this object.

MT Safety:

UNSAFE.

Returns:

One of the Standard Return Codes (p. 302) or DDS RETCODE -
OUT OF RESOURCES (p. 303)

See also:

DDS DynamicData::operator= (p. 599)

6.33.6.3 DDS Boolean DDS DynamicData::equal (const
DDS DynamicData & other) const

Indicate whether the contents of another DDS DynamicData (p. 580) sample
are the same as those of this one.

This operation compares the data and type of existing members. The types of
non-instantiated members may differ in sparse types.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.33 DDS DynamicData Struct Reference 599

MT Safety:

UNSAFE.

See also:

DDS DynamicData::operator== (p. 599)
DDS TK SPARSE (p. 65)

6.33.6.4 DDS DynamicData& DDS DynamicData::operator=
(const DDS DynamicData & src)

Deeply copy from the given object to this object.

MT Safety:

UNSAFE.

See also:

DDS DynamicData::copy (p. 598)

6.33.6.5 DDS Boolean DDS DynamicData::operator== (const
DDS DynamicData & other) const

Indicate whether the contents of another DDS DynamicData (p. 580) sample
are the same as those of this one.

This operation compares the data and type of existing members. The types of
non-instantiated members may differ in sparse types.

MT Safety:

UNSAFE.

See also:

DDS DynamicData::equal (p. 598)
DDS TK SPARSE (p. 65)

6.33.6.6 DDS ReturnCode t DDS DynamicData::clear all members
()

Clear the contents of all data members of this object, including key members.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

600 Class Documentation

MT Safety:

UNSAFE.

Returns:

One of the Standard Return Codes (p. 302)

See also:

DDS DynamicData::clear nonkey members (p. 600)
DDS DynamicData::clear member (p. 600)

6.33.6.7 DDS ReturnCode t DDS DynamicData::clear nonkey -
members ()

Clear the contents of all data members of this object, not including key members.

This method is only applicable to sparse value types.

MT Safety:

UNSAFE.

Returns:

One of the Standard Return Codes (p. 302)

See also:

DDS TK SPARSE (p. 65)
DDS DynamicData::clear all members (p. 599)
DDS DynamicData::clear member (p. 600)

6.33.6.8 DDS ReturnCode t DDS DynamicData::clear -
member (const char ∗ member name,
DDS DynamicDataMemberId member id)

Clear the contents of a single data member of this object.

This method is only applicable to sparse value types.

MT Safety:

UNSAFE.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.33 DDS DynamicData Struct Reference 601

Parameters:

member name <<in>> (p. 191) The name of the member or NULL to
look up the member by its ID.

member id <<in>> (p. 191) The ID of the member or DDS -
DYNAMIC DATA MEMBER ID UNSPECIFIED (p. 78) to
look up by name. See Member Names and IDs (p. 592).

Returns:

One of the Standard Return Codes (p. 302)

See also:

DDS TK SPARSE (p. 65)
DDS DynamicData::clear all members (p. 599)
DDS DynamicData::clear nonkey members (p. 600)

6.33.6.9 DDS ReturnCode t DDS DynamicData::print (FILE ∗ fp,
int indent) const

Output a textual representation of this object and its contents to the given file.

This method is equivalent to DDSDynamicDataTypeSupport::print data
(p. 1155).

Warning: This operation may not display any data for members at the end
of a data structure that have not been explicitly set before the data sample is
serialized. This will not be a problem on a received data sample, which should
always correctly display all members.

MT Safety:

UNSAFE.

Parameters:

fp <<in>> (p. 191) The file to which the object should be printed.
indent <<in>> (p. 191) The output of this method will be pretty-

printed. This argument indicates the amount of initial indentation
of the output.

Returns:

One of the Standard Return Codes (p. 302)

See also:

DDSDynamicDataTypeSupport::print data (p. 1155)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

602 Class Documentation

6.33.6.10 void DDS DynamicData::get info
(DDS DynamicDataInfo & info out) const

Fill in the given descriptor with information about this DDS DynamicData
(p. 580).

MT Safety:

UNSAFE.

Parameters:

info out <<out>> (p. 191) The descriptor object whose contents will be
overwritten by this operation.

6.33.6.11 DDS ReturnCode t DDS DynamicData::bind type (const
DDS TypeCode ∗ type)

If this DDS DynamicData (p. 580) object is not yet associated with a data
type, set that type now to the given DDS TypeCode (p. 925).

This advanced operation allows you to reuse a single DDS DynamicData
(p. 580) object with multiple data types.

DDS_DynamicData* myData = new DDS_DynamicData(NULL, myProperties);

DDS_TypeCode* myType = ...;

myData->bind_type(myType);

// Do something...

myData->unbind_type();

delete myData;

Note that the DDS DynamicData (p. 580) object will retain a reference to
the DDS TypeCode (p. 925) object you provide. It is not safe to delete the
DDS TypeCode (p. 925) until after it is unbound.

MT Safety:

UNSAFE.

Parameters:

type <<in>> (p. 191) The type to associate with this DDS -
DynamicData (p. 580) object.

Returns:

One of the Standard Return Codes (p. 302)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.33 DDS DynamicData Struct Reference 603

See also:

DDS DynamicData::unbind type (p. 603)

6.33.6.12 DDS ReturnCode t DDS DynamicData::unbind type ()

Dissociate this DDS DynamicData (p. 580) object from any particular data
type.

This step is necessary before the object can be associated with a new data type.

This operation clears all members as a side effect.

MT Safety:

UNSAFE.

Returns:

One of the Standard Return Codes (p. 302)

See also:

DDS DynamicData::bind type (p. 602)
DDS DynamicData::clear all members (p. 599)

6.33.6.13 DDS ReturnCode t DDS DynamicData::bind complex -
member (DDS DynamicData & value out, const
char ∗ member name, DDS DynamicDataMemberId
member id)

Use another DDS DynamicData (p. 580) object to provide access to a com-
plex field of this DDS DynamicData (p. 580) object.

For example, consider the following data types:

struct MyFieldType {

float theFloat;

};

struct MyOuterType {

MyFieldType complexMember;

};

Suppose you have an instance of MyOuterType, and you would like to examine
the contents of its member complexMember. To do this, you must bind another
DDS DynamicData (p. 580) object to that member. This operation will bind

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

604 Class Documentation

the type code of the member to the provided DDS DynamicData (p. 580)
object and perform additional initialization.

The following example demonstrates the usage pattern. Note that error handling
has been omitted for brevity.

DDS_DynamicData outer = ...;

DDS_DynamicData toBeBound(NULL, myProperties);

outer.bind_complex_member(

toBeBound,

"complexMember",

DDS_DYNAMIC_DATA_MEMBER_ID_UNSPECIFIED);

float theFloatValue = 0.0f;

toBeBound.get_float(

theFloat,

"theFloat"

DDS_DYNAMIC_DATA_MEMBER_ID_UNSPECIFIED);

outer.unbind_complex_member(toBeBound);

This operation is only permitted when the object toBeBound (named as in the
example above) is not currently associated with any type, including already
being bound to another member. You can see in the example that this object
is created directly with the constructer and is not provided with a DDS -
TypeCode (p. 925).

Only a single member of a given DDS DynamicData (p. 580) object may
be bound at one time – however, members of members may be recursively
bound to any depth. Furthermore, while the outer object has a bound member,
it may only be modified through that bound member. That is, after calling
this member, all ”set” operations on the outer object will be disabled until
DDS DynamicData::unbind complex member (p. 605) has been called.
Furthermore, any bound member must be unbound before a sample can be
written or deleted.

This method is logically related to DDS DynamicData::get complex -
member (p. 622) in that both allow you to examine the state of nested objects.
They are different in an important way: this method provides a view into an
outer object, such that any change made to the inner object will be reflected
in the outer. But the DDS DynamicData::get complex member (p. 622)
operation copies the state of the nested object; changes to it will not be reflected
in the source object.

Note that you can bind to a member of a sequence at an index that is past the
current length of that sequence. In that case, this method behaves like a ”set”
method: it automatically lengthens the sequence (filling in default elements) to
allow the bind to take place. See Getters and Setters (p. 594).

MT Safety:

UNSAFE.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.33 DDS DynamicData Struct Reference 605

Parameters:

value out <<out>> (p. 191) The object that you wish to bind to the
field.

member name <<in>> (p. 191) The name of the member or NULL to
look up the member by its ID.

member id <<in>> (p. 191) The ID of the member or DDS -
DYNAMIC DATA MEMBER ID UNSPECIFIED (p. 78) to
look up by name. See Member Names and IDs (p. 592).

Returns:

One of the Standard Return Codes (p. 302)

See also:

DDS DynamicData::unbind complex member (p. 605)
DDS DynamicData::get complex member (p. 622)

6.33.6.14 DDS ReturnCode t DDS DynamicData::unbind -
complex member (DDS DynamicData &
value)

Tear down the association created by a DDS DynamicData::bind -
complex member (p. 603) operation, committing any changes to the outer
object since then.

Some changes to the outer object will not be observable until after you have
performed this operation.

If you have called DDS DynamicData::bind complex member (p. 603) on
a data sample, you must unbind before writing or deleting the sample.

MT Safety:

UNSAFE.

Parameters:

value <<in>> (p. 191) The same object you passed to DDS -
DynamicData::bind complex member (p. 603). This argument
is used for error checking purposes.

Returns:

One of the Standard Return Codes (p. 302) or DDS RETCODE -
OUT OF RESOURCES (p. 303)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

606 Class Documentation

See also:

DDS DynamicData::bind complex member (p. 603)

6.33.6.15 const DDS TypeCode∗ DDS DynamicData::get type ()
const

Get the data type, of which this DDS DynamicData (p. 580) represents an
instance.

MT Safety:

UNSAFE.

6.33.6.16 DDS TCKind DDS DynamicData::get type kind () const

Get the kind of this object’s data type.

This is a convenience method. It’s equivalent to calling DDS -
DynamicData::get type (p. 606) followed by DDS TypeCode::kind
(p. 928).

MT Safety:

UNSAFE.

6.33.6.17 DDS UnsignedLong DDS DynamicData::get member -
count () const

Get the number of members in this sample.

For objects of type kind DDS TK ARRAY (p. 65) or DDS TK -
SEQUENCE (p. 65), this method returns the number of elements in the col-
lection.

For objects of type kind DDS TK STRUCT (p. 65) or DDS TK VALUE
(p. 65), it returns the number of fields in the sample, which will always be the
same as the number of fields in the type.

For objects of type kind DDS TK SPARSE (p. 65), it returns the number of
fields in the sample, which may be less than or equal to the number of fields in
the type.

MT Safety:

UNSAFE.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.33 DDS DynamicData Struct Reference 607

See also:

DDS DynamicData::get member info by index (p. 609)

6.33.6.18 DDS Boolean DDS DynamicData::member exists (const
char ∗ member name, DDS DynamicDataMemberId
member id) const

Indicates whether a member of a particular name/ID exists in this data sample.

Only one of the name and/or ID need by specified.

For objects of type kinds other than DDS TK SPARSE (p. 65), the
result of this method will always be the same as that of DDS -
DynamicData::member exists in type (p. 607).

MT Safety:

UNSAFE.

Parameters:

member name <<in>> (p. 191) The name of the member or NULL to
look up the member by its ID.

member id <<in>> (p. 191) The ID of the member or DDS -
DYNAMIC DATA MEMBER ID UNSPECIFIED (p. 78) to
look up by name. See Member Names and IDs (p. 592).

See also:

DDS DynamicData::member exists in type (p. 607)
DDS DYNAMIC DATA MEMBER ID UNSPECIFIED (p. 78)

6.33.6.19 DDS Boolean DDS DynamicData::member -
exists in type (const char ∗ member name,
DDS DynamicDataMemberId member id) const

Indicates whether a member of a particular name/ID exists in this data sample’s
type.

Only one of the name and/or ID need by specified.

For objects of type kinds other than DDS TK SPARSE (p. 65), the
result of this method will always be the same as that of DDS -
DynamicData::member exists (p. 607).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

608 Class Documentation

MT Safety:

UNSAFE.

Parameters:

member name <<in>> (p. 191) The name of the member or NULL to
look up the member by its ID.

member id <<in>> (p. 191) The ID of the member or DDS -
DYNAMIC DATA MEMBER ID UNSPECIFIED (p. 78) to
look up by name. See Member Names and IDs (p. 592).

See also:

DDS DynamicData::member exists (p. 607)
DDS DYNAMIC DATA MEMBER ID UNSPECIFIED (p. 78)

6.33.6.20 DDS ReturnCode t DDS DynamicData::get member info
(DDS DynamicDataMemberInfo & info, const char
∗ member name, DDS DynamicDataMemberId
member id) const

Fill in the given descriptor with information about the identified member of this
DDS DynamicData (p. 580) sample.

This operation is valid for objects of DDS TCKind (p. 65) DDS TK -
ARRAY (p. 65), DDS TK SEQUENCE (p. 65), DDS TK STRUCT
(p. 65), DDS TK VALUE (p. 65), and DDS TK SPARSE (p. 65).

MT Safety:

UNSAFE.

Parameters:

info <<out>> (p. 191) The descriptor object whose contents will be over-
written by this operations.

member name <<in>> (p. 191) The name of the member for which to
get the info or NULL to look up the member by its ID. Only one of
the name and the ID may be unspecified.

member id <<in>> (p. 191) The ID of the member for which
to get the info, or DDS DYNAMIC DATA MEMBER ID -
UNSPECIFIED (p. 78) to look up by name. See Member Names
and IDs (p. 592).

Returns:

One of the Standard Return Codes (p. 302)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.33 DDS DynamicData Struct Reference 609

See also:

DDS DynamicData::get member info by index (p. 609)
DDS DYNAMIC DATA MEMBER ID UNSPECIFIED (p. 78)

6.33.6.21 DDS ReturnCode t DDS DynamicData::get member -
info by index (struct DDS DynamicDataMemberInfo &
info, DDS UnsignedLong index) const

Fill in the given descriptor with information about the identified member of this
DDS DynamicData (p. 580) sample.

This operation is valid for objects of DDS TCKind (p. 65) DDS TK -
ARRAY (p. 65), DDS TK SEQUENCE (p. 65), DDS TK STRUCT
(p. 65), DDS TK VALUE (p. 65), and DDS TK SPARSE (p. 65).

MT Safety:

UNSAFE.

Parameters:

info <<out>> (p. 191) The descriptor object whose contents will be over-
written by this operations.

index <<in>> (p. 191) The zero-based of the member for which to get
the info.

Returns:

One of the Standard Return Codes (p. 302)

See also:

DDS DynamicData::get member info (p. 608)
DDS DynamicData::get member count (p. 606)
DDS DYNAMIC DATA MEMBER ID UNSPECIFIED (p. 78)

6.33.6.22 DDS ReturnCode t DDS DynamicData::get member -
type (const DDS TypeCode ∗& type out, const char
∗ member name, DDS DynamicDataMemberId
member id) const

Get the type of the given member of this sample.

The member can be looked up either by name or by ID.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

610 Class Documentation

This operation is valid for objects of DDS TCKind (p. 65) DDS TK -
ARRAY (p. 65), DDS TK SEQUENCE (p. 65), DDS TK STRUCT
(p. 65), DDS TK VALUE (p. 65), and DDS TK SPARSE (p. 65). For type
kinds DDS TK ARRAY (p. 65) and DDS TK SEQUENCE (p. 65), the in-
dex into the collection is taken to be one less than the ID, if specified. If this
index is valid, this operation will return the content type of this collection.

MT Safety:

UNSAFE.

Parameters:

type out <<out>> (p. 191) If this method returned success, this argu-
ment refers to the found member’s type.

member name <<in>> (p. 191) The name of the member or NULL to
look up the member by its ID.

member id <<in>> (p. 191) The ID of the member or DDS -
DYNAMIC DATA MEMBER ID UNSPECIFIED (p. 78) to
look up by name. See Member Names and IDs (p. 592).

Returns:

One of the Standard Return Codes (p. 302)

See also:

DDS DynamicData::get member info (p. 608)
DDS DYNAMIC DATA MEMBER ID UNSPECIFIED (p. 78)

6.33.6.23 DDS ReturnCode t DDS DynamicData::is member key
(DDS Boolean & is key out, const char ∗ member name,
DDS DynamicDataMemberId member id) const

Indicates whether a given member forms part of the key of this sample’s data
type.

This operation is only valid for samples of types of kind DDS TK STRUCT
(p. 65), DDS TK VALUE (p. 65), or DDS TK SPARSE (p. 65).

Note to users of sparse types: A key member may only have a single represen-
tation and is required to exist in every sample.

MT Safety:

UNSAFE.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.33 DDS DynamicData Struct Reference 611

Parameters:

is key out <<out>> (p. 191) If this method returned success, this argu-
ment indicates whether the indicated member is part of the key.

member name <<in>> (p. 191) The name of the member or NULL to
look up the member by its ID.

member id <<in>> (p. 191) The ID of the member or DDS -
DYNAMIC DATA MEMBER ID UNSPECIFIED (p. 78) to
look up by name. See Member Names and IDs (p. 592).

Returns:

One of the Standard Return Codes (p. 302)

6.33.6.24 DDS ReturnCode t DDS DynamicData::get long
(DDS Long & value out, const char ∗ member name,
DDS DynamicDataMemberId member id) const

Get the value of the given field, which is of type DDS Long (p. 290) or another
type implicitly convertible to it.

The member may be specified by name or by ID.

MT Safety:

UNSAFE.

Parameters:

value out <<out>> (p. 191) If this method returned success, this argu-
ment will contain the value of the indicated member.

member name <<in>> (p. 191) The name of the member or NULL to
look up the member by its ID.

member id <<in>> (p. 191) The ID of the member or DDS -
DYNAMIC DATA MEMBER ID UNSPECIFIED (p. 78) to
look up by name. See Member Names and IDs (p. 592).

Returns:

One of the Standard Return Codes (p. 302)

See also:

DDS DynamicData::set long (p. 642)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

612 Class Documentation

6.33.6.25 DDS ReturnCode t DDS DynamicData::get short
(DDS Short & value out, const char ∗ member name,
DDS DynamicDataMemberId member id) const

Get the value of the given field, which is of type DDS Short (p. 289) or another
type implicitly convertible to it.

The member may be specified by name or by ID.

MT Safety:

UNSAFE.

Parameters:

value out <<out>> (p. 191) If this method returned success, this argu-
ment will contain the value of the indicated member.

member name <<in>> (p. 191) The name of the member or NULL to
look up the member by its ID.

member id <<in>> (p. 191) The ID of the member or DDS -
DYNAMIC DATA MEMBER ID UNSPECIFIED (p. 78) to
look up by name. See Member Names and IDs (p. 592).

Returns:

One of the Standard Return Codes (p. 302)

See also:

DDS DynamicData::set short (p. 643)

6.33.6.26 DDS ReturnCode t DDS DynamicData::get ulong
(DDS UnsignedLong & value out, const char
∗ member name, DDS DynamicDataMemberId
member id) const

Get the value of the given field, which is of type DDS UnsignedLong (p. 290)
or another type implicitly convertible to it.

The member may be specified by name or by ID.

MT Safety:

UNSAFE.

Parameters:

value out <<out>> (p. 191) If this method returned success, this argu-
ment will contain the value of the indicated member.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.33 DDS DynamicData Struct Reference 613

member name <<in>> (p. 191) The name of the member or NULL to
look up the member by its ID.

member id <<in>> (p. 191) The ID of the member or DDS -
DYNAMIC DATA MEMBER ID UNSPECIFIED (p. 78) to
look up by name. See Member Names and IDs (p. 592).

Returns:

One of the Standard Return Codes (p. 302)

See also:

DDS DynamicData::set ulong (p. 644)

6.33.6.27 DDS ReturnCode t DDS DynamicData::get ushort
(DDS UnsignedShort & value out, const char
∗ member name, DDS DynamicDataMemberId
member id) const

Get the value of the given field, which is of type DDS UnsignedShort (p. 289)
or another type implicitly convertible to it.

The member may be specified by name or by ID.

MT Safety:

UNSAFE.

Parameters:

value out <<out>> (p. 191) If this method returned success, this argu-
ment will contain the value of the indicated member.

member name <<in>> (p. 191) The name of the member or NULL to
look up the member by its ID.

member id <<in>> (p. 191) The ID of the member or DDS -
DYNAMIC DATA MEMBER ID UNSPECIFIED (p. 78) to
look up by name. See Member Names and IDs (p. 592).

Returns:

One of the Standard Return Codes (p. 302)

See also:

DDS DynamicData::set ushort (p. 644)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

614 Class Documentation

6.33.6.28 DDS ReturnCode t DDS DynamicData::get float
(DDS Float & value out, const char ∗ member name,
DDS DynamicDataMemberId member id) const

Get the value of the given field, which is of type DDS Float (p. 290) or another
type implicitly convertible to it.

The member may be specified by name or by ID.

MT Safety:

UNSAFE.

Parameters:

value out <<out>> (p. 191) If this method returned success, this argu-
ment will contain the value of the indicated member.

member name <<in>> (p. 191) The name of the member or NULL to
look up the member by its ID.

member id <<in>> (p. 191) The ID of the member or DDS -
DYNAMIC DATA MEMBER ID UNSPECIFIED (p. 78) to
look up by name. See Member Names and IDs (p. 592).

Returns:

One of the Standard Return Codes (p. 302)

See also:

DDS DynamicData::set float (p. 645)

6.33.6.29 DDS ReturnCode t DDS DynamicData::get double
(DDS Double & value out, const char ∗ member name,
DDS DynamicDataMemberId member id) const

Get the value of the given field, which is of type DDS Double (p. 290) or
another type implicitly convertible to it.

The member may be specified by name or by ID.

MT Safety:

UNSAFE.

Parameters:

value out <<out>> (p. 191) If this method returned success, this argu-
ment will contain the value of the indicated member.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.33 DDS DynamicData Struct Reference 615

member name <<in>> (p. 191) The name of the member or NULL to
look up the member by its ID.

member id <<in>> (p. 191) The ID of the member or DDS -
DYNAMIC DATA MEMBER ID UNSPECIFIED (p. 78) to
look up by name. See Member Names and IDs (p. 592).

Returns:

One of the Standard Return Codes (p. 302)

See also:

DDS DynamicData::set double (p. 645)

6.33.6.30 DDS ReturnCode t DDS DynamicData::get boolean
(DDS Boolean & value out, const char ∗ member name,
DDS DynamicDataMemberId member id) const

Get the value of the given field, which is of type DDS Boolean (p. 291).

The member may be specified by name or by ID.

MT Safety:

UNSAFE.

Parameters:

value out <<out>> (p. 191) If this method returned success, this argu-
ment will contain the value of the indicated member.

member name <<in>> (p. 191) The name of the member or NULL to
look up the member by its ID.

member id <<in>> (p. 191) The ID of the member or DDS -
DYNAMIC DATA MEMBER ID UNSPECIFIED (p. 78) to
look up by name. See Member Names and IDs (p. 592).

Returns:

One of the Standard Return Codes (p. 302)

See also:

DDS DynamicData::set boolean (p. 646)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

616 Class Documentation

6.33.6.31 DDS ReturnCode t DDS DynamicData::get char
(DDS Char & value out, const char ∗ member name,
DDS DynamicDataMemberId member id) const

Get the value of the given field, which is of type DDS Char (p. 289) or another
type implicitly convertible to it.

The member may be specified by name or by ID.

MT Safety:

UNSAFE.

Parameters:

value out <<out>> (p. 191) If this method returned success, this argu-
ment will contain the value of the indicated member.

member name <<in>> (p. 191) The name of the member or NULL to
look up the member by its ID.

member id <<in>> (p. 191) The ID of the member or DDS -
DYNAMIC DATA MEMBER ID UNSPECIFIED (p. 78) to
look up by name. See Member Names and IDs (p. 592).

Returns:

One of the Standard Return Codes (p. 302)

See also:

DDS DynamicData::set char (p. 647)

6.33.6.32 DDS ReturnCode t DDS DynamicData::get octet
(DDS Octet & value out, const char ∗ member name,
DDS DynamicDataMemberId member id) const

Get the value of the given field, which is of type DDS Octet (p. 289) or another
type implicitly convertible to it.

The member may be specified by name or by ID.

MT Safety:

UNSAFE.

Parameters:

value out <<out>> (p. 191) If this method returned success, this argu-
ment will contain the value of the indicated member.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.33 DDS DynamicData Struct Reference 617

member name <<in>> (p. 191) The name of the member or NULL to
look up the member by its ID.

member id <<in>> (p. 191) The ID of the member or DDS -
DYNAMIC DATA MEMBER ID UNSPECIFIED (p. 78) to
look up by name. See Member Names and IDs (p. 592).

Returns:

One of the Standard Return Codes (p. 302)

See also:

DDS DynamicData::set octet (p. 647)

6.33.6.33 DDS ReturnCode t DDS DynamicData::get longlong
(DDS LongLong & value out, const char ∗ member name,
DDS DynamicDataMemberId member id) const

Get the value of the given field, which is of type DDS LongLong (p. 290) or
another type implicitly convertible to it.

The member may be specified by name or by ID.

MT Safety:

UNSAFE.

Parameters:

value out <<out>> (p. 191) If this method returned success, this argu-
ment will contain the value of the indicated member.

member name <<in>> (p. 191) The name of the member or NULL to
look up the member by its ID.

member id <<in>> (p. 191) The ID of the member or DDS -
DYNAMIC DATA MEMBER ID UNSPECIFIED (p. 78) to
look up by name. See Member Names and IDs (p. 592).

Returns:

One of the Standard Return Codes (p. 302)

See also:

DDS DynamicData::set longlong (p. 648)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

618 Class Documentation

6.33.6.34 DDS ReturnCode t DDS DynamicData::get ulonglong
(DDS UnsignedLongLong & value out, const char
∗ member name, DDS DynamicDataMemberId
member id) const

Get the value of the given field, which is of type DDS UnsignedLongLong
(p. 290) or another type implicitly convertible to it.

The member may be specified by name or by ID.

MT Safety:

UNSAFE.

Parameters:

value out <<out>> (p. 191) If this method returned success, this argu-
ment will contain the value of the indicated member.

member name <<in>> (p. 191) The name of the member or NULL to
look up the member by its ID.

member id <<in>> (p. 191) The ID of the member or DDS -
DYNAMIC DATA MEMBER ID UNSPECIFIED (p. 78) to
look up by name. See Member Names and IDs (p. 592).

Returns:

One of the Standard Return Codes (p. 302)

See also:

DDS DynamicData::set ulonglong (p. 648)

6.33.6.35 DDS ReturnCode t DDS DynamicData::get longdouble
(DDS LongDouble & value out, const char ∗
member name, DDS DynamicDataMemberId
member id) const

Get the value of the given field, which is of type DDS LongDouble (p. 290)
or another type implicitly convertible to it.

The member may be specified by name or by ID.

MT Safety:

UNSAFE.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.33 DDS DynamicData Struct Reference 619

Parameters:

value out <<out>> (p. 191) If this method returned success, this argu-
ment will contain the value of the indicated member.

member name <<in>> (p. 191) The name of the member or NULL to
look up the member by its ID.

member id <<in>> (p. 191) The ID of the member or DDS -
DYNAMIC DATA MEMBER ID UNSPECIFIED (p. 78) to
look up by name. See Member Names and IDs (p. 592).

Returns:

One of the Standard Return Codes (p. 302)

See also:

DDS DynamicData::set longdouble (p. 649)

6.33.6.36 DDS ReturnCode t DDS DynamicData::get wchar
(DDS Wchar & value out, const char ∗ member name,
DDS DynamicDataMemberId member id) const

Get the value of the given field, which is of type DDS Wchar (p. 289) or
another type implicitly convertible to it.

The member may be specified by name or by ID.

MT Safety:

UNSAFE.

Parameters:

value out <<out>> (p. 191) If this method returned success, this argu-
ment will contain the value of the indicated member.

member name <<in>> (p. 191) The name of the member or NULL to
look up the member by its ID.

member id <<in>> (p. 191) The ID of the member or DDS -
DYNAMIC DATA MEMBER ID UNSPECIFIED (p. 78) to
look up by name. See Member Names and IDs (p. 592).

Returns:

One of the Standard Return Codes (p. 302)

See also:

DDS DynamicData::set wchar (p. 650)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

620 Class Documentation

6.33.6.37 DDS ReturnCode t DDS DynamicData::get string
(char ∗& value, DDS UnsignedLong ∗ size, const
char ∗ member name, DDS DynamicDataMemberId
member id) const

Get the value of the given field, which is of type char∗.

The member may be specified by name or by ID.

MT Safety:

UNSAFE.

Parameters:

value <<out>> (p. 191) The string into which the middleware should
copy the string member. The allocated size of this string is indicated
by size argument. If the size is sufficient to hold the contents of the
member, they will be copied into this string. If value is a pointer
to NULL, the middleware will allocate a new string for you of suffi-
cient length; it will be your responsibility to free that string. If the
size is insufficient but greater than zero, the middleware will not free
your string; instead, this operation will fail and size will contain the
minimum required size.

size <<inout>> (p. 191) As an input argument, the allocated size of the
string. As an output argument, the actual size of the contents.

member name <<in>> (p. 191) The name of the member or NULL to
look up the member by its ID.

member id <<in>> (p. 191) The ID of the member or DDS -
DYNAMIC DATA MEMBER ID UNSPECIFIED (p. 78) to
look up by name. See Member Names and IDs (p. 592).

Returns:

One of the Standard Return Codes (p. 302) or DDS RETCODE -
OUT OF RESOURCES (p. 303)

See also:

DDS String alloc (p. 433)
DDS String free (p. 434)
DDS DynamicData::set string (p. 650)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.33 DDS DynamicData Struct Reference 621

6.33.6.38 DDS ReturnCode t DDS DynamicData::get wstring
(DDS Wchar ∗& value, DDS UnsignedLong ∗ size, const
char ∗ member name, DDS DynamicDataMemberId
member id) const

Get the value of the given field, which is of type DDS Wchar (p. 289)∗.

The member may be specified by name or by ID.

MT Safety:

UNSAFE.

Parameters:

value <<out>> (p. 191) The string into which the middleware should
copy the string member. The allocated size of this string is indicated
by size argument. If the size is sufficient to hold the contents of the
member, they will be copied into this string. If value is a pointer
to NULL, the middleware will allocate a new string for you of suffi-
cient length; it will be your responsibility to free that string. If the
size is insufficient but greater than zero, the middleware will not free
your string; instead, this operation will fail and size will contain the
minimum required size.

size <<inout>> (p. 191) As an input argument, the allocated size of the
string. As an output argument, the actual size of the contents.

member name <<in>> (p. 191) The name of the member or NULL to
look up the member by its ID.

member id <<in>> (p. 191) The ID of the member or DDS -
DYNAMIC DATA MEMBER ID UNSPECIFIED (p. 78) to
look up by name. See Member Names and IDs (p. 592).

Returns:

One of the Standard Return Codes (p. 302) or DDS RETCODE -
OUT OF RESOURCES (p. 303)

See also:

DDS String alloc (p. 433)
DDS String free (p. 434)
DDS DynamicData::set wstring (p. 651)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

622 Class Documentation

6.33.6.39 DDS ReturnCode t DDS DynamicData::get complex -
member (DDS DynamicData & value out, const
char ∗ member name, DDS DynamicDataMemberId
member id) const

Get a copy of the value of the given field, which is of some composed type.

The member may be of type kind DDS TK ARRAY (p. 65), DDS -
TK SEQUENCE (p. 65), DDS TK STRUCT (p. 65), DDS TK VALUE
(p. 65), DDS TK UNION (p. 65), or DDS TK SPARSE (p. 65). It may be
specified by name or by ID.

This method is logically related to DDS DynamicData::bind complex -
member (p. 603) in that both allow you to examine the state of nested objects.
They are different in an important way: this method provides a copy of the
data; changes to it will not be reflected in the source object.

MT Safety:

UNSAFE.

Parameters:

value out <<out>> (p. 191) The DDS DynamicData (p. 580) sample
whose contents will be overwritten by this operation. This object must
not be a bound member of another DDS DynamicData (p. 580)
sample.

member name <<in>> (p. 191) The name of the member or NULL to
look up the member by its ID.

member id <<in>> (p. 191) The ID of the member or DDS -
DYNAMIC DATA MEMBER ID UNSPECIFIED (p. 78) to
look up by name. See Member Names and IDs (p. 592).

Returns:

One of the Standard Return Codes (p. 302) or DDS RETCODE -
OUT OF RESOURCES (p. 303)

See also:

DDS DynamicData::set complex member (p. 652)
DDS DynamicData::bind complex member (p. 603)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.33 DDS DynamicData Struct Reference 623

6.33.6.40 DDS ReturnCode t DDS DynamicData::get long array
(DDS Long ∗ array, DDS UnsignedLong ∗ length, const
char ∗ member name, DDS DynamicDataMemberId
member id) const

Get a copy of the given array member.

This method will perform an automatic conversion from DDS LongSeq
(p. 744).

If the destination array is insufficiently long to store the data, this operation
will fail without copying anything.

MT Safety:

UNSAFE.

Parameters:

array <<out>> (p. 191) An already-allocated array, into which the ele-
ments will be copied.

length <<inout>> (p. 191) As an input, the allocated length of array.
As an output, the number of elements that were copied.

member name <<in>> (p. 191) The name of the member or NULL to
look up the member by its ID.

member id <<in>> (p. 191) The ID of the member or DDS -
DYNAMIC DATA MEMBER ID UNSPECIFIED (p. 78) to
look up by name. See Member Names and IDs (p. 592).

Returns:

One of the Standard Return Codes (p. 302)

See also:

DDS DynamicData::set long array (p. 653)
DDS DynamicData::get long seq (p. 633)

6.33.6.41 DDS ReturnCode t DDS DynamicData::get short array
(DDS Short ∗ array, DDS UnsignedLong ∗ length, const
char ∗ member name, DDS DynamicDataMemberId
member id) const

Get a copy of the given array member.

This method will perform an automatic conversion from DDS ShortSeq
(p. 868).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

624 Class Documentation

If the destination array is insufficiently long to store the data, this operation
will fail without copying anything.

MT Safety:

UNSAFE.

Parameters:

array <<out>> (p. 191) An already-allocated array, into which the ele-
ments will be copied.

length <<inout>> (p. 191) As an input, the allocated length of array.
As an output, the number of elements that were copied.

member name <<in>> (p. 191) The name of the member or NULL to
look up the member by its ID.

member id <<in>> (p. 191) The ID of the member or DDS -
DYNAMIC DATA MEMBER ID UNSPECIFIED (p. 78) to
look up by name. See Member Names and IDs (p. 592).

Returns:

One of the Standard Return Codes (p. 302)

See also:

DDS DynamicData::set short array (p. 654)
DDS DynamicData::get short seq (p. 634)

6.33.6.42 DDS ReturnCode t DDS DynamicData::get ulong array
(DDS UnsignedLong ∗ array, DDS UnsignedLong
∗ length, const char ∗ member name,
DDS DynamicDataMemberId member id) const

Get a copy of the given array member.

This method will perform an automatic conversion from DDS -
UnsignedLongSeq (p. 970).

If the destination array is insufficiently long to store the data, this operation
will fail without copying anything.

MT Safety:

UNSAFE.

Parameters:

array <<out>> (p. 191) An already-allocated array, into which the ele-
ments will be copied.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.33 DDS DynamicData Struct Reference 625

length <<inout>> (p. 191) As an input, the allocated length of array.
As an output, the number of elements that were copied.

member name <<in>> (p. 191) The name of the member or NULL to
look up the member by its ID.

member id <<in>> (p. 191) The ID of the member or DDS -
DYNAMIC DATA MEMBER ID UNSPECIFIED (p. 78) to
look up by name. See Member Names and IDs (p. 592).

Returns:

One of the Standard Return Codes (p. 302)

See also:

DDS DynamicData::set ulong array (p. 655)
DDS DynamicData::get ulong seq (p. 634)

6.33.6.43 DDS ReturnCode t DDS DynamicData::get ushort array
(DDS UnsignedShort ∗ array, DDS UnsignedLong
∗ length, const char ∗ member name,
DDS DynamicDataMemberId member id) const

Get a copy of the given array member.

This method will perform an automatic conversion from DDS -
UnsignedShortSeq (p. 971).

If the destination array is insufficiently long to store the data, this operation
will fail without copying anything.

MT Safety:

UNSAFE.

Parameters:

array <<out>> (p. 191) An already-allocated array, into which the ele-
ments will be copied.

length <<inout>> (p. 191) As an input, the allocated length of array.
As an output, the number of elements that were copied.

member name <<in>> (p. 191) The name of the member or NULL to
look up the member by its ID.

member id <<in>> (p. 191) The ID of the member or DDS -
DYNAMIC DATA MEMBER ID UNSPECIFIED (p. 78) to
look up by name. See Member Names and IDs (p. 592).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

626 Class Documentation

Returns:

One of the Standard Return Codes (p. 302)

See also:

DDS DynamicData::set ushort array (p. 655)
DDS DynamicData::get ushort seq (p. 635)

6.33.6.44 DDS ReturnCode t DDS DynamicData::get float array
(DDS Float ∗ array, DDS UnsignedLong ∗ length, const
char ∗ member name, DDS DynamicDataMemberId
member id) const

Get a copy of the given array member.

This method will perform an automatic conversion from DDS FloatSeq
(p. 699).

If the destination array is insufficiently long to store the data, this operation
will fail without copying anything.

MT Safety:

UNSAFE.

Parameters:

array <<out>> (p. 191) An already-allocated array, into which the ele-
ments will be copied.

length <<inout>> (p. 191) As an input, the allocated length of array.
As an output, the number of elements that were copied.

member name <<in>> (p. 191) The name of the member or NULL to
look up the member by its ID.

member id <<in>> (p. 191) The ID of the member or DDS -
DYNAMIC DATA MEMBER ID UNSPECIFIED (p. 78) to
look up by name. See Member Names and IDs (p. 592).

Returns:

One of the Standard Return Codes (p. 302)

See also:

DDS DynamicData::set float array (p. 656)
DDS DynamicData::get float seq (p. 636)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.33 DDS DynamicData Struct Reference 627

6.33.6.45 DDS ReturnCode t DDS DynamicData::get double array
(DDS Double ∗ array, DDS UnsignedLong
∗ length, const char ∗ member name,
DDS DynamicDataMemberId member id) const

Get a copy of the given array member.

This method will perform an automatic conversion from DDS DoubleSeq
(p. 571).

If the destination array is insufficiently long to store the data, this operation
will fail without copying anything.

MT Safety:

UNSAFE.

Parameters:

array <<out>> (p. 191) An already-allocated array, into which the ele-
ments will be copied.

length <<inout>> (p. 191) As an input, the allocated length of array.
As an output, the number of elements that were copied.

member name <<in>> (p. 191) The name of the member or NULL to
look up the member by its ID.

member id <<in>> (p. 191) The ID of the member or DDS -
DYNAMIC DATA MEMBER ID UNSPECIFIED (p. 78) to
look up by name. See Member Names and IDs (p. 592).

Returns:

One of the Standard Return Codes (p. 302)

See also:

DDS DynamicData::set double array (p. 657)
DDS DynamicData::get double seq (p. 637)

6.33.6.46 DDS ReturnCode t DDS DynamicData::get boolean -
array (DDS Boolean ∗ array, DDS UnsignedLong
∗ length, const char ∗ member name,
DDS DynamicDataMemberId member id) const

Get a copy of the given array member.

This method will perform an automatic conversion from DDS BooleanSeq
(p. 450).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

628 Class Documentation

If the destination array is insufficiently long to store the data, this operation
will fail without copying anything.

MT Safety:

UNSAFE.

Parameters:

array <<out>> (p. 191) An already-allocated array, into which the ele-
ments will be copied.

length <<inout>> (p. 191) As an input, the allocated length of array.
As an output, the number of elements that were copied.

member name <<in>> (p. 191) The name of the member or NULL to
look up the member by its ID.

member id <<in>> (p. 191) The ID of the member or DDS -
DYNAMIC DATA MEMBER ID UNSPECIFIED (p. 78) to
look up by name. See Member Names and IDs (p. 592).

Returns:

One of the Standard Return Codes (p. 302)

See also:

DDS DynamicData::set boolean array (p. 658)
DDS DynamicData::get boolean seq (p. 637)

6.33.6.47 DDS ReturnCode t DDS DynamicData::get char array
(DDS Char ∗ array, DDS UnsignedLong ∗ length, const
char ∗ member name, DDS DynamicDataMemberId
member id) const

Get a copy of the given array member.

This method will perform an automatic conversion from DDS CharSeq
(p. 458).

If the destination array is insufficiently long to store the data, this operation
will fail without copying anything.

MT Safety:

UNSAFE.

Parameters:

array <<out>> (p. 191) An already-allocated array, into which the ele-
ments will be copied.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.33 DDS DynamicData Struct Reference 629

length <<inout>> (p. 191) As an input, the allocated length of array.
As an output, the number of elements that were copied.

member name <<in>> (p. 191) The name of the member or NULL to
look up the member by its ID.

member id <<in>> (p. 191) The ID of the member or DDS -
DYNAMIC DATA MEMBER ID UNSPECIFIED (p. 78) to
look up by name. See Member Names and IDs (p. 592).

Returns:

One of the Standard Return Codes (p. 302)

See also:

DDS DynamicData::set char array (p. 659)
DDS DynamicData::get char seq (p. 638)

6.33.6.48 DDS ReturnCode t DDS DynamicData::get octet array
(DDS Octet ∗ array, DDS UnsignedLong ∗ length, const
char ∗ member name, DDS DynamicDataMemberId
member id) const

Get a copy of the given array member.

This method will perform an automatic conversion from DDS OctetSeq
(p. 750).

If the destination array is insufficiently long to store the data, this operation
will fail without copying anything.

MT Safety:

UNSAFE.

Parameters:

array <<out>> (p. 191) An already-allocated array, into which the ele-
ments will be copied.

length <<inout>> (p. 191) As an input, the allocated length of array.
As an output, the number of elements that were copied.

member name <<in>> (p. 191) The name of the member or NULL to
look up the member by its ID.

member id <<in>> (p. 191) The ID of the member or DDS -
DYNAMIC DATA MEMBER ID UNSPECIFIED (p. 78) to
look up by name. See Member Names and IDs (p. 592).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

630 Class Documentation

Returns:

One of the Standard Return Codes (p. 302)

See also:

DDS DynamicData::set octet array (p. 659)
DDS DynamicData::get octet seq (p. 639)

6.33.6.49 DDS ReturnCode t DDS DynamicData::get -
longlong array (DDS LongLong ∗ array,
DDS UnsignedLong ∗ length, const char ∗ member name,
DDS DynamicDataMemberId member id) const

Get a copy of the given array member.

This method will perform an automatic conversion from DDS LongLongSeq
(p. 743).

If the destination array is insufficiently long to store the data, this operation
will fail without copying anything.

MT Safety:

UNSAFE.

Parameters:

array <<out>> (p. 191) An already-allocated array, into which the ele-
ments will be copied.

length <<inout>> (p. 191) As an input, the allocated length of array.
As an output, the number of elements that were copied.

member name <<in>> (p. 191) The name of the member or NULL to
look up the member by its ID.

member id <<in>> (p. 191) The ID of the member or DDS -
DYNAMIC DATA MEMBER ID UNSPECIFIED (p. 78) to
look up by name. See Member Names and IDs (p. 592).

Returns:

One of the Standard Return Codes (p. 302)

See also:

DDS DynamicData::set longlong array (p. 660)
DDS DynamicData::get longlong seq (p. 639)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.33 DDS DynamicData Struct Reference 631

6.33.6.50 DDS ReturnCode t DDS DynamicData::get -
ulonglong array (DDS UnsignedLongLong ∗ array,
DDS UnsignedLong ∗ length, const char ∗ member name,
DDS DynamicDataMemberId member id) const

Get a copy of the given array member.

This method will perform an automatic conversion from DDS -
UnsignedLongLongSeq (p. 969).

If the destination array is insufficiently long to store the data, this operation
will fail without copying anything.

MT Safety:

UNSAFE.

Parameters:

array <<out>> (p. 191) An already-allocated array, into which the ele-
ments will be copied.

length <<inout>> (p. 191) As an input, the allocated length of array.
As an output, the number of elements that were copied.

member name <<in>> (p. 191) The name of the member or NULL to
look up the member by its ID.

member id <<in>> (p. 191) The ID of the member or DDS -
DYNAMIC DATA MEMBER ID UNSPECIFIED (p. 78) to
look up by name. See Member Names and IDs (p. 592).

Returns:

One of the Standard Return Codes (p. 302)

See also:

DDS DynamicData::set ulonglong array (p. 661)
DDS DynamicData::get ulonglong seq (p. 640)

6.33.6.51 DDS ReturnCode t DDS DynamicData::get -
longdouble array (DDS LongDouble ∗ array,
DDS UnsignedLong ∗ length, const char ∗ member name,
DDS DynamicDataMemberId member id) const

Get a copy of the given array member.

This method will perform an automatic conversion from DDS -
LongDoubleSeq (p. 742).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

632 Class Documentation

If the destination array is insufficiently long to store the data, this operation
will fail without copying anything.

MT Safety:

UNSAFE.

Parameters:

array <<out>> (p. 191) An already-allocated array, into which the ele-
ments will be copied.

length <<inout>> (p. 191) As an input, the allocated length of array.
As an output, the number of elements that were copied.

member name <<in>> (p. 191) The name of the member or NULL to
look up the member by its ID.

member id <<in>> (p. 191) The ID of the member or DDS -
DYNAMIC DATA MEMBER ID UNSPECIFIED (p. 78) to
look up by name. See Member Names and IDs (p. 592).

Returns:

One of the Standard Return Codes (p. 302)

See also:

DDS DynamicData::set longdouble array (p. 662)
DDS DynamicData::get longdouble seq (p. 641)

6.33.6.52 DDS ReturnCode t DDS DynamicData::get wchar array
(DDS Wchar ∗ array, DDS UnsignedLong
∗ length, const char ∗ member name,
DDS DynamicDataMemberId member id) const

Get a copy of the given array member.

This method will perform an automatic conversion from DDS WcharSeq
(p. 980).

If the destination array is insufficiently long to store the data, this operation
will fail without copying anything.

MT Safety:

UNSAFE.

Parameters:

array <<out>> (p. 191) An already-allocated array, into which the ele-
ments will be copied.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.33 DDS DynamicData Struct Reference 633

length <<inout>> (p. 191) As an input, the allocated length of array.
As an output, the number of elements that were copied.

member name <<in>> (p. 191) The name of the member or NULL to
look up the member by its ID.

member id <<in>> (p. 191) The ID of the member or DDS -
DYNAMIC DATA MEMBER ID UNSPECIFIED (p. 78) to
look up by name. See Member Names and IDs (p. 592).

Returns:

One of the Standard Return Codes (p. 302)

See also:

DDS DynamicData::set wchar array (p. 663)
DDS DynamicData::get wchar seq (p. 642)

6.33.6.53 DDS ReturnCode t DDS DynamicData::get long seq
(DDS LongSeq & seq, const char ∗ member name,
DDS DynamicDataMemberId member id) const

Get a copy of the given sequence member.

The provided sequence will be automatically resized as necessary.

This method will perform an automatic conversion from an array of DDS Long
(p. 290).

MT Safety:

UNSAFE.

Parameters:

seq <<out>> (p. 191) A sequence, into which the elements will be copied.

member name <<in>> (p. 191) The name of the member or NULL to
look up the member by its ID.

member id <<in>> (p. 191) The ID of the member or DDS -
DYNAMIC DATA MEMBER ID UNSPECIFIED (p. 78) to
look up by name. See Member Names and IDs (p. 592).

Returns:

One of the Standard Return Codes (p. 302) or DDS RETCODE -
OUT OF RESOURCES (p. 303)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

634 Class Documentation

See also:

DDS DynamicData::set long seq (p. 663)
DDS DynamicData::get long array (p. 623)

6.33.6.54 DDS ReturnCode t DDS DynamicData::get short seq
(DDS ShortSeq & seq, const char ∗ member name,
DDS DynamicDataMemberId member id) const

Get a copy of the given sequence member.

The provided sequence will be automatically resized as necessary.

This method will perform an automatic conversion from an array of DDS -
Short (p. 289).

MT Safety:

UNSAFE.

Parameters:

seq <<out>> (p. 191) A sequence, into which the elements will be copied.

member name <<in>> (p. 191) The name of the member or NULL to
look up the member by its ID.

member id <<in>> (p. 191) The ID of the member or DDS -
DYNAMIC DATA MEMBER ID UNSPECIFIED (p. 78) to
look up by name. See Member Names and IDs (p. 592).

Returns:

One of the Standard Return Codes (p. 302) or DDS RETCODE -
OUT OF RESOURCES (p. 303)

See also:

DDS DynamicData::set short seq (p. 664)
DDS DynamicData::get short array (p. 623)

6.33.6.55 DDS ReturnCode t DDS DynamicData::get ulong seq
(DDS UnsignedLongSeq & seq, const char ∗
member name, DDS DynamicDataMemberId
member id) const

Get a copy of the given sequence member.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.33 DDS DynamicData Struct Reference 635

The provided sequence will be automatically resized as necessary.

This method will perform an automatic conversion from an array of DDS -
UnsignedLong (p. 290).

MT Safety:

UNSAFE.

Parameters:

seq <<out>> (p. 191) A sequence, into which the elements will be copied.

member name <<in>> (p. 191) The name of the member or NULL to
look up the member by its ID.

member id <<in>> (p. 191) The ID of the member or DDS -
DYNAMIC DATA MEMBER ID UNSPECIFIED (p. 78) to
look up by name. See Member Names and IDs (p. 592).

Returns:

One of the Standard Return Codes (p. 302) or DDS RETCODE -
OUT OF RESOURCES (p. 303)

See also:

DDS DynamicData::set ulong seq (p. 665)
DDS DynamicData::get ulong array (p. 624)

6.33.6.56 DDS ReturnCode t DDS DynamicData::get ushort seq
(DDS UnsignedShortSeq & seq, const char ∗
member name, DDS DynamicDataMemberId
member id) const

Get a copy of the given sequence member.

The provided sequence will be automatically resized as necessary.

This method will perform an automatic conversion from an array of DDS -
UnsignedShort (p. 289).

MT Safety:

UNSAFE.

Parameters:

seq <<out>> (p. 191) A sequence, into which the elements will be copied.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

636 Class Documentation

member name <<in>> (p. 191) The name of the member or NULL to
look up the member by its ID.

member id <<in>> (p. 191) The ID of the member or DDS -
DYNAMIC DATA MEMBER ID UNSPECIFIED (p. 78) to
look up by name. See Member Names and IDs (p. 592).

Returns:

One of the Standard Return Codes (p. 302) or DDS RETCODE -
OUT OF RESOURCES (p. 303)

See also:

DDS DynamicData::set ushort seq (p. 666)
DDS DynamicData::get ushort array (p. 625)

6.33.6.57 DDS ReturnCode t DDS DynamicData::get float seq
(DDS FloatSeq & seq, const char ∗ member name,
DDS DynamicDataMemberId member id) const

Get a copy of the given sequence member.

The provided sequence will be automatically resized as necessary.

This method will perform an automatic conversion from an array of DDS Long
(p. 290).

MT Safety:

UNSAFE.

Parameters:

seq <<out>> (p. 191) A sequence, into which the elements will be copied.
member name <<in>> (p. 191) The name of the member or NULL to

look up the member by its ID.
member id <<in>> (p. 191) The ID of the member or DDS -

DYNAMIC DATA MEMBER ID UNSPECIFIED (p. 78) to
look up by name. See Member Names and IDs (p. 592).

Returns:

One of the Standard Return Codes (p. 302) or DDS RETCODE -
OUT OF RESOURCES (p. 303)

See also:

DDS DynamicData::set long seq (p. 663)
DDS DynamicData::get long array (p. 623)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.33 DDS DynamicData Struct Reference 637

6.33.6.58 DDS ReturnCode t DDS DynamicData::get double seq
(DDS DoubleSeq & seq, const char ∗ member name,
DDS DynamicDataMemberId member id) const

Get a copy of the given sequence member.

The provided sequence will be automatically resized as necessary.

This method will perform an automatic conversion from an array of DDS -
Double (p. 290).

MT Safety:

UNSAFE.

Parameters:

seq <<out>> (p. 191) A sequence, into which the elements will be copied.

member name <<in>> (p. 191) The name of the member or NULL to
look up the member by its ID.

member id <<in>> (p. 191) The ID of the member or DDS -
DYNAMIC DATA MEMBER ID UNSPECIFIED (p. 78) to
look up by name. See Member Names and IDs (p. 592).

Returns:

One of the Standard Return Codes (p. 302) or DDS RETCODE -
OUT OF RESOURCES (p. 303)

See also:

DDS DynamicData::set double seq (p. 667)
DDS DynamicData::get double array (p. 627)

6.33.6.59 DDS ReturnCode t DDS DynamicData::get boolean seq
(DDS BooleanSeq & seq, const char ∗ member name,
DDS DynamicDataMemberId member id) const

Get a copy of the given sequence member.

The provided sequence will be automatically resized as necessary.

This method will perform an automatic conversion from an array of DDS -
Boolean (p. 291).

MT Safety:

UNSAFE.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

638 Class Documentation

Parameters:

seq <<out>> (p. 191) A sequence, into which the elements will be copied.

member name <<in>> (p. 191) The name of the member or NULL to
look up the member by its ID.

member id <<in>> (p. 191) The ID of the member or DDS -
DYNAMIC DATA MEMBER ID UNSPECIFIED (p. 78) to
look up by name. See Member Names and IDs (p. 592).

Returns:

One of the Standard Return Codes (p. 302) or DDS RETCODE -
OUT OF RESOURCES (p. 303)

See also:

DDS DynamicData::set boolean seq (p. 668)
DDS DynamicData::get boolean array (p. 627)

6.33.6.60 DDS ReturnCode t DDS DynamicData::get char seq
(DDS CharSeq & seq, const char ∗ member name,
DDS DynamicDataMemberId member id) const

Get a copy of the given sequence member.

The provided sequence will be automatically resized as necessary.

This method will perform an automatic conversion from an array of DDS Char
(p. 289).

MT Safety:

UNSAFE.

Parameters:

seq <<out>> (p. 191) A sequence, into which the elements will be copied.

member name <<in>> (p. 191) The name of the member or NULL to
look up the member by its ID.

member id <<in>> (p. 191) The ID of the member or DDS -
DYNAMIC DATA MEMBER ID UNSPECIFIED (p. 78) to
look up by name. See Member Names and IDs (p. 592).

Returns:

One of the Standard Return Codes (p. 302) or DDS RETCODE -
OUT OF RESOURCES (p. 303)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.33 DDS DynamicData Struct Reference 639

See also:

DDS DynamicData::set char seq (p. 668)
DDS DynamicData::get char array (p. 628)

6.33.6.61 DDS ReturnCode t DDS DynamicData::get octet seq
(DDS OctetSeq & seq, const char ∗ member name,
DDS DynamicDataMemberId member id) const

Get a copy of the given sequence member.

The provided sequence will be automatically resized as necessary.

This method will perform an automatic conversion from an array of DDS -
Octet (p. 289).

MT Safety:

UNSAFE.

Parameters:

seq <<out>> (p. 191) A sequence, into which the elements will be copied.

member name <<in>> (p. 191) The name of the member or NULL to
look up the member by its ID.

member id <<in>> (p. 191) The ID of the member or DDS -
DYNAMIC DATA MEMBER ID UNSPECIFIED (p. 78) to
look up by name. See Member Names and IDs (p. 592).

Returns:

One of the Standard Return Codes (p. 302) or DDS RETCODE -
OUT OF RESOURCES (p. 303)

See also:

DDS DynamicData::set octet seq (p. 669)
DDS DynamicData::get octet array (p. 629)

6.33.6.62 DDS ReturnCode t DDS DynamicData::get longlong seq
(DDS LongLongSeq & seq, const char ∗ member name,
DDS DynamicDataMemberId member id) const

Get a copy of the given sequence member.

The provided sequence will be automatically resized as necessary.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

640 Class Documentation

This method will perform an automatic conversion from an array of DDS -
LongLong (p. 290).

MT Safety:

UNSAFE.

Parameters:

seq <<out>> (p. 191) A sequence, into which the elements will be copied.

member name <<in>> (p. 191) The name of the member or NULL to
look up the member by its ID.

member id <<in>> (p. 191) The ID of the member or DDS -
DYNAMIC DATA MEMBER ID UNSPECIFIED (p. 78) to
look up by name. See Member Names and IDs (p. 592).

Returns:

One of the Standard Return Codes (p. 302) or DDS RETCODE -
OUT OF RESOURCES (p. 303)

See also:

DDS DynamicData::set longlong seq (p. 670)
DDS DynamicData::get longlong array (p. 630)

6.33.6.63 DDS ReturnCode t DDS DynamicData::get ulonglong -
seq (DDS UnsignedLongLongSeq & seq, const char
∗ member name, DDS DynamicDataMemberId
member id) const

Get a copy of the given sequence member.

The provided sequence will be automatically resized as necessary.

This method will perform an automatic conversion from an array of DDS -
UnsignedLongLong (p. 290).

MT Safety:

UNSAFE.

Parameters:

seq <<out>> (p. 191) A sequence, into which the elements will be copied.

member name <<in>> (p. 191) The name of the member or NULL to
look up the member by its ID.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.33 DDS DynamicData Struct Reference 641

member id <<in>> (p. 191) The ID of the member or DDS -
DYNAMIC DATA MEMBER ID UNSPECIFIED (p. 78) to
look up by name. See Member Names and IDs (p. 592).

Returns:

One of the Standard Return Codes (p. 302) or DDS RETCODE -
OUT OF RESOURCES (p. 303)

See also:

DDS DynamicData::set ulonglong seq (p. 671)
DDS DynamicData::get ulonglong array (p. 631)

6.33.6.64 DDS ReturnCode t DDS DynamicData::get -
longdouble seq (DDS LongDoubleSeq & seq, const
char ∗ member name, DDS DynamicDataMemberId
member id) const

Get a copy of the given sequence member.

The provided sequence will be automatically resized as necessary.

This method will perform an automatic conversion from an array of DDS -
LongDouble (p. 290).

MT Safety:

UNSAFE.

Parameters:

seq <<out>> (p. 191) A sequence, into which the elements will be copied.
member name <<in>> (p. 191) The name of the member or NULL to

look up the member by its ID.
member id <<in>> (p. 191) The ID of the member or DDS -

DYNAMIC DATA MEMBER ID UNSPECIFIED (p. 78) to
look up by name. See Member Names and IDs (p. 592).

Returns:

One of the Standard Return Codes (p. 302) or DDS RETCODE -
OUT OF RESOURCES (p. 303)

See also:

DDS DynamicData::set longdouble seq (p. 671)
DDS DynamicData::get longdouble array (p. 631)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

642 Class Documentation

6.33.6.65 DDS ReturnCode t DDS DynamicData::get wchar seq
(DDS WcharSeq & seq, const char ∗ member name,
DDS DynamicDataMemberId member id) const

Get a copy of the given sequence member.

The provided sequence will be automatically resized as necessary.

This method will perform an automatic conversion from an array of DDS -
Wchar (p. 289).

MT Safety:

UNSAFE.

Parameters:

seq <<out>> (p. 191) A sequence, into which the elements will be copied.

member name <<in>> (p. 191) The name of the member or NULL to
look up the member by its ID.

member id <<in>> (p. 191) The ID of the member or DDS -
DYNAMIC DATA MEMBER ID UNSPECIFIED (p. 78) to
look up by name. See Member Names and IDs (p. 592).

Returns:

One of the Standard Return Codes (p. 302) or DDS RETCODE -
OUT OF RESOURCES (p. 303)

See also:

DDS DynamicData::set wchar seq (p. 672)
DDS DynamicData::get wchar array (p. 632)

6.33.6.66 DDS ReturnCode t DDS DynamicData::set long (const
char ∗ member name, DDS DynamicDataMemberId
member id, DDS Long value)

Set the value of the given field, which is of type DDS Long (p. 290).

MT Safety:

UNSAFE.

Parameters:

member name <<in>> (p. 191) The name of the member or NULL to
look up the member by its ID.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.33 DDS DynamicData Struct Reference 643

member id <<in>> (p. 191) The ID of the member or DDS -
DYNAMIC DATA MEMBER ID UNSPECIFIED (p. 78) to
look up by name. See Member Names and IDs (p. 592).

value <<in>> (p. 191) The value to which to set the member.

Returns:

One of the Standard Return Codes (p. 302) or DDS RETCODE -
OUT OF RESOURCES (p. 303)

See also:

DDS DynamicData::get long (p. 611)

6.33.6.67 DDS ReturnCode t DDS DynamicData::set short (const
char ∗ member name, DDS DynamicDataMemberId
member id, DDS Short value)

Set the value of the given field, which is of type DDS Short (p. 289).

MT Safety:

UNSAFE.

Parameters:

member name <<in>> (p. 191) The name of the member or NULL to
look up the member by its ID.

member id <<in>> (p. 191) The ID of the member or DDS -
DYNAMIC DATA MEMBER ID UNSPECIFIED (p. 78) to
look up by name. See Member Names and IDs (p. 592).

value <<in>> (p. 191) The value to which to set the member.

Returns:

One of the Standard Return Codes (p. 302) or DDS RETCODE -
OUT OF RESOURCES (p. 303)

See also:

DDS DynamicData::get short (p. 612)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

644 Class Documentation

6.33.6.68 DDS ReturnCode t DDS DynamicData::set ulong (const
char ∗ member name, DDS DynamicDataMemberId
member id, DDS UnsignedLong value)

Set the value of the given field, which is of type DDS UnsignedLong (p. 290).

MT Safety:

UNSAFE.

Parameters:

member name <<in>> (p. 191) The name of the member or NULL to
look up the member by its ID.

member id <<in>> (p. 191) The ID of the member or DDS -
DYNAMIC DATA MEMBER ID UNSPECIFIED (p. 78) to
look up by name. See Member Names and IDs (p. 592).

value <<in>> (p. 191) The value to which to set the member.

Returns:

One of the Standard Return Codes (p. 302) or DDS RETCODE -
OUT OF RESOURCES (p. 303)

See also:

DDS DynamicData::get ulong (p. 612)

6.33.6.69 DDS ReturnCode t DDS DynamicData::set ushort (const
char ∗ member name, DDS DynamicDataMemberId
member id, DDS UnsignedShort value)

Set the value of the given field, which is of type DDS UnsignedShort (p. 289).

MT Safety:

UNSAFE.

Parameters:

member name <<in>> (p. 191) The name of the member or NULL to
look up the member by its ID.

member id <<in>> (p. 191) The ID of the member or DDS -
DYNAMIC DATA MEMBER ID UNSPECIFIED (p. 78) to
look up by name. See Member Names and IDs (p. 592).

value <<in>> (p. 191) The value to which to set the member.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.33 DDS DynamicData Struct Reference 645

Returns:

One of the Standard Return Codes (p. 302) or DDS RETCODE -
OUT OF RESOURCES (p. 303)

See also:

DDS DynamicData::get ushort (p. 613)

6.33.6.70 DDS ReturnCode t DDS DynamicData::set float (const
char ∗ member name, DDS DynamicDataMemberId
member id, DDS Float value)

Set the value of the given field, which is of type DDS Float (p. 290).

MT Safety:

UNSAFE.

Parameters:

member name <<in>> (p. 191) The name of the member or NULL to
look up the member by its ID.

member id <<in>> (p. 191) The ID of the member or DDS -
DYNAMIC DATA MEMBER ID UNSPECIFIED (p. 78) to
look up by name. See Member Names and IDs (p. 592).

value <<in>> (p. 191) The value to which to set the member.

Returns:

One of the Standard Return Codes (p. 302) or DDS RETCODE -
OUT OF RESOURCES (p. 303)

See also:

DDS DynamicData::get float (p. 614)

6.33.6.71 DDS ReturnCode t DDS DynamicData::set double
(const char ∗ member name, DDS -
DynamicDataMemberId member id, DDS Double
value)

Set the value of the given field, which is of type DDS Double (p. 290).

MT Safety:

UNSAFE.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

646 Class Documentation

Parameters:

member name <<in>> (p. 191) The name of the member or NULL to
look up the member by its ID.

member id <<in>> (p. 191) The ID of the member or DDS -
DYNAMIC DATA MEMBER ID UNSPECIFIED (p. 78) to
look up by name. See Member Names and IDs (p. 592).

value <<in>> (p. 191) The value to which to set the member.

Returns:

One of the Standard Return Codes (p. 302) or DDS RETCODE -
OUT OF RESOURCES (p. 303)

See also:

DDS DynamicData::get double (p. 614)

6.33.6.72 DDS ReturnCode t DDS DynamicData::set boolean
(const char ∗ member name, DDS -
DynamicDataMemberId member id, DDS Boolean
value)

Set the value of the given field, which is of type DDS Boolean (p. 291).

MT Safety:

UNSAFE.

Parameters:

member name <<in>> (p. 191) The name of the member or NULL to
look up the member by its ID.

member id <<in>> (p. 191) The ID of the member or DDS -
DYNAMIC DATA MEMBER ID UNSPECIFIED (p. 78) to
look up by name. See Member Names and IDs (p. 592).

value <<in>> (p. 191) The value to which to set the member.

Returns:

One of the Standard Return Codes (p. 302) or DDS RETCODE -
OUT OF RESOURCES (p. 303)

See also:

DDS DynamicData::get boolean (p. 615)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.33 DDS DynamicData Struct Reference 647

6.33.6.73 DDS ReturnCode t DDS DynamicData::set char (const
char ∗ member name, DDS DynamicDataMemberId
member id, DDS Char value)

Set the value of the given field, which is of type DDS Char (p. 289).

MT Safety:

UNSAFE.

Parameters:

member name <<in>> (p. 191) The name of the member or NULL to
look up the member by its ID.

member id <<in>> (p. 191) The ID of the member or DDS -
DYNAMIC DATA MEMBER ID UNSPECIFIED (p. 78) to
look up by name. See Member Names and IDs (p. 592).

value <<in>> (p. 191) The value to which to set the member.

Returns:

One of the Standard Return Codes (p. 302) or DDS RETCODE -
OUT OF RESOURCES (p. 303)

See also:

DDS DynamicData::get char (p. 616)

6.33.6.74 DDS ReturnCode t DDS DynamicData::set octet (const
char ∗ member name, DDS DynamicDataMemberId
member id, DDS Octet value)

Set the value of the given field, which is of type DDS Octet (p. 289).

MT Safety:

UNSAFE.

Parameters:

member name <<in>> (p. 191) The name of the member or NULL to
look up the member by its ID.

member id <<in>> (p. 191) The ID of the member or DDS -
DYNAMIC DATA MEMBER ID UNSPECIFIED (p. 78) to
look up by name. See Member Names and IDs (p. 592).

value <<in>> (p. 191) The value to which to set the member.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

648 Class Documentation

Returns:

One of the Standard Return Codes (p. 302) or DDS RETCODE -
OUT OF RESOURCES (p. 303)

See also:

DDS DynamicData::get octet (p. 616)

6.33.6.75 DDS ReturnCode t DDS DynamicData::set longlong
(const char ∗ member name, DDS -
DynamicDataMemberId member id, DDS LongLong
value)

Set the value of the given field, which is of type DDS LongLong (p. 290).

MT Safety:

UNSAFE.

Parameters:

member name <<in>> (p. 191) The name of the member or NULL to
look up the member by its ID.

member id <<in>> (p. 191) The ID of the member or DDS -
DYNAMIC DATA MEMBER ID UNSPECIFIED (p. 78) to
look up by name. See Member Names and IDs (p. 592).

value <<in>> (p. 191) The value to which to set the member.

Returns:

One of the Standard Return Codes (p. 302) or DDS RETCODE -
OUT OF RESOURCES (p. 303)

See also:

DDS DynamicData::get longlong (p. 617)

6.33.6.76 DDS ReturnCode t DDS DynamicData::set -
ulonglong (const char ∗ member name,
DDS DynamicDataMemberId member id,
DDS UnsignedLongLong value)

Set the value of the given field, which is of type DDS UnsignedLongLong
(p. 290).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.33 DDS DynamicData Struct Reference 649

MT Safety:

UNSAFE.

Parameters:

member name <<in>> (p. 191) The name of the member or NULL to
look up the member by its ID.

member id <<in>> (p. 191) The ID of the member or DDS -
DYNAMIC DATA MEMBER ID UNSPECIFIED (p. 78) to
look up by name. See Member Names and IDs (p. 592).

value <<in>> (p. 191) The value to which to set the member.

Returns:

One of the Standard Return Codes (p. 302) or DDS RETCODE -
OUT OF RESOURCES (p. 303)

See also:

DDS DynamicData::get ulonglong (p. 618)

6.33.6.77 DDS ReturnCode t DDS DynamicData::set -
longdouble (const char ∗ member name,
DDS DynamicDataMemberId member id,
DDS LongDouble value)

Set the value of the given field, which is of type DDS LongDouble (p. 290).

MT Safety:

UNSAFE.

Parameters:

member name <<in>> (p. 191) The name of the member or NULL to
look up the member by its ID.

member id <<in>> (p. 191) The ID of the member or DDS -
DYNAMIC DATA MEMBER ID UNSPECIFIED (p. 78) to
look up by name. See Member Names and IDs (p. 592).

value <<in>> (p. 191) The value to which to set the member.

Returns:

One of the Standard Return Codes (p. 302) or DDS RETCODE -
OUT OF RESOURCES (p. 303)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

650 Class Documentation

See also:

DDS DynamicData::get longdouble (p. 618)

6.33.6.78 DDS ReturnCode t DDS DynamicData::set wchar (const
char ∗ member name, DDS DynamicDataMemberId
member id, DDS Wchar value)

Set the value of the given field, which is of type DDS Wchar (p. 289).

MT Safety:

UNSAFE.

Parameters:

member name <<in>> (p. 191) The name of the member or NULL to
look up the member by its ID.

member id <<in>> (p. 191) The ID of the member or DDS -
DYNAMIC DATA MEMBER ID UNSPECIFIED (p. 78) to
look up by name. See Member Names and IDs (p. 592).

value <<in>> (p. 191) The value to which to set the member.

Returns:

One of the Standard Return Codes (p. 302) or DDS RETCODE -
OUT OF RESOURCES (p. 303)

See also:

DDS DynamicData::get char (p. 616)

6.33.6.79 DDS ReturnCode t DDS DynamicData::set string (const
char ∗ member name, DDS DynamicDataMemberId
member id, const char ∗ value)

Set the value of the given field of type char∗.

MT Safety:

UNSAFE.

Parameters:

member name <<in>> (p. 191) The name of the member or NULL to
look up the member by its ID.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.33 DDS DynamicData Struct Reference 651

member id <<in>> (p. 191) The ID of the member or DDS -
DYNAMIC DATA MEMBER ID UNSPECIFIED (p. 78) to
look up by name. See Member Names and IDs (p. 592).

value <<in>> (p. 191) The value to which to set the member.

Returns:

One of the Standard Return Codes (p. 302) or DDS RETCODE -
OUT OF RESOURCES (p. 303)

See also:

DDS DynamicData::get string (p. 620)

6.33.6.80 DDS ReturnCode t DDS DynamicData::set wstring
(const char ∗ member name, DDS -
DynamicDataMemberId member id, const DDS Wchar ∗
value)

Set the value of the given field of type DDS Wchar (p. 289)∗.

MT Safety:

UNSAFE.

Parameters:

member name <<in>> (p. 191) The name of the member or NULL to
look up the member by its ID.

member id <<in>> (p. 191) The ID of the member or DDS -
DYNAMIC DATA MEMBER ID UNSPECIFIED (p. 78) to
look up by name. See Member Names and IDs (p. 592).

value <<in>> (p. 191) The value to which to set the member.

Returns:

One of the Standard Return Codes (p. 302) or DDS RETCODE -
OUT OF RESOURCES (p. 303)

See also:

DDS DynamicData::get wstring (p. 621)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

652 Class Documentation

6.33.6.81 DDS ReturnCode t DDS DynamicData::set -
complex member (const char ∗ member name,
DDS DynamicDataMemberId member id, const
DDS DynamicData & value)

Copy the state of the given DDS DynamicData (p. 580) object into a member
of this object.

The member may be of type kind DDS TK ARRAY (p. 65), DDS -
TK SEQUENCE (p. 65), DDS TK STRUCT (p. 65), DDS TK VALUE
(p. 65), DDS TK UNION (p. 65), or DDS TK SPARSE (p. 65). It may be
specified by name or by ID.

Example: Copying Data

This method can be used with DDS DynamicData::bind complex -
member (p. 603) to copy from one DDS DynamicData (p. 580) object to
another efficiently. Suppose the following data structure:

struct Bar {

short theShort;

};

struct Foo {

Bar theBar;

};

Support we have two instances of Foo (p. 1333): foo dst and foo src. We
want to replace the contents of foo dst.theBar with the contents of foo -
src.theBar. Error handling has been omitted for the sake of brevity.

DDS_DynamicData* foo_dst = ...;

DDS_DynamicData* foo_src = ...;

DDS_DynamicData* bar = new DDS_DynamicData(NULL, myProperties);

// Point to the source of the copy:

foo_src->bind_complex_member(

"theBar",

DDS_DYNAMIC_DATA_MEMBER_ID_UNSPECIFIED,

bar);

// Just one copy:

foo_dst->set_complex_member(

"theBar",

DDS_DYNAMIC_DATA_MEMBER_ID_UNSPECIFIED,

bar);

// Tear down:

foo_src->unbind_complex_member(bar);

delete bar;

MT Safety:

UNSAFE.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.33 DDS DynamicData Struct Reference 653

Parameters:

member name <<in>> (p. 191) The name of the member or NULL to
look up the member by its ID.

member id <<in>> (p. 191) The ID of the member or DDS -
DYNAMIC DATA MEMBER ID UNSPECIFIED (p. 78) to
look up by name. See Member Names and IDs (p. 592).

value <<in>> (p. 191) The source DDS DynamicData (p. 580) object
whose contents will be copied.

Returns:

One of the Standard Return Codes (p. 302) or DDS RETCODE -
OUT OF RESOURCES (p. 303)

See also:

DDS DynamicData::get complex member (p. 622)
DDS DynamicData::bind complex member (p. 603)

6.33.6.82 DDS ReturnCode t DDS DynamicData::set -
long array (const char ∗ member name,
DDS DynamicDataMemberId member id,
DDS UnsignedLong length, const DDS Long ∗ array)

Set the contents of the given array member.

This method will perform an automatic conversion to DDS LongSeq (p. 744).

If the destination array is insufficiently long to store the data, this operation
will fail without copying anything.

MT Safety:

UNSAFE.

Parameters:

member name <<in>> (p. 191) The name of the member or NULL to
look up the member by its ID.

member id <<in>> (p. 191) The ID of the member or DDS -
DYNAMIC DATA MEMBER ID UNSPECIFIED (p. 78) to
look up by name. See Member Names and IDs (p. 592).

length <<in>> (p. 191) The length of array.

array <<in>> (p. 191) The elements to copy.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

654 Class Documentation

Returns:

One of the Standard Return Codes (p. 302) or DDS RETCODE -
OUT OF RESOURCES (p. 303)

See also:

DDS DynamicData::get long array (p. 623)
DDS DynamicData::set long seq (p. 663)

6.33.6.83 DDS ReturnCode t DDS DynamicData::set -
short array (const char ∗ member name,
DDS DynamicDataMemberId member id,
DDS UnsignedLong length, const DDS Short ∗ array)

Set the contents of the given array member.

This method will perform an automatic conversion to DDS ShortSeq (p. 868).

If the destination array is insufficiently long to store the data, this operation
will fail without copying anything.

MT Safety:

UNSAFE.

Parameters:

member name <<in>> (p. 191) The name of the member or NULL to
look up the member by its ID.

member id <<in>> (p. 191) The ID of the member or DDS -
DYNAMIC DATA MEMBER ID UNSPECIFIED (p. 78) to
look up by name. See Member Names and IDs (p. 592).

length <<in>> (p. 191) The length of array.

array <<in>> (p. 191) The elements to copy.

Returns:

One of the Standard Return Codes (p. 302) or DDS RETCODE -
OUT OF RESOURCES (p. 303)

See also:

DDS DynamicData::get short array (p. 623)
DDS DynamicData::set short seq (p. 664)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.33 DDS DynamicData Struct Reference 655

6.33.6.84 DDS ReturnCode t DDS DynamicData::set -
ulong array (const char ∗ member name,
DDS DynamicDataMemberId member id,
DDS UnsignedLong length, const DDS UnsignedLong ∗
array)

Set the contents of the given array member.

This method will perform an automatic conversion to DDS -
UnsignedLongSeq (p. 970).

If the destination array is insufficiently long to store the data, this operation
will fail without copying anything.

MT Safety:

UNSAFE.

Parameters:

member name <<in>> (p. 191) The name of the member or NULL to
look up the member by its ID.

member id <<in>> (p. 191) The ID of the member or DDS -
DYNAMIC DATA MEMBER ID UNSPECIFIED (p. 78) to
look up by name. See Member Names and IDs (p. 592).

length <<in>> (p. 191) The length of array.

array <<in>> (p. 191) The elements to copy.

Returns:

One of the Standard Return Codes (p. 302) or DDS RETCODE -
OUT OF RESOURCES (p. 303)

See also:

DDS DynamicData::get ulong array (p. 624)
DDS DynamicData::set ulong seq (p. 665)

6.33.6.85 DDS ReturnCode t DDS DynamicData::set -
ushort array (const char ∗ member name,
DDS DynamicDataMemberId member id,
DDS UnsignedLong length, const DDS UnsignedShort ∗
array)

Set the contents of the given array member.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

656 Class Documentation

This method will perform an automatic conversion to DDS -
UnsignedShortSeq (p. 971).

If the destination array is insufficiently long to store the data, this operation
will fail without copying anything.

MT Safety:

UNSAFE.

Parameters:

member name <<in>> (p. 191) The name of the member or NULL to
look up the member by its ID.

member id <<in>> (p. 191) The ID of the member or DDS -
DYNAMIC DATA MEMBER ID UNSPECIFIED (p. 78) to
look up by name. See Member Names and IDs (p. 592).

length <<in>> (p. 191) The length of array.

array <<in>> (p. 191) The elements to copy.

Returns:

One of the Standard Return Codes (p. 302) or DDS RETCODE -
OUT OF RESOURCES (p. 303)

See also:

DDS DynamicData::get ushort array (p. 625)
DDS DynamicData::set ushort seq (p. 666)

6.33.6.86 DDS ReturnCode t DDS DynamicData::set -
float array (const char ∗ member name,
DDS DynamicDataMemberId member id,
DDS UnsignedLong length, const DDS Float ∗ array)

Set the contents of the given array member.

This method will perform an automatic conversion to DDS FloatSeq (p. 699).

If the destination array is insufficiently long to store the data, this operation
will fail without copying anything.

MT Safety:

UNSAFE.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.33 DDS DynamicData Struct Reference 657

Parameters:

member name <<in>> (p. 191) The name of the member or NULL to
look up the member by its ID.

member id <<in>> (p. 191) The ID of the member or DDS -
DYNAMIC DATA MEMBER ID UNSPECIFIED (p. 78) to
look up by name. See Member Names and IDs (p. 592).

length <<in>> (p. 191) The length of array.

array <<in>> (p. 191) The elements to copy.

Returns:

One of the Standard Return Codes (p. 302) or DDS RETCODE -
OUT OF RESOURCES (p. 303)

See also:

DDS DynamicData::get float array (p. 626)
DDS DynamicData::set float seq (p. 666)

6.33.6.87 DDS ReturnCode t DDS DynamicData::set -
double array (const char ∗ member name,
DDS DynamicDataMemberId member id,
DDS UnsignedLong length, const DDS Double ∗ array)

Set the contents of the given array member.

This method will perform an automatic conversion to DDS DoubleSeq
(p. 571).

If the destination array is insufficiently long to store the data, this operation
will fail without copying anything.

MT Safety:

UNSAFE.

Parameters:

member name <<in>> (p. 191) The name of the member or NULL to
look up the member by its ID.

member id <<in>> (p. 191) The ID of the member or DDS -
DYNAMIC DATA MEMBER ID UNSPECIFIED (p. 78) to
look up by name. See Member Names and IDs (p. 592).

length <<in>> (p. 191) The length of array.

array <<in>> (p. 191) The elements to copy.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

658 Class Documentation

Returns:

One of the Standard Return Codes (p. 302) or DDS RETCODE -
OUT OF RESOURCES (p. 303)

See also:

DDS DynamicData::get double array (p. 627)
DDS DynamicData::set double seq (p. 667)

6.33.6.88 DDS ReturnCode t DDS DynamicData::set -
boolean array (const char ∗ member name,
DDS DynamicDataMemberId member id,
DDS UnsignedLong length, const DDS Boolean ∗ array)

Set the contents of the given array member.

This method will perform an automatic conversion to DDS BooleanSeq
(p. 450).

If the destination array is insufficiently long to store the data, this operation
will fail without copying anything.

MT Safety:

UNSAFE.

Parameters:

member name <<in>> (p. 191) The name of the member or NULL to
look up the member by its ID.

member id <<in>> (p. 191) The ID of the member or DDS -
DYNAMIC DATA MEMBER ID UNSPECIFIED (p. 78) to
look up by name. See Member Names and IDs (p. 592).

length <<in>> (p. 191) The length of array.

array <<in>> (p. 191) The elements to copy.

Returns:

One of the Standard Return Codes (p. 302) or DDS RETCODE -
OUT OF RESOURCES (p. 303)

See also:

DDS DynamicData::get boolean array (p. 627)
DDS DynamicData::set boolean seq (p. 668)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.33 DDS DynamicData Struct Reference 659

6.33.6.89 DDS ReturnCode t DDS DynamicData::set -
char array (const char ∗ member name,
DDS DynamicDataMemberId member id,
DDS UnsignedLong length, const DDS Char ∗ array)

Set the contents of the given array member.

This method will perform an automatic conversion to DDS CharSeq (p. 458).

If the destination array is insufficiently long to store the data, this operation
will fail without copying anything.

MT Safety:

UNSAFE.

Parameters:

member name <<in>> (p. 191) The name of the member or NULL to
look up the member by its ID.

member id <<in>> (p. 191) The ID of the member or DDS -
DYNAMIC DATA MEMBER ID UNSPECIFIED (p. 78) to
look up by name. See Member Names and IDs (p. 592).

length <<in>> (p. 191) The length of array.

array <<in>> (p. 191) The elements to copy.

Returns:

One of the Standard Return Codes (p. 302) or DDS RETCODE -
OUT OF RESOURCES (p. 303)

See also:

DDS DynamicData::get char array (p. 628)
DDS DynamicData::set char seq (p. 668)

6.33.6.90 DDS ReturnCode t DDS DynamicData::set -
octet array (const char ∗ member name,
DDS DynamicDataMemberId member id,
DDS UnsignedLong length, const DDS Octet ∗ array)

Set the contents of the given array member.

This method will perform an automatic conversion to DDS OctetSeq (p. 750).

If the destination array is insufficiently long to store the data, this operation
will fail without copying anything.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

660 Class Documentation

MT Safety:

UNSAFE.

Parameters:

member name <<in>> (p. 191) The name of the member or NULL to
look up the member by its ID.

member id <<in>> (p. 191) The ID of the member or DDS -
DYNAMIC DATA MEMBER ID UNSPECIFIED (p. 78) to
look up by name. See Member Names and IDs (p. 592).

length <<in>> (p. 191) The length of array.

array <<in>> (p. 191) The elements to copy.

Returns:

One of the Standard Return Codes (p. 302) or DDS RETCODE -
OUT OF RESOURCES (p. 303)

See also:

DDS DynamicData::get octet array (p. 629)
DDS DynamicData::set octet seq (p. 669)

6.33.6.91 DDS ReturnCode t DDS DynamicData::set -
longlong array (const char ∗ member name,
DDS DynamicDataMemberId member id,
DDS UnsignedLong length, const DDS LongLong ∗
array)

Set the contents of the given array member.

This method will perform an automatic conversion to DDS LongLongSeq
(p. 743).

If the destination array is insufficiently long to store the data, this operation
will fail without copying anything.

MT Safety:

UNSAFE.

Parameters:

member name <<in>> (p. 191) The name of the member or NULL to
look up the member by its ID.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.33 DDS DynamicData Struct Reference 661

member id <<in>> (p. 191) The ID of the member or DDS -
DYNAMIC DATA MEMBER ID UNSPECIFIED (p. 78) to
look up by name. See Member Names and IDs (p. 592).

length <<in>> (p. 191) The length of array.
array <<in>> (p. 191) The elements to copy.

Returns:

One of the Standard Return Codes (p. 302) or DDS RETCODE -
OUT OF RESOURCES (p. 303)

See also:

DDS DynamicData::get longlong array (p. 630)
DDS DynamicData::set longlong seq (p. 670)

6.33.6.92 DDS ReturnCode t DDS DynamicData::set -
ulonglong array (const char ∗ member name,
DDS DynamicDataMemberId member id, DDS -
UnsignedLong length, const DDS UnsignedLongLong ∗
array)

Set the contents of the given array member.

This method will perform an automatic conversion to DDS -
UnsignedLongLongSeq (p. 969).

If the destination array is insufficiently long to store the data, this operation
will fail without copying anything.

MT Safety:

UNSAFE.

Parameters:

member name <<in>> (p. 191) The name of the member or NULL to
look up the member by its ID.

member id <<in>> (p. 191) The ID of the member or DDS -
DYNAMIC DATA MEMBER ID UNSPECIFIED (p. 78) to
look up by name. See Member Names and IDs (p. 592).

length <<in>> (p. 191) The length of array.
array <<in>> (p. 191) The elements to copy.

Returns:

One of the Standard Return Codes (p. 302) or DDS RETCODE -
OUT OF RESOURCES (p. 303)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

662 Class Documentation

See also:

DDS DynamicData::get ulonglong array (p. 631)
DDS DynamicData::set ulonglong seq (p. 671)

6.33.6.93 DDS ReturnCode t DDS DynamicData::set -
longdouble array (const char ∗ member name,
DDS DynamicDataMemberId member id,
DDS UnsignedLong length, const DDS LongDouble ∗
array)

Set the contents of the given array member.

This method will perform an automatic conversion to DDS LongDoubleSeq
(p. 742).

If the destination array is insufficiently long to store the data, this operation
will fail without copying anything.

MT Safety:

UNSAFE.

Parameters:

member name <<in>> (p. 191) The name of the member or NULL to
look up the member by its ID.

member id <<in>> (p. 191) The ID of the member or DDS -
DYNAMIC DATA MEMBER ID UNSPECIFIED (p. 78) to
look up by name. See Member Names and IDs (p. 592).

length <<in>> (p. 191) The length of array.

array <<in>> (p. 191) The elements to copy.

Returns:

One of the Standard Return Codes (p. 302) or DDS RETCODE -
OUT OF RESOURCES (p. 303)

See also:

DDS DynamicData::get longdouble array (p. 631)
DDS DynamicData::set longdouble seq (p. 671)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.33 DDS DynamicData Struct Reference 663

6.33.6.94 DDS ReturnCode t DDS DynamicData::set -
wchar array (const char ∗ member name,
DDS DynamicDataMemberId member id,
DDS UnsignedLong length, const DDS Wchar ∗ array)

Set the contents of the given array member.

This method will perform an automatic conversion to DDS WcharSeq
(p. 980).

If the destination array is insufficiently long to store the data, this operation
will fail without copying anything.

MT Safety:

UNSAFE.

Parameters:

member name <<in>> (p. 191) The name of the member or NULL to
look up the member by its ID.

member id <<in>> (p. 191) The ID of the member or DDS -
DYNAMIC DATA MEMBER ID UNSPECIFIED (p. 78) to
look up by name. See Member Names and IDs (p. 592).

length <<in>> (p. 191) The length of array.

array <<in>> (p. 191) The elements to copy.

Returns:

One of the Standard Return Codes (p. 302) or DDS RETCODE -
OUT OF RESOURCES (p. 303)

See also:

DDS DynamicData::get wchar array (p. 632)
DDS DynamicData::set wchar seq (p. 672)

6.33.6.95 DDS ReturnCode t DDS DynamicData::set -
long seq (const char ∗ member name,
DDS DynamicDataMemberId member id, const
DDS LongSeq & value)

Set the contents of the given sequence member.

This method will perform an automatic conversion to an array of DDS Long
(p. 290).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

664 Class Documentation

MT Safety:

UNSAFE.

Parameters:

member name <<in>> (p. 191) The name of the member or NULL to
look up the member by its ID.

member id <<in>> (p. 191) The ID of the member or DDS -
DYNAMIC DATA MEMBER ID UNSPECIFIED (p. 78) to
look up by name. See Member Names and IDs (p. 592).

value <<out>> (p. 191) A sequence, from which the elements will be
copied.

Returns:

One of the Standard Return Codes (p. 302) or DDS RETCODE -
OUT OF RESOURCES (p. 303)

See also:

DDS DynamicData::get long seq (p. 633)
DDS DynamicData::set long array (p. 653)

6.33.6.96 DDS ReturnCode t DDS DynamicData::set -
short seq (const char ∗ member name,
DDS DynamicDataMemberId member id, const
DDS ShortSeq & value)

Set the contents of the given sequence member.

This method will perform an automatic conversion to an array of DDS Short
(p. 289).

MT Safety:

UNSAFE.

Parameters:

member name <<in>> (p. 191) The name of the member or NULL to
look up the member by its ID.

member id <<in>> (p. 191) The ID of the member or DDS -
DYNAMIC DATA MEMBER ID UNSPECIFIED (p. 78) to
look up by name. See Member Names and IDs (p. 592).

value <<out>> (p. 191) A sequence, from which the elements will be
copied.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.33 DDS DynamicData Struct Reference 665

Returns:

One of the Standard Return Codes (p. 302) or DDS RETCODE -
OUT OF RESOURCES (p. 303)

See also:

DDS DynamicData::get short seq (p. 634)
DDS DynamicData::set short array (p. 654)

6.33.6.97 DDS ReturnCode t DDS DynamicData::set -
ulong seq (const char ∗ member name,
DDS DynamicDataMemberId member id, const
DDS UnsignedLongSeq & value)

Set the contents of the given sequence member.

This method will perform an automatic conversion to an array of DDS -
UnsignedLong (p. 290).

MT Safety:

UNSAFE.

Parameters:

member name <<in>> (p. 191) The name of the member or NULL to
look up the member by its ID.

member id <<in>> (p. 191) The ID of the member or DDS -
DYNAMIC DATA MEMBER ID UNSPECIFIED (p. 78) to
look up by name. See Member Names and IDs (p. 592).

value <<out>> (p. 191) A sequence, from which the elements will be
copied.

Returns:

One of the Standard Return Codes (p. 302) or DDS RETCODE -
OUT OF RESOURCES (p. 303)

See also:

DDS DynamicData::get ulong seq (p. 634)
DDS DynamicData::set ulong array (p. 655)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

666 Class Documentation

6.33.6.98 DDS ReturnCode t DDS DynamicData::set -
ushort seq (const char ∗ member name,
DDS DynamicDataMemberId member id, const
DDS UnsignedShortSeq & value)

Set the contents of the given sequence member.

This method will perform an automatic conversion to an array of DDS -
UnsignedShort (p. 289).

MT Safety:

UNSAFE.

Parameters:

member name <<in>> (p. 191) The name of the member or NULL to
look up the member by its ID.

member id <<in>> (p. 191) The ID of the member or DDS -
DYNAMIC DATA MEMBER ID UNSPECIFIED (p. 78) to
look up by name. See Member Names and IDs (p. 592).

value <<out>> (p. 191) A sequence, from which the elements will be
copied.

Returns:

One of the Standard Return Codes (p. 302) or DDS RETCODE -
OUT OF RESOURCES (p. 303)

See also:

DDS DynamicData::get ushort seq (p. 635)
DDS DynamicData::set ushort array (p. 655)

6.33.6.99 DDS ReturnCode t DDS DynamicData::set -
float seq (const char ∗ member name,
DDS DynamicDataMemberId member id, const
DDS FloatSeq & value)

Set the contents of the given sequence member.

This method will perform an automatic conversion to an array of DDS Float
(p. 290).

MT Safety:

UNSAFE.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.33 DDS DynamicData Struct Reference 667

Parameters:

member name <<in>> (p. 191) The name of the member or NULL to
look up the member by its ID.

member id <<in>> (p. 191) The ID of the member or DDS -
DYNAMIC DATA MEMBER ID UNSPECIFIED (p. 78) to
look up by name. See Member Names and IDs (p. 592).

value <<out>> (p. 191) A sequence, from which the elements will be
copied.

Returns:

One of the Standard Return Codes (p. 302) or DDS RETCODE -
OUT OF RESOURCES (p. 303)

See also:

DDS DynamicData::get float seq (p. 636)
DDS DynamicData::set float array (p. 656)

6.33.6.100 DDS ReturnCode t DDS DynamicData::set -
double seq (const char ∗ member name,
DDS DynamicDataMemberId member id, const
DDS DoubleSeq & value)

Set the contents of the given sequence member.

This method will perform an automatic conversion to an array of DDS Double
(p. 290).

MT Safety:

UNSAFE.

Parameters:

member name <<in>> (p. 191) The name of the member or NULL to
look up the member by its ID.

member id <<in>> (p. 191) The ID of the member or DDS -
DYNAMIC DATA MEMBER ID UNSPECIFIED (p. 78) to
look up by name. See Member Names and IDs (p. 592).

value <<out>> (p. 191) A sequence, from which the elements will be
copied.

Returns:

One of the Standard Return Codes (p. 302) or DDS RETCODE -
OUT OF RESOURCES (p. 303)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

668 Class Documentation

See also:

DDS DynamicData::get double seq (p. 637)
DDS DynamicData::set double array (p. 657)

6.33.6.101 DDS ReturnCode t DDS DynamicData::set -
boolean seq (const char ∗ member name,
DDS DynamicDataMemberId member id, const
DDS BooleanSeq & value)

Set the contents of the given sequence member.

This method will perform an automatic conversion to an array of DDS -
Boolean (p. 291).

MT Safety:

UNSAFE.

Parameters:

member name <<in>> (p. 191) The name of the member or NULL to
look up the member by its ID.

member id <<in>> (p. 191) The ID of the member or DDS -
DYNAMIC DATA MEMBER ID UNSPECIFIED (p. 78) to
look up by name. See Member Names and IDs (p. 592).

value <<out>> (p. 191) A sequence, from which the elements will be
copied.

Returns:

One of the Standard Return Codes (p. 302) or DDS RETCODE -
OUT OF RESOURCES (p. 303)

See also:

DDS DynamicData::get boolean seq (p. 637)
DDS DynamicData::set boolean array (p. 658)

6.33.6.102 DDS ReturnCode t DDS DynamicData::set -
char seq (const char ∗ member name,
DDS DynamicDataMemberId member id, const
DDS CharSeq & value)

Set the contents of the given sequence member.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.33 DDS DynamicData Struct Reference 669

This method will perform an automatic conversion to an array of DDS Char
(p. 289).

MT Safety:

UNSAFE.

Parameters:

member name <<in>> (p. 191) The name of the member or NULL to
look up the member by its ID.

member id <<in>> (p. 191) The ID of the member or DDS -
DYNAMIC DATA MEMBER ID UNSPECIFIED (p. 78) to
look up by name. See Member Names and IDs (p. 592).

value <<out>> (p. 191) A sequence, from which the elements will be
copied.

Returns:

One of the Standard Return Codes (p. 302) or DDS RETCODE -
OUT OF RESOURCES (p. 303)

See also:

DDS DynamicData::get char seq (p. 638)
DDS DynamicData::set char array (p. 659)

6.33.6.103 DDS ReturnCode t DDS DynamicData::set -
octet seq (const char ∗ member name,
DDS DynamicDataMemberId member id, const
DDS OctetSeq & value)

Set the contents of the given sequence member.

This method will perform an automatic conversion to an array of DDS Octet
(p. 289).

MT Safety:

UNSAFE.

Parameters:

member name <<in>> (p. 191) The name of the member or NULL to
look up the member by its ID.

member id <<in>> (p. 191) The ID of the member or DDS -
DYNAMIC DATA MEMBER ID UNSPECIFIED (p. 78) to
look up by name. See Member Names and IDs (p. 592).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

670 Class Documentation

value <<out>> (p. 191) A sequence, from which the elements will be
copied.

Returns:

One of the Standard Return Codes (p. 302) or DDS RETCODE -
OUT OF RESOURCES (p. 303)

See also:

DDS DynamicData::get octet seq (p. 639)
DDS DynamicData::set octet array (p. 659)

6.33.6.104 DDS ReturnCode t DDS DynamicData::set -
longlong seq (const char ∗ member name,
DDS DynamicDataMemberId member id, const
DDS LongLongSeq & value)

Set the contents of the given sequence member.

This method will perform an automatic conversion to an array of DDS -
LongLong (p. 290).

MT Safety:

UNSAFE.

Parameters:

member name <<in>> (p. 191) The name of the member or NULL to
look up the member by its ID.

member id <<in>> (p. 191) The ID of the member or DDS -
DYNAMIC DATA MEMBER ID UNSPECIFIED (p. 78) to
look up by name. See Member Names and IDs (p. 592).

value <<out>> (p. 191) A sequence, from which the elements will be
copied.

Returns:

One of the Standard Return Codes (p. 302) or DDS RETCODE -
OUT OF RESOURCES (p. 303)

See also:

DDS DynamicData::get longlong seq (p. 639)
DDS DynamicData::set longlong array (p. 660)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.33 DDS DynamicData Struct Reference 671

6.33.6.105 DDS ReturnCode t DDS DynamicData::set -
ulonglong seq (const char ∗ member name,
DDS DynamicDataMemberId member id, const
DDS UnsignedLongLongSeq & value)

Set the contents of the given sequence member.

This method will perform an automatic conversion to an array of DDS -
UnsignedLongLong (p. 290).

MT Safety:

UNSAFE.

Parameters:

member name <<in>> (p. 191) The name of the member or NULL to
look up the member by its ID.

member id <<in>> (p. 191) The ID of the member or DDS -
DYNAMIC DATA MEMBER ID UNSPECIFIED (p. 78) to
look up by name. See Member Names and IDs (p. 592).

value <<out>> (p. 191) A sequence, from which the elements will be
copied.

Returns:

One of the Standard Return Codes (p. 302) or DDS RETCODE -
OUT OF RESOURCES (p. 303)

See also:

DDS DynamicData::get ulonglong seq (p. 640)
DDS DynamicData::set ulonglong array (p. 661)

6.33.6.106 DDS ReturnCode t DDS DynamicData::set -
longdouble seq (const char ∗ member name,
DDS DynamicDataMemberId member id, const
DDS LongDoubleSeq & value)

Set the contents of the given sequence member.

This method will perform an automatic conversion to an array of DDS -
LongDouble (p. 290).

MT Safety:

UNSAFE.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

672 Class Documentation

Parameters:

member name <<in>> (p. 191) The name of the member or NULL to
look up the member by its ID.

member id <<in>> (p. 191) The ID of the member or DDS -
DYNAMIC DATA MEMBER ID UNSPECIFIED (p. 78) to
look up by name. See Member Names and IDs (p. 592).

value <<out>> (p. 191) A sequence, from which the elements will be
copied.

Returns:

One of the Standard Return Codes (p. 302) or DDS RETCODE -
OUT OF RESOURCES (p. 303)

See also:

DDS DynamicData::get longdouble seq (p. 641)
DDS DynamicData::set longdouble array (p. 662)

6.33.6.107 DDS ReturnCode t DDS DynamicData::set -
wchar seq (const char ∗ member name,
DDS DynamicDataMemberId member id, const
DDS WcharSeq & value)

Set the contents of the given sequence member.

This method will perform an automatic conversion to an array of DDS Wchar
(p. 289).

MT Safety:

UNSAFE.

Parameters:

member name <<in>> (p. 191) The name of the member or NULL to
look up the member by its ID.

member id <<in>> (p. 191) The ID of the member or DDS -
DYNAMIC DATA MEMBER ID UNSPECIFIED (p. 78) to
look up by name. See Member Names and IDs (p. 592).

value <<out>> (p. 191) A sequence, from which the elements will be
copied.

Returns:

One of the Standard Return Codes (p. 302) or DDS RETCODE -
OUT OF RESOURCES (p. 303)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.33 DDS DynamicData Struct Reference 673

See also:

DDS DynamicData::get wchar seq (p. 642)
DDS DynamicData::set wchar array (p. 663)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

674 Class Documentation

Get Set
DDS DynamicData::get long
(p. 611)

DDS DynamicData::set long
(p. 642)

DDS DynamicData::get ulong
(p. 612)

DDS DynamicData::set ulong
(p. 644)

DDS DynamicData::get short
(p. 612)

DDS DynamicData::set short
(p. 643)

DDS DynamicData::get ushort
(p. 613)

DDS DynamicData::set ushort
(p. 644)

DDS DynamicData::get -
longlong
(p. 617)

DDS DynamicData::set -
longlong
(p. 648)

DDS DynamicData::get -
ulonglong
(p. 618)

DDS DynamicData::set -
ulonglong
(p. 648)

DDS DynamicData::get float
(p. 614)

DDS DynamicData::set float
(p. 645)

DDS DynamicData::get double
(p. 614)

DDS DynamicData::set double
(p. 645)

DDS DynamicData::get -
longdouble
(p. 618)

DDS DynamicData::set -
longdouble
(p. 649)

DDS DynamicData::get -
boolean
(p. 615)

DDS DynamicData::set -
boolean
(p. 646)

DDS DynamicData::get octet
(p. 616)

DDS DynamicData::set octet
(p. 647)

DDS DynamicData::get char
(p. 616)

DDS DynamicData::set char
(p. 647)

DDS DynamicData::get wchar
(p. 619)

DDS DynamicData::set wchar
(p. 650)

DDS DynamicData::get string
(p. 620)

DDS DynamicData::set string
(p. 650)

DDS DynamicData::get -
wstring
(p. 621)

DDS DynamicData::set wstring
(p. 651)

Table 6.2: Basic Types

Get Set
DDS DynamicData::get -
complex member
(p. 622)

DDS DynamicData::set -
complex member
(p. 652)

Table 6.3: Structures, Arrays, and Other Complex Types

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.33 DDS DynamicData Struct Reference 675

Get Set
DDS DynamicData::get long -
array
(p. 623)

DDS DynamicData::set long -
array
(p. 653)

DDS DynamicData::get ulong -
array
(p. 624)

DDS DynamicData::set ulong -
array
(p. 655)

DDS DynamicData::get short -
array
(p. 623)

DDS DynamicData::set short -
array
(p. 654)

DDS DynamicData::get -
ushort array
(p. 625)

DDS DynamicData::set -
ushort array
(p. 655)

DDS DynamicData::get -
longlong array
(p. 630)

DDS DynamicData::set -
longlong array
(p. 660)

DDS DynamicData::get -
ulonglong array
(p. 631)

DDS DynamicData::set -
ulonglong array
(p. 661)

DDS DynamicData::get float -
array
(p. 626)

DDS DynamicData::set float -
array
(p. 656)

DDS DynamicData::get -
double array
(p. 627)

DDS DynamicData::set -
double array
(p. 657)

DDS DynamicData::get -
longdouble array
(p. 631)

DDS DynamicData::set -
longdouble array
(p. 662)

DDS DynamicData::get -
boolean array
(p. 627)

DDS DynamicData::set -
boolean
(p. 646)

DDS DynamicData::get octet -
array
(p. 629)

DDS DynamicData::set octet -
array
(p. 659)

DDS DynamicData::get char -
array
(p. 628)

DDS DynamicData::set char -
array
(p. 659)

DDS DynamicData::get -
wchar array
(p. 632)

DDS DynamicData::set wchar -
array
(p. 663)

Table 6.4: Arrays of Basic Types

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

676 Class Documentation

Get Set
DDS DynamicData::get long -
seq
(p. 633)

DDS DynamicData::set long -
seq
(p. 663)

DDS DynamicData::get ulong -
seq
(p. 634)

DDS DynamicData::set ulong -
seq
(p. 665)

DDS DynamicData::get short -
seq
(p. 634)

DDS DynamicData::set short -
seq
(p. 664)

DDS DynamicData::get -
ushort seq
(p. 635)

DDS DynamicData::set -
ushort seq
(p. 666)

DDS DynamicData::get -
longlong seq
(p. 639)

DDS DynamicData::set -
longlong seq
(p. 670)

DDS DynamicData::get -
ulonglong seq
(p. 640)

DDS DynamicData::set -
ulonglong seq
(p. 671)

DDS DynamicData::get float -
seq
(p. 636)

DDS DynamicData::set float -
seq
(p. 666)

DDS DynamicData::get -
double seq
(p. 637)

DDS DynamicData::set -
double seq
(p. 667)

DDS DynamicData::get -
longdouble seq
(p. 641)

DDS DynamicData::set -
longdouble seq
(p. 671)

DDS DynamicData::get -
boolean seq
(p. 637)

DDS DynamicData::set -
boolean seq
(p. 668)

DDS DynamicData::get octet -
seq
(p. 639)

DDS DynamicData::set octet -
seq
(p. 669)

DDS DynamicData::get char -
seq
(p. 638)

DDS DynamicData::set char -
seq
(p. 668)

DDS DynamicData::get -
wchar seq
(p. 642)

DDS DynamicData::set wchar -
seq
(p. 672)

Table 6.5: Sequences of Basic Types

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.34 DDS DynamicDataInfo Struct Reference 677

6.34 DDS DynamicDataInfo Struct Reference

A descriptor for a DDS DynamicData (p. 580) object.

Public Attributes

ˆ DDS Long member count

The number of data members in this DDS DynamicData (p. 580) sample.

ˆ DDS Long stored size

The number of bytes currently used to store the data of this DDS -
DynamicData (p. 580) sample.

6.34.1 Detailed Description

A descriptor for a DDS DynamicData (p. 580) object.

See also:

DDS DynamicData::get info (p. 602)

6.34.2 Member Data Documentation

6.34.2.1 DDS Long DDS DynamicDataInfo::member count

The number of data members in this DDS DynamicData (p. 580) sample.

6.34.2.2 DDS Long DDS DynamicDataInfo::stored size

The number of bytes currently used to store the data of this DDS -
DynamicData (p. 580) sample.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

678 Class Documentation

6.35 DDS DynamicDataMemberInfo Struct
Reference

A descriptor for a single member (i.e. field) of dynamically defined data type.

Public Attributes

ˆ DDS DynamicDataMemberId member id
An integer that uniquely identifies the data member within this DDS -
DynamicData (p. 580) sample’s type.

ˆ const char ∗ member name
The string name of the data member.

ˆ DDS Boolean member exists
Indicates whether the corresponding member of the data type actually exists
in this sample.

ˆ DDS TCKind member kind
The kind of type of this data member (e.g. integer, structure, etc.).

ˆ DDS UnsignedLong element count
The number of elements within this data member.

ˆ DDS TCKind element kind
The kind of type of the elements within this data member.

6.35.1 Detailed Description

A descriptor for a single member (i.e. field) of dynamically defined data type.

See also:

DDS DynamicData::get member info (p. 608)

6.35.2 Member Data Documentation

6.35.2.1 DDS DynamicDataMemberId DDS -
DynamicDataMemberInfo::member id

An integer that uniquely identifies the data member within this DDS -
DynamicData (p. 580) sample’s type.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.35 DDS DynamicDataMemberInfo Struct Reference 679

For sparse data types, this value will be assigned by the type designer. For
types defined in IDL, it will be assigned automatically by the middleware based
on the member’s declaration order within the type.

See also:

DDS TCKind (p. 65)

6.35.2.2 const char∗ DDS DynamicDataMemberInfo::member -
name

The string name of the data member.

This name will be unique among members of the same type. However, a single
named member may have multiple type representations.

See also:

DDS DynamicDataMemberInfo::representation count

6.35.2.3 DDS Boolean DDS DynamicDataMemberInfo::member -
exists

Indicates whether the corresponding member of the data type actually exists in
this sample.

For non-sparse data types, this value will always be DDS BOOLEAN TRUE
(p. 288).

See also:

DDS TCKind (p. 65)

6.35.2.4 DDS TCKind DDS DynamicDataMemberInfo::member -
kind

The kind of type of this data member (e.g. integer, structure, etc.).

This is a convenience field; it is equivalent to looking up the member in the
DDS TypeCode (p. 925) and getting the DDS TCKind (p. 65) from there.

6.35.2.5 DDS UnsignedLong DDS -
DynamicDataMemberInfo::element count

The number of elements within this data member.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

680 Class Documentation

This information is only valid for members of array or sequence types. Members
of other types will always report zero (0) here.

6.35.2.6 DDS TCKind DDS DynamicDataMemberInfo::element -
kind

The kind of type of the elements within this data member.

This information is only valid for members of array or sequence types. Members
of other types will always report DDS TK NULL (p. 65) here.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.36 DDS DynamicDataProperty t Struct Reference 681

6.36 DDS DynamicDataProperty t Struct Ref-
erence

A collection of attributes used to configure DDS DynamicData (p. 580) ob-
jects.

Public Attributes

ˆ DDS Long buffer initial size

The initial amount of memory used by this DDS DynamicData (p. 580)
object, in bytes.

ˆ DDS Long buffer max size

The maximum amount of memory that this DDS DynamicData (p. 580)
object may use, in bytes.

6.36.1 Detailed Description

A collection of attributes used to configure DDS DynamicData (p. 580) ob-
jects.

6.36.2 Member Data Documentation

6.36.2.1 DDS Long DDS DynamicDataProperty t::buffer initial -
size

The initial amount of memory used by this DDS DynamicData (p. 580) ob-
ject, in bytes.

See also:

DDS DynamicDataProperty t::buffer max size (p. 681)

6.36.2.2 DDS Long DDS DynamicDataProperty t::buffer max size

The maximum amount of memory that this DDS DynamicData (p. 580) ob-
ject may use, in bytes.

It will grow to this size from the initial size as needed.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

682 Class Documentation

See also:

DDS DynamicDataProperty t::buffer initial size (p. 681)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.37 DDS DynamicDataSeq Struct Reference 683

6.37 DDS DynamicDataSeq Struct Reference

An ordered collection of DDS DynamicData (p. 580) elements.

6.37.1 Detailed Description

An ordered collection of DDS DynamicData (p. 580) elements.

Instantiates FooSeq (p. 1377) < DDS DynamicData (p. 580) > .

See also:

FooSeq (p. 1377)
DDS DynamicData (p. 580)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

684 Class Documentation

6.38 DDS DynamicDataTypeProperty t Struct
Reference

A collection of attributes used to configure DDSDynamicDataTypeSupport
(p. 1150) objects.

Public Attributes

ˆ struct DDS DynamicDataProperty t data

These properties will be provided to every new DDS DynamicData (p. 580)
sample created from the DDSDynamicDataTypeSupport (p. 1150).

ˆ struct DDS DynamicDataTypeSerializationProperty t serializa-
tion

Properties that govern how the data of this type will be serialized on the
network.

6.38.1 Detailed Description

A collection of attributes used to configure DDSDynamicDataTypeSupport
(p. 1150) objects.

The properties of a DDSDynamicDataTypeSupport (p. 1150) object con-
tain the properties that will be used to instantiate any samples created by that
object.

6.38.2 Member Data Documentation

6.38.2.1 struct DDS DynamicDataProperty t
DDS DynamicDataTypeProperty t::data [read]

These properties will be provided to every new DDS DynamicData (p. 580)
sample created from the DDSDynamicDataTypeSupport (p. 1150).

6.38.2.2 struct DDS DynamicDataTypeSerializationProperty t
DDS DynamicDataTypeProperty t::serialization [read]

Properties that govern how the data of this type will be serialized on the net-
work.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.39 DDS DynamicDataTypeSerializationProperty t Struct
Reference 685

6.39 DDS DynamicDataTypeSerializationProperty -
t Struct Reference

Properties that govern how data of a certain type will be serialized on the
network.

Public Attributes

ˆ DDS Boolean use 42e compatible alignment

Use RTI Data Distribution Service 4.2e-compatible alignment for large prim-
itive types.

ˆ DDS UnsignedLong max size serialized

The maximum number of bytes that objects of a given type could consume
when serialized on the network.

6.39.1 Detailed Description

Properties that govern how data of a certain type will be serialized on the
network.

6.39.2 Member Data Documentation

6.39.2.1 DDS Boolean DDS -
DynamicDataTypeSerializationProperty -
t::use 42e compatible alignment

Use RTI Data Distribution Service 4.2e-compatible alignment for large primitive
types.

In RTI Data Distribution Service 4.2e, the default alignment for large primi-
tive types – DDS LongLong (p. 290), DDS UnsignedLongLong (p. 290),
DDS Double (p. 290), and DDS LongDouble (p. 290) – was not RTPS-
compliant. This compatibility mode allows applications targeting post-4.2e
versions of RTI Data Distribution Service to interoperate with 4.2e-based ap-
plications, regardless of the data types they use.

If this flag is not set, all data will be serialized in an RTPS-compliant man-
ner, which for the types listed above, will not be interoperable with RTI Data
Distribution Service 4.2e.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

686 Class Documentation

6.39.2.2 DDS UnsignedLong DDS -
DynamicDataTypeSerializationProperty -
t::max size serialized

The maximum number of bytes that objects of a given type could consume when
serialized on the network.

This value is used to set the sizes of certain internal middleware buffers.

The effective value of the maximum serialized size will be the value of this field
or the size automatically inferred from the type’s DDS TypeCode (p. 925),
whichever is smaller.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.40 DDS EntityFactoryQosPolicy Struct Reference 687

6.40 DDS EntityFactoryQosPolicy Struct Ref-
erence

A QoS policy for all DDSEntity (p. 1157) types that can act as factories for
one or more other DDSEntity (p. 1157) types.

Public Attributes

ˆ DDS Boolean autoenable created entities

Specifies whether the entity acting as a factory automatically enables the
instances it creates.

6.40.1 Detailed Description

A QoS policy for all DDSEntity (p. 1157) types that can act as factories for
one or more other DDSEntity (p. 1157) types.

Entity:

DDSDomainParticipantFactory (p. 1123), DDSDomainParticipant
(p. 1054), DDSPublisher (p. 1243), DDSSubscriber (p. 1284)

Properties:

RxO (p. 327) = NO
Changeable (p. 328) = YES (p. 328)

6.40.2 Usage

This policy controls the behavior of the DDSEntity (p. 1157) as a factory for
other entities. It controls whether or not child entities are created in the enabled
state.

RTI Data Distribution Service uses a factory design pattern for creating DDS
Entities. That is, a parent entity must be used to create child entities. Do-
mainParticipants create Topics, Publishers and Subscribers. Publishers create
DataWriters. Subscribers create DataReaders.

By default, a child object is enabled upon creation (initialized and may be
actively used). With this QoS policy, a child object can be created in a disabled
state. A disabled entity is only partially initialized and cannot be used until
the entity is enabled. Note: an entity can only be enabled ; it cannot be disabled
after it has been enabled.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

688 Class Documentation

This QoS policy is useful to synchronize the initialization of DDS Entities.
For example, when a DDSDataReader (p. 1004) is created in an enabled
state, its existence is immediately propagated for discovery and the DDS-
DataReader (p. 1004) object’s listener called as soon as data is received. The
initialization process for an application may extend beyond the creation of the
DDSDataReader (p. 1004), and thus, it may not be desireable for the DDS-
DataReader (p. 1004) to start to receive or process any data until the initial-
ization process is complete. So by creating readers in a disabled state, your
application can make sure that no data is received until the rest of the applica-
tion initialization is complete, and at that time, enable the them.

Note: if an entity is disabled, then all of the child entities it creates will be
disabled too, regardless of the setting of this QoS policy. However, enabling a
disabled entity will enable all of its children if this QoS policy is set to auto-
matically enable children entities.

This policy is mutable. A change in the policy affects only the entities created
after the change, not any previously created entities.

6.40.3 Member Data Documentation

6.40.3.1 DDS Boolean DDS EntityFactoryQosPolicy::autoenable -
created entities

Specifies whether the entity acting as a factory automatically enables the in-
stances it creates.

The setting of autoenable created entities to DDS BOOLEAN TRUE
(p. 288) indicates that the factory create <entity> operation(s) will auto-
matically invoke the DDSEntity::enable (p. 1160) operation each time a new
DDSEntity (p. 1157) is created. Therefore, the DDSEntity (p. 1157) re-
turned by create <entity> will already be enabled. A setting of DDS -
BOOLEAN FALSE (p. 289) indicates that the DDSEntity (p. 1157) will
not be automatically enabled. Your application will need to call DDSEn-
tity::enable (p. 1160) itself.

The default setting of autoenable created entities = DDS BOOLEAN -
TRUE (p. 288) means that, by default, it is not necessary to explicitly call
DDSEntity::enable (p. 1160) on newly created entities.

[default] DDS BOOLEAN TRUE (p. 288)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.41 DDS EntityNameQosPolicy Struct Reference 689

6.41 DDS EntityNameQosPolicy Struct Refer-
ence

Assigns a name to a DDSDomainParticipant (p. 1054). This name will be
visible during the discovery process and in RTI tools to help you visualize and
debug your system.

Public Attributes

ˆ char ∗ name

The actual name string.

6.41.1 Detailed Description

Assigns a name to a DDSDomainParticipant (p. 1054). This name will be
visible during the discovery process and in RTI tools to help you visualize and
debug your system.

Entity:

DDSDomainParticipant (p. 1054)

Properties:

RxO (p. 327) = NO;
Changeable (p. 328) = UNTIL ENABLE (p. 328)

6.41.2 Usage

The name can only be 255 characters in length.

It must be a NULL-terminated string allocated with DDS String alloc
(p. 433) or DDS String dup (p. 434).

If you provide a non-NULL pointer when getting the QoS, then it should point
to valid memory that can be written to, to avoid ungraceful failures.

6.41.3 Member Data Documentation

6.41.3.1 char∗ DDS EntityNameQosPolicy::name

The actual name string.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

690 Class Documentation

[default] ”[ENTITY]”

[range] Null terminated string with length not exceeding 255. Can be NULL.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.42 DDS EnumMember Struct Reference 691

6.42 DDS EnumMember Struct Reference

A description of a member of an enumeration.

Public Attributes

ˆ char ∗ name

The name of the enumeration member.

ˆ DDS Long ordinal

The value associated the the enumeration member.

6.42.1 Detailed Description

A description of a member of an enumeration.

See also:

DDS EnumMemberSeq (p. 692)
DDS TypeCodeFactory::create enum tc (p. 958)

6.42.2 Member Data Documentation

6.42.2.1 char∗ DDS EnumMember::name

The name of the enumeration member.

Cannot be NULL.

6.42.2.2 DDS Long DDS EnumMember::ordinal

The value associated the the enumeration member.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

692 Class Documentation

6.43 DDS EnumMemberSeq Struct Reference

Defines a sequence of enumerator members.

6.43.1 Detailed Description

Defines a sequence of enumerator members.

See also:

DDS EnumMember (p. 691)
FooSeq (p. 1377)
DDS TypeCodeFactory::create enum tc (p. 958)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.44 DDS EventQosPolicy Struct Reference 693

6.44 DDS EventQosPolicy Struct Reference

Settings for event.

Public Attributes

ˆ struct DDS ThreadSettings t thread

Event thread QoS.

ˆ DDS Long initial count

The initial number of events.

ˆ DDS Long max count

The maximum number of events.

6.44.1 Detailed Description

Settings for event.

In a DDSDomainParticipant (p. 1054), a thread is dedicated to handle all
timed events, including checking for timeouts and deadlines and executing in-
ternal and user-defined timeout or exception handling routines/callbacks.

This QoS policy allows you to configure thread properties such as priority level
and stack size. You can also configure the maximum number of events that
can be posted to the event thread. By default, a DDSDomainParticipant
(p. 1054) will dynamically allocate memory as needed for events posted to the
event thread. However, by setting a maximum value or setting the initial and
maximum value to be the same, you can either bound the amount of memory
allocated for the event thread or prevent a DDSDomainParticipant (p. 1054)
from dynamically allocating memory for the event thread after initialization.

This QoS policy is an extension to the DDS standard.

Entity:

DDSDomainParticipant (p. 1054)

Properties:

RxO (p. 327) = N/A
Changeable (p. 328) = NO (p. 328)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

694 Class Documentation

6.44.2 Member Data Documentation

6.44.2.1 struct DDS ThreadSettings t DDS EventQosPolicy::thread
[read]

Event thread QoS.

There is only one event thread.

Priority:

[default] The actual value depends on your architecture:

For Windows: -2

For Solaris: OS default priority

For Linux: OS default priority

For LynxOS: 13

For INTEGRITY: 80

For VxWorks: 110

For all others: OS default priority.

Stack Size:

[default] The actual value depends on your architecture:

For Windows: OS default stack size

For Solaris: OS default stack size

For Linux: OS default stack size

For LynxOS: 4∗16∗1024

For INTEGRITY: 4∗20∗1024

For VxWorks: 4∗16∗1024

For all others: OS default stack size.

Mask:

[default] mask = DDS THREAD SETTINGS FLOATING POINT
(p. 317) | DDS THREAD SETTINGS STDIO (p. 317)

6.44.2.2 DDS Long DDS EventQosPolicy::initial count

The initial number of events.

[default] 256

[range] [1, 1 million], <= max count

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.44 DDS EventQosPolicy Struct Reference 695

6.44.2.3 DDS Long DDS EventQosPolicy::max count

The maximum number of events.

The maximum number of events. If the limit is reached, no new event can be
added.

[default] DDS LENGTH UNLIMITED (p. 356)

[range] [1, 1 million] or DDS LENGTH UNLIMITED (p. 356), >= initial -
count

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

696 Class Documentation

6.45 DDS ExclusiveAreaQosPolicy Struct Ref-
erence

Configures multi-thread concurrency and deadlock prevention capabilities.

Public Attributes

ˆ DDS Boolean use shared exclusive area

Whether the DDSEntity (p. 1157) is protected by its own exclusive area or
the shared exclusive area.

6.45.1 Detailed Description

Configures multi-thread concurrency and deadlock prevention capabilities.

An ”exclusive area” is an abstraction of a multi-thread-safe region. Each entity
is protected by one and only one exclusive area, although a single exclusive area
may be shared by multiple entities.

Conceptually, an exclusive area is a mutex or monitor with additional deadlock
protection features. If a DDSEntity (p. 1157) has ”entered” its exclusive area
to perform a protected operation, no other DDSEntity (p. 1157) sharing the
same exclusive area may enter it until the first DDSEntity (p. 1157) ”exits”
the exclusive area.

Entity:

DDSPublisher (p. 1243), DDSSubscriber (p. 1284)

Properties:

RxO (p. 327) = N/A
Changeable (p. 328) = NO (p. 328)

See also:

DDSListener (p. 1217)

6.45.2 Usage

Exclusive Areas (EAs) allow RTI Data Distribution Service to be multi-threaded
while preventing deadlock in multi-threaded applications. EAs prevent a DDS-
DomainParticipant (p. 1054) object’s internal threads from deadlocking with

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.45 DDS ExclusiveAreaQosPolicy Struct Reference 697

each other when executing internal code as well as when executing the code of
user-registered listener callbacks.

Within an EA, all calls to the code protected by the EA are single threaded.
Each DDSDomainParticipant (p. 1054), DDSPublisher (p. 1243) and
DDSSubscriber (p. 1284) entity represents a separate EA. Thus all DataWrit-
ers of the same Publisher and all DataReaders of the same Subscriber share the
EA of its parent. Note: this means that operations on the DataWriters of the
same Publisher and on the DataReaders of the same Subscriber will be serial-
ized, even when invoked from multiple concurrent application threads.

Within an EA, there are limitations on how code protected by a different EA
can be accessed. For example, when received data is being processed by user
code in the DataReader Listener, within a Subscriber EA, the user code may
call the FooDataWriter::write (p. 1368) operation of a DataWriter that is
protected by the EA of its Publisher, so you can send data in the function called
to process received data. However, you cannot create entities or call functions
that are protected by the EA of the DDSDomainParticipant (p. 1054). See
Chapter 4 in the RTI Data Distribution Service User’s Manual for complete
documentation on Exclusive Areas.

With this QoS policy, you can force a DDSPublisher (p. 1243) or DDSSub-
scriber (p. 1284) to share the same EA as its DDSDomainParticipant
(p. 1054). Using this capability, the restriction of not being able to create enti-
ties in a DataReader Listener’s on data available() callback is lifted. However,
the tradeoff is that the application has reduced concurrency through the Entities
that share an EA.

Note that the restrictions on calling methods in a different EA only exist for user
code that is called in registered DDS Listeners by internal DomainParticipant
threads. User code may call all RTI Data Distribution Service functions for any
DDS Entities from their own threads at any time.

6.45.3 Member Data Documentation

6.45.3.1 DDS Boolean DDS ExclusiveAreaQosPolicy::use shared -
exclusive area

Whether the DDSEntity (p. 1157) is protected by its own exclusive area or the
shared exclusive area.

All writers belonging to the same DDSPublisher (p. 1243) are protected by
the same exclusive area as the DDSPublisher (p. 1243) itself. The same is true
of all readers belonging to the same DDSSubscriber (p. 1284). Typically, the
publishers and subscribers themselves do not share their exclusive areas with
each other; each has its own. This configuration maximizes the concurrency of
the system because independent readers and writers do not need to take the

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

698 Class Documentation

same mutexes in order to operate. However, it places some restrictions on the
operations that may be invoked from within listener callbacks because of the
possibility of a deadlock. See the DDSListener (p. 1217) documentation for
more details.

If this field is set to DDS BOOLEAN FALSE (p. 289), the default more con-
current behavior will be used. In the event that this behavior is insufficiently
flexible for your application, you may set this value to DDS BOOLEAN -
TRUE (p. 288). In that case, the DDSSubscriber (p. 1284) or DDSPub-
lisher (p. 1243) in question, and all of the readers or writers (as appropriate)
created from it, will share a global exclusive area. This global exclusive area
is shared by all entities whose value for this QoS field is DDS BOOLEAN -
TRUE (p. 288). By sharing the same exclusive area across a larger number of
entities, the concurrency of the system will be decreased; however, some of the
callback restrictions will be relaxed.

[default] DDS BOOLEAN FALSE (p. 289)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.46 DDS FloatSeq Struct Reference 699

6.46 DDS FloatSeq Struct Reference

Instantiates FooSeq (p. 1377) < DDS Float (p. 290) >.

6.46.1 Detailed Description

Instantiates FooSeq (p. 1377) < DDS Float (p. 290) >.

Instantiates:

<<generic>> (p. 190) FooSeq (p. 1377)

See also:

DDS Float (p. 290)
FooSeq (p. 1377)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

700 Class Documentation

6.47 DDS FlowControllerProperty t Struct
Reference

Determines the flow control characteristics of the DDSFlowController
(p. 1163).

Public Attributes

ˆ DDS FlowControllerSchedulingPolicy scheduling policy

Scheduling policy.

ˆ struct DDS FlowControllerTokenBucketProperty t token -
bucket

Settings for the token bucket.

6.47.1 Detailed Description

Determines the flow control characteristics of the DDSFlowController
(p. 1163).

The flow control characteristics shape the network traffic by determining how
often and in what order associated asynchronous DDSDataWriter (p. 1028)
instances are serviced and how much data they are allowed to send.

Note that these settings apply directly to the DDSFlowController (p. 1163),
and does not depend on the number of DDSDataWriter (p. 1028) instances
the DDSFlowController (p. 1163) is servicing. For instance, the specified flow
rate does not double simply because two DDSDataWriter (p. 1028) instances
are waiting to write.

Entity:

DDSFlowController (p. 1163)

Properties:

RxO (p. 327) = N/A

Changeable (p. 328) = NO (p. 328) for DDS FlowControllerProperty -
t::scheduling policy (p. 701), YES (p. 328) for DDS -
FlowControllerProperty t::token bucket (p. 701). However, the
special value of DDS DURATION INFINITE (p. 295) as DDS -
FlowControllerTokenBucketProperty t::period (p. 704) is strictly

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.47 DDS FlowControllerProperty t Struct Reference 701

used to create an on-demand DDSFlowController (p. 1163). The token
period cannot toggle from an infinite to finite value (or vice versa). It can,
however, change from one finite value to another.

6.47.2 Member Data Documentation

6.47.2.1 DDS FlowControllerSchedulingPolicy
DDS FlowControllerProperty t::scheduling policy

Scheduling policy.

Determines the scheduling policy for servicing the DDSDataWriter (p. 1028)
instances associated with the DDSFlowController (p. 1163).

[default] idref FlowControllerSchedulingPolicy EDF FLOW -
CONTROLLER SCHED POLICY

6.47.2.2 struct DDS FlowControllerTokenBucketProperty t
DDS FlowControllerProperty t::token bucket [read]

Settings for the token bucket.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

702 Class Documentation

6.48 DDS FlowControllerTokenBucketProperty -
t Struct Reference

DDSFlowController (p. 1163) uses the popular token bucket approach for
open loop network flow control. The flow control characteristics are determined
by the token bucket properties.

Public Attributes

ˆ DDS Long max tokens

Maximum number of tokens than can accumulate in the token bucket.

ˆ DDS Long tokens added per period

The number of tokens added to the token bucket per specified period.

ˆ DDS Long tokens leaked per period

The number of tokens removed from the token bucket per specified period.

ˆ struct DDS Duration t period

Period for adding tokens to and removing tokens from the bucket.

ˆ DDS Long bytes per token

Maximum number of bytes allowed to send for each token available.

6.48.1 Detailed Description

DDSFlowController (p. 1163) uses the popular token bucket approach for
open loop network flow control. The flow control characteristics are determined
by the token bucket properties.

Asynchronously published samples are queued up and transmitted based on the
token bucket flow control scheme. The token bucket contains tokens, each of
which represents a number of bytes. Samples can be sent only when there are
sufficient tokens in the bucket. As samples are sent, tokens are consumed. The
number of tokens consumed is proportional to the size of the data being sent.
Tokens are replenished on a periodic basis.

The rate at which tokens become available and other token bucket properties
determine the network traffic flow.

Note that if the same sample must be sent to multiple destinations, separate
tokens are required for each destination. Only when multiple samples are des-
tined to the same destination will they be co-alesced and sent using the same

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.48 DDS FlowControllerTokenBucketProperty t Struct Reference703

token(s). In other words, each token can only contribute to a single network
packet.

Entity:

DDSFlowController (p. 1163)

Properties:

RxO (p. 327) = N/A

Changeable (p. 328) = YES (p. 328). However, the spe-
cial value of DDS DURATION INFINITE (p. 295) as DDS -
FlowControllerTokenBucketProperty t::period (p. 704) is strictly
used to create an on-demand DDSFlowController (p. 1163). The token
period cannot toggle from an infinite to finite value (or vice versa). It can,
however, change from one finite value to another.

6.48.2 Member Data Documentation

6.48.2.1 DDS Long DDS FlowControllerTokenBucketProperty -
t::max tokens

Maximum number of tokens than can accumulate in the token bucket.

The number of tokens in the bucket will never exceed this value. Any
excess tokens are discarded. This property value, combined with DDS -
FlowControllerTokenBucketProperty t::bytes per token (p. 705), de-
termines the maximum allowable data burst.

Use DDS LENGTH UNLIMITED (p. 356) to allow accumulation of an un-
limited amount of tokens (and therefore potentially an unlimited burst size).

[default] DDS LENGTH UNLIMITED (p. 356)

6.48.2.2 DDS Long DDS FlowControllerTokenBucketProperty -
t::tokens added per period

The number of tokens added to the token bucket per specified period.

DDSFlowController (p. 1163) transmits data only when tokens are available.
Tokens are periodically replenished. This field determines the number of tokens
added to the token bucket with each periodic replenishment.

Available tokens are distributed to associated DDSDataWriter (p. 1028) in-
stances based on the DDS FlowControllerProperty t::scheduling policy
(p. 701).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

704 Class Documentation

Use DDS LENGTH UNLIMITED (p. 356) to add the maximum number of
tokens allowed by DDS FlowControllerTokenBucketProperty t::max -
tokens (p. 703).

[default] DDS LENGTH UNLIMITED (p. 356)

6.48.2.3 DDS Long DDS FlowControllerTokenBucketProperty -
t::tokens leaked per period

The number of tokens removed from the token bucket per specified period.

DDSFlowController (p. 1163) transmits data only when tokens are available.
When tokens are replenished and there are sufficient tokens to send all samples
in the queue, this property determines whether any or all of the leftover tokens
remain in the bucket.

Use DDS LENGTH UNLIMITED (p. 356) to remove all excess tokens from
the token bucket once all samples have been sent. In other words, no token accu-
mulation is allowed. When new samples are written after tokens were purged,
the earliest point in time at which they can be sent is at the next periodic
replenishment.

[default] 0

6.48.2.4 struct DDS Duration t DDS -
FlowControllerTokenBucketProperty t::period
[read]

Period for adding tokens to and removing tokens from the bucket.

DDSFlowController (p. 1163) transmits data only when tokens are available.
This field determines the period by which tokens are added or removed from
the token bucket.

The special value DDS DURATION INFINITE (p. 295) can be used to
create an on-demand DDSFlowController (p. 1163), for which tokens are
no longer replenished periodically. Instead, tokens must be added explicitly
by calling DDSFlowController::trigger flow (p. 1165). This external trig-
ger adds DDS FlowControllerTokenBucketProperty t::tokens added -
per period (p. 703) tokens each time it is called (subject to the other property
settings).

[default] 1 second

[range] [0,1 year] or DDS DURATION INFINITE (p. 295)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.48 DDS FlowControllerTokenBucketProperty t Struct Reference705

6.48.2.5 DDS Long DDS FlowControllerTokenBucketProperty -
t::bytes per token

Maximum number of bytes allowed to send for each token available.

DDSFlowController (p. 1163) transmits data only when tokens are available.
This field determines the number of bytes that can actually be transmitted
based on the number of tokens.

Tokens are always consumed in whole by each DDSDataWriter (p. 1028).
That is, in cases where DDS FlowControllerTokenBucketProperty -
t::bytes per token (p. 705) is greater than the sample size, multiple samples
may be sent to the same destination using a single token (regardless of DDS -
FlowControllerProperty t::scheduling policy (p. 701)).

Where fragmentation is required, the fragment size will be DDS -
FlowControllerTokenBucketProperty t::bytes per token (p. 705) or the
minimum largest message size across all transports installed with the DDS-
DataWriter (p. 1028), whichever is less.

Use DDS LENGTH UNLIMITED (p. 356) to indicate that an unlimited
number of bytes can be transmitted per token. In other words, a single to-
ken allows the recipient DDSDataWriter (p. 1028) to transmit all its queued
samples to a single destination. A separate token is required to send to each
additional destination.

[default] DDS LENGTH UNLIMITED (p. 356)

[range] [1024,DDS LENGTH UNLIMITED (p. 356)]

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

706 Class Documentation

6.49 DDS GroupDataQosPolicy Struct Refer-
ence

Attaches a buffer of opaque data that is distributed by means of Built-in
Topics (p. 41) during discovery.

Public Attributes

ˆ struct DDS OctetSeq value

a sequence of octets

6.49.1 Detailed Description

Attaches a buffer of opaque data that is distributed by means of Built-in
Topics (p. 41) during discovery.

Entity:

DDSPublisher (p. 1243), DDSSubscriber (p. 1284)

Properties:

RxO (p. 327) = NO
Changeable (p. 328) = YES (p. 328)

See also:

DDSDomainParticipant::get builtin subscriber (p. 1100)

6.49.2 Usage

The additional information is attached to a DDSPublisher (p. 1243) or
DDSSubscriber (p. 1284). This extra data is not used by RTI Data Distribu-
tion Service itself. When a remote application discovers the DDSPublisher
(p. 1243) or DDSSubscriber (p. 1284), it can access that information and use
it for its own purposes.

Use cases for this QoS policy, as well as the DDS TopicDataQosPolicy
(p. 903) and DDS UserDataQosPolicy (p. 972), are often application-to-
application identification, authentication, authorization, and encryption pur-
poses. For example, applications can use Group or User Data to send security
certificates to each other for RSA-type security.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.49 DDS GroupDataQosPolicy Struct Reference 707

In combination with DDSDataReaderListener (p. 1023), DDS-
DataWriterListener (p. 1048) and operations such as DDSDomain-
Participant::ignore publication (p. 1102) and DDSDomainPartici-
pant::ignore subscription (p. 1103), this QoS policy can help an application
to define and enforce its own security policies. For example, an application can
implement matching policies similar to those of the DDS PartitionQosPolicy
(p. 769), except the decision can be made based on an application-defined
policy.

The use of this QoS is not limited to security; it offers a simple, yet flexible
extensibility mechanism.

Important: RTI Data Distribution Service stores the data placed in
this policy in pre-allocated pools. It is therefore necessary to config-
ure RTI Data Distribution Service with the maximum size of the data
that will be stored in policies of this type. This size is configured with
DDS DomainParticipantResourceLimitsQosPolicy::publisher -
group data max length (p. 566) and DDS -
DomainParticipantResourceLimitsQosPolicy::subscriber group -
data max length (p. 566).

6.49.3 Member Data Documentation

6.49.3.1 struct DDS OctetSeq DDS GroupDataQosPolicy::value
[read]

a sequence of octets

[default] Empty (zero-sized)

[range] Octet sequence of length [0,max length]

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

708 Class Documentation

6.50 DDS GUID t Struct Reference

Type for GUID (Global Unique Identifier) representation.

Public Attributes

ˆ DDS Octet value [16]
A 16 byte array containing the GUID value.

6.50.1 Detailed Description

Type for GUID (Global Unique Identifier) representation.

Represents a 128 bit GUID.

6.50.2 Member Data Documentation

6.50.2.1 DDS Octet DDS GUID t::value[16]

A 16 byte array containing the GUID value.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.51 DDS HistoryQosPolicy Struct Reference 709

6.51 DDS HistoryQosPolicy Struct Reference

Specifies the behavior of RTI Data Distribution Service in the case where the
value of a sample changes (one or more times) before it can be successfully
communicated to one or more existing subscribers.

Public Attributes

ˆ DDS HistoryQosPolicyKind kind
Specifies the kind of history to be kept.

ˆ DDS Long depth
Specifies the number of samples to be kept, when the kind is DDS KEEP -
LAST HISTORY QOS (p. 353).

ˆ DDS RefilterQosPolicyKind refilter
<<eXtension>> (p. 190) Specifies how a writer should handle previously
written samples to a new reader.

6.51.1 Detailed Description

Specifies the behavior of RTI Data Distribution Service in the case where the
value of a sample changes (one or more times) before it can be successfully
communicated to one or more existing subscribers.

This QoS policy specifies how much data must to stored by RTI Data Distribu-
tion Service for a DDSDataWriter (p. 1028) or DDSDataReader (p. 1004).
It controls whether RTI Data Distribution Service should deliver only the most
recent value, attempt to deliver all intermediate values, or do something in
between.

On the publishing side, this QoS policy controls the samples that should be
maintained by the DDSDataWriter (p. 1028) on behalf of existing DDS-
DataReader (p. 1004) entities. The behavior with regards to a DDS-
DataReader (p. 1004) entities discovered after a sample is written is controlled
by the DURABILITY (p. 335) policy.

On the subscribing side, this QoS policy controls the samples that should be
maintained until the application ”takes” them from RTI Data Distribution Ser-
vice.

Entity:

DDSTopic (p. 1311), DDSDataReader (p. 1004), DDSDataWriter
(p. 1028)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

710 Class Documentation

Properties:

RxO (p. 327) = NO
Changeable (p. 328) = UNTIL ENABLE (p. 328)

See also:

DDS ReliabilityQosPolicy (p. 813)
DDS HistoryQosPolicy (p. 709)

6.51.2 Usage

This policy controls the behavior of RTI Data Distribution Service when
the value of an instance changes before it is finally communicated to DDS-
DataReader (p. 1004) entities.

When a DDSDataWriter (p. 1028) sends data, or a DDSDataReader
(p. 1004) receives data, the data sent or received is stored in a cache whose con-
tents are controlled by this QoS policy. This QoS policy interacts with DDS -
ReliabilityQosPolicy (p. 813) by controlling whether RTI Data Distribution
Service guarantees that all of the sent data is received (DDS KEEP ALL -
HISTORY QOS (p. 353)) or if only the last N data values sent are guaran-
teed to be received (DDS KEEP ALL HISTORY QOS (p. 353))–this is a
reduced level of reliability.

The amount of data that is sent to new DataReaders who have configured their
DDS DurabilityQosPolicy (p. 572) to receive previously published data is
also controlled by the History QoS policy.

Note that the History QoS policy does not control the physical sizes of the send
and receive queues. The memory allocation for the queues is controlled by the
DDS ResourceLimitsQosPolicy (p. 827).

If kind is DDS KEEP LAST HISTORY QOS (p. 353) (the default), then
RTI Data Distribution Service will only attempt to keep the latest values of the
instance and discard the older ones. In this case, the value of depth regulates
the maximum number of values (up to and including the most current one) RTI
Data Distribution Service will maintain and deliver. After N values have been
sent or received, any new data will overwrite the oldest data in the queue. Thus
the queue acts like a circular buffer of length N .

The default (and most common setting) for depth is 1, indicating that only the
most recent value should be delivered.

If kind is DDS KEEP ALL HISTORY QOS (p. 353), then RTI Data Dis-
tribution Service will attempt to maintain and deliver all the values of the
instance to existing subscribers. The resources that RTI Data Distribution
Service can use to keep this history are limited by the settings of the RE-
SOURCE LIMITS (p. 356). If the limit is reached, then the behavior of RTI

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.51 DDS HistoryQosPolicy Struct Reference 711

Data Distribution Service will depend on the RELIABILITY (p. 348). If the
Reliability kind is DDS BEST EFFORT RELIABILITY QOS (p. 349),
then the old values will be discarded. If Reliability kind is RELIABLE, then
RTI Data Distribution Service will block the DDSDataWriter (p. 1028) until
it can deliver the necessary old values to all subscribers.

If refilter is DDS NONE REFILTER QOS (p. 353), then samples writ-
ten before a DataReader is matched to a DataWriter are not refiltered by the
DataWriter.

If refilter is DDS ALL REFILTER QOS (p. 354), then all samples writ-
ten before a DataReader is matched to a DataWriter are refiltered by the
DataWriter when the DataReader is matched.

If refilter is DDS ON DEMAND REFILTER QOS (p. 354), then a
DataWriter will only refilter samples that a DataReader requests.

6.51.3 Consistency

This QoS policy’s depth must be consistent with the RESOURCE LIMITS
(p. 356) max samples per instance. For these two QoS to be consistent, they
must verify that depth <= max samples per instance.

See also:

DDS ResourceLimitsQosPolicy (p. 827)

6.51.4 Member Data Documentation

6.51.4.1 DDS HistoryQosPolicyKind DDS HistoryQosPolicy::kind

Specifies the kind of history to be kept.

[default] DDS KEEP LAST HISTORY QOS (p. 353)

6.51.4.2 DDS Long DDS HistoryQosPolicy::depth

Specifies the number of samples to be kept, when the kind is DDS KEEP -
LAST HISTORY QOS (p. 353).

If a value other than 1 (the default) is specified, it should be consistent with
the settings of the RESOURCE LIMITS (p. 356) policy. That is:

depth <= DDS ResourceLimitsQosPolicy::max samples per instance
(p. 830)

When the kind is DDS KEEP ALL HISTORY QOS (p. 353), the depth
has no effect. Its implied value is infinity (in practice limited by the settings

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

712 Class Documentation

of the RESOURCE LIMITS (p. 356) policy).

[default] 1

[range] [1,100 million], <= DDS ResourceLimitsQosPolicy::max -
samples per instance (p. 830)

6.51.4.3 DDS RefilterQosPolicyKind DDS -
HistoryQosPolicy::refilter

<<eXtension>> (p. 190) Specifies how a writer should handle previously
written samples to a new reader.

[default] DDS NONE REFILTER QOS (p. 353)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.52 DDS InconsistentTopicStatus Struct Reference 713

6.52 DDS InconsistentTopicStatus Struct Ref-
erence

DDS INCONSISTENT TOPIC STATUS (p. 310)

Public Attributes

ˆ DDS Long total count

Total cumulative count of the Topics discovered whose name matches the
DDSTopic (p. 1311) to which this status is attached and whose type is in-
consistent with that of that DDSTopic (p. 1311).

ˆ DDS Long total count change

The incremental number of inconsistent topics discovered since the last time
this status was read.

6.52.1 Detailed Description

DDS INCONSISTENT TOPIC STATUS (p. 310)

Entity:

DDSTopic (p. 1311)

Listener:

DDSTopicListener (p. 1322)

A remote DDSTopic (p. 1311) will be inconsistent with the locally created
DDSTopic (p. 1311) if the type name of the two topics are different.

6.52.2 Member Data Documentation

6.52.2.1 DDS Long DDS InconsistentTopicStatus::total count

Total cumulative count of the Topics discovered whose name matches the
DDSTopic (p. 1311) to which this status is attached and whose type is in-
consistent with that of that DDSTopic (p. 1311).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

714 Class Documentation

6.52.2.2 DDS Long DDS InconsistentTopicStatus::total count -
change

The incremental number of inconsistent topics discovered since the last time
this status was read.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.53 DDS InstanceHandleSeq Struct Reference 715

6.53 DDS InstanceHandleSeq Struct Reference

Instantiates FooSeq (p. 1377) < DDS InstanceHandle t (p. 52) > .

6.53.1 Detailed Description

Instantiates FooSeq (p. 1377) < DDS InstanceHandle t (p. 52) > .

Instantiates:

<<generic>> (p. 190) FooSeq (p. 1377)

See also:

DDS InstanceHandle t (p. 52)
FooSeq (p. 1377)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

716 Class Documentation

6.54 DDS KeyedOctets Struct Reference

Built-in type consisting of a variable-length array of opaque bytes and a string
that is the key.

Public Member Functions

ˆ DDS KeyedOctets ()
Constructor.

ˆ DDS KeyedOctets (int key size, int size)
Constructor that specifies the allocated sizes.

ˆ ∼DDS KeyedOctets ()
Destructor.

Public Attributes

ˆ char ∗ key
Instance key associated with the specified value.

ˆ int length
Number of octets to serialize.

ˆ unsigned char ∗ value
DDS Octets (p. 748) array value.

6.54.1 Detailed Description

Built-in type consisting of a variable-length array of opaque bytes and a string
that is the key.

6.54.2 Constructor & Destructor Documentation

6.54.2.1 DDS KeyedOctets::DDS KeyedOctets () [inline]

Constructor.

The default constructor initializes the newly created object with NULL key,
NULL value, and zero length.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.54 DDS KeyedOctets Struct Reference 717

6.54.2.2 DDS KeyedOctets::DDS KeyedOctets (int key size, int
size) [inline]

Constructor that specifies the allocated sizes.

After this method is called, key is initialized with the empty string and length
is set to zero.

If a memory allocation failure occurs, and the DDS KeyedOctets (p. 716)
structure is allocated but the array and/or key string inside of it cannot be, the
unallocated member will be NULL.

Parameters:

key size <<in>> (p. 191) Size of the allocated key (with NULL-
terminated character).

size <<in>> (p. 191) Size of the allocated octets array.

6.54.2.3 DDS KeyedOctets::∼DDS KeyedOctets () [inline]

Destructor.

6.54.3 Member Data Documentation

6.54.3.1 char∗ DDS KeyedOctets::key

Instance key associated with the specified value.

6.54.3.2 int DDS KeyedOctets::length

Number of octets to serialize.

6.54.3.3 unsigned char∗ DDS KeyedOctets::value

DDS Octets (p. 748) array value.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

718 Class Documentation

6.55 DDS KeyedOctetsSeq Struct Reference

Instantiates FooSeq (p. 1377) < DDS KeyedOctets (p. 716) >.

6.55.1 Detailed Description

Instantiates FooSeq (p. 1377) < DDS KeyedOctets (p. 716) >.

Instantiates:

<<generic>> (p. 190) FooSeq (p. 1377)

See also:

DDS KeyedOctets (p. 716)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.56 DDS KeyedString Struct Reference 719

6.56 DDS KeyedString Struct Reference

Keyed string built-in type.

Public Member Functions

ˆ DDS KeyedString ()

Constructor.

ˆ DDS KeyedString (int key size, int size)

Constructor that specifies the allocated sizes.

ˆ ∼DDS KeyedString ()

Destructor.

Public Attributes

ˆ char ∗ key

Instance key associated with the specified value.

ˆ char ∗ value

String value.

6.56.1 Detailed Description

Keyed string built-in type.

6.56.2 Constructor & Destructor Documentation

6.56.2.1 DDS KeyedString::DDS KeyedString () [inline]

Constructor.

The default constructor initializes the newly created object with NULL key and
value.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

720 Class Documentation

6.56.2.2 DDS KeyedString::DDS KeyedString (int key size, int
size) [inline]

Constructor that specifies the allocated sizes.

The allocated strings are initialized to empty (””).

If a memory allocation failure occurs, and the DDS KeyedString (p. 719)
structure is allocated but one or both strings inside of it cannot be, the unallo-
cated string will be NULL.

Parameters:

key size <<in>> (p. 191) Size of the allocated key string (with NULL-
terminated character).

size <<in>> (p. 191) Size of the allocated value string (with NULL-
terminated character).

Returns:

A new DDS KeyedString (p. 719) or NULL if failure.

6.56.2.3 DDS KeyedString::∼DDS KeyedString () [inline]

Destructor.

6.56.3 Member Data Documentation

6.56.3.1 char∗ DDS KeyedString::key

Instance key associated with the specified value.

6.56.3.2 char∗ DDS KeyedString::value

String value.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.57 DDS KeyedStringSeq Struct Reference 721

6.57 DDS KeyedStringSeq Struct Reference

Instantiates FooSeq (p. 1377) < DDS KeyedString (p. 719) > .

6.57.1 Detailed Description

Instantiates FooSeq (p. 1377) < DDS KeyedString (p. 719) > .

Instantiates:

<<generic>> (p. 190) FooSeq (p. 1377)

See also:

DDS KeyedString (p. 719)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

722 Class Documentation

6.58 DDS LatencyBudgetQosPolicy Struct Ref-
erence

Provides a hint as to the maximum acceptable delay from the time the data is
written to the time it is received by the subscribing applications.

Public Attributes

ˆ struct DDS Duration t duration
Duration of the maximum acceptable delay.

6.58.1 Detailed Description

Provides a hint as to the maximum acceptable delay from the time the data is
written to the time it is received by the subscribing applications.

This policy is a hint to a DDS implementation; it can be used to change how it
processes and sends data that has low latency requirements. The DDS specifi-
cation does not mandate whether or how this policy is used.

Entity:

DDSTopic (p. 1311), DDSDataReader (p. 1004), DDSDataWriter
(p. 1028)

Status:

DDS OFFERED INCOMPATIBLE QOS STATUS (p. 311),
DDS REQUESTED INCOMPATIBLE QOS STATUS (p. 311)

Properties:

RxO (p. 327) = YES
Changeable (p. 328) = YES (p. 328)

See also:

DDS PublishModeQosPolicy (p. 802)
DDSFlowController (p. 1163)

6.58.2 Usage

This policy provides a means for the application to indicate to the middleware
the urgency of the data communication. By having a non-zero duration, RTI
Data Distribution Service can optimize its internal operation.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.58 DDS LatencyBudgetQosPolicy Struct Reference 723

RTI Data Distribution Service uses it in conjunction with DDS -
ASYNCHRONOUS PUBLISH MODE QOS (p. 403) DDSDataWriter
(p. 1028) instances associated with a DDS EDF FLOW CONTROLLER -
SCHED POLICY (p. 88) DDSFlowController (p. 1163) only. Together
with the time of write, DDS LatencyBudgetQosPolicy::duration (p. 723)
determines the deadline of each individual sample. RTI Data Distribution Ser-
vice uses this information to prioritize the sending of asynchronously published
data; see DDS AsynchronousPublisherQosPolicy (p. 441).

6.58.3 Compatibility

The value offered is considered compatible with the value requested if and only
if the inequality offered duration <= requested duration evaluates to ’TRUE’.

6.58.4 Member Data Documentation

6.58.4.1 struct DDS Duration t DDS -
LatencyBudgetQosPolicy::duration
[read]

Duration of the maximum acceptable delay.

[default] 0 (meaning minimize the delay)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

724 Class Documentation

6.59 DDS LifespanQosPolicy Struct Reference

Specifies how long the data written by the DDSDataWriter (p. 1028) is con-
sidered valid.

Public Attributes

ˆ struct DDS Duration t duration
Maximum duration for the data’s validity.

6.59.1 Detailed Description

Specifies how long the data written by the DDSDataWriter (p. 1028) is con-
sidered valid.

Each data sample written by the DDSDataWriter (p. 1028) has an associ-
ated expiration time beyond which the data should not be delivered to any
application. Once the sample expires, the data will be removed from the DDS-
DataReader (p. 1004) caches as well as from the transient and persistent in-
formation caches.

The expiration time of each sample from the DDSDataWriter (p. 1028)’s cache
is computed by adding the duration specified by this QoS policy to the sam-
ple’s source timestamp. The expiration time of each sample from the DDS-
DataReader (p. 1004)’s cache is computed by adding the duration to the re-
ception timestamp.

See also:

FooDataWriter::write (p. 1368)
FooDataWriter::write w timestamp (p. 1371)

Entity:

DDSTopic (p. 1311), DDSDataWriter (p. 1028)

Properties:

RxO (p. 327) = N/A
Changeable (p. 328) = YES (p. 328)

6.59.2 Usage

The Lifespan QoS policy can be used to control how much data is stored by
RTI Data Distribution Service. Even if it is configured to store ”all” of the data

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.59 DDS LifespanQosPolicy Struct Reference 725

sent or received for a topic (see DDS HistoryQosPolicy (p. 709)), the total
amount of data it stores may be limited by this QoS policy.

You may also use this QoS policy to ensure that applications do not receive or
act on data, commands or messages that are too old and have ”expired.

To avoid inconsistencies, multiple writers of the same instance should have the
same lifespan.

See also:

DDS SampleInfo::source timestamp (p. 860)
DDS SampleInfo::reception timestamp (p. 862)

6.59.3 Member Data Documentation

6.59.3.1 struct DDS Duration t DDS LifespanQosPolicy::duration
[read]

Maximum duration for the data’s validity.

[default] DDS DURATION INFINITE (p. 295)

[range] [1 nanosec, 1 year] or DDS DURATION INFINITE (p. 295)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

726 Class Documentation

6.60 DDS LivelinessChangedStatus Struct Ref-
erence

DDS LIVELINESS CHANGED STATUS (p. 313)

Public Attributes

ˆ DDS Long alive count

The total count of currently alive DDSDataWriter (p. 1028) entities that
write the DDSTopic (p. 1311) the DDSDataReader (p. 1004) reads.

ˆ DDS Long not alive count

The total count of currently not alive DDSDataWriter (p. 1028) entities
that write the DDSTopic (p. 1311) the DDSDataReader (p. 1004) reads.

ˆ DDS Long alive count change

The change in the alive count since the last time the listener was called or
the status was read.

ˆ DDS Long not alive count change

The change in the not alive count since the last time the listener was called
or the status was read.

ˆ DDS InstanceHandle t last publication handle

An instance handle to the last remote writer to change its liveliness.

6.60.1 Detailed Description

DDS LIVELINESS CHANGED STATUS (p. 313)

Examples:

HelloWorld subscriber.cxx.

6.60.2 Member Data Documentation

6.60.2.1 DDS Long DDS LivelinessChangedStatus::alive count

The total count of currently alive DDSDataWriter (p. 1028) entities that write
the DDSTopic (p. 1311) the DDSDataReader (p. 1004) reads.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.60 DDS LivelinessChangedStatus Struct Reference 727

6.60.2.2 DDS Long DDS LivelinessChangedStatus::not alive count

The total count of currently not alive DDSDataWriter (p. 1028) entities that
write the DDSTopic (p. 1311) the DDSDataReader (p. 1004) reads.

6.60.2.3 DDS Long DDS LivelinessChangedStatus::alive count -
change

The change in the alive count since the last time the listener was called or the
status was read.

6.60.2.4 DDS Long DDS LivelinessChangedStatus::not alive -
count change

The change in the not alive count since the last time the listener was called or
the status was read.

6.60.2.5 DDS InstanceHandle t DDS -
LivelinessChangedStatus::last publication handle

An instance handle to the last remote writer to change its liveliness.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

728 Class Documentation

6.61 DDS LivelinessLostStatus Struct Refer-
ence

DDS LIVELINESS LOST STATUS (p. 313)

Public Attributes

ˆ DDS Long total count
Total cumulative number of times that a previously-alive DDSDataWriter
(p. 1028) became not alive due to a failure to to actively signal its liveliness
within the offered liveliness period.

