
RTI Message Service

Configuration and Operation Manual

Version 5.0

© 2008-2012 Real-Time Innovations, Inc.
All rights reserved.

Printed in U.S.A. First printing.
August 2012.

Trademarks
Real-Time Innovations, RTI, and Connext are trademarks or registered trademarks of Real-Time
Innovations, Inc. All other trademarks used in this document are the property of their respective
owners.

Copy and Use Restrictions
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any
form (including electronic, mechanical, photocopy, and facsimile) without the prior written
permission of Real-Time Innovations, Inc. The software described in this document is furnished
under and subject to the RTI software license agreement. The software may be used or copied only
under the terms of the license agreement.

Third-Party Copyright Notices
Note: In this section, "the Software" refers to third-party software, portions of which are used in
RTI Message Service; "the Software" does not refer to RTI Message Service.

• Portions of this product were developed using MD5 from Aladdin Enterprises.
• Portions of this product include software derived from Fnmatch, (c) 1989, 1993, 1994 The

Regents of the University of California. All rights reserved. The Regents and contributors
provide this software "as is" without warranty.

• Portions of this product were developed using EXPAT from Thai Open Source Software
Center Ltd and Clark Cooper Copyright (c) 1998, 1999, 2000 Thai Open Source Software
Center Ltd and Clark Cooper Copyright (c) 2001, 2002 Expat maintainers. Permission is
hereby granted, free of charge, to any person obtaining a copy of this software and associated
documentation files (the "Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/
or sell copies of the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions: The above copyright notice and this permission notice
shall be included in all copies or substantial portions of the Software.

Technical Support
Real-Time Innovations, Inc.
232 E. Java Drive
Sunnyvale, CA 94089
Phone: (408) 990-7444
Email: support@rti.com
Website: https://support.rti.com/

https://support.rti.com/

Contents

1 Welcome to RTI Message Service

1.1 Benefits of RTI Message Service ...1-2
1.1.1 Reduced Risk Through Industry-Leading Performance and Availability1-2
1.1.2 Reduced Cost through Ease of Use and Simplified Deployment..........................1-3
1.1.3 Unmatched Power and Flexibility to Meet Unique Requirements1-3
1.1.4 Interoperability with OMG Data Distribution Service-Based Systems1-4

1.2 Features of RTI Message Service ..1-4
1.3 JMS Conformance ...1-6
1.4 Understanding and Navigating the Documentation ...1-6

2 Debugging the Connection

2.1 Logging Configuration ..2-1
2.1.1 Log Verbosity...2-1
2.1.2 Logging by Functional Categories ...2-2
2.1.3 Redirecting Log Output...2-3

2.2 Debugging Connectivity Issues..2-3
2.2.1 Ping ...2-4
2.2.2 Spy ..2-10

3 Network Transport Configuration

3.1 Choosing Your Transports ...3-2
3.2 UDPv4 Configuration ..3-3
3.3 UDPv6 Configuration ..3-4
3.4 Shared Memory Configuration...3-14

3.4.1 Compatibility of Sender and Receiver Transports...3-15
3.4.2 Crashing and Restarting Programs..3-15
3.4.3 Shared Resource Keys ..3-15
3.4.4 Configuration ..3-16
iii

4 Data Connectivity

4.1 Segregate Systems and Subsystems into Domains ... 4-2
4.1.1 domain_id_gain and connection_id_gain .. 4-5

4.2 Tune Discovery for Faster Startup and Improved Scalability ... 4-7
4.2.1 Introduction: Discovery Announcements .. 4-8
4.2.2 Addresses Used for Discovery... 4-10
4.2.3 Asymmetric Discovery Configuration.. 4-15
4.2.4 Discovery Implementation ... 4-20
4.2.5 Debugging Discovery.. 4-25

4.3 Tune Reliability Performance ... 4-28
4.3.1 Introduction to the Reliability Protocol .. 4-28
4.3.2 Configuring Heartbeats .. 4-30
4.3.3 Configuring Acknowledgements .. 4-34

5 Throughput Management

5.1 Maximizing Throughput .. 5-1
5.1.1 Batch Messages to Increase Throughput .. 5-2
5.1.2 Dealing with Slow Consumers .. 5-6

5.2 Managing Traffic Surges ... 5-8
5.2.1 Step 1: Prune and Shape Network Traffic to Reduce (N)ACKs 5-9
5.2.2 Step 2: Wait Before Responding to Avoid NACK Storms 5-9
5.2.3 Step 3: Use Multicast Intelligently to Prevent Feedback Loops 5-13

6 Fault Tolerance

6.1 Data Determinism: Enforcing Periodic Deadlines .. 6-1
6.1.1 Incompatible QoS Notifications... 6-2
6.1.2 Declaring Deadline Contracts .. 6-4
6.1.3 Missed Deadline Notifications... 6-7