ˆ DDS Long total count change
The incremental changees in total count since the last time the listener was
called or the status was read.

6.61.1 Detailed Description

DDS LIVELINESS LOST STATUS (p. 313)

Entity:

DDSDataWriter (p. 1028)

Listener:

DDSDataWriterListener (p. 1048)

The liveliness that the DDSDataWriter (p. 1028) has committed through
its DDS LivelinessQosPolicy (p. 730) was not respected; thus DDS-
DataReader (p. 1004) entities will consider the DDSDataWriter (p. 1028)
as no longer ”alive/active”.

6.61.2 Member Data Documentation

6.61.2.1 DDS Long DDS LivelinessLostStatus::total count

Total cumulative number of times that a previously-alive DDSDataWriter
(p. 1028) became not alive due to a failure to to actively signal its liveliness
within the offered liveliness period.

This count does not change when an already not alive DDSDataWriter
(p. 1028) simply remains not alive for another liveliness period.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.61 DDS LivelinessLostStatus Struct Reference 729

6.61.2.2 DDS Long DDS LivelinessLostStatus::total count change

The incremental changees in total count since the last time the listener was
called or the status was read.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

730 Class Documentation

6.62 DDS LivelinessQosPolicy Struct Reference

Specifies and configures the mechanism that allows DDSDataReader (p. 1004)
entities to detect when DDSDataWriter (p. 1028) entities become discon-
nected or ”dead.”.

Public Attributes

ˆ DDS LivelinessQosPolicyKind kind

The kind of liveliness desired.

ˆ struct DDS Duration t lease duration

The duration within which a DDSEntity (p. 1157) must be asserted, or else
it is assumed to be not alive.

6.62.1 Detailed Description

Specifies and configures the mechanism that allows DDSDataReader (p. 1004)
entities to detect when DDSDataWriter (p. 1028) entities become discon-
nected or ”dead.”.

Liveliness must be asserted at least once every lease duration otherwise RTI
Data Distribution Service will assume the corresponding DDSEntity (p. 1157)
or is no longer alive.

The liveliness status of a DDSEntity (p. 1157) is used to maintain instance
ownership in combination with the setting of the OWNERSHIP (p. 341) pol-
icy. The application is also informed via DDSListener (p. 1217) when an
DDSEntity (p. 1157) is no longer alive.

A DDSDataReader (p. 1004) requests that liveliness of writers is maintained
by the requested means and loss of liveliness is detected with delay not to exceed
the lease duration.

A DDSDataWriter (p. 1028) commits to signalling its liveliness using the
stated means at intervals not to exceed the lease duration.

Listeners are used to notify a DDSDataReader (p. 1004) of loss of liveliness
and DDSDataWriter (p. 1028) of violations to the liveliness contract. The
on liveliness lost() callback is only called once, after the first time the lease -
duration is exceeded (when the DDSDataWriter (p. 1028) first loses liveli-
ness).

This QoS policy can be used during system integration to ensure that applica-
tions have been coded to meet design specifications. It can also be used during
run time to detect when systems are performing outside of design specifications.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.62 DDS LivelinessQosPolicy Struct Reference 731

Receiving applications can take appropriate actions in response to disconnected
DataWriters.

Entity:

DDSTopic (p. 1311), DDSDataReader (p. 1004), DDSDataWriter
(p. 1028)

Status:

DDS LIVELINESS LOST STATUS (p. 313), DDS -
LivelinessLostStatus (p. 728);
DDS LIVELINESS CHANGED STATUS (p. 313), DDS -
LivelinessChangedStatus (p. 726);
DDS REQUESTED INCOMPATIBLE QOS STATUS (p. 311),
DDS OFFERED INCOMPATIBLE QOS STATUS (p. 311)

Properties:

RxO (p. 327) = YES
Changeable (p. 328) = UNTIL ENABLE (p. 328)

6.62.2 Usage

This policy controls the mechanism and parameters used by RTI Data Distribu-
tion Service to ensure that particular entities on the network are still alive. The
liveliness can also affect the ownership of a particular instance, as determined
by the OWNERSHIP (p. 341) policy.

This policy has several settings to support both data types that are updated
periodically as well as those that are changed sporadically. It also allows cus-
tomisation for different application requirements in terms of the kinds of failures
that will be detected by the liveliness mechanism.

The DDS AUTOMATIC LIVELINESS QOS (p. 345) liveliness setting is
most appropriate for applications that only need to detect failures at the process-
level, but not application-logic failures within a process. RTI Data Distribution
Service takes responsibility for renewing the leases at the required rates and
thus, as long as the local process where a DDSDomainParticipant (p. 1054)
is running and the link connecting it to remote participants remains connected,
the entities within the DDSDomainParticipant (p. 1054) will be considered
alive. This requires the lowest overhead.

The manual settings (DDS MANUAL BY PARTICIPANT -
LIVELINESS QOS (p. 345), DDS MANUAL BY TOPIC -
LIVELINESS QOS (p. 345)) require the application on the publishing
side to periodically assert the liveliness before the lease expires to indicate the
corresponding DDSEntity (p. 1157) is still alive. The action can be explicit

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

732 Class Documentation

by calling the DDSDataWriter::assert liveliness (p. 1036) operation or
implicit by writing some data.

The two possible manual settings control the granularity at which the applica-
tion must assert liveliness.

ˆ The setting DDS MANUAL BY PARTICIPANT LIVELINESS -
QOS (p. 345) requires only that one DDSEntity (p. 1157) within a par-
ticipant is asserted to be alive to deduce all other DDSEntity (p. 1157)
objects within the same DDSDomainParticipant (p. 1054) are also
alive.

ˆ The setting DDS MANUAL BY TOPIC LIVELINESS QOS
(p. 345) requires that at least one instance within the DDSDataWriter
(p. 1028) is asserted.

Changes in LIVELINESS (p. 344) must be detected by the Service with a
time-granularity greater or equal to the lease duration. This ensures that
the value of the DDS LivelinessChangedStatus (p. 726) is updated at least
once during each lease duration and the related Listeners and DDSWaitSet
(p. 1325) s are notified within a lease duration from the time the LIVELI-
NESS (p. 344) changed.

6.62.3 Compatibility

The value offered is considered compatible with the value requested if and only
if the following conditions are met:

ˆ the inequality offered kind >= requested kind evaluates to
’TRUE’. For the purposes of this inequality, the values of DDS -
LivelinessQosPolicyKind (p. 344) kind are considered ordered such
that: DDS AUTOMATIC LIVELINESS QOS (p. 345) < DDS -
MANUAL BY PARTICIPANT LIVELINESS QOS (p. 345) <
DDS MANUAL BY TOPIC LIVELINESS QOS (p. 345).

ˆ the inequality offered lease duration <= requested lease duration
evaluates to DDS BOOLEAN TRUE (p. 288).

See also:

RELATIONSHIP BETWEEN REGISTRATION, LIVELINESS
and OWNERSHIP (p. 758)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.62 DDS LivelinessQosPolicy Struct Reference 733

6.62.4 Member Data Documentation

6.62.4.1 DDS LivelinessQosPolicyKind DDS -
LivelinessQosPolicy::kind

The kind of liveliness desired.

[default] DDS AUTOMATIC LIVELINESS QOS (p. 345)

6.62.4.2 struct DDS Duration t DDS LivelinessQosPolicy::lease -
duration [read]

The duration within which a DDSEntity (p. 1157) must be asserted, or else it
is assumed to be not alive.

[default] DDS DURATION INFINITE (p. 295)

[range] [0,1 year] or DDS DURATION INFINITE (p. 295)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

734 Class Documentation

6.63 DDS Locator t Struct Reference

<<eXtension>> (p. 190) Type used to represent the addressing information
needed to send a message to an RTPS Endpoint using one of the supported
transports.

Public Attributes

ˆ DDS Long kind

The kind of locator.

ˆ DDS UnsignedLong port

the port number

ˆ DDS Octet address [DDS LOCATOR ADDRESS LENGTH MAX]

A DDS LOCATOR ADDRESS LENGTH MAX (p. 44) octet field to
hold the IP address.

6.63.1 Detailed Description

<<eXtension>> (p. 190) Type used to represent the addressing information
needed to send a message to an RTPS Endpoint using one of the supported
transports.

6.63.2 Member Data Documentation

6.63.2.1 DDS Long DDS Locator t::kind

The kind of locator.

If the Locator t kind is DDS LOCATOR KIND UDPv4 (p. 46), the ad-
dress contains an IPv4 address. In this case, the leading 12 octets of the
DDS Locator t::address (p. 735) must be zero. The last 4 octets of DDS -
Locator t::address (p. 735) are used to store the IPv4 address.

If the Locator t kind is DDS LOCATOR KIND UDPv6 (p. 46), the address
contains an IPv6 address. IPv6 addresses typically use a shorthand hexadec-
imal notation that maps one-to-one to the 16 octets in the DDS Locator -
t::address (p. 735) field.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.63 DDS Locator t Struct Reference 735

6.63.2.2 DDS UnsignedLong DDS Locator t::port

the port number

6.63.2.3 DDS Octet DDS Locator t::address[DDS LOCATOR -
ADDRESS LENGTH MAX]

A DDS LOCATOR ADDRESS LENGTH MAX (p. 44) octet field to
hold the IP address.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

736 Class Documentation

6.64 DDS LocatorFilter t Struct Reference

Specifies the configuration of an individual channel within a MultiChannel
DataWriter.

Public Attributes

ˆ struct DDS LocatorSeq locators

Sequence containing from one to four DDS Locator t (p. 734), used to spec-
ify the multicast address locators of an individual channel within a Multi-
Channel DataWriter.

ˆ char ∗ filter expression

A logical expression used to determine the data that will be published in the
channel.

6.64.1 Detailed Description

Specifies the configuration of an individual channel within a MultiChannel
DataWriter.

QoS:

DDS LocatorFilterQosPolicy (p. 738)

6.64.2 Member Data Documentation

6.64.2.1 struct DDS LocatorSeq DDS LocatorFilter t::locators
[read]

Sequence containing from one to four DDS Locator t (p. 734), used to specify
the multicast address locators of an individual channel within a MultiChannel
DataWriter.

[default] Empty sequence.

6.64.2.2 char∗ DDS LocatorFilter t::filter expression

A logical expression used to determine the data that will be published in the
channel.

If the expression evaluates to TRUE, a sample will be published on the channel.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.64 DDS LocatorFilter t Struct Reference 737

An empty string always evaluates the expression to TRUE.

A NULL value is not allowed.

The syntax of the expression will depend on the value of DDS -
LocatorFilterQosPolicy::filter name (p. 739)

Important: This value must be an allocated string with DDS String alloc
(p. 433) or DDS String dup (p. 434). It should not be assigned to a string
constant.

See also:

Queries and Filters Syntax (p. 199)

[default] NULL (invalid value)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

738 Class Documentation

6.65 DDS LocatorFilterQosPolicy Struct Refer-
ence

The QoS policy used to report the configuration of a MultiChannel DataWriter
as part of DDS PublicationBuiltinTopicData (p. 788).

Public Attributes

ˆ struct DDS LocatorFilterSeq locator filters
A sequence of DDS LocatorFilter t (p. 736). Each DDS LocatorFilter -
t (p. 736) reports the configuration of a single channel of a MultiChannel
DataWriter.

ˆ char ∗ filter name
Name of the filter class used to describe the filter expressions of a Multi-
Channel DataWriter.

6.65.1 Detailed Description

The QoS policy used to report the configuration of a MultiChannel DataWriter
as part of DDS PublicationBuiltinTopicData (p. 788).

Entity:

DDS PublicationBuiltinTopicData (p. 788)

Properties:

RxO (p. 327) = N/A
Changeable (p. 328) = NO (p. 328)

6.65.2 Member Data Documentation

6.65.2.1 struct DDS LocatorFilterSeq DDS -
LocatorFilterQosPolicy::locator filters
[read]

A sequence of DDS LocatorFilter t (p. 736). Each DDS LocatorFilter -
t (p. 736) reports the configuration of a single channel of a MultiChannel
DataWriter.

A sequence length of zero indicates the DDS MultiChannelQosPolicy
(p. 745) is not in use.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.65 DDS LocatorFilterQosPolicy Struct Reference 739

[default] Empty sequence.

6.65.2.2 char∗ DDS LocatorFilterQosPolicy::filter name

Name of the filter class used to describe the filter expressions of a MultiChannel
DataWriter.

The following builtin filters are supported: DDS SQLFILTER NAME
(p. 39) and DDS STRINGMATCHFILTER NAME (p. 40).

Important: This value must be assigned to either one of the pre-
defined values (DDS SQLFILTER NAME (p. 39) or DDS -
STRINGMATCHFILTER NAME (p. 40)), or to an allocated string
with DDS String alloc (p. 433) or DDS String dup (p. 434). It should not
be assigned to a string constant.

[default] DDS STRINGMATCHFILTER NAME (p. 40)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

740 Class Documentation

6.66 DDS LocatorFilterSeq Struct Reference

Declares IDL sequence< DDS LocatorFilter t (p. 736) >.

6.66.1 Detailed Description

Declares IDL sequence< DDS LocatorFilter t (p. 736) >.

A sequence of DDS LocatorFilter t (p. 736) used to report the chan-
nels’ properties. If the length of the sequence is zero, the DDS -
MultiChannelQosPolicy (p. 745) is not in use.

Instantiates:

<<generic>> (p. 190) FooSeq (p. 1377)

See also:

DDS LocatorFilter t (p. 736)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.67 DDS LocatorSeq Struct Reference 741

6.67 DDS LocatorSeq Struct Reference

Declares IDL sequence < DDS Locator t (p. 734) >.

6.67.1 Detailed Description

Declares IDL sequence < DDS Locator t (p. 734) >.

See also:

DDS Locator t (p. 734)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

742 Class Documentation

6.68 DDS LongDoubleSeq Struct Reference

Instantiates FooSeq (p. 1377) < DDS LongDouble (p. 290) >.

6.68.1 Detailed Description

Instantiates FooSeq (p. 1377) < DDS LongDouble (p. 290) >.

Instantiates:

<<generic>> (p. 190) FooSeq (p. 1377)

See also:

DDS LongDouble (p. 290)
FooSeq (p. 1377)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.69 DDS LongLongSeq Struct Reference 743

6.69 DDS LongLongSeq Struct Reference

Instantiates FooSeq (p. 1377) < DDS LongLong (p. 290) >.

6.69.1 Detailed Description

Instantiates FooSeq (p. 1377) < DDS LongLong (p. 290) >.

Instantiates:

<<generic>> (p. 190) FooSeq (p. 1377)

See also:

DDS LongLong (p. 290)
FooSeq (p. 1377)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

744 Class Documentation

6.70 DDS LongSeq Struct Reference

Instantiates FooSeq (p. 1377) < DDS Long (p. 290) >.

6.70.1 Detailed Description

Instantiates FooSeq (p. 1377) < DDS Long (p. 290) >.

Instantiates:

<<generic>> (p. 190) FooSeq (p. 1377)

See also:

DDS Long (p. 290)
FooSeq (p. 1377)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.71 DDS MultiChannelQosPolicy Struct Reference 745

6.71 DDS MultiChannelQosPolicy Struct Ref-
erence

Configures the ability of a DataWriter to send data on different multicast groups
(addresses) based on the value of the data.

Public Attributes

ˆ struct DDS ChannelSettingsSeq channels

A sequence of DDS ChannelSettings t (p. 455) used to configure the chan-
nels’ properties. If the length of the sequence is zero, the QoS policy will be
ignored.

ˆ char ∗ filter name

Name of the filter class used to describe the filter expressions of a Multi-
Channel DataWriter.

6.71.1 Detailed Description

Configures the ability of a DataWriter to send data on different multicast groups
(addresses) based on the value of the data.

This QoS policy is used to partition the data published by a DDSDataWriter
(p. 1028) across multiple channels. A channel is defined by a filter expression
and a sequence of multicast locators.

Entity:

DDSDataWriter (p. 1028)

Properties:

RxO (p. 327) = N/A
Changeable (p. 328) = NO (p. 328)

6.71.2 Usage

By using this QoS, a DDSDataWriter (p. 1028) can be configured to send
data to different multicast groups based on the content of the data. Using
syntax similar to those used in Content-Based Filters, you can associate different
multicast addresses with filter expressions that operate on the values of the fields
within the data. When your applications code calls FooDataWriter::write

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

746 Class Documentation

(p. 1368), data is sent to any multicast address for which the data passes the
filter.

Multi-channel DataWriters can be used to trade off network bandwidth with the
unnecessary processing of unwanted data for situations where there are multiple
DataReaders that are interested in different subsets of data that come from the
same data stream (Topic). For example, in Financial applications, the data
stream may be quotes for different stocks at an exchange. Applications usually
only want to receive data (quotes) for only a subset of the stocks being traded.
In tracking applications, a data stream may carry information on hundreds
or thousands of objects being tracked, but again, applications may only be
interested in a subset.

The problem is that the most efficient way to deliver data to multiple applica-
tions is to use multicast, so that a data value is only sent once on the network
for any number of subscribers to the data. However, using multicast, an ap-
plication will receive all of the data sent and not just the data in which it is
interested, thus extra CPU time is wasted to throw away unwanted data. With
this QoS, you can analyze the data-usage patterns of your applications and op-
timize network vs. CPU usage by partitioning the data into multiple multicast
streams. While network bandwidth is still being conserved by sending data only
once using multicast, most applications will only need to listen to a subset of
the multicast addresses and receive a reduced amount of unwanted data.

Your system can gain more of the benefits of using multiple multicast groups if
your network uses Layer 2 Ethernet switches. Layer 2 switches can be configured
to only route multicast packets to those ports that have added membership
to specific multicast groups. Using those switches will ensure that only the
multicast packets used by applications on a node are routed to the node; all
others are filtered-out by the switch.

6.71.3 Member Data Documentation

6.71.3.1 struct DDS ChannelSettingsSeq
DDS MultiChannelQosPolicy::channels [read]

A sequence of DDS ChannelSettings t (p. 455) used to configure the chan-
nels’ properties. If the length of the sequence is zero, the QoS policy will be
ignored.

A sequence length of zero indicates the DDS MultiChannelQosPolicy
(p. 745) is not in use.

The sequence length cannot be greater than DDS -
DomainParticipantResourceLimitsQosPolicy::channel seq max -
length (p. 569).

[default] Empty sequence.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.71 DDS MultiChannelQosPolicy Struct Reference 747

6.71.3.2 char∗ DDS MultiChannelQosPolicy::filter name

Name of the filter class used to describe the filter expressions of a MultiChannel
DataWriter.

The following builtin filters are supported: DDS SQLFILTER NAME
(p. 39) and DDS STRINGMATCHFILTER NAME (p. 40).

Important: This value must be assigned to either one of the pre-
defined values (DDS SQLFILTER NAME (p. 39) or DDS -
STRINGMATCHFILTER NAME (p. 40)), or to an allocated string
with DDS String alloc (p. 433) or DDS String dup (p. 434). It should not
be assigned to a string constant.

[default] DDS STRINGMATCHFILTER NAME (p. 40)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

748 Class Documentation

6.72 DDS Octets Struct Reference

Built-in type consisting of a variable-length array of opaque bytes.

Public Member Functions

ˆ DDS Octets ()

Constructor.

ˆ DDS Octets (int size)

Constructor that specifies the size of the allocated octets array.

ˆ ∼DDS Octets ()

Destructor.

Public Attributes

ˆ int length

Number of octets to serialize.

ˆ unsigned char ∗ value

DDS Octets (p. 748) array value.

6.72.1 Detailed Description

Built-in type consisting of a variable-length array of opaque bytes.

6.72.2 Constructor & Destructor Documentation

6.72.2.1 DDS Octets::DDS Octets () [inline]

Constructor.

The default constructor initializes the newly created object with NULL value,
and zero length.

6.72.2.2 DDS Octets::DDS Octets (int size) [inline]

Constructor that specifies the size of the allocated octets array.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.72 DDS Octets Struct Reference 749

After this method is called, length is set to zero.

If a memory allocation failure occurs, and the DDS Octets (p. 748) structure
is allocated but the array inside of it cannot be, the array will be NULL.

Parameters:

size <<in>> (p. 191) Size of the allocated octets array.

6.72.2.3 DDS Octets::∼DDS Octets () [inline]

Destructor.

6.72.3 Member Data Documentation

6.72.3.1 int DDS Octets::length

Number of octets to serialize.

6.72.3.2 unsigned char∗ DDS Octets::value

DDS Octets (p. 748) array value.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

750 Class Documentation

6.73 DDS OctetSeq Struct Reference

Instantiates FooSeq (p. 1377) < DDS Octet (p. 289) >.

6.73.1 Detailed Description

Instantiates FooSeq (p. 1377) < DDS Octet (p. 289) >.

Instantiates:

<<generic>> (p. 190) FooSeq (p. 1377)

See also:

DDS Octet (p. 289)
FooSeq (p. 1377)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.74 DDS OctetsSeq Struct Reference 751

6.74 DDS OctetsSeq Struct Reference

Instantiates FooSeq (p. 1377) < DDS Octets (p. 748) > .

6.74.1 Detailed Description

Instantiates FooSeq (p. 1377) < DDS Octets (p. 748) > .

Instantiates:

<<generic>> (p. 190) FooSeq (p. 1377)

See also:

DDS Octets (p. 748)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

752 Class Documentation

6.75 DDS OfferedDeadlineMissedStatus Struct
Reference

DDS OFFERED DEADLINE MISSED STATUS (p. 311)

Public Attributes

ˆ DDS Long total count
Total cumulative count of the number of times the DDSDataWriter
(p. 1028) failed to write within its offered deadline.

ˆ DDS Long total count change
The incremental changes in total count since the last time the listener was
called or the status was read.

ˆ DDS InstanceHandle t last instance handle
Handle to the last instance in the DDSDataWriter (p. 1028) for which an
offered deadline was missed.

6.75.1 Detailed Description

DDS OFFERED DEADLINE MISSED STATUS (p. 311)

Entity:

DDSDataWriter (p. 1028)

Listener:

DDSDataWriterListener (p. 1048)

The deadline that the DDSDataWriter (p. 1028) has committed through its
DDS DeadlineQosPolicy (p. 528) was not respected for a specific instance.

6.75.2 Member Data Documentation

6.75.2.1 DDS Long DDS OfferedDeadlineMissedStatus::total count

Total cumulative count of the number of times the DDSDataWriter (p. 1028)
failed to write within its offered deadline.

Missed deadlines accumulate; that is, each deadline period the total count will
be incremented by one.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.75 DDS OfferedDeadlineMissedStatus Struct Reference 753

6.75.2.2 DDS Long DDS OfferedDeadlineMissedStatus::total -
count change

The incremental changes in total count since the last time the listener was called
or the status was read.

6.75.2.3 DDS InstanceHandle t DDS -
OfferedDeadlineMissedStatus::last instance handle

Handle to the last instance in the DDSDataWriter (p. 1028) for which an
offered deadline was missed.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

754 Class Documentation

6.76 DDS OfferedIncompatibleQosStatus
Struct Reference

DDS OFFERED INCOMPATIBLE QOS STATUS (p. 311)

Public Attributes

ˆ DDS Long total count

Total cumulative number of times the concerned DDSDataWriter
(p. 1028) discovered a DDSDataReader (p. 1004) for the same DDSTopic
(p. 1311), common partition with a requested QoS that is incompatible with
that offered by the DDSDataWriter (p. 1028).

ˆ DDS Long total count change

The incremental changes in total count since the last time the listener was
called or the status was read.

ˆ DDS QosPolicyId t last policy id

The DDS QosPolicyId t (p. 328) of one of the policies that was found to
be incompatible the last time an incompatibility was detected.

ˆ struct DDS QosPolicyCountSeq policies

A list containing for each policy the total number of times that the concerned
DDSDataWriter (p. 1028) discovered a DDSDataReader (p. 1004) for
the same DDSTopic (p. 1311) and common partition with a requested QoS
that is incompatible with that offered by the DDSDataWriter (p. 1028).

6.76.1 Detailed Description

DDS OFFERED INCOMPATIBLE QOS STATUS (p. 311)

Entity:

DDSDataWriter (p. 1028)

Listener:

DDSDataWriterListener (p. 1048)

The qos policy value was incompatible with what was requested.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.76 DDS OfferedIncompatibleQosStatus Struct Reference 755

6.76.2 Member Data Documentation

6.76.2.1 DDS Long DDS OfferedIncompatibleQosStatus::total -
count

Total cumulative number of times the concerned DDSDataWriter (p. 1028)
discovered a DDSDataReader (p. 1004) for the same DDSTopic (p. 1311),
common partition with a requested QoS that is incompatible with that offered
by the DDSDataWriter (p. 1028).

6.76.2.2 DDS Long DDS OfferedIncompatibleQosStatus::total -
count change

The incremental changes in total count since the last time the listener was called
or the status was read.

6.76.2.3 DDS QosPolicyId t DDS -
OfferedIncompatibleQosStatus::last policy id

The DDS QosPolicyId t (p. 328) of one of the policies that was found to be
incompatible the last time an incompatibility was detected.

6.76.2.4 struct DDS QosPolicyCountSeq DDS -
OfferedIncompatibleQosStatus::policies
[read]

A list containing for each policy the total number of times that the concerned
DDSDataWriter (p. 1028) discovered a DDSDataReader (p. 1004) for the
same DDSTopic (p. 1311) and common partition with a requested QoS that is
incompatible with that offered by the DDSDataWriter (p. 1028).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

756 Class Documentation

6.77 DDS OwnershipQosPolicy Struct Refer-
ence

Specifies whether it is allowed for multiple DDSDataWriter (p. 1028) (s) to
write the same instance of the data and if so, how these modifications should
be arbitrated.

Public Attributes

ˆ DDS OwnershipQosPolicyKind kind
The kind of ownership.

6.77.1 Detailed Description

Specifies whether it is allowed for multiple DDSDataWriter (p. 1028) (s) to
write the same instance of the data and if so, how these modifications should
be arbitrated.

Entity:

DDSTopic (p. 1311), DDSDataReader (p. 1004), DDSDataWriter
(p. 1028)

Status:

DDS OFFERED INCOMPATIBLE QOS STATUS (p. 311),
DDS REQUESTED INCOMPATIBLE QOS STATUS (p. 311)

Properties:

RxO (p. 327) = YES
Changeable (p. 328) = UNTIL ENABLE (p. 328)

See also:

OWNERSHIP STRENGTH (p. 343)

6.77.2 Usage

Along with the OWNERSHIP STRENGTH (p. 343), this QoS policy spec-
ifies if DDSDataReader (p. 1004) entities can receive updates to the same
instance (identified by its key) from multiple DDSDataWriter (p. 1028) enti-
ties at the same time.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.77 DDS OwnershipQosPolicy Struct Reference 757

There are two kinds of ownership, selected by the setting of the kind: SHARED
and EXCLUSIVE.

6.77.2.1 SHARED ownership

DDS SHARED OWNERSHIP QOS (p. 342) indicates that RTI Data Dis-
tribution Service does not enforce unique ownership for each instance. In this
case, multiple writers can update the same data type instance. The subscriber
to the DDSTopic (p. 1311) will be able to access modifications from all DDS-
DataWriter (p. 1028) objects, subject to the settings of other QoS that may
filter particular samples (e.g. the TIME BASED FILTER (p. 346) or HIS-
TORY (p. 352) policy). In any case, there is no ”filtering” of modifications
made based on the identity of the DDSDataWriter (p. 1028) that causes the
modification.

6.77.2.2 EXCLUSIVE ownership

DDS EXCLUSIVE OWNERSHIP QOS (p. 342) indicates that each in-
stance of a data type can only be modified by one DDSDataWriter (p. 1028).
In other words, at any point in time, a single DDSDataWriter (p. 1028)
owns each instance and is the only one whose modifications will be visible
to the DDSDataReader (p. 1004) objects. The owner is determined by se-
lecting the DDSDataWriter (p. 1028) with the highest value of the DDS -
OwnershipStrengthQosPolicy::value (p. 763) that is currently alive, as de-
fined by the LIVELINESS (p. 344) policy, and has not violated its DEAD-
LINE (p. 339) contract with regards to the data instance.

Ownership can therefore change as a result of:

ˆ a DDSDataWriter (p. 1028) in the system with a higher value of the
strength that modifies the instance,

ˆ a change in the strength value of the DDSDataWriter (p. 1028) that
owns the instance, and

ˆ a change in the liveliness of the DDSDataWriter (p. 1028) that owns the
instance.

ˆ a deadline with regards to the instance that is missed by the DDS-
DataWriter (p. 1028) that owns the instance.

The behavior of the system is as if the determination was made independently
by each DDSDataReader (p. 1004). Each DDSDataReader (p. 1004) may
detect the change of ownership at a different time. It is not a requirement that
at a particular point in time all the DDSDataReader (p. 1004) objects for
that DDSTopic (p. 1311) have a consistent picture of who owns each instance.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

758 Class Documentation

It is also not a requirement that the DDSDataWriter (p. 1028) objects are
aware of whether they own a particular instance. There is no error or notification
given to a DDSDataWriter (p. 1028) that modifies an instance it does not
currently own.

The requirements are chosen to (a) preserve the decoupling of publishers and
subscriber, and (b) allow the policy to be implemented efficiently.

It is possible that multiple DDSDataWriter (p. 1028) objects with the same
strength modify the same instance. If this occurs RTI Data Distribution Service
will pick one of the DDSDataWriter (p. 1028) objects as the owner. It is not
specified how the owner is selected. However, the algorithm used to select the
owner guarantees that all DDSDataReader (p. 1004) objects will make the
same choice of the particular DDSDataWriter (p. 1028) that is the owner.
It also guarantees that the owner remains the same until there is a change in
strength, liveliness, the owner misses a deadline on the instance, or a new DDS-
DataWriter (p. 1028) with higher same strength, or a new DDSDataWriter
(p. 1028) with same strength that should be deemed the owner according to the
policy of the Service, modifies the instance.

Exclusive ownership is on an instance-by-instance basis. That is, a subscriber
can receive values written by a lower strength DDSDataWriter (p. 1028) as
long as they affect instances whose values have not been set by the higher-
strength DDSDataWriter (p. 1028).

6.77.3 Compatibility

The value of the DDS OwnershipQosPolicyKind (p. 341) offered must ex-
actly match the one requested or else they are considered incompatible.

6.77.4 RELATIONSHIP BETWEEN REGISTRATION,
LIVELINESS and OWNERSHIP

The need for registering/unregistering instances stems from two use cases:

ˆ Ownership resolution on redundant systems

ˆ Detection of loss in topological connectivity

These two use cases also illustrate the semantic differences between the Foo-
DataWriter::unregister instance (p. 1365) and FooDataWriter::dispose
(p. 1372).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.77 DDS OwnershipQosPolicy Struct Reference 759

6.77.4.1 Ownership Resolution on Redundant Systems

It is expected that users may use DDS to set up redundant systems where
multiple DDSDataWriter (p. 1028) entities are ”capable” of writing the same
instance. In this situation, the DDSDataWriter (p. 1028) entities are config-
ured such that:

ˆ Either both are writing the instance ”constantly”

ˆ Or else they use some mechanism to classify each other as ”primary”
and ”secondary”, such that the primary is the only one writing, and the
secondary monitors the primary and only writes when it detects that the
primary ”writer” is no longer writing.

Both cases above use the DDS EXCLUSIVE OWNERSHIP -
QOS (p. 342) and arbitrate themselves by means of the DDS -
OwnershipStrengthQosPolicy (p. 763). Regardless of the scheme, the
desired behavior from the DDSDataReader (p. 1004) point of view is that
DDSDataReader (p. 1004) normally receives data from the primary unless the
”primary” writer stops writing, in which case the DDSDataReader (p. 1004)
starts to receive data from the secondary DDSDataWriter (p. 1028).

This approach requires some mechanism to detect that a DDSDataWriter
(p. 1028) (the primary) is no longer ”writing” the data as it should. There
are several reasons why this may happen and all must be detected (but not
necessarily distinguished):

crash The writing process is no longer running (e.g. the whole application has
crashed)

connectivity loss Connectivity to the writing application has been lost (e.g. network dis-
connection)

application fault The application logic that was writing the data is faulty and has stopped
calling FooDataWriter::write (p. 1368).

Arbitrating from a DDSDataWriter (p. 1028) to one of a higher strength is
simple and the decision can be taken autonomously by the DDSDataReader
(p. 1004). Switching ownership from a higher strength DDSDataWriter
(p. 1028) to one of a lower strength DDSDataWriter (p. 1028) requires that
the DDSDataReader (p. 1004) can make a determination that the stronger
DDSDataWriter (p. 1028) is ”no longer writing the instance”.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

760 Class Documentation

Case where the data is periodically updated This determination
is reasonably simple when the data is being written periodically at some
rate. The DDSDataWriter (p. 1028) simply states its offered DDS -
DeadlineQosPolicy (p. 528) (maximum interval between updates) and
the DDSDataReader (p. 1004) automatically monitors that the DDS-
DataWriter (p. 1028) indeed updates the instance at least once per DDS -
DeadlineQosPolicy::period (p. 530). If the deadline is missed, the DDS-
DataReader (p. 1004) considers the DDSDataWriter (p. 1028) ”not alive”
and automatically gives ownership to the next highest-strength DDS-
DataWriter (p. 1028) that is alive.

Case where data is not periodically updated The case where the DDS-
DataWriter (p. 1028) is not writing data periodically is also a very important
use-case. Since the instance is not being updated at any fixed period, the ”dead-
line” mechanism cannot be used to determine ownership. The liveliness solves
this situation. Ownership is maintained while the DDSDataWriter (p. 1028)
is ”alive” and for the DDSDataWriter (p. 1028) to be alive it must fulfill
its DDS LivelinessQosPolicy (p. 730) contract. The different means to re-
new liveliness (automatic, manual) combined by the implied renewal each time
data is written handle the three conditions above [crash], [connectivity loss],
and [application fault]. Note that to handle [application fault], LIVELINESS
must be DDS MANUAL BY TOPIC LIVELINESS QOS (p. 345). The
DDSDataWriter (p. 1028) can retain ownership by periodically writing data
or else calling assert liveliness if it has no data to write. Alternatively if only
protection against [crash] or [connectivity loss] is desired, it is sufficient that
some task on the DDSDataWriter (p. 1028) process periodically writes data
or calls DDSDomainParticipant::assert liveliness (p. 1105). However, this
scenario requires that the DDSDataReader (p. 1004) knows what instances
are being ”written” by the DDSDataWriter (p. 1028). That is the only way
that the DDSDataReader (p. 1004) deduces the ownership of specific instances
from the fact that the DDSDataWriter (p. 1028) is still ”alive”. Hence the
need for the DDSDataWriter (p. 1028) to ”register” and ”unregister” in-
stances. Note that while ”registration” can be done lazily the first time the
DDSDataWriter (p. 1028) writes the instance, ”unregistration,” in general,
cannot. Similar reasoning will lead to the fact that unregistration will also
require a message to be sent to the DDSDataReader (p. 1004).

6.77.4.2 Detection of Loss in Topological Connectivity

There are applications that are designed in such a way that their correct oper-
ation requires some minimal topological connectivity, that is, the writer needs
to have a minimum number of readers or alternatively the reader must have a
minimum number of writers.

A common scenario is that the application does not start doing its logic until it

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.77 DDS OwnershipQosPolicy Struct Reference 761

knows that some specific writers have the minimum configured readers (e.g the
alarm monitor is up).

A more common scenario is that the application logic will wait until some writers
appear that can provide some needed source of information (e.g. the raw sensor
data that must be processed).

Furthermore, once the application is running it is a requirement that this mini-
mal connectivity (from the source of the data) is monitored and the application
informed if it is ever lost. For the case where data is being written periodi-
cally, the DDS DeadlineQosPolicy (p. 528) and the on deadline missed lis-
tener provides the notification. The case where data is not periodically updated
requires the use of the DDS LivelinessQosPolicy (p. 730) in combination with
register instance/unregister instance to detect whether the ”connectivity” has
been lost, and the notification is provided by means of DDS NOT ALIVE -
NO WRITERS INSTANCE STATE (p. 110).

In terms of the required mechanisms, the scenario is very similar to the case
of maintaining ownership. In both cases, the reader needs to know whether a
writer is still ”managing the current value of an instance” even though it is not
continually writing it and this knowledge requires the writer to keep its liveliness
plus some means to know which instances the writer is currently ”managing”
(i.e. the registered instances).

6.77.4.3 Semantic Difference between unregister instance and dis-
pose

FooDataWriter::dispose (p. 1372) is semantically different from Foo-
DataWriter::unregister instance (p. 1365). FooDataWriter::dispose
(p. 1372) indicates that the data instance no longer exists (e.g. a track that
has disappeared, a simulation entity that has been destroyed, a record entry
that has been deleted, etc.) whereas FooDataWriter::unregister instance
(p. 1365) indicates that the writer is no longer taking responsibility for updating
the value of the instance.

Deleting a DDSDataWriter (p. 1028) is equivalent to unregistering all the
instances it was writing, but is not the same as ”disposing” all the instances.

For a DDSTopic (p. 1311) with DDS EXCLUSIVE OWNERSHIP QOS
(p. 342), if the current owner of an instance disposes it, the readers accessing the
instance will see the instance state as being ”DISPOSED” and not see the values
being written by the weaker writer (even after the stronger one has disposed
the instance). This is because the DDSDataWriter (p. 1028) that owns the
instance is saying that the instance no longer exists (e.g. the master of the
database is saying that a record has been deleted) and thus the readers should
see it as such.

For a DDSTopic (p. 1311) with DDS EXCLUSIVE OWNERSHIP QOS

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

762 Class Documentation

(p. 342), if the current owner of an instance unregisters it, then it will relinquish
ownership of the instance and thus the readers may see the value updated by
another writer (which will then become the owner). This is because the owner
said that it no longer will be providing values for the instance and thus another
writer can take ownership and provide those values.

6.77.5 Member Data Documentation

6.77.5.1 DDS OwnershipQosPolicyKind DDS -
OwnershipQosPolicy::kind

The kind of ownership.

[default] DDS SHARED OWNERSHIP QOS (p. 342)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.78 DDS OwnershipStrengthQosPolicy Struct Reference 763

6.78 DDS OwnershipStrengthQosPolicy Struct
Reference

Specifies the value of the strength used to arbitrate among multiple DDS-
DataWriter (p. 1028) objects that attempt to modify the same instance of a
data type (identified by DDSTopic (p. 1311) + key).

Public Attributes

ˆ DDS Long value
The strength value used to arbitrate among multiple writers.

6.78.1 Detailed Description

Specifies the value of the strength used to arbitrate among multiple DDS-
DataWriter (p. 1028) objects that attempt to modify the same instance of a
data type (identified by DDSTopic (p. 1311) + key).

This policy only applies if the OWNERSHIP (p. 341) policy is of kind DDS -
EXCLUSIVE OWNERSHIP QOS (p. 342).

Entity:

DDSDataWriter (p. 1028)

Properties:

RxO (p. 327) = N/A
Changeable (p. 328) = YES (p. 328)

The value of the OWNERSHIP STRENGTH (p. 343) is used to determine
the ownership of a data instance (identified by the key). The arbitration is
performed by the DDSDataReader (p. 1004).

See also:

EXCLUSIVE ownership (p. 757)

6.78.2 Member Data Documentation

6.78.2.1 DDS Long DDS OwnershipStrengthQosPolicy::value

The strength value used to arbitrate among multiple writers.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

764 Class Documentation

[default] 0

[range] [0, 1 million]

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.79 DDS ParticipantBuiltinTopicData Struct Reference 765

6.79 DDS ParticipantBuiltinTopicData Struct
Reference

Entry created when a DomainParticipant object is discovered.

Public Attributes

ˆ DDS BuiltinTopicKey t key

DCPS key to distinguish entries.

ˆ struct DDS UserDataQosPolicy user data

Policy of the corresponding DomainParticipant.

ˆ struct DDS PropertyQosPolicy property

<<eXtension>> (p. 190) Name value pair properties to be stored with do-
main participant

ˆ DDS ProtocolVersion t rtps protocol version

<<eXtension>> (p. 190) Version number of the RTPS wire protocol used.

ˆ struct DDS VendorId t rtps vendor id

<<eXtension>> (p. 190) ID of vendor implementing the RTPS wire pro-
tocol.

ˆ DDS UnsignedLong dds builtin endpoints

<<eXtension>> (p. 190) Bitmap of builtin endpoints supported by the par-
ticipant.

ˆ struct DDS LocatorSeq default unicast locators

<<eXtension>> (p. 190) Unicast locators used when individual entities do
not specify unicast locators.

ˆ struct DDS ProductVersion t product version

<<eXtension>> (p. 190) This is a vendor specific parameter. It gives the
current version for rti-dds.

ˆ struct DDS EntityNameQosPolicy participant name

<<eXtension>> (p. 190) The participant name.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

766 Class Documentation

6.79.1 Detailed Description

Entry created when a DomainParticipant object is discovered.

Data associated with the built-in topic DDS PARTICIPANT TOPIC -
NAME (p. 275). It contains QoS policies and additional information that apply
to the remote DDSDomainParticipant (p. 1054).

See also:

DDS PARTICIPANT TOPIC NAME (p. 275)
DDSParticipantBuiltinTopicDataDataReader (p. 1238)

6.79.2 Member Data Documentation

6.79.2.1 DDS BuiltinTopicKey t DDS -
ParticipantBuiltinTopicData::key

DCPS key to distinguish entries.

6.79.2.2 struct DDS UserDataQosPolicy DDS -
ParticipantBuiltinTopicData::user data
[read]

Policy of the corresponding DomainParticipant.

6.79.2.3 struct DDS PropertyQosPolicy DDS -
ParticipantBuiltinTopicData::property
[read]

<<eXtension>> (p. 190) Name value pair properties to be stored with do-
main participant

6.79.2.4 DDS ProtocolVersion t DDS -
ParticipantBuiltinTopicData::rtps protocol version

<<eXtension>> (p. 190) Version number of the RTPS wire protocol used.

6.79.2.5 struct DDS VendorId t DDS -
ParticipantBuiltinTopicData::rtps vendor id
[read]

<<eXtension>> (p. 190) ID of vendor implementing the RTPS wire protocol.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.79 DDS ParticipantBuiltinTopicData Struct Reference 767

6.79.2.6 DDS UnsignedLong DDS -
ParticipantBuiltinTopicData::dds builtin endpoints

<<eXtension>> (p. 190) Bitmap of builtin endpoints supported by the par-
ticipant.

Each bit indicates a builtin endpoint that may be available on the participant
for use in discovery.

6.79.2.7 struct DDS LocatorSeq DDS -
ParticipantBuiltinTopicData::default unicast locators
[read]

<<eXtension>> (p. 190) Unicast locators used when individual entities do
not specify unicast locators.

6.79.2.8 struct DDS ProductVersion t DDS -
ParticipantBuiltinTopicData::product version
[read]

<<eXtension>> (p. 190) This is a vendor specific parameter. It gives the
current version for rti-dds.

6.79.2.9 struct DDS EntityNameQosPolicy DDS -
ParticipantBuiltinTopicData::participant name
[read]

<<eXtension>> (p. 190) The participant name.

This is the name of the discovered participant.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

768 Class Documentation

6.80 DDS ParticipantBuiltinTopicDataSeq
Struct Reference

Instantiates FooSeq (p. 1377) < DDS ParticipantBuiltinTopicData
(p. 765) > .

6.80.1 Detailed Description

Instantiates FooSeq (p. 1377) < DDS ParticipantBuiltinTopicData
(p. 765) > .

Instantiates:

<<generic>> (p. 190) FooSeq (p. 1377)

See also:

DDS ParticipantBuiltinTopicData (p. 765)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.81 DDS PartitionQosPolicy Struct Reference 769

6.81 DDS PartitionQosPolicy Struct Reference

Set of strings that introduces a logical partition among the topics visible by a
DDSPublisher (p. 1243) and a DDSSubscriber (p. 1284).

Public Attributes

ˆ struct DDS StringSeq name

A list of partition names.

6.81.1 Detailed Description

Set of strings that introduces a logical partition among the topics visible by a
DDSPublisher (p. 1243) and a DDSSubscriber (p. 1284).

This QoS policy is used to set string identifiers that are used for matching
DataReaders and DataWriters for the same Topic.

A DDSDataWriter (p. 1028) within a DDSPublisher (p. 1243) only commu-
nicates with a DDSDataReader (p. 1004) in a DDSSubscriber (p. 1284) if
(in addition to matching the DDSTopic (p. 1311) and having compatible QoS)
the DDSPublisher (p. 1243) and DDSSubscriber (p. 1284) have a common
partition name string.

Entity:

DDSPublisher (p. 1243), DDSSubscriber (p. 1284)

Properties:

RxO (p. 327) = NO
Changeable (p. 328) = YES (p. 328)

6.81.2 Usage

This policy allows the introduction of a logical partition concept inside the
’physical’ partition induced by a domain.

Usually DataReaders and DataWriters are matched only by their topic (so that
data are only sent by DataWriters to DataReaders for the same topic). The
Partition QoS policy allows you to add one or more strings, ”partitions”, to a
Publisher and/or Subscriber. If partitions are added, then a DataWriter and
DataReader for the same topic are only considered matched if their Publishers
and Subscribers have partitions in common (intersecting partitions).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

770 Class Documentation

Since the set of partitions for a publisher or subscriber can be dynamically
changed, the Partition QoS policy is useful to control which DataWriters can
send data to which DataReaders and vice versa - even if all of the DataWriters
and DataReaders are for the same topic. This facility is useful for creating
temporary separation groups among entities that would otherwise be connected
to and exchange data each other.

Failure to match partitions is not considered an incompatible QoS and does
not trigger any listeners or conditions. A change in this policy can potentially
modify the ”match” of existing DataReader and DataWriter entities. It may
establish new ”matches” that did not exist before, or break existing matches.

Partition strings are usually directly matched via string comparisons. However,
partition strings can also contain wildcard symbols so that partitions can be
matched via pattern matching. As long as the partitions or wildcard patterns
of a Publisher intersect with the partitions or wildcard patterns of a Subscriber,
their DataWriters and DataReaders of the same topic are able to match; other-
wise they are not.

These partition name patterns are regular expressions as defined by the POSIX
fnmatch API (1003.2-1992 section B.6). Either DDSPublisher (p. 1243) or
DDSSubscriber (p. 1284) may include regular expressions in partition names,
but no two names that both contain wildcards will ever be considered to match.
This means that although regular expressions may be used both at publisher as
well as subscriber side, RTI Data Distribution Service will not try to match two
regular expressions (between publishers and subscribers).

Each publisher and subscriber must belong to at least one logical partition. A
regular expression is not considered to be a logical partition. If a publisher or
subscriber has not specify a logical partition, it is assumed to be in the default
partition. The default partition is defined to be an empty string (””). Put
another way:

ˆ An empty sequence of strings in this QoS policy is considered equivalent
to a sequence containing only a single string, the empty string.

ˆ A string sequence that contains only regular expressions and no literal
strings, it is treated as if it had an additional element, the empty string.

Partitions are different from creating DDSEntity (p. 1157) objects in different
domains in several ways.

ˆ First, entities belonging to different domains are completely isolated from
each other; there is no traffic, meta-traffic or any other way for an appli-
cation or RTI Data Distribution Service itself to see entities in a domain
it does not belong to.

ˆ Second, a DDSEntity (p. 1157) can only belong to one domain whereas
a DDSEntity (p. 1157) can be in multiple partitions.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.81 DDS PartitionQosPolicy Struct Reference 771

ˆ Finally, as far as RTI Data Distribution Service is concerned, each
unique data instance is identified by the tuple (DomainID, DDSTopic
(p. 1311), key). Therefore two DDSEntity (p. 1157) objects in differ-
ent domains cannot refer to the same data instance. On the other hand,
the same data instance can be made available (published) or requested
(subscribed) on one or more partitions.

6.81.3 Member Data Documentation

6.81.3.1 struct DDS StringSeq DDS PartitionQosPolicy::name
[read]

A list of partition names.

Several restrictions apply to the partition names in this sequence. A vi-
olation of one of the following rules will result in a DDS RETCODE -
INCONSISTENT POLICY (p. 304) when setting a DDSPublisher
(p. 1243)’s or DDSSubscriber (p. 1284)’s QoS.

ˆ A partition name string cannot be NULL, nor can it contain the reserved
comma character (’,’).

ˆ The maximum number of partition name strings allowable in a
DDS PartitionQosPolicy (p. 769) is specified on a domain ba-
sis in DDS DomainParticipantResourceLimitsQosPolicy::max -
partitions (p. 567). The length of this sequence may not be greater than
that value.

ˆ The maximum cumulative length of all partition name strings in
a DDS PartitionQosPolicy (p. 769) is specified on a domain ba-
sis in DDS DomainParticipantResourceLimitsQosPolicy::max -
partition cumulative characters (p. 567).

The memory for the strings in this sequence is managed according to the con-
ventions described in Conventions (p. 432). In particular, be careful to avoid
a situation in which RTI Data Distribution Service allocates a string on your
behalf and you then reuse that string in such a way that RTI Data Distribution
Service believes it to have more memory allocated to it than it actually does.

[default] Empty sequence (zero-length sequence). Since no logical partition is
specified, RTI Data Distribution Service will assume the entity to be in default
partition (empty string partition ””).

[range] List of partition name with above restrictions

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

772 Class Documentation

6.82 DDS PresentationQosPolicy Struct Refer-
ence

Specifies how the samples representing changes to data instances are presented
to a subscribing application.

Public Attributes

ˆ DDS PresentationQosPolicyAccessScopeKind access scope

Determines the largest scope spanning the entities for which the order and
coherency of changes can be preserved.

ˆ DDS Boolean coherent access

Specifies support for coherent access. Controls whether coherent access is
supported within the scope access scope.

ˆ DDS Boolean ordered access

Specifies support for ordered access to the samples received at the subscription
end. Controls whether ordered access is supported within the scope access -

scope.

6.82.1 Detailed Description

Specifies how the samples representing changes to data instances are presented
to a subscribing application.

This QoS policy controls the extent to which changes to data instances can be
made dependent on each other and also the kind of dependencies that can be
propagated and maintained by RTI Data Distribution Service. Specifically, this
policy affects the application’s ability to:

ˆ specify and receive coherent changes to instances

ˆ specify the relative order in which changes are presented

Entity:

DDSPublisher (p. 1243), DDSSubscriber (p. 1284)

Status:

DDS OFFERED INCOMPATIBLE QOS STATUS (p. 311),
DDS REQUESTED INCOMPATIBLE QOS STATUS (p. 311)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.82 DDS PresentationQosPolicy Struct Reference 773

Properties:

RxO (p. 327) = YES
Changeable (p. 328) = UNTIL ENABLE (p. 328)

6.82.2 Usage

A DDSDataReader (p. 1004) will usually receive data in the order that it was
sent by a DDSDataWriter (p. 1028), and the data is presented to the DDS-
DataReader (p. 1004) as soon as the application receives the next expected
value. However, sometimes, you may want a set of data for the same topic to
be presented to the DDSDataReader (p. 1004) only after all of the elements
of the set have been received. Or you may want the data to be presented in a
different order than that in which it was received. Specifically for keyed data,
you may want the middleware to present the data in keyed – or instance – order,
such that samples pertaining to the same instance are presented together.

The Presentation QoS policy allows you to specify different scopes of presenta-
tion: within a topic, across instances of a single topic, and even across multiple
topics used by different writers of a publisher (although this last option is not
currently supported by RTI). It also controls whether or not a set of changes
within the scope is delivered at the same time or can be delivered as soon as
each element is received.

ˆ coherent access controls whether RTI Data Distribution Service will
preserve the groupings of changes made by a publishing application
by means of the operations DDSPublisher::begin coherent changes
(p. 1258) and DDSPublisher::end coherent changes (p. 1259).

ˆ ordered access controls whether RTI Data Distribution Service will pre-
serve the order of changes.

ˆ access scope controls the granularity of the other settings. See below:

If coherent access is set, then the access scope controls the maximum extent
of coherent changes. The behavior is as follows:

ˆ If access scope is set to DDS INSTANCE PRESENTATION -
QOS (p. 338) (the default), the use of DDSPublisher::begin -
coherent changes (p. 1258) and DDSPublisher::end coherent -
changes (p. 1259) has no effect on how the subscriber can access the
data, because with the scope limited to each instance, changes to separate
instances are considered independent and thus cannot be grouped into a
coherent set.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

774 Class Documentation

ˆ If access scope is set to DDS TOPIC PRESENTATION QOS
(p. 338), then coherent changes (indicated by their enclosure within calls
to DDSPublisher::begin coherent changes (p. 1258) and DDSPub-
lisher::end coherent changes (p. 1259)) will be made available as such
to each remote DDSDataReader (p. 1004) independently. That is,
changes made to instances within each individual DDSDataWriter
(p. 1028) will be available as coherent with respect to other changes to in-
stances in that same DDSDataWriter (p. 1028), but will not be grouped
with changes made to instances belonging to a different DDSDataWriter
(p. 1028).

ˆ If access scope is set to DDS GROUP PRESENTATION QOS
(p. 338), then coherent changes made to instances through a DDS-
DataWriter (p. 1028) attached to a common DDSPublisher (p. 1243)
are made available as a unit to remote subscribers. (RTI does not currently
support this access scope.)

If ordered access is set, then the access scope controls the maximum extent
for which order will be preserved by RTI Data Distribution Service.

ˆ If access scope is set to DDS INSTANCE PRESENTATION QOS
(p. 338) (the lowest level), then changes to each instance are considered
unordered relative to changes to any other instance. That means that
changes (creations, deletions, modifications) made to two instances are
not necessarily seen in the order they occur. This is the case even if it
is the same application thread making the changes using the same DDS-
DataWriter (p. 1028).

ˆ If access scope is set to DDS TOPIC PRESENTATION QOS
(p. 338), changes (creations, deletions, modifications) made by a single
DDSDataWriter (p. 1028) are made available to subscribers in the same
order they occur. Changes made to instances though different DDS-
DataWriter (p. 1028) entities are not necessarily seen in the order they
occur. This is the case, even if the changes are made by a single appli-
cation thread using DDSDataWriter (p. 1028) objects attached to the
same DDSPublisher (p. 1243).

ˆ Finally, if access scope is set to DDS GROUP PRESENTATION -
QOS (p. 338), changes made to instances via DDSDataWriter (p. 1028)
entities attached to the same DDSPublisher (p. 1243) object are made
available to subscribers on the same order they occur. (RTI does not
currently support this access scope.)

Note that this QoS policy controls the scope at which related changes are made
available to the subscriber. This means the subscriber can access the changes

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.82 DDS PresentationQosPolicy Struct Reference 775

in a coherent manner and in the proper order; however, it does not necessarily
imply that the DDSSubscriber (p. 1284) will indeed access the changes in the
correct order. For that to occur, the application at the subscriber end must use
the proper logic in reading the DDSDataReader (p. 1004) objects.

6.82.3 Compatibility

The value offered is considered compatible with the value requested if and only
if the following conditions are met:

ˆ the inequality offered access scope >= requested access -
scope evaluates to ’TRUE’. For the purposes of this inequal-
ity, the values of access scope are considered ordered such that
DDS INSTANCE PRESENTATION QOS (p. 338) < DDS -
TOPIC PRESENTATION QOS (p. 338) < DDS GROUP -
PRESENTATION QOS (p. 338)

ˆ requested coherent access is DDS BOOLEAN FALSE (p. 289),
or else both offered and requested coherent access are DDS -
BOOLEAN TRUE (p. 288)

ˆ requested ordered access is DDS BOOLEAN FALSE (p. 289), or else
both offered and requested ordered access are DDS BOOLEAN -
TRUE (p. 288).

6.82.4 Member Data Documentation

6.82.4.1 DDS PresentationQosPolicyAccessScopeKind
DDS PresentationQosPolicy::access scope

Determines the largest scope spanning the entities for which the order and
coherency of changes can be preserved.

[default] DDS INSTANCE PRESENTATION QOS (p. 338)

6.82.4.2 DDS Boolean DDS PresentationQosPolicy::coherent -
access

Specifies support for coherent access. Controls whether coherent access is sup-
ported within the scope access scope.

That is, the ability to group a set of changes as a unit on the publishing end
such that they are received as a unit at the subscribing end.

[default] DDS BOOLEAN FALSE (p. 289)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

776 Class Documentation

6.82.4.3 DDS Boolean DDS PresentationQosPolicy::ordered access

Specifies support for ordered access to the samples received at the subscription
end. Controls whether ordered access is supported within the scope access -
scope.

That is, the ability of the subscriber to see changes in the same order as they
occurred on the publishing end.

[default] DDS BOOLEAN FALSE (p. 289)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.83 DDS ProductVersion t Struct Reference 777

6.83 DDS ProductVersion t Struct Reference

<<eXtension>> (p. 190) Type used to represent the current version of RTI
Data Distribution Service.

Public Attributes

ˆ DDS Char major

Major product version.

ˆ DDS Char minor

Minor product version.

ˆ DDS Char release

Release letter for product version.

ˆ DDS Char revision

Revision number of product.

6.83.1 Detailed Description

<<eXtension>> (p. 190) Type used to represent the current version of RTI
Data Distribution Service.

6.83.2 Member Data Documentation

6.83.2.1 DDS Char DDS ProductVersion t::major

Major product version.

6.83.2.2 DDS Char DDS ProductVersion t::minor

Minor product version.

6.83.2.3 DDS Char DDS ProductVersion t::release

Release letter for product version.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

778 Class Documentation

6.83.2.4 DDS Char DDS ProductVersion t::revision

Revision number of product.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.84 DDS ProfileQosPolicy Struct Reference 779

6.84 DDS ProfileQosPolicy Struct Reference

Configures the way that XML documents containing QoS profiles are loaded by
RTI Data Distribution Service.

Public Attributes

ˆ struct DDS StringSeq string profile

Sequence of strings containing a XML document to load.

ˆ struct DDS StringSeq url profile

Sequence of URL groups (p. 144) containing a set of XML documents to
load.

ˆ DDS Boolean ignore user profile

Ignores the file USER QOS PROFILES.xml in the current working directory.

ˆ DDS Boolean ignore environment profile

Ignores the value of the NDDS QOS PROFILES environment variable
(p. 144).

ˆ DDS Boolean ignore resource profile

Ignores the file NDDS QOS PROFILES.xml under
$NDDSHOME/resource/qos profiles 4.4d/xml.

6.84.1 Detailed Description

Configures the way that XML documents containing QoS profiles are loaded by
RTI Data Distribution Service.

All QoS values for Entities can be configured in QoS profiles defined in XML
documents. XML documents can be passed to RTI Data Distribution Service
in string form or, more likely, through files found on a file system.

There are also default locations where DomainParticipants will look for files to
load QoS profiles. These include the current working directory from where an
application is started, a file in the distribution directory for RTI Data Distribu-
tion Service, and the locations specified by an environment variable. You may
disable any or all of these default locations using the Profile QoS policy.

Entity:

DDSDomainParticipantFactory (p. 1123)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

780 Class Documentation

Properties:

RxO (p. 327) = NO
Changeable (p. 328) = Changeable (p. 328)

6.84.2 Member Data Documentation

6.84.2.1 struct DDS StringSeq DDS ProfileQosPolicy::string profile
[read]

Sequence of strings containing a XML document to load.

The concatenation of the strings in this sequence must be a valid XML document
according to the XML QoS profile schema.

[default] Empty sequence (zero-length).

6.84.2.2 struct DDS StringSeq DDS ProfileQosPolicy::url profile
[read]

Sequence of URL groups (p. 144) containing a set of XML documents to load.

Only one of the elements of each group will be loaded by RTI Data Distribution
Service, starting from the left.

[default] Empty sequence (zero-length).

6.84.2.3 DDS Boolean DDS ProfileQosPolicy::ignore user profile

Ignores the file USER QOS PROFILES.xml in the current working directory.

When this field is set to DDS BOOLEAN TRUE (p. 288), the QoS profiles
contained in the file USER QOS PROFILES.xml in the current working direc-
tory will be ignored.

[default] DDS BOOLEAN FALSE (p. 289)

6.84.2.4 DDS Boolean DDS ProfileQosPolicy::ignore -
environment profile

Ignores the value of the NDDS QOS PROFILES environment variable
(p. 144).

When this field is set to DDS BOOLEAN TRUE (p. 288), the value of the
environment variable NDDS QOS PROFILES will be ignored.

[default] DDS BOOLEAN FALSE (p. 289)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.84 DDS ProfileQosPolicy Struct Reference 781

6.84.2.5 DDS Boolean DDS ProfileQosPolicy::ignore resource -
profile

Ignores the file NDDS QOS PROFILES.xml under
$NDDSHOME/resource/qos profiles 4.4d/xml.

When this field is set to DDS BOOLEAN TRUE (p. 288), the
QoS profiles contained in the file NDDS QOS PROFILES.xml under
$NDDSHOME/resource/qos profiles 4.5c/xml will be ignored.

[default] DDS BOOLEAN FALSE (p. 289)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

782 Class Documentation

6.85 DDS Property t Struct Reference

Properties are name/value pairs objects.

Public Attributes

ˆ char ∗ name

Property name.

ˆ char ∗ value

Property value.

ˆ DDS Boolean propagate

Indicates if the property must be propagated on discovery.

6.85.1 Detailed Description

Properties are name/value pairs objects.

6.85.2 Member Data Documentation

6.85.2.1 char∗ DDS Property t::name

Property name.

It must be a NULL-terminated string allocated with DDS String alloc
(p. 433) or DDS String dup (p. 434).

6.85.2.2 char∗ DDS Property t::value

Property value.

It must be a NULL-terminated string allocated with DDS String alloc
(p. 433) or DDS String dup (p. 434).

6.85.2.3 DDS Boolean DDS Property t::propagate

Indicates if the property must be propagated on discovery.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.86 DDS PropertyQosPolicy Struct Reference 783

6.86 DDS PropertyQosPolicy Struct Reference

Stores name/value(string) pairs that can be used to configure certain parameters
of RTI Data Distribution Service that are not exposed through formal QoS poli-
cies. Can also be used to store and propagate application-specific name/value
pairs that can be retrieved by user code during discovery.

Public Attributes

ˆ struct DDS PropertySeq value

Sequence of properties.

6.86.1 Detailed Description

Stores name/value(string) pairs that can be used to configure certain parameters
of RTI Data Distribution Service that are not exposed through formal QoS poli-
cies. Can also be used to store and propagate application-specific name/value
pairs that can be retrieved by user code during discovery.

Entity:

DDSDomainParticipant (p. 1054) DDSDataReader (p. 1004) DDS-
DataWriter (p. 1028)

Properties:

RxO (p. 327) = N/A;
Changeable (p. 328) = YES (p. 328)

See also:

DDSDomainParticipant::get builtin subscriber (p. 1100)

6.86.2 Usage

The PROPERTY QoS policy can be used to associate a set of properties in
the form of (name,value) pairs with a DDSDataReader (p. 1004), DDS-
DataWriter (p. 1028), or DDSDomainParticipant (p. 1054). This is sim-
ilar to the DDS UserDataQosPolicy (p. 972), except this policy uses (name,
value) pairs, and you can select whether or not a particular pair should be
propagated (included in the builtin topic).

This QoS policy may be used to configure:

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

784 Class Documentation

ˆ Durable Writer History, see Configuring Durable Writer History
(p. 138)

ˆ Durable Reader State, see Configuring Durable Reader State (p. 138)

ˆ Builtin Transport Plugins, see UDPv4 Transport Property Names
in Property QoS Policy of Domain Participant (p. 258), UDPv6
Transport Property Names in Property QoS Policy of Domain
Participant (p. 268), and Shared Memory Transport Property
Names in Property QoS Policy of Domain Participant (p. 251)

ˆ Extension Transport Plugins, see Loading Transport Plugins through
Property QoS Policy of Domain Participant (p. 124)

ˆ Clock Selection (p. 29)

In addition, you may add your own name/value pairs to the Property QoS policy
of an Entity. Via this QoS policy, you can direct RTI Data Distribution Ser-
vice to propagate these name/value pairs with the discovery information for the
Entity. Applications that discover the Entity can then access the user-specific
name/value pairs in the discovery information of the remote Entity. This allows
you to add meta-information about an Entity for application-specific use, for
example, authentication/authorization certificates (which can also be done us-
ing the DDS UserDataQosPolicy (p. 972) or DDS GroupDataQosPolicy
(p. 706)).

6.86.2.1 Reasons for Using the PropertyQosPolicy

ˆ Supports dynamic loading of extension transports (such as RTI Secure
WAN Transport)

ˆ Supports multiple instances of the builtin transports

ˆ Allows full pluggable transport configuration for non-C/C++ language
bindings (Java, .NET, etc.)

ˆ Avoids the process of creating entities disabled, changing their QoS set-
tings, then enabling them

ˆ Allows selection of clock

Some of the RTI Data Distribution Service capabilities configurable via the
Property QoS policy can also be configured in code via APIs. However, the

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.86 DDS PropertyQosPolicy Struct Reference 785

Property QoS policy allows you to configure those parameters via XML files.
In addition, some of the configuration APIs will only work if the Entity was
created in a disabled state and then enabled after the configuration change was
applied. By configuring those parameters using the Property QoS policy during
entity creation, you avoid the additional work of first creating a disabled entity
and then enabling it afterwards.

There are helper functions to facilitate working with properties, see the DDS -
PropertyQosPolicyHelper class on the PROPERTY (p. 416) page.

6.86.3 Member Data Documentation

6.86.3.1 struct DDS PropertySeq DDS PropertyQosPolicy::value
[read]

Sequence of properties.

[default] An empty list.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

786 Class Documentation

6.87 DDS PropertySeq Struct Reference

Declares IDL sequence < DDS Property t (p. 782) >.

6.87.1 Detailed Description

Declares IDL sequence < DDS Property t (p. 782) >.

See also:

DDS Property t (p. 782)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.88 DDS ProtocolVersion t Struct Reference 787

6.88 DDS ProtocolVersion t Struct Reference

<<eXtension>> (p. 190) Type used to represent the version of the RTPS
protocol.

Public Attributes

ˆ DDS Octet major

Major protocol version number.

ˆ DDS Octet minor

Minor protocol version number.

6.88.1 Detailed Description

<<eXtension>> (p. 190) Type used to represent the version of the RTPS
protocol.

6.88.2 Member Data Documentation

6.88.2.1 DDS Octet DDS ProtocolVersion t::major

Major protocol version number.

6.88.2.2 DDS Octet DDS ProtocolVersion t::minor

Minor protocol version number.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

788 Class Documentation

6.89 DDS PublicationBuiltinTopicData Struct
Reference

Entry created when a DDSDataWriter (p. 1028) is discovered in association
with its Publisher.

Public Attributes

ˆ DDS BuiltinTopicKey t key
DCPS key to distinguish entries.

ˆ DDS BuiltinTopicKey t participant key
DCPS key of the participant to which the DataWriter belongs.

ˆ char ∗ topic name
Name of the related DDSTopic (p. 1311).

ˆ char ∗ type name
Name of the type attached to the DDSTopic (p. 1311).

ˆ struct DDS DurabilityQosPolicy durability
durability policy of the corresponding DataWriter

ˆ struct DDS DurabilityServiceQosPolicy durability service
durability service policy of the corresponding DataWriter

ˆ struct DDS DeadlineQosPolicy deadline
Policy of the corresponding DataWriter.

ˆ struct DDS LatencyBudgetQosPolicy latency budget
Policy of the corresponding DataWriter.

ˆ struct DDS LivelinessQosPolicy liveliness
Policy of the corresponding DataWriter.

ˆ struct DDS ReliabilityQosPolicy reliability
Policy of the corresponding DataWriter.

ˆ struct DDS LifespanQosPolicy lifespan
Policy of the corresponding DataWriter.

ˆ struct DDS UserDataQosPolicy user data

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.89 DDS PublicationBuiltinTopicData Struct Reference 789

Policy of the corresponding DataWriter.

ˆ struct DDS OwnershipQosPolicy ownership

Policy of the corresponding DataWriter.

ˆ struct DDS OwnershipStrengthQosPolicy ownership strength

Policy of the corresponding DataWriter.

ˆ struct DDS DestinationOrderQosPolicy destination order

Policy of the corresponding DataWriter.

ˆ struct DDS PresentationQosPolicy presentation

Policy of the Publisher to which the DataWriter belongs.

ˆ struct DDS PartitionQosPolicy partition

Policy of the Publisher to which the DataWriter belongs.

ˆ struct DDS TopicDataQosPolicy topic data

Policy of the related Topic.

ˆ struct DDS GroupDataQosPolicy group data

Policy of the Publisher to which the DataWriter belongs.

ˆ struct DDS TypeCode ∗ type code

<<eXtension>> (p. 190) Type code information of the corresponding Topic

ˆ DDS BuiltinTopicKey t publisher key

<<eXtension>> (p. 190) DCPS key of the publisher to which the
DataWriter belongs

ˆ struct DDS PropertyQosPolicy property

<<eXtension>> (p. 190) Properties of the corresponding DataWriter.

ˆ struct DDS LocatorSeq unicast locators

<<eXtension>> (p. 190) Custom unicast locators that the endpoint can
specify. The default locators will be used if this is not specified.

ˆ struct DDS GUID t virtual guid

<<eXtension>> (p. 190) Virtual GUID associated to the DataWriter.

ˆ DDS ProtocolVersion t rtps protocol version

<<eXtension>> (p. 190) Version number of the RTPS wire protocol used.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

790 Class Documentation

ˆ struct DDS VendorId t rtps vendor id

<<eXtension>> (p. 190) ID of vendor implementing the RTPS wire pro-
tocol.

ˆ struct DDS ProductVersion t product version

<<eXtension>> (p. 190) This is a vendor specific parameter. It gives the
current version for rti-dds.

ˆ struct DDS LocatorFilterQosPolicy locator filter

<<eXtension>> (p. 190) Policy of the corresponding DataWriter

ˆ DDS Boolean disable positive acks

<<eXtension>> (p. 190) This is a vendor specific parameter. Determines
whether matching DataReaders send positive acknowledgements for reliabil-
ity.

6.89.1 Detailed Description

Entry created when a DDSDataWriter (p. 1028) is discovered in association
with its Publisher.

Data associated with the built-in topic DDS PUBLICATION TOPIC -
NAME (p. 279). It contains QoS policies and additional information that
apply to the remote DDSDataWriter (p. 1028) the related DDSPublisher
(p. 1243).

See also:

DDS PUBLICATION TOPIC NAME (p. 279)
DDSPublicationBuiltinTopicDataDataReader (p. 1241)

6.89.2 Member Data Documentation

6.89.2.1 DDS BuiltinTopicKey t DDS -
PublicationBuiltinTopicData::key

DCPS key to distinguish entries.

6.89.2.2 DDS BuiltinTopicKey t DDS -
PublicationBuiltinTopicData::participant key

DCPS key of the participant to which the DataWriter belongs.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.89 DDS PublicationBuiltinTopicData Struct Reference 791

6.89.2.3 char∗ DDS PublicationBuiltinTopicData::topic name

Name of the related DDSTopic (p. 1311).

The length of this string is limited to 255 characters.

The memory for this field is managed as described in Conventions (p. 432).

See also:

Conventions (p. 432)

6.89.2.4 char∗ DDS PublicationBuiltinTopicData::type name

Name of the type attached to the DDSTopic (p. 1311).

The length of this string is limited to 255 characters.

The memory for this field is managed as described in Conventions (p. 432).

See also:

Conventions (p. 432)

6.89.2.5 struct DDS DurabilityQosPolicy DDS -
PublicationBuiltinTopicData::durability
[read]

durability policy of the corresponding DataWriter

6.89.2.6 struct DDS DurabilityServiceQosPolicy
DDS PublicationBuiltinTopicData::durability service
[read]

durability service policy of the corresponding DataWriter

6.89.2.7 struct DDS DeadlineQosPolicy DDS -
PublicationBuiltinTopicData::deadline
[read]

Policy of the corresponding DataWriter.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

792 Class Documentation

6.89.2.8 struct DDS LatencyBudgetQosPolicy
DDS PublicationBuiltinTopicData::latency budget [read]

Policy of the corresponding DataWriter.

6.89.2.9 struct DDS LivelinessQosPolicy DDS -
PublicationBuiltinTopicData::liveliness
[read]

Policy of the corresponding DataWriter.

6.89.2.10 struct DDS ReliabilityQosPolicy DDS -
PublicationBuiltinTopicData::reliability
[read]

Policy of the corresponding DataWriter.

6.89.2.11 struct DDS LifespanQosPolicy DDS -
PublicationBuiltinTopicData::lifespan
[read]

Policy of the corresponding DataWriter.

6.89.2.12 struct DDS UserDataQosPolicy DDS -
PublicationBuiltinTopicData::user data
[read]

Policy of the corresponding DataWriter.

6.89.2.13 struct DDS OwnershipQosPolicy DDS -
PublicationBuiltinTopicData::ownership
[read]

Policy of the corresponding DataWriter.

6.89.2.14 struct DDS OwnershipStrengthQosPolicy
DDS PublicationBuiltinTopicData::ownership strength
[read]

Policy of the corresponding DataWriter.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.89 DDS PublicationBuiltinTopicData Struct Reference 793

6.89.2.15 struct DDS DestinationOrderQosPolicy
DDS PublicationBuiltinTopicData::destination order
[read]

Policy of the corresponding DataWriter.

6.89.2.16 struct DDS PresentationQosPolicy
DDS PublicationBuiltinTopicData::presentation [read]

Policy of the Publisher to which the DataWriter belongs.

6.89.2.17 struct DDS PartitionQosPolicy DDS -
PublicationBuiltinTopicData::partition
[read]

Policy of the Publisher to which the DataWriter belongs.

6.89.2.18 struct DDS TopicDataQosPolicy DDS -
PublicationBuiltinTopicData::topic data
[read]

Policy of the related Topic.

6.89.2.19 struct DDS GroupDataQosPolicy DDS -
PublicationBuiltinTopicData::group data
[read]

Policy of the Publisher to which the DataWriter belongs.

6.89.2.20 struct DDS TypeCode∗ DDS -
PublicationBuiltinTopicData::type code
[read]

<<eXtension>> (p. 190) Type code information of the corresponding Topic

6.89.2.21 DDS BuiltinTopicKey t DDS -
PublicationBuiltinTopicData::publisher key

<<eXtension>> (p. 190) DCPS key of the publisher to which the DataWriter
belongs

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

794 Class Documentation

6.89.2.22 struct DDS PropertyQosPolicy DDS -
PublicationBuiltinTopicData::property
[read]

<<eXtension>> (p. 190) Properties of the corresponding DataWriter.

6.89.2.23 struct DDS LocatorSeq DDS -
PublicationBuiltinTopicData::unicast locators
[read]

<<eXtension>> (p. 190) Custom unicast locators that the endpoint can spec-
ify. The default locators will be used if this is not specified.

6.89.2.24 struct DDS GUID t DDS -
PublicationBuiltinTopicData::virtual guid
[read]

<<eXtension>> (p. 190) Virtual GUID associated to the DataWriter.

See also:

DDS GUID t (p. 708)

6.89.2.25 DDS ProtocolVersion t DDS -
PublicationBuiltinTopicData::rtps protocol version

<<eXtension>> (p. 190) Version number of the RTPS wire protocol used.

6.89.2.26 struct DDS VendorId t DDS -
PublicationBuiltinTopicData::rtps vendor id
[read]

<<eXtension>> (p. 190) ID of vendor implementing the RTPS wire protocol.

6.89.2.27 struct DDS ProductVersion t DDS -
PublicationBuiltinTopicData::product version
[read]

<<eXtension>> (p. 190) This is a vendor specific parameter. It gives the
current version for rti-dds.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.89 DDS PublicationBuiltinTopicData Struct Reference 795

6.89.2.28 struct DDS LocatorFilterQosPolicy
DDS PublicationBuiltinTopicData::locator filter [read]

<<eXtension>> (p. 190) Policy of the corresponding DataWriter

Related to DDS MultiChannelQosPolicy (p. 745).

6.89.2.29 DDS Boolean DDS -
PublicationBuiltinTopicData::disable positive acks

<<eXtension>> (p. 190) This is a vendor specific parameter. Determines
whether matching DataReaders send positive acknowledgements for reliability.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

796 Class Documentation

6.90 DDS PublicationBuiltinTopicDataSeq
Struct Reference

Instantiates FooSeq (p. 1377) < DDS PublicationBuiltinTopicData
(p. 788) > .

6.90.1 Detailed Description

Instantiates FooSeq (p. 1377) < DDS PublicationBuiltinTopicData
(p. 788) > .

Instantiates:

<<generic>> (p. 190) FooSeq (p. 1377)

See also:

DDS PublicationBuiltinTopicData (p. 788)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.91 DDS PublicationMatchedStatus Struct Reference 797

6.91 DDS PublicationMatchedStatus Struct
Reference

DDS PUBLICATION MATCHED STATUS (p. 313)

Public Attributes

ˆ DDS Long total count

The total cumulative number of times the concerned DDSDataWriter
(p. 1028) discovered a ”match” with a DDSDataReader (p. 1004).

ˆ DDS Long total count change

The incremental changes in total count since the last time the listener was
called or the status was read.

ˆ DDS Long current count

The current number of readers with which the DDSDataWriter (p. 1028)
is matched.

ˆ DDS Long current count peak

<<eXtension>> (p. 190) The highest value that current count has reached
until now.

ˆ DDS Long current count change

The change in current count since the last time the listener was called or the
status was read.

ˆ DDS InstanceHandle t last subscription handle

A handle to the last DDSDataReader (p. 1004) that caused the the DDS-
DataWriter (p. 1028)’s status to change.

6.91.1 Detailed Description

DDS PUBLICATION MATCHED STATUS (p. 313)

A ”match” happens when the DDSDataWriter (p. 1028) finds a DDS-
DataReader (p. 1004) for the same DDSTopic (p. 1311) and common par-
tition with a requested QoS that is compatible with that offered by the DDS-
DataWriter (p. 1028).

This status is also changed (and the listener, if any, called) when a match is
ended. A local DDSDataWriter (p. 1028) will become ”unmatched” from

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

798 Class Documentation

a remote DDSDataReader (p. 1004) when that DDSDataReader (p. 1004)
goes away for any reason.

6.91.2 Member Data Documentation

6.91.2.1 DDS Long DDS PublicationMatchedStatus::total count

The total cumulative number of times the concerned DDSDataWriter
(p. 1028) discovered a ”match” with a DDSDataReader (p. 1004).

This number increases whenever a new match is discovered. It does not change
when an existing match goes away.

6.91.2.2 DDS Long DDS PublicationMatchedStatus::total count -
change

The incremental changes in total count since the last time the listener was called
or the status was read.

6.91.2.3 DDS Long DDS PublicationMatchedStatus::current count

The current number of readers with which the DDSDataWriter (p. 1028) is
matched.

This number increases when a new match is discovered and decreases when an
existing match goes away.

6.91.2.4 DDS Long DDS PublicationMatchedStatus::current -
count peak

<<eXtension>> (p. 190) The highest value that current count has reached
until now.

6.91.2.5 DDS Long DDS PublicationMatchedStatus::current -
count change

The change in current count since the last time the listener was called or the
status was read.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.91 DDS PublicationMatchedStatus Struct Reference 799

6.91.2.6 DDS InstanceHandle t DDS -
PublicationMatchedStatus::last subscription handle

A handle to the last DDSDataReader (p. 1004) that caused the the DDS-
DataWriter (p. 1028)’s status to change.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

800 Class Documentation

6.92 DDS PublisherQos Struct Reference

QoS policies supported by a DDSPublisher (p. 1243) entity.

Public Attributes

ˆ struct DDS PresentationQosPolicy presentation

Presentation policy, PRESENTATION (p. 337).

ˆ struct DDS PartitionQosPolicy partition

Partition policy, PARTITION (p. 347).

ˆ struct DDS GroupDataQosPolicy group data

Group data policy, GROUP DATA (p. 334).

ˆ struct DDS EntityFactoryQosPolicy entity factory

Entity factory policy, ENTITY FACTORY (p. 362).

ˆ struct DDS AsynchronousPublisherQosPolicy asynchronous -
publisher

<<eXtension>> (p. 190) Asynchronous publishing settings for the
DDSPublisher (p. 1243) and all entities that are created by it.

ˆ struct DDS ExclusiveAreaQosPolicy exclusive area

<<eXtension>> (p. 190) Exclusive area for the DDSPublisher (p. 1243)
and all entities that are created by it.

6.92.1 Detailed Description

QoS policies supported by a DDSPublisher (p. 1243) entity.

You must set certain members in a consistent manner:

length of DDS PublisherQos::group data.value <= DDS -
DomainParticipantQos::resource limits (p. 551) .publisher group -
data max length

length of DDS PublisherQos::partition.name <= DDS -
DomainParticipantQos::resource limits (p. 551) .max partitions

combined number of characters (including terminat-
ing 0) in DDS PublisherQos::partition.name <= DDS -
DomainParticipantQos::resource limits (p. 551) .max partition -
cumulative characters

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.92 DDS PublisherQos Struct Reference 801

If any of the above are not true, DDSPublisher::set qos (p. 1262)
and DDSPublisher::set qos with profile (p. 1263) will fail with DDS -
RETCODE INCONSISTENT POLICY (p. 304) and DDSDomainPar-
ticipant::create publisher (p. 1083) will return NULL.

6.92.2 Member Data Documentation

6.92.2.1 struct DDS PresentationQosPolicy
DDS PublisherQos::presentation [read]

Presentation policy, PRESENTATION (p. 337).

6.92.2.2 struct DDS PartitionQosPolicy
DDS PublisherQos::partition [read]

Partition policy, PARTITION (p. 347).

6.92.2.3 struct DDS GroupDataQosPolicy
DDS PublisherQos::group data [read]

Group data policy, GROUP DATA (p. 334).

6.92.2.4 struct DDS EntityFactoryQosPolicy
DDS PublisherQos::entity factory [read]

Entity factory policy, ENTITY FACTORY (p. 362).

6.92.2.5 struct DDS AsynchronousPublisherQosPolicy
DDS PublisherQos::asynchronous publisher [read]

<<eXtension>> (p. 190) Asynchronous publishing settings for the
DDSPublisher (p. 1243) and all entities that are created by it.

6.92.2.6 struct DDS ExclusiveAreaQosPolicy
DDS PublisherQos::exclusive area [read]

<<eXtension>> (p. 190) Exclusive area for the DDSPublisher (p. 1243)
and all entities that are created by it.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

802 Class Documentation

6.93 DDS PublishModeQosPolicy Struct Refer-
ence

Specifies how RTI Data Distribution Service sends application data on the net-
work. This QoS policy can be used to tell RTI Data Distribution Service to use
its own thread to send data, instead of the user thread.

Public Attributes

ˆ DDS PublishModeQosPolicyKind kind
Publishing mode.

ˆ char ∗ flow controller name
Name of the associated flow controller.

6.93.1 Detailed Description

Specifies how RTI Data Distribution Service sends application data on the net-
work. This QoS policy can be used to tell RTI Data Distribution Service to use
its own thread to send data, instead of the user thread.

The publishing mode of a DDSDataWriter (p. 1028) determines whether data
is written synchronously in the context of the user thread when calling Foo-
DataWriter::write (p. 1368) or asynchronously in the context of a separate
thread internal to the middleware.

Each DDSPublisher (p. 1243) spawns a single asynchronous publishing thread
(DDS AsynchronousPublisherQosPolicy::thread (p. 443)) to serve all its
asynchronous DDSDataWriter (p. 1028) instances.

See also:

DDS AsynchronousPublisherQosPolicy (p. 441)
DDS HistoryQosPolicy (p. 709)
DDSFlowController (p. 1163)

Entity:

DDSDataWriter (p. 1028)

Properties:

RxO (p. 327) = N/A
Changeable (p. 328) = NO (p. 328)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.93 DDS PublishModeQosPolicy Struct Reference 803

6.93.2 Usage

The fastest way for RTI Data Distribution Service to send data is for the user
thread to execute the middleware code that actually sends the data itself. How-
ever, there are times when user applications may need or want an internal
middleware thread to send the data instead. For instance, to send large data
reliably, you must use an asynchronous thread.

When data is written asynchronously, a DDSFlowController (p. 1163), identi-
fied by flow controller name, can be used to shape the network traffic. Shap-
ing a data flow usually means limiting the maximum data rates at which the
middleware will send data for a DDSDataWriter (p. 1028). The flow con-
troller will buffer any excess data and only send it when the send rate drops
below the maximum rate. The flow controller’s properties determine when the
asynchronous publishing thread is allowed to send data and how much.

Asynchronous publishing may increase latency, but offers the following advan-
tages:

- The FooDataWriter::write (p. 1368) call does not make any network calls
and is therefore faster and more deterministic. This becomes important when
the user thread is executing time-critical code.

- When data is written in bursts or when sending large data types as multi-
ple fragments, a flow controller can throttle the send rate of the asynchronous
publishing thread to avoid flooding the network.

- Asynchronously written samples for the same destination will be coalesced into
a single network packet which reduces bandwidth consumption.

The maximum number of samples that will be coalesced depends on
NDDS Transport Property t::gather send buffer count max (p. 1407)
(each sample requires at least 2-4 gather-send buffers). Performance can be im-
proved by increasing NDDS Transport Property t::gather send buffer -
count max (p. 1407). Note that the maximum value is operating system de-
pendent.

The middleware must queue samples until they can be sent by the asyn-
chronous publishing thread (as determined by the corresponding DDSFlow-
Controller (p. 1163)). The number of samples that will be queued is de-
termined by the DDS HistoryQosPolicy (p. 709). When using DDS -
KEEP LAST HISTORY QOS (p. 353), only the most recent DDS -
HistoryQosPolicy::depth (p. 711) samples are kept in the queue. Once un-
sent samples are removed from the queue, they are no longer available to the
asynchronous publishing thread and will therefore never be sent.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

804 Class Documentation

6.93.3 Member Data Documentation

6.93.3.1 DDS PublishModeQosPolicyKind
DDS PublishModeQosPolicy::kind

Publishing mode.

[default] DDS SYNCHRONOUS PUBLISH MODE QOS (p. 403)

6.93.3.2 char∗ DDS PublishModeQosPolicy::flow controller name

Name of the associated flow controller.

NULL value or zero-length string refers to DDS DEFAULT FLOW -
CONTROLLER NAME (p. 89).

Unless flow controller name points to a built-in flow controller, finalizing the
DDS DataWriterQos (p. 516) will also free the string pointed to by flow -
controller name. Therefore, use DDS String dup (p. 434) before passing
the string to flow controller name, or reset flow controller name to NULL
before finalizing the QoS.

Please refer to Conventions (p. 432) for more information.

See also:

DDSDomainParticipant::create flowcontroller (p. 1098)
DDS DEFAULT FLOW CONTROLLER NAME (p. 89)
DDS FIXED RATE FLOW CONTROLLER NAME (p. 89)
DDS ON DEMAND FLOW CONTROLLER NAME (p. 90)

[default] DDS DEFAULT FLOW CONTROLLER NAME (p. 89)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.94 DDS QosPolicyCount Struct Reference 805

6.94 DDS QosPolicyCount Struct Reference

Type to hold a counter for a DDS QosPolicyId t (p. 328).

Public Attributes

ˆ DDS QosPolicyId t policy id

The QosPolicy ID.

ˆ DDS Long count

a counter

6.94.1 Detailed Description

Type to hold a counter for a DDS QosPolicyId t (p. 328).

6.94.2 Member Data Documentation

6.94.2.1 DDS QosPolicyId t DDS QosPolicyCount::policy id

The QosPolicy ID.

6.94.2.2 DDS Long DDS QosPolicyCount::count

a counter

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

806 Class Documentation

6.95 DDS QosPolicyCountSeq Struct Reference

Declares IDL sequence < DDS QosPolicyCount (p. 805) >.

6.95.1 Detailed Description

Declares IDL sequence < DDS QosPolicyCount (p. 805) >.

Instantiates:

<<generic>> (p. 190) FooSeq (p. 1377)

See also:

DDS QosPolicyCount (p. 805)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.96 DDS ReaderDataLifecycleQosPolicy Struct Reference 807

6.96 DDS ReaderDataLifecycleQosPolicy
Struct Reference

Controls how a DataReader manages the lifecycle of the data that it has received.

Public Attributes

ˆ struct DDS Duration t autopurge nowriter samples delay

Maximum duration for which the DDSDataReader (p. 1004) will maintain
information regarding an instance once its instance state becomes DDS -
NOT ALIVE NO WRITERS INSTANCE STATE (p. 110).

ˆ struct DDS Duration t autopurge disposed samples delay

Maximum duration for which the DDSDataReader (p. 1004) will main-
tain samples for an instance once its instance state becomes DDS NOT -
ALIVE DISPOSED INSTANCE STATE (p. 110).

6.96.1 Detailed Description

Controls how a DataReader manages the lifecycle of the data that it has received.

When a DataReader receives data, it is stored in a receive queue for the
DataReader. The user application may either take the data from the queue
or leave it there.

This QoS policy controls whether or not RTI Data Distribution Service will
automatically remove data from the receive queue (so that user applications
cannot access it afterwards) when it detects that there are no more DataWrit-
ers alive for that data. It specifies how long a DDSDataReader (p. 1004)
must retain information regarding instances that have the instance state DDS -
NOT ALIVE NO WRITERS INSTANCE STATE (p. 110).

Note: This policy is not concerned with keeping reliable reader state or discovery
information.

The DDSDataReader (p. 1004) internally maintains the samples that have
not been ”taken” by the application, subject to the constraints imposed by
other QoS policies such as DDS HistoryQosPolicy (p. 709) and DDS -
ResourceLimitsQosPolicy (p. 827).

The DDSDataReader (p. 1004) also maintains information regarding the iden-
tity, view state and instance state of data instances even after all samples
have been taken. This is needed to properly compute the states when future
samples arrive.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

808 Class Documentation

Under normal circumstances the DDSDataReader (p. 1004) can only reclaim
all resources for instances for which there are no writers and for which all samples
have been ’taken’. The last sample the DDSDataReader (p. 1004) will have
taken for that instance will have an instance state of either DDS NOT -
ALIVE NO WRITERS INSTANCE STATE (p. 110) or DDS NOT -
ALIVE DISPOSED INSTANCE STATE (p. 110) depending on whether
or not the last writer that had ownership of the instance disposed it.

In the absence of READER DATA LIFECYCLE (p. 361), this behavior
could cause problems if the application forgets to take those samples. ”Un-
taken” samples will prevent the DDSDataReader (p. 1004) from reclaiming
the resources and they would remain in the DDSDataReader (p. 1004) indef-
initely.

For keyed Topics, the consideration of removing data samples from the receive
queue is done on a per instance (key) basis. Thus when RTI Data Distribution
Service detects that there are no longer DataWriters alive for a certain key value
of a Topic (an instance of the Topic), it can be configured to remove all data
samples for that instance (key).

Entity:

DDSDataReader (p. 1004)

Properties:

RxO (p. 327) = N/A
Changeable (p. 328) = YES (p. 328)

6.96.2 Member Data Documentation

6.96.2.1 struct DDS Duration t DDS -
ReaderDataLifecycleQosPolicy::autopurge nowriter -
samples delay [read]

Maximum duration for which the DDSDataReader (p. 1004) will maintain
information regarding an instance once its instance state becomes DDS -
NOT ALIVE NO WRITERS INSTANCE STATE (p. 110).

After this time elapses, the DDSDataReader (p. 1004) will purge all internal
information regarding the instance, any ”untaken” samples will also be lost.

[default] DDS DURATION INFINITE (p. 295)

[range] [1 nanosec, 1 year] or DDS DURATION INFINITE (p. 295)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.96 DDS ReaderDataLifecycleQosPolicy Struct Reference 809

6.96.2.2 struct DDS Duration t DDS -
ReaderDataLifecycleQosPolicy::autopurge disposed -
samples delay [read]

Maximum duration for which the DDSDataReader (p. 1004) will main-
tain samples for an instance once its instance state becomes DDS NOT -
ALIVE DISPOSED INSTANCE STATE (p. 110).

After this time elapses, the DDSDataReader (p. 1004) will purge all samples
for the instance.

[default] DDS DURATION INFINITE (p. 295)

[range] [1 nanosec, 1 year] or DDS DURATION INFINITE (p. 295)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

810 Class Documentation

6.97 DDS ReceiverPoolQosPolicy Struct Refer-
ence

Configures threads used by RTI Data Distribution Service to receive and process
data from transports (for example, UDP sockets).

Public Attributes

ˆ struct DDS ThreadSettings t thread

Receiver pool thread(s).

ˆ DDS Long buffer size

The receive buffer size.

ˆ DDS Long buffer alignment

The receive buffer alignment.

6.97.1 Detailed Description

Configures threads used by RTI Data Distribution Service to receive and process
data from transports (for example, UDP sockets).

This QoS policy is an extension to the DDS standard.

Entity:

DDSDomainParticipant (p. 1054)

Properties:

RxO (p. 327) = N/A
Changeable (p. 328) = NO (p. 328)

See also:

Controlling CPU Core Affinity for RTI Threads (p. 318)

6.97.2 Usage

This QoS policy sets the thread properties such as priority level and stack size for
the threads used by the middleware to receive and process data from transports.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.97 DDS ReceiverPoolQosPolicy Struct Reference 811

RTI uses a separate receive thread per port per transport plug-
in. To force RTI Data Distribution Service to use a separate
thread to process the data for a DDSDataReader (p. 1004), set a
unique port for the DDS TransportUnicastQosPolicy (p. 920) or DDS -
TransportMulticastQosPolicy (p. 911) for the DDSDataReader (p. 1004).

This QoS policy also sets the size of the buffer used to store packets received
from a transport. This buffer size will limit the largest single packet of data
that a DDSDomainParticipant (p. 1054) will accept from a transport. Users
will often set this size to the largest packet that any of the transports used by
their application will deliver. For many applications, the value 65,536 (64 K)
is a good choice; this value is the largest packet that can be sent/received via
UDP.

6.97.3 Member Data Documentation

6.97.3.1 struct DDS ThreadSettings t DDS -
ReceiverPoolQosPolicy::thread [read]

Receiver pool thread(s).

There is at least one receive thread, possibly more.

[default] priority above normal.

The actual value depends on your architecture:

For Windows: 2

For Solaris: OS default priority

For Linux: OS default priority

For LynxOS: 29

For INTEGRITY: 100

For VxWorks: 71

For all others: OS default priority.

[default] The actual value depends on your architecture:

For Windows: OS default stack size

For Solaris: OS default stack size

For Linux: OS default stack size

For LynxOS: 4∗16∗1024

For INTEGRITY: 4∗20∗1024

For VxWorks: 4∗16∗1024

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

812 Class Documentation

For all others: OS default stack size.

[default] mask DDS THREAD SETTINGS FLOATING POINT
(p. 317) | DDS THREAD SETTINGS STDIO (p. 317)

6.97.3.2 DDS Long DDS ReceiverPoolQosPolicy::buffer size

The receive buffer size.

The receive buffer is used by the receive thread to store the raw data that arrives
over the transport.

In many applications, users will change the configuration of the built-in
transport NDDS Transport Property t::message size max (p. 1407) to
increase the size of the largest data packet that can be sent or received through
the transport. Typically, users will change the UDPv4 transport plugin’s
NDDS Transport Property t::message size max (p. 1407) to 65536 (64
K), which is the largest packet that can be sent/received via UDP.

Ihe ReceiverPoolQosPolicy’s buffer size should be set to be the same value as
the maximum NDDS Transport Property t::message size max (p. 1407)
across all of the transports being used.

If you are using the default configuration of the built-in transports, you should
not need to change this buffer size.

In addition, if your application only uses transports that support zero-
copy, then you do not need to modify the value of buffer size, even if the
NDDS Transport Property t::message size max (p. 1407) of the trans-
port is changed. Transports that support zero-copy do not copy their data
into the buffer provided by the receive thread. Instead, they provide the receive
thread data in a buffer allocated by the transport itself. The only built-in trans-
port that supports zero-copy is the UDPv4 transport on VxWorks platforms.

[default] 9216

[range] [1, 1 GB]

6.97.3.3 DDS Long DDS ReceiverPoolQosPolicy::buffer alignment

The receive buffer alignment.

Most users will not need to change this alignment.

[default] 16

[range] [1,1024] Value must be a power of 2.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.98 DDS ReliabilityQosPolicy Struct Reference 813

6.98 DDS ReliabilityQosPolicy Struct Refer-
ence

Indicates the level of reliability offered/requested by RTI Data Distribution
Service.

Public Attributes

ˆ DDS ReliabilityQosPolicyKind kind

Kind of reliability.

ˆ struct DDS Duration t max blocking time

The maximum time a writer may block on a write() call.

6.98.1 Detailed Description

Indicates the level of reliability offered/requested by RTI Data Distribution
Service.

Entity:

DDSTopic (p. 1311), DDSDataReader (p. 1004), DDSDataWriter
(p. 1028)

Status:

DDS OFFERED INCOMPATIBLE QOS STATUS (p. 311),
DDS REQUESTED INCOMPATIBLE QOS STATUS (p. 311)

Properties:

RxO (p. 327) = YES
Changeable (p. 328) = UNTIL ENABLE (p. 328)

6.98.2 Usage

This policy indicates the level of reliability requested by a DDSDataReader
(p. 1004) or offered by a DDSDataWriter (p. 1028).

The reliability of a connection between a DataWriter and DataReader is entirely
user configurable. It can be done on a per DataWriter/DataReader connection.
A connection may be configured to be ”best effort” which means that RTI Data

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

814 Class Documentation

Distribution Service will not use any resources to monitor or guarantee that the
data sent by a DataWriter is received by a DataReader.

For some use cases, such as the periodic update of sensor values to a GUI
displaying the value to a person, DDS BEST EFFORT RELIABILITY -
QOS (p. 349) delivery is often good enough. It is certainly the fastest, most
efficient, and least resource-intensive (CPU and network bandwidth) method of
getting the newest/latest value for a topic from DataWriters to DataReaders.
But there is no guarantee that the data sent will be received. It may be lost
due to a variety of factors, including data loss by the physical transport such as
wireless RF or even Ethernet.

However, there are data streams (topics) in which you want an abso-
lute guarantee that all data sent by a DataWriter is received reliably
by DataReaders. This means that RTI Data Distribution Service must
check whether or not data was received, and repair any data that was
lost by resending a copy of the data as many times as it takes for
the DataReader to receive the data. RTI Data Distribution Service
uses a reliability protocol configured and tuned by these QoS policies:
DDS HistoryQosPolicy (p. 709), DDS DataWriterProtocolQosPolicy
(p. 499), DDS DataReaderProtocolQosPolicy (p. 467), and DDS -
ResourceLimitsQosPolicy (p. 827).

The Reliability QoS policy is simply a switch to turn on the reliability proto-
col for a DataWriter/DataReader connection. The level of reliability provided
by RTI Data Distribution Service is determined by the configuration of the
aforementioned QoS policies.

You can configure RTI Data Distribution Service to deliver all data in the order
they were sent (also known as absolute or strict reliability). Or, as a tradeoff
for less memory, CPU, and network usage, you can choose a reduced level of
reliability where only the last N values are guaranteed to be delivered reliably to
DataReaders (where N is user-configurable). In the reduced level of reliability,
there are no guarantees that the data sent before the last N are received. Only
the last N data packets are monitored and repaired if necessary.

These levels are ordered, DDS BEST EFFORT RELIABILITY QOS
(p. 349) < DDS RELIABLE RELIABILITY QOS (p. 349). A DDS-
DataWriter (p. 1028) offering one level is implicitly offering all levels below.

The setting of this policy has a dependency on the setting of the RE-
SOURCE LIMITS (p. 356) policy. In case the reliability kind is set to
DDS RELIABLE RELIABILITY QOS (p. 349) the write operation on the
DDSDataWriter (p. 1028) may block if the modification would cause data
to be lost or else cause one of the limits in specified in the RESOURCE -
LIMITS (p. 356) to be exceeded. Under these circumstances, the RELIA-
BILITY (p. 348) max blocking time configures the maximum duration the
write operation may block.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.98 DDS ReliabilityQosPolicy Struct Reference 815

If the DDS ReliabilityQosPolicy::kind (p. 815) is set to DDS -
RELIABLE RELIABILITY QOS (p. 349), data samples originating from
a single DDSDataWriter (p. 1028) cannot be made available to the DDS-
DataReader (p. 1004) if there are previous data samples that have not been
received yet due to a communication error. In other words, RTI Data Distribu-
tion Service will repair the error and resend data samples as needed in order to
reconstruct a correct snapshot of the DDSDataWriter (p. 1028) history before
it is accessible by the DDSDataReader (p. 1004).

If the DDS ReliabilityQosPolicy::kind (p. 815) is set to DDS BEST -
EFFORT RELIABILITY QOS (p. 349), the service will not re-transmit
missing data samples. However, for data samples originating from any one
DataWriter the service will ensure they are stored in the DDSDataReader
(p. 1004) history in the same order they originated in the DDSDataWriter
(p. 1028). In other words, the DDSDataReader (p. 1004) may miss some data
samples, but it will never see the value of a data object change from a newer
value to an older value.

See also:

DDS HistoryQosPolicy (p. 709)
DDS ResourceLimitsQosPolicy (p. 827)

6.98.3 Compatibility

The value offered is considered compatible with the value requested if
and only if the inequality offered kind >= requested kind evaluates
to ’TRUE’. For the purposes of this inequality, the values of DDS -
ReliabilityQosPolicy::kind (p. 815) are considered ordered such that DDS -
BEST EFFORT RELIABILITY QOS (p. 349) < DDS RELIABLE -
RELIABILITY QOS (p. 349).

6.98.4 Member Data Documentation

6.98.4.1 DDS ReliabilityQosPolicyKind DDS -
ReliabilityQosPolicy::kind

Kind of reliability.

[default] DDS BEST EFFORT RELIABILITY QOS (p. 349) for DDS-
DataReader (p. 1004) and DDSTopic (p. 1311), DDS RELIABLE -
RELIABILITY QOS (p. 349) for DDSDataWriter (p. 1028)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

816 Class Documentation

6.98.4.2 struct DDS Duration t DDS ReliabilityQosPolicy::max -
blocking time [read]

The maximum time a writer may block on a write() call.

This setting applies only to the case where DDS ReliabilityQosPolicy::kind
(p. 815) = DDS RELIABLE RELIABILITY QOS (p. 349). Foo-
DataWriter::write (p. 1368) is allowered to block if the DDSDataWriter
(p. 1028) does not have space to store the value written. Only applies to DDS-
DataWriter (p. 1028).

[default] 100 milliseconds

[range] [0,1 year] or DDS DURATION INFINITE (p. 295)

See also:

DDS ResourceLimitsQosPolicy (p. 827)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.99 DDS ReliableReaderActivityChangedStatus Struct Reference817

6.99 DDS ReliableReaderActivityChangedStatus
Struct Reference

<<eXtension>> (p. 190) Describes the activity (i.e. are acknowledgements
forthcoming) of reliable readers matched to a reliable writer.

Public Attributes

ˆ DDS Long active count

The current number of reliable readers currently matched with this reliable
writer.

ˆ DDS Long inactive count

The number of reliable readers that have been dropped by this reliable writer
because they failed to send acknowledgements in a timely fashion.

ˆ DDS Long active count change

The most recent change in the number of active remote reliable readers.

ˆ DDS Long inactive count change

The most recent change in the number of inactive remote reliable readers.

ˆ DDS InstanceHandle t last instance handle

The instance handle of the last reliable remote reader to be determined inac-
tive.

6.99.1 Detailed Description

<<eXtension>> (p. 190) Describes the activity (i.e. are acknowledgements
forthcoming) of reliable readers matched to a reliable writer.

Entity:

DDSDataWriter (p. 1028)

Listener:

DDSDataWriterListener (p. 1048)

This status is the reciprocal status to the DDS LivelinessChangedStatus
(p. 726) on the reader. It is different than the DDS LivelinessLostStatus

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

818 Class Documentation

(p. 728) on the writer in that the latter informs the writer about its own live-
liness; this status informs the writer about the ”liveliness” (activity) of its
matched readers.

All counts in this status will remain at zero for best effort writers.

6.99.2 Member Data Documentation

6.99.2.1 DDS Long DDS -
ReliableReaderActivityChangedStatus::active count

The current number of reliable readers currently matched with this reliable
writer.

6.99.2.2 DDS Long DDS -
ReliableReaderActivityChangedStatus::inactive count

The number of reliable readers that have been dropped by this reliable writer
because they failed to send acknowledgements in a timely fashion.

A reader is considered to be inactive after is has been sent heartbeats DDS -
RtpsReliableWriterProtocol t::max heartbeat retries (p. 840) times,
each heartbeat having been separated from the previous by the current heart-
beat period.

6.99.2.3 DDS Long DDS -
ReliableReaderActivityChangedStatus::active count -
change

The most recent change in the number of active remote reliable readers.

6.99.2.4 DDS Long DDS -
ReliableReaderActivityChangedStatus::inactive count -
change

The most recent change in the number of inactive remote reliable readers.

6.99.2.5 DDS InstanceHandle t DDS -
ReliableReaderActivityChangedStatus::last instance -
handle

The instance handle of the last reliable remote reader to be determined inactive.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.100 DDS ReliableWriterCacheChangedStatus Struct Reference819

6.100 DDS ReliableWriterCacheChangedStatus
Struct Reference

<<eXtension>> (p. 190) A summary of the state of a data writer’s cache of
unacknowledged samples written.

Public Attributes

ˆ struct DDS ReliableWriterCacheEventCount empty reliable -
writer cache

The number of times the reliable writer’s cache of unacknowledged samples
has become empty.

ˆ struct DDS ReliableWriterCacheEventCount full reliable -
writer cache

The number of times the reliable writer’s cache of unacknowledged samples
has become full.

ˆ struct DDS ReliableWriterCacheEventCount low watermark -
reliable writer cache

The number of times the reliable writer’s cache of unacknowledged samples
has fallen to the low watermark.

ˆ struct DDS ReliableWriterCacheEventCount high watermark -
reliable writer cache

The number of times the reliable writer’s cache of unacknowledged samples
has risen to the high watermark.

ˆ DDS Long unacknowledged sample count
The current number of unacknowledged samples in the writer’s cache.

ˆ DDS Long unacknowledged sample count peak
The highest value that unacknowledged sample count has reached until now.

6.100.1 Detailed Description

<<eXtension>> (p. 190) A summary of the state of a data writer’s cache of
unacknowledged samples written.

Entity:

DDSDataWriter (p. 1028)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

820 Class Documentation

Listener:

DDSDataWriterListener (p. 1048)

A written sample is unacknowledged (and therefore accounted for in this status)
if the writer is reliable and one or more readers matched with the writer has
not yet sent an acknowledgement to the writer declaring that it has received the
sample.

If the low watermark is zero and the unacknowledged sample count decreases
to zero, both the low watermark and cache empty events are considered to
have taken place. A single callback will be dispatched (assuming the user has
requested one) that contains both status changes. The same logic applies when
the high watermark is set equal to the maximum number of samples and the
cache becomes full.

6.100.2 Member Data Documentation

6.100.2.1 struct DDS ReliableWriterCacheEventCount
DDS ReliableWriterCacheChangedStatus::empty -
reliable writer cache [read]

The number of times the reliable writer’s cache of unacknowledged samples has
become empty.

6.100.2.2 struct DDS ReliableWriterCacheEventCount
DDS ReliableWriterCacheChangedStatus::full reliable -
writer cache [read]

The number of times the reliable writer’s cache of unacknowledged samples has
become full.

6.100.2.3 struct DDS ReliableWriterCacheEventCount
DDS ReliableWriterCacheChangedStatus::low -
watermark reliable writer cache [read]

The number of times the reliable writer’s cache of unacknowledged samples has
fallen to the low watermark.

A low watermark event will only be considered to have taken place when the
number of unacknowledged samples in the writer’s cache decreases to this value.
A sample count that increases to this value will not result in a callback or in a
change to the total count of low watermark events.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.100 DDS ReliableWriterCacheChangedStatus Struct Reference821

6.100.2.4 struct DDS ReliableWriterCacheEventCount
DDS ReliableWriterCacheChangedStatus::high -
watermark reliable writer cache [read]

The number of times the reliable writer’s cache of unacknowledged samples has
risen to the high watermark.

A high watermark event will only be considered to have taken place when the
number of unacknowledged sampled increases to this value. A sample count
that was above this value and then decreases back to it will not trigger an
event.

6.100.2.5 DDS Long DDS -
ReliableWriterCacheChangedStatus::unacknowledged -
sample count

The current number of unacknowledged samples in the writer’s cache.

A sample is considered unacknowledged if the writer has failed to receive an
acknowledgement from one or more reliable readers matched to it.

6.100.2.6 DDS Long DDS -
ReliableWriterCacheChangedStatus::unacknowledged -
sample count peak

The highest value that unacknowledged sample count has reached until now.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

822 Class Documentation

6.101 DDS ReliableWriterCacheEventCount
Struct Reference

<<eXtension>> (p. 190) The number of times the number of unacknowl-
edged samples in the cache of a reliable writer hit a certain well-defined thresh-
old.

Public Attributes

ˆ DDS Long total count

The total number of times the event has occurred.

ˆ DDS Long total count change

The incremental number of times the event has occurred since the listener
was last invoked or the status read.

6.101.1 Detailed Description

<<eXtension>> (p. 190) The number of times the number of unacknowl-
edged samples in the cache of a reliable writer hit a certain well-defined thresh-
old.

See also:

DDS ReliableWriterCacheChangedStatus (p. 819)

6.101.2 Member Data Documentation

6.101.2.1 DDS Long DDS ReliableWriterCacheEventCount::total -
count

The total number of times the event has occurred.

6.101.2.2 DDS Long DDS ReliableWriterCacheEventCount::total -
count change

The incremental number of times the event has occurred since the listener was
last invoked or the status read.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.102 DDS RequestedDeadlineMissedStatus Struct Reference 823

6.102 DDS RequestedDeadlineMissedStatus
Struct Reference

DDS REQUESTED DEADLINE MISSED STATUS (p. 311)

Public Attributes

ˆ DDS Long total count

Total cumulative count of the deadlines detected for any instance read by the
DDSDataReader (p. 1004).

ˆ DDS Long total count change

The incremental number of deadlines detected since the last time the listener
was called or the status was read.

ˆ DDS InstanceHandle t last instance handle

Handle to the last instance in the DDSDataReader (p. 1004) for which a
deadline was detected.

6.102.1 Detailed Description

DDS REQUESTED DEADLINE MISSED STATUS (p. 311)

Examples:

HelloWorld subscriber.cxx.

6.102.2 Member Data Documentation

6.102.2.1 DDS Long DDS RequestedDeadlineMissedStatus::total -
count

Total cumulative count of the deadlines detected for any instance read by the
DDSDataReader (p. 1004).

6.102.2.2 DDS Long DDS RequestedDeadlineMissedStatus::total -
count change

The incremental number of deadlines detected since the last time the listener
was called or the status was read.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

824 Class Documentation

6.102.2.3 DDS InstanceHandle t DDS -
RequestedDeadlineMissedStatus::last instance handle

Handle to the last instance in the DDSDataReader (p. 1004) for which a
deadline was detected.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.103 DDS RequestedIncompatibleQosStatus Struct Reference 825

6.103 DDS RequestedIncompatibleQosStatus
Struct Reference

DDS REQUESTED INCOMPATIBLE QOS STATUS (p. 311)

Public Attributes

ˆ DDS Long total count

Total cumulative count of how many times the concerned DDSDataReader
(p. 1004) discovered a DDSDataWriter (p. 1028) for the same DDSTopic
(p. 1311) with an offered QoS that is incompatible with that requested by the
DDSDataReader (p. 1004).

ˆ DDS Long total count change

The change in total count since the last time the listener was called or the
status was read.

ˆ DDS QosPolicyId t last policy id

The PolicyId t of one of the policies that was found to be incompatible the
last time an incompatibility was detected.

ˆ struct DDS QosPolicyCountSeq policies

A list containing, for each policy, the total number of times that the concerned
DDSDataReader (p. 1004) discovered a DDSDataWriter (p. 1028) for
the same DDSTopic (p. 1311) with an offered QoS that is incompatible with
that requested by the DDSDataReader (p. 1004).

6.103.1 Detailed Description

DDS REQUESTED INCOMPATIBLE QOS STATUS (p. 311)

See also:

DURABILITY (p. 335)
PRESENTATION (p. 337)
RELIABILITY (p. 348)
OWNERSHIP (p. 341)
LIVELINESS (p. 344)
DEADLINE (p. 339)
LATENCY BUDGET (p. 340)
DESTINATION ORDER (p. 350)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

826 Class Documentation

Examples:

HelloWorld subscriber.cxx.

6.103.2 Member Data Documentation

6.103.2.1 DDS Long DDS -
RequestedIncompatibleQosStatus::total count

Total cumulative count of how many times the concerned DDSDataReader
(p. 1004) discovered a DDSDataWriter (p. 1028) for the same DDSTopic
(p. 1311) with an offered QoS that is incompatible with that requested by the
DDSDataReader (p. 1004).

6.103.2.2 DDS Long DDS -
RequestedIncompatibleQosStatus::total count change

The change in total count since the last time the listener was called or the
status was read.

6.103.2.3 DDS QosPolicyId t DDS -
RequestedIncompatibleQosStatus::last policy id

The PolicyId t of one of the policies that was found to be incompatible the last
time an incompatibility was detected.

6.103.2.4 struct DDS QosPolicyCountSeq DDS -
RequestedIncompatibleQosStatus::policies
[read]

A list containing, for each policy, the total number of times that the concerned
DDSDataReader (p. 1004) discovered a DDSDataWriter (p. 1028) for the
same DDSTopic (p. 1311) with an offered QoS that is incompatible with that
requested by the DDSDataReader (p. 1004).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.104 DDS ResourceLimitsQosPolicy Struct Reference 827

6.104 DDS ResourceLimitsQosPolicy Struct
Reference

Controls the amount of physical memory allocated for DDS entities, if dynamic
allocations are allowed, and how they occur. Also controls memory usage among
different instance values for keyed topics.

Public Attributes

ˆ DDS Long max samples
Represents the maximum samples the middleware can store for any one
DDSDataWriter (p. 1028) (or DDSDataReader (p. 1004)).

ˆ DDS Long max instances
Represents the maximum number of instances a DDSDataWriter (p. 1028)
(or DDSDataReader (p. 1004)) can manage.

ˆ DDS Long max samples per instance
Represents the maximum number of samples of any one instance a DDS-
DataWriter (p. 1028) (or DDSDataReader (p. 1004)) can manage.

ˆ DDS Long initial samples
<<eXtension>> (p. 190) Represents the initial samples the middleware
will store for any one DDSDataWriter (p. 1028) (or DDSDataReader
(p. 1004)).

ˆ DDS Long initial instances
<<eXtension>> (p. 190) Represents the initial number of instances a
DDSDataWriter (p. 1028) (or DDSDataReader (p. 1004)) will manage.

ˆ DDS Long instance hash buckets
<<eXtension>> (p. 190) Number of hash buckets for instances.

6.104.1 Detailed Description

Controls the amount of physical memory allocated for DDS entities, if dynamic
allocations are allowed, and how they occur. Also controls memory usage among
different instance values for keyed topics.

Entity:

DDSTopic (p. 1311), DDSDataReader (p. 1004), DDSDataWriter
(p. 1028)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

828 Class Documentation

Status:

DDS SAMPLE REJECTED STATUS (p. 312), DDS -
SampleRejectedStatus (p. 865)

Properties:

RxO (p. 327) = NO
Changeable (p. 328) = UNTIL ENABLE (p. 328)

6.104.2 Usage

This policy controls the resources that RTI Data Distribution Service can use
to meet the requirements imposed by the application and other QoS settings.

For the reliability protocol (and DDS DurabilityQosPolicy (p. 572)), this
QoS policy determines the actual maximum queue size when the DDS -
HistoryQosPolicy (p. 709) is set to DDS KEEP ALL HISTORY QOS
(p. 353).

In general, this QoS policy is used to limit the amount of system memory that
RTI Data Distribution Service can allocate. For embedded real-time systems
and safety-critical systems, pre-determination of maximum memory usage is
often required. In addition, dynamic memory allocation could introduce non-
deterministic latencies in time-critical paths.

This QoS policy can be set such that an entity does not dynamically allocate
any more memory after its initialization phase.

If DDSDataWriter (p. 1028) objects are communicating samples faster than
they are ultimately taken by the DDSDataReader (p. 1004) objects, the mid-
dleware will eventually hit against some of the QoS-imposed resource limits.
Note that this may occur when just a single DDSDataReader (p. 1004) can-
not keep up with its corresponding DDSDataWriter (p. 1028). The behavior
in this case depends on the setting for the RELIABILITY (p. 348). If re-
liability is DDS BEST EFFORT RELIABILITY QOS (p. 349), then RTI
Data Distribution Service is allowed to drop samples. If the reliability is DDS -
RELIABLE RELIABILITY QOS (p. 349), RTI Data Distribution Service
will block the DDSDataWriter (p. 1028) or discard the sample at the DDS-
DataReader (p. 1004) in order not to lose existing samples.

The constant DDS LENGTH UNLIMITED (p. 356) may be used to in-
dicate the absence of a particular limit. For example setting DDS -
ResourceLimitsQosPolicy::max samples per instance (p. 830) to DDS -
LENGTH UNLIMITED (p. 356) will cause RTI Data Distribution Service
not to enforce this particular limit.

If these resource limits are not set sufficiently, under certain circumstances
the DDSDataWriter (p. 1028) may block on a write() call even though the

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.104 DDS ResourceLimitsQosPolicy Struct Reference 829

DDS HistoryQosPolicy (p. 709) is DDS KEEP LAST HISTORY QOS
(p. 353). To guarantee the writer does not block for DDS KEEP LAST -
HISTORY QOS (p. 353), make sure the resource limits are set such that:

max_samples >= max_instances * max_samples_per_instance

See also:

DDS ReliabilityQosPolicy (p. 813)
DDS HistoryQosPolicy (p. 709)

6.104.3 Consistency

The setting of DDS ResourceLimitsQosPolicy::max samples (p. 829)
must be consistent with DDS ResourceLimitsQosPolicy::max samples -
per instance (p. 830). For these two values to be consistent, it must
be true that DDS ResourceLimitsQosPolicy::max samples (p. 829)
>= DDS ResourceLimitsQosPolicy::max samples per instance
(p. 830). As described above, this limit will not be enforced if DDS -
ResourceLimitsQosPolicy::max samples per instance (p. 830) is set to
DDS LENGTH UNLIMITED (p. 356).

The setting of RESOURCE LIMITS (p. 356) max samples per instance
must be consistent with the HISTORY (p. 352) depth. For these two QoS
to be consistent, it must be true that depth <= max samples per instance.

See also:

DDS HistoryQosPolicy (p. 709)

6.104.4 Member Data Documentation

6.104.4.1 DDS Long DDS ResourceLimitsQosPolicy::max samples

Represents the maximum samples the middleware can store for any one DDS-
DataWriter (p. 1028) (or DDSDataReader (p. 1004)).

Specifies the maximum number of data samples a DDSDataWriter (p. 1028)
(or DDSDataReader (p. 1004)) can manage across all the instances associated
with it.

For unkeyed types, this value has to be equal to max samples per instance
if max samples per instance is not equal to DDS LENGTH UNLIMITED
(p. 356).

When batching is enabled, the maximum number of data samples a
DDSDataWriter (p. 1028) can manage will also be limited by DDS -
DataWriterResourceLimitsQosPolicy::max batches (p. 525).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

830 Class Documentation

[default] DDS LENGTH UNLIMITED (p. 356)

[range] [1, 100 million] or DDS LENGTH UNLIMITED (p. 356),
>= initial samples, >= max samples per instance, >= DDS -
DataReaderResourceLimitsQosPolicy::max samples per remote -
writer (p. 490) or >= DDS RtpsReliableWriterProtocol t::heartbeats -
per max samples (p. 841)

For DDS DataWriterQos (p. 516) max samples >= DDS -
DataWriterProtocolQosPolicy::rtps reliable writer.heartbeats per max samples
if batching is disabled.

6.104.4.2 DDS Long DDS ResourceLimitsQosPolicy::max instances

Represents the maximum number of instances a DDSDataWriter (p. 1028)
(or DDSDataReader (p. 1004)) can manage.

[default] DDS LENGTH UNLIMITED (p. 356)

[range] [1, 1 million] or DDS LENGTH UNLIMITED (p. 356), >= initial -
instances

6.104.4.3 DDS Long DDS ResourceLimitsQosPolicy::max -
samples per instance

Represents the maximum number of samples of any one instance a DDS-
DataWriter (p. 1028) (or DDSDataReader (p. 1004)) can manage.

For unkeyed types, this value has to be equal to max samples or DDS -
LENGTH UNLIMITED (p. 356).

[default] DDS LENGTH UNLIMITED (p. 356)

[range] [1, 100 million] or DDS LENGTH UNLIMITED (p. 356), <=
max samples or DDS LENGTH UNLIMITED (p. 356), >= DDS -
HistoryQosPolicy::depth (p. 711)

6.104.4.4 DDS Long DDS ResourceLimitsQosPolicy::initial -
samples

<<eXtension>> (p. 190) Represents the initial samples the middleware will
store for any one DDSDataWriter (p. 1028) (or DDSDataReader (p. 1004)).

Specifies the initial number of data samples a DDSDataWriter (p. 1028) (or
DDSDataReader (p. 1004)) will manage across all the instances associated
with it.

[default] 32

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.104 DDS ResourceLimitsQosPolicy Struct Reference 831

[range] [1,100 million], <= max samples

6.104.4.5 DDS Long DDS ResourceLimitsQosPolicy::initial -
instances

<<eXtension>> (p. 190) Represents the initial number of instances a DDS-
DataWriter (p. 1028) (or DDSDataReader (p. 1004)) will manage.

[default] 32

[range] [1,1 million], <= max instances

6.104.4.6 DDS Long DDS ResourceLimitsQosPolicy::instance -
hash buckets

<<eXtension>> (p. 190) Number of hash buckets for instances.

The instance hash table facilitates instance lookup. A higher number of buckets
decreases instance lookup time but increases the memory usage.

[default] 1 [range] [1,1 million]

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

832 Class Documentation

6.105 DDS RtpsReliableReaderProtocol t
Struct Reference

Qos related to reliable reader protocol defined in RTPS.

Public Attributes

ˆ struct DDS Duration t min heartbeat response delay
The minimum delay to respond to a heartbeat.

ˆ struct DDS Duration t max heartbeat response delay
The maximum delay to respond to a heartbeat.

ˆ struct DDS Duration t heartbeat suppression duration
The duration a reader ignores consecutively received heartbeats.

ˆ struct DDS Duration t nack period
The period at which to send NACKs.

6.105.1 Detailed Description

Qos related to reliable reader protocol defined in RTPS.

It is used to config reliable reader according to RTPS protocol.

Properties:

RxO (p. 327) = N/A
Changeable (p. 328) = NO (p. 328)

QoS:

DDS DataReaderProtocolQosPolicy (p. 467) DDS -
DiscoveryConfigQosPolicy (p. 534)

6.105.2 Member Data Documentation

6.105.2.1 struct DDS Duration t DDS -
RtpsReliableReaderProtocol t::min heartbeat response -
delay [read]

The minimum delay to respond to a heartbeat.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.105 DDS RtpsReliableReaderProtocol t Struct Reference 833

When a reliable reader receives a heartbeat from a remote writer and finds out
that it needs to send back an ACK/NACK message, the reader can choose to
delay a while. This sets the value of the minimum delay.

[default] 0 seconds

[range] [0, 1 year], <= max heartbeat response delay

6.105.2.2 struct DDS Duration t DDS -
RtpsReliableReaderProtocol t::max heartbeat response -
delay [read]

The maximum delay to respond to a heartbeat.

When a reliable reader receives a heartbeat from a remote writer and finds out
that it needs to send back an ACK/NACK message, the reader can choose to
delay a while. This sets the value of maximum delay.

[default] The default value depends on the container policy:

For DDS DiscoveryConfigQosPolicy (p. 534) : 0 seconds

For DDS DataReaderProtocolQosPolicy (p. 467) : 0.5 seconds

[range] [0, 1 year], >= min heartbeat response delay

6.105.2.3 struct DDS Duration t DDS -
RtpsReliableReaderProtocol t::heartbeat suppression -
duration [read]

The duration a reader ignores consecutively received heartbeats.

When a reliable reader receives consecutive heartbeats within a short duration
that will trigger redundant NACKs, the reader may ignore the latter heart-
beat(s). This sets the duration during which additionally received heartbeats
are suppressed.

[default] 0.0625 seconds

[range] [0, 1 year],

6.105.2.4 struct DDS Duration t DDS -
RtpsReliableReaderProtocol t::nack period
[read]

The period at which to send NACKs.

A reliable reader will send periodic NACKs at this rate when it first matches
with a reliable writer. The reader will stop sending NACKs when it has received
all available historical data from the writer.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

834 Class Documentation

[default] 5 seconds

[range] [1 nanosec, 1 year]

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.106 DDS RtpsReliableWriterProtocol t Struct Reference 835

6.106 DDS RtpsReliableWriterProtocol t
Struct Reference

QoS related to the reliable writer protocol defined in RTPS.

Public Attributes

ˆ DDS Long low watermark

When the number of unacknowledged samples in the cache of a reliable writer
falls below this threshold, the DDS RELIABLE WRITER CACHE -
CHANGED STATUS (p. 314) is considered to have changed.

ˆ DDS Long high watermark

When the number of unacknowledged samples in the cache of a reliable writer
climbs above this threshold, the DDS RELIABLE WRITER CACHE -
CHANGED STATUS (p. 314) is considered to have changed.

ˆ struct DDS Duration t heartbeat period

The period at which to send heartbeats.

ˆ struct DDS Duration t fast heartbeat period

An alternative heartbeat period used when a reliable writer needs to flush its
unacknowledged samples more quickly.

ˆ struct DDS Duration t late joiner heartbeat period

An alternative heartbeat period used when a reliable reader joins late and
needs to be caught up on cached samples of a reliable writer more quickly
than the normal heartbeat rate.

ˆ DDS Long max heartbeat retries

The maximum number of periodic heartbeat retries before marking a remote
reader as inactive.

ˆ DDS Boolean inactivate nonprogressing readers

Whether to treat remote readers as inactive when their NACKs do not
progress.

ˆ DDS Long heartbeats per max samples

The number of heartbeats per send queue.

ˆ struct DDS Duration t min nack response delay

The minimum delay to respond to a NACK.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

836 Class Documentation

ˆ struct DDS Duration t max nack response delay

The maximum delay to respond to a nack.

ˆ struct DDS Duration t nack suppression duration

The duration for ignoring consecutive NACKs that may trigger redundant
repairs.

ˆ DDS Long max bytes per nack response

The maximum total message size when resending dropped samples.

ˆ struct DDS Duration t disable positive acks min sample keep -
duration

The minimum duration a sample is queued for ACK-disabled readers.

ˆ struct DDS Duration t disable positive acks max sample keep -
duration

The maximum duration a sample is queued for ACK-disabled readers.

ˆ DDS Boolean disable positive acks enable adaptive sample -
keep duration

Enables dynamic adjustment of sample keep duration in response to conges-
tion.

ˆ DDS Long disable positive acks decrease sample keep -
duration factor

Controls rate of contraction of dynamic sample keep duration.

ˆ DDS Long disable positive acks increase sample keep -
duration factor

Controls rate of growth of dynamic sample keep duration.

ˆ DDS Long min send window size

Minimum size of send window of unacknowledged samples.

ˆ DDS Long max send window size

Maximum size of send window of unacknowledged samples.

ˆ struct DDS Duration t send window update period

Period in which send window may be dynamically changed.

ˆ DDS Long send window increase factor

Increases send window size by this percentage when reacting dynamically to
network conditions.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.106 DDS RtpsReliableWriterProtocol t Struct Reference 837

ˆ DDS Long send window decrease factor

Decreases send window size by this percentage when reacting dynamically to
network conditions.

6.106.1 Detailed Description

QoS related to the reliable writer protocol defined in RTPS.

It is used to configure a reliable writer according to RTPS protocol.

The reliability protocol settings are applied to batches instead of individual data
samples when batching is enabled.

Properties:

RxO (p. 327) = N/A
Changeable (p. 328) = NO (p. 328)

QoS:

DDS DataWriterProtocolQosPolicy (p. 499) DDS -
DiscoveryConfigQosPolicy (p. 534)

6.106.2 Member Data Documentation

6.106.2.1 DDS Long DDS RtpsReliableWriterProtocol t::low -
watermark

When the number of unacknowledged samples in the cache of a reliable writer
falls below this threshold, the DDS RELIABLE WRITER CACHE -
CHANGED STATUS (p. 314) is considered to have changed.

This value is measured in units of samples except with batching configurations
in non MultiChannel DataWriters where it is measured in units of batches.

The value must be greater than or equal to zero and strictly less than high -
watermark.

The high and low watermarks are used for switching between the regular and fast
heartbeat rates (DDS RtpsReliableWriterProtocol t::heartbeat period
(p. 839) and DDS RtpsReliableWriterProtocol t::fast heartbeat period
(p. 839), respectively). When the number of unacknowledged samples in the
queue of a reliable DDSDataWriter (p. 1028) exceeds high watermark, the
DDS RELIABLE WRITER CACHE CHANGED STATUS (p. 314) is
changed, and the DataWriter will start heartbeating at fast heartbeat rate.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

838 Class Documentation

When the number of samples falls below low watermark, DDS RELIABLE -
WRITER CACHE CHANGED STATUS (p. 314) is changed, and the
heartbeat rate will return to the ”normal” rate (heartbeat rate).

[default] 0

[range] [0, 100 million], < high watermark

See also:

Multi-channel DataWriters (p. 115) for additional details on reliability
with MultChannel DataWriters.

6.106.2.2 DDS Long DDS RtpsReliableWriterProtocol t::high -
watermark

When the number of unacknowledged samples in the cache of a reliable writer
climbs above this threshold, the DDS RELIABLE WRITER CACHE -
CHANGED STATUS (p. 314) is considered to have changed.

This value is measured in units of samples except with batching configurations
in non MultiChannel DataWriters where it is measured in units of batches.

The value must be strictly greater than low watermark and less than or equal
to a maximum that depends on the container QoS policy:

In DDS DomainParticipantQos::discovery config (p. 551),

For DDS DiscoveryConfigQosPolicy::publication writer (p. 540)

high watermark<=DDS DomainParticipantQos::resource limits.local writer -
allocation.max count

For DDS DiscoveryConfigQosPolicy::subscription writer (p. 540)

high watermark<=DDS DomainParticipantQos::resource limits.local reader -
allocation.max count

In DDS DataWriterQos::protocol (p. 520),

For DDS DataWriterProtocolQosPolicy::rtps reliable writer (p. 503)

high watermark<=DDS ResourceLimitsQosPolicy::max samples
(p. 829) if batching is disabled or the DataWriter is a MultiChannel DataWriter.
Otherwise,

high watermark<=DDS DataWriterResourceLimitsQosPolicy::max -
batches (p. 525)

[default] 1

[range] [1, 100 million] or DDS LENGTH UNLIMITED (p. 356), > low -
watermark <= maximum which depends on the container policy

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.106 DDS RtpsReliableWriterProtocol t Struct Reference 839

See also:

Multi-channel DataWriters (p. 115) for additional details on reliability
with MultChannel DataWriters.

6.106.2.3 struct DDS Duration t DDS -
RtpsReliableWriterProtocol t::heartbeat period
[read]

The period at which to send heartbeats.

A reliable writer will send periodic heartbeats at this rate.

[default] 3 seconds

[range] [1 nanosec,1 year], >= DDS RtpsReliableWriterProtocol t::fast -
heartbeat period (p. 839), >= DDS RtpsReliableWriterProtocol -
t::late joiner heartbeat period (p. 839)

6.106.2.4 struct DDS Duration t DDS -
RtpsReliableWriterProtocol t::fast heartbeat period
[read]

An alternative heartbeat period used when a reliable writer needs to flush its
unacknowledged samples more quickly.

This heartbeat period will be used when the number of unacknowledged samples
in the cache of a reliable writer meets or exceeds the writer’s high watermark
and has not subsequently dropped beneath the low watermark. The normal
period will be used at all other times.

This period must not be slower (i.e. must be of the same or shorter duration)
than the normal heartbeat period.

[default] 3 seconds

[range] [1 nanosec,1 year], <= DDS RtpsReliableWriterProtocol -
t::heartbeat period (p. 839)

6.106.2.5 struct DDS Duration t DDS -
RtpsReliableWriterProtocol t::late joiner heartbeat -
period [read]

An alternative heartbeat period used when a reliable reader joins late and needs
to be caught up on cached samples of a reliable writer more quickly than the
normal heartbeat rate.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

840 Class Documentation

This heartbeat period will be used when a reliable reader joins after a reliable
writer with non-volatile durability has begun publishing samples. Once the
reliable reader has received all cached samples, it will be serviced at the same
rate as other reliable readers.

This period must not be slower (i.e. must be of the same or shorter duration)
than the normal heartbeat period.

[default] 3 seconds

[range] [1 nanosec,1 year], <= DDS RtpsReliableWriterProtocol -
t::heartbeat period (p. 839)

6.106.2.6 DDS Long DDS RtpsReliableWriterProtocol t::max -
heartbeat retries

The maximum number of periodic heartbeat retries before marking a remote
reader as inactive.

When a remote reader has not acked all the samples the reliable writer has in
its queue, and max heartbeat retries number of periodic heartbeats has been
sent without receiving any ack/nack back, the remote reader will be marked as
inactive (not alive) and be ignored until it resumes sending ack/nack.

Note that piggyback heartbeats do NOT count towards this value.

[default] 10

[range] [1, 1 million] or DDS LENGTH UNLIMITED (p. 356)

6.106.2.7 DDS Boolean DDS RtpsReliableWriterProtocol -
t::inactivate nonprogressing readers

Whether to treat remote readers as inactive when their NACKs do not progress.

Nominally, a remote reader is marked inactive when a successive number of peri-
odic heartbeats equal or greater than DDS RtpsReliableWriterProtocol -
t::max heartbeat retries (p. 840) have been sent without receiving any
ack/nacks back.

By setting this DDS BOOLEAN TRUE (p. 288), it changes the conditions
of inactivating a remote reader: a reader will be considered inactive when it
either does not send any ack/nacks or keeps sending non-progressing nacks
for DDS RtpsReliableWriterProtocol t::max heartbeat retries (p. 840)
number of heartbeat periods, where a non-progressing nack is one whose old-
est sample requested has not advanced from the oldest sample requested of the
previous nack.

[default] DDS BOOLEAN FALSE (p. 289)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.106 DDS RtpsReliableWriterProtocol t Struct Reference 841

6.106.2.8 DDS Long DDS RtpsReliableWriterProtocol -
t::heartbeats per max samples

The number of heartbeats per send queue.

If batching is disabled or the DataWriter is a MultiChannel DataWriter: a piggy-
back heartbeat will be sent every [DDS ResourceLimitsQosPolicy::max -
samples (p. 829)/heartbeats per max samples] number of samples.

Otherwise: a piggyback heartbeat will be sent every
[DDS DataWriterResourceLimitsQosPolicy::max batches
(p. 525)/heartbeats per max samples] number of batches.

If set to zero, no piggyback heartbeat will be sent. If maximum is DDS -
LENGTH UNLIMITED (p. 356), 100 million is assumed as the maximum
value in the calculation.

[default] 8

[range] [0, 100 million]

ˆ For DDS DiscoveryConfigQosPolicy::publication writer (p. 540):

heartbeats per max samples<= DDS DomainParticipantQos::resource -
limits.local writer allocation.max count

ˆ For DDS DiscoveryConfigQosPolicy::subscription writer (p. 540):

heartbeats per max samples<= DDS DomainParticipantQos::resource -
limits.local reader allocation.max count

ˆ For DDS DataWriterProtocolQosPolicy::rtps reliable writer
(p. 503):

heartbeats per max samples<= DDS ResourceLimitsQosPolicy::max -
samples (p. 829) if batching is disabled or the DataWriter is a Multi-
Channel DataWriter. Otherwise:

heartbeats per max samples<= DDS DataWriterResourceLimitsQosPolicy::max -
batches (p. 525).

6.106.2.9 struct DDS Duration t DDS -
RtpsReliableWriterProtocol t::min nack response delay
[read]

The minimum delay to respond to a NACK.

When a reliable writer receives a NACK from a remote reader, the writer can
choose to delay a while before it sends repair samples or a heartbeat. This sets
the value of the minimum delay.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

842 Class Documentation

[default] 0 seconds

[range] [0,1 day], <= max nack response delay

6.106.2.10 struct DDS Duration t DDS -
RtpsReliableWriterProtocol t::max nack response delay
[read]

The maximum delay to respond to a nack.

This set the value of maximum delay between receiving a NACK and sending
repair samples or a heartbeat.

[default] The default value depends on the container policy:

For DDS DiscoveryConfigQosPolicy (p. 534) : 0 seconds

For DDS DataWriterProtocolQosPolicy (p. 499) : 0.2 seconds

[range] [0,1 day], >= min nack response delay

6.106.2.11 struct DDS Duration t DDS -
RtpsReliableWriterProtocol t::nack suppression -
duration [read]

The duration for ignoring consecutive NACKs that may trigger redundant re-
pairs.

A reliable writer may receive consecutive NACKs within a short duration from
a remote reader that will trigger the sending of redundant repair messages.

This specifies the duration during which consecutive NACKs are ignored to
prevent redundant repairs from being sent.

[default] 0 seconds

[range] [0,1 day],

6.106.2.12 DDS Long DDS RtpsReliableWriterProtocol t::max -
bytes per nack response

The maximum total message size when resending dropped samples.

As part of the reliable communication protocol, data writers send heartbeat
(HB) messages to their data readers. Each HB message contains the sequence
number of the most recent sample sent by the data writer.

In response, a data reader sends an acknowledgement (ACK) message, indicating
what sequence numbers it did not receive, if any. If the data reader is missing
some samples, the data writer will send them again.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.106 DDS RtpsReliableWriterProtocol t Struct Reference 843

max bytes per nack response determines the maximum size of the message sent
by the data writer in response to an ACK. This message may contain multiple
samples.

If max bytes per nack response is larger than the maximum message size sup-
ported by the underlying transport, RTI Data Distribution Service will send
multiple messages. If the total size of all samples that need to be resent is
larger than max bytes per nack response, the remaining samples will be resent
the next time an ACK arrives.

[default] 131072

[range] [0, 1 GB]

6.106.2.13 struct DDS Duration t DDS -
RtpsReliableWriterProtocol t::disable -
positive acks min sample keep duration
[read]

The minimum duration a sample is queued for ACK-disabled readers.

When positive ACKs are disabled for a data writer (DDS -
DataWriterProtocolQosPolicy::disable positive acks (p. 501)
= DDS BOOLEAN TRUE (p. 288)) or a data reader (DDS -
DataReaderProtocolQosPolicy::disable positive acks (p. 469) =
DDS BOOLEAN TRUE (p. 288)), a sample is available from the data
writer’s queue for at least this duration, after which the sample may be
considered to be acknowledged.

[default] 1 millisecond

[range] [0,1 year], <= DDS RtpsReliableWriterProtocol t::disable -
positive acks max sample keep duration (p. 843)

6.106.2.14 struct DDS Duration t DDS -
RtpsReliableWriterProtocol t::disable -
positive acks max sample keep duration
[read]

The maximum duration a sample is queued for ACK-disabled readers.

When positive ACKs are disabled for a data writer (DDS -
DataWriterProtocolQosPolicy::disable positive acks (p. 501)
= DDS BOOLEAN TRUE (p. 288)) or a data reader (DDS -
DataReaderProtocolQosPolicy::disable positive acks (p. 469) =
DDS BOOLEAN TRUE (p. 288)), a sample is available from the data
writer’s queue for at most this duration, after which the sample is considered
to be acknowledged.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

844 Class Documentation

[default] 1 second

[range] [0,1 year], >= DDS RtpsReliableWriterProtocol t::disable -
positive acks min sample keep duration (p. 843)

6.106.2.15 DDS Boolean DDS RtpsReliableWriterProtocol -
t::disable positive acks enable adaptive sample keep -
duration

Enables dynamic adjustment of sample keep duration in response to congestion.

For dynamic networks where a static minimum sample keep duration
may not provide sufficient performance or reliability, setting DDS -
RtpsReliableWriterProtocol t::disable positive acks enable -
adaptive sample keep duration (p. 844) = DDS BOOLEAN TRUE
(p. 288), enables the sample keep duration to be dynamically adjusted to
adapt to network conditions. The keep duration changes according to the
detected level of congestion, which is determined to be proportional to the rate
of NACKs received. An adaptive algorithm automatically controls the keep
duration to optimize throughput and reliability.

To relieve high congestion, the keep duration is increased to ef-
fectively decrease the send rate; this lengthening of the keep du-
ration is controlled by DDS RtpsReliableWriterProtocol t::disable -
positive acks increase sample keep duration factor (p. 845). Alterna-
tively, when congestion is low, the keep duration is decreased to effec-
tively increase send rate; this shortening of the keep duration is con-
trolled by DDS RtpsReliableWriterProtocol t::disable positive acks -
decrease sample keep duration factor (p. 844).

The lower and upper bounds of the dynamic sample keep duration are set
by DDS RtpsReliableWriterProtocol t::disable positive acks min -
sample keep duration (p. 843) and DDS RtpsReliableWriterProtocol -
t::disable positive acks max sample keep duration (p. 843), respectively.

When DDS RtpsReliableWriterProtocol t::disable positive -
acks enable adaptive sample keep duration (p. 844) = DDS -
BOOLEAN FALSE (p. 289), the sample keep duration is set to DDS -
RtpsReliableWriterProtocol t::disable positive acks min sample -
keep duration (p. 843) .

[default] DDS BOOLEAN TRUE (p. 288)

6.106.2.16 DDS Long DDS RtpsReliableWriterProtocol t::disable -
positive acks decrease sample keep duration factor

Controls rate of contraction of dynamic sample keep duration.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.106 DDS RtpsReliableWriterProtocol t Struct Reference 845

Used when DDS RtpsReliableWriterProtocol t::disable positive acks -
enable adaptive sample keep duration (p. 844) = DDS BOOLEAN -
TRUE (p. 288).

When the adaptive algorithm determines that the keep duration should be de-
creased, this factor (a percentage) is multiplied with the current keep duration
to get the new shorter keep duration. For example, if the current keep duration
is 20 milliseconds, using the default factor of 95% would result in a new keep
duration of 19 milliseconds.

[default] 95

[range] <= 100

6.106.2.17 DDS Long DDS RtpsReliableWriterProtocol t::disable -
positive acks increase sample keep duration factor

Controls rate of growth of dynamic sample keep duration.

Used when DDS RtpsReliableWriterProtocol t::disable positive acks -
enable adaptive sample keep duration (p. 844) = DDS BOOLEAN -
TRUE (p. 288).

When the adaptive algorithm determines that the keep duration should be in-
creased, this factor (a percentage) is multiplied with the current keep duration
to get the new longer keep duration. For example, if the current keep duration
is 20 milliseconds, using the default factor of 150% would result in a new keep
duration of 30 milliseconds.

[default] 150

[range] >= 100

6.106.2.18 DDS Long DDS RtpsReliableWriterProtocol t::min -
send window size

Minimum size of send window of unacknowledged samples.

A DDSDataWriter (p. 1028) has a limit on the number of unacknowledged
samples in-flight at a time. This send window can be configured to have a min-
imum size (this field) and a maximum size (max send window size). The send
window can dynamically change, between the min and max sizes, to throttle
the effective send rate in response to changing network congestion, as measured
by negative acknowledgements received.

When both min send window size and max send window size
are DDS LENGTH UNLIMITED (p. 356), then DDS -
ResourceLimitsQosPolicy::max samples (p. 829) serves as the effective
send window limit. When DDS ResourceLimitsQosPolicy::max samples

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

846 Class Documentation

(p. 829) is less than max send window size, then it serves as the effective max
send window; if it is also less than min send window size, then effectively both
min and max send window sizes are equal to max samples.

[default] 32

[range] > 0, <= max send window size, or DDS LENGTH UNLIMITED
(p. 356)

See also:

DDS RtpsReliableWriterProtocol t::max send window size
(p. 846)

6.106.2.19 DDS Long DDS RtpsReliableWriterProtocol t::max -
send window size

Maximum size of send window of unacknowledged samples.

A DDSDataWriter (p. 1028) has a limit on the number of unacknowledged
samples in-flight at a time. This send window can be configured to have a min-
imum size (min send window size) and a maximum size (this field). The send
window can dynamically change, between the min and max sizes, to throttle
the effective send rate in response to changing network congestion, as measured
by negative acknowledgements received.

When both min send window size and max send window size
are DDS LENGTH UNLIMITED (p. 356), then DDS -
ResourceLimitsQosPolicy::max samples (p. 829) serves as the effective
send window limit. When DDS ResourceLimitsQosPolicy::max samples
(p. 829) is less than max send window size, then it serves as the effective max
send window; if it is also less than min send window size, then effectively both
min and max send window sizes are equal to max samples.

[default] 256

[range] > 0, >= min send window size, or DDS LENGTH UNLIMITED
(p. 356)

See also:

DDS RtpsReliableWriterProtocol t::min send window size
(p. 845)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.106 DDS RtpsReliableWriterProtocol t Struct Reference 847

6.106.2.20 struct DDS Duration t DDS -
RtpsReliableWriterProtocol t::send window update -
period [read]

Period in which send window may be dynamically changed.

The DDSDataWriter (p. 1028)’s send window will dynamically change, be-
tween the min and max send window sizes, to throttle the effective send rate
in response to changing network congestion, as measured by negative acknowl-
edgements received.

The change in send window size happens at this update period, whereupon the
send window is either increased or decreased in size according to the increase
or decrease factors, respectively.

[default] 3 seconds

[range] > [0,1 year]

See also:

DDS RtpsReliableWriterProtocol t::send window increase -
factor (p. 847), DDS RtpsReliableWriterProtocol t::send -
window decrease factor (p. 848)

6.106.2.21 DDS Long DDS RtpsReliableWriterProtocol t::send -
window increase factor

Increases send window size by this percentage when reacting dynamically to
network conditions.

The DDSDataWriter (p. 1028)’s send window will dynamically change, be-
tween the min and max send window sizes, to throttle the effective send rate
in response to changing network congestion, as measured by negative acknowl-
edgements received.

After an update period during which no negative acknowledgements were re-
ceived, the send window will be increased by this factor. The factor is treated
as a percentage, where a factor of 150 would increase the send window by 150%.
The increased send window size will not exceed the max send window size.

[default] 105

[range] > 100

See also:

DDS RtpsReliableWriterProtocol t::send window update period
(p. 847), DDS RtpsReliableWriterProtocol t::send window -
decrease factor (p. 848)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

848 Class Documentation

6.106.2.22 DDS Long DDS RtpsReliableWriterProtocol t::send -
window decrease factor

Decreases send window size by this percentage when reacting dynamically to
network conditions.

The DDSDataWriter (p. 1028)’s send window will dynamically change, be-
tween the min and max send window sizes, to throttle the effective send rate
in response to changing network congestion, as measured by negative acknowl-
edgements received.

When increased network congestion causes a negative acknowledgement to be
received by a writer, the send window will be decreased by this factor to throttle
the effective send rate. The factor is treated as a percentage, where a factor of
80 would decrease the send window to 80% of its previous size. The decreased
send window size will not be less than the min send window size.

[default] 70

[range] [0, 100]

See also:

DDS RtpsReliableWriterProtocol t::send window update period
(p. 847), DDS RtpsReliableWriterProtocol t::send window -
increase factor (p. 847)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.107 DDS RtpsWellKnownPorts t Struct Reference 849

6.107 DDS RtpsWellKnownPorts t Struct Ref-
erence

RTPS well-known port mapping configuration.

Public Attributes

ˆ DDS Long port base

The base port offset.

ˆ DDS Long domain id gain

Tunable domain gain parameter.

ˆ DDS Long participant id gain

Tunable participant gain parameter.

ˆ DDS Long builtin multicast port offset

Additional offset for metatraffic multicast port.

ˆ DDS Long builtin unicast port offset

Additional offset for metatraffic unicast port.

ˆ DDS Long user multicast port offset

Additional offset for usertraffic multicast port.

ˆ DDS Long user unicast port offset

Additional offset for usertraffic unicast port.

6.107.1 Detailed Description

RTPS well-known port mapping configuration.

RTI Data Distribution Service uses the RTPS wire protocol. The discovery
protocols defined by RTPS rely on well-known ports to initiate discovery. These
well-known ports define the multicast and unicast ports on which a Participant
will listen for discovery metatraffic from other Participants. The discovery
metatraffic contains all the information required to establish the presence of
remote DDS entities in the network.

The well-known ports are defined by RTPS in terms of port mapping expressions
with several tunable parameters, which allow you to customize what network
ports are used by RTI Data Distribution Service. These parameters are exposed

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

850 Class Documentation

in DDS RtpsWellKnownPorts t (p. 849). In order for all Participants in a
system to correctly discover each other, it is important that they all use the
same port mapping expressions.

The actual port mapping expressions, as defined by the RTPS specifica-
tion, can be found below. In addition to the parameters listed in DDS -
RtpsWellKnownPorts t (p. 849), the port numbers depend on:

- domain id, as specified in DDSDomainParticipantFactory::create -
participant (p. 1140)

- participant id, as specified using DDS -
WireProtocolQosPolicy::participant id (p. 985)

The domain id parameter ensures no port conflicts exist between Participants
belonging to different domains. This also means that discovery metatraffic in one
domain is not visible to Participants in a different domain. The participant id
parameter ensures that unique unicast port numbers are assigned to Participants
belonging to the same domain on a given host.

The metatraffic unicast port is used to exchange discovery metatraffic using uni-
cast.

metatraffic_unicast_port = port_base + (domain_id_gain * domain_id) + (participant_id_gain * participant_id) + builtin_unicast_port_offset

The metatraffic multicast port is used to exchange discovery metatraffic using
multicast. The corresponding multicast group addresses are specified via DDS -
DiscoveryQosPolicy::multicast receive addresses (p. 544) on a DDSDo-
mainParticipant (p. 1054) entity.

metatraffic_multicast_port = port_base + (domain_id_gain * domain_id) + builtin_multicast_port_offset

RTPS also defines the default multicast and unicast ports on which
DataReaders and DataWriters receive usertraffic. These default
ports can be overridden using the DDS DataReaderQos::multicast
(p. 485), DDS DataReaderQos::unicast (p. 485), or by the DDS -
DataWriterQos::unicast (p. 521) QoS policies.

The usertraffic unicast port is used to exchange user data using unicast.

usertraffic_unicast_port = port_base + (domain_id_gain * domain_id) + (participant_id_gain * participant_id) + user_unicast_port_offset

The usertraffic multicast port is used to exchange user data using multicast.
The corresponding multicast group addresses can be configured using DDS -
TransportMulticastQosPolicy (p. 911).

usertraffic_multicast_port = port_base + (domain_id_gain * domain_id) + user_multicast_port_offset

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.107 DDS RtpsWellKnownPorts t Struct Reference 851

By default, the port mapping parameters are configured to compli-
ant with OMG’s DDS Interoperability Wire Protocol (see also DDS -
INTEROPERABLE RTPS WELL KNOWN PORTS (p. 388)).

The OMG’s DDS Interoperability Wire Protocol compliant port mapping pa-
rameters are not backwards compatible with previous versions of the RTI Data
Distribution Service middleware.

When modifying the port mapping parameters, care must be taken to avoid
port aliasing. This would result in undefined discovery behavior. The chosen
parameter values will also determine the maximum possible number of domains
in the system and the maximum number of participants per domain. Addition-
ally, any resulting mapped port number must be within the range imposed by
the underlying transport. For example, for UDPv4, this range typically equals
[1024 - 65535].

QoS:

DDS WireProtocolQosPolicy (p. 981)

6.107.2 Member Data Documentation

6.107.2.1 DDS Long DDS RtpsWellKnownPorts t::port base

The base port offset.

All mapped well-known ports are offset by this value.

[default] 7400

[range] [>= 1], but resulting ports must be within the range imposed by the
underlying transport.

6.107.2.2 DDS Long DDS RtpsWellKnownPorts t::domain id gain

Tunable domain gain parameter.

Multiplier of the domain id. Together with participant id gain, it deter-
mines the highest domain id and participant id allowed on this network.

In general, there are two ways to setup domain id gain and participant id -
gain parameters.

If domain id gain > participant id gain, it results in a port mapping layout
where all DDSDomainParticipant (p. 1054) instances within a single domain
occupy a consecutive range of domain id gain ports. Precisely, all ports occu-
pied by the domain fall within:

(port_base + (domain_id_gain * domain_id))

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

852 Class Documentation

and:

(port_base + (domain_id_gain * (domain_id + 1)) - 1)

Under such a case, the highest domain id is limited only by the underlying
transport’s maximum port. The highest participant id, however, must sat-
isfy:

max_participant_id < (domain_id_gain / participant_id_gain)

On the contrary, if domain id gain <= participant id gain, it results in
a port mapping layout where a given domain’s DDSDomainParticipant
(p. 1054) instances occupy ports spanned across the entire valid port range
allowed by the underlying transport. For instance, it results in the following
potential mapping:

Mapped Port Domain Id Participant ID
higher port number Domain Id = 1 Participant ID = 2

Domain Id = 0 Participant ID = 2
Domain Id = 1 Participant ID = 1
Domain Id = 0 Participant ID = 1
Domain Id = 1 Participant ID = 0

lower port number Domain Id = 0 Participant ID = 0

Under this case, the highest participant id is limited only by the underlying
transport’s maximum port. The highest domain id, however, must satisfy:

max_domain_id < (participant_id_gain / domain_id_gain)

Additionally, domain id gain also determines the range of the port-specific off-
sets.

domain_id_gain > abs(builtin_multicast_port_offset - user_multicast_port_offset)

domain_id_gain > abs(builtin_unicast_port_offset - user_unicast_port_offset)

Violating this may result in port aliasing and undefined discovery behavior.

[default] 250

[range] [> 0], but resulting ports must be within the range imposed by the
underlying transport.

6.107.2.3 DDS Long DDS RtpsWellKnownPorts t::participant id -
gain

Tunable participant gain parameter.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.107 DDS RtpsWellKnownPorts t Struct Reference 853

Multiplier of the participant id. See DDS RtpsWellKnownPorts -
t::domain id gain (p. 851) for its implications on the highest domain id and
participant id allowed on this network.

Additionally, participant id gain also determines the range of builtin -
unicast port offset and user unicast port offset.

participant_id_gain > abs(builtin_unicast_port_offset - user_unicast_port_offset)

[default] 2

[range] [> 0], but resulting ports must be within the range imposed by the
underlying transport.

6.107.2.4 DDS Long DDS RtpsWellKnownPorts t::builtin -
multicast port offset

Additional offset for metatraffic multicast port.

It must be unique from other port-specific offsets.

[default] 0

[range] [>= 0], but resulting ports must be within the range imposed by the
underlying transport.

6.107.2.5 DDS Long DDS RtpsWellKnownPorts t::builtin -
unicast port offset

Additional offset for metatraffic unicast port.

It must be unique from other port-specific offsets.

[default] 10

[range] [>= 0], but resulting ports must be within the range imposed by the
underlying transport.

6.107.2.6 DDS Long DDS RtpsWellKnownPorts t::user multicast -
port offset

Additional offset for usertraffic multicast port.

It must be unique from other port-specific offsets.

[default] 1

[range] [>= 0], but resulting ports must be within the range imposed by the
underlying transport.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

854 Class Documentation

6.107.2.7 DDS Long DDS RtpsWellKnownPorts t::user unicast -
port offset

Additional offset for usertraffic unicast port.

It must be unique from other port-specific offsets.

[default] 11

[range] [>= 0], but resulting ports must be within the range imposed by the
underlying transport.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.108 DDS SampleInfo Struct Reference 855

6.108 DDS SampleInfo Struct Reference

Information that accompanies each sample that is read or taken.

Public Attributes

ˆ DDS SampleStateKind sample state

The sample state of the sample.

ˆ DDS ViewStateKind view state

The view state of the instance.

ˆ DDS InstanceStateKind instance state

The instance state of the instance.

ˆ struct DDS Time t source timestamp

The timestamp when the sample was written by a DataWriter.

ˆ DDS InstanceHandle t instance handle

Identifies locally the corresponding instance.

ˆ DDS InstanceHandle t publication handle

Identifies locally the DataWriter that modified the instance.

ˆ DDS Long disposed generation count

The disposed generation count of the instance at the time of sample reception.

ˆ DDS Long no writers generation count

The no writers generation count of the instance at the time of sample recep-
tion.

ˆ DDS Long sample rank

The sample rank of the sample.

ˆ DDS Long generation rank

The generation rank of the sample.

ˆ DDS Long absolute generation rank

The absolute generation rank of the sample.

ˆ DDS Boolean valid data

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

856 Class Documentation

Indicates whether the DataSample contains data or else it is only used to
communicate a change in the instance state of the instance.

ˆ struct DDS Time t reception timestamp

<<eXtension>> (p. 190) The timestamp when the sample was committed
by a DataReader.

ˆ struct DDS SequenceNumber t publication sequence number

<<eXtension>> (p. 190) The publication sequence number.

ˆ struct DDS SequenceNumber t reception sequence number

<<eXtension>> (p. 190) The reception sequence number when sample was
committed by a DataReader

6.108.1 Detailed Description

Information that accompanies each sample that is read or taken.

6.108.2 Interpretation of the SampleInfo

The DDS SampleInfo (p. 855) contains information pertaining to the associ-
ated Data instance sample including:

ˆ the sample state of the Data value (i.e., if it has already been read or
not)

ˆ the view state of the related instance (i.e., if the instance is new or not)

ˆ the instance state of the related instance (i.e., if the instance is alive or
not)

ˆ the valid data flag. This flag indicates whether there is data associated
with the sample. Some samples do not contain data indicating only a
change on the instance state of the corresponding instance.

ˆ The values of disposed generation count and no writers -
generation count for the related instance at the time the sample was
received. These counters indicate the number of times the instance had
become ALIVE (with instance state= DDS ALIVE INSTANCE -
STATE (p. 110)) at the time the sample was received.

ˆ The sample rank and generation rank of the sample within the returned
sequence. These ranks provide a preview of the samples that follow within
the sequence returned by the read or take operations.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.108 DDS SampleInfo Struct Reference 857

ˆ The absolute generation rank of the sample within the DDS-
DataReader (p. 1004). This rank provides a preview of what is available
within the DDSDataReader (p. 1004).

ˆ The source timestamp of the sample. This is the timestamp provided by
the DDSDataWriter (p. 1028) at the time the sample was produced.

6.108.3 Interpretation of the SampleInfo disposed -
generation count and no writers generation -
count

For each instance, RTI Data Distribution Service internally maintains two
counts, the DDS SampleInfo::disposed generation count (p. 860) and
DDS SampleInfo::no writers generation count (p. 860), relative to each
DataReader:

ˆ The DDS SampleInfo::disposed generation count (p. 860) and
DDS SampleInfo::no writers generation count (p. 860) are initial-
ized to zero when the DDSDataReader (p. 1004) first detects the pres-
ence of a never-seen-before instance.

ˆ The DDS SampleInfo::disposed generation count (p. 860) is in-
cremented each time the instance state of the corresponding in-
stance changes from DDS NOT ALIVE DISPOSED INSTANCE -
STATE (p. 110) to DDS ALIVE INSTANCE STATE (p. 110).

ˆ The DDS SampleInfo::no writers generation count (p. 860) is in-
cremented each time the instance state of the corresponding instance
changes from DDS NOT ALIVE NO WRITERS INSTANCE -
STATE (p. 110) to DDS ALIVE INSTANCE STATE (p. 110).

ˆ These ’generation counts’ are reset to zero when the instance resource is
reclaimed.

The DDS SampleInfo::disposed generation count (p. 860) and DDS -
SampleInfo::no writers generation count (p. 860) available in the DDS -
SampleInfo (p. 855) capture a snapshot of the corresponding counters at the
time the sample was received.

6.108.4 Interpretation of the SampleInfo sample rank,
generation rank and absolute generation rank

The DDS SampleInfo::sample rank (p. 861) and DDS -
SampleInfo::generation rank (p. 861) available in the DDS SampleInfo

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

858 Class Documentation

(p. 855) are computed based solely on the actual samples in the ordered
collection returned by read or take.

ˆ The DDS SampleInfo::sample rank (p. 861) indicates the number of
samples of the same instance that follow the current one in the collection.

ˆ The DDS SampleInfo::generation rank (p. 861) available in the
DDS SampleInfo (p. 855) indicates the difference in ”generations” be-
tween the sample (S) and the Most Recent Sample of the same instance
that appears in the returned Collection (MRSIC). That is, it counts the
number of times the instance transitioned from not-alive to alive in the
time from the reception of the S to the reception of MRSIC.

ˆ These ’generation ranks’ are reset to zero when the instance resource is
reclaimed.

The DDS SampleInfo::generation rank (p. 861) is computed using the for-
mula:

generation_rank = (MRSIC.disposed_generation_count

+ MRSIC.no_writers_generation_count)

- (S.disposed_generation_count

+ S.no_writers_generation_count)

The DDS SampleInfo::absolute generation rank (p. 861) available in the
DDS SampleInfo (p. 855) indicates the difference in ”generations” between
the sample (S) and the Most Recent Sample of the same instance that the
middleware has received (MRS). That is, it counts the number of times the
instance transitioned from not-alive to alive in the time from the reception of
the S to the time when the read or take was called.

absolute_generation_rank = (MRS.disposed_generation_count

+ MRS.no_writers_generation_count)

- (S.disposed_generation_count

+ S.no_writers_generation_count)

6.108.5 Interpretation of the SampleInfo counters and
ranks

These counters and ranks allow the application to distinguish samples belong-
ing to different ”generations” of the instance. Note that it is possible for an
instance to transition from not-alive to alive (and back) several times before
the application accesses the data by means of read or take. In this case, the
returned collection may contain samples that cross generations (i.e. some sam-
ples were received before the instance became not-alive, other after the instance

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.108 DDS SampleInfo Struct Reference 859

re-appeared again). Using the information in the DDS SampleInfo (p. 855),
the application can anticipate what other information regarding the same in-
stance appears in the returned collection, as well as in the infrastructure and
thus make appropriate decisions.

For example, an application desiring to only consider the most current sample
for each instance would only look at samples with sample rank == 0. Similarly,
an application desiring to only consider samples that correspond to the latest
generation in the collection will only look at samples with generation rank ==
0. An application desiring only samples pertaining to the latest generation
available will ignore samples for which absolute generation rank != 0. Other
application-defined criteria may also be used.

See also:

DDS SampleStateKind (p. 104), DDS InstanceStateKind (p. 109),
DDS ViewStateKind (p. 106), DDS SampleInfo::valid data (p. 862)

6.108.6 Member Data Documentation

6.108.6.1 DDS SampleStateKind DDS SampleInfo::sample state

The sample state of the sample.

Indicates whether or not the corresponding data sample has already been read.

See also:

DDS SampleStateKind (p. 104)

6.108.6.2 DDS ViewStateKind DDS SampleInfo::view state

The view state of the instance.

Indicates whether the DDSDataReader (p. 1004) has already seen samples for
the most-current generation of the related instance.

See also:

DDS ViewStateKind (p. 106)

6.108.6.3 DDS InstanceStateKind DDS SampleInfo::instance state

The instance state of the instance.

Indicates whether the instance is currently in existence or, if it has been dis-
posed, the reason why it was disposed.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

860 Class Documentation

See also:

DDS InstanceStateKind (p. 109)

6.108.6.4 struct DDS Time t DDS SampleInfo::source timestamp
[read]

The timestamp when the sample was written by a DataWriter.

6.108.6.5 DDS InstanceHandle t DDS SampleInfo::instance handle

Identifies locally the corresponding instance.

6.108.6.6 DDS InstanceHandle t DDS SampleInfo::publication -
handle

Identifies locally the DataWriter that modified the instance.

The publication handle is the same DDS InstanceHandle t (p. 52) that
is returned by the operation DDSDataReader::get matched publications
(p. 1011) and can also be used as a parameter to the operation DDS-
DataReader::get matched publication data (p. 1012).

6.108.6.7 DDS Long DDS SampleInfo::disposed generation count

The disposed generation count of the instance at the time of sample reception.

Indicates the number of times the instance had become alive after it was disposed
explicitly by a DDSDataWriter (p. 1028), at the time the sample was received.

See also:

Interpretation of the SampleInfo disposed generation count and
no writers generation count (p. 857) Interpretation of the Sample-
Info counters and ranks (p. 858)

6.108.6.8 DDS Long DDS SampleInfo::no writers generation count

The no writers generation count of the instance at the time of sample reception.

Indicates the number of times the instance had become alive after it was disposed
because there were no writers, at the time the sample was received.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.108 DDS SampleInfo Struct Reference 861

See also:

Interpretation of the SampleInfo disposed generation count and
no writers generation count (p. 857) Interpretation of the Sample-
Info counters and ranks (p. 858)

6.108.6.9 DDS Long DDS SampleInfo::sample rank

The sample rank of the sample.

Indicates the number of samples related to the same instance that follow in the
collection returned by read or take.

See also:

Interpretation of the SampleInfo sample rank, generation rank
and absolute generation rank (p. 857) Interpretation of the Sam-
pleInfo counters and ranks (p. 858)

6.108.6.10 DDS Long DDS SampleInfo::generation rank

The generation rank of the sample.

Indicates the generation difference (number of times the instance was disposed
and become alive again) between the time the sample was received, and the
time the most recent sample in the collection related to the same instance was
received.

See also:

Interpretation of the SampleInfo sample rank, generation rank
and absolute generation rank (p. 857) Interpretation of the Sam-
pleInfo counters and ranks (p. 858)

6.108.6.11 DDS Long DDS SampleInfo::absolute generation rank

The absolute generation rank of the sample.

Indicates the generation difference (number of times the instance was disposed
and become alive again) between the time the sample was received, and the time
the most recent sample (which may not be in the returned collection) related
to the same instance was received.

See also:

Interpretation of the SampleInfo sample rank, generation rank
and absolute generation rank (p. 857) Interpretation of the Sam-
pleInfo counters and ranks (p. 858)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

862 Class Documentation

6.108.6.12 DDS Boolean DDS SampleInfo::valid data

Indicates whether the DataSample contains data or else it is only used to com-
municate a change in the instance state of the instance.

Normally each DataSample contains both a DDS SampleInfo (p. 855) and
some Data. However there are situations where a DataSample contains only the
DDS SampleInfo (p. 855) and does not have any associated data. This occurs
when the RTI Data Distribution Service notifies the application of a change of
state for an instance that was caused by some internal mechanism (such as a
timeout) for which there is no associated data. An example of this situation is
when the RTI Data Distribution Service detects that an instance has no writers
and changes the corresponding instance state to DDS NOT ALIVE NO -
WRITERS INSTANCE STATE (p. 110).

The application can distinguish whether a particular DataSample has data
by examining the value of the valid data flag. If this flag is set to DDS -
BOOLEAN TRUE (p. 288), then the DataSample contains valid Data. If the
flag is set to DDS BOOLEAN FALSE (p. 289), the DataSample contains no
Data.

To ensure correctness and portability, the valid data flag must be examined by
the application prior to accessing the Data associated with the DataSample and
if the flag is set to DDS BOOLEAN FALSE (p. 289), the application should
not access the Data associated with the DataSample, that is, the application
should access only the DDS SampleInfo (p. 855).

6.108.6.13 struct DDS Time t DDS SampleInfo::reception -
timestamp [read]

<<eXtension>> (p. 190) The timestamp when the sample was committed by
a DataReader.

6.108.6.14 struct DDS SequenceNumber t DDS -
SampleInfo::publication sequence number
[read]

<<eXtension>> (p. 190) The publication sequence number.

6.108.6.15 struct DDS SequenceNumber t DDS -
SampleInfo::reception sequence number
[read]

<<eXtension>> (p. 190) The reception sequence number when sample was
committed by a DataReader

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.109 DDS SampleInfoSeq Struct Reference 863

6.109 DDS SampleInfoSeq Struct Reference

Declares IDL sequence < DDS SampleInfo (p. 855) > .

6.109.1 Detailed Description

Declares IDL sequence < DDS SampleInfo (p. 855) > .

See also:

FooSeq (p. 1377)

Examples:

HelloWorld subscriber.cxx.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

864 Class Documentation

6.110 DDS SampleLostStatus Struct Reference

DDS SAMPLE LOST STATUS (p. 312)

Public Attributes

ˆ DDS Long total count

Total cumulative count of all samples lost across all instances of data pub-
lished under the DDSTopic (p. 1311).

ˆ DDS Long total count change

The incremental number of samples lost since the last time the listener was
called or the status was read.

6.110.1 Detailed Description

DDS SAMPLE LOST STATUS (p. 312)

Examples:

HelloWorld subscriber.cxx.

6.110.2 Member Data Documentation

6.110.2.1 DDS Long DDS SampleLostStatus::total count

Total cumulative count of all samples lost across all instances of data published
under the DDSTopic (p. 1311).

6.110.2.2 DDS Long DDS SampleLostStatus::total count change

The incremental number of samples lost since the last time the listener was
called or the status was read.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.111 DDS SampleRejectedStatus Struct Reference 865

6.111 DDS SampleRejectedStatus Struct Ref-
erence

DDS SAMPLE REJECTED STATUS (p. 312)

Public Attributes

ˆ DDS Long total count

Total cumulative count of samples rejected by the DDSDataReader
(p. 1004).

ˆ DDS Long total count change

The incremental number of samples rejected since the last time the listener
was called or the status was read.

ˆ DDS SampleRejectedStatusKind last reason

Reason for rejecting the last sample rejected.

ˆ DDS InstanceHandle t last instance handle

Handle to the instance being updated by the last sample that was rejected.

6.111.1 Detailed Description

DDS SAMPLE REJECTED STATUS (p. 312)

Examples:

HelloWorld subscriber.cxx.

6.111.2 Member Data Documentation

6.111.2.1 DDS Long DDS SampleRejectedStatus::total count

Total cumulative count of samples rejected by the DDSDataReader (p. 1004).

6.111.2.2 DDS Long DDS SampleRejectedStatus::total count -
change

The incremental number of samples rejected since the last time the listener was
called or the status was read.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

866 Class Documentation

6.111.2.3 DDS SampleRejectedStatusKind
DDS SampleRejectedStatus::last reason

Reason for rejecting the last sample rejected.

See also:

DDS SampleRejectedStatusKind (p. 100)

6.111.2.4 DDS InstanceHandle t DDS -
SampleRejectedStatus::last instance handle

Handle to the instance being updated by the last sample that was rejected.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.112 DDS SequenceNumber t Struct Reference 867

6.112 DDS SequenceNumber t Struct Refer-
ence

Type for sequence number representation.

Public Attributes

ˆ DDS Long high

The most significant part of the sequence number.

ˆ DDS UnsignedLong low

The least significant part of the sequence number.

6.112.1 Detailed Description

Type for sequence number representation.

Represents a 64-bit sequence number.

6.112.2 Member Data Documentation

6.112.2.1 DDS Long DDS SequenceNumber t::high

The most significant part of the sequence number.

6.112.2.2 DDS UnsignedLong DDS SequenceNumber t::low

The least significant part of the sequence number.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

868 Class Documentation

6.113 DDS ShortSeq Struct Reference

Instantiates FooSeq (p. 1377) < DDS Short (p. 289) >.

6.113.1 Detailed Description

Instantiates FooSeq (p. 1377) < DDS Short (p. 289) >.

Instantiates:

<<generic>> (p. 190) FooSeq (p. 1377)

See also:

DDS Short (p. 289)
FooSeq (p. 1377)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.114 DDS StringSeq Struct Reference 869

6.114 DDS StringSeq Struct Reference

Instantiates FooSeq (p. 1377) < char∗ > with value type semantics.

6.114.1 Detailed Description

Instantiates FooSeq (p. 1377) < char∗ > with value type semantics.

StringSeq is a sequence that contains strings.

Even though the element type is a char∗, i.e. a pointer, the sequence seman-
tically behaves as a sequence of char∗ value types. When a DDS StringSeq
(p. 869) is copied or deleted, the contained strings are also respectively copied
or deleted.

Important: Users of this type must understand its memory management con-
tract.

ˆ Ownership of this sequence’s buffer implies ownership of the pointers
stored in that buffer; a loan of the buffer implies lack of ownership of the
pointers. In other words, for a type FooSeq (p. 1377) where Foo (p. 1333)
is a pointer, ownership of Foo (p. 1333) implies ownership of ∗Foo. In
other words, deleting a string sequence that owns its memory implies the
deletion of all strings in that sequence. See FooSeq::loan contiguous
(p. 1387) for more information about sequence memory ownership.

ˆ The second important rule is that non-NULL strings are assumed to be
of sufficient size to store the necessary characters. This is a dangerous
rule, but it cannot be avoided because a string doesn’t store the amount of
memory it has. The only other alternative is to always free and re-allocate
memory. Not only would this latter policy be very expensive, but it would
essentially render any loaned DDS StringSeq (p. 869) immutable, since
to modify any string in it would require freeing and re-allocating that
string, which would violate the first principle discussed above.

It is also worth noting that the element type of a string sequence is char∗, not
const char∗. It is therefore incorrect and dangerous, for example, to insert a
string literal into a string sequence without first copying it into mutable memory.

In order to guarantee correct behavior, it is recommended that the contained
elements always be manipulated using the string support API’s described in
String Support (p. 431).

See also:

String Support (p. 431)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

870 Class Documentation

Instantiates:

<<generic>> (p. 190) FooSeq (p. 1377)

See also:

FooSeq (p. 1377)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.115 DDS StructMember Struct Reference 871

6.115 DDS StructMember Struct Reference

A description of a member of a struct.

Public Attributes

ˆ char ∗ name
The name of the struct member.

ˆ const DDS TypeCode ∗ type
The type of the struct member.

ˆ DDS Boolean is pointer
Indicates whether the struct member is a pointer or not.

ˆ DDS Short bits
Number of bits of a bitfield member.

ˆ DDS Boolean is key
Indicates if the struct member is a key member or not.

6.115.1 Detailed Description

A description of a member of a struct.

See also:

DDS StructMemberSeq (p. 873)
DDS TypeCodeFactory::create struct tc (p. 956)

6.115.2 Member Data Documentation

6.115.2.1 char∗ DDS StructMember::name

The name of the struct member.

Cannot be NULL.

6.115.2.2 const DDS TypeCode∗ DDS StructMember::type

The type of the struct member.

Cannot be NULL.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

872 Class Documentation

6.115.2.3 DDS Boolean DDS StructMember::is pointer

Indicates whether the struct member is a pointer or not.

6.115.2.4 DDS Short DDS StructMember::bits

Number of bits of a bitfield member.

If the struct member is a bitfield, this field contains the number of bits of the
bitfield. Otherwise, bits should contain DDS TypeCode::NOT BITFIELD.

6.115.2.5 DDS Boolean DDS StructMember::is key

Indicates if the struct member is a key member or not.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.116 DDS StructMemberSeq Struct Reference 873

6.116 DDS StructMemberSeq Struct Reference

Defines a sequence of struct members.

6.116.1 Detailed Description

Defines a sequence of struct members.

See also:

DDS StructMember (p. 871)
FooSeq (p. 1377)
DDS TypeCodeFactory::create struct tc (p. 956)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

874 Class Documentation

6.117 DDS SubscriberQos Struct Reference

QoS policies supported by a DDSSubscriber (p. 1284) entity.

Public Attributes

ˆ struct DDS PresentationQosPolicy presentation

Presentation policy, PRESENTATION (p. 337).

ˆ struct DDS PartitionQosPolicy partition

Partition policy, PARTITION (p. 347).

ˆ struct DDS GroupDataQosPolicy group data

Group data policy, GROUP DATA (p. 334).

ˆ struct DDS EntityFactoryQosPolicy entity factory

Entity factory policy, ENTITY FACTORY (p. 362).

ˆ struct DDS ExclusiveAreaQosPolicy exclusive area

<<eXtension>> (p. 190) Exclusive area for the subscriber and all entities
that are created by the subscriber.

6.117.1 Detailed Description

QoS policies supported by a DDSSubscriber (p. 1284) entity.

You must set certain members in a consistent manner:

length of DDS SubscriberQos::group data.value <= DDS -
DomainParticipantQos::resource limits.subscriber group data max length

length of DDS SubscriberQos::partition.name <= DDS -
DomainParticipantQos::resource limits.max partitions

combined number of characters (including terminating 0) in DDS -
SubscriberQos::partition.name <= DDS DomainParticipantQos::resource -
limits.max partition cumulative characters

If any of the above are not true, DDSSubscriber::set qos (p. 1303)
and DDSSubscriber::set qos with profile (p. 1304) will fail with DDS -
RETCODE INCONSISTENT POLICY (p. 304)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.117 DDS SubscriberQos Struct Reference 875

6.117.2 Member Data Documentation

6.117.2.1 struct DDS PresentationQosPolicy
DDS SubscriberQos::presentation [read]

Presentation policy, PRESENTATION (p. 337).

6.117.2.2 struct DDS PartitionQosPolicy
DDS SubscriberQos::partition [read]

Partition policy, PARTITION (p. 347).

6.117.2.3 struct DDS GroupDataQosPolicy
DDS SubscriberQos::group data [read]

Group data policy, GROUP DATA (p. 334).

6.117.2.4 struct DDS EntityFactoryQosPolicy
DDS SubscriberQos::entity factory [read]

Entity factory policy, ENTITY FACTORY (p. 362).

6.117.2.5 struct DDS ExclusiveAreaQosPolicy
DDS SubscriberQos::exclusive area [read]

<<eXtension>> (p. 190) Exclusive area for the subscriber and all entities
that are created by the subscriber.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

876 Class Documentation

6.118 DDS SubscriptionBuiltinTopicData
Struct Reference

Entry created when a DDSDataReader (p. 1004) is discovered in association
with its Subscriber.

Public Attributes

ˆ DDS BuiltinTopicKey t key
DCPS key to distinguish entries.

ˆ DDS BuiltinTopicKey t participant key
DCPS key of the participant to which the DataReader belongs.

ˆ char ∗ topic name
Name of the related DDSTopic (p. 1311).

ˆ char ∗ type name
Name of the type attached to the DDSTopic (p. 1311).

ˆ struct DDS DurabilityQosPolicy durability
Policy of the corresponding DataReader.

ˆ struct DDS DeadlineQosPolicy deadline
Policy of the corresponding DataReader.

ˆ struct DDS LatencyBudgetQosPolicy latency budget
Policy of the corresponding DataReader.

ˆ struct DDS LivelinessQosPolicy liveliness
Policy of the corresponding DataReader.

ˆ struct DDS ReliabilityQosPolicy reliability
Policy of the corresponding DataReader.

ˆ struct DDS OwnershipQosPolicy ownership
Policy of the corresponding DataReader.

ˆ struct DDS DestinationOrderQosPolicy destination order
Policy of the corresponding DataReader.

ˆ struct DDS UserDataQosPolicy user data

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.118 DDS SubscriptionBuiltinTopicData Struct Reference 877

Policy of the corresponding DataReader.

ˆ struct DDS TimeBasedFilterQosPolicy time based filter

Policy of the corresponding DataReader.

ˆ struct DDS PresentationQosPolicy presentation

Policy of the Subscriber to which the DataReader belongs.

ˆ struct DDS PartitionQosPolicy partition

Policy of the Subscriber to which the DataReader belongs.

ˆ struct DDS TopicDataQosPolicy topic data

Policy of the related Topic.

ˆ struct DDS GroupDataQosPolicy group data

Policy of the Subscriber to which the DataReader belongs.

ˆ struct DDS TypeCode ∗ type code

<<eXtension>> (p. 190) Type code information of the corresponding Topic

ˆ DDS BuiltinTopicKey t subscriber key

<<eXtension>> (p. 190) DCPS key of the subscriber to which the
DataReader belongs.

ˆ struct DDS PropertyQosPolicy property

<<eXtension>> (p. 190) Properties of the corresponding DataReader.

ˆ struct DDS LocatorSeq unicast locators

<<eXtension>> (p. 190) Custom unicast locators that the endpoint can
specify. The default locators will be used if this is not specified.

ˆ struct DDS LocatorSeq multicast locators

<<eXtension>> (p. 190) Custom multicast locators that the endpoint can
specify. The default locators will be used if this is not specified.

ˆ struct DDS ContentFilterProperty t content filter property

<<eXtension>> (p. 190) This field provides all the required information to
enable content filtering on the Writer side.

ˆ struct DDS GUID t virtual guid

<<eXtension>> (p. 190) Virtual GUID associated to the DataReader.

ˆ DDS ProtocolVersion t rtps protocol version

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

878 Class Documentation

<<eXtension>> (p. 190) Version number of the RTPS wire protocol used.

ˆ struct DDS VendorId t rtps vendor id

<<eXtension>> (p. 190) ID of vendor implementing the RTPS wire pro-
tocol.

ˆ struct DDS ProductVersion t product version

<<eXtension>> (p. 190) This is a vendor specific parameter. It gives the
current version for rti-dds.

ˆ DDS Boolean disable positive acks

<<eXtension>> (p. 190) This is a vendor specific parameter. Determines
whether the corresponding DataReader sends positive acknowledgements for
reliability.

6.118.1 Detailed Description

Entry created when a DDSDataReader (p. 1004) is discovered in association
with its Subscriber.

Data associated with the built-in topic DDS SUBSCRIPTION TOPIC -
NAME (p. 281). It contains QoS policies and additional information that ap-
ply to the remote DDSDataReader (p. 1004) the related DDSSubscriber
(p. 1284).

See also:

DDS SUBSCRIPTION TOPIC NAME (p. 281)
DDSSubscriptionBuiltinTopicDataDataReader (p. 1309)

6.118.2 Member Data Documentation

6.118.2.1 DDS BuiltinTopicKey t DDS -
SubscriptionBuiltinTopicData::key

DCPS key to distinguish entries.

6.118.2.2 DDS BuiltinTopicKey t DDS -
SubscriptionBuiltinTopicData::participant key

DCPS key of the participant to which the DataReader belongs.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.118 DDS SubscriptionBuiltinTopicData Struct Reference 879

6.118.2.3 char∗ DDS SubscriptionBuiltinTopicData::topic name

Name of the related DDSTopic (p. 1311).

The length of this string is limited to 255 characters.

The memory for this field is managed as described in Conventions (p. 432).

See also:

Conventions (p. 432)

6.118.2.4 char∗ DDS SubscriptionBuiltinTopicData::type name

Name of the type attached to the DDSTopic (p. 1311).

The length of this string is limited to 255 characters.

The memory for this field is managed as described in Conventions (p. 432).

See also:

Conventions (p. 432)

6.118.2.5 struct DDS DurabilityQosPolicy DDS -
SubscriptionBuiltinTopicData::durability
[read]

Policy of the corresponding DataReader.

6.118.2.6 struct DDS DeadlineQosPolicy DDS -
SubscriptionBuiltinTopicData::deadline
[read]

Policy of the corresponding DataReader.

6.118.2.7 struct DDS LatencyBudgetQosPolicy
DDS SubscriptionBuiltinTopicData::latency budget
[read]

Policy of the corresponding DataReader.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

880 Class Documentation

6.118.2.8 struct DDS LivelinessQosPolicy DDS -
SubscriptionBuiltinTopicData::liveliness
[read]

Policy of the corresponding DataReader.

6.118.2.9 struct DDS ReliabilityQosPolicy DDS -
SubscriptionBuiltinTopicData::reliability
[read]

Policy of the corresponding DataReader.

6.118.2.10 struct DDS OwnershipQosPolicy DDS -
SubscriptionBuiltinTopicData::ownership
[read]

Policy of the corresponding DataReader.

6.118.2.11 struct DDS DestinationOrderQosPolicy
DDS SubscriptionBuiltinTopicData::destination order
[read]

Policy of the corresponding DataReader.

6.118.2.12 struct DDS UserDataQosPolicy DDS -
SubscriptionBuiltinTopicData::user data
[read]

Policy of the corresponding DataReader.

6.118.2.13 struct DDS TimeBasedFilterQosPolicy
DDS SubscriptionBuiltinTopicData::time based filter
[read]

Policy of the corresponding DataReader.

6.118.2.14 struct DDS PresentationQosPolicy
DDS SubscriptionBuiltinTopicData::presentation
[read]

Policy of the Subscriber to which the DataReader belongs.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.118 DDS SubscriptionBuiltinTopicData Struct Reference 881

6.118.2.15 struct DDS PartitionQosPolicy DDS -
SubscriptionBuiltinTopicData::partition
[read]

Policy of the Subscriber to which the DataReader belongs.

6.118.2.16 struct DDS TopicDataQosPolicy DDS -
SubscriptionBuiltinTopicData::topic data
[read]

Policy of the related Topic.

6.118.2.17 struct DDS GroupDataQosPolicy DDS -
SubscriptionBuiltinTopicData::group data
[read]

Policy of the Subscriber to which the DataReader belongs.

6.118.2.18 struct DDS TypeCode∗ DDS -
SubscriptionBuiltinTopicData::type code
[read]

<<eXtension>> (p. 190) Type code information of the corresponding Topic

6.118.2.19 DDS BuiltinTopicKey t DDS -
SubscriptionBuiltinTopicData::subscriber key

<<eXtension>> (p. 190) DCPS key of the subscriber to which the
DataReader belongs.

6.118.2.20 struct DDS PropertyQosPolicy DDS -
SubscriptionBuiltinTopicData::property
[read]

<<eXtension>> (p. 190) Properties of the corresponding DataReader.

6.118.2.21 struct DDS LocatorSeq DDS -
SubscriptionBuiltinTopicData::unicast locators
[read]

<<eXtension>> (p. 190) Custom unicast locators that the endpoint can spec-
ify. The default locators will be used if this is not specified.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

882 Class Documentation

6.118.2.22 struct DDS LocatorSeq DDS -
SubscriptionBuiltinTopicData::multicast locators
[read]

<<eXtension>> (p. 190) Custom multicast locators that the endpoint can
specify. The default locators will be used if this is not specified.

6.118.2.23 struct DDS ContentFilterProperty t DDS -
SubscriptionBuiltinTopicData::content filter property
[read]

<<eXtension>> (p. 190) This field provides all the required information to
enable content filtering on the Writer side.

6.118.2.24 struct DDS GUID t DDS -
SubscriptionBuiltinTopicData::virtual guid
[read]

<<eXtension>> (p. 190) Virtual GUID associated to the DataReader.

See also:

DDS GUID t (p. 708)

6.118.2.25 DDS ProtocolVersion t DDS -
SubscriptionBuiltinTopicData::rtps protocol version

<<eXtension>> (p. 190) Version number of the RTPS wire protocol used.

6.118.2.26 struct DDS VendorId t DDS -
SubscriptionBuiltinTopicData::rtps vendor id
[read]

<<eXtension>> (p. 190) ID of vendor implementing the RTPS wire protocol.

6.118.2.27 struct DDS ProductVersion t DDS -
SubscriptionBuiltinTopicData::product version
[read]

<<eXtension>> (p. 190) This is a vendor specific parameter. It gives the
current version for rti-dds.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.118 DDS SubscriptionBuiltinTopicData Struct Reference 883

6.118.2.28 DDS Boolean DDS -
SubscriptionBuiltinTopicData::disable positive acks

<<eXtension>> (p. 190) This is a vendor specific parameter. Determines
whether the corresponding DataReader sends positive acknowledgements for
reliability.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

884 Class Documentation

6.119 DDS SubscriptionBuiltinTopicDataSeq
Struct Reference

Instantiates FooSeq (p. 1377) < DDS SubscriptionBuiltinTopicData
(p. 876) > .

6.119.1 Detailed Description

Instantiates FooSeq (p. 1377) < DDS SubscriptionBuiltinTopicData
(p. 876) > .

Instantiates:

<<generic>> (p. 190) FooSeq (p. 1377)

See also:

DDS SubscriptionBuiltinTopicData (p. 876)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.120 DDS SubscriptionMatchedStatus Struct Reference 885

6.120 DDS SubscriptionMatchedStatus Struct
Reference

DDS SUBSCRIPTION MATCHED STATUS (p. 314)

Public Attributes

ˆ DDS Long total count
The total cumulative number of times the concerned DDSDataReader
(p. 1004) discovered a ”match” with a DDSDataWriter (p. 1028).

ˆ DDS Long total count change
The change in total count since the last time the listener was called or the
status was read.

ˆ DDS Long current count
The current number of writers with which the DDSDataReader (p. 1004)
is matched.

ˆ DDS Long current count peak
<<eXtension>> (p. 190) The highest value that current count has reached
until now.

ˆ DDS Long current count change
The change in current count since the last time the listener was called or the
status was read.

ˆ DDS InstanceHandle t last publication handle
A handle to the last DDSDataWriter (p. 1028) that caused the status to
change.

6.120.1 Detailed Description

DDS SUBSCRIPTION MATCHED STATUS (p. 314)

A ”match” happens when the DDSDataReader (p. 1004) finds a DDS-
DataWriter (p. 1028) for the same DDSTopic (p. 1311) with an offered QoS
that is compatible with that requested by the DDSDataReader (p. 1004).

This status is also changed (and the listener, if any, called) when a match is
ended. A local DDSDataReader (p. 1004) will become ”unmatched” from
a remote DDSDataWriter (p. 1028) when that DDSDataWriter (p. 1028)
goes away for any reason.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

886 Class Documentation

Examples:

HelloWorld subscriber.cxx.

6.120.2 Member Data Documentation

6.120.2.1 DDS Long DDS SubscriptionMatchedStatus::total count

The total cumulative number of times the concerned DDSDataReader
(p. 1004) discovered a ”match” with a DDSDataWriter (p. 1028).

This number increases whenever a new match is discovered. It does not change
when an existing match goes away.

6.120.2.2 DDS Long DDS SubscriptionMatchedStatus::total -
count change

The change in total count since the last time the listener was called or the status
was read.

6.120.2.3 DDS Long DDS SubscriptionMatchedStatus::current -
count

The current number of writers with which the DDSDataReader (p. 1004) is
matched.

This number increases when a new match is discovered and decreases when an
existing match goes away.

6.120.2.4 DDS Long DDS SubscriptionMatchedStatus::current -
count peak

<<eXtension>> (p. 190) The highest value that current count has reached
until now.

6.120.2.5 DDS Long DDS SubscriptionMatchedStatus::current -
count change

The change in current count since the last time the listener was called or the
status was read.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.120 DDS SubscriptionMatchedStatus Struct Reference 887

6.120.2.6 DDS InstanceHandle t DDS -
SubscriptionMatchedStatus::last publication handle

A handle to the last DDSDataWriter (p. 1028) that caused the status to
change.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

888 Class Documentation

6.121 DDS SystemResourceLimitsQosPolicy
Struct Reference

Configures DDSDomainParticipant (p. 1054)-independent resources used by
RTI Data Distribution Service. Mainly used to change the maximum number
of DDSDomainParticipant (p. 1054) entities that can be created within a
single process (address space).

Public Attributes

ˆ DDS Long max objects per thread

The maximum number of objects that can be stored per thread for a DDS-
DomainParticipantFactory (p. 1123).

6.121.1 Detailed Description

Configures DDSDomainParticipant (p. 1054)-independent resources used by
RTI Data Distribution Service. Mainly used to change the maximum number
of DDSDomainParticipant (p. 1054) entities that can be created within a
single process (address space).

This QoS policy is an extension to the DDS standard.

Entity:

DDSDomainParticipantFactory (p. 1123)

Properties:

RxO (p. 327) = N/A
Changeable (p. 328) = NO (p. 328)

6.121.2 Usage

Within a single process (or address space for some supported real-time operating
systems), applications may create and use multiple DDSDomainParticipant
(p. 1054) entities. This QoS policy sets a parameter that places an effective
upper bound on the maximum number of DDSDomainParticipant (p. 1054)
entities that can be created in a single process/address space.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.121 DDS SystemResourceLimitsQosPolicy Struct Reference 889

6.121.3 Member Data Documentation

6.121.3.1 DDS Long DDS SystemResourceLimitsQosPolicy::max -
objects per thread

The maximum number of objects that can be stored per thread for a DDSDo-
mainParticipantFactory (p. 1123).

Before increasing this value to allow you to create more participants, carefully
consider the application design that requires you to create so many partici-
pants. Remember: a DDSDomainParticipant (p. 1054) is a heavy-weight
object. It spawns several threads and maintains its own discovery database (see
DISCOVERY (p. 370)). Creating more participants than RTI Data Distribu-
tion Service strictly requires – one per domain per process/address space – can
adversely affect the performance and resource utilization of your application.

[default] 1024; this value allows you to create about 10 or 11 DDSDomain-
Participant (p. 1054) entities.

[range] [1, 1 billion]

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

890 Class Documentation

6.122 DDS ThreadSettings t Struct Reference

The properties of a thread of execution.

Public Attributes

ˆ DDS ThreadSettingsKindMask mask

Describes the type of thread.

ˆ DDS Long priority

Thread priority.

ˆ DDS Long stack size

The thread stack-size.

ˆ struct DDS LongSeq cpu list

The list of processors on which the thread(s) may run.

ˆ DDS ThreadSettingsCpuRotationKind cpu rotation

Determines how processor affinity is applied to multiple threads.

6.122.1 Detailed Description

The properties of a thread of execution.

QoS:

DDS EventQosPolicy (p. 693) DDS DatabaseQosPolicy
(p. 461) DDS ReceiverPoolQosPolicy (p. 810) DDS -
AsynchronousPublisherQosPolicy (p. 441)

6.122.2 Member Data Documentation

6.122.2.1 DDS ThreadSettingsKindMask DDS ThreadSettings -
t::mask

Describes the type of thread.

[default] 0, use default options of the OS

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.122 DDS ThreadSettings t Struct Reference 891

6.122.2.2 DDS Long DDS ThreadSettings t::priority

Thread priority.

[range] Platform-dependent

6.122.2.3 DDS Long DDS ThreadSettings t::stack size

The thread stack-size.

[range] Platform-dependent.

6.122.2.4 struct DDS LongSeq DDS ThreadSettings t::cpu list
[read]

The list of processors on which the thread(s) may run.

A sequence of integers that represent the set of processors on which the thread(s)
controlled by this QoS may run. An empty sequence (the default) means the
middleware wlll make no CPU affinity adjustments.

Note: This feature is currently only supported on a subset of architectures (see
the Platform Notes). The API may change as more architectures are added
in future releases.

This value is only relevant to the DDS ReceiverPoolQosPolicy (p. 810).
It is ignored within other QoS policies that include DDS ThreadSettings t
(p. 890).

See also:

Controlling CPU Core Affinity for RTI Threads (p. 318)

[default] Empty sequence

6.122.2.5 DDS ThreadSettingsCpuRotationKind
DDS ThreadSettings t::cpu rotation

Determines how processor affinity is applied to multiple threads.

This value is only relevant to the DDS ReceiverPoolQosPolicy (p. 810).
It is ignored within other QoS policies that include DDS ThreadSettings t
(p. 890).

See also:

Controlling CPU Core Affinity for RTI Threads (p. 318)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

892 Class Documentation

Note: This feature is currently only supported on a subset of architectures (see
the Platform Notes). The API may change as more architectures are added
in future releases.;

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.123 DDS Time t Struct Reference 893

6.123 DDS Time t Struct Reference

Type for time representation.

Public Attributes

ˆ DDS Long sec

seconds

ˆ DDS UnsignedLong nanosec

nanoseconds

6.123.1 Detailed Description

Type for time representation.

A DDS Time t (p. 893) represents a moment in time.

6.123.2 Member Data Documentation

6.123.2.1 DDS Long DDS Time t::sec

seconds

6.123.2.2 DDS UnsignedLong DDS Time t::nanosec

nanoseconds

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

894 Class Documentation

6.124 DDS TimeBasedFilterQosPolicy Struct
Reference

Filter that allows a DDSDataReader (p. 1004) to specify that it is interested
only in (potentially) a subset of the values of the data.

Public Attributes

ˆ struct DDS Duration t minimum separation

The minimum separation duration between subequent samples.

6.124.1 Detailed Description

Filter that allows a DDSDataReader (p. 1004) to specify that it is interested
only in (potentially) a subset of the values of the data.

The filter states that the DDSDataReader (p. 1004) does not want to re-
ceive more than one value each minimum separation, regardless of how fast the
changes occur.

Entity:

DDSDataReader (p. 1004)

Properties:

RxO (p. 327) = N/A
Changeable (p. 328) = YES (p. 328)

6.124.2 Usage

You can use this QoS policy to reduce the amount of data received by a DDS-
DataReader (p. 1004). DDSDataWriter (p. 1028) entities may send data
faster than needed by a DDSDataReader (p. 1004). For example, a DDS-
DataReader (p. 1004) of sensor data that is displayed to a human operator
in a GUI application does not need to receive data updates faster than a user
can reasonably perceive changes in data values. This is often measure in tenths
(0.1) of a second up to several seconds. However, a DDSDataWriter (p. 1028)
of sensor information may have other DDSDataReader (p. 1004) entities that
are processing the sensor information to control parts of the system and thus
need new data updates in measures of hundredths (0.01) or thousandths (0.001)
of a second.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.124 DDS TimeBasedFilterQosPolicy Struct Reference 895

With this QoS policy, different DDSDataReader (p. 1004) entities can set
their own time-based filters, so that data published faster than the period set
by a each DDSDataReader (p. 1004) will not be delivered to that DDS-
DataReader (p. 1004).

The TIME BASED FILTER (p. 346) also applies to each instance sepa-
rately; that is, the constraint is that the DDSDataReader (p. 1004) does not
want to see more than one sample of each instance per minimum separation
period.

This QoS policy allows you to optimize resource usage (CPU and possibly net-
work bandwidth) by only delivering the required amount of data to each DDS-
DataReader (p. 1004), accommodating the fact that, for rapidly-changing
data, different subscribers may have different requirements and constraints as
to how frequently they need or can handle being notified of the most current
values. As such, it can also be used to protect applications that are running
on a heterogeneous network where some nodes are capable of generating data
much faster than others can consume it.

For best effort, unicast data delivery, if the data type is unkeyed and the DDS-
DataWriter (p. 1028) has an infinite DDS LivelinessQosPolicy::lease -
duration (p. 733), RTI Data Distribution Service will only send as many packets
to a DDSDataReader (p. 1004) as required by the TIME BASED FILTER,
no matter how fast FooDataWriter::write (p. 1368) is called.

However, in configurations where RTI Data Distribution Service must send all
the data published by the DDSDataWriter (p. 1028) (for example, when the
DDSDataWriter (p. 1028) is reliable, when the data type is keyed, or when the
DDSDataWriter (p. 1028) has a finite DDS LivelinessQosPolicy::lease -
duration (p. 733)), only the data that passes the TIME BASED FILTER will
be stored in the receive queue of the DDSDataReader (p. 1004). Extra data
will be accepted but dropped. Note that filtering is only applied on alive samples
(that is, samples that have not been disposed/unregistered).

6.124.3 Consistency

It is inconsistent for a DDSDataReader (p. 1004) to have a minimum -
separation longer than its DEADLINE (p. 339) period.

However, it is important to be aware of certain edge cases that can occur when
your publication rate, minimum separation, and deadline period align and that
can cause missed deadlines that you may not expect. For example, suppose
that you nominally publish samples every second but that this rate can vary
somewhat over time. You declare a minimum separation of 1 second to filter
out rapid updates and set a deadline of two seconds so that you will be aware if
the rate falls too low. Even if your update rate never wavers, you can still miss
deadlines! Here’s why:

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

896 Class Documentation

Suppose you publish the first sample at time t=0 seconds. You then publish
your next sample at t=1 seconds. Depending on how your operating system
schedules the time-based filter execution relative to the publication, this second
sample may be filtered. You then publish your third sample at t=2 seconds, and
depending on how your OS schedules this publication in relation to the deadline
check, you could miss the deadline.

This scenario demonstrates a couple of rules of thumb:

ˆ Beware of setting your minimum separation to a value very close to your
publication rate: you may filter more data than you intend to.

ˆ Beware of setting your minimum separation to a value that is too close
to your deadline period relative to your publication rate. You may miss
deadlines.

See DDS DeadlineQosPolicy (p. 528) for more information about the inter-
actions between deadlines and time-based filters.

The setting of a TIME BASED FILTER (p. 346) – that is, the selection of
a minimum separation with a value greater than zero – is consistent with all
settings of the HISTORY (p. 352) and RELIABILITY (p. 348) QoS. The
TIME BASED FILTER (p. 346) specifies the samples that are of interest to
the DDSDataReader (p. 1004). The HISTORY (p. 352) and RELIABIL-
ITY (p. 348) QoS affect the behavior of the middleware with respect to the
samples that have been determined to be of interest to the DDSDataReader
(p. 1004); that is, they apply after the TIME BASED FILTER (p. 346) has
been applied.

In the case where the reliability QoS kind is DDS RELIABLE -
RELIABILITY QOS (p. 349), in steady-state – defined as the situation where
the DDSDataWriter (p. 1028) does not write new samples for a period ”long”
compared to the minimum separation – the system should guarantee delivery
of the last sample to the DDSDataReader (p. 1004).

See also:

DeadlineQosPolicy
HistoryQosPolicy
ReliabilityQosPolicy

6.124.4 Member Data Documentation

6.124.4.1 struct DDS Duration t DDS -
TimeBasedFilterQosPolicy::minimum separation
[read]

The minimum separation duration between subequent samples.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.124 DDS TimeBasedFilterQosPolicy Struct Reference 897

[default] 0 (meaning the DDSDataReader (p. 1004) is potentially interested
in all values)

[range] [0,1 year], < DDS DeadlineQosPolicy::period (p. 530)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

898 Class Documentation

6.125 DDS TopicBuiltinTopicData Struct Ref-
erence

Entry created when a Topic object discovered.

Public Attributes

ˆ DDS BuiltinTopicKey t key
DCPS key to distinguish entries.

ˆ char ∗ name
Name of the DDSTopic (p. 1311).

ˆ char ∗ type name
Name of the type attached to the DDSTopic (p. 1311).

ˆ struct DDS DurabilityQosPolicy durability
durability policy of the corresponding Topic

ˆ struct DDS DurabilityServiceQosPolicy durability service
durability service policy of the corresponding Topic

ˆ struct DDS DeadlineQosPolicy deadline
Policy of the corresponding Topic.

ˆ struct DDS LatencyBudgetQosPolicy latency budget
Policy of the corresponding Topic.

ˆ struct DDS LivelinessQosPolicy liveliness
Policy of the corresponding Topic.

ˆ struct DDS ReliabilityQosPolicy reliability
Policy of the corresponding Topic.

ˆ struct DDS TransportPriorityQosPolicy transport priority
Policy of the corresponding Topic.

ˆ struct DDS LifespanQosPolicy lifespan
Policy of the corresponding Topic.

ˆ struct DDS DestinationOrderQosPolicy destination order
Policy of the corresponding Topic.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.125 DDS TopicBuiltinTopicData Struct Reference 899

ˆ struct DDS HistoryQosPolicy history

Policy of the corresponding Topic.

ˆ struct DDS ResourceLimitsQosPolicy resource limits

Policy of the corresponding Topic.

ˆ struct DDS OwnershipQosPolicy ownership

Policy of the corresponding Topic.

ˆ struct DDS TopicDataQosPolicy topic data

Policy of the corresponding Topic.

6.125.1 Detailed Description

Entry created when a Topic object discovered.

Data associated with the built-in topic DDS TOPIC TOPIC NAME
(p. 277). It contains QoS policies and additional information that apply to
the remote DDSTopic (p. 1311).

Note: The DDS TopicBuiltinTopicData (p. 898) built-in topic is meant
to convey information about discovered Topics. This Topics sam-
ples are not propagated in a separate packet on the wire. In-
stead, the data is sent as part of the information carried by other
built-in topics (DDS PublicationBuiltinTopicData (p. 788) and DDS -
SubscriptionBuiltinTopicData (p. 876)). Therefore TopicBuiltinTopicData
DataReaders will not receive any data.

See also:

DDS TOPIC TOPIC NAME (p. 277)
DDSTopicBuiltinTopicDataDataReader (p. 1317)

6.125.2 Member Data Documentation

6.125.2.1 DDS BuiltinTopicKey t DDS TopicBuiltinTopicData::key

DCPS key to distinguish entries.

6.125.2.2 char∗ DDS TopicBuiltinTopicData::name

Name of the DDSTopic (p. 1311).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

900 Class Documentation

The length of this string is limited to 255 characters.

The memory for this field is managed as described in Conventions (p. 432).

See also:

Conventions (p. 432)

6.125.2.3 char∗ DDS TopicBuiltinTopicData::type name

Name of the type attached to the DDSTopic (p. 1311).

The length of this string is limited to 255 characters.

The memory for this field is managed as described in Conventions (p. 432).

See also:

Conventions (p. 432)

6.125.2.4 struct DDS DurabilityQosPolicy
DDS TopicBuiltinTopicData::durability [read]

durability policy of the corresponding Topic

6.125.2.5 struct DDS DurabilityServiceQosPolicy
DDS TopicBuiltinTopicData::durability service [read]

durability service policy of the corresponding Topic

6.125.2.6 struct DDS DeadlineQosPolicy
DDS TopicBuiltinTopicData::deadline [read]

Policy of the corresponding Topic.

6.125.2.7 struct DDS LatencyBudgetQosPolicy
DDS TopicBuiltinTopicData::latency budget [read]

Policy of the corresponding Topic.

6.125.2.8 struct DDS LivelinessQosPolicy
DDS TopicBuiltinTopicData::liveliness [read]

Policy of the corresponding Topic.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.125 DDS TopicBuiltinTopicData Struct Reference 901

6.125.2.9 struct DDS ReliabilityQosPolicy
DDS TopicBuiltinTopicData::reliability [read]

Policy of the corresponding Topic.

6.125.2.10 struct DDS TransportPriorityQosPolicy
DDS TopicBuiltinTopicData::transport priority [read]

Policy of the corresponding Topic.

6.125.2.11 struct DDS LifespanQosPolicy
DDS TopicBuiltinTopicData::lifespan [read]

Policy of the corresponding Topic.

6.125.2.12 struct DDS DestinationOrderQosPolicy
DDS TopicBuiltinTopicData::destination order [read]

Policy of the corresponding Topic.

6.125.2.13 struct DDS HistoryQosPolicy
DDS TopicBuiltinTopicData::history [read]

Policy of the corresponding Topic.

6.125.2.14 struct DDS ResourceLimitsQosPolicy
DDS TopicBuiltinTopicData::resource limits [read]

Policy of the corresponding Topic.

6.125.2.15 struct DDS OwnershipQosPolicy
DDS TopicBuiltinTopicData::ownership [read]

Policy of the corresponding Topic.

6.125.2.16 struct DDS TopicDataQosPolicy
DDS TopicBuiltinTopicData::topic data [read]

Policy of the corresponding Topic.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

902 Class Documentation

6.126 DDS TopicBuiltinTopicDataSeq Struct
Reference

Instantiates FooSeq (p. 1377) < DDS TopicBuiltinTopicData (p. 898) > .

6.126.1 Detailed Description

Instantiates FooSeq (p. 1377) < DDS TopicBuiltinTopicData (p. 898) > .

Instantiates:

<<generic>> (p. 190) FooSeq (p. 1377)

See also:

DDS TopicBuiltinTopicData (p. 898)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.127 DDS TopicDataQosPolicy Struct Reference 903

6.127 DDS TopicDataQosPolicy Struct Refer-
ence

Attaches a buffer of opaque data that is distributed by means of Built-in
Topics (p. 41) during discovery.

Public Attributes

ˆ struct DDS OctetSeq value
a sequence of octets

6.127.1 Detailed Description

Attaches a buffer of opaque data that is distributed by means of Built-in
Topics (p. 41) during discovery.

Entity:

DDSTopic (p. 1311)

Properties:

RxO (p. 327) = NO
Changeable (p. 328) = YES (p. 328)

See also:

DDSDomainParticipant::get builtin subscriber (p. 1100)

6.127.2 Usage

The purpose of this QoS is to allow the application to attach additional in-
formation to the created DDSTopic (p. 1311) objects, so that when a remote
application discovers their existence, it can access that information and use it
for its own purposes. This extra data is not used by RTI Data Distribution
Service.

One possible use of this QoS is to attach security credentials or some other
information that can be used by the remote application to authenticate the
source.

In combination with DDSDataReaderListener (p. 1023), DDS-
DataWriterListener (p. 1048), or operations such as DDSDomain-
Participant::ignore topic (p. 1101), this QoS policy can assist an application
in defining and enforcing its own security policies.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

904 Class Documentation

The use of this QoS is not limited to security; it offers a simple, yet flexible
extensibility mechanism.

Important: RTI Data Distribution Service stores the data placed in
this policy in pre-allocated pools. It is therefore necessary to con-
figure RTI Data Distribution Service with the maximum size of the
data that will be stored in policies of this type. This size is con-
figured with DDS DomainParticipantResourceLimitsQosPolicy::topic -
data max length (p. 566).

6.127.3 Member Data Documentation

6.127.3.1 struct DDS OctetSeq DDS TopicDataQosPolicy::value
[read]

a sequence of octets

[default] empty (zero-length)

[range] Octet sequence of length [0,max length]

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.128 DDS TopicQos Struct Reference 905

6.128 DDS TopicQos Struct Reference

QoS policies supported by a DDSTopic (p. 1311) entity.

Public Attributes

ˆ struct DDS TopicDataQosPolicy topic data

Topic data policy, TOPIC DATA (p. 333).

ˆ struct DDS DurabilityQosPolicy durability

Durability policy, DURABILITY (p. 335).

ˆ struct DDS DurabilityServiceQosPolicy durability service

DurabilityService policy, DURABILITY SERVICE (p. 355).

ˆ struct DDS DeadlineQosPolicy deadline

Deadline policy, DEADLINE (p. 339).

ˆ struct DDS LatencyBudgetQosPolicy latency budget

Latency budget policy, LATENCY BUDGET (p. 340).

ˆ struct DDS LivelinessQosPolicy liveliness

Liveliness policy, LIVELINESS (p. 344).

ˆ struct DDS ReliabilityQosPolicy reliability

Reliability policy, RELIABILITY (p. 348).

ˆ struct DDS DestinationOrderQosPolicy destination order

Destination order policy, DESTINATION ORDER (p. 350).

ˆ struct DDS HistoryQosPolicy history

History policy, HISTORY (p. 352).

ˆ struct DDS ResourceLimitsQosPolicy resource limits

Resource limits policy, RESOURCE LIMITS (p. 356).

ˆ struct DDS TransportPriorityQosPolicy transport priority

Transport priority policy, TRANSPORT PRIORITY (p. 358).

ˆ struct DDS LifespanQosPolicy lifespan

Lifespan policy, LIFESPAN (p. 359).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

906 Class Documentation

ˆ struct DDS OwnershipQosPolicy ownership

Ownership policy, OWNERSHIP (p. 341).

6.128.1 Detailed Description

QoS policies supported by a DDSTopic (p. 1311) entity.

You must set certain members in a consistent manner:

length of DDS TopicQos::topic data (p. 906) .value <= DDS -
DomainParticipantQos::resource limits (p. 551) .topic data max length

If any of the above are not true, DDSTopic::set qos (p. 1313),
DDSTopic::set qos with profile (p. 1314) and DDSDomainPartici-
pant::set default topic qos (p. 1075) will fail with DDS RETCODE -
INCONSISTENT POLICY (p. 304) and DDSDomainPartici-
pant::create topic (p. 1089) will return NULL.

Entity:

DDSTopic (p. 1311)

See also:

QoS Policies (p. 319) allowed ranges within each Qos.

6.128.2 Member Data Documentation

6.128.2.1 struct DDS TopicDataQosPolicy
DDS TopicQos::topic data [read]

Topic data policy, TOPIC DATA (p. 333).

6.128.2.2 struct DDS DurabilityQosPolicy
DDS TopicQos::durability [read]

Durability policy, DURABILITY (p. 335).

6.128.2.3 struct DDS DurabilityServiceQosPolicy
DDS TopicQos::durability service [read]

DurabilityService policy, DURABILITY SERVICE (p. 355).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.128 DDS TopicQos Struct Reference 907

6.128.2.4 struct DDS DeadlineQosPolicy DDS TopicQos::deadline
[read]

Deadline policy, DEADLINE (p. 339).

6.128.2.5 struct DDS LatencyBudgetQosPolicy
DDS TopicQos::latency budget [read]

Latency budget policy, LATENCY BUDGET (p. 340).

6.128.2.6 struct DDS LivelinessQosPolicy DDS TopicQos::liveliness
[read]

Liveliness policy, LIVELINESS (p. 344).

6.128.2.7 struct DDS ReliabilityQosPolicy
DDS TopicQos::reliability [read]

Reliability policy, RELIABILITY (p. 348).

6.128.2.8 struct DDS DestinationOrderQosPolicy
DDS TopicQos::destination order [read]

Destination order policy, DESTINATION ORDER (p. 350).

6.128.2.9 struct DDS HistoryQosPolicy DDS TopicQos::history
[read]

History policy, HISTORY (p. 352).

6.128.2.10 struct DDS ResourceLimitsQosPolicy
DDS TopicQos::resource limits [read]

Resource limits policy, RESOURCE LIMITS (p. 356).

6.128.2.11 struct DDS TransportPriorityQosPolicy
DDS TopicQos::transport priority [read]

Transport priority policy, TRANSPORT PRIORITY (p. 358).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

908 Class Documentation

6.128.2.12 struct DDS LifespanQosPolicy DDS TopicQos::lifespan
[read]

Lifespan policy, LIFESPAN (p. 359).

6.128.2.13 struct DDS OwnershipQosPolicy
DDS TopicQos::ownership [read]

Ownership policy, OWNERSHIP (p. 341).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.129 DDS TransportBuiltinQosPolicy Struct Reference 909

6.129 DDS TransportBuiltinQosPolicy Struct
Reference

Specifies which built-in transports are used.

Public Attributes

ˆ DDS TransportBuiltinKindMask mask

Specifies the built-in transports that are registered automatically when the
DDSDomainParticipant (p. 1054) is enabled.

6.129.1 Detailed Description

Specifies which built-in transports are used.

Three different transport plug-ins are built into the core RTI Data Distribution
Service libraries (for most supported target platforms): UDPv4, shared memory,
and UDPv6.

This QoS policy allows you to control which of these built-in transport plug-
ins are used by a DDSDomainParticipant (p. 1054). By default, only the
UDPv4 and shared memory plug-ins are enabled (although on some embedded
platforms, the shared memory plug-in is not available). In some cases, users
will disable the shared memory transport when they do not want applications
to use shared memory to communicate when running on the same node.

Entity:

DDSDomainParticipant (p. 1054)

Properties:

RxO (p. 327) = N/A
Changeable (p. 328) = NO (p. 328)

6.129.2 Member Data Documentation

6.129.2.1 DDS TransportBuiltinKindMask
DDS TransportBuiltinQosPolicy::mask

Specifies the built-in transports that are registered automatically when the
DDSDomainParticipant (p. 1054) is enabled.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

910 Class Documentation

RTI Data Distribution Service provides several built-in transports. Only those
that are specified with this mask are registered automatically when the DDS-
DomainParticipant (p. 1054) is enabled.

[default] DDS TRANSPORTBUILTIN MASK DEFAULT (p. 380)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.130 DDS TransportMulticastQosPolicy Struct Reference 911

6.130 DDS TransportMulticastQosPolicy
Struct Reference

Specifies the multicast address on which a DDSDataReader (p. 1004) wants
to receive its data. It can also specify a port number as well as a subset of
the available (at the DDSDomainParticipant (p. 1054) level) transports with
which to receive the multicast data.

Public Attributes

ˆ struct DDS TransportMulticastSettingsSeq value
A sequence of multicast communications settings.

6.130.1 Detailed Description

Specifies the multicast address on which a DDSDataReader (p. 1004) wants
to receive its data. It can also specify a port number as well as a subset of
the available (at the DDSDomainParticipant (p. 1054) level) transports with
which to receive the multicast data.

By default, a DDSDataWriter (p. 1028) will send individually addressed pack-
ets for each DDSDataReader (p. 1004) that subscribes to the topic of the
DataWriter this is known as unicast delivery. Thus, as many copies of the
data will be sent over the network as there are DataReaders for the data. The
network bandwidth used by a DataWriter will thus increase linearly with the
number of DataReaders.

Multicast addressing (on UDP/IP transports) allows multiple DataReaders to
receive the same network packet. By using multicast, a DDSDataWriter
(p. 1028) can send a single network packet that is received by all subscribing
applications. Thus the network bandwidth usage will be constant, independent
of the number of DataReaders.

Coordinating the multicast address specified by DataReaders can help optimize
network bandwidth usage in systems where there are multiple DataReaders for
the same DDSTopic (p. 1311).

Entity:

DDSDataReader (p. 1004)

Properties:

RxO (p. 327) = N/A
Changeable (p. 328) = NO (p. 328)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

912 Class Documentation

6.130.2 Member Data Documentation

6.130.2.1 struct DDS TransportMulticastSettingsSeq
DDS TransportMulticastQosPolicy::value [read]

A sequence of multicast communications settings.

An empty sequence means that multicast is not used by the entity.

The RTPS wire protocol currently limits the maximum number of multicast
locators to four.

[default] Empty sequence.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.131 DDS TransportMulticastSettings t Struct Reference 913

6.131 DDS TransportMulticastSettings t
Struct Reference

Type representing a list of multicast locators.

Public Attributes

ˆ struct DDS StringSeq transports

A sequence of transport aliases that specifies the transports on which to re-
ceive multicast traffic for the entity.

ˆ char ∗ receive address

The multicast group address on which the entity can receive data.

ˆ DDS Long receive port

The multicast port on which the entity can receive data.

6.131.1 Detailed Description

Type representing a list of multicast locators.

A multicast locator specifies a transport class, a multicast address, and a mul-
ticast port number on which messages can be received by an entity.

QoS:

DDS TransportMulticastQosPolicy (p. 911)

6.131.2 Member Data Documentation

6.131.2.1 struct DDS StringSeq DDS TransportMulticastSettings -
t::transports [read]

A sequence of transport aliases that specifies the transports on which to receive
multicast traffic for the entity.

Of the transport instances available to the entity, only those with aliases match-
ing an alias in this sequence are used to subscribe to the multicast group ad-
dresses. Thus, this list of aliases sub-selects from the transport s available to
the entity.

An empty sequence is a special value that specifies all the transports available
to the entity.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

914 Class Documentation

The memory for the strings in this sequence is managed according to the con-
ventions described in Conventions (p. 432). In particular, be careful to avoid
a situation in which RTI Data Distribution Service allocates a string on your
behalf and you then reuse that string in such a way that RTI Data Distribution
Service believes it to have more memory allocated to it than it actually does.

Alias names for the builtin transports are defined in TRANSPORT -
BUILTIN (p. 379).

[default] Empty sequence; i.e. all the transports available to the entity.

[range] Any sequence of non-null, non-empty strings.

6.131.2.2 char∗ DDS TransportMulticastSettings t::receive address

The multicast group address on which the entity can receive data.

Must must be an address in the proper format (see Address Format (p. 373)).

[default] NONE/INVALID. Required to specify a multicast group address to
join.

[range] A valid IPv4 or IPv6 multicast address.

See also:

Address Format (p. 373)

6.131.2.3 DDS Long DDS TransportMulticastSettings t::receive -
port

The multicast port on which the entity can receive data.

[default] 0, which implies that the actual port number is deter-
mined by a formula as a function of the domain id (see DDS -
WireProtocolQosPolicy::participant id (p. 985)).

[range] [0,0xffffffff]

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.132 DDS TransportMulticastSettingsSeq Struct Reference 915

6.132 DDS TransportMulticastSettingsSeq
Struct Reference

Declares IDL sequence< DDS TransportMulticastSettings t (p. 913) >.

6.132.1 Detailed Description

Declares IDL sequence< DDS TransportMulticastSettings t (p. 913) >.

Instantiates:

<<generic>> (p. 190) FooSeq (p. 1377)

See also:

DDS TransportMulticastSettings t (p. 913)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

916 Class Documentation

6.133 DDS TransportPriorityQosPolicy Struct
Reference

This QoS policy allows the application to take advantage of transports that are
capable of sending messages with different priorities.

Public Attributes

ˆ DDS Long value

This policy is a hint to the infrastructure as to how to set the priority of the
underlying transport used to send the data.

6.133.1 Detailed Description

This QoS policy allows the application to take advantage of transports that are
capable of sending messages with different priorities.

The Transport Priority QoS policy is optional and only supported on certain OSs
and transports. It allows you to specify on a per-DDSDataWriter (p. 1028)
basis that the data sent by that DDSDataWriter (p. 1028) is of a different
priority.

The DDS specification does not indicate how a DDS implementation should
treat data of different priorities. It is often difficult or impossible for DDS
implementations to treat data of higher priority differently than data of lower
priority, especially when data is being sent (delivered to a physical transport) di-
rectly by the thread that called FooDataWriter::write (p. 1368). Also, many
physical network transports themselves do not have a end-user controllable level
of data packet priority.

Entity:

DDSDataWriter (p. 1028), DDSTopic (p. 1311)

Properties:

RxO (p. 327) = N/A
Changeable (p. 328) = YES (p. 328)

6.133.2 Usage

In RTI Data Distribution Service, for the ::UDPv4 Transport (p. 255), the
value set in the Transport Priority QoS policy is used in a setsockopt call to

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.133 DDS TransportPriorityQosPolicy Struct Reference 917

set the TOS (type of service) bits of the IPv4 header for datagrams sent by
a DDSDataWriter (p. 1028). It is platform-dependent how and whether the
setsockopt has an effect. On some platforms, such as Windows and Linux,
external permissions must be given to the user application in order to set the
TOS bits.

It is incorrect to assume that using the Transport Priority QoS policy will have
any effect at all on the end-to-end delivery of data from a DDSDataWriter
(p. 1028) to a DDSDataReader (p. 1004). All network elements, including
switches and routers must have the capability and be enabled to actually use
the TOS bits to treat higher priority packets differently. Thus the ability to use
the Transport Priority QoS policy must be designed and configured at a system
level; just turning it on in an application may have no effect at all.

6.133.3 Member Data Documentation

6.133.3.1 DDS Long DDS TransportPriorityQosPolicy::value

This policy is a hint to the infrastructure as to how to set the priority of the
underlying transport used to send the data.

You may choose any value within the range of a 32-bit signed integer; higher
values indicate higher priority. However, any further interpretation of this policy
is specific to a particular transport and a particular DDS implementation. For
example, a particular transport is permitted to treat a range of priority values
as equivalent to one another.

[default] 0

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

918 Class Documentation

6.134 DDS TransportSelectionQosPolicy Struct
Reference

Specifies the physical transports a DDSDataWriter (p. 1028) or DDS-
DataReader (p. 1004) may use to send or receive data.

Public Attributes

ˆ struct DDS StringSeq enabled transports

A sequence of transport aliases that specifies the transport instances available
for use by the entity.

6.134.1 Detailed Description

Specifies the physical transports a DDSDataWriter (p. 1028) or DDS-
DataReader (p. 1004) may use to send or receive data.

An application may be simultaneously connected to many different physical
transports, e.g., Ethernet, Infiniband, shared memory, VME backplane, and
wireless. By default, RTI Data Distribution Service will use up to 4 transports
to deliver data from a DataWriter to a DataReader.

This QoS policy can be used to both limit and control which of the application’s
available transports may be used by a DDSDataWriter (p. 1028) to send data
or by a DDSDataReader (p. 1004) to receive data.

Entity:

DDSDataReader (p. 1004), DDSDataWriter (p. 1028)

Properties:

RxO (p. 327) = N/A
Changeable (p. 328) = NO (p. 328)

6.134.2 Member Data Documentation

6.134.2.1 struct DDS StringSeq DDS -
TransportSelectionQosPolicy::enabled transports
[read]

A sequence of transport aliases that specifies the transport instances available
for use by the entity.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.134 DDS TransportSelectionQosPolicy Struct Reference 919

Of the transport instances installed with the DDSDomainParticipant
(p. 1054), only those with aliases matching an alias in this sequence are available
to the entity.

Thus, this list of aliases sub-selects from the transports available to the DDS-
DomainParticipant (p. 1054).

An empty sequence is a special value that specifies all the transports installed
with the DDSDomainParticipant (p. 1054).

The memory for the strings in this sequence is managed according to the con-
ventions described in Conventions (p. 432). In particular, be careful to avoid
a situation in which RTI Data Distribution Service allocates a string on your
behalf and you then reuse that string in such a way that RTI Data Distribution
Service believes it to have more memory allocated to it than it actually does.

Alias names for the builtin transports are defined in TRANSPORT -
BUILTIN (p. 379).

[default] Empty sequence; i.e. all the transports installed with and available
to the DDSDomainParticipant (p. 1054).

[range] A sequence of non-null, non-empty strings.

See also:

DDS DomainParticipantQos::transport builtin (p. 550).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

920 Class Documentation

6.135 DDS TransportUnicastQosPolicy Struct
Reference

Specifies a subset of transports and a port number that can be used by an Entity
to receive data.

Public Attributes

ˆ struct DDS TransportUnicastSettingsSeq value

A sequence of unicast communication settings.

6.135.1 Detailed Description

Specifies a subset of transports and a port number that can be used by an Entity
to receive data.

Entity:

DDSDomainParticipant (p. 1054), DDSDataReader (p. 1004), DDS-
DataWriter (p. 1028)

Properties:

RxO (p. 327) = N/A
Changeable (p. 328) = NO (p. 328)

6.135.2 Usage

RTI Data Distribution Service may send data to a variety of Entities, not
just DataReaders. For example, reliable DataWriters may receive ACK/NACK
packets from reliable DataReaders.

During discovery, each DDSEntity (p. 1157) announces to remote applications
a list of (up to 4) unicast addresses to which the remote application should
send data (either user data packets or reliable protocol meta-data such as
ACK/NACKs and heartbeats).

By default, the list of addresses is populated automatically with val-
ues obtained from the enabled transport plug-ins allowed to be used by
the Entity (see DDS TransportBuiltinQosPolicy (p. 909) and DDS -
TransportSelectionQosPolicy (p. 918)). Also, the associated ports are auto-
matically determined (see DDS RtpsWellKnownPorts t (p. 849)).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.135 DDS TransportUnicastQosPolicy Struct Reference 921

Use this QoS policy to manually set the receive address list for an Entity. You
may optionally set a port to use a non-default receive port as well. Only the
first 4 addresses will be used.

RTI Data Distribution Service will create a receive thread for every unique port
number that it encounters (on a per transport basis).

ˆ For a DDSDomainParticipant (p. 1054), this QoS policy sets the de-
fault list of addresses used by other applications to send user data for local
DataReaders.

ˆ For a DDSDataReader (p. 1004), if set, then other applications will use
the specified list of addresses to send user data (and reliable protocol pack-
ets for reliable DataReaders). Otherwise, if not set, the other applications
will use the addresses set by the DDSDomainParticipant (p. 1054).

ˆ For a reliable DDSDataWriter (p. 1028), if set, then other applications
will use the specified list of addresses to send reliable protocol packets
(ACKS/NACKS) on the behalf of reliable DataReaders. Otherwise, if not
set, the other applications will use the addresses set by the DDSDomain-
Participant (p. 1054).

6.135.3 Member Data Documentation

6.135.3.1 struct DDS TransportUnicastSettingsSeq
DDS TransportUnicastQosPolicy::value [read]

A sequence of unicast communication settings.

An empty sequence means that applicable defaults specified by elsewhere (e.g.
DDS DomainParticipantQos::default unicast (p. 550)) should be used.

The RTPS wire protocol currently limits the maximum number of unicast loca-
tors to four.

[default] Empty sequence.

See also:

DDS DomainParticipantQos::default unicast (p. 550)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

922 Class Documentation

6.136 DDS TransportUnicastSettings t Struct
Reference

Type representing a list of unicast locators.

Public Attributes

ˆ struct DDS StringSeq transports

A sequence of transport aliases that specifies the unicast interfaces on which
to receive unicast traffic for the entity.

ˆ DDS Long receive port

The unicast port on which the entity can receive data.

6.136.1 Detailed Description

Type representing a list of unicast locators.

A unicast locator specifies a transport class, a unicast address, and a unicast
port number on which messages can be received by an entity.

QoS:

DDS TransportUnicastQosPolicy (p. 920)

6.136.2 Member Data Documentation

6.136.2.1 struct DDS StringSeq DDS TransportUnicastSettings -
t::transports [read]

A sequence of transport aliases that specifies the unicast interfaces on which to
receive unicast traffic for the entity.

Of the transport instances available to the entity, only those with aliases match-
ing an alias on this sequence are used to determine the unicast interfaces used
by the entity.

Thus, this list of aliases sub-selects from the transports available to the entity.

Each unicast interface on a transport results in a unicast locator for the entity.

An empty sequence is a special value that specifies all the transports available
to the entity.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.136 DDS TransportUnicastSettings t Struct Reference 923

The memory for the strings in this sequence is managed according to the con-
ventions described in Conventions (p. 432). In particular, be careful to avoid
a situation in which RTI Data Distribution Service allocates a string on your
behalf and you then reuse that string in such a way that RTI Data Distribution
Service believes it to have more memory allocated to it than it actually does.

Alias names for the builtin transports are defined in TRANSPORT -
BUILTIN (p. 379).

[default] Empty sequence; i.e. all the transports available to the entity.

[range] Any sequence of non-null, non-empty strings.

6.136.2.2 DDS Long DDS TransportUnicastSettings t::receive port

The unicast port on which the entity can receive data.

Must be an unused unicast port on the system.

[default] 0, which implies that the actual port number is deter-
mined by a formula as a function of the domain id, and the DDS -
WireProtocolQosPolicy::participant id (p. 985).

[range] [0,0xffffffff]

See also:

DDS WireProtocolQosPolicy::participant id (p. 985).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

924 Class Documentation

6.137 DDS TransportUnicastSettingsSeq
Struct Reference

Declares IDL sequence< DDS TransportUnicastSettings t (p. 922) >.

6.137.1 Detailed Description

Declares IDL sequence< DDS TransportUnicastSettings t (p. 922) >.

Instantiates:

<<generic>> (p. 190) FooSeq (p. 1377)

See also:

DDS TransportUnicastSettings t (p. 922)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.138 DDS TypeCode Struct Reference 925

6.138 DDS TypeCode Struct Reference

The definition of a particular data type, which you can use to inspect the name,
members, and other properties of types generated with rtiddsgen (p. 211) or
to modify types you define yourself at runtime.

Public Member Functions

ˆ DDS TCKind kind (DDS ExceptionCode t &ex) const
Gets the DDS TCKind (p. 65) value of a type code.

ˆ DDS Boolean equal (const DDS TypeCode ∗tc, DDS -
ExceptionCode t &ex) const

Compares two DDS TypeCode (p. 925) objects for equality.

ˆ const char ∗ name (DDS ExceptionCode t &ex) const
Retrieves the simple name identifying this DDS TypeCode (p. 925) object
within its enclosing scope.

ˆ DDS UnsignedLong member count (DDS ExceptionCode t &ex)
const

Returns the number of members of the type code.

ˆ const char ∗ member name (DDS UnsignedLong index, DDS -
ExceptionCode t &ex) const

Returns the name of a type code member identified by the given index.

ˆ DDS UnsignedLong find member by name (const char ∗name,
DDS ExceptionCode t &ex) const

Get the index of the member of the given name.

ˆ DDS TypeCode ∗ member type (DDS UnsignedLong index,
DDS ExceptionCode t &ex) const

Retrieves the DDS TypeCode (p. 925) object describing the type of the
member identified by the given index.

ˆ DDS UnsignedLong member label count (DDS UnsignedLong
index, DDS ExceptionCode t &ex) const

Returns the number of labels associated to the index-th union member.

ˆ DDS Long member label (DDS UnsignedLong member index,
DDS UnsignedLong label index, DDS ExceptionCode t &ex)
const

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

926 Class Documentation

Return the label index-th label associated to the member index-th member.

ˆ DDS Long member ordinal (DDS UnsignedLong index, DDS -
ExceptionCode t &ex) const

Returns the ordinal that corresponds to the index-th enum value.

ˆ DDS Boolean is member key (DDS UnsignedLong index, DDS -
ExceptionCode t &ex) const

Function that tells if a member is a key or not.

ˆ DDS Boolean is member required (DDS UnsignedLong index,
DDS ExceptionCode t &ex) const

Indicates whether a given member of a type is required to be present in every
sample of that type.

ˆ DDS Boolean is member pointer (DDS UnsignedLong index,
DDS ExceptionCode t &ex) const

Function that tells if a member is a pointer or not.

ˆ DDS Boolean is member bitfield (DDS UnsignedLong index,
DDS ExceptionCode t &ex) const

Function that tells if a member is a bitfield or not.

ˆ DDS Short member bitfield bits (DDS UnsignedLong index,
DDS ExceptionCode t &ex) const

Returns the number of bits of a bitfield member.

ˆ DDS Visibility member visibility (DDS UnsignedLong index,
DDS ExceptionCode t &ex) const

Returns the constant that indicates the visibility of the index-th member.

ˆ DDS TypeCode ∗ discriminator type (DDS ExceptionCode t
&ex) const

Returns the discriminator type code.

ˆ DDS UnsignedLong length (DDS ExceptionCode t &ex) const
Returns the number of elements in the type described by this type code.

ˆ DDS UnsignedLong array dimension count (DDS -
ExceptionCode t &ex) const

This function returns the number of dimensions of an array type code.

ˆ DDS UnsignedLong array dimension (DDS UnsignedLong index,
DDS ExceptionCode t &ex) const

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.138 DDS TypeCode Struct Reference 927

This function returns the index-th dimension of an array type code.

ˆ DDS UnsignedLong element count (DDS ExceptionCode t &ex)
const

The number of elements in an array.

ˆ DDS TypeCode ∗ content type (DDS ExceptionCode t &ex)
const

Returns the DDS TypeCode (p. 925) object representing the type for the
members of the object described by this DDS TypeCode (p. 925) object.

ˆ DDS Boolean is alias pointer (DDS ExceptionCode t &ex)
const

Function that tells if an alias is a pointer or not.

ˆ DDS Long default index (DDS ExceptionCode t &ex) const
Returns the index of the default member, or -1 if there is no default member.

ˆ DDS TypeCode ∗ concrete base type (DDS ExceptionCode t
&ex) const

Returns the DDS TypeCode (p. 925) that describes the concrete base type
of the value type that this DDS TypeCode (p. 925) object describes.

ˆ DDS ValueModifier type modifier (DDS ExceptionCode t &ex)
const

Returns a constant indicating the modifier of the value type that this DDS -
TypeCode (p. 925) object describes.

ˆ DDS Long member id (DDS UnsignedLong index, DDS -
ExceptionCode t &ex) const

Returns the ID of a sparse type code member identified by the given index.

ˆ DDS UnsignedLong find member by id (DDS Long id, DDS -
ExceptionCode t &ex) const

Get the index of the member of the given ID.

ˆ DDS UnsignedLong add member to enum (const char ∗name,
DDS Long ordinal, DDS ExceptionCode t &ex)

Add a new enumerated constant to this enum DDS TypeCode (p. 925).

ˆ DDS UnsignedLong add member (const char ∗name, DDS Long
id, const DDS TypeCode ∗tc, DDS Octet member flags, DDS -
ExceptionCode t &ex)

Add a new member to this DDS TypeCode (p. 925).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

928 Class Documentation

ˆ DDS UnsignedLong add member ex (const char ∗name, DDS Long
id, const DDS TypeCode ∗tc, DDS Octet member flags, DDS -
Visibility visibility, DDS Boolean is pointer, DDS Short bits, DDS -
ExceptionCode t &ex)

Add a new member to this DDS TypeCode (p. 925).

ˆ void print IDL (DDS UnsignedLong indent, DDS -
ExceptionCode t &ex) const

Prints a DDS TypeCode (p. 925) in a pseudo-IDL notation.

6.138.1 Detailed Description

The definition of a particular data type, which you can use to inspect the name,
members, and other properties of types generated with rtiddsgen (p. 211) or
to modify types you define yourself at runtime.

You create DDS TypeCode (p. 925) objects using the DDS -
TypeCodeFactory (p. 951) singleton. Then you can use the methods
on this class to inspect and modify the data type definition.

This class is based on a similar class from CORBA.

MT Safety:

SAFE for read-only access, UNSAFE for modification. Modifying a sin-
gle DDS TypeCode (p. 925) object concurrently from multiple threads
is unsafe. Modifying a DDS TypeCode (p. 925) from a single thread
while concurrently reading the state of that DDS TypeCode (p. 925) from
another thread is also unsafe. However, reading the state of a DDS -
TypeCode (p. 925) concurrently from multiple threads, without any mod-
ification, is safe.

Examples:

HelloWorld.cxx.

6.138.2 Member Function Documentation

6.138.2.1 DDS TCKind DDS TypeCode::kind
(DDS ExceptionCode t & ex) const

Gets the DDS TCKind (p. 65) value of a type code.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.138 DDS TypeCode Struct Reference 929

Parameters:

ex <<out>> (p. 191) Parameter for error indications. The values that it
can take are:

ˆ DDS NO EXCEPTION CODE (p. 300)
ˆ DDS BAD TYPECODE SYSTEM EXCEPTION -

CODE (p. 301)

Retrieves the kind of this DDS TypeCode (p. 925) object. The kind of a
type code determines which DDS TypeCode (p. 925) methods may legally be
invoked on it.

MT Safety:

SAFE.

Returns:

The type code kind.

6.138.2.2 DDS Boolean DDS TypeCode::equal (const
DDS TypeCode ∗ tc, DDS ExceptionCode t & ex) const

Compares two DDS TypeCode (p. 925) objects for equality.

MT Safety:

SAFE.

Parameters:

tc <<in>> (p. 191) Type code that will be compared with this DDS -
TypeCode (p. 925).

ex <<out>> (p. 191) Parameter for error indications. The values that
can take are:

ˆ DDS NO EXCEPTION CODE (p. 300)
ˆ DDS BAD PARAM SYSTEM EXCEPTION CODE

(p. 301)
ˆ DDS BAD TYPECODE SYSTEM EXCEPTION -

CODE (p. 301)

Returns:

DDS BOOLEAN TRUE (p. 288) if the type codes are equal. Otherwise,
DDS BOOLEAN FALSE (p. 289).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

930 Class Documentation

6.138.2.3 const char∗ DDS TypeCode::name
(DDS ExceptionCode t & ex) const

Retrieves the simple name identifying this DDS TypeCode (p. 925) object
within its enclosing scope.

Precondition:

self kind is DDS TK STRUCT (p. 65), DDS TK UNION (p. 65),
DDS TK ENUM (p. 65), DDS TK VALUE (p. 65), DDS TK -
SPARSE (p. 65) or DDS TK ALIAS (p. 65).

MT Safety:

SAFE.

Parameters:

ex <<out>> (p. 191) Parameter for error indications. The values that
can take are:

ˆ DDS NO EXCEPTION CODE (p. 300)
ˆ DDS BAD TYPECODE SYSTEM EXCEPTION -

CODE (p. 301)
ˆ DDS BADKIND USER EXCEPTION CODE (p. 301)

Returns:

Name of the type code if no errors.

6.138.2.4 DDS UnsignedLong DDS TypeCode::member count
(DDS ExceptionCode t & ex) const

Returns the number of members of the type code.

The method member count can be invoked on structure, union, and enumeration
DDS TypeCode (p. 925) objects.

Precondition:

self kind is DDS TK STRUCT (p. 65), DDS TK UNION (p. 65),
DDS TK ENUM (p. 65), DDS TK VALUE (p. 65) or DDS TK -
SPARSE (p. 65).

MT Safety:

SAFE.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.138 DDS TypeCode Struct Reference 931

Parameters:

ex <<out>> (p. 191) Parameter for error indications. The values that
can take are:

ˆ DDS NO EXCEPTION CODE (p. 300)
ˆ DDS BAD TYPECODE SYSTEM EXCEPTION -

CODE (p. 301)
ˆ DDS BADKIND USER EXCEPTION CODE (p. 301)

Returns:

The number of members constituting the type described by this DDS -
TypeCode (p. 925) object if no errors.

6.138.2.5 const char∗ DDS TypeCode::member name
(DDS UnsignedLong index, DDS ExceptionCode t &
ex) const

Returns the name of a type code member identified by the given index.

The method member name can be invoked on structure, union, and enumeration
DDS TypeCode (p. 925) objects.

Precondition:

self kind is DDS TK STRUCT (p. 65), DDS TK UNION (p. 65),
DDS TK ENUM (p. 65), DDS TK VALUE (p. 65) or DDS TK -
SPARSE (p. 65).
The index param must be in the interval [0,(member count-1)].

MT Safety:

SAFE.

Parameters:

index <<in>> (p. 191) Member index in the interval [0,(member count-
1)].

ex <<out>> (p. 191) Parameter for error indications. The values that
can take are:

ˆ DDS NO EXCEPTION CODE (p. 300)
ˆ DDS BAD TYPECODE SYSTEM EXCEPTION -

CODE (p. 301)
ˆ DDS BADKIND USER EXCEPTION CODE (p. 301)
ˆ DDS BOUNDS USER EXCEPTION CODE (p. 301)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

932 Class Documentation

Returns:

Name of the member if no errors.

6.138.2.6 DDS UnsignedLong DDS TypeCode::find member by -
name (const char ∗ name, DDS ExceptionCode t & ex)
const

Get the index of the member of the given name.

MT Safety:

SAFE.

6.138.2.7 DDS TypeCode∗ DDS TypeCode::member type
(DDS UnsignedLong index, DDS ExceptionCode t &
ex) const

Retrieves the DDS TypeCode (p. 925) object describing the type of the mem-
ber identified by the given index.

The method member type can be invoked on structure and union type codes.

Precondition:

self kind is DDS TK STRUCT (p. 65), DDS TK UNION (p. 65),
DDS TK VALUE (p. 65) or DDS TK SPARSE (p. 65).
The index param must be in the interval [0,(member count-1)].

MT Safety:

SAFE.

Parameters:

index <<in>> (p. 191) Member index in the interval [0,(member count-
1)].

ex <<out>> (p. 191) Parameter for error indications. The values that
can take are:

ˆ DDS NO EXCEPTION CODE (p. 300)
ˆ DDS BAD TYPECODE SYSTEM EXCEPTION -

CODE (p. 301)
ˆ DDS BADKIND USER EXCEPTION CODE (p. 301)
ˆ DDS BOUNDS USER EXCEPTION CODE (p. 301)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.138 DDS TypeCode Struct Reference 933

Returns:

The DDS TypeCode (p. 925) object describing the member at the given
index if no errors.

6.138.2.8 DDS UnsignedLong DDS TypeCode::member label -
count (DDS UnsignedLong index, DDS ExceptionCode t
& ex) const

Returns the number of labels associated to the index-th union member.

The method can be invoked on union DDS TypeCode (p. 925) objects.

This function is an RTI Data Distribution Service extension to the CORBA
Type Code Specification.

Precondition:

self kind is DDS TK UNION (p. 65).
The index param must be in the interval [0,(member count-1)].

MT Safety:

SAFE.

Parameters:

index <<in>> (p. 191) Member index in the interval [0,(member count-
1)].

ex <<out>> (p. 191) Parameter for error indications. The values that
can take are:

ˆ DDS NO EXCEPTION CODE (p. 300)
ˆ DDS BAD TYPECODE SYSTEM EXCEPTION -

CODE (p. 301)
ˆ DDS BADKIND USER EXCEPTION CODE (p. 301)
ˆ DDS BOUNDS USER EXCEPTION CODE (p. 301)

Returns:

Number of labels if no errors.

6.138.2.9 DDS Long DDS TypeCode::member label
(DDS UnsignedLong member index, DDS UnsignedLong
label index, DDS ExceptionCode t & ex) const

Return the label index-th label associated to the member index-th member.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

934 Class Documentation

This method has been modified for RTI Data Distribution Service from the
CORBA Type code Specification.

Example:

case 1: Label index 0

case 2: Label index 1

short short member;

The method can be invoked on union DDS TypeCode (p. 925) objects.

Precondition:

self kind is DDS TK UNION (p. 65).
The member index param must be in the interval [0,(member count-1)].
The label index param must be in the interval [0,(member labels count-1)].

MT Safety:

SAFE.

Parameters:

member index <<in>> (p. 191) Member index.

label index <<in>> (p. 191) Label index.

ex <<out>> (p. 191) Parameter for error indications. The values that
can take are:

ˆ DDS NO EXCEPTION CODE (p. 300)
ˆ DDS BAD TYPECODE SYSTEM EXCEPTION -

CODE (p. 301)
ˆ DDS BADKIND USER EXCEPTION CODE (p. 301)
ˆ DDS BOUNDS USER EXCEPTION CODE (p. 301)

Returns:

The evaluated value of the label if no errors.

6.138.2.10 DDS Long DDS TypeCode::member ordinal
(DDS UnsignedLong index, DDS ExceptionCode t &
ex) const

Returns the ordinal that corresponds to the index-th enum value.

The method can be invoked on enum DDS TypeCode (p. 925) objects.

This function is an RTI Data Distribution Service extension to the CORBA
Type Code Specification.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.138 DDS TypeCode Struct Reference 935

Precondition:

self kind is DDS TK ENUM (p. 65).
Member index in the interval [0,(member count-1)].

MT Safety:

SAFE.

Parameters:

index <<in>> (p. 191) Member index in the interval [0,(member count-
1)].

ex <<out>> (p. 191) Parameter for error indications. The values that
can take are:

ˆ DDS NO EXCEPTION CODE (p. 300)
ˆ DDS BAD TYPECODE SYSTEM EXCEPTION -

CODE (p. 301)
ˆ DDS BADKIND USER EXCEPTION CODE (p. 301)
ˆ DDS BOUNDS USER EXCEPTION CODE (p. 301)

Returns:

Ordinal that corresponds to the index-th enumerator if no errors.

6.138.2.11 DDS Boolean DDS TypeCode::is member key
(DDS UnsignedLong index, DDS ExceptionCode t &
ex) const

Function that tells if a member is a key or not.

This function is an RTI Data Distribution Service extension to the CORBA
Type Code Specification.

Precondition:

self kind is DDS TK STRUCT (p. 65), DDS TK VALUE (p. 65) or
DDS TK SPARSE (p. 65).
The index param must be in the interval [0,(member count-1)].

MT Safety:

SAFE.

Parameters:

index <<in>> (p. 191) Member index in the interval [0,(member count-
1)].

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

936 Class Documentation

ex <<out>> (p. 191) Parameter for error indications. The values that
can take are:

ˆ DDS NO EXCEPTION CODE (p. 300)
ˆ DDS BAD TYPECODE SYSTEM EXCEPTION -

CODE (p. 301)
ˆ DDS BADKIND USER EXCEPTION CODE (p. 301)
ˆ DDS BOUNDS USER EXCEPTION CODE (p. 301)

Returns:

DDS BOOLEAN TRUE (p. 288) if the member is a key. Otherwise,
DDS BOOLEAN FALSE (p. 289).

6.138.2.12 DDS Boolean DDS TypeCode::is member required
(DDS UnsignedLong index, DDS ExceptionCode t &
ex) const

Indicates whether a given member of a type is required to be present in every
sample of that type.

Which fields are required depends on the DDS TCKind (p. 65) of the type. For
example, in a type of kind DDS TK SPARSE (p. 65), key fields are required.
In DDS TK STRUCT (p. 65) and DDS TK VALUE (p. 65) types, all fields
are required.

MT Safety:

SAFE.

6.138.2.13 DDS Boolean DDS TypeCode::is member pointer
(DDS UnsignedLong index, DDS ExceptionCode t &
ex) const

Function that tells if a member is a pointer or not.

The method is member pointer can be invoked on union and structs type objects

This function is an RTI Data Distribution Service extension to the CORBA
Type Code Specification.

Precondition:

self kind is DDS TK STRUCT (p. 65), DDS TK UNION (p. 65) or
DDS TK VALUE (p. 65).
The index param must be in the interval [0,(member count-1)].

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.138 DDS TypeCode Struct Reference 937

MT Safety:

SAFE.

Parameters:

index <<in>> (p. 191) Index of the member for which type information
is begin requested.

ex <<out>> (p. 191) Parameter for error indications. The values that
can take are:

ˆ DDS NO EXCEPTION CODE (p. 300)
ˆ DDS BAD TYPECODE SYSTEM EXCEPTION -

CODE (p. 301)
ˆ DDS BADKIND USER EXCEPTION CODE (p. 301)
ˆ DDS BOUNDS USER EXCEPTION CODE (p. 301)

Returns:

DDS BOOLEAN TRUE (p. 288) if the member is a pointer. Otherwise,
DDS BOOLEAN FALSE (p. 289).

6.138.2.14 DDS Boolean DDS TypeCode::is member bitfield
(DDS UnsignedLong index, DDS ExceptionCode t &
ex) const

Function that tells if a member is a bitfield or not.

The method can be invoked on struct type objects.

This function is an RTI Data Distribution Service extension to the CORBA
Type Code Specification.

Precondition:

self kind is DDS TK STRUCT (p. 65) or DDS TK VALUE (p. 65).
The index param must be in the interval [0,(member count-1)].

MT Safety:

SAFE.

Parameters:

index <<in>> (p. 191) Member index in the interval [0,(member count-
1)].

ex <<out>> (p. 191) Parameter for error indications. The values that
can take are:

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

938 Class Documentation

ˆ DDS NO EXCEPTION CODE (p. 300)
ˆ DDS BAD TYPECODE SYSTEM EXCEPTION -

CODE (p. 301)
ˆ DDS BADKIND USER EXCEPTION CODE (p. 301)
ˆ DDS BOUNDS USER EXCEPTION CODE (p. 301)

Returns:

DDS BOOLEAN TRUE (p. 288) if the member is a bitfield. Otherwise,
DDS BOOLEAN FALSE (p. 289).

6.138.2.15 DDS Short DDS TypeCode::member bitfield bits
(DDS UnsignedLong index, DDS ExceptionCode t &
ex) const

Returns the number of bits of a bitfield member.

The method can be invoked on struct type objects.

This function is an RTI Data Distribution Service extension to the CORBA
Type Code Specification.

Precondition:

self kind is DDS TK STRUCT (p. 65) or DDS TK VALUE (p. 65).
The index param must be in the interval [0,(member count-1)].

MT Safety:

SAFE.

Parameters:

index <<in>> (p. 191) Member index in the interval [0,(member count-
1)].

ex <<out>> (p. 191) Parameter for error indications. The values that
can take are:

ˆ DDS NO EXCEPTION CODE (p. 300)
ˆ DDS BAD TYPECODE SYSTEM EXCEPTION -

CODE (p. 301)
ˆ DDS BADKIND USER EXCEPTION CODE (p. 301)
ˆ DDS BOUNDS USER EXCEPTION CODE (p. 301)

Returns:

The number of bits of the bitfield or DDS TypeCode::NOT BITFIELD if
the member is not a bitfield.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.138 DDS TypeCode Struct Reference 939

6.138.2.16 DDS Visibility DDS TypeCode::member visibility
(DDS UnsignedLong index, DDS ExceptionCode t &
ex) const

Returns the constant that indicates the visibility of the index-th member.

Precondition:

self kind is DDS TK VALUE (p. 65). The index param must be in the
interval [0,(member count-1)].

MT Safety:

SAFE.

Parameters:

index <<in>> (p. 191) Member index in the interval [0,(member count-
1)].

ex <<out>> (p. 191) Parameter for error indications. The values that
can take are:

ˆ DDS NO EXCEPTION CODE (p. 300)
ˆ DDS BAD TYPECODE SYSTEM EXCEPTION -

CODE (p. 301)
ˆ DDS BADKIND USER EXCEPTION CODE (p. 301)
ˆ DDS BOUNDS USER EXCEPTION CODE (p. 301)

Returns:

One of the following constants: DDS PRIVATE MEMBER (p. 62) or
DDS PUBLIC MEMBER (p. 62).

6.138.2.17 DDS TypeCode∗ DDS TypeCode::discriminator type
(DDS ExceptionCode t & ex) const

Returns the discriminator type code.

The method discriminator type can be invoked only on union DDS TypeCode
(p. 925) objects.

Precondition:

self kind is DDS TK UNION (p. 65).

MT Safety:

SAFE.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

940 Class Documentation

Parameters:

ex <<out>> (p. 191) Parameter for error indications. The values that
can take are:

ˆ DDS NO EXCEPTION CODE (p. 300)
ˆ DDS BAD TYPECODE SYSTEM EXCEPTION -

CODE (p. 301)
ˆ DDS BADKIND USER EXCEPTION CODE (p. 301)

Returns:

DDS TypeCode (p. 925) object describing the discriminator of the union
type if no errors.

6.138.2.18 DDS UnsignedLong DDS TypeCode::length
(DDS ExceptionCode t & ex) const

Returns the number of elements in the type described by this type code.

Length is:

ˆ The maximum length of the string for string type codes.

ˆ The maximum length of the sequence for sequence type codes.

ˆ The first dimension of the array for array type codes.

Precondition:

self kind is DDS TK ARRAY (p. 65), DDS TK SEQUENCE (p. 65),
DDS TK STRING (p. 65) or DDS TK WSTRING (p. 65).

MT Safety:

SAFE.

Parameters:

ex <<out>> (p. 191) Parameter for error indications. The values that
can take are:

ˆ DDS NO EXCEPTION CODE (p. 300)
ˆ DDS BAD TYPECODE SYSTEM EXCEPTION -

CODE (p. 301)
ˆ DDS BADKIND USER EXCEPTION CODE (p. 301)

Returns:

The bound for strings and sequences, or the number of elements for arrays
if no errors.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.138 DDS TypeCode Struct Reference 941

6.138.2.19 DDS UnsignedLong DDS TypeCode::array -
dimension count (DDS ExceptionCode t & ex)
const

This function returns the number of dimensions of an array type code.

This function is an RTI Data Distribution Service extension to the CORBA
Type Code Specification.

Precondition:

self kind is DDS TK ARRAY (p. 65).

MT Safety:

SAFE.

Parameters:

ex <<out>> (p. 191) Parameter for error indications. The values that
can take are:

ˆ DDS NO EXCEPTION CODE (p. 300)
ˆ DDS BAD TYPECODE SYSTEM EXCEPTION -

CODE (p. 301)
ˆ DDS BADKIND USER EXCEPTION CODE (p. 301)

Returns:

Number of dimensions if no errors.

6.138.2.20 DDS UnsignedLong DDS TypeCode::array dimension
(DDS UnsignedLong index, DDS ExceptionCode t &
ex) const

This function returns the index-th dimension of an array type code.

This function is an RTI Data Distribution Service extension to the CORBA
Type Code Specification.

Precondition:

self kind is DDS TK ARRAY (p. 65).
Dimension index in the interval [0,(dimensions count-1)].

MT Safety:

SAFE.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

942 Class Documentation

Parameters:

index <<in>> (p. 191) Dimension index in the interval [0,(dimensions
count-1)].

ex <<out>> (p. 191) Parameter for error indications. The values that
can take are:

ˆ DDS NO EXCEPTION CODE (p. 300)
ˆ DDS BAD TYPECODE SYSTEM EXCEPTION -

CODE (p. 301)
ˆ DDS BADKIND USER EXCEPTION CODE (p. 301)
ˆ DDS BOUNDS USER EXCEPTION CODE (p. 301)

Returns:

Requested dimension if no errors.

6.138.2.21 DDS UnsignedLong DDS TypeCode::element count
(DDS ExceptionCode t & ex) const

The number of elements in an array.

This operation isn’t relevant for other kinds of types.

MT Safety:

SAFE.

6.138.2.22 DDS TypeCode∗ DDS TypeCode::content type
(DDS ExceptionCode t & ex) const

Returns the DDS TypeCode (p. 925) object representing the type for the
members of the object described by this DDS TypeCode (p. 925) object.

For sequences and arrays, it returns the element type. For aliases, it returns
the original type.

Precondition:

self kind is DDS TK ARRAY (p. 65), DDS TK SEQUENCE (p. 65)
or DDS TK ALIAS (p. 65).

MT Safety:

SAFE.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.138 DDS TypeCode Struct Reference 943

Parameters:

ex <<out>> (p. 191) Parameter for error indications. The values that
can take are:

ˆ DDS NO EXCEPTION CODE (p. 300)
ˆ DDS BAD TYPECODE SYSTEM EXCEPTION -

CODE (p. 301)
ˆ DDS BADKIND USER EXCEPTION CODE (p. 301)

Returns:

A DDS TypeCode (p. 925) object representing the element type for se-
quences and arrays, and the original type for aliases.

6.138.2.23 DDS Boolean DDS TypeCode::is alias pointer
(DDS ExceptionCode t & ex) const

Function that tells if an alias is a pointer or not.

This function is an RTI Data Distribution Service extension to the CORBA
Type Code Specification.

Precondition:

self kind is DDS TK ALIAS (p. 65).

MT Safety:

SAFE.

Parameters:

ex <<out>> (p. 191) Parameter for error indications. The values that
can take are:

ˆ DDS NO EXCEPTION CODE (p. 300)
ˆ DDS BAD TYPECODE SYSTEM EXCEPTION -

CODE (p. 301)
ˆ DDS BADKIND USER EXCEPTION CODE (p. 301)

Returns:

DDS BOOLEAN TRUE (p. 288) if an alias is a pointer to the aliased
type. Otherwise, DDS BOOLEAN FALSE (p. 289).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

944 Class Documentation

6.138.2.24 DDS Long DDS TypeCode::default index
(DDS ExceptionCode t & ex) const

Returns the index of the default member, or -1 if there is no default member.

The method default index can be invoked only on union DDS TypeCode
(p. 925) objects.

Precondition:

self kind is DDS TK UNION (p. 65)

MT Safety:

SAFE.

Parameters:

ex <<out>> (p. 191) Parameter for error indications. The values that
can take are:

ˆ DDS NO EXCEPTION CODE (p. 300)
ˆ DDS BAD TYPECODE SYSTEM EXCEPTION -

CODE (p. 301)
ˆ DDS BADKIND USER EXCEPTION CODE (p. 301)

Returns:

The index of the default member, or -1 if there is no default member.

6.138.2.25 DDS TypeCode∗ DDS TypeCode::concrete base type
(DDS ExceptionCode t & ex) const

Returns the DDS TypeCode (p. 925) that describes the concrete base type of
the value type that this DDS TypeCode (p. 925) object describes.

Precondition:

self kind is DDS TK VALUE (p. 65) or DDS TK SPARSE (p. 65).

MT Safety:

SAFE.

Parameters:

ex <<out>> (p. 191) Parameter for error indications. The values that
can take are:

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.138 DDS TypeCode Struct Reference 945

ˆ DDS NO EXCEPTION CODE (p. 300)
ˆ DDS BAD TYPECODE SYSTEM EXCEPTION -

CODE (p. 301)
ˆ DDS BADKIND USER EXCEPTION CODE (p. 301)

Returns:

DDS TypeCode (p. 925) that describes the concrete base type or NULL
if there is no a concrete base type.

6.138.2.26 DDS ValueModifier DDS TypeCode::type modifier
(DDS ExceptionCode t & ex) const

Returns a constant indicating the modifier of the value type that this DDS -
TypeCode (p. 925) object describes.

Precondition:

self kind is DDS TK VALUE (p. 65).

MT Safety:

SAFE.

Parameters:

ex <<out>> (p. 191) Parameter for error indications. The values that
can take are:

ˆ DDS NO EXCEPTION CODE (p. 300)
ˆ DDS BAD TYPECODE SYSTEM EXCEPTION -

CODE (p. 301)
ˆ DDS BADKIND USER EXCEPTION CODE (p. 301)

Returns:

One of the following type modifiers: DDS VM NONE (p. 61), DDS -
VM ABSTRACT (p. 61), DDS VM CUSTOM (p. 61) or DDS -
VM TRUNCATABLE (p. 62).

6.138.2.27 DDS Long DDS TypeCode::member id
(DDS UnsignedLong index, DDS ExceptionCode t &
ex) const

Returns the ID of a sparse type code member identified by the given index.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

946 Class Documentation

The method can be invoked on sparse DDS TypeCode (p. 925) objects.

This function is an RTI Data Distribution Service extension to the CORBA
Type Code Specification.

Precondition:

self kind is DDS TK SPARSE (p. 65).
Member index in the interval [0,(member count-1)].

MT Safety:

SAFE.

Parameters:

index <<in>> (p. 191) Member index in the interval [0,(member count-
1)].

ex <<out>> (p. 191) Parameter for error indications. The values that
can take are:

ˆ DDS NO EXCEPTION CODE (p. 300)
ˆ DDS BAD TYPECODE SYSTEM EXCEPTION -

CODE (p. 301)
ˆ DDS BADKIND USER EXCEPTION CODE (p. 301)
ˆ DDS BOUNDS USER EXCEPTION CODE (p. 301)

Returns:

ID of the member if no errors.

6.138.2.28 DDS UnsignedLong DDS TypeCode::find member by id
(DDS Long id, DDS ExceptionCode t & ex) const

Get the index of the member of the given ID.

MT Safety:

SAFE.

6.138.2.29 DDS UnsignedLong DDS TypeCode::add member -
to enum (const char ∗ name, DDS Long ordinal,
DDS ExceptionCode t & ex)

Add a new enumerated constant to this enum DDS TypeCode (p. 925).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.138 DDS TypeCode Struct Reference 947

This method is applicable to DDS TypeCode (p. 925) objects representing
enumerations (DDS TK ENUM (p. 65)). To add a field to a structured type,
see DDS TypeCode::add member to enum (p. 946).

Modifying a DDS TypeCode (p. 925) – such as by adding a member – is
important if you are using the Dynamic Data (p. 75) APIs.

MT Safety:

UNSAFE.

Parameters:

name <<in>> (p. 191) The name of the new member. This string must
be unique within this type and must not be NULL.

ordinal <<in>> (p. 191) The relative order of the new member in this
enum or a custom integer value. The value must be unique within the
type.

ex <<out>> (p. 191) If this method fails, this argument will contain in-
formation about the failure. Possible values include:

ˆ DDS BADKIND USER EXCEPTION CODE (p. 301)
ˆ DDS BAD MEMBER NAME USER EXCEPTION -

CODE (p. 301)
ˆ DDS BAD MEMBER ID USER EXCEPTION CODE

(p. 301)

Returns:

The zero-based index of the new member relative to any other members
that previously existed.

See also:

DDS TypeCode::add member (p. 947)
DDS TypeCode::add member ex (p. 949)
DDS TypeCodeFactory (p. 951)

6.138.2.30 DDS UnsignedLong DDS TypeCode::add member
(const char ∗ name, DDS Long id, const
DDS TypeCode ∗ tc, DDS Octet member flags,
DDS ExceptionCode t & ex)

Add a new member to this DDS TypeCode (p. 925).

This method is applicable to DDS TypeCode (p. 925) objects representing
structures (DDS TK STRUCT (p. 65)), value types (DDS TK VALUE

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

948 Class Documentation

(p. 65)), sparse value types (DDS TK SPARSE (p. 65)), and unions (DDS -
TK UNION (p. 65)). To add a constant to an enumeration, see DDS -
TypeCode::add member to enum (p. 946).

Modifying a DDS TypeCode (p. 925) – such as by adding a member – is
important if you are using the Dynamic Data (p. 75) APIs.

Here’s a simple code example that adds two fields to a data type, one an integer
and another a sequence of integers.

// Integer:

myTypeCode->add_member(

"myFieldName",

// If the type is sparse, specify an ID. Otherwise, use this sentinel:

DDS_TYPECODE_MEMBER_ID_INVALID,

DDS_TheTypeCodeFactory->get_primitive_tc(DDS_TK_LONG),

// New field is not a key:

DDS_TYPECODE_NONKEY_REQUIRED_MEMBER);

// Sequence of 10 or fewer integers:

myTypeCode.add_member(

"myFieldName",

// If the type is sparse, specify an ID. Otherwise, use this sentinel:

DDS_TYPECODE_MEMBER_ID_INVALID,

DDS_TheTypeCodeFactory->create_sequence_tc(

10,

DDS_TheTypeCodeFactory->get_primitive_tc(DDS_TK_LONG)),

// New field is not a key:

DDS_TYPECODE_NONKEY_REQUIRED_MEMBER);

MT Safety:

UNSAFE.

Parameters:

name <<in>> (p. 191) The name of the new member.

id <<in>> (p. 191) The ID of the new member. This should only be
specified for members of kind DDS TK SPARSE (p. 65) and DDS -
TK UNION (p. 65); otherwise, it should be DDS TYPECODE -
MEMBER ID INVALID (p. 61).

tc <<in>> (p. 191) The type of the new member. You can get or create
this DDS TypeCode (p. 925) with the DDS TypeCodeFactory
(p. 951).

member flags <<in>> (p. 191) Indicates whether the member is part
of the key and whether it is required.

ex <<out>> (p. 191) If this method fails, this argument will contain in-
formation about the failure. Possible values include:

ˆ DDS BADKIND USER EXCEPTION CODE (p. 301)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.138 DDS TypeCode Struct Reference 949

ˆ DDS BAD MEMBER NAME USER EXCEPTION -
CODE (p. 301)

ˆ DDS BAD MEMBER ID USER EXCEPTION CODE
(p. 301)

Returns:

The zero-based index of the new member relative to any other members
that previously existed.

See also:

DDS TypeCode::add member ex (p. 949)
DDS TypeCode::add member to enum (p. 946)
DDS TypeCodeFactory (p. 951)
DDS TYPECODE NONKEY MEMBER (p. 62)
DDS TYPECODE KEY MEMBER (p. 63)
DDS TYPECODE NONKEY REQUIRED MEMBER (p. 63)

6.138.2.31 DDS UnsignedLong DDS TypeCode::add member ex
(const char ∗ name, DDS Long id, const
DDS TypeCode ∗ tc, DDS Octet member flags,
DDS Visibility visibility, DDS Boolean is pointer,
DDS Short bits, DDS ExceptionCode t & ex)

Add a new member to this DDS TypeCode (p. 925).

Modifying a DDS TypeCode (p. 925) – such as by adding a member – is
important if you are using the Dynamic Data (p. 75) APIs.

MT Safety:

UNSAFE.

Parameters:

name <<in>> (p. 191) The name of the new member.

id <<in>> (p. 191) The ID of the new member. This should only be
specified for members of kind DDS TK SPARSE (p. 65) and DDS -
TK UNION (p. 65); otherwise, it should be DDS TYPECODE -
MEMBER ID INVALID (p. 61).

tc <<in>> (p. 191) The type of the new member. You can get or create
this DDS TypeCode (p. 925) with the DDS TypeCodeFactory
(p. 951).

member flags <<in>> (p. 191) Indicates whether the member is part
of the key and whether it is required.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

950 Class Documentation

visibility <<in>> (p. 191) Whether the new member is public or private.
Non-public members are only relevant for types of kind DDS TK -
VALUE (p. 65) and DDS TK SPARSE (p. 65).

is pointer <<in>> (p. 191) Whether the data member, in its deserial-
ized form, should be stored by pointer as opposed to by value.

bits <<in>> (p. 191) The number of bits, if this new member is a bit
field, or DDS TypeCode::NOT BITFIELD.

ex <<out>> (p. 191) If this method fails, this argument will contain in-
formation about the failure. Possible values include:

ˆ DDS BADKIND USER EXCEPTION CODE (p. 301)
ˆ DDS BAD MEMBER NAME USER EXCEPTION -

CODE (p. 301)
ˆ DDS BAD MEMBER ID USER EXCEPTION CODE

(p. 301)

Returns:

The zero-based index of the new member relative to any other members
that previously existed.

See also:

DDS TypeCode::add member (p. 947)
DDS TypeCodeFactory (p. 951)
DDS TYPECODE NONKEY MEMBER (p. 62)
DDS TYPECODE KEY MEMBER (p. 63)
DDS TYPECODE NONKEY REQUIRED MEMBER (p. 63)

6.138.2.32 void DDS TypeCode::print IDL (DDS UnsignedLong
indent, DDS ExceptionCode t & ex) const

Prints a DDS TypeCode (p. 925) in a pseudo-IDL notation.

MT Safety:

SAFE.

Parameters:

indent <<in>> (p. 191) Indent.
ex <<out>> (p. 191) Parameter for error indications. The values that

can take are:
ˆ DDS NO EXCEPTION CODE (p. 300)
ˆ DDS BAD TYPECODE SYSTEM EXCEPTION -

CODE (p. 301)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.139 DDS TypeCodeFactory Struct Reference 951

6.139 DDS TypeCodeFactory Struct Reference

A singleton factory for creating, copying, and deleting data type definitions
dynamically.

Public Member Functions

ˆ DDS TypeCode ∗ clone tc (const DDS TypeCode ∗tc, DDS -
ExceptionCode t &ex)

Creates and returns a copy of the input DDS TypeCode (p. 925).

ˆ void delete tc (DDS TypeCode ∗tc, DDS ExceptionCode t &ex)
Deletes the input DDS TypeCode (p. 925).

ˆ const DDS TypeCode ∗ get primitive tc (DDS TCKind tc kind)
Get the DDS TypeCode (p. 925) for a primitive type (integers, floating
point values, etc.) identified by the given DDS TCKind (p. 65).

ˆ DDS TypeCode ∗ create struct tc (const char ∗name, const DDS -
StructMemberSeq &members, DDS ExceptionCode t &ex)

Constructs a DDS TK STRUCT (p. 65) DDS TypeCode (p. 925).

ˆ DDS TypeCode ∗ create value tc (const char ∗name, DDS -
ValueModifier type modifier, const DDS TypeCode ∗concrete base,
const DDS ValueMemberSeq &members, DDS ExceptionCode t
&ex)

Constructs a DDS TK VALUE (p. 65) DDS TypeCode (p. 925).

ˆ DDS TypeCode ∗ create union tc (const char ∗name, const DDS -
TypeCode ∗discriminator type, DDS Long default index, const DDS -
UnionMemberSeq &members, DDS ExceptionCode t &ex)

Constructs a DDS TK UNION (p. 65) DDS TypeCode (p. 925).

ˆ DDS TypeCode ∗ create enum tc (const char ∗name, const DDS -
EnumMemberSeq &members, DDS ExceptionCode t &ex)

Constructs a DDS TK ENUM (p. 65) DDS TypeCode (p. 925).

ˆ DDS TypeCode ∗ create alias tc (const char ∗name, const
DDS TypeCode ∗original type, DDS Boolean is pointer, DDS -
ExceptionCode t &ex)

Constructs a DDS TK ALIAS (p. 65) (typedef) DDS TypeCode
(p. 925).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

952 Class Documentation

ˆ DDS TypeCode ∗ create string tc (DDS UnsignedLong bound,
DDS ExceptionCode t &ex)

Constructs a DDS TK STRING (p. 65) DDS TypeCode (p. 925).

ˆ DDS TypeCode ∗ create wstring tc (DDS UnsignedLong bound,
DDS ExceptionCode t &ex)

Constructs a DDS TK WSTRING (p. 65) DDS TypeCode (p. 925).

ˆ DDS TypeCode ∗ create sequence tc (DDS UnsignedLong
bound, const DDS TypeCode ∗element type, DDS ExceptionCode t
&ex)

Constructs a DDS TK SEQUENCE (p. 65) DDS TypeCode (p. 925).

ˆ DDS TypeCode ∗ create array tc (const DDS UnsignedLongSeq
&dimensions, const DDS TypeCode ∗element type, DDS -
ExceptionCode t &ex)

Constructs a DDS TK ARRAY (p. 65) DDS TypeCode (p. 925).

ˆ DDS TypeCode ∗ create array tc (DDS UnsignedLong length,
const DDS TypeCode ∗element type, DDS ExceptionCode t &ex)

Constructs a DDS TK ARRAY (p. 65) DDS TypeCode (p. 925) for a
single-dimensional array.

ˆ DDS TypeCode ∗ create sparse tc (const char ∗name, DDS -
ValueModifier type modifier, const DDS TypeCode ∗concrete base,
DDS ExceptionCode t &ex)

Constructs a DDS TK SPARSE (p. 65) DDS TypeCode (p. 925).

Static Public Member Functions

ˆ static DDS TypeCodeFactory ∗ get instance ()

Gets the singleton instance of this class.

6.139.1 Detailed Description

A singleton factory for creating, copying, and deleting data type definitions
dynamically.

You can access the singleton with the DDS TypeCodeFactory::get -
instance (p. 954) method.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.139 DDS TypeCodeFactory Struct Reference 953

If you want to publish and subscribe to data of types that are not known to
you at system design time, this class will be your starting point. After creating
a data type definition with this class, you will modify that definition using the
DDS TypeCode (p. 925) class and then register it with the Dynamic Data
(p. 75) API.

The methods of this class fall into several categories:

Getting definitions for primitive types:

Type definitions for primitive types (e.g. integers, floating point values, etc.)
are pre-defined; your application only needs to get them, not create them.

ˆ DDS TypeCodeFactory::get primitive tc (p. 955)

Creating definitions for strings, arrays, and sequences:

Type definitions for strings, arrays, and sequences (i.e. variables-size lists) must
be created as you need them, because the type definition includes the maximum
length of those containers.

ˆ DDS TypeCodeFactory::create string tc (p. 959)

ˆ DDS TypeCodeFactory::create wstring tc (p. 960)

ˆ DDS TypeCodeFactory::create array tc (p. 961)

ˆ DDS TypeCodeFactory::create array tc (p. 961)

ˆ DDS TypeCodeFactory::create sequence tc (p. 960)

Creating definitions for structured types:

Structured types include structures, value types, sparse value types, and unions.

ˆ DDS TypeCodeFactory::create struct tc (p. 956)

ˆ DDS TypeCodeFactory::create value tc (p. 956)

ˆ DDS TypeCodeFactory::create sparse tc (p. 962)

ˆ DDS TypeCodeFactory::create union tc (p. 957)

Creating definitions for other types:

The type system also supports enumerations and aliases (i.e. typedefs in C
and C++).

ˆ DDS TypeCodeFactory::create enum tc (p. 958)

ˆ DDS TypeCodeFactory::create alias tc (p. 958)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

954 Class Documentation

Deleting type definitions:

When you’re finished using a type definition, you should delete it. (Note that
you only need to delete a DDS TypeCode (p. 925) that you created ; if you
got the object from DDS TypeCodeFactory::get primitive tc (p. 955), you
must not delete it.)

ˆ DDS TypeCodeFactory::delete tc (p. 955)

Copying type definitions:

You can also create deep copies of type definitions:

ˆ DDS TypeCodeFactory::clone tc (p. 954)

6.139.2 Member Function Documentation

6.139.2.1 static DDS TypeCodeFactory∗
DDS TypeCodeFactory::get instance () [static]

Gets the singleton instance of this class.

Returns:

The DDS TypeCodeFactory (p. 951) instance if no errors. Otherwise,
NULL.

6.139.2.2 DDS TypeCode∗ DDS TypeCodeFactory::clone tc (const
DDS TypeCode ∗ tc, DDS ExceptionCode t & ex)

Creates and returns a copy of the input DDS TypeCode (p. 925).

Parameters:

tc <<in>> (p. 191) Type code that will be copied. Cannot be NULL.

ex <<out>> (p. 191) Parameter for error indications. The values that
can take are:

ˆ DDS NO EXCEPTION CODE (p. 300)
ˆ DDS BAD PARAM SYSTEM EXCEPTION CODE

(p. 301)
ˆ DDS NO MEMORY SYSTEM EXCEPTION CODE

(p. 301)
ˆ DDS BAD TYPECODE SYSTEM EXCEPTION -

CODE (p. 301)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.139 DDS TypeCodeFactory Struct Reference 955

Returns:

A clone of tc.

6.139.2.3 void DDS TypeCodeFactory::delete tc (DDS TypeCode ∗
tc, DDS ExceptionCode t & ex)

Deletes the input DDS TypeCode (p. 925).

All the type codes created through the DDS TypeCodeFactory (p. 951) must
be deleted using this method.

Parameters:

tc <<inout>> (p. 191) Type code that will be deleted. Cannot be NULL.

ex <<out>> (p. 191) Parameter for error indications. The values that
can take are:

ˆ DDS NO EXCEPTION CODE (p. 300)
ˆ DDS BAD PARAM SYSTEM EXCEPTION CODE

(p. 301)

6.139.2.4 const DDS TypeCode∗ DDS TypeCodeFactory::get -
primitive tc (DDS TCKind tc kind)

Get the DDS TypeCode (p. 925) for a primitive type (integers, floating point
values, etc.) identified by the given DDS TCKind (p. 65).

This method is equivalent to, and replaces, the DDS g tc ∗ constants.

See also:

DDS g tc long (p. 66)
DDS g tc ulong (p. 67)
DDS g tc short
DDS g tc ushort (p. 66)
DDS g tc float (p. 67)
DDS g tc double (p. 67)
DDS g tc longdouble (p. 68)
DDS g tc octet (p. 68)
DDS g tc boolean (p. 67)
DDS g tc char
DDS g tc wchar (p. 69)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

956 Class Documentation

6.139.2.5 DDS TypeCode∗ DDS TypeCodeFactory::create struct -
tc (const char ∗ name, const DDS StructMemberSeq &
members, DDS ExceptionCode t & ex)

Constructs a DDS TK STRUCT (p. 65) DDS TypeCode (p. 925).

Parameters:

name <<in>> (p. 191) Name of the struct type. Cannot be NULL.
members <<in>> (p. 191) Initial members of the structure. This list

may be empty (that is, FooSeq::length() (p. 1384) may return zero).
If the list is not empty, the elements must describe valid struct mem-
bers. (For example, the names must be unique within the type.)

ex <<out>> (p. 191) Parameter for error indications. The values that
can take are:

ˆ DDS NO EXCEPTION CODE (p. 300)
ˆ DDS BAD PARAM SYSTEM EXCEPTION CODE

(p. 301)
ˆ DDS NO MEMORY SYSTEM EXCEPTION CODE

(p. 301)
ˆ DDS BAD TYPECODE SYSTEM EXCEPTION -

CODE (p. 301)

Returns:

A newly-created DDS TypeCode (p. 925) object describing a struct.

6.139.2.6 DDS TypeCode∗ DDS TypeCodeFactory::create value tc
(const char ∗ name, DDS ValueModifier
type modifier, const DDS TypeCode ∗ concrete base,
const DDS ValueMemberSeq & members,
DDS ExceptionCode t & ex)

Constructs a DDS TK VALUE (p. 65) DDS TypeCode (p. 925).

Parameters:

name <<in>> (p. 191) Name of the value type. Cannot be NULL.
type modifier <<in>> (p. 191) One of the value type modifier con-

stants: DDS VM NONE (p. 61), DDS VM CUSTOM (p. 61),
DDS VM ABSTRACT (p. 61) or DDS VM TRUNCATABLE
(p. 62).

concrete base <<in>> (p. 191) DDS TypeCode (p. 925) object de-
scribing the concrete valuetype base. It may be NULL if the valuetype
does not have a concrete base.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.139 DDS TypeCodeFactory Struct Reference 957

members <<in>> (p. 191) Initial members of the value type. This list
may be empty. If the list is not empty, the elements must describe
valid value type members. (For example, the names must be unique
within the type.)

ex <<out>> (p. 191) Parameter for error indications. The values that
can take are:

ˆ DDS NO EXCEPTION CODE (p. 300)
ˆ DDS BAD PARAM SYSTEM EXCEPTION CODE

(p. 301)
ˆ DDS NO MEMORY SYSTEM EXCEPTION CODE

(p. 301)
ˆ DDS BAD TYPECODE SYSTEM EXCEPTION -

CODE (p. 301)

Returns:

A newly-created DDS TypeCode (p. 925) object describing a value.

6.139.2.7 DDS TypeCode∗ DDS TypeCodeFactory::create union tc
(const char ∗ name, const DDS TypeCode ∗
discriminator type, DDS Long default index,
const DDS UnionMemberSeq & members,
DDS ExceptionCode t & ex)

Constructs a DDS TK UNION (p. 65) DDS TypeCode (p. 925).

Parameters:

name <<in>> (p. 191) Name of the union type. Cannot be NULL.

discriminator type <<in>> (p. 191) Discriminator Type Code. Can-
not be NULL.

default index <<in>> (p. 191) Index of the default member, or -1 if
there is no default member.

members <<in>> (p. 191) Initial members of the union. This list may
be empty. If the list is not empty, the elements must describe valid
struct members. (For example, the names must be unique within the
type.)

ex <<out>> (p. 191) Parameter for error indications. The values that
can take are:

ˆ DDS NO EXCEPTION CODE (p. 300)
ˆ DDS BAD PARAM SYSTEM EXCEPTION CODE

(p. 301)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

958 Class Documentation

ˆ DDS NO MEMORY SYSTEM EXCEPTION CODE
(p. 301)

ˆ DDS BAD TYPECODE SYSTEM EXCEPTION -
CODE (p. 301)

Returns:

A newly-created DDS TypeCode (p. 925) object describing a union.

6.139.2.8 DDS TypeCode∗ DDS TypeCodeFactory::create enum tc
(const char ∗ name, const DDS EnumMemberSeq &
members, DDS ExceptionCode t & ex)

Constructs a DDS TK ENUM (p. 65) DDS TypeCode (p. 925).

Parameters:

name <<in>> (p. 191) Name of the enum type. Cannot be NULL.

members <<in>> (p. 191) Initial members of the enumeration. All
members must have non-NULL names, and both names and ordinal
values must be unique within the type. Note that it is also possible to
add members later with DDS TypeCode::add member to enum
(p. 946).

ex <<out>> (p. 191) Parameter for error indications. The values that
can take are:

ˆ DDS NO EXCEPTION CODE (p. 300)
ˆ DDS BAD PARAM SYSTEM EXCEPTION CODE

(p. 301)
ˆ DDS NO MEMORY SYSTEM EXCEPTION CODE

(p. 301)

Returns:

A newly-created DDS TypeCode (p. 925) object describing an enumera-
tion.

6.139.2.9 DDS TypeCode∗ DDS TypeCodeFactory::create alias tc
(const char ∗ name, const DDS TypeCode
∗ original type, DDS Boolean is pointer,
DDS ExceptionCode t & ex)

Constructs a DDS TK ALIAS (p. 65) (typedef) DDS TypeCode (p. 925).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.139 DDS TypeCodeFactory Struct Reference 959

Parameters:

name <<in>> (p. 191) Name of the alias. Cannot be NULL.

original type <<in>> (p. 191) Aliased type code. Cannot be NULL.

is pointer <<in>> (p. 191) Indicates if the alias is a pointer to the
aliased type code.

ex <<out>> (p. 191) Parameter for error indications. The values that
can take are:

ˆ DDS NO EXCEPTION CODE (p. 300)
ˆ DDS BAD PARAM SYSTEM EXCEPTION CODE

(p. 301)
ˆ DDS NO MEMORY SYSTEM EXCEPTION CODE

(p. 301)
ˆ DDS BAD TYPECODE SYSTEM EXCEPTION -

CODE (p. 301)

Returns:

A newly-created DDS TypeCode (p. 925) object describing an alias.

6.139.2.10 DDS TypeCode∗ DDS TypeCodeFactory::create -
string tc (DDS UnsignedLong bound,
DDS ExceptionCode t & ex)

Constructs a DDS TK STRING (p. 65) DDS TypeCode (p. 925).

Parameters:

bound <<in>> (p. 191) Maximum length of the string.

ex <<out>> (p. 191) Parameter for error indications. The values that
can take are:

ˆ DDS NO EXCEPTION CODE (p. 300)
ˆ DDS BAD PARAM SYSTEM EXCEPTION CODE

(p. 301)
ˆ DDS NO MEMORY SYSTEM EXCEPTION CODE

(p. 301)

Returns:

A newly-created DDS TypeCode (p. 925) object describing a string.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

960 Class Documentation

6.139.2.11 DDS TypeCode∗ DDS TypeCodeFactory::create -
wstring tc (DDS UnsignedLong bound,
DDS ExceptionCode t & ex)

Constructs a DDS TK WSTRING (p. 65) DDS TypeCode (p. 925).

Parameters:

bound <<in>> (p. 191) Maximum length of the wide string.
ex <<out>> (p. 191) Parameter for error indications. The values that

can take are:
ˆ DDS NO EXCEPTION CODE (p. 300)
ˆ DDS BAD PARAM SYSTEM EXCEPTION CODE

(p. 301)
ˆ DDS NO MEMORY SYSTEM EXCEPTION CODE

(p. 301)

Returns:

A newly-created DDS TypeCode (p. 925) object describing a wide string.

6.139.2.12 DDS TypeCode∗ DDS TypeCodeFactory::create -
sequence tc (DDS UnsignedLong bound, const
DDS TypeCode ∗ element type, DDS ExceptionCode t
& ex)

Constructs a DDS TK SEQUENCE (p. 65) DDS TypeCode (p. 925).

Parameters:

bound <<in>> (p. 191) The bound for the sequence (> 0).
element type <<in>> (p. 191) DDS TypeCode (p. 925) object de-

scribing the sequence elements.
ex <<out>> (p. 191) Parameter for error indications. The values that

can take are:
ˆ DDS NO EXCEPTION CODE (p. 300)
ˆ DDS BAD PARAM SYSTEM EXCEPTION CODE

(p. 301)
ˆ DDS NO MEMORY SYSTEM EXCEPTION CODE

(p. 301)
ˆ DDS BAD TYPECODE SYSTEM EXCEPTION -

CODE (p. 301)

Returns:

A newly-created DDS TypeCode (p. 925) object describing a sequence.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.139 DDS TypeCodeFactory Struct Reference 961

6.139.2.13 DDS TypeCode∗ DDS TypeCodeFactory::create array -
tc (const DDS UnsignedLongSeq & dimensions, const
DDS TypeCode ∗ element type, DDS ExceptionCode t
& ex)

Constructs a DDS TK ARRAY (p. 65) DDS TypeCode (p. 925).

Parameters:

dimensions <<in>> (p. 191) Dimensions of the array. Each dimension
has to be greater than 0.

element type <<in>> (p. 191) DDS TypeCode (p. 925) describing
the array elements. Cannot be NULL.

ex <<out>> (p. 191) Parameter for error indications. The values that
can take are:

ˆ DDS NO EXCEPTION CODE (p. 300)
ˆ DDS BAD PARAM SYSTEM EXCEPTION CODE

(p. 301)
ˆ DDS NO MEMORY SYSTEM EXCEPTION CODE

(p. 301)
ˆ DDS BAD TYPECODE SYSTEM EXCEPTION -

CODE (p. 301)

Returns:

A newly-created DDS TypeCode (p. 925) object describing a sequence.

6.139.2.14 DDS TypeCode∗ DDS TypeCodeFactory::create array -
tc (DDS UnsignedLong length, const DDS TypeCode ∗
element type, DDS ExceptionCode t & ex)

Constructs a DDS TK ARRAY (p. 65) DDS TypeCode (p. 925) for a
single-dimensional array.

Parameters:

length <<in>> (p. 191) Length of the single-dimensional array.

element type <<in>> (p. 191) DDS TypeCode (p. 925) describing
the array elements. Cannot be NULL.

ex <<out>> (p. 191) Parameter for error indications. The values that
can take are:

ˆ DDS NO EXCEPTION CODE (p. 300)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

962 Class Documentation

ˆ DDS BAD PARAM SYSTEM EXCEPTION CODE
(p. 301)

ˆ DDS NO MEMORY SYSTEM EXCEPTION CODE
(p. 301)

ˆ DDS BAD TYPECODE SYSTEM EXCEPTION -
CODE (p. 301)

Returns:

A newly-created DDS TypeCode (p. 925) object describing a sequence.

6.139.2.15 DDS TypeCode∗ DDS TypeCodeFactory::create -
sparse tc (const char ∗ name, DDS ValueModifier
type modifier, const DDS TypeCode ∗ concrete base,
DDS ExceptionCode t & ex)

Constructs a DDS TK SPARSE (p. 65) DDS TypeCode (p. 925).

A sparse value type is similar to other value types but with one major difference:
not all members need to be present in every sample.

It is not possible to generate code for sparse value types; they must be created
at runtime using these APIs. You will interact with samples of sparse types
using the Dynamic Data (p. 75) APIs.

Parameters:

name <<in>> (p. 191) Name of the value type. Cannot be NULL.

type modifier <<in>> (p. 191) One of the value type modifier con-
stants: DDS VM NONE (p. 61), DDS VM CUSTOM (p. 61),
DDS VM ABSTRACT (p. 61) or DDS VM TRUNCATABLE
(p. 62).

concrete base <<in>> (p. 191) DDS TypeCode (p. 925) object de-
scribing the concrete valuetype base. It may be NULL if the valuetype
does not have a concrete base.

ex <<out>> (p. 191) Parameter for error indications. The values that
can take are:

ˆ DDS NO EXCEPTION CODE (p. 300)
ˆ DDS BAD PARAM SYSTEM EXCEPTION CODE

(p. 301)
ˆ DDS NO MEMORY SYSTEM EXCEPTION CODE

(p. 301)
ˆ DDS BAD TYPECODE SYSTEM EXCEPTION -

CODE (p. 301)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.139 DDS TypeCodeFactory Struct Reference 963

Returns:

A newly-created DDS TypeCode (p. 925) object describing a value.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

964 Class Documentation

6.140 DDS TypeSupportQosPolicy Struct Ref-
erence

Allows you to attach application-specific values to a DataWriter or DataReader
that are passed to the serialization or deserialization routine of the associated
data type.

Public Attributes

ˆ void ∗ plugin data
Value to pass into the type plugin’s de-/serialization function.

6.140.1 Detailed Description

Allows you to attach application-specific values to a DataWriter or DataReader
that are passed to the serialization or deserialization routine of the associated
data type.

The purpose of this QoS is to allow a user application to pass data to a type
plugin’s support functions.

Entity:

DDSDataReader (p. 1004), DDSDataWriter (p. 1028)

Properties:

RxO (p. 327) = N/A

Changeable (p. 328) = YES (p. 328)

6.140.2 Usage

This QoS policy allows you to associate a pointer to an object with a DDS-
DataWriter (p. 1028) or DDSDataReader (p. 1004). This object pointer is
passed to the serialization routine of the data type associated with the DDS-
DataWriter (p. 1028) or the deserialization routine of the data type associated
with the DDSDataReader (p. 1004).

You can modify the rtiddsgen-generated code so that the de/serialization rou-
tines act differently depending on the information passed in via the object
pointer. (The generated serialization and deserialization code does not use the
pointer.)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.140 DDS TypeSupportQosPolicy Struct Reference 965

This functionality can be used to change how data sent by a DDSDataWriter
(p. 1028) or received by a DDSDataReader (p. 1004) is serialized or deserial-
ized on a per DataWriter and DataReader basis.

It can also be used to dynamically change how serialization (or for a less common
case, deserialization) occurs. For example, a data type could represent a table,
including the names of the rows and columns. However, since the row/column
names of an instance of the table (a Topic) don’t change, they only need to be
sent once. The information passed in through the TypeSupport QoS policy could
be used to signal the serialization routine to send the row/column names the
first time a DDSDataWriter (p. 1028) calls FooDataWriter::write (p. 1368),
and then never again.

6.140.3 Member Data Documentation

6.140.3.1 void∗ DDS TypeSupportQosPolicy::plugin data

Value to pass into the type plugin’s de-/serialization function.

[default] NULL

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

966 Class Documentation

6.141 DDS UnionMember Struct Reference

A description of a member of a union.

Public Attributes

ˆ char ∗ name

The name of the union member.

ˆ DDS Boolean is pointer

Indicates whether the union member is a pointer or not.

ˆ struct DDS LongSeq labels

The labels of the union member.

ˆ const DDS TypeCode ∗ type

The type of the union member.

6.141.1 Detailed Description

A description of a member of a union.

See also:

DDS UnionMemberSeq (p. 968)
DDS TypeCodeFactory::create union tc (p. 957)

6.141.2 Member Data Documentation

6.141.2.1 char∗ DDS UnionMember::name

The name of the union member.

Cannot be NULL.

6.141.2.2 DDS Boolean DDS UnionMember::is pointer

Indicates whether the union member is a pointer or not.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.141 DDS UnionMember Struct Reference 967

6.141.2.3 struct DDS LongSeq DDS UnionMember::labels [read]

The labels of the union member.

Each union member should contain at least one label. If the union discriminator
type is not DDS Long (p. 290) the label value should be evaluated to an integer
value. For instance, ’a’ would be evaluated to 97.

6.141.2.4 const DDS TypeCode∗ DDS UnionMember::type

The type of the union member.

Cannot be NULL.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

968 Class Documentation

6.142 DDS UnionMemberSeq Struct Reference

Defines a sequence of union members.

6.142.1 Detailed Description

Defines a sequence of union members.

See also:

DDS UnionMember (p. 966)
FooSeq (p. 1377)
DDS TypeCodeFactory::create union tc (p. 957)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.143 DDS UnsignedLongLongSeq Struct Reference 969

6.143 DDS UnsignedLongLongSeq Struct Ref-
erence

Instantiates FooSeq (p. 1377) < DDS UnsignedLongLong (p. 290) >.

6.143.1 Detailed Description

Instantiates FooSeq (p. 1377) < DDS UnsignedLongLong (p. 290) >.

Instantiates:

<<generic>> (p. 190) FooSeq (p. 1377)

See also:

DDS UnsignedLongLong (p. 290)
FooSeq (p. 1377)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

970 Class Documentation

6.144 DDS UnsignedLongSeq Struct Reference

Instantiates FooSeq (p. 1377) < DDS UnsignedLong (p. 290) >.

6.144.1 Detailed Description

Instantiates FooSeq (p. 1377) < DDS UnsignedLong (p. 290) >.

Instantiates:

<<generic>> (p. 190) FooSeq (p. 1377)

See also:

DDS UnsignedLong (p. 290)
FooSeq (p. 1377)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.145 DDS UnsignedShortSeq Struct Reference 971

6.145 DDS UnsignedShortSeq Struct Reference

Instantiates FooSeq (p. 1377) < DDS UnsignedShort (p. 289) >.

6.145.1 Detailed Description

Instantiates FooSeq (p. 1377) < DDS UnsignedShort (p. 289) >.

Instantiates:

<<generic>> (p. 190) FooSeq (p. 1377)

See also:

DDS UnsignedShort (p. 289)
FooSeq (p. 1377)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

972 Class Documentation

6.146 DDS UserDataQosPolicy Struct Refer-
ence

Attaches a buffer of opaque data that is distributed by means of Built-in
Topics (p. 41) during discovery.

Public Attributes

ˆ struct DDS OctetSeq value
a sequence of octets

6.146.1 Detailed Description

Attaches a buffer of opaque data that is distributed by means of Built-in
Topics (p. 41) during discovery.

Entity:

DDSDomainParticipant (p. 1054), DDSDataReader (p. 1004), DDS-
DataWriter (p. 1028)

Properties:

RxO (p. 327) = NO;
Changeable (p. 328) = YES (p. 328)

See also:

DDSDomainParticipant::get builtin subscriber (p. 1100)

6.146.2 Usage

The purpose of this QoS is to allow the application to attach additional infor-
mation to the created DDSEntity (p. 1157) objects, so that when a remote
application discovers their existence, it can access that information and use it
for its own purposes. This information is not used by RTI Data Distribution
Service.

One possible use of this QoS is to attach security credentials or some other
information that can be used by the remote application to authenticate the
source.

In combination with operations such as DDSDomainParticipant::ignore -
participant (p. 1100), DDSDomainParticipant::ignore publication

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.146 DDS UserDataQosPolicy Struct Reference 973

(p. 1102), DDSDomainParticipant::ignore subscription (p. 1103), and
DDSDomainParticipant::ignore topic (p. 1101), this QoS policy can assist
an application to define and enforce its own security policies.

The use of this QoS is not limited to security; it offers a simple, yet flexible
extensibility mechanism.

Important: RTI Data Distribution Service stores the data placed in this
policy in pre-allocated pools. It is therefore necessary to configure RTI
Data Distribution Service with the maximum size of the data that will
be stored in policies of this type. This size is configured with DDS -
DomainParticipantResourceLimitsQosPolicy::participant user data -
max length (p. 566), DDS DomainParticipantResourceLimitsQosPolicy::writer -
user data max length (p. 567), and DDS -
DomainParticipantResourceLimitsQosPolicy::reader user data -
max length (p. 567).

6.146.3 Member Data Documentation

6.146.3.1 struct DDS OctetSeq DDS UserDataQosPolicy::value
[read]

a sequence of octets

[default] empty (zero-length)

[range] Octet sequence of length [0,max length]

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

974 Class Documentation

6.147 DDS ValueMember Struct Reference

A description of a member of a value type.

Public Attributes

ˆ char ∗ name

The name of the value member.

ˆ const DDS TypeCode ∗ type

The type of the value member.

ˆ DDS Boolean is pointer

Indicates whether the value member is a pointer or not.

ˆ DDS Short bits

Number of bits of a bitfield member.

ˆ DDS Boolean is key

Indicates if the value member is a key member or not.

ˆ DDS Visibility access

The type of access (public, private) for the value member.

6.147.1 Detailed Description

A description of a member of a value type.

See also:

DDS ValueMemberSeq (p. 976)
DDS TypeCodeFactory::create value tc (p. 956)

6.147.2 Member Data Documentation

6.147.2.1 char∗ DDS ValueMember::name

The name of the value member.

Cannot be NULL.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.147 DDS ValueMember Struct Reference 975

6.147.2.2 const DDS TypeCode∗ DDS ValueMember::type

The type of the value member.

Cannot be NULL.

6.147.2.3 DDS Boolean DDS ValueMember::is pointer

Indicates whether the value member is a pointer or not.

6.147.2.4 DDS Short DDS ValueMember::bits

Number of bits of a bitfield member.

If the struct member is a bitfield, this field contains the number of bits of the
bitfield. Otherwise, bits should contain DDS TypeCode::NOT BITFIELD.

6.147.2.5 DDS Boolean DDS ValueMember::is key

Indicates if the value member is a key member or not.

6.147.2.6 DDS Visibility DDS ValueMember::access

The type of access (public, private) for the value member.

It can take the values: DDS PRIVATE MEMBER (p. 62) or DDS -
PUBLIC MEMBER (p. 62).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

976 Class Documentation

6.148 DDS ValueMemberSeq Struct Reference

Defines a sequence of value members.

6.148.1 Detailed Description

Defines a sequence of value members.

See also:

DDS ValueMember (p. 974)
FooSeq (p. 1377)
DDS TypeCodeFactory::create value tc (p. 956)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.149 DDS VendorId t Struct Reference 977

6.149 DDS VendorId t Struct Reference

<<eXtension>> (p. 190) Type used to represent the vendor of the service
implementing the RTPS protocol.

Public Attributes

ˆ DDS Octet vendorId [DDS VENDOR ID LENGTH MAX]
The vendor Id.

6.149.1 Detailed Description

<<eXtension>> (p. 190) Type used to represent the vendor of the service
implementing the RTPS protocol.

6.149.2 Member Data Documentation

6.149.2.1 DDS Octet DDS VendorId t::vendorId[DDS VENDOR -
ID LENGTH MAX]

The vendor Id.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

978 Class Documentation

6.150 DDS WaitSetProperty t Struct Refer-
ence

<<eXtension>> (p. 190) Specifies the DDSWaitSet (p. 1325) behavior for
multiple trigger events.

Public Attributes

ˆ long max event count

Maximum number of trigger events to cause a DDSWaitSet (p. 1325) to
awaken.

ˆ struct DDS Duration t max event delay

Maximum delay from occurrence of first trigger event to cause a DDSWait-
Set (p. 1325) to awaken.

6.150.1 Detailed Description

<<eXtension>> (p. 190) Specifies the DDSWaitSet (p. 1325) behavior for
multiple trigger events.

In simple use, a DDSWaitSet (p. 1325) returns when a single trigger event oc-
curs on one of its attached DDSCondition (p. 992) (s), or when the timeout
maximum wait duration specified in the DDSWaitSet::wait (p. 1330) call ex-
pires.

The DDS WaitSetProperty t (p. 978) allows configuration of a DDSWait-
Set (p. 1325) to wait for up to max event count trigger events to occur before
returning, or to wait for up to max event delay time from the occurrence of
the first trigger event before returning.

The timeout maximum wait duration specified in the DDSWaitSet::wait
(p. 1330) call continues to apply.

Entity:

DDSWaitSet (p. 1325)

Properties:

RxO (p. 327) = N/A

Changeable (p. 328) = YES (p. 328)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.150 DDS WaitSetProperty t Struct Reference 979

6.150.2 Member Data Documentation

6.150.2.1 long DDS WaitSetProperty t::max event count

Maximum number of trigger events to cause a DDSWaitSet (p. 1325) to
awaken.

The DDSWaitSet (p. 1325) will wait until up to max event count trigger
events have occurred before returning. The DDSWaitSet (p. 1325) may re-
turn earlier if either the timeout duration has expired, or max event delay has
elapsed since the occurrence of the first trigger event. max event count may be
used to ”collect” multiple trigger events for processing at the same time.

[default] 1

[range] >= 1

;

6.150.2.2 struct DDS Duration t DDS WaitSetProperty t::max -
event delay [read]

Maximum delay from occurrence of first trigger event to cause a DDSWaitSet
(p. 1325) to awaken.

The DDSWaitSet (p. 1325) will return no later than max event delay after
the first trigger event. max event delay may be used to establish a maximum
latency for events reported by the DDSWaitSet (p. 1325).

Note that DDS RETCODE TIMEOUT (p. 304) is not returned if max -
event delay is exceeded. DDS RETCODE TIMEOUT (p. 304) is returned
only if the timeout duration expires before any trigger events occur.

[default] DDS DURATION INFINITE (p. 295);

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

980 Class Documentation

6.151 DDS WcharSeq Struct Reference

Instantiates FooSeq (p. 1377) < DDS Wchar (p. 289) >.

6.151.1 Detailed Description

Instantiates FooSeq (p. 1377) < DDS Wchar (p. 289) >.

Instantiates:

<<generic>> (p. 190) FooSeq (p. 1377)

See also:

DDS Wchar (p. 289)
FooSeq (p. 1377)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.152 DDS WireProtocolQosPolicy Struct Reference 981

6.152 DDS WireProtocolQosPolicy Struct Ref-
erence

Specifies the wire-protocol-related attributes for the DDSDomainParticipant
(p. 1054).

Public Attributes

ˆ DDS Long participant id
A value used to distinguish between different participants belonging to the
same domain on the same host.

ˆ DDS UnsignedLong rtps host id
The RTPS Host ID of the domain participant.

ˆ DDS UnsignedLong rtps app id
The RTPS App ID of the domain participant.

ˆ DDS UnsignedLong rtps instance id
The RTPS Instance ID of the domain participant.

ˆ struct DDS RtpsWellKnownPorts t rtps well known ports
Configures the RTPS well-known port mappings.

ˆ DDS RtpsReservedPortKindMask rtps reserved port mask
Specifies which well-known ports to reserve when enabling the participant.

ˆ DDS WireProtocolQosPolicyAutoKind rtps auto id kind
Kind of auto mechanism used to calculate the GUID prefix.

6.152.1 Detailed Description

Specifies the wire-protocol-related attributes for the DDSDomainParticipant
(p. 1054).

Entity:

DDSDomainParticipant (p. 1054)

Properties:

RxO (p. 327) = N/A
Changeable (p. 328) = NO (p. 328)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

982 Class Documentation

6.152.2 Usage

This QoS policy configures some participant-wide properties of the DDS on-the-
wire protocol, RTPS. (DDS DataWriterProtocolQosPolicy (p. 499) and
DDS DataReaderProtocolQosPolicy (p. 467) configure RTPS and relia-
bility properties on a per DDSDataWriter (p. 1028) or DDSDataReader
(p. 1004) basis.)

NOTE: The default Qos policies returned by RTI Data Distribution Service
contain the correctly initialized wire protocol attributes. The defaults are not
expected to be modified normally, but are available to the advanced user cus-
tomizing the implementation behavior.

The default values should not be modified without an understanding of the
underlying Real-Time Publish Subscribe (RTPS) wire protocol.

In order for the discovery process to work correctly, each DDSDomainPar-
ticipant (p. 1054) must have a unique identifier. This QoS policy specifies how
that identifier should be generated.

RTPS defines a 96-bit prefix to this identifier; each DDSDomainParticipant
(p. 1054) must have a unique value of this prefix relative to all other participants
in its domain. In order to make it easier to control how this 96-bit value is
generated, RTI Data Distribution Service divides it into three integers: a host
ID , the value of which is based on the identity of the identity of the machine
on which the participant is executing, an application ID , the value of which
is based on the process or task in which the particpant is contained, and an
instance ID , which identifies the participant itself.

This QoS policy provides you with a choiche of algorithms for generating these
values automatically. In case none of these algorithms suit your needs, you may
also choose to specify some or all of them yourself.

The following three fields:

ˆ DDS WireProtocolQosPolicy::rtps host id (p. 986)

ˆ DDS WireProtocolQosPolicy::rtps app id (p. 986)

ˆ DDS WireProtocolQosPolicy::rtps instance id (p. 987)

will compose the GUID prefix and by default are set to DDS RTPS AUTO -
ID (p. ??). The meaning of this flag depends on the value assigned to the
DDS WireProtocolQosPolicy::rtps auto id kind (p. 988) field.

Depending on the DDS WireProtocolQosPolicy::rtps auto id kind
(p. 988) value, there are two different scenarios:

1. In the default and most common scenario, DDS -
WireProtocolQosPolicy::rtps auto id kind (p. 988) is set to

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.152 DDS WireProtocolQosPolicy Struct Reference 983

DDS RTPS AUTO ID FROM IP (p. 387). Doing so, each field is
interpeted as follows:

ˆ rtps host id: the 32 bit value of the IPv4 of the first up and running
interface of the host machine is assigned

ˆ rtps app id: the process (or task) ID is assigned

ˆ rtps instance id: A counter is assigned that is incremented per new
participant

NOTE: If the IP assigned to the interface is not unique within the network
(for instance, if it is not configured), then is it possible that the GUID
(specifically, the rtps host id portion) may also not be unique.

2. In this situation, RTI Data Distribution Service provides a different value
for rtps auto id kind: DDS RTPS AUTO ID FROM MAC (p. 387).
As the name suggests, this alternative mechanism will use the MAC ad-
dress instead of the IPv4 address. Since the MAC address size is up to 64
bits, the logical mapping of the host information, the application ID, and
the instance identifiers has to change.

Note to Solaris Users: To use DDS RTPS AUTO ID FROM MAC
(p. 387), you must run the RTI Data Distribution Service application while
logged in as root.

Using DDS RTPS AUTO ID FROM MAC (p. 387), the default
value of each field is interpreted as follows:

ˆ rtps host id: the first 32 bits of the MAC address of the first up
and running interface of the host machine are assigned

ˆ rtps app id: the last 32 bits of the MAC address of the first up and
running interface of the host machine are assigned

ˆ rtps instance id: this field is split into two different parts. The
process (or task) ID is assigned to the first 24 bits. A counter is
assigned to the last 8 bits. This counter is incremented per new
participant. In both scenarios, you can change the value of each field
independently.

If DDS RTPS AUTO ID FROM MAC (p. 387) is used, the rtps -
instance id has been logically split into two parts: 24 bits for the pro-
cess/task ID and 8 bits for the per new participant counter. To give to
users the ability to manually set the two parts indepently, a bit field mech-
anism has been introduced for the rtps instance id field when it is used in
combination with DDS RTPS AUTO ID FROM MAC (p. 387). If
one of the two parts is set to 0, only this part will be handled by RTI
Data Distribution Service and you will be able to handle the other one
manually.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

984 Class Documentation

Some examples are provided to better explain the behavior of this QoSPolicy in
case you want to change the default behavior with DDS RTPS AUTO ID -
FROM MAC (p. 387).

First, get the participant QoS from the ParticipantFactory:

DDSDomainParticipantFactory *factory = NULL;

factory = DDSTheParticipantFactory->get_instance();

factory->get_default_participant_qos(participant_qos);

Second, change the DDS WireProtocolQosPolicy (p. 981) using one of the
options shown below.

Third, create the DDSDomainParticipant (p. 1054) as usual using the mod-
ified QoS structure instead of the default one.

Option 1: Use DDS RTPS AUTO ID FROM MAC (p. 387) to explicitly
set just the application/task identifier portion of the rtps instance id field.

participant_qos.wire_protocol.rtps_auto_id_kind = DDS_RTPS_AUTO_ID_FROM_MAC;

participant_qos.wire_protocol.rtps_host_id = DDS_RTPS_AUTO_ID;

participant_qos.wire_protocol.rtps_app_id = DDS_RTPS_AUTO_ID;

participant_qos.wire_protocol.rtps_instance_id = (/* App ID */ (12 << 8) |

/* Instance ID*/ (DDS_RTPS_AUTO_ID));

Option 2: Handle only the per participant counter and let RTI Data Distribution
Service handle the application/task identifier:

participant_qos.wire_protocol.rtps_auto_id_kind = DDS_RTPS_AUTO_ID_FROM_MAC;

participant_qos.wire_protocol.rtps_host_id = DDS_RTPS_AUTO_ID;

participant_qos.wire_protocol.rtps_app_id = DDS_RTPS_AUTO_ID;

participant_qos.wire_protocol.rtps_instance_id = (/* App ID */ (DDS_RTPS_AUTO_ID) |

/* Instance ID*/ (12));

Option 3: Handle the entire rtps instance id field yourself:

participant_qos.wire_protocol.rtps_auto_id_kind = DDS_RTPS_AUTO_ID_FROM_MAC;

participant_qos.wire_protocol.rtps_host_id = DDS_RTPS_AUTO_ID;

participant_qos.wire_protocol.rtps_app_id = DDS_RTPS_AUTO_ID;

participant_qos.wire_protocol.rtps_instance_id = (/* App ID */ (12 << 8)) |

/* Instance ID */ (9))

NOTE: If you are using DDS RTPS AUTO ID FROM MAC (p. 387) as
rtps auto id kind and you decide to manually handle the rtps instance -
id field, you must ensure that both parts are non-zero (otherwise RTI Data
Distribution Service will take responsibility for them). RTI recommends that
you always specify the two parts separately in order to avoid errors.

Option 4: Let RTI Data Distribution Service handle the entire rtps instance -
id field:

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.152 DDS WireProtocolQosPolicy Struct Reference 985

participant_qos.wire_protocol.rtps_auto_id_kind = DDS_RTPS_AUTO_ID_FROM_MAC;

participant_qos.wire_protocol.rtps_host_id = DDS_RTPS_AUTO_ID;

participant_qos.wire_protocol.rtps_app_id = DDS_RTPS_AUTO_ID;

participant_qos.wire_protocol.rtps_instance_id = DDS_RTPS_AUTO_ID;

NOTE: If you are using DDS RTPS AUTO ID FROM MAC (p. 387) as
rtps auto id kind and you decide to manually handle the rtps instance id
field, you must ensure that both parts are non-zero (otherwise RTI Data Dis-
tribution Service will take responsibility for them). RTI recommends that you
always specify the two parts separately in order to clearly show the difference.

6.152.3 Member Data Documentation

6.152.3.1 DDS Long DDS WireProtocolQosPolicy::participant id

A value used to distinguish between different participants belonging to the same
domain on the same host.

Determines the unicast port on which meta-traffic is received. Also defines the
default unicast port for receiving user-traffic for DataReaders and DataWriters
(can be overridden by the DDS DataReaderQos::unicast (p. 485) or by the
DDS DataWriterQos::unicast (p. 521)).

For more information on port mapping, please refer to DDS -
RtpsWellKnownPorts t (p. 849).

Each DDSDomainParticipant (p. 1054) in the same domain, running on the
same host, must have a unique participant id. The participants may be in
the same address space or in distinct address spaces.

A negative number (-1) means that RTI Data Distribution Service will auto-
matically resolve the participant ID as follows.

ˆ RTI Data Distribution Service will pick the smallest participant ID, based
on the unicast ports available on the transports enabled for discovery.

ˆ RTI Data Distribution Service will attempt to resolve an automatic port
index either when a DomainPartcipant is enabled, or when a DataReader
or a DataWriter is created. Therefore, all the transports enabled for dis-
covery must have been registered by this time. Otherwise, the discovery
transports registered after resolving the automatic port index may pro-
duce port conflicts when the DomainPartcipant is enabled.

[default] -1 [automatic], i.e. RTI Data Distribution Service will automatically
pick the participant id, as described above.

[range] [>= 0], or -1, and does not violate guidelines stated in DDS -
RtpsWellKnownPorts t (p. 849).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

986 Class Documentation

See also:

DDSEntity::enable() (p. 1160)
NDDSTransportSupport::register transport() (p. 1437)

6.152.3.2 DDS UnsignedLong DDS WireProtocolQosPolicy::rtps -
host id

The RTPS Host ID of the domain participant.

A machine/operating system specific host ID, that is unique in the domain.

[default] DDS RTPS AUTO ID (p. ??). The default value is interpreted as
follows:

If DDS WireProtocolQosPolicy::rtps auto id kind (p. 988) is equals to
RTPS AUTO ID FROM IP (default value for this field) the value will be in-
terpreted as the IPv4 address of the first up and running interface of the host
machine.

If DDS WireProtocolQosPolicy::rtps auto id kind (p. 988) is equals to
RTPS AUTO ID FROM MAC the value will be interpreted as the first 32 bit
of the MAC address assigned to the first up and running interface of the host
machine.

[range] [0,0xffffffff]

6.152.3.3 DDS UnsignedLong DDS WireProtocolQosPolicy::rtps -
app id

The RTPS App ID of the domain participant.

A participant specific ID that, together with the rtps instance id, is unique
within the scope of the rtps host id.

If a participant dies and is restarted, it is recommended that it be given an
app ID that is distinct from the previous one, so that other participants in the
domain can distinguish between them.

[default] DDS RTPS AUTO ID (p. ??). The default value is interpreted as
follows:

If DDS WireProtocolQosPolicy::rtps auto id kind (p. 988) is equals to
RTPS AUTO ID FROM IP (default value for this field) the value will be the
process (or task) ID.

If DDS WireProtocolQosPolicy::rtps auto id kind (p. 988) is equals to
RTPS AUTO ID FROM MAC the value will be the last 32 bit of the MAC
address assigned to the first up and running interface of the host machine.
[range] [0,0xffffffff]

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.152 DDS WireProtocolQosPolicy Struct Reference 987

6.152.3.4 DDS UnsignedLong DDS WireProtocolQosPolicy::rtps -
instance id

The RTPS Instance ID of the domain participant.

An instance specific ID of a participant that, together with the rtps app id, is
unique within the scope of the rtps host id.

If a participant dies and is restarted, it is recommended that it be given an
instance ID that is distinct from the previous one, so that other participants in
the domain can distinguish between them.

[default] DDS RTPS AUTO ID (p. ??). The default value is interpreted as
follows:

If DDS WireProtocolQosPolicy::rtps auto id kind (p. 988) is equals to
RTPS AUTO ID FROM IP (default value for this field) A counter is assigned
that is incremented per new participant.

If DDS WireProtocolQosPolicy::rtps auto id kind (p. 988) is equals to
RTPS AUTO ID FROM MAC the first 24 bits are assigned to the applica-
tion/task identifier and the last 8 bits are assigned to a counter incremented
per new paricipant.

[range] [0,0xffffffff] NOTE: if we are using DDS RTPS AUTO ID FROM -
MAC as rtps auto id kind and you decide to manually handle the rtps -
instance id field, you have to ensure that both the two parts are different from
zero otherwise the middleware will take responsability for them. We recommend
to always specify the two parts separately in order to avoid errors. (examples)

6.152.3.5 struct DDS RtpsWellKnownPorts t
DDS WireProtocolQosPolicy::rtps well known ports
[read]

Configures the RTPS well-known port mappings.

Determines the well-known multicast and unicast port mappings for discovery
(meta) traffic and user traffic.

[default] DDS INTEROPERABLE RTPS WELL KNOWN PORTS
(p. 388)

6.152.3.6 DDS RtpsReservedPortKindMask
DDS WireProtocolQosPolicy::rtps reserved port mask

Specifies which well-known ports to reserve when enabling the participant.

Specifies which of the well-known multicast and unicast ports will be reserved
when the domain participant is enabled. Failure to allocate a port that is com-

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

988 Class Documentation

puted based on the DDS RtpsWellKnownPorts t (p. 849) will be detected
at this time, and the enable operation will fail.

[default] DDS RTPS RESERVED PORT MASK DEFAULT (p. 384)

6.152.3.7 DDS WireProtocolQosPolicyAutoKind
DDS WireProtocolQosPolicy::rtps auto id kind

Kind of auto mechanism used to calculate the GUID prefix.

[default] RTPS AUTO ID FROM IP

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.153 DDS WriterDataLifecycleQosPolicy Struct Reference 989

6.153 DDS WriterDataLifecycleQosPolicy
Struct Reference

Controls how a DDSDataWriter (p. 1028) handles the lifecycle of the instances
(keys) that it is registered to manage.

Public Attributes

ˆ DDS Boolean autodispose unregistered instances

Boolean flag that controls the behavior when the DDSDataWriter (p. 1028)
unregisters an instance by means of the unregister operations.

6.153.1 Detailed Description

Controls how a DDSDataWriter (p. 1028) handles the lifecycle of the instances
(keys) that it is registered to manage.

Entity:

DDSDataWriter (p. 1028)

Properties:

RxO (p. 327) = N/A
Changeable (p. 328) = YES (p. 328)

6.153.2 Usage

This policy determines how the DDSDataWriter (p. 1028) acts with regards
to the lifecycle of the data instances it manages (data instances that have been
either explicitly registered with the DDSDataWriter (p. 1028) or implicitly
registered by directly writing the data).

Since the deletion of a DataWriter automatically unregisters all data instances
it manages, the setting of the autodispose unregistered instances flag will
only determine whether instances are ultimately disposed when the DDS-
DataWriter (p. 1028) is deleted either directly by means of the DDSPub-
lisher::delete datawriter (p. 1255) operation or indirectly as a consequence
of calling DDSPublisher::delete contained entities (p. 1260) or DDS-
DomainParticipant::delete contained entities (p. 1105) that contains the
DataWriter.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

990 Class Documentation

You may use FooDataWriter::unregister instance (p. 1365) to indicate that
the DDSDataWriter (p. 1028) no longer wants to send data for a DDSTopic
(p. 1311).

The behavior controlled by this QoS policy applies on a per instance (key) basis
for keyed Topics, so that when a DDSDataWriter (p. 1028) unregisters an
instance, RTI Data Distribution Service can automatically also dispose that
instance. This is the default behavior.

In many cases where the ownership of a Topic is shared (see DDS -
OwnershipQosPolicy (p. 756)), DataWriters may want to relinquish their
ownership of a particular instance of the Topic to allow other DataWriters to
send updates for the value of that instance regardless of Ownership Strength.
In that case, you may only want a DataWriter to unregister an instance without
disposing the instance. Disposing an instance is a statement that an instance
no longer exists. User applications may be coded to trigger on the disposal
of instances, thus the ability to unregister without disposing may be useful to
properly maintain the semantic of disposal.

6.153.3 Member Data Documentation

6.153.3.1 DDS Boolean DDS -
WriterDataLifecycleQosPolicy::autodispose -
unregistered instances

Boolean flag that controls the behavior when the DDSDataWriter (p. 1028)
unregisters an instance by means of the unregister operations.

ˆ DDS BOOLEAN TRUE (p. 288) (default)

The DDSDataWriter (p. 1028) will dispose the instance each time it
is unregistered. The behavior is identical to explicitly calling one of the
dispose operations on the instance prior to calling the unregister oper-
ation.

ˆ DDS BOOLEAN FALSE (p. 289)

The DDSDataWriter (p. 1028) will not dispose the instance. The appli-
cation can still call one of the dispose operations prior to unregistering
the instance and accomplish the same effect.

[default] DDS BOOLEAN TRUE (p. 288)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.154 DDS WstringSeq Struct Reference 991

6.154 DDS WstringSeq Struct Reference

Instantiates FooSeq (p. 1377) < DDS Wchar (p. 289)∗ >.

6.154.1 Detailed Description

Instantiates FooSeq (p. 1377) < DDS Wchar (p. 289)∗ >.

Instantiates:

<<generic>> (p. 190) FooSeq (p. 1377)

See also:

DDS Wchar (p. 289)
DDS StringSeq (p. 869)
FooSeq (p. 1377)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

992 Class Documentation

6.155 DDSCondition Class Reference

<<interface>> (p. 190) Root class for all the conditions that may be attached
to a DDSWaitSet (p. 1325).

Inheritance diagram for DDSCondition::

Public Member Functions

ˆ virtual DDS Boolean get trigger value ()=0
Retrieve the trigger value.

6.155.1 Detailed Description

<<interface>> (p. 190) Root class for all the conditions that may be attached
to a DDSWaitSet (p. 1325).

This basic class is specialised in three classes:

DDSGuardCondition (p. 1167), DDSStatusCondition (p. 1271), and
DDSReadCondition (p. 1269).

A DDSCondition (p. 992) has a trigger value that can be DDS -
BOOLEAN TRUE (p. 288) or DDS BOOLEAN FALSE (p. 289) and is
set automatically by RTI Data Distribution Service.

See also:

DDSWaitSet (p. 1325)

6.155.2 Member Function Documentation

6.155.2.1 virtual DDS Boolean DDSCondition::get trigger value ()
[pure virtual]

Retrieve the trigger value.

Returns:

the trigger value.

Implemented in DDSGuardCondition (p. 1168).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.156 DDSConditionSeq Struct Reference 993

6.156 DDSConditionSeq Struct Reference

Instantiates FooSeq (p. 1377) < DDSCondition (p. 992) >.

6.156.1 Detailed Description

Instantiates FooSeq (p. 1377) < DDSCondition (p. 992) >.

Instantiates:

<<generic>> (p. 190) FooSeq (p. 1377)

See also:

DDSWaitSet (p. 1325)
FooSeq (p. 1377)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

994 Class Documentation

6.157 DDSContentFilter Class Reference

<<interface>> (p. 190) Interface to be used by a custom filter of a DDSCon-
tentFilteredTopic (p. 998)

Inherited by DDSSqlFilter[virtual].

Public Member Functions

ˆ virtual DDS ReturnCode t compile (void ∗∗new compile data, const
char ∗expression, const DDS StringSeq ¶meters, const DDS -
TypeCode ∗type code, const char ∗type class name, void ∗old compile -
data)=0

Compile an instance of the content filter according to the filter expression
and parameters of the given data type.

ˆ virtual DDS Boolean evaluate (void ∗compile data, const void
∗sample)=0

Evaluate whether the sample is passing the filter or not according to the
sample content.

ˆ virtual void finalize (void ∗compile data)=0
A previously compiled instance of the content filter is no longer in use and
resources can now be cleaned up.

6.157.1 Detailed Description

<<interface>> (p. 190) Interface to be used by a custom filter of a DDSCon-
tentFilteredTopic (p. 998)

Entity:

DDSContentFilteredTopic (p. 998)

This is the interface that can be implemented by an application-provided class
and then registered with the DDSDomainParticipant (p. 1054) such that
samples can be filtered for a DDSContentFilteredTopic (p. 998) with the
given filter name.

Note: the API for using a custom content filter is subject to change in a future
release.

See also:

DDSContentFilteredTopic (p. 998)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.157 DDSContentFilter Class Reference 995

DDSDomainParticipant::register contentfilter (p. 1070)

6.157.2 Member Function Documentation

6.157.2.1 virtual DDS ReturnCode t DDSContentFilter::compile
(void ∗∗ new compile data, const char ∗ expression, const
DDS StringSeq & parameters, const DDS TypeCode
∗ type code, const char ∗ type class name, void ∗
old compile data) [pure virtual]

Compile an instance of the content filter according to the filter expression and
parameters of the given data type.

This method is called when an instance of the locally registered content filter
is created or when the expression parameter for the locally registered content
filter instance is changed.

An instance of the locally registered content filter is created every time a local
DDSContentFilteredTopic (p. 998) with the matching filter name is created,
or when a DDSDataReader (p. 1004) with a matching filter name is discov-
ered.

It is possible for multiple threads to be calling into this function at the same
time. However, this function will never be called on a content filter that has
been unregistered.

Parameters:

new compile data <<out>> (p. 191) User specified opaque pointer of
this instance of the content filter. This value is then passed to
the DDSContentFilter::evaluate (p. 996) and DDSContentFil-
ter::finalize (p. 997) functions for this instance of the content filter.
Can be set to NULL.

expression <<in>> (p. 191) An ASCIIZ string with the filter expres-
sion. The memory used by this string is owned by RTI Data Distri-
bution Service and must not be freed. If you want to manipulate this
string, you must first make a copy of it.

parameters <<in>> (p. 191) A string sequence with the expression pa-
rameters the DDSContentFilteredTopic (p. 998) was created with.
The string sequence is equal (but not identical) to the string sequence
passed to DDSDomainParticipant::create contentfilteredtopic
(p. 1092). Note that the sequence passed to the compile function is
owned by RTI Data Distribution Service and must not be referenced
outside the compile function.

type code <<in>> (p. 191) A pointer to the type code for the related
DDSTopic (p. 1311) of the DDSContentFilteredTopic (p. 998). A

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

996 Class Documentation

type code is a description of a type in terms of which types it contains
(such as long, string, etc.) and the corresponding member field names
in the data type structure. The type code can be used to write custom
content filters that can be used with any type.

type class name <<in>> (p. 191) Fully qualified class name of the re-
lated DDSTopic (p. 1311).

old compile data <<in>> (p. 191) The previous new compile data
value from a previous call to this instance of a content filter. If
the compile function is called more than once for an instance of a
DDSContentFilteredTopic (p. 998), e.g., if the expression parame-
ters are changed, then the new compile data value returned by the pre-
vious invocation is passed in the old compile data parameter (which
can be NULL). If this is a new instance of the filter, NULL is passed.
This parameter is useful for freeing or reusing resources previously
allocated for this

Returns:

One of the Standard Return Codes (p. 302)

6.157.2.2 virtual DDS Boolean DDSContentFilter::evaluate (void ∗
compile data, const void ∗ sample) [pure virtual]

Evaluate whether the sample is passing the filter or not according to the sample
content.

This method is called when a sample for a locally created DDSDataReader
(p. 1004) associated with the filter is received, or when a sample for a discovered
DDSDataReader (p. 1004) assocated with the filter needs to be sent.

It is possible for multiple threads to be calling into this function at the same
time. However, this function will never be called on a content filter that has
been unregistered.

Parameters:

compile data <<in>> (p. 191) The last return value of the DDSCon-
tentFilter::compile (p. 995) function for this instance of the content
filter. Can be NULL.

sample <<in>> (p. 191) Pointer to a deserialized sample to be filtered

Returns:

The function must return 0 if the sample should be filtered out, non zero
otherwise

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.157 DDSContentFilter Class Reference 997

6.157.2.3 virtual void DDSContentFilter::finalize (void ∗
compile data) [pure virtual]

A previously compiled instance of the content filter is no longer in use and
resources can now be cleaned up.

This method is called when an instance of the locally registered content filter is
deleted.

An instance of the locally registered content filter is deleted every time a local
DDSContentFilteredTopic (p. 998) with the matching filter name is deleted,
or when a DDSDataReader (p. 1004) with a matching filter name is removed
due to discovery.

This method is also called on all instances of the discovered DDSDataReader
(p. 1004) with a matching filter name if the filter is unregistered with DDSDo-
mainParticipant::unregister contentfilter (p. 1071)

It is possible for multiple threads to be calling into this function at the same
time. However, this function will never be called on a content filter that has
been unregistered.

Parameters:

compile data <<in>> (p. 191) The last return value of the DDSCon-
tentFilter::compile (p. 995) function for this instance of the content
filter. Can be NULL.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

998 Class Documentation

6.158 DDSContentFilteredTopic Class Refer-
ence

<<interface>> (p. 190) Specialization of DDSTopicDescription (p. 1319)
that allows for content-based subscriptions.

Inheritance diagram for DDSContentFilteredTopic::

Public Member Functions

ˆ virtual const char ∗ get filter expression ()=0
Get the filter expression.

ˆ virtual DDS ReturnCode t get expression parameters (DDS -
StringSeq ¶meters)=0

Get the expression parameters.

ˆ virtual DDS ReturnCode t set expression parameters (const
DDS StringSeq ¶meters)=0

Set the expression parameters.

ˆ virtual DDS ReturnCode t append to expression parameter
(const DDS Long index, const char ∗val)=0

<<eXtension>> (p. 190) Appends a string term to the specified parameter
string.

ˆ virtual DDS ReturnCode t remove from expression parameter
(const DDS Long index, const char ∗val)=0

<<eXtension>> (p. 190) Removes a string term from the specified param-
eter string.

ˆ virtual DDSTopic ∗ get related topic ()=0
Get the related topic.

Static Public Member Functions

ˆ static DDSContentFilteredTopic ∗ narrow (DDSTopicDescription
∗topic description)

Narrow the given DDSTopicDescription (p. 1319) pointer to a DDSCon-
tentFilteredTopic (p. 998) pointer.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.158 DDSContentFilteredTopic Class Reference 999

6.158.1 Detailed Description

<<interface>> (p. 190) Specialization of DDSTopicDescription (p. 1319)
that allows for content-based subscriptions.

It describes a more sophisticated subscription that indicates a DDS-
DataReader (p. 1004) does not want to necessarily see all values of each in-
stance published under the DDSTopic (p. 1311). Rather, it wants to see only
the values whose contents satisfy certain criteria. This class therefore can be
used to request content-based subscriptions.

The selection of the content is done using the filter expression with param-
eters expression parameters.

ˆ The filter expression attribute is a string that specifies the criteria to
select the data samples of interest. It is similar to the WHERE part of an
SQL clause.

ˆ The expression parameters attribute is a sequence of strings that give
values to the ’parameters’ (i.e. ”%n” tokens) in the filter expression.
The number of supplied parameters must fit with the requested values in
the filter expression (i.e. the number of n tokens).

Queries and Filters Syntax (p. 199) describes the syntax of filter -
expression and expression parameters.

Note on Content-Based Filtering and Sparse Value Types

If you are a user of the Dynamic Data (p. 75) API, you may define sparse
value types; that is, types for which every data sample need not include a
value for every field defined in the type. (See DDS TK SPARSE (p. 65) and
DDS TypeCodeFactory::create sparse tc (p. 962).) In order for a filter
expression on a field to be well defined, that field must be present in the data
sample. That means that you will only be able to perform a content-based filter
on fields that are marked as DDS TYPECODE KEY MEMBER (p. 63) or
DDS TYPECODE NONKEY REQUIRED MEMBER (p. 63).

6.158.2 Member Function Documentation

6.158.2.1 static DDSContentFilteredTopic∗
DDSContentFilteredTopic::narrow
(DDSTopicDescription ∗ topic description) [static]

Narrow the given DDSTopicDescription (p. 1319) pointer to a DDSCon-
tentFilteredTopic (p. 998) pointer.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1000 Class Documentation

Returns:

DDSContentFilteredTopic (p. 998) if this DDSTopicDescription
(p. 1319) is a DDSContentFilteredTopic (p. 998). Otherwise, return
NULL.

6.158.2.2 virtual const char∗ DDSContentFilteredTopic::get filter -
expression () [pure virtual]

Get the filter expression.

Return the filter expression associated with the DDSContentFiltered-
Topic (p. 998).

Returns:

the filter expression.

6.158.2.3 virtual DDS ReturnCode t DDSContentFiltered-
Topic::get expression parameters (DDS StringSeq &
parameters) [pure virtual]

Get the expression parameters.

Return the expression parameters associated with the DDSContentFil-
teredTopic (p. 998). expression parameters is either specified on the last
successful call to DDSContentFilteredTopic::set expression parameters
(p. 1001) or, if that method is never called, the parameters specified when the
DDSContentFilteredTopic (p. 998) was created.

Parameters:

parameters <<inout>> (p. 191) the filter expression parameters. The
memory for the strings in this sequence is managed according to the
conventions described in Conventions (p. 432). In particular, be care-
ful to avoid a situation in which RTI Data Distribution Service allo-
cates a string on your behalf and you then reuse that string in such
a way that RTI Data Distribution Service believes it to have more
memory allocated to it than it actually does.

Returns:

One of the Standard Return Codes (p. 302)

See also:

DDSDomainParticipant::create contentfilteredtopic (p. 1092)
DDSContentFilteredTopic::set expression parameters (p. 1001)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.158 DDSContentFilteredTopic Class Reference 1001

6.158.2.4 virtual DDS ReturnCode t DDSContentFiltered-
Topic::set expression parameters (const DDS StringSeq
& parameters) [pure virtual]

Set the expression parameters.

Change the expression parameters associated with the DDSContentFil-
teredTopic (p. 998).

Parameters:

parameters <<in>> (p. 191) the filter expression parameters . Length
of sequence cannot be greater than 100.

Returns:

One of the Standard Return Codes (p. 302)

6.158.2.5 virtual DDS ReturnCode t DDSContentFiltered-
Topic::append to expression parameter (const DDS Long
index, const char ∗ val) [pure virtual]

<<eXtension>> (p. 190) Appends a string term to the specified parameter
string.

Appends the input string to the end of the specified parameter string, separated
by a comma. If the original parameter string is enclosed in quotation marks (”),
the resultant string will also be enclosed in quotation marks.

This method can be used in expression parameters associated with MATCH
operators in order to add a pattern to the match pattern list. For example, if
the filter expression parameter value is:

’IBM’

Then append to expression parameter(0, ”MSFT”) would generate the new
value:

’IBM,MSFT’

Parameters:

index <<in>> (p. 191) The index of the parameter string to be
modified. The first index is index 0. When using the DDS -
STRINGMATCHFILTER NAME (p. 40) filter, index must be
0.

val <<in>> (p. 191) The string term to be appended to the parameter
string.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1002 Class Documentation

Returns:

One of the Standard Return Codes (p. 302)

6.158.2.6 virtual DDS ReturnCode t DDSContentFiltered-
Topic::remove from expression parameter (const
DDS Long index, const char ∗ val) [pure virtual]

<<eXtension>> (p. 190) Removes a string term from the specified parameter
string.

Removes the input string from the specified parameter string. To be found and
removed, the input string must exist as a complete term, bounded by comma
separators or the strong boundary. If the original parameter string is enclosed
in quotation marks (”), the resultant string will also be enclosed in quotation
marks. If the removed term was the last entry in the string, the result will be
a string of empty quotation marks.

This method can be used in expression parameters associated with MATCH
operators in order to remove a pattern from the match pattern list. For example,
if the filter expression paremeter value is:

’IBM,MSFT’

Then remove from expression parameter(0, ”IBM”) would generate the expres-
sion:

’MSFT’

Parameters:

index <<in>> (p. 191) The index of the parameter string to be
modified. The first index is index 0. When using the DDS -
STRINGMATCHFILTER NAME (p. 40) filter, index must be
0.

val <<in>> (p. 191) The string term to be removed from the parameter
string.

Returns:

One of the Standard Return Codes (p. 302)

6.158.2.7 virtual DDSTopic∗ DDSContentFilteredTopic::get -
related topic () [pure virtual]

Get the related topic.

Return the DDSTopic (p. 1311) specified when the DDSContentFiltered-
Topic (p. 998) was created.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.158 DDSContentFilteredTopic Class Reference 1003

Returns:

The DDSTopic (p. 1311) assocated with the DDSContentFiltered-
Topic (p. 998).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1004 Class Documentation

6.159 DDSDataReader Class Reference

<<interface>> (p. 190) Allows the application to: (1) declare the data it
wishes to receive (i.e. make a subscription) and (2) access the data received by
the attached DDSSubscriber (p. 1284).

Inheritance diagram for DDSDataReader::

Public Member Functions

ˆ virtual DDSReadCondition ∗ create readcondition (DDS -
SampleStateMask sample states, DDS ViewStateMask view states,
DDS InstanceStateMask instance states)

Creates a DDSReadCondition (p. 1269).

ˆ virtual DDSQueryCondition ∗ create querycondition (DDS -
SampleStateMask sample states, DDS ViewStateMask view -
states, DDS InstanceStateMask instance states, const char ∗query -
expression, const struct DDS StringSeq &query parameters)

Creates a DDSQueryCondition (p. 1267).

ˆ virtual DDS ReturnCode t delete readcondition (DDSReadCon-
dition ∗condition)

Deletes a DDSReadCondition (p. 1269) or DDSQueryCondition
(p. 1267) attached to the DDSDataReader (p. 1004).

ˆ virtual DDS ReturnCode t delete contained entities ()
Deletes all the entities that were created by means of the ”create” operations
on the DDSDataReader (p. 1004).

ˆ virtual DDS ReturnCode t wait for historical data (const DDS -
Duration t &max wait)

Waits until all ”historical” data is received for DDSDataReader (p. 1004)
entities that have a non-VOLATILE PERSISTENCE Qos kind.

ˆ virtual DDS ReturnCode t get matched publications (DDS -
InstanceHandleSeq &publication handles)

Retrieve the list of publications currently ”associated” with this DDS-
DataReader (p. 1004).

ˆ virtual DDS ReturnCode t get matched publication data (DDS -
PublicationBuiltinTopicData &publication data, const DDS -
InstanceHandle t &publication handle)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.159 DDSDataReader Class Reference 1005

This operation retrieves the information on a publication that is currently
”associated” with the DDSDataReader (p. 1004).

ˆ virtual DDSTopicDescription ∗ get topicdescription ()

Returns the DDSTopicDescription (p. 1319) associated with the DDS-
DataReader (p. 1004).

ˆ virtual DDSSubscriber ∗ get subscriber ()

Returns the DDSSubscriber (p. 1284) to which the DDSDataReader
(p. 1004) belongs.

ˆ virtual DDS ReturnCode t get sample rejected status (DDS -
SampleRejectedStatus &status)

Accesses the DDS SAMPLE REJECTED STATUS (p. 312) communi-
cation status.

ˆ virtual DDS ReturnCode t get liveliness changed status (DDS -
LivelinessChangedStatus &status)

Accesses the DDS LIVELINESS CHANGED STATUS (p. 313) com-
munication status.

ˆ virtual DDS ReturnCode t get requested deadline missed status
(DDS RequestedDeadlineMissedStatus &status)

Accesses the DDS REQUESTED DEADLINE MISSED STATUS
(p. 311) communication status.

ˆ virtual DDS ReturnCode t get requested incompatible qos -
status (DDS RequestedIncompatibleQosStatus &status)

Accesses the DDS REQUESTED INCOMPATIBLE QOS STATUS
(p. 311) communication status.

ˆ virtual DDS ReturnCode t get sample lost status (DDS -
SampleLostStatus &status)

Accesses the DDS SAMPLE LOST STATUS (p. 312) communication
status.

ˆ virtual DDS ReturnCode t get subscription matched status
(DDS SubscriptionMatchedStatus &status)

Accesses the DDS SUBSCRIPTION MATCHED STATUS (p. 314)
communication status.

ˆ virtual DDS ReturnCode t get datareader cache status (DDS -
DataReaderCacheStatus &status)

<<eXtension>> (p. 190) Get the datareader cache status for this reader.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1006 Class Documentation

ˆ virtual DDS ReturnCode t get datareader protocol status
(DDS DataReaderProtocolStatus &status)

<<eXtension>> (p. 190) Get the datareader protocol status for this reader.

ˆ virtual DDS ReturnCode t get matched publication -
datareader protocol status (DDS DataReaderProtocolStatus
&status, const DDS InstanceHandle t &publication handle)

<<eXtension>> (p. 190) Get the datareader protocol status for this reader,
per matched publication identified by the publication handle.

ˆ virtual DDS ReturnCode t set qos (const DDS DataReaderQos
&qos)

Sets the reader QoS.

ˆ virtual DDS ReturnCode t get qos (DDS DataReaderQos &qos)
Gets the reader QoS.

ˆ virtual DDS ReturnCode t set qos with profile (const char
∗library name, const char ∗profile name)

<<eXtension>> (p. 190) Change the QoS of this reader using the input
XML QoS profile.

ˆ virtual DDS ReturnCode t set listener (DDSDataReaderListener
∗l, DDS StatusMask mask=DDS STATUS MASK ALL)

Sets the reader listener.

ˆ virtual DDSDataReaderListener ∗ get listener ()
Get the reader listener.

ˆ virtual DDS ReturnCode t enable ()
Enables the DDSEntity (p. 1157).

ˆ virtual DDSStatusCondition ∗ get statuscondition ()
Allows access to the DDSStatusCondition (p. 1271) associated with the
DDSEntity (p. 1157).

ˆ virtual DDS StatusMask get status changes ()
Retrieves the list of communication statuses in the DDSEntity (p. 1157)
that are triggered.

ˆ virtual DDS InstanceHandle t get instance handle ()
Allows access to the DDS InstanceHandle t (p. 52) associated with the
DDSEntity (p. 1157).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.159 DDSDataReader Class Reference 1007

6.159.1 Detailed Description

<<interface>> (p. 190) Allows the application to: (1) declare the data it
wishes to receive (i.e. make a subscription) and (2) access the data received by
the attached DDSSubscriber (p. 1284).

QoS:

DDS DataReaderQos (p. 481)

Status:

DDS DATA AVAILABLE STATUS (p. 312);
DDS LIVELINESS CHANGED STATUS (p. 313), DDS -
LivelinessChangedStatus (p. 726);
DDS REQUESTED DEADLINE MISSED STATUS (p. 311),
DDS RequestedDeadlineMissedStatus (p. 823);
DDS REQUESTED INCOMPATIBLE QOS STATUS (p. 311),
DDS RequestedIncompatibleQosStatus (p. 825);
DDS SAMPLE LOST STATUS (p. 312), DDS SampleLostStatus
(p. 864);
DDS SAMPLE REJECTED STATUS (p. 312), DDS -
SampleRejectedStatus (p. 865);
DDS SUBSCRIPTION MATCHED STATUS (p. 314), DDS -
SubscriptionMatchedStatus

Listener:

DDSDataReaderListener (p. 1023)

A DDSDataReader (p. 1004) refers to exactly one DDSTopicDescrip-
tion (p. 1319) (either a DDSTopic (p. 1311), a DDSContentFilteredTopic
(p. 998) or a DDSMultiTopic (p. 1221)) that identifies the data to be read.

The subscription has a unique resulting type. The data-reader may give access
to several instances of the resulting type, which can be distinguished from each
other by their key.

DDSDataReader (p. 1004) is an abstract class. It must be specialised for each
particular application data-type (see USER DATA (p. 332)). The additional
methods or functions that must be defined in the auto-generated class for a
hypothetical application type Foo (p. 1333) are specified in the generic type
FooDataReader (p. 1334).

The following operations may be called even if the DDSDataReader (p. 1004)
is not enabled. Other operations will fail with the value DDS RETCODE -
NOT ENABLED (p. 303) if called on a disabled DDSDataReader (p. 1004):

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1008 Class Documentation

ˆ The base-class operations DDSDataReader::set qos (p. 1017),
DDSDataReader::get qos (p. 1018), DDSDataReader::set -
listener (p. 1019), DDSDataReader::get listener (p. 1019), DDSEn-
tity::enable (p. 1160), DDSEntity::get statuscondition (p. 1161)
and DDSEntity::get status changes (p. 1161)

ˆ DDSDataReader::get liveliness changed status (p. 1014) DDS-
DataReader::get requested deadline missed status (p. 1014)
DDSDataReader::get requested incompatible qos status
(p. 1015) DDSDataReader::get sample lost status (p. 1015)
DDSDataReader::get sample rejected status (p. 1013) DDS-
DataReader::get subscription matched status (p. 1015)

All sample-accessing operations, namely: FooDataReader::read (p. 1337),
FooDataReader::take (p. 1338), FooDataReader::read w condition
(p. 1344), and FooDataReader::take w condition (p. 1345) may fail with
the error DDS RETCODE PRECONDITION NOT MET (p. 303) as
described in DDSSubscriber::begin access (p. 1299).

See also:

Operations Allowed in Listener Callbacks (p. 1219)

Examples:

HelloWorld subscriber.cxx, and HelloWorldSupport.cxx.

6.159.2 Member Function Documentation

6.159.2.1 virtual DDSReadCondition∗ DDSDataReader::create -
readcondition (DDS SampleStateMask
sample states, DDS ViewStateMask view states,
DDS InstanceStateMask instance states) [inline,
virtual]

Creates a DDSReadCondition (p. 1269).

The returned DDSReadCondition (p. 1269) will be attached and belong to
the DDSDataReader (p. 1004).

Parameters:

sample states <<in>> (p. 191) sample state of the data samples that
are of interest

view states <<in>> (p. 191) view state of the data samples that are of
interest

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.159 DDSDataReader Class Reference 1009

instance states <<in>> (p. 191) instance state of the data samples that
are of interest

Returns:

return DDSReadCondition (p. 1269) created. Returns NULL in case of
failure.

6.159.2.2 virtual DDSQueryCondition∗ DDSDataReader::create -
querycondition (DDS SampleStateMask
sample states, DDS ViewStateMask view states,
DDS InstanceStateMask instance states, const char
∗ query expression, const struct DDS StringSeq &
query parameters) [inline, virtual]

Creates a DDSQueryCondition (p. 1267).

The returned DDSQueryCondition (p. 1267) will be attached and belong to
the DDSDataReader (p. 1004).

Queries and Filters Syntax (p. 199) describes the syntax of query -
expression and query parameters.

Parameters:

sample states <<in>> (p. 191) sample state of the data samples that
are of interest

view states <<in>> (p. 191) view state of the data samples that are of
interest

instance states <<in>> (p. 191) instance state of the data samples that
are of interest

query expression <<in>> (p. 191) Expression for the query. Cannot
be NULL.

query parameters <<in>> (p. 191) Parameters for the query expres-
sion.

Returns:

NULL

6.159.2.3 virtual DDS ReturnCode t DDSDataReader::delete -
readcondition (DDSReadCondition ∗ condition) [inline,
virtual]

Deletes a DDSReadCondition (p. 1269) or DDSQueryCondition (p. 1267)
attached to the DDSDataReader (p. 1004).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1010 Class Documentation

Since DDSQueryCondition (p. 1267) specializes DDSReadCondition
(p. 1269), it can also be used to delete a DDSQueryCondition (p. 1267).

Precondition:

The DDSReadCondition (p. 1269) must be attached to the DDS-
DataReader (p. 1004), or the operation will fail with the error DDS -
RETCODE PRECONDITION NOT MET (p. 303).

Parameters:

condition <<in>> (p. 191) Condition to be deleted.

Returns:

One of the Standard Return Codes (p. 302), or DDS RETCODE -
PRECONDITION NOT MET (p. 303)

6.159.2.4 virtual DDS ReturnCode t DDSDataReader::delete -
contained entities () [inline, virtual]

Deletes all the entities that were created by means of the ”create” operations
on the DDSDataReader (p. 1004).

Deletes all contained DDSReadCondition (p. 1269) and DDSQueryCondi-
tion (p. 1267) objects.

The operation will fail with DDS RETCODE PRECONDITION NOT -
MET (p. 303) if the any of the contained entities is in a state where it cannot
be deleted.

Once DDSDataReader::delete contained entities (p. 1010) completes suc-
cessfully, the application may delete the DDSDataReader (p. 1004), knowing
that it has no contained DDSReadCondition (p. 1269) and DDSQueryCon-
dition (p. 1267) objects.

Returns:

One of the Standard Return Codes (p. 302), or DDS RETCODE -
PRECONDITION NOT MET (p. 303)

6.159.2.5 virtual DDS ReturnCode t DDSDataReader::wait for -
historical data (const DDS Duration t & max wait)
[inline, virtual]

Waits until all ”historical” data is received for DDSDataReader (p. 1004)
entities that have a non-VOLATILE PERSISTENCE Qos kind.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.159 DDSDataReader Class Reference 1011

This operation is intended only for DDSDataReader (p. 1004) entities that
have a non-VOLATILE PERSISTENCE QoS kind.

As soon as an application enables a non-VOLATILE DDSDataReader
(p. 1004), it will start receiving both ”historical” data, i.e. the data that was
written prior to the time the DDSDataReader (p. 1004) joined the domain,
as well as any new data written by the DDSDataWriter (p. 1028) entities.
There are situations where the application logic may require the application to
wait until all ”historical” data is received. This is the purpose of the DDS-
DataReader::wait for historical data (p. 1010) operations.

The operation DDSDataReader::wait for historical data (p. 1010) blocks
the calling thread until either all ”historical” data is received, or else duration
specified by the max wait parameter clapses, whichever happens first. A suc-
cessful completion indicates that all the ”historical” data was ”received”; timing
out indicates that max wait elapsed before all the data was received.

Parameters:

max wait <<in>> (p. 191) Timeout value.

Returns:

One of the Standard Return Codes (p. 302), DDS RETCODE -
TIMEOUT (p. 304) or DDS RETCODE NOT ENABLED (p. 303).

6.159.2.6 virtual DDS ReturnCode t DDSDataReader::get -
matched publications (DDS InstanceHandleSeq &
publication handles) [inline, virtual]

Retrieve the list of publications currently ”associated” with this DDS-
DataReader (p. 1004).

Matching publications are those in the same domain that have a matching
DDSTopic (p. 1311), compatible QoS common partition that the DDSDo-
mainParticipant (p. 1054) has not indicated should be ”ignored” by means of
the DDSDomainParticipant::ignore publication (p. 1102) operation.

The handles returned in the publication handles’ list are the ones that are
used by the DDS implementation to locally identify the corresponding matched
DDSDataWriter (p. 1028) entities. These handles match the ones that appear
in the instance handle field of the DDS SampleInfo (p. 855) when reading
the DDS PUBLICATION TOPIC NAME (p. 279) builtin topic

Parameters:

publication handles inout.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1012 Class Documentation

The sequence will be grown if the sequence has ownership and the system has
the corresponding resources. Use a sequence without ownership to avoid dy-
namic memory allocation. If the sequence is too small to store all the matches
and the system can not resize the sequence, this method will fail with DDS -
RETCODE OUT OF RESOURCES (p. 303).

The maximum number of matches possible is configured with DDS -
DomainParticipantResourceLimitsQosPolicy (p. 553). You can use a
zero-maximum sequence without ownership to quickly check whether there are
any matches without allocating any memory. .

Returns:

One of the Standard Return Codes (p. 302), or DDS RETCODE -
OUT OF RESOURCES (p. 303) if the sequence is too small and the sys-
tem can not resize it, or DDS RETCODE NOT ENABLED (p. 303)

6.159.2.7 virtual DDS ReturnCode t DDSDataReader::get -
matched publication data (DDS -
PublicationBuiltinTopicData & publication data, const
DDS InstanceHandle t & publication handle) [inline,
virtual]

This operation retrieves the information on a publication that is currently ”as-
sociated” with the DDSDataReader (p. 1004).

Publication with a matching DDSTopic (p. 1311), compatible QoS and com-
mon partition that the application has not indicated should be ”ignored” by
means of the DDSDomainParticipant::ignore publication (p. 1102) oper-
ation.

The publication handle must correspond to a publication currently associ-
ated with the DDSDataReader (p. 1004). Otherwise, the operation will fail
with DDS RETCODE BAD PARAMETER (p. 303). Use the operation
DDSDataReader::get matched publications (p. 1011) to find the publica-
tions that are currently matched with the DDSDataReader (p. 1004).

Note: This operation does not retrieve the following information in DDS -
PublicationBuiltinTopicData (p. 788):

ˆ DDS PublicationBuiltinTopicData::type code (p. 793)

ˆ DDS PublicationBuiltinTopicData::property (p. 794)

The above information is available through DDSDataReaderListener::on -
data available() (p. 1025) (if a reader listener is installed on the DDSPubli-
cationBuiltinTopicDataDataReader (p. 1241)).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.159 DDSDataReader Class Reference 1013

Parameters:

publication data <<inout>> (p. 191). The information to be filled in
on the associated publication. Cannot be NULL.

publication handle <<in>> (p. 191). Handle to a specific publication
associated with the DDSDataWriter (p. 1028). . Must correspond
to a publication currently associated with the DDSDataReader
(p. 1004).

Returns:

One of the Standard Return Codes (p. 302) or DDS RETCODE -
NOT ENABLED (p. 303)

6.159.2.8 virtual DDSTopicDescription∗ DDSDataReader::get -
topicdescription () [inline, virtual]

Returns the DDSTopicDescription (p. 1319) associated with the DDS-
DataReader (p. 1004).

Returns that same DDSTopicDescription (p. 1319) that was used to create
the DDSDataReader (p. 1004).

Returns:

DDSTopicDescription (p. 1319) associated with the DDSDataReader
(p. 1004).

6.159.2.9 virtual DDSSubscriber∗ DDSDataReader::get subscriber
() [inline, virtual]

Returns the DDSSubscriber (p. 1284) to which the DDSDataReader
(p. 1004) belongs.

Returns:

DDSSubscriber (p. 1284) to which the DDSDataReader (p. 1004) be-
longs.

6.159.2.10 virtual DDS ReturnCode t DDSDataReader::get -
sample rejected status (DDS SampleRejectedStatus &
status) [inline, virtual]

Accesses the DDS SAMPLE REJECTED STATUS (p. 312) communica-
tion status.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1014 Class Documentation

Parameters:

status <<inout>> (p. 191) DDS SampleRejectedStatus (p. 865) to
be filled in.

Returns:

One of the Standard Return Codes (p. 302)

6.159.2.11 virtual DDS ReturnCode t DDSDataReader::get -
liveliness changed status (DDS LivelinessChangedStatus
& status) [inline, virtual]

Accesses the DDS LIVELINESS CHANGED STATUS (p. 313) commu-
nication status.

Parameters:

status <<inout>> (p. 191) DDS LivelinessChangedStatus (p. 726)
to be filled in.

Returns:

One of the Standard Return Codes (p. 302)

6.159.2.12 virtual DDS ReturnCode t DDSDataReader::get -
requested deadline missed status
(DDS RequestedDeadlineMissedStatus & status)
[inline, virtual]

Accesses the DDS REQUESTED DEADLINE MISSED STATUS
(p. 311) communication status.

Parameters:

status <<inout>> (p. 191) DDS RequestedDeadlineMissedStatus
(p. 823) to be filled in.

Returns:

One of the Standard Return Codes (p. 302)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.159 DDSDataReader Class Reference 1015

6.159.2.13 virtual DDS ReturnCode t DDSDataReader::get -
requested incompatible qos status
(DDS RequestedIncompatibleQosStatus & status)
[inline, virtual]

Accesses the DDS REQUESTED INCOMPATIBLE QOS STATUS
(p. 311) communication status.

Parameters:

status <<inout>> (p. 191) DDS RequestedIncompatibleQosStatus
(p. 825) to be filled in.

Returns:

One of the Standard Return Codes (p. 302)

6.159.2.14 virtual DDS ReturnCode t DDSDataReader::get -
sample lost status (DDS SampleLostStatus & status)
[inline, virtual]

Accesses the DDS SAMPLE LOST STATUS (p. 312) communication sta-
tus.

Parameters:

status <<inout>> (p. 191) DDS SampleLostStatus (p. 864) to be
filled in.

Returns:

One of the Standard Return Codes (p. 302)

6.159.2.15 virtual DDS ReturnCode t DDSDataReader::get -
subscription matched status
(DDS SubscriptionMatchedStatus & status) [inline,
virtual]

Accesses the DDS SUBSCRIPTION MATCHED STATUS (p. 314) com-
munication status.

Parameters:

status <<inout>> (p. 191) DDS SubscriptionMatchedStatus
(p. 885) to be filled in.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1016 Class Documentation

Returns:

One of the Standard Return Codes (p. 302)

6.159.2.16 virtual DDS ReturnCode t DDSDataReader::get -
datareader cache status (DDS DataReaderCacheStatus
& status) [inline, virtual]

<<eXtension>> (p. 190) Get the datareader cache status for this reader.

Parameters:

status <<inout>> (p. 191) DDS DataReaderCacheStatus (p. 466)
to be filled in.

Returns:

One of the Standard Return Codes (p. 302) or DDS RETCODE -
NOT ENABLED (p. 303).

6.159.2.17 virtual DDS ReturnCode t DDSDataReader::get -
datareader protocol status (DDS -
DataReaderProtocolStatus & status) [inline,
virtual]

<<eXtension>> (p. 190) Get the datareader protocol status for this reader.

Parameters:

status <<inout>> (p. 191) DDS DataReaderProtocolStatus
(p. 471) to be filled in.

Returns:

One of the Standard Return Codes (p. 302) or DDS RETCODE -
NOT ENABLED (p. 303).

6.159.2.18 virtual DDS ReturnCode t DDSDataReader::get -
matched publication datareader protocol status
(DDS DataReaderProtocolStatus & status, const
DDS InstanceHandle t & publication handle) [inline,
virtual]

<<eXtension>> (p. 190) Get the datareader protocol status for this reader,
per matched publication identified by the publication handle.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.159 DDSDataReader Class Reference 1017

Note: Status for a remote entity is only kept while the entity is alive. Once a
remote entity is no longer alive, its status is deleted.

Parameters:

status <<inout>> (p. 191). The information to be filled in on the asso-
ciated publication. Cannot be NULL.

publication handle <<in>> (p. 191). Handle to a specific publication
associated with the DDSDataWriter (p. 1028). . Must correspond
to a publication currently associated with the DDSDataReader
(p. 1004).

Returns:

One of the Standard Return Codes (p. 302) or DDS RETCODE -
NOT ENABLED (p. 303)

6.159.2.19 virtual DDS ReturnCode t DDSDataReader::set qos
(const DDS DataReaderQos & qos) [inline, virtual]

Sets the reader QoS.

This operation modifies the QoS of the DDSDataReader (p. 1004).

The DDS DataReaderQos::user data (p. 484), DDS -
DataReaderQos::deadline (p. 483), DDS DataReaderQos::latency -
budget (p. 483), DDS DataReaderQos::time based filter (p. 484),
DDS DataReaderQos::reader data lifecycle (p. 484) can be changed. The
other policies are immutable.

Parameters:

qos <<in>> (p. 191) The DDS DataReaderQos (p. 481) to be set to.
Policies must be consistent. Immutable policies cannot be changed af-
ter DDSDataReader (p. 1004) is enabled. The special value DDS -
DATAREADER QOS DEFAULT (p. 96) can be used to indicate
that the QoS of the DDSDataReader (p. 1004) should be changed
to match the current default DDS DataReaderQos (p. 481) set in
the DDSSubscriber (p. 1284).

Returns:

One of the Standard Return Codes (p. 302), DDS RETCODE -
IMMUTABLE POLICY (p. 303), or DDS RETCODE -
INCONSISTENT POLICY (p. 304).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1018 Class Documentation

See also:

DDS DataReaderQos (p. 481) for rules on consistency among QoS
set qos (abstract) (p. 1158)
DDSDataReader::set qos (p. 1017)
Operations Allowed in Listener Callbacks (p. 1219)

6.159.2.20 virtual DDS ReturnCode t DDSDataReader::get qos
(DDS DataReaderQos & qos) [inline, virtual]

Gets the reader QoS.

This method may potentially allocate memory depending on the sequences con-
tained in some QoS policies.

Parameters:

qos <<inout>> (p. 191) The DDS DataReaderQos (p. 481) to be
filled up.

Returns:

One of the Standard Return Codes (p. 302)

See also:

get qos (abstract) (p. 1159)

6.159.2.21 virtual DDS ReturnCode t DDSDataReader::set qos -
with profile (const char ∗ library name, const char ∗
profile name) [inline, virtual]

<<eXtension>> (p. 190) Change the QoS of this reader using the input XML
QoS profile.

This operation modifies the QoS of the DDSDataReader (p. 1004).

The DDS DataReaderQos::user data (p. 484), DDS -
DataReaderQos::deadline (p. 483), DDS DataReaderQos::latency -
budget (p. 483), DDS DataReaderQos::time based filter (p. 484),
DDS DataReaderQos::reader data lifecycle (p. 484) can be changed. The
other policies are immutable.

Parameters:

library name <<in>> (p. 191) Library name containing the XML QoS
profile. If library name is null RTI Data Distribution Service will

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.159 DDSDataReader Class Reference 1019

use the default library (see DDSSubscriber::set default library
(p. 1290)).

profile name <<in>> (p. 191) XML QoS Profile name. If profile name
is null RTI Data Distribution Service will use the default profile (see
DDSSubscriber::set default profile (p. 1291)).

Returns:

One of the Standard Return Codes (p. 302), DDS RETCODE -
IMMUTABLE POLICY (p. 303), or DDS RETCODE -
INCONSISTENT POLICY (p. 304).

See also:

DDS DataReaderQos (p. 481) for rules on consistency among QoS
DDSDataReader::set qos (p. 1017)
Operations Allowed in Listener Callbacks (p. 1219)

6.159.2.22 virtual DDS ReturnCode t DDSDataReader::set -
listener (DDSDataReaderListener ∗ l, DDS StatusMask
mask = DDS STATUS MASK ALL) [inline, virtual]

Sets the reader listener.

Parameters:

l <<in>> (p. 191) DDSDataReaderListener (p. 1023) to set to

mask <<in>> (p. 191) DDS StatusMask (p. 309) associated with the
DDSDataReaderListener (p. 1023).

Returns:

One of the Standard Return Codes (p. 302)

See also:

set listener (abstract) (p. 1159)

6.159.2.23 virtual DDSDataReaderListener∗
DDSDataReader::get listener () [inline, virtual]

Get the reader listener.

Returns:

DDSDataReaderListener (p. 1023) of the DDSDataReader (p. 1004).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1020 Class Documentation

See also:

get listener (abstract) (p. 1160)

6.159.2.24 virtual DDS ReturnCode t DDSDataReader::enable ()
[inline, virtual]

Enables the DDSEntity (p. 1157).

This operation enables the Entity. Entity objects can be created either enabled
or disabled. This is controlled by the value of the ENTITY FACTORY
(p. 362) QoS policy on the corresponding factory for the DDSEntity (p. 1157).

By default, ENTITY FACTORY (p. 362) is set so that it is not necessary to
explicitly call DDSEntity::enable (p. 1160) on newly created entities.

The DDSEntity::enable (p. 1160) operation is idempotent. Calling enable on
an already enabled Entity returns OK and has no effect.

If a DDSEntity (p. 1157) has not yet been enabled, the following kinds of
operations may be invoked on it:

ˆ set or get the QoS policies (including default QoS policies) and listener

ˆ DDSEntity::get statuscondition (p. 1161)

ˆ ’factory’ operations

ˆ DDSEntity::get status changes (p. 1161) and other get status opera-
tions (although the status of a disabled entity never changes)

ˆ ’lookup’ operations

Other operations may explicitly state that they may be called on disabled
entities; those that do not will return the error DDS RETCODE NOT -
ENABLED (p. 303).

It is legal to delete an DDSEntity (p. 1157) that has not been enabled by
calling the proper operation on its factory.

Entities created from a factory that is disabled are created disabled, regardless
of the setting of the DDS EntityFactoryQosPolicy (p. 687).

Calling enable on an Entity whose factory is not enabled will fail and return
DDS RETCODE PRECONDITION NOT MET (p. 303).

If DDS EntityFactoryQosPolicy::autoenable created entities (p. 688) is
TRUE, the enable operation on a factory will automatically enable all entities
created from that factory.

Listeners associated with an entity are not called until the entity is enabled.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.159 DDSDataReader Class Reference 1021

Conditions associated with a disabled entity are ”inactive,” that is, they have a
trigger value == FALSE.

Returns:

One of the Standard Return Codes (p. 302), Standard Return
Codes (p. 302) or DDS RETCODE PRECONDITION NOT MET
(p. 303).

Implements DDSEntity (p. 1160).

6.159.2.25 virtual DDSStatusCondition∗ DDSDataReader::get -
statuscondition () [inline, virtual]

Allows access to the DDSStatusCondition (p. 1271) associated with the
DDSEntity (p. 1157).

The returned condition can then be added to a DDSWaitSet (p. 1325) so that
the application can wait for specific status changes that affect the DDSEntity
(p. 1157).

Returns:

the status condition associated with this entity.

Implements DDSEntity (p. 1161).

6.159.2.26 virtual DDS StatusMask DDSDataReader::get status -
changes () [inline, virtual]

Retrieves the list of communication statuses in the DDSEntity (p. 1157) that
are triggered.

That is, the list of statuses whose value has changed since the last time the
application read the status using the get ∗ status() method.

When the entity is first created or if the entity is not enabled, all communication
statuses are in the ”untriggered” state so the list returned by the get status -
changes operation will be empty.

The list of statuses returned by the get status changes operation refers to the
status that are triggered on the Entity itself and does not include statuses that
apply to contained entities.

Returns:

list of communication statuses in the DDSEntity (p. 1157) that are trig-
gered.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1022 Class Documentation

See also:

Status Kinds (p. 305)

Implements DDSEntity (p. 1161).

6.159.2.27 virtual DDS InstanceHandle t
DDSDataReader::get instance handle () [inline,
virtual]

Allows access to the DDS InstanceHandle t (p. 52) associated with the
DDSEntity (p. 1157).

This operation returns the DDS InstanceHandle t (p. 52) that represents the
DDSEntity (p. 1157).

Returns:

the instance handle associated with this entity.

Implements DDSEntity (p. 1162).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.160 DDSDataReaderListener Class Reference 1023

6.160 DDSDataReaderListener Class Reference

<<interface>> (p. 190) DDSListener (p. 1217) for reader status.

Inheritance diagram for DDSDataReaderListener::

Public Member Functions

ˆ virtual void on requested deadline missed (DDSDataReader
∗reader, const DDS RequestedDeadlineMissedStatus &status)

Handles the DDS REQUESTED DEADLINE MISSED STATUS
(p. 311) communication status.

ˆ virtual void on liveliness changed (DDSDataReader ∗reader, const
DDS LivelinessChangedStatus &status)

Handles the DDS LIVELINESS CHANGED STATUS (p. 313) com-
munication status.

ˆ virtual void on requested incompatible qos (DDSDataReader
∗reader, const DDS RequestedIncompatibleQosStatus &status)

Handles the DDS REQUESTED INCOMPATIBLE QOS STATUS
(p. 311) communication status.

ˆ virtual void on sample rejected (DDSDataReader ∗reader, const
DDS SampleRejectedStatus &status)

Handles the DDS SAMPLE REJECTED STATUS (p. 312) communi-
cation status.

ˆ virtual void on data available (DDSDataReader ∗reader)

Handle the DDS DATA AVAILABLE STATUS (p. 312) communication
status.

ˆ virtual void on sample lost (DDSDataReader ∗reader, const DDS -
SampleLostStatus &status)

Handles the DDS SAMPLE LOST STATUS (p. 312) communication
status.

ˆ virtual void on subscription matched (DDSDataReader ∗reader,
const DDS SubscriptionMatchedStatus &status)

Handles the DDS SUBSCRIPTION MATCHED STATUS (p. 314)
communication status.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1024 Class Documentation

6.160.1 Detailed Description

<<interface>> (p. 190) DDSListener (p. 1217) for reader status.

Entity:

DDSDataReader (p. 1004)

Status:

DDS DATA AVAILABLE STATUS (p. 312);
DDS LIVELINESS CHANGED STATUS (p. 313), DDS -
LivelinessChangedStatus (p. 726);
DDS REQUESTED DEADLINE MISSED STATUS (p. 311),
DDS RequestedDeadlineMissedStatus (p. 823);
DDS REQUESTED INCOMPATIBLE QOS STATUS (p. 311),
DDS RequestedIncompatibleQosStatus (p. 825);
DDS SAMPLE LOST STATUS (p. 312), DDS SampleLostStatus
(p. 864);
DDS SAMPLE REJECTED STATUS (p. 312), DDS -
SampleRejectedStatus (p. 865);
DDS SUBSCRIPTION MATCHED STATUS (p. 314), DDS -
SubscriptionMatchedStatus (p. 885);

See also:

Status Kinds (p. 305)
Operations Allowed in Listener Callbacks (p. 1219)

Examples:

HelloWorld subscriber.cxx.

6.160.2 Member Function Documentation

6.160.2.1 virtual void DDSDataReaderListener::on requested -
deadline missed (DDSDataReader ∗ reader, const
DDS RequestedDeadlineMissedStatus & status)
[virtual]

Handles the DDS REQUESTED DEADLINE MISSED STATUS
(p. 311) communication status.

Examples:

HelloWorld subscriber.cxx.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.160 DDSDataReaderListener Class Reference 1025

6.160.2.2 virtual void DDSDataReaderListener::on liveliness -
changed (DDSDataReader ∗ reader, const
DDS LivelinessChangedStatus & status) [virtual]

Handles the DDS LIVELINESS CHANGED STATUS (p. 313) communi-
cation status.

Examples:

HelloWorld subscriber.cxx.

6.160.2.3 virtual void DDSDataReaderListener::on requested -
incompatible qos (DDSDataReader ∗ reader, const
DDS RequestedIncompatibleQosStatus & status)
[virtual]

Handles the DDS REQUESTED INCOMPATIBLE QOS STATUS
(p. 311) communication status.

Examples:

HelloWorld subscriber.cxx.

6.160.2.4 virtual void DDSDataReaderListener::on sample -
rejected (DDSDataReader ∗ reader, const
DDS SampleRejectedStatus & status) [virtual]

Handles the DDS SAMPLE REJECTED STATUS (p. 312) communica-
tion status.

Examples:

HelloWorld subscriber.cxx.

6.160.2.5 virtual void DDSDataReaderListener::on data available
(DDSDataReader ∗ reader) [virtual]

Handle the DDS DATA AVAILABLE STATUS (p. 312) communication
status.

Examples:

HelloWorld subscriber.cxx.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1026 Class Documentation

6.160.2.6 virtual void DDSDataReaderListener::on sample lost
(DDSDataReader ∗ reader, const DDS SampleLostStatus
& status) [virtual]

Handles the DDS SAMPLE LOST STATUS (p. 312) communication sta-
tus.

Examples:

HelloWorld subscriber.cxx.

6.160.2.7 virtual void DDSDataReaderListener::on subscription -
matched (DDSDataReader ∗ reader, const
DDS SubscriptionMatchedStatus & status) [virtual]

Handles the DDS SUBSCRIPTION MATCHED STATUS (p. 314) com-
munication status.

Examples:

HelloWorld subscriber.cxx.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.161 DDSDataReaderSeq Class Reference 1027

6.161 DDSDataReaderSeq Class Reference

Declares IDL sequence < DDSDataReader (p. 1004) > .

6.161.1 Detailed Description

Declares IDL sequence < DDSDataReader (p. 1004) > .

See also:

FooSeq (p. 1377)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1028 Class Documentation

6.162 DDSDataWriter Class Reference

<<interface>> (p. 190) Allows an application to set the value of the data to
be published under a given DDSTopic (p. 1311).

Inheritance diagram for DDSDataWriter::

Public Member Functions

ˆ virtual DDS ReturnCode t get liveliness lost status (DDS -
LivelinessLostStatus &status)

Accesses the DDS LIVELINESS LOST STATUS (p. 313) communica-
tion status.

ˆ virtual DDS ReturnCode t get offered deadline missed status
(DDS OfferedDeadlineMissedStatus &status)

Accesses the DDS OFFERED DEADLINE MISSED STATUS
(p. 311) communication status.

ˆ virtual DDS ReturnCode t get offered incompatible qos status
(DDS OfferedIncompatibleQosStatus &status)

Accesses the DDS OFFERED INCOMPATIBLE QOS STATUS
(p. 311) communication status.

ˆ virtual DDS ReturnCode t get publication matched status
(DDS PublicationMatchedStatus &status)

Accesses the DDS PUBLICATION MATCHED STATUS (p. 313)
communication status.

ˆ virtual DDS ReturnCode t get reliable writer cache changed -
status (DDS ReliableWriterCacheChangedStatus &status)

<<eXtension>> (p. 190) Get the reliable cache status for this writer.

ˆ virtual DDS ReturnCode t get reliable reader activity changed -
status (DDS ReliableReaderActivityChangedStatus &status)

<<eXtension>> (p. 190) Get the reliable reader activity changed status for
this writer.

ˆ virtual DDS ReturnCode t get datawriter cache status (DDS -
DataWriterCacheStatus &status)

<<eXtension>> (p. 190) Get the datawriter cache status for this writer.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.162 DDSDataWriter Class Reference 1029

ˆ virtual DDS ReturnCode t get datawriter protocol status
(DDS DataWriterProtocolStatus &status)

<<eXtension>> (p. 190) Get the datawriter protocol status for this writer.

ˆ virtual DDS ReturnCode t get matched subscription -
datawriter protocol status (DDS DataWriterProtocolStatus
&status, const DDS InstanceHandle t &subscription handle)

<<eXtension>> (p. 190) Get the datawriter protocol status for this writer,
per matched subscription identified by the subscription handle.

ˆ virtual DDS ReturnCode t get matched subscription -
datawriter protocol status by locator (DDS -
DataWriterProtocolStatus &status, const DDS Locator t &lo-
cator)

<<eXtension>> (p. 190) Get the datawriter protocol status for this writer,
per matched subscription identified by the locator.

ˆ virtual DDS ReturnCode t assert liveliness ()

This operation manually asserts the liveliness of this DDSDataWriter
(p. 1028).

ˆ virtual DDS ReturnCode t get matched subscription locators
(DDS LocatorSeq &locators)

<<eXtension>> (p. 190) Retrieve the list of locators for subscriptions cur-
rently ”associated” with this DDSDataWriter (p. 1028).

ˆ virtual DDS ReturnCode t get matched subscriptions (DDS -
InstanceHandleSeq &subscription handles)

Retrieve the list of subscriptions currently ”associated” with this DDS-
DataWriter (p. 1028).

ˆ virtual DDS ReturnCode t get matched subscription data
(DDS SubscriptionBuiltinTopicData &subscription data, const
DDS InstanceHandle t &subscription handle)

This operation retrieves the information on a subscription that is currently
”associated” with the DDSDataWriter (p. 1028).

ˆ virtual DDSTopic ∗ get topic ()

This operation returns the DDSTopic (p. 1311) associated with the DDS-
DataWriter (p. 1028).

ˆ virtual DDSPublisher ∗ get publisher ()

This operation returns the DDSPublisher (p. 1243) to which the DDS-
DataWriter (p. 1028) belongs.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1030 Class Documentation

ˆ virtual DDS ReturnCode t wait for acknowledgments (const
DDS Duration t &max wait)

Blocks the calling thread until all data written by reliable DDSDataWriter
(p. 1028) entity is acknowledged, or until timeout expires.

ˆ virtual DDS ReturnCode t wait for asynchronous publishing
(const DDS Duration t &max wait)

<<eXtension>> (p. 190) Blocks the calling thread until asynchronous send-
ing is complete.

ˆ virtual DDS ReturnCode t set qos (const DDS DataWriterQos
&qos)

Sets the writer QoS.

ˆ virtual DDS ReturnCode t set qos with profile (const char
∗library name, const char ∗profile name)

<<eXtension>> (p. 190) Change the QoS of this writer using the input
XML QoS profile.

ˆ virtual DDS ReturnCode t get qos (DDS DataWriterQos &qos)
Gets the writer QoS.

ˆ virtual DDS ReturnCode t set listener (DDSDataWriterListener
∗l, DDS StatusMask mask=DDS STATUS MASK ALL)

Sets the writer listener.

ˆ virtual DDSDataWriterListener ∗ get listener ()
Get the writer listener.

ˆ virtual DDS ReturnCode t flush ()
<<eXtension>> (p. 190) Flushes the batch in progress in the context of the
calling thread.

ˆ virtual DDS ReturnCode t enable ()
Enables the DDSEntity (p. 1157).

ˆ virtual DDSStatusCondition ∗ get statuscondition ()
Allows access to the DDSStatusCondition (p. 1271) associated with the
DDSEntity (p. 1157).

ˆ virtual DDS StatusMask get status changes ()
Retrieves the list of communication statuses in the DDSEntity (p. 1157)
that are triggered.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.162 DDSDataWriter Class Reference 1031

ˆ virtual DDS InstanceHandle t get instance handle ()

Allows access to the DDS InstanceHandle t (p. 52) associated with the
DDSEntity (p. 1157).

6.162.1 Detailed Description

<<interface>> (p. 190) Allows an application to set the value of the data to
be published under a given DDSTopic (p. 1311).

QoS:

DDS DataWriterQos (p. 516)

Status:

DDS LIVELINESS LOST STATUS (p. 313), DDS -
LivelinessLostStatus (p. 728);
DDS OFFERED DEADLINE MISSED STATUS (p. 311), DDS -
OfferedDeadlineMissedStatus (p. 752);
DDS OFFERED INCOMPATIBLE QOS STATUS (p. 311),
DDS OfferedIncompatibleQosStatus (p. 754);
DDS PUBLICATION MATCHED STATUS (p. 313), DDS -
PublicationMatchedStatus (p. 797);
DDS RELIABLE READER ACTIVITY CHANGED STATUS
(p. 314), DDS ReliableReaderActivityChangedStatus (p. 817);
DDS RELIABLE WRITER CACHE CHANGED STATUS
(p. 314), DDS ReliableWriterCacheChangedStatus

Listener:

DDSDataWriterListener (p. 1048)

A DDSDataWriter (p. 1028) is attached to exactly one DDSPublisher
(p. 1243), that acts as a factory for it.

A DDSDataWriter (p. 1028) is bound to exactly one DDSTopic (p. 1311)
and therefore to exactly one data type. The DDSTopic (p. 1311) must exist
prior to the DDSDataWriter (p. 1028)’s creation.

DDSDataWriter (p. 1028) is an abstract class. It must be specialized for each
particular application data-type (see USER DATA (p. 332)). The additional
methods or functions that must be defined in the auto-generated class for a
hypothetical application type Foo (p. 1333) are specified in the example type
DDSDataWriter (p. 1028).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1032 Class Documentation

The following operations may be called even if the DDSDataWriter (p. 1028)
is not enabled. Other operations will fail with DDS RETCODE NOT -
ENABLED (p. 303) if called on a disabled DDSDataWriter (p. 1028):

ˆ The base-class operations DDSDataWriter::set qos (p. 1041), DDS-
DataWriter::get qos (p. 1043), DDSDataWriter::set listener
(p. 1043), DDSDataWriter::get listener (p. 1044), DDSEn-
tity::enable (p. 1160), DDSEntity::get statuscondition (p. 1161)
and DDSEntity::get status changes (p. 1161)

ˆ DDSDataWriter::get liveliness lost status (p. 1032) DDS-
DataWriter::get offered deadline missed status (p. 1033) DDS-
DataWriter::get offered incompatible qos status (p. 1033) DDS-
DataWriter::get publication matched status (p. 1033) DDS-
DataWriter::get reliable writer cache changed status (p. 1034)
DDSDataWriter::get reliable reader activity changed status
(p. 1034)

Several DDSDataWriter (p. 1028) may operate in different threads. If they
share the same DDSPublisher (p. 1243), the middleware guarantees that its
operations are thread-safe.

See also:

FooDataWriter (p. 1361)
Operations Allowed in Listener Callbacks (p. 1219)

Examples:

HelloWorld publisher.cxx, and HelloWorldSupport.cxx.

6.162.2 Member Function Documentation

6.162.2.1 virtual DDS ReturnCode t DDSDataWriter::get -
liveliness lost status (DDS LivelinessLostStatus & status)
[inline, virtual]

Accesses the DDS LIVELINESS LOST STATUS (p. 313) communication
status.

Parameters:

status <<inout>> (p. 191) DDS LivelinessLostStatus (p. 728) to be
filled in.

Returns:

One of the Standard Return Codes (p. 302)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.162 DDSDataWriter Class Reference 1033

6.162.2.2 virtual DDS ReturnCode t DDSDataWriter::get -
offered deadline missed status
(DDS OfferedDeadlineMissedStatus & status) [inline,
virtual]

Accesses the DDS OFFERED DEADLINE MISSED STATUS (p. 311)
communication status.

Parameters:

status <<inout>> (p. 191) DDS OfferedDeadlineMissedStatus
(p. 752) to be filled in.

Returns:

One of the Standard Return Codes (p. 302)

6.162.2.3 virtual DDS ReturnCode t DDSDataWriter::get -
offered incompatible qos status
(DDS OfferedIncompatibleQosStatus & status) [inline,
virtual]

Accesses the DDS OFFERED INCOMPATIBLE QOS STATUS
(p. 311) communication status.

Parameters:

status <<inout>> (p. 191) DDS OfferedIncompatibleQosStatus
(p. 754) to be filled in.

Returns:

One of the Standard Return Codes (p. 302)

6.162.2.4 virtual DDS ReturnCode t DDSDataWriter::get -
publication matched status (DDS -
PublicationMatchedStatus & status) [inline,
virtual]

Accesses the DDS PUBLICATION MATCHED STATUS (p. 313) com-
munication status.

Parameters:

status <<inout>> (p. 191) DDS PublicationMatchedStatus
(p. 797) to be filled in.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1034 Class Documentation

Returns:

One of the Standard Return Codes (p. 302)

6.162.2.5 virtual DDS ReturnCode t DDSDataWriter::get -
reliable writer cache changed status
(DDS ReliableWriterCacheChangedStatus & status)
[inline, virtual]

<<eXtension>> (p. 190) Get the reliable cache status for this writer.

Parameters:

status <<inout>> (p. 191) DDS ReliableWriterCacheChangedStatus
(p. 819) to be filled in.

Returns:

One of the Standard Return Codes (p. 302)

6.162.2.6 virtual DDS ReturnCode t DDSDataWriter::get -
reliable reader activity changed status
(DDS ReliableReaderActivityChangedStatus & status)
[inline, virtual]

<<eXtension>> (p. 190) Get the reliable reader activity changed status for
this writer.

Parameters:

status <<inout>> (p. 191) DDS ReliableReaderActivityChangedStatus
(p. 817) to be filled in.

Returns:

One of the Standard Return Codes (p. 302)

6.162.2.7 virtual DDS ReturnCode t DDSDataWriter::get -
datawriter cache status (DDS DataWriterCacheStatus &
status) [inline, virtual]

<<eXtension>> (p. 190) Get the datawriter cache status for this writer.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.162 DDSDataWriter Class Reference 1035

Parameters:

status <<inout>> (p. 191) DDS DataWriterCacheStatus (p. 498)
to be filled in.

Returns:

One of the Standard Return Codes (p. 302) or DDS RETCODE -
NOT ENABLED (p. 303).

6.162.2.8 virtual DDS ReturnCode t DDSDataWriter::get -
datawriter protocol status (DDS -
DataWriterProtocolStatus & status) [inline,
virtual]

<<eXtension>> (p. 190) Get the datawriter protocol status for this writer.

Parameters:

status <<inout>> (p. 191) DDS DataWriterProtocolStatus
(p. 504) to be filled in.

Returns:

One of the Standard Return Codes (p. 302) or DDS RETCODE -
NOT ENABLED (p. 303).

6.162.2.9 virtual DDS ReturnCode t DDSDataWriter::get -
matched subscription datawriter protocol status
(DDS DataWriterProtocolStatus & status, const
DDS InstanceHandle t & subscription handle) [inline,
virtual]

<<eXtension>> (p. 190) Get the datawriter protocol status for this writer,
per matched subscription identified by the subscription handle.

Note: Status for a remote entity is only kept while the entity is alive. Once a
remote entity is no longer alive, its status is deleted.

Parameters:

status <<inout>> (p. 191) DDS DataWriterProtocolStatus
(p. 504) to be filled in.

subscription handle <<in>> (p. 191) Handle to a specific subscription
associated with the DDSDataReader (p. 1004). Must correspond
to a subscription currently associated with the DDSDataWriter
(p. 1028).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1036 Class Documentation

Returns:

One of the Standard Return Codes (p. 302) or DDS RETCODE -
NOT ENABLED (p. 303).

6.162.2.10 virtual DDS ReturnCode t DDSDataWriter::get -
matched subscription datawriter protocol status by -
locator (DDS DataWriterProtocolStatus & status,
const DDS Locator t & locator) [inline, virtual]

<<eXtension>> (p. 190) Get the datawriter protocol status for this writer,
per matched subscription identified by the locator.

Note: Status for a remote entity is only kept while the entity is alive. Once a
remote entity is no longer alive, its status is deleted.

Parameters:

status <<inout>> (p. 191) DDS DataWriterProtocolStatus
(p. 504) to be filled in

locator <<in>> (p. 191) Locator to a specific locator associated with the
DDSDataReader (p. 1004). Must correspond to a locator of one or
more subscriptions currently associated with the DDSDataWriter
(p. 1028).

Returns:

One of the Standard Return Codes (p. 302) or DDS RETCODE -
NOT ENABLED (p. 303).

6.162.2.11 virtual DDS ReturnCode t DDSDataWriter::assert -
liveliness () [inline, virtual]

This operation manually asserts the liveliness of this DDSDataWriter
(p. 1028).

This is used in combination with the LIVELINESS (p. 344) policy to indicate
to RTI Data Distribution Service that the DDSDataWriter (p. 1028) remains
active.

You only need to use this operation if the LIVELINESS (p. 344) setting is ei-
ther DDS MANUAL BY PARTICIPANT LIVELINESS QOS (p. 345)
or DDS MANUAL BY TOPIC LIVELINESS QOS (p. 345). Otherwise,
it has no effect.

Note: writing data via the FooDataWriter::write (p. 1368) or Foo-
DataWriter::write w timestamp (p. 1371) operation asserts liveliness on the

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.162 DDSDataWriter Class Reference 1037

DDSDataWriter (p. 1028) itself, and its DDSDomainParticipant (p. 1054).
Consequently the use of assert liveliness() (p. 1036) is only needed if the ap-
plication is not writing data regularly.

Returns:

One of the Standard Return Codes (p. 302) or DDS RETCODE -
NOT ENABLED (p. 303)

See also:

DDS LivelinessQosPolicy (p. 730)

6.162.2.12 virtual DDS ReturnCode t DDSDataWriter::get -
matched subscription locators (DDS LocatorSeq &
locators) [inline, virtual]

<<eXtension>> (p. 190) Retrieve the list of locators for subscriptions cur-
rently ”associated” with this DDSDataWriter (p. 1028).

Matched subscription locators include locators for all those subscriptions in
the same domain that have a matching DDSTopic (p. 1311), compatible
QoS and common partition that the DDSDomainParticipant (p. 1054) has
not indicated should be ”ignored” by means of the DDSDomainPartici-
pant::ignore subscription (p. 1103) operation.

The locators returned in the locators list are the ones that are used by the
DDS implementation to communicate with the corresponding matched DDS-
DataReader (p. 1004) entities.

Parameters:

locators <<inout>> (p. 191). Handles of all the matched subscription
locators.

The sequence will be grown if the sequence has ownership and the system has
the corresponding resources. Use a sequence without ownership to avoid dy-
namic memory allocation. If the sequence is too small to store all the matches
and the system can not resize the sequence, this method will fail with DDS -
RETCODE OUT OF RESOURCES (p. 303). .

Returns:

One of the Standard Return Codes (p. 302), or DDS RETCODE -
OUT OF RESOURCES (p. 303) if the sequence is too small and the sys-
tem can not resize it, or DDS RETCODE NOT ENABLED (p. 303)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1038 Class Documentation

6.162.2.13 virtual DDS ReturnCode t DDSDataWriter::get -
matched subscriptions (DDS InstanceHandleSeq &
subscription handles) [inline, virtual]

Retrieve the list of subscriptions currently ”associated” with this DDS-
DataWriter (p. 1028).

Matched subscriptions include all those in the same domain that have a match-
ing DDSTopic (p. 1311), compatible QoS and common partition that the
DDSDomainParticipant (p. 1054) has not indicated should be ”ignored” by
means of the DDSDomainParticipant::ignore subscription (p. 1103) op-
eration.

The handles returned in the subscription handles list are the ones that are
used by the DDS implementation to locally identify the corresponding matched
DDSDataReader (p. 1004) entities. These handles match the ones that ap-
pear in the DDS SampleInfo::instance handle (p. 860) field of the DDS -
SampleInfo (p. 855) when reading the DDS SUBSCRIPTION TOPIC -
NAME (p. 281) builtin topic.

Parameters:

subscription handles <<inout>> (p. 191). Handles of all the matched
subscriptions.

The sequence will be grown if the sequence has ownership and the system has
the corresponding resources. Use a sequence without ownership to avoid dy-
namic memory allocation. If the sequence is too small to store all the matches
and the system can not resize the sequence, this method will fail with DDS -
RETCODE OUT OF RESOURCES (p. 303).

The maximum number of matches possible is configured with DDS -
DomainParticipantResourceLimitsQosPolicy (p. 553). You can use a
zero-maximum sequence without ownership to quickly check whether there are
any matches without allocating any memory. .

Returns:

One of the Standard Return Codes (p. 302), or DDS RETCODE -
OUT OF RESOURCES (p. 303) if the sequence is too small and the sys-
tem can not resize it, or DDS RETCODE NOT ENABLED (p. 303)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.162 DDSDataWriter Class Reference 1039

6.162.2.14 virtual DDS ReturnCode t DDSDataWriter::get -
matched subscription data (DDS -
SubscriptionBuiltinTopicData & subscription data,
const DDS InstanceHandle t & subscription handle)
[inline, virtual]

This operation retrieves the information on a subscription that is currently
”associated” with the DDSDataWriter (p. 1028).

The subscription handle must correspond to a subscription currently associ-
ated with the DDSDataWriter (p. 1028). Otherwise, the operation will fail
and fail with DDS RETCODE BAD PARAMETER (p. 303). Use DDS-
DataWriter::get matched subscriptions (p. 1038) to find the subscriptions
that are currently matched with the DDSDataWriter (p. 1028).

Note: This operation does not retrieve the following information in DDS -
SubscriptionBuiltinTopicData (p. 876):

ˆ DDS SubscriptionBuiltinTopicData::type code (p. 881)

ˆ DDS SubscriptionBuiltinTopicData::property (p. 881)

ˆ DDS SubscriptionBuiltinTopicData::content filter property
(p. 882)

The above information is available through DDSDataReaderListener::on -
data available() (p. 1025) (if a reader listener is installed on the DDSSub-
scriptionBuiltinTopicDataDataReader (p. 1309)).

Parameters:

subscription data <<inout>> (p. 191). The information to be filled in
on the associated subscription. Cannot be NULL.

subscription handle <<in>> (p. 191). Handle to a specific subscrip-
tion associated with the DDSDataReader (p. 1004). . Must
correspond to a subscription currently associated with the DDS-
DataWriter (p. 1028).

Returns:

One of the Standard Return Codes (p. 302), or DDS RETCODE -
NOT ENABLED (p. 303)

6.162.2.15 virtual DDSTopic∗ DDSDataWriter::get topic ()
[inline, virtual]

This operation returns the DDSTopic (p. 1311) associated with the DDS-
DataWriter (p. 1028).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1040 Class Documentation

This is the same DDSTopic (p. 1311) that was used to create the DDS-
DataWriter (p. 1028).

Returns:

DDSTopic (p. 1311) that was used to create the DDSDataWriter
(p. 1028).

6.162.2.16 virtual DDSPublisher∗ DDSDataWriter::get publisher
() [inline, virtual]

This operation returns the DDSPublisher (p. 1243) to which the DDS-
DataWriter (p. 1028) belongs.

Returns:

DDSPublisher (p. 1243) to which the DDSDataWriter (p. 1028) be-
longs.

6.162.2.17 virtual DDS ReturnCode t DDSDataWriter::wait for -
acknowledgments (const DDS Duration t & max wait)
[inline, virtual]

Blocks the calling thread until all data written by reliable DDSDataWriter
(p. 1028) entity is acknowledged, or until timeout expires.

This operation blocks the calling thread until either all data written by the
reliable DDSDataWriter (p. 1028) entity is acknowledged by all matched reli-
able DDSDataReader (p. 1004) entities, or else the duration specified by the
max wait parameter elapses, whichever happens first. A successful completion
indicates that all the samples written have been acknowledged by all reliable
matched data readers; a time out indicates that max wait elapsed before all the
data was acknowledged.

If the DDSDataWriter (p. 1028) does not have DDS ReliabilityQosPolicy
(p. 813) kind set to RELIABLE the operation will complete immediately with
RETCODE OK.

Parameters:

max wait <<in>> (p. 191) Specifies maximum time to wait for acknowl-
edgements DDS Duration t (p. 579) .

Returns:

One of the Standard Return Codes (p. 302), DDS RETCODE -
NOT ENABLED (p. 303), DDS RETCODE TIMEOUT (p. 304)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.162 DDSDataWriter Class Reference 1041

6.162.2.18 virtual DDS ReturnCode t DDSDataWriter::wait for -
asynchronous publishing (const DDS Duration t &
max wait) [inline, virtual]

<<eXtension>> (p. 190) Blocks the calling thread until asynchronous send-
ing is complete.

This operation blocks the calling thread (up to max wait) until all data writ-
ten by the asynchronous DDSDataWriter (p. 1028) is sent and acknowledged
(if reliable) by all matched DDSDataReader (p. 1004) entities. A successful
completion indicates that all the samples written have been sent and acknowl-
edged where applicable; a time out indicates that max wait elapsed before all
the data was sent and/or acknowledged.

In other words, this guarantees that sending to best effort DDSDataReader
(p. 1004) is complete in addition to what DDSDataWriter::wait for -
acknowledgments (p. 1040) provides.

If the DDSDataWriter (p. 1028) does not have DDS -
PublishModeQosPolicy (p. 802) kind set to DDS ASYNCHRONOUS -
PUBLISH MODE QOS (p. 403) the operation will complete immediately
with DDS RETCODE OK (p. 303).

Parameters:

max wait <<in>> (p. 191) Specifies maximum time to wait for acknowl-
edgements DDS Duration t (p. 579) .

Returns:

One of the Standard Return Codes (p. 302), DDS RETCODE -
NOT ENABLED (p. 303), DDS RETCODE TIMEOUT (p. 304)

6.162.2.19 virtual DDS ReturnCode t DDSDataWriter::set qos
(const DDS DataWriterQos & qos) [inline, virtual]

Sets the writer QoS.

This operation modifies the QoS of the DDSDataWriter (p. 1028).

The DDS DataWriterQos::user data (p. 520), DDS -
DataWriterQos::deadline (p. 519), DDS DataWriterQos::latency -
budget (p. 519), DDS DataWriterQos::ownership strength
(p. 520), DDS DataWriterQos::transport priority (p. 519), DDS -
DataWriterQos::lifespan (p. 520) and DDS DataWriterQos::writer -
data lifecycle (p. 520) can be changed. The other policies are immutable.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1042 Class Documentation

Parameters:

qos <<in>> (p. 191) The DDS DataWriterQos (p. 516) to be set to.
Policies must be consistent. Immutable policies cannot be changed
after DDSDataWriter (p. 1028) is enabled. The special value DDS -
DATAWRITER QOS DEFAULT (p. 82) can be used to indicate
that the QoS of the DDSDataWriter (p. 1028) should be changed to
match the current default DDS DataWriterQos (p. 516) set in the
DDSPublisher (p. 1243).

Returns:

One of the Standard Return Codes (p. 302), DDS RETCODE -
IMMUTABLE POLICY (p. 303) or DDS RETCODE -
INCONSISTENT POLICY (p. 304)

See also:

DDS DataWriterQos (p. 516) for rules on consistency among QoS
set qos (abstract) (p. 1158)
Operations Allowed in Listener Callbacks (p. 1219)

6.162.2.20 virtual DDS ReturnCode t DDSDataWriter::set qos -
with profile (const char ∗ library name, const char ∗
profile name) [inline, virtual]

<<eXtension>> (p. 190) Change the QoS of this writer using the input XML
QoS profile.

This operation modifies the QoS of the DDSDataWriter (p. 1028).

The DDS DataWriterQos::user data (p. 520), DDS -
DataWriterQos::deadline (p. 519), DDS DataWriterQos::latency -
budget (p. 519), DDS DataWriterQos::ownership strength
(p. 520), DDS DataWriterQos::transport priority (p. 519), DDS -
DataWriterQos::lifespan (p. 520) and DDS DataWriterQos::writer -
data lifecycle (p. 520) can be changed. The other policies are immutable.

Parameters:

library name <<in>> (p. 191) Library name containing the XML QoS
profile. If library name is null RTI Data Distribution Service will
use the default library (see DDSPublisher::set default library
(p. 1249)).

profile name <<in>> (p. 191) XML QoS Profile name. If profile name
is null RTI Data Distribution Service will use the default profile (see
DDSPublisher::set default profile (p. 1250)).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.162 DDSDataWriter Class Reference 1043

Returns:

One of the Standard Return Codes (p. 302), DDS RETCODE -
IMMUTABLE POLICY (p. 303) or DDS RETCODE -
INCONSISTENT POLICY (p. 304)

See also:

DDS DataWriterQos (p. 516) for rules on consistency among QoS
Operations Allowed in Listener Callbacks (p. 1219)

6.162.2.21 virtual DDS ReturnCode t DDSDataWriter::get qos
(DDS DataWriterQos & qos) [inline, virtual]

Gets the writer QoS.

This method may potentially allocate memory depending on the sequences con-
tained in some QoS policies.

Parameters:

qos <<inout>> (p. 191) The DDS DataWriterQos (p. 516) to be filled
up.

Returns:

One of the Standard Return Codes (p. 302)

See also:

get qos (abstract) (p. 1159)

6.162.2.22 virtual DDS ReturnCode t DDSDataWriter::set listener
(DDSDataWriterListener ∗ l, DDS StatusMask mask =
DDS STATUS MASK ALL) [inline, virtual]

Sets the writer listener.

Parameters:

l <<in>> (p. 191) DDSDataWriterListener (p. 1048) to set to

mask <<in>> (p. 191) DDS StatusMask (p. 309) associated with the
DDSDataWriterListener (p. 1048).

Returns:

One of the Standard Return Codes (p. 302)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1044 Class Documentation

See also:

set listener (abstract) (p. 1159)

6.162.2.23 virtual DDSDataWriterListener∗
DDSDataWriter::get listener () [inline, virtual]

Get the writer listener.

Returns:

DDSDataWriterListener (p. 1048) of the DDSDataWriter (p. 1028).

See also:

get listener (abstract) (p. 1160)

6.162.2.24 virtual DDS ReturnCode t DDSDataWriter::flush ()
[inline, virtual]

<<eXtension>> (p. 190) Flushes the batch in progress in the context of the
calling thread.

After being flushed, the batch is available to be sent on the network.

If the DDSDataWriter (p. 1028) does not have DDS -
PublishModeQosPolicy (p. 802) kind set to DDS ASYNCHRONOUS -
PUBLISH MODE QOS (p. 403), the batch will be sent on the network
immediately (in the context of the calling thread).

If the DDSDataWriter (p. 1028) does have DDS PublishModeQosPolicy
(p. 802) kind set to DDS ASYNCHRONOUS PUBLISH MODE QOS
(p. 403), the batch will be sent in the context of the asynchronous publishing
thread.

This operation may block in the same conditions than FooDataWriter::write
(p. 1368).

If this operation does block, the RELIABILITY max blocking time configures
the maximum time the write operation may block (waiting for space to become
available). If max blocking time elapses before the DDS DataWriter is able to
store the modification without exceeding the limits, the operation will fail with
DDS RETCODE TIMEOUT.

Returns:

One of the Standard Return Codes (p. 302), DDS RETCODE -
TIMEOUT (p. 304), DDS RETCODE OUT OF RESOURCES
(p. 303) or DDS RETCODE NOT ENABLED (p. 303).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.162 DDSDataWriter Class Reference 1045

6.162.2.25 virtual DDS ReturnCode t DDSDataWriter::enable ()
[inline, virtual]

Enables the DDSEntity (p. 1157).

This operation enables the Entity. Entity objects can be created either enabled
or disabled. This is controlled by the value of the ENTITY FACTORY
(p. 362) QoS policy on the corresponding factory for the DDSEntity (p. 1157).

By default, ENTITY FACTORY (p. 362) is set so that it is not necessary to
explicitly call DDSEntity::enable (p. 1160) on newly created entities.

The DDSEntity::enable (p. 1160) operation is idempotent. Calling enable on
an already enabled Entity returns OK and has no effect.

If a DDSEntity (p. 1157) has not yet been enabled, the following kinds of
operations may be invoked on it:

ˆ set or get the QoS policies (including default QoS policies) and listener

ˆ DDSEntity::get statuscondition (p. 1161)

ˆ ’factory’ operations

ˆ DDSEntity::get status changes (p. 1161) and other get status opera-
tions (although the status of a disabled entity never changes)

ˆ ’lookup’ operations

Other operations may explicitly state that they may be called on disabled
entities; those that do not will return the error DDS RETCODE NOT -
ENABLED (p. 303).

It is legal to delete an DDSEntity (p. 1157) that has not been enabled by
calling the proper operation on its factory.

Entities created from a factory that is disabled are created disabled, regardless
of the setting of the DDS EntityFactoryQosPolicy (p. 687).

Calling enable on an Entity whose factory is not enabled will fail and return
DDS RETCODE PRECONDITION NOT MET (p. 303).

If DDS EntityFactoryQosPolicy::autoenable created entities (p. 688) is
TRUE, the enable operation on a factory will automatically enable all entities
created from that factory.

Listeners associated with an entity are not called until the entity is enabled.

Conditions associated with a disabled entity are ”inactive,” that is, they have a
trigger value == FALSE.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1046 Class Documentation

Returns:

One of the Standard Return Codes (p. 302), Standard Return
Codes (p. 302) or DDS RETCODE PRECONDITION NOT MET
(p. 303).

Implements DDSEntity (p. 1160).

6.162.2.26 virtual DDSStatusCondition∗ DDSDataWriter::get -
statuscondition () [inline, virtual]

Allows access to the DDSStatusCondition (p. 1271) associated with the
DDSEntity (p. 1157).

The returned condition can then be added to a DDSWaitSet (p. 1325) so that
the application can wait for specific status changes that affect the DDSEntity
(p. 1157).

Returns:

the status condition associated with this entity.

Implements DDSEntity (p. 1161).

6.162.2.27 virtual DDS StatusMask DDSDataWriter::get status -
changes () [inline, virtual]

Retrieves the list of communication statuses in the DDSEntity (p. 1157) that
are triggered.

That is, the list of statuses whose value has changed since the last time the
application read the status using the get ∗ status() method.

When the entity is first created or if the entity is not enabled, all communication
statuses are in the ”untriggered” state so the list returned by the get status -
changes operation will be empty.

The list of statuses returned by the get status changes operation refers to the
status that are triggered on the Entity itself and does not include statuses that
apply to contained entities.

Returns:

list of communication statuses in the DDSEntity (p. 1157) that are trig-
gered.

See also:

Status Kinds (p. 305)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.162 DDSDataWriter Class Reference 1047

Implements DDSEntity (p. 1161).

6.162.2.28 virtual DDS InstanceHandle t
DDSDataWriter::get instance handle () [inline,
virtual]

Allows access to the DDS InstanceHandle t (p. 52) associated with the
DDSEntity (p. 1157).

This operation returns the DDS InstanceHandle t (p. 52) that represents the
DDSEntity (p. 1157).

Returns:

the instance handle associated with this entity.

Implements DDSEntity (p. 1162).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1048 Class Documentation

6.163 DDSDataWriterListener Class Reference

<<interface>> (p. 190) DDSListener (p. 1217) for writer status.

Inheritance diagram for DDSDataWriterListener::

Public Member Functions

ˆ virtual void on offered deadline missed (DDSDataWriter ∗writer,
const DDS OfferedDeadlineMissedStatus &status)

Handles the DDS OFFERED DEADLINE MISSED STATUS
(p. 311) status.

ˆ virtual void on liveliness lost (DDSDataWriter ∗writer, const DDS -
LivelinessLostStatus &status)

Handles the DDS LIVELINESS LOST STATUS (p. 313) status.

ˆ virtual void on offered incompatible qos (DDSDataWriter ∗writer,
const DDS OfferedIncompatibleQosStatus &status)

Handles the DDS OFFERED INCOMPATIBLE QOS STATUS
(p. 311) status.

ˆ virtual void on publication matched (DDSDataWriter ∗writer,
const DDS PublicationMatchedStatus &status)

Handles the DDS PUBLICATION MATCHED STATUS (p. 313) sta-
tus.

ˆ virtual void on reliable writer cache changed (DDSDataWriter
∗writer, const DDS ReliableWriterCacheChangedStatus &status)

<<eXtension>> (p. 190) A change has occurred in the writer’s cache of
unacknowledged samples.

ˆ virtual void on reliable reader activity changed (DDSDataWriter
∗writer, const DDS ReliableReaderActivityChangedStatus &sta-
tus)

<<eXtension>> (p. 190) A matched reliable reader has become active or
become inactive.

ˆ virtual void on instance replaced (DDSDataWriter ∗writer, const
DDS InstanceHandle t &handle)

Notifies when an instance is replaced in DataWriter queue.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.163 DDSDataWriterListener Class Reference 1049

6.163.1 Detailed Description

<<interface>> (p. 190) DDSListener (p. 1217) for writer status.

Entity:

DDSDataWriter (p. 1028)

Status:

DDS LIVELINESS LOST STATUS (p. 313), DDS -
LivelinessLostStatus (p. 728);
DDS OFFERED DEADLINE MISSED STATUS (p. 311), DDS -
OfferedDeadlineMissedStatus (p. 752);
DDS OFFERED INCOMPATIBLE QOS STATUS (p. 311),
DDS OfferedIncompatibleQosStatus (p. 754);
DDS PUBLICATION MATCHED STATUS (p. 313), DDS -
PublicationMatchedStatus (p. 797);
DDS RELIABLE READER ACTIVITY CHANGED STATUS
(p. 314), DDS ReliableReaderActivityChangedStatus (p. 817);
DDS RELIABLE WRITER CACHE CHANGED STATUS
(p. 314), DDS ReliableWriterCacheChangedStatus (p. 819);

See also:

Status Kinds (p. 305)
Operations Allowed in Listener Callbacks (p. 1219)

6.163.2 Member Function Documentation

6.163.2.1 virtual void DDSDataWriterListener::on offered -
deadline missed (DDSDataWriter ∗ writer, const
DDS OfferedDeadlineMissedStatus & status) [virtual]

Handles the DDS OFFERED DEADLINE MISSED STATUS (p. 311)
status.

This callback is called when the deadline that the DDSDataWriter (p. 1028)
has committed through its DEADLINE (p. 339) qos policy was not respected
for a specific instance. This callback is called for each deadline period elapsed
during which the DDSDataWriter (p. 1028) failed to provide data for an in-
stance.

Parameters:

writer <<out>> (p. 191) Locally created DDSDataWriter (p. 1028)
that triggers the listener callback

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1050 Class Documentation

status <<out>> (p. 191) Current deadline missed status of locally cre-
ated DDSDataWriter (p. 1028)

6.163.2.2 virtual void DDSDataWriterListener::on -
liveliness lost (DDSDataWriter ∗ writer, const
DDS LivelinessLostStatus & status) [virtual]

Handles the DDS LIVELINESS LOST STATUS (p. 313) status.

This callback is called when the liveliness that the DDSDataWriter (p. 1028)
has committed through its LIVELINESS (p. 344) qos policy was not respected;
this DDSDataReader (p. 1004) entities will consider the DDSDataWriter
(p. 1028) as no longer ”alive/active”. This callback will not be called when
an already not alive DDSDataWriter (p. 1028) simply renames not alive for
another liveliness period.

Parameters:

writer <<out>> (p. 191) Locally created DDSDataWriter (p. 1028)
that triggers the listener callback

status <<out>> (p. 191) Current liveliness lost status of locally created
DDSDataWriter (p. 1028)

6.163.2.3 virtual void DDSDataWriterListener::on offered -
incompatible qos (DDSDataWriter ∗ writer, const
DDS OfferedIncompatibleQosStatus & status) [virtual]

Handles the DDS OFFERED INCOMPATIBLE QOS STATUS (p. 311)
status.

This callback is called when the DDS DataWriterQos (p. 516) of the DDS-
DataWriter (p. 1028) was incompatible with what was requested by a DDS-
DataReader (p. 1004). This callback is called when a DDSDataWriter
(p. 1028) has discovered a DDSDataReader (p. 1004) for the same DDSTopic
(p. 1311) and common partition, but with a requested QoS that is incompatible
with that offered by the DDSDataWriter (p. 1028).

Parameters:

writer <<out>> (p. 191) Locally created DDSDataWriter (p. 1028)
that triggers the listener callback

status <<out>> (p. 191) Current incompatible qos status of locally cre-
ated DDSDataWriter (p. 1028)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.163 DDSDataWriterListener Class Reference 1051

6.163.2.4 virtual void DDSDataWriterListener::on publication -
matched (DDSDataWriter ∗ writer, const
DDS PublicationMatchedStatus & status) [virtual]

Handles the DDS PUBLICATION MATCHED STATUS (p. 313) status.

This callback is called when the DDSDataWriter (p. 1028) has found a DDS-
DataReader (p. 1004) that matches the DDSTopic (p. 1311), has a common
partition and compatible QoS, or has ceased to be matched with a DDS-
DataReader (p. 1004) that was previously considered to be matched.

Parameters:

writer <<out>> (p. 191) Locally created DDSDataWriter (p. 1028)
that triggers the listener callback

status <<out>> (p. 191) Current publication match status of locally cre-
ated DDSDataWriter (p. 1028)

6.163.2.5 virtual void DDSDataWriterListener::on reliable -
writer cache changed (DDSDataWriter ∗ writer, const
DDS ReliableWriterCacheChangedStatus & status)
[virtual]

<<eXtension>> (p. 190) A change has occurred in the writer’s cache of un-
acknowledged samples.

Parameters:

writer <<out>> (p. 191) Locally created DDSDataWriter (p. 1028)
that triggers the listener callback

status <<out>> (p. 191) Current reliable writer cache changed status of
locally created DDSDataWriter (p. 1028)

6.163.2.6 virtual void DDSDataWriterListener::on reliable reader -
activity changed (DDSDataWriter ∗ writer, const
DDS ReliableReaderActivityChangedStatus & status)
[virtual]

<<eXtension>> (p. 190) A matched reliable reader has become active or
become inactive.

Parameters:

writer <<out>> (p. 191) Locally created DDSDataWriter (p. 1028)
that triggers the listener callback

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1052 Class Documentation

status <<out>> (p. 191) Current reliable reader activity changed status
of locally created DDSDataWriter (p. 1028)

6.163.2.7 virtual void DDSDataWriterListener::on instance -
replaced (DDSDataWriter ∗ writer, const
DDS InstanceHandle t & handle) [virtual]

Notifies when an instance is replaced in DataWriter queue.

This callback is called when an instance is replaced by the DDSDataWriter
(p. 1028) due to instance resource limits being reached. This callback returns to
the user the handle of the replaced instance, which can be used to get the key
of the replaced instance.

Parameters:

writer <<out>> (p. 191) Locally created DDSDataWriter (p. 1028)
that triggers the listener callback

handle <<out>> (p. 191) Handle of the replaced instance

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.164 DDSDomainEntity Class Reference 1053

6.164 DDSDomainEntity Class Reference

<<interface>> (p. 190) Abstract base class for all DDS entities except for
the DDSDomainParticipant (p. 1054).

Inheritance diagram for DDSDomainEntity::

6.164.1 Detailed Description

<<interface>> (p. 190) Abstract base class for all DDS entities except for
the DDSDomainParticipant (p. 1054).

Its sole purpose is to conceptually express that DDSDomainParticipant
(p. 1054) is a special kind of DDSEntity (p. 1157) that acts as a container
of all other DDSEntity (p. 1157) but itself cannot contain other DDSDo-
mainParticipant (p. 1054).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1054 Class Documentation

6.165 DDSDomainParticipant Class Reference

<<interface>> (p. 190) Container for all DDSDomainEntity (p. 1053) ob-
jects.

Inheritance diagram for DDSDomainParticipant::

Public Member Functions

ˆ virtual DDS ReturnCode t get default datawriter qos (DDS -
DataWriterQos &qos)=0

<<eXtension>> (p. 190) Copy the default DDS DataWriterQos
(p. 516) values into the provided DDS DataWriterQos (p. 516) instance.

ˆ virtual DDS ReturnCode t set default datawriter qos (const
DDS DataWriterQos &qos)=0

<<eXtension>> (p. 190) Set the default DataWriterQos values for this
DomainParticipant.

ˆ virtual DDS ReturnCode t set default datawriter qos with -
profile (const char ∗library name, const char ∗profile name)=0

<<eXtension>> (p. 190) Set the default DDS DataWriterQos (p. 516)
values for this domain participant based on the input XML QoS profile.

ˆ virtual DDS ReturnCode t get default datareader qos (DDS -
DataReaderQos &qos)=0

<<eXtension>> (p. 190) Copy the default DDS DataReaderQos
(p. 481) values into the provided DDS DataReaderQos (p. 481) instance.

ˆ virtual DDS ReturnCode t set default datareader qos (const
DDS DataReaderQos &qos)=0

<<eXtension>> (p. 190) Set the default DDS DataReaderQos (p. 481)
values for this domain participant.

ˆ virtual DDS ReturnCode t set default datareader qos with -
profile (const char ∗library name, const char ∗profile name)=0

<<eXtension>> (p. 190) Set the default DDS DataReaderQos (p. 481)
values for this DomainParticipant based on the input XML QoS profile.

ˆ virtual DDS ReturnCode t get default flowcontroller property
(DDS FlowControllerProperty t &prop)=0

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.165 DDSDomainParticipant Class Reference 1055

<<eXtension>> (p. 190) Copies the default DDS -
FlowControllerProperty t (p. 700) values for this domain participant
into the given DDS FlowControllerProperty t (p. 700) instance.

ˆ virtual DDS ReturnCode t set default flowcontroller property
(const DDS FlowControllerProperty t &prop)=0

<<eXtension>> (p. 190) Set the default DDS -
FlowControllerProperty t (p. 700) values for this domain participant.

ˆ virtual DDS ReturnCode t register contentfilter (const char
∗filter name, const DDSContentFilter ∗contentfilter)=0

<<eXtension>> (p. 190) Register a content filter which can be used to
create a DDSContentFilteredTopic (p. 998).

ˆ virtual DDSContentFilter ∗ lookup contentfilter (const char ∗filter -
name)=0

<<eXtension>> (p. 190) Lookup a content filter previously registered with
DDSDomainParticipant::register contentfilter (p. 1070).

ˆ virtual DDS ReturnCode t unregister contentfilter (const char
∗filter name)=0

<<eXtension>> (p. 190) Unregister a content filter previously registered
with DDSDomainParticipant::register contentfilter (p. 1070).

ˆ virtual const char ∗ get default library ()=0
<<eXtension>> (p. 190) Gets the default XML library associated with a
DDSDomainParticipant (p. 1054).

ˆ virtual const char ∗ get default profile ()=0
<<eXtension>> (p. 190) Gets the default XML profile associated with a
DDSDomainParticipant (p. 1054).

ˆ virtual const char ∗ get default profile library ()=0
<<eXtension>> (p. 190) Gets the library where the default XML QoS pro-
file is contained for a DDSDomainParticipant (p. 1054).

ˆ virtual DDS ReturnCode t set default library (const char ∗library -
name)=0

<<eXtension>> (p. 190) Sets the default XML library for a DDSDo-
mainParticipant (p. 1054).

ˆ virtual DDS ReturnCode t set default profile (const char ∗library -
name, const char ∗profile name)=0

<<eXtension>> (p. 190) Sets the default XML profile for a DDSDomain-
Participant (p. 1054).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1056 Class Documentation

ˆ virtual DDS ReturnCode t get default topic qos (DDS TopicQos
&qos)=0

Copies the default DDS TopicQos (p. 905) values for this domain partici-
pant into the given DDS TopicQos (p. 905) instance.

ˆ virtual DDS ReturnCode t set default topic qos (const DDS -
TopicQos &qos)=0

Set the default DDS TopicQos (p. 905) values for this domain participant.

ˆ virtual DDS ReturnCode t set default topic qos with profile
(const char ∗library name, const char ∗profile name)=0

<<eXtension>> (p. 190) Set the default DDS TopicQos (p. 905) values
for this domain participant based on the input XML QoS profile.

ˆ virtual DDS ReturnCode t get default publisher qos (DDS -
PublisherQos &qos)=0

Copy the default DDS PublisherQos (p. 800) values into the provided
DDS PublisherQos (p. 800) instance.

ˆ virtual DDS ReturnCode t set default publisher qos (const DDS -
PublisherQos &qos)=0

Set the default DDS PublisherQos (p. 800) values for this DomainPartic-
ipant.

ˆ virtual DDS ReturnCode t set default publisher qos with profile
(const char ∗library name, const char ∗profile name)=0

<<eXtension>> (p. 190) Set the default DDS PublisherQos (p. 800) val-
ues for this DomainParticipant based on the input XML QoS profile.

ˆ virtual DDS ReturnCode t get default subscriber qos (DDS -
SubscriberQos &qos)=0

Copy the default DDS SubscriberQos (p. 874) values into the provided
DDS SubscriberQos (p. 874) instance.

ˆ virtual DDS ReturnCode t set default subscriber qos (const
DDS SubscriberQos &qos)=0

Set the default DDS SubscriberQos (p. 874) values for this Do-
main{articipant.

ˆ virtual DDS ReturnCode t set default subscriber qos with -
profile (const char ∗library name, const char ∗profile name)=0

<<eXtension>> (p. 190) Set the default DDS SubscriberQos (p. 874)
values for this DomainParticipant based on the input XML QoS profile.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.165 DDSDomainParticipant Class Reference 1057

ˆ virtual DDSPublisher ∗ create publisher (const DDS -
PublisherQos &qos, DDSPublisherListener ∗listener, DDS -
StatusMask mask)=0

Creates a DDSPublisher (p. 1243) with the desired QoS policies and at-
taches to it the specified DDSPublisherListener (p. 1265).

ˆ virtual DDSPublisher ∗ create publisher with profile (const char
∗library name, const char ∗profile name, DDSPublisherListener
∗listener, DDS StatusMask mask)=0

<<eXtension>> (p. 190) Creates a new DDSPublisher (p. 1243) object
using the DDS PublisherQos (p. 800) associated with the input XML QoS
profile.

ˆ virtual DDS ReturnCode t delete publisher (DDSPublisher
∗p)=0

Deletes an existing DDSPublisher (p. 1243).

ˆ virtual DDSSubscriber ∗ create subscriber (const DDS -
SubscriberQos &qos, DDSSubscriberListener ∗listener, DDS -
StatusMask mask)=0

Creates a DDSSubscriber (p. 1284) with the desired QoS policies and at-
taches to it the specified DDSSubscriberListener (p. 1306).

ˆ virtual DDSSubscriber ∗ create subscriber with profile (const char
∗library name, const char ∗profile name, DDSSubscriberListener
∗listener, DDS StatusMask mask)=0

<<eXtension>> (p. 190) Creates a new DDSSubscriber (p. 1284) object
using the DDS PublisherQos (p. 800) associated with the input XML QoS
profile.

ˆ virtual DDS ReturnCode t delete subscriber (DDSSubscriber
∗s)=0

Deletes an existing DDSSubscriber (p. 1284).

ˆ virtual DDS ReturnCode t get publishers (DDSPublisherSeq
&publishers)=0

<<eXtension>> (p. 190) Allows the application to access all the publishers
the participant has.

ˆ virtual DDS ReturnCode t get subscribers (DDSSubscriberSeq
&subscribers)=0

<<eXtension>> (p. 190) Allows the application to access all the sub-
scribers the participant has.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1058 Class Documentation

ˆ virtual DDSTopic ∗ create topic (const char ∗topic name, const char
∗type name, const DDS TopicQos &qos, DDSTopicListener ∗listener,
DDS StatusMask mask)=0

Creates a DDSTopic (p. 1311) with the desired QoS policies and attaches
to it the specified DDSTopicListener (p. 1322).

ˆ virtual DDSTopic ∗ create topic with profile (const char ∗topic -
name, const char ∗type name, const char ∗library name, const
char ∗profile name, DDSTopicListener ∗listener, DDS StatusMask
mask)=0

<<eXtension>> (p. 190) Creates a new DDSTopic (p. 1311) object us-
ing the DDS PublisherQos (p. 800) associated with the input XML QoS
profile.

ˆ virtual DDS ReturnCode t delete topic (DDSTopic ∗topic)=0

Deletes a DDSTopic (p. 1311).

ˆ virtual DDSContentFilteredTopic ∗ create contentfilteredtopic
(const char ∗name, DDSTopic ∗related topic, const char ∗filter -
expression, const DDS StringSeq &expression parameters)=0

Creates a DDSContentFilteredTopic (p. 998), that can be used to do
content-based subscriptions.

ˆ virtual DDSContentFilteredTopic ∗ create contentfilteredtopic -
with filter (const char ∗name, DDSTopic ∗related topic, const char
∗filter expression, const DDS StringSeq &expression parameters, const
char ∗filter name=DDS SQLFILTER NAME)=0

<<eXtension>> (p. 190) Creates a DDSContentFilteredTopic (p. 998)
using the specified filter to do content-based subscriptions.

ˆ virtual DDS ReturnCode t delete contentfilteredtopic (DDSCon-
tentFilteredTopic ∗a contentfilteredtopic)=0

Deletes a DDSContentFilteredTopic (p. 998).

ˆ virtual DDSMultiTopic ∗ create multitopic (const char ∗name, const
char ∗type name, const char ∗subscription expression, const DDS -
StringSeq &expression parameters)=0

[Not supported (optional)] Creates a MultiTopic that can be used to sub-
scribe to multiple topics and combine/filter the received data into a resulting
type.

ˆ virtual DDS ReturnCode t delete multitopic (DDSMultiTopic
∗a multitopic)=0

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.165 DDSDomainParticipant Class Reference 1059

[Not supported (optional)] Deletes a DDSMultiTopic (p. 1221).

ˆ virtual DDSTopic ∗ find topic (const char ∗topic name, const DDS -
Duration t &timeout)=0

Finds an existing (or ready to exist) DDSTopic (p. 1311), based on its
name.

ˆ virtual DDSTopicDescription ∗ lookup topicdescription (const char
∗topic name)=0

Looks up an existing, locally created DDSTopicDescription (p. 1319),
based on its name.

ˆ virtual DDSFlowController ∗ create flowcontroller (const char
∗name, const DDS FlowControllerProperty t &prop)=0

<<eXtension>> (p. 190) Creates a DDSFlowController (p. 1163) with
the desired property.

ˆ virtual DDS ReturnCode t delete flowcontroller (DDSFlowCon-
troller ∗fc)=0

<<eXtension>> (p. 190) Deletes an existing DDSFlowController
(p. 1163).

ˆ virtual DDSFlowController ∗ lookup flowcontroller (const char
∗name)=0

<<eXtension>> (p. 190) Looks up an existing locally-created DDSFlow-
Controller (p. 1163), based on its name.

ˆ virtual DDSSubscriber ∗ get builtin subscriber ()=0

Accesses the built-in DDSSubscriber (p. 1284).

ˆ virtual DDS ReturnCode t ignore participant (const DDS -
InstanceHandle t &handle)=0

Instructs RTI Data Distribution Service to locally ignore a remote DDSDo-
mainParticipant (p. 1054).

ˆ virtual DDS ReturnCode t ignore topic (const DDS -
InstanceHandle t &handle)=0

Instructs RTI Data Distribution Service to locally ignore a DDSTopic
(p. 1311).

ˆ virtual DDS ReturnCode t ignore publication (const DDS -
InstanceHandle t &handle)=0

Instructs RTI Data Distribution Service to locally ignore a publication.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1060 Class Documentation

ˆ virtual DDS ReturnCode t ignore subscription (const DDS -
InstanceHandle t &handle)=0

Instructs RTI Data Distribution Service to locally ignore a subscription.

ˆ virtual DDS DomainId t get domain id ()=0
Get the unique domain identifier.

ˆ virtual DDS ReturnCode t get current time (DDS Time t &cur-
rent time)=0

Returns the current value of the time.

ˆ virtual DDS ReturnCode t assert liveliness ()=0
Manually asserts the liveliness of this DDSDomainParticipant (p. 1054).

ˆ virtual DDS ReturnCode t delete contained entities ()=0
Delete all the entities that were created by means of the ”create” operations
on the DDSDomainParticipant (p. 1054).

ˆ virtual DDS ReturnCode t get discovered participants (DDS -
InstanceHandleSeq &participant handles)=0

Returns list of discovered DDSDomainParticipant (p. 1054) s.

ˆ virtual DDS ReturnCode t get discovered participant data
(struct DDS ParticipantBuiltinTopicData &participant data, const
DDS InstanceHandle t &participant handle)=0

Returns DDS ParticipantBuiltinTopicData (p. 765) for the specified
DDSDomainParticipant (p. 1054) .

ˆ virtual DDS ReturnCode t get discovered topics (DDS -
InstanceHandleSeq &topic handles)=0

Returns list of discovered DDSTopic (p. 1311) objects.

ˆ virtual DDS ReturnCode t get discovered topic data (struct
DDS TopicBuiltinTopicData &topic data, const DDS -
InstanceHandle t &topic handle)=0

Returns DDS TopicBuiltinTopicData (p. 898) for the specified
DDSTopic (p. 1311).

ˆ virtual DDS Boolean contains entity (const DDS -
InstanceHandle t &a handle)=0

Completes successfully with DDS BOOLEAN TRUE (p. 288) if the refer-
enced DDSEntity (p. 1157) is contained by the DDSDomainParticipant
(p. 1054).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.165 DDSDomainParticipant Class Reference 1061

ˆ virtual DDS ReturnCode t set qos (const DDS -
DomainParticipantQos &qos)=0

Change the QoS of this domain participant.

ˆ virtual DDS ReturnCode t set qos with profile (const char
∗library name, const char ∗profile name)=0

<<eXtension>> (p. 190) Change the QoS of this domain participant using
the input XML QoS profile.

ˆ virtual DDS ReturnCode t get qos (DDS DomainParticipantQos
&qos)=0

Get the participant QoS.

ˆ virtual DDS ReturnCode t add peer (const char ∗peer desc -
string)=0

<<eXtension>> (p. 190) Attempt to contact one or more additional peer
participants.

ˆ virtual DDS ReturnCode t set listener (DDSDomainPartici-
pantListener ∗l, DDS StatusMask mask=DDS STATUS MASK -
ALL)=0

Sets the participant listener.

ˆ virtual DDSDomainParticipantListener ∗ get listener ()=0

Get the participant listener.

ˆ virtual DDSPublisher ∗ get implicit publisher ()=0

<<eXtension>> (p. 190) Returns the implicit DDSPublisher (p. 1243).
If an implicit Publisher does not already exist, this creates one.

ˆ virtual DDSSubscriber ∗ get implicit subscriber ()=0

<<eXtension>> (p. 190) Returns the implicit DDSSubscriber (p. 1284).
If an implicit Subscriber does not already exist, this creates one.

ˆ virtual DDSDataWriter ∗ create datawriter (DDSTopic ∗topic,
const DDS DataWriterQos &qos, DDSDataWriterListener
∗listener, DDS StatusMask mask)=0

<<eXtension>> (p. 190) Creates a DDSDataWriter (p. 1028) that will
be attached and belong to the implicit DDSPublisher (p. 1243).

ˆ virtual DDSDataWriter ∗ create datawriter with profile
(DDSTopic ∗topic, const char ∗library name, const char ∗profile name,
DDSDataWriterListener ∗listener, DDS StatusMask mask)=0

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1062 Class Documentation

<<eXtension>> (p. 190) Creates a DDSDataWriter (p. 1028) using a
XML QoS profile that will be attached and belong to the implicit DDSPub-
lisher (p. 1243).

ˆ virtual DDS ReturnCode t delete datawriter (DDSDataWriter
∗a datawriter)=0

<<eXtension>> (p. 190) Deletes a DDSDataWriter (p. 1028) that be-
longs to the implicit DDSPublisher (p. 1243).

ˆ virtual DDSDataReader ∗ create datareader (DDSTopicDescrip-
tion ∗topic, const DDS DataReaderQos &qos, DDSDataReaderLis-
tener ∗listener, DDS StatusMask mask)=0

<<eXtension>> (p. 190) Creates a DDSDataReader (p. 1004) that will
be attached and belong to the implicit DDSSubscriber (p. 1284).

ˆ virtual DDSDataReader ∗ create datareader with profile
(DDSTopicDescription ∗topic, const char ∗library name, const
char ∗profile name, DDSDataReaderListener ∗listener, DDS -
StatusMask mask)=0

<<eXtension>> (p. 190) Creates a DDSDataReader (p. 1004) using a
XML QoS profile that will be attached and belong to the implicit DDSSub-
scriber (p. 1284).

ˆ virtual DDS ReturnCode t delete datareader (DDSDataReader
∗a datareader)=0

<<eXtension>> (p. 190) Deletes a DDSDataReader (p. 1004) that be-
longs to the implicit DDSSubscriber (p. 1284).

6.165.1 Detailed Description

<<interface>> (p. 190) Container for all DDSDomainEntity (p. 1053) ob-
jects.

The DomainParticipant object plays several roles:

- It acts as a container for all other DDSEntity (p. 1157) objects.

- It acts as factory for the DDSPublisher (p. 1243), DDSSubscriber
(p. 1284), DDSTopic (p. 1311) and DDSMultiTopic (p. 1221) DDSEntity
(p. 1157) objects.

- It represents the participation of the application on a communication plane
that isolates applications running on the same set of physical computers from
each other. A domain establishes a virtual network linking all applications
that share the same domainId and isolating them from applications running on
different domains. In this way, several independent distributed applications can

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.165 DDSDomainParticipant Class Reference 1063

coexist in the same physical network without interfering, or even being aware
of each other.

- It provides administration services in the domain, offering operations that
allow the application to ignore locally any information about a given partic-
ipant (ignore participant() (p. 1100)), publication (ignore publication()
(p. 1102)), subscription (ignore subscription() (p. 1103)) or topic (ignore -
topic() (p. 1101)).

The following operations may be called even if the DDSDomainParticipant
(p. 1054) is not enabled. (Operations NOT in this list will fail with the value
DDS RETCODE NOT ENABLED (p. 303) if called on a disabled Domain-
Participant).

ˆ Operations defined at the base-class level: set qos() (p. 1110), set qos -
with profile() (p. 1110), get qos() (p. 1111), set listener() (p. 1113),
get listener() (p. 1113), enable() (p. 1160);

ˆ Factory operations: create flowcontroller() (p. 1098), create topic()
(p. 1089), create topic with profile() (p. 1090), create publisher()
(p. 1083), create publisher with profile() (p. 1084), create -
subscriber() (p. 1085), create subscriber with profile() (p. 1086),
delete flowcontroller() (p. 1099), delete topic() (p. 1092), delete -
publisher() (p. 1085), delete subscriber() (p. 1087), set default -
flowcontroller property() (p. 1069), get default flowcontroller -
property() (p. 1068), set default topic qos() (p. 1075), set default -
topic qos with profile() (p. 1076), get default topic qos() (p. 1074),
set default publisher qos() (p. 1078), set default publisher qos -
with profile() (p. 1079), get default publisher qos() (p. 1077),
set default subscriber qos() (p. 1081), set default subscriber -
qos with profile() (p. 1082), get default subscriber qos() (p. 1080),
delete contained entities() (p. 1105), set default datareader qos()
(p. 1067), set default datareader qos with profile() (p. 1068), get -
default datareader qos() (p. 1066), set default datawriter qos()
(p. 1065), set default datawriter qos with profile() (p. 1065), get -
default datawriter qos() (p. 1064), set default library() (p. 1073),
set default profile() (p. 1074);

ˆ Operations for looking up topics: lookup topicdescription() (p. 1097);

ˆ Operations that access status: get statuscondition() (p. 1161), get -
status changes() (p. 1161).

QoS:

DDS DomainParticipantQos (p. 548)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1064 Class Documentation

Status:

Status Kinds (p. 305)

Listener:

DDSDomainParticipantListener (p. 1147)

See also:

Operations Allowed in Listener Callbacks (p. 1219)

Examples:

HelloWorld publisher.cxx, and HelloWorld subscriber.cxx.

6.165.2 Member Function Documentation

6.165.2.1 virtual DDS ReturnCode t DDSDomainParticipant::get -
default datawriter qos (DDS DataWriterQos & qos)
[pure virtual]

<<eXtension>> (p. 190) Copy the default DDS DataWriterQos (p. 516)
values into the provided DDS DataWriterQos (p. 516) instance.

The retrieved qos will match the set of values specified on the
last successful call to DDSDomainParticipant::set default datawriter -
qos (p. 1065), or DDSDomainParticipant::set default datawriter qos -
with profile (p. 1065), or else, if the call was never made, the default values
listed in DDS DataWriterQos (p. 516).

This method may potentially allocate memory depending on the sequences con-
tained in some QoS policies.

MT Safety:

UNSAFE. It is not safe to retrieve the default DataWriter QoS from a Do-
mainPartipant while another thread may be simultaneously calling DDS-
DomainParticipant::set default datawriter qos (p. 1065).

Parameters:

qos <<inout>> (p. 191) Qos to be filled up.

Returns:

One of the Standard Return Codes (p. 302)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.165 DDSDomainParticipant Class Reference 1065

6.165.2.2 virtual DDS ReturnCode t DDSDomainParticipant::set -
default datawriter qos (const DDS DataWriterQos &
qos) [pure virtual]

<<eXtension>> (p. 190) Set the default DataWriterQos values for this Do-
mainParticipant.

This set of default values will be inherited for a newly created DDSPublisher
(p. 1243).

Precondition:

The specified QoS policies must be consistent, or else the operation will have
no effect and fail with DDS RETCODE INCONSISTENT POLICY
(p. 304)

MT Safety:

UNSAFE. It is not safe to set the default DataWriter QoS for a Domain-
Participant while another thread may be simultaneously calling DDSDo-
mainParticipant::set default datawriter qos (p. 1065) or DDSDo-
mainParticipant::get default datawriter qos (p. 1064).

Parameters:

qos <<in>> (p. 191) Default qos to be set. The special value DDS -
DATAWRITER QOS DEFAULT (p. 82) may be passed as qos to
indicate that the default QoS should be reset back to the initial values
the factory would used if DDSDomainParticipant::set default -
datawriter qos (p. 1065) had never been called.

Returns:

One of the Standard Return Codes (p. 302), or DDS RETCODE -
INCONSISTENT POLICY (p. 304)

6.165.2.3 virtual DDS ReturnCode t DDSDomainParticipant::set -
default datawriter qos with profile (const char ∗
library name, const char ∗ profile name) [pure virtual]

<<eXtension>> (p. 190) Set the default DDS DataWriterQos (p. 516) val-
ues for this domain participant based on the input XML QoS profile.

This set of default values will be inherited for a newly created DDSPublisher
(p. 1243).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1066 Class Documentation

Precondition:

The DDS DataWriterQos (p. 516) contained in the specified XML QoS
profile must be consistent, or else the operation will have no effect and fail
with DDS RETCODE INCONSISTENT POLICY (p. 304)

MT Safety:

UNSAFE. It is not safe to set the default DataWriter QoS for a Domain-
Participant while another thread may be simultaneously calling DDSDo-
mainParticipant::set default datawriter qos (p. 1065) or DDSDo-
mainParticipant::get default datawriter qos (p. 1064)

Parameters:

library name <<in>> (p. 191) Library name containing the XML QoS
profile. If library name is null RTI Data Distribution Service will
use the default library (see DDSDomainParticipant::set default -
library (p. 1073)).

profile name <<in>> (p. 191) XML QoS Profile name. If profile name
is null RTI Data Distribution Service will use the default profile (see
DDSDomainParticipant::set default profile (p. 1074)).

If the input profile cannot be found, the method fails with DDS RETCODE -
ERROR (p. 303).

Returns:

One of the Standard Return Codes (p. 302), or DDS RETCODE -
INCONSISTENT POLICY (p. 304)

6.165.2.4 virtual DDS ReturnCode t DDSDomainParticipant::get -
default datareader qos (DDS DataReaderQos & qos)
[pure virtual]

<<eXtension>> (p. 190) Copy the default DDS DataReaderQos (p. 481)
values into the provided DDS DataReaderQos (p. 481) instance.

The retrieved qos will match the set of values specified on the
last successful call to DDSDomainParticipant::set default datareader -
qos (p. 1067), or DDSDomainParticipant::set default datareader qos -
with profile (p. 1068), or else, if the call was never made, the default values
listed in DDS DataReaderQos (p. 481).

This method may potentially allocate memory depending on the sequences con-
tained in some QoS policies.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.165 DDSDomainParticipant Class Reference 1067

MT Safety:

UNSAFE. It is not safe to retrieve the default DataReader QoS from a Do-
mainParticipant while another thread may be simultaneously calling DDS-
DomainParticipant::set default datareader qos (p. 1067).

Parameters:

qos <<inout>> (p. 191) Qos to be filled up.

Returns:

One of the Standard Return Codes (p. 302)

6.165.2.5 virtual DDS ReturnCode t DDSDomainParticipant::set -
default datareader qos (const DDS DataReaderQos &
qos) [pure virtual]

<<eXtension>> (p. 190) Set the default DDS DataReaderQos (p. 481)
values for this domain participant.

This set of default values will be inherited for a newly created DDSSubscriber
(p. 1284).

Precondition:

The specified QoS policies must be consistent, or else the operation will have
no effect and fail with DDS RETCODE INCONSISTENT POLICY
(p. 304)

MT Safety:

UNSAFE. It is not safe to set the default DataReader QoS for a Domain-
Participant while another thread may be simultaneously calling DDSDo-
mainParticipant::set default datareader qos (p. 1067) or DDSDo-
mainParticipant::get default datareader qos (p. 1066).

Parameters:

qos <<in>> (p. 191) Default qos to be set. The special value DDS -
DATAREADER QOS DEFAULT (p. 96) may be passed as qos to
indicate that the default QoS should be reset back to the initial values
the factory would used if DDSDomainParticipant::set default -
datareader qos (p. 1067) had never been called.

Returns:

One of the Standard Return Codes (p. 302), or DDS RETCODE -
INCONSISTENT POLICY (p. 304)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1068 Class Documentation

6.165.2.6 virtual DDS ReturnCode t DDSDomainParticipant::set -
default datareader qos with profile (const char ∗
library name, const char ∗ profile name) [pure virtual]

<<eXtension>> (p. 190) Set the default DDS DataReaderQos (p. 481)
values for this DomainParticipant based on the input XML QoS profile.

This set of default values will be inherited for a newly created DDSSubscriber
(p. 1284).

Precondition:

The DDS DataReaderQos (p. 481) contained in the specified XML QoS
profile must be consistent, or else the operation will have no effect and fail
with DDS RETCODE INCONSISTENT POLICY (p. 304)

MT Safety:

UNSAFE. It is not safe to set the default DataReader QoS for a Domain-
Participant while another thread may be simultaneously calling DDSDo-
mainParticipant::set default datareader qos (p. 1067) or DDSDo-
mainParticipant::get default datareader qos (p. 1066).

Parameters:

library name <<in>> (p. 191) Library name containing the XML QoS
profile. If library name is null RTI Data Distribution Service will
use the default library (see DDSDomainParticipant::set default -
library (p. 1073)).

profile name <<in>> (p. 191) XML QoS Profile name. If profile name
is null RTI Data Distribution Service will use the default profile (see
DDSDomainParticipant::set default profile (p. 1074)).

If the input profile cannot be found, the method fails with DDS RETCODE -
ERROR (p. 303).

Returns:

One of the Standard Return Codes (p. 302), or DDS RETCODE -
INCONSISTENT POLICY (p. 304)

6.165.2.7 virtual DDS ReturnCode t DDSDomainParticipant::get -
default flowcontroller property
(DDS FlowControllerProperty t & prop) [pure virtual]

<<eXtension>> (p. 190) Copies the default DDS -
FlowControllerProperty t (p. 700) values for this domain participant
into the given DDS FlowControllerProperty t (p. 700) instance.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.165 DDSDomainParticipant Class Reference 1069

The retrieved property will match the set of values specified on the last success-
ful call to DDSDomainParticipant::set default flowcontroller property
(p. 1069), or else, if the call was never made, the default values listed in DDS -
FlowControllerProperty t (p. 700).

MT Safety:

UNSAFE. It is not safe to retrieve the default flow controller proper-
ties from a DomainParticipant while another thread may be simulta-
neously calling DDSDomainParticipant::set default flowcontroller -
property (p. 1069)

Parameters:

prop <<in>> (p. 191) Default property to be retrieved.

Returns:

One of the Standard Return Codes (p. 302)

See also:

DDS FLOW CONTROLLER PROPERTY DEFAULT (p. 39)
DDSDomainParticipant::create flowcontroller (p. 1098)

6.165.2.8 virtual DDS ReturnCode t DDSDomainParticipant::set -
default flowcontroller property (const
DDS FlowControllerProperty t & prop) [pure virtual]

<<eXtension>> (p. 190) Set the default DDS FlowControllerProperty t
(p. 700) values for this domain participant.

This default value will be used for newly created DDSFlowController
(p. 1163) if DDS FLOW CONTROLLER PROPERTY DEFAULT
(p. 39) is specified as the property parameter when DDSDomainPartici-
pant::create flowcontroller (p. 1098) is called.

Precondition:

The specified property values must be consistent, or else the operation
will have no effect and fail with DDS RETCODE INCONSISTENT -
POLICY (p. 304)

MT Safety:

UNSAFE. It is not safe to set the default flow controller properties for
a DomainParticipant while another thread may be simultaneously call-
ing DDSDomainParticipant::set default flowcontroller property

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1070 Class Documentation

(p. 1069) , DDSDomainParticipant::get default flowcontroller -
property (p. 1068) or calling DDSDomainParticipant::create -
flowcontroller (p. 1098) with DDS FLOW CONTROLLER -
PROPERTY DEFAULT (p. 39) as the qos parameter.

Parameters:

prop <<in>> (p. 191) Default property to be set. The special
value DDS FLOW CONTROLLER PROPERTY DEFAULT
(p. 39) may be passed as property to indicate that the de-
fault property should be reset to the default values the
factory would use if DDSDomainParticipant::set default -
flowcontroller property (p. 1069) had never been called.

Returns:

One of the Standard Return Codes (p. 302), or DDS RETCODE -
INCONSISTENT POLICY (p. 304)

See also:

DDS FLOW CONTROLLER PROPERTY DEFAULT (p. 39)
DDSDomainParticipant::create flowcontroller (p. 1098)

6.165.2.9 virtual DDS ReturnCode t DDSDomainPartic-
ipant::register contentfilter (const char ∗ filter name,
const DDSContentFilter ∗ contentfilter) [pure virtual]

<<eXtension>> (p. 190) Register a content filter which can be used to create
a DDSContentFilteredTopic (p. 998).

DDS specifies an SQL like content filter for use by content filtered topics. If this
filter does not meet the filtering requirements a custom filter can be registered.

Each filter name can only be used to registered a content filter once with a
DDSDomainParticipant (p. 1054).

Parameters:

filter name <<in>> (p. 191) Name of the filter. The name must be
unique within the DDSDomainParticipant (p. 1054) and must not
exceed 255 characters. Cannot be NULL.

contentfilter <<in>> (p. 191) Content filter to be registered. Cannot
be NULL.

Returns:

One of the Standard Return Codes (p. 302)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.165 DDSDomainParticipant Class Reference 1071

See also:

DDSDomainParticipant::unregister contentfilter (p. 1071)

6.165.2.10 virtual DDSContentFilter∗ DDSDomainPartici-
pant::lookup contentfilter (const char ∗ filter name)
[pure virtual]

<<eXtension>> (p. 190) Lookup a content filter previously registered with
DDSDomainParticipant::register contentfilter (p. 1070).

Parameters:

filter name <<in>> (p. 191) Name of the filter. Cannot be NULL.

Returns:

NULL if the given filter name has not been previously registered
to the DDSDomainParticipant (p. 1054) with DDSDomainPartici-
pant::register contentfilter (p. 1070). Otherwise, return the DDSCon-
tentFilter (p. 994) that has been previosuly registered with the given fil-
ter name.

See also:

DDSDomainParticipant::register contentfilter (p. 1070)

6.165.2.11 virtual DDS ReturnCode t DDSDomainPartici-
pant::unregister contentfilter (const char ∗ filter name)
[pure virtual]

<<eXtension>> (p. 190) Unregister a content filter previously registered with
DDSDomainParticipant::register contentfilter (p. 1070).

A filter name can be unregistered only if it has been previously regis-
tered to the DDSDomainParticipant (p. 1054) with DDSDomainPartic-
ipant::register contentfilter (p. 1070).

The unregistration of filter is not allowed if there are any existing DDSCon-
tentFilteredTopic (p. 998) objects that are using the filter. If the opera-
tion is called on a filter with existing DDSContentFilteredTopic (p. 998)
objects attached to it, this operation will fail with DDS RETCODE -
PRECONDITION NOT MET (p. 303).

If there are still existing discovered DDSDataReader (p. 1004) s with the same
filter name and the filter’s compile method of the filter have previously been
called on the discovered DDSDataReader (p. 1004) s, finalize method of the

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1072 Class Documentation

filter will be called on those discovered DDSDataReader (p. 1004) s before
the content filter is unregistered. This means filtering will now be performed on
the application that is creating the DDSDataReader (p. 1004).

Parameters:

filter name <<in>> (p. 191) Name of the filter. Cannot be NULL.

Returns:

One of the Standard Return Codes (p. 302) or DDS RETCODE -
PRECONDITION NOT MET (p. 303)

See also:

DDSDomainParticipant::register contentfilter (p. 1070)

6.165.2.12 virtual const char∗ DDSDomainParticipant::get -
default library () [pure virtual]

<<eXtension>> (p. 190) Gets the default XML library associated with a
DDSDomainParticipant (p. 1054).

Returns:

The default library or null if the default library was not set.

See also:

DDSDomainParticipant::set default library (p. 1073)

6.165.2.13 virtual const char∗ DDSDomainParticipant::get -
default profile () [pure virtual]

<<eXtension>> (p. 190) Gets the default XML profile associated with a
DDSDomainParticipant (p. 1054).

Returns:

The default profile or null if the default profile was not set.

See also:

DDSDomainParticipant::set default profile (p. 1074)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.165 DDSDomainParticipant Class Reference 1073

6.165.2.14 virtual const char∗ DDSDomainParticipant::get -
default profile library () [pure virtual]

<<eXtension>> (p. 190) Gets the library where the default XML QoS profile
is contained for a DDSDomainParticipant (p. 1054).

The default profile library is automatically set when DDSDomainPartici-
pant::set default profile (p. 1074) is called.

This library can be different than the DDSDomainParticipant (p. 1054) de-
fault library (see DDSDomainParticipant::get default library (p. 1072)).

Returns:

The default profile library or null if the default profile was not set.

See also:

DDSDomainParticipant::set default profile (p. 1074)

6.165.2.15 virtual DDS ReturnCode t DDSDomainPartici-
pant::set default library (const char ∗ library name)
[pure virtual]

<<eXtension>> (p. 190) Sets the default XML library for a DDSDomain-
Participant (p. 1054).

This method specifies the library that will be used as the default the next
time a default library is needed during a call to one of this DomainParticipants
operations.

Any API requiring a library name as a parameter can use null to refer to the
default library.

If the default library is not set, the DDSDomainParticipant (p. 1054) in-
herits the default from the DDSDomainParticipantFactory (p. 1123) (see
DDSDomainParticipantFactory::set default library (p. 1131)).

Parameters:

library name <<in>> (p. 191) Library name. If library name is null
any previous default is unset.

Returns:

One of the Standard Return Codes (p. 302)

See also:

DDSDomainParticipant::get default library (p. 1072)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1074 Class Documentation

6.165.2.16 virtual DDS ReturnCode t DDSDomainPartici-
pant::set default profile (const char ∗ library name,
const char ∗ profile name) [pure virtual]

<<eXtension>> (p. 190) Sets the default XML profile for a DDSDomain-
Participant (p. 1054).

This method specifies the profile that will be used as the default the next time a
default DomainParticipant profile is needed during a call to one of this Domain-
Participants operations. When calling a DDSDomainParticipant (p. 1054)
method that requires a profile name parameter, you can use NULL to refer to
the default profile. (This same information applies to setting a default library.)

If the default profile is not set, the DDSDomainParticipant (p. 1054) in-
herits the default from the DDSDomainParticipantFactory (p. 1123) (see
DDSDomainParticipantFactory::set default profile (p. 1132)).

This method does not set the default QoS for entities created by the DDS-
DomainParticipant (p. 1054); for this functionality, use the methods set -
default <entity> qos with profile (you may pass in NULL after having called
set default profile() (p. 1074)).

This method does not set the default QoS for newly created DomainParticipants;
for this functionality, use DDSDomainParticipantFactory::set default -
participant qos with profile (p. 1129).

Parameters:

library name <<in>> (p. 191) The library name containing the profile.

profile name <<in>> (p. 191) The profile name. If profile name is null
any previous default is unset.

Returns:

One of the Standard Return Codes (p. 302)

See also:

DDSDomainParticipant::get default profile (p. 1072)
DDSDomainParticipant::get default profile library (p. 1073)

6.165.2.17 virtual DDS ReturnCode t DDSDomainPartici-
pant::get default topic qos (DDS TopicQos & qos)
[pure virtual]

Copies the default DDS TopicQos (p. 905) values for this domain participant
into the given DDS TopicQos (p. 905) instance.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.165 DDSDomainParticipant Class Reference 1075

The retrieved qos will match the set of values specified on the last successful
call to DDSDomainParticipant::set default topic qos (p. 1075), or else, if
the call was never made, the default values listed in DDS TopicQos (p. 905).

This method may potentially allocate memory depending on the sequences con-
tained in some QoS policies.

MT Safety:

UNSAFE. It is not safe to retrieve the default Topic QoS from a Domain-
Participant while another thread may be simultaneously calling DDSDo-
mainParticipant::set default topic qos (p. 1075)

Parameters:

qos <<in>> (p. 191) Default qos to be retrieved.

Returns:

One of the Standard Return Codes (p. 302)

See also:

DDS TOPIC QOS DEFAULT (p. 37)
DDSDomainParticipant::create topic (p. 1089)

6.165.2.18 virtual DDS ReturnCode t DDSDomainPartici-
pant::set default topic qos (const DDS TopicQos & qos)
[pure virtual]

Set the default DDS TopicQos (p. 905) values for this domain participant.

This default value will be used for newly created DDSTopic (p. 1311) if DDS -
TOPIC QOS DEFAULT (p. 37) is specified as the qos parameter when
DDSDomainParticipant::create topic (p. 1089) is called.

Precondition:

The specified QoS policies must be consistent, or else the operation will have
no effect and fail with DDS RETCODE INCONSISTENT POLICY
(p. 304)

MT Safety:

UNSAFE. It is not safe to set the default topic QoS for a DomainPar-
ticipant while another thread may be simultaneously calling DDSDo-
mainParticipant::set default topic qos (p. 1075), DDSDomainPar-
ticipant::get default topic qos (p. 1074) or calling DDSDomainPar-
ticipant::create topic (p. 1089) with DDS TOPIC QOS DEFAULT
(p. 37) as the qos parameter.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1076 Class Documentation

Parameters:

qos <<in>> (p. 191) Default qos to be set. The special value DDS -
TOPIC QOS DEFAULT (p. 37) may be passed as qos to indicate
that the default QoS should be reset back to the initial values the fac-
tory would used if DDSDomainParticipant::set default topic -
qos (p. 1075) had never been called.

Returns:

One of the Standard Return Codes (p. 302), or DDS RETCODE -
INCONSISTENT POLICY (p. 304)

See also:

DDS TOPIC QOS DEFAULT (p. 37)
DDSDomainParticipant::create topic (p. 1089)

6.165.2.19 virtual DDS ReturnCode t DDSDomainPartici-
pant::set default topic qos with profile (const char
∗ library name, const char ∗ profile name) [pure
virtual]

<<eXtension>> (p. 190) Set the default DDS TopicQos (p. 905) values for
this domain participant based on the input XML QoS profile.

This default value will be used for newly created DDSTopic (p. 1311) if DDS -
TOPIC QOS DEFAULT (p. 37) is specified as the qos parameter when
DDSDomainParticipant::create topic (p. 1089) is called.

Precondition:

The DDS TopicQos (p. 905) contained in the specified XML QoS profile
must be consistent, or else the operation will have no effect and fail with
DDS RETCODE INCONSISTENT POLICY (p. 304)

MT Safety:

UNSAFE. It is not safe to set the default topic QoS for a DomainPar-
ticipant while another thread may be simultaneously calling DDSDo-
mainParticipant::set default topic qos (p. 1075), DDSDomainPar-
ticipant::get default topic qos (p. 1074) or calling DDSDomainPar-
ticipant::create topic (p. 1089) with DDS TOPIC QOS DEFAULT
(p. 37) as the qos parameter.

Parameters:

library name <<in>> (p. 191) Library name containing the XML QoS
profile. If library name is null RTI Data Distribution Service will

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.165 DDSDomainParticipant Class Reference 1077

use the default library (see DDSDomainParticipant::set default -
library (p. 1073)).

profile name <<in>> (p. 191) XML QoS Profile name. If profile name
is null RTI Data Distribution Service will use the default profile (see
DDSDomainParticipant::set default profile (p. 1074)).

If the input profile cannot be found the method fails with DDS RETCODE -
ERROR (p. 303).

Returns:

One of the Standard Return Codes (p. 302), or DDS RETCODE -
INCONSISTENT POLICY (p. 304)

See also:

DDS TOPIC QOS DEFAULT (p. 37)
DDSDomainParticipant::create topic with profile (p. 1090)

6.165.2.20 virtual DDS ReturnCode t DDSDomainPartici-
pant::get default publisher qos (DDS PublisherQos &
qos) [pure virtual]

Copy the default DDS PublisherQos (p. 800) values into the provided DDS -
PublisherQos (p. 800) instance.

The retrieved qos will match the set of values specified on the last
successful call to DDSDomainParticipant::set default publisher qos
(p. 1078), or DDSDomainParticipant::set default publisher qos with -
profile (p. 1079), or else, if the call was never made, the default values listed in
DDS PublisherQos (p. 800).

This method may potentially allocate memory depending on the sequences con-
tained in some QoS policies.

If DDS PUBLISHER QOS DEFAULT (p. 37) is specified as the qos pa-
rameter when DDSDomainParticipant::create topic (p. 1089) is called, the
default value of the QoS set in the factory, equivalent to the value obtained by
calling DDSDomainParticipant::get default publisher qos (p. 1077), will
be used to create the DDSPublisher (p. 1243).

MT Safety:

UNSAFE. It is not safe to retrieve the default publisher QoS from a Do-
mainParticipant while another thread may be simultaneously calling DDS-
DomainParticipant::set default publisher qos (p. 1078)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1078 Class Documentation

Parameters:

qos <<inout>> (p. 191) Qos to be filled up.

Returns:

One of the Standard Return Codes (p. 302)

See also:

DDS PUBLISHER QOS DEFAULT (p. 37)
DDSDomainParticipant::create publisher (p. 1083)

6.165.2.21 virtual DDS ReturnCode t DDSDomain-
Participant::set default publisher qos (const
DDS PublisherQos & qos) [pure virtual]

Set the default DDS PublisherQos (p. 800) values for this DomainParticipant.

This set of default values will be used for a newly created DDSPublisher
(p. 1243) if DDS PUBLISHER QOS DEFAULT (p. 37) is specified as the
qos parameter when DDSDomainParticipant::create publisher (p. 1083)
is called.

Precondition:

The specified QoS policies must be consistent, or else the operation will have
no effect and fail with DDS RETCODE INCONSISTENT POLICY
(p. 304)

MT Safety:

UNSAFE. It is not safe to set the default publisher QoS for a DomainPartic-
ipant while another thread may be simultaneously calling DDSDomain-
Participant::set default publisher qos (p. 1078), DDSDomainPar-
ticipant::get default publisher qos (p. 1077) or calling DDSDomain-
Participant::create publisher (p. 1083) with DDS PUBLISHER -
QOS DEFAULT (p. 37) as the qos parameter.

Parameters:

qos <<in>> (p. 191) Default qos to be set. The special value DDS -
PUBLISHER QOS DEFAULT (p. 37) may be passed as qos to
indicate that the default QoS should be reset back to the initial values
the factory would used if DDSDomainParticipant::set default -
publisher qos (p. 1078) had never been called.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.165 DDSDomainParticipant Class Reference 1079

Returns:

One of the Standard Return Codes (p. 302), or DDS RETCODE -
INCONSISTENT POLICY (p. 304)

See also:

DDS PUBLISHER QOS DEFAULT (p. 37)
DDSDomainParticipant::create publisher (p. 1083)

6.165.2.22 virtual DDS ReturnCode t DDSDomainPartici-
pant::set default publisher qos with profile (const char
∗ library name, const char ∗ profile name) [pure
virtual]

<<eXtension>> (p. 190) Set the default DDS PublisherQos (p. 800) val-
ues for this DomainParticipant based on the input XML QoS profile.

This set of default values will be used for a newly created DDSPublisher
(p. 1243) if DDS PUBLISHER QOS DEFAULT (p. 37) is specified as the
qos parameter when DDSDomainParticipant::create publisher (p. 1083)
is called.

Precondition:

The DDS PublisherQos (p. 800) contained in the specified XML QoS
profile must be consistent, or else the operation will have no effect and fail
with DDS RETCODE INCONSISTENT POLICY (p. 304)

MT Safety:

UNSAFE. It is not safe to set the default publisher QoS for a DomainPartic-
ipant while another thread may be simultaneously calling DDSDomain-
Participant::set default publisher qos (p. 1078), DDSDomainPar-
ticipant::get default publisher qos (p. 1077) or calling DDSDomain-
Participant::create publisher (p. 1083) with DDS PUBLISHER -
QOS DEFAULT (p. 37) as the qos parameter.

Parameters:

library name <<in>> (p. 191) Library name containing the XML QoS
profile. If library name is null RTI Data Distribution Service will
use the default library (see DDSDomainParticipant::set default -
library (p. 1073)).

profile name <<in>> (p. 191) XML QoS Profile name. If profile name
is null RTI Data Distribution Service will use the default profile (see
DDSDomainParticipant::set default profile (p. 1074)).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1080 Class Documentation

If the input profile cannot be found, the method fails with DDS RETCODE -
ERROR (p. 303).

Returns:

One of the Standard Return Codes (p. 302), or DDS RETCODE -
INCONSISTENT POLICY (p. 304)

See also:

DDS PUBLISHER QOS DEFAULT (p. 37)
DDSDomainParticipant::create publisher with profile (p. 1084)

6.165.2.23 virtual DDS ReturnCode t DDSDomainPartici-
pant::get default subscriber qos (DDS SubscriberQos &
qos) [pure virtual]

Copy the default DDS SubscriberQos (p. 874) values into the provided
DDS SubscriberQos (p. 874) instance.

The retrieved qos will match the set of values specified on the last
successful call to DDSDomainParticipant::set default subscriber qos
(p. 1081), or DDSDomainParticipant::set default subscriber qos with -
profile (p. 1082), or else, if the call was never made, the default values listed in
DDS SubscriberQos (p. 874).

This method may potentially allocate memory depending on the sequences con-
tained in some QoS policies.

If DDS SUBSCRIBER QOS DEFAULT (p. 38) is specified as the qos
parameter when DDSDomainParticipant::create subscriber (p. 1085) is
called, the default value of the QoS set in the factory, equivalent to the value
obtained by calling DDSDomainParticipant::get default subscriber qos
(p. 1080), will be used to create the DDSSubscriber (p. 1284).

MT Safety:

UNSAFE. It is not safe to retrieve the default Subscriber QoS from a Do-
mainParticipant while another thread may be simultaneously calling DDS-
DomainParticipant::set default subscriber qos (p. 1081).

Parameters:

qos <<inout>> (p. 191) Qos to be filled up.

Returns:

One of the Standard Return Codes (p. 302)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.165 DDSDomainParticipant Class Reference 1081

See also:

DDS SUBSCRIBER QOS DEFAULT (p. 38)
DDSDomainParticipant::create subscriber (p. 1085)

6.165.2.24 virtual DDS ReturnCode t DDSDomain-
Participant::set default subscriber qos (const
DDS SubscriberQos & qos) [pure virtual]

Set the default DDS SubscriberQos (p. 874) values for this Do-
main{articipant.

This set of default values will be used for a newly created DDSSubscriber
(p. 1284) if DDS SUBSCRIBER QOS DEFAULT (p. 38) is specified as the
qos parameter when DDSDomainParticipant::create subscriber (p. 1085)
is called.

Precondition:

The specified QoS policies must be consistent, or else the operation will have
no effect and fail with DDS RETCODE INCONSISTENT POLICY
(p. 304)

MT Safety:

UNSAFE. It is not safe to set the default Subscriber QoS for a Do-
mainParticipant while another thread may be simultaneously calling
DDSDomainParticipant::set default subscriber qos (p. 1081),
DDSDomainParticipant::get default subscriber qos (p. 1080) or
calling DDSDomainParticipant::create subscriber (p. 1085) with
DDS SUBSCRIBER QOS DEFAULT (p. 38) as the qos parameter.

Parameters:

qos <<in>> (p. 191) Default qos to be set. The special value DDS -
SUBSCRIBER QOS DEFAULT (p. 38) may be passed as qos to
indicate that the default QoS should be reset back to the initial values
the factory would used if DDSDomainParticipant::set default -
subscriber qos (p. 1081) had never been called.

Returns:

One of the Standard Return Codes (p. 302), or DDS RETCODE -
INCONSISTENT POLICY (p. 304)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1082 Class Documentation

6.165.2.25 virtual DDS ReturnCode t DDSDomainPartici-
pant::set default subscriber qos with profile (const char
∗ library name, const char ∗ profile name) [pure
virtual]

<<eXtension>> (p. 190) Set the default DDS SubscriberQos (p. 874) val-
ues for this DomainParticipant based on the input XML QoS profile.

This set of default values will be used for a newly created DDSSubscriber
(p. 1284) if DDS SUBSCRIBER QOS DEFAULT (p. 38) is specified as the
qos parameter when DDSDomainParticipant::create subscriber (p. 1085)
is called.

Precondition:

The DDS SubscriberQos (p. 874) contained in the specified XML QoS
profile must be consistent, or else the operation will have no effect and fail
with DDS RETCODE INCONSISTENT POLICY (p. 304)

MT Safety:

UNSAFE. It is not safe to set the default Subscriber QoS for a Do-
mainParticipant while another thread may be simultaneously calling
DDSDomainParticipant::set default subscriber qos (p. 1081),
DDSDomainParticipant::get default subscriber qos (p. 1080) or
calling DDSDomainParticipant::create subscriber (p. 1085) with
DDS SUBSCRIBER QOS DEFAULT (p. 38) as the qos parameter.

Parameters:

library name <<in>> (p. 191) Library name containing the XML QoS
profile. If library name is null RTI Data Distribution Service will
use the default library (see DDSDomainParticipant::set default -
library (p. 1073)).

profile name <<in>> (p. 191) XML QoS Profile name. If profile name
is null RTI Data Distribution Service will use the default profile (see
DDSDomainParticipant::set default profile (p. 1074)).

If the input profile cannot be found, the method fails with DDS RETCODE -
ERROR (p. 303).

Returns:

One of the Standard Return Codes (p. 302), or DDS RETCODE -
INCONSISTENT POLICY (p. 304)

See also:

DDS SUBSCRIBER QOS DEFAULT (p. 38)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.165 DDSDomainParticipant Class Reference 1083

DDSDomainParticipant::create subscriber with profile (p. 1086)

6.165.2.26 virtual DDSPublisher∗ DDSDomainParticipant::create -
publisher (const DDS PublisherQos & qos,
DDSPublisherListener ∗ listener, DDS StatusMask
mask) [pure virtual]

Creates a DDSPublisher (p. 1243) with the desired QoS policies and attaches
to it the specified DDSPublisherListener (p. 1265).

Precondition:

The specified QoS policies must be consistent, or the operation will fail and
no DDSPublisher (p. 1243) will be created.

MT Safety:

UNSAFE. If DDS PUBLISHER QOS DEFAULT (p. 37) is used for
qos, it is not safe to create the publisher while another thread may be simul-
taneously calling DDSDomainParticipant::set default publisher qos
(p. 1078).

Parameters:

qos <<in>> (p. 191) QoS to be used for creating the new DDSPub-
lisher (p. 1243). The special value DDS PUBLISHER QOS -
DEFAULT (p. 37) can be used to indicate that the DDSPublisher
(p. 1243) should be created with the default DDS PublisherQos
(p. 800) set in the DDSDomainParticipant (p. 1054).

listener <<in>> (p. 191). Listener to be attached to the newly created
DDSPublisher (p. 1243).

mask <<in>> (p. 191). Changes of communication status to be invoked
on the listener.

Returns:

newly created publisher object or NULL on failure.

See also:

Specifying QoS on entities (p. 326) for information on setting QoS before
entity creation
DDS PublisherQos (p. 800) for rules on consistency among QoS
DDS PUBLISHER QOS DEFAULT (p. 37)
DDSDomainParticipant::create publisher with profile (p. 1084)
DDSDomainParticipant::get default publisher qos (p. 1077)
DDSPublisher::set listener (p. 1264)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1084 Class Documentation

Examples:

HelloWorld publisher.cxx.

6.165.2.27 virtual DDSPublisher∗ DDSDomainParticipant::create -
publisher with profile (const char ∗ library name, const
char ∗ profile name, DDSPublisherListener ∗ listener,
DDS StatusMask mask) [pure virtual]

<<eXtension>> (p. 190) Creates a new DDSPublisher (p. 1243) object us-
ing the DDS PublisherQos (p. 800) associated with the input XML QoS pro-
file.

Precondition:

The DDS PublisherQos (p. 800) in the input profile must be consistent,
or the operation will fail and no DDSPublisher (p. 1243) will be created.

Parameters:

library name <<in>> (p. 191) Library name containing the XML QoS
profile. If library name is null RTI Data Distribution Service will
use the default library (see DDSDomainParticipant::set default -
library (p. 1073)).

profile name <<in>> (p. 191) XML QoS Profile name. If profile name
is null RTI Data Distribution Service will use the default profile (see
DDSDomainParticipant::set default profile (p. 1074)).

listener <<in>> (p. 191). Listener to be attached to the newly created
DDSPublisher (p. 1243).

mask <<in>> (p. 191). Changes of communication status to be invoked
on the listener.

Returns:

newly created publisher object or NULL on failure.

See also:

Specifying QoS on entities (p. 326) for information on setting QoS before
entity creation
DDS PublisherQos (p. 800) for rules on consistency among QoS
DDSDomainParticipant::create publisher (p. 1083)
DDSDomainParticipant::get default publisher qos (p. 1077)
DDSPublisher::set listener (p. 1264)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.165 DDSDomainParticipant Class Reference 1085

6.165.2.28 virtual DDS ReturnCode t DDSDomainPartici-
pant::delete publisher (DDSPublisher ∗ p) [pure
virtual]

Deletes an existing DDSPublisher (p. 1243).

Precondition:

The DDSPublisher (p. 1243) must not have any attached DDS-
DataWriter (p. 1028) objects. If there are existing DDS-
DataWriter (p. 1028) objects, it will fail with DDS RETCODE -
PRECONDITION NOT MET (p. 303).
DDSPublisher (p. 1243) must have been created by this DDSDo-
mainParticipant (p. 1054), or else it will fail with DDS RETCODE -
PRECONDITION NOT MET (p. 303).

Postcondition:

Listener installed on the DDSPublisher (p. 1243) will not be called after
this method completes successfully.

Parameters:

p <<in>> (p. 191) DDSPublisher (p. 1243) to be deleted.

Returns:

One of the Standard Return Codes (p. 302), or DDS RETCODE -
PRECONDITION NOT MET (p. 303).

6.165.2.29 virtual DDSSubscriber∗ DDSDomainPartici-
pant::create subscriber (const DDS SubscriberQos
& qos, DDSSubscriberListener ∗ listener,
DDS StatusMask mask) [pure virtual]

Creates a DDSSubscriber (p. 1284) with the desired QoS policies and attaches
to it the specified DDSSubscriberListener (p. 1306).

Precondition:

The specified QoS policies must be consistent, or the operation will fail and
no DDSSubscriber (p. 1284) will be created.

MT Safety:

UNSAFE. If DDS SUBSCRIBER QOS DEFAULT (p. 38) is used
for qos, it is not safe to create the subscriber while another thread

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1086 Class Documentation

may be simultaneously calling DDSDomainParticipant::set default -
subscriber qos (p. 1081).

Parameters:

qos <<in>> (p. 191) QoS to be used for creating the new DDSSub-
scriber (p. 1284). The special value DDS SUBSCRIBER QOS -
DEFAULT (p. 38) can be used to indicate that the DDSSubscriber
(p. 1284) should be created with the default DDS SubscriberQos
(p. 874) set in the DDSDomainParticipant (p. 1054).

listener <<in>> (p. 191). Listener to be attached to the newly created
DDSSubscriber (p. 1284).

mask <<in>> (p. 191). Changes of communication status to be invoked
on the listener.

Returns:

newly created subscriber object or NULL on failure.

See also:

Specifying QoS on entities (p. 326) for information on setting QoS before
entity creation
DDS SubscriberQos (p. 874) for rules on consistency among QoS
DDS SUBSCRIBER QOS DEFAULT (p. 38)
DDSDomainParticipant::create subscriber with profile (p. 1086)
DDSDomainParticipant::get default subscriber qos (p. 1080)
DDSSubscriber::set listener (p. 1305)

Examples:

HelloWorld subscriber.cxx.

6.165.2.30 virtual DDSSubscriber∗ DDSDomainPartici-
pant::create subscriber with profile (const char
∗ library name, const char ∗ profile name,
DDSSubscriberListener ∗ listener, DDS StatusMask
mask) [pure virtual]

<<eXtension>> (p. 190) Creates a new DDSSubscriber (p. 1284) object
using the DDS PublisherQos (p. 800) associated with the input XML QoS
profile.

Precondition:

The DDS SubscriberQos (p. 874) in the input profile must be consistent,
or the operation will fail and no DDSSubscriber (p. 1284) will be created.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.165 DDSDomainParticipant Class Reference 1087

Parameters:

library name <<in>> (p. 191) Library name containing the XML QoS
profile. If library name is null RTI Data Distribution Service will
use the default library (see DDSDomainParticipant::set default -
library (p. 1073)).

profile name <<in>> (p. 191) XML QoS Profile name. If profile name
is null RTI Data Distribution Service will use the default profile (see
DDSDomainParticipant::set default profile (p. 1074)).

listener <<in>> (p. 191). Listener to be attached to the newly created
DDSSubscriber (p. 1284).

mask <<in>> (p. 191). Changes of communication status to be invoked
on the listener.

Returns:

newly created subscriber object or NULL on failure.

See also:

Specifying QoS on entities (p. 326) for information on setting QoS before
entity creation
DDS SubscriberQos (p. 874) for rules on consistency among QoS
DDSDomainParticipant::create subscriber (p. 1085)
DDSDomainParticipant::get default subscriber qos (p. 1080)
DDSSubscriber::set listener (p. 1305)

6.165.2.31 virtual DDS ReturnCode t DDSDomainPartici-
pant::delete subscriber (DDSSubscriber ∗ s) [pure
virtual]

Deletes an existing DDSSubscriber (p. 1284).

Precondition:

The DDSSubscriber (p. 1284) must not have any attached DDS-
DataReader (p. 1004) objects. If there are existing DDS-
DataReader (p. 1004) objects, it will fail with DDS RETCODE -
PRECONDITION NOT MET (p. 303)
The DDSSubscriber (p. 1284) must have been created by this DDSDo-
mainParticipant (p. 1054), or else it will fail with DDS RETCODE -
PRECONDITION NOT MET (p. 303).

Postcondition:

A Listener installed on the DDSSubscriber (p. 1284) will not be called
after this method completes successfully.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1088 Class Documentation

Parameters:

s <<in>> (p. 191) DDSSubscriber (p. 1284) to be deleted.

Returns:

One of the Standard Return Codes (p. 302), or DDS RETCODE -
PRECONDITION NOT MET (p. 303).

6.165.2.32 virtual DDS ReturnCode t DDSDomainPartici-
pant::get publishers (DDSPublisherSeq & publishers)
[pure virtual]

<<eXtension>> (p. 190) Allows the application to access all the publishers
the participant has.

If the sequence doesn’t own its buffer, and its maximum is less than the total
number of publishers, it will be filled up to its maximum, and fail with DDS -
RETCODE OUT OF RESOURCES (p. 303).

MT Safety:

Safe.

Parameters:

publishers <<inout>> (p. 191) a PublisherSeq object where the set or
list of publishers will be returned

Returns:

One of the Standard Return Codes (p. 302) or DDS RETCODE -
OUT OF RESOURCES (p. 303)

6.165.2.33 virtual DDS ReturnCode t DDSDomainPartici-
pant::get subscribers (DDSSubscriberSeq & subscribers)
[pure virtual]

<<eXtension>> (p. 190) Allows the application to access all the subscribers
the participant has.

If the sequence doesn’t own its buffer, and its maximum is less than the total
number of subscribers, it will be filled up to its maximum, and fail with DDS -
RETCODE OUT OF RESOURCES (p. 303).

MT Safety:

Safe.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.165 DDSDomainParticipant Class Reference 1089

Parameters:

subscribers <<inout>> (p. 191) a SubscriberSeq object where the set
or list of subscribers will be returned

Returns:

One of the Standard Return Codes (p. 302) or DDS RETCODE -
OUT OF RESOURCES (p. 303)

6.165.2.34 virtual DDSTopic∗ DDSDomainParticipant::create topic
(const char ∗ topic name, const char ∗ type name,
const DDS TopicQos & qos, DDSTopicListener ∗
listener, DDS StatusMask mask) [pure virtual]

Creates a DDSTopic (p. 1311) with the desired QoS policies and attaches to it
the specified DDSTopicListener (p. 1322).

Precondition:

The application is not allowed to create two DDSTopic (p. 1311) objects
with the same topic name attached to the same DDSDomainPartici-
pant (p. 1054). If the application attempts this, this method will fail and
return a NULL topic.
The specified QoS policies must be consistent, or the operation will fail and
no DDSTopic (p. 1311) will be created.
Prior to creating a DDSTopic (p. 1311), the type must have been registered
with RTI Data Distribution Service. This is done using the FooType-
Support::register type (p. 1393) operation on a derived class of the
DDSTypeSupport (p. 1324) interface.

MT Safety:

UNSAFE. It is not safe to create a topic while another thread is trying to
lookup that topic description with DDSDomainParticipant::lookup -
topicdescription (p. 1097).

MT Safety:

UNSAFE. If DDS TOPIC QOS DEFAULT (p. 37) is used for qos, it
is not safe to create the topic while another thread may be simultaneously
calling DDSDomainParticipant::set default topic qos (p. 1075).

Parameters:

topic name <<in>> (p. 191) Name for the new topic, must not exceed
255 characters. Cannot be NULL.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1090 Class Documentation

type name <<in>> (p. 191) The type to which the new DDSTopic
(p. 1311) will be bound. Cannot be NULL.

qos <<in>> (p. 191) QoS to be used for creating the new DDSTopic
(p. 1311). The special value DDS TOPIC QOS DEFAULT (p. 37)
can be used to indicate that the DDSTopic (p. 1311) should be cre-
ated with the default DDS TopicQos (p. 905) set in the DDSDo-
mainParticipant (p. 1054).

listener <<in>> (p. 191). Listener to be attached to the newly created
DDSTopic (p. 1311).

mask <<in>> (p. 191). Changes of communication status to be invoked
on the listener.

Returns:

newly created topic, or NULL on failure

See also:

Specifying QoS on entities (p. 326) for information on setting QoS before
entity creation
DDS TopicQos (p. 905) for rules on consistency among QoS
DDS TOPIC QOS DEFAULT (p. 37)
DDSDomainParticipant::create topic with profile (p. 1090)
DDSDomainParticipant::get default topic qos (p. 1074)
DDSTopic::set listener (p. 1315)

Examples:

HelloWorld publisher.cxx, and HelloWorld subscriber.cxx.

6.165.2.35 virtual DDSTopic∗ DDSDomainParticipant::create -
topic with profile (const char ∗ topic name, const
char ∗ type name, const char ∗ library name, const
char ∗ profile name, DDSTopicListener ∗ listener,
DDS StatusMask mask) [pure virtual]

<<eXtension>> (p. 190) Creates a new DDSTopic (p. 1311) object using
the DDS PublisherQos (p. 800) associated with the input XML QoS profile.

Precondition:

The application is not allowed to create two DDSTopicDescription
(p. 1319) objects with the same topic name attached to the same DDSDo-
mainParticipant (p. 1054). If the application attempts this, this method
will fail and return a NULL topic.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.165 DDSDomainParticipant Class Reference 1091

The DDS TopicQos (p. 905) in the input profile must be consistent, or
the operation will fail and no DDSTopic (p. 1311) will be created.
Prior to creating a DDSTopic (p. 1311), the type must have been registered
with RTI Data Distribution Service. This is done using the FooType-
Support::register type (p. 1393) operation on a derived class of the
DDSTypeSupport (p. 1324) interface.

MT Safety:

UNSAFE. It is not safe to create a topic while another thread is trying to
lookup that topic description with DDSDomainParticipant::lookup -
topicdescription (p. 1097).

Parameters:

topic name <<in>> (p. 191) Name for the new topic, must not exceed
255 characters. Cannot be NULL.

type name <<in>> (p. 191) The type to which the new DDSTopic
(p. 1311) will be bound. Cannot be NULL.

library name <<in>> (p. 191) Library name containing the XML QoS
profile. If library name is null RTI Data Distribution Service will
use the default library (see DDSDomainParticipant::set default -
library (p. 1073)).

profile name <<in>> (p. 191) XML QoS Profile name. If profile name
is null RTI Data Distribution Service will use the default profile (see
DDSDomainParticipant::set default profile (p. 1074)).

listener <<in>> (p. 191). Listener to be attached to the newly created
DDSTopic (p. 1311).

mask <<in>> (p. 191). Changes of communication status to be invoked
on the listener.

Returns:

newly created topic, or NULL on failure

See also:

Specifying QoS on entities (p. 326) for information on setting QoS before
entity creation
DDS TopicQos (p. 905) for rules on consistency among QoS
DDSDomainParticipant::create topic (p. 1089)
DDSDomainParticipant::get default topic qos (p. 1074)
DDSTopic::set listener (p. 1315)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1092 Class Documentation

6.165.2.36 virtual DDS ReturnCode t DDSDomainPartici-
pant::delete topic (DDSTopic ∗ topic) [pure
virtual]

Deletes a DDSTopic (p. 1311).

Precondition:

If the DDSTopic (p. 1311) does not belong to the application’s DDSDo-
mainParticipant (p. 1054), this operation fails with DDS RETCODE -
PRECONDITION NOT MET (p. 303).
Make sure no objects are using the topic. More specifically, there must
be no existing DDSDataReader (p. 1004), DDSDataWriter (p. 1028),
DDSContentFilteredTopic (p. 998), or DDSMultiTopic (p. 1221) ob-
jects belonging to the same DDSDomainParticipant (p. 1054) that are
using the DDSTopic (p. 1311). If delete topic is called on a DDSTopic
(p. 1311) with any of these existing objects attached to it, it will fail with
DDS RETCODE PRECONDITION NOT MET (p. 303).

Postcondition:

Listener installed on the DDSTopic (p. 1311) will not be called after this
method completes successfully.

Parameters:

topic <<in>> (p. 191) DDSTopic (p. 1311) to be deleted.

Returns:

One of the Standard Return Codes (p. 302), or DDS RETCODE -
PRECONDITION NOT MET (p. 303)

6.165.2.37 virtual DDSContentFilteredTopic∗
DDSDomainParticipant::create contentfilteredtopic
(const char ∗ name, DDSTopic ∗ related topic, const
char ∗ filter expression, const DDS StringSeq &
expression parameters) [pure virtual]

Creates a DDSContentFilteredTopic (p. 998), that can be used to do
content-based subscriptions.

The DDSContentFilteredTopic (p. 998) only relates to samples published
under that DDSTopic (p. 1311), filtered according to their content. The filter-
ing is done by means of evaluating a logical expression that involves the values
of some of the data-fields in the sample. The logical expression derived from
the filter expression and expression parameters arguments.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.165 DDSDomainParticipant Class Reference 1093

Queries and Filters Syntax (p. 199) describes the syntax of filter -
expression and expression parameters.

Precondition:

The application is not allowed to create two DDSContentFilteredTopic
(p. 998) objects with the same topic name attached to the same DDSDo-
mainParticipant (p. 1054). If the application attempts this, this method
will fail and returns NULL.
If related topic does not belong to this DDSDomainParticipant
(p. 1054), this operation returns NULL.
This function will create a content filter using the builtin SQL filter which
implements a superset of the DDS specification. This filter requires that
all IDL types have been compiled with typecodes. If this precondition is
not met, this operation returns NULL. Do not use rtiddsgen’s -notypecode
option if you want to use the builtin SQL filter.

Parameters:

name <<in>> (p. 191) Name for the new content filtered topic, must
not exceed 255 characters. Cannot be NULL.

related topic <<in>> (p. 191) DDSTopic (p. 1311) to be filtered. Can-
not be NULL.

filter expression <<in>> (p. 191) Cannot be NULL
expression parameters <<in>> (p. 191) An empty sequence must be

used if the filter expression does not contain any parameters. Length
of sequence cannot be greater than 100.

Returns:

newly created DDSContentFilteredTopic (p. 998), or NULL on failure

6.165.2.38 virtual DDSContentFilteredTopic∗
DDSDomainParticipant::create contentfilteredtopic -
with filter (const char ∗ name, DDSTopic ∗
related topic, const char ∗ filter expression, const
DDS StringSeq & expression parameters, const char
∗ filter name = DDS SQLFILTER NAME) [pure
virtual]

<<eXtension>> (p. 190) Creates a DDSContentFilteredTopic (p. 998)
using the specified filter to do content-based subscriptions.

Parameters:

name <<in>> (p. 191) Name for the new content filtered topic. Cannot
exceed 255 characters. Cannot be NULL.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1094 Class Documentation

related topic <<in>> (p. 191) DDSTopic (p. 1311) to be filtered. Can-
not be NULL.

filter expression <<in>> (p. 191) Cannot be NULL.
expression parameters <<in>> (p. 191) . An empty sequence must

be used if the filter expression does not contain any parameters.
Length of the sequence cannot be greater than 100.

filter name <<in>> (p. 191) Name of content filter to use. Must
previously have been registered with DDSDomainPartici-
pant::register contentfilter (p. 1070) on the same DDSDo-
mainParticipant (p. 1054). Cannot be NULL.

Builtin filter names are DDS SQLFILTER NAME (p. 39) and DDS -
STRINGMATCHFILTER NAME (p. 40)

Returns:

newly created DDSContentFilteredTopic (p. 998), or NULL on failure

6.165.2.39 virtual DDS ReturnCode t DDSDomain-
Participant::delete contentfilteredtopic
(DDSContentFilteredTopic ∗ a contentfilteredtopic)
[pure virtual]

Deletes a DDSContentFilteredTopic (p. 998).

Precondition:

The deletion of a DDSContentFilteredTopic (p. 998) is not allowed if
there are any existing DDSDataReader (p. 1004) objects that are using
the DDSContentFilteredTopic (p. 998). If the operation is called on
a DDSContentFilteredTopic (p. 998) with existing DDSDataReader
(p. 1004) objects attached to it, it will fail with DDS RETCODE -
PRECONDITION NOT MET (p. 303).
The DDSContentFilteredTopic (p. 998) must be created by this DDS-
DomainParticipant (p. 1054), or else this operation will fail with DDS -
RETCODE PRECONDITION NOT MET (p. 303).

Parameters:

a contentfilteredtopic <<in>> (p. 191)

Returns:

One of the Standard Return Codes (p. 302) or DDS RETCODE -
PRECONDITION NOT MET (p. 303)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.165 DDSDomainParticipant Class Reference 1095

6.165.2.40 virtual DDSMultiTopic∗ DDSDomainPartici-
pant::create multitopic (const char ∗ name, const char
∗ type name, const char ∗ subscription expression,
const DDS StringSeq & expression parameters) [pure
virtual]

[Not supported (optional)] Creates a MultiTopic that can be used to sub-
scribe to multiple topics and combine/filter the received data into a resulting
type.

The resulting type is specified by the type name argument. The list of topics
and the logic used to combine, filter, and rearrange the information from each
DDSTopic (p. 1311) are specified using the subscription expression and
expression parameters arguments.

Queries and Filters Syntax (p. 199) describes the syntax of subscription -
expression and expression parameters.

Precondition:

The application is not allowed to create two DDSTopicDescription
(p. 1319) objects with the same name attached to the same DDSDomain-
Participant (p. 1054). If the application attempts this, this method will
fail and return NULL.
Prior to creating a DDSMultiTopic (p. 1221), the type must have been
registered with RTI Data Distribution Service. This is done using the
FooTypeSupport::register type (p. 1393) operation on a derived class
of the DDSTypeSupport (p. 1324) interface. Otherwise, this method will
return NULL.

Parameters:

name <<in>> (p. 191) Name of the newly create DDSMultiTopic
(p. 1221). Cannot be NULL.

type name <<in>> (p. 191) Cannot be NULL.
subscription expression <<in>> (p. 191) Cannot be NULL.
expression parameters <<in>> (p. 191)

Returns:

NULL

6.165.2.41 virtual DDS ReturnCode t DDSDomainPartici-
pant::delete multitopic (DDSMultiTopic ∗ a multitopic)
[pure virtual]

[Not supported (optional)] Deletes a DDSMultiTopic (p. 1221).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1096 Class Documentation

Precondition:

The deletion of a DDSMultiTopic (p. 1221) is not allowed if there are any
existing DDSDataReader (p. 1004) objects that are using the DDSMul-
tiTopic (p. 1221). If the delete multitopic operation is called on a DDS-
MultiTopic (p. 1221) with existing DDSDataReader (p. 1004) objects
attached to it, it will fail with DDS RETCODE PRECONDITION -
NOT MET (p. 303).
The DDSMultiTopic (p. 1221) must be created by this DDSDomain-
Participant (p. 1054), or else this operation will fail with DDS -
RETCODE PRECONDITION NOT MET (p. 303).

Parameters:

a multitopic <<in>> (p. 191)

Returns:

DDS RETCODE UNSUPPORTED (p. 303)

6.165.2.42 virtual DDSTopic∗ DDSDomainParticipant::find topic
(const char ∗ topic name, const DDS Duration t &
timeout) [pure virtual]

Finds an existing (or ready to exist) DDSTopic (p. 1311), based on its name.

This call can be used to block for a specified duration to wait for the DDSTopic
(p. 1311) to be created.

If the requested DDSTopic (p. 1311) already exists, it is returned. Otherwise,
find topic() (p. 1096) waits until another thread creates it or else returns when
the specified timeout occurs.

find topic() (p. 1096) is useful when multiple threads are concurrently creating
and looking up topics. In that case, one thread can call find topic() (p. 1096)
and, if another thread has not yet created the topic being looked up, it can wait
for some period of time for it to do so. In almost all other cases, it is more
straightforward to call DDSDomainParticipant::lookup topicdescription
(p. 1097).

The DDSDomainParticipant (p. 1054) must already be enabled.

Note: Each DDSTopic (p. 1311) obtained by DDSDomainPartici-
pant::find topic (p. 1096) must also be deleted by means of DDSDomain-
Participant::delete topic (p. 1092). If DDSTopic (p. 1311) is obtained mul-
tiple times by means of DDSDomainParticipant::find topic (p. 1096) or
DDSDomainParticipant::create topic (p. 1089), it must also be deleted
that same number of times using DDSDomainParticipant::delete topic
(p. 1092).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.165 DDSDomainParticipant Class Reference 1097

Parameters:

topic name <<in>> (p. 191) Name of the DDSTopic (p. 1311) to
search for. Cannot be NULL.

timeout <<in>> (p. 191) The time to wait if the DDSTopic (p. 1311)
does not exist already.

Returns:

the topic, if it exists, or NULL

6.165.2.43 virtual DDSTopicDescription∗
DDSDomainParticipant::lookup topicdescription (const
char ∗ topic name) [pure virtual]

Looks up an existing, locally created DDSTopicDescription (p. 1319), based
on its name.

DDSTopicDescription (p. 1319) is the base class for DDSTopic (p. 1311),
DDSMultiTopic (p. 1221) and DDSContentFilteredTopic (p. 998). So you
can narrow the DDSTopicDescription (p. 1319) returned from this operation
to a DDSTopic (p. 1311) or DDSContentFilteredTopic (p. 998) as appro-
priate.

Unlike DDSDomainParticipant::find topic (p. 1096), which logically re-
turns a new DDSTopic (p. 1311) object that must be independently deleted,
this operation returns a reference to the original local object.

The DDSDomainParticipant (p. 1054) does not have to be enabled when you
call lookup topicdescription() (p. 1097).

The returned topic may be either enabled or disabled.

MT Safety:

UNSAFE. It is not safe to lookup a topic description while another thread
is creating that topic.

Parameters:

topic name <<in>> (p. 191) Name of DDSTopicDescription
(p. 1319) to search for. This string must be no more than 255
characters; it cannot be NULL.

Returns:

The topic description, if it has already been created locally, otherwise it
returns NULL.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1098 Class Documentation

6.165.2.44 virtual DDSFlowController∗
DDSDomainParticipant::create flowcontroller (const
char ∗ name, const DDS FlowControllerProperty t &
prop) [pure virtual]

<<eXtension>> (p. 190) Creates a DDSFlowController (p. 1163) with the
desired property.

The created DDSFlowController (p. 1163) is associated with a DDS-
DataWriter (p. 1028) via DDS PublishModeQosPolicy::flow -
controller name (p. 804). A single DDSFlowController (p. 1163) may
service multiple DDSDataWriter (p. 1028) instances, even if they belong
to a different DDSPublisher (p. 1243). The property determines how the
DDSFlowController (p. 1163) shapes the network traffic.

Precondition:

The specified property must be consistent, or the operation will fail and
no DDSFlowController (p. 1163) will be created.

MT Safety:

UNSAFE. If DDS FLOW CONTROLLER PROPERTY -
DEFAULT (p. 39) is used for property, it is not safe to create the
flow controller while another thread may be simultaneously calling DDS-
DomainParticipant::set default flowcontroller property (p. 1069)
or trying to lookup that flow controller with DDSDomainPartici-
pant::lookup flowcontroller (p. 1099).

Parameters:

name <<in>> (p. 191) name of the DDSFlowController (p. 1163) to
create. A DDSDataWriter (p. 1028) is associated with a DDSFlow-
Controller (p. 1163) by name. Limited to 255 characters.

prop <<in>> (p. 191) property to be used for creating the new
DDSFlowController (p. 1163). The special value DDS FLOW -
CONTROLLER PROPERTY DEFAULT (p. 39) can be used to
indicate that the DDSFlowController (p. 1163) should be created
with the default DDS FlowControllerProperty t (p. 700) set in
the DDSDomainParticipant (p. 1054).

Returns:

Newly created flow controller object or NULL on failure.

See also:

DDS FlowControllerProperty t (p. 700) for rules on consistency among
property

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.165 DDSDomainParticipant Class Reference 1099

DDS FLOW CONTROLLER PROPERTY DEFAULT (p. 39)
DDSDomainParticipant::get default flowcontroller property
(p. 1068)

6.165.2.45 virtual DDS ReturnCode t DDSDomainPartici-
pant::delete flowcontroller (DDSFlowController ∗ fc)
[pure virtual]

<<eXtension>> (p. 190) Deletes an existing DDSFlowController
(p. 1163).

Precondition:

The DDSFlowController (p. 1163) must not have any attached DDS-
DataWriter (p. 1028) objects. If there are any attached DDS-
DataWriter (p. 1028) objects, it will fail with DDS RETCODE -
PRECONDITION NOT MET (p. 303).
The DDSFlowController (p. 1163) must have been created by this
DDSDomainParticipant (p. 1054), or else it will fail with DDS -
RETCODE PRECONDITION NOT MET (p. 303).

Postcondition:

The DDSFlowController (p. 1163) is deleted if this method completes
successfully.

Parameters:

fc <<in>> (p. 191) The DDSFlowController (p. 1163) to be deleted.

Returns:

One of the Standard Return Codes (p. 302), or DDS RETCODE -
PRECONDITION NOT MET (p. 303).

6.165.2.46 virtual DDSFlowController∗
DDSDomainParticipant::lookup flowcontroller (const
char ∗ name) [pure virtual]

<<eXtension>> (p. 190) Looks up an existing locally-created DDSFlow-
Controller (p. 1163), based on its name.

Looks up a previously created DDSFlowController (p. 1163), including the
built-in ones. Once a DDSFlowController (p. 1163) has been deleted, subse-
quent lookups will fail.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1100 Class Documentation

MT Safety:

UNSAFE. It is not safe to lookup a flow controller description while another
thread is creating that flow controller.

Parameters:

name <<in>> (p. 191) Name of DDSFlowController (p. 1163) to
search for. Limited to 255 characters. Cannot be NULL.

Returns:

The flow controller if it has already been created locally, or NULL otherwise.

6.165.2.47 virtual DDSSubscriber∗ DDSDomainParticipant::get -
builtin subscriber () [pure virtual]

Accesses the built-in DDSSubscriber (p. 1284).

Each DDSDomainParticipant (p. 1054) contains several built-in DDSTopic
(p. 1311) objects as well as corresponding DDSDataReader (p. 1004) objects
to access them. All of these DDSDataReader (p. 1004) objects belong to a
single built-in DDSSubscriber (p. 1284).

The built-in Topics are used to communicate information about other DDS-
DomainParticipant (p. 1054), DDSTopic (p. 1311), DDSDataReader
(p. 1004), and DDSDataWriter (p. 1028) objects.

The built-in subscriber is created when this operation is called for the first time.
The built-in subscriber is deleted automatically when the DDSDomainPar-
ticipant (p. 1054) is deleted.

Returns:

The built-in DDSSubscriber (p. 1284) singleton.

See also:

DDS SubscriptionBuiltinTopicData (p. 876)
DDS PublicationBuiltinTopicData (p. 788)
DDS ParticipantBuiltinTopicData (p. 765)
DDS TopicBuiltinTopicData (p. 898)

6.165.2.48 virtual DDS ReturnCode t DDSDomainPartici-
pant::ignore participant (const DDS InstanceHandle t
& handle) [pure virtual]

Instructs RTI Data Distribution Service to locally ignore a remote DDSDo-
mainParticipant (p. 1054).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.165 DDSDomainParticipant Class Reference 1101

From the time of this call onwards, RTI Data Distribution Service will locally
behave as if the remote participant did not exist. This means it will ignore any
topic, publication, or subscription that originates on that DDSDomainPar-
ticipant (p. 1054).

There is no way to reverse this operation.

This operation can be used in conjunction with the discovery of remote partic-
ipants offered by means of the DDS ParticipantBuiltinTopicData (p. 765)
to provide access control.

Application data can be associated with a DDSDomainParticipant (p. 1054)
by means of the USER DATA (p. 332) policy. This application data is prop-
agated as a field in the built-in topic and can be used by an application to
implement its own access control policy.

The DDSDomainParticipant (p. 1054) to ignore is identified by the handle
argument. This handle is the one that appears in the DDS SampleInfo
(p. 855) retrieved when reading the data-samples available for the built-in
DDSDataReader (p. 1004) to the DDSDomainParticipant (p. 1054) topic.
The built-in DDSDataReader (p. 1004) is read with the same Foo-
DataReader::read (p. 1337) and FooDataReader::take (p. 1338) operations
used for any DDSDataReader (p. 1004).

Parameters:

handle <<in>> (p. 191) DDS InstanceHandle t (p. 52) of the DDS-
DomainParticipant (p. 1054) to be ignored.

Returns:

One of the Standard Return Codes (p. 302), DDS RETCODE -
OUT OF RESOURCES (p. 303), DDS RETCODE NOT -
ENABLED (p. 303)

See also:

DDS ParticipantBuiltinTopicData (p. 765)
DDS PARTICIPANT TOPIC NAME (p. 275)
DDSDomainParticipant::get builtin subscriber (p. 1100)

6.165.2.49 virtual DDS ReturnCode t DDSDomainPartici-
pant::ignore topic (const DDS InstanceHandle t &
handle) [pure virtual]

Instructs RTI Data Distribution Service to locally ignore a DDSTopic (p. 1311).

This means it will locally ignore any publication, or subscription to the
DDSTopic (p. 1311).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1102 Class Documentation

There is no way to reverse this operation.

This operation can be used to save local resources when the application knows
that it will never publish or subscribe to data under certain topics.

The DDSTopic (p. 1311) to ignore is identified by the handle argument.
This is the handle of a DDSTopic (p. 1311) that appears in the DDS -
SampleInfo (p. 855) retrieved when reading data samples from the built-in
DDSDataReader (p. 1004) for the DDSTopic (p. 1311).

Parameters:

handle <<in>> (p. 191) Handle of the DDSTopic (p. 1311) to be ig-
nored.

Returns:

One of the Standard Return Codes (p. 302), DDS RETCODE -
OUT OF RESOURCES (p. 303) or DDS RETCODE NOT -
ENABLED (p. 303)

See also:

DDS TopicBuiltinTopicData (p. 898)
DDS TOPIC TOPIC NAME (p. 277)
DDSDomainParticipant::get builtin subscriber (p. 1100)

6.165.2.50 virtual DDS ReturnCode t DDSDomainPartici-
pant::ignore publication (const DDS InstanceHandle t
& handle) [pure virtual]

Instructs RTI Data Distribution Service to locally ignore a publication.

A publication is defined by the association of a topic name, user
data, and partition set on the DDSPublisher (p. 1243) (see DDS -
PublicationBuiltinTopicData (p. 788)). After this call, any data written
by that publication’s DDSDataWriter (p. 1028) will be ignored.

This operation can be used to ignore local and remote DataWriters.

The publication (DataWriter) to ignore is identified by the handle argument.

ˆ To ignore a remote DataWriter, the handle can be obtained from the
DDS SampleInfo (p. 855) retrieved when reading data samples from the
built-in DDSDataReader (p. 1004) for the publication topic.

ˆ To ignore a local DataWriter, the handle can be obtained by calling
DDSEntity::get instance handle (p. 1162) for the local DataWriter.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.165 DDSDomainParticipant Class Reference 1103

There is no way to reverse this operation.

Parameters:

handle <<in>> (p. 191) Handle of the DDSDataWriter (p. 1028) to
be ignored.

Returns:

One of the Standard Return Codes (p. 302), DDS RETCODE -
OUT OF RESOURCES (p. 303) or DDS RETCODE NOT -
ENABLED (p. 303)

See also:

DDS PublicationBuiltinTopicData (p. 788)
DDS PUBLICATION TOPIC NAME (p. 279)
DDSDomainParticipant::get builtin subscriber (p. 1100)

6.165.2.51 virtual DDS ReturnCode t DDSDomainPartici-
pant::ignore subscription (const DDS InstanceHandle t
& handle) [pure virtual]

Instructs RTI Data Distribution Service to locally ignore a subscription.

A subscription is defined by the association of a topic name, user
data, and partition set on the DDSSubscriber (p. 1284) (see DDS -
SubscriptionBuiltinTopicData (p. 876)). After this call, any data received
related to that subscription’s DDSDataReader (p. 1004) will be ignored.

This operation can be used to ignore local and remote DataReaders.

The subscription to ignore is identified by the handle argument.

ˆ To ignore a remote DataReader, the handle can be obtained from the
DDS SampleInfo (p. 855) retrieved when reading data samples from the
built-in DDSDataReader (p. 1004) for the subscription topic.

ˆ To ignore a local DataReader, the handle can be obtained by calling
DDSEntity::get instance handle (p. 1162) for the local DataReader.

There is no way to reverse this operation.

Parameters:

handle <<in>> (p. 191) Handle of the DDSDataReader (p. 1004) to
be ignored.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1104 Class Documentation

Returns:

One of the Standard Return Codes (p. 302), DDS RETCODE -
OUT OF RESOURCES (p. 303) or DDS RETCODE NOT -
ENABLED (p. 303)

See also:

DDS SubscriptionBuiltinTopicData (p. 876)
DDS SUBSCRIPTION TOPIC NAME (p. 281)
DDSDomainParticipant::get builtin subscriber (p. 1100)

6.165.2.52 virtual DDS DomainId t DDSDomainParticipant::get -
domain id () [pure virtual]

Get the unique domain identifier.

This operation retrieves the domain id used to create the DDSDomainPar-
ticipant (p. 1054). The domain id identifies the DDS domain to which the
DDSDomainParticipant (p. 1054) belongs. Each DDS domain represents a
separate data ’communication plane’ isolated from other domains.

Returns:

the unique domainId that was used to create the domain

See also:

DDSDomainParticipantFactory::create participant (p. 1140)
DDSDomainParticipantFactory::create participant with profile
(p. 1141)

6.165.2.53 virtual DDS ReturnCode t DDSDomainPartici-
pant::get current time (DDS Time t & current time)
[pure virtual]

Returns the current value of the time.

The current value of the time that RTI Data Distribution Service uses to time-
stamp DDSDataWriter (p. 1028) and to set the reception-timestamp for the
data updates that it receives.

Parameters:

current time <<inout>> (p. 191) Current time to be filled up.

Returns:

One of the Standard Return Codes (p. 302)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.165 DDSDomainParticipant Class Reference 1105

6.165.2.54 virtual DDS ReturnCode t DDSDomain-
Participant::assert liveliness () [pure
virtual]

Manually asserts the liveliness of this DDSDomainParticipant (p. 1054).

This is used in combination with the DDS LivelinessQosPolicy (p. 730) to
indicate to RTI Data Distribution Service that the entity remains active.

You need to use this operation if the DDSDomainParticipant
(p. 1054) conatins DDSDataWriter (p. 1028) entities with the DDS -
LivelinessQosPolicy::kind (p. 733) set to DDS MANUAL BY -
PARTICIPANT LIVELINESS QOS (p. 345) and it only affects the
liveliness of those DDSDataWriter (p. 1028) entities. Otherwise, it has no
effect.

Note: writing data via the FooDataWriter::write (p. 1368) or Foo-
DataWriter::write w timestamp (p. 1371) operation asserts liveliness on the
DDSDataWriter (p. 1028) itself and its DDSDomainParticipant (p. 1054).
Consequently the use of assert liveliness() (p. 1105) is only needed if the ap-
plication is not writing data regularly.

Returns:

One of the Standard Return Codes (p. 302), or DDS RETCODE -
NOT ENABLED (p. 303)

See also:

DDS LivelinessQosPolicy (p. 730)

6.165.2.55 virtual DDS ReturnCode t DDSDomainPar-
ticipant::delete contained entities () [pure
virtual]

Delete all the entities that were created by means of the ”create” operations on
the DDSDomainParticipant (p. 1054).

This operation deletes all contained DDSPublisher (p. 1243) (including an
implicit Publisher, if one exists), DDSSubscriber (p. 1284) (including implicit
subscriber), DDSTopic (p. 1311), DDSContentFilteredTopic (p. 998), and
DDSMultiTopic (p. 1221) objects.

Prior to deleting each contained entity, this operation will recursively call the
corresponding delete contained entities operation on each contained entity (if
applicable). This pattern is applied recursively. In this manner the opera-
tion delete contained entities() (p. 1105) on the DDSDomainParticipant

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1106 Class Documentation

(p. 1054) will end up deleting all the entities recursively contained in the DDS-
DomainParticipant (p. 1054), that is also the DDSDataWriter (p. 1028),
DDSDataReader (p. 1004), as well as the DDSQueryCondition (p. 1267)
and DDSReadCondition (p. 1269) objects belonging to the contained DDS-
DataReader (p. 1004).

The operation will fail with DDS RETCODE PRECONDITION NOT -
MET (p. 303) if any of the contained entities is in a state where it cannot be
deleted.

If delete contained entities() (p. 1105) completes successfully, the applica-
tion may delete the DDSDomainParticipant (p. 1054) knowing that it has
no contained entities.

Returns:

One of the Standard Return Codes (p. 302), or DDS RETCODE -
PRECONDITION NOT MET (p. 303).

Examples:

HelloWorld publisher.cxx, and HelloWorld subscriber.cxx.

6.165.2.56 virtual DDS ReturnCode t DDSDomain-
Participant::get discovered participants
(DDS InstanceHandleSeq & participant handles) [pure
virtual]

Returns list of discovered DDSDomainParticipant (p. 1054) s.

This operation retrieves the list of DDSDomainParticipant (p. 1054) s that
have been discovered in the domain and that the application has not indicated
should be ”ignored” by means of the DDSDomainParticipant::ignore -
participant (p. 1100) operation.

Parameters:

participant handles <<inout>> (p. 191) DDSInstanceHandleSeq to
be filled with handles of the discovered DDSDomainParticipant
(p. 1054) s

Returns:

One of the Standard Return Codes (p. 302) or DDS RETCODE -
NOT ENABLED (p. 303)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.165 DDSDomainParticipant Class Reference 1107

6.165.2.57 virtual DDS ReturnCode t DDSDomainPartic-
ipant::get discovered participant data (struct
DDS ParticipantBuiltinTopicData & participant data,
const DDS InstanceHandle t & participant handle)
[pure virtual]

Returns DDS ParticipantBuiltinTopicData (p. 765) for the specified DDS-
DomainParticipant (p. 1054) .

This operation retrieves information on a DDSDomainParticipant (p. 1054)
that has been discovered on the network. The participant must be in the
same domain as the participant on which this operation is invoked and must
not have been ”ignored” by means of the DDSDomainParticipant::ignore -
participant (p. 1100) operation.

The participant handle must correspond to such a DomainParticipant. Oth-
erwise, the operation will fail with PRECONDITION NOT MET.

Use the operation DDSDomainParticipant::get discovered participants
(p. 1106) to find the DDSDomainParticipant (p. 1054) s that are currently
discovered.

Note: This operation does not retrieve the DDS -
ParticipantBuiltinTopicData::property (p. 766). This information is
available through DDSDataReaderListener::on data available() (p. 1025)
(if a reader listener is installed on the DDSParticipantBuiltinTopicData-
DataReader (p. 1238)).

Parameters:

participant data <<inout>> (p. 191) DDS -
ParticipantBuiltinTopicData (p. 765) to be filled with the
specified DDSDomainParticipant (p. 1054) ’s data.

participant handle <<in>> (p. 191) DDS InstanceHandle t (p. 52)
of DDSDomainParticipant (p. 1054).

Returns:

One of the Standard Return Codes (p. 302), DDS RETCODE -
PRECONDITION NOT MET (p. 303) or DDS RETCODE NOT -
ENABLED (p. 303)

See also:

DDS ParticipantBuiltinTopicData (p. 765)
DDSDomainParticipant::get discovered participants (p. 1106)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1108 Class Documentation

6.165.2.58 virtual DDS ReturnCode t DDSDomainPartici-
pant::get discovered topics (DDS InstanceHandleSeq &
topic handles) [pure virtual]

Returns list of discovered DDSTopic (p. 1311) objects.

This operation retrieves the list of DDSTopic (p. 1311) s that have been dis-
covered in the domain and that the application has not indicated should be
”ignored” by means of the DDSDomainParticipant::ignore topic (p. 1101)
operation.

Parameters:

topic handles <<inout>> (p. 191) DDSInstanceHandleSeq to be filled
with handles of the discovered DDSTopic (p. 1311) objects

Returns:

One of the Standard Return Codes (p. 302) or DDS RETCODE -
NOT ENABLED (p. 303)

6.165.2.59 virtual DDS ReturnCode t DDSDomainPar-
ticipant::get discovered topic data (struct
DDS TopicBuiltinTopicData & topic data, const
DDS InstanceHandle t & topic handle) [pure virtual]

Returns DDS TopicBuiltinTopicData (p. 898) for the specified DDSTopic
(p. 1311).

This operation retrieves information on a DDSTopic (p. 1311) that has been
discovered on the network. The topic must have been created by a participant in
the same domain as the participant on which this operation is invoked and must
not have been ”ignored” by means of the DDSDomainParticipant::ignore -
topic (p. 1101) operation.

The topic handle must correspond to such a topic. Otherwise, the operation
will fail with DDS RETCODE PRECONDITION NOT MET (p. 303).

This call is not supported for remote topics. If a remote topic handle is used,
the operation will fail with DDS RETCODE UNSUPPORTED (p. 303).

Use the operation DDSDomainParticipant::get discovered topics
(p. 1108) to find the topics that are currently discovered.

Parameters:

topic data <<inout>> (p. 191) DDS TopicBuiltinTopicData
(p. 898) to be filled with the specified DDSTopic (p. 1311)’s data.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.165 DDSDomainParticipant Class Reference 1109

topic handle <<in>> (p. 191) DDS InstanceHandle t (p. 52) of
DDSTopic (p. 1311).

Returns:

One of the Standard Return Codes (p. 302), DDS RETCODE -
PRECONDITION NOT MET (p. 303) or DDS RETCODE NOT -
ENABLED (p. 303)

See also:

DDS TopicBuiltinTopicData (p. 898)
DDSDomainParticipant::get discovered topics (p. 1108)

6.165.2.60 virtual DDS Boolean DDSDomainParticipant::contains -
entity (const DDS InstanceHandle t & a handle) [pure
virtual]

Completes successfully with DDS BOOLEAN TRUE (p. 288) if the refer-
enced DDSEntity (p. 1157) is contained by the DDSDomainParticipant
(p. 1054).

This operation checks whether or not the given a handle represents an
DDSEntity (p. 1157) that was created from the DDSDomainParticipant
(p. 1054). The containment applies recursively. That is, it applies both
to entities (DDSTopicDescription (p. 1319), DDSPublisher (p. 1243), or
DDSSubscriber (p. 1284)) created directly using the DDSDomainPartic-
ipant (p. 1054) as well as entities created using a contained DDSPublisher
(p. 1243), or DDSSubscriber (p. 1284) as the factory, and so forth.

The instance handle for an DDSEntity (p. 1157) may be obtained from built-
in topic data, from various statuses, or from the operation DDSEntity::get -
instance handle (p. 1162).

Parameters:

a handle <<in>> (p. 191) DDS InstanceHandle t (p. 52) of the
DDSEntity (p. 1157) to be checked.

Returns:

DDS BOOLEAN TRUE (p. 288) if DDSEntity (p. 1157) is contained
by the DDSDomainParticipant (p. 1054), or DDS BOOLEAN -
FALSE (p. 289) otherwise.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1110 Class Documentation

6.165.2.61 virtual DDS ReturnCode t DDSDomainPartici-
pant::set qos (const DDS DomainParticipantQos & qos)
[pure virtual]

Change the QoS of this domain participant.

The DDS DomainParticipantQos::user data (p. 550) and DDS -
DomainParticipantQos::entity factory (p. 550) can be changed. The
other policies are immutable.

Parameters:

qos <<in>> (p. 191) Set of policies to be applied to DDSDomainPar-
ticipant (p. 1054). Policies must be consistent. Immutable policies
cannot be changed after DDSDomainParticipant (p. 1054) is en-
abled. The special value DDS PARTICIPANT QOS DEFAULT
(p. 34) can be used to indicate that the QoS of the DDSDomainPar-
ticipant (p. 1054) should be changed to match the current default
DDS DomainParticipantQos (p. 548) set in the DDSDomain-
ParticipantFactory (p. 1123).

Returns:

One of the Standard Return Codes (p. 302), DDS RETCODE -
IMMUTABLE POLICY (p. 303) if immutable policy is changed, or
DDS RETCODE INCONSISTENT POLICY (p. 304) if policies are
inconsistent

See also:

DDS DomainParticipantQos (p. 548) for rules on consistency among
QoS
set qos (abstract) (p. 1158)

6.165.2.62 virtual DDS ReturnCode t DDSDomainPartici-
pant::set qos with profile (const char ∗ library name,
const char ∗ profile name) [pure virtual]

<<eXtension>> (p. 190) Change the QoS of this domain participant using
the input XML QoS profile.

The DDS DomainParticipantQos::user data (p. 550) and DDS -
DomainParticipantQos::entity factory (p. 550) can be changed. The
other policies are immutable.

Parameters:

library name <<in>> (p. 191) Library name containing the XML QoS
profile. If library name is null RTI Data Distribution Service will

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.165 DDSDomainParticipant Class Reference 1111

use the default library (see DDSDomainParticipantFactory::set -
default library (p. 1131)).

profile name <<in>> (p. 191) XML QoS Profile name. If profile name
is null RTI Data Distribution Service will use the default profile (see
DDSDomainParticipantFactory::set default profile (p. 1132)).

Returns:

One of the Standard Return Codes (p. 302), DDS RETCODE -
IMMUTABLE POLICY (p. 303) if immutable policy is changed, or
DDS RETCODE INCONSISTENT POLICY (p. 304) if policies are
inconsistent

See also:

DDS DomainParticipantQos (p. 548) for rules on consistency among
QoS

6.165.2.63 virtual DDS ReturnCode t DDSDomainPartici-
pant::get qos (DDS DomainParticipantQos & qos)
[pure virtual]

Get the participant QoS.

This method may potentially allocate memory depending on the sequences con-
tained in some QoS policies.

Parameters:

qos <<inout>> (p. 191) QoS to be filled up.

Returns:

One of the Standard Return Codes (p. 302)

See also:

get qos (abstract) (p. 1159)

6.165.2.64 virtual DDS ReturnCode t DDSDomainPartici-
pant::add peer (const char ∗ peer desc string) [pure
virtual]

<<eXtension>> (p. 190) Attempt to contact one or more additional peer
participants.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1112 Class Documentation

Add the given peer description to the list of peers with which this DDSDo-
mainParticipant (p. 1054) will try to communicate.

This method may be called at any time after this DDSDomainParticipant
(p. 1054) has been created, before or after it has been enabled. If it is called af-
ter DDSEntity::enable (p. 1160), an attempt will be made to contact the new
peer(s) immediately. If it is called before, the peer description will simply be
added to the list that was populated by DDS DiscoveryQosPolicy::initial -
peers (p. 543); the first attempted contact will take place after this DDSDo-
mainParticipant (p. 1054) is enabled.

Adding a peer description with this method does not guarantee that any peer(s)
discovered as a result will exactly correspond to those described:

ˆ This DDSDomainParticipant (p. 1054) will attempt to discover peer
participants at the given locations but may not succeed if no such partici-
pants are available. Such a situation will not result in an error result from
this method, which will not wait for contact attempt(s) to be made.

ˆ If remote participants such as are described by the given peer descrip-
tion are discovered, the distributed application is configured with asym-
metric peer lists, and DDS DiscoveryQosPolicy::accept unknown -
peers (p. 545) is set to DDS BOOLEAN TRUE (p. 288), this DDS-
DomainParticipant (p. 1054) may actually discover more peers than are
described in the given peer description.

To be informed of the exact remote participants that are discovered, regardless
of which peers this DDSDomainParticipant (p. 1054) attempts to discover,
use the built-in participant topic: DDS PARTICIPANT TOPIC NAME
(p. 275).

Note that there is no ”remove peer” operation. To cease communications with a
peer DDSDomainParticipant (p. 1054) that has been discovered, use DDS-
DomainParticipant::ignore participant (p. 1100).

Adding a peer description with this method has no effect on the DDS -
DiscoveryQosPolicy::initial peers (p. 543) that may be subsequently re-
trieved with DDSDomainParticipant::get qos() (p. 1111) (because DDS -
DiscoveryQosPolicy (p. 542) is immutable).

Parameters:

peer desc string <<in>> (p. 191) New peer descriptor to be added.
The format is specified in Peer Descriptor Format (p. 372).

Returns:

One of the Standard Return Codes (p. 302)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.165 DDSDomainParticipant Class Reference 1113

See also:

Peer Descriptor Format (p. 372)
DDS DiscoveryQosPolicy::initial peers (p. 543)
DDS PARTICIPANT TOPIC NAME (p. 275)
DDSDomainParticipant::get builtin subscriber (p. 1100)

6.165.2.65 virtual DDS ReturnCode t DDSDomainPartici-
pant::set listener (DDSDomainParticipantListener ∗ l,
DDS StatusMask mask = DDS STATUS MASK ALL) [pure
virtual]

Sets the participant listener.

Parameters:

l <<in>> (p. 191) Listener to be installed on entity.

mask <<in>> (p. 191) Changes of communication status to be invoked
on the listener.

MT Safety:

Unsafe. This method is not synchronized with the listener callbacks, so it
is possible to set a new listener on a participant when the old listener is in
a callback.

Care should therefore be taken not to delete any listener that has been set on
an enabled participant unless some application-specific means are available of
ensuring that the old listener cannot still be in use.

Returns:

One of the Standard Return Codes (p. 302)

See also:

set listener (abstract) (p. 1159)

6.165.2.66 virtual DDSDomainParticipantListener∗
DDSDomainParticipant::get listener () [pure virtual]

Get the participant listener.

Returns:

Existing listener attached to the DDSDomainParticipant (p. 1054).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1114 Class Documentation

See also:

get listener (abstract) (p. 1160)

6.165.2.67 virtual DDSPublisher∗ DDSDomainParticipant::get -
implicit publisher () [pure virtual]

<<eXtension>> (p. 190) Returns the implicit DDSPublisher (p. 1243). If
an implicit Publisher does not already exist, this creates one.

There can only be one implicit Publisher per DomainParticipant.

The implicit Publisher is created with DDS PUBLISHER QOS DEFAULT
(p. 37) and no Listener.

This implicit Publisher will be deleted automatically when the following
methods are called: DDSDomainParticipant::delete contained entities
(p. 1105), or DDSDomainParticipant::delete publisher (p. 1085) with the
implicit publisher as a parameter. Additionally, when a DomainParticipant is
deleted, if there are no attached DataWriters that belong to the implicit Pub-
lisher, the implicit Publisher will be implicitly deleted.

MT Safety:

UNSAFE. It is not safe to create an implicit Publisher while another thread
may be simultaneously calling DDSDomainParticipant::set default -
publisher qos (p. 1078).

Returns:

The implicit publisher

See also:

DDS PUBLISHER QOS DEFAULT (p. 37)
DDSDomainParticipant::create publisher (p. 1083)

6.165.2.68 virtual DDSSubscriber∗ DDSDomainParticipant::get -
implicit subscriber () [pure virtual]

<<eXtension>> (p. 190) Returns the implicit DDSSubscriber (p. 1284). If
an implicit Subscriber does not already exist, this creates one.

There can only be one implicit Subscriber per DomainParticipant.

The implicit Subscriber is created with DDS SUBSCRIBER QOS -
DEFAULT (p. 38) and no Listener.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.165 DDSDomainParticipant Class Reference 1115

This implicit Subscriber will be deleted automatically when the following
methods are called: DDSDomainParticipant::delete contained entities
(p. 1105), or DDSDomainParticipant::delete subscriber (p. 1087) with the
subscriber as a parameter. Additionally, when a DomainParticipant is deleted,
if there are no attached DataReaders that belong to the implicit Subscriber, the
implicit Subscriber will be implicitly deleted.

MT Safety:

UNSAFE. it is not safe to create the implicit subscriber while another
thread may be simultaneously calling DDSDomainParticipant::set -
default subscriber qos (p. 1081).

Returns:

The implicit subscriber

See also:

DDS PUBLISHER QOS DEFAULT (p. 37)
DDSDomainParticipant::create subscriber (p. 1085)

6.165.2.69 virtual DDSDataWriter∗ DDSDomainPartici-
pant::create datawriter (DDSTopic ∗ topic, const
DDS DataWriterQos & qos, DDSDataWriterListener ∗
listener, DDS StatusMask mask) [pure virtual]

<<eXtension>> (p. 190) Creates a DDSDataWriter (p. 1028) that will be
attached and belong to the implicit DDSPublisher (p. 1243).

Precondition:

The given DDSTopic (p. 1311) must have been created from the same Do-
mainParticipant as the implicit Publisher. If it was created from a different
DomainParticipant, this method will fail.

The DDSDataWriter (p. 1028) created using this method will be as-
sociated with the implicit Publisher. This Publisher is automati-
cally created (if it does not exist) using DDS PUBLISHER QOS -
DEFAULT (p. 37) when the following methods are called: DDS-
DomainParticipant::create datawriter (p. 1115), DDSDomainPartici-
pant::create datawriter with profile (p. 1117), or DDSDomainPartici-
pant::get implicit publisher (p. 1114).

MT Safety:

UNSAFE. If DDS DATAWRITER QOS DEFAULT (p. 82) is used for
the qos parameter, it is not safe to create the DataWriter while another

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1116 Class Documentation

thread may be simultaneously calling DDSDomainParticipant::set -
default datawriter qos (p. 1065).

Parameters:

topic <<in>> (p. 191) The DDSTopic (p. 1311) that the DDS-
DataWriter (p. 1028) will be associated with.

qos <<in>> (p. 191) QoS to be used for creating the new DDS-
DataWriter (p. 1028). The special value DDS DATAWRITER -
QOS DEFAULT (p. 82) can be used to indicate that the DDS-
DataWriter (p. 1028) should be created with the default DDS -
DataWriterQos (p. 516) set in the implicit DDSPublisher
(p. 1243). The special value DDS DATAWRITER QOS USE -
TOPIC QOS (p. 82) can be used to indicate that the DDS-
DataWriter (p. 1028) should be created with the combination of
the default DDS DataWriterQos (p. 516) set on the DDSPub-
lisher (p. 1243) and the DDS TopicQos (p. 905) of the DDSTopic
(p. 1311).

listener <<in>> (p. 191) The listener of the DDSDataWriter
(p. 1028).

mask <<in>> (p. 191). Changes of communication status to be invoked
on the listener.

Returns:

A DDSDataWriter (p. 1028) of a derived class specific to the data type
associated with the DDSTopic (p. 1311) or NULL if an error occurred.

See also:

FooDataWriter (p. 1361)
Specifying QoS on entities (p. 326) for information on setting QoS before
entity creation
DDS DataWriterQos (p. 516) for rules on consistency among QoS
DDS DATAWRITER QOS DEFAULT (p. 82)
DDS DATAWRITER QOS USE TOPIC QOS (p. 82)
DDSDomainParticipant::create datawriter with profile (p. 1117)
DDSDomainParticipant::get default datawriter qos (p. 1064)
DDSDomainParticipant::get implicit publisher (p. 1114)
DDSTopic::set qos (p. 1313)
DDSDataWriter::set listener (p. 1043)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.165 DDSDomainParticipant Class Reference 1117

6.165.2.70 virtual DDSDataWriter∗ DDSDomainPartici-
pant::create datawriter with profile (DDSTopic ∗ topic,
const char ∗ library name, const char ∗ profile name,
DDSDataWriterListener ∗ listener, DDS StatusMask
mask) [pure virtual]

<<eXtension>> (p. 190) Creates a DDSDataWriter (p. 1028) using a XML
QoS profile that will be attached and belong to the implicit DDSPublisher
(p. 1243).

Precondition:

The given DDSTopic (p. 1311) must have been created from the same Do-
mainParticipant as the implicit Publisher. If it was created from a different
DomainParticipant, this method will return NULL.

The DDSDataWriter (p. 1028) created using this method will be as-
sociated with the implicit Publisher. This Publisher is automati-
cally created (if it does not exist) using DDS PUBLISHER QOS -
DEFAULT (p. 37) when the following methods are called: DDS-
DomainParticipant::create datawriter (p. 1115), DDSDomainPartici-
pant::create datawriter with profile (p. 1117), or DDSDomainPartici-
pant::get implicit publisher (p. 1114)

Parameters:

topic <<in>> (p. 191) The DDSTopic (p. 1311) that the DDS-
DataWriter (p. 1028) will be associated with.

library name <<in>> (p. 191) Library name containing the XML QoS
profile. If library name is null RTI Data Distribution Service will
use the default library (see DDSDomainParticipant::set default -
library (p. 1073)).

profile name <<in>> (p. 191) XML QoS Profile name. If profile name
is null RTI Data Distribution Service will use the default profile (see
DDSDomainParticipant::set default profile (p. 1074)).

listener <<in>> (p. 191) The listener of the DDSDataWriter
(p. 1028).

mask <<in>> (p. 191). Changes of communication status to be invoked
on the listener.

Returns:

A DDSDataWriter (p. 1028) of a derived class specific to the data type
associated with the DDSTopic (p. 1311) or NULL if an error occurred.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1118 Class Documentation

See also:

FooDataWriter (p. 1361)
Specifying QoS on entities (p. 326) for information on setting QoS before
entity creation
DDS DataWriterQos (p. 516) for rules on consistency among QoS
DDSDomainParticipant::create datawriter (p. 1115)
DDSDomainParticipant::get default datawriter qos (p. 1064)
DDSDomainParticipant::get implicit publisher (p. 1114)
DDSTopic::set qos (p. 1313)
DDSDataWriter::set listener (p. 1043)

6.165.2.71 virtual DDS ReturnCode t DDSDomainPartici-
pant::delete datawriter (DDSDataWriter ∗ a datawriter)
[pure virtual]

<<eXtension>> (p. 190) Deletes a DDSDataWriter (p. 1028) that belongs
to the implicit DDSPublisher (p. 1243).

The deletion of the DDSDataWriter (p. 1028) will automatically unregister all
instances. Depending on the settings of the WRITER DATA LIFECYCLE
(p. 360) QosPolicy, the deletion of the DDSDataWriter (p. 1028) may also
dispose all instances.

6.165.3 Special Instructions if Using Timestamp APIs and
BY SOURCE TIMESTAMP Destination Order-
ing:

If the DataWriters DDS DestinationOrderQosPolicy::kind (p. 533) is
DDS BY SOURCE TIMESTAMP DESTINATIONORDER QOS
(p. 351), calls to delete datawriter() (p. 1118) may fail if your applica-
tion has previously used the with timestamp APIs (write w timestamp(),
register instance w timestamp(), unregister instance w timestamp(), or dis-
pose w timestamp()) with a timestamp larger (later) than the time at which
delete datawriter() (p. 1118) is called. To prevent delete datawriter()
(p. 1118) from failing in this situation, either:

ˆ Change the WRITER DATA LIFECYCLE (p. 360) QosPolicy so
that RTI Data Distribution Service will not autodispose unregistered
instances (set DDS WriterDataLifecycleQosPolicy::autodispose -
unregistered instances (p. 990) to DDS BOOLEAN FALSE
(p. 289).) or

ˆ Explicitly call unregister instance w timestamp() for all instances modi-
fied with the ∗ w timestamp() APIs before calling delete datawriter()

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.165 DDSDomainParticipant Class Reference 1119

(p. 1118).

Precondition:

If the DDSDataWriter (p. 1028) does not belong to the im-
plicit DDSPublisher (p. 1243), the operation will fail with DDS -
RETCODE PRECONDITION NOT MET (p. 303).

Postcondition:

Listener installed on the DDSDataWriter (p. 1028) will not be called after
this method completes successfully.

Parameters:

a datawriter <<in>> (p. 191) The DDSDataWriter (p. 1028) to be
deleted.

Returns:

One of the Standard Return Codes (p. 302) or DDS RETCODE -
PRECONDITION NOT MET (p. 303).

See also:

DDSDomainParticipant::get implicit publisher (p. 1114)

6.165.3.1 virtual DDSDataReader∗ DDSDomainPartici-
pant::create datareader (DDSTopicDescription
∗ topic, const DDS DataReaderQos & qos,
DDSDataReaderListener ∗ listener, DDS StatusMask
mask) [pure virtual]

<<eXtension>> (p. 190) Creates a DDSDataReader (p. 1004) that will be
attached and belong to the implicit DDSSubscriber (p. 1284).

Precondition:

The given DDSTopicDescription (p. 1319) must have been created from
the same DomainParticipant as the implicit Subscriber. If it was created
from a different DomainParticipant, this method will return NULL.

The DDSDataReader (p. 1004) created using this method will be as-
sociated with the implicit Subscriber. This Subscriber is automati-
cally created (if it does not exist) using DDS SUBSCRIBER QOS -
DEFAULT (p. 38) when the following methods are called: DDSDomainPar-
ticipant::create datareader (p. 1119), DDSDomainParticipant::create -
datareader with profile (p. 1121), or DDSDomainParticipant::get -
implicit subscriber (p. 1114).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1120 Class Documentation

MT Safety:

UNSAFE. If DDS DATAREADER QOS DEFAULT (p. 96) is used
for the qos parameter, it is not safe to create the datareader while another
thread may be simultaneously calling DDSDomainParticipant::set -
default datareader qos (p. 1067).

Parameters:

topic <<in>> (p. 191) The DDSTopicDescription (p. 1319) that the
DDSDataReader (p. 1004) will be associated with.

qos <<in>> (p. 191) The qos of the DDSDataReader (p. 1004). The
special value DDS DATAREADER QOS DEFAULT (p. 96) can
be used to indicate that the DDSDataReader (p. 1004) should
be created with the default DDS DataReaderQos (p. 481) set in
the implicit DDSSubscriber (p. 1284). If DDSTopicDescription
(p. 1319) is of type DDSTopic (p. 1311) or DDSContentFiltered-
Topic (p. 998), the special value DDS DATAREADER QOS -
USE TOPIC QOS (p. 96) can be used to indicate that the DDS-
DataReader (p. 1004) should be created with the combination of the
default DDS DataReaderQos (p. 481) set on the implicit DDSSub-
scriber (p. 1284) and the DDS TopicQos (p. 905) (in the case of a
DDSContentFilteredTopic (p. 998), the DDS TopicQos (p. 905)
of the related DDSTopic (p. 1311)). if DDS DATAREADER -
QOS USE TOPIC QOS (p. 96) is used, topic cannot be a DDS-
MultiTopic (p. 1221).

listener <<in>> (p. 191) The listener of the DDSDataReader
(p. 1004).

mask <<in>> (p. 191). Changes of communication status to be invoked
on the listener.

Returns:

A DDSDataReader (p. 1004) of a derived class specific to the data-type
associated with the DDSTopic (p. 1311) or NULL if an error occurred.

See also:

FooDataReader (p. 1334)
Specifying QoS on entities (p. 326) for information on setting QoS before
entity creation
DDS DataReaderQos (p. 481) for rules on consistency among QoS
DDSDomainParticipant::create datareader with profile (p. 1121)
DDSDomainParticipant::get default datareader qos (p. 1066)
DDSDomainParticipant::get implicit subscriber (p. 1114)
DDSTopic::set qos (p. 1313)
DDSDataReader::set listener (p. 1019)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.165 DDSDomainParticipant Class Reference 1121

6.165.3.2 virtual DDSDataReader∗ DDSDomain-
Participant::create datareader with profile
(DDSTopicDescription ∗ topic, const char ∗ library name,
const char ∗ profile name, DDSDataReaderListener ∗
listener, DDS StatusMask mask) [pure virtual]

<<eXtension>> (p. 190) Creates a DDSDataReader (p. 1004) using a
XML QoS profile that will be attached and belong to the implicit DDSSub-
scriber (p. 1284).

Precondition:

The given DDSTopicDescription (p. 1319) must have been created from
the same DomainParticipant as the implicit subscriber. If it was created
from a different DomainParticipant, this method will return NULL.

The DDSDataReader (p. 1004) created using this method will be as-
sociated with the implicit Subscriber. This Subscriber is automati-
cally created (if it does not exist) using DDS SUBSCRIBER QOS -
DEFAULT (p. 38) when the following methods are called: DDSDomainPar-
ticipant::create datareader (p. 1119), DDSDomainParticipant::create -
datareader with profile (p. 1121), or DDSDomainParticipant::get -
implicit subscriber (p. 1114)

Parameters:

topic <<in>> (p. 191) The DDSTopicDescription (p. 1319) that the
DDSDataReader (p. 1004) will be associated with.

library name <<in>> (p. 191) Library name containing the XML QoS
profile. If library name is null RTI Data Distribution Service will
use the default library (see DDSDomainParticipant::set default -
library (p. 1073)).

profile name <<in>> (p. 191) XML QoS Profile name. If profile name
is null RTI Data Distribution Service will use the default profile (see
DDSDomainParticipant::set default profile (p. 1074)).

listener <<in>> (p. 191) The listener of the DDSDataReader
(p. 1004).

mask <<in>> (p. 191). Changes of communication status to be invoked
on the listener.

Returns:

A DDSDataReader (p. 1004) of a derived class specific to the data-type
associated with the DDSTopic (p. 1311) or NULL if an error occurred.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1122 Class Documentation

See also:

FooDataReader (p. 1334)
Specifying QoS on entities (p. 326) for information on setting QoS before
entity creation
DDS DataReaderQos (p. 481) for rules on consistency among QoS
DDSDomainParticipant::create datareader (p. 1119)
DDSDomainParticipant::get default datareader qos (p. 1066)
DDSDomainParticipant::get implicit subscriber (p. 1114)
DDSTopic::set qos (p. 1313)
DDSDataReader::set listener (p. 1019)

6.165.3.3 virtual DDS ReturnCode t DDSDomainPartici-
pant::delete datareader (DDSDataReader ∗ a datareader)
[pure virtual]

<<eXtension>> (p. 190) Deletes a DDSDataReader (p. 1004) that belongs
to the implicit DDSSubscriber (p. 1284).

Precondition:

If the DDSDataReader (p. 1004) does not belong to the implicit
DDSSubscriber (p. 1284), or if ther are any existing DDSReadCon-
dition (p. 1269) or DDSQueryCondition (p. 1267) objects that are at-
tached to the DDSDataReader (p. 1004), or if there are outstanding
loans on samples (as a result of a call to read(), take(), or one of the
variants thereof), the operation fails with the error DDS RETCODE -
PRECONDITION NOT MET (p. 303).

Postcondition:

Listener installed on the DDSDataReader (p. 1004) will not be called
after this method completes successfully.

Parameters:

a datareader <<in>> (p. 191) The DDSDataReader (p. 1004) to be
deleted.

Returns:

One of the Standard Return Codes (p. 302) or DDS RETCODE -
PRECONDITION NOT MET (p. 303).

See also:

DDSDomainParticipant::get implicit subscriber (p. 1114)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.166 DDSDomainParticipantFactory Class Reference 1123

6.166 DDSDomainParticipantFactory Class
Reference

<<singleton>> (p. 190) <<interface>> (p. 190) Allows creation and de-
struction of DDSDomainParticipant (p. 1054) objects.

Public Member Functions

ˆ virtual DDS ReturnCode t set default participant qos (const
DDS DomainParticipantQos &qos)=0

Sets the default DDS DomainParticipantQos (p. 548) values for this do-
main participant factory.

ˆ virtual DDS ReturnCode t set default participant qos with -
profile (const char ∗library name, const char ∗profile name)=0

<<eXtension>> (p. 190) Sets the default DDS DomainParticipantQos
(p. 548) values for this domain participant factory based on the input XML
QoS profile.

ˆ virtual DDS ReturnCode t get default participant qos (DDS -
DomainParticipantQos &qos)=0

Initializes the DDS DomainParticipantQos (p. 548) instance with default
values.

ˆ virtual DDS ReturnCode t set default library (const char ∗library -
name)=0

<<eXtension>> (p. 190) Sets the default XML library for a DDSDo-
mainParticipantFactory (p. 1123).

ˆ virtual const char ∗ get default library ()=0

<<eXtension>> (p. 190) Gets the default XML library associated with a
DDSDomainParticipantFactory (p. 1123).

ˆ virtual DDS ReturnCode t set default profile (const char ∗library -
name, const char ∗profile name)=0

<<eXtension>> (p. 190) Sets the default XML profile for a DDSDomain-
ParticipantFactory (p. 1123).

ˆ virtual const char ∗ get default profile ()=0

<<eXtension>> (p. 190) Gets the default XML profile associated with a
DDSDomainParticipantFactory (p. 1123).

ˆ virtual const char ∗ get default profile library ()=0

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1124 Class Documentation

<<eXtension>> (p. 190) Gets the library where the default XML profile is
contained for a DDSDomainParticipantFactory (p. 1123).

ˆ virtual DDS ReturnCode t get participant qos from profile
(DDS DomainParticipantQos &qos, const char ∗library name, const
char ∗profile name)=0

<<eXtension>> (p. 190) Gets the DDS DomainParticipantQos
(p. 548) values associated with the input XML QoS profile.

ˆ virtual DDS ReturnCode t get publisher qos from profile
(DDS PublisherQos &qos, const char ∗library name, const char
∗profile name)=0

<<eXtension>> (p. 190) Gets the DDS PublisherQos (p. 800) values
associated with the input XML QoS profile.

ˆ virtual DDS ReturnCode t get subscriber qos from profile
(DDS SubscriberQos &qos, const char ∗library name, const char
∗profile name)=0

<<eXtension>> (p. 190) Gets the DDS SubscriberQos (p. 874) values
associated with the input XML QoS profile.

ˆ virtual DDS ReturnCode t get datawriter qos from profile
(DDS DataWriterQos &qos, const char ∗library name, const char
∗profile name)=0

<<eXtension>> (p. 190) Gets the DDS DataWriterQos (p. 516) values
associated with the input XML QoS profile.

ˆ virtual DDS ReturnCode t get datawriter qos from profile w -
topic name (DDS DataWriterQos &qos, const char ∗library name,
const char ∗profile name, const char ∗topic name)=0

<<eXtension>> (p. 190) Gets the DDS DataWriterQos (p. 516) values
associated with the input XML QoS profile while applying topic filters to the
input topic name.

ˆ virtual DDS ReturnCode t get datareader qos from profile
(DDS DataReaderQos &qos, const char ∗library name, const char
∗profile name)=0

<<eXtension>> (p. 190) Gets the DDS DataReaderQos (p. 481) values
associated with the input XML QoS profile.

ˆ virtual DDS ReturnCode t get datareader qos from profile w -
topic name (DDS DataReaderQos &qos, const char ∗library name,
const char ∗profile name, const char ∗topic name)=0

<<eXtension>> (p. 190) Gets the DDS DataReaderQos (p. 481) values
associated with the input XML QoS profile while applying topic filters to the
input topic name.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.166 DDSDomainParticipantFactory Class Reference 1125

ˆ virtual DDS ReturnCode t get topic qos from profile (DDS -
TopicQos &qos, const char ∗library name, const char ∗profile name)=0

<<eXtension>> (p. 190) Gets the DDS TopicQos (p. 905) values asso-
ciated with the input XML QoS profile.

ˆ virtual DDS ReturnCode t get topic qos from profile w topic -
name (DDS TopicQos &qos, const char ∗library name, const char
∗profile name, const char ∗topic name)=0

<<eXtension>> (p. 190) Gets the DDS TopicQos (p. 905) values associ-
ated with the input XML QoS profile while applying topic filters to the input
topic name.

ˆ virtual DDS ReturnCode t get qos profile libraries (struct DDS -
StringSeq &library names)=0

<<eXtension>> (p. 190) Gets the names of all XML QoS profile libraries
associated with the DDSDomainParticipantFactory (p. 1123)

ˆ virtual DDS ReturnCode t get qos profiles (struct DDS StringSeq
&profile names, const char ∗library name)=0

<<eXtension>> (p. 190) Gets the names of all XML QoS profiles associ-
ated with the input XML QoS profile library.

ˆ virtual DDSDomainParticipant ∗ create participant (DDS -
DomainId t domainId, const DDS DomainParticipantQos &qos,
DDSDomainParticipantListener ∗listener, DDS StatusMask
mask)=0

Creates a new DDSDomainParticipant (p. 1054) object.

ˆ virtual DDSDomainParticipant ∗ create participant with profile
(DDS DomainId t domainId, const char ∗library name, const char
∗profile name, DDSDomainParticipantListener ∗listener, DDS -
StatusMask mask)=0

<<eXtension>> (p. 190) Creates a new DDSDomainParticipant
(p. 1054) object using the DDS DomainParticipantQos (p. 548) associ-
ated with the input XML QoS profile.

ˆ virtual DDS ReturnCode t delete participant (DDSDomainPar-
ticipant ∗a participant)=0

Deletes an existing DDSDomainParticipant (p. 1054).

ˆ virtual DDSDomainParticipant ∗ lookup participant (DDS -
DomainId t domainId)=0

Locates an existing DDSDomainParticipant (p. 1054).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1126 Class Documentation

ˆ virtual DDS ReturnCode t set qos (const DDS -
DomainParticipantFactoryQos &qos)=0

Sets the value for a participant factory QoS.

ˆ virtual DDS ReturnCode t get qos (DDS -
DomainParticipantFactoryQos &qos)=0

Gets the value for participant factory QoS.

ˆ virtual DDS ReturnCode t load profiles ()=0
<<eXtension>> (p. 190) Loads the XML QoS profiles.

ˆ virtual DDS ReturnCode t reload profiles ()=0
<<eXtension>> (p. 190) Reloads the XML QoS profiles.

ˆ virtual DDS ReturnCode t unload profiles ()=0
<<eXtension>> (p. 190) Unloads the XML QoS profiles.

Static Public Member Functions

ˆ static DDSDomainParticipantFactory ∗ get instance ()
Gets the singleton instance of this class.

ˆ static DDS ReturnCode t finalize instance ()
<<eXtension>> (p. 190) Destroys the singleton instance of this class.

6.166.1 Detailed Description

<<singleton>> (p. 190) <<interface>> (p. 190) Allows creation and de-
struction of DDSDomainParticipant (p. 1054) objects.

The sole purpose of this class is to allow the creation and destruction of DDS-
DomainParticipant (p. 1054) objects. This class itself is a <<singleton>>
(p. 190), and accessed via the get instance() (p. 1127) method, and destroyed
with finalize instance() (p. 1128) method.

A single application can participate in multiple domains by instantiating mul-
tiple DDSDomainParticipant (p. 1054) objects.

An application may even instantiate multiple participants in the same domain.
Participants in the same domain exchange data in the same way regardless of
whether they are in the same application or different applications or on the
same node or different nodes; their location is transparent.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.166 DDSDomainParticipantFactory Class Reference 1127

There are two important caveats:

ˆ When there are multiple participants on the same node (in the same ap-
plication or different applications) in the same domain, the application(s)
must make sure that the participants do not try to bind to the same port
numbers. You must disambiguate between the participants by setting a
participant index for each participant. (The participant index is a field in
the DDS DiscoveryQosPolicy (p. 542).) The port numbers used by a
participant are calculated based on both the participant index and the do-
main ID, so if all participants on the same node have different participant
indexes, they can coexist in the same domain.

ˆ You cannot mix entities from different participants. For example, you
cannot delete a topic on a different participant than you created it from,
and you cannot ask a subscriber to create a reader for a topic created from
a participant different than the subscriber’s own participant. (Note that
it is permissable for an application built on top of RTI Data Distribution
Service to know about entities from different participants. For example,
an application could keep references to a reader from one domain and
a writer from another and then bridge the domains by writing the data
received in the reader callback.)

See also:

DDSDomainParticipant (p. 1054)

6.166.2 Member Function Documentation

6.166.2.1 static DDSDomainParticipantFactory∗
DDSDomainParticipantFactory::get instance () [static]

Gets the singleton instance of this class.

Returns:

The DDSDomainParticipantFactory (p. 1123) instance.

MT Safety:

On non-Linux systems: UNSAFE for multiple threads to simultaneously
make the FIRST call to either DDSDomainParticipantFactory::get -
instance() (p. 1127) or DDSDomainParticipantFactory::finalize -
instance() (p. 1128). Subsequent calls are thread safe. (On Linux systems,
these calls are thread safe.)

DDS TheParticipantFactory can be used as an alias for the singleton factory
returned by this operation.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1128 Class Documentation

Returns:

The singleton DDSDomainParticipantFactory (p. 1123) instance.

See also:

DDS TheParticipantFactory

6.166.2.2 static DDS ReturnCode t DDSDomain-
ParticipantFactory::finalize instance ()
[static]

<<eXtension>> (p. 190) Destroys the singleton instance of this class.

Only necessary to explicitly reclaim resources used by the participant factory
singleton. Note that on many OSs, these resources are automatically reclaimed
by the OS when the program terminates. However, some memory-check tools
still flag these as unreclaimed. So this method provides a way to clean up
memory used by the participant factory.

Precondition:

All participants created from the factory have been deleted.

Postcondition:

All resources belonging to the factory have been reclaimed. Another call to
DDSDomainParticipantFactory::get instance (p. 1127) will return a
new lifecycle of the singleton.

MT Safety:

On non-Linux systems: UNSAFE for multiple threads to simultaneously
make the FIRST call to either DDSDomainParticipantFactory::get -
instance() (p. 1127) or DDSDomainParticipantFactory::finalize -
instance() (p. 1128). Subsequent calls are thread safe. (On Linux systems,
these calls are thread safe.)

Returns:

One of the Standard Return Codes (p. 302), or DDS RETCODE -
PRECONDITION NOT MET (p. 303)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.166 DDSDomainParticipantFactory Class Reference 1129

6.166.2.3 virtual DDS ReturnCode t DDSDomainPartici-
pantFactory::set default participant qos (const
DDS DomainParticipantQos & qos) [pure virtual]

Sets the default DDS DomainParticipantQos (p. 548) values for this domain
participant factory.

This method may potentially allocate memory depending on the sequences con-
tained in some QoS policies.

MT Safety:

UNSAFE. It is not safe to retrieve the default QoS value from a domain par-
ticipant factory while another thread may be simultaneously calling DDS-
DomainParticipantFactory::set default participant qos (p. 1129)

Parameters:

qos <<inout>> (p. 191) Qos to be filled up. The special value DDS -
PARTICIPANT QOS DEFAULT (p. 34) may be passed as qos to
indicate that the default QoS should be reset back to the initial values
the factory would used if DDSDomainParticipantFactory::set -
default participant qos (p. 1129) had never been called.

Returns:

One of the Standard Return Codes (p. 302)

See also:

DDS PARTICIPANT QOS DEFAULT (p. 34)
DDSDomainParticipantFactory::create participant (p. 1140)

6.166.2.4 virtual DDS ReturnCode t DDSDomainParticipantFac-
tory::set default participant qos with profile (const
char ∗ library name, const char ∗ profile name) [pure
virtual]

<<eXtension>> (p. 190) Sets the default DDS DomainParticipantQos
(p. 548) values for this domain participant factory based on the input XML
QoS profile.

This method may potentially allocate memory depending on the sequences con-
tained in some QoS policies.

This default value will be used for newly created DDSDomainPartici-
pant (p. 1054) if DDS PARTICIPANT QOS DEFAULT (p. 34) is spec-
ified as the qos parameter when DDSDomainParticipantFactory::create -
participant (p. 1140) is called.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1130 Class Documentation

Precondition:

The DDS DomainParticipantQos (p. 548) contained in the specified
XML QoS profile must be consistent, or else the operation will have no effect
and fail with DDS RETCODE INCONSISTENT POLICY (p. 304)

MT Safety:

UNSAFE. It is not safe to retrieve the default QoS value from a domain par-
ticipant factory while another thread may be simultaneously calling DDS-
DomainParticipantFactory::set default participant qos (p. 1129)

Parameters:

library name <<in>> (p. 191) Library name containing the XML QoS
profile. If library name is null RTI Data Distribution Service will
use the default library (see DDSDomainParticipantFactory::set -
default library (p. 1131)).

profile name <<in>> (p. 191) XML QoS Profile name. If profile name
is null RTI Data Distribution Service will use the default profile (see
DDSDomainParticipantFactory::set default profile (p. 1132)).

If the input profile cannot be found the method fails with DDS RETCODE -
ERROR (p. 303).

Returns:

One of the Standard Return Codes (p. 302), or DDS RETCODE -
INCONSISTENT POLICY (p. 304)

See also:

DDS PARTICIPANT QOS DEFAULT (p. 34)
DDSDomainParticipantFactory::create participant with profile
(p. 1141)

6.166.2.5 virtual DDS ReturnCode t DDSDomainPar-
ticipantFactory::get default participant qos
(DDS DomainParticipantQos & qos) [pure virtual]

Initializes the DDS DomainParticipantQos (p. 548) instance with default
values.

The retrieved qos will match the set of values specified on the last success-
ful call to DDSDomainParticipantFactory::set default participant qos

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.166 DDSDomainParticipantFactory Class Reference 1131

(p. 1129), or DDSDomainParticipantFactory::set default participant -
qos with profile (p. 1129), or else, if the call was never made, the default
values listed in DDS DomainParticipantQos (p. 548).

This method may potentially allocate memory depending on the sequences con-
tained in some QoS policies.

Parameters:

qos <<out>> (p. 191) the domain participant’s QoS

MT Safety:

UNSAFE. It is not safe to retrieve the default QoS value from a domain par-
ticipant factory while another thread may be simultaneously calling DDS-
DomainParticipantFactory::set default participant qos (p. 1129)

Returns:

One of the Standard Return Codes (p. 302)

See also:

DDS PARTICIPANT QOS DEFAULT (p. 34)
DDSDomainParticipantFactory::create participant (p. 1140)

6.166.2.6 virtual DDS ReturnCode t DDSDomainParticipantFac-
tory::set default library (const char ∗ library name)
[pure virtual]

<<eXtension>> (p. 190) Sets the default XML library for a DDSDomain-
ParticipantFactory (p. 1123).

Any API requiring a library name as a parameter can use null to refer to the
default library.

See also:

DDSDomainParticipantFactory::set default profile (p. 1132) for
more information.

Parameters:

library name <<in>> (p. 191) Library name. If library name is null
any previous default is unset.

Returns:

One of the Standard Return Codes (p. 302)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1132 Class Documentation

See also:

DDSDomainParticipantFactory::get default library (p. 1132)

6.166.2.7 virtual const char∗ DDSDomainParticipantFactory::get -
default library () [pure virtual]

<<eXtension>> (p. 190) Gets the default XML library associated with a
DDSDomainParticipantFactory (p. 1123).

Returns:

The default library or null if the default library was not set.

See also:

DDSDomainParticipantFactory::set default library (p. 1131)

6.166.2.8 virtual DDS ReturnCode t DDSDomainParticipantFac-
tory::set default profile (const char ∗ library name, const
char ∗ profile name) [pure virtual]

<<eXtension>> (p. 190) Sets the default XML profile for a DDSDomain-
ParticipantFactory (p. 1123).

This method specifies the profile that will be used as the default the next time a
default DomainParticipantFactory profile is needed during a call to a Domain-
ParticipantFactory method. When calling a DDSDomainParticipantFac-
tory (p. 1123) method that requires a profile name parameter, you can use
NULL to refer to the default profile. (This same information applies to setting
a default library.)

This method does not set the default QoS for newly created DomainParticipants;
for this functionality, use DDSDomainParticipantFactory::set default -
participant qos with profile (p. 1129) (you may pass in NULL after having
called set default profile() (p. 1132)).

Parameters:

library name <<in>> (p. 191) The library name containing the profile.

profile name <<in>> (p. 191) The profile name. If profile name is null
any previous default is unset.

Returns:

One of the Standard Return Codes (p. 302)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.166 DDSDomainParticipantFactory Class Reference 1133

See also:

DDSDomainParticipantFactory::get default profile (p. 1133)
DDSDomainParticipantFactory::get default profile library
(p. 1133)

6.166.2.9 virtual const char∗ DDSDomainParticipantFactory::get -
default profile () [pure virtual]

<<eXtension>> (p. 190) Gets the default XML profile associated with a
DDSDomainParticipantFactory (p. 1123).

Returns:

The default profile or null if the default profile was not set.

See also:

DDSDomainParticipantFactory::set default profile (p. 1132)

6.166.2.10 virtual const char∗ DDSDomainParticipantFactory::get -
default profile library () [pure virtual]

<<eXtension>> (p. 190) Gets the library where the default XML profile is
contained for a DDSDomainParticipantFactory (p. 1123).

The default profile library is automatically set when DDSDomainPartici-
pantFactory::set default profile (p. 1132) is called.

This library can be different than the DDSDomainParticipantFac-
tory (p. 1123) default library (see DDSDomainParticipantFactory::get -
default library (p. 1132)).

Returns:

The default profile library or null if the default profile was not set.

See also:

DDSDomainParticipantFactory::set default profile (p. 1132)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1134 Class Documentation

6.166.2.11 virtual DDS ReturnCode t DDSDomainPartic-
ipantFactory::get participant qos from profile
(DDS DomainParticipantQos & qos, const char ∗
library name, const char ∗ profile name) [pure
virtual]

<<eXtension>> (p. 190) Gets the DDS DomainParticipantQos (p. 548)
values associated with the input XML QoS profile.

Parameters:

qos <<out>> (p. 191) Qos to be filled up. Cannot be NULL.

library name <<in>> (p. 191) Library name containing the XML QoS
profile. If library name is null RTI Data Distribution Service will
use the default library (see DDSDomainParticipantFactory::set -
default library (p. 1131)).

profile name <<in>> (p. 191) XML QoS Profile name. If profile name
is null RTI Data Distribution Service will use the default profile (see
DDSDomainParticipantFactory::set default profile (p. 1132)).

If the input profile cannot be found, the method fails with DDS RETCODE -
ERROR (p. 303).

Returns:

One of the Standard Return Codes (p. 302)

6.166.2.12 virtual DDS ReturnCode t DDSDomainParticipantFac-
tory::get publisher qos from profile (DDS PublisherQos
& qos, const char ∗ library name, const char ∗
profile name) [pure virtual]

<<eXtension>> (p. 190) Gets the DDS PublisherQos (p. 800) values as-
sociated with the input XML QoS profile.

Parameters:

qos <<out>> (p. 191) Qos to be filled up. Cannot be NULL.

library name <<in>> (p. 191) Library name containing the XML QoS
profile. If library name is null RTI Data Distribution Service will
use the default library (see DDSDomainParticipantFactory::set -
default library (p. 1131)).

profile name <<in>> (p. 191) XML QoS Profile name. If profile name
is null RTI Data Distribution Service will use the default profile (see
DDSDomainParticipantFactory::set default profile (p. 1132)).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.166 DDSDomainParticipantFactory Class Reference 1135

If the input profile cannot be found, the method fails with DDS RETCODE -
ERROR (p. 303).

Returns:

One of the Standard Return Codes (p. 302)

6.166.2.13 virtual DDS ReturnCode t DDSDomainPar-
ticipantFactory::get subscriber qos from profile
(DDS SubscriberQos & qos, const char ∗ library name,
const char ∗ profile name) [pure virtual]

<<eXtension>> (p. 190) Gets the DDS SubscriberQos (p. 874) values as-
sociated with the input XML QoS profile.

Parameters:

qos <<out>> (p. 191) Qos to be filled up. Cannot be NULL.

library name <<in>> (p. 191) Library name containing the XML QoS
profile. If library name is null RTI Data Distribution Service will
use the default library (see DDSDomainParticipantFactory::set -
default library (p. 1131)).

profile name <<in>> (p. 191) XML QoS Profile name. If profile name
is null RTI Data Distribution Service will use the default profile (see
DDSDomainParticipantFactory::set default profile (p. 1132)).

If the input profile cannot be found, the method fails with DDS RETCODE -
ERROR (p. 303).

Returns:

One of the Standard Return Codes (p. 302)

6.166.2.14 virtual DDS ReturnCode t DDSDomainPartic-
ipantFactory::get datawriter qos from profile
(DDS DataWriterQos & qos, const char ∗ library name,
const char ∗ profile name) [pure virtual]

<<eXtension>> (p. 190) Gets the DDS DataWriterQos (p. 516) values
associated with the input XML QoS profile.

Parameters:

qos <<out>> (p. 191) Qos to be filled up. Cannot be NULL.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1136 Class Documentation

library name <<in>> (p. 191) Library name containing the XML QoS
profile. If library name is null RTI Data Distribution Service will
use the default library (see DDSDomainParticipantFactory::set -
default library (p. 1131)).

profile name <<in>> (p. 191) XML QoS Profile name. If profile name
is null RTI Data Distribution Service will use the default profile (see
DDSDomainParticipantFactory::set default profile (p. 1132)).

If the input profile cannot be found, the method fails with DDS RETCODE -
ERROR (p. 303).

Returns:

One of the Standard Return Codes (p. 302)

6.166.2.15 virtual DDS ReturnCode t DDSDomainParticipant-
Factory::get datawriter qos from profile w topic name
(DDS DataWriterQos & qos, const char ∗ library name,
const char ∗ profile name, const char ∗ topic name)
[pure virtual]

<<eXtension>> (p. 190) Gets the DDS DataWriterQos (p. 516) values
associated with the input XML QoS profile while applying topic filters to the
input topic name.

Parameters:

qos <<out>> (p. 191) Qos to be filled up. Cannot be NULL.
library name <<in>> (p. 191) Library name containing the XML QoS

profile. If library name is null RTI Data Distribution Service will
use the default library (see DDSDomainParticipantFactory::set -
default library (p. 1131)).

profile name <<in>> (p. 191) XML QoS Profile name. If profile name
is null RTI Data Distribution Service will use the default profile (see
DDSDomainParticipantFactory::set default profile (p. 1132)).

topic name <<in>> (p. 191) Topic name that will be evaluated against
the topic filter attribute in the XML QoS profile. If topic name is null,
RTI Data Distribution Service will match only QoSs without explicit
topic filter expressions.

If the input profile cannot be found, the method fails with DDS RETCODE -
ERROR (p. 303).

Returns:

One of the Standard Return Codes (p. 302)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.166 DDSDomainParticipantFactory Class Reference 1137

6.166.2.16 virtual DDS ReturnCode t DDSDomainPartic-
ipantFactory::get datareader qos from profile
(DDS DataReaderQos & qos, const char ∗ library name,
const char ∗ profile name) [pure virtual]

<<eXtension>> (p. 190) Gets the DDS DataReaderQos (p. 481) values
associated with the input XML QoS profile.

Parameters:

qos <<out>> (p. 191) Qos to be filled up. Cannot be NULL.

library name <<in>> (p. 191) Library name containing the XML QoS
profile. If library name is null RTI Data Distribution Service will
use the default library (see DDSDomainParticipantFactory::set -
default library (p. 1131)).

profile name <<in>> (p. 191) XML QoS Profile name. If profile name
is null RTI Data Distribution Service will use the default profile (see
DDSDomainParticipantFactory::set default profile (p. 1132)).

If the input profile cannot be found, the method fails with DDS RETCODE -
ERROR (p. 303).

Returns:

One of the Standard Return Codes (p. 302)

6.166.2.17 virtual DDS ReturnCode t DDSDomainParticipant-
Factory::get datareader qos from profile w topic name
(DDS DataReaderQos & qos, const char ∗ library name,
const char ∗ profile name, const char ∗ topic name)
[pure virtual]

<<eXtension>> (p. 190) Gets the DDS DataReaderQos (p. 481) values
associated with the input XML QoS profile while applying topic filters to the
input topic name.

Parameters:

qos <<out>> (p. 191) Qos to be filled up. Cannot be NULL.

library name <<in>> (p. 191) Library name containing the XML QoS
profile. If library name is null RTI Data Distribution Service will
use the default library (see DDSDomainParticipantFactory::set -
default library (p. 1131)).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1138 Class Documentation

profile name <<in>> (p. 191) XML QoS Profile name. If profile name
is null RTI Data Distribution Service will use the default profile (see
DDSDomainParticipantFactory::set default profile (p. 1132)).

topic name <<in>> (p. 191) Topic name that will be evaluated against
the topic filter attribute in the XML QoS profile. If topic name is null,
RTI Data Distribution Service will match only QoSs without explicit
topic filter expressions.

If the input profile cannot be found, the method fails with DDS RETCODE -
ERROR (p. 303).

Returns:

One of the Standard Return Codes (p. 302)

6.166.2.18 virtual DDS ReturnCode t DDSDomainParticipantFac-
tory::get topic qos from profile (DDS TopicQos & qos,
const char ∗ library name, const char ∗ profile name)
[pure virtual]

<<eXtension>> (p. 190) Gets the DDS TopicQos (p. 905) values associ-
ated with the input XML QoS profile.

Parameters:

qos <<out>> (p. 191) Qos to be filled up. Cannot be NULL.

library name <<in>> (p. 191) Library name containing the XML QoS
profile. If library name is null RTI Data Distribution Service will
use the default library (see DDSDomainParticipantFactory::set -
default library (p. 1131)).

profile name <<in>> (p. 191) XML QoS Profile name. If profile name
is null RTI Data Distribution Service will use the default profile (see
DDSDomainParticipantFactory::set default profile (p. 1132)).

If the input profile cannot be found, the method fails with DDS RETCODE -
ERROR (p. 303).

Returns:

One of the Standard Return Codes (p. 302)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.166 DDSDomainParticipantFactory Class Reference 1139

6.166.2.19 virtual DDS ReturnCode t DDSDomainParticipant-
Factory::get topic qos from profile w topic name
(DDS TopicQos & qos, const char ∗ library name,
const char ∗ profile name, const char ∗ topic name)
[pure virtual]

<<eXtension>> (p. 190) Gets the DDS TopicQos (p. 905) values associ-
ated with the input XML QoS profile while applying topic filters to the input
topic name.

Parameters:

qos <<out>> (p. 191) Qos to be filled up. Cannot be NULL.

library name <<in>> (p. 191) Library name containing the XML QoS
profile. If library name is null RTI Data Distribution Service will
use the default library (see DDSDomainParticipantFactory::set -
default library (p. 1131)).

profile name <<in>> (p. 191) XML QoS Profile name. If profile name
is null RTI Data Distribution Service will use the default profile (see
DDSDomainParticipantFactory::set default profile (p. 1132)).

topic name <<in>> (p. 191) Topic name that will be evaluated against
the topic filter attribute in the XML QoS profile. If topic name is null,
RTI Data Distribution Service will match only QoSs without explicit
topic filter expressions.

If the input profile cannot be found, the method fails with DDS RETCODE -
ERROR (p. 303).

Returns:

One of the Standard Return Codes (p. 302)

6.166.2.20 virtual DDS ReturnCode t DDSDomainParticipantFac-
tory::get qos profile libraries (struct DDS StringSeq &
library names) [pure virtual]

<<eXtension>> (p. 190) Gets the names of all XML QoS profile libraries
associated with the DDSDomainParticipantFactory (p. 1123)

Parameters:

library names <<out>> (p. 191) DDS StringSeq (p. 869) to be filled
with names of XML QoS profile libraries. Cannot be NULL.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1140 Class Documentation

6.166.2.21 virtual DDS ReturnCode t DDSDomainParticipant-
Factory::get qos profiles (struct DDS StringSeq &
profile names, const char ∗ library name) [pure
virtual]

<<eXtension>> (p. 190) Gets the names of all XML QoS profiles associated
with the input XML QoS profile library.

Parameters:

profile names <<out>> (p. 191) DDS StringSeq (p. 869) to be filled
with names of XML QoS profiles. Cannot be NULL.

library name <<in>> (p. 191) Library name containing the XML QoS
profile. If library name is null RTI Data Distribution Service will
use the default library (see DDSDomainParticipantFactory::set -
default library (p. 1131)).

6.166.2.22 virtual DDSDomainParticipant∗
DDSDomainParticipantFactory::create participant
(DDS DomainId t domainId, const
DDS DomainParticipantQos & qos,
DDSDomainParticipantListener ∗ listener,
DDS StatusMask mask) [pure virtual]

Creates a new DDSDomainParticipant (p. 1054) object.

Precondition:

The specified QoS policies must be consistent or the operation will fail and
no DDSDomainParticipant (p. 1054) will be created.

If you want to create multiple participants on a given host in the same do-
main, make sure each one has a different participant index (set in the DDS -
WireProtocolQosPolicy (p. 981)). This in turn will ensure each participant
uses a different port number (since the unicast port numbers are calculated from
the participant index and the domain ID).

Note that if there is a single participant per host in a given domain, the partic-
ipant index can be left at the default value (-1).

MT Safety:

UNSAFE. (1) If DDS PARTICIPANT QOS DEFAULT (p. 34) is
used for qos, it is not safe to create the participant while another thread

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.166 DDSDomainParticipantFactory Class Reference 1141

may simultaneously be calling DDSDomainParticipantFactory::set -
default participant qos (p. 1129). (2) It is not safe to create one partic-
ipant while another thread may simultaneously be looking up or deleting
the same participant.

Parameters:

domainId <<in>> (p. 191) ID of the domain that the application in-
tends to join. [range] [>=0], and does not violate guidelines stated
in DDS RtpsWellKnownPorts t (p. 849).

qos <<in>> (p. 191) the DomainParticipant’s QoS. The special value
DDS PARTICIPANT QOS DEFAULT (p. 34) can be used to in-
dicate that the DDSDomainParticipant (p. 1054) should be created
with the default DDS DomainParticipantQos (p. 548) set in the
DDSDomainParticipantFactory (p. 1123).

listener <<in>> (p. 191) the domain participant’s listener.
mask <<in>> (p. 191). Changes of communication status to be invoked

on the listener.

Returns:

domain participant or NULL on failure

See also:

Specifying QoS on entities (p. 326) for information on setting QoS before
entity creation
DDS DomainParticipantQos (p. 548) for rules on consistency among
QoS
DDS PARTICIPANT QOS DEFAULT (p. 34)
NDDS DISCOVERY PEERS (p. 371)
DDSDomainParticipantFactory::create participant with profile()
(p. 1141)
DDSDomainParticipantFactory::get default participant qos()
(p. 1130)
DDSDomainParticipant::set listener() (p. 1113)

6.166.2.23 virtual DDSDomainParticipant∗
DDSDomainParticipantFactory::create participant -
with profile (DDS DomainId t domainId, const
char ∗ library name, const char ∗ profile name,
DDSDomainParticipantListener ∗ listener,
DDS StatusMask mask) [pure virtual]

<<eXtension>> (p. 190) Creates a new DDSDomainParticipant (p. 1054)
object using the DDS DomainParticipantQos (p. 548) associated with the
input XML QoS profile.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1142 Class Documentation

Precondition:

The DDS DomainParticipantQos (p. 548) in the input profile must be
consistent, or the operation will fail and no DDSDomainParticipant
(p. 1054) will be created.

If you want to create multiple participants on a given host in the same do-
main, make sure each one has a different participant index (set in the DDS -
WireProtocolQosPolicy (p. 981)). This in turn will ensure each participant
uses a different port number (since the unicast port numbers are calculated from
the participant index and the domain ID).

Note that if there is a single participant per host in a given domain, the partic-
ipant index can be left at the default value (-1).

MT Safety:

UNSAFE. (1) If DDS PARTICIPANT QOS DEFAULT (p. 34) is
used for qos, it is not safe to create the participant while another thread
may simultaneously be calling DDSDomainParticipantFactory::set -
default participant qos (p. 1129). (2) It is not safe to create one partic-
ipant while another thread may simultaneously be looking up or deleting
the same participant.

Parameters:

domainId <<in>> (p. 191) ID of the domain that the application in-
tends to join. [range] [>=0], and does not violate guidelines stated
in DDS RtpsWellKnownPorts t (p. 849).

library name <<in>> (p. 191) Library name containing the XML QoS
profile. If library name is null RTI Data Distribution Service will
use the default library (see DDSDomainParticipantFactory::set -
default library (p. 1131)).

profile name <<in>> (p. 191) XML QoS Profile name. If profile name
is null RTI Data Distribution Service will use the default profile (see
DDSDomainParticipantFactory::set default profile (p. 1132)).

listener <<in>> (p. 191) the DomainParticipant’s listener.

mask <<in>> (p. 191). Changes of communication status to be invoked
on the listener.

Returns:

domain participant or NULL on failure

See also:

Specifying QoS on entities (p. 326) for information on setting QoS before
entity creation

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.166 DDSDomainParticipantFactory Class Reference 1143

DDS DomainParticipantQos (p. 548) for rules on consistency among
QoS
DDS PARTICIPANT QOS DEFAULT (p. 34)
NDDS DISCOVERY PEERS (p. 371)
DDSDomainParticipantFactory::create participant() (p. 1140)
DDSDomainParticipantFactory::get default participant qos()
(p. 1130)
DDSDomainParticipant::set listener() (p. 1113)

6.166.2.24 virtual DDS ReturnCode t DDSDomainParticipant-
Factory::delete participant (DDSDomainParticipant ∗
a participant) [pure virtual]

Deletes an existing DDSDomainParticipant (p. 1054).

Precondition:

All domain entities belonging to the participant must have already
been deleted. Otherwise it fails with the error DDS RETCODE -
PRECONDITION NOT MET (p. 303).

Postcondition:

Listener installed on the DDSDomainParticipant (p. 1054) will not be
called after this method returns successfully.

Parameters:

a participant <<in>> (p. 191) DDSDomainParticipant (p. 1054) to
be deleted.

Returns:

One of the Standard Return Codes (p. 302), or DDS RETCODE -
PRECONDITION NOT MET (p. 303).

6.166.2.25 virtual DDSDomainParticipant∗
DDSDomainParticipantFactory::lookup participant
(DDS DomainId t domainId) [pure virtual]

Locates an existing DDSDomainParticipant (p. 1054).

If no such DDSDomainParticipant (p. 1054) exists, the operation will return
NULL value.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1144 Class Documentation

If multiple DDSDomainParticipant (p. 1054) entities belonging to that do-
mainId exist, then the operation will return one of them. It is not specified
which one.

Parameters:

domainId <<in>> (p. 191) ID of the domain participant to lookup.

Returns:

domain participant if it exists, or NULL

6.166.2.26 virtual DDS ReturnCode t DDSDomainParticipantFac-
tory::set qos (const DDS DomainParticipantFactoryQos
& qos) [pure virtual]

Sets the value for a participant factory QoS.

The DDS DomainParticipantFactoryQos::entity factory (p. 546) can be
changed. The other policies are immutable.

Note that despite having QoS, the DDSDomainParticipantFactory (p. 1123)
is not an DDSEntity (p. 1157).

MT Safety:

UNSAFE. It is not safe to set the participant factory QoS while an-
other thread may simultaneously be calling DDSDomainParticipant-
Factory::set qos (p. 1144) or DDSDomainParticipantFactory::get -
qos (p. 1145).

Parameters:

qos <<in>> (p. 191) Set of policies to be applied to DDSDomainPar-
ticipantFactory (p. 1123). Policies must be consistent. Immutable
policies can only be changed before calling any other RTI Data Dis-
tribution Service methods except for DDSDomainParticipantFac-
tory::get qos (p. 1145)

Returns:

One of the Standard Return Codes (p. 302), DDS RETCODE -
IMMUTABLE POLICY (p. 303) if immutable policy is changed, or
DDS RETCODE INCONSISTENT POLICY (p. 304) if policies are
inconsistent

See also:

DDS DomainParticipantFactoryQos (p. 546) for rules on consistency
among QoS

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.166 DDSDomainParticipantFactory Class Reference 1145

6.166.2.27 virtual DDS ReturnCode t DDSDomainParticipantFac-
tory::get qos (DDS DomainParticipantFactoryQos &
qos) [pure virtual]

Gets the value for participant factory QoS.

MT Safety:

UNSAFE. It is not safe to get the participant factory QoS while an-
other thread may simultaneously be calling DDSDomainParticipant-
Factory::get qos (p. 1145) or DDSDomainParticipantFactory::set -
qos (p. 1144).

Parameters:

qos <<inout>> (p. 191) QoS to be filled up.

Returns:

One of the Standard Return Codes (p. 302)

6.166.2.28 virtual DDS ReturnCode t DDSDomain-
ParticipantFactory::load profiles () [pure
virtual]

<<eXtension>> (p. 190) Loads the XML QoS profiles.

The XML QoS profiles are loaded implicitly after the first DDSDomainPar-
ticipant (p. 1054) is created or explicitly, after a call to this method.

This has the same effect as DDSDomainParticipantFactory::reload -
profiles() (p. 1145).

Returns:

One of the Standard Return Codes (p. 302)

See also:

DDS ProfileQosPolicy (p. 779)

6.166.2.29 virtual DDS ReturnCode t DDSDomain-
ParticipantFactory::reload profiles () [pure
virtual]

<<eXtension>> (p. 190) Reloads the XML QoS profiles.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1146 Class Documentation

The XML QoS profiles are loaded implicitly after the first DDSDomainPar-
ticipant (p. 1054) is created or explicitly, after a call to this method.

This has the same effect as DDSDomainParticipantFactory::load -
profiles() (p. 1145).

Returns:

One of the Standard Return Codes (p. 302)

See also:

DDS ProfileQosPolicy (p. 779)

6.166.2.30 virtual DDS ReturnCode t DDSDomain-
ParticipantFactory::unload profiles () [pure
virtual]

<<eXtension>> (p. 190) Unloads the XML QoS profiles.

The resources associated with the XML QoS profiles are freed. Any reference
to the profiles after calling this method will fail with an error.

Returns:

One of the Standard Return Codes (p. 302)

See also:

DDS ProfileQosPolicy (p. 779)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.167 DDSDomainParticipantListener Class Reference 1147

6.167 DDSDomainParticipantListener Class
Reference

<<interface>> (p. 190) Listener for participant status.

Inheritance diagram for DDSDomainParticipantListener::

6.167.1 Detailed Description

<<interface>> (p. 190) Listener for participant status.

Entity:

DDSDomainParticipant (p. 1054)

Status:

Status Kinds (p. 305)

This is the interface that can be implemented by an application-provided class
and then registered with the DDSDomainParticipant (p. 1054) such that the
application can be notified by RTI Data Distribution Service of relevant status
changes.

The DDSDomainParticipantListener (p. 1147) interface extends all other
Listener interfaces and has no additional operation beyond the ones defined by
the more general listeners.

The purpose of the DDSDomainParticipantListener (p. 1147) is to be the
listener of last resort that is notified of all status changes not captured by more
specific listeners attached to the DDSDomainEntity (p. 1053) objects. When
a relevant status change occurs, RTI Data Distribution Service will first attempt
to notify the listener attached to the concerned DDSDomainEntity (p. 1053)
if one is installed. Otherwise, RTI Data Distribution Service will notify the
Listener attached to the DDSDomainParticipant (p. 1054).

Important: Because a DDSDomainParticipantListener (p. 1147) may re-
ceive callbacks pertaining to many different entities, it is possible for the same
listener to receive multiple callbacks simultaneously in different threads. (Such
is not the case for listeners of other types.) It is therefore critical that users
of this listener provide their own protection for any thread-unsafe activities
undertaken in a DDSDomainParticipantListener (p. 1147) callback.

Note: Due to a thread-safety issue, the destruction of a DomainParticipantLis-
tener from an enabled DomainParticipant should be avoided even if the Do-

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1148 Class Documentation

mainParticipantListener has been removed from the DomainParticipant. (This
limitation does not affect the Java API.)

See also:

DDSListener (p. 1217)
DDSDomainParticipant::set listener (p. 1113)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.168 DDSDynamicDataReader Class Reference 1149

6.168 DDSDynamicDataReader Class Refer-
ence

Reads (subscribes to) objects of type DDS DynamicData (p. 580).

Inheritance diagram for DDSDynamicDataReader::

6.168.1 Detailed Description

Reads (subscribes to) objects of type DDS DynamicData (p. 580).

Instantiates DDSDataReader (p. 1004) < DDS DynamicData (p. 580) > .

See also:

DDSDataReader (p. 1004)
FooDataReader (p. 1334)
DDS DynamicData (p. 580)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1150 Class Documentation

6.169 DDSDynamicDataTypeSupport Class
Reference

A factory for registering a dynamically defined type and creating DDS -
DynamicData (p. 580) objects.

Inheritance diagram for DDSDynamicDataTypeSupport::

Public Member Functions

ˆ DDS Boolean is valid ()

Indicates whether the object was constructed properly.

ˆ DDS ReturnCode t register type (DDSDomainParticipant
∗participant, const char ∗type name)

Associate the DDS TypeCode (p. 925) with the given DDSDomainPar-
ticipant (p. 1054) under the given logical name.

ˆ DDS ReturnCode t unregister type (DDSDomainParticipant
∗participant, const char ∗type name)

Remove the definition of this type from the DDSDomainParticipant
(p. 1054).

ˆ const char ∗ get type name () const

Get the default name of this type.

ˆ const DDS TypeCode ∗ get data type () const

Get the DDS TypeCode (p. 925) wrapped by this DDSDynamic-
DataTypeSupport (p. 1150).

ˆ DDS DynamicData ∗ create data ()

Create a new DDS DynamicData (p. 580) sample initialized with the
DDS TypeCode (p. 925) and properties of this DDSDynamicDataType-
Support (p. 1150).

ˆ DDS ReturnCode t delete data (DDS DynamicData ∗a data)

Finalize and deallocate the DDS DynamicData (p. 580) sample.

ˆ void print data (const DDS DynamicData ∗a data) const

Print a string representation of the given sample to the given file.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.169 DDSDynamicDataTypeSupport Class Reference 1151

ˆ DDS ReturnCode t copy data (DDS DynamicData ∗dest, const
DDS DynamicData ∗source) const

Deeply copy the given data samples.

ˆ DDSDynamicDataTypeSupport (DDS TypeCode ∗type, const
struct DDS DynamicDataTypeProperty t &props)

Construct a new DDSDynamicDataTypeSupport (p. 1150) object.

ˆ virtual ∼DDSDynamicDataTypeSupport ()

Delete a DDSDynamicDataTypeSupport (p. 1150) object.

6.169.1 Detailed Description

A factory for registering a dynamically defined type and creating DDS -
DynamicData (p. 580) objects.

A DDSDynamicDataTypeSupport (p. 1150) has three roles:

1. It associates a DDS TypeCode (p. 925) with policies for managing ob-
jects of that type. See the constructor, DDSDynamicDataTypeSup-
port::DDSDynamicDataTypeSupport (p. 1151).

2. It registers its type under logical names with a DDSDomainPartici-
pant (p. 1054). See DDSDynamicDataTypeSupport::register type
(p. 1153).

3. It creates DDS DynamicData (p. 580) samples pre-initialized with the
type and properties of the type support itself. See DDSDynamic-
DataTypeSupport::create data (p. 1154).

6.169.2 Constructor & Destructor Documentation

6.169.2.1 DDSDynamicDataTypeSupport::DDSDynamicDataTypeSupport
(DDS TypeCode ∗ type, const struct DDS -
DynamicDataTypeProperty t &
props)

Construct a new DDSDynamicDataTypeSupport (p. 1150) object.

This step is usually followed by type registration.

NOTE that RTI Data Distribution Service does not explicitly generate any ex-
ceptions in this constructor, because C++ exception support is not consistent
across all platforms on which RTI Data Distribution Service runs. Therefore,

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1152 Class Documentation

to check whether construction succeeded, you must use the DDSDynamic-
DataTypeSupport::is valid (p. 1152) method.

The DDS TypeCode (p. 925) object that is passed to this constructor is cloned
and stored internally; no pointer is retained to the object passed in. It is
therefore safe to delete the DDS TypeCode (p. 925) after this method returns.

Parameters:

type The DDS TypeCode (p. 925) that describes the members of this
type. The new object will contain a copy of this DDS TypeCode
(p. 925); you may delete the argument after this constructor returns.

props Policies that describe how to manage the memory and other prop-
erties of the data samples created by this factory. In most cases, the
default values will be appropriate; see DDS DYNAMIC DATA -
TYPE PROPERTY DEFAULT (p. 79).

See also:

DDSDynamicDataTypeSupport::is valid (p. 1152)
DDSDynamicDataTypeSupport::register type (p. 1153)
DDSDynamicDataTypeSupport::∼DDSDynamicDataTypeSupport
(p. 1152)

6.169.2.2 virtual
DDSDynamicDataTypeSupport::∼DDSDynamicDataTypeSupport
() [virtual]

Delete a DDSDynamicDataTypeSupport (p. 1150) object.

A DDSDynamicDataTypeSupport (p. 1150) cannot be deleted while it is
still in use. For each DDSDomainParticipant (p. 1054) with which the DDS-
DynamicDataTypeSupport (p. 1150) is registered, either the type must be
unregistered or the participant must be deleted.

See also:

DDSDynamicDataTypeSupport::unregister type (p. 1153)
DDSDynamicDataTypeSupport::DDSDynamicDataTypeSupport
(p. 1151)

6.169.3 Member Function Documentation

6.169.3.1 DDS Boolean DDSDynamicDataTypeSupport::is valid ()

Indicates whether the object was constructed properly.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.169 DDSDynamicDataTypeSupport Class Reference 1153

This method returns DDS BOOLEAN TRUE (p. 288) if the constructor suc-
ceeded; it returns DDS BOOLEAN FALSE (p. 289) if the constructor failed
for any reason, which should also have resulted in a log message.

Possible failure reasons include passing an invalid type or invalid properties to
the constructor.

This method is necessary because C++ exception support is not consistent
across all of the platforms on which RTI Data Distribution Service runs. There-
fore, the implementation does not throw any exceptions in the constructor.

See also:

DDSDynamicDataTypeSupport::DDSDynamicDataTypeSupport
(p. 1151)

6.169.3.2 DDS ReturnCode t DDSDynamicDataTypeSup-
port::register type (DDSDomainParticipant ∗ participant,
const char ∗ type name)

Associate the DDS TypeCode (p. 925) with the given DDSDomainPartic-
ipant (p. 1054) under the given logical name.

Once a type has been registered, it can be referenced by name when creating
a topic. Statically and dynamically defined types behave the same way in this
respect.

See also:

FooTypeSupport::register type (p. 1393)
DDSDomainParticipant::create topic (p. 1089)
DDSDynamicDataTypeSupport::unregister type (p. 1153)

6.169.3.3 DDS ReturnCode t DDSDynamicDataTypeSup-
port::unregister type (DDSDomainParticipant ∗
participant, const char ∗ type name)

Remove the definition of this type from the DDSDomainParticipant
(p. 1054).

This operation is optional; all types are automatically unregistered when a
DDSDomainParticipant (p. 1054) is deleted. Most application will not need
to manually unregister types.

A type cannot be unregistered while it is still in use; that is, while any
DDSTopic (p. 1311) is still referring to it.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1154 Class Documentation

See also:

FooTypeSupport::unregister type (p. 1394)
DDSDynamicDataTypeSupport::register type (p. 1153)

6.169.3.4 const char∗ DDSDynamicDataTypeSupport::get type -
name () const

Get the default name of this type.

The DDS TypeCode (p. 925) that is wrapped by this DDSDynamic-
DataTypeSupport (p. 1150) includes a name; this operation returns that
name.

This operation is useful when registering a type, because in most cases it is not
necessary for the physical and logical names of the type to be different.

myTypeSupport->register_type(myParticipant, myTypeSupport->get_type_name());

See also:

FooTypeSupport::get type name (p. 1400)

6.169.3.5 const DDS TypeCode∗ DDSDynam-
icDataTypeSupport::get data type ()
const

Get the DDS TypeCode (p. 925) wrapped by this DDSDynamic-
DataTypeSupport (p. 1150).

6.169.3.6 DDS DynamicData∗ DDSDynamicDataTypeSup-
port::create data ()

Create a new DDS DynamicData (p. 580) sample initialized with the DDS -
TypeCode (p. 925) and properties of this DDSDynamicDataTypeSupport
(p. 1150).

You must delete your DDS DynamicData (p. 580) object when you are fin-
ished with it.

DDS_DynamicData* sample = myTypeSupport->create_data();

// Do something...

myTypeSupport->delete_data(sample);

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.169 DDSDynamicDataTypeSupport Class Reference 1155

See also:

DDSDynamicDataTypeSupport::delete data (p. 1155)
FooTypeSupport::create data (p. 1395)
DDS DynamicData::DDS DynamicData
DDS DynamicDataTypeProperty t::data (p. 684)

6.169.3.7 DDS ReturnCode t DDSDynamicDataType-
Support::delete data (DDS DynamicData ∗
a data)

Finalize and deallocate the DDS DynamicData (p. 580) sample.

See also:

FooTypeSupport::delete data (p. 1397)
DDSDynamicDataTypeSupport::create data (p. 1154)

6.169.3.8 void DDSDynamicDataTypeSupport::print data (const
DDS DynamicData ∗ a data) const

Print a string representation of the given sample to the given file.

This method is equivalent to DDS DynamicData::print (p. 601).

See also:

DDS DynamicData::print (p. 601)

6.169.3.9 DDS ReturnCode t DDSDynamicDataTypeSup-
port::copy data (DDS DynamicData ∗ dest, const
DDS DynamicData ∗ source) const

Deeply copy the given data samples.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1156 Class Documentation

6.170 DDSDynamicDataWriter Class Reference

Writes (publishes) objects of type DDS DynamicData (p. 580).

Inheritance diagram for DDSDynamicDataWriter::

6.170.1 Detailed Description

Writes (publishes) objects of type DDS DynamicData (p. 580).

Instantiates DDSDataWriter (p. 1028) < DDS DynamicData (p. 580) > .

See also:

DDSDataWriter (p. 1028)
FooDataWriter (p. 1361)
DDS DynamicData (p. 580)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.171 DDSEntity Class Reference 1157

6.171 DDSEntity Class Reference

<<interface>> (p. 190) Abstract base class for all the DDS objects that sup-
port QoS policies, a listener, and a status condition.

Inheritance diagram for DDSEntity::

Public Member Functions

ˆ virtual DDS ReturnCode t enable ()=0
Enables the DDSEntity (p. 1157).

ˆ virtual DDSStatusCondition ∗ get statuscondition ()=0
Allows access to the DDSStatusCondition (p. 1271) associated with the
DDSEntity (p. 1157).

ˆ virtual DDS StatusMask get status changes ()=0
Retrieves the list of communication statuses in the DDSEntity (p. 1157)
that are triggered.

ˆ virtual DDS InstanceHandle t get instance handle ()=0
Allows access to the DDS InstanceHandle t (p. 52) associated with the
DDSEntity (p. 1157).

6.171.1 Detailed Description

<<interface>> (p. 190) Abstract base class for all the DDS objects that sup-
port QoS policies, a listener, and a status condition.

All operations except for set qos(), get qos(), set listener(), get listener()
and enable() (p. 1160), may return the value DDS RETCODE NOT -
ENABLED (p. 303).

QoS:

QoS Policies (p. 319)

Status:

Status Kinds (p. 305)

Listener:

DDSListener (p. 1217)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1158 Class Documentation

6.171.2 Abstract operations

Each derived entity provides the following operations specific to its role in RTI
Data Distribution Service.

6.171.2.1 set qos (abstract)

This operation sets the QoS policies of the DDSEntity (p. 1157).

This operation must be provided by each of the derived DDSEntity (p. 1157)
classes (DDSDomainParticipant (p. 1054), DDSTopic (p. 1311), DDSPub-
lisher (p. 1243), DDSDataWriter (p. 1028), DDSSubscriber (p. 1284), and
DDSDataReader (p. 1004)) so that the policies that are meaningful to each
DDSEntity (p. 1157) can be set.

Precondition:

Certain policies are immutable (see QoS Policies (p. 319)): they can only
be set at DDSEntity (p. 1157) creation time or before the entity is enabled.
If set qos() is invoked after the DDSEntity (p. 1157) is enabled and it
attempts to change the value of an immutable policy, the operation will fail
and return DDS RETCODE IMMUTABLE POLICY (p. 303).
Certain values of QoS policies can be incompatible with the settings of the
other policies. The set qos() operation will also fail if it specifies a set
of values that, once combined with the existing values, would result in an
inconsistent set of policies. In this case, the operation will fail and return
DDS RETCODE INCONSISTENT POLICY (p. 304).
If the application supplies a non-default value for a QoS policy that is not
supported by the implementation of the service, the set qos operation will
fail and return DDS RETCODE UNSUPPORTED (p. 303).

Postcondition:

The existing set of policies is only changed if the set qos() operation
succeeds. This is indicated by a return code of DDS RETCODE OK
(p. 303). In all other cases, none of the policies are modified.

Each derived DDSEntity (p. 1157) class (DDSDomainParticipant (p. 1054),
DDSTopic (p. 1311), DDSPublisher (p. 1243), DDSDataWriter (p. 1028),
DDSSubscriber (p. 1284), DDSDataReader (p. 1004)) has a corresponding
special value of the QoS (DDS PARTICIPANT QOS DEFAULT (p. 34),
DDS PUBLISHER QOS DEFAULT (p. 37), DDS SUBSCRIBER -
QOS DEFAULT (p. 38), DDS TOPIC QOS DEFAULT (p. 37), DDS -
DATAWRITER QOS DEFAULT (p. 82), DDS DATAREADER -
QOS DEFAULT (p. 96)). This special value may be used as a parameter to
the set qos operation to indicate that the QoS of the DDSEntity (p. 1157)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.171 DDSEntity Class Reference 1159

should be changed to match the current default QoS set in the DDSEntity
(p. 1157)’s factory. The operation set qos cannot modify the immutable QoS,
so a successful return of the operation indicates that the mutable QoS for the
Entity has been modified to match the current default for the DDSEntity
(p. 1157)’s factory.

The set of policies specified in the qos parameter are applied on top of the
existing QoS, replacing the values of any policies previously set.

Possible error codes returned in addition to Standard Return Codes
(p. 302) : DDS RETCODE IMMUTABLE POLICY (p. 303), or DDS -
RETCODE INCONSISTENT POLICY (p. 304).

6.171.2.2 get qos (abstract)

This operation allows access to the existing set of QoS policies for the
DDSEntity (p. 1157). This operation must be provided by each of the
derived DDSEntity (p. 1157) classes (DDSDomainParticipant (p. 1054),
DDSTopic (p. 1311), DDSPublisher (p. 1243), DDSDataWriter (p. 1028),
DDSSubscriber (p. 1284), and DDSDataReader (p. 1004)), so that the poli-
cies that are meaningful to each DDSEntity (p. 1157) can be retrieved.

Possible error codes are Standard Return Codes (p. 302).

6.171.2.3 set listener (abstract)

This operation installs a DDSListener (p. 1217) on the DDSEntity (p. 1157).
The listener will only be invoked on the changes of communication status indi-
cated by the specified mask.

This operation must be provided by each of the derived DDSEntity (p. 1157)
classes (DDSDomainParticipant (p. 1054), DDSTopic (p. 1311), DDSPub-
lisher (p. 1243), DDSDataWriter (p. 1028), DDSSubscriber (p. 1284), and
DDSDataReader (p. 1004)), so that the listener is of the concrete type suit-
able to the particular DDSEntity (p. 1157).

It is permitted to use NULL as the value of the listener. The NULL listener
behaves as if the mask is DDS STATUS MASK NONE (p. 309).

Postcondition:

Only one listener can be attached to each DDSEntity (p. 1157). If a lis-
tener was already set, the operation set listener() will replace it with
the new one. Consequently, if the value NULL is passed for the listener pa-
rameter to the set listener operation, any existing listener will be removed.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1160 Class Documentation

6.171.2.4 get listener (abstract)

This operation allows access to the existing DDSListener (p. 1217) attached
to the DDSEntity (p. 1157).

This operation must be provided by each of the derived DDSEntity (p. 1157)
classes (DDSDomainParticipant (p. 1054), DDSTopic (p. 1311), DDSPub-
lisher (p. 1243), DDSDataWriter (p. 1028), DDSSubscriber (p. 1284), and
DDSDataReader (p. 1004)) so that the listener is of the concrete type suitable
to the particular DDSEntity (p. 1157).

If no listener is installed on the DDSEntity (p. 1157), this operation will return
NULL.

6.171.3 Member Function Documentation

6.171.3.1 virtual DDS ReturnCode t DDSEntity::enable () [pure
virtual]

Enables the DDSEntity (p. 1157).

This operation enables the Entity. Entity objects can be created either enabled
or disabled. This is controlled by the value of the ENTITY FACTORY
(p. 362) QoS policy on the corresponding factory for the DDSEntity (p. 1157).

By default, ENTITY FACTORY (p. 362) is set so that it is not necessary to
explicitly call DDSEntity::enable (p. 1160) on newly created entities.

The DDSEntity::enable (p. 1160) operation is idempotent. Calling enable on
an already enabled Entity returns OK and has no effect.

If a DDSEntity (p. 1157) has not yet been enabled, the following kinds of
operations may be invoked on it:

ˆ set or get the QoS policies (including default QoS policies) and listener

ˆ DDSEntity::get statuscondition (p. 1161)

ˆ ’factory’ operations

ˆ DDSEntity::get status changes (p. 1161) and other get status opera-
tions (although the status of a disabled entity never changes)

ˆ ’lookup’ operations

Other operations may explicitly state that they may be called on disabled
entities; those that do not will return the error DDS RETCODE NOT -
ENABLED (p. 303).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.171 DDSEntity Class Reference 1161

It is legal to delete an DDSEntity (p. 1157) that has not been enabled by
calling the proper operation on its factory.

Entities created from a factory that is disabled are created disabled, regardless
of the setting of the DDS EntityFactoryQosPolicy (p. 687).

Calling enable on an Entity whose factory is not enabled will fail and return
DDS RETCODE PRECONDITION NOT MET (p. 303).

If DDS EntityFactoryQosPolicy::autoenable created entities (p. 688) is
TRUE, the enable operation on a factory will automatically enable all entities
created from that factory.

Listeners associated with an entity are not called until the entity is enabled.

Conditions associated with a disabled entity are ”inactive,” that is, they have a
trigger value == FALSE.

Returns:

One of the Standard Return Codes (p. 302), Standard Return
Codes (p. 302) or DDS RETCODE PRECONDITION NOT MET
(p. 303).

Implemented in DDSDataWriter (p. 1045), and DDSDataReader
(p. 1020).

6.171.3.2 virtual DDSStatusCondition∗ DDSEntity::get -
statuscondition () [pure virtual]

Allows access to the DDSStatusCondition (p. 1271) associated with the
DDSEntity (p. 1157).

The returned condition can then be added to a DDSWaitSet (p. 1325) so that
the application can wait for specific status changes that affect the DDSEntity
(p. 1157).

Returns:

the status condition associated with this entity.

Implemented in DDSDataWriter (p. 1046), and DDSDataReader
(p. 1021).

6.171.3.3 virtual DDS StatusMask DDSEntity::get status changes
() [pure virtual]

Retrieves the list of communication statuses in the DDSEntity (p. 1157) that
are triggered.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1162 Class Documentation

That is, the list of statuses whose value has changed since the last time the
application read the status using the get ∗ status() method.

When the entity is first created or if the entity is not enabled, all communication
statuses are in the ”untriggered” state so the list returned by the get status -
changes operation will be empty.

The list of statuses returned by the get status changes operation refers to the
status that are triggered on the Entity itself and does not include statuses that
apply to contained entities.

Returns:

list of communication statuses in the DDSEntity (p. 1157) that are trig-
gered.

See also:

Status Kinds (p. 305)

Implemented in DDSDataWriter (p. 1046), and DDSDataReader
(p. 1021).

6.171.3.4 virtual DDS InstanceHandle t DDSEntity::get instance -
handle () [pure virtual]

Allows access to the DDS InstanceHandle t (p. 52) associated with the
DDSEntity (p. 1157).

This operation returns the DDS InstanceHandle t (p. 52) that represents the
DDSEntity (p. 1157).

Returns:

the instance handle associated with this entity.

Implemented in DDSDataWriter (p. 1047), and DDSDataReader
(p. 1022).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.172 DDSFlowController Class Reference 1163

6.172 DDSFlowController Class Reference

<<interface>> (p. 190) A flow controller is the object responsible for shap-
ing the network traffic by determining when attached asynchronous DDS-
DataWriter (p. 1028) instances are allowed to write data.

Public Member Functions

ˆ virtual DDS ReturnCode t set property (const struct DDS -
FlowControllerProperty t &prop)=0

Sets the DDSFlowController (p. 1163) property.

ˆ virtual DDS ReturnCode t get property (struct DDS -
FlowControllerProperty t &prop)=0

Gets the DDSFlowController (p. 1163) property.

ˆ virtual DDS ReturnCode t trigger flow ()=0

Provides an external trigger to the DDSFlowController (p. 1163).

ˆ virtual const char ∗ get name ()=0

Returns the name of the DDSFlowController (p. 1163).

ˆ virtual DDSDomainParticipant ∗ get participant ()=0

Returns the DDSDomainParticipant (p. 1054) to which the DDSFlow-
Controller (p. 1163) belongs.

6.172.1 Detailed Description

<<interface>> (p. 190) A flow controller is the object responsible for shap-
ing the network traffic by determining when attached asynchronous DDS-
DataWriter (p. 1028) instances are allowed to write data.

QoS:

DDS FlowControllerProperty t (p. 700)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1164 Class Documentation

6.172.2 Member Function Documentation

6.172.2.1 virtual DDS ReturnCode t DDSFlowController::set -
property (const struct DDS FlowControllerProperty t &
prop) [pure virtual]

Sets the DDSFlowController (p. 1163) property.

This operation modifies the property of the DDSFlowController (p. 1163).

Once a DDSFlowController (p. 1163) has been instantiated, only the
DDS FlowControllerProperty t::token bucket (p. 701) can be changed.
The DDS FlowControllerProperty t::scheduling policy (p. 701) is im-
mutable.

A new DDS FlowControllerTokenBucketProperty t::period (p. 704)
only takes effect at the next scheduled token distribution time (as determined
by its previous value).

Parameters:

prop <<in>> (p. 191) The new DDS FlowControllerProperty t
(p. 700). Property must be consistent. Immutable fields cannot
be changed after DDSFlowController (p. 1163) has been created.
The special value DDS FLOW CONTROLLER PROPERTY -
DEFAULT (p. 39) can be used to indicate that the property of the
DDSFlowController (p. 1163) should be changed to match the cur-
rent default DDS FlowControllerProperty t (p. 700) set in the
DDSDomainParticipant (p. 1054).

Returns:

One of the Standard Return Codes (p. 302), DDS RETCODE -
IMMUTABLE POLICY (p. 303), or DDS RETCODE -
INCONSISTENT POLICY (p. 304).

See also:

DDS FlowControllerProperty t (p. 700) for rules on consistency among
property values.

6.172.2.2 virtual DDS ReturnCode t DDSFlowController::get -
property (struct DDS FlowControllerProperty t & prop)
[pure virtual]

Gets the DDSFlowController (p. 1163) property.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.172 DDSFlowController Class Reference 1165

Parameters:

prop <<in>> (p. 191) DDSFlowController (p. 1163) to be filled in.

Returns:

One of the Standard Return Codes (p. 302)

6.172.2.3 virtual DDS ReturnCode t DDSFlowController::trigger -
flow () [pure virtual]

Provides an external trigger to the DDSFlowController (p. 1163).

Typically, a DDSFlowController (p. 1163) uses an internal trigger to pe-
riodically replenish its tokens. The period by which this trigger is called is
determined by the DDS FlowControllerTokenBucketProperty t::period
(p. 704) property setting.

This function provides an additional, external trigger to the
DDSFlowController (p. 1163). This trigger adds DDS -
FlowControllerTokenBucketProperty t::tokens added per period
(p. 703) tokens each time it is called (subject to the other property settings of
the DDSFlowController (p. 1163)).

An on-demand DDSFlowController (p. 1163) can be cre-
ated with a DDS DURATION INFINITE (p. 295) as DDS -
FlowControllerTokenBucketProperty t::period (p. 704), in which
case the only trigger source is external (i.e. the DDSFlowController
(p. 1163) is solely triggered by the user on demand).

DDSFlowController::trigger flow (p. 1165) can be called on both strict
on-demand DDSFlowController (p. 1163) and hybrid DDSFlowController
(p. 1163) (internally and externally triggered).

Returns:

One of the Standard Return Codes (p. 302)

6.172.2.4 virtual const char∗ DDSFlowController::get name ()
[pure virtual]

Returns the name of the DDSFlowController (p. 1163).

Returns:

The name of the DDSFlowController (p. 1163).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1166 Class Documentation

6.172.2.5 virtual DDSDomainParticipant∗
DDSFlowController::get participant () [pure virtual]

Returns the DDSDomainParticipant (p. 1054) to which the DDSFlowCon-
troller (p. 1163) belongs.

Returns:

The DDSDomainParticipant (p. 1054) to which the DDSFlowCon-
troller (p. 1163) belongs.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.173 DDSGuardCondition Class Reference 1167

6.173 DDSGuardCondition Class Reference

<<interface>> (p. 190) A specific DDSCondition (p. 992) whose trigger -
value is completely under the control of the application.

Inheritance diagram for DDSGuardCondition::

Public Member Functions

ˆ virtual DDS Boolean get trigger value ()
ˆ virtual DDS ReturnCode t set trigger value (DDS Boolean

value)
Set the guard condition trigger value.

ˆ DDSGuardCondition ()
No argument constructor.

ˆ virtual ∼DDSGuardCondition ()
Destructor.

6.173.1 Detailed Description

<<interface>> (p. 190) A specific DDSCondition (p. 992) whose trigger -
value is completely under the control of the application.

The DDSGuardCondition (p. 1167) provides a way for an application to
manually wake up a DDSWaitSet (p. 1325). This is accomplished by attach-
ing the DDSGuardCondition (p. 1167) to the DDSWaitSet (p. 1325) and
then setting the trigger value by means of the DDSGuardCondition::set -
trigger value (p. 1168) operation.

See also:

DDSWaitSet (p. 1325)

6.173.2 Constructor & Destructor Documentation

6.173.2.1 DDSGuardCondition::DDSGuardCondition ()

No argument constructor.

Construct a new guard condition on the heap.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1168 Class Documentation

Returns:

A new condition with trigger value DDS BOOLEAN FALSE (p. 289),
or NULL if a condition could not be allocated.

6.173.2.2 virtual DDSGuardCondition::∼DDSGuardCondition ()
[virtual]

Destructor.

Releases the resources associated with this object.

Deleting a NULL condition is safe and has no effect.

6.173.3 Member Function Documentation

6.173.3.1 virtual DDS Boolean DDSGuardCondition::get trigger -
value () [virtual]

Retrieve the trigger value.

Returns:

the trigger value.

Implements DDSCondition (p. 992).

6.173.3.2 virtual DDS ReturnCode t DDSGuardCondition::set -
trigger value (DDS Boolean value)
[virtual]

Set the guard condition trigger value.

Parameters:

value <<in>> (p. 191) the new trigger value.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.174 DDSKeyedOctetsDataReader Class Reference 1169

6.174 DDSKeyedOctetsDataReader Class Ref-
erence

<<interface>> (p. 190) Instantiates DataReader < DDS KeyedOctets
(p. 716) >.

Inheritance diagram for DDSKeyedOctetsDataReader::

Public Member Functions

ˆ virtual DDS ReturnCode t read (DDS KeyedOctetsSeq
&received data, DDS SampleInfoSeq &info seq, DDS -
Long max samples=DDS LENGTH UNLIMITED, DDS -
SampleStateMask sample states=DDS ANY SAMPLE -
STATE, DDS ViewStateMask view states=DDS ANY VIEW -
STATE, DDS InstanceStateMask instance states=DDS ANY -
INSTANCE STATE)

Access a collection of data samples from the DDSDataReader (p. 1004).

ˆ virtual DDS ReturnCode t take (DDS KeyedOctetsSeq
&received data, DDS SampleInfoSeq &info seq, DDS -
Long max samples=DDS LENGTH UNLIMITED, DDS -
SampleStateMask sample states=DDS ANY SAMPLE -
STATE, DDS ViewStateMask view states=DDS ANY VIEW -
STATE, DDS InstanceStateMask instance states=DDS ANY -
INSTANCE STATE)

Access a collection of data-samples from the DDSDataReader (p. 1004).

ˆ virtual DDS ReturnCode t read w condition (DDS -
KeyedOctetsSeq &received data, DDS SampleInfoSeq &info seq,
DDS Long max samples, DDSReadCondition ∗condition)

Accesses via DDSKeyedOctetsDataReader::read (p. 1172) the samples
that match the criteria specified in the DDSReadCondition (p. 1269).

ˆ virtual DDS ReturnCode t take w condition (DDS -
KeyedOctetsSeq &received data, DDS SampleInfoSeq &info seq,
DDS Long max samples, DDSReadCondition ∗condition)

Analogous to DDSKeyedOctetsDataReader::read w condition (p. 1173)
except it accesses samples via the DDSKeyedOctetsDataReader::take
(p. 1173) operation.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1170 Class Documentation

ˆ virtual DDS ReturnCode t read next sample (DDS KeyedOctets
&received data, DDS SampleInfo &sample info)

Copies the next not-previously-accessed data value from the DDS-
DataReader (p. 1004).

ˆ virtual DDS ReturnCode t take next sample (DDS KeyedOctets
&received data, DDS SampleInfo &sample info)

Copies the next not-previously-accessed data value from the DDS-
DataReader (p. 1004).

ˆ virtual DDS ReturnCode t read instance (DDS KeyedOctetsSeq
&received data, DDS SampleInfoSeq &info seq, DDS Long
max samples=DDS LENGTH UNLIMITED, const DDS -
InstanceHandle t &a handle=DDS HANDLE NIL, DDS -
SampleStateMask sample states=DDS ANY SAMPLE -
STATE, DDS ViewStateMask view states=DDS ANY VIEW -
STATE, DDS InstanceStateMask instance states=DDS ANY -
INSTANCE STATE)

Access a collection of data samples from the DDSDataReader (p. 1004).

ˆ virtual DDS ReturnCode t take instance (DDS KeyedOctetsSeq
&received data, DDS SampleInfoSeq &info seq, DDS Long
max samples=DDS LENGTH UNLIMITED, const DDS -
InstanceHandle t &a handle=DDS HANDLE NIL, DDS -
SampleStateMask sample states=DDS ANY SAMPLE -
STATE, DDS ViewStateMask view states=DDS ANY VIEW -
STATE, DDS InstanceStateMask instance states=DDS ANY -
INSTANCE STATE)

Access a collection of data samples from the DDSDataReader (p. 1004).

ˆ virtual DDS ReturnCode t read next instance (DDS -
KeyedOctetsSeq &received data, DDS SampleInfoSeq &info seq,
DDS Long max samples=DDS LENGTH UNLIMITED, const
DDS InstanceHandle t &previous handle=DDS HANDLE NIL,
DDS SampleStateMask sample states=DDS ANY SAMPLE -
STATE, DDS ViewStateMask view states=DDS ANY VIEW -
STATE, DDS InstanceStateMask instance states=DDS ANY -
INSTANCE STATE)

Access a collection of data samples from the DDSDataReader (p. 1004).

ˆ virtual DDS ReturnCode t take next instance (DDS -
KeyedOctetsSeq &received data, DDS SampleInfoSeq &info seq,
DDS Long max samples=DDS LENGTH UNLIMITED, const
DDS InstanceHandle t &previous handle=DDS HANDLE NIL,

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.174 DDSKeyedOctetsDataReader Class Reference 1171

DDS SampleStateMask sample states=DDS ANY SAMPLE -
STATE, DDS ViewStateMask view states=DDS ANY VIEW -
STATE, DDS InstanceStateMask instance states=DDS ANY -
INSTANCE STATE)

Access a collection of data samples from the DDSDataReader (p. 1004).

ˆ virtual DDS ReturnCode t read next instance w condition
(DDS KeyedOctetsSeq &received data, DDS SampleInfoSeq
&info seq, DDS Long max samples, const DDS InstanceHandle t
&previous handle, DDSReadCondition ∗condition)

Accesses via DDSKeyedOctetsDataReader::read next instance
(p. 1175) the samples that match the criteria specified in the DDSRead-
Condition (p. 1269).

ˆ virtual DDS ReturnCode t take next instance w condition
(DDS KeyedOctetsSeq &received data, DDS SampleInfoSeq
&info seq, DDS Long max samples, const DDS InstanceHandle t
&previous handle, DDSReadCondition ∗condition)

Accesses via DDSKeyedOctetsDataReader::take next instance
(p. 1176) the samples that match the criteria specified in the DDSRead-
Condition (p. 1269).

ˆ virtual DDS ReturnCode t return loan (DDS KeyedOctetsSeq
&received data, DDS SampleInfoSeq &info seq)

Indicates to the DDSDataReader (p. 1004) that the application is done
accessing the collection of received data and info seq obtained by some
earlier invocation of read or take on the DDSDataReader (p. 1004).

ˆ virtual DDS ReturnCode t get key value (DDS KeyedOctets
&key holder, const DDS InstanceHandle t &handle)

Retrieve the instance key that corresponds to an instance handle.

ˆ virtual DDS ReturnCode t get key value (char ∗key, const DDS -
InstanceHandle t &handle)

<<eXtension>> (p. 190) Retrieve the instance key that corresponds to an
instance handle.

ˆ virtual DDS InstanceHandle t lookup instance (const DDS -
KeyedOctets &key holder)

Retrieve the instance handle that corresponds to an instance key holder.

ˆ virtual DDS InstanceHandle t lookup instance (const char ∗key)
<<eXtension>> (p. 190) Retrieve the instance handle that corresponds to
an instance key.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1172 Class Documentation

Static Public Member Functions

ˆ static DDSKeyedOctetsDataReader ∗ narrow (DDSDataReader
∗reader)

Narrow the given DDSDataReader (p. 1004) pointer to a DDSKeye-
dOctetsDataReader (p. 1169) pointer.

6.174.1 Detailed Description

<<interface>> (p. 190) Instantiates DataReader < DDS KeyedOctets
(p. 716) >.

When reading or taking data with this reader, if you request a copy of the
samples instead of a loan, and a string or byte array in a destination data
sample is NULL, the middleware will allocate a new string or array for you
of sufficient length to hold the received data. New strings will be allocated
with DDS String alloc (p. 433); new arrays will be allocated with DDS -
OctetBuffer alloc (p. 428). The sample’s destructor will delete them.

A non- NULL string or array is assumed to be allocated to sufficient length to
store the incoming data. It will not be reallocated.

See also:

FooDataReader (p. 1334)
DDSDataReader (p. 1004)

6.174.2 Member Function Documentation

6.174.2.1 virtual DDS ReturnCode t DDSKeyedOctets-
DataReader::read (DDS KeyedOctetsSeq & received data,
DDS SampleInfoSeq & info seq, DDS Long
max samples = DDS LENGTH UNLIMITED,
DDS SampleStateMask sample states =
DDS ANY SAMPLE STATE, DDS ViewStateMask
view states = DDS ANY VIEW STATE,
DDS InstanceStateMask instance states =
DDS ANY INSTANCE STATE) [virtual]

Access a collection of data samples from the DDSDataReader (p. 1004).

See also:

FooDataReader::read (p. 1337)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.174 DDSKeyedOctetsDataReader Class Reference 1173

6.174.2.2 virtual DDS ReturnCode t DDSKeyedOctets-
DataReader::take (DDS KeyedOctetsSeq & received data,
DDS SampleInfoSeq & info seq, DDS Long
max samples = DDS LENGTH UNLIMITED,
DDS SampleStateMask sample states =
DDS ANY SAMPLE STATE, DDS ViewStateMask
view states = DDS ANY VIEW STATE,
DDS InstanceStateMask instance states =
DDS ANY INSTANCE STATE) [virtual]

Access a collection of data-samples from the DDSDataReader (p. 1004).

See also:

FooDataReader::take (p. 1338)

6.174.2.3 virtual DDS ReturnCode t DDSKeyedOctets-
DataReader::read w condition (DDS KeyedOctetsSeq
& received data, DDS SampleInfoSeq & info seq,
DDS Long max samples, DDSReadCondition ∗
condition) [virtual]

Accesses via DDSKeyedOctetsDataReader::read (p. 1172) the samples that
match the criteria specified in the DDSReadCondition (p. 1269).

See also:

FooDataReader::read w condition (p. 1344)

6.174.2.4 virtual DDS ReturnCode t DDSKeyedOctets-
DataReader::take w condition (DDS KeyedOctetsSeq
& received data, DDS SampleInfoSeq & info seq,
DDS Long max samples, DDSReadCondition ∗
condition) [virtual]

Analogous to DDSKeyedOctetsDataReader::read w condition (p. 1173)
except it accesses samples via the DDSKeyedOctetsDataReader::take
(p. 1173) operation.

See also:

FooDataReader::take w condition (p. 1345)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1174 Class Documentation

6.174.2.5 virtual DDS ReturnCode t DDSKeyedOctets-
DataReader::read next sample (DDS KeyedOctets
& received data, DDS SampleInfo & sample info)
[virtual]

Copies the next not-previously-accessed data value from the DDSDataReader
(p. 1004).

See also:

FooDataReader::read next sample (p. 1346)

6.174.2.6 virtual DDS ReturnCode t DDSKeyedOctets-
DataReader::take next sample (DDS KeyedOctets
& received data, DDS SampleInfo & sample info)
[virtual]

Copies the next not-previously-accessed data value from the DDSDataReader
(p. 1004).

See also:

FooDataReader::take next sample (p. 1347)

6.174.2.7 virtual DDS ReturnCode t DDSKeyedOctets-
DataReader::read instance (DDS KeyedOctetsSeq
& received data, DDS SampleInfoSeq & info seq,
DDS Long max samples = DDS LENGTH UNLIMITED,
const DDS InstanceHandle t & a handle =
DDS HANDLE NIL, DDS SampleStateMask
sample states = DDS ANY SAMPLE STATE,
DDS ViewStateMask view states = DDS ANY VIEW -
STATE, DDS InstanceStateMask instance states =
DDS ANY INSTANCE STATE) [virtual]

Access a collection of data samples from the DDSDataReader (p. 1004).

See also:

FooDataReader::read instance (p. 1348)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.174 DDSKeyedOctetsDataReader Class Reference 1175

6.174.2.8 virtual DDS ReturnCode t DDSKeyedOctets-
DataReader::take instance (DDS KeyedOctetsSeq
& received data, DDS SampleInfoSeq & info seq,
DDS Long max samples = DDS LENGTH UNLIMITED,
const DDS InstanceHandle t & a handle =
DDS HANDLE NIL, DDS SampleStateMask
sample states = DDS ANY SAMPLE STATE,
DDS ViewStateMask view states = DDS ANY VIEW -
STATE, DDS InstanceStateMask instance states =
DDS ANY INSTANCE STATE) [virtual]

Access a collection of data samples from the DDSDataReader (p. 1004).

See also:

FooDataReader::take instance (p. 1350)

6.174.2.9 virtual DDS ReturnCode t DDSKeyedOctets-
DataReader::read next instance (DDS KeyedOctetsSeq
& received data, DDS SampleInfoSeq & info seq,
DDS Long max samples = DDS LENGTH UNLIMITED,
const DDS InstanceHandle t & previous handle
= DDS HANDLE NIL, DDS SampleStateMask
sample states = DDS ANY SAMPLE STATE,
DDS ViewStateMask view states = DDS ANY VIEW -
STATE, DDS InstanceStateMask instance states =
DDS ANY INSTANCE STATE) [virtual]

Access a collection of data samples from the DDSDataReader (p. 1004).

See also:

FooDataReader::read next instance (p. 1351)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1176 Class Documentation

6.174.2.10 virtual DDS ReturnCode t DDSKeyedOctets-
DataReader::take next instance (DDS KeyedOctetsSeq
& received data, DDS SampleInfoSeq & info seq,
DDS Long max samples = DDS LENGTH -
UNLIMITED, const DDS InstanceHandle t
& previous handle = DDS HANDLE NIL,
DDS SampleStateMask sample states =
DDS ANY SAMPLE STATE, DDS ViewStateMask
view states = DDS ANY VIEW STATE,
DDS InstanceStateMask instance states =
DDS ANY INSTANCE STATE) [virtual]

Access a collection of data samples from the DDSDataReader (p. 1004).

See also:

FooDataReader::take next instance (p. 1353)

6.174.2.11 virtual DDS ReturnCode t DDSKeyedOctets-
DataReader::read next instance w condition
(DDS KeyedOctetsSeq & received data,
DDS SampleInfoSeq & info seq, DDS Long
max samples, const DDS InstanceHandle t &
previous handle, DDSReadCondition ∗ condition)
[virtual]

Accesses via DDSKeyedOctetsDataReader::read next instance (p. 1175)
the samples that match the criteria specified in the DDSReadCondition
(p. 1269).

See also:

FooDataReader::read next instance w condition (p. 1355)

6.174.2.12 virtual DDS ReturnCode t DDSKeyedOctets-
DataReader::take next instance w condition
(DDS KeyedOctetsSeq & received data,
DDS SampleInfoSeq & info seq, DDS Long
max samples, const DDS InstanceHandle t &
previous handle, DDSReadCondition ∗ condition)
[virtual]

Accesses via DDSKeyedOctetsDataReader::take next instance (p. 1176)
the samples that match the criteria specified in the DDSReadCondition
(p. 1269).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.174 DDSKeyedOctetsDataReader Class Reference 1177

See also:

FooDataReader::take next instance w condition (p. 1356)

6.174.2.13 virtual DDS ReturnCode t DDSKeyedOctets-
DataReader::return loan (DDS KeyedOctetsSeq
& received data, DDS SampleInfoSeq & info seq)
[virtual]

Indicates to the DDSDataReader (p. 1004) that the application is done ac-
cessing the collection of received data and info seq obtained by some earlier
invocation of read or take on the DDSDataReader (p. 1004).

See also:

FooDataReader::return loan (p. 1358)

6.174.2.14 virtual DDS ReturnCode t DDSKeyedOctets-
DataReader::get key value (DDS KeyedOctets &
key holder, const DDS InstanceHandle t & handle)
[virtual]

Retrieve the instance key that corresponds to an instance handle.

See also:

FooDataReader::get key value (p. 1359)

6.174.2.15 virtual DDS ReturnCode t DDSKeyedOctets-
DataReader::get key value (char ∗ key, const
DDS InstanceHandle t & handle) [virtual]

<<eXtension>> (p. 190) Retrieve the instance key that corresponds to an
instance handle.

See also:

FooDataReader::get key value (p. 1359)

6.174.2.16 virtual DDS InstanceHandle t
DDSKeyedOctetsDataReader::lookup instance (const
DDS KeyedOctets & key holder) [virtual]

Retrieve the instance handle that corresponds to an instance key holder.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1178 Class Documentation

See also:

FooDataReader::lookup instance (p. 1360)

6.174.2.17 virtual DDS InstanceHandle t
DDSKeyedOctetsDataReader::lookup instance (const
char ∗ key) [virtual]

<<eXtension>> (p. 190) Retrieve the instance handle that corresponds to
an instance key.

See also:

FooDataReader::lookup instance (p. 1360)

6.174.2.18 static DDSKeyedOctetsDataReader∗
DDSKeyedOctetsDataReader::narrow (DDSDataReader
∗ reader) [static]

Narrow the given DDSDataReader (p. 1004) pointer to a DDSKeye-
dOctetsDataReader (p. 1169) pointer.

See also:

FooDataReader::narrow (p. 1336)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.175 DDSKeyedOctetsDataWriter Class Reference 1179

6.175 DDSKeyedOctetsDataWriter Class Ref-
erence

<<interface>> (p. 190) Instantiates DataWriter < DDS KeyedOctets
(p. 716) >.

Inheritance diagram for DDSKeyedOctetsDataWriter::

Public Member Functions

ˆ virtual DDS InstanceHandle t register instance (const DDS -
KeyedOctets &instance data)

Informs RTI Data Distribution Service that the application will be modifying
a particular instance.

ˆ virtual DDS InstanceHandle t register instance (const char ∗key)
<<eXtension>> (p. 190) Informs RTI Data Distribution Service that the
application will be modifying a particular instance.

ˆ virtual DDS InstanceHandle t register instance w timestamp
(const DDS KeyedOctets &instance data, const DDS Time t
&source timestamp)

Performs the same functions as DDSKeyedOctetsDataWriter::register -
instance (p. 1182) except that the application provides the value for the
source timestamp.

ˆ virtual DDS InstanceHandle t register instance w timestamp
(const char ∗key, const DDS Time t &source timestamp)

<<eXtension>> (p. 190) Performs the same functions as DDSKeye-
dOctetsDataWriter::register instance (p. 1182) except that the applica-
tion provides the value for the source timestamp.

ˆ virtual DDS ReturnCode t unregister instance (const DDS -
KeyedOctets &instance data, const DDS InstanceHandle t &han-
dle)

Reverses the action of DDSKeyedOctetsDataWriter::register instance
(p. 1182).

ˆ virtual DDS ReturnCode t unregister instance (const char ∗key,
const DDS InstanceHandle t &handle)

<<eXtension>> (p. 190) Reverses the action of DDSKeyedOctets-
DataWriter::register instance (p. 1182).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1180 Class Documentation

ˆ virtual DDS ReturnCode t unregister instance w timestamp
(const DDS KeyedOctets &instance data, const DDS -
InstanceHandle t &handle, const DDS Time t &source timestamp)

Performs the same function as DDSKeyedOctets-
DataWriter::unregister instance (p. 1183) except that it also provides
the value for the source timestamp.

ˆ virtual DDS ReturnCode t unregister instance w timestamp
(const char ∗key, const DDS InstanceHandle t &handle, const
DDS Time t &source timestamp)

Performs the same function as DDSKeyedOctets-
DataWriter::unregister instance (p. 1183) except that it also provides
the value for the source timestamp.

ˆ virtual DDS ReturnCode t write (const DDS KeyedOctets &in-
stance data, const DDS InstanceHandle t &handle)

Modifies the value of a DDS KeyedOctets (p. 716) data instance.

ˆ virtual DDS ReturnCode t write (const char ∗key, const unsigned char
∗octets, int length, const DDS InstanceHandle t &handle)

<<eXtension>> (p. 190) Modifies the value of a DDS KeyedOctets
(p. 716) data instance.

ˆ virtual DDS ReturnCode t write (const char ∗key, const DDS -
OctetSeq &octets, const DDS InstanceHandle t &handle)

<<eXtension>> (p. 190) Modifies the value of a DDS KeyedOctets
(p. 716) data instance.

ˆ virtual DDS ReturnCode t write w timestamp (const DDS -
KeyedOctets &instance data, const DDS InstanceHandle t &handle,
const DDS Time t &source timestamp)

Performs the same function as DDSKeyedOctetsDataWriter::write
(p. 1185) except that it also provides the value for the source timestamp.

ˆ virtual DDS ReturnCode t write w timestamp (const char ∗key,
const unsigned char ∗octets, int length, const DDS InstanceHandle t
&handle, const DDS Time t &source timestamp)

Performs the same function as DDSKeyedOctetsDataWriter::write
(p. 1185) except that it also provides the value for the source timestamp.

ˆ virtual DDS ReturnCode t write w timestamp (const char ∗key,
const DDS OctetSeq &octets, const DDS InstanceHandle t &han-
dle, const DDS Time t &source timestamp)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.175 DDSKeyedOctetsDataWriter Class Reference 1181

Performs the same function as DDSKeyedOctetsDataWriter::write
(p. 1185) except that it also provides the value for the source timestamp.

ˆ virtual DDS ReturnCode t dispose (const DDS KeyedOctets &in-
stance data, const DDS InstanceHandle t &handle)

Requests the middleware to delete the data.

ˆ virtual DDS ReturnCode t dispose (const char ∗key, const DDS -
InstanceHandle t &instance handle)

<<eXtension>> (p. 190) Requests the middleware to delete the data.

ˆ virtual DDS ReturnCode t dispose w timestamp (const DDS -
KeyedOctets &instance data, const DDS InstanceHandle t &handle,
const DDS Time t &source timestamp)

Performs the same functions as DDSKeyedOctetsDataWriter::dispose
(p. 1187) except that the application provides the value for the source -

timestamp that is made available to DDSDataReader (p. 1004) objects
by means of the source timestamp attribute inside the DDS SampleInfo
(p. 855).

ˆ virtual DDS ReturnCode t dispose w timestamp (const char ∗key,
const DDS InstanceHandle t &instance handle, const DDS Time t
&source timestamp)

<<eXtension>> (p. 190) Performs the same functions as DDSKeye-
dOctetsDataWriter::dispose (p. 1187) except that the application pro-
vides the value for the source timestamp that is made available to DDS-
DataReader (p. 1004) objects by means of the source timestamp attribute
inside the DDS SampleInfo (p. 855).

ˆ virtual DDS ReturnCode t get key value (DDS KeyedOctets
&key holder, const DDS InstanceHandle t &handle)

Retrieve the instance key that corresponds to an instance handle.

ˆ virtual DDS ReturnCode t get key value (char ∗key, const DDS -
InstanceHandle t &handle)

<<eXtension>> (p. 190) Retrieve the instance key that corresponds to an
instance handle.

ˆ virtual DDS InstanceHandle t lookup instance (const DDS -
KeyedOctets &key holder)

Retrieve the instance handle that corresponds to an instance key holder.

ˆ virtual DDS InstanceHandle t lookup instance (const char ∗key)
<<eXtension>> (p. 190) Retrieve the instance handle that corresponds to
an instance key.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1182 Class Documentation

Static Public Member Functions

ˆ static DDSKeyedOctetsDataWriter ∗ narrow (DDSDataWriter
∗writer)

Narrow the given DDSDataWriter (p. 1028) pointer to a DDSKeye-
dOctetsDataWriter (p. 1179) pointer.

6.175.1 Detailed Description

<<interface>> (p. 190) Instantiates DataWriter < DDS KeyedOctets
(p. 716) >.

See also:

FooDataWriter (p. 1361)
DDSDataWriter (p. 1028)

6.175.2 Member Function Documentation

6.175.2.1 static DDSKeyedOctetsDataWriter∗
DDSKeyedOctetsDataWriter::narrow (DDSDataWriter ∗
writer) [static]

Narrow the given DDSDataWriter (p. 1028) pointer to a DDSKeyedOctets-
DataWriter (p. 1179) pointer.

See also:

FooDataWriter::narrow (p. 1363)

6.175.2.2 virtual DDS InstanceHandle t
DDSKeyedOctetsDataWriter::register instance (const
DDS KeyedOctets & instance data) [virtual]

Informs RTI Data Distribution Service that the application will be modifying a
particular instance.

See also:

FooDataWriter::register instance (p. 1363)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.175 DDSKeyedOctetsDataWriter Class Reference 1183

6.175.2.3 virtual DDS InstanceHandle t
DDSKeyedOctetsDataWriter::register instance (const
char ∗ key) [virtual]

<<eXtension>> (p. 190) Informs RTI Data Distribution Service that the
application will be modifying a particular instance.

See also:

FooDataWriter::register instance (p. 1363)

6.175.2.4 virtual DDS InstanceHandle t
DDSKeyedOctetsDataWriter::register instance w -
timestamp (const DDS KeyedOctets & instance data,
const DDS Time t & source timestamp) [virtual]

Performs the same functions as DDSKeyedOctetsDataWriter::register -
instance (p. 1182) except that the application provides the value for the
source timestamp.

See also:

FooDataWriter::register instance w timestamp (p. 1364)

6.175.2.5 virtual DDS InstanceHandle t
DDSKeyedOctetsDataWriter::register instance w -
timestamp (const char ∗ key, const DDS Time t &
source timestamp) [virtual]

<<eXtension>> (p. 190) Performs the same functions as DDSKeye-
dOctetsDataWriter::register instance (p. 1182) except that the application
provides the value for the source timestamp.

See also:

FooDataWriter::register instance w timestamp (p. 1364)

6.175.2.6 virtual DDS ReturnCode t DDSKeyedOctets-
DataWriter::unregister instance (const DDS KeyedOctets
& instance data, const DDS InstanceHandle t & handle)
[virtual]

Reverses the action of DDSKeyedOctetsDataWriter::register instance
(p. 1182).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1184 Class Documentation

See also:

FooDataWriter::unregister instance (p. 1365)

6.175.2.7 virtual DDS ReturnCode t DDSKeyedOctets-
DataWriter::unregister instance (const char ∗ key, const
DDS InstanceHandle t & handle) [virtual]

<<eXtension>> (p. 190) Reverses the action of DDSKeyedOctets-
DataWriter::register instance (p. 1182).

See also:

FooDataWriter::unregister instance (p. 1365)

6.175.2.8 virtual DDS ReturnCode t DDSKeyedOctets-
DataWriter::unregister instance w timestamp
(const DDS KeyedOctets & instance data, const
DDS InstanceHandle t & handle, const DDS Time t &
source timestamp) [virtual]

Performs the same function as DDSKeyedOctetsDataWriter::unregister -
instance (p. 1183) except that it also provides the value for the source -
timestamp.

See also:

FooDataWriter::unregister instance w timestamp (p. 1367)

6.175.2.9 virtual DDS ReturnCode t DDSKeyedOctets-
DataWriter::unregister instance w timestamp (const char
∗ key, const DDS InstanceHandle t & handle, const
DDS Time t & source timestamp) [virtual]

Performs the same function as DDSKeyedOctetsDataWriter::unregister -
instance (p. 1183) except that it also provides the value for the source -
timestamp.

See also:

FooDataWriter::unregister instance w timestamp (p. 1367)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.175 DDSKeyedOctetsDataWriter Class Reference 1185

6.175.2.10 virtual DDS ReturnCode t DDSKeyedOctets-
DataWriter::write (const DDS KeyedOctets &
instance data, const DDS InstanceHandle t & handle)
[virtual]

Modifies the value of a DDS KeyedOctets (p. 716) data instance.

See also:

FooDataWriter::write (p. 1368)

6.175.2.11 virtual DDS ReturnCode t DDSKeyedOctets-
DataWriter::write (const char ∗ key, const unsigned
char ∗ octets, int length, const DDS InstanceHandle t
& handle) [virtual]

<<eXtension>> (p. 190) Modifies the value of a DDS KeyedOctets
(p. 716) data instance.

Parameters:

key <<in>> (p. 191) Instance key.

octets <<in>> (p. 191) Array of octets to be published.

length <<in>> (p. 191) Number of octets to be published.

handle <<in>> (p. 191) Either the handle returned by a previous call
to DDSKeyedOctetsDataWriter::register instance (p. 1182), or
else the special value DDS HANDLE NIL (p. 54). See Foo-
DataWriter::write (p. 1368).

See also:

FooDataWriter::write (p. 1368)

6.175.2.12 virtual DDS ReturnCode t DDSKeyedOctets-
DataWriter::write (const char ∗ key, const
DDS OctetSeq & octets, const DDS InstanceHandle t
& handle) [virtual]

<<eXtension>> (p. 190) Modifies the value of a DDS KeyedOctets
(p. 716) data instance.

Parameters:

key <<in>> (p. 191) Instance key.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1186 Class Documentation

octets <<in>> (p. 191) Sequence of octets to be published.
handle <<in>> (p. 191) Either the handle returned by a previous call

to DDSKeyedOctetsDataWriter::register instance (p. 1182), or
else the special value DDS HANDLE NIL (p. 54). See Foo-
DataWriter::write (p. 1368).

See also:

FooDataWriter::write (p. 1368)

6.175.2.13 virtual DDS ReturnCode t DDSKeye-
dOctetsDataWriter::write w timestamp (const
DDS KeyedOctets & instance data, const
DDS InstanceHandle t & handle, const DDS Time t &
source timestamp) [virtual]

Performs the same function as DDSKeyedOctetsDataWriter::write
(p. 1185) except that it also provides the value for the source timestamp.

See also:

FooDataWriter::write w timestamp (p. 1371)

6.175.2.14 virtual DDS ReturnCode t DDSKeyedOctets-
DataWriter::write w timestamp (const char ∗ key,
const unsigned char ∗ octets, int length, const
DDS InstanceHandle t & handle, const DDS Time t &
source timestamp) [virtual]

Performs the same function as DDSKeyedOctetsDataWriter::write
(p. 1185) except that it also provides the value for the source timestamp.

Parameters:

key <<in>> (p. 191) Instance key.
octets <<in>> (p. 191) Array of octets to be published.
length <<in>> (p. 191) Number of octets to be published.
handle <<in>> (p. 191) Either the handle returned by a previous call

to DDSKeyedOctetsDataWriter::register instance (p. 1182), or
else the special value DDS HANDLE NIL (p. 54). See Foo-
DataWriter::write (p. 1368).

source timestamp <<in>> (p. 191) The timestamp value must be
greater than or equal to the timestamp value used in the last writer
operation. See FooDataWriter::write w timestamp (p. 1371).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.175 DDSKeyedOctetsDataWriter Class Reference 1187

See also:

FooDataWriter::write (p. 1368)

6.175.2.15 virtual DDS ReturnCode t DDSKeyedOctets-
DataWriter::write w timestamp (const char ∗ key, const
DDS OctetSeq & octets, const DDS InstanceHandle t
& handle, const DDS Time t & source timestamp)
[virtual]

Performs the same function as DDSKeyedOctetsDataWriter::write
(p. 1185) except that it also provides the value for the source timestamp.

Parameters:

key <<in>> (p. 191) Instance key.

octets <<in>> (p. 191) Sequence of octets to be published.

handle <<in>> (p. 191) Either the handle returned by a previous call
to DDSKeyedOctetsDataWriter::register instance (p. 1182), or
else the special value DDS HANDLE NIL (p. 54). See Foo-
DataWriter::write (p. 1368).

source timestamp <<in>> (p. 191) The timestamp value must be
greater than or equal to the timestamp value used in the last writer
operation. See FooDataWriter::write w timestamp (p. 1371).

See also:

FooDataWriter::write (p. 1368)

6.175.2.16 virtual DDS ReturnCode t DDSKeyedOctets-
DataWriter::dispose (const DDS KeyedOctets &
instance data, const DDS InstanceHandle t & handle)
[virtual]

Requests the middleware to delete the data.

See also:

FooDataWriter::dispose (p. 1372)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1188 Class Documentation

6.175.2.17 virtual DDS ReturnCode t DDSKeyedOctets-
DataWriter::dispose (const char ∗ key, const
DDS InstanceHandle t & instance handle) [virtual]

<<eXtension>> (p. 190) Requests the middleware to delete the data.

See also:

FooDataWriter::dispose (p. 1372)

6.175.2.18 virtual DDS ReturnCode t DDSKeyedOctets-
DataWriter::dispose w timestamp (const
DDS KeyedOctets & instance data, const
DDS InstanceHandle t & handle, const DDS Time t &
source timestamp) [virtual]

Performs the same functions as DDSKeyedOctetsDataWriter::dispose
(p. 1187) except that the application provides the value for the source -
timestamp that is made available to DDSDataReader (p. 1004) objects
by means of the source timestamp attribute inside the DDS SampleInfo
(p. 855).

See also:

FooDataWriter::dispose w timestamp (p. 1374)

6.175.2.19 virtual DDS ReturnCode t DDSKeyedOctets-
DataWriter::dispose w timestamp (const char ∗ key,
const DDS InstanceHandle t & instance handle, const
DDS Time t & source timestamp) [virtual]

<<eXtension>> (p. 190) Performs the same functions as DDSKeye-
dOctetsDataWriter::dispose (p. 1187) except that the application pro-
vides the value for the source timestamp that is made available to DDS-
DataReader (p. 1004) objects by means of the source timestamp attribute
inside the DDS SampleInfo (p. 855).

See also:

FooDataWriter::dispose w timestamp (p. 1374)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.175 DDSKeyedOctetsDataWriter Class Reference 1189

6.175.2.20 virtual DDS ReturnCode t DDSKeyedOctets-
DataWriter::get key value (DDS KeyedOctets &
key holder, const DDS InstanceHandle t & handle)
[virtual]

Retrieve the instance key that corresponds to an instance handle.

See also:

FooDataWriter::get key value (p. 1375)

6.175.2.21 virtual DDS ReturnCode t DDSKeyedOctets-
DataWriter::get key value (char ∗ key, const
DDS InstanceHandle t & handle) [virtual]

<<eXtension>> (p. 190) Retrieve the instance key that corresponds to an
instance handle.

See also:

FooDataWriter::get key value (p. 1375)

6.175.2.22 virtual DDS InstanceHandle t
DDSKeyedOctetsDataWriter::lookup instance (const
DDS KeyedOctets & key holder) [virtual]

Retrieve the instance handle that corresponds to an instance key holder.

See also:

FooDataWriter::lookup instance (p. 1376)

6.175.2.23 virtual DDS InstanceHandle t
DDSKeyedOctetsDataWriter::lookup instance (const
char ∗ key) [virtual]

<<eXtension>> (p. 190) Retrieve the instance handle that corresponds to
an instance key.

See also:

FooDataWriter::lookup instance (p. 1376)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1190 Class Documentation

6.176 DDSKeyedOctetsTypeSupport Class Ref-
erence

<<interface>> (p. 190) DDS KeyedOctets (p. 716) type support.

Inheritance diagram for DDSKeyedOctetsTypeSupport::

Static Public Member Functions

ˆ static DDS ReturnCode t register type (DDSDomainParticipant
∗participant, const char ∗type name=”DDS::KeyedOctets”)

Allows an application to communicate to RTI Data Distribution Service the
existence of the DDS KeyedOctets (p. 716) data type.

ˆ static DDS ReturnCode t unregister type (DDSDomainPartici-
pant ∗participant, const char ∗type name=”DDS::KeyedOctets”)

Allows an application to unregister the DDS KeyedOctets (p. 716) data
type from RTI Data Distribution Service. After calling unregister type, no
further communication using this type is possible.

ˆ static const char ∗ get type name ()

Get the default name for the DDS KeyedOctets (p. 716) type.

ˆ static void print data (const DDS KeyedOctets ∗a data)

<<eXtension>> (p. 190) Print value of data type to standard out.

6.176.1 Detailed Description

<<interface>> (p. 190) DDS KeyedOctets (p. 716) type support.

6.176.2 Member Function Documentation

6.176.2.1 static DDS ReturnCode t DDSKeyedOctetsTypeSup-
port::register type (DDSDomainParticipant ∗ participant,
const char ∗ type name = "DDS::KeyedOctets") [static]

Allows an application to communicate to RTI Data Distribution Service the
existence of the DDS KeyedOctets (p. 716) data type.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.176 DDSKeyedOctetsTypeSupport Class Reference 1191

By default, The DDS KeyedOctets (p. 716) built-in type is automatically
registered when a DomainParticipant is created using the type name returned
by DDSKeyedOctetsTypeSupport::get type name (p. 1192). Therefore,
the usage of this function is optional and it is only required when the automatic
built-in type registration is disabled using the participant property ”dds.builtin -
type.auto register”.

This method can also be used to register the same DDSKeyedOctetsType-
Support (p. 1190) with a DDSDomainParticipant (p. 1054) using different
values for the type name.

If register type is called multiple times with the same DDSDomainPartic-
ipant (p. 1054) and type name, the second (and subsequent) registrations are
ignored by the operation.

Parameters:

participant <<in>> (p. 191) the DDSDomainParticipant (p. 1054)
to register the data type DDS Octets (p. 748) with. Cannot be
NULL.

type name <<in>> (p. 191) the type name under with the data type
DDS KeyedOctets (p. 716) is registered with the participant; this
type name is used when creating a new DDSTopic (p. 1311). (See
DDSDomainParticipant::create topic (p. 1089).) The name may
not be NULL or longer than 255 characters.

Returns:

One of the Standard Return Codes (p. 302), DDS RETCODE -
PRECONDITION NOT MET (p. 303) or DDS RETCODE OUT -
OF RESOURCES (p. 303).

MT Safety:

UNSAFE on the FIRST call. It is not safe for two threads to simultaneously
make the first call to register a type. Subsequent calls are thread safe.

See also:

DDSDomainParticipant::create topic (p. 1089)

6.176.2.2 static DDS ReturnCode t DDSKeyedOctetsType-
Support::unregister type (DDSDomainParticipant
∗ participant, const char ∗ type name =
"DDS::KeyedOctets") [static]

Allows an application to unregister the DDS KeyedOctets (p. 716) data type
from RTI Data Distribution Service. After calling unregister type, no further

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1192 Class Documentation

communication using this type is possible.

Precondition:

The DDS KeyedOctets (p. 716) type with type name is registered with
the participant and all DDSTopic (p. 1311) objects referencing the type
have been destroyed. If the type is not registered with the participant, or
if any DDSTopic (p. 1311) is associated with the type, the operation will
fail with DDS RETCODE ERROR (p. 303).

Postcondition:

All information about the type is removed from RTI Data Distribution
Service. No further communication using this type is possible.

Parameters:

participant <<in>> (p. 191) the DDSDomainParticipant (p. 1054)
to unregister the data type DDS KeyedOctets (p. 716) from. Can-
not be NULL.

type name <<in>> (p. 191) the type name under with the data type
DDS KeyedOctets (p. 716) is registered with the participant. The
name should match a name that has been previously used to register
a type with the participant. Cannot be NULL.

Returns:

One of the Standard Return Codes (p. 302), DDS RETCODE -
BAD PARAMETER (p. 303) or DDS RETCODE ERROR (p. 303)

MT Safety:

SAFE.

See also:

DDSKeyedOctetsTypeSupport::register type (p. 1190)

6.176.2.3 static const char∗ DDSKeyedOctetsTypeSupport::get -
type name () [static]

Get the default name for the DDS KeyedOctets (p. 716) type.

Can be used for calling DDSKeyedOctetsTypeSupport::register type
(p. 1190) or creating DDSTopic (p. 1311).

Returns:

default name for the DDS KeyedOctets (p. 716) type.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.176 DDSKeyedOctetsTypeSupport Class Reference 1193

See also:

DDSKeyedOctetsTypeSupport::register type (p. 1190)
DDSDomainParticipant::create topic (p. 1089)

6.176.2.4 static void DDSKeyedOctetsTypeSupport::print data
(const DDS KeyedOctets ∗ a data) [static]

<<eXtension>> (p. 190) Print value of data type to standard out.

The generated implementation of the operation knows how to print value of a
data type.

Parameters:

a data <<in>> (p. 191) DDS KeyedOctets (p. 716) to be printed.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1194 Class Documentation

6.177 DDSKeyedStringDataReader Class Ref-
erence

<<interface>> (p. 190) Instantiates DataReader < DDS KeyedString
(p. 719) >.

Inheritance diagram for DDSKeyedStringDataReader::

Public Member Functions

ˆ virtual DDS ReturnCode t read (DDS KeyedStringSeq
&received data, DDS SampleInfoSeq &info seq, DDS -
Long max samples=DDS LENGTH UNLIMITED, DDS -
SampleStateMask sample states=DDS ANY SAMPLE -
STATE, DDS ViewStateMask view states=DDS ANY VIEW -
STATE, DDS InstanceStateMask instance states=DDS ANY -
INSTANCE STATE)

Access a collection of data samples from the DDSDataReader (p. 1004).

ˆ virtual DDS ReturnCode t take (DDS KeyedStringSeq
&received data, DDS SampleInfoSeq &info seq, DDS -
Long max samples=DDS LENGTH UNLIMITED, DDS -
SampleStateMask sample states=DDS ANY SAMPLE -
STATE, DDS ViewStateMask view states=DDS ANY VIEW -
STATE, DDS InstanceStateMask instance states=DDS ANY -
INSTANCE STATE)

Access a collection of data-samples from the DDSDataReader (p. 1004).

ˆ virtual DDS ReturnCode t read w condition (DDS -
KeyedStringSeq &received data, DDS SampleInfoSeq &info seq,
DDS Long max samples, DDSReadCondition ∗condition)

Accesses via DDSKeyedStringDataReader::read (p. 1197) the samples
that match the criteria specified in the DDSReadCondition (p. 1269).

ˆ virtual DDS ReturnCode t take w condition (DDS -
KeyedStringSeq &received data, DDS SampleInfoSeq &info seq,
DDS Long max samples, DDSReadCondition ∗condition)

Analogous to DDSKeyedStringDataReader::read w condition (p. 1198)
except it accesses samples via the DDSKeyedStringDataReader::take
(p. 1198) operation.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.177 DDSKeyedStringDataReader Class Reference 1195

ˆ virtual DDS ReturnCode t read next sample (DDS KeyedString
&received data, DDS SampleInfo &sample info)

Copies the next not-previously-accessed data value from the DDS-
DataReader (p. 1004).

ˆ virtual DDS ReturnCode t take next sample (DDS KeyedString
&received data, DDS SampleInfo &sample info)

Copies the next not-previously-accessed data value from the DDS-
DataReader (p. 1004).

ˆ virtual DDS ReturnCode t read instance (DDS KeyedStringSeq
&received data, DDS SampleInfoSeq &info seq, DDS Long
max samples=DDS LENGTH UNLIMITED, const DDS -
InstanceHandle t &a handle=DDS HANDLE NIL, DDS -
SampleStateMask sample states=DDS ANY SAMPLE -
STATE, DDS ViewStateMask view states=DDS ANY VIEW -
STATE, DDS InstanceStateMask instance states=DDS ANY -
INSTANCE STATE)

Access a collection of data samples from the DDSDataReader (p. 1004).

ˆ virtual DDS ReturnCode t take instance (DDS KeyedStringSeq
&received data, DDS SampleInfoSeq &info seq, DDS Long
max samples=DDS LENGTH UNLIMITED, const DDS -
InstanceHandle t &a handle=DDS HANDLE NIL, DDS -
SampleStateMask sample states=DDS ANY SAMPLE -
STATE, DDS ViewStateMask view states=DDS ANY VIEW -
STATE, DDS InstanceStateMask instance states=DDS ANY -
INSTANCE STATE)

Access a collection of data samples from the DDSDataReader (p. 1004).

ˆ virtual DDS ReturnCode t read next instance (DDS -
KeyedStringSeq &received data, DDS SampleInfoSeq &info seq,
DDS Long max samples=DDS LENGTH UNLIMITED, const
DDS InstanceHandle t &previous handle=DDS HANDLE NIL,
DDS SampleStateMask sample states=DDS ANY SAMPLE -
STATE, DDS ViewStateMask view states=DDS ANY VIEW -
STATE, DDS InstanceStateMask instance states=DDS ANY -
INSTANCE STATE)

Access a collection of data samples from the DDSDataReader (p. 1004).

ˆ virtual DDS ReturnCode t take next instance (DDS -
KeyedStringSeq &received data, DDS SampleInfoSeq &info seq,
DDS Long max samples=DDS LENGTH UNLIMITED, const
DDS InstanceHandle t &previous handle=DDS HANDLE NIL,

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1196 Class Documentation

DDS SampleStateMask sample states=DDS ANY SAMPLE -
STATE, DDS ViewStateMask view states=DDS ANY VIEW -
STATE, DDS InstanceStateMask instance states=DDS ANY -
INSTANCE STATE)

Access a collection of data samples from the DDSDataReader (p. 1004).

ˆ virtual DDS ReturnCode t read next instance w condition
(DDS KeyedStringSeq &received data, DDS SampleInfoSeq
&info seq, DDS Long max samples, const DDS InstanceHandle t
&previous handle, DDSReadCondition ∗condition)

Accesses via DDSKeyedStringDataReader::read next instance
(p. 1200) the samples that match the criteria specified in the DDSRead-
Condition (p. 1269).

ˆ virtual DDS ReturnCode t take next instance w condition
(DDS KeyedStringSeq &received data, DDS SampleInfoSeq
&info seq, DDS Long max samples, const DDS InstanceHandle t
&previous handle, DDSReadCondition ∗condition)

Accesses via DDSKeyedStringDataReader::take next instance
(p. 1201) the samples that match the criteria specified in the DDSRead-
Condition (p. 1269).

ˆ virtual DDS ReturnCode t return loan (DDS KeyedStringSeq
&received data, DDS SampleInfoSeq &info seq)

Indicates to the DDSDataReader (p. 1004) that the application is done
accessing the collection of received data and info seq obtained by some
earlier invocation of read or take on the DDSDataReader (p. 1004).

ˆ virtual DDS ReturnCode t get key value (DDS KeyedString
&key holder, const DDS InstanceHandle t &handle)

Retrieve the instance key that corresponds to an instance handle.

ˆ virtual DDS ReturnCode t get key value (char ∗key, const DDS -
InstanceHandle t &handle)

<<eXtension>> (p. 190) Retrieve the instance key that corresponds to an
instance handle.

ˆ virtual DDS InstanceHandle t lookup instance (const DDS -
KeyedString &key holder)

Retrieve the instance handle that corresponds to an instance key holder.

ˆ virtual DDS InstanceHandle t lookup instance (const char ∗key)
<<eXtension>> (p. 190) Retrieve the instance handle that corresponds to
an instance key.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.177 DDSKeyedStringDataReader Class Reference 1197

Static Public Member Functions

ˆ static DDSKeyedStringDataReader ∗ narrow (DDSDataReader
∗reader)

Narrow the given DDSDataReader (p. 1004) pointer to a DDSKeyed-
StringDataReader (p. 1194) pointer.

6.177.1 Detailed Description

<<interface>> (p. 190) Instantiates DataReader < DDS KeyedString
(p. 719) >.

When reading or taking data with this reader, if you request a copy of the
samples instead of a loan, and a string in a destination data sample is NULL,
the middleware will allocate a new string for you of sufficient length to hold
the received string. The new string will be allocated with DDS String alloc
(p. 433); the sample’s destructor will delete it.

A non- NULL string is assumed to be allocated to sufficient length to store the
incoming data. It will not be reallocated.

See also:

FooDataReader (p. 1334)
DDSDataReader (p. 1004)

6.177.2 Member Function Documentation

6.177.2.1 virtual DDS ReturnCode t DDSKeyedString-
DataReader::read (DDS KeyedStringSeq & received data,
DDS SampleInfoSeq & info seq, DDS Long
max samples = DDS LENGTH UNLIMITED,
DDS SampleStateMask sample states =
DDS ANY SAMPLE STATE, DDS ViewStateMask
view states = DDS ANY VIEW STATE,
DDS InstanceStateMask instance states =
DDS ANY INSTANCE STATE) [virtual]

Access a collection of data samples from the DDSDataReader (p. 1004).

See also:

FooDataReader::read (p. 1337)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1198 Class Documentation

6.177.2.2 virtual DDS ReturnCode t DDSKeyedString-
DataReader::take (DDS KeyedStringSeq & received data,
DDS SampleInfoSeq & info seq, DDS Long
max samples = DDS LENGTH UNLIMITED,
DDS SampleStateMask sample states =
DDS ANY SAMPLE STATE, DDS ViewStateMask
view states = DDS ANY VIEW STATE,
DDS InstanceStateMask instance states =
DDS ANY INSTANCE STATE) [virtual]

Access a collection of data-samples from the DDSDataReader (p. 1004).

See also:

FooDataReader::take (p. 1338)

6.177.2.3 virtual DDS ReturnCode t DDSKeyedString-
DataReader::read w condition (DDS KeyedStringSeq
& received data, DDS SampleInfoSeq & info seq,
DDS Long max samples, DDSReadCondition ∗
condition) [virtual]

Accesses via DDSKeyedStringDataReader::read (p. 1197) the samples that
match the criteria specified in the DDSReadCondition (p. 1269).

See also:

FooDataReader::read w condition (p. 1344)

6.177.2.4 virtual DDS ReturnCode t DDSKeyedString-
DataReader::take w condition (DDS KeyedStringSeq
& received data, DDS SampleInfoSeq & info seq,
DDS Long max samples, DDSReadCondition ∗
condition) [virtual]

Analogous to DDSKeyedStringDataReader::read w condition (p. 1198)
except it accesses samples via the DDSKeyedStringDataReader::take
(p. 1198) operation.

See also:

FooDataReader::take w condition (p. 1345)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.177 DDSKeyedStringDataReader Class Reference 1199

6.177.2.5 virtual DDS ReturnCode t DDSKeyedString-
DataReader::read next sample (DDS KeyedString
& received data, DDS SampleInfo & sample info)
[virtual]

Copies the next not-previously-accessed data value from the DDSDataReader
(p. 1004).

See also:

FooDataReader::read next sample (p. 1346)

6.177.2.6 virtual DDS ReturnCode t DDSKeyedString-
DataReader::take next sample (DDS KeyedString
& received data, DDS SampleInfo & sample info)
[virtual]

Copies the next not-previously-accessed data value from the DDSDataReader
(p. 1004).

See also:

FooDataReader::take next sample (p. 1347)

6.177.2.7 virtual DDS ReturnCode t DDSKeyedString-
DataReader::read instance (DDS KeyedStringSeq
& received data, DDS SampleInfoSeq & info seq,
DDS Long max samples = DDS LENGTH UNLIMITED,
const DDS InstanceHandle t & a handle =
DDS HANDLE NIL, DDS SampleStateMask
sample states = DDS ANY SAMPLE STATE,
DDS ViewStateMask view states = DDS ANY VIEW -
STATE, DDS InstanceStateMask instance states =
DDS ANY INSTANCE STATE) [virtual]

Access a collection of data samples from the DDSDataReader (p. 1004).

See also:

FooDataReader::read instance (p. 1348)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1200 Class Documentation

6.177.2.8 virtual DDS ReturnCode t DDSKeyedString-
DataReader::take instance (DDS KeyedStringSeq
& received data, DDS SampleInfoSeq & info seq,
DDS Long max samples = DDS LENGTH UNLIMITED,
const DDS InstanceHandle t & a handle =
DDS HANDLE NIL, DDS SampleStateMask
sample states = DDS ANY SAMPLE STATE,
DDS ViewStateMask view states = DDS ANY VIEW -
STATE, DDS InstanceStateMask instance states =
DDS ANY INSTANCE STATE) [virtual]

Access a collection of data samples from the DDSDataReader (p. 1004).

See also:

FooDataReader::take instance (p. 1350)

6.177.2.9 virtual DDS ReturnCode t DDSKeyedString-
DataReader::read next instance (DDS KeyedStringSeq
& received data, DDS SampleInfoSeq & info seq,
DDS Long max samples = DDS LENGTH UNLIMITED,
const DDS InstanceHandle t & previous handle
= DDS HANDLE NIL, DDS SampleStateMask
sample states = DDS ANY SAMPLE STATE,
DDS ViewStateMask view states = DDS ANY VIEW -
STATE, DDS InstanceStateMask instance states =
DDS ANY INSTANCE STATE) [virtual]

Access a collection of data samples from the DDSDataReader (p. 1004).

See also:

FooDataReader::read next instance (p. 1351)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.177 DDSKeyedStringDataReader Class Reference 1201

6.177.2.10 virtual DDS ReturnCode t DDSKeyedString-
DataReader::take next instance (DDS KeyedStringSeq
& received data, DDS SampleInfoSeq & info seq,
DDS Long max samples = DDS LENGTH -
UNLIMITED, const DDS InstanceHandle t
& previous handle = DDS HANDLE NIL,
DDS SampleStateMask sample states =
DDS ANY SAMPLE STATE, DDS ViewStateMask
view states = DDS ANY VIEW STATE,
DDS InstanceStateMask instance states =
DDS ANY INSTANCE STATE) [virtual]

Access a collection of data samples from the DDSDataReader (p. 1004).

See also:

FooDataReader::take next instance (p. 1353)

6.177.2.11 virtual DDS ReturnCode t DDSKeyedString-
DataReader::read next instance w condition
(DDS KeyedStringSeq & received data,
DDS SampleInfoSeq & info seq, DDS Long
max samples, const DDS InstanceHandle t &
previous handle, DDSReadCondition ∗ condition)
[virtual]

Accesses via DDSKeyedStringDataReader::read next instance (p. 1200)
the samples that match the criteria specified in the DDSReadCondition
(p. 1269).

See also:

FooDataReader::read next instance w condition (p. 1355)

6.177.2.12 virtual DDS ReturnCode t DDSKeyedString-
DataReader::take next instance w condition
(DDS KeyedStringSeq & received data,
DDS SampleInfoSeq & info seq, DDS Long
max samples, const DDS InstanceHandle t &
previous handle, DDSReadCondition ∗ condition)
[virtual]

Accesses via DDSKeyedStringDataReader::take next instance (p. 1201)
the samples that match the criteria specified in the DDSReadCondition
(p. 1269).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1202 Class Documentation

See also:

FooDataReader::take next instance w condition (p. 1356)

6.177.2.13 virtual DDS ReturnCode t DDSKeyedString-
DataReader::return loan (DDS KeyedStringSeq &
received data, DDS SampleInfoSeq & info seq)
[virtual]

Indicates to the DDSDataReader (p. 1004) that the application is done ac-
cessing the collection of received data and info seq obtained by some earlier
invocation of read or take on the DDSDataReader (p. 1004).

See also:

FooDataReader::return loan (p. 1358)

6.177.2.14 virtual DDS ReturnCode t DDSKeyedString-
DataReader::get key value (DDS KeyedString &
key holder, const DDS InstanceHandle t & handle)
[virtual]

Retrieve the instance key that corresponds to an instance handle.

See also:

FooDataReader::get key value (p. 1359)

6.177.2.15 virtual DDS ReturnCode t DDSKeyedString-
DataReader::get key value (char ∗ key, const
DDS InstanceHandle t & handle) [virtual]

<<eXtension>> (p. 190) Retrieve the instance key that corresponds to an
instance handle.

See also:

FooDataReader::get key value (p. 1359)

6.177.2.16 virtual DDS InstanceHandle t
DDSKeyedStringDataReader::lookup instance (const
DDS KeyedString & key holder) [virtual]

Retrieve the instance handle that corresponds to an instance key holder.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.177 DDSKeyedStringDataReader Class Reference 1203

See also:

FooDataReader::lookup instance (p. 1360)

6.177.2.17 virtual DDS InstanceHandle t
DDSKeyedStringDataReader::lookup instance (const
char ∗ key) [virtual]

<<eXtension>> (p. 190) Retrieve the instance handle that corresponds to
an instance key.

See also:

FooDataReader::lookup instance (p. 1360)

6.177.2.18 static DDSKeyedStringDataReader∗
DDSKeyedStringDataReader::narrow (DDSDataReader
∗ reader) [static]

Narrow the given DDSDataReader (p. 1004) pointer to a DDSKeyedString-
DataReader (p. 1194) pointer.

See also:

FooDataReader::narrow (p. 1336)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1204 Class Documentation

6.178 DDSKeyedStringDataWriter Class Refer-
ence

<<interface>> (p. 190) Instantiates DataWriter < DDS KeyedString
(p. 719) >.

Inheritance diagram for DDSKeyedStringDataWriter::

Public Member Functions

ˆ virtual DDS InstanceHandle t register instance (const DDS -
KeyedString &instance data)

Informs RTI Data Distribution Service that the application will be modifying
a particular instance.

ˆ virtual DDS InstanceHandle t register instance (const char ∗key)
<<eXtension>> (p. 190) Informs RTI Data Distribution Service that the
application will be modifying a particular instance.

ˆ virtual DDS InstanceHandle t register instance w timestamp
(const DDS KeyedString &instance data, const DDS Time t
&source timestamp)

Performs the same functions as DDSKeyedStringDataWriter::register -
instance (p. 1207) except that the application provides the value for the
source timestamp.

ˆ virtual DDS InstanceHandle t register instance w timestamp
(const char ∗key, const DDS Time t &source timestamp)

<<eXtension>> (p. 190) Performs the same functions as DDSKeyed-
StringDataWriter::register instance (p. 1207) except that the applica-
tion provides the value for the source timestamp.

ˆ virtual DDS ReturnCode t unregister instance (const DDS -
KeyedString &instance data, const DDS InstanceHandle t &han-
dle)

Reverses the action of DDSKeyedStringDataWriter::register instance
(p. 1207).

ˆ virtual DDS ReturnCode t unregister instance (const char ∗key,
const DDS InstanceHandle t &handle)

<<eXtension>> (p. 190) Reverses the action of DDSKeyedString-
DataWriter::register instance (p. 1207).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.178 DDSKeyedStringDataWriter Class Reference 1205

ˆ virtual DDS ReturnCode t unregister instance w timestamp
(const DDS KeyedString &instance data, const DDS -
InstanceHandle t &handle, const DDS Time t &source timestamp)

Performs the same function as DDSKeyedString-
DataWriter::unregister instance (p. 1208) except that it also provides
the value for the source timestamp.

ˆ virtual DDS ReturnCode t unregister instance w timestamp
(const char ∗key, const DDS InstanceHandle t &handle, const
DDS Time t &source timestamp)

<<eXtension>> (p. 190) Performs the same function as DDSKeyed-
StringDataWriter::unregister instance (p. 1208) except that it also pro-
vides the value for the source timestamp.

ˆ virtual DDS ReturnCode t write (const DDS KeyedString &in-
stance data, const DDS InstanceHandle t &handle)

Modifies the value of a DDS KeyedString (p. 719) data instance.

ˆ virtual DDS ReturnCode t write (const char ∗key, const char ∗str,
const DDS InstanceHandle t &handle)

<<eXtension>> (p. 190) Modifies the value of a DDS KeyedString
(p. 719) data instance.

ˆ virtual DDS ReturnCode t write w timestamp (const DDS -
KeyedString &instance data, const DDS InstanceHandle t &handle,
const DDS Time t &source timestamp)

Performs the same function as DDSKeyedStringDataWriter::write
(p. 1209) except that it also provides the value for the source timestamp.

ˆ virtual DDS ReturnCode t write w timestamp (const char ∗key,
const char ∗str, const DDS InstanceHandle t &handle, const DDS -
Time t &source timestamp)

<<eXtension>> (p. 190) Performs the same function as DDSKeyed-
StringDataWriter::write (p. 1209) except that it also provides the value
for the source timestamp.

ˆ virtual DDS ReturnCode t dispose (const DDS KeyedString &in-
stance data, const DDS InstanceHandle t &handle)

Requests the middleware to delete the data.

ˆ virtual DDS ReturnCode t dispose (const char ∗key, const DDS -
InstanceHandle t &instance handle)

<<eXtension>> (p. 190) Requests the middleware to delete the data.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1206 Class Documentation

ˆ virtual DDS ReturnCode t dispose w timestamp (const DDS -
KeyedString &instance data, const DDS InstanceHandle t &handle,
const DDS Time t &source timestamp)

Performs the same functions as DDSKeyedStringDataWriter::dispose
(p. 1210) except that the application provides the value for the source -

timestamp that is made available to DDSDataReader (p. 1004) objects
by means of the source timestamp attribute inside the DDS SampleInfo
(p. 855).

ˆ virtual DDS ReturnCode t dispose w timestamp (const char ∗key,
const DDS InstanceHandle t &instance handle, const DDS Time t
&source timestamp)

<<eXtension>> (p. 190) Performs the same functions as DDSKeyed-
StringDataWriter::dispose (p. 1210) except that the application pro-
vides the value for the source timestamp that is made available to DDS-
DataReader (p. 1004) objects by means of the source timestamp attribute
inside the DDS SampleInfo (p. 855).

ˆ virtual DDS ReturnCode t get key value (DDS KeyedString
&key holder, const DDS InstanceHandle t &handle)

Retrieve the instance key that corresponds to an instance handle.

ˆ virtual DDS ReturnCode t get key value (char ∗key, const DDS -
InstanceHandle t &handle)

<<eXtension>> (p. 190) Retrieve the instance key that corresponds to an
instance handle.

ˆ virtual DDS InstanceHandle t lookup instance (const DDS -
KeyedString &key holder)

Retrieve the instance handle that corresponds to an instance key holder.

ˆ virtual DDS InstanceHandle t lookup instance (const char ∗key)

<<eXtension>> (p. 190) Retrieve the instance handle that corresponds to
an instance key.

Static Public Member Functions

ˆ static DDSKeyedStringDataWriter ∗ narrow (DDSDataWriter
∗writer)

Narrow the given DDSDataWriter (p. 1028) pointer to a DDSKeyed-
StringDataWriter (p. 1204) pointer.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.178 DDSKeyedStringDataWriter Class Reference 1207

6.178.1 Detailed Description

<<interface>> (p. 190) Instantiates DataWriter < DDS KeyedString
(p. 719) >.

See also:

FooDataWriter (p. 1361)
DDSDataWriter (p. 1028)

6.178.2 Member Function Documentation

6.178.2.1 static DDSKeyedStringDataWriter∗
DDSKeyedStringDataWriter::narrow (DDSDataWriter ∗
writer) [static]

Narrow the given DDSDataWriter (p. 1028) pointer to a DDSKeyedString-
DataWriter (p. 1204) pointer.

See also:

FooDataWriter::narrow (p. 1363)

6.178.2.2 virtual DDS InstanceHandle t
DDSKeyedStringDataWriter::register instance (const
DDS KeyedString & instance data) [virtual]

Informs RTI Data Distribution Service that the application will be modifying a
particular instance.

See also:

FooDataWriter::register instance (p. 1363)

6.178.2.3 virtual DDS InstanceHandle t
DDSKeyedStringDataWriter::register instance (const
char ∗ key) [virtual]

<<eXtension>> (p. 190) Informs RTI Data Distribution Service that the
application will be modifying a particular instance.

See also:

FooDataWriter::register instance (p. 1363)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1208 Class Documentation

6.178.2.4 virtual DDS InstanceHandle t
DDSKeyedStringDataWriter::register instance w -
timestamp (const DDS KeyedString & instance data,
const DDS Time t & source timestamp) [virtual]

Performs the same functions as DDSKeyedStringDataWriter::register -
instance (p. 1207) except that the application provides the value for the
source timestamp.

See also:

FooDataWriter::register instance w timestamp (p. 1364)

6.178.2.5 virtual DDS InstanceHandle t
DDSKeyedStringDataWriter::register instance w -
timestamp (const char ∗ key, const DDS Time t &
source timestamp) [virtual]

<<eXtension>> (p. 190) Performs the same functions as DDSKeyed-
StringDataWriter::register instance (p. 1207) except that the application
provides the value for the source timestamp.

See also:

FooDataWriter::register instance w timestamp (p. 1364)

6.178.2.6 virtual DDS ReturnCode t DDSKeyedString-
DataWriter::unregister instance (const DDS KeyedString
& instance data, const DDS InstanceHandle t & handle)
[virtual]

Reverses the action of DDSKeyedStringDataWriter::register instance
(p. 1207).

See also:

FooDataWriter::unregister instance (p. 1365)

6.178.2.7 virtual DDS ReturnCode t DDSKeyedString-
DataWriter::unregister instance (const char ∗ key, const
DDS InstanceHandle t & handle) [virtual]

<<eXtension>> (p. 190) Reverses the action of DDSKeyedString-
DataWriter::register instance (p. 1207).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.178 DDSKeyedStringDataWriter Class Reference 1209

See also:

FooDataWriter::unregister instance (p. 1365)

6.178.2.8 virtual DDS ReturnCode t DDSKeyedString-
DataWriter::unregister instance w timestamp
(const DDS KeyedString & instance data, const
DDS InstanceHandle t & handle, const DDS Time t &
source timestamp) [virtual]

Performs the same function as DDSKeyedStringDataWriter::unregister -
instance (p. 1208) except that it also provides the value for the source -
timestamp.

See also:

FooDataWriter::unregister instance w timestamp (p. 1367)

6.178.2.9 virtual DDS ReturnCode t DDSKeyedString-
DataWriter::unregister instance w timestamp (const char
∗ key, const DDS InstanceHandle t & handle, const
DDS Time t & source timestamp) [virtual]

<<eXtension>> (p. 190) Performs the same function as DDSKeyedString-
DataWriter::unregister instance (p. 1208) except that it also provides the
value for the source timestamp.

See also:

FooDataWriter::unregister instance w timestamp (p. 1367)

6.178.2.10 virtual DDS ReturnCode t DDSKeyedString-
DataWriter::write (const DDS KeyedString &
instance data, const DDS InstanceHandle t & handle)
[virtual]

Modifies the value of a DDS KeyedString (p. 719) data instance.

See also:

FooDataWriter::write (p. 1368)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1210 Class Documentation

6.178.2.11 virtual DDS ReturnCode t DDSKeyedString-
DataWriter::write (const char ∗ key, const char ∗ str,
const DDS InstanceHandle t & handle) [virtual]

<<eXtension>> (p. 190) Modifies the value of a DDS KeyedString
(p. 719) data instance.

See also:

FooDataWriter::write (p. 1368)

6.178.2.12 virtual DDS ReturnCode t DDSKeyed-
StringDataWriter::write w timestamp (const
DDS KeyedString & instance data, const
DDS InstanceHandle t & handle, const DDS Time t &
source timestamp) [virtual]

Performs the same function as DDSKeyedStringDataWriter::write
(p. 1209) except that it also provides the value for the source timestamp.

See also:

FooDataWriter::write w timestamp (p. 1371)

6.178.2.13 virtual DDS ReturnCode t DDSKeyedString-
DataWriter::write w timestamp (const char ∗ key, const
char ∗ str, const DDS InstanceHandle t & handle,
const DDS Time t & source timestamp) [virtual]

<<eXtension>> (p. 190) Performs the same function as DDSKeyedString-
DataWriter::write (p. 1209) except that it also provides the value for the
source timestamp.

See also:

FooDataWriter::write w timestamp (p. 1371)

6.178.2.14 virtual DDS ReturnCode t DDSKeyedString-
DataWriter::dispose (const DDS KeyedString &
instance data, const DDS InstanceHandle t & handle)
[virtual]

Requests the middleware to delete the data.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.178 DDSKeyedStringDataWriter Class Reference 1211

See also:

FooDataWriter::dispose (p. 1372)

6.178.2.15 virtual DDS ReturnCode t DDSKeyedString-
DataWriter::dispose (const char ∗ key, const
DDS InstanceHandle t & instance handle) [virtual]

<<eXtension>> (p. 190) Requests the middleware to delete the data.

See also:

FooDataWriter::dispose (p. 1372)

6.178.2.16 virtual DDS ReturnCode t DDSKeyedString-
DataWriter::dispose w timestamp (const
DDS KeyedString & instance data, const
DDS InstanceHandle t & handle, const DDS Time t &
source timestamp) [virtual]

Performs the same functions as DDSKeyedStringDataWriter::dispose
(p. 1210) except that the application provides the value for the source -
timestamp that is made available to DDSDataReader (p. 1004) objects
by means of the source timestamp attribute inside the DDS SampleInfo
(p. 855).

See also:

FooDataWriter::dispose w timestamp (p. 1374)

6.178.2.17 virtual DDS ReturnCode t DDSKeyedString-
DataWriter::dispose w timestamp (const char ∗ key,
const DDS InstanceHandle t & instance handle, const
DDS Time t & source timestamp) [virtual]

<<eXtension>> (p. 190) Performs the same functions as DDSKeyed-
StringDataWriter::dispose (p. 1210) except that the application provides the
value for the source timestamp that is made available to DDSDataReader
(p. 1004) objects by means of the source timestamp attribute inside the DDS -
SampleInfo (p. 855).

See also:

FooDataWriter::dispose w timestamp (p. 1374)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1212 Class Documentation

6.178.2.18 virtual DDS ReturnCode t DDSKeyedString-
DataWriter::get key value (DDS KeyedString &
key holder, const DDS InstanceHandle t & handle)
[virtual]

Retrieve the instance key that corresponds to an instance handle.

See also:

FooDataWriter::get key value (p. 1375)

6.178.2.19 virtual DDS ReturnCode t DDSKeyedString-
DataWriter::get key value (char ∗ key, const
DDS InstanceHandle t & handle) [virtual]

<<eXtension>> (p. 190) Retrieve the instance key that corresponds to an
instance handle.

See also:

FooDataWriter::get key value (p. 1375)

6.178.2.20 virtual DDS InstanceHandle t
DDSKeyedStringDataWriter::lookup instance (const
DDS KeyedString & key holder) [virtual]

Retrieve the instance handle that corresponds to an instance key holder.

See also:

FooDataWriter::lookup instance (p. 1376)

6.178.2.21 virtual DDS InstanceHandle t
DDSKeyedStringDataWriter::lookup instance (const
char ∗ key) [virtual]

<<eXtension>> (p. 190) Retrieve the instance handle that corresponds to
an instance key.

See also:

FooDataWriter::lookup instance (p. 1376)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.179 DDSKeyedStringTypeSupport Class Reference 1213

6.179 DDSKeyedStringTypeSupport Class Ref-
erence

<<interface>> (p. 190) Keyed string type support.

Inheritance diagram for DDSKeyedStringTypeSupport::

Static Public Member Functions

ˆ static DDS ReturnCode t register type (DDSDomainParticipant
∗participant, const char ∗type name=”DDS::KeyedString”)

Allows an application to communicate to RTI Data Distribution Service the
existence of the DDS KeyedString (p. 719) data type.

ˆ static DDS ReturnCode t unregister type (DDSDomainPartici-
pant ∗participant, const char ∗type name=”DDS::KeyedString”)

Allows an application to unregister the DDS KeyedString (p. 719) data
type from RTI Data Distribution Service. After calling unregister type, no
further communication using this type is possible.

ˆ static const char ∗ get type name ()

Get the default name for the DDS KeyedString (p. 719) type.

ˆ static void print data (const DDS KeyedString ∗a data)

<<eXtension>> (p. 190) Print value of data type to standard out.

6.179.1 Detailed Description

<<interface>> (p. 190) Keyed string type support.

6.179.2 Member Function Documentation

6.179.2.1 static DDS ReturnCode t DDSKeyedStringTypeSup-
port::register type (DDSDomainParticipant ∗ participant,
const char ∗ type name = "DDS::KeyedString") [static]

Allows an application to communicate to RTI Data Distribution Service the
existence of the DDS KeyedString (p. 719) data type.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1214 Class Documentation

By default, The DDS KeyedString (p. 719) built-in type is automatically reg-
istered when a DomainParticipant is created using the type name returned by
DDSKeyedStringTypeSupport::get type name (p. 1215). Therefore, the
usage of this function is optional and it is only required when the automatic
built-in type registration is disabled using the participant property ”dds.builtin -
type.auto register”.

This method can also be used to register the same DDSKeyedStringType-
Support (p. 1213) with a DDSDomainParticipant (p. 1054) using different
values for the type name.

If register type is called multiple times with the same DDSDomainPartic-
ipant (p. 1054) and type name, the second (and subsequent) registrations are
ignored by the operation.

Parameters:

participant <<in>> (p. 191) the DDSDomainParticipant (p. 1054)
to register the data type DDS KeyedString (p. 719) with. Cannot
be NULL.

type name <<in>> (p. 191) the type name under with the data type
DDS KeyedString (p. 719) is registered with the participant; this
type name is used when creating a new DDSTopic (p. 1311). (See
DDSDomainParticipant::create topic (p. 1089).) The name may
not be NULL or longer than 255 characters.

Returns:

One of the Standard Return Codes (p. 302), DDS RETCODE -
PRECONDITION NOT MET (p. 303) or DDS RETCODE OUT -
OF RESOURCES (p. 303).

MT Safety:

UNSAFE on the FIRST call. It is not safe for two threads to simultaneously
make the first call to register a type. Subsequent calls are thread safe.

See also:

DDSDomainParticipant::create topic (p. 1089)

6.179.2.2 static DDS ReturnCode t DDSKeyedStringType-
Support::unregister type (DDSDomainParticipant
∗ participant, const char ∗ type name =
"DDS::KeyedString") [static]

Allows an application to unregister the DDS KeyedString (p. 719) data type
from RTI Data Distribution Service. After calling unregister type, no further

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.179 DDSKeyedStringTypeSupport Class Reference 1215

communication using this type is possible.

Precondition:

The DDS KeyedString (p. 719) type with type name is registered with
the participant and all DDSTopic (p. 1311) objects referencing the type
have been destroyed. If the type is not registered with the participant, or
if any DDSTopic (p. 1311) is associated with the type, the operation will
fail with DDS RETCODE ERROR (p. 303).

Postcondition:

All information about the type is removed from RTI Data Distribution
Service. No further communication using this type is possible.

Parameters:

participant <<in>> (p. 191) the DDSDomainParticipant (p. 1054)
to unregister the data type DDS KeyedString (p. 719) from. Cannot
be NULL.

type name <<in>> (p. 191) the type name under with the data type
DDS KeyedString (p. 719) is registered with the participant. The
name should match a name that has been previously used to register
a type with the participant. Cannot be NULL.

Returns:

One of the Standard Return Codes (p. 302), DDS RETCODE -
BAD PARAMETER (p. 303) or DDS RETCODE ERROR (p. 303)

MT Safety:

SAFE.

See also:

DDSKeyedStringTypeSupport::register type (p. 1213)

6.179.2.3 static const char∗ DDSKeyedStringTypeSupport::get -
type name () [static]

Get the default name for the DDS KeyedString (p. 719) type.

Can be used for calling DDSKeyedStringTypeSupport::register type
(p. 1213) or creating DDSTopic (p. 1311).

Returns:

default name for the DDS KeyedString (p. 719) type.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1216 Class Documentation

See also:

DDSKeyedStringTypeSupport::register type (p. 1213)
DDSDomainParticipant::create topic (p. 1089)

6.179.2.4 static void DDSKeyedStringTypeSupport::print data
(const DDS KeyedString ∗ a data) [static]

<<eXtension>> (p. 190) Print value of data type to standard out.

The generated implementation of the operation knows how to print value of a
data type.

Parameters:

a data <<in>> (p. 191) DDS KeyedString (p. 719) to be printed.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.180 DDSListener Class Reference 1217

6.180 DDSListener Class Reference

<<interface>> (p. 190) Abstract base class for all Listener interfaces.

Inheritance diagram for DDSListener::

6.180.1 Detailed Description

<<interface>> (p. 190) Abstract base class for all Listener interfaces.

Entity:

DDSEntity (p. 1157)

QoS:

QoS Policies (p. 319)

Status:

Status Kinds (p. 305)

All the supported kinds of concrete DDSListener (p. 1217) interfaces (one per
concrete DDSEntity (p. 1157) type) derive from this root and add methods
whose prototype depends on the concrete Listener.

Listeners provide a way for RTI Data Distribution Service to asynchronously
alert the application when there are relevant status changes.

Almost every application will have to implement listener interfaces.

Each dedicated listener presents a list of operations that correspond to the
relevant communication status changes to which an application may respond.

The same DDSListener (p. 1217) instance may be shared among multiple enti-
ties if you so desire. Consequently, the provided parameter contains a reference
to the concerned DDSEntity (p. 1157).

6.180.2 Access to Plain Communication Status

The general mapping between the plain communication statuses (see Status
Kinds (p. 305)) and the listeners’ operations is as follows:

ˆ For each communication status, there is a corresponding operation whose
name is on <communication status>(), which takes a parameter of type
<communication status> as listed in Status Kinds (p. 305).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1218 Class Documentation

ˆ on <communication status> is available on the relevant DDSEntity
(p. 1157) as well as those that embed it, as expressed in the following
figure:

ˆ When the application attaches a listener on an entity, it must set a mask.
The mask indicates to RTI Data Distribution Service which operations
are enabled within the listener (cf. operation DDSEntity (p. 1157) set -
listener()).

ˆ When a plain communication status changes, RTI Data Distribution Ser-
vice triggers the most specific relevant listener operation that is enabled.
In case the most specific relevant listener operation corresponds to an
application-installed ’nil’ listener the operation will be considered handled
by a NO-OP operation that does not reset the communication status.

This behavior allows the application to set a default behavior (e.g., in the listener
associated with the DDSDomainParticipant (p. 1054)) and to set dedicated
behaviors only where needed.

6.180.3 Access to Read Communication Status

The two statuses related to data arrival are treated slightly differently. Since
they constitute the core purpose of the Data Distribution Service, there is no
need to provide a default mechanism (as is done for the plain communication
statuses above).

The rule is as follows. Each time the read communication status changes:

ˆ First, RTI Data Distribution Service tries to trigger the DDSSub-
scriberListener::on data on readers (p. 1307) with a parameter of the
related DDSSubscriber (p. 1284);

ˆ If this does not succeed (there is no listener or the operation is
not enabled), RTI Data Distribution Service tries to trigger DDS-
DataReaderListener::on data available (p. 1025) on all the related
DDSDataReaderListener (p. 1023) objects, with a parameter of the
related DDSDataReader (p. 1004).

The rationale is that either the application is interested in relations among data
arrivals and it must use the first option (and then get the corresponding DDS-
DataReader (p. 1004) objects by calling DDSSubscriber::get datareaders
(p. 1300) on the related DDSSubscriber (p. 1284) and then get the data by
calling FooDataReader::read (p. 1337) or FooDataReader::take (p. 1338)
on the returned DDSDataReader (p. 1004) objects), or it wants to treat each

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.180 DDSListener Class Reference 1219

DDSDataReader (p. 1004) independently and it may choose the second op-
tion (and then get the data by calling FooDataReader::read (p. 1337) or
FooDataReader::take (p. 1338) on the related DDSDataReader (p. 1004)).

Note that if DDSSubscriberListener::on data on readers (p. 1307) is
called, RTI Data Distribution Service will not try to call DDSDataRead-
erListener::on data available (p. 1025). However, an application can force
a call to the DDSDataReader (p. 1004) objects that have data by calling
DDSSubscriber::notify datareaders (p. 1301).

6.180.4 Operations Allowed in Listener Callbacks

The operations that are allowed in DDSListener (p. 1217) callbacks depend
on the DDS ExclusiveAreaQosPolicy (p. 696) QoS policy of the DDSEn-
tity (p. 1157) to which the DDSListener (p. 1217) is attached – or in the case
of a DDSDataWriter (p. 1028) of DDSDataReader (p. 1004) listener, on
the DDS ExclusiveAreaQosPolicy (p. 696) QoS of the parent DDSPub-
lisher (p. 1243) or DDSSubscriber (p. 1284). For instance, the DDS -
ExclusiveAreaQosPolicy (p. 696) settings of a DDSSubscriber (p. 1284)
will determine which operations are allowed within the callbacks of the listen-
ers associated with all the DataReaders created through that DDSSubscriber
(p. 1284).

Note: these restrictions do not apply to builtin topic listener callbacks.

Regardless of whether DDS ExclusiveAreaQosPolicy::use shared -
exclusive area (p. 697) is set to DDS BOOLEAN TRUE (p. 288) or
DDS BOOLEAN FALSE (p. 289), the following operations are not allowed:

ˆ Within any listener callback, deleting the entity to which the DDSLis-
tener (p. 1217) is attached

ˆ Within a DDSTopic (p. 1311) listener callback, any operations on any
subscribers, readers, publishers or writers

An attempt to call a disallowed method from within a callback will result in
DDS RETCODE ILLEGAL OPERATION (p. 304).

If DDS ExclusiveAreaQosPolicy::use shared exclusive area (p. 697) is
set to DDS BOOLEAN FALSE (p. 289), the setting which allows more con-
currency among RTI Data Distribution Service threads, the following are not
allowed:

ˆ Within any listener callback, creating any entity

ˆ Within any listener callback, deleting any entity

ˆ Within any listener callback, enabling any entity

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1220 Class Documentation

ˆ Within any listener callback, setting the QoS of any entities

ˆ Within a DDSDataReader (p. 1004) or DDSSubscriber (p. 1284) lis-
tener callback, invoking any operation on any other DDSSubscriber
(p. 1284) or on any DDSDataReader (p. 1004) belonging to another
DDSSubscriber (p. 1284).

ˆ Within a DDSDataReader (p. 1004) or DDSSubscriber (p. 1284) lis-
tener callback, invoking any operation on any DDSPublisher (p. 1243)
(or on any DDSDataWriter (p. 1028) belonging to such a DDSPub-
lisher (p. 1243)) that has DDS ExclusiveAreaQosPolicy::use -
shared exclusive area (p. 697) set to DDS BOOLEAN TRUE
(p. 288).

ˆ Within a DDSDataWriter (p. 1028) of DDSPublisher (p. 1243) lis-
tener callback, invoking any operation on another Publisher or on a DDS-
DataWriter (p. 1028) belonging to another DDSPublisher (p. 1243).

ˆ Within a DDSDataWriter (p. 1028) of DDSPublisher (p. 1243) lis-
tener callback, invoking any operation on any DDSSubscriber (p. 1284)
or DDSDataReader (p. 1004).

An attempt to call a disallowed method from within a callback will result in
DDS RETCODE ILLEGAL OPERATION (p. 304).

The above limitations can be lifted by setting DDS -
ExclusiveAreaQosPolicy::use shared exclusive area (p. 697) to DDS -
BOOLEAN TRUE (p. 288) on the DDSPublisher (p. 1243) or DDSSub-
scriber (p. 1284) (or on the DDSPublisher (p. 1243)/ DDSSubscriber
(p. 1284) of the DDSDataWriter (p. 1028)/DDSDataReader (p. 1004)) to
which the listener is attached. However, the application will pay the cost of
reduced concurrency between the affected publishers and subscribers.

See also:

EXCLUSIVE AREA (p. 412)
Status Kinds (p. 305)
DDSWaitSet (p. 1325), DDSCondition (p. 992)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.181 DDSMultiTopic Class Reference 1221

6.181 DDSMultiTopic Class Reference

[Not supported (optional)] <<interface>> (p. 190) A specialization
of DDSTopicDescription (p. 1319) that allows subscriptions that com-
bine/filter/rearrange data coming from several topics.

Inheritance diagram for DDSMultiTopic::

Public Member Functions

ˆ virtual const char ∗ get subscription expression ()=0

Get the expression for this DDSMultiTopic (p. 1221).

ˆ virtual DDS ReturnCode t get expression parameters (DDS -
StringSeq ¶meters)=0

Get the expression parameters.

ˆ virtual DDS ReturnCode t set expression parameters (const
DDS StringSeq ¶meters)=0

Set the expression parameters.

Static Public Member Functions

ˆ static DDSMultiTopic ∗ narrow (DDSTopicDescription ∗topic -
description)

Narrow the given DDSTopicDescription (p. 1319) pointer to a DDSMul-
tiTopic (p. 1221) pointer.

6.181.1 Detailed Description

[Not supported (optional)] <<interface>> (p. 190) A specialization
of DDSTopicDescription (p. 1319) that allows subscriptions that com-
bine/filter/rearrange data coming from several topics.

DDSMultiTopic (p. 1221) allows a more sophisticated subscription that can
select and combine data received from multiple topics into a single resulting
type (specified by the inherited type name). The data will then be filtered
(selection) and possibly re-arranged (aggregation/projection) according to a
subscription expression with parameters expression parameters.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1222 Class Documentation

ˆ The subscription expression is a string that identifies the selection
and re-arrangement of data from the associated topics. It is similar to an
SQL statement where the SELECT part provides the fields to be kept,
the FROM part provides the names of the topics that are searched for
those fields, and the WHERE clause gives the content filter. The Topics
combined may have different types but they are restricted in that the type
of the fields used for the NATURAL JOIN operation must be the same.

ˆ The expression parameters attribute is a sequence of strings that give
values to the ’parameters’ (i.e. ”%n” tokens) in the subscription -
expression. The number of supplied parameters must fit with the re-
quested values in the subscription expression (i.e. the number of n
tokens).

ˆ DDSDataReader (p. 1004) entities associated with a DDSMultiTopic
(p. 1221) are alerted of data modifications by the usual DDSListener
(p. 1217) or DDSWaitSet (p. 1325) / DDSCondition (p. 992) mecha-
nisms whenever modifications occur to the data associated with any of the
topics relevant to the DDSMultiTopic (p. 1221).

Note that the source for data may not be restricted to a single topic.

DDSDataReader (p. 1004) entities associated with a DDSMultiTopic
(p. 1221) may access instances that are ”constructed” at the DDSDataReader
(p. 1004) side from the instances written by multiple DDSDataWriter
(p. 1028) entities. The DDSMultiTopic (p. 1221) access instance will begin
to exist as soon as all the constituting DDSTopic (p. 1311) instances are in
existence. The view state and instance state is computed from the corre-
sponding states of the constituting instances:

ˆ The view state of the DDSMultiTopic (p. 1221) instance is DDS NEW -
VIEW STATE (p. 107) if at least one of the constituting instances has
view state = DDS NEW VIEW STATE (p. 107). Otherwise, it will
be DDS NOT NEW VIEW STATE (p. 107).

ˆ The instance state of the DDSMultiTopic (p. 1221) instance is
DDS ALIVE INSTANCE STATE (p. 110) if the instance state
of all the constituting DDSTopic (p. 1311) instances is DDS -
ALIVE INSTANCE STATE (p. 110). It is DDS NOT ALIVE -
DISPOSED INSTANCE STATE (p. 110) if at least one of the
constituting DDSTopic (p. 1311) instances is DDS NOT ALIVE -
DISPOSED INSTANCE STATE (p. 110). Otherwise, it is DDS -
NOT ALIVE NO WRITERS INSTANCE STATE (p. 110).

Queries and Filters Syntax (p. 199) describes the syntax of subscription -
expression and expression parameters.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.181 DDSMultiTopic Class Reference 1223

6.181.2 Member Function Documentation

6.181.2.1 static DDSMultiTopic∗ DDSMultiTopic::narrow
(DDSTopicDescription ∗ topic description) [static]

Narrow the given DDSTopicDescription (p. 1319) pointer to a DDSMulti-
Topic (p. 1221) pointer.

Returns:

DDSMultiTopic (p. 1221) if this DDSTopicDescription (p. 1319) is a
DDSMultiTopic (p. 1221). Otherwise, return NULL.

6.181.2.2 virtual const char∗ DDSMultiTopic::get subscription -
expression () [pure virtual]

Get the expression for this DDSMultiTopic (p. 1221).

The expressions syntax is described in the DDS specification. It is specified
when the DDSMultiTopic (p. 1221) is created.

Returns:

subscription expression of the DDSMultiTopic (p. 1221).

6.181.2.3 virtual DDS ReturnCode t DDSMultiTopic::get -
expression parameters (DDS StringSeq & parameters)
[pure virtual]

Get the expression parameters.

The expressions syntax is described in the DDS specification.

The parameters is either specified on the last successful call to DDSMulti-
Topic::set expression parameters (p. 1224), or if DDSMultiTopic::set -
expression parameters (p. 1224) was never called, the parameters specified
when the DDSMultiTopic (p. 1221) was created.

Parameters:

parameters <<inout>> (p. 191) Fill in this sequence with the expres-
sion parameters. The memory for the strings in this sequence is man-
aged according to the conventions described in Conventions (p. 432).
In particular, be careful to avoid a situation in which RTI Data Dis-
tribution Service allocates a string on your behalf and you then reuse
that string in such a way that RTI Data Distribution Service believes
it to have more memory allocated to it than it actually does.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1224 Class Documentation

Returns:

One of the Standard Return Codes (p. 302)

6.181.2.4 virtual DDS ReturnCode t DDSMultiTopic::set -
expression parameters (const DDS StringSeq &
parameters) [pure virtual]

Set the expression parameters.

Changes the expression parameters associated with the DDSMultiTopic
(p. 1221).

Parameters:

parameters <<in>> (p. 191) the filter expression parameters

Returns:

One of the Standard Return Codes (p. 302).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.182 DDSOctetsDataReader Class Reference 1225

6.182 DDSOctetsDataReader Class Reference

<<interface>> (p. 190) Instantiates DataReader < DDS Octets (p. 748) >.

Inheritance diagram for DDSOctetsDataReader::

Public Member Functions

ˆ virtual DDS ReturnCode t read (DDS OctetsSeq &received data,
DDS SampleInfoSeq &info seq, DDS Long max samples=DDS -
LENGTH UNLIMITED, DDS SampleStateMask sample -
states=DDS ANY SAMPLE STATE, DDS ViewStateMask
view states=DDS ANY VIEW STATE, DDS InstanceStateMask
instance states=DDS ANY INSTANCE STATE)

Access a collection of data samples from the DDSDataReader (p. 1004).

ˆ virtual DDS ReturnCode t take (DDS OctetsSeq &received data,
DDS SampleInfoSeq &info seq, DDS Long max samples=DDS -
LENGTH UNLIMITED, DDS SampleStateMask sample -
states=DDS ANY SAMPLE STATE, DDS ViewStateMask
view states=DDS ANY VIEW STATE, DDS InstanceStateMask
instance states=DDS ANY INSTANCE STATE)

Access a collection of data-samples from the DDSDataReader (p. 1004).

ˆ virtual DDS ReturnCode t read w condition (DDS OctetsSeq
&received data, DDS SampleInfoSeq &info seq, DDS Long max -
samples, DDSReadCondition ∗condition)

Accesses via DDSOctetsDataReader::read (p. 1227) the samples that
match the criteria specified in the DDSReadCondition (p. 1269).

ˆ virtual DDS ReturnCode t take w condition (DDS OctetsSeq
&received data, DDS SampleInfoSeq &info seq, DDS Long max -
samples, DDSReadCondition ∗condition)

Analogous to DDSOctetsDataReader::read w condition (p. 1227) except
it accesses samples via the DDSOctetsDataReader::take (p. 1227) opera-
tion.

ˆ virtual DDS ReturnCode t read next sample (DDS Octets &re-
ceived data, DDS SampleInfo &sample info)

Copies the next not-previously-accessed data value from the DDS-
DataReader (p. 1004).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1226 Class Documentation

ˆ virtual DDS ReturnCode t take next sample (DDS Octets &re-
ceived data, DDS SampleInfo &sample info)

Copies the next not-previously-accessed data value from the DDS-
DataReader (p. 1004).

ˆ virtual DDS ReturnCode t return loan (DDS OctetsSeq &re-
ceived data, DDS SampleInfoSeq &info seq)

Indicates to the DDSDataReader (p. 1004) that the application is done
accessing the collection of received data and info seq obtained by some
earlier invocation of read or take on the DDSDataReader (p. 1004).

Static Public Member Functions

ˆ static DDSOctetsDataReader ∗ narrow (DDSDataReader
∗reader)

Narrow the given DDSDataReader (p. 1004) pointer to a DDSOctets-
DataReader (p. 1225) pointer.

6.182.1 Detailed Description

<<interface>> (p. 190) Instantiates DataReader < DDS Octets (p. 748) >.

When reading or taking data with this reader, if you request a copy of the sam-
ples instead of a loan, and the byte array in a destination data sample is NULL,
the middleware will allocate a new array for you of sufficient length to hold the
received data. The new array will be allocated with DDS OctetBuffer alloc
(p. 428); the sample’s destructor will delete it.

A non- NULL array is assumed to be allocated to sufficient length to store the
incoming data. It will not be reallocated.

See also:

FooDataReader (p. 1334)
DDSDataReader (p. 1004)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.182 DDSOctetsDataReader Class Reference 1227

6.182.2 Member Function Documentation

6.182.2.1 virtual DDS ReturnCode t DDSOctetsDataReader::read
(DDS OctetsSeq & received data, DDS SampleInfoSeq
& info seq, DDS Long max samples =
DDS LENGTH UNLIMITED, DDS SampleStateMask
sample states = DDS ANY SAMPLE STATE,
DDS ViewStateMask view states = DDS ANY VIEW -
STATE, DDS InstanceStateMask instance states =
DDS ANY INSTANCE STATE) [virtual]

Access a collection of data samples from the DDSDataReader (p. 1004).

See also:

FooDataReader::read (p. 1337)

6.182.2.2 virtual DDS ReturnCode t DDSOctetsDataReader::take
(DDS OctetsSeq & received data, DDS SampleInfoSeq
& info seq, DDS Long max samples =
DDS LENGTH UNLIMITED, DDS SampleStateMask
sample states = DDS ANY SAMPLE STATE,
DDS ViewStateMask view states = DDS ANY VIEW -
STATE, DDS InstanceStateMask instance states =
DDS ANY INSTANCE STATE) [virtual]

Access a collection of data-samples from the DDSDataReader (p. 1004).

See also:

FooDataReader::take (p. 1338)

6.182.2.3 virtual DDS ReturnCode t DDSOctets-
DataReader::read w condition (DDS OctetsSeq &
received data, DDS SampleInfoSeq & info seq,
DDS Long max samples, DDSReadCondition ∗
condition) [virtual]

Accesses via DDSOctetsDataReader::read (p. 1227) the samples that match
the criteria specified in the DDSReadCondition (p. 1269).

See also:

FooDataReader::read w condition (p. 1344)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1228 Class Documentation

6.182.2.4 virtual DDS ReturnCode t DDSOctets-
DataReader::take w condition (DDS OctetsSeq &
received data, DDS SampleInfoSeq & info seq,
DDS Long max samples, DDSReadCondition ∗
condition) [virtual]

Analogous to DDSOctetsDataReader::read w condition (p. 1227) except
it accesses samples via the DDSOctetsDataReader::take (p. 1227) operation.

See also:

FooDataReader::take w condition (p. 1345)

6.182.2.5 virtual DDS ReturnCode t DDSOctets-
DataReader::read next sample (DDS Octets &
received data, DDS SampleInfo & sample info)
[virtual]

Copies the next not-previously-accessed data value from the DDSDataReader
(p. 1004).

See also:

FooDataReader::read next sample (p. 1346)

6.182.2.6 virtual DDS ReturnCode t DDSOctets-
DataReader::take next sample (DDS Octets &
received data, DDS SampleInfo & sample info)
[virtual]

Copies the next not-previously-accessed data value from the DDSDataReader
(p. 1004).

See also:

FooDataReader::take next sample (p. 1347)

6.182.2.7 virtual DDS ReturnCode t DDSOctets-
DataReader::return loan (DDS OctetsSeq &
received data, DDS SampleInfoSeq & info seq)
[virtual]

Indicates to the DDSDataReader (p. 1004) that the application is done ac-
cessing the collection of received data and info seq obtained by some earlier
invocation of read or take on the DDSDataReader (p. 1004).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.182 DDSOctetsDataReader Class Reference 1229

See also:

FooDataReader::return loan (p. 1358)

6.182.2.8 static DDSOctetsDataReader∗
DDSOctetsDataReader::narrow (DDSDataReader ∗
reader) [static]

Narrow the given DDSDataReader (p. 1004) pointer to a DDSOctets-
DataReader (p. 1225) pointer.

See also:

FooDataReader::narrow (p. 1336)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1230 Class Documentation

6.183 DDSOctetsDataWriter Class Reference

<<interface>> (p. 190) Instantiates DataWriter < DDS Octets (p. 748) >.

Inheritance diagram for DDSOctetsDataWriter::

Public Member Functions

ˆ virtual DDS ReturnCode t write (const DDS Octets &instance -
data, const DDS InstanceHandle t &handle)

Modifies the value of a DDS Octets (p. 748) data instance.

ˆ virtual DDS ReturnCode t write (const unsigned char ∗octets, int
length, const DDS InstanceHandle t &handle)

<<eXtension>> (p. 190) Modifies the value of a DDS Octets (p. 748)
data instance.

ˆ virtual DDS ReturnCode t write (const DDS OctetSeq &octets,
const DDS InstanceHandle t &handle)

<<eXtension>> (p. 190) Modifies the value of a DDS Octets (p. 748)
data instance.

ˆ virtual DDS ReturnCode t write w timestamp (const DDS Octets
&instance data, const DDS InstanceHandle t &handle, const DDS -
Time t &source timestamp)

Performs the same function as DDSOctetsDataWriter::write (p. 1231)
except that it also provides the value for the source timestamp.

ˆ virtual DDS ReturnCode t write w timestamp (const unsigned char
∗octets, int length, const DDS InstanceHandle t &handle, const
DDS Time t &source timestamp)

<<eXtension>> (p. 190) Performs the same function as DDSOctets-
DataWriter::write (p. 1231) except that it also provides the value for the
source timestamp.

ˆ virtual DDS ReturnCode t write w timestamp (const DDS -
OctetSeq &octets, const DDS InstanceHandle t &handle, const
DDS Time t &source timestamp)

<<eXtension>> (p. 190) Performs the same function as DDSOctets-
DataWriter::write (p. 1231) except that it also provides the value for the
source timestamp.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.183 DDSOctetsDataWriter Class Reference 1231

Static Public Member Functions

ˆ static DDSOctetsDataWriter ∗ narrow (DDSDataWriter ∗writer)

Narrow the given DDSDataWriter (p. 1028) pointer to a DDSOctets-
DataWriter (p. 1230) pointer.

6.183.1 Detailed Description

<<interface>> (p. 190) Instantiates DataWriter < DDS Octets (p. 748) >.

See also:

FooDataWriter (p. 1361)
DDSDataWriter (p. 1028)

6.183.2 Member Function Documentation

6.183.2.1 static DDSOctetsDataWriter∗
DDSOctetsDataWriter::narrow (DDSDataWriter ∗
writer) [static]

Narrow the given DDSDataWriter (p. 1028) pointer to a DDSOctets-
DataWriter (p. 1230) pointer.

See also:

FooDataWriter::narrow (p. 1363)

6.183.2.2 virtual DDS ReturnCode t DDSOctetsDataWriter::write
(const DDS Octets & instance data, const
DDS InstanceHandle t & handle) [virtual]

Modifies the value of a DDS Octets (p. 748) data instance.

See also:

FooDataWriter::write (p. 1368)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1232 Class Documentation

6.183.2.3 virtual DDS ReturnCode t DDSOctetsDataWriter::write
(const unsigned char ∗ octets, int length, const
DDS InstanceHandle t & handle) [virtual]

<<eXtension>> (p. 190) Modifies the value of a DDS Octets (p. 748) data
instance.

Parameters:

octets <<in>> (p. 191) Array of octets to be published.
length <<in>> (p. 191) Number of octets to be published.
handle <<in>> (p. 191) The special value DDS HANDLE NIL

(p. 54) should be used always.

See also:

FooDataWriter::write (p. 1368)

6.183.2.4 virtual DDS ReturnCode t DDSOctetsDataWriter::write
(const DDS OctetSeq & octets, const
DDS InstanceHandle t & handle) [virtual]

<<eXtension>> (p. 190) Modifies the value of a DDS Octets (p. 748) data
instance.

Parameters:

octets <<in>> (p. 191) Sequence of octets to be published.
handle <<in>> (p. 191) The special value DDS HANDLE NIL

(p. 54) should be used always.

See also:

FooDataWriter::write (p. 1368)

6.183.2.5 virtual DDS ReturnCode t DDSOctets-
DataWriter::write w timestamp (const DDS Octets &
instance data, const DDS InstanceHandle t & handle,
const DDS Time t & source timestamp) [virtual]

Performs the same function as DDSOctetsDataWriter::write (p. 1231) ex-
cept that it also provides the value for the source timestamp.

See also:

FooDataWriter::write w timestamp (p. 1371)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.183 DDSOctetsDataWriter Class Reference 1233

6.183.2.6 virtual DDS ReturnCode t DDSOctets-
DataWriter::write w timestamp (const unsigned char
∗ octets, int length, const DDS InstanceHandle t
& handle, const DDS Time t & source timestamp)
[virtual]

<<eXtension>> (p. 190) Performs the same function as DDSOctets-
DataWriter::write (p. 1231) except that it also provides the value for the
source timestamp.

Parameters:

octets <<in>> (p. 191) Array of octets to be published.
length <<in>> (p. 191) Number of octets to be published.
handle <<in>> (p. 191) The special value DDS HANDLE NIL

(p. 54) should be used always.
source timestamp <<in>> (p. 191) The timestamp value must be

greater than or equal to the timestamp value used in the last writer
operation. See FooDataWriter::write w timestamp (p. 1371).

See also:

FooDataWriter::write w timestamp (p. 1371)

6.183.2.7 virtual DDS ReturnCode t DDSOctets-
DataWriter::write w timestamp (const DDS OctetSeq &
octets, const DDS InstanceHandle t & handle, const
DDS Time t & source timestamp) [virtual]

<<eXtension>> (p. 190) Performs the same function as DDSOctets-
DataWriter::write (p. 1231) except that it also provides the value for the
source timestamp.

Parameters:

octets <<in>> (p. 191) Sequence of octets to be published.
handle <<in>> (p. 191) The special value DDS HANDLE NIL

(p. 54) should be used always.
source timestamp <<in>> (p. 191) The timestamp value must be

greater than or equal to the timestamp value used in the last writer
operation. See FooDataWriter::write w timestamp (p. 1371).

See also:

FooDataWriter::write w timestamp (p. 1371)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1234 Class Documentation

6.184 DDSOctetsTypeSupport Class Reference

<<interface>> (p. 190) DDS Octets (p. 748) type support.

Inheritance diagram for DDSOctetsTypeSupport::

Static Public Member Functions

ˆ static DDS ReturnCode t register type (DDSDomainParticipant
∗participant, const char ∗type name=”DDS::Octets”)

Allows an application to communicate to RTI Data Distribution Service the
existence of the DDS Octets (p. 748) data type.

ˆ static DDS ReturnCode t unregister type (DDSDomainPartici-
pant ∗participant, const char ∗type name=”DDS::Octets”)

Allows an application to unregister the DDS Octets (p. 748) data type from
RTI Data Distribution Service. After calling unregister type, no further com-
munication using this type is possible.

ˆ static const char ∗ get type name ()
Get the default name for the DDS Octets (p. 748) type.

ˆ static void print data (const DDS Octets ∗a data)
<<eXtension>> (p. 190) Print value of data type to standard out.

6.184.1 Detailed Description

<<interface>> (p. 190) DDS Octets (p. 748) type support.

6.184.2 Member Function Documentation

6.184.2.1 static DDS ReturnCode t DDSOctetsTypeSup-
port::register type (DDSDomainParticipant ∗ participant,
const char ∗ type name = "DDS::Octets") [static]

Allows an application to communicate to RTI Data Distribution Service the
existence of the DDS Octets (p. 748) data type.

By default, The DDS Octets (p. 748) built-in type is automatically regis-
tered when a DomainParticipant is created using the type name returned by
DDSOctetsTypeSupport::get type name (p. 1236). Therefore, the usage

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.184 DDSOctetsTypeSupport Class Reference 1235

of this function is optional and it is only required when the automatic built-
in type registration is disabled using the participant property ”dds.builtin -
type.auto register”.

This method can also be used to register the same DDSOctetsTypeSupport
(p. 1234) with a DDSDomainParticipant (p. 1054) using different values for
the type name.

If register type is called multiple times with the same DDSDomainPartic-
ipant (p. 1054) and type name, the second (and subsequent) registrations are
ignored by the operation.

Parameters:

participant <<in>> (p. 191) the DDSDomainParticipant (p. 1054)
to register the data type DDS Octets (p. 748) with. Cannot be
NULL.

type name <<in>> (p. 191) the type name under with the data type
DDS Octets (p. 748) is registered with the participant; this type
name is used when creating a new DDSTopic (p. 1311). (See DDS-
DomainParticipant::create topic (p. 1089).) The name may not
be NULL or longer than 255 characters.

Returns:

One of the Standard Return Codes (p. 302), DDS RETCODE -
PRECONDITION NOT MET (p. 303) or DDS RETCODE OUT -
OF RESOURCES (p. 303).

MT Safety:

UNSAFE on the FIRST call. It is not safe for two threads to simultaneously
make the first call to register a type. Subsequent calls are thread safe.

See also:

DDSDomainParticipant::create topic (p. 1089)

6.184.2.2 static DDS ReturnCode t DDSOctetsTypeSup-
port::unregister type (DDSDomainParticipant ∗
participant, const char ∗ type name = "DDS::Octets")
[static]

Allows an application to unregister the DDS Octets (p. 748) data type from
RTI Data Distribution Service. After calling unregister type, no further com-
munication using this type is possible.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1236 Class Documentation

Precondition:

The DDS Octets (p. 748) type with type name is registered with the par-
ticipant and all DDSTopic (p. 1311) objects referencing the type have
been destroyed. If the type is not registered with the participant, or if any
DDSTopic (p. 1311) is associated with the type, the operation will fail
with DDS RETCODE ERROR (p. 303).

Postcondition:

All information about the type is removed from RTI Data Distribution
Service. No further communication using this type is possible.

Parameters:

participant <<in>> (p. 191) the DDSDomainParticipant (p. 1054)
to unregister the data type DDS Octets (p. 748) from. Cannot be
NULL.

type name <<in>> (p. 191) the type name under with the data type
DDS Octets (p. 748) is registered with the participant. The name
should match a name that has been previously used to register a type
with the participant. Cannot be NULL.

Returns:

One of the Standard Return Codes (p. 302), DDS RETCODE -
BAD PARAMETER (p. 303) or DDS RETCODE ERROR (p. 303)

MT Safety:

SAFE.

See also:

DDSOctetsTypeSupport::register type (p. 1234)

6.184.2.3 static const char∗ DDSOctetsTypeSupport::get type -
name () [static]

Get the default name for the DDS Octets (p. 748) type.

Can be used for calling DDSOctetsTypeSupport::register type (p. 1234)
or creating DDSTopic (p. 1311).

Returns:

default name for the DDS Octets (p. 748) type.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.184 DDSOctetsTypeSupport Class Reference 1237

See also:

DDSOctetsTypeSupport::register type (p. 1234)
DDSDomainParticipant::create topic (p. 1089)

6.184.2.4 static void DDSOctetsTypeSupport::print data (const
DDS Octets ∗ a data) [static]

<<eXtension>> (p. 190) Print value of data type to standard out.

The generated implementation of the operation knows how to print value of a
data type.

Parameters:

a data <<in>> (p. 191) DDS Octets (p. 748) to be printed.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1238 Class Documentation

6.185 DDSParticipantBuiltinTopicDataDataReader
Class Reference

Instantiates DataReader < DDS ParticipantBuiltinTopicData (p. 765) > .

Inheritance diagram for DDSParticipantBuiltinTopicDataDataReader::

6.185.1 Detailed Description

Instantiates DataReader < DDS ParticipantBuiltinTopicData (p. 765) > .

DDSDataReader (p. 1004) of topic DDS PARTICIPANT TOPIC -
NAME (p. 275) used for accessing DDS ParticipantBuiltinTopicData
(p. 765) of the remote DDSDomainParticipant (p. 1054).

Instantiates:

<<generic>> (p. 190) FooDataReader (p. 1334)

See also:

DDS ParticipantBuiltinTopicData (p. 765)
DDS PARTICIPANT TOPIC NAME (p. 275)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.186 DDSParticipantBuiltinTopicDataTypeSupport Class
Reference 1239

6.186 DDSParticipantBuiltinTopicDataTypeSupport
Class Reference

Instantiates TypeSupport < DDS ParticipantBuiltinTopicData (p. 765) >
.

6.186.1 Detailed Description

Instantiates TypeSupport < DDS ParticipantBuiltinTopicData (p. 765) >
.

Instantiates:

<<generic>> (p. 190) FooTypeSupport (p. 1392)

See also:

DDS ParticipantBuiltinTopicData (p. 765)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1240 Class Documentation

6.187 DDSPropertyQosPolicyHelper Class Ref-
erence

Policy Helpers which facilitate management of the properties in the input policy.

Static Public Member Functions

ˆ static DDS Long get number of properties (DDS -
PropertyQosPolicy &policy)

Gets the number of properties in the input policy.

ˆ static DDS ReturnCode t assert property (DDS -
PropertyQosPolicy &policy, const char ∗name, const char ∗value,
DDS Boolean propagate)

Asserts the property identified by name in the input policy.

ˆ static DDS ReturnCode t add property (DDS -
PropertyQosPolicy &policy, const char ∗name, const char ∗value,
DDS Boolean propagate)

Adds a new property to the input policy.

ˆ static struct DDS Property t ∗ lookup property (DDS -
PropertyQosPolicy &policy, const char ∗name)

Searches for a property in the input policy given its name.

ˆ static DDS ReturnCode t remove property (DDS -
PropertyQosPolicy &policy, const char ∗name)

Removes a property from the input policy.

ˆ static DDS ReturnCode t get properties (DDS -
PropertyQosPolicy &policy, struct DDS PropertySeq &properties,
const char ∗name prefix)

Retrieves a list of properties whose names match the input prefix.

6.187.1 Detailed Description

Policy Helpers which facilitate management of the properties in the input policy.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.188 DDSPublicationBuiltinTopicDataDataReader Class Reference1241

6.188 DDSPublicationBuiltinTopicDataDataReader
Class Reference

Instantiates DataReader < DDS PublicationBuiltinTopicData (p. 788) > .

Inheritance diagram for DDSPublicationBuiltinTopicDataDataReader::

6.188.1 Detailed Description

Instantiates DataReader < DDS PublicationBuiltinTopicData (p. 788) > .

DDSDataReader (p. 1004) of topic DDS PUBLICATION TOPIC -
NAME (p. 279) used for accessing DDS PublicationBuiltinTopicData
(p. 788) of the remote DDSDataWriter (p. 1028) and the associated
DDSPublisher (p. 1243).

Instantiates:

<<generic>> (p. 190) FooDataReader (p. 1334)

See also:

DDS PublicationBuiltinTopicData (p. 788)
DDS PUBLICATION TOPIC NAME (p. 279)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1242 Class Documentation

6.189 DDSPublicationBuiltinTopicDataTypeSupport
Class Reference

Instantiates TypeSupport < DDS PublicationBuiltinTopicData (p. 788) >
.

6.189.1 Detailed Description

Instantiates TypeSupport < DDS PublicationBuiltinTopicData (p. 788) >
.

Instantiates:

<<generic>> (p. 190) FooTypeSupport (p. 1392)

See also:

DDS PublicationBuiltinTopicData (p. 788)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.190 DDSPublisher Class Reference 1243

6.190 DDSPublisher Class Reference

<<interface>> (p. 190) A publisher is the object responsible for the actual
dissemination of publications.

Inheritance diagram for DDSPublisher::

Public Member Functions

ˆ virtual DDS ReturnCode t get default datawriter qos (DDS -
DataWriterQos &qos)=0

Copies the default DDS DataWriterQos (p. 516) values into the provided
DDS DataWriterQos (p. 516) instance.

ˆ virtual DDS ReturnCode t set default datawriter qos (const
DDS DataWriterQos &qos)=0

Sets the default DDS DataWriterQos (p. 516) values for this publisher.

ˆ virtual DDS ReturnCode t set default datawriter qos with -
profile (const char ∗library name, const char ∗profile name)=0

<<eXtension>> (p. 190) Set the default DDS DataWriterQos (p. 516)
values for this publisher based on the input XML QoS profile.

ˆ virtual DDS ReturnCode t set default library (const char ∗library -
name)=0

<<eXtension>> (p. 190) Sets the default XML library for a DDSPub-
lisher (p. 1243).

ˆ virtual const char ∗ get default library ()=0
<<eXtension>> (p. 190) Gets the default XML library associated with a
DDSPublisher (p. 1243).

ˆ virtual DDS ReturnCode t set default profile (const char ∗library -
name, const char ∗profile name)=0

<<eXtension>> (p. 190) Sets the default XML profile for a DDSPub-
lisher (p. 1243).

ˆ virtual const char ∗ get default profile ()=0
<<eXtension>> (p. 190) Gets the default XML profile associated with a
DDSPublisher (p. 1243).

ˆ virtual const char ∗ get default profile library ()=0

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1244 Class Documentation

<<eXtension>> (p. 190) Gets the library where the default XML QoS pro-
file is contained for a DDSPublisher (p. 1243).

ˆ virtual DDSDataWriter ∗ create datawriter (DDSTopic ∗topic,
const DDS DataWriterQos &qos, DDSDataWriterListener
∗listener, DDS StatusMask mask)=0

Creates a DDSDataWriter (p. 1028) that will be attached and belong to the
DDSPublisher (p. 1243).

ˆ virtual DDSDataWriter ∗ create datawriter with profile
(DDSTopic ∗topic, const char ∗library name, const char ∗profile name,
DDSDataWriterListener ∗listener, DDS StatusMask mask)=0

<<eXtension>> (p. 190) Creates a DDSDataWriter (p. 1028) object us-
ing the DDS DataWriterQos (p. 516) associated with the input XML QoS
profile.

ˆ virtual DDS ReturnCode t delete datawriter (DDSDataWriter
∗a datawriter)=0

Deletes a DDSDataWriter (p. 1028) that belongs to the DDSPublisher
(p. 1243).

ˆ virtual DDSDataWriter ∗ lookup datawriter (const char ∗topic -
name)=0

Retrieves the DDSDataWriter (p. 1028) for a specific DDSTopic
(p. 1311).

ˆ virtual DDS ReturnCode t suspend publications ()=0
Indicates to RTI Data Distribution Service that the application is about to
make multiple modifications using DDSDataWriter (p. 1028) objects be-
longing to the DDSPublisher (p. 1243).

ˆ virtual DDS ReturnCode t resume publications ()=0
Indicates to RTI Data Distribution Service that the application has completed
the multiple changes initiated by the previous DDSPublisher::suspend -
publications (p. 1257).

ˆ virtual DDS ReturnCode t begin coherent changes ()=0
Indicates that the application will begin a coherent set of modifications us-
ing DDSDataWriter (p. 1028) objects attached to the DDSPublisher
(p. 1243).

ˆ virtual DDS ReturnCode t end coherent changes ()=0
Terminates the coherent set initiated by the matching call to DDSPub-
lisher::begin coherent changes (p. 1258).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.190 DDSPublisher Class Reference 1245

ˆ virtual DDSDomainParticipant ∗ get participant ()=0

Returns the DDSDomainParticipant (p. 1054) to which the DDSPub-
lisher (p. 1243) belongs.

ˆ virtual DDS ReturnCode t delete contained entities ()=0

Deletes all the entities that were created by means of the ”create” operation
on the DDSPublisher (p. 1243).

ˆ virtual DDS ReturnCode t copy from topic qos (DDS -
DataWriterQos &a datawriter qos, const DDS TopicQos &a -
topic qos)=0

Copies the policies in the DDS TopicQos (p. 905) to the corresponding
policies in the DDS DataWriterQos (p. 516).

ˆ virtual DDS ReturnCode t wait for acknowledgments (const
DDS Duration t &max wait)=0

Blocks the calling thread until all data written by reliable DDSDataWriter
(p. 1028) entities is acknowledged, or until timeout expires.

ˆ virtual DDS ReturnCode t wait for asynchronous publishing
(const DDS Duration t &max wait)=0

<<eXtension>> (p. 190) Blocks the calling thread until asynchronous send-
ing is complete.

ˆ virtual DDS ReturnCode t set qos (const DDS PublisherQos
&qos)=0

Sets the publisher QoS.

ˆ virtual DDS ReturnCode t set qos with profile (const char
∗library name, const char ∗profile name)=0

<<eXtension>> (p. 190) Change the QoS of this publisher using the input
XML QoS profile.

ˆ virtual DDS ReturnCode t get qos (DDS PublisherQos &qos)=0

Gets the publisher QoS.

ˆ virtual DDS ReturnCode t set listener (DDSPublisherListener ∗l,
DDS StatusMask mask=DDS STATUS MASK ALL)=0

Sets the publisher listener.

ˆ virtual DDSPublisherListener ∗ get listener ()=0

Get the publisher listener.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1246 Class Documentation

6.190.1 Detailed Description

<<interface>> (p. 190) A publisher is the object responsible for the actual
dissemination of publications.

QoS:

DDS PublisherQos (p. 800)

Listener:

DDSPublisherListener (p. 1265)

A publisher acts on the behalf of one or several DDSDataWriter (p. 1028)
objects that belong to it. When it is informed of a change to the data asso-
ciated with one of its DDSDataWriter (p. 1028) objects, it decides when it
is appropriate to actually send the data-update message. In making this de-
cision, it considers any extra information that goes with the data (timestamp,
writer, etc.) as well as the QoS of the DDSPublisher (p. 1243) and the DDS-
DataWriter (p. 1028).

The following operations may be called even if the DDSPublisher (p. 1243)
is not enabled. Other operations will fail with the value DDS RETCODE -
NOT ENABLED (p. 303) if called on a disabled DDSPublisher (p. 1243):

ˆ The base-class operations DDSPublisher::set qos (p. 1262), DDSPub-
lisher::set qos with profile (p. 1263), DDSPublisher::get -
qos (p. 1263), DDSPublisher::set listener (p. 1264), DDSPub-
lisher::get listener (p. 1264), DDSEntity::enable (p. 1160), DDSEn-
tity::get statuscondition (p. 1161), DDSEntity::get status -
changes (p. 1161)

ˆ DDSPublisher::create datawriter (p. 1252), DDSPub-
lisher::create datawriter with profile (p. 1253), DDSPub-
lisher::delete datawriter (p. 1255), DDSPublisher::delete -
contained entities (p. 1260), DDSPublisher::set default -
datawriter qos (p. 1247), DDSPublisher::set default -
datawriter qos with profile (p. 1248), DDSPublisher::get -
default datawriter qos (p. 1247), DDSPublisher::wait for -
acknowledgments (p. 1261), DDSPublisher::set default library
(p. 1249), DDSPublisher::set default profile (p. 1250),

See also:

Operations Allowed in Listener Callbacks (p. 1219)

Examples:

HelloWorld publisher.cxx.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.190 DDSPublisher Class Reference 1247

6.190.2 Member Function Documentation

6.190.2.1 virtual DDS ReturnCode t DDSPublisher::get default -
datawriter qos (DDS DataWriterQos & qos) [pure
virtual]

Copies the default DDS DataWriterQos (p. 516) values into the provided
DDS DataWriterQos (p. 516) instance.

The retreived qos will match the set of values specified on the last successful
call to DDSPublisher::set default datawriter qos (p. 1247) or DDSPub-
lisher::set default datawriter qos with profile (p. 1248), or else, if the call
was never made, the default values from is owning DDSDomainParticipant
(p. 1054).

This method may potentially allocate memory depending on the sequences con-
tained in some QoS policies.

MT Safety:

UNSAFE. It is not safe to retrieve the default QoS value from a DDSPub-
lisher (p. 1243) while another thread may be simultaneously calling
DDSPublisher::set default datawriter qos (p. 1247).

Parameters:

qos <<inout>> (p. 191) DDS DataWriterQos (p. 516) to be filled-up.

Returns:

One of the Standard Return Codes (p. 302)

See also:

DDS DATAWRITER QOS DEFAULT (p. 82)
DDSPublisher::create datawriter (p. 1252)

6.190.2.2 virtual DDS ReturnCode t DDSPublisher::set default -
datawriter qos (const DDS DataWriterQos & qos) [pure
virtual]

Sets the default DDS DataWriterQos (p. 516) values for this publisher.

This call causes the default values inherited from the owning DDSDomain-
Participant (p. 1054) to be overridden.

This default value will be used for newly created DDSDataWriter (p. 1028)
if DDS DATAWRITER QOS DEFAULT (p. 82) is specified as the qos
parameter when DDSPublisher::create datawriter (p. 1252) is called.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1248 Class Documentation

Precondition:

The specified QoS policies must be consistent, or else the operation will have
no effect and fail with DDS RETCODE INCONSISTENT POLICY
(p. 304)

MT Safety:

UNSAFE. It is not safe to set the default QoS value from a DDSPublisher
(p. 1243) while another thread may be simultaneously calling DDSPub-
lisher::set default datawriter qos (p. 1247), DDSPublisher::get -
default datawriter qos (p. 1247) or calling DDSPublisher::create -
datawriter (p. 1252) with DDS DATAWRITER QOS DEFAULT
(p. 82) as the qos parameter.

Parameters:

qos <<in>> (p. 191) Default qos to be set. The special value DDS -
DATAREADER QOS DEFAULT (p. 96) may be passed as qos
to indicate that the default QoS should be reset back to the ini-
tial values the factory would used if DDSPublisher::set default -
datawriter qos (p. 1247) had never been called.

Returns:

One of the Standard Return Codes (p. 302), or DDS RETCODE -
INCONSISTENT POLICY (p. 304)

6.190.2.3 virtual DDS ReturnCode t DDSPublisher::set default -
datawriter qos with profile (const char ∗ library name,
const char ∗ profile name) [pure virtual]

<<eXtension>> (p. 190) Set the default DDS DataWriterQos (p. 516) val-
ues for this publisher based on the input XML QoS profile.

This default value will be used for newly created DDSDataWriter (p. 1028)
if DDS DATAWRITER QOS DEFAULT (p. 82) is specified as the qos
parameter when DDSPublisher::create datawriter (p. 1252) is called.

Precondition:

The DDS DataWriterQos (p. 516) contained in the specified XML QoS
profile must be consistent, or else the operation will have no effect and fail
with DDS RETCODE INCONSISTENT POLICY (p. 304)

MT Safety:

UNSAFE. It is not safe to set the default QoS value from a DDSPublisher
(p. 1243) while another thread may be simultaneously calling DDSPub-

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.190 DDSPublisher Class Reference 1249

lisher::set default datawriter qos (p. 1247), DDSPublisher::get -
default datawriter qos (p. 1247) or calling DDSPublisher::create -
datawriter (p. 1252) with DDS DATAWRITER QOS DEFAULT
(p. 82) as the qos parameter.

Parameters:

library name <<in>> (p. 191) Library name containing the XML QoS
profile. If library name is null RTI Data Distribution Service will
use the default library (see DDSPublisher::set default library
(p. 1249)).

profile name <<in>> (p. 191) XML QoS Profile name. If profile name
is null RTI Data Distribution Service will use the default profile (see
DDSPublisher::set default profile (p. 1250)).

If the input profile cannot be found, the method fails with DDS RETCODE -
ERROR (p. 303).

Returns:

One of the Standard Return Codes (p. 302), or DDS RETCODE -
INCONSISTENT POLICY (p. 304)

See also:

DDS DATAWRITER QOS DEFAULT (p. 82)
DDSPublisher::create datawriter with profile (p. 1253)

6.190.2.4 virtual DDS ReturnCode t DDSPublisher::set -
default library (const char ∗ library name) [pure
virtual]

<<eXtension>> (p. 190) Sets the default XML library for a DDSPublisher
(p. 1243).

This method specifies the library that will be used as the default the next time
a default library is needed during a call to one of this Publisher’s operations.

Any API requiring a library name as a parameter can use null to refer to the
default library.

If the default library is not set, the DDSPublisher (p. 1243) inherits the de-
fault from the DDSDomainParticipant (p. 1054) (see DDSDomainPartic-
ipant::set default library (p. 1073)).

Parameters:

library name <<in>> (p. 191) Library name. If library name is null
any previous default is unset.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1250 Class Documentation

Returns:

One of the Standard Return Codes (p. 302)

See also:

DDSPublisher::get default library (p. 1250)

6.190.2.5 virtual const char∗ DDSPublisher::get default library ()
[pure virtual]

<<eXtension>> (p. 190) Gets the default XML library associated with a
DDSPublisher (p. 1243).

Returns:

The default library or null if the default library was not set.

See also:

DDSPublisher::set default library (p. 1249)

6.190.2.6 virtual DDS ReturnCode t DDSPublisher::set default -
profile (const char ∗ library name, const char ∗
profile name) [pure virtual]

<<eXtension>> (p. 190) Sets the default XML profile for a DDSPublisher
(p. 1243).

This method specifies the profile that will be used as the default the next time
a default Publisher profile is needed during a call to one of this Publishers
operations. When calling a DDSPublisher (p. 1243) method that requires a
profile name parameter, you can use NULL to refer to the default profile.
(This same information applies to setting a default library.)

If the default profile is not set, the DDSPublisher (p. 1243) inherits the de-
fault from the DDSDomainParticipant (p. 1054) (see DDSDomainPartic-
ipant::set default profile (p. 1074)).

This method does not set the default QoS for DDSDataWriter (p. 1028)
objects created by the DDSPublisher (p. 1243); for this functionality, use
DDSPublisher::set default datawriter qos with profile (p. 1248) (you
may pass in NULL after having called set default profile() (p. 1250)).

This method does not set the default QoS for newly created Publishers; for
this functionality, use DDSDomainParticipant::set default publisher -
qos with profile (p. 1079).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.190 DDSPublisher Class Reference 1251

Parameters:

library name <<in>> (p. 191) The library name containing the profile.
profile name <<in>> (p. 191) The profile name. If profile name is null

any previous default is unset.

Returns:

One of the Standard Return Codes (p. 302)

See also:

DDSPublisher::get default profile (p. 1251)
DDSPublisher::get default profile library (p. 1251)

6.190.2.7 virtual const char∗ DDSPublisher::get default profile ()
[pure virtual]

<<eXtension>> (p. 190) Gets the default XML profile associated with a
DDSPublisher (p. 1243).

Returns:

The default profile or null if the default profile was not set.

See also:

DDSPublisher::set default profile (p. 1250)

6.190.2.8 virtual const char∗ DDSPublisher::get default profile -
library () [pure virtual]

<<eXtension>> (p. 190) Gets the library where the default XML QoS profile
is contained for a DDSPublisher (p. 1243).

The default profile library is automatically set when DDSPublisher::set -
default profile (p. 1250) is called.

This library can be different than the DDSPublisher (p. 1243) default library
(see DDSPublisher::get default library (p. 1250)).

Returns:

The default profile library or null if the default profile was not set.

See also:

DDSPublisher::set default profile (p. 1250)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1252 Class Documentation

6.190.2.9 virtual DDSDataWriter∗ DDSPublisher::create -
datawriter (DDSTopic ∗ topic, const
DDS DataWriterQos & qos, DDSDataWriterListener ∗
listener, DDS StatusMask mask) [pure virtual]

Creates a DDSDataWriter (p. 1028) that will be attached and belong to the
DDSPublisher (p. 1243).

For each application-defined type, Foo (p. 1333), there is an implied, auto-
generated class FooDataWriter (p. 1361) that extends DDSDataWriter
(p. 1028) and contains the operations to write data of type Foo (p. 1333).

Note that a common application pattern to construct the QoS for the DDS-
DataWriter (p. 1028) is to:

ˆ Retrieve the QoS policies on the associated DDSTopic (p. 1311) by means
of the DDSTopic::get qos (p. 1315) operation.

ˆ Retrieve the default DDSDataWriter (p. 1028) qos by means of the
DDSPublisher::get default datawriter qos (p. 1247) operation.

ˆ Combine those two QoS policies (for example, using DDSPub-
lisher::copy from topic qos (p. 1260)) and selectively modify policies
as desired.

When a DDSDataWriter (p. 1028) is created, only those transports already
registered are available to the DDSDataWriter (p. 1028). See Built-in
Transport Plugins (p. 129) for details on when a builtin transport is reg-
istered.

Precondition:

If publisher is enabled, topic must have been enabled. Otherwise, this
operation will fail and no DDSDataWriter (p. 1028) will be created.
The given DDSTopic (p. 1311) must have been created from the same
participant as this publisher. If it was created from a different participant,
this method will fail.

MT Safety:

UNSAFE. If DDS DATAWRITER QOS DEFAULT (p. 82) is used
for the qos parameter, it is not safe to create the datawriter while
another thread may be simultaneously calling DDSPublisher::set -
default datawriter qos (p. 1247).

Parameters:

topic <<in>> (p. 191) The DDSTopic (p. 1311) that the DDS-
DataWriter (p. 1028) will be associated with. Cannot be NULL.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.190 DDSPublisher Class Reference 1253

qos <<in>> (p. 191) QoS to be used for creating the new DDS-
DataWriter (p. 1028). The special value DDS DATAWRITER -
QOS DEFAULT (p. 82) can be used to indicate that the DDS-
DataWriter (p. 1028) should be created with the default DDS -
DataWriterQos (p. 516) set in the DDSPublisher (p. 1243).
The special value DDS DATAWRITER QOS USE TOPIC -
QOS (p. 82) can be used to indicate that the DDSDataWriter
(p. 1028) should be created with the combination of the default DDS -
DataWriterQos (p. 516) set on the DDSPublisher (p. 1243) and
the DDS TopicQos (p. 905) of the DDSTopic (p. 1311).

listener <<in>> (p. 191) The listener of the DDSDataWriter
(p. 1028).

mask <<in>> (p. 191). Changes of communication status to be invoked
on the listener.

Returns:

A DDSDataWriter (p. 1028) of a derived class specific to the data type
associated with the DDSTopic (p. 1311) or NULL if an error occurred.

See also:

FooDataWriter (p. 1361)
Specifying QoS on entities (p. 326) for information on setting QoS before
entity creation
DDS DataWriterQos (p. 516) for rules on consistency among QoS
DDS DATAWRITER QOS DEFAULT (p. 82)
DDS DATAWRITER QOS USE TOPIC QOS (p. 82)
DDSPublisher::create datawriter with profile (p. 1253)
DDSPublisher::get default datawriter qos (p. 1247)
DDSTopic::set qos (p. 1313)
DDSPublisher::copy from topic qos (p. 1260)
DDSDataWriter::set listener (p. 1043)

Examples:

HelloWorld publisher.cxx.

6.190.2.10 virtual DDSDataWriter∗ DDSPublisher::create -
datawriter with profile (DDSTopic ∗ topic, const
char ∗ library name, const char ∗ profile name,
DDSDataWriterListener ∗ listener, DDS StatusMask
mask) [pure virtual]

<<eXtension>> (p. 190) Creates a DDSDataWriter (p. 1028) object using
the DDS DataWriterQos (p. 516) associated with the input XML QoS profile.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1254 Class Documentation

The DDSDataWriter (p. 1028) will be attached and belong to the DDSPub-
lisher (p. 1243).

For each application-defined type, Foo (p. 1333), there is an implied, auto-
generated class FooDataWriter (p. 1361) that extends DDSDataWriter
(p. 1028) and contains the operations to write data of type Foo (p. 1333).

When a DDSDataWriter (p. 1028) is created, only those transports already
registered are available to the DDSDataWriter (p. 1028). See Built-in
Transport Plugins (p. 129) for details on when a builtin transport is reg-
istered.

Precondition:

If publisher is enabled, topic must have been enabled. Otherwise, this
operation will fail and no DDSDataWriter (p. 1028) will be created.
The given DDSTopic (p. 1311) must have been created from the same
participant as this publisher. If it was created from a different participant,
this method will return NULL.

Parameters:

topic <<in>> (p. 191) The DDSTopic (p. 1311) that the DDS-
DataWriter (p. 1028) will be associated with. Cannot be NULL.

library name <<in>> (p. 191) Library name containing the XML QoS
profile. If library name is null RTI Data Distribution Service will
use the default library (see DDSPublisher::set default library
(p. 1249)).

profile name <<in>> (p. 191) XML QoS Profile name. If profile name
is null RTI Data Distribution Service will use the default profile (see
DDSPublisher::set default profile (p. 1250)).

listener <<in>> (p. 191) The listener of the DDSDataWriter
(p. 1028).

mask <<in>> (p. 191). Changes of communication status to be invoked
on the listener.

Returns:

A DDSDataWriter (p. 1028) of a derived class specific to the data type
associated with the DDSTopic (p. 1311) or NULL if an error occurred.

See also:

FooDataWriter (p. 1361)
Specifying QoS on entities (p. 326) for information on setting QoS before
entity creation
DDS DataWriterQos (p. 516) for rules on consistency among QoS
DDSPublisher::create datawriter (p. 1252)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.190 DDSPublisher Class Reference 1255

DDSPublisher::get default datawriter qos (p. 1247)
DDSTopic::set qos (p. 1313)
DDSPublisher::copy from topic qos (p. 1260)
DDSDataWriter::set listener (p. 1043)

6.190.2.11 virtual DDS ReturnCode t DDSPublisher::delete -
datawriter (DDSDataWriter ∗ a datawriter) [pure
virtual]

Deletes a DDSDataWriter (p. 1028) that belongs to the DDSPublisher
(p. 1243).

The deletion of the DDSDataWriter (p. 1028) will automatically unregister all
instances. Depending on the settings of the WRITER DATA LIFECYCLE
(p. 360) QosPolicy, the deletion of the DDSDataWriter (p. 1028) may also
dispose all instances.

6.190.3 Special Instructions if Using Timestamp APIs and
BY SOURCE TIMESTAMP Destination Order-
ing:

If the DataWriters DDS DestinationOrderQosPolicy::kind (p. 533) is
DDS BY SOURCE TIMESTAMP DESTINATIONORDER QOS
(p. 351), calls to delete datawriter() (p. 1255) may fail if your applica-
tion has previously used the with timestamp APIs (write w timestamp(),
register instance w timestamp(), unregister instance w timestamp(), or dis-
pose w timestamp()) with a timestamp larger (later) than the time at which
delete datawriter() (p. 1255) is called. To prevent delete datawriter()
(p. 1255) from failing in this situation, either:

ˆ Change the WRITER DATA LIFECYCLE (p. 360) QosPolicy so
that RTI Data Distribution Service will not autodispose unregistered
instances (set DDS WriterDataLifecycleQosPolicy::autodispose -
unregistered instances (p. 990) to DDS BOOLEAN FALSE
(p. 289).) or

ˆ Explicitly call unregister instance w timestamp() for all instances modi-
fied with the ∗ w timestamp() APIs before calling delete datawriter()
(p. 1255).

Precondition:

If the DDSDataWriter (p. 1028) does not belong to the DDSPub-
lisher (p. 1243), the operation will fail with DDS RETCODE -
PRECONDITION NOT MET (p. 303).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1256 Class Documentation

Postcondition:

Listener installed on the DDSDataWriter (p. 1028) will not be called after
this method completes successfully.

Parameters:

a datawriter <<in>> (p. 191) The DDSDataWriter (p. 1028) to be
deleted.

Returns:

One of the Standard Return Codes (p. 302) or DDS RETCODE -
PRECONDITION NOT MET (p. 303).

6.190.3.1 virtual DDSDataWriter∗ DDSPublisher::lookup -
datawriter (const char ∗ topic name) [pure
virtual]

Retrieves the DDSDataWriter (p. 1028) for a specific DDSTopic (p. 1311).

This returned DDSDataWriter (p. 1028) is either enabled or disabled.

Parameters:

topic name <<in>> (p. 191) Name of the DDSTopic (p. 1311) asso-
ciated with the DDSDataWriter (p. 1028) that is to be looked up.
Cannot be NULL.

Returns:

A DDSDataWriter (p. 1028) that belongs to the DDSPublisher
(p. 1243) attached to the DDSTopic (p. 1311) with topic name. If no
such DDSDataWriter (p. 1028) exists, this operation returns NULL.

If more than one DDSDataWriter (p. 1028) is attached to the DDSPublisher
(p. 1243) with the same topic name, then this operation may return any one of
them.

MT Safety:

UNSAFE. It is not safe to lookup a DDSDataWriter (p. 1028) in one
thread while another thread is simultaneously creating or destroying that
DDSDataWriter (p. 1028).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.190 DDSPublisher Class Reference 1257

6.190.3.2 virtual DDS ReturnCode t DDSPublisher::suspend -
publications () [pure virtual]

Indicates to RTI Data Distribution Service that the application is about to make
multiple modifications using DDSDataWriter (p. 1028) objects belonging to
the DDSPublisher (p. 1243).

It is a hint to RTI Data Distribution Service so it can optimize its performance
by e.g., holding the dissemination of the modifications and then batching them.

The use of this operation must be matched by a corresponding call to DDSPub-
lisher::resume publications (p. 1257) indicating that the set of modifications
has completed.

If the DDSPublisher (p. 1243) is deleted before DDSPublisher::resume -
publications (p. 1257) is called, any suspended updates yet to be published
will be discarded.

RTI Data Distribution Service is not required and does not currently make use
of this hint in any way. However, similar results can be achieved by using asyn-
chronous publishing . Combined with DDSFlowController (p. 1163), DDS -
ASYNCHRONOUS PUBLISH MODE QOS (p. 403) DDSDataWriter
(p. 1028) instances allow the user even finer control of traffic shaping and sample
coalescing.

Returns:

One of the Standard Return Codes (p. 302) or DDS RETCODE -
NOT ENABLED (p. 303).

See also:

DDSFlowController (p. 1163)
DDSFlowController::trigger flow (p. 1165)
DDS ON DEMAND FLOW CONTROLLER NAME (p. 90)
DDS PublishModeQosPolicy (p. 802)

6.190.3.3 virtual DDS ReturnCode t DDSPublisher::resume -
publications () [pure virtual]

Indicates to RTI Data Distribution Service that the application has completed
the multiple changes initiated by the previous DDSPublisher::suspend -
publications (p. 1257).

This is a hint to RTI Data Distribution Service that can be used for exam-
ple, to batch all the modifications made since the DDSPublisher::suspend -
publications (p. 1257).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1258 Class Documentation

RTI Data Distribution Service is not required and does not currently make use
of this hint in any way. However, similar results can be achieved by using asyn-
chronous publishing . Combined with DDSFlowController (p. 1163), DDS -
ASYNCHRONOUS PUBLISH MODE QOS (p. 403) DDSDataWriter
(p. 1028) instances allow the user even finer control of traffic shaping and sample
coalescing.

Precondition:

A call to DDSPublisher::resume publications (p. 1257) must
match a previous call to DDSPublisher::suspend publications
(p. 1257). Otherwise the operation will fail with DDS RETCODE -
PRECONDITION NOT MET (p. 303).

Returns:

One of the Standard Return Codes (p. 302) or DDS RETCODE -
PRECONDITION NOT MET (p. 303) or DDS RETCODE NOT -
ENABLED (p. 303).

See also:

DDSFlowController (p. 1163)
DDSFlowController::trigger flow (p. 1165)
DDS ON DEMAND FLOW CONTROLLER NAME (p. 90)
DDS PublishModeQosPolicy (p. 802)

6.190.3.4 virtual DDS ReturnCode t DDSPublisher::begin -
coherent changes () [pure virtual]

Indicates that the application will begin a coherent set of modifications using
DDSDataWriter (p. 1028) objects attached to the DDSPublisher (p. 1243).

A ’coherent set’ is a set of modifications that must be propagated in such a
way that they are interpreted at the receiver’s side as a consistent set of mod-
ifications; that is, the receiver will only be able to access the data after all the
modifications in the set are available at the receiver end.

A connectivity change may occur in the middle of a set of coherent changes; for
example, the set of partitions used by the DDSPublisher (p. 1243) or one of
its DDSSubscriber (p. 1284) s may change, a late-joining DDSDataReader
(p. 1004) may appear on the network, or a communication failure may occur. In
the event that such a change prevents an entity from receiving the entire set of
coherent changes, that entity must behave as if it had received none of the set.

These calls can be nested. In that case, the coherent set terminates only with
the last call to DDSPublisher::end coherent changes (p. 1259).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.190 DDSPublisher Class Reference 1259

The support for coherent changes enables a publishing application to change the
value of several data-instances that could belong to the same or different topics
and have those changes be seen atomically by the readers. This is useful in cases
where the values are inter-related (for example, if there are two data-instances
representing the altitude and velocity vector of the same aircraft and both are
changed, it may be useful to communicate those values in a way the reader can
see both together; otherwise, it may e.g., erroneously interpret that the aircraft
is on a collision course).

Returns:

One of the Standard Return Codes (p. 302) or DDS RETCODE -
NOT ENABLED (p. 303).

6.190.3.5 virtual DDS ReturnCode t DDSPublisher::end -
coherent changes () [pure virtual]

Terminates the coherent set initiated by the matching call to DDSPub-
lisher::begin coherent changes (p. 1258).

Precondition:

If there is no matching call to DDSPublisher::begin coherent -
changes (p. 1258) the operation will fail with DDS RETCODE -
PRECONDITION NOT MET (p. 303).

Returns:

One of the Standard Return Codes (p. 302), DDS RETCODE -
PRECONDITION NOT MET (p. 303) or DDS RETCODE NOT -
ENABLED (p. 303).

6.190.3.6 virtual DDSDomainParticipant∗
DDSPublisher::get participant () [pure virtual]

Returns the DDSDomainParticipant (p. 1054) to which the DDSPublisher
(p. 1243) belongs.

Returns:

the DDSDomainParticipant (p. 1054) to which the DDSPublisher
(p. 1243) belongs.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1260 Class Documentation

6.190.3.7 virtual DDS ReturnCode t DDSPublisher::delete -
contained entities () [pure virtual]

Deletes all the entities that were created by means of the ”create” operation on
the DDSPublisher (p. 1243).

Deletes all contained DDSDataWriter (p. 1028) objects. Once DDSPub-
lisher::delete contained entities (p. 1260) completes successfully, the appli-
cation may delete the DDSPublisher (p. 1243), knowing that it has no con-
tained DDSDataWriter (p. 1028) objects.

The operation will fail with DDS RETCODE PRECONDITION NOT -
MET (p. 303) if any of the contained entities is in a state where it cannot be
deleted.

Returns:

One of the Standard Return Codes (p. 302) or DDS RETCODE -
PRECONDITION NOT MET (p. 303).

6.190.3.8 virtual DDS ReturnCode t DDSPublisher::copy from -
topic qos (DDS DataWriterQos & a datawriter qos,
const DDS TopicQos & a topic qos) [pure virtual]

Copies the policies in the DDS TopicQos (p. 905) to the corresponding policies
in the DDS DataWriterQos (p. 516).

Copies the policies in the DDS TopicQos (p. 905) to the corresponding poli-
cies in the DDS DataWriterQos (p. 516) (replacing values in the DDS -
DataWriterQos (p. 516), if present).

This is a ”convenience” operation most useful in combination with
the operations DDSPublisher::get default datawriter qos (p. 1247) and
DDSTopic::get qos (p. 1315). The operation DDSPublisher::copy from -
topic qos (p. 1260) can be used to merge the DDSDataWriter (p. 1028) de-
fault QoS policies with the corresponding ones on the DDSTopic (p. 1311). The
resulting QoS can then be used to create a new DDSDataWriter (p. 1028), or
set its QoS.

This operation does not check the resulting DDS DataWriterQos (p. 516) for
consistency. This is because the ’merged’ DDS DataWriterQos (p. 516) may
not be the final one, as the application can still modify some policies prior to
applying the policies to the DDSDataWriter (p. 1028).

Parameters:

a datawriter qos <<inout>> (p. 191) DDS DataWriterQos (p. 516)
to be filled-up.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.190 DDSPublisher Class Reference 1261

a topic qos <<in>> (p. 191) DDS TopicQos (p. 905) to be merged
with DDS DataWriterQos (p. 516).

Returns:

One of the Standard Return Codes (p. 302)

6.190.3.9 virtual DDS ReturnCode t DDSPublisher::wait for -
acknowledgments (const DDS Duration t & max wait)
[pure virtual]

Blocks the calling thread until all data written by reliable DDSDataWriter
(p. 1028) entities is acknowledged, or until timeout expires.

This operation blocks the calling thread until either all data written by the
reliable DDSDataWriter (p. 1028) entities is acknowledged by all matched re-
liable DDSDataReader (p. 1004) entities, or else the duration specified by the
max wait parameter elapses, whichever happens first. A successful completion
indicates that all the samples written have been acknowledged by all reliable
matched data readers; a return value of TIMEOUT indicates that max wait
elapsed before all the data was acknowledged.

If none of the DDSDataWriter (p. 1028) instances have DDS -
ReliabilityQosPolicy (p. 813) kind set to RELIABLE, the operation
will complete successfully.

Parameters:

max wait <<in>> (p. 191) Specifies maximum time to wait for acknowl-
edgements DDS Duration t (p. 579) .

Returns:

One of the Standard Return Codes (p. 302), DDS RETCODE -
NOT ENABLED (p. 303), DDS RETCODE TIMEOUT (p. 304)

6.190.3.10 virtual DDS ReturnCode t DDSPublisher::wait for -
asynchronous publishing (const DDS Duration t &
max wait) [pure virtual]

<<eXtension>> (p. 190) Blocks the calling thread until asynchronous send-
ing is complete.

This operation blocks the calling thread (up to max wait) until all data writ-
ten by the asynchronous DDSDataWriter (p. 1028) entities is sent and ac-
knowledged (if reliable) by all matched DDSDataReader (p. 1004) entities.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1262 Class Documentation

A successful completion indicates that all the samples written have been sent
and acknowledged where applicable; if it times out, this indicates that max wait
elapsed before all the data was sent and/or acknowledged.

In other words, this guarantees that sending to best effort DDSDataReader
(p. 1004) is complete in addition to what DDSPublisher::wait for -
acknowledgments (p. 1261) provides.

If none of the DDSDataWriter (p. 1028) instances have DDS -
PublishModeQosPolicy::kind (p. 804) set to DDS ASYNCHRONOUS -
PUBLISH MODE QOS (p. 403), the operation will complete immediately,
with DDS RETCODE OK (p. 303).

Parameters:

max wait <<in>> (p. 191) Specifies maximum time to wait for acknowl-
edgements DDS Duration t (p. 579).

Returns:

One of the Standard Return Codes (p. 302), DDS RETCODE -
NOT ENABLED (p. 303), DDS RETCODE TIMEOUT (p. 304)

6.190.3.11 virtual DDS ReturnCode t DDSPublisher::set qos
(const DDS PublisherQos & qos) [pure virtual]

Sets the publisher QoS.

This operation modifies the QoS of the DDSPublisher (p. 1243).

The DDS PublisherQos::group data (p. 801), DDS -
PublisherQos::partition (p. 801) and DDS PublisherQos::entity factory
(p. 801) can be changed. The other policies are immutable.

Parameters:

qos <<in>> (p. 191) DDS PublisherQos (p. 800) to be set to. Poli-
cies must be consistent. Immutable policies cannot be changed af-
ter DDSPublisher (p. 1243) is enabled. The special value DDS -
PUBLISHER QOS DEFAULT (p. 37) can be used to indicate that
the QoS of the DDSPublisher (p. 1243) should be changed to match
the current default DDS PublisherQos (p. 800) set in the DDSDo-
mainParticipant (p. 1054).

Returns:

One of the Standard Return Codes (p. 302), DDS RETCODE -
IMMUTABLE POLICY (p. 303), or DDS RETCODE -
INCONSISTENT POLICY (p. 304).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.190 DDSPublisher Class Reference 1263

See also:

DDS PublisherQos (p. 800) for rules on consistency among QoS
set qos (abstract) (p. 1158)
Operations Allowed in Listener Callbacks (p. 1219)

6.190.3.12 virtual DDS ReturnCode t DDSPublisher::set qos -
with profile (const char ∗ library name, const char ∗
profile name) [pure virtual]

<<eXtension>> (p. 190) Change the QoS of this publisher using the input
XML QoS profile.

This operation modifies the QoS of the DDSPublisher (p. 1243).

The DDS PublisherQos::group data (p. 801), DDS -
PublisherQos::partition (p. 801) and DDS PublisherQos::entity factory
(p. 801) can be changed. The other policies are immutable.

Parameters:

library name <<in>> (p. 191) Library name containing the XML QoS
profile. If library name is null RTI Data Distribution Service will
use the default library (see DDSPublisher::set default library
(p. 1249)).

profile name <<in>> (p. 191) XML QoS Profile name. If profile name
is null RTI Data Distribution Service will use the default profile (see
DDSPublisher::set default profile (p. 1250)).

Returns:

One of the Standard Return Codes (p. 302), DDS RETCODE -
IMMUTABLE POLICY (p. 303), or DDS RETCODE -
INCONSISTENT POLICY (p. 304).

See also:

DDS PublisherQos (p. 800) for rules on consistency among QoS
Operations Allowed in Listener Callbacks (p. 1219)

6.190.3.13 virtual DDS ReturnCode t DDSPublisher::get qos
(DDS PublisherQos & qos) [pure virtual]

Gets the publisher QoS.

This method may potentially allocate memory depending on the sequences con-
tained in some QoS policies.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1264 Class Documentation

Parameters:

qos <<in>> (p. 191) DDS PublisherQos (p. 800) to be filled in.

Returns:

One of the Standard Return Codes (p. 302)

See also:

get qos (abstract) (p. 1159)

6.190.3.14 virtual DDS ReturnCode t DDSPublisher::set listener
(DDSPublisherListener ∗ l, DDS StatusMask mask =
DDS STATUS MASK ALL) [pure virtual]

Sets the publisher listener.

Parameters:

l <<in>> (p. 191) DDSPublisherListener (p. 1265) to set to.

mask <<in>> (p. 191) DDS StatusMask (p. 309) associated with the
DDSPublisherListener (p. 1265).

Returns:

One of the Standard Return Codes (p. 302)

See also:

set listener (abstract) (p. 1159)

6.190.3.15 virtual DDSPublisherListener∗
DDSPublisher::get listener () [pure virtual]

Get the publisher listener.

Returns:

DDSPublisherListener (p. 1265) of the DDSPublisher (p. 1243).

See also:

get listener (abstract) (p. 1160)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.191 DDSPublisherListener Class Reference 1265

6.191 DDSPublisherListener Class Reference

<<interface>> (p. 190) DDSListener (p. 1217) for DDSPublisher
(p. 1243) status.

Inheritance diagram for DDSPublisherListener::

6.191.1 Detailed Description

<<interface>> (p. 190) DDSListener (p. 1217) for DDSPublisher
(p. 1243) status.

Entity:

DDSPublisher (p. 1243)

Status:

DDS LIVELINESS LOST STATUS (p. 313), DDS -
LivelinessLostStatus (p. 728);
DDS OFFERED DEADLINE MISSED STATUS (p. 311), DDS -
OfferedDeadlineMissedStatus (p. 752);
DDS OFFERED INCOMPATIBLE QOS STATUS (p. 311),
DDS OfferedIncompatibleQosStatus (p. 754);
DDS PUBLICATION MATCHED STATUS (p. 313), DDS -
PublicationMatchedStatus (p. 797);
DDS RELIABLE READER ACTIVITY CHANGED STATUS
(p. 314), DDS ReliableReaderActivityChangedStatus (p. 817);
DDS RELIABLE WRITER CACHE CHANGED STATUS
(p. 314), DDS ReliableWriterCacheChangedStatus (p. 819)

See also:

DDSListener (p. 1217)
Status Kinds (p. 305)
Operations Allowed in Listener Callbacks (p. 1219)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1266 Class Documentation

6.192 DDSPublisherSeq Class Reference

Declares IDL sequence < DDSPublisher (p. 1243) > .

6.192.1 Detailed Description

Declares IDL sequence < DDSPublisher (p. 1243) > .

See also:

FooSeq (p. 1377)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.193 DDSQueryCondition Class Reference 1267

6.193 DDSQueryCondition Class Reference

<<interface>> (p. 190) These are specialised DDSReadCondition
(p. 1269) objects that allow the application to also specify a filter on the lo-
cally available data.

Inheritance diagram for DDSQueryCondition::

Public Member Functions

ˆ virtual const char ∗ get query expression ()=0

Retrieves the query expression.

ˆ virtual DDS ReturnCode t get query parameters (DDS -
StringSeq &query parameters)=0

Retrieves the query parameters.

ˆ virtual DDS ReturnCode t set query parameters (const DDS -
StringSeq &query parameters)=0

Sets the query parameters.

6.193.1 Detailed Description

<<interface>> (p. 190) These are specialised DDSReadCondition
(p. 1269) objects that allow the application to also specify a filter on the lo-
cally available data.

Each query condition filter is composed of a DDSReadCondition (p. 1269)
state filter and a content filter expressed as a query expression and query -
parameters.

The query (query expression) is similar to an SQL WHERE clause and can
be parameterised by arguments that are dynamically changeable by the set -
query parameters() (p. 1268) operation.

Two query conditions that have the same query expression will require unique
query condition content filters if their query paramters differ. Query conditions
that differ only in their state masks will share the same query condition content
filter.

Queries and Filters Syntax (p. 199) describes the syntax of query -
expression and query parameters.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1268 Class Documentation

6.193.2 Member Function Documentation

6.193.2.1 virtual const char∗ DDSQueryCondition::get query -
expression () [pure virtual]

Retrieves the query expression.

6.193.2.2 virtual DDS ReturnCode t DDSQueryCondition::get -
query parameters (DDS StringSeq & query parameters)
[pure virtual]

Retrieves the query parameters.

Parameters:

query parameters <<inout>> (p. 191) the query parameters are re-
turned here. The memory for the strings in this sequence is managed
according to the conventions described in Conventions (p. 432). In
particular, be careful to avoid a situation in which RTI Data Distribu-
tion Service allocates a string on your behalf and you then reuse that
string in such a way that RTI Data Distribution Service believes it to
have more memory allocated to it than it actually does.

6.193.2.3 virtual DDS ReturnCode t DDSQueryCondition::set -
query parameters (const DDS StringSeq &
query parameters) [pure virtual]

Sets the query parameters.

Parameters:

query parameters <<in>> (p. 191) the new query parameters

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.194 DDSReadCondition Class Reference 1269

6.194 DDSReadCondition Class Reference

<<interface>> (p. 190) Conditions specifically dedicated to read operations
and attached to one DDSDataReader (p. 1004).

Inheritance diagram for DDSReadCondition::

Public Member Functions

ˆ virtual DDS SampleStateMask get sample state mask ()=0

Retrieves the set of sample states for the condition.

ˆ virtual DDS ViewStateMask get view state mask ()=0

Retrieves the set of view states for the condition.

ˆ virtual DDS InstanceStateMask get instance state mask ()=0

Retrieves the set of instance states for the condition.

ˆ virtual DDSDataReader ∗ get datareader ()=0

Returns the DDSDataReader (p. 1004) associated with the DDSRead-
Condition (p. 1269).

6.194.1 Detailed Description

<<interface>> (p. 190) Conditions specifically dedicated to read operations
and attached to one DDSDataReader (p. 1004).

DDSReadCondition (p. 1269) objects allow an application to specify the data
samples it is interested in (by specifying the desired sample states, view -
states as well as instance states in FooDataReader::read (p. 1337) and
FooDataReader::take (p. 1338) variants.

This allows RTI Data Distribution Service to enable the condition only when
suitable information is available. They are to be used in conjunction with a
WaitSet as normal conditions.

More than one DDSReadCondition (p. 1269) may be attached to the same
DDSDataReader (p. 1004).

Note: If you are using a ReadCondition simply to detect the presence of
new data, consider using a DDSStatusCondition (p. 1271) with the DATA -
AVAILABLE STATUS instead, which will perform better in this situation.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1270 Class Documentation

6.194.2 Member Function Documentation

6.194.2.1 virtual DDS SampleStateMask DDSReadCondition::get -
sample state mask () [pure virtual]

Retrieves the set of sample states for the condition.

6.194.2.2 virtual DDS ViewStateMask DDSReadCondition::get -
view state mask () [pure virtual]

Retrieves the set of view states for the condition.

6.194.2.3 virtual DDS InstanceStateMask
DDSReadCondition::get instance state mask () [pure
virtual]

Retrieves the set of instance states for the condition.

6.194.2.4 virtual DDSDataReader∗ DDSReadCondition::get -
datareader () [pure virtual]

Returns the DDSDataReader (p. 1004) associated with the DDSReadCon-
dition (p. 1269).

There is exactly one DDSDataReader (p. 1004) assicated with each
DDSReadCondition (p. 1269).

Returns:

DDSDataReader (p. 1004) associated with the DDSReadCondition
(p. 1269).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.195 DDSStatusCondition Class Reference 1271

6.195 DDSStatusCondition Class Reference

<<interface>> (p. 190) A specific DDSCondition (p. 992) that is associated
with each DDSEntity (p. 1157).

Inheritance diagram for DDSStatusCondition::

Public Member Functions

ˆ virtual DDS StatusMask get enabled statuses ()=0

Get the list of statuses enabled on an DDSEntity (p. 1157).

ˆ virtual DDS ReturnCode t set enabled statuses (DDS -
StatusMask mask)=0

This operation defines the list of communication statuses that determine the
trigger value of the DDSStatusCondition (p. 1271).

ˆ virtual DDSEntity ∗ get entity ()=0

Get the DDSEntity (p. 1157) associated with the DDSStatusCondition
(p. 1271).

6.195.1 Detailed Description

<<interface>> (p. 190) A specific DDSCondition (p. 992) that is associated
with each DDSEntity (p. 1157).

The trigger value of the DDSStatusCondition (p. 1271) depends on the
communication status of that entity (e.g., arrival of data, loss of information,
etc.), ’filtered’ by the set of enabled statuses on the DDSStatusCondition
(p. 1271).

See also:

Status Kinds (p. 305)
DDSWaitSet (p. 1325), DDSCondition (p. 992)
DDSListener (p. 1217)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1272 Class Documentation

6.195.2 Member Function Documentation

6.195.2.1 virtual DDS StatusMask DDSStatusCondition::get -
enabled statuses () [pure virtual]

Get the list of statuses enabled on an DDSEntity (p. 1157).

Returns:

list of enabled statuses.

6.195.2.2 virtual DDS ReturnCode t DDSStatusCondition::set -
enabled statuses (DDS StatusMask mask) [pure
virtual]

This operation defines the list of communication statuses that determine the
trigger value of the DDSStatusCondition (p. 1271).

This operation may change the trigger value of the DDSStatusCondition
(p. 1271).

DDSWaitSet (p. 1325) objects’ behavior depends on the changes of the
trigger value of their attached conditions. Therefore, any DDSWaitSet
(p. 1325) to which the DDSStatusCondition (p. 1271) is attached is poten-
tially affected by this operation.

If this function is not invoked, the default list of enabled statuses includes all
the statuses.

Parameters:

mask <<in>> (p. 191) the list of enables statuses (see Status Kinds
(p. 305))

Returns:

One of the Standard Return Codes (p. 302)

6.195.2.3 virtual DDSEntity∗ DDSStatusCondition::get entity ()
[pure virtual]

Get the DDSEntity (p. 1157) associated with the DDSStatusCondition
(p. 1271).

There is exactly one DDSEntity (p. 1157) assocated with each DDSStatus-
Condition (p. 1271).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.195 DDSStatusCondition Class Reference 1273

Returns:

DDSEntity (p. 1157) associated with the DDSStatusCondition
(p. 1271).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1274 Class Documentation

6.196 DDSStringDataReader Class Reference

<<interface>> (p. 190) Instantiates DataReader < char∗ >.

Inheritance diagram for DDSStringDataReader::

Public Member Functions

ˆ virtual DDS ReturnCode t read (DDS StringSeq &received data,
DDS SampleInfoSeq &info seq, DDS Long max samples=DDS -
LENGTH UNLIMITED, DDS SampleStateMask sample -
states=DDS ANY SAMPLE STATE, DDS ViewStateMask
view states=DDS ANY VIEW STATE, DDS InstanceStateMask
instance states=DDS ANY INSTANCE STATE)

Access a collection of data samples from the DDSDataReader (p. 1004).

ˆ virtual DDS ReturnCode t take (DDS StringSeq &received data,
DDS SampleInfoSeq &info seq, DDS Long max samples=DDS -
LENGTH UNLIMITED, DDS SampleStateMask sample -
states=DDS ANY SAMPLE STATE, DDS ViewStateMask
view states=DDS ANY VIEW STATE, DDS InstanceStateMask
instance states=DDS ANY INSTANCE STATE)

Access a collection of data-samples from the DDSDataReader (p. 1004).

ˆ virtual DDS ReturnCode t read w condition (DDS StringSeq
&received data, DDS SampleInfoSeq &info seq, DDS Long max -
samples, DDSReadCondition ∗condition)

Accesses via DDSStringDataReader::read (p. 1275) the samples that
match the criteria specified in the DDSReadCondition (p. 1269).

ˆ virtual DDS ReturnCode t take w condition (DDS StringSeq
&received data, DDS SampleInfoSeq &info seq, DDS Long max -
samples, DDSReadCondition ∗condition)

Analogous to DDSStringDataReader::read w condition (p. 1276) except
it accesses samples via the DDSStringDataReader::take (p. 1276) opera-
tion.

ˆ virtual DDS ReturnCode t read next sample (char ∗received data,
DDS SampleInfo &sample info)

Copies the next not-previously-accessed data value from the DDS-
DataReader (p. 1004).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.196 DDSStringDataReader Class Reference 1275

ˆ virtual DDS ReturnCode t take next sample (char ∗received data,
DDS SampleInfo &sample info)

Copies the next not-previously-accessed data value from the DDS-
DataReader (p. 1004).

ˆ virtual DDS ReturnCode t return loan (DDS StringSeq &re-
ceived data, DDS SampleInfoSeq &info seq)

Indicates to the DDSDataReader (p. 1004) that the application is done
accessing the collection of received data and info seq obtained by some
earlier invocation of read or take on the DDSDataReader (p. 1004).

Static Public Member Functions

ˆ static DDSStringDataReader ∗ narrow (DDSDataReader
∗reader)

Narrow the given DDSDataReader (p. 1004) pointer to a DDSString-
DataReader (p. 1274) pointer.

6.196.1 Detailed Description

<<interface>> (p. 190) Instantiates DataReader < char∗ >.

See also:

FooDataReader (p. 1334)
DDSDataReader (p. 1004)
String Support (p. 431)

6.196.2 Member Function Documentation

6.196.2.1 virtual DDS ReturnCode t DDSStringDataReader::read
(DDS StringSeq & received data, DDS SampleInfoSeq
& info seq, DDS Long max samples =
DDS LENGTH UNLIMITED, DDS SampleStateMask
sample states = DDS ANY SAMPLE STATE,
DDS ViewStateMask view states = DDS ANY VIEW -
STATE, DDS InstanceStateMask instance states =
DDS ANY INSTANCE STATE) [virtual]

Access a collection of data samples from the DDSDataReader (p. 1004).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1276 Class Documentation

See also:

FooDataReader::read (p. 1337)

6.196.2.2 virtual DDS ReturnCode t DDSStringDataReader::take
(DDS StringSeq & received data, DDS SampleInfoSeq
& info seq, DDS Long max samples =
DDS LENGTH UNLIMITED, DDS SampleStateMask
sample states = DDS ANY SAMPLE STATE,
DDS ViewStateMask view states = DDS ANY VIEW -
STATE, DDS InstanceStateMask instance states =
DDS ANY INSTANCE STATE) [virtual]

Access a collection of data-samples from the DDSDataReader (p. 1004).

See also:

FooDataReader::take (p. 1338)

6.196.2.3 virtual DDS ReturnCode t DDSStringDataReader::read -
w condition (DDS StringSeq & received data,
DDS SampleInfoSeq & info seq, DDS Long
max samples, DDSReadCondition ∗ condition)
[virtual]

Accesses via DDSStringDataReader::read (p. 1275) the samples that match
the criteria specified in the DDSReadCondition (p. 1269).

See also:

FooDataReader::read w condition (p. 1344)

6.196.2.4 virtual DDS ReturnCode t DDSStringDataReader::take -
w condition (DDS StringSeq & received data,
DDS SampleInfoSeq & info seq, DDS Long
max samples, DDSReadCondition ∗ condition)
[virtual]

Analogous to DDSStringDataReader::read w condition (p. 1276) except it
accesses samples via the DDSStringDataReader::take (p. 1276) operation.

See also:

FooDataReader::take w condition (p. 1345)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.196 DDSStringDataReader Class Reference 1277

6.196.2.5 virtual DDS ReturnCode t DDSStringDataReader::read -
next sample (char ∗ received data, DDS SampleInfo &
sample info) [virtual]

Copies the next not-previously-accessed data value from the DDSDataReader
(p. 1004).

See also:

FooDataReader::read next sample (p. 1346)

6.196.2.6 virtual DDS ReturnCode t DDSStringDataReader::take -
next sample (char ∗ received data, DDS SampleInfo &
sample info) [virtual]

Copies the next not-previously-accessed data value from the DDSDataReader
(p. 1004).

See also:

FooDataReader::take next sample (p. 1347)

6.196.2.7 virtual DDS ReturnCode t DDSString-
DataReader::return loan (DDS StringSeq &
received data, DDS SampleInfoSeq & info seq)
[virtual]

Indicates to the DDSDataReader (p. 1004) that the application is done ac-
cessing the collection of received data and info seq obtained by some earlier
invocation of read or take on the DDSDataReader (p. 1004).

See also:

FooDataReader::return loan (p. 1358)

6.196.2.8 static DDSStringDataReader∗
DDSStringDataReader::narrow (DDSDataReader ∗
reader) [static]

Narrow the given DDSDataReader (p. 1004) pointer to a DDSString-
DataReader (p. 1274) pointer.

See also:

FooDataReader::narrow (p. 1336)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1278 Class Documentation

6.197 DDSStringDataWriter Class Reference

<<interface>> (p. 190) Instantiates DataWriter < char∗ >.

Inheritance diagram for DDSStringDataWriter::

Public Member Functions

ˆ virtual DDS ReturnCode t write (const char ∗instance data, const
DDS InstanceHandle t &handle)

Modifies the value of a string data instance.

ˆ virtual DDS ReturnCode t write w timestamp (const char
∗instance data, const DDS InstanceHandle t &handle, const DDS -
Time t &source timestamp)

Performs the same function as DDSStringDataWriter::write (p. 1279)
except that it also provides the value for the source timestamp.

Static Public Member Functions

ˆ static DDSStringDataWriter ∗ narrow (DDSDataWriter ∗writer)

Narrow the given DDSDataWriter (p. 1028) pointer to a DDSString-
DataWriter (p. 1278) pointer.

6.197.1 Detailed Description

<<interface>> (p. 190) Instantiates DataWriter < char∗ >.

See also:

FooDataWriter (p. 1361)
DDSDataWriter (p. 1028)
String Support (p. 431)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.197 DDSStringDataWriter Class Reference 1279

6.197.2 Member Function Documentation

6.197.2.1 static DDSStringDataWriter∗
DDSStringDataWriter::narrow (DDSDataWriter ∗
writer) [static]

Narrow the given DDSDataWriter (p. 1028) pointer to a DDSString-
DataWriter (p. 1278) pointer.

See also:

FooDataWriter::narrow (p. 1363)

6.197.2.2 virtual DDS ReturnCode t DDSStringDataWriter::write
(const char ∗ instance data, const DDS InstanceHandle t
& handle) [virtual]

Modifies the value of a string data instance.

See also:

FooDataWriter::write (p. 1368)

6.197.2.3 virtual DDS ReturnCode t DDSString-
DataWriter::write w timestamp (const char ∗
instance data, const DDS InstanceHandle t & handle,
const DDS Time t & source timestamp) [virtual]

Performs the same function as DDSStringDataWriter::write (p. 1279) ex-
cept that it also provides the value for the source timestamp.

See also:

FooDataWriter::write w timestamp (p. 1371)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1280 Class Documentation

6.198 DDSStringTypeSupport Class Reference

<<interface>> (p. 190) String type support.

Inheritance diagram for DDSStringTypeSupport::

Static Public Member Functions

ˆ static DDS ReturnCode t register type (DDSDomainParticipant
∗participant, const char ∗type name=”DDS::String”)

Allows an application to communicate to RTI Data Distribution Service the
existence of the char∗ data type.

ˆ static DDS ReturnCode t unregister type (DDSDomainPartici-
pant ∗participant, const char ∗type name=”DDS::String”)

Allows an application to unregister the char∗ data type from RTI Data Dis-
tribution Service. After calling unregister type, no further communication
using this type is possible.

ˆ static const char ∗ get type name ()
Get the default name for the char∗ type.

ˆ static void print data (const char ∗a data)
<<eXtension>> (p. 190) Print value of data type to standard out.

6.198.1 Detailed Description

<<interface>> (p. 190) String type support.

6.198.2 Member Function Documentation

6.198.2.1 static DDS ReturnCode t DDSStringTypeSup-
port::register type (DDSDomainParticipant ∗ participant,
const char ∗ type name = "DDS::String") [static]

Allows an application to communicate to RTI Data Distribution Service the
existence of the char∗ data type.

By default, The char∗ built-in type is automatically registered when a Domain-
Participant is created using the type name returned by DDSStringTypeSup-
port::get type name (p. 1282). Therefore, the usage of this function is op-

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.198 DDSStringTypeSupport Class Reference 1281

tional and it is only required when the automatic built-in type registration is
disabled using the participant property ”dds.builtin type.auto register”.

This method can also be used to register the same DDSStringTypeSupport
(p. 1280) with a DDSDomainParticipant (p. 1054) using different values for
the type name.

If register type is called multiple times with the same DDSDomainPartic-
ipant (p. 1054) and type name, the second (and subsequent) registrations are
ignored by the operation.

Parameters:

participant <<in>> (p. 191) the DDSDomainParticipant (p. 1054)
to register the data type char∗ with. Cannot be NULL.

type name <<in>> (p. 191) the type name under with the data type
char∗ is registered with the participant; this type name is used when
creating a new DDSTopic (p. 1311). (See DDSDomainPartici-
pant::create topic (p. 1089).) The name may not be NULL or longer
than 255 characters.

Returns:

One of the Standard Return Codes (p. 302), DDS RETCODE -
PRECONDITION NOT MET (p. 303) or DDS RETCODE OUT -
OF RESOURCES (p. 303).

MT Safety:

UNSAFE on the FIRST call. It is not safe for two threads to simultaneously
make the first call to register a type. Subsequent calls are thread safe.

See also:

DDSDomainParticipant::create topic (p. 1089)

6.198.2.2 static DDS ReturnCode t DDSStringTypeSup-
port::unregister type (DDSDomainParticipant ∗
participant, const char ∗ type name = "DDS::String")
[static]

Allows an application to unregister the char∗ data type from RTI Data Distri-
bution Service. After calling unregister type, no further communication using
this type is possible.

Precondition:

The char∗ type with type name is registered with the participant and all
DDSTopic (p. 1311) objects referencing the type have been destroyed.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1282 Class Documentation

If the type is not registered with the participant, or if any DDSTopic
(p. 1311) is associated with the type, the operation will fail with DDS -
RETCODE ERROR (p. 303).

Postcondition:

All information about the type is removed from RTI Data Distribution
Service. No further communication using this type is possible.

Parameters:

participant <<in>> (p. 191) the DDSDomainParticipant (p. 1054)
to unregister the data type char∗ from. Cannot be NULL.

type name <<in>> (p. 191) the type name under with the data type
char∗ is registered with the participant. The name should match a
name that has been previously used to register a type with the par-
ticipant. Cannot be NULL.

Returns:

One of the Standard Return Codes (p. 302), DDS RETCODE -
BAD PARAMETER (p. 303) or DDS RETCODE ERROR (p. 303)

MT Safety:

SAFE.

See also:

DDSStringTypeSupport::register type (p. 1280)

6.198.2.3 static const char∗ DDSStringTypeSupport::get type name
() [static]

Get the default name for the char∗ type.

Can be used for calling DDSStringTypeSupport::register type (p. 1280) or
creating DDSTopic (p. 1311).

Returns:

default name for the char∗ type.

See also:

DDSStringTypeSupport::register type (p. 1280)
DDSDomainParticipant::create topic (p. 1089)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.198 DDSStringTypeSupport Class Reference 1283

6.198.2.4 static void DDSStringTypeSupport::print data (const
char ∗ a data) [static]

<<eXtension>> (p. 190) Print value of data type to standard out.

The generated implementation of the operation knows how to print value of a
data type.

Parameters:

a data <<in>> (p. 191) String to be printed.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1284 Class Documentation

6.199 DDSSubscriber Class Reference

<<interface>> (p. 190) A subscriber is the object responsible for actually
receiving data from a subscription.

Inheritance diagram for DDSSubscriber::

Public Member Functions

ˆ virtual DDS ReturnCode t get default datareader qos (DDS -
DataReaderQos &qos)=0

Copies the default DDS DataReaderQos (p. 481) values into the provided
DDS DataReaderQos (p. 481) instance.

ˆ virtual DDS ReturnCode t set default datareader qos (const
DDS DataReaderQos &qos)=0

Sets the default DDS DataReaderQos (p. 481) values for this subscriber.

ˆ virtual DDS ReturnCode t set default datareader qos with -
profile (const char ∗library name, const char ∗profile name)=0

<<eXtension>> (p. 190) Set the default DDS DataReaderQos (p. 481)
values for this subscriber based on the input XML QoS profile.

ˆ virtual DDS ReturnCode t set default library (const char ∗library -
name)=0

<<eXtension>> (p. 190) Sets the default XML library for a DDSSub-
scriber (p. 1284).

ˆ virtual const char ∗ get default library ()=0
<<eXtension>> (p. 190) Gets the default XML library associated with a
DDSSubscriber (p. 1284).

ˆ virtual DDS ReturnCode t set default profile (const char ∗library -
name, const char ∗profile name)=0

<<eXtension>> (p. 190) Sets the default XML profile for a DDSSub-
scriber (p. 1284).

ˆ virtual const char ∗ get default profile ()=0
<<eXtension>> (p. 190) Gets the default XML profile associated with a
DDSSubscriber (p. 1284).

ˆ virtual const char ∗ get default profile library ()=0

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.199 DDSSubscriber Class Reference 1285

<<eXtension>> (p. 190) Gets the library where the default XML QoS pro-
file is contained for a DDSSubscriber (p. 1284).

ˆ virtual DDSDataReader ∗ create datareader (DDSTopicDescrip-
tion ∗topic, const DDS DataReaderQos &qos, DDSDataReaderLis-
tener ∗listener, DDS StatusMask mask)=0

Creates a DDSDataReader (p. 1004) that will be attached and belong to
the DDSSubscriber (p. 1284).

ˆ virtual DDSDataReader ∗ create datareader with profile
(DDSTopicDescription ∗topic, const char ∗library name, const
char ∗profile name, DDSDataReaderListener ∗listener, DDS -
StatusMask mask)=0

<<eXtension>> (p. 190) Creates a DDSDataReader (p. 1004) object us-
ing the DDS DataReaderQos (p. 481) associated with the input XML QoS
profile.

ˆ virtual DDS ReturnCode t delete datareader (DDSDataReader
∗a datareader)=0

Deletes a DDSDataReader (p. 1004) that belongs to the DDSSubscriber
(p. 1284).

ˆ virtual DDS ReturnCode t delete contained entities ()=0

Deletes all the entities that were created by means of the ”create” operation
on the DDSSubscriber (p. 1284).

ˆ virtual DDSDataReader ∗ lookup datareader (const char ∗topic -
name)=0

Retrieves an existing DDSDataReader (p. 1004).

ˆ virtual DDS ReturnCode t begin access ()=0

[Not supported (optional)] Indicates that the application is about to ac-
cess the data samples in any of the DDSDataReader (p. 1004) objects at-
tached to the DDSSubscriber (p. 1284).

ˆ virtual DDS ReturnCode t end access ()=0

[Not supported (optional)] Indicates that the application has finished
accessing the data samples in DDSDataReader (p. 1004) objects managed
by the DDSSubscriber (p. 1284).

ˆ virtual DDS ReturnCode t get datareaders (DDSDataRead-
erSeq &readers, DDS SampleStateMask sample states, DDS -
ViewStateMask view states, DDS InstanceStateMask instance -
states)=0

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1286 Class Documentation

Allows the application to access the DDSDataReader (p. 1004) objects
that contain samples with the specified sample states, view states and
instance states.

ˆ virtual DDS ReturnCode t notify datareaders ()=0

Invokes the operation DDSDataReaderListener::on data available()
(p. 1025) on the DDSDataReaderListener (p. 1023) objects attached
to contained DDSDataReader (p. 1004) entities with DDS DATA -
AVAILABLE STATUS (p. 312) that is considered changed as described
in Changes in read communication status (p. 308).

ˆ virtual DDSDomainParticipant ∗ get participant ()=0

Returns the DDSDomainParticipant (p. 1054) to which the DDSSub-
scriber (p. 1284) belongs.

ˆ virtual DDS ReturnCode t copy from topic qos (DDS -
DataReaderQos &datareader qos, const DDS TopicQos &topic -
qos)=0

Copies the policies in the DDS TopicQos (p. 905) to the corresponding
policies in the DDS DataReaderQos (p. 481).

ˆ virtual DDS ReturnCode t set qos (const DDS SubscriberQos
&qos)=0

Sets the subscriber QoS.

ˆ virtual DDS ReturnCode t set qos with profile (const char
∗library name, const char ∗profile name)=0

<<eXtension>> (p. 190) Change the QoS of this subscriber using the input
XML QoS profile.

ˆ virtual DDS ReturnCode t get qos (DDS SubscriberQos
&qos)=0

Gets the subscriber QoS.

ˆ virtual DDS ReturnCode t set listener (DDSSubscriberListener
∗l, DDS StatusMask mask=DDS STATUS MASK ALL)=0

Sets the subscriber listener.

ˆ virtual DDSSubscriberListener ∗ get listener ()=0

Get the subscriber listener.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.199 DDSSubscriber Class Reference 1287

6.199.1 Detailed Description

<<interface>> (p. 190) A subscriber is the object responsible for actually
receiving data from a subscription.

QoS:

DDS SubscriberQos (p. 874)

Status:

DDS DATA ON READERS STATUS (p. 312)

Listener:

DDSSubscriberListener (p. 1306)

A subscriber acts on the behalf of one or several DDSDataReader (p. 1004)
objects that are related to it. When it receives data (from the other parts of
the system), it builds the list of concerned DDSDataReader (p. 1004) objects
and then indicates to the application that data is available through its listener
or by enabling related conditions.

The application can access the list of concerned DDSDataReader (p. 1004)
objects through the operation get datareaders() (p. 1300) and then access the
data available through operations on the DDSDataReader (p. 1004).

The following operations may be called even if the DDSSubscriber (p. 1284)
is not enabled. Other operations will the value DDS RETCODE NOT -
ENABLED (p. 303) if called on a disabled DDSSubscriber (p. 1284):

ˆ The base-class operations DDSSubscriber::set qos (p. 1303),
DDSSubscriber::set qos with profile (p. 1304), DDSSub-
scriber::get qos (p. 1304), DDSSubscriber::set listener (p. 1305),
DDSSubscriber::get listener (p. 1305), DDSEntity::enable
(p. 1160), DDSEntity::get statuscondition (p. 1161), DDSEn-
tity::get status changes (p. 1161)

ˆ DDSSubscriber::create datareader (p. 1293), DDSSub-
scriber::create datareader with profile (p. 1295), DDSSub-
scriber::delete datareader (p. 1296), DDSSubscriber::delete -
contained entities (p. 1297), DDSSubscriber::set default -
datareader qos (p. 1289), DDSSubscriber::set default -
datareader qos with profile (p. 1289), DDSSubscriber::get -
default datareader qos (p. 1288), DDSSubscriber::set default -
library (p. 1290), DDSSubscriber::set default profile (p. 1291)

All operations except for the base-class operations set qos() (p. 1303), set -
qos with profile() (p. 1304), get qos() (p. 1304), set listener() (p. 1305),

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1288 Class Documentation

get listener() (p. 1305), enable() (p. 1160) and create datareader()
(p. 1293) may fail with DDS RETCODE NOT ENABLED (p. 303).

See also:

Operations Allowed in Listener Callbacks (p. 1219)

Examples:

HelloWorld subscriber.cxx.

6.199.2 Member Function Documentation

6.199.2.1 virtual DDS ReturnCode t DDSSubscriber::get default -
datareader qos (DDS DataReaderQos & qos) [pure
virtual]

Copies the default DDS DataReaderQos (p. 481) values into the provided
DDS DataReaderQos (p. 481) instance.

The retrieved qos will match the set of values specified on the last successful call
to DDSSubscriber::set default datareader qos (p. 1289), or DDSSub-
scriber::set default datareader qos with profile (p. 1289), or else, if the
call was never made, the default values from is owning DDSDomainPartici-
pant (p. 1054).

This method may potentially allocate memory depending on the sequences con-
tained in some QoS policies.

MT Safety:

UNSAFE. It is not safe to retrieve the default QoS value from a sub-
scriber while another thread may be simultaneously calling DDSSub-
scriber::set default datareader qos (p. 1289)

Parameters:

qos <<inout>> (p. 191) DDS DataReaderQos (p. 481) to be filled-up.

Returns:

One of the Standard Return Codes (p. 302)

See also:

DDS DATAREADER QOS DEFAULT (p. 96)
DDSSubscriber::create datareader (p. 1293)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.199 DDSSubscriber Class Reference 1289

6.199.2.2 virtual DDS ReturnCode t DDSSubscriber::set default -
datareader qos (const DDS DataReaderQos & qos)
[pure virtual]

Sets the default DDS DataReaderQos (p. 481) values for this subscriber.

This call causes the default values inherited from the owning DDSDomain-
Participant (p. 1054) to be overridden.

This default value will be used for newly created DDSDataReader (p. 1004)
if DDS DATAREADER QOS DEFAULT (p. 96) is specified as the qos
parameter when DDSSubscriber::create datareader (p. 1293) is called.

Precondition:

The specified QoS policies must be consistent, or else the operation will have
no effect and fail with DDS RETCODE INCONSISTENT POLICY
(p. 304)

MT Safety:

UNSAFE. It is not safe to set the default QoS value from a sub-
scriber while another thread may be simultaneously calling DDSSub-
scriber::set default datareader qos (p. 1289), DDSSubscriber::get -
default datareader qos (p. 1288) or calling DDSSubscriber::create -
datareader (p. 1293) with DDS DATAREADER QOS DEFAULT
(p. 96) as the qos parameter.

Parameters:

qos <<in>> (p. 191) The default DDS DataReaderQos (p. 481) to be
set to. The special value DDS DATAREADER QOS DEFAULT
(p. 96) may be passed as qos to indicate that the default QoS
should be reset back to the initial values the factory would used if
DDSSubscriber::set default datareader qos (p. 1289) had never
been called.

Returns:

One of the Standard Return Codes (p. 302), or or DDS RETCODE -
INCONSISTENT POLICY (p. 304)

6.199.2.3 virtual DDS ReturnCode t DDSSubscriber::set default -
datareader qos with profile (const char ∗ library name,
const char ∗ profile name) [pure virtual]

<<eXtension>> (p. 190) Set the default DDS DataReaderQos (p. 481)
values for this subscriber based on the input XML QoS profile.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1290 Class Documentation

This default value will be used for newly created DDSDataReader (p. 1004)
if DDS DATAREADER QOS DEFAULT (p. 96) is specified as the qos
parameter when DDSSubscriber::create datareader (p. 1293) is called.

Precondition:

The DDS DataReaderQos (p. 481) contained in the specified XML QoS
profile must be consistent, or else the operation will have no effect and fail
with DDS RETCODE INCONSISTENT POLICY (p. 304)

MT Safety:

UNSAFE. It is not safe to set the default QoS value from a DDSSub-
scriber (p. 1284) while another thread may be simultaneously call-
ing DDSSubscriber::set default datareader qos (p. 1289), DDSSub-
scriber::get default datareader qos (p. 1288) or calling DDSSub-
scriber::create datareader (p. 1293) with DDS DATAREADER -
QOS DEFAULT (p. 96) as the qos parameter.

Parameters:

library name <<in>> (p. 191) Library name containing the XML QoS
profile. If library name is null RTI Data Distribution Service will
use the default library (see DDSSubscriber::set default library
(p. 1290)).

profile name <<in>> (p. 191) XML QoS Profile name. If profile name
is null RTI Data Distribution Service will use the default profile (see
DDSSubscriber::set default profile (p. 1291)).

If the input profile cannot be found the method fails with DDS RETCODE -
ERROR (p. 303).

Returns:

One of the Standard Return Codes (p. 302), or DDS RETCODE -
INCONSISTENT POLICY (p. 304)

See also:

DDS DATAREADER QOS DEFAULT (p. 96)
DDSSubscriber::create datareader with profile (p. 1295)

6.199.2.4 virtual DDS ReturnCode t DDSSubscriber::set -
default library (const char ∗ library name) [pure
virtual]

<<eXtension>> (p. 190) Sets the default XML library for a DDSSub-
scriber (p. 1284).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.199 DDSSubscriber Class Reference 1291

This method specifies the library that will be used as the default the next time
a default library is needed during a call to one of this Subscriber’s operations.

Any API requiring a library name as a parameter can use null to refer to the
default library.

If the default library is not set, the DDSSubscriber (p. 1284) inherits the
default from the DDSDomainParticipant (p. 1054) (see DDSDomainPar-
ticipant::set default library (p. 1073)).

Parameters:

library name <<in>> (p. 191) Library name. If library name is null
any previous default is unset.

Returns:

One of the Standard Return Codes (p. 302)

See also:

DDSSubscriber::get default library (p. 1291)

6.199.2.5 virtual const char∗ DDSSubscriber::get default library ()
[pure virtual]

<<eXtension>> (p. 190) Gets the default XML library associated with a
DDSSubscriber (p. 1284).

Returns:

The default library or null if the default library was not set.

See also:

DDSSubscriber::set default library (p. 1290)

6.199.2.6 virtual DDS ReturnCode t DDSSubscriber::set default -
profile (const char ∗ library name, const char ∗
profile name) [pure virtual]

<<eXtension>> (p. 190) Sets the default XML profile for a DDSSubscriber
(p. 1284).

This method specifies the profile that will be used as the default the next time
a default Subscriber profile is needed during a call to one of this Subscribers

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1292 Class Documentation

operations. When calling a DDSSubscriber (p. 1284) method that requires
a profile name parameter, you can use NULL to refer to the default profile.
(This same information applies to setting a default library.)

If the default profile is not set, the DDSSubscriber (p. 1284) inherits the
default from the DDSDomainParticipant (p. 1054) (see DDSDomainPar-
ticipant::set default profile (p. 1074)).

This method does not set the default QoS for DDSDataReader (p. 1004)
objects created by this DDSSubscriber (p. 1284); for this functionality, use
DDSSubscriber::set default datareader qos with profile (p. 1289) (you
may pass in NULL after having called set default profile() (p. 1291)).

This method does not set the default QoS for newly created Subscribers; for
this functionality, use DDSDomainParticipant::set default subscriber -
qos with profile (p. 1082).

Parameters:

library name <<in>> (p. 191) The library name containing the profile.

profile name <<in>> (p. 191) The profile name. If profile name is null
any previous default is unset.

Returns:

One of the Standard Return Codes (p. 302)

See also:

DDSSubscriber::get default profile (p. 1292)
DDSSubscriber::get default profile library (p. 1293)

6.199.2.7 virtual const char∗ DDSSubscriber::get default profile ()
[pure virtual]

<<eXtension>> (p. 190) Gets the default XML profile associated with a
DDSSubscriber (p. 1284).

Returns:

The default profile or null if the default profile was not set.

See also:

DDSSubscriber::set default profile (p. 1291)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.199 DDSSubscriber Class Reference 1293

6.199.2.8 virtual const char∗ DDSSubscriber::get default profile -
library () [pure virtual]

<<eXtension>> (p. 190) Gets the library where the default XML QoS profile
is contained for a DDSSubscriber (p. 1284).

The default profile library is automatically set when DDSSubscriber::set -
default profile (p. 1291) is called.

This library can be different than the DDSSubscriber (p. 1284) default library
(see DDSSubscriber::get default library (p. 1291)).

Returns:

The default profile library or null if the default profile was not set.

See also:

DDSSubscriber::set default profile (p. 1291)

6.199.2.9 virtual DDSDataReader∗ DDSSubscriber::create -
datareader (DDSTopicDescription ∗ topic, const
DDS DataReaderQos & qos, DDSDataReaderListener ∗
listener, DDS StatusMask mask) [pure virtual]

Creates a DDSDataReader (p. 1004) that will be attached and belong to the
DDSSubscriber (p. 1284).

For each application-defined type Foo (p. 1333), there is an implied, auto-
generated class FooDataReader (p. 1334) (an incarnation of FooDataReader
(p. 1334)) that extends DDSDataReader (p. 1004) and contains the operations
to read data of type Foo (p. 1333).

Note that a common application pattern to construct the QoS for the DDS-
DataReader (p. 1004) is to:

ˆ Retrieve the QoS policies on the associated DDSTopic (p. 1311) by means
of the DDSTopic::get qos (p. 1315) operation.

ˆ Retrieve the default DDSDataReader (p. 1004) qos by means of the
DDSSubscriber::get default datareader qos (p. 1288) operation.

ˆ Combine those two QoS policies (for example, using DDSSub-
scriber::copy from topic qos (p. 1302)) and selectively modify policies
as desired

ˆ Use the resulting QoS policies to construct the DDSDataReader
(p. 1004).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1294 Class Documentation

When a DDSDataReader (p. 1004) is created, only those transports already
registered are available to the DDSDataReader (p. 1004). See Built-in
Transport Plugins (p. 129) for details on when a builtin transport is reg-
istered.

MT Safety:

UNSAFE. If DDS DATAREADER QOS DEFAULT (p. 96) is used
for the qos parameter, it is not safe to create the datareader while another
thread may be simultaneously calling DDSSubscriber::set default -
datareader qos (p. 1289).

Precondition:

If subscriber is enabled, the topic must be enabled. If it is not, this operation
will fail and no DDSDataReader (p. 1004) will be created.
The given DDSTopicDescription (p. 1319) must have been created from
the same participant as this subscriber. If it was created from a different
participant, this method will return NULL.
If qos is DDS DATAREADER QOS USE TOPIC QOS (p. 96),
topic cannot be DDSMultiTopic (p. 1221), or else this method will re-
turn NULL.

Parameters:

topic <<in>> (p. 191) The DDSTopicDescription (p. 1319) that the
DDSDataReader (p. 1004) will be associated with. Cannot be
NULL.

qos <<in>> (p. 191) The qos of the DDSDataReader (p. 1004). The
special value DDS DATAREADER QOS DEFAULT (p. 96) can
be used to indicate that the DDSDataReader (p. 1004) should
be created with the default DDS DataReaderQos (p. 481) set
in the DDSSubscriber (p. 1284). If DDSTopicDescription
(p. 1319) is of type DDSTopic (p. 1311) or DDSContentFiltered-
Topic (p. 998), the special value DDS DATAREADER QOS -
USE TOPIC QOS (p. 96) can be used to indicate that the DDS-
DataReader (p. 1004) should be created with the combination of
the default DDS DataReaderQos (p. 481) set on the DDSSub-
scriber (p. 1284) and the DDS TopicQos (p. 905) (in the case of a
DDSContentFilteredTopic (p. 998), the DDS TopicQos (p. 905)
of the related DDSTopic (p. 1311)). if DDS DATAREADER -
QOS USE TOPIC QOS (p. 96) is used, topic cannot be a DDS-
MultiTopic (p. 1221).

listener <<in>> (p. 191) The listener of the DDSDataReader
(p. 1004).

mask <<in>> (p. 191). Changes of communication status to be invoked
on the listener.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.199 DDSSubscriber Class Reference 1295

Returns:

A DDSDataReader (p. 1004) of a derived class specific to the data-type
associated with the DDSTopic (p. 1311) or NULL if an error occurred.

See also:

FooDataReader (p. 1334)
Specifying QoS on entities (p. 326) for information on setting QoS before
entity creation
DDS DataReaderQos (p. 481) for rules on consistency among QoS
DDSSubscriber::create datareader with profile (p. 1295)
DDSSubscriber::get default datareader qos (p. 1288)
DDSTopic::set qos (p. 1313)
DDSSubscriber::copy from topic qos (p. 1302)
DDSDataReader::set listener (p. 1019)

Examples:

HelloWorld subscriber.cxx.

6.199.2.10 virtual DDSDataReader∗ DDSSubscriber::create -
datareader with profile (DDSTopicDescription ∗ topic,
const char ∗ library name, const char ∗ profile name,
DDSDataReaderListener ∗ listener, DDS StatusMask
mask) [pure virtual]

<<eXtension>> (p. 190) Creates a DDSDataReader (p. 1004) object us-
ing the DDS DataReaderQos (p. 481) associated with the input XML QoS
profile.

The DDSDataReader (p. 1004) will be attached and belong to the DDSSub-
scriber (p. 1284).

For each application-defined type Foo (p. 1333), there is an implied, auto-
generated class FooDataReader (p. 1334) (an incarnation of FooDataReader
(p. 1334)) that extends DDSDataReader (p. 1004) and contains the operations
to read data of type Foo (p. 1333).

When a DDSDataReader (p. 1004) is created, only those transports already
registered are available to the DDSDataReader (p. 1004). See Built-in
Transport Plugins (p. 129) for details on when a builtin transport is reg-
istered.

Precondition:

If subscriber is enabled, the topic must be enabled. If it is not, this operation
will fail and no DDSDataReader (p. 1004) will be created.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1296 Class Documentation

The given DDSTopicDescription (p. 1319) must have been created from
the same participant as this subscriber. If it was created from a different
participant, this method will return NULL.

Parameters:

topic <<in>> (p. 191) The DDSTopicDescription (p. 1319) that the
DDSDataReader (p. 1004) will be associated with. Cannot be
NULL.

library name <<in>> (p. 191) Library name containing the XML QoS
profile. If library name is null RTI Data Distribution Service will
use the default library (see DDSSubscriber::set default library
(p. 1290)).

profile name <<in>> (p. 191) XML QoS Profile name. If profile name
is null RTI Data Distribution Service will use the default profile (see
DDSSubscriber::set default profile (p. 1291)).

listener <<in>> (p. 191) The listener of the DDSDataReader
(p. 1004).

mask <<in>> (p. 191). Changes of communication status to be invoked
on the listener.

Returns:

A DDSDataReader (p. 1004) of a derived class specific to the data-type
associated with the DDSTopic (p. 1311) or NULL if an error occurred.

See also:

FooDataReader (p. 1334)
Specifying QoS on entities (p. 326) for information on setting QoS before
entity creation
DDS DataReaderQos (p. 481) for rules on consistency among QoS
DDS DATAREADER QOS DEFAULT (p. 96)
DDS DATAREADER QOS USE TOPIC QOS (p. 96)
DDSSubscriber::create datareader (p. 1293)
DDSSubscriber::get default datareader qos (p. 1288)
DDSTopic::set qos (p. 1313)
DDSSubscriber::copy from topic qos (p. 1302)
DDSDataReader::set listener (p. 1019)

6.199.2.11 virtual DDS ReturnCode t DDSSubscriber::delete -
datareader (DDSDataReader ∗ a datareader) [pure
virtual]

Deletes a DDSDataReader (p. 1004) that belongs to the DDSSubscriber
(p. 1284).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.199 DDSSubscriber Class Reference 1297

Precondition:

If the DDSDataReader (p. 1004) does not belong to the DDSSubscriber
(p. 1284), or if ther are any existing DDSReadCondition (p. 1269) or
DDSQueryCondition (p. 1267) objects that are attached to the DDS-
DataReader (p. 1004), or if there are outstanding loans on samples (as a
result of a call to read(), take(), or one of the variants thereof), the operation
fails with the error DDS RETCODE PRECONDITION NOT MET
(p. 303).

Postcondition:

Listener installed on the DDSDataReader (p. 1004) will not be called
after this method completes successfully.

Parameters:

a datareader <<in>> (p. 191) The DDSDataReader (p. 1004) to be
deleted.

Returns:

One of the Standard Return Codes (p. 302) or DDS RETCODE -
PRECONDITION NOT MET (p. 303).

6.199.2.12 virtual DDS ReturnCode t DDSSubscriber::delete -
contained entities () [pure virtual]

Deletes all the entities that were created by means of the ”create” operation on
the DDSSubscriber (p. 1284).

Deletes all contained DDSDataReader (p. 1004) objects. This pattern is ap-
plied recursively. In this manner, the operation DDSSubscriber::delete -
contained entities (p. 1297) on the DDSSubscriber (p. 1284) will end up
deleting all the entities recursively contained in the DDSSubscriber (p. 1284),
that is also the DDSQueryCondition (p. 1267) and DDSReadCondition
(p. 1269) objects belonging to the contained DDSDataReader (p. 1004).

The operation will fail with DDS RETCODE PRECONDITION NOT -
MET (p. 303) if any of the contained entities is in a state where it cannot
be deleted. This will occur, for example, if a contained DDSDataReader
(p. 1004) cannot be deleted because the application has called a Foo-
DataReader::read (p. 1337) or FooDataReader::take (p. 1338) operation
and has not called the corresponding FooDataReader::return loan (p. 1358)
operation to return the loaned samples.

Once DDSSubscriber::delete contained entities (p. 1297) completes suc-
cessfully, the application may delete the DDSSubscriber (p. 1284), knowing
that it has no contained DDSDataReader (p. 1004) objects.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1298 Class Documentation

Returns:

One of the Standard Return Codes (p. 302), or DDS RETCODE -
PRECONDITION NOT MET (p. 303)

6.199.2.13 virtual DDSDataReader∗ DDSSubscriber::lookup -
datareader (const char ∗ topic name) [pure
virtual]

Retrieves an existing DDSDataReader (p. 1004).

Use this operation on the built-in DDSSubscriber (p. 1284) (Built-in Topics
(p. 41)) to access the built-in DDSDataReader (p. 1004) entities for the built-
in topics.

The built-in DDSDataReader (p. 1004) is created when this operation is called
on a built-in topic for the first time. The built-in DDSDataReader (p. 1004) is
deleted automatically when the DDSDomainParticipant (p. 1054) is deleted.

To ensure that builtin DDSDataReader (p. 1004) entities receive all the dis-
covery traffic, it is suggested that you lookup the builtin DDSDataReader
(p. 1004) before the DDSDomainParticipant (p. 1054) is enabled. Looking
up builtin DDSDataReader (p. 1004) may implicitly register builtin trans-
ports due to creation of DDSDataReader (p. 1004) (see Built-in Transport
Plugins (p. 129) for details on when a builtin transport is registered). There-
fore, if you are want to modify builtin transport properties, do so before using
this operation.

Therefore the suggested sequence when looking up builtin DataReaders is:

ˆ Create a disabled DDSDomainParticipant (p. 1054).

ˆ (optional) Modify builtin transport properties

ˆ Call DDSDomainParticipant::get builtin subscriber() (p. 1100).

ˆ Call lookup datareader() (p. 1298).

ˆ Call enable() (p. 1160) on the DomainParticipant.

Parameters:

topic name <<in>> (p. 191) Name of the DDSTopicDescription
(p. 1319) that the retrieved DDSDataReader (p. 1004) is attached
to. Cannot be NULL.

Returns:

A DDSDataReader (p. 1004) that belongs to the DDSSubscriber
(p. 1284) attached to the DDSTopicDescription (p. 1319) with topic -

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.199 DDSSubscriber Class Reference 1299

name. If no such DDSDataReader (p. 1004) exists, this operation returns
NULL.

The returned DDSDataReader (p. 1004) may be enabled or disabled.

If more than one DDSDataReader (p. 1004) is attached to the DDSSub-
scriber (p. 1284), this operation may return any one of them.

MT Safety:

UNSAFE. It is not safe to lookup a DDSDataReader (p. 1004) in one
thread while another thread is simultaneously creating or destroying that
DDSDataReader (p. 1004).

6.199.2.14 virtual DDS ReturnCode t DDSSubscriber::begin access
() [pure virtual]

[Not supported (optional)] Indicates that the application is about to access
the data samples in any of the DDSDataReader (p. 1004) objects attached to
the DDSSubscriber (p. 1284).

The application is required to use this operation only if the PRE-
SENTATION (p. 337) policy of the DDSSubscriber (p. 1284)
to which a DDSDataReader (p. 1004) belongs has the DDS -
PresentationQosPolicy::access scope (p. 775) set to DDS GROUP -
PRESENTATION QOS (p. 338).

In the aforementioned case, the operation begin access() (p. 1299)
must be called prior to calling any of the sample-accessing operations,
namely: get datareaders() (p. 1300) on the DDSSubscriber (p. 1284)
and FooDataReader::read (p. 1337), FooDataReader::take (p. 1338),
FooDataReader::read w condition (p. 1344), FooDataReader::take w -
condition (p. 1345) on any DDSDataReader (p. 1004). Otherwise the
sample-accessing operations will fail with the error DDS RETCODE -
PRECONDITION NOT MET (p. 303).

Once the application has finished accessing the data samples it must call end -
access() (p. 1300).

The application is not required to call begin access() (p. 1299) / end -
access() (p. 1300) if the PRESENTATION (p. 337) policy has the DDS -
PresentationQosPolicy::access scope (p. 775) set to something other than
DDS GROUP PRESENTATION QOS (p. 338).

Calling begin access() (p. 1299) / end access() (p. 1300) in this case is not
considered an error and has no effect.

Calls to begin access() (p. 1299) / end access() (p. 1300) may be nested and
must be balanced.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1300 Class Documentation

Returns:

DDS RETCODE UNSUPPORTED (p. 303)

6.199.2.15 virtual DDS ReturnCode t DDSSubscriber::end access
() [pure virtual]

[Not supported (optional)] Indicates that the application has finished ac-
cessing the data samples in DDSDataReader (p. 1004) objects managed by
the DDSSubscriber (p. 1284).

This operation must be used to close a corresponding begin access() (p. 1299).

After calling end access() (p. 1300) the application should no longer access any
of the Data or DDS SampleInfo (p. 855) elements returned from the sample-
accessing operations. This call must close a previous call to begin access()
(p. 1299), otherwise the operation will fail with the error DDS RETCODE -
PRECONDITION NOT MET (p. 303).

Returns:

DDS RETCODE UNSUPPORTED (p. 303)

6.199.2.16 virtual DDS ReturnCode t DDSSubscriber::get -
datareaders (DDSDataReaderSeq & readers,
DDS SampleStateMask sample states, DDS -
ViewStateMask view states, DDS InstanceStateMask
instance states) [pure virtual]

Allows the application to access the DDSDataReader (p. 1004) objects
that contain samples with the specified sample states, view states and
instance states.

If the PRESENTATION (p. 337) policy of the DDSSubscriber (p. 1284)
to which the DDSDataReader (p. 1004) belongs has the DDS -
PresentationQosPolicy::access scope (p. 775) set to DDS GROUP -
PRESENTATION QOS (p. 338), this operation should only be invoked in-
side a begin access() (p. 1299) / end access() (p. 1300) block. Otherwise, it
will fail with the error DDS RETCODE PRECONDITION NOT MET
(p. 303).

Depending on the setting of the PRESENTATION (p. 337) policy, the re-
turned collection of DDSDataReader (p. 1004) objects may be a ’set’ con-
taining each DDSDataReader (p. 1004) at most once in no specified order,
or a ’list’ containing each DDSDataReader (p. 1004) one or more times in a
specific order.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.199 DDSSubscriber Class Reference 1301

ˆ If DDS PresentationQosPolicy::access scope
(p. 775) is idref PresentationQosPolicyAccessScopeKind -
INSTANCE PRESENTATION QOS or idref -
PresentationQosPolicyAccessScopeKind TOPIC PRESENTATION -
QOS, the returned collection is a ’set.’

ˆ If DDS PresentationQosPolicy::access scope (p. 775) is
DDS GROUP PRESENTATION QOS (p. 338) and DDS -
PresentationQosPolicy::ordered access (p. 776) is set to DDS -
BOOLEAN TRUE (p. 288), then the returned collection is a ’list’.

This difference is due to the fact that, in the second situation it is required
to access samples belonging to different DDSDataReader (p. 1004) objects
in a particular order. In this case, the application should process each DDS-
DataReader (p. 1004) in the same order it appears in the list and read() or
take() exactly one sample from each DDSDataReader (p. 1004). The pat-
terns that an application should use to access data is fully described in Access
to data samples (p. 92)

Parameters:

readers <<inout>> (p. 191) a DDS DataReaderSeq object where the
set or list of readers will be returned.

sample states <<in>> (p. 191) the returned data reader must contain
samples that have one of these sample states.

view states <<in>> (p. 191) the returned data reader must contain
samples that have one of these view states.

instance states <<in>> (p. 191) the returned data reader must contain
samples that have one of these instance states.

Returns:

One of the Standard Return Codes (p. 302) or DDS RETCODE -
NOT ENABLED (p. 303).

See also:

Access to data samples (p. 92)
PRESENTATION (p. 337)

6.199.2.17 virtual DDS ReturnCode t DDSSubscriber::notify -
datareaders () [pure virtual]

Invokes the operation DDSDataReaderListener::on data available()
(p. 1025) on the DDSDataReaderListener (p. 1023) objects attached

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1302 Class Documentation

to contained DDSDataReader (p. 1004) entities with DDS DATA -
AVAILABLE STATUS (p. 312) that is considered changed as described in
Changes in read communication status (p. 308).

This operation is typically invoked from the DDSSubscriberListener::on -
data on readers (p. 1307) operation in the DDSSubscriberListener
(p. 1306). That way the DDSSubscriberListener (p. 1306) can delegate to
the DDSDataReaderListener (p. 1023) objects the handling of the data.

The operation will notify the data readers that have a sample state
of DDS NOT READ SAMPLE STATE (p. 105), view state of DDS -
ANY SAMPLE STATE (p. 105) and instance state of DDS ANY -
INSTANCE STATE (p. 110).

Returns:

One of the Standard Return Codes (p. 302), or DDS RETCODE -
NOT ENABLED (p. 303).

6.199.2.18 virtual DDSDomainParticipant∗
DDSSubscriber::get participant () [pure virtual]

Returns the DDSDomainParticipant (p. 1054) to which the DDSSub-
scriber (p. 1284) belongs.

Returns:

the DDSDomainParticipant (p. 1054) to which the DDSSubscriber
(p. 1284) belongs.

6.199.2.19 virtual DDS ReturnCode t DDSSubscriber::copy from -
topic qos (DDS DataReaderQos & datareader qos,
const DDS TopicQos & topic qos) [pure virtual]

Copies the policies in the DDS TopicQos (p. 905) to the corresponding policies
in the DDS DataReaderQos (p. 481).

Copies the policies in the DDS TopicQos (p. 905) to the corresponding poli-
cies in the DDS DataReaderQos (p. 481) (replacing values in the DDS -
DataReaderQos (p. 481), if present).

This is a ”convenience” operation most useful in combination with
the operations DDSSubscriber::get default datareader qos (p. 1288) and
DDSTopic::get qos (p. 1315). The operation DDSSubscriber::copy -
from topic qos (p. 1302) can be used to merge the DDSDataReader
(p. 1004) default QoS policies with the corresponding ones on the DDSTopic

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.199 DDSSubscriber Class Reference 1303

(p. 1311). The resulting QoS can then be used to create a new DDS-
DataReader (p. 1004), or set its QoS.

This operation does not check the resulting DDS DataReaderQos (p. 481)
for consistency. This is because the ’merged’ DDS DataReaderQos (p. 481)
may not be the final one, as the application can still modify some policies prior
to applying the policies to the DDSDataReader (p. 1004).

Parameters:

datareader qos <<inout>> (p. 191) DDS DataReaderQos (p. 481)
to be filled-up.

topic qos <<in>> (p. 191) DDS TopicQos (p. 905) to be merged with
DDS DataReaderQos (p. 481).

Returns:

One of the Standard Return Codes (p. 302)

6.199.2.20 virtual DDS ReturnCode t DDSSubscriber::set qos
(const DDS SubscriberQos & qos) [pure virtual]

Sets the subscriber QoS.

This operation modifies the QoS of the DDSSubscriber (p. 1284).

The DDS SubscriberQos::group data (p. 875), DDS -
SubscriberQos::partition (p. 875) and DDS SubscriberQos::entity -
factory (p. 875) can be changed. The other policies are immutable.

Parameters:

qos <<in>> (p. 191) DDS SubscriberQos (p. 874) to be set to. Poli-
cies must be consistent. Immutable policies cannot be changed af-
ter DDSSubscriber (p. 1284) is enabled. The special value DDS -
SUBSCRIBER QOS DEFAULT (p. 38) can be used to indicate
that the QoS of the DDSSubscriber (p. 1284) should be changed to
match the current default DDS SubscriberQos (p. 874) set in the
DDSDomainParticipant (p. 1054).

Returns:

One of the Standard Return Codes (p. 302), DDS RETCODE -
IMMUTABLE POLICY (p. 303), or DDS RETCODE -
INCONSISTENT POLICY (p. 304).

See also:

DDS SubscriberQos (p. 874) for rules on consistency among QoS

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1304 Class Documentation

set qos (abstract) (p. 1158)
Operations Allowed in Listener Callbacks (p. 1219)

6.199.2.21 virtual DDS ReturnCode t DDSSubscriber::set qos -
with profile (const char ∗ library name, const char ∗
profile name) [pure virtual]

<<eXtension>> (p. 190) Change the QoS of this subscriber using the input
XML QoS profile.

This operation modifies the QoS of the DDSSubscriber (p. 1284).

The DDS SubscriberQos::group data (p. 875), DDS -
SubscriberQos::partition (p. 875) and DDS SubscriberQos::entity -
factory (p. 875) can be changed. The other policies are immutable.

Parameters:

library name <<in>> (p. 191) Library name containing the XML QoS
profile. If library name is null RTI Data Distribution Service will
use the default library (see DDSSubscriber::set default library
(p. 1290)).

profile name <<in>> (p. 191) XML QoS Profile name. If profile name
is null RTI Data Distribution Service will use the default profile (see
DDSSubscriber::set default profile (p. 1291)).

Returns:

One of the Standard Return Codes (p. 302), DDS RETCODE -
IMMUTABLE POLICY (p. 303), or DDS RETCODE -
INCONSISTENT POLICY (p. 304).

See also:

DDS SubscriberQos (p. 874) for rules on consistency among QoS
Operations Allowed in Listener Callbacks (p. 1219)

6.199.2.22 virtual DDS ReturnCode t DDSSubscriber::get qos
(DDS SubscriberQos & qos) [pure virtual]

Gets the subscriber QoS.

This method may potentially allocate memory depending on the sequences con-
tained in some QoS policies.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.199 DDSSubscriber Class Reference 1305

Parameters:

qos <<in>> (p. 191) DDS SubscriberQos (p. 874) to be filled in.

Returns:

One of the Standard Return Codes (p. 302)

See also:

get qos (abstract) (p. 1159)

6.199.2.23 virtual DDS ReturnCode t DDSSubscriber::set listener
(DDSSubscriberListener ∗ l, DDS StatusMask mask =
DDS STATUS MASK ALL) [pure virtual]

Sets the subscriber listener.

Parameters:

l <<in>> (p. 191) DDSSubscriberListener (p. 1306) to set to.

mask <<in>> (p. 191) DDS StatusMask (p. 309) associated with the
DDSSubscriberListener (p. 1306).

Returns:

One of the Standard Return Codes (p. 302)

See also:

set listener (abstract) (p. 1159)

6.199.2.24 virtual DDSSubscriberListener∗
DDSSubscriber::get listener () [pure virtual]

Get the subscriber listener.

Returns:

DDSSubscriberListener (p. 1306) of the DDSSubscriber (p. 1284).

See also:

get listener (abstract) (p. 1160)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1306 Class Documentation

6.200 DDSSubscriberListener Class Reference

<<interface>> (p. 190) DDSListener (p. 1217) for status about a sub-
scriber.

Inheritance diagram for DDSSubscriberListener::

Public Member Functions

ˆ virtual void on data on readers (DDSSubscriber ∗sub)
Handles the DDS DATA ON READERS STATUS (p. 312) communi-
cation status.

6.200.1 Detailed Description

<<interface>> (p. 190) DDSListener (p. 1217) for status about a sub-
scriber.

Entity:

DDSSubscriber (p. 1284)

Status:

DDS DATA AVAILABLE STATUS (p. 312);
DDS DATA ON READERS STATUS (p. 312);
DDS LIVELINESS CHANGED STATUS (p. 313), DDS -
LivelinessChangedStatus (p. 726);
DDS REQUESTED DEADLINE MISSED STATUS (p. 311),
DDS RequestedDeadlineMissedStatus (p. 823);
DDS REQUESTED INCOMPATIBLE QOS STATUS (p. 311),
DDS RequestedIncompatibleQosStatus (p. 825);
DDS SAMPLE LOST STATUS (p. 312), DDS SampleLostStatus
(p. 864);
DDS SAMPLE REJECTED STATUS (p. 312), DDS -
SampleRejectedStatus (p. 865);
DDS SUBSCRIPTION MATCHED STATUS (p. 314), DDS -
SubscriptionMatchedStatus (p. 885)

See also:

DDSListener (p. 1217)
Status Kinds (p. 305)
Operations Allowed in Listener Callbacks (p. 1219)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.200 DDSSubscriberListener Class Reference 1307

6.200.2 Member Function Documentation

6.200.2.1 virtual void DDSSubscriberListener::on data on readers
(DDSSubscriber ∗ sub) [virtual]

Handles the DDS DATA ON READERS STATUS (p. 312) communica-
tion status.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1308 Class Documentation

6.201 DDSSubscriberSeq Class Reference

Declares IDL sequence < DDSSubscriber (p. 1284) > .

6.201.1 Detailed Description

Declares IDL sequence < DDSSubscriber (p. 1284) > .

See also:

FooSeq (p. 1377)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.202 DDSSubscriptionBuiltinTopicDataDataReader Class
Reference 1309

6.202 DDSSubscriptionBuiltinTopicDataDataReader
Class Reference

Instantiates DataReader < DDS SubscriptionBuiltinTopicData (p. 876) >
.

Inheritance diagram for DDSSubscriptionBuiltinTopicDataDataReader::

6.202.1 Detailed Description

Instantiates DataReader < DDS SubscriptionBuiltinTopicData (p. 876) >
.

DDSDataReader (p. 1004) of topic DDS SUBSCRIPTION TOPIC -
NAME (p. 281) used for accessing DDS SubscriptionBuiltinTopicData
(p. 876) of the remote DDSDataReader (p. 1004) and the associated
DDSSubscriber (p. 1284).

Instantiates:

<<generic>> (p. 190) FooDataReader (p. 1334)

See also:

DDS SubscriptionBuiltinTopicData (p. 876)
DDS SUBSCRIPTION TOPIC NAME (p. 281)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1310 Class Documentation

6.203 DDSSubscriptionBuiltinTopicDataTypeSupport
Class Reference

Instantiates TypeSupport < DDS SubscriptionBuiltinTopicData (p. 876)
> .

6.203.1 Detailed Description

Instantiates TypeSupport < DDS SubscriptionBuiltinTopicData (p. 876)
> .

Instantiates:

<<generic>> (p. 190) FooTypeSupport (p. 1392)

See also:

DDS SubscriptionBuiltinTopicData (p. 876)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.204 DDSTopic Class Reference 1311

6.204 DDSTopic Class Reference

<<interface>> (p. 190) The most basic description of the data to be pub-
lished and subscribed.

Inheritance diagram for DDSTopic::

Public Member Functions

ˆ virtual DDS ReturnCode t get inconsistent topic status (DDS -
InconsistentTopicStatus &status)=0

Allows the application to retrieve the DDS INCONSISTENT TOPIC -
STATUS (p. 310) status of a DDSTopic (p. 1311).

ˆ virtual DDS ReturnCode t set qos (const DDS TopicQos
&qos)=0

Set the topic QoS.

ˆ virtual DDS ReturnCode t set qos with profile (const char
∗library name, const char ∗profile name)=0

<<eXtension>> (p. 190) Change the QoS of this topic using the input
XML QoS profile.

ˆ virtual DDS ReturnCode t get qos (DDS TopicQos &qos)=0

Get the topic QoS.

ˆ virtual DDS ReturnCode t set listener (DDSTopicListener ∗l,
DDS StatusMask mask=DDS STATUS MASK ALL)=0

Set the topic listener.

ˆ virtual DDSTopicListener ∗ get listener ()=0

Get the topic listener.

Static Public Member Functions

ˆ static DDSTopic ∗ narrow (DDSTopicDescription ∗topic -
description)

Narrow the given DDSTopicDescription (p. 1319) pointer to a DDSTopic
(p. 1311) pointer.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1312 Class Documentation

6.204.1 Detailed Description

<<interface>> (p. 190) The most basic description of the data to be pub-
lished and subscribed.

QoS:

DDS TopicQos (p. 905)

Status:

DDS INCONSISTENT TOPIC STATUS (p. 310), DDS -
InconsistentTopicStatus (p. 713)

Listener:

DDSTopicListener (p. 1322)

A DDSTopic (p. 1311) is identified by its name, which must be unique in the
whole domain. In addition (by virtue of extending DDSTopicDescription
(p. 1319)) it fully specifies the type of the data that can be communicated when
publishing or subscribing to the DDSTopic (p. 1311).

DDSTopic (p. 1311) is the only DDSTopicDescription (p. 1319) that can
be used for publications and therefore associated with a DDSDataWriter
(p. 1028).

The following operations may be called even if the DDSTopic (p. 1311) is not
enabled. Other operations will fail with the value DDS RETCODE NOT -
ENABLED (p. 303) if called on a disabled DDSTopic (p. 1311):

ˆ All the base-class operations set qos() (p. 1313), set qos with profile()
(p. 1314), get qos() (p. 1315), set listener() (p. 1315), get listener()
(p. 1316) enable() (p. 1160), get statuscondition() (p. 1161) and get -
status changes() (p. 1161)

ˆ get inconsistent topic status() (p. 1313)

See also:

Operations Allowed in Listener Callbacks (p. 1219)

Examples:

HelloWorld publisher.cxx, and HelloWorld subscriber.cxx.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.204 DDSTopic Class Reference 1313

6.204.2 Member Function Documentation

6.204.2.1 static DDSTopic∗ DDSTopic::narrow
(DDSTopicDescription ∗ topic description) [static]

Narrow the given DDSTopicDescription (p. 1319) pointer to a DDSTopic
(p. 1311) pointer.

Returns:

DDSTopic (p. 1311) if this DDSTopicDescription (p. 1319) is a
DDSTopic (p. 1311). Otherwise, return NULL.

6.204.2.2 virtual DDS ReturnCode t DDSTopic::get inconsistent -
topic status (DDS InconsistentTopicStatus & status)
[pure virtual]

Allows the application to retrieve the DDS INCONSISTENT TOPIC -
STATUS (p. 310) status of a DDSTopic (p. 1311).

Retrieve the current DDS InconsistentTopicStatus (p. 713)

Parameters:

status <<inout>> (p. 191) Status to be retrieved.

Returns:

One of the Standard Return Codes (p. 302)

See also:

DDS InconsistentTopicStatus (p. 713)

6.204.2.3 virtual DDS ReturnCode t DDSTopic::set qos (const
DDS TopicQos & qos) [pure virtual]

Set the topic QoS.

The DDS TopicQos::topic data (p. 906) and DDS TopicQos::deadline
(p. 907), DDS TopicQos::latency budget (p. 907), DDS -
TopicQos::transport priority (p. 907) and DDS TopicQos::lifespan
(p. 908) can be changed. The other policies are immutable.

Parameters:

qos <<in>> (p. 191) Set of policies to be applied to DDSTopic
(p. 1311).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1314 Class Documentation

Policies must be consistent. Immutable policies cannot be changed after
DDSTopic (p. 1311) is enabled. The special value DDS TOPIC QOS -
DEFAULT (p. 37) can be used to indicate that the QoS of the DDSTopic
(p. 1311) should be changed to match the current default DDS TopicQos
(p. 905) set in the DDSDomainParticipant (p. 1054).

Returns:

One of the Standard Return Codes (p. 302), DDS RETCODE -
IMMUTABLE POLICY (p. 303) if immutable policy is changed, or
DDS RETCODE INCONSISTENT POLICY (p. 304) if policies are
inconsistent

See also:

DDS TopicQos (p. 905) for rules on consistency among QoS
set qos (abstract) (p. 1158)
Operations Allowed in Listener Callbacks (p. 1219)

6.204.2.4 virtual DDS ReturnCode t DDSTopic::set qos with -
profile (const char ∗ library name, const char ∗
profile name) [pure virtual]

<<eXtension>> (p. 190) Change the QoS of this topic using the input XML
QoS profile.

The DDS TopicQos::topic data (p. 906) and DDS TopicQos::deadline
(p. 907), DDS TopicQos::latency budget (p. 907), DDS -
TopicQos::transport priority (p. 907) and DDS TopicQos::lifespan
(p. 908) can be changed. The other policies are immutable.

Parameters:

library name <<in>> (p. 191) Library name containing the XML QoS
profile. If library name is null RTI Data Distribution Service will
use the default library (see DDSDomainParticipant::set default -
library (p. 1073)).

profile name <<in>> (p. 191) XML QoS Profile name. If profile name
is null RTI Data Distribution Service will use the default profile (see
DDSDomainParticipant::set default profile (p. 1074)).

Returns:

One of the Standard Return Codes (p. 302), DDS RETCODE -
IMMUTABLE POLICY (p. 303) if immutable policy is changed, or
DDS RETCODE INCONSISTENT POLICY (p. 304) if policies are
inconsistent

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.204 DDSTopic Class Reference 1315

See also:

DDS TopicQos (p. 905) for rules on consistency among QoS
Operations Allowed in Listener Callbacks (p. 1219)

6.204.2.5 virtual DDS ReturnCode t DDSTopic::get qos
(DDS TopicQos & qos) [pure virtual]

Get the topic QoS.

This method may potentially allocate memory depending on the sequences con-
tained in some QoS policies.

Parameters:

qos <<inout>> (p. 191) QoS to be filled up.

Returns:

One of the Standard Return Codes (p. 302)

See also:

get qos (abstract) (p. 1159)

6.204.2.6 virtual DDS ReturnCode t DDSTopic::set listener
(DDSTopicListener ∗ l, DDS StatusMask mask =
DDS STATUS MASK ALL) [pure virtual]

Set the topic listener.

Parameters:

l <<in>> (p. 191) Listener to be installed on entity.

mask <<in>> (p. 191) Changes of communication status to be invoked
on the listener.

Returns:

One of the Standard Return Codes (p. 302)

See also:

set listener (abstract) (p. 1159)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1316 Class Documentation

6.204.2.7 virtual DDSTopicListener∗ DDSTopic::get listener ()
[pure virtual]

Get the topic listener.

Returns:

Existing listener attached to the DDSTopic (p. 1311).

See also:

get listener (abstract) (p. 1160)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.205 DDSTopicBuiltinTopicDataDataReader Class Reference 1317

6.205 DDSTopicBuiltinTopicDataDataReader
Class Reference

Instantiates DataReader < DDS TopicBuiltinTopicData (p. 898) > .

Inheritance diagram for DDSTopicBuiltinTopicDataDataReader::

6.205.1 Detailed Description

Instantiates DataReader < DDS TopicBuiltinTopicData (p. 898) > .

DDSDataReader (p. 1004) of topic DDS TOPIC TOPIC NAME (p. 277)
used for accessing DDS TopicBuiltinTopicData (p. 898) of the remote
DDSTopic (p. 1311).

Note: The DDS TopicBuiltinTopicData (p. 898) built-in topic is meant
to convey information about discovered Topics. This Topics sam-
ples are not propagated in a separate packet on the wire. In-
stead, the data is sent as part of the information carried by other
built-in topics (DDS PublicationBuiltinTopicData (p. 788) and DDS -
SubscriptionBuiltinTopicData (p. 876)). Therefore TopicBuiltinTopicData
DataReaders will not receive any data.

Instantiates:

<<generic>> (p. 190) FooDataReader (p. 1334)

See also:

DDS TopicBuiltinTopicData (p. 898)
DDS TOPIC TOPIC NAME (p. 277)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1318 Class Documentation

6.206 DDSTopicBuiltinTopicDataTypeSupport
Class Reference

Instantiates TypeSupport < DDS TopicBuiltinTopicData (p. 898) > .

6.206.1 Detailed Description

Instantiates TypeSupport < DDS TopicBuiltinTopicData (p. 898) > .

Instantiates:

<<generic>> (p. 190) FooTypeSupport (p. 1392)

See also:

DDS TopicBuiltinTopicData (p. 898)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.207 DDSTopicDescription Class Reference 1319

6.207 DDSTopicDescription Class Reference

<<interface>> (p. 190) Base class for DDSTopic (p. 1311), DDSContent-
FilteredTopic (p. 998), and DDSMultiTopic (p. 1221).

Inheritance diagram for DDSTopicDescription::

Public Member Functions

ˆ virtual const char ∗ get type name ()=0
Get the associated type name.

ˆ virtual const char ∗ get name ()=0
Get the name used to create this DDSTopicDescription (p. 1319) .

ˆ virtual DDSDomainParticipant ∗ get participant ()=0
Get the DDSDomainParticipant (p. 1054) to which the DDSTopicDe-
scription (p. 1319) belongs.

6.207.1 Detailed Description

<<interface>> (p. 190) Base class for DDSTopic (p. 1311), DDSContent-
FilteredTopic (p. 998), and DDSMultiTopic (p. 1221).

DDSTopicDescription (p. 1319) represents the fact that both publications
and subscriptions are tied to a single data-type. Its attribute type name defines
a unique resulting type for the publication or the subscription and therefore
creates an implicit association with a DDSTypeSupport (p. 1324).

DDSTopicDescription (p. 1319) has also a name that allows it to be retrieved
locally.

See also:

DDSTypeSupport (p. 1324), FooTypeSupport (p. 1392)

6.207.2 Member Function Documentation

6.207.2.1 virtual const char∗ DDSTopicDescription::get type name
() [pure virtual]

Get the associated type name.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1320 Class Documentation

The type name defines a locally unique type for the publication or the subscrip-
tion.

The type name corresponds to a unique string used to register a type via the
FooTypeSupport::register type (p. 1393) method.

Thus, the type name implies an association with a corresponding DDSType-
Support (p. 1324) and this DDSTopicDescription (p. 1319).

Returns:

the type name. The returned type name is valid until the DDSTopicDe-
scription (p. 1319) is deleted.

Postcondition:

The result is non-NULL.

See also:

DDSTypeSupport (p. 1324), FooTypeSupport (p. 1392)

6.207.2.2 virtual const char∗ DDSTopicDescription::get name ()
[pure virtual]

Get the name used to create this DDSTopicDescription (p. 1319) .

Returns:

the name used to create this DDSTopicDescription (p. 1319). The re-
turned topic name is valid until the DDSTopicDescription (p. 1319) is
deleted.

Postcondition:

The result is non-NULL.

6.207.2.3 virtual DDSDomainParticipant∗
DDSTopicDescription::get participant () [pure virtual]

Get the DDSDomainParticipant (p. 1054) to which the DDSTopicDescrip-
tion (p. 1319) belongs.

Returns:

The DDSDomainParticipant (p. 1054) to which the DDSTopicDe-
scription (p. 1319) belongs.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.207 DDSTopicDescription Class Reference 1321

Postcondition:

The result is non-NULL.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1322 Class Documentation

6.208 DDSTopicListener Class Reference

<<interface>> (p. 190) DDSListener (p. 1217) for DDSTopic (p. 1311) en-
tities.

Inheritance diagram for DDSTopicListener::

Public Member Functions

ˆ virtual void on inconsistent topic (DDSTopic ∗topic, const DDS -
InconsistentTopicStatus &status)

Handle the DDS INCONSISTENT TOPIC STATUS (p. 310) status.

6.208.1 Detailed Description

<<interface>> (p. 190) DDSListener (p. 1217) for DDSTopic (p. 1311) en-
tities.

Entity:

DDSTopic (p. 1311)

Status:

DDS INCONSISTENT TOPIC STATUS (p. 310), DDS -
InconsistentTopicStatus (p. 713)

This is the interface that can be implemented by an application-provided class
and then registered with the DDSTopic (p. 1311) such that the application can
be notified by RTI Data Distribution Service of relevant status changes.

See also:

Status Kinds (p. 305)
DDSListener (p. 1217)
DDSTopic::set listener (p. 1315)
Operations Allowed in Listener Callbacks (p. 1219)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.208 DDSTopicListener Class Reference 1323

6.208.2 Member Function Documentation

6.208.2.1 virtual void DDSTopicListener::on inconsistent topic
(DDSTopic ∗ topic, const DDS InconsistentTopicStatus
& status) [virtual]

Handle the DDS INCONSISTENT TOPIC STATUS (p. 310) status.

This callback is called when a remote DDSTopic (p. 1311) is discovered but
is inconsistent with the locally created DDSTopic (p. 1311) of the same topic
name.

Parameters:

topic <<out>> (p. 191) Locally created DDSTopic (p. 1311) that trig-
gers the listener callback

status <<out>> (p. 191) Current inconsistent status of locally created
DDSTopic (p. 1311)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1324 Class Documentation

6.209 DDSTypeSupport Class Reference

<<interface>> (p. 190) An abstract marker interface that has to be special-
ized for each concrete user data type that will be used by the application.

Inheritance diagram for DDSTypeSupport::

6.209.1 Detailed Description

<<interface>> (p. 190) An abstract marker interface that has to be special-
ized for each concrete user data type that will be used by the application.

The implementation provides an automatic means to generate a type-specific
class, FooTypeSupport (p. 1392), from a description of the type in IDL.

A DDSTypeSupport (p. 1324) must be registered using the FooTypeSup-
port::register type (p. 1393) operation on this type-specific class before it can
be used to create DDSTopic (p. 1311) objects.

See also:

FooTypeSupport (p. 1392)
rtiddsgen (p. 211)

Examples:

HelloWorldSupport.cxx.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.210 DDSWaitSet Class Reference 1325

6.210 DDSWaitSet Class Reference

<<interface>> (p. 190) Allows an application to wait until one or more of
the attached DDSCondition (p. 992) objects has a trigger value of DDS -
BOOLEAN TRUE (p. 288) or else until the timeout expires.

Public Member Functions

ˆ virtual DDS ReturnCode t wait (DDSConditionSeq &active -
conditions, const DDS Duration t &timeout)

Allows an application thread to wait for the occurrence of certain conditions.

ˆ virtual DDS ReturnCode t attach condition (DDSCondition
∗cond)

Attaches a DDSCondition (p. 992) to the DDSWaitSet (p. 1325).

ˆ virtual DDS ReturnCode t detach condition (DDSCondition
∗cond)

Detaches a DDSCondition (p. 992) from the DDSWaitSet (p. 1325).

ˆ virtual DDS ReturnCode t get conditions (DDSConditionSeq
&attached conditions)

Retrieves the list of attached DDSCondition (p. 992) (s).

ˆ virtual DDS ReturnCode t set property (const DDS -
WaitSetProperty t &prop)

<<eXtension>> (p. 190) Sets the DDS WaitSetProperty t (p. 978), to
configure the associated DDSWaitSet (p. 1325) to return after one or more
trigger events have occurred.

ˆ virtual DDS ReturnCode t get property (DDS -
WaitSetProperty t &prop)

<<eXtension>> (p. 190) Retrieves the DDS WaitSetProperty t
(p. 978) configuration of the associated DDSWaitSet (p. 1325).

ˆ virtual ∼DDSWaitSet ()

Destructor.

ˆ DDSWaitSet ()

Default no-argument constructor.

ˆ DDSWaitSet (const DDS WaitSetProperty t &prop)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1326 Class Documentation

<<eXtension>> (p. 190) Constructor for a DDSWaitSet (p. 1325) that
may delay for more while specifying that will be woken up after the given
number of events or delay period, whichever happens first

6.210.1 Detailed Description

<<interface>> (p. 190) Allows an application to wait until one or more of
the attached DDSCondition (p. 992) objects has a trigger value of DDS -
BOOLEAN TRUE (p. 288) or else until the timeout expires.

6.210.2 Usage

DDSCondition (p. 992) (s) (in conjunction with wait-sets) provide an alterna-
tive mechanism to allow the middleware to communicate communication status
changes (including arrival of data) to the application.

This mechanism is wait-based. Its general use pattern is as follows:

ˆ The application indicates which relevant information it wants to get
by creating DDSCondition (p. 992) objects (DDSStatusCondition
(p. 1271), DDSReadCondition (p. 1269) or DDSQueryCondition
(p. 1267)) and attaching them to a DDSWaitSet (p. 1325).

ˆ It then waits on that DDSWaitSet (p. 1325) until the trigger -
value of one or several DDSCondition (p. 992) objects become DDS -
BOOLEAN TRUE (p. 288).

ˆ It then uses the result of the wait (i.e., active conditions, the list
of DDSCondition (p. 992) objects with trigger value == DDS -
BOOLEAN TRUE (p. 288)) to actually get the information:

– by calling DDSEntity::get status changes (p. 1161) and then
get <communication status>() on the relevant DDSEntity
(p. 1157), if the condition is a DDSStatusCondition (p. 1271) and
the status changes, refer to plain communication status;

– by calling DDSEntity::get status changes (p. 1161) and then
DDSSubscriber::get datareaders (p. 1300) on the relevant
DDSSubscriber (p. 1284) (and then FooDataReader::read()
(p. 1337) or FooDataReader::take (p. 1338) on the returned DDS-
DataReader (p. 1004) objects), if the condition is a DDSStatus-
Condition (p. 1271) and the status changes refers to DDS DATA -
ON READERS STATUS (p. 312);

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.210 DDSWaitSet Class Reference 1327

– by calling DDSEntity::get status changes (p. 1161) and then
FooDataReader::read() (p. 1337) or FooDataReader::take
(p. 1338) on the relevant DDSDataReader (p. 1004), if the con-
dition is a DDSStatusCondition (p. 1271) and the status changes
refers to DDS DATA AVAILABLE STATUS (p. 312);

– by calling directly FooDataReader::read w condition (p. 1344)
or FooDataReader::take w condition (p. 1345) on a DDS-
DataReader (p. 1004) with the DDSCondition (p. 992) as a
parameter if it is a DDSReadCondition (p. 1269) or a DDS-
QueryCondition (p. 1267).

Usually the first step is done in an initialization phase, while the others are put
in the application main loop.

As there is no extra information passed from the middleware to the application
when a wait returns (only the list of triggered DDSCondition (p. 992) objects),
DDSCondition (p. 992) objects are meant to embed all that is needed to react
properly when enabled. In particular, DDSEntity (p. 1157)-related conditions
are related to exactly one DDSEntity (p. 1157) and cannot be shared.

The blocking behavior of the DDSWaitSet (p. 1325) is illustrated below.

The result of a DDSWaitSet::wait (p. 1330) operation depends on the state of
the DDSWaitSet (p. 1325), which in turn depends on whether at least one at-
tached DDSCondition (p. 992) has a trigger value of DDS BOOLEAN -
TRUE (p. 288). If the wait operation is called on DDSWaitSet (p. 1325)
with state BLOCKED, it will block the calling thread. If wait is called on a
DDSWaitSet (p. 1325) with state UNBLOCKED, it will return immediately.
In addition, when the DDSWaitSet (p. 1325) transitions from BLOCKED to
UNBLOCKED it wakes up any threads that had called wait on it.

A key aspect of the DDSCondition (p. 992)/DDSWaitSet (p. 1325) mecha-
nism is the setting of the trigger value of each DDSCondition (p. 992).

6.210.3 Trigger State of a ::DDSStatusCondition

The trigger value of a DDSStatusCondition (p. 1271) is the boolean OR
of the ChangedStatusFlag of all the communication statuses (see Status
Kinds (p. 305)) to which it is sensitive. That is, trigger value == DDS -
BOOLEAN FALSE (p. 289) only if all the values of the ChangedStatusFlags
are DDS BOOLEAN FALSE (p. 289).

The sensitivity of the DDSStatusCondition (p. 1271) to a particular commu-
nication status is controlled by the list of enabled statuses set on the condi-
tion by means of the DDSStatusCondition::set enabled statuses (p. 1272)
operation.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1328 Class Documentation

6.210.4 Trigger State of a ::DDSReadCondition

Similar to the DDSStatusCondition (p. 1271), a DDSReadCondition
(p. 1269) also has a trigger value that determines whether the attached
DDSWaitSet (p. 1325) is BLOCKED or UNBLOCKED. However, unlike the
DDSStatusCondition (p. 1271), the trigger value of the DDSReadCon-
dition (p. 1269) is tied to the presence of at least a sample managed by
RTI Data Distribution Service with DDS SampleStateKind (p. 104) and
DDS ViewStateKind (p. 106) matching those of the DDSReadCondition
(p. 1269). Furthermore, for the DDSQueryCondition (p. 1267) to have a
trigger value == DDS BOOLEAN TRUE (p. 288), the data associated
with the sample must be such that the query expression evaluates to DDS -
BOOLEAN TRUE (p. 288).

The fact that the trigger value of a DDSReadCondition (p. 1269) depends
on the presence of samples on the associated DDSDataReader (p. 1004) im-
plies that a single take operation can potentially change the trigger value
of several DDSReadCondition (p. 1269) or DDSQueryCondition (p. 1267)
conditions. For example, if all samples are taken, any DDSReadCondition
(p. 1269) and DDSQueryCondition (p. 1267) conditions associated with the
DDSDataReader (p. 1004) that had their trigger value==TRUE before will
see the trigger value change to FALSE. Note that this does not guarantee that
DDSWaitSet (p. 1325) objects that were separately attached to those condi-
tions will not be woken up. Once we have trigger value==TRUE on a condition,
it may wake up the attached DDSWaitSet (p. 1325), the condition transition-
ing to trigger value==FALSE does not necessarily ’unwakeup’ the WaitSet as
’unwakening’ may not be possible in general.

The consequence is that an application blocked on a DDSWaitSet (p. 1325)
may return from the wait with a list of conditions, some of which are not no
longer ’active’. This is unavoidable if multiple threads are concurrently waiting
on separate DDSWaitSet (p. 1325) objects and taking data associated with
the same DDSDataReader (p. 1004) entity.

To elaborate further, consider the following example: A DDSReadCon-
dition (p. 1269) that has a sample state mask = {DDS NOT READ -
SAMPLE STATE (p. 105)} will have trigger value of DDS BOOLEAN -
TRUE (p. 288) whenever a new sample arrives and will transition to
DDS BOOLEAN FALSE (p. 289) as soon as all the newly-arrived sam-
ples are either read (so their sample state changes to READ) or taken
(so they are no longer managed by RTI Data Distribution Service). How-
ever if the same DDSReadCondition (p. 1269) had a sample state -
mask = { DDS READ SAMPLE STATE (p. 105), DDS NOT READ -
SAMPLE STATE (p. 105) }, then the trigger value would only become
DDS BOOLEAN FALSE (p. 289) once all the newly-arrived samples are
taken (it is not sufficient to read them as that would only change the sam-
ple state to READ), which overlaps the mask on the DDSReadCondition

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.210 DDSWaitSet Class Reference 1329

(p. 1269).

6.210.5 Trigger State of a ::DDSGuardCondition

The trigger value of a DDSGuardCondition (p. 1167) is completely con-
trolled by the application via the operation DDSGuardCondition::set -
trigger value (p. 1168).

See also:

Status Kinds (p. 305)
DDSStatusCondition (p. 1271), DDSGuardCondition (p. 1167)
DDSListener (p. 1217)

6.210.6 Constructor & Destructor Documentation

6.210.6.1 virtual DDSWaitSet::∼DDSWaitSet () [virtual]

Destructor.

Releases the resources asociated with this DDSWaitSet (p. 1325).

Freeing a null pointer is safe and does nothing.

6.210.6.2 DDSWaitSet::DDSWaitSet ()

Default no-argument constructor.

Construct a new DDSWaitSet (p. 1325).

Returns:

A new DDSWaitSet (p. 1325) or NULL if one could not be allocated.

6.210.6.3 DDSWaitSet::DDSWaitSet (const
DDS WaitSetProperty t & prop)

<<eXtension>> (p. 190) Constructor for a DDSWaitSet (p. 1325) that may
delay for more while specifying that will be woken up after the given number of
events or delay period, whichever happens first

Constructs a new DDSWaitSet (p. 1325).

Returns:

A new DDSWaitSet (p. 1325) or NULL if one could not be allocated.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1330 Class Documentation

6.210.7 Member Function Documentation

6.210.7.1 virtual DDS ReturnCode t DDSWaitSet::wait
(DDSConditionSeq & active conditions, const
DDS Duration t & timeout) [virtual]

Allows an application thread to wait for the occurrence of certain conditions.

If none of the conditions attached to the DDSWaitSet (p. 1325) have a
trigger value of DDS BOOLEAN TRUE (p. 288), the wait operation will
block suspending the calling thread.

The result of the wait operation is the list of all the attached conditions that have
a trigger value of DDS BOOLEAN TRUE (p. 288) (i.e., the conditions
that unblocked the wait).

The wait operation takes a timeout argument that specifies the maximum
duration for the wait. If this duration is exceeded and none of the attached
DDSCondition (p. 992) objects is DDS BOOLEAN TRUE (p. 288), wait
will return with the return code DDS RETCODE TIMEOUT (p. 304). In
this case, the resulting list of conditions will be empty.

DDS RETCODE TIMEOUT (p. 304) will not be returned when the
timeout duration is exceeded if attached DDSCondition (p. 992) objects are
DDS BOOLEAN TRUE (p. 288), or in the case of a DDSWaitSet (p. 1325)
waiting for more than one trigger event, if one or more trigger events have oc-
curred.

It is not allowable for for more than one application thread to be waiting on the
same DDSWaitSet (p. 1325). If the wait operation is invoked on a DDSWait-
Set (p. 1325) that already has a thread blocking on it, the operation will return
immediately with the value DDS RETCODE PRECONDITION NOT -
MET (p. 303).

Parameters:

active conditions <<inout>> (p. 191) a valid non-NULL DDSCon-
ditionSeq (p. 993) object. Note that RTI Data Distribution Service
will not allocate a new object if active conditions is NULL; the
method will return DDS RETCODE PRECONDITION NOT -
MET (p. 303).

timeout <<in>> (p. 191) a wait timeout

Returns:

One of the Standard Return Codes (p. 302) or DDS RETCODE -
PRECONDITION NOT MET (p. 303) or DDS RETCODE -
TIMEOUT (p. 304).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.210 DDSWaitSet Class Reference 1331

6.210.7.2 virtual DDS ReturnCode t DDSWaitSet::attach -
condition (DDSCondition ∗ cond)
[virtual]

Attaches a DDSCondition (p. 992) to the DDSWaitSet (p. 1325).

It is possible to attach a DDSCondition (p. 992) on a DDSWaitSet (p. 1325)
that is currently being waited upon (via the wait operation). In this case, if the
DDSCondition (p. 992) has a trigger value of DDS BOOLEAN TRUE
(p. 288), then attaching the condition will unblock the DDSWaitSet (p. 1325).

Parameters:

cond <<in>> (p. 191) Contition to be attached.

Returns:

One of the Standard Return Codes (p. 302), or DDS RETCODE -
OUT OF RESOURCES (p. 303).

6.210.7.3 virtual DDS ReturnCode t DDSWaitSet::detach -
condition (DDSCondition ∗ cond)
[virtual]

Detaches a DDSCondition (p. 992) from the DDSWaitSet (p. 1325).

If the DDSCondition (p. 992) was not attached to the DDSWaitSet (p. 1325)
the operation will return DDS RETCODE BAD PARAMETER (p. 303).

Parameters:

cond <<in>> (p. 191) Condition to be detached.

Returns:

One of the Standard Return Codes (p. 302), or DDS RETCODE -
PRECONDITION NOT MET (p. 303).

6.210.7.4 virtual DDS ReturnCode t DDSWaitSet::get conditions
(DDSConditionSeq & attached conditions) [virtual]

Retrieves the list of attached DDSCondition (p. 992) (s).

Parameters:

attached conditions <<inout>> (p. 191) a DDSConditionSeq
(p. 993) object where the list of attached conditions will be returned

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1332 Class Documentation

Returns:

One of the Standard Return Codes (p. 302), or DDS RETCODE -
OUT OF RESOURCES (p. 303).

6.210.7.5 virtual DDS ReturnCode t DDSWaitSet::set property
(const DDS WaitSetProperty t & prop) [virtual]

<<eXtension>> (p. 190) Sets the DDS WaitSetProperty t (p. 978), to
configure the associated DDSWaitSet (p. 1325) to return after one or more
trigger events have occurred.

Parameters:

prop <<in>> (p. 191)

Returns:

One of the Standard Return Codes (p. 302)

6.210.7.6 virtual DDS ReturnCode t DDSWaitSet::get property
(DDS WaitSetProperty t & prop) [virtual]

<<eXtension>> (p. 190) Retrieves the DDS WaitSetProperty t (p. 978)
configuration of the associated DDSWaitSet (p. 1325).

Parameters:

prop <<out>> (p. 191)

Returns:

One of the Standard Return Codes (p. 302)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.211 Foo Struct Reference 1333

6.211 Foo Struct Reference

A representative user-defined data type.

6.211.1 Detailed Description

A representative user-defined data type.

Foo (p. 1333) represents a user-defined data-type that is intended to be dis-
tributed using DDS.

The type Foo (p. 1333) is usually defined using IDL syntax and placed in a
”.idl” file that is then processed using rtiddsgen (p. 211). The rtiddsgen
(p. 211) utility generates the helper classes FooSeq (p. 1377) as well as the
necessary code for DDS to manipulate the type (serialize it so that it can be
sent over the network) as well as the implied FooDataReader (p. 1334) and
FooDataWriter (p. 1361) types that allow the application to send and receive
data of this type.

See also:

FooSeq (p. 1377), FooDataWriter (p. 1361), FooDataReader (p. 1334),
FooTypeSupport (p. 1392), rtiddsgen (p. 211)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1334 Class Documentation

6.212 FooDataReader Struct Reference

<<interface>> (p. 190) <<generic>> (p. 190) User data type-specific data
reader.

Inheritance diagram for FooDataReader::

Public Member Functions

ˆ virtual DDS ReturnCode t read (FooSeq &received data, DDS -
SampleInfoSeq &info seq, DDS Long max samples, DDS -
SampleStateMask sample states, DDS ViewStateMask view states,
DDS InstanceStateMask instance states)=0

Access a collection of data samples from the DDSDataReader (p. 1004).

ˆ virtual DDS ReturnCode t take (FooSeq &received data, DDS -
SampleInfoSeq &info seq, DDS Long max samples, DDS -
SampleStateMask sample states, DDS ViewStateMask view states,
DDS InstanceStateMask instance states)=0

Access a collection of data-samples from the DDSDataReader (p. 1004).

ˆ virtual DDS ReturnCode t read w condition (FooSeq &received -
data, DDS SampleInfoSeq &info seq, DDS Long max samples,
DDSReadCondition ∗condition)=0

Accesses via FooDataReader::read (p. 1337) the samples that match the
criteria specified in the DDSReadCondition (p. 1269).

ˆ virtual DDS ReturnCode t take w condition (FooSeq &received -
data, DDS SampleInfoSeq &info seq, DDS Long max samples,
DDSReadCondition ∗condition)=0

Analogous to FooDataReader::read w condition (p. 1344) except it ac-
cesses samples via the FooDataReader::take (p. 1338) operation.

ˆ virtual DDS ReturnCode t read next sample (Foo &received data,
DDS SampleInfo &sample info)=0

Copies the next not-previously-accessed data value from the DDS-
DataReader (p. 1004).

ˆ virtual DDS ReturnCode t take next sample (Foo &received data,
DDS SampleInfo &sample info)=0

Copies the next not-previously-accessed data value from the DDS-
DataReader (p. 1004).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.212 FooDataReader Struct Reference 1335

ˆ virtual DDS ReturnCode t read instance (FooSeq &re-
ceived data, DDS SampleInfoSeq &info seq, DDS Long max -
samples, const DDS InstanceHandle t &a handle, DDS -
SampleStateMask sample states, DDS ViewStateMask view states,
DDS InstanceStateMask instance states)=0

Access a collection of data samples from the DDSDataReader (p. 1004).

ˆ virtual DDS ReturnCode t take instance (FooSeq &received data,
DDS SampleInfoSeq &info seq, DDS Long max samples, const
DDS InstanceHandle t &a handle, DDS SampleStateMask
sample states, DDS ViewStateMask view states, DDS -
InstanceStateMask instance states)=0

Access a collection of data samples from the DDSDataReader (p. 1004).

ˆ virtual DDS ReturnCode t read next instance (FooSeq &re-
ceived data, DDS SampleInfoSeq &info seq, DDS Long max -
samples, const DDS InstanceHandle t &previous handle, DDS -
SampleStateMask sample states, DDS ViewStateMask view states,
DDS InstanceStateMask instance states)=0

Access a collection of data samples from the DDSDataReader (p. 1004).

ˆ virtual DDS ReturnCode t take next instance (FooSeq &re-
ceived data, DDS SampleInfoSeq &info seq, DDS Long max -
samples, const DDS InstanceHandle t &previous handle, DDS -
SampleStateMask sample states, DDS ViewStateMask view states,
DDS InstanceStateMask instance states)=0

Access a collection of data samples from the DDSDataReader (p. 1004).

ˆ virtual DDS ReturnCode t read next instance w condition
(FooSeq &received data, DDS SampleInfoSeq &info seq, DDS -
Long max samples, const DDS InstanceHandle t &previous handle,
DDSReadCondition ∗condition)=0

Accesses via FooDataReader::read next instance (p. 1351) the samples
that match the criteria specified in the DDSReadCondition (p. 1269).

ˆ virtual DDS ReturnCode t take next instance w condition
(FooSeq &received data, DDS SampleInfoSeq &info seq, DDS -
Long max samples, const DDS InstanceHandle t &previous handle,
DDSReadCondition ∗condition)=0

Accesses via FooDataReader::take next instance (p. 1353) the samples
that match the criteria specified in the DDSReadCondition (p. 1269).

ˆ virtual DDS ReturnCode t return loan (FooSeq &received data,
DDS SampleInfoSeq &info seq)=0

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1336 Class Documentation

Indicates to the DDSDataReader (p. 1004) that the application is done
accessing the collection of received data and info seq obtained by some
earlier invocation of read or take on the DDSDataReader (p. 1004).

ˆ virtual DDS ReturnCode t get key value (Foo &key holder, const
DDS InstanceHandle t handle)=0

Retrieve the instance key that corresponds to an instance handle.

ˆ virtual DDS InstanceHandle t lookup instance (const Foo &key -
holder)=0

Retrieve the instance handle that corresponds to an instance key holder.

Static Public Member Functions

ˆ static FooDataReader ∗ narrow (DDSDataReader ∗reader)
Narrow the given DDSDataReader (p. 1004) pointer to a FooDataReader
(p. 1334) pointer.

6.212.1 Detailed Description

<<interface>> (p. 190) <<generic>> (p. 190) User data type-specific data
reader.

Defines the user data type specific reader interface generated for each application
class.

The concrete user data type reader automatically generated by the implemen-
tation is an incarnation of this class.

See also:

DDSDataReader (p. 1004)
Foo (p. 1333)
FooDataWriter (p. 1361)
rtiddsgen (p. 211)

6.212.2 Member Function Documentation

6.212.2.1 static FooDataReader∗ FooDataReader::narrow
(DDSDataReader ∗ reader) [static]

Narrow the given DDSDataReader (p. 1004) pointer to a FooDataReader
(p. 1334) pointer.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.212 FooDataReader Struct Reference 1337

6.212.2.2 virtual DDS ReturnCode t FooDataReader::read (FooSeq
& received data, DDS SampleInfoSeq & info seq,
DDS Long max samples, DDS SampleStateMask
sample states, DDS ViewStateMask view states,
DDS InstanceStateMask instance states) [pure virtual]

Access a collection of data samples from the DDSDataReader (p. 1004).

This operation offers the same functionality and API as FooDataReader::take
(p. 1338) except that the samples returned remain in the DDSDataReader
(p. 1004) such that they can be retrieved again by means of a read or take
operation.

Please refer to the documentation of FooDataReader::take() (p. 1338) for
details on the number of samples returned within the received data and info -
seq as well as the order in which the samples appear in these sequences.

The act of reading a sample changes its sample state to DDS READ -
SAMPLE STATE (p. 105). If the sample belongs to the most recent gen-
eration of the instance, it will also set the view state of the instance to be
DDS NOT NEW VIEW STATE (p. 107). It will not affect the instance -
state of the instance.

Important: If the samples ”returned” by this method are loaned from RTI Data
Distribution Service (see FooDataReader::take (p. 1338) for more informa-
tion on memory loaning), it is important that their contents not be changed.
Because the memory in which the data is stored belongs to the middleware, any
modifications made to the data will be seen the next time the same samples
are read or taken; the samples will no longer reflect the state that was received
from the network.

Parameters:

received data <<inout>> (p. 191) User data type-specific FooSeq
(p. 1377) object where the received data samples will be returned.

info seq <<inout>> (p. 191) A DDS SampleInfoSeq (p. 863) object
where the received sample info will be returned.

max samples <<in>> (p. 191) The maximum number of samples to
be returned. If the special value DDS LENGTH UNLIMITED
(p. 356) is provided, as many samples will be returned as are avail-
able, up to the limits described in the documentation for Foo-
DataReader::take() (p. 1338).

sample states <<in>> (p. 191) Data samples matching one of these
sample states are returned.

view states <<in>> (p. 191) Data samples matching one of these
view state are returned.

instance states <<in>> (p. 191) Data samples matching ones of these
instance state are returned.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1338 Class Documentation

Returns:

One of the Standard Return Codes (p. 302), DDS RETCODE -
PRECONDITION NOT MET (p. 303), DDS RETCODE NO -
DATA (p. 304) or DDS RETCODE NOT ENABLED (p. 303).

See also:

FooDataReader::read w condition (p. 1344), FooDataReader::take
(p. 1338), FooDataReader::take w condition (p. 1345)
DDS LENGTH UNLIMITED (p. 356)

6.212.2.3 virtual DDS ReturnCode t FooDataReader::take (FooSeq
& received data, DDS SampleInfoSeq & info seq,
DDS Long max samples, DDS SampleStateMask
sample states, DDS ViewStateMask view states,
DDS InstanceStateMask instance states) [pure virtual]

Access a collection of data-samples from the DDSDataReader (p. 1004).

The operation will return the list of samples received by the DDS-
DataReader (p. 1004) since the last FooDataReader::take (p. 1338) op-
eration that match the specified DDS SampleStateMask (p. 104), DDS -
ViewStateMask (p. 106) and DDS InstanceStateMask (p. 109).

This operation may fail with DDS RETCODE ERROR (p. 303) if DDS -
DataReaderResourceLimitsQosPolicy::max outstanding reads (p. 492)
limit has been exceeded.

The actual number of samples returned depends on the information
that has been received by the middleware as well as the DDS -
HistoryQosPolicy (p. 709), DDS ResourceLimitsQosPolicy (p. 827),
DDS DataReaderResourceLimitsQosPolicy (p. 487) and the characteris-
tics of the data-type that is associated with the DDSDataReader (p. 1004):

ˆ In the case where the DDS HistoryQosPolicy::kind (p. 711) is DDS -
KEEP LAST HISTORY QOS (p. 353), the call will return at most
DDS HistoryQosPolicy::depth (p. 711) samples per instance.

ˆ The maximum number of samples returned is limited by DDS -
ResourceLimitsQosPolicy::max samples (p. 829), and by DDS -
DataReaderResourceLimitsQosPolicy::max samples per read
(p. 492).

ˆ For multiple instances, the number of samples re-
turned is additionally limited by the product (DDS -
ResourceLimitsQosPolicy::max samples per instance (p. 830)
∗ DDS ResourceLimitsQosPolicy::max instances (p. 830))

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.212 FooDataReader Struct Reference 1339

ˆ If DDS DataReaderResourceLimitsQosPolicy::max infos (p. 490)
is limited, the number of samples returned may also be limited if insuffi-
cient DDS SampleInfo (p. 855) resources are available.

If the read or take succeeds and the number of samples returned has been
limited (by means of a maximum limit, as listed above, or insufficient DDS -
SampleInfo (p. 855) resources), the call will complete successfully and provide
those samples the reader is able to return. The user may need to make additional
calls, or return outstanding loaned buffers in the case of insuffificient resources,
in order to access remaining samples.

Note that in the case where the DDSTopic (p. 1311) associated with the DDS-
DataReader (p. 1004) is bound to a data-type that has no key definition, then
there will be at most one instance in the DDSDataReader (p. 1004). So the
per-sample limits will apply.

The act of taking a sample removes it from RTI Data Distribution Service so
it cannot be read or taken again. If the sample belongs to the most recent
generation of the instance, it will also set the view state of the sample’s in-
stance to DDS NOT NEW VIEW STATE (p. 107). It will not affect the
instance state of the sample’s instance.

After FooDataReader::take (p. 1338) completes, received data and info -
seq will be of the same length and contain the received data.

If the sequences are empty (maximum size equals 0) when the Foo-
DataReader::take (p. 1338) is called, the samples returned in the received -
data and the corresponding info seq are ’loaned’ to the application from buffers
provided by the DDSDataReader (p. 1004). The application can use them as
desired and has guaranteed exclusive access to them.

Once the application completes its use of the samples it must ’return the loan’
to the DDSDataReader (p. 1004) by calling the FooDataReader::return -
loan (p. 1358) operation.

Important: When you loan data from the middleware, you must not keep
any pointers to any part of the data samples or the DDS SampleInfo (p. 855)
objects after the call to FooDataReader::return loan (p. 1358). Returning
the loan places the objects back into a pool, allowing the middleware to overwrite
them with new data.

Note: While you must call FooDataReader::return loan (p. 1358) at some
point, you do not have to do so before the next FooDataReader::take
(p. 1338) call. However, failure to return the loan will eventually de-
plete the DDSDataReader (p. 1004) of the buffers it needs to receive
new samples and eventually samples will start to be lost. The total
number of buffers available to the DDSDataReader (p. 1004) is spec-
ified by the DDS ResourceLimitsQosPolicy (p. 827) and the DDS -
DataReaderResourceLimitsQosPolicy (p. 487).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1340 Class Documentation

If the sequences are not empty (maximum size not equal to 0 and length not
equal to 0) when FooDataReader::take (p. 1338) is called, samples are copied
to received data and info seq. The application will not need to call Foo-
DataReader::return loan (p. 1358).

The order of the samples returned to the caller depends on the DDS -
PresentationQosPolicy (p. 772).

ˆ If DDS PresentationQosPolicy::access scope (p. 775) is DDS -
INSTANCE PRESENTATION QOS (p. 338), the returned collec-
tion is a list where samples belonging to the same data instance are con-
secutive.

ˆ If DDS PresentationQosPolicy::access scope (p. 775) is
DDS TOPIC PRESENTATION QOS (p. 338) and DDS -
PresentationQosPolicy::ordered access (p. 776) is set to DDS -
BOOLEAN FALSE (p. 289), then returned collection is a list where
samples belonging to the same data instance are consecutive.

ˆ If DDS PresentationQosPolicy::access scope (p. 775) is
DDS TOPIC PRESENTATION QOS (p. 338) and DDS -
PresentationQosPolicy::ordered access (p. 776) is set to DDS -
BOOLEAN TRUE (p. 288), then the returned collection is a list were
the relative order of samples is preserved also accross different instances.
Note that samples belonging to the same instance may or may not be
consecutive. This is because to preserve order it may be necessary to mix
samples from different instances.

ˆ If DDS PresentationQosPolicy::access scope (p. 775) is
DDS GROUP PRESENTATION QOS (p. 338) and DDS -
PresentationQosPolicy::ordered access (p. 776) is set to DDS -
BOOLEAN FALSE (p. 289), then returned collection is a list where
samples belonging to the same data instance are consecutive. [Not
supported (optional)]

ˆ If DDS PresentationQosPolicy::access scope (p. 775) is
DDS GROUP PRESENTATION QOS (p. 338) and DDS -
PresentationQosPolicy::ordered access (p. 776) is set to DDS -
BOOLEAN TRUE (p. 288), then the returned collection contains at
most one sample. The difference in this case is due to the fact that
is required that the application is able to read samples belonging to
different DDSDataReader (p. 1004) objects in a specific order. [Not
supported (optional)]

In any case, the relative order between the samples of one instance is consistent
with the DESTINATION ORDER (p. 350) policy:

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.212 FooDataReader Struct Reference 1341

ˆ If DDS DestinationOrderQosPolicy::kind (p. 533) is DDS BY -
RECEPTION TIMESTAMP DESTINATIONORDER QOS
(p. 351), samples belonging to the same instances will appear in the
relative order in which there were received (FIFO, earlier samples ahead
of the later samples).

ˆ If DDS DestinationOrderQosPolicy::kind (p. 533) is DDS BY -
SOURCE TIMESTAMP DESTINATIONORDER QOS (p. 351),
samples belonging to the same instances will appear in the relative or-
der implied by the source timestamp (FIFO, smaller values of source -
timestamp ahead of the larger values).

If the DDSDataReader (p. 1004) has no samples that meet the constraints,
the method will fail with DDS RETCODE NO DATA (p. 304).

In addition to the collection of samples, the read and take operations also use
a collection of DDS SampleInfo (p. 855) structures.

6.212.3 SEQUENCES USAGE IN TAKE AND READ

The initial (input) properties of the received data and info seq collections
will determine the precise behavior of the read or take operation. For the pur-
poses of this description, the collections are modeled as having these properties:

ˆ whether the collection container owns the memory of the elements within
(owns, see FooSeq::has ownership (p. 1391))

ˆ the current-length (len, see FooSeq::length() (p. 1384))

ˆ the maximum length (max len, see FooSeq::maximum() (p. 1386))

The initial values of the owns, len and max len properties for the received -
data and info seq collections govern the behavior of the read and take opera-
tions as specified by the following rules:

1. The values of owns, len and max len properties for the two collections
must be identical. Otherwise read/take will fail with DDS RETCODE -
PRECONDITION NOT MET (p. 303).

2. On successful output, the values of owns, len and max len will be the
same for both collections.

3. If the initial max len==0, then the received data and info seq collec-
tions will be filled with elements that are loaned by the DDSDataReader
(p. 1004). On output, owns will be FALSE, len will be set to the number
of values returned, and max len will be set to a value verifying max len

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1342 Class Documentation

>= len. The use of this variant allows for zero-copy access to the data
and the application will need to return the loan to the DDSDataWriter
(p. 1028) using FooDataReader::return loan (p. 1358).

4. If the initial max len>0 and owns==FALSE, then the read or take opera-
tion will fail with DDS RETCODE PRECONDITION NOT MET
(p. 303). This avoids the potential hard-to-detect memory leaks caused by
an application forgetting to return the loan.

5. If initial max len>0 and owns==TRUE, then the read or take operation will
copy the received data values and DDS SampleInfo (p. 855) values
into the elements already inside the collections. On output, owns will
be TRUE, len will be set to the number of values copied and max len
will remain unchanged. The use of this variant forces a copy but the
application can control where the copy is placed and the application will
not need to return the loan. The number of samples copied depends on
the relative values of max len and max samples:

ˆ If max samples == LENGTH UNLIMITED, then at most max len
values will be copied. The use of this variant lets the application
limit the number of samples returned to what the sequence can ac-
commodate.

ˆ If max samples <= max len, then at most max samples values will be
copied. The use of this variant lets the application limit the number of
samples returned to fewer that what the sequence can accommodate.

ˆ If max samples > max len, then the read or take opera-
tion will fail with DDS RETCODE PRECONDITION NOT -
MET (p. 303). This avoids the potential confusion where the ap-
plication expects to be able to access up to max samples, but that
number can never be returned, even if they are available in the DDS-
DataReader (p. 1004), because the output sequence cannot accom-
modate them.

As described above, upon completion, the received data and info seq collec-
tions may contain elements loaned from the DDSDataReader (p. 1004). If
this is the case, the application will need to use FooDataReader::return -
loan (p. 1358) to return the loan once it is no longer using the received data
in the collection. When FooDataReader::return loan (p. 1358) completes,
the collection will have owns=FALSE and max len=0. The application can de-
termine whether it is necessary to return the loan or not based on how the
state of the collections when the read/take operation was called or by accessing
the owns property. However, in many cases it may be simpler to always call
FooDataReader::return loan (p. 1358), as this operation is harmless (i.e., it
leaves all elements unchanged) if the collection does not have a loan.

To avoid potential memory leaks, the implementation of the Foo (p. 1333) and
DDS SampleInfo (p. 855) collections should disallow changing the length of a

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.212 FooDataReader Struct Reference 1343

collection for which owns==FALSE. Furthermore, deleting a collection for which
owns==FALSE should be considered an error.

On output, the collection of Foo (p. 1333) values and the collection of DDS -
SampleInfo (p. 855) structures are of the same length and are in a one-to-one
correspondence. Each DDS SampleInfo (p. 855) provides information, such
as the source timestamp, the sample state, view state, and instance state, etc.,
about the corresponding sample.

Some elements in the returned collection may not have valid data. If the
instance state in the DDS SampleInfo (p. 855) is DDS NOT ALIVE -
DISPOSED INSTANCE STATE (p. 110) or DDS NOT ALIVE NO -
WRITERS INSTANCE STATE (p. 110), then the last sample for that in-
stance in the collection (that is, the one whose DDS SampleInfo (p. 855) has
sample rank==0) does not contain valid data.

Samples that contain no data do not count towards the limits imposed by the
DDS ResourceLimitsQosPolicy (p. 827). The act of reading/taking a sam-
ple sets its sample state to DDS READ SAMPLE STATE (p. 105).

If the sample belongs to the most recent generation of the instance, it will
also set the view state of the instance to DDS NOT NEW VIEW STATE
(p. 107). It will not affect the instance state of the instance.

This operation must be provided on the specialized class that is generated for
the particular application data-type that is being read (Foo (p. 1333)). If the
DDSDataReader (p. 1004) has no samples that meet the constraints, the op-
erations fails with DDS RETCODE NO DATA (p. 304).

For an example on how take can be used, please refer to the receive example
(p. 164).

Parameters:

received data <<inout>> (p. 191) User data type-specific FooSeq
(p. 1377) object where the received data samples will be returned.

Parameters:

info seq <<inout>> (p. 191) A DDS SampleInfoSeq (p. 863) object
where the received sample info will be returned.

max samples <<in>> (p. 191) The maximum number of samples to
be returned. If the special value DDS LENGTH UNLIMITED
(p. 356) is provided, as many samples will be returned as are available,
up to the limits described above.

sample states <<in>> (p. 191) Data samples matching one of these
sample states are returned.

view states <<in>> (p. 191) Data samples matching one of these
view state are returned.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1344 Class Documentation

instance states <<in>> (p. 191) Data samples matching one of these
instance state are returned.

Returns:

One of the Standard Return Codes (p. 302), DDS RETCODE -
PRECONDITION NOT MET (p. 303), DDS RETCODE NO -
DATA (p. 304) or DDS RETCODE NOT ENABLED (p. 303).

See also:

FooDataReader::read (p. 1337)
FooDataReader::read w condition (p. 1344), Foo-
DataReader::take w condition (p. 1345)
DDS LENGTH UNLIMITED (p. 356)

6.212.3.1 virtual DDS ReturnCode t FooDataReader::read w -
condition (FooSeq & received data, DDS SampleInfoSeq
& info seq, DDS Long max samples,
DDSReadCondition ∗ condition) [pure virtual]

Accesses via FooDataReader::read (p. 1337) the samples that match the cri-
teria specified in the DDSReadCondition (p. 1269).

This operation is especially useful in combination with DDSQueryCondition
(p. 1267) to filter data samples based on the content.

The specified DDSReadCondition (p. 1269) must be attached to the
DDSDataReader (p. 1004); otherwise the operation will fail with DDS -
RETCODE PRECONDITION NOT MET (p. 303).

In case the DDSReadCondition (p. 1269) is a plain DDSReadCondition
(p. 1269) and not the specialized DDSQueryCondition (p. 1267), the opera-
tion is equivalent to calling FooDataReader::read (p. 1337) and passing as
sample states, view states and instance states the value of the corre-
sponding attributes in the read condition. Using this operation, the appli-
cation can avoid repeating the same parameters specified when creating the
DDSReadCondition (p. 1269).

The samples are accessed with the same semantics as FooDataReader::read
(p. 1337).

If the DDSDataReader (p. 1004) has no samples that meet the constraints,
the operation will fail with DDS RETCODE NO DATA (p. 304).

Parameters:

received data <<inout>> (p. 191) user data type-specific FooSeq
(p. 1377) object where the received data samples will be returned.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.212 FooDataReader Struct Reference 1345

info seq <<inout>> (p. 191) a DDS SampleInfoSeq (p. 863) object
where the received sample info will be returned.

max samples <<in>> (p. 191) The maximum number of samples to
be returned. If the special value DDS LENGTH UNLIMITED
(p. 356) is provided, as many samples will be returned as are avail-
able, up to the limits described in the documentation for Foo-
DataReader::take() (p. 1338).

condition <<in>> (p. 191) the DDSReadCondition (p. 1269) to se-
lect samples of interest. Cannot be NULL.

Returns:

One of the Standard Return Codes (p. 302), DDS RETCODE -
PRECONDITION NOT MET (p. 303), DDS RETCODE NO -
DATA (p. 304) or DDS RETCODE NOT ENABLED (p. 303).

See also:

FooDataReader::read (p. 1337)
FooDataReader::take (p. 1338), FooDataReader::take w condition
(p. 1345)
DDS LENGTH UNLIMITED (p. 356)

6.212.3.2 virtual DDS ReturnCode t FooDataReader::take w -
condition (FooSeq & received data, DDS SampleInfoSeq
& info seq, DDS Long max samples,
DDSReadCondition ∗ condition) [pure virtual]

Analogous to FooDataReader::read w condition (p. 1344) except it accesses
samples via the FooDataReader::take (p. 1338) operation.

This operation is analogous to FooDataReader::read w condition (p. 1344)
except that it accesses samples via the FooDataReader::take (p. 1338) oper-
ation.

The specified DDSReadCondition (p. 1269) must be attached to the
DDSDataReader (p. 1004); otherwise the operation will fail with DDS -
RETCODE PRECONDITION NOT MET (p. 303).

The samples are accessed with the same semantics as FooDataReader::take
(p. 1338).

This operation is especially useful in combination with DDSQueryCondition
(p. 1267) to filter data samples based on the content.

If the DDSDataReader (p. 1004) has no samples that meet the constraints,
the method will fail with DDS RETCODE NO DATA (p. 304).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1346 Class Documentation

Parameters:

received data <<inout>> (p. 191) user data type-specific FooSeq
(p. 1377) object where the received data samples will be returned.

info seq <<inout>> (p. 191) a DDS SampleInfoSeq (p. 863) object
where the received sample info will be returned.

max samples <<in>> (p. 191) The maximum number of samples to
be returned. If the special value DDS LENGTH UNLIMITED
(p. 356) is provided, as many samples will be returned as are avail-
able, up to the limits described in the documentation for Foo-
DataReader::take() (p. 1338).

condition <<in>> (p. 191) the DDSReadCondition (p. 1269) to se-
lect samples of interest. Cannot be NULL.

Returns:

One of the Standard Return Codes (p. 302), DDS RETCODE -
PRECONDITION NOT MET (p. 303), DDS RETCODE NO -
DATA (p. 304) or DDS RETCODE NOT ENABLED (p. 303).

See also:

FooDataReader::read w condition (p. 1344), FooDataReader::read
(p. 1337)
FooDataReader::take (p. 1338)
DDS LENGTH UNLIMITED (p. 356)

6.212.3.3 virtual DDS ReturnCode t FooDataReader::read -
next sample (Foo & received data, DDS SampleInfo &
sample info) [pure virtual]

Copies the next not-previously-accessed data value from the DDSDataReader
(p. 1004).

This operation copies the next not-previously-accessed data value from the
DDSDataReader (p. 1004). This operation also copies the corresponding
DDS SampleInfo (p. 855). The implied order among the samples stored in
the DDSDataReader (p. 1004) is the same as for the FooDataReader::read
(p. 1337) operation.

The FooDataReader::read next sample (p. 1346) operation is semanti-
cally equivalent to the FooDataReader::read (p. 1337) operation, where the
input data sequences has max len=1, the sample states=NOT READ, the
view states=ANY VIEW STATE, and the instance states=ANY INSTANCE -
STATE.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.212 FooDataReader Struct Reference 1347

The FooDataReader::read next sample (p. 1346) operation provides a sim-
plified API to ’read’ samples, avoiding the need for the application to manage
sequences and specify states.

If there is no unread data in the DDSDataReader (p. 1004), the operation
will fail with DDS RETCODE NO DATA (p. 304) and nothing is copied.

Parameters:

received data <<inout>> (p. 191) user data type-specific Foo (p. 1333)
object where the next received data sample will be returned. The re-
ceived data must have been fully allocated. Otherwise, this operation
may fail.

sample info <<inout>> (p. 191) a DDS SampleInfo (p. 855) object
where the next received sample info will be returned.

Returns:

One of the Standard Return Codes (p. 302), DDS RETCODE NO -
DATA (p. 304) or DDS RETCODE NOT ENABLED (p. 303).

See also:

FooDataReader::read (p. 1337)

6.212.3.4 virtual DDS ReturnCode t FooDataReader::take -
next sample (Foo & received data, DDS SampleInfo &
sample info) [pure virtual]

Copies the next not-previously-accessed data value from the DDSDataReader
(p. 1004).

This operation copies the next not-previously-accessed data value from the
DDSDataReader (p. 1004) and ’removes’ it from the DDSDataReader
(p. 1004) so that it is no longer accessible. This operation also copies the cor-
responding DDS SampleInfo (p. 855). This operation is analogous to the
FooDataReader::read next sample (p. 1346) except for the fact that the
sample is removed from the DDSDataReader (p. 1004).

The FooDataReader::take next sample (p. 1347) operation is semanti-
cally equivalent to the FooDataReader::take (p. 1338) operation, where the
input data sequences has max len=1, the sample states=NOT READ, the
view states=ANY VIEW STATE, and the instance states=ANY INSTANCE -
STATE.

The FooDataReader::read next sample (p. 1346) operation provides a sim-
plified API to ’take’ samples, avoiding the need for the application to manage
sequences and specify states.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1348 Class Documentation

If there is no unread data in the DDSDataReader (p. 1004), the operation
will fail with DDS RETCODE NO DATA (p. 304) and nothing is copied.

Parameters:

received data <<inout>> (p. 191) user data type-specific Foo (p. 1333)
object where the next received data sample will be returned. The re-
ceived data must have been fully allocated. Otherwise, this operation
may fail.

sample info <<inout>> (p. 191) a DDS SampleInfo (p. 855) object
where the next received sample info will be returned.

Returns:

One of the Standard Return Codes (p. 302), DDS RETCODE NO -
DATA (p. 304) or DDS RETCODE NOT ENABLED (p. 303).

See also:

FooDataReader::take (p. 1338)

6.212.3.5 virtual DDS ReturnCode t FooDataReader::read -
instance (FooSeq & received data, DDS SampleInfoSeq
& info seq, DDS Long max samples, const DDS -
InstanceHandle t & a handle, DDS SampleStateMask
sample states, DDS ViewStateMask view states,
DDS InstanceStateMask instance states) [pure virtual]

Access a collection of data samples from the DDSDataReader (p. 1004).

This operation accesses a collection of data values from the DDSDataReader
(p. 1004). The behavior is identical to FooDataReader::read (p. 1337), except
that all samples returned belong to the single specified instance whose handle
is a handle.

Upon successful completion, the data collection will contain samples all belong-
ing to the same instance. The corresponding DDS SampleInfo (p. 855) verifies
DDS SampleInfo::instance handle (p. 860) == a handle.

The FooDataReader::read instance (p. 1348) operation is semantically
equivalent to the FooDataReader::read (p. 1337) operation, except in build-
ing the collection, the DDSDataReader (p. 1004) will check that the sample
belongs to the specified instance and otherwise it will not place the sample in
the returned collection.

The behavior of the FooDataReader::read instance (p. 1348) operation fol-
lows the same rules as the FooDataReader::read (p. 1337) operation regarding

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.212 FooDataReader Struct Reference 1349

the pre-conditions and post-conditions for the received data and sample info.
Similar to the FooDataReader::read (p. 1337), the FooDataReader::read -
instance (p. 1348) operation may ’loan’ elements to the output collections,
which must then be returned by means of FooDataReader::return loan
(p. 1358).

Similar to the FooDataReader::read (p. 1337), this operation must be pro-
vided on the specialized class that is generated for the particular application
data-type that is being taken.

If the DDSDataReader (p. 1004) has no samples that meet the constraints,
the method will fail with DDS RETCODE NO DATA (p. 304).

This operation may fail with DDS RETCODE BAD PARAMETER
(p. 303) if the DDS InstanceHandle t (p. 52) a handle does not correspond
to an existing data-object known to the DDSDataReader (p. 1004).

Parameters:

received data <<inout>> (p. 191) user data type-specific FooSeq
(p. 1377) object where the received data samples will be returned.

info seq <<inout>> (p. 191) a DDS SampleInfoSeq (p. 863) object
where the received sample info will be returned.

max samples <<in>> (p. 191) The maximum number of samples to
be returned. If the special value DDS LENGTH UNLIMITED
(p. 356) is provided, as many samples will be returned as are avail-
able, up to the limits described in the documentation for Foo-
DataReader::take() (p. 1338).

a handle <<in>> (p. 191) The specified instance to return sam-
ples for. The method will fail with DDS RETCODE BAD -
PARAMETER (p. 303) if the handle does not correspond to an
existing data-object known to the DDSDataReader (p. 1004).

sample states <<in>> (p. 191) data samples matching ones of these
sample states are returned

view states <<in>> (p. 191) data samples matching ones of these
view state are returned

instance states <<in>> (p. 191) data samples matching ones of these
instance state are returned

Returns:

One of the Standard Return Codes (p. 302), DDS RETCODE -
PRECONDITION NOT MET (p. 303), DDS RETCODE NO -
DATA (p. 304) or DDS RETCODE NOT ENABLED (p. 303).

See also:

FooDataReader::read (p. 1337)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1350 Class Documentation

DDS LENGTH UNLIMITED (p. 356)

6.212.3.6 virtual DDS ReturnCode t FooDataReader::take instance
(FooSeq & received data, DDS SampleInfoSeq &
info seq, DDS Long max samples, const DDS -
InstanceHandle t & a handle, DDS SampleStateMask
sample states, DDS ViewStateMask view states,
DDS InstanceStateMask instance states) [pure virtual]

Access a collection of data samples from the DDSDataReader (p. 1004).

This operation accesses a collection of data values from the DDSDataReader
(p. 1004). The behavior is identical to FooDataReader::take (p. 1338), except
for that all samples returned belong to the single specified instance whose handle
is a handle.

The semantics are the same for the FooDataReader::take (p. 1338) operation,
except in building the collection, the DDSDataReader (p. 1004) will check
that the sample belongs to the specified instance, and otherwise it will not
place the sample in the returned collection.

The behavior of the FooDataReader::take instance (p. 1350) operation fol-
lows the same rules as the FooDataReader::read (p. 1337) operation regarding
the pre-conditions and post-conditions for the received data and sample info.
Similar to the FooDataReader::read (p. 1337), the FooDataReader::take -
instance (p. 1350) operation may ’loan’ elements to the output collections,
which must then be returned by means of FooDataReader::return loan
(p. 1358).

Similar to the FooDataReader::read (p. 1337), this operation must be pro-
vided on the specialized class that is generated for the particular application
data-type that is being taken.

If the DDSDataReader (p. 1004) has no samples that meet the constraints,
the method fails with DDS RETCODE NO DATA (p. 304).

This operation may fail with DDS RETCODE BAD PARAMETER
(p. 303) if the DDS InstanceHandle t (p. 52) a handle does not correspond
to an existing data-object known to the DDSDataReader (p. 1004).

Parameters:

received data <<inout>> (p. 191) user data type-specific FooSeq
(p. 1377) object where the received data samples will be returned.

info seq <<inout>> (p. 191) a DDS SampleInfoSeq (p. 863) object
where the received sample info will be returned.

max samples <<in>> (p. 191) The maximum number of samples to
be returned. If the special value DDS LENGTH UNLIMITED

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.212 FooDataReader Struct Reference 1351

(p. 356) is provided, as many samples will be returned as are avail-
able, up to the limits described in the documentation for Foo-
DataReader::take() (p. 1338).

a handle <<in>> (p. 191) The specified instance to return sam-
ples for. The method will fail with DDS RETCODE BAD -
PARAMETER (p. 303) if the handle does not correspond to an
existing data-object known to the DDSDataReader (p. 1004).

sample states <<in>> (p. 191) data samples matching ones of these
sample states are returned

view states <<in>> (p. 191) data samples matching ones of these
view state are returned

instance states <<in>> (p. 191) data samples matching ones of these
instance state are returned

Returns:

One of the Standard Return Codes (p. 302), DDS RETCODE -
PRECONDITION NOT MET (p. 303), DDS RETCODE NO -
DATA (p. 304) or DDS RETCODE NOT ENABLED (p. 303).

See also:

FooDataReader::take (p. 1338)
DDS LENGTH UNLIMITED (p. 356)

6.212.3.7 virtual DDS ReturnCode t FooDataReader::read -
next instance (FooSeq & received data,
DDS SampleInfoSeq & info seq, DDS Long
max samples, const DDS InstanceHandle t
& previous handle, DDS SampleStateMask
sample states, DDS ViewStateMask view states,
DDS InstanceStateMask instance states) [pure virtual]

Access a collection of data samples from the DDSDataReader (p. 1004).

This operation accesses a collection of data values from the DDSDataReader
(p. 1004) where all the samples belong to a single instance. The behavior is
similar to FooDataReader::read instance (p. 1348), except that the actual
instance is not directly specified. Rather, the samples will all belong to the
’next’ instance with instance handle ’greater’ than the specified ’previous -
handle’ that has available samples.

This operation implies the existence of a total order ’greater-than’ relationship
between the instance handles. The specifics of this relationship are not all im-
portant and are implementation specific. The important thing is that, according

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1352 Class Documentation

to the middleware, all instances are ordered relative to each other. This order-
ing is between the instance handles; It should not depend on the state of the
instance (e.g. whether it has data or not) and must be defined even for instance
handles that do not correspond to instances currently managed by the DDS-
DataReader (p. 1004). For the purposes of the ordering, it should be ’as if’
each instance handle was represented as unique integer.

The behavior of FooDataReader::read next instance (p. 1351) is ’as if’
the DDSDataReader (p. 1004) invoked FooDataReader::read instance
(p. 1348), passing the smallest instance handle among all the ones that: (a)
are greater than previous handle, and (b) have available samples (i.e. samples
that meet the constraints imposed by the specified states).

The special value DDS HANDLE NIL (p. 54) is guaranteed to be ’less than’
any valid instance handle. So the use of the parameter value previous -
handle == DDS HANDLE NIL (p. 54) will return the samples for the in-
stance which has the smallest instance handle among all the instances that
contain available samples.

The operation FooDataReader::read next instance (p. 1351) is intended to
be used in an application-driven iteration, where the application starts by pass-
ing previous handle == DDS HANDLE NIL (p. 54), examines the sam-
ples returned, and then uses the instance handle returned in the DDS -
SampleInfo (p. 855) as the value of the previous handle argument to the
next call to FooDataReader::read next instance (p. 1351). The iteration
continues until FooDataReader::read next instance (p. 1351) fails with the
value DDS RETCODE NO DATA (p. 304).

Note that it is possible to call the FooDataReader::read next instance
(p. 1351) operation with a previous handle that does not correspond to an
instance currently managed by the DDSDataReader (p. 1004). This is be-
cause as stated earlier the ’greater-than’ relationship is defined even for han-
dles not managed by the DDSDataReader (p. 1004). One practical situa-
tion where this may occur is when an application is iterating though all the
instances, takes all the samples of a DDS NOT ALIVE NO WRITERS -
INSTANCE STATE (p. 110) instance, returns the loan (at which point the
instance information may be removed, and thus the handle becomes invalid),
and tries to read the next instance.

The behavior of the FooDataReader::read next instance (p. 1351) oper-
ation follows the same rules as the FooDataReader::read (p. 1337) oper-
ation regarding the pre-conditions and post-conditions for the received -
data and sample info. Similar to the FooDataReader::read (p. 1337),
the FooDataReader::read instance (p. 1348) operation may ’loan’ elements
to the output collections, which must then be returned by means of Foo-
DataReader::return loan (p. 1358).

Similar to the FooDataReader::read (p. 1337), this operation must be pro-
vided on the specialized class that is generated for the particular application

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.212 FooDataReader Struct Reference 1353

data-type that is being taken.

If the DDSDataReader (p. 1004) has no samples that meet the constraints,
the method will fail with DDS RETCODE NO DATA (p. 304).

Parameters:

received data <<inout>> (p. 191) user data type-specific FooSeq
(p. 1377) object where the received data samples will be returned.

info seq <<inout>> (p. 191) a DDS SampleInfoSeq (p. 863) object
where the received sample info will be returned.

max samples <<in>> (p. 191) The maximum number of samples to
be returned. If the special value DDS LENGTH UNLIMITED
(p. 356) is provided, as many samples will be returned as are avail-
able, up to the limits described in the documentation for Foo-
DataReader::take() (p. 1338).

previous handle <<in>> (p. 191) The ’next smallest’ instance with a
value greater than this value that has available samples will be re-
turned.

sample states <<in>> (p. 191) data samples matching ones of these
sample states are returned

view states <<in>> (p. 191) data samples matching ones of these
view state are returned

instance states <<in>> (p. 191) data samples matching ones of these
instance state are returned

Returns:

One of the Standard Return Codes (p. 302), DDS RETCODE -
PRECONDITION NOT MET (p. 303) DDS RETCODE NO -
DATA (p. 304) or DDS RETCODE NOT ENABLED (p. 303).

See also:

FooDataReader::read (p. 1337)
DDS LENGTH UNLIMITED (p. 356)

6.212.3.8 virtual DDS ReturnCode t FooDataReader::take -
next instance (FooSeq & received data,
DDS SampleInfoSeq & info seq, DDS Long
max samples, const DDS InstanceHandle t
& previous handle, DDS SampleStateMask
sample states, DDS ViewStateMask view states,
DDS InstanceStateMask instance states) [pure virtual]

Access a collection of data samples from the DDSDataReader (p. 1004).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1354 Class Documentation

This operation accesses a collection of data values from the DDSDataReader
(p. 1004) and ’removes’ them from the DDSDataReader (p. 1004).

This operation has the same behavior as FooDataReader::read next -
instance (p. 1351), except that the samples are ’taken’ from the DDS-
DataReader (p. 1004) such that they are no longer accessible via subsequent
’read’ or ’take’ operations.

Similar to the operation FooDataReader::read next instance (p. 1351), it
is possible to call FooDataReader::take next instance (p. 1353) with a
previous handle that does not correspond to an instance currently managed
by the DDSDataReader (p. 1004).

The behavior of the FooDataReader::take next instance (p. 1353) opera-
tion follows the same rules as the FooDataReader::read (p. 1337) opera-
tion regarding the pre-conditions and post-conditions for the received data
and sample info. Similar to the FooDataReader::read (p. 1337), the Foo-
DataReader::take next instance (p. 1353) operation may ’loan’ elements
to the output collections, which must then be returned by means of Foo-
DataReader::return loan (p. 1358).

Similar to the FooDataReader::read (p. 1337), this operation must be pro-
vided on the specialized class that is generated for the particular application
data-type that is being taken.

If the DDSDataReader (p. 1004) has no samples that meet the constraints,
the method will fail with DDS RETCODE NO DATA (p. 304).

Parameters:

received data <<inout>> (p. 191) user data type-specific FooSeq
(p. 1377) object where the received data samples will be returned.

info seq <<inout>> (p. 191) a DDS SampleInfoSeq (p. 863) object
where the received sample info will be returned.

max samples <<in>> (p. 191) The maximum number of samples to
be returned. If the special value DDS LENGTH UNLIMITED
(p. 356) is provided, as many samples will be returned as are avail-
able, up to the limits described in the documentation for Foo-
DataReader::take() (p. 1338).

previous handle <<in>> (p. 191) The ’next smallest’ instance with a
value greater than this value that has available samples will be re-
turned.

sample states <<in>> (p. 191) data samples matching ones of these
sample states are returned

view states <<in>> (p. 191) data samples matching ones of these
view state are returned

instance states <<in>> (p. 191) data samples matching ones of these
instance state are returned

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.212 FooDataReader Struct Reference 1355

Returns:

One of the Standard Return Codes (p. 302), DDS RETCODE -
PRECONDITION NOT MET (p. 303), DDS RETCODE NO -
DATA (p. 304) or DDS RETCODE NOT ENABLED (p. 303).

See also:

FooDataReader::take (p. 1338)
DDS LENGTH UNLIMITED (p. 356)

6.212.3.9 virtual DDS ReturnCode t FooDataReader::read -
next instance w condition (FooSeq & received data,
DDS SampleInfoSeq & info seq, DDS Long
max samples, const DDS InstanceHandle t &
previous handle, DDSReadCondition ∗ condition) [pure
virtual]

Accesses via FooDataReader::read next instance (p. 1351) the samples
that match the criteria specified in the DDSReadCondition (p. 1269).

This operation access a collection of data values from the DDSDataReader
(p. 1004). The behavior is identical to FooDataReader::read next instance
(p. 1351), except that all samples returned satisfy the specified condition. In
other words, on success, all returned samples belong to the same instance, and
the instance is the instance with ’smallest’ instance handle among the ones
that verify: (a) instance handle >= previous handle, and (b) have samples
for which the specified DDSReadCondition (p. 1269) evaluates to TRUE.

Similar to the operation FooDataReader::read next instance (p. 1351),
it is possible to call FooDataReader::read next instance w condition
(p. 1355) with a previous handle that does not correspond to an instance cur-
rently managed by the DDSDataReader (p. 1004).

The behavior of the FooDataReader::read next instance w condition
(p. 1355) operation follows the same rules as the FooDataReader::read
(p. 1337) operation regarding the pre-conditions and post-conditions for the
received data and sample info. Similar to the FooDataReader::read
(p. 1337), the FooDataReader::read next instance w condition (p. 1355)
operation may ’loan’ elements to the output collections, which must then be
returned by means of FooDataReader::return loan (p. 1358).

Similar to the FooDataReader::read (p. 1337), this operation must be pro-
vided on the specialized class that is generated for the particular application
data-type that is being taken.

If the DDSDataReader (p. 1004) has no samples that meet the constraints,
the method will fail with DDS RETCODE NO DATA (p. 304).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1356 Class Documentation

Parameters:

received data <<inout>> (p. 191) user data type-specific FooSeq
(p. 1377) object where the received data samples will be returned.

info seq <<inout>> (p. 191) a DDS SampleInfoSeq (p. 863) object
where the received sample info will be returned.

max samples <<in>> (p. 191) The maximum number of samples to
be returned. If the special value DDS LENGTH UNLIMITED
(p. 356) is provided, as many samples will be returned as are avail-
able, up to the limits described in the documentation for Foo-
DataReader::take() (p. 1338).

previous handle <<in>> (p. 191) The ’next smallest’ instance with a
value greater than this value that has available samples will be re-
turned.

condition <<in>> (p. 191) the DDSReadCondition (p. 1269) to se-
lect samples of interest. Cannot be NULL.

Returns:

One of the Standard Return Codes (p. 302), DDS RETCODE -
PRECONDITION NOT MET (p. 303) DDS RETCODE NO -
DATA (p. 304) or DDS RETCODE NOT ENABLED (p. 303).

See also:

FooDataReader::read next instance (p. 1351)
DDS LENGTH UNLIMITED (p. 356)

6.212.3.10 virtual DDS ReturnCode t FooDataReader::take -
next instance w condition (FooSeq & received data,
DDS SampleInfoSeq & info seq, DDS Long
max samples, const DDS InstanceHandle t &
previous handle, DDSReadCondition ∗ condition)
[pure virtual]

Accesses via FooDataReader::take next instance (p. 1353) the samples that
match the criteria specified in the DDSReadCondition (p. 1269).

This operation access a collection of data values from the DDSDataReader
(p. 1004) and ’removes’ them from the DDSDataReader (p. 1004).

The operation has the same behavior as FooDataReader::read next -
instance w condition (p. 1355), except that the samples are ’taken’ from the
DDSDataReader (p. 1004) such that they are no longer accessible via subse-
quent ’read’ or ’take’ operations.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.212 FooDataReader Struct Reference 1357

Similar to the operation FooDataReader::read next instance (p. 1351),
it is possible to call FooDataReader::take next instance w condition
(p. 1356) with a previous handle that does not correspond to an instance cur-
rently managed by the DDSDataReader (p. 1004).

The behavior of the FooDataReader::take next instance w condition
(p. 1356) operation follows the same rules as the FooDataReader::read
(p. 1337) operation regarding the pre-conditions and post-conditions for the
received data and sample info. Similar to the FooDataReader::read
(p. 1337), the FooDataReader::take next instance w condition (p. 1356)
operation may ’loan’ elements to the output collections, which must then be
returned by means of FooDataReader::return loan (p. 1358).

Similar to the FooDataReader::read (p. 1337), this operation must be pro-
vided on the specialized class that is generated for the particular application
data-type that is being taken.

If the DDSDataReader (p. 1004) has no samples that meet the constraints,
the method will fail with DDS RETCODE NO DATA (p. 304).

Parameters:

received data <<inout>> (p. 191) user data type-specific FooSeq
(p. 1377) object where the received data samples will be returned.

info seq <<inout>> (p. 191) a DDS SampleInfoSeq (p. 863) object
where the received sample info will be returned.

max samples <<in>> (p. 191) The maximum number of samples to
be returned. If the special value DDS LENGTH UNLIMITED
(p. 356) is provided, as many samples will be returned as are avail-
able, up to the limits described in the documentation for Foo-
DataReader::take() (p. 1338).

previous handle <<in>> (p. 191) The ’next smallest’ instance with a
value greater than this value that has available samples will be re-
turned.

condition <<in>> (p. 191) the DDSReadCondition (p. 1269) to se-
lect samples of interest. Cannot be NULL.

Returns:

One of the Standard Return Codes (p. 302), DDS RETCODE -
PRECONDITION NOT MET (p. 303), or DDS RETCODE NO -
DATA (p. 304), DDS RETCODE NOT ENABLED (p. 303).

See also:

FooDataReader::take next instance (p. 1353)
DDS LENGTH UNLIMITED (p. 356)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1358 Class Documentation

6.212.3.11 virtual DDS ReturnCode t FooDataReader::return loan
(FooSeq & received data, DDS SampleInfoSeq &
info seq) [pure virtual]

Indicates to the DDSDataReader (p. 1004) that the application is done ac-
cessing the collection of received data and info seq obtained by some earlier
invocation of read or take on the DDSDataReader (p. 1004).

This operation indicates to the DDSDataReader (p. 1004) that the application
is done accessing the collection of received data and info seq obtained by
some earlier invocation of read or take on the DDSDataReader (p. 1004).

The received data and info seq must belong to a single related ”pair”; that
is, they should correspond to a pair returned from a single call to read or
take. The received data and info seq must also have been obtained from
the same DDSDataReader (p. 1004) to which they are returned. If either of
these conditions is not met, the operation will fail with DDS RETCODE -
PRECONDITION NOT MET (p. 303).

The operation FooDataReader::return loan (p. 1358) allows implementa-
tions of the read and take operations to ”loan” buffers from the DDS-
DataReader (p. 1004) to the application and in this manner provide ”zero-
copy” access to the data. During the loan, the DDSDataReader (p. 1004)
will guarantee that the data and sample-information are not modified.

It is not necessary for an application to return the loans immediately after the
read or take calls. However, as these buffers correspond to internal resources
inside the DDSDataReader (p. 1004), the application should not retain them
indefinitely.

The use of FooDataReader::return loan (p. 1358) is only necessary if the
read or take calls ”loaned” buffers to the application. This only occurs if the
received data and info Seq collections had max len=0 at the time read or
take was called.

The application may also examine the ”owns” property of the collection
to determine where there is an outstanding loan. However, calling Foo-
DataReader::return loan (p. 1358) on a collection that does not have a loan
is safe and has no side effects.

If the collections had a loan, upon completion of FooDataReader::return -
loan (p. 1358), the collections will have max len=0.

Similar to read, this operation must be provided on the specialized class that is
generated for the particular application data-type that is being taken.

Parameters:

received data <<in>> (p. 191) user data type-specific FooSeq (p. 1377)
object where the received data samples was obtained from earlier in-

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.212 FooDataReader Struct Reference 1359

vocation of read or take on the DDSDataReader (p. 1004).

Parameters:

info seq <<in>> (p. 191) a DDS SampleInfoSeq (p. 863) object
where the received sample info was obtained from earlier invocation
of read or take on the DDSDataReader (p. 1004).

Returns:

One of the Standard Return Codes (p. 302), DDS RETCODE -
PRECONDITION NOT MET (p. 303) or DDS RETCODE NOT -
ENABLED (p. 303).

6.212.3.12 virtual DDS ReturnCode t FooDataReader::get key -
value (Foo & key holder, const DDS InstanceHandle t
handle) [pure virtual]

Retrieve the instance key that corresponds to an instance handle.

Useful for keyed data types.

The operation will only fill the fields that form the key inside the key holder
instance.

For keyed data types, this operation may fail with DDS RETCODE BAD -
PARAMETER (p. 303) if the handle does not correspond to an existing data-
object known to the DDSDataReader (p. 1004).

Parameters:

key holder <<inout>> (p. 191) a user data type specific key holder,
whose key fields are filled by this operation. If Foo (p. 1333) has no
key, this method has no effect.

handle <<in>> (p. 191) the instance whose key is to be retrieved. If
Foo (p. 1333) has a key, handle must represent an existing instance
of type Foo (p. 1333) known to the DDSDataReader (p. 1004).
Otherwise, this method will fail with DDS RETCODE BAD -
PARAMETER (p. 303). If Foo (p. 1333) has a key and handle
is DDS HANDLE NIL (p. 54), this method will fail with DDS -
RETCODE BAD PARAMETER (p. 303). If Foo (p. 1333) has
a key and handle represents an instance of another type or an in-
stance of type Foo (p. 1333) that has been unregistered, this method
will fail with DDS RETCODE BAD PARAMETER (p. 303). If
Foo (p. 1333) has no key, this method has no effect.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1360 Class Documentation

Returns:

One of the Standard Return Codes (p. 302) or DDS RETCODE -
NOT ENABLED (p. 303).

See also:

FooDataWriter::get key value (p. 1375)

6.212.3.13 virtual DDS InstanceHandle t FooDataReader::lookup -
instance (const Foo & key holder) [pure
virtual]

Retrieve the instance handle that corresponds to an instance key holder.

Useful for keyed data types.

This operation takes as a parameter an instance and returns a handle that can
be used in subsequent operations that accept an instance handle as an argument.
The instance parameter is only used for the purpose of examining the fields that
define the key. This operation does not register the instance in question. If the
instance has not been previously registered, or if for any other reason the Service
is unable to provide an instance handle, the Service will return the special value
HANDLE NIL.

Parameters:

key holder <<in>> (p. 191) a user data type specific key holder.

Returns:

the instance handle associated with this instance. If Foo (p. 1333) has no
key, this method has no effect and returns DDS HANDLE NIL (p. 54)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.213 FooDataWriter Struct Reference 1361

6.213 FooDataWriter Struct Reference

<<interface>> (p. 190) <<generic>> (p. 190) User data type specific data
writer.

Inheritance diagram for FooDataWriter::

Public Member Functions

ˆ virtual DDS InstanceHandle t register instance (const Foo &in-
stance data)=0

Informs RTI Data Distribution Service that the application will be modifying
a particular instance.

ˆ virtual DDS InstanceHandle t register instance w timestamp
(const Foo &instance data, const DDS Time t &source -
timestamp)=0

Performs the same functions as register instance except that the application
provides the value for the source timestamp.

ˆ virtual DDS ReturnCode t unregister instance (const Foo &in-
stance data, const DDS InstanceHandle t &handle)=0

Reverses the action of FooDataWriter::register instance (p. 1363).

ˆ virtual DDS ReturnCode t unregister instance w timestamp
(const Foo &instance data, const DDS InstanceHandle t &handle,
const DDS Time t &source timestamp)=0

Performs the same function as FooDataWriter::unregister instance
(p. 1365) except that it also provides the value for the source timestamp.

ˆ virtual DDS ReturnCode t write (const Foo &instance data, const
DDS InstanceHandle t &handle)=0

Modifies the value of a data instance.

ˆ virtual DDS ReturnCode t write w timestamp (const Foo &in-
stance data, const DDS InstanceHandle t &handle, const DDS -
Time t &source timestamp)=0

Performs the same function as FooDataWriter::write (p. 1368) except that
it also provides the value for the source timestamp.

ˆ virtual DDS ReturnCode t dispose (const Foo &instance data, const
DDS InstanceHandle t &instance handle)=0

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1362 Class Documentation

Requests the middleware to delete the data.

ˆ virtual DDS ReturnCode t dispose w timestamp (const Foo &in-
stance data, const DDS InstanceHandle t &instance handle, const
DDS Time t &source timestamp)=0

Performs the same functions as dispose except that the application pro-
vides the value for the source timestamp that is made available to DDS-
DataReader (p. 1004) objects by means of the source timestamp attribute
inside the DDS SampleInfo (p. 855).

ˆ virtual DDS ReturnCode t get key value (Foo &key holder, const
DDS InstanceHandle t &handle)=0

Retrieve the instance key that corresponds to an instance handle.

ˆ virtual DDS InstanceHandle t lookup instance (const Foo &key -
holder)=0

Retrieve the instance handle that corresponds to an instance key holder.

Static Public Member Functions

ˆ static FooDataWriter ∗ narrow (DDSDataWriter ∗writer)

Narrow the given DDSDataWriter (p. 1028) pointer to a FooDataWriter
(p. 1361) pointer.

6.213.1 Detailed Description

<<interface>> (p. 190) <<generic>> (p. 190) User data type specific data
writer.

Defines the user data type specific writer interface generated for each application
class.

The concrete user data type writer automatically generated by the implemen-
tation is an incarnation of this class.

See also:

DDSDataWriter (p. 1028)
Foo (p. 1333)
FooDataReader (p. 1334)
rtiddsgen (p. 211)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.213 FooDataWriter Struct Reference 1363

6.213.2 Member Function Documentation

6.213.2.1 static FooDataWriter∗ FooDataWriter::narrow
(DDSDataWriter ∗ writer) [static]

Narrow the given DDSDataWriter (p. 1028) pointer to a FooDataWriter
(p. 1361) pointer.

Check if the given writer is of type FooDataWriter (p. 1361).

Parameters:

writer <<in>> (p. 191) Base-class DDSDataWriter (p. 1028) to be
converted to the auto-generated class FooDataWriter (p. 1361) that
extends DDSDataWriter (p. 1028).

Returns:

FooDataWriter (p. 1361) if writer is of type Foo (p. 1333). Return
NULL otherwise.

6.213.2.2 virtual DDS InstanceHandle t FooDataWriter::register -
instance (const Foo & instance data) [pure
virtual]

Informs RTI Data Distribution Service that the application will be modifying a
particular instance.

This operation is only useful for keyed data types. Using it for non-keyed types
causes no effect and returns DDS HANDLE NIL (p. 54). The operation takes
as a parameter an instance (of which only the key value is examined) and returns
a handle that can be used in successive write() (p. 1368) or dispose() (p. 1372)
operations.

The operation gives RTI Data Distribution Service an opportunity to pre-
configure itself to improve performance.

The use of this operation by an application is optional even for keyed types.
If an instance has not been pre-registered, the application can use the special
value DDS HANDLE NIL (p. 54) as the DDS InstanceHandle t (p. 52)
paramater to the write or dispose operation and RTI Data Distribution Service
will auto-register the instance.

For best performance, the operation should be invoked prior to calling any op-
eration that modifies the instance, such as FooDataWriter::write (p. 1368),
FooDataWriter::write w timestamp (p. 1371), FooDataWriter::dispose
(p. 1372) and FooDataWriter::dispose w timestamp (p. 1374) and the han-
dle used in conjunction with the data for those calls.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1364 Class Documentation

When this operation is used, RTI Data Distribution Service will automatically
supply the value of the source timestamp that is used.

This operation may fail and return DDS HANDLE NIL (p. 54) if DDS -
ResourceLimitsQosPolicy::max instances (p. 830) limit has been ex-
ceeded.

The operation is idempotent. If it is called for an already registered instance,
it just returns the already allocated handle. This may be used to lookup and
retrieve the handle allocated to a given instance.

This operation can only be called after DDSDataWriter (p. 1028) has been
enabled. Otherwise, DDS HANDLE NIL (p. 54) will be returned.

Parameters:

instance data <<in>> (p. 191) The instance that should be registered.
Of this instance, only the fields that represent the key are examined
by the function. .

Returns:

For keyed data type, a handle that can be used in the calls that take
a DDS InstanceHandle t (p. 52), such as write, dispose, unregister -
instance, or return DDS HANDLE NIL (p. 54) on failure. If the in-
stance data is of a data type that has no keys, this function always return
DDS HANDLE NIL (p. 54).

See also:

FooDataWriter::unregister instance (p. 1365), Foo-
DataWriter::get key value (p. 1375), RELATIONSHIP BE-
TWEEN REGISTRATION, LIVELINESS and OWNERSHIP
(p. 758)

6.213.2.3 virtual DDS InstanceHandle t FooDataWriter::register -
instance w timestamp (const Foo & instance data, const
DDS Time t & source timestamp) [pure virtual]

Performs the same functions as register instance except that the application
provides the value for the source timestamp.

The provided source timestamp potentially affects the relative order in which
readers observe events from multiple writers. Refer to DESTINATION -
ORDER (p. 350) QoS policy for details.

This operation may fail and return DDS HANDLE NIL (p. 54) if DDS -
ResourceLimitsQosPolicy::max instances (p. 830) limit has been ex-
ceeded.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.213 FooDataWriter Struct Reference 1365

This operation can only be called after DDSDataWriter (p. 1028) has been
enabled. Otherwise, DDS HANDLE NIL (p. 54) will be returned.

Parameters:

instance data <<in>> (p. 191) The instance that should be registered.
Of this instance, only the fields that represent the key are examined
by the function.

source timestamp <<in>> (p. 191) The timestamp value must be
greater than or equal to the timestamp value used in the last writer
operation (used in a register , unregister , dispose, or write, with ei-
ther the automatically supplied timestamp or the application provided
timestamp). This timestamp may potentially affect the order in which
readers observe events from multiple writers.

Returns:

For keyed data type, return a handle that can be used in the calls that
take a DDS InstanceHandle t (p. 52), such as write, dispose, unregis-
ter instance, or return DDS HANDLE NIL (p. 54) on failure. If the in-
stance data is of a data type that has no keys, this function always return
DDS HANDLE NIL (p. 54).

See also:

FooDataWriter::unregister instance (p. 1365), Foo-
DataWriter::get key value (p. 1375)

6.213.2.4 virtual DDS ReturnCode t FooDataWriter::unregister -
instance (const Foo & instance data, const
DDS InstanceHandle t & handle) [pure virtual]

Reverses the action of FooDataWriter::register instance (p. 1363).

This operation is useful only for keyed data types. Using it for non-keyed types
causes no effect and reports no error. The operation takes as a parameter an
instance (of which only the key value is examined) and a handle.

This operation should only be called on an instance that is currently registered.
This includes instances that have been auto-registered by calling operations
such as write or dispose as described in FooDataWriter::register instance
(p. 1363). Otherwise, this operation may fail with DDS RETCODE BAD -
PARAMETER (p. 303).

This only need be called just once per instance, regardless of how many times
register instance was called for that instance.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1366 Class Documentation

When this operation is used, RTI Data Distribution Service will automatically
supply the value of the source timestamp that is used.

This operation informs RTI Data Distribution Service that the DDS-
DataWriter (p. 1028) is no longer going to provide any information about the
instance. This operation also indicates that RTI Data Distribution Service can
locally remove all information regarding that instance. The application should
not attempt to use the handle previously allocated to that instance after calling
FooDataWriter::unregister instance() (p. 1365).

The special value DDS HANDLE NIL (p. 54) can be used for the parameter
handle. This indicates that the identity of the instance should be automatically
deduced from the instance data (by means of the key).

If handle is any value other than DDS HANDLE NIL (p. 54), then it must
correspond to an instance that has been registered. If there is no correspon-
dence, the operation will fail with DDS RETCODE BAD PARAMETER
(p. 303).

RTI Data Distribution Service will not detect the error when the handle is any
value other than DDS HANDLE NIL (p. 54), corresponds to an instance
that has been registered, but does not correspond to the instance deduced from
the instance data (by means of the key). RTI Data Distribution Service will
treat as if the unregister instance() (p. 1365) operation is for the instance as
indicated by the handle.

If after a FooDataWriter::unregister instance (p. 1365), the appli-
cation wants to modify (FooDataWriter::write (p. 1368) or Foo-
DataWriter::dispose (p. 1372)) an instance, it has to register it again, or
else use the special handle value DDS HANDLE NIL (p. 54).

This operation does not indicate that the instance is deleted (that is
the purpose of FooDataWriter::dispose (p. 1372)). The operation Foo-
DataWriter::unregister instance (p. 1365) just indicates that the DDS-
DataWriter (p. 1028) no longer has anything to say about the instance.
DDSDataReader (p. 1004) entities that are reading the instance may receive
a sample with DDS NOT ALIVE NO WRITERS INSTANCE STATE
(p. 110) for the instance, unless there are other DDSDataWriter (p. 1028)
objects writing that same instance.

This operation can affect the ownership of the data instance (see OWNER-
SHIP (p. 341)). If the DDSDataWriter (p. 1028) was the exclusive owner of
the instance, then calling unregister instance() (p. 1365) will relinquish that
ownership.

If DDS ReliabilityQosPolicy::kind (p. 815) is set to DDS RELIABLE -
RELIABILITY QOS (p. 349) and the unregistration would overflow the re-
source limits of this writer or of a reader, this operation may block for up to
DDS ReliabilityQosPolicy::max blocking time (p. 816); if this writer is
still unable to unregister after that period, this method will fail with DDS -

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.213 FooDataWriter Struct Reference 1367

RETCODE TIMEOUT (p. 304).

Parameters:

instance data <<in>> (p. 191) The instance that should be unregis-
tered. If Foo (p. 1333) has a key and instance handle is DDS -
HANDLE NIL (p. 54), only the fields that represent the key are
examined by the function. Otherwise, instance data is not used. If
instance data is used, it must represent an instance that has been
registerd. Otherwise, this method may fail with DDS RETCODE -
BAD PARAMETER (p. 303) .

handle <<in>> (p. 191) represents the instance to be unregistered. If
Foo (p. 1333) has a key and handle is DDS HANDLE NIL (p. 54),
handle is not used and instance is deduced from instance data. If
Foo (p. 1333) has no key, handle is not used. If handle is used, it must
represent an instance that has been registered. Otherwise, this method
may fail with DDS RETCODE BAD PARAMETER (p. 303).

Returns:

One of the Standard Return Codes (p. 302), DDS RETCODE -
TIMEOUT (p. 304) or DDS RETCODE NOT ENABLED (p. 303)

See also:

FooDataWriter::register instance (p. 1363)
FooDataWriter::unregister instance w timestamp (p. 1367)
FooDataWriter::get key value (p. 1375)
RELATIONSHIP BETWEEN REGISTRATION, LIVELINESS
and OWNERSHIP (p. 758)

6.213.2.5 virtual DDS ReturnCode t FooDataWriter::unregister -
instance w timestamp (const Foo & instance data, const
DDS InstanceHandle t & handle, const DDS Time t &
source timestamp) [pure virtual]

Performs the same function as FooDataWriter::unregister instance
(p. 1365) except that it also provides the value for the source timestamp.

The provided source timestamp potentially affects the relative order in which
readers observe events from multiple writers. Refer to DESTINATION -
ORDER (p. 350) QoS policy for details.

The constraints on the values of the handle parameter and the corresponding
error behavior are the same specified for the FooDataWriter::unregister -
instance (p. 1365) operation.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1368 Class Documentation

This operation may block and may time out (DDS RETCODE TIMEOUT
(p. 304)) under the same circumtances described for the unregister instance op-
eration.

Parameters:

instance data <<in>> (p. 191) The instance that should be unregis-
tered. If Foo (p. 1333) has a key and instance handle is DDS -
HANDLE NIL (p. 54), only the fields that represent the key are
examined by the function. Otherwise, instance data is not used. If
instance data is used, it must represent an instance that has been
registerd. Otherwise, this method may fail with DDS RETCODE -
BAD PARAMETER (p. 303).

handle <<in>> (p. 191) represents the instance to be unregistered. If
Foo (p. 1333) has a key and handle is DDS HANDLE NIL (p. 54),
handle is not used and instance is deduced from instance data. If
Foo (p. 1333) has no key, handle is not used. If handle is used, it must
represent an instance that has been registered. Otherwise, this method
may fail with DDS RETCODE BAD PARAMETER (p. 303).

source timestamp <<in>> (p. 191) The timestamp value must be
greater than or equal to the timestamp value used in the last writer
operation (used in a register , unregister , dispose, or write, with ei-
ther the automatically supplied timestamp or the application provided
timestamp). This timestamp may potentially affect the order in which
readers observe events from multiple writers.

Returns:

One of the Standard Return Codes (p. 302), DDS RETCODE -
TIMEOUT (p. 304) or DDS RETCODE NOT ENABLED (p. 303).

See also:

FooDataWriter::register instance (p. 1363)
FooDataWriter::unregister instance (p. 1365)
FooDataWriter::get key value (p. 1375)

6.213.2.6 virtual DDS ReturnCode t FooDataWriter::write (const
Foo & instance data, const DDS InstanceHandle t &
handle) [pure virtual]

Modifies the value of a data instance.

When this operation is used, RTI Data Distribution Service will automatically
supply the value of the source timestamp that is made available to DDS-
DataReader (p. 1004) objects by means of the source timestamp attribute

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.213 FooDataWriter Struct Reference 1369

inside the DDS SampleInfo (p. 855). (Refer to DDS SampleInfo (p. 855)
and DESTINATION ORDER (p. 350) QoS policy for details).

As a side effect, this operation asserts liveliness on the DDSDataWriter
(p. 1028) itself, the DDSPublisher (p. 1243) and the DDSDomainPartic-
ipant (p. 1054).

Note that the special value DDS HANDLE NIL (p. 54) can be used for the
parameter handle. This indicates the identity of the instance should be auto-
matically deduced from the instance data (by means of the key).

If handle is any value other than DDS HANDLE NIL (p. 54), then it must
correspond to an instance that has been registered. If there is no correspon-
dence, the operation will fail with DDS RETCODE BAD PARAMETER
(p. 303).

RTI Data Distribution Service will not detect the error when the handle is any
value other than DDS HANDLE NIL (p. 54), corresponds to an instance that
has been registered, but does not correspond to the instance deduced from the
instance data (by means of the key). RTI Data Distribution Service will treat
as if the write() (p. 1368) operation is for the instance as indicated by the
handle.

This operation may block if the RELIABILITY (p. 348) kind is set to DDS -
RELIABLE RELIABILITY QOS (p. 349) and the modification would
cause data to be lost or else cause one of the limits specified in the RE-
SOURCE LIMITS (p. 356) to be exceeded.

Specifically, this operation may block in the following situations (note that the
list may not be exhaustive), even if its DDS HistoryQosPolicyKind (p. 353)
is DDS KEEP LAST HISTORY QOS (p. 353):

ˆ If (DDS ResourceLimitsQosPolicy::max samples (p. 829) <
DDS ResourceLimitsQosPolicy::max instances (p. 830) ∗ DDS -
HistoryQosPolicy::depth (p. 711)), then in the situation where the
max samples resource limit is exhausted, RTI Data Distribution Service
is allowed to discard samples of some other instance, as long as at least
one sample remains for such an instance. If it is still not possible to make
space available to store the modification, the writer is allowed to block.

ˆ If (DDS ResourceLimitsQosPolicy::max samples (p. 829)
< DDS ResourceLimitsQosPolicy::max instances (p. 830)),
then the DataWriter may block regardless of the DDS -
HistoryQosPolicy::depth (p. 711).

This operation may also block when using DDS BEST EFFORT -
RELIABILITY QOS (p. 349) and DDS ASYNCHRONOUS -
PUBLISH MODE QOS (p. 403). In this case, the DDSDataWriter
(p. 1028) will queue samples until they are sent by the asynchronous publishing

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1370 Class Documentation

thread. The number of samples that can be stored is determined by the
DDS HistoryQosPolicy (p. 709). If the asynchronous thread does not send
samples fast enough (e.g., when using a slow DDSFlowController (p. 1163)),
the queue may fill up. In that case, subsequent write calls will block.

If this operation does block for any of the above reasons, the RELIABIL-
ITY (p. 348) max blocking time configures the maximum time the write oper-
ation may block (waiting for space to become available). If max blocking time
elapses before the DDSDataWriter (p. 1028) is able to store the modification
without exceeding the limits, the operation will time out (DDS RETCODE -
TIMEOUT (p. 304)).

If there are no instance resources left, this operation may fail with
DDS RETCODE OUT OF RESOURCES (p. 303). Calling Foo-
DataWriter::unregister instance (p. 1365) may help freeing up some re-
sources.

This operation will fail with DDS RETCODE PRECONDITION NOT -
MET (p. 303) if the timestamp is less than the timestamp used in the last writer
operation (register , unregister , dispose, or write, with either the automatically
supplied timestamp or the application-provided timestamp).

Parameters:

instance data <<in>> (p. 191) The data to write.

Parameters:

handle <<in>> (p. 191) Either the handle returned by a previous call
to FooDataWriter::register instance (p. 1363), or else the special
value DDS HANDLE NIL (p. 54). If Foo (p. 1333) has a key and
handle is not DDS HANDLE NIL (p. 54), handle must represent
a registered instance of type Foo (p. 1333). Otherwise, this method
may fail with DDS RETCODE BAD PARAMETER (p. 303).

Returns:

One of the Standard Return Codes (p. 302), DDS RETCODE -
TIMEOUT (p. 304), DDS RETCODE PRECONDITION NOT -
MET (p. 303), DDS RETCODE OUT OF RESOURCES (p. 303),
or DDS RETCODE NOT ENABLED (p. 303).

See also:

DDSDataReader (p. 1004)
FooDataWriter::write w timestamp (p. 1371)
DESTINATION ORDER (p. 350)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.213 FooDataWriter Struct Reference 1371

6.213.2.7 virtual DDS ReturnCode t FooDataWriter::write -
w timestamp (const Foo & instance data, const
DDS InstanceHandle t & handle, const DDS Time t &
source timestamp) [pure virtual]

Performs the same function as FooDataWriter::write (p. 1368) except that it
also provides the value for the source timestamp.

Explicitly provides the timestamp that will be available to the DDS-
DataReader (p. 1004) objects by means of the source timestamp attribute
inside the DDS SampleInfo (p. 855). (Refer to DDS SampleInfo (p. 855)
and DESTINATION ORDER (p. 350) QoS policy for details)

The constraints on the values of the handle parameter and the corresponding
error behavior are the same specified for the FooDataWriter::write (p. 1368)
operation.

This operation may block and time out (DDS RETCODE TIMEOUT
(p. 304)) under the same circumtances described for FooDataWriter::write
(p. 1368).

If there are no instance resources left, this operation may fail with
DDS RETCODE OUT OF RESOURCES (p. 303). Calling Foo-
DataWriter::unregister instance (p. 1365) may help free up some resources.

This operation may fail with DDS RETCODE BAD PARAMETER
(p. 303) under the same circumstances described for the write operation.

Parameters:

instance data <<in>> (p. 191) The data to write.

handle <<in>> (p. 191) Either the handle returned by a previous call
to FooDataWriter::register instance (p. 1363), or else the special
value DDS HANDLE NIL (p. 54). If Foo (p. 1333) has a key and
handle is not DDS HANDLE NIL (p. 54), handle must represent
a registered instance of type Foo (p. 1333). Otherwise, this method
may fail with DDS RETCODE BAD PARAMETER (p. 303).

source timestamp <<in>> (p. 191) When using DDS BY -
SOURCE TIMESTAMP DESTINATIONORDER QOS
(p. 351) the timestamp value must be greater than or equal to the
timestamp value used in the last writer operation (register , unregister ,
dispose, or write, with either the automatically supplied timestamp
or the application-provided timestamp) However, if it is less than the
timestamp of the previous operation but the difference is less than
the DDS DestinationOrderQosPolicy::source timestamp -
tolerance (p. 533), the timestamp of the previous operation will be
used as the source timestamp of this sample. Otherwise, if the differ-
ence is greater than DDS DestinationOrderQosPolicy::source -

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1372 Class Documentation

timestamp tolerance (p. 533), the function will return DDS -
RETCODE BAD PARAMETER (p. 303).

Returns:

One of the Standard Return Codes (p. 302), DDS RETCODE -
TIMEOUT (p. 304), DDS RETCODE OUT OF RESOURCES
(p. 303), or DDS RETCODE NOT ENABLED (p. 303).

See also:

FooDataWriter::write (p. 1368)
DDSDataReader (p. 1004)
DESTINATION ORDER (p. 350)

6.213.2.8 virtual DDS ReturnCode t FooDataWriter::dispose
(const Foo & instance data, const DDS InstanceHandle t
& instance handle) [pure virtual]

Requests the middleware to delete the data.

This operation is useful only for keyed data types. Using it for non-keyed types
has no effect and reports no error.

The actual deletion is postponed until there is no more use for that data in the
whole system.

Applications are made aware of the deletion by means of operations on the
DDSDataReader (p. 1004) objects that already knew that instance. DDS-
DataReader (p. 1004) objects that didn’t know the instance will never see it.

This operation does not modify the value of the instance. The instance data
parameter is passed just for the purposes of identifying the instance.

When this operation is used, RTI Data Distribution Service will automatically
supply the value of the source timestamp that is made available to DDS-
DataReader (p. 1004) objects by means of the source timestamp attribute
inside the DDS SampleInfo (p. 855).

The constraints on the values of the handle parameter and the corresponding
error behavior are the same specified for the FooDataWriter::unregister -
instance (p. 1365) operation.

The special value DDS HANDLE NIL (p. 54) can be used for the param-
eter instance handle. This indicates the identity of the instance should be
automatically deduced from the instance data (by means of the key).

If handle is any value other than DDS HANDLE NIL (p. 54), then it must
correspond to an instance that has been registered. If there is no correspon-

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.213 FooDataWriter Struct Reference 1373

dence, the operation will fail with DDS RETCODE BAD PARAMETER
(p. 303).

RTI Data Distribution Service will not detect the error when the handle is any
value other than DDS HANDLE NIL (p. 54), corresponds to an instance that
has been registered, but does not correspond to the instance deduced from the
instance data (by means of the key). RTI Data Distribution Service will treat
as if the dispose() (p. 1372) operation is for the instance as indicated by the
handle.

This operation may block and time out (DDS RETCODE TIMEOUT
(p. 304)) under the same circumtances described for FooDataWriter::write()
(p. 1368).

If there are no instance resources left, this operation may fail with
DDS RETCODE OUT OF RESOURCES (p. 303). Calling Foo-
DataWriter::unregister instance (p. 1365) may help freeing up some re-
sources.

Parameters:

instance data <<in>> (p. 191) The data to dispose. If Foo (p. 1333)
has a key and instance handle is DDS HANDLE NIL (p. 54),
only the fields that represent the key are examined by the function.
Otherwise, instance data is not used.

instance handle <<in>> (p. 191) Either the handle returned by a
previous call to FooDataWriter::register instance (p. 1363), or
else the special value DDS HANDLE NIL (p. 54). If Foo
(p. 1333) has a key and instance handle is DDS HANDLE NIL
(p. 54), instance handle is not used and instance is deduced from
instance data. If Foo (p. 1333) has no key, instance handle is not
used. If handle is used, it must represent a registered instance of type
Foo (p. 1333). Otherwise, this method fail with DDS RETCODE -
BAD PARAMETER (p. 303).

Returns:

One of the Standard Return Codes (p. 302), DDS RETCODE -
TIMEOUT (p. 304), DDS RETCODE OUT OF RESOURCES
(p. 303) or DDS RETCODE NOT ENABLED (p. 303).

See also:

FooDataWriter::dispose w timestamp (p. 1374)
RELATIONSHIP BETWEEN REGISTRATION, LIVELINESS
and OWNERSHIP (p. 758)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1374 Class Documentation

6.213.2.9 virtual DDS ReturnCode t FooDataWriter::dispose -
w timestamp (const Foo & instance data, const
DDS InstanceHandle t & instance handle, const
DDS Time t & source timestamp) [pure virtual]

Performs the same functions as dispose except that the application provides the
value for the source timestamp that is made available to DDSDataReader
(p. 1004) objects by means of the source timestamp attribute inside the DDS -
SampleInfo (p. 855).

The constraints on the values of the handle parameter and the corresponding er-
ror behavior are the same specified for the FooDataWriter::dispose (p. 1372)
operation.

This operation may block and time out (DDS RETCODE TIMEOUT
(p. 304)) under the same circumtances described for FooDataWriter::write
(p. 1368).

If there are no instance resources left, this operation may fail with
DDS RETCODE OUT OF RESOURCES (p. 303). Calling Foo-
DataWriter::unregister instance (p. 1365) may help freeing up some re-
sources.

Parameters:

instance data <<in>> (p. 191) The data to dispose. If Foo (p. 1333)
has a key and instance handle is DDS HANDLE NIL (p. 54),
only the fields that represent the key are examined by the function.
Otherwise, instance data is not used.

instance handle <<in>> (p. 191) Either the handle returned by a
previous call to FooDataWriter::register instance (p. 1363), or
else the special value DDS HANDLE NIL (p. 54). If Foo
(p. 1333) has a key and instance handle is DDS HANDLE NIL
(p. 54), instance handle is not used and instance is deduced from
instance data. If Foo (p. 1333) has no key, instance handle is not
used. If handle is used, it must represent a registered instance of
type Foo (p. 1333). Otherwise, this method may fail with DDS -
RETCODE BAD PARAMETER (p. 303)

source timestamp <<in>> (p. 191) The timestamp value must be
greater than or equal to the timestamp value used in the last writer
operation (used in a register , unregister , dispose, or write, with ei-
ther the automatically supplied timestamp or the application provided
timestamp). This timestamp may potentially affect the order in which
readers observe events from multiple writers. This timestamp will be
available to the DDSDataReader (p. 1004) objects by means of the
source timestamp attribute inside the DDS SampleInfo (p. 855).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.213 FooDataWriter Struct Reference 1375

Returns:

One of the Standard Return Codes (p. 302), DDS RETCODE -
TIMEOUT (p. 304), DDS RETCODE OUT OF RESOURCES
(p. 303) or DDS RETCODE NOT ENABLED (p. 303).

See also:

FooDataWriter::dispose (p. 1372)

6.213.2.10 virtual DDS ReturnCode t FooDataWriter::get key -
value (Foo & key holder, const DDS InstanceHandle t
& handle) [pure virtual]

Retrieve the instance key that corresponds to an instance handle.

Useful for keyed data types.

The operation will only fill the fields that form the key inside the key holder
instance. If Foo (p. 1333) has no key, this method has no effect and exit with
no error.

For keyed data types, this operation may fail with DDS RETCODE BAD -
PARAMETER (p. 303) if the handle does not correspond to an existing data-
object known to the DDSDataWriter (p. 1028).

Parameters:

key holder <<inout>> (p. 191) a user data type specific key holder,
whose key fields are filled by this operation. If Foo (p. 1333) has no
key, this method has no effect.

handle <<in>> (p. 191) the instance whose key is to be retrieved. If
Foo (p. 1333) has a key, handle must represent a registered instance
of type Foo (p. 1333). Otherwise, this method will fail with DDS -
RETCODE BAD PARAMETER (p. 303). If Foo (p. 1333) has
a key and handle is DDS HANDLE NIL (p. 54), this method will
fail with DDS RETCODE BAD PARAMETER (p. 303).

Returns:

One of the Standard Return Codes (p. 302) or DDS RETCODE -
NOT ENABLED (p. 303).

See also:

FooDataReader::get key value (p. 1359)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1376 Class Documentation

6.213.2.11 virtual DDS InstanceHandle t FooDataWriter::lookup -
instance (const Foo & key holder) [pure
virtual]

Retrieve the instance handle that corresponds to an instance key holder.

Useful for keyed data types.

This operation takes as a parameter an instance and returns a handle that can be
used in subsequent operations that accept an instance handle as an argument.
The instance parameter is only used for the purpose of examining the fields
that define the key. This operation does not register the instance in question. If
the instance has not been previously registered, or if for any other reason RTI
Data Distribution Service is unable to provide an instance handle, RTI Data
Distribution Service will return the special value HANDLE NIL.

Parameters:

key holder <<in>> (p. 191) a user data type specific key holder.

Returns:

the instance handle associated with this instance. If Foo (p. 1333) has no
key, this method has no effect and returns DDS HANDLE NIL (p. 54)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.214 FooSeq Struct Reference 1377

6.214 FooSeq Struct Reference

<<interface>> (p. 190) <<generic>> (p. 190) A type-safe, ordered collec-
tion of elements. The type of these elements is referred to in this documentation
as Foo (p. 1333).

Public Member Functions

ˆ FooSeq & operator= (const struct FooSeq &src seq)
Copy elements from another sequence, resizing the sequence if necessary.

ˆ bool copy no alloc (const struct FooSeq &src seq)
Copy elements from another sequence, only if the destination sequence has
enough capacity.

ˆ bool from array (const Foo array[], DDS Long length)
Copy elements from an array of elements, resizing the sequence if necessary.
The original contents of the sequence (if any) are replaced.

ˆ bool to array (Foo array[], DDS Long length)
Copy elements to an array of elements. The original contents of the array
(if any) are replaced.

ˆ Foo & operator[] (DDS Long i)
Set the i-th element of the sequence.

ˆ const Foo & operator[] (DDS Long i) const
Get the i-th element for a const sequence.

ˆ DDS Long length () const
Get the logical length of this sequence.

ˆ bool length (DDS Long new length)
Change the length of this sequence.

ˆ bool ensure length (DDS Long length, DDS Long max)
Set the sequence to the desired length, and resize the sequence if necessary.

ˆ DDS Long maximum () const
Get the current maximum number of elements that can be stored in this
sequence.

ˆ bool maximum (DDS Long new max)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1378 Class Documentation

Resize this sequence to a new desired maximum.

ˆ bool loan contiguous (Foo ∗buffer, DDS Long new length, DDS -
Long new max)

Loan a contiguous buffer to this sequence.

ˆ bool loan discontiguous (Foo ∗∗buffer, DDS Long new length,
DDS Long new max)

Loan a discontiguous buffer to this sequence.

ˆ bool unloan ()
Return the loaned buffer in the sequence and set the maximum to 0.

ˆ Foo ∗ get contiguous buffer () const
Return the contiguous buffer of the sequence.

ˆ Foo ∗∗ get discontiguous buffer () const
Return the discontiguous buffer of the sequence.

ˆ bool has ownership ()
Return the value of the owned flag.

ˆ ∼FooSeq ()
Deallocate this sequence’s buffer.

ˆ FooSeq (DDS Long new max=0)
Create a sequence with the given maximum.

ˆ FooSeq (const struct FooSeq &foo seq)
Create a sequence by copying from an existing sequence.

6.214.1 Detailed Description

<<interface>> (p. 190) <<generic>> (p. 190) A type-safe, ordered collec-
tion of elements. The type of these elements is referred to in this documentation
as Foo (p. 1333).

For users who define data types in OMG IDL, this type corresponds to the IDL
express sequence<Foo (p. 1333)>.

For any user-data type Foo (p. 1333) that an application defines for the purpose
of data-distribution with RTI Data Distribution Service, a FooSeq (p. 1377) is
generated. The sequence offers a subset of the methods defined by the standard

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.214 FooSeq Struct Reference 1379

OMG IDL to C++ mapping for sequences. We refer to an IDL sequence<Foo
(p. 1333)> as FooSeq (p. 1377).

The state of a sequence is described by the properties ’maximum’, ’length’ and
’owned’.

ˆ The ’maximum’ represents the size of the underlying buffer; this is the
maximum number of elements it can possibly hold. It is returned by the
FooSeq::maximum() (p. 1386) operation.

ˆ The ’length’ represents the actual number of elements it currently holds.
It is returned by the FooSeq::length() (p. 1384) operation.

ˆ The ’owned’ flag represents whether the sequence owns the underlying
buffer. It is returned by the FooSeq::has ownership (p. 1391) operation.
If the sequence does not own the underlying buffer, the underlying buffer
is loaned from somewhere else. This flag influences the lifecycle of the
sequence and what operations are allowed on it. The general guidelines are
provided below and more details are described in detail as pre-conditions
and post-conditions of each of the sequence’s operations:

– If owned == DDS BOOLEAN TRUE (p. 288), the sequence has
ownership on the buffer. It is then responsible for destroying the
buffer when the sequence is destroyed.

– If the owned == DDS BOOLEAN FALSE (p. 289), the sequence
does not have ownership on the buffer. This implies that the sequence
is loaning the buffer. The sequence cannot be destroyed until the loan
is returned.

– A sequence with a zero maximum always has owned == DDS -
BOOLEAN TRUE (p. 288)

See also:

FooDataWriter (p. 1361), FooDataReader (p. 1334), FooTypeSup-
port (p. 1392), rtiddsgen (p. 211)

6.214.2 Constructor & Destructor Documentation

6.214.2.1 FooSeq::∼FooSeq ()

Deallocate this sequence’s buffer.

Precondition:

(owned == DDS BOOLEAN TRUE (p. 288)). If this precondition is
not met, no memory will be freed and an error will be logged.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1380 Class Documentation

Postcondition:

maximum == 0 and the underlying buffer is freed.

See also:

FooSeq::maximum() (p. 1386), FooSeq::unloan (p. 1389)

6.214.2.2 FooSeq::FooSeq (DDS Long new max = 0)

Create a sequence with the given maximum.

This is a constructor for the sequence. The constructor will automatically allo-
cate memory to hold new max elements of type Foo (p. 1333).

This constructor will be used when the application creates a sequence using one
of the following:

FooSeq mySeq(5);

// or

FooSeq mySeq;

// or

FooSeq* mySeqPtr = new FooSeq(5);

Postcondition:

maximum == new max
length == 0
owned == DDS BOOLEAN TRUE (p. 288),

Parameters:

new max Must be >= 0. Otherwise the sequence will be initialized to a
new max=0.

6.214.2.3 FooSeq::FooSeq (const struct FooSeq & foo seq)

Create a sequence by copying from an existing sequence.

This is a constructor for the sequence. The constructor will automatically al-
locate memory to hold foo seq::maximum() elements of type Foo (p. 1333) and
will copy the current contents of foo seq into the new sequence.

This constructor will be used when the application creates a sequence using one
of the following:

FooSeq mySeq(foo_seq);

// or

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.214 FooSeq Struct Reference 1381

FooSeq mySeq = foo_seq;

// or

FooSeq *mySeqPtr = new FooSeq(foo_seq);

Postcondition:

this::maximum == foo seq::maximum
this::length == foo seq::length
this[i] == foo seq[i] for 0 <= i < foo seq::length
this::owned == DDS BOOLEAN TRUE (p. 288)

Note:

If the pre-conditions are not met, the constructor will initialize the new
sequence to a maximum of zero.

6.214.3 Member Function Documentation

6.214.3.1 FooSeq& FooSeq::operator= (const struct FooSeq &
src seq)

Copy elements from another sequence, resizing the sequence if necessary.

This method invokes FooSeq::copy no alloc (p. 1382) after ensuring that the
sequence has enough capacity to hold the elements to be copied.

This operator is invoked when the following expression appears in the code:

target_seq = src_seq

Important: This method will allocate memory if this::maximum < src -
seq::length.

Therefore, to programatically detect the successful completion of the operator
it is recommended that the application first sets the length of this sequence to
zero, makes the assignment, and then checks that the length of this sequence
matches that of src seq.

Parameters:

src seq <<in>> (p. 191) the sequence from which to copy

See also:

FooSeq::copy no alloc (p. 1382)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1382 Class Documentation

6.214.3.2 bool FooSeq::copy no alloc (const struct FooSeq &
src seq)

Copy elements from another sequence, only if the destination sequence has
enough capacity.

Fill the elements in this sequence by copying the corresponding elements in
src seq. The original contents in this sequence are replaced via the element
assignment operation (Foo copy() function). By default, elements are discarded;
’delete’ is not invoked on the discarded elements.

Precondition:

this::maximum >= src seq::length
this::owned == DDS BOOLEAN TRUE (p. 288)

Postcondition:

this::length == src seq::length
this[i] == src seq[i] for 0 <= i < target seq::length
this::owned == DDS BOOLEAN TRUE (p. 288)

Parameters:

src seq <<in>> (p. 191) the sequence from which to copy

Returns:

DDS BOOLEAN TRUE (p. 288) if the sequence was successfully copied;
DDS BOOLEAN FALSE (p. 289) otherwise.

Note:

If the pre-conditions are not met, the operator will print a message to stdout
and leave this sequence unchanged.

See also:

FooSeq::operator= (p. 1381)

6.214.3.3 bool FooSeq::from array (const Foo array[], DDS Long
length)

Copy elements from an array of elements, resizing the sequence if necessary.
The original contents of the sequence (if any) are replaced.

Fill the elements in this sequence by copying the corresponding elements in
array. The original contents in this sequence are replaced via the element
assignment operation (Foo copy() function). By default, elements are discarded;
’delete’ is not invoked on the discarded elements.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.214 FooSeq Struct Reference 1383

Precondition:

this::owned == DDS BOOLEAN TRUE (p. 288)

Postcondition:

this::length == length
this[i] == array[i] for 0 <= i < length
this::owned == DDS BOOLEAN TRUE (p. 288)

Parameters:

array <<in>> (p. 191) The array of elements to be copy elements from

length <<in>> (p. 191) The length of the array.

Returns:

DDS BOOLEAN TRUE (p. 288) if the array was successfully copied;
DDS BOOLEAN FALSE (p. 289) otherwise.

Note:

If the pre-conditions are not met, the method will print a message to stdout
and leave this sequence unchanged.

6.214.3.4 bool FooSeq::to array (Foo array[], DDS Long length)

Copy elements to an array of elements. The original contents of the array (if
any) are replaced.

Copy the elements of this sequence to the corresponding elements in the array.
The original contents of the array are replaced via the element assignment oper-
ation (Foo copy() function). By default, elements are discarded; ’delete’ is not
invoked on the discarded elements.

Parameters:

array <<in>> (p. 191) The array of elements to be filled with elements
from this sequence

length <<in>> (p. 191) The number of elements to be copied.

Returns:

DDS BOOLEAN TRUE (p. 288) if the elements of the sequence were
successfully copied; DDS BOOLEAN FALSE (p. 289) otherwise.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1384 Class Documentation

6.214.3.5 Foo& FooSeq::operator[] (DDS Long i)

Set the i-th element of the sequence.

This is the operator that is invoked when the application indexes into a non-
const sequence:

myElement = mySequence[i];

mySequence[i] = myElement;

Note that a reference to the i-th element is returned (and not a copy).

Parameters:

i index of element to access, must be >= 0 and less than FooSeq::length()
(p. 1384)

Returns:

the i-th element

6.214.3.6 const Foo& FooSeq::operator[] (DDS Long i) const

Get the i-th element for a const sequence.

This is the operator that is invoked when the application indexes into a const
sequence:

myElement = mySequence[i];

Note that a reference to the i-th element is returned (and not a copy).

Parameters:

i index of element to access, must be >= 0 and less than FooSeq::length()
(p. 1384)

Returns:

the i-th element

6.214.3.7 DDS Long FooSeq::length () const

Get the logical length of this sequence.

Get the length that was last set, or zero if the length has never been set.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.214 FooSeq Struct Reference 1385

Returns:

the length of the sequence

6.214.3.8 bool FooSeq::length (DDS Long new length)

Change the length of this sequence.

This method does not allocate/deallocate memory.

The new length must not exceed the maximum of this sequence as returned
by the FooSeq::maximum() (p. 1386) operation. (Note that, if neces-
sary, the maximum of this sequence can be increased manually by using the
FooSeq::maximum(long) operation.)

The elements of the sequence are not modified by this operation. If the new
length is larger than the original length, the new elements will be uninitialized;
if the length is decreased, the old elements that are beyond the new length will
physically remain in the sequence but will not be accessible.

Postcondition:

length = new length.

Parameters:

new length the new desired length. This value must be non-negative and
cannot exceed maximum of the sequence. In other words 0 <= new -
length <= maximum

Returns:

DDS BOOLEAN TRUE (p. 288) on sucess or DDS BOOLEAN -
FALSE (p. 289) on failure

6.214.3.9 bool FooSeq::ensure length (DDS Long length,
DDS Long max)

Set the sequence to the desired length, and resize the sequence if necessary.

If the current maximum is greater than the desired length, then sequence is not
resized.

Otherwise if this sequence owns its buffer, the sequence is resized to the new
maximum by freeing and re-allocating the buffer. However, if the sequence does
not own its buffer, this operation will fail.

This function allows user to avoid unnecessary buffer re-allocation.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1386 Class Documentation

Precondition:

length <= max
owned == DDS BOOLEAN TRUE (p. 288) if sequence needs to be
resized

Postcondition:

length == length
maximum == max if resized

Parameters:

length <<in>> (p. 191) The new length that should be set. Must be >=
0.

max <<in>> (p. 191) If sequence need to be resized, this is the maximum
that should be set. max >= length

Returns:

DDS BOOLEAN TRUE (p. 288) on success, DDS BOOLEAN -
FALSE (p. 289) if the preconditions are not met. In that case the sequence
is not modified.

6.214.3.10 DDS Long FooSeq::maximum () const

Get the current maximum number of elements that can be stored in this se-
quence.

The maximum of the sequence represents the maximum number of elements that
the underlying buffer can hold. It does not represent the current number of
elements.

The maximum is a non-negative number. It is initialized when the sequence is
first created.

maximum can only be changed with the FooSeq::maximum(long) operation.

Returns:

the current maximum of the sequence.

See also:

FooSeq::length() (p. 1384)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.214 FooSeq Struct Reference 1387

6.214.3.11 bool FooSeq::maximum (DDS Long new max)

Resize this sequence to a new desired maximum.

This operation does nothing if the new desired maximum matches the current
maximum.

If this sequence owns its buffer and the new maximum is not equal to the old
maximum, then the existing buffer will be freed and re-allocated.

Precondition:

owned == DDS BOOLEAN TRUE (p. 288)

Postcondition:

owned == DDS BOOLEAN TRUE (p. 288)
length == MINIMUM(original length, new max)

Parameters:

new max Must be >= 0.

Returns:

DDS BOOLEAN TRUE (p. 288) on success, DDS BOOLEAN -
FALSE (p. 289) if the preconditions are not met. In that case the sequence
is not modified.

6.214.3.12 bool FooSeq::loan contiguous (Foo ∗ buffer, DDS Long
new length, DDS Long new max)

Loan a contiguous buffer to this sequence.

This operation changes the owned flag of the sequence to DDS BOOLEAN -
FALSE (p. 289) and also sets the underlying buffer used by the sequence. See
the user’s manual for more information about sequences and memory ownership.

Use this method if you want to manage the memory used by the sequence your-
self. You must provide an array of elements and integers indicating how many
elements are allocated in that array (i.e. the maximum) and how many elements
are valid (i.e. the length). The sequence will subsequently use the memory you
provide and will not permit it to be freed by a call to FooSeq::maximum(long).

Once you have loaned a buffer to a sequence, make sure that you don’t free it
before calling FooSeq::unloan (p. 1389): the next time you access the sequence,
you will be accessing freed memory!

You can use this method to wrap stack memory with a sequence interface,
thereby avoiding dynamic memory allocation. Create a FooSeq (p. 1377) and
an array of type Foo (p. 1333) and then loan the array to the sequence:

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1388 Class Documentation

::Foo fooArray[10];

::FooSeq fooSeq;

fooSeq.loan_contiguous(fooArray, 0, 10);

By default, a sequence you create owns its memory unless you explicitly loan
memory of your own to it. In a very few cases, RTI Data Distribution Ser-
vice will return a sequence to you that has a loan; those cases are documented
as such. For example, if you call FooDataReader::read (p. 1337) or Foo-
DataReader::take (p. 1338) and pass in sequences with no loan and no mem-
ory allocated, RTI Data Distribution Service will loan memory to your sequences
which must be unloaned with FooDataReader::return loan (p. 1358). See
the documentation of those methods for more information.

Precondition:

FooSeq::maximum() (p. 1386) == 0; i.e. the sequence has no memory
allocated to it.
FooSeq::has ownership (p. 1391) == DDS BOOLEAN TRUE
(p. 288); i.e. the sequence does not already have an outstanding loan

Postcondition:

The sequence will store its elements in the buffer provided.
FooSeq::has ownership (p. 1391) == DDS BOOLEAN FALSE
(p. 289)
FooSeq::length() (p. 1384) == new length
FooSeq::maximum() (p. 1386) == new max

Parameters:

buffer The new buffer that the sequence will use. Must point to enough
memory to hold new max elements of type Foo (p. 1333). It may be
NULL if new max == 0.

new length The desired new length for the sequence. It must be the case
that that 0 <= new length <= new max.

new max The allocated number of elements that could fit in the loaned
buffer.

Returns:

DDS BOOLEAN TRUE (p. 288) if buffer is successfully loaned to this
sequence or DDS BOOLEAN FALSE (p. 289) otherwise. Failure only
occurs due to failing to meet the pre-conditions. Upon failure the sequence
remains unmodified.

See also:

FooSeq::unloan (p. 1389), FooSeq::loan discontiguous (p. 1389)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.214 FooSeq Struct Reference 1389

6.214.3.13 bool FooSeq::loan discontiguous (Foo ∗∗ buffer,
DDS Long new length, DDS Long new max)

Loan a discontiguous buffer to this sequence.

This method is exactly like FooSeq::loan contiguous (p. 1387) except that
the buffer loaned is an array of Foo (p. 1333) pointers, not an array of Foo
(p. 1333).

Parameters:

buffer The new buffer that the sequence will use. Must point to enough
memory to hold new max elements of type Foo∗. It may be NULL if
new max == 0.

new length The desired new length for the sequence. It must be the case
that that 0 <= new length <= new max.

new max The allocated number of elements that could fit in the loaned
buffer.

See also:

FooSeq::unloan (p. 1389), FooSeq::loan contiguous (p. 1387)

6.214.3.14 bool FooSeq::unloan ()

Return the loaned buffer in the sequence and set the maximum to 0.

This method affects only the state of this sequence; it does not change the
contents of the buffer in any way.

Only the user who originally loaned a buffer should return that loan, as the
user may have dependencies on that memory known only to them. Unloaning
someone else’s buffer may cause unspecified problems. For example, suppose a
sequence is loaning memory from a custom memory pool. A user of the sequence
likely has no way to release the memory back into the pool, so unloaning the
sequence buffer would result in a resource leak. If the user were to then re-loan
a different buffer, the original creator of the sequence would have no way to
discover, when freeing the sequence, that the loan no longer referred to its own
memory and would thus not free the user’s memory properly, exacerbating the
situation and leading to undefined behavior.

Precondition:

owned == DDS BOOLEAN FALSE (p. 289)

Postcondition:

owned == DDS BOOLEAN TRUE (p. 288)
maximum == 0

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1390 Class Documentation

Returns:

DDS BOOLEAN TRUE (p. 288) if the preconditions were met. Oth-
erwise DDS BOOLEAN FALSE (p. 289). The function only fails if the
pre-conditions are not met, in which case it leaves the sequence unmodified.

See also:

FooSeq::loan contiguous (p. 1387), FooSeq::loan discontiguous
(p. 1389), FooSeq::maximum(long)

6.214.3.15 Foo∗ FooSeq::get contiguous buffer () const

Return the contiguous buffer of the sequence.

Get the underlying buffer where contiguous elements of the sequence are stored.
The size of the buffer matches the maximum of the sequence, but only the
elements up to the FooSeq::length() (p. 1384) of the sequence are valid.

This method provides almost no encapsulation of the sequence’s underlying im-
plementation. Certain operations, such as FooSeq::maximum(long), may render
the buffer invalid. In light of these caveats, this operation should be used with
care.

Returns:

buffer that stores contiguous elements in sequence.

6.214.3.16 Foo∗∗ FooSeq::get discontiguous buffer () const

Return the discontiguous buffer of the sequence.

This operation returns the underlying buffer where discontiguous elements of
the sequence are stored. The size of the buffer matches the maximum of this
sequence, but only the elements up to the FooSeq::length() (p. 1384) of the
sequence are valid.

The same caveats apply to this method as to FooSeq::get contiguous bufferI.

The sequence will dereference pointers in the discontiguous buffer to provide
access to its elements by value in C and by reference in C++. If you access the
discontiguous buffer directly by means of this method, do not store any NULL
values into it, as acessing those values will result in a segmentation fault.

Returns:

buffer that stores discontiguous elements in sequence.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.214 FooSeq Struct Reference 1391

6.214.3.17 bool FooSeq::has ownership ()

Return the value of the owned flag.

Returns:

DDS BOOLEAN TRUE (p. 288) if sequence owns the underlying buffer,
or DDS BOOLEAN FALSE (p. 289) if it has an outstanding loan.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1392 Class Documentation

6.215 FooTypeSupport Struct Reference

<<interface>> (p. 190) <<generic>> (p. 190) User data type specific in-
terface.

Inheritance diagram for FooTypeSupport::

Static Public Member Functions

ˆ static DDS ReturnCode t register type (DDSDomainParticipant
∗participant, const char ∗type name)

Allows an application to communicate to RTI Data Distribution Service the
existence of a data type.

ˆ static DDS ReturnCode t unregister type (DDSDomainPartici-
pant ∗participant, const char ∗type name)

Allows an application to unregister a data type from RTI Data Distribution
Service. After calling unregister type, no further communication using that
type is possible.

ˆ static Foo ∗ create data ()
<<eXtension>> (p. 190) Create a data type and initialize it.

ˆ static Foo ∗ create data ex (DDS Boolean allocatePointers)
<<eXtension>> (p. 190) Create a data type and initialize it.

ˆ static DDS ReturnCode t copy data (Foo ∗dst data, const Foo ∗src -
data)

<<eXtension>> (p. 190) Copy data type.

ˆ static DDS ReturnCode t delete data (Foo ∗a data)
<<eXtension>> (p. 190) Destroy a user data type instance.

ˆ static DDS ReturnCode t delete data ex (Foo ∗a data, DDS -
Boolean deletePointers)

<<eXtension>> (p. 190) Destroy a user data type instance.

ˆ static DDS ReturnCode t initialize data (Foo ∗a data)
<<eXtension>> (p. 190) Initialize data type.

ˆ static DDS ReturnCode t initialize data ex (Foo ∗a data, DDS -
Boolean allocatePointers)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.215 FooTypeSupport Struct Reference 1393

<<eXtension>> (p. 190) Initialize data type.

ˆ static DDS ReturnCode t finalize data (Foo ∗a data)

<<eXtension>> (p. 190) Finalize data type.

ˆ static DDS ReturnCode t finalize data ex (Foo ∗a data, DDS -
Boolean deletePointers)

<<eXtension>> (p. 190) Finalize data type.

ˆ static const char ∗ get type name ()

Get the default name for this type.

ˆ static void print data (const Foo ∗a data)

<<eXtension>> (p. 190) Print value of data type to standard out.

6.215.1 Detailed Description

<<interface>> (p. 190) <<generic>> (p. 190) User data type specific in-
terface.

Defines the user data type specific interface generated for each application class.

The concrete user data type automatically generated by the implementation is
an incarnation of this class.

See also:

DDS TYPESUPPORT CPP (p. 51)
rtiddsgen (p. 211)

6.215.2 Member Function Documentation

6.215.2.1 static DDS ReturnCode t FooTypeSupport::register type
(DDSDomainParticipant ∗ participant, const char ∗
type name) [static]

Allows an application to communicate to RTI Data Distribution Service the
existence of a data type.

The generated implementation of the operation embeds all the knowledge that
has to be communicated to the middleware in order to make it able to manage
the contents of data of that type. This includes in particular the key definition
that will allow RTI Data Distribution Service to distinguish different instances
of the same type.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1394 Class Documentation

The same DDSTypeSupport (p. 1324) can be registered multiple times with
a DDSDomainParticipant (p. 1054) using the same or different values for the
type name. If register type is called multiple times on the same DDSType-
Support (p. 1324) with the same DDSDomainParticipant (p. 1054) and
type name, the second (and subsequent) registrations are ignored by the op-
eration fails with DDS RETCODE OK (p. 303).

Precondition:

Cannot use the same type name to register two different DDSType-
Support (p. 1324) with the same DDSDomainParticipant (p. 1054), or
else the operation will fail and DDS RETCODE PRECONDITION -
NOT MET (p. 303) will be returned.

Parameters:

participant <<in>> (p. 191) the DDSDomainParticipant (p. 1054)
to register the data type Foo (p. 1333) with. Cannot be NULL.

type name <<in>> (p. 191) the type name under with the data type
Foo (p. 1333) is registered with the participant; this type name is
used when creating a new DDSTopic (p. 1311). (See DDSDomain-
Participant::create topic (p. 1089).) The name may not be NULL
or longer than 255 characters.

Returns:

One of the Standard Return Codes (p. 302), DDS RETCODE -
PRECONDITION NOT MET (p. 303) or DDS RETCODE OUT -
OF RESOURCES (p. 303).

MT Safety:

UNSAFE on the FIRST call. It is not safe for two threads to simultaneously
make the first call to register a type. Subsequent calls are thread safe.

See also:

DDSDomainParticipant::create topic (p. 1089)

6.215.2.2 static DDS ReturnCode t FooTypeSupport::unregister -
type (DDSDomainParticipant ∗ participant, const char ∗
type name) [static]

Allows an application to unregister a data type from RTI Data Distribution
Service. After calling unregister type, no further communication using that
type is possible.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.215 FooTypeSupport Struct Reference 1395

The generated implementation of the operation removes all the information
about a type from RTI Data Distribution Service. No further communication
using that type is possible.

Precondition:

A type with type name is registered with the participant and all DDSTopic
(p. 1311) objects referencing the type have been destroyed. If the type is not
registered with the participant, or if any DDSTopic (p. 1311) is associated
with the type, the operation will fail with DDS RETCODE ERROR
(p. 303).

Postcondition:

All information about the type is removed from RTI Data Distribution
Service. No further communication using this type is possible.

Parameters:

participant <<in>> (p. 191) the DDSDomainParticipant (p. 1054)
to unregister the data type Foo (p. 1333) from. Cannot be NULL.

type name <<in>> (p. 191) the type name under with the data type
Foo (p. 1333) is registered with the participant. The name should
match a name that has been previously used to register a type with
the participant. Cannot be NULL.

Returns:

One of the Standard Return Codes (p. 302), DDS RETCODE -
BAD PARAMETER (p. 303) or DDS RETCODE ERROR (p. 303)

MT Safety:

SAFE.

See also:

FooTypeSupport::register type (p. 1393)

6.215.2.3 static Foo∗ FooTypeSupport::create data () [static]

<<eXtension>> (p. 190) Create a data type and initialize it.

The generated implementation of the operation knows how to instantiate a data
type and initialize it properly.

All memory for the type is deeply allocated.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1396 Class Documentation

Returns:

newly created data type

See also:

FooTypeSupport::delete data (p. 1397)

6.215.2.4 static Foo∗ FooTypeSupport::create data ex
(DDS Boolean allocatePointers) [static]

<<eXtension>> (p. 190) Create a data type and initialize it.

The generated implementation of the operation knows how to instantiate a data
type and initialize it properly.

When allocatePointers is DDS BOOLEAN TRUE (p. 288), all the refer-
ences (pointers) in the type are recursively allocated.

Parameters:

allocatePointers <<in>> (p. 191) Whether or not to recursively allo-
cate pointers.

Returns:

newly created data type

See also:

FooTypeSupport::delete data ex (p. 1397)

6.215.2.5 static DDS ReturnCode t FooTypeSupport::copy data
(Foo ∗ dst data, const Foo ∗ src data) [static]

<<eXtension>> (p. 190) Copy data type.

The generated implementation of the operation knows how to copy value of a
data type.

Parameters:

dst data <<inout>> (p. 191) Data type to copy value to. Cannot be
NULL.

src data <<in>> (p. 191) Data type to copy value from. Cannot be
NULL.

Returns:

One of the Standard Return Codes (p. 302)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.215 FooTypeSupport Struct Reference 1397

6.215.2.6 static DDS ReturnCode t FooTypeSupport::delete data
(Foo ∗ a data) [static]

<<eXtension>> (p. 190) Destroy a user data type instance.

The generated implementation of the operation knows how to destroy a data
type and return all resources.

Parameters:

a data <<in>> (p. 191) Cannot be NULL.

Returns:

One of the Standard Return Codes (p. 302)

See also:

FooTypeSupport::create data (p. 1395)

6.215.2.7 static DDS ReturnCode t FooTypeSupport::delete -
data ex (Foo ∗ a data, DDS Boolean deletePointers)
[static]

<<eXtension>> (p. 190) Destroy a user data type instance.

The generated implementation of the operation knows how to destroy a data
type and return all resources.

When deletePointers is DDS BOOLEAN TRUE (p. 288), all the refer-
ences (pointers) are destroyed as well.

Parameters:

a data <<in>> (p. 191) Cannot be NULL.

deletePointers <<in>> (p. 191) Whether or not to destroy pointers.

Returns:

One of the Standard Return Codes (p. 302)

See also:

FooTypeSupport::create data ex (p. 1396)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1398 Class Documentation

6.215.2.8 static DDS ReturnCode t FooTypeSupport::initialize -
data (Foo ∗ a data) [static]

<<eXtension>> (p. 190) Initialize data type.

The generated implementation of the operation knows how to initialize a data
type. This method is typically called to initialize a data type that is allocated
on the stack.

Parameters:

a data <<inout>> (p. 191) Cannot be NULL.

Returns:

One of the Standard Return Codes (p. 302)

See also:

FooTypeSupport::finalize data (p. 1399)

6.215.2.9 static DDS ReturnCode t FooTypeSupport::initialize -
data ex (Foo ∗ a data, DDS Boolean allocatePointers)
[static]

<<eXtension>> (p. 190) Initialize data type.

The generated implementation of the operation knows how to initialize a data
type. This method is typically called to initialize a data type that is allocated
on the stack.

When allocatePointers is DDS BOOLEAN TRUE (p. 288), all the refer-
ences (pointers) in the type are recursively allocated.

Parameters:

a data <<inout>> (p. 191) Cannot be NULL.

allocatePointers <<in>> (p. 191) Whether or not to recursively allo-
cate pointers.

Returns:

One of the Standard Return Codes (p. 302)

See also:

FooTypeSupport::finalize data ex (p. 1399)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.215 FooTypeSupport Struct Reference 1399

6.215.2.10 static DDS ReturnCode t FooTypeSupport::finalize -
data (Foo ∗ a data) [static]

<<eXtension>> (p. 190) Finalize data type.

The generated implementation of the operation knows how to finalize a data
type. This method is typically called to finalize a data type that has previouslly
been initialized.

Parameters:

a data <<in>> (p. 191) Cannot be NULL.

Returns:

One of the Standard Return Codes (p. 302)

See also:

FooTypeSupport::initialize data (p. 1398)

6.215.2.11 static DDS ReturnCode t FooTypeSupport::finalize -
data ex (Foo ∗ a data, DDS Boolean deletePointers)
[static]

<<eXtension>> (p. 190) Finalize data type.

The generated implementation of the operation knows how to finalize a data
type. This method is typically called to finalize a data type that has previouslly
been initialized.

When deletePointers is DDS BOOLEAN TRUE (p. 288), the memory re-
quired by the references (pointers) associated to the type is freed.

Parameters:

a data <<in>> (p. 191) Cannot be NULL.

deletePointers <<in>> (p. 191) Whether or not to free memory allo-
cated by the pointers.

Returns:

One of the Standard Return Codes (p. 302)

See also:

FooTypeSupport::initialize data ex (p. 1398)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1400 Class Documentation

6.215.2.12 static const char∗ FooTypeSupport::get type name ()
[static]

Get the default name for this type.

Can be used for calling FooTypeSupport::register type (p. 1393) or creating
DDSTopic (p. 1311)

Returns:

default name for this type

See also:

FooTypeSupport::register type (p. 1393)
DDSDomainParticipant::create topic (p. 1089)

6.215.2.13 static void FooTypeSupport::print data (const Foo ∗
a data) [static]

<<eXtension>> (p. 190) Print value of data type to standard out.

The generated implementation of the operation knows how to print value of a
data type.

Parameters:

a data <<in>> (p. 191) Data type to be printed.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.216 NDDS Config LibraryVersion t Struct Reference 1401

6.216 NDDS Config LibraryVersion t Struct
Reference

The version of a single library shipped as part of an RTI Data Distribution
Service distribution.

Public Attributes

ˆ DDS Long major

The major version of a single RTI Data Distribution Service library.

ˆ DDS Long minor

The minor version of a single RTI Data Distribution Service library.

ˆ char release

The release letter of a single RTI Data Distribution Service library.

ˆ DDS Long build

The build number of a single RTI Data Distribution Service library.

6.216.1 Detailed Description

The version of a single library shipped as part of an RTI Data Distribution
Service distribution.

RTI Data Distribution Service is comprised of a number of separate libraries.
Although RTI Data Distribution Service as a whole has a version, the individual
libraries each have their own versions as well. It may be necessary to check these
individual library versions when seeking technical support.

6.216.2 Member Data Documentation

6.216.2.1 DDS Long NDDS Config LibraryVersion t::major

The major version of a single RTI Data Distribution Service library.

6.216.2.2 DDS Long NDDS Config LibraryVersion t::minor

The minor version of a single RTI Data Distribution Service library.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1402 Class Documentation

6.216.2.3 char NDDS Config LibraryVersion t::release

The release letter of a single RTI Data Distribution Service library.

6.216.2.4 DDS Long NDDS Config LibraryVersion t::build

The build number of a single RTI Data Distribution Service library.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.217 NDDS Transport Address t Struct Reference 1403

6.217 NDDS Transport Address t Struct Ref-
erence

Addresses are stored individually as network-ordered bytes.

Public Attributes

ˆ unsigned char network ordered value [NDDS TRANSPORT -
ADDRESS LENGTH]

6.217.1 Detailed Description

Addresses are stored individually as network-ordered bytes.

RTI Data Distribution Service addresses are numerically stored in a transport
independent manner. RTI Data Distribution Service uses a IPv6-compatible
format, which means that the data structure to hold an NDDS Transport -
Address t (p. 1403) is the same size as a data structure needed to hold an IPv6
address.

In addition, the functions provided to translate a string representation of an
RTI Data Distribution Service address to a value assumes that the string pre-
sentation follows the IPv6 address presentation as specified in RFC 2373.

An NDDS Transport Address t (p. 1403) always stores the address in
network-byte order (which is Big Endian).

For example, IPv4 multicast address of 225.0.0.0 is represented by

{{0,0,0,0, 0,0,0,0, 0,0,0,0, 0xE1,0,0,0}} regardless of endianness,

where 0xE1 is the 13th byte of the structure (network ordered value[12]).

6.217.2 Member Data Documentation

6.217.2.1 unsigned char NDDS Transport Address t::network -
ordered value[NDDS TRANSPORT ADDRESS -
LENGTH]

network-byte ordered (i.e., bit 0 is the most significant bit and bit 128 is the
least significant bit).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1404 Class Documentation

6.218 NDDS Transport Property t Struct Ref-
erence

Base structure that must be inherited by derived Transport Plugin classes.

Public Attributes

ˆ NDDS Transport ClassId t classid

The Transport-Plugin Class ID.

ˆ RTI INT32 address bit count

Number of bits in a 16-byte address that are used by the transport. Should
be between 0 and 128.

ˆ RTI INT32 properties bitmap

A bitmap that defines various properties of the transport to the RTI Data
Distribution Service core.

ˆ RTI INT32 gather send buffer count max

Specifies the maximum number of buffers that RTI Data Distribution Service
can pass to the send() method of a transport plugin.

ˆ RTI INT32 message size max

The maximum size of a message in bytes that can be sent or received by the
transport plugin.

ˆ char ∗∗ allow interfaces list

A list of strings, each identifying a range of interface addresses. If the list is
non-empty (i.e., allow interfaces list length > 0), allow the use of only
these interfaces. If the list is empty, allow the use of all interfaces.

ˆ RTI INT32 allow interfaces list length

Number of elements in the allow interfaces list.

ˆ char ∗∗ deny interfaces list

A list of strings, each identifying a range of interface addresses. If the list is
non-empty (i.e., deny interfaces list length > 0), deny the use of these
interfaces.

ˆ RTI INT32 deny interfaces list length

Number of elements in the deny interfaces list.

ˆ char ∗∗ allow multicast interfaces list

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.218 NDDS Transport Property t Struct Reference 1405

A list of strings, each identifying a range of interface addresses. If the list is
non-empty (i.e., allow multicast interfaces list length > 0), allow the
use of multicast only on these interfaces; otherwise allow the use of all the
allowed interfaces.

ˆ RTI INT32 allow multicast interfaces list length
Number of elements in the allow multicast interfaces list.

ˆ char ∗∗ deny multicast interfaces list
A list of strings, each identifying a range of interface addresses. If the list is
non-empty (i.e., deny multicast interfaces list length > 0), deny the
use of those interfaces for multicast.

ˆ RTI INT32 deny multicast interfaces list length
Number of elements in deny multicast interfaces list.

6.218.1 Detailed Description

Base structure that must be inherited by derived Transport Plugin classes.

This structure contains properties that must be set before registration of any
transport plugin with RTI Data Distribution Service. The RTI Data Distribu-
tion Service core will configure itself to use the plugin based on the properties
set within this structure.

A transport plugin may extend from this structure to add transport-specific
properties.

In the C-language, this can be done by creating a custom plugin property struc-
ture whose first member is a NDDS Transport Property t (p. 1404) struc-
ture.

For example,

struct MyTransport_Plugin_Property_t {

NDDS_Transport_Property_t base_properties;

int myIntProperty;

< etc >;

};

WARNING: The transport properties of an instance of a Transport Plugin
should be considered immutable after the plugin has been created. That means
the values contained in the property structure stored as a part of the transport
plugin itself should not be changed. If those values are modified, the results are
undefined.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1406 Class Documentation

6.218.2 Member Data Documentation

6.218.2.1 NDDS Transport ClassId t NDDS Transport Property -
t::classid

The Transport-Plugin Class ID.

Assigned by the implementor of the transport plugin, Class ID’s below NDDS -
TRANSPORT CLASSID RESERVED RANGE (p. 239) are reserved for
RTI (Real-Time Innovations) usage.

User-defined transports should set an ID above this range.

The ID should be globally unique for each Transport-Plugin class. Transport-
Plugin implementors should ensure that the class IDs do not conflict with each
other amongst different Transport-Plugin classes.

Invariant:

The classid is invariant for the lifecycle of a transport plugin.

6.218.2.2 RTI INT32 NDDS Transport Property t::address bit -
count

Number of bits in a 16-byte address that are used by the transport. Should be
between 0 and 128.

A transport plugin should define the range of addresses (starting from 0x0) that
are meaningful to the plugin. It does this by setting the number of bits of an
IPv6 address that will be used to designate an address in the network to which
the transport plugin is connected.

For example, for an address range of 0-255, the address bit count should be
set to 8. For the range of addresses used by IPv4 (4 bytes), it should be set to
32.

See also:

Transport Class Attributes (p. 119)

6.218.2.3 RTI INT32 NDDS Transport Property t::properties -
bitmap

A bitmap that defines various properties of the transport to the RTI Data
Distribution Service core.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.218 NDDS Transport Property t Struct Reference 1407

Currently, the only property supported is whether or not the transport plugin
will always loan a buffer when RTI Data Distribution Service tries to receive a
message using the plugin. This is in support of a zero-copy interface.

See also:

NDDS TRANSPORT PROPERTY BIT BUFFER ALWAYS -
LOANED (p. 245)

6.218.2.4 RTI INT32 NDDS Transport Property t::gather send -
buffer count max

Specifies the maximum number of buffers that RTI Data Distribution Service
can pass to the send() method of a transport plugin.

The transport plugin send() API supports a gather-send concept, where the
send() call can take several discontiguous buffers, assemble and send them in a
single message. This enables RTI Data Distribution Service to send a message
from parts obtained from different sources without first having to copy the parts
into a single contiguous buffer.

However, most transports that support a gather-send concept have an upper
limit on the number of buffers that can be gathered and sent. Setting this value
will prevent RTI Data Distribution Service from trying to gather too many
buffers into a send call for the transport plugin.

RTI Data Distribution Service requires all transport-plugin implementations to
support a gather-send of least a minimum number of buffers. This minimum
number is defined to be NDDS TRANSPORT PROPERTY GATHER -
SEND BUFFER COUNT MIN (p. 246).

If the underlying transport does not support a gather-send concept directly,
then the transport plugin itself must copy the separate buffers passed into the
send() call into a single buffer for sending or otherwise send each buffer indi-
vidually. However this is done by the transport plugin, the receive rEA() call
of the destination application should assemble, if needed, all of the pieces of
the message into a single buffer before the message is passed to the RTI Data
Distribution Service layer.

6.218.2.5 RTI INT32 NDDS Transport Property t::message size -
max

The maximum size of a message in bytes that can be sent or received by the
transport plugin.

If the maximum size of a message that can be sent by a transport plugin is
user configurable, the transport plugin should provide a default value for this

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1408 Class Documentation

property. In any case, this value must be set before the transport plugin is
registered, so that RTI Data Distribution Service can properly use the plugin.

Notes:

ˆ If this value is increased from the default for any of the built-
in transports, or if custom transports are used, then the DDS -
ReceiverPoolQosPolicy::buffer size (p. 812) on the DDSDomain-
Participant (p. 1054) should also be changed.

ˆ If two transports have different settings for message size max, such that
fragmentation is required for one and not the other, the need for fragmen-
tation may not be applied correctly and samples may be lost. To avoid
this issue, set message size max to the same value in each transport.

6.218.2.6 char∗∗ NDDS Transport Property t::allow interfaces list

A list of strings, each identifying a range of interface addresses. If the list is
non-empty (i.e., allow interfaces list length > 0), allow the use of only
these interfaces. If the list is empty, allow the use of all interfaces.

The ”white” list restricts reception to a particular set of interfaces for unicast
UDP.

Multicast output will be sent and may be received over the interfaces in the list.

It is up to the transport plugin to interpret the list of strings passed in.

For example, the following are acceptable strings in IPv4 format: 192.168.1.1,
192.168.1.∗, 192.168.∗, 192.∗

This property is not interpreted by the RTI Data Distribution Service core; it is
provided merely as a convenient and standardized way to specify the interfaces
for the benefit of the transport plugin developer and user.

The caller (user) must manage the memory of the list. The memory may be
freed after the DDSDomainParticipant (p. 1054) is deleted.

6.218.2.7 RTI INT32 NDDS Transport Property t::allow -
interfaces list length

Number of elements in the allow interfaces list.

By default, allow interfaces list length = 0, i.e. an empty list.

This property is not interpreted by the RTI Data Distribution Service core; it is
provided merely as a convenient and standardized way to specify the interfaces
for the benefit of the transport plugin developer and user.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.218 NDDS Transport Property t Struct Reference 1409

6.218.2.8 char∗∗ NDDS Transport Property t::deny interfaces list

A list of strings, each identifying a range of interface addresses. If the list is
non-empty (i.e., deny interfaces list length > 0), deny the use of these
interfaces.

This ”black” list is applied after the allow interfaces list and filters out the
interfaces that should not be used.

The resulting list restricts reception to a particular set of interfaces for unicast
UDP. Multicast output will be sent and may be received over the interfaces in
the list.

It is up to the transport plugin to interpret the list of strings passed in.

For example, the following are acceptable strings in IPv4 format: 192.168.1.1,
192.168.1.∗, 192.168.∗, 192.∗

This property is not interpreted by the RTI Data Distribution Service core; it is
provided merely as a convenient and standardized way to specify the interfaces
for the benefit of the transport plugin developer and user.

The caller (user) must manage the memory of the list. The memory may be
freed after the DDSDomainParticipant (p. 1054) is deleted.

6.218.2.9 RTI INT32 NDDS Transport Property t::deny -
interfaces list length

Number of elements in the deny interfaces list.

By default, deny interfaces list length = 0 (i.e., an empty list).

This property is not interpreted by the RTI Data Distribution Service core; it is
provided merely as a convenient and standardized way to specify the interfaces
for the benefit of the transport plugin developer and user.

6.218.2.10 char∗∗ NDDS Transport Property t::allow multicast -
interfaces list

A list of strings, each identifying a range of interface addresses. If the list is non-
empty (i.e., allow multicast interfaces list length > 0), allow the use of
multicast only on these interfaces; otherwise allow the use of all the allowed
interfaces.

This ”white” list sub-selects from the allowed interfaces obtained after apply-
ing the allow interfaces list ”white” list and the deny interfaces list
”black” list.

After allow multicast interfaces list, the deny multicast interfaces -
list is applied. Multicast output will be sent and may be received over the

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1410 Class Documentation

interfaces in the resulting list.

If this list is empty, all the allowed interfaces will be potentially used for multi-
cast.

It is up to the transport plugin to interpret the list of strings passed in.

This property is not interpreted by the RTI Data Distribution Service core; it is
provided merely as a convenient and standardized way to specify the interfaces
for the benefit of the transport plugin developer and user.

The caller (user) must manage the memory of the list. The memory may be
freed after the DDSDomainParticipant (p. 1054) is deleted.

6.218.2.11 RTI INT32 NDDS Transport Property t::allow -
multicast interfaces list length

Number of elements in the allow multicast interfaces list.

By default, allow multicast interfaces list length = 0 (i.e., an empty
list).

This property is not interpreted by the RTI Data Distribution Service core; it is
provided merely as a convenient and standardized way to specify the interfaces
for the benefit of the transport plugin developer and user.

6.218.2.12 char∗∗ NDDS Transport Property t::deny multicast -
interfaces list

A list of strings, each identifying a range of interface addresses. If the list is
non-empty (i.e., deny multicast interfaces list length > 0), deny the use
of those interfaces for multicast.

This ”black” list is applied after allow multicast interfaces list and filters
out interfaces that should not be used for multicast.

Multicast output will be sent and may be received over the interfaces in the
resulting list.

It is up to the transport plugin to interpret the list of strings passed in.

This property is not interpreted by the RTI Data Distribution Service core; it is
provided merely as a convenient and standardized way to specify the interfaces
for the benefit of the transport plugin developer and user.

The caller (user) must manage the memory of the list. The memory may be
freed after the DDSDomainParticipant (p. 1054) is deleted.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.218 NDDS Transport Property t Struct Reference 1411

6.218.2.13 RTI INT32 NDDS Transport Property t::deny -
multicast interfaces list length

Number of elements in deny multicast interfaces list.

By default, deny multicast interfaces list length = 0 (i.e., an empty list).

This property is not interpreted by the RTI Data Distribution Service core; it is
provided merely as a convenient and standardized way to specify the interfaces
for the benefit of the transport plugin developer and user.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1412 Class Documentation

6.219 NDDS Transport Shmem Property t
Struct Reference

Subclass of NDDS Transport Property t (p. 1404) allowing specification of
parameters that are specific to the shared-memory transport.

Public Attributes

ˆ struct NDDS Transport Property t parent

Generic properties of all transport plugins.

ˆ RTI INT32 received message count max

Number of messages that can be buffered in the receive queue.

ˆ RTI INT32 receive buffer size

The total number of bytes that can be buffered in the receive queue.

6.219.1 Detailed Description

Subclass of NDDS Transport Property t (p. 1404) allowing specification of
parameters that are specific to the shared-memory transport.

See also:

NDDSTransportSupport::set builtin transport property()
(p. 1441)

6.219.2 Member Data Documentation

6.219.2.1 struct NDDS Transport Property t
NDDS Transport Shmem Property t::parent [read]

Generic properties of all transport plugins.

6.219.2.2 RTI INT32 NDDS Transport Shmem Property -
t::received message count max

Number of messages that can be buffered in the receive queue.

This is the maximum number of messages that can be buffered in a RecvRe-
source of the Transport-Plugin.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.219 NDDS Transport Shmem Property t Struct Reference 1413

This does not guarantee that the Transport-Plugin will actually be able to buffer
received message count max messages of the maximum size set in NDDS -
Transport Property t::message size max (p. 1407).

The total number of bytes that can be buffered for a RecvResource is actually
controlled by receive buffer size.

See also:

NDDS Transport Property t (p. 1404), NDDS Transport -
RecvResource t, NDDS TRANSPORT SHMEM RECEIVED -
MESSAGE COUNT MAX DEFAULT (p. 252)

6.219.2.3 RTI INT32 NDDS Transport Shmem Property -
t::receive buffer size

The total number of bytes that can be buffered in the receive queue.

This number controls how much memory is allocated by the plugin for the receive
queue (on a per RecvResource basis). The actual number of bytes allocated is

size = receive_buffer_size + message_size_max +

received_message_count_max * fixedOverhead

where fixedOverhead is some small number of bytes used by the queue data
structure. The following rules are noted:

ˆ receive buffer size < message size max ∗ received message -
count max, then the transport plugin will not be able to store received -
message count max messages of size message size max.

ˆ receive buffer size > message size max ∗ received message -
count max, then there will be memory allocated that cannot be used by
the plugin and thus wasted.

To optimize memory usage, the user is allowed to specify a size for the receive
queue to be less than that required to hold the maximum number of messages
which are all of the maximum size.

In most situations, the average message size may be far less than the maximum
message size. So for example, if the maximum message size is 64 K bytes, and
the user configures the plugin to buffer at least 10 messages, then 640 K bytes
of memory would be needed if all messages were 64 K bytes. Should this be
desired, then receive buffer size should be set to 640 K bytes.

However, if the average message size is only 10 K bytes, then the user could set
the receive buffer size to 100 K bytes. This allows the user to optimize the

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1414 Class Documentation

memory usage of the plugin for the average case and yet allow the plugin to
handle the extreme case.

NOTE, the queue will always be able to hold 1 message of message size max
bytes, no matter what the value of receive buffer size is.

See also:

NDDS TRANSPORT SHMEM RECEIVE BUFFER SIZE -
DEFAULT (p. 252)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.220 NDDS Transport UDPv4 Property t Struct Reference 1415

6.220 NDDS Transport UDPv4 Property t
Struct Reference

Configurable IPv4/UDP Transport-Plugin properties.

Public Attributes

ˆ struct NDDS Transport Property t parent

Generic properties of all transport plugins.

ˆ RTI INT32 send socket buffer size

Size in bytes of the send buffer of a socket used for sending.

ˆ RTI INT32 recv socket buffer size

Size in bytes of the receive buffer of a socket used for receiving.

ˆ RTI INT32 unicast enabled

Allows the transport plugin to use unicast for sending and receiving.

ˆ RTI INT32 multicast enabled

Allows the transport plugin to use multicast for sending and receiving.

ˆ RTI INT32 multicast ttl

Value for the time-to-live parameter for all multicast sends using this plugin.

ˆ RTI INT32 multicast loopback disabled

Prevents the transport plugin from putting multicast packets onto the loopback
interface.

ˆ RTI INT32 ignore loopback interface

Prevents the transport plugin from using the IP loopback interface.

ˆ RTI INT32 ignore nonrunning interfaces

Prevents the transport plugin from using a network interface that is not re-
ported as RUNNING by the operating system.

ˆ RTI INT32 no zero copy

Prevents the transport plugin from doing a zero copy.

ˆ RTI INT32 send blocking

Control blocking behavior of send sockets. CHANGING THIS FROM THE
DEFAULT CAN CAUSE SIGNIFICANT PERFORMANCE PROBLEMS.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1416 Class Documentation

ˆ RTI UINT32 transport priority mask

Set mask for use of transport priority field.

ˆ RTI INT32 transport priority mapping low

Set low value of output range to IPv4 TOS.

ˆ RTI INT32 transport priority mapping high

Set high value of output range to IPv4 TOS.

6.220.1 Detailed Description

Configurable IPv4/UDP Transport-Plugin properties.

The properties in this structure can be modified by the end user to configure the
plugin. However, the properties must be set before the plugin is instantiated.

See also:

NDDSTransportSupport::set builtin transport property()
(p. 1441)
NDDS Transport UDPv4 new (p. 260)

6.220.2 Member Data Documentation

6.220.2.1 struct NDDS Transport Property t
NDDS Transport UDPv4 Property t::parent [read]

Generic properties of all transport plugins.

6.220.2.2 RTI INT32 NDDS Transport UDPv4 Property t::send -
socket buffer size

Size in bytes of the send buffer of a socket used for sending.

On most operating systems, setsockopt() will be called to set the SENDBUF
to the value of this parameter.

This value must be greater than or equal to NDDS Transport Property -
t::message size max (p. 1407). The maximum value is operating system-
dependent.

By default, it will be set to be NDDS TRANSPORT UDPV4 -
MESSAGE SIZE MAX DEFAULT (p. 259).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.220 NDDS Transport UDPv4 Property t Struct Reference 1417

If users configure this parameter to be NDDS TRANSPORT UDPV4 -
SOCKET BUFFER SIZE OS DEFAULT (p. 259), then setsockopt()
(or equivalent) will not be called to size the send buffer of the socket.

See also:

NDDS TRANSPORT UDPV4 MESSAGE SIZE MAX -
DEFAULT (p. 259)
NDDS TRANSPORT UDPV4 SOCKET BUFFER SIZE OS -
DEFAULT (p. 259)

6.220.2.3 RTI INT32 NDDS Transport UDPv4 Property t::recv -
socket buffer size

Size in bytes of the receive buffer of a socket used for receiving.

On most operating systems, setsockopt() will be called to set the RECVBUF
to the value of this parameter.

This value must be greater than or equal to NDDS Transport Property -
t::message size max (p. 1407). The maximum value is operating system-
dependent.

By default, it will be set to be NDDS TRANSPORT UDPV4 -
MESSAGE SIZE MAX DEFAULT (p. 259).

If it is set to NDDS TRANSPORT UDPV4 SOCKET BUFFER -
SIZE OS DEFAULT (p. 259), then setsockopt() (or equivalent) will not
be called to size the receive buffer of the socket.

See also:

NDDS TRANSPORT UDPV4 MESSAGE SIZE MAX -
DEFAULT (p. 259)
NDDS TRANSPORT UDPV4 SOCKET BUFFER SIZE OS -
DEFAULT (p. 259)

6.220.2.4 RTI INT32 NDDS Transport UDPv4 Property -
t::unicast enabled

Allows the transport plugin to use unicast for sending and receiving.

This value turns unicast UDP on (if set to 1) or off (if set to 0) for this plugin.
By default, it will be turned on (1). Also by default, the plugin will use all
the allowed network interfaces that it finds up and running when the plugin is
instanced.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1418 Class Documentation

6.220.2.5 RTI INT32 NDDS Transport UDPv4 Property -
t::multicast enabled

Allows the transport plugin to use multicast for sending and receiving.

This value turns multicast UDP on (if set to 1) or off (if set to 0) for this
plugin. By default, it will be turned on (1) for those platforms that support
multicast. Also by default, the plugin will use the all network interfaces allowed
for multicast that it finds up and running when the plugin is instanced.

6.220.2.6 RTI INT32 NDDS Transport UDPv4 Property -
t::multicast ttl

Value for the time-to-live parameter for all multicast sends using this plugin.

This value is used to set the TTL of multicast packets sent by this transport
plugin.

See also:

NDDS TRANSPORT UDPV4 MULTICAST TTL DEFAULT
(p. 259)

6.220.2.7 RTI INT32 NDDS Transport UDPv4 Property -
t::multicast loopback disabled

Prevents the transport plugin from putting multicast packets onto the loopback
interface.

If multicast loopback is disabled (this value is set to 1), then when sending
multicast packets, RTI Data Distribution Service will not put a copy of the
packets on the loopback interface. This prevents applications on the same node
(including itself) from receiving those packets.

This value is set to 0 by default, meaning multicast loopback is enabled .

Disabling multicast loopback (setting this value to 1) may result in minor per-
formance gains when using multicast.

[NOTE: Windows CE systems do not support multicast loopback. This field is
ignored for Windows CE targets.]

6.220.2.8 RTI INT32 NDDS Transport UDPv4 Property -
t::ignore loopback interface

Prevents the transport plugin from using the IP loopback interface.

Currently three values are allowed:

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.220 NDDS Transport UDPv4 Property t Struct Reference 1419

ˆ 0: Forces local traffic to be sent over loopback, even if a more efficient
transport (such as shared memory) is installed (in which case traffic will
be sent over both transports).

ˆ 1: Disables local traffic via this plugin. The IP loopback interface is
not used, even if no NICs are discovered. This is useful when you want
applications running on the same node to use a more efficient plugin (such
as shared memory) instead of the IP loopback.

ˆ -1: Automatic. Lets RTI Data Distribution Service decide between the
above two choices.

The current ”automatic” (-1) RTI Data Distribution Service policy is as follows.

ˆ If a shared memory transport plugin is available for local traffic, the ef-
fective value is 1 (i.e., disable UPV4 local traffic).

ˆ Otherwise, the effective value is 0 (i.e., use UDPv4 for local traffic also).

[default] -1 Automatic RTI Data Distribution Service policy based on avail-
ability of the shared memory transport.

6.220.2.9 RTI INT32 NDDS Transport UDPv4 Property -
t::ignore nonrunning interfaces

Prevents the transport plugin from using a network interface that is not reported
as RUNNING by the operating system.

The transport checks the flags reported by the operating system for each network
interface upon initialization. An interface which is not reported as UP will not
be used. This property allows the same check to be extended to the IFF -
RUNNING flag implemented by some operating systems. The RUNNING flag
is defined to mean that ”all resources are allocated”, and may be off if there is
no link detected, e.g., the network cable is unplugged.

Two values are allowed:

ˆ 0: Do not check the RUNNING flag when enumerating interfaces, just
make sure the interface is UP.

ˆ 1: Check the flag when enumerating interfaces, and ignore those that are
not reported as RUNNING. This can be used on some operating systems to
cause the transport to ignore interfaces that are enabled but not connected
to the network.

[default] 0 (i.e., do not check RUNNING flag)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1420 Class Documentation

6.220.2.10 RTI INT32 NDDS Transport UDPv4 Property t::no -
zero copy

Prevents the transport plugin from doing a zero copy.

By default, this plugin will use the zero copy on OSs that offer it. While this is
good for performance, it may sometime tax the OS resources in a manner that
cannot be overcome by the application.

The best example is if the hardware/device driver lends the buffer to the appli-
cation itself. If the application does not return the loaned buffers soon enough,
the node may error or malfunction. In case you cannot reconfigure the H/W, de-
vice driver, or the OS to allow the zero copy feature to work for your application,
you may have no choice but to turn off zero copy use.

By default this is set to 0, so RTI Data Distribution Service will use the zero-
copy API if offered by the OS.

6.220.2.11 RTI INT32 NDDS Transport UDPv4 Property -
t::send blocking

Control blocking behavior of send sockets. CHANGING THIS FROM THE
DEFAULT CAN CAUSE SIGNIFICANT PERFORMANCE PROBLEMS.

Currently two values are defined:

ˆ NDDS TRANSPORT UDPV4 BLOCKING ALWAYS: Sockets
are blocking (default socket options for Operating System).

ˆ NDDS TRANSPORT UDPV4 BLOCKING NEVER: Sockets
are modified to make them non-blocking. THIS IS NOT A SUP-
PORTED CONFIGURATION AND MAY CAUSE SIGNIFICANT
PERFORMANCE PROBLEMS.

[default] NDDS TRANSPORT UDPV4 BLOCKING ALWAYS.

6.220.2.12 RTI UINT32 NDDS Transport UDPv4 Property -
t::transport priority mask

Set mask for use of transport priority field.

This is used in conjunction with NDDS Transport UDPv4 Property -
t::transport priority mapping low (p. 1421) and NDDS Transport -
UDPv4 Property t::transport priority mapping high (p. 1421) to define
the mapping from DDS transport priority (see TRANSPORT PRIORITY
(p. 358)) to the IPv4 TOS field. Defines a contiguous region of bits in the 32-bit

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.220 NDDS Transport UDPv4 Property t Struct Reference 1421

transport priority value that is used to generate values for the IPv4 TOS field
on an outgoing socket.

For example, the value 0x0000ff00 causes bits 9-16 (8 bits) to be used in the
mapping. The value will be scaled from the mask range (0x0000 - 0xff00 in this
case) to the range specified by low and high.

If the mask is set to zero, then the transport will not set IPv4 TOS for send
sockets.

[default] 0.

6.220.2.13 RTI INT32 NDDS Transport UDPv4 Property -
t::transport priority mapping low

Set low value of output range to IPv4 TOS.

This is used in conjunction with NDDS Transport UDPv4 Property -
t::transport priority mask (p. 1420) and NDDS Transport UDPv4 -
Property t::transport priority mapping high (p. 1421) to define the map-
ping from DDS transport priority to the IPv4 TOS field. Defines the low value
of the output range for scaling.

Note that IPv4 TOS is generally an 8-bit value.

[default] 0.

6.220.2.14 RTI INT32 NDDS Transport UDPv4 Property -
t::transport priority mapping high

Set high value of output range to IPv4 TOS.

This is used in conjunction with NDDS Transport UDPv4 Property -
t::transport priority mask (p. 1420) and NDDS Transport UDPv4 -
Property t::transport priority mapping low (p. 1421) to define the map-
ping from DDS transport priority to the IPv4 TOS field. Defines the high value
of the output range for scaling.

Note that IPv4 TOS is generally an 8-bit value.

[default] 0xff.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1422 Class Documentation

6.221 NDDS Transport UDPv6 Property t
Struct Reference

Configurable IPv6/UDP Transport-Plugin properties.

Public Attributes

ˆ struct NDDS Transport Property t parent

Generic properties of all transport plugins.

ˆ RTI INT32 send socket buffer size

Size in bytes of the send buffer of a socket used for sending.

ˆ RTI INT32 recv socket buffer size

Size in bytes of the receive buffer of a socket used for receiving.

ˆ RTI INT32 unicast enabled

Allows the transport plugin to use unicast for sending and receiving.

ˆ RTI INT32 multicast enabled

Allows the transport plugin to use multicast for sending and receiving.

ˆ RTI INT32 multicast ttl

Value for the time-to-live parameter for all multicast sends using this plugin.

ˆ RTI INT32 multicast loopback disabled

Prevents the transport plugin from putting multicast packets onto the loopback
interface.

ˆ RTI INT32 ignore loopback interface

Prevents the transport plugin from using the IP loopback interface.

ˆ RTI INT32 ignore nonrunning interfaces

Prevents the transport plugin from using a network interface that is not re-
ported as RUNNING by the operating system.

ˆ RTI INT32 no zero copy

Prevents the transport plugin from doing zero copy.

ˆ RTI INT32 send blocking

Control blocking behavior of send sockets. CHANGING THIS FROM THE
DEFAULT CAN CAUSE SIGNIFICANT PERFORMANCE PROBLEMS.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.221 NDDS Transport UDPv6 Property t Struct Reference 1423

ˆ RTI INT32 enable v4mapped
Specify whether UDPv6 transport will process IPv4 addresses.

ˆ RTI UINT32 transport priority mask
Set mask for use of transport priority field.

ˆ RTI INT32 transport priority mapping low
Set low value of output range to IPv6 TCLASS.

ˆ RTI INT32 transport priority mapping high
Set high value of output range to IPv6 TCLASS.

6.221.1 Detailed Description

Configurable IPv6/UDP Transport-Plugin properties.

The properties in this structure can be modified by the end user to configure the
plugin. However, the properties must be set before the plugin is instantiated.

See also:

NDDSTransportSupport::set builtin transport property()
(p. 1441)
NDDS Transport UDPv6 new (p. 270)

6.221.2 Member Data Documentation

6.221.2.1 struct NDDS Transport Property t
NDDS Transport UDPv6 Property t::parent [read]

Generic properties of all transport plugins.

6.221.2.2 RTI INT32 NDDS Transport UDPv6 Property t::send -
socket buffer size

Size in bytes of the send buffer of a socket used for sending.

On most operating systems, setsockopt() will be called to set the SENDBUF
to the value of this parameter.

This value must be greater than or equal to NDDS Transport Property -
t::message size max (p. 1407). The maximum value is operating system-
dependent.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1424 Class Documentation

By default, it will be set to be NDDS TRANSPORT UDPV6 -
MESSAGE SIZE MAX DEFAULT (p. 269).

If users configure this parameter to be NDDS TRANSPORT UDPV6 -
SOCKET BUFFER SIZE OS DEFAULT (p. 269), then setsockopt()
(or equivalent) will not be called to size the send buffer of the socket.

See also:

NDDS TRANSPORT UDPV6 MESSAGE SIZE MAX -
DEFAULT (p. 269)
NDDS TRANSPORT UDPV6 SOCKET BUFFER SIZE OS -
DEFAULT (p. 269)

6.221.2.3 RTI INT32 NDDS Transport UDPv6 Property t::recv -
socket buffer size

Size in bytes of the receive buffer of a socket used for receiving.

On most operating systems, setsockopt() will be called to set the RECVBUF
to the value of this parameter.

This value must be greater than or equal to NDDS Transport Property -
t::message size max (p. 1407). The maximum value is operating system-
dependent.

By default, it will be set to be NDDS TRANSPORT UDPV6 -
MESSAGE SIZE MAX DEFAULT (p. 269).

If it is set to NDDS TRANSPORT UDPV6 SOCKET BUFFER -
SIZE OS DEFAULT (p. 269), then setsockopt() (or equivalent) will not
be called to size the receive buffer of the socket.

See also:

NDDS TRANSPORT UDPV6 MESSAGE SIZE MAX -
DEFAULT (p. 269)
NDDS TRANSPORT UDPV6 SOCKET BUFFER SIZE OS -
DEFAULT (p. 269)

6.221.2.4 RTI INT32 NDDS Transport UDPv6 Property -
t::unicast enabled

Allows the transport plugin to use unicast for sending and receiving.

This value turns unicast UDP on (if set to 1) or off (if set to 0) for this plugin.
By default, it will be turned on (1). Also by default, the plugin will use all

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.221 NDDS Transport UDPv6 Property t Struct Reference 1425

the allowed network interfaces that it finds up and running when the plugin is
instanced.

6.221.2.5 RTI INT32 NDDS Transport UDPv6 Property -
t::multicast enabled

Allows the transport plugin to use multicast for sending and receiving.

This value turns multicast UDP on (if set to 1) or off (if set to 0) for this
plugin. By default, it will be turned on (1) for those platforms that support
multicast. Also by default, the plugin will use the all network interfaces allowed
for multicast that it finds up and running when the plugin is instanced.

6.221.2.6 RTI INT32 NDDS Transport UDPv6 Property -
t::multicast ttl

Value for the time-to-live parameter for all multicast sends using this plugin.

This is used to set the TTL of multicast packets sent by this transport plugin.

See also:

NDDS TRANSPORT UDPV6 MULTICAST TTL DEFAULT
(p. 269)

6.221.2.7 RTI INT32 NDDS Transport UDPv6 Property -
t::multicast loopback disabled

Prevents the transport plugin from putting multicast packets onto the loopback
interface.

If multicast loopback is disabled (this value is set to 1), then when sending
multicast packets, RTI Data Distribution Service will not put a copy of the
packets on the loopback interface. This prevents applications on the same node
(including itself) from receiving those packets.

This value is set to 0 by default, meaning multicast loopback is enabled .

Disabling multicast loopback (setting this value to 1) may result in minor per-
formance gains when using multicast.

6.221.2.8 RTI INT32 NDDS Transport UDPv6 Property -
t::ignore loopback interface

Prevents the transport plugin from using the IP loopback interface.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1426 Class Documentation

Currently three values are allowed:

ˆ 0: Forces local traffic to be sent over loopback, even if a more efficient
transport (such as shared memory) is installed (in which case traffic will
be sent over both transports).

ˆ 1: Disables local traffic via this plugin. Do not use the IP loopback
interface even if no NICs are discovered. This is useful when you want
applications running on the same node to use a more efficient transport
(such as shared memory) instead of the IP loopback.

ˆ -1: Automatic. Lets RTI Data Distribution Service decide between the
above two choices.

The current ”automatic” (-1) RTI Data Distribution Service policy is as follows.

ˆ If a shared memory transport plugin is available for local traffic, the ef-
fective value is 1 (i.e., disable UDPv6 local traffic).

ˆ Otherwise, the effective value is 0 (i.e., use UDPv6 for local traffic also).

[default] -1 Automatic RTI Data Distribution Service policy based on avail-
ability of the shared memory transport.

6.221.2.9 RTI INT32 NDDS Transport UDPv6 Property -
t::ignore nonrunning interfaces

Prevents the transport plugin from using a network interface that is not reported
as RUNNING by the operating system.

The transport checks the flags reported by the operating system for each network
interface upon initialization. An interface which is not reported as UP will not
be used. This property allows the same check to be extended to the IFF -
RUNNING flag implemented by some operating systems. The RUNNING flag
is defined to mean that ”all resources are allocated”, and may be off if there is
no link detected, e.g., the network cable is unplugged.

Two values are allowed:

ˆ 0: Do not check the RUNNING flag when enumerating interfaces, just
make sure interface is UP.

ˆ 1: Check flag when enumerating interfaces and ignore those that are not
reported as RUNNING. This can be used on some operating systems to
cause the transport to ignore interfaces that are enabled but not connected
to the network.

[default] 0 (i.e., do not check RUNNING flag)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.221 NDDS Transport UDPv6 Property t Struct Reference 1427

6.221.2.10 RTI INT32 NDDS Transport UDPv6 Property t::no -
zero copy

Prevents the transport plugin from doing zero copy.

By default, this plugin will use the zero copy on OSs that offer it. While this is
good for performance, it may sometimes tax the OS resources in a manner that
cannot be overcome by the application.

The best example is if the hardware/device driver lends the buffer to the appli-
cation itself. If the application does not return the loaned buffers soon enough,
the node may error or malfunction. If you cannot reconfigure the H/W, device
driver, or the OS to allow the zero copy feature to work for your application,
you may have no choice but to turn off the use of zero copy.

By default this is set to 0, so RTI Data Distribution Service will use the zero
copy API if offered by the OS.

6.221.2.11 RTI INT32 NDDS Transport UDPv6 Property -
t::send blocking

Control blocking behavior of send sockets. CHANGING THIS FROM THE
DEFAULT CAN CAUSE SIGNIFICANT PERFORMANCE PROBLEMS.

Currently two values are defined:

ˆ NDDS TRANSPORT UDPV6 BLOCKING ALWAYS: Sockets
are blocking (default socket options for Operating System).

ˆ NDDS TRANSPORT UDPV6 BLOCKING NEVER: Sockets
are modified to make them non-blocking. THIS IS NOT A SUP-
PORTED CONFIGURATION AND MAY CAUSE SIGNIFICANT
PERFORMANCE PROBLEMS.

[default] NDDS TRANSPORT UDPV6 BLOCKING ALWAYS.

6.221.2.12 RTI INT32 NDDS Transport UDPv6 Property -
t::enable v4mapped

Specify whether UDPv6 transport will process IPv4 addresses.

Set this to 1 to turn on processing of IPv4 addresses. Note that this may
make it incompatible with use of the UDPv4 transport within the same domain
participant.

[default] 0.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1428 Class Documentation

6.221.2.13 RTI UINT32 NDDS Transport UDPv6 Property -
t::transport priority mask

Set mask for use of transport priority field.

If transport priority mapping is supported on the platform, this
mask is used in conjunction with NDDS Transport UDPv6 Property -
t::transport priority mapping low (p. 1428) and NDDS Transport -
UDPv6 Property t::transport priority mapping high (p. 1428) to define
the mapping from DDS transport priority (see TRANSPORT PRIORITY
(p. 358)) to the IPv6 TCLASS field. Defines a contiguous region of bits in
the 32-bit transport priority value that is used to generate values for the IPv6
TCLASS field on an outgoing socket. (See the Platform Notes to find out if the
transport priority is supported on a specific platform.)

For example, the value 0x0000ff00 causes bits 9-16 (8 bits) to be used in the
mapping. The value will be scaled from the mask range (0x0000 - 0xff00 in this
case) to the range specified by low and high.

If the mask is set to zero, then the transport will not set IPv6 TCLASS for send
sockets.

[default] 0.

6.221.2.14 RTI INT32 NDDS Transport UDPv6 Property -
t::transport priority mapping low

Set low value of output range to IPv6 TCLASS.

This is used in conjunction with NDDS Transport UDPv6 Property -
t::transport priority mask (p. 1428) and NDDS Transport UDPv6 -
Property t::transport priority mapping high (p. 1428) to define the map-
ping from DDS transport priority to the IPv6 TCLASS field. Defines the low
value of the output range for scaling.

Note that IPv6 TCLASS is generally an 8-bit value.

[default] 0.

6.221.2.15 RTI INT32 NDDS Transport UDPv6 Property -
t::transport priority mapping high

Set high value of output range to IPv6 TCLASS.

This is used in conjunction with NDDS Transport UDPv6 Property -
t::transport priority mask (p. 1428) and NDDS Transport UDPv6 -
Property t::transport priority mapping low (p. 1428) to define the map-
ping from DDS transport priority to the IPv6 TCLASS field. Defines the high
value of the output range for scaling.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.221 NDDS Transport UDPv6 Property t Struct Reference 1429

Note that IPv6 TCLASS is generally an 8-bit value.

[default] 0xff.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1430 Class Documentation

6.222 NDDSConfigLogger Class Reference

<<interface>> (p. 190) The singleton type used to configure RTI Data Dis-
tribution Service logging.

Public Member Functions

ˆ NDDS Config LogVerbosity get verbosity ()

Get the verbosity at which RTI Data Distribution Service is currently logging
diagnostic information.

ˆ NDDS Config LogVerbosity get verbosity by category (NDDS -
Config LogCategory category)

Get the verbosity at which RTI Data Distribution Service is currently logging
diagnostic information in the given category.

ˆ void set verbosity (NDDS Config LogVerbosity verbosity)

Set the verbosity at which RTI Data Distribution Service will log diagnostic
information.

ˆ void set verbosity by category (NDDS Config LogCategory cate-
gory, NDDS Config LogVerbosity verbosity)

Set the verbosity at which RTI Data Distribution Service will log diagnostic
information in the given category.

ˆ FILE ∗ get output file ()

Get the file to which the logged output is redirected.

ˆ bool set output file (FILE ∗out)

Set the file to which the logged output is redirected.

ˆ NDDS Config LogPrintFormat get print format ()

Get the current message format that RTI Data Distribution Service is using
to log diagnostic information.

ˆ bool set print format (NDDS Config LogPrintFormat print -
format)

Set the message format that RTI Data Distribution Service will use to log
diagnostic information.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.222 NDDSConfigLogger Class Reference 1431

Static Public Member Functions

ˆ static NDDSConfigLogger ∗ get instance ()

Get the singleton instance of this type.

6.222.1 Detailed Description

<<interface>> (p. 190) The singleton type used to configure RTI Data Dis-
tribution Service logging.

6.222.2 Member Function Documentation

6.222.2.1 static NDDSConfigLogger∗ NDDSConfigLogger::get -
instance () [static]

Get the singleton instance of this type.

6.222.2.2 NDDS Config LogVerbosity NDDSConfigLogger::get -
verbosity ()

Get the verbosity at which RTI Data Distribution Service is currently logging
diagnostic information.

The default verbosity if DDSLogger::set verbosity is never called is DDS -
NDDS CONFIG LOG VERBOSITY ERROR.

If DDSLogger::set verbosity by category has been used to set different verbosi-
ties for different categories of messages, this method will return the maximum
verbosity of all categories.

6.222.2.3 NDDS Config LogVerbosity NDDSConfigLogger::get -
verbosity by category (NDDS Config LogCategory
category)

Get the verbosity at which RTI Data Distribution Service is currently logging
diagnostic information in the given category.

The default verbosity if DDSLogger::set verbosity and DDSLogger::set -
verbosity by category are never called is DDS NDDS CONFIG LOG -
VERBOSITY ERROR.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1432 Class Documentation

6.222.2.4 void NDDSConfigLogger::set verbosity
(NDDS Config LogVerbosity verbosity)

Set the verbosity at which RTI Data Distribution Service will log diagnostic
information.

Note: Logging at high verbosities will be detrimental to your application’s
performance. Your default setting should typically remain at DDS NDDS -
CONFIG LOG VERBOSITY WARNING or below. (The default verbosity if
you never set it is DDS NDDS CONFIG LOG VERBOSITY ERROR.)

6.222.2.5 void NDDSConfigLogger::set verbosity by category
(NDDS Config LogCategory category,
NDDS Config LogVerbosity verbosity)

Set the verbosity at which RTI Data Distribution Service will log diagnostic
information in the given category.

6.222.2.6 FILE∗ NDDSConfigLogger::get output file ()

Get the file to which the logged output is redirected.

If no output file has been registered through DDSLogger::set output file, this
method will return NULL. In this case, logged output will on most platforms
go to standard out as if through printf.

6.222.2.7 bool NDDSConfigLogger::set output file (FILE ∗ out)

Set the file to which the logged output is redirected.

The file passed may be NULL, in which case further logged output will be
redirected to the platform-specific default output location (standard out on
most platforms).

6.222.2.8 NDDS Config LogPrintFormat NDDSConfigLogger::get -
print format ()

Get the current message format that RTI Data Distribution Service is using to
log diagnostic information.

If DDSLogger::set print format is never called, the default format is DDS -
NDDS CONFIG LOG PRINT FORMAT DEFAULT.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.222 NDDSConfigLogger Class Reference 1433

6.222.2.9 bool NDDSConfigLogger::set print format
(NDDS Config LogPrintFormat print format)

Set the message format that RTI Data Distribution Service will use to log di-
agnostic information.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1434 Class Documentation

6.223 NDDSConfigVersion Class Reference

<<interface>> (p. 190) The version of an RTI Data Distribution Service
distribution.

Public Member Functions

ˆ const DDS ProductVersion t & get product version () const

Get the RTI Data Distribution Service product version.

ˆ const NDDS Config LibraryVersion t & get cpp api version ()
const

Get the version of the C++ API library.

ˆ const NDDS Config LibraryVersion t & get c api version ()
const

Get the version of the C API library.

ˆ const NDDS Config LibraryVersion t & get core version () const

Get the version of the core library.

ˆ const char ∗ to string () const

Get this version in string form.

Static Public Member Functions

ˆ static const NDDSConfigVersion & get instance ()

Get the singleton instance of this type.

6.223.1 Detailed Description

<<interface>> (p. 190) The version of an RTI Data Distribution Service
distribution.

The complete version is made up of the versions of the individual libraries that
make up the product distribution.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.223 NDDSConfigVersion Class Reference 1435

6.223.2 Member Function Documentation

6.223.2.1 static const NDDSConfigVersion&
NDDSConfigVersion::get instance () [static]

Get the singleton instance of this type.

6.223.2.2 const DDS ProductVersion t&
NDDSConfigVersion::get product version () const

Get the RTI Data Distribution Service product version.

6.223.2.3 const NDDS Config LibraryVersion t&
NDDSConfigVersion::get cpp api version () const

Get the version of the C++ API library.

6.223.2.4 const NDDS Config LibraryVersion t&
NDDSConfigVersion::get c api version () const

Get the version of the C API library.

6.223.2.5 const NDDS Config LibraryVersion t&
NDDSConfigVersion::get core version () const

Get the version of the core library.

6.223.2.6 const char∗ NDDSConfigVersion::to string () const

Get this version in string form.

Combine all of the constituent library versions into a single string.

The memory in which the string is stored in internal to this NDDSConfigVer-
sion (p. 1434). The caller should not modify it.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1436 Class Documentation

6.224 NDDSTransportSupport Class Reference

<<interface>> (p. 190) The utility class used to configure RTI Data Distri-
bution Service pluggable transports.

Static Public Member Functions

ˆ static NDDS Transport Handle t register transport (DDSDo-
mainParticipant ∗participant in, NDDS Transport Plugin ∗transport -
in, const DDS StringSeq &aliases in, const NDDS Transport -
Address t &network address in)

Register a transport plugin for use with a DDSDomainParticipant
(p. 1054), assigning it a network address.

ˆ static NDDS Transport Handle t lookup transport (DDS-
DomainParticipant ∗participant in, DDS StringSeq &aliases -
out, NDDS Transport Address t &network address out, NDDS -
Transport Plugin ∗transport in)

Look up a transport plugin within a DDSDomainParticipant (p. 1054).

ˆ static DDS ReturnCode t add send route (const NDDS -
Transport Handle t &transport handle in, const NDDS Transport -
Address t &address range in, DDS Long address range bit count in)

Add a route for outgoing messages.

ˆ static DDS ReturnCode t add receive route (const NDDS -
Transport Handle t &transport handle in, const NDDS Transport -
Address t &address range in, DDS Long address range bit count in)

Add a route for incoming messages.

ˆ static DDS ReturnCode t get builtin transport property (DDS-
DomainParticipant ∗participant in, DDS TransportBuiltinKind
builtin transport kind in, struct NDDS Transport Property t
&builtin transport property inout)

Get the properties used to create a builtin transport plugin.

ˆ static DDS ReturnCode t set builtin transport property (DDS-
DomainParticipant ∗participant in, DDS TransportBuiltinKind
builtin transport kind in, const struct NDDS Transport Property t
&builtin transport property in)

Set the properties used to create a builtin transport plugin.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.224 NDDSTransportSupport Class Reference 1437

6.224.1 Detailed Description

<<interface>> (p. 190) The utility class used to configure RTI Data Distri-
bution Service pluggable transports.

6.224.2 Member Function Documentation

6.224.2.1 static NDDS Transport Handle t
NDDSTransportSupport::register transport
(DDSDomainParticipant ∗ participant in,
NDDS Transport Plugin ∗ transport in,
const DDS StringSeq & aliases in, const
NDDS Transport Address t & network address in)
[static]

Register a transport plugin for use with a DDSDomainParticipant (p. 1054),
assigning it a network address.

A transport plugin instance can be used by exactly one DDSDomainPartic-
ipant (p. 1054) at a time.

When a DataWriter/DataReader is created, only those transports already reg-
istered to the corresponding DDSDomainParticipant (p. 1054) are available
to the DataWriter/DataReader.

Builtin transports can be automatically registered by RTI Data Distribution
Service as a convenience to the user. See Built-in Transport Plugins (p. 129)
for details on how to control the builtin transports that are automatically reg-
istered.

Precondition:

A disabled DDSDomainParticipant (p. 1054) and a transport plugin
that will be registered exclusively with it.

Parameters:

participant in <<in>> (p. 191) A non-null, disabled DDSDomain-
Participant (p. 1054).

transport in <<in>> (p. 191) A non-null transport plugin that is
currently not registered with another DDSDomainParticipant
(p. 1054).

aliases in <<in>> (p. 191) A non-null sequence of strings used as aliases
to symbolically refer to the transport plugins. The transport plugin
will be ”available for use” by a DDSEntity (p. 1157) in the DDSDo-
mainParticipant (p. 1054) if the transport alias list associated with
the DDSEntity (p. 1157) contains one of these transport aliases. An

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1438 Class Documentation

empty alias list represents a wildcard and matches all aliases. Alias
names for the builtin transports are defined in TRANSPORT -
BUILTIN (p. 379).

network address in <<in>> (p. 191) The network address at which
to register this transport plugin. The least significant transport -
in.property.address bit count will be truncated. The remaining
bits are the network address of the transport plugin. (see Transport
Class Attributes (p. 119)).

Returns:

Upon success, a valid non-NIL transport handle, representing the associ-
ation between the DDSDomainParticipant (p. 1054) and the transport
plugin; a NDDS TRANSPORT HANDLE NIL (p. 127) upon failure.

Note that a transport plugin’s class name is automatically registered as an
implicit alias for the plugin. Thus, a class name can be used to refer to all the
transport plugin instance of that class.

See also:

Transport Class Attributes (p. 119)
Transport Network Address (p. 121)
Locator Format (p. 372)
NDDS DISCOVERY PEERS (p. 371)

6.224.2.2 static NDDS Transport Handle t
NDDSTransportSupport::lookup transport
(DDSDomainParticipant ∗ participant in, DDS -
StringSeq & aliases out, NDDS Transport Address t
& network address out, NDDS Transport Plugin ∗
transport in) [static]

Look up a transport plugin within a DDSDomainParticipant (p. 1054).

The transport plugin should have already been registered with the DDSDo-
mainParticipant (p. 1054).

Parameters:

participant in <<in>> (p. 191) A non-null DDSDomainParticipant
(p. 1054).

aliases out <<inout>> (p. 191) A sequence of string where the aliases
used to refer to the transport plugin symbolically will be returned.
null if not interested.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.224 NDDSTransportSupport Class Reference 1439

network address out <<inout>> (p. 191) The network address at
which to register the transport plugin will be returned here. null if
not interested.

transport in <<in>> (p. 191) A non-null transport plugin that is al-
ready registered with the DDSDomainParticipant (p. 1054).

Returns:

Upon success, a valid non-NIL transport handle, representating the associ-
ation between the DDSDomainParticipant (p. 1054) and the transport
plugin; a NDDS TRANSPORT HANDLE NIL (p. 127) upon failure.

See also:

Transport Class Attributes (p. 119)
Transport Network Address (p. 121)

6.224.2.3 static DDS ReturnCode t NDDSTransportSupport::add -
send route (const NDDS Transport Handle t &
transport handle in, const NDDS Transport Address t &
address range in, DDS Long address range bit count in)
[static]

Add a route for outgoing messages.

This method can be used to narrow the range of addresses to which outgoing
messages can be sent.

Precondition:

A disabled DDSDomainParticipant (p. 1054).

Parameters:

transport handle in <<in>> (p. 191) A valid non-NIL transport han-
dle as a result of a call to NDDSTransportSupport::register -
transport() (p. 1437).

address range in <<in>> (p. 191) The outgoing address range for
which to use this transport plugin.

address range bit count in <<in>> (p. 191) The number of most sig-
nificant bits used to specify the address range.

Returns:

One of the Standard Return Codes (p. 302), or DDS RETCODE -
PRECONDITION NOT MET (p. 303).

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1440 Class Documentation

See also:

Transport Send Route (p. 121)

6.224.2.4 static DDS ReturnCode t NDDSTransportSupport::add -
receive route (const NDDS Transport Handle t &
transport handle in, const NDDS Transport Address t &
address range in, DDS Long address range bit count in)
[static]

Add a route for incoming messages.

This method can be used to narrow the range of addresses at which to receive
incoming messages.

Precondition:

A disabled DDSDomainParticipant (p. 1054).

Parameters:

transport handle in <<in>> (p. 191) A valid non-NIL transport han-
dle as a result of a call to NDDSTransportSupport::register -
transport() (p. 1437).

address range in <<in>> (p. 191) The incoming address range for
which to use this transport plugin.

address range bit count in <<in>> (p. 191) The number of most sig-
nificant bits used to specify the address range.

Returns:

One of the Standard Return Codes (p. 302), or DDS RETCODE -
PRECONDITION NOT MET (p. 303).

See also:

Transport Receive Route (p. 122)

6.224.2.5 static DDS ReturnCode t NDDSTransportSupport::get -
builtin transport property (DDSDomainParticipant ∗
participant in, DDS TransportBuiltinKind builtin -
transport kind in, struct NDDS Transport Property t &
builtin transport property inout) [static]

Get the properties used to create a builtin transport plugin.

Retrieves the properties that will be used to create a builtin transport plugin.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.224 NDDSTransportSupport Class Reference 1441

Precondition:

The builtin transport property inout parameter must be of the type
specified by the builtin transport kind in.

Parameters:

participant in <<in>> (p. 191) A valid non-null DDSDomainPartic-
ipant (p. 1054)

builtin transport kind in <<in>> (p. 191) The builtin transport kind
for which to retrieve the properties.

builtin transport property inout <<inout>> (p. 191) The storage
area where the retrieved property will be output. The specific type
required by the builtin transport kind in must be used.

Returns:

One of the Standard Return Codes (p. 302), or DDS RETCODE -
PRECONDITION NOT MET (p. 303).

See also:

NDDSTransportSupport::set builtin transport property()
(p. 1441)

6.224.2.6 static DDS ReturnCode t NDDSTransportSupport::set -
builtin transport property (DDSDomainParticipant
∗ participant in, DDS TransportBuiltinKind
builtin transport kind in, const struct NDDS -
Transport Property t & builtin transport property in)
[static]

Set the properties used to create a builtin transport plugin.

Specifies the properties that will be used to create a builtin transport plugin.

If the builtin transport is already registered when this operation is called, these
property changes will not have any effect. Builtin transport properties should
always be set before the transport is registered. See Built-in Transport Plu-
gins (p. 129) for details on when a builtin transport is registered.

Precondition:

A disabled DDSDomainParticipant (p. 1054). The builtin -
transport property inout parameter must be of the type specified by
the builtin transport kind in.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1442 Class Documentation

Parameters:

participant in <<in>> (p. 191) A valid non-null DDSDomainPartic-
ipant (p. 1054) that has not been enabled.

builtin transport kind in <<in>> (p. 191) The builtin transport kind
for which to specificy the properties.

builtin transport property in <<inout>> (p. 191) The new transport
property that will be used to the create the builtin transport plugin.
The specific type required by the builtin transport kind in must
be used.

Returns:

One of the Standard Return Codes (p. 302), or DDS RETCODE -
PRECONDITION NOT MET (p. 303).

See also:

NDDSTransportSupport::get builtin transport property()
(p. 1440)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

6.225 NDDSUtility Class Reference 1443

6.225 NDDSUtility Class Reference

Unsupported utility APIs.

Static Public Member Functions

ˆ static void sleep (const struct DDS Duration t &durationIn)
Block the calling thread for the specified duration.

6.225.1 Detailed Description

Unsupported utility APIs.

Unsupported APIs used in example code. The static methods supplied by this
class are used by the example code distributed with RTI Data Distribution
Service and generated by nddsgen. These methods are not supported by RTI.

6.225.2 Member Function Documentation

6.225.2.1 static void NDDSUtility::sleep (const struct
DDS Duration t & durationIn) [static]

Block the calling thread for the specified duration.

Note that the achievable resolution of sleep is OS-dependent. That is, do not
assume that you can sleep for 1 nanosecond just because you can specify a 1-
nanosecond sleep duration via the API. The sleep resolution on most operating
systems is usually 10 ms or greater.

Parameters:

durationIn <<in>> (p. 191) Sleep duration.

MT Safety:

safe

Examples:

HelloWorld publisher.cxx, and HelloWorld subscriber.cxx.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1444 Class Documentation

6.226 TransportAllocationSettings t Struct
Reference

Allocation settings used by various internal buffers.

6.226.1 Detailed Description

Allocation settings used by various internal buffers.

An allocation setting structure defines the rules of memory management used
by internal buffers.

An internal buffer can provide blocks of memory of fixed size. They are used
in several places of any transport, and this structure defines its starting size,
limits, and how to increase its capacity.

It contains three values:

ˆ initial count: the number of individual elements that are allocated when
the buffer is created.

ˆ max count: the maximum number of elements the buffer can hold.
The buffer will grow up to this amount. After this limit is
reached, new allocation requests will fail. For unlimited size,
use the value NDDS TRANSPORT ALLOCATION SETTINGS MAX -
COUNT UNLIMITED

ˆ incremental count: The amount of elements that are allocated at every in-
crement. You can use the value: NDDS TRANSPORT ALLOCATION -
SETTINGS INCREMENTAL COUNT AUTOMATIC to have the buffer
double its size at every reallocation request.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

Chapter 7

Example Documentation

7.1 HelloWorld.cxx

7.1.1 Programming Language Type Description

The following programming language specific type representation is generated
by rtiddsgen (p. 211) for use in application code, where:

ˆ Foo (p. 1333) = HelloWorld

ˆ FooSeq (p. 1377) = HelloWorldSeq

7.1.1.1 HelloWorld.h

[$(NDDSHOME)/example/CPP/helloWorld/HelloWorld.h]

/*

WARNING: THIS FILE IS AUTO-GENERATED. DO NOT MODIFY.

This file was generated from HelloWorld.idl using "rtiddsgen".

The rtiddsgen tool is part of the RTI Data Distribution Service distribution.

For more information, type ’rtiddsgen -help’ at a command shell

or consult the RTI Data Distribution Service manual.

*/

#ifndef HelloWorld_1275191054218_h

#define HelloWorld_1275191054218_h

#ifndef NDDS_STANDALONE_TYPE

#ifdef __cplusplus

#ifndef ndds_cpp_h

#include "ndds/ndds_cpp.h"

1446 Example Documentation

#endif

#else

#ifndef ndds_c_h

#include "ndds/ndds_c.h"

#endif

#endif

#else

#include "ndds_standalone_type.h"

#endif

#ifdef __cplusplus

extern "C" {

#endif

extern const char *HelloWorldTYPENAME;

#ifdef __cplusplus

}

#endif

typedef struct HelloWorld

{

char* msg; /* maximum length = (128) */

} HelloWorld;

#if (defined(RTI_WIN32) || defined (RTI_WINCE)) && defined(NDDS_USER_DLL_EXPORT)

/* If the code is building on Windows, start exporting symbols.

*/

#undef NDDSUSERDllExport

#define NDDSUSERDllExport __declspec(dllexport)

#endif

NDDSUSERDllExport DDS_TypeCode* HelloWorld_get_typecode(void); /* Type code */

DDS_SEQUENCE(HelloWorldSeq, HelloWorld);

NDDSUSERDllExport

RTIBool HelloWorld_initialize(

HelloWorld* self);

NDDSUSERDllExport

RTIBool HelloWorld_initialize_ex(

HelloWorld* self,RTIBool allocatePointers);

NDDSUSERDllExport

void HelloWorld_finalize(

HelloWorld* self);

NDDSUSERDllExport

void HelloWorld_finalize_ex(

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

7.1 HelloWorld.cxx 1447

HelloWorld* self,RTIBool deletePointers);

NDDSUSERDllExport

RTIBool HelloWorld_copy(

HelloWorld* dst,

const HelloWorld* src);

#if (defined(RTI_WIN32) || defined (RTI_WINCE)) && defined(NDDS_USER_DLL_EXPORT)

/* If the code is building on Windows, stop exporting symbols.

*/

#undef NDDSUSERDllExport

#define NDDSUSERDllExport

#endif

#endif /* HelloWorld_1275191054218_h */

7.1.1.2 HelloWorld.cxx

[$(NDDSHOME)/example/CPP/helloWorld/HelloWorld.cxx]

/*

WARNING: THIS FILE IS AUTO-GENERATED. DO NOT MODIFY.

This file was generated from HelloWorld.idl using "rtiddsgen".

The rtiddsgen tool is part of the RTI Data Distribution Service distribution.

For more information, type ’rtiddsgen -help’ at a command shell

or consult the RTI Data Distribution Service manual.

*/

#ifndef NDDS_STANDALONE_TYPE

#ifdef __cplusplus

#ifndef ndds_cpp_h

#include "ndds/ndds_cpp.h"

#endif

#ifndef dds_c_log_impl_h

#include "dds_c/dds_c_log_impl.h"

#endif

#else

#ifndef ndds_c_h

#include "ndds/ndds_c.h"

#endif

#endif

#ifndef cdr_type_h

#include "cdr/cdr_type.h"

#endif

#ifndef osapi_heap_h

#include "osapi/osapi_heap.h"

#endif

#else

#include "ndds_standalone_type.h"

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1448 Example Documentation

#endif

#include "HelloWorld.h"

/* === */

const char *HelloWorldTYPENAME = "HelloWorld";

DDS_TypeCode* HelloWorld_get_typecode()

{

static RTIBool is_initialized = RTI_FALSE;

static DDS_TypeCode HelloWorld_g_tc_msg_string = DDS_INITIALIZE_STRING_TYPECODE(128);

static DDS_TypeCode_Member HelloWorld_g_tc_members[1]=

{

{

(char *)"msg",/* Member name */

{

0,/* Representation ID */

DDS_BOOLEAN_FALSE,/* Is a pointer? */

-1, /* Bitfield bits */

NULL/* Member type code is assigned later */

},

0, /* Ignored */

0, /* Ignored */

0, /* Ignored */

NULL, /* Ignored */

DDS_BOOLEAN_FALSE, /* Is a key? */

DDS_PRIVATE_MEMBER,/* Ignored */

0,/* Ignored */

NULL/* Ignored */

}

};

static DDS_TypeCode HelloWorld_g_tc =

{{

DDS_TK_STRUCT,/* Kind */

DDS_BOOLEAN_FALSE, /* Ignored */

-1,/* Ignored */

(char *)"HelloWorld", /* Name */

NULL, /* Ignored */

0, /* Ignored */

0, /* Ignored */

NULL, /* Ignored */

1, /* Number of members */

HelloWorld_g_tc_members, /* Members */

DDS_VM_NONE /* Ignored */

}}; /* Type code for HelloWorld*/

if (is_initialized) {

return &HelloWorld_g_tc;

}

HelloWorld_g_tc_members[0]._representation._typeCode = (RTICdrTypeCode *)&HelloWorld_g_tc_msg_string;

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

7.1 HelloWorld.cxx 1449

is_initialized = RTI_TRUE;

return &HelloWorld_g_tc;

}

RTIBool HelloWorld_initialize(

HelloWorld* sample) {

return HelloWorld_initialize_ex(sample,RTI_TRUE);

}

RTIBool HelloWorld_initialize_ex(

HelloWorld* sample,RTIBool allocatePointers)

{

sample->msg = DDS_String_alloc((128));

if (sample->msg == NULL) {

return RTI_FALSE;

}

return RTI_TRUE;

}

void HelloWorld_finalize(

HelloWorld* sample)

{

HelloWorld_finalize_ex(sample,RTI_TRUE);

}

void HelloWorld_finalize_ex(

HelloWorld* sample,RTIBool deletePointers)

{

DDS_String_free(sample->msg);

}

RTIBool HelloWorld_copy(

HelloWorld* dst,

const HelloWorld* src)

{

if (!RTICdrType_copyString(

dst->msg, src->msg, (128) + 1)) {

return RTI_FALSE;

}

return RTI_TRUE;

}

#define T HelloWorld

#define TSeq HelloWorldSeq

#define T_initialize_ex HelloWorld_initialize_ex

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1450 Example Documentation

#define T_finalize_ex HelloWorld_finalize_ex

#define T_copy HelloWorld_copy

#ifndef NDDS_STANDALONE_TYPE

#include "dds_c/generic/dds_c_sequence_TSeq.gen"

#ifdef __cplusplus

#include "dds_cpp/generic/dds_cpp_sequence_TSeq.gen"

#endif

#else

#include "dds_c_sequence_TSeq.gen"

#ifdef __cplusplus

#include "dds_cpp_sequence_TSeq.gen"

#endif

#endif

#undef T_copy

#undef T_finalize_ex

#undef T_initialize_ex

#undef TSeq

#undef T

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

7.2 HelloWorld.idl 1451

7.2 HelloWorld.idl

7.2.1 IDL Type Description

The data type to be disseminated by RTI Data Distribution Service is described
in language independent IDL. The IDL file is input to rtiddsgen (p. 211), which
produces the following files.

The programming language specific type representation of the type Foo
(p. 1333) = HelloWorld, for use in the application code.

ˆ HelloWorld.h

ˆ HelloWorld.cxx

User Data Type Support (p. 50) types as required by the DDS specification
for use in the application code.

ˆ HelloWorldSupport.h

ˆ HelloWorldSupport.cxx

Methods required by the RTI Data Distribution Service implementation. These
contains the auto-generated methods for serializing and deserializing the type.

ˆ HelloWorldPlugin.h

ˆ HelloWorldPlugin.cxx

7.2.1.1 HelloWorld.idl

[$(NDDSHOME)/example/CPP/helloWorld/HelloWorld.idl]

struct HelloWorld {

string<128> msg;

};

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1452 Example Documentation

7.3 HelloWorld publisher.cxx

7.3.1 RTI Data Distribution Service Publication Example

The publication example generated by rtiddsgen (p. 211). The example has
been modified slightly to update the sample value.

7.3.1.1 HelloWorld publisher.cxx

[$(NDDSHOME)/example/CPP/helloWorld/HelloWorld publisher.cxx]

/* HelloWorld_publisher.cxx

A publication of data of type HelloWorld

This file is derived from code automatically generated by the rtiddsgen

command:

rtiddsgen -language C++ -example <arch> HelloWorld.idl

Example publication of type HelloWorld automatically generated by

’rtiddsgen’. To test them follow these steps:

(1) Compile this file and the example subscription.

(2) Start the subscription on the same domain used for RTI Data Distribution

Service with the command

objs/<arch>/HelloWorld_subscriber <domain_id> <sample_count>

(3) Start the publication on the same domain used for RTI Data Distribution

Service with the command

objs/<arch>/HelloWorld_publisher <domain_id> <sample_count>

(4) [Optional] Specify the list of discovery initial peers and

multicast receive addresses via an environment variable or a file

(in the current working directory) called NDDS_DISCOVERY_PEERS.

You can run any number of publishers and subscribers programs, and can

add and remove them dynamically from the domain.

Example:

To run the example application on domain <domain_id>:

On Unix:

objs/<arch>/HelloWorld_publisher <domain_id>

objs/<arch>/HelloWorld_subscriber <domain_id>

On Windows:

objs\<arch>\HelloWorld_publisher <domain_id>

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

7.3 HelloWorld publisher.cxx 1453

objs\<arch>\HelloWorld_subscriber <domain_id>

modification history

------------ -------

*/

#include <stdio.h>

#include <stdlib.h>

#include "ndds/ndds_cpp.h"

#include "HelloWorld.h"

#include "HelloWorldSupport.h"

/* Delete all entities */

static int publisher_shutdown(

DDSDomainParticipant *participant)

{

DDS_ReturnCode_t retcode;

int status = 0;

if (participant != NULL) {

retcode = participant->delete_contained_entities();

if (retcode != DDS_RETCODE_OK) {

printf("delete_contained_entities error %d\n", retcode);

status = -1;

}

retcode = DDSTheParticipantFactory->delete_participant(participant);

if (retcode != DDS_RETCODE_OK) {

printf("delete_participant error %d\n", retcode);

status = -1;

}

}

/* RTI Data Distribution Service provides finalize_instance() method on

domain participant factory for people who want to release memory used

by the participant factory singleton. Uncomment the following block of

code for clean destruction of the singleton. */

/*

retcode = DDSDomainParticipantFactory::finalize_instance();

if (retcode != DDS_RETCODE_OK) {

printf("finalize_instance error %d\n", retcode);

status = -1;

}

*/

return status;

}

extern "C" int publisher_main(int domainId, int sample_count)

{

DDSDomainParticipant *participant = NULL;

DDSPublisher *publisher = NULL;

DDSTopic *topic = NULL;

DDSDataWriter *writer = NULL;

HelloWorldDataWriter *HelloWorld_writer = NULL;

HelloWorld *instance = NULL;

DDS_ReturnCode_t retcode;

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1454 Example Documentation

DDS_InstanceHandle_t instance_handle = DDS_HANDLE_NIL;

const char *type_name = NULL;

int count = 0;

struct DDS_Duration_t send_period = {4,0};

/* To customize participant QoS, use

DDSTheParticipantFactory->get_default_participant_qos()

instead */

participant = DDSTheParticipantFactory->create_participant(

domainId, DDS_PARTICIPANT_QOS_DEFAULT,

NULL /* listener */, DDS_STATUS_MASK_NONE);

if (participant == NULL) {

printf("create_participant error\n");

publisher_shutdown(participant);

return -1;

}

/* To customize publisher QoS, use

participant->get_default_publisher_qos() instead */

publisher = participant->create_publisher(

DDS_PUBLISHER_QOS_DEFAULT, NULL /* listener */, DDS_STATUS_MASK_NONE);

if (publisher == NULL) {

printf("create_publisher error\n");

publisher_shutdown(participant);

return -1;

}

/* Register type before creating topic */

type_name = HelloWorldTypeSupport::get_type_name();

retcode = HelloWorldTypeSupport::register_type(

participant, type_name);

if (retcode != DDS_RETCODE_OK) {

printf("register_type error %d\n", retcode);

publisher_shutdown(participant);

return -1;

}

/* To customize topic QoS, use

participant->get_default_topic_qos() instead */

topic = participant->create_topic(

"Example HelloWorld",

type_name, DDS_TOPIC_QOS_DEFAULT, NULL /* listener */,

DDS_STATUS_MASK_NONE);

if (topic == NULL) {

printf("create_topic error\n");

publisher_shutdown(participant);

return -1;

}

/* To customize data writer QoS, use

publisher->get_default_datawriter_qos() instead */

writer = publisher->create_datawriter(

topic, DDS_DATAWRITER_QOS_DEFAULT, NULL /* listener */,

DDS_STATUS_MASK_NONE);

if (writer == NULL) {

printf("create_datawriter error\n");

publisher_shutdown(participant);

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

7.3 HelloWorld publisher.cxx 1455

return -1;

}

HelloWorld_writer = HelloWorldDataWriter::narrow(writer);

if (HelloWorld_writer == NULL) {

printf("DataWriter narrow error\n");

publisher_shutdown(participant);

return -1;

}

/* Create data sample for writing */

instance = HelloWorldTypeSupport::create_data();

if (instance == NULL) {

printf("HelloWorldTypeSupport::create_data error\n");

publisher_shutdown(participant);

return -1;

}

/* For data type that has key, if the same instance is going to be

written multiple times, initialize the key here

and register the keyed instance prior to writing */

/*

instance_handle = HelloWorld_writer->register_instance(*instance);

*/

/* Main loop */

for (count=0; (sample_count == 0) || (count < sample_count); ++count) {

printf("Writing HelloWorld, count %d\n", count);

/* Modify the data to be sent here */

sprintf(instance->msg, "Hello World! (%d)", count);

retcode = HelloWorld_writer->write(*instance, instance_handle);

if (retcode != DDS_RETCODE_OK) {

printf("write error %d\n", retcode);

}

NDDSUtility::sleep(send_period);

}

/*

retcode = HelloWorld_writer->unregister_instance(

*instance, instance_handle);

if (retcode != DDS_RETCODE_OK) {

printf("unregister instance error %d\n", retcode);

}

*/

/* Delete data sample */

retcode = HelloWorldTypeSupport::delete_data(instance);

if (retcode != DDS_RETCODE_OK) {

printf("HelloWorldTypeSupport::delete_data error %d\n", retcode);

}

/* Delete all entities */

return publisher_shutdown(participant);

}

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1456 Example Documentation

#if defined(RTI_WINCE)

int wmain(int argc, wchar_t** argv)

{

int domainId = 0;

int sample_count = 0; /* infinite loop */

if (argc >= 2) {

domainId = _wtoi(argv[1]);

}

if (argc >= 3) {

sample_count = _wtoi(argv[2]);

}

/* Uncomment this to turn on additional logging

NDDSConfigLogger::get_instance()->

set_verbosity_by_category(NDDS_CONFIG_LOG_CATEGORY_API,

NDDS_CONFIG_LOG_VERBOSITY_STATUS_ALL);

*/

return publisher_main(domainId, sample_count);

}

#elif !(defined(RTI_VXWORKS) && !defined(__RTP__)) && !defined(RTI_PSOS)

int main(int argc, char *argv[])

{

int domainId = 0;

int sample_count = 0; /* infinite loop */

if (argc >= 2) {

domainId = atoi(argv[1]);

}

if (argc >= 3) {

sample_count = atoi(argv[2]);

}

/* Uncomment this to turn on additional logging

NDDSConfigLogger::get_instance()->

set_verbosity_by_category(NDDS_CONFIG_LOG_CATEGORY_API,

NDDS_CONFIG_LOG_VERBOSITY_STATUS_ALL);

*/

return publisher_main(domainId, sample_count);

}

#endif

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

7.4 HelloWorld subscriber.cxx 1457

7.4 HelloWorld subscriber.cxx

7.4.1 RTI Data Distribution Service Subscription Exam-
ple

The unmodified subscription example generated by rtiddsgen (p. 211).

7.4.1.1 HelloWorld subscriber.cxx

[$(NDDSHOME)/example/CPP/helloWorld/HelloWorld subscriber.cxx]

/* HelloWorld_subscriber.cxx

A subscription example

This file is derived from code automatically generated by the rtiddsgen

command:

rtiddsgen -language C++ -example <arch> HelloWorld.idl

Example subscription of type HelloWorld automatically generated by

’rtiddsgen’. To test them follow these steps:

(1) Compile this file and the example publication.

(2) Start the subscription on the same domain used for RTI Data Distribution

Service with the command

objs/<arch>/HelloWorld_subscriber <domain_id> <sample_count>

(3) Start the publication on the same domain used for RTI Data Distribution

with the command

objs/<arch>/HelloWorld_publisher <domain_id> <sample_count>

(4) [Optional] Specify the list of discovery initial peers and

multicast receive addresses via an environment variable or a file

(in the current working directory) called NDDS_DISCOVERY_PEERS.

You can run any number of publishers and subscribers programs, and can

add and remove them dynamically from the domain.

Example:

To run the example application on domain <domain_id>:

On Unix:

objs/<arch>/HelloWorld_publisher <domain_id>

objs/<arch>/HelloWorld_subscriber <domain_id>

On Windows:

objs\<arch>\HelloWorld_publisher <domain_id>

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1458 Example Documentation

objs\<arch>\HelloWorld_subscriber <domain_id>

modification history

------------ -------

*/

#include <stdio.h>

#include <stdlib.h>

#include "HelloWorld.h"

#include "HelloWorldSupport.h"

#include "ndds/ndds_cpp.h"

class HelloWorldListener : public DDSDataReaderListener {

public:

virtual void on_requested_deadline_missed(

DDSDataReader* /*reader*/,

const DDS_RequestedDeadlineMissedStatus& /*status*/) {}

virtual void on_requested_incompatible_qos(

DDSDataReader* /*reader*/,

const DDS_RequestedIncompatibleQosStatus& /*status*/) {}

virtual void on_sample_rejected(

DDSDataReader* /*reader*/,

const DDS_SampleRejectedStatus& /*status*/) {}

virtual void on_liveliness_changed(

DDSDataReader* /*reader*/,

const DDS_LivelinessChangedStatus& /*status*/) {}

virtual void on_sample_lost(

DDSDataReader* /*reader*/,

const DDS_SampleLostStatus& /*status*/) {}

virtual void on_subscription_matched(

DDSDataReader* /*reader*/,

const DDS_SubscriptionMatchedStatus& /*status*/) {}

virtual void on_data_available(DDSDataReader* reader);

};

void HelloWorldListener::on_data_available(DDSDataReader* reader)

{

HelloWorldDataReader *HelloWorld_reader = NULL;

HelloWorldSeq data_seq;

DDS_SampleInfoSeq info_seq;

DDS_ReturnCode_t retcode;

int i;

HelloWorld_reader = HelloWorldDataReader::narrow(reader);

if (HelloWorld_reader == NULL) {

printf("DataReader narrow error\n");

return;

}

retcode = HelloWorld_reader->take(

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

7.4 HelloWorld subscriber.cxx 1459

data_seq, info_seq, DDS_LENGTH_UNLIMITED,

DDS_ANY_SAMPLE_STATE, DDS_ANY_VIEW_STATE, DDS_ANY_INSTANCE_STATE);

if (retcode == DDS_RETCODE_NO_DATA) {

return;

} else if (retcode != DDS_RETCODE_OK) {

printf("take error %d\n", retcode);

return;

}

for (i = 0; i < data_seq.length(); ++i) {

if (info_seq[i].valid_data) {

HelloWorldTypeSupport::print_data(&data_seq[i]);

}

}

retcode = HelloWorld_reader->return_loan(data_seq, info_seq);

if (retcode != DDS_RETCODE_OK) {

printf("return loan error %d\n", retcode);

}

}

/* Delete all entities */

static int subscriber_shutdown(

DDSDomainParticipant *participant)

{

DDS_ReturnCode_t retcode;

int status = 0;

if (participant != NULL) {

retcode = participant->delete_contained_entities();

if (retcode != DDS_RETCODE_OK) {

printf("delete_contained_entities error %d\n", retcode);

status = -1;

}

retcode = DDSTheParticipantFactory->delete_participant(participant);

if (retcode != DDS_RETCODE_OK) {

printf("delete_participant error %d\n", retcode);

status = -1;

}

}

/* RTI Data Distribution Service provides the finalize_instance() method on

domain participant factory and the finalize() method on type support for

users who want to release memory used by the participant factory and

type support singletons. Uncomment the following block of code for

clean destruction of the singletons. */

/*

HelloWorldTypeSupport::finalize();

retcode = DDSDomainParticipantFactory::finalize_instance();

if (retcode != DDS_RETCODE_OK) {

printf("finalize_instance error %d\n", retcode);

status = -1;

}

*/

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1460 Example Documentation

return status;

}

extern "C" int subscriber_main(int domainId, int sample_count)

{

DDSDomainParticipant *participant = NULL;

DDSSubscriber *subscriber = NULL;

DDSTopic *topic = NULL;

HelloWorldListener *reader_listener = NULL;

DDSDataReader *reader = NULL;

DDS_ReturnCode_t retcode;

const char *type_name = NULL;

int count = 0;

DDS_Duration_t receive_period = {4,0};

int status = 0;

/* To customize the participant QoS, use

DDSTheParticipantFactory->get_default_participant_qos() */

participant = DDSTheParticipantFactory->create_participant(

domainId, DDS_PARTICIPANT_QOS_DEFAULT,

NULL /* listener */, DDS_STATUS_MASK_NONE);

if (participant == NULL) {

printf("create_participant error\n");

subscriber_shutdown(participant);

return -1;

}

/* To customize the subscriber QoS, use

participant->get_default_subscriber_qos() */

subscriber = participant->create_subscriber(

DDS_SUBSCRIBER_QOS_DEFAULT, NULL /* listener */, DDS_STATUS_MASK_NONE);

if (subscriber == NULL) {

printf("create_subscriber error\n");

subscriber_shutdown(participant);

return -1;

}

/* Register the type before creating the topic */

type_name = HelloWorldTypeSupport::get_type_name();

retcode = HelloWorldTypeSupport::register_type(

participant, type_name);

if (retcode != DDS_RETCODE_OK) {

printf("register_type error %d\n", retcode);

subscriber_shutdown(participant);

return -1;

}

/* To customize the topic QoS, use

participant->get_default_topic_qos() */

topic = participant->create_topic(

"Example HelloWorld",

type_name, DDS_TOPIC_QOS_DEFAULT, NULL /* listener */,

DDS_STATUS_MASK_NONE);

if (topic == NULL) {

printf("create_topic error\n");

subscriber_shutdown(participant);

return -1;

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

7.4 HelloWorld subscriber.cxx 1461

}

/* Create a data reader listener */

reader_listener = new HelloWorldListener();

/* To customize the data reader QoS, use

subscriber->get_default_datareader_qos() */

reader = subscriber->create_datareader(

topic, DDS_DATAREADER_QOS_DEFAULT, reader_listener,

DDS_STATUS_MASK_ALL);

if (reader == NULL) {

printf("create_datareader error\n");

subscriber_shutdown(participant);

delete reader_listener;

return -1;

}

/* Main loop */

for (count=0; (sample_count == 0) || (count < sample_count); ++count) {

printf("HelloWorld subscriber sleeping for %d sec...\n",

receive_period.sec);

NDDSUtility::sleep(receive_period);

}

/* Delete all entities */

status = subscriber_shutdown(participant);

delete reader_listener;

return status;

}

#if defined(RTI_WINCE)

int wmain(int argc, wchar_t** argv)

{

int domainId = 0;

int sample_count = 0; /* infinite loop */

if (argc >= 2) {

domainId = _wtoi(argv[1]);

}

if (argc >= 3) {

sample_count = _wtoi(argv[2]);

}

/* Uncomment this to turn on additional logging

NDDSConfigLogger::get_instance()->

set_verbosity_by_category(NDDS_CONFIG_LOG_CATEGORY_API,

NDDS_CONFIG_LOG_VERBOSITY_STATUS_ALL);

*/

return subscriber_main(domainId, sample_count);

}

#elif !(defined(RTI_VXWORKS) && !defined(__RTP__)) && !defined(RTI_PSOS)

int main(int argc, char *argv[])

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1462 Example Documentation

{

int domainId = 0;

int sample_count = 0; /* infinite loop */

if (argc >= 2) {

domainId = atoi(argv[1]);

}

if (argc >= 3) {

sample_count = atoi(argv[2]);

}

/* Uncomment this to turn on additional logging

NDDSConfigLogger::get_instance()->

set_verbosity_by_category(NDDS_CONFIG_LOG_CATEGORY_API,

NDDS_CONFIG_LOG_VERBOSITY_STATUS_ALL);

*/

return subscriber_main(domainId, sample_count);

}

#endif

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

7.5 HelloWorldPlugin.cxx 1463

7.5 HelloWorldPlugin.cxx

7.5.1 RTI Data Distribution Service Implementation Sup-
port

Files generated by rtiddsgen (p. 211) that provided methods for type specific
serialization and deserialization, to support the RTI Data Distribution Service
implementation.

7.5.1.1 HelloWorldPlugin.h

[$(NDDSHOME)/example/CPP/helloWorld/HelloWorldPlugin.h]

/*

WARNING: THIS FILE IS AUTO-GENERATED. DO NOT MODIFY.

This file was generated from HelloWorld.idl using "rtiddsgen".

The rtiddsgen tool is part of the RTI Data Distribution Service distribution.

For more information, type ’rtiddsgen -help’ at a command shell

or consult the RTI Data Distribution Service manual.

*/

#ifndef HelloWorldPlugin_1275191054218_h

#define HelloWorldPlugin_1275191054218_h

#include "HelloWorld.h"

struct RTICdrStream;

#ifndef pres_typePlugin_h

#include "pres/pres_typePlugin.h"

#endif

#if (defined(RTI_WIN32) || defined (RTI_WINCE)) && defined(NDDS_USER_DLL_EXPORT)

/* If the code is building on Windows, start exporting symbols.

*/

#undef NDDSUSERDllExport

#define NDDSUSERDllExport __declspec(dllexport)

#endif

#ifdef __cplusplus

extern "C" {

#endif

#define HelloWorldPlugin_get_sample PRESTypePluginDefaultEndpointData_getSample

#define HelloWorldPlugin_return_sample PRESTypePluginDefaultEndpointData_returnSample

#define HelloWorldPlugin_get_buffer PRESTypePluginDefaultEndpointData_getBuffer

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1464 Example Documentation

#define HelloWorldPlugin_return_buffer PRESTypePluginDefaultEndpointData_returnBuffer

#define HelloWorldPlugin_create_sample PRESTypePluginDefaultEndpointData_createSample

#define HelloWorldPlugin_destroy_sample PRESTypePluginDefaultEndpointData_deleteSample

/* --

Support functions:

* -- */

NDDSUSERDllExport extern HelloWorld*

HelloWorldPluginSupport_create_data_ex(RTIBool allocate_pointers);

NDDSUSERDllExport extern HelloWorld*

HelloWorldPluginSupport_create_data(void);

NDDSUSERDllExport extern RTIBool

HelloWorldPluginSupport_copy_data(

HelloWorld *out,

const HelloWorld *in);

NDDSUSERDllExport extern void

HelloWorldPluginSupport_destroy_data_ex(

HelloWorld *sample,RTIBool deallocate_pointers);

NDDSUSERDllExport extern void

HelloWorldPluginSupport_destroy_data(

HelloWorld *sample);

NDDSUSERDllExport extern void

HelloWorldPluginSupport_print_data(

const HelloWorld *sample,

const char *desc,

unsigned int indent);

/* --

Callback functions:

* -- */

NDDSUSERDllExport extern PRESTypePluginParticipantData

HelloWorldPlugin_on_participant_attached(

void *registration_data,

const struct PRESTypePluginParticipantInfo *participant_info,

RTIBool top_level_registration,

void *container_plugin_context,

RTICdrTypeCode *typeCode);

NDDSUSERDllExport extern void

HelloWorldPlugin_on_participant_detached(

PRESTypePluginParticipantData participant_data);

NDDSUSERDllExport extern PRESTypePluginEndpointData

HelloWorldPlugin_on_endpoint_attached(

PRESTypePluginParticipantData participant_data,

const struct PRESTypePluginEndpointInfo *endpoint_info,

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

7.5 HelloWorldPlugin.cxx 1465

RTIBool top_level_registration,

void *container_plugin_context);

NDDSUSERDllExport extern void

HelloWorldPlugin_on_endpoint_detached(

PRESTypePluginEndpointData endpoint_data);

NDDSUSERDllExport extern RTIBool

HelloWorldPlugin_copy_sample(

PRESTypePluginEndpointData endpoint_data,

HelloWorld *out,

const HelloWorld *in);

/* --

(De)Serialize functions:

* -- */

NDDSUSERDllExport extern RTIBool

HelloWorldPlugin_serialize(

PRESTypePluginEndpointData endpoint_data,

const HelloWorld *sample,

struct RTICdrStream *stream,

RTIBool serialize_encapsulation,

RTIEncapsulationId encapsulation_id,

RTIBool serialize_sample,

void *endpoint_plugin_qos);

NDDSUSERDllExport extern RTIBool

HelloWorldPlugin_deserialize_sample(

PRESTypePluginEndpointData endpoint_data,

HelloWorld *sample,

struct RTICdrStream *stream,

RTIBool deserialize_encapsulation,

RTIBool deserialize_sample,

void *endpoint_plugin_qos);

NDDSUSERDllExport extern RTIBool

HelloWorldPlugin_deserialize(

PRESTypePluginEndpointData endpoint_data,

HelloWorld **sample,

RTIBool * drop_sample,

struct RTICdrStream *stream,

RTIBool deserialize_encapsulation,

RTIBool deserialize_sample,

void *endpoint_plugin_qos);

NDDSUSERDllExport extern RTIBool

HelloWorldPlugin_skip(

PRESTypePluginEndpointData endpoint_data,

struct RTICdrStream *stream,

RTIBool skip_encapsulation,

RTIBool skip_sample,

void *endpoint_plugin_qos);

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1466 Example Documentation

NDDSUSERDllExport extern unsigned int

HelloWorldPlugin_get_serialized_sample_max_size(

PRESTypePluginEndpointData endpoint_data,

RTIBool include_encapsulation,

RTIEncapsulationId encapsulation_id,

unsigned int size);

NDDSUSERDllExport extern unsigned int

HelloWorldPlugin_get_serialized_sample_min_size(

PRESTypePluginEndpointData endpoint_data,

RTIBool include_encapsulation,

RTIEncapsulationId encapsulation_id,

unsigned int size);

NDDSUSERDllExport extern unsigned int

HelloWorldPlugin_get_serialized_sample_size(

PRESTypePluginEndpointData endpoint_data,

RTIBool include_encapsulation,

RTIEncapsulationId encapsulation_id,

unsigned int current_alignment,

const HelloWorld * sample);

/* --

Key Management functions:

* -- */

NDDSUSERDllExport extern PRESTypePluginKeyKind

HelloWorldPlugin_get_key_kind(void);

NDDSUSERDllExport extern unsigned int

HelloWorldPlugin_get_serialized_key_max_size(

PRESTypePluginEndpointData endpoint_data,

RTIBool include_encapsulation,

RTIEncapsulationId encapsulation_id,

unsigned int current_alignment);

NDDSUSERDllExport extern RTIBool

HelloWorldPlugin_serialize_key(

PRESTypePluginEndpointData endpoint_data,

const HelloWorld *sample,

struct RTICdrStream *stream,

RTIBool serialize_encapsulation,

RTIEncapsulationId encapsulation_id,

RTIBool serialize_key,

void *endpoint_plugin_qos);

NDDSUSERDllExport extern RTIBool

HelloWorldPlugin_deserialize_key_sample(

PRESTypePluginEndpointData endpoint_data,

HelloWorld * sample,

struct RTICdrStream *stream,

RTIBool deserialize_encapsulation,

RTIBool deserialize_key,

void *endpoint_plugin_qos);

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

7.5 HelloWorldPlugin.cxx 1467

NDDSUSERDllExport extern RTIBool

HelloWorldPlugin_deserialize_key(

PRESTypePluginEndpointData endpoint_data,

HelloWorld ** sample,

RTIBool * drop_sample,

struct RTICdrStream *stream,

RTIBool deserialize_encapsulation,

RTIBool deserialize_key,

void *endpoint_plugin_qos);

NDDSUSERDllExport extern RTIBool

HelloWorldPlugin_serialized_sample_to_key(

PRESTypePluginEndpointData endpoint_data,

HelloWorld *sample,

struct RTICdrStream *stream,

RTIBool deserialize_encapsulation,

RTIBool deserialize_key,

void *endpoint_plugin_qos);

/* Plugin Functions */

NDDSUSERDllExport extern struct PRESTypePlugin*

HelloWorldPlugin_new(void);

NDDSUSERDllExport extern void

HelloWorldPlugin_delete(struct PRESTypePlugin *);

#if (defined(RTI_WIN32) || defined (RTI_WINCE)) && defined(NDDS_USER_DLL_EXPORT)

/* If the code is building on Windows, stop exporting symbols.

*/

#undef NDDSUSERDllExport

#define NDDSUSERDllExport

#endif

#ifdef __cplusplus

}

#endif

#endif /* HelloWorldPlugin_1275191054218_h */

7.5.1.2 HelloWorldPlugin.cxx

[$(NDDSHOME)/example/CPP/helloWorld/HelloWorldPlugin.cxx]

/*

WARNING: THIS FILE IS AUTO-GENERATED. DO NOT MODIFY.

This file was generated from HelloWorld.idl using "rtiddsgen".

The rtiddsgen tool is part of the RTI Data Distribution Service distribution.

For more information, type ’rtiddsgen -help’ at a command shell

or consult the RTI Data Distribution Service manual.

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1468 Example Documentation

*/

#include <string.h>

#ifdef __cplusplus

#ifndef ndds_cpp_h

#include "ndds/ndds_cpp.h"

#endif

#else

#ifndef ndds_c_h

#include "ndds/ndds_c.h"

#endif

#endif

#ifndef osapi_type_h

#include "osapi/osapi_type.h"

#endif

#ifndef osapi_heap_h

#include "osapi/osapi_heap.h"

#endif

#ifndef osapi_utility_h

#include "osapi/osapi_utility.h"

#endif

#ifndef cdr_type_h

#include "cdr/cdr_type.h"

#endif

#ifndef cdr_encapsulation_h

#include "cdr/cdr_encapsulation.h"

#endif

#ifndef cdr_stream_h

#include "cdr/cdr_stream.h"

#endif

#ifndef pres_typePlugin_h

#include "pres/pres_typePlugin.h"

#endif

#include "HelloWorldPlugin.h"

/* --

* Type HelloWorld

* -- */

/* --

Support functions:

* -- */

HelloWorld *

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

7.5 HelloWorldPlugin.cxx 1469

HelloWorldPluginSupport_create_data_ex(RTIBool allocate_pointers){

HelloWorld *sample = NULL;

RTIOsapiHeap_allocateStructure(

&sample, HelloWorld);

if(sample != NULL) {

if (!HelloWorld_initialize_ex(sample,allocate_pointers)) {

RTIOsapiHeap_freeStructure(&sample);

return NULL;

}

}

return sample;

}

HelloWorld *

HelloWorldPluginSupport_create_data(void)

{

return HelloWorldPluginSupport_create_data_ex(RTI_TRUE);

}

void

HelloWorldPluginSupport_destroy_data_ex(

HelloWorld *sample,RTIBool deallocate_pointers) {

HelloWorld_finalize_ex(sample,deallocate_pointers);

RTIOsapiHeap_freeStructure(sample);

}

void

HelloWorldPluginSupport_destroy_data(

HelloWorld *sample) {

HelloWorldPluginSupport_destroy_data_ex(sample,RTI_TRUE);

}

RTIBool

HelloWorldPluginSupport_copy_data(

HelloWorld *dst,

const HelloWorld *src)

{

return HelloWorld_copy(dst,src);

}

void

HelloWorldPluginSupport_print_data(

const HelloWorld *sample,

const char *desc,

unsigned int indent_level)

{

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1470 Example Documentation

RTICdrType_printIndent(indent_level);

if (desc != NULL) {

RTILog_debug("%s:\n", desc);

} else {

RTILog_debug("\n");

}

if (sample == NULL) {

RTILog_debug("NULL\n");

return;

}

if (&sample->msg==NULL) {

RTICdrType_printString(

NULL, "msg", indent_level + 1);

} else {

RTICdrType_printString(

sample->msg, "msg", indent_level + 1);

}

}

/* --

Callback functions:

* -- */

PRESTypePluginParticipantData

HelloWorldPlugin_on_participant_attached(

void *registration_data,

const struct PRESTypePluginParticipantInfo *participant_info,

RTIBool top_level_registration,

void *container_plugin_context,

RTICdrTypeCode *type_code)

{

return PRESTypePluginDefaultParticipantData_new(participant_info);

}

void

HelloWorldPlugin_on_participant_detached(

PRESTypePluginParticipantData participant_data)

{

PRESTypePluginDefaultParticipantData_delete(participant_data);

}

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

7.5 HelloWorldPlugin.cxx 1471

PRESTypePluginEndpointData

HelloWorldPlugin_on_endpoint_attached(

PRESTypePluginParticipantData participant_data,

const struct PRESTypePluginEndpointInfo *endpoint_info,

RTIBool top_level_registration,

void *containerPluginContext)

{

PRESTypePluginEndpointData epd = NULL;

epd = PRESTypePluginDefaultEndpointData_new(

participant_data,

endpoint_info,

(PRESTypePluginDefaultEndpointDataCreateSampleFunction)

HelloWorldPluginSupport_create_data,

(PRESTypePluginDefaultEndpointDataDestroySampleFunction)

HelloWorldPluginSupport_destroy_data,

NULL, NULL);

if (epd == NULL) {

return NULL;

}

if (endpoint_info->endpointKind == PRES_TYPEPLUGIN_ENDPOINT_WRITER) {

if (PRESTypePluginDefaultEndpointData_createWriterPool(

epd,

endpoint_info,

(PRESTypePluginGetSerializedSampleMaxSizeFunction)

HelloWorldPlugin_get_serialized_sample_max_size, epd,

(PRESTypePluginGetSerializedSampleSizeFunction)

HelloWorldPlugin_get_serialized_sample_size,

epd) == RTI_FALSE) {

PRESTypePluginDefaultEndpointData_delete(epd);

return NULL;

}

}

return epd;

}

void

HelloWorldPlugin_on_endpoint_detached(

PRESTypePluginEndpointData endpoint_data)

{

PRESTypePluginDefaultEndpointData_delete(endpoint_data);

}

RTIBool

HelloWorldPlugin_copy_sample(

PRESTypePluginEndpointData endpoint_data,

HelloWorld *dst,

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1472 Example Documentation

const HelloWorld *src)

{

return HelloWorldPluginSupport_copy_data(dst,src);

}

/* --

(De)Serialize functions:

* -- */

RTIBool

HelloWorldPlugin_serialize(

PRESTypePluginEndpointData endpoint_data,

const HelloWorld *sample,

struct RTICdrStream *stream,

RTIBool serialize_encapsulation,

RTIEncapsulationId encapsulation_id,

RTIBool serialize_sample,

void *endpoint_plugin_qos)

{

char * position = NULL;

if(serialize_encapsulation) {

if (!RTICdrStream_serializeAndSetCdrEncapsulation(stream, encapsulation_id)) {

return RTI_FALSE;

}

position = RTICdrStream_resetAlignment(stream);

}

if(serialize_sample) {

if (sample->msg == NULL) {

return RTI_FALSE;

}

if (!RTICdrStream_serializeString(

stream, sample->msg, (128) + 1)) {

return RTI_FALSE;

}

}

if(serialize_encapsulation) {

RTICdrStream_restoreAlignment(stream,position);

}

return RTI_TRUE;

}

RTIBool

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

7.5 HelloWorldPlugin.cxx 1473

HelloWorldPlugin_deserialize_sample(

PRESTypePluginEndpointData endpoint_data,

HelloWorld *sample,

struct RTICdrStream *stream,

RTIBool deserialize_encapsulation,

RTIBool deserialize_sample,

void *endpoint_plugin_qos)

{

char * position = NULL;

if(deserialize_encapsulation) {

/* Deserialize encapsulation */

if (!RTICdrStream_deserializeAndSetCdrEncapsulation(stream)) {

return RTI_FALSE;

}

position = RTICdrStream_resetAlignment(stream);

}

if(deserialize_sample) {

if (!RTICdrStream_deserializeString(

stream, sample->msg, (128) + 1)) {

return RTI_FALSE;

}

}

if(deserialize_encapsulation) {

RTICdrStream_restoreAlignment(stream,position);

}

return RTI_TRUE;

}

RTIBool

HelloWorldPlugin_deserialize(

PRESTypePluginEndpointData endpoint_data,

HelloWorld **sample,

RTIBool * drop_sample,

struct RTICdrStream *stream,

RTIBool deserialize_encapsulation,

RTIBool deserialize_sample,

void *endpoint_plugin_qos)

{

return HelloWorldPlugin_deserialize_sample(

endpoint_data, (sample != NULL)?*sample:NULL,

stream, deserialize_encapsulation, deserialize_sample,

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1474 Example Documentation

endpoint_plugin_qos);

}

RTIBool HelloWorldPlugin_skip(

PRESTypePluginEndpointData endpoint_data,

struct RTICdrStream *stream,

RTIBool skip_encapsulation,

RTIBool skip_sample,

void *endpoint_plugin_qos)

{

char * position = NULL;

if(skip_encapsulation) {

if (!RTICdrStream_skipEncapsulation(stream)) {

return RTI_FALSE;

}

position = RTICdrStream_resetAlignment(stream);

}

if (skip_sample) {

if (!RTICdrStream_skipString(stream, (128) + 1)) {

return RTI_FALSE;

}

}

if(skip_encapsulation) {

RTICdrStream_restoreAlignment(stream,position);

}

return RTI_TRUE;

}

unsigned int

HelloWorldPlugin_get_serialized_sample_max_size(

PRESTypePluginEndpointData endpoint_data,

RTIBool include_encapsulation,

RTIEncapsulationId encapsulation_id,

unsigned int current_alignment)

{

unsigned int initial_alignment = current_alignment;

unsigned int encapsulation_size = current_alignment;

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

7.5 HelloWorldPlugin.cxx 1475

if (include_encapsulation) {

if (!RTICdrEncapsulation_validEncapsulationId(encapsulation_id)) {

return 1;

}

RTICdrStream_getEncapsulationSize(encapsulation_size);

encapsulation_size -= current_alignment;

current_alignment = 0;

initial_alignment = 0;

}

current_alignment += RTICdrType_getStringMaxSizeSerialized(

current_alignment, (128) + 1);

if (include_encapsulation) {

current_alignment += encapsulation_size;

}

return current_alignment - initial_alignment;

}

unsigned int

HelloWorldPlugin_get_serialized_sample_min_size(

PRESTypePluginEndpointData endpoint_data,

RTIBool include_encapsulation,

RTIEncapsulationId encapsulation_id,

unsigned int current_alignment)

{

unsigned int initial_alignment = current_alignment;

unsigned int encapsulation_size = current_alignment;

if (include_encapsulation) {

if (!RTICdrEncapsulation_validEncapsulationId(encapsulation_id)) {

return 1;

}

RTICdrStream_getEncapsulationSize(encapsulation_size);

encapsulation_size -= current_alignment;

current_alignment = 0;

initial_alignment = 0;

}

current_alignment += RTICdrType_getStringMaxSizeSerialized(

current_alignment, 1);

if (include_encapsulation) {

current_alignment += encapsulation_size;

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1476 Example Documentation

}

return current_alignment - initial_alignment;

}

/* Returns the size of the sample in its serialized form (in bytes).

* It can also be an estimation in excess of the real buffer needed

* during a call to the serialize() function.

* The value reported does not have to include the space for the

* encapsulation flags.

*/

unsigned int

HelloWorldPlugin_get_serialized_sample_size(

PRESTypePluginEndpointData endpoint_data,

RTIBool include_encapsulation,

RTIEncapsulationId encapsulation_id,

unsigned int current_alignment,

const HelloWorld * sample)

{

unsigned int initial_alignment = current_alignment;

unsigned int encapsulation_size = current_alignment;

if (include_encapsulation) {

if (!RTICdrEncapsulation_validEncapsulationId(encapsulation_id)) {

return 1;

}

RTICdrStream_getEncapsulationSize(encapsulation_size);

encapsulation_size -= current_alignment;

current_alignment = 0;

initial_alignment = 0;

}

current_alignment += RTICdrType_getStringSerializedSize(

current_alignment, sample->msg);

if (include_encapsulation) {

current_alignment += encapsulation_size;

}

return current_alignment - initial_alignment;

}

/* --

Key Management functions:

* -- */

PRESTypePluginKeyKind

HelloWorldPlugin_get_key_kind(void)

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

7.5 HelloWorldPlugin.cxx 1477

{

return PRES_TYPEPLUGIN_NO_KEY;

}

RTIBool

HelloWorldPlugin_serialize_key(

PRESTypePluginEndpointData endpoint_data,

const HelloWorld *sample,

struct RTICdrStream *stream,

RTIBool serialize_encapsulation,

RTIEncapsulationId encapsulation_id,

RTIBool serialize_key,

void *endpoint_plugin_qos)

{

char * position = NULL;

if(serialize_encapsulation) {

if (!RTICdrStream_serializeAndSetCdrEncapsulation(stream, encapsulation_id)) {

return RTI_FALSE;

}

position = RTICdrStream_resetAlignment(stream);

}

if(serialize_key) {

if (!HelloWorldPlugin_serialize(

endpoint_data,

sample,

stream,

RTI_FALSE, encapsulation_id,

RTI_TRUE,

endpoint_plugin_qos)) {

return RTI_FALSE;

}

}

if(serialize_encapsulation) {

RTICdrStream_restoreAlignment(stream,position);

}

return RTI_TRUE;

}

RTIBool HelloWorldPlugin_deserialize_key_sample(

PRESTypePluginEndpointData endpoint_data,

HelloWorld *sample,

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1478 Example Documentation

struct RTICdrStream *stream,

RTIBool deserialize_encapsulation,

RTIBool deserialize_key,

void *endpoint_plugin_qos)

{

char * position = NULL;

if(deserialize_encapsulation) {

/* Deserialize encapsulation */

if (!RTICdrStream_deserializeAndSetCdrEncapsulation(stream)) {

return RTI_FALSE;

}

position = RTICdrStream_resetAlignment(stream);

}

if (deserialize_key) {

if (!HelloWorldPlugin_deserialize_sample(

endpoint_data, sample, stream,

RTI_FALSE, RTI_TRUE,

endpoint_plugin_qos)) {

return RTI_FALSE;

}

}

if(deserialize_encapsulation) {

RTICdrStream_restoreAlignment(stream,position);

}

return RTI_TRUE;

}

RTIBool HelloWorldPlugin_deserialize_key(

PRESTypePluginEndpointData endpoint_data,

HelloWorld **sample,

RTIBool * drop_sample,

struct RTICdrStream *stream,

RTIBool deserialize_encapsulation,

RTIBool deserialize_key,

void *endpoint_plugin_qos)

{

return HelloWorldPlugin_deserialize_key_sample(

endpoint_data, (sample != NULL)?*sample:NULL, stream,

deserialize_encapsulation, deserialize_key, endpoint_plugin_qos);

}

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

7.5 HelloWorldPlugin.cxx 1479

unsigned int

HelloWorldPlugin_get_serialized_key_max_size(

PRESTypePluginEndpointData endpoint_data,

RTIBool include_encapsulation,

RTIEncapsulationId encapsulation_id,

unsigned int current_alignment)

{

unsigned int encapsulation_size = current_alignment;

unsigned int initial_alignment = current_alignment;

if (include_encapsulation) {

if (!RTICdrEncapsulation_validEncapsulationId(encapsulation_id)) {

return 1;

}

RTICdrStream_getEncapsulationSize(encapsulation_size);

encapsulation_size -= current_alignment;

current_alignment = 0;

initial_alignment = 0;

}

current_alignment += HelloWorldPlugin_get_serialized_sample_max_size(

endpoint_data,RTI_FALSE, encapsulation_id, current_alignment);

if (include_encapsulation) {

current_alignment += encapsulation_size;

}

return current_alignment - initial_alignment;

}

RTIBool

HelloWorldPlugin_serialized_sample_to_key(

PRESTypePluginEndpointData endpoint_data,

HelloWorld *sample,

struct RTICdrStream *stream,

RTIBool deserialize_encapsulation,

RTIBool deserialize_key,

void *endpoint_plugin_qos)

{

char * position = NULL;

if(deserialize_encapsulation) {

if (!RTICdrStream_deserializeAndSetCdrEncapsulation(stream)) {

return RTI_FALSE;

}

position = RTICdrStream_resetAlignment(stream);

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1480 Example Documentation

}

if (deserialize_key) {

if (!HelloWorldPlugin_deserialize_sample(

endpoint_data, sample, stream, RTI_FALSE,

RTI_TRUE, endpoint_plugin_qos)) {

return RTI_FALSE;

}

}

if(deserialize_encapsulation) {

RTICdrStream_restoreAlignment(stream,position);

}

return RTI_TRUE;

}

/* --

* Plug-in Installation Methods

* -- */

struct PRESTypePlugin *HelloWorldPlugin_new(void)

{

struct PRESTypePlugin *plugin = NULL;

const struct PRESTypePluginVersion PLUGIN_VERSION =

PRES_TYPE_PLUGIN_VERSION_2_0;

RTIOsapiHeap_allocateStructure(

&plugin, struct PRESTypePlugin);

if (plugin == NULL) {

return NULL;

}

plugin->version = PLUGIN_VERSION;

/* set up parent’s function pointers */

plugin->onParticipantAttached =

(PRESTypePluginOnParticipantAttachedCallback)

HelloWorldPlugin_on_participant_attached;

plugin->onParticipantDetached =

(PRESTypePluginOnParticipantDetachedCallback)

HelloWorldPlugin_on_participant_detached;

plugin->onEndpointAttached =

(PRESTypePluginOnEndpointAttachedCallback)

HelloWorldPlugin_on_endpoint_attached;

plugin->onEndpointDetached =

(PRESTypePluginOnEndpointDetachedCallback)

HelloWorldPlugin_on_endpoint_detached;

plugin->copySampleFnc =

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

7.5 HelloWorldPlugin.cxx 1481

(PRESTypePluginCopySampleFunction)

HelloWorldPlugin_copy_sample;

plugin->createSampleFnc =

(PRESTypePluginCreateSampleFunction)

HelloWorldPlugin_create_sample;

plugin->destroySampleFnc =

(PRESTypePluginDestroySampleFunction)

HelloWorldPlugin_destroy_sample;

plugin->serializeFnc =

(PRESTypePluginSerializeFunction)

HelloWorldPlugin_serialize;

plugin->deserializeFnc =

(PRESTypePluginDeserializeFunction)

HelloWorldPlugin_deserialize;

plugin->getSerializedSampleMaxSizeFnc =

(PRESTypePluginGetSerializedSampleMaxSizeFunction)

HelloWorldPlugin_get_serialized_sample_max_size;

plugin->getSerializedSampleMinSizeFnc =

(PRESTypePluginGetSerializedSampleMinSizeFunction)

HelloWorldPlugin_get_serialized_sample_min_size;

plugin->getSampleFnc =

(PRESTypePluginGetSampleFunction)

HelloWorldPlugin_get_sample;

plugin->returnSampleFnc =

(PRESTypePluginReturnSampleFunction)

HelloWorldPlugin_return_sample;

plugin->getKeyKindFnc =

(PRESTypePluginGetKeyKindFunction)

HelloWorldPlugin_get_key_kind;

/* These functions are only used for keyed types. As this is not a keyed

type they are all set to NULL

*/

plugin->serializeKeyFnc = NULL;

plugin->deserializeKeyFnc = NULL;

plugin->getKeyFnc = NULL;

plugin->returnKeyFnc = NULL;

plugin->instanceToKeyFnc = NULL;

plugin->keyToInstanceFnc = NULL;

plugin->getSerializedKeyMaxSizeFnc = NULL;

plugin->instanceToKeyHashFnc = NULL;

plugin->serializedSampleToKeyHashFnc = NULL;

plugin->serializedKeyToKeyHashFnc = NULL;

plugin->typeCode = (struct RTICdrTypeCode *)HelloWorld_get_typecode();

plugin->languageKind = PRES_TYPEPLUGIN_DDS_TYPE;

/* Serialized buffer */

plugin->getBuffer =

(PRESTypePluginGetBufferFunction)

HelloWorldPlugin_get_buffer;

plugin->returnBuffer =

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1482 Example Documentation

(PRESTypePluginReturnBufferFunction)

HelloWorldPlugin_return_buffer;

plugin->getSerializedSampleSizeFnc =

(PRESTypePluginGetSerializedSampleSizeFunction)

HelloWorldPlugin_get_serialized_sample_size;

plugin->endpointTypeName = HelloWorldTYPENAME;

return plugin;

}

void

HelloWorldPlugin_delete(struct PRESTypePlugin *plugin)

{

RTIOsapiHeap_freeStructure(plugin);

}

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

7.6 HelloWorldSupport.cxx 1483

7.6 HelloWorldSupport.cxx

7.6.1 User Data Type Support

Files generated by rtiddsgen (p. 211) that implement the type specific APIs
required by the DDS specification, as described in the User Data Type Sup-
port (p. 50), where:

ˆ FooTypeSupport (p. 1392) = HelloWorldTypeSupport

ˆ FooDataWriter (p. 1361) = HelloWorldDataWriter

ˆ FooDataReader (p. 1334) = HelloWorldDataReader

7.6.1.1 HelloWorldSupport.h

[$(NDDSHOME)/example/CPP/helloWorld/HelloWorldSupport.h]

/*

WARNING: THIS FILE IS AUTO-GENERATED. DO NOT MODIFY.

This file was generated from HelloWorld.idl using "rtiddsgen".

The rtiddsgen tool is part of the RTI Data Distribution Service distribution.

For more information, type ’rtiddsgen -help’ at a command shell

or consult the RTI Data Distribution Service manual.

*/

#ifndef HelloWorldSupport_1275191054218_h

#define HelloWorldSupport_1275191054218_h

/* Uses */

#include "HelloWorld.h"

#ifdef __cplusplus

#ifndef ndds_cpp_h

#include "ndds/ndds_cpp.h"

#endif

#else

#ifndef ndds_c_h

#include "ndds/ndds_c.h"

#endif

#endif

/* === */

#if (defined(RTI_WIN32) || defined (RTI_WINCE)) && defined(NDDS_USER_DLL_EXPORT)

/* If the code is building on Windows, start exporting symbols.

*/

#undef NDDSUSERDllExport

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1484 Example Documentation

#define NDDSUSERDllExport __declspec(dllexport)

#ifdef __cplusplus

/* If we’re building on Windows, explicitly import the superclasses of

* the types declared below.

*/

class __declspec(dllimport) DDSTypeSupport;

class __declspec(dllimport) DDSDataWriter;

class __declspec(dllimport) DDSDataReader;

#endif

#endif

#ifdef __cplusplus

DDS_TYPESUPPORT_CPP(HelloWorldTypeSupport, HelloWorld);

DDS_DATAWRITER_CPP(HelloWorldDataWriter, HelloWorld);

DDS_DATAREADER_CPP(HelloWorldDataReader, HelloWorldSeq, HelloWorld);

#else

DDS_TYPESUPPORT_C(HelloWorldTypeSupport, HelloWorld);

DDS_DATAWRITER_C(HelloWorldDataWriter, HelloWorld);

DDS_DATAREADER_C(HelloWorldDataReader, HelloWorldSeq, HelloWorld);

#endif

#if (defined(RTI_WIN32) || defined (RTI_WINCE)) && defined(NDDS_USER_DLL_EXPORT)

/* If the code is building on Windows, stop exporting symbols.

*/

#undef NDDSUSERDllExport

#define NDDSUSERDllExport

#endif

#endif /* HelloWorldSupport_1275191054218_h */

7.6.1.2 HelloWorldSupport.cxx

[$(NDDSHOME)/example/CPP/helloWorld/HelloWorldSupport.cxx]

/*

WARNING: THIS FILE IS AUTO-GENERATED. DO NOT MODIFY.

This file was generated from HelloWorld.idl using "rtiddsgen".

The rtiddsgen tool is part of the RTI Data Distribution Service distribution.

For more information, type ’rtiddsgen -help’ at a command shell

or consult the RTI Data Distribution Service manual.

*/

#include "HelloWorldSupport.h"

#include "HelloWorldPlugin.h"

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

7.6 HelloWorldSupport.cxx 1485

#ifdef __cplusplus

#ifndef dds_c_log_impl_h

#include "dds_c/dds_c_log_impl.h"

#endif

#endif

/* === */

/* --- */

/* DDSDataWriter

*/

/* Requires */

#define TTYPENAME HelloWorldTYPENAME

/* Defines */

#define TDataWriter HelloWorldDataWriter

#define TData HelloWorld

#ifdef __cplusplus

#include "dds_cpp/generic/dds_cpp_data_TDataWriter.gen"

#else

#include "dds_c/generic/dds_c_data_TDataWriter.gen"

#endif

#undef TDataWriter

#undef TData

#undef TTYPENAME

/* --- */

/* DDSDataReader

*/

/* Requires */

#define TTYPENAME HelloWorldTYPENAME

/* Defines */

#define TDataReader HelloWorldDataReader

#define TDataSeq HelloWorldSeq

#define TData HelloWorld

#ifdef __cplusplus

#include "dds_cpp/generic/dds_cpp_data_TDataReader.gen"

#else

#include "dds_c/generic/dds_c_data_TDataReader.gen"

#endif

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

1486 Example Documentation

#undef TDataReader

#undef TDataSeq

#undef TData

#undef TTYPENAME

/* --- */

/* TypeSupport

<<IMPLEMENTATION >>

Requires: TTYPENAME,

TPlugin_new

TPlugin_delete

Defines: TTypeSupport, TData, TDataReader, TDataWriter

*/

/* Requires */

#define TTYPENAME HelloWorldTYPENAME

#define TPlugin_new HelloWorldPlugin_new

#define TPlugin_delete HelloWorldPlugin_delete

/* Defines */

#define TTypeSupport HelloWorldTypeSupport

#define TData HelloWorld

#define TDataReader HelloWorldDataReader

#define TDataWriter HelloWorldDataWriter

#ifdef __cplusplus

#include "dds_cpp/generic/dds_cpp_data_TTypeSupport.gen"

#else

#include "dds_c/generic/dds_c_data_TTypeSupport.gen"

#endif

#undef TTypeSupport

#undef TData

#undef TDataReader

#undef TDataWriter

#undef TTYPENAME

#undef TPlugin_new

#undef TPlugin_delete

Generated on Wed Jun 9 20:12:01 2010 for RTI Data Distribution Service C++ API
by Doxygen

	RTI Data Distribution Service
	Feedback and Support for this Release.
	Available Documentation.

	Module Index
	Modules

	Class Index
	Class Hierarchy

	Class Index
	Class List

	Module Documentation
	Clock Selection
	Domain Module
	DomainParticipantFactory
	DomainParticipants
	Built-in Topics
	Topic Module
	Topics
	User Data Type Support
	Type Code Support
	Built-in Types
	Dynamic Data
	Publication Module
	Publishers
	Data Writers
	Flow Controllers
	Subscription Module
	Subscribers
	DataReaders
	Read Conditions
	Query Conditions
	Data Samples
	Sample States
	View States
	Instance States
	Infrastructure Module
	Built-in Sequences
	Multi-channel DataWriters
	Pluggable Transports
	Using Transport Plugins
	Built-in Transport Plugins
	Configuration Utilities
	Unsupported Utilities
	Durability and Persistence
	Configuring QoS Profiles with XML
	Publication Example
	Subscription Example
	Participant Use Cases
	Topic Use Cases
	FlowController Use Cases
	Publisher Use Cases
	DataWriter Use Cases
	Subscriber Use Cases
	DataReader Use Cases
	Entity Use Cases
	Waitset Use Cases
	Transport Use Cases
	Filter Use Cases
	Creating Custom Content Filters
	Large Data Use Cases
	Documentation Roadmap
	Conventions
	Using DDS:: Namespace
	DDS API Reference
	Queries and Filters Syntax
	RTI Data Distribution Service API Reference
	Programming How-To's
	Programming Tools
	rtiddsgen
	rtiddsping
	rtiddsspy
	Class Id
	Address
	Attributes
	Shared Memory Transport
	UDPv4 Transport
	UDPv6 Transport
	Participant Built-in Topics
	Topic Built-in Topics
	Publication Built-in Topics
	Subscription Built-in Topics
	String Built-in Type
	KeyedString Built-in Type
	Octets Built-in Type
	KeyedOctets Built-in Type
	DDS-Specific Primitive Types
	Time Support
	GUID Support
	Sequence Number Support
	Exception Codes
	Return Codes
	Status Kinds
	Thread Settings
	QoS Policies
	USER_DATA
	TOPIC_DATA
	GROUP_DATA
	DURABILITY
	PRESENTATION
	DEADLINE
	LATENCY_BUDGET
	OWNERSHIP
	OWNERSHIP_STRENGTH
	LIVELINESS
	TIME_BASED_FILTER
	PARTITION
	RELIABILITY
	DESTINATION_ORDER
	HISTORY
	DURABILITY_SERVICE
	RESOURCE_LIMITS
	TRANSPORT_PRIORITY
	LIFESPAN
	WRITER_DATA_LIFECYCLE
	READER_DATA_LIFECYCLE
	ENTITY_FACTORY
	Extended Qos Support
	Unicast Settings
	Multicast Settings
	TRANSPORT_SELECTION
	TRANSPORT_UNICAST
	TRANSPORT_MULTICAST
	DISCOVERY
	NDDS_DISCOVERY_PEERS
	TRANSPORT_BUILTIN
	WIRE_PROTOCOL
	DATA_READER_RESOURCE_LIMITS
	DATA_WRITER_RESOURCE_LIMITS
	DATA_READER_PROTOCOL
	DATA_WRITER_PROTOCOL
	SYSTEM_RESOURCE_LIMITS
	DOMAIN_PARTICIPANT_RESOURCE_LIMITS
	EVENT
	DATABASE
	RECEIVER_POOL
	PUBLISH_MODE
	DISCOVERY_CONFIG
	TYPESUPPORT
	ASYNCHRONOUS_PUBLISHER
	EXCLUSIVE_AREA
	BATCH
	LOCATORFILTER
	MULTICHANNEL
	PROPERTY
	Entity Support
	Conditions and WaitSets
	ENTITY_NAME
	PROFILE
	Octet Buffer Support
	Sequence Support
	String Support

	Class Documentation
	DDS_AllocationSettings_t Struct Reference
	DDS_AsynchronousPublisherQosPolicy Struct Reference
	DDS_BatchQosPolicy Struct Reference
	DDS_BooleanSeq Struct Reference
	DDS_BuiltinTopicKey_t Struct Reference
	DDS_BuiltinTopicReaderResourceLimits_t Struct Reference
	DDS_ChannelSettings_t Struct Reference
	DDS_ChannelSettingsSeq Struct Reference
	DDS_CharSeq Struct Reference
	DDS_ContentFilterProperty_t Struct Reference
	DDS_DatabaseQosPolicy Struct Reference
	DDS_DataReaderCacheStatus Struct Reference
	DDS_DataReaderProtocolQosPolicy Struct Reference
	DDS_DataReaderProtocolStatus Struct Reference
	DDS_DataReaderQos Struct Reference
	DDS_DataReaderResourceLimitsQosPolicy Struct Reference
	DDS_DataWriterCacheStatus Struct Reference
	DDS_DataWriterProtocolQosPolicy Struct Reference
	DDS_DataWriterProtocolStatus Struct Reference
	DDS_DataWriterQos Struct Reference
	DDS_DataWriterResourceLimitsQosPolicy Struct Reference
	DDS_DeadlineQosPolicy Struct Reference
	DDS_DestinationOrderQosPolicy Struct Reference
	DDS_DiscoveryConfigQosPolicy Struct Reference
	DDS_DiscoveryQosPolicy Struct Reference
	DDS_DomainParticipantFactoryQos Struct Reference
	DDS_DomainParticipantQos Struct Reference
	DDS_DomainParticipantResourceLimitsQosPolicy Struct Reference
	DDS_DoubleSeq Struct Reference
	DDS_DurabilityQosPolicy Struct Reference
	DDS_DurabilityServiceQosPolicy Struct Reference
	DDS_Duration_t Struct Reference
	DDS_DynamicData Struct Reference
	DDS_DynamicDataInfo Struct Reference
	DDS_DynamicDataMemberInfo Struct Reference
	DDS_DynamicDataProperty_t Struct Reference
	DDS_DynamicDataSeq Struct Reference
	DDS_DynamicDataTypeProperty_t Struct Reference
	DDS_DynamicDataTypeSerializationProperty_t Struct Reference
	DDS_EntityFactoryQosPolicy Struct Reference
	DDS_EntityNameQosPolicy Struct Reference
	DDS_EnumMember Struct Reference
	DDS_EnumMemberSeq Struct Reference
	DDS_EventQosPolicy Struct Reference
	DDS_ExclusiveAreaQosPolicy Struct Reference
	DDS_FloatSeq Struct Reference
	DDS_FlowControllerProperty_t Struct Reference
	DDS_FlowControllerTokenBucketProperty_t Struct Reference
	DDS_GroupDataQosPolicy Struct Reference
	DDS_GUID_t Struct Reference
	DDS_HistoryQosPolicy Struct Reference
	DDS_InconsistentTopicStatus Struct Reference
	DDS_InstanceHandleSeq Struct Reference
	DDS_KeyedOctets Struct Reference
	DDS_KeyedOctetsSeq Struct Reference
	DDS_KeyedString Struct Reference
	DDS_KeyedStringSeq Struct Reference
	DDS_LatencyBudgetQosPolicy Struct Reference
	DDS_LifespanQosPolicy Struct Reference
	DDS_LivelinessChangedStatus Struct Reference
	DDS_LivelinessLostStatus Struct Reference
	DDS_LivelinessQosPolicy Struct Reference
	DDS_Locator_t Struct Reference
	DDS_LocatorFilter_t Struct Reference
	DDS_LocatorFilterQosPolicy Struct Reference
	DDS_LocatorFilterSeq Struct Reference
	DDS_LocatorSeq Struct Reference
	DDS_LongDoubleSeq Struct Reference
	DDS_LongLongSeq Struct Reference
	DDS_LongSeq Struct Reference
	DDS_MultiChannelQosPolicy Struct Reference
	DDS_Octets Struct Reference
	DDS_OctetSeq Struct Reference
	DDS_OctetsSeq Struct Reference
	DDS_OfferedDeadlineMissedStatus Struct Reference
	DDS_OfferedIncompatibleQosStatus Struct Reference
	DDS_OwnershipQosPolicy Struct Reference
	DDS_OwnershipStrengthQosPolicy Struct Reference
	DDS_ParticipantBuiltinTopicData Struct Reference
	DDS_ParticipantBuiltinTopicDataSeq Struct Reference
	DDS_PartitionQosPolicy Struct Reference
	DDS_PresentationQosPolicy Struct Reference
	DDS_ProductVersion_t Struct Reference
	DDS_ProfileQosPolicy Struct Reference
	DDS_Property_t Struct Reference
	DDS_PropertyQosPolicy Struct Reference
	DDS_PropertySeq Struct Reference
	DDS_ProtocolVersion_t Struct Reference
	DDS_PublicationBuiltinTopicData Struct Reference
	DDS_PublicationBuiltinTopicDataSeq Struct Reference
	DDS_PublicationMatchedStatus Struct Reference
	DDS_PublisherQos Struct Reference
	DDS_PublishModeQosPolicy Struct Reference
	DDS_QosPolicyCount Struct Reference
	DDS_QosPolicyCountSeq Struct Reference
	DDS_ReaderDataLifecycleQosPolicy Struct Reference
	DDS_ReceiverPoolQosPolicy Struct Reference
	DDS_ReliabilityQosPolicy Struct Reference
	DDS_ReliableReaderActivityChangedStatus Struct Reference
	DDS_ReliableWriterCacheChangedStatus Struct Reference
	DDS_ReliableWriterCacheEventCount Struct Reference
	DDS_RequestedDeadlineMissedStatus Struct Reference
	DDS_RequestedIncompatibleQosStatus Struct Reference
	DDS_ResourceLimitsQosPolicy Struct Reference
	DDS_RtpsReliableReaderProtocol_t Struct Reference
	DDS_RtpsReliableWriterProtocol_t Struct Reference
	DDS_RtpsWellKnownPorts_t Struct Reference
	DDS_SampleInfo Struct Reference
	DDS_SampleInfoSeq Struct Reference
	DDS_SampleLostStatus Struct Reference
	DDS_SampleRejectedStatus Struct Reference
	DDS_SequenceNumber_t Struct Reference
	DDS_ShortSeq Struct Reference
	DDS_StringSeq Struct Reference
	DDS_StructMember Struct Reference
	DDS_StructMemberSeq Struct Reference
	DDS_SubscriberQos Struct Reference
	DDS_SubscriptionBuiltinTopicData Struct Reference
	DDS_SubscriptionBuiltinTopicDataSeq Struct Reference
	DDS_SubscriptionMatchedStatus Struct Reference
	DDS_SystemResourceLimitsQosPolicy Struct Reference
	DDS_ThreadSettings_t Struct Reference
	DDS_Time_t Struct Reference
	DDS_TimeBasedFilterQosPolicy Struct Reference
	DDS_TopicBuiltinTopicData Struct Reference
	DDS_TopicBuiltinTopicDataSeq Struct Reference
	DDS_TopicDataQosPolicy Struct Reference
	DDS_TopicQos Struct Reference
	DDS_TransportBuiltinQosPolicy Struct Reference
	DDS_TransportMulticastQosPolicy Struct Reference
	DDS_TransportMulticastSettings_t Struct Reference
	DDS_TransportMulticastSettingsSeq Struct Reference
	DDS_TransportPriorityQosPolicy Struct Reference
	DDS_TransportSelectionQosPolicy Struct Reference
	DDS_TransportUnicastQosPolicy Struct Reference
	DDS_TransportUnicastSettings_t Struct Reference
	DDS_TransportUnicastSettingsSeq Struct Reference
	DDS_TypeCode Struct Reference
	DDS_TypeCodeFactory Struct Reference
	DDS_TypeSupportQosPolicy Struct Reference
	DDS_UnionMember Struct Reference
	DDS_UnionMemberSeq Struct Reference
	DDS_UnsignedLongLongSeq Struct Reference
	DDS_UnsignedLongSeq Struct Reference
	DDS_UnsignedShortSeq Struct Reference
	DDS_UserDataQosPolicy Struct Reference
	DDS_ValueMember Struct Reference
	DDS_ValueMemberSeq Struct Reference
	DDS_VendorId_t Struct Reference
	DDS_WaitSetProperty_t Struct Reference
	DDS_WcharSeq Struct Reference
	DDS_WireProtocolQosPolicy Struct Reference
	DDS_WriterDataLifecycleQosPolicy Struct Reference
	DDS_WstringSeq Struct Reference
	DDSCondition Class Reference
	DDSConditionSeq Struct Reference
	DDSContentFilter Class Reference
	DDSContentFilteredTopic Class Reference
	DDSDataReader Class Reference
	DDSDataReaderListener Class Reference
	DDSDataReaderSeq Class Reference
	DDSDataWriter Class Reference
	DDSDataWriterListener Class Reference
	DDSDomainEntity Class Reference
	DDSDomainParticipant Class Reference
	DDSDomainParticipantFactory Class Reference
	DDSDomainParticipantListener Class Reference
	DDSDynamicDataReader Class Reference
	DDSDynamicDataTypeSupport Class Reference
	DDSDynamicDataWriter Class Reference
	DDSEntity Class Reference
	DDSFlowController Class Reference
	DDSGuardCondition Class Reference
	DDSKeyedOctetsDataReader Class Reference
	DDSKeyedOctetsDataWriter Class Reference
	DDSKeyedOctetsTypeSupport Class Reference
	DDSKeyedStringDataReader Class Reference
	DDSKeyedStringDataWriter Class Reference
	DDSKeyedStringTypeSupport Class Reference
	DDSListener Class Reference
	DDSMultiTopic Class Reference
	DDSOctetsDataReader Class Reference
	DDSOctetsDataWriter Class Reference
	DDSOctetsTypeSupport Class Reference
	DDSParticipantBuiltinTopicDataDataReader Class Reference
	DDSParticipantBuiltinTopicDataTypeSupport Class Reference
	DDSPropertyQosPolicyHelper Class Reference
	DDSPublicationBuiltinTopicDataDataReader Class Reference
	DDSPublicationBuiltinTopicDataTypeSupport Class Reference
	DDSPublisher Class Reference
	DDSPublisherListener Class Reference
	DDSPublisherSeq Class Reference
	DDSQueryCondition Class Reference
	DDSReadCondition Class Reference
	DDSStatusCondition Class Reference
	DDSStringDataReader Class Reference
	DDSStringDataWriter Class Reference
	DDSStringTypeSupport Class Reference
	DDSSubscriber Class Reference
	DDSSubscriberListener Class Reference
	DDSSubscriberSeq Class Reference
	DDSSubscriptionBuiltinTopicDataDataReader Class Reference
	DDSSubscriptionBuiltinTopicDataTypeSupport Class Reference
	DDSTopic Class Reference
	DDSTopicBuiltinTopicDataDataReader Class Reference
	DDSTopicBuiltinTopicDataTypeSupport Class Reference
	DDSTopicDescription Class Reference
	DDSTopicListener Class Reference
	DDSTypeSupport Class Reference
	DDSWaitSet Class Reference
	Foo Struct Reference
	FooDataReader Struct Reference
	FooDataWriter Struct Reference
	FooSeq Struct Reference
	FooTypeSupport Struct Reference
	NDDS_Config_LibraryVersion_t Struct Reference
	NDDS_Transport_Address_t Struct Reference
	NDDS_Transport_Property_t Struct Reference
	NDDS_Transport_Shmem_Property_t Struct Reference
	NDDS_Transport_UDPv4_Property_t Struct Reference
	NDDS_Transport_UDPv6_Property_t Struct Reference
	NDDSConfigLogger Class Reference
	NDDSConfigVersion Class Reference
	NDDSTransportSupport Class Reference
	NDDSUtility Class Reference
	TransportAllocationSettings_t Struct Reference

	Example Documentation
	HelloWorld.cxx
	HelloWorld.idl
	HelloWorld_publisher.cxx
	HelloWorld_subscriber.cxx
	HelloWorldPlugin.cxx
	HelloWorldSupport.cxx