6.2 Monitoring Liveliness and Activity .. 6-9
6.2.1 MessageProducer Liveliness .. 6-9
6.2.2 MessageConsumer Activity ..6-11

6.3 Ownership and Automatic MessageProducer Fail-Over... 6-15
6.3.1 Configuring Ownership and Ownership Strength ... 6-15
6.3.2 Deadlines and Keys ... 6-19
iv

1. W
e

lc
o

m
e

Chapter 1 Welcome to RTI Message Service

Welcome to RTI® Message Service, the highest-performing JMS-compliant messaging
system in the world. RTI Message Service makes it easy to develop, deploy and maintain
distributed applications. Its core messaging technology has been proven in hundreds of
unique designs for life- and mission-critical applications across a variety of industries,
providing

❏ ultra-low latency and extremely high throughput

❏ with industry-leading latency determinism

❏ across heterogeneous systems spanning thousands of applications.

Its extensive set of real-time quality-of-service parameters allows you to fine-tune your
application to meet a wide range of timeliness, reliability, fault-tolerance, and resource
usage-related goals.

This chapter introduces the basic concepts within the middleware and summarizes how
RTI Message Service addresses the needs of high-performance systems. It also describes
the documentation resources available to you and provides a road map for navigating
them. Specifically, this chapter includes:

❏ Benefits of RTI Message Service (Section 1.1)

❏ Features of RTI Message Service (Section 1.2)

❏ JMS Conformance (Section 1.3)

❏ Understanding and Navigating the Documentation (Section 1.4)
1-1

1.1 Benefits of RTI Message Service
RTI Message Service is publish/subscribe networking middleware for high-performance
distributed applications. It implements the Java Message Service (JMS) specification,
but it is not just another MOM (message-oriented middleware). Its unique peer-to-peer
architecture and targeted high-performance and real-time capabilities extend the speci-
fication to provide unmatched value.

1.1.1 Reduced Risk Through Industry-Leading Performance and Availability

RTI Message Service provides industry-leading performance, whether measured in terms
of latency, throughput, or real-time determinism. One contributor to this superior per-
formance is RTI’s unique architecture, which is entirely peer-to-peer.

Traditional messaging middleware implementations require dedicated servers to broker
message flows, crippling application performance, increasing latency, and introducing
time non-determinism. These brokers increase system administration costs and can rep-
resent single points of failure within a distributed application, putting data reliability
and availability at risk.

RTI eliminates broker overhead by allowing messages to flow directly from a publisher
to each of its subscribers in a strictly peer-to-peer fashion. At the same time, it provides
a variety of powerful capabilities to ensure high availability.

Redundancy and high availability can optionally be layered onto the peer-to-peer data
fabric by transparently inserting instances of RTI Persistence Service. These instances can
distribute the load across topics and can also be arbitrarily redundant to provide the
level of data availability your application requires. See Chapter 7, "Scalable High-Per-
formance Applications: Durability and Persistence for High Availability," in the User’s
Manual for more information about this capability.

Traditional message-oriented middleware implementations require a broker to forward
every message, increasing latency and decreasing determinism and fault tolerance.
RTI's unique peer-to-peer architecture eliminates bottlenecks and single points of failure.
1-2

Benefits of RTI Message Service
1. W

e
lc

o
m

e

Publishers and subscribers can enter and leave the network at any time, and the middle-
ware will connect and disconnect them automatically. RTI Message Service provides fine-
grained control over fail-over among publishers, as well as detailed status notifications
to allow applications to detect missed delivery deadlines, dropped connections, and
other potential failure conditions. See Chapter 6, "Fault Tolerance," in the Configuration
and Operation Manual for more information about these capabilities.

1.1.2 Reduced Cost through Ease of Use and Simplified Deployment

❏ Increased developer productivity—Easy-to-use, well-understood JMS APIs get
developers productive quickly. (Take an opportunity to go through the tutorial
in the Getting Started Guide if you haven’t already.) Outside of the product docu-
mentation itself, a wide array of third-party JMS resources exist on the web and
on the shelves of your local book store.

❏ Simplified deployment—Because RTI Message Service consists only of dynamic
libraries, you don't need to configure or manage server machines or processes.
That translates into faster turnaround and lower overhead for your team.

❏ Reduced hardware costs—Some traditional messaging products require you to
purchase specialized acceleration hardware in order to achieve high perfor-
mance. The extreme efficiency and reduced overhead of RTI’s implementation,
on the other hand, allows you to see strong performance even on commodity
hardware.

1.1.3 Unmatched Power and Flexibility to Meet Unique Requirements

When you need it, RTI provides a high degree of fine-grained, low-level control over the
operation of the middleware, including, but not limited to:

❏ The volume of meta-traffic sent to assure reliability.

❏ The frequencies and timeouts associated with all events within the middleware.

❏ The amount of memory consumed, including the policies under which addi-
tional memory may be allocated by the middleware.

These quality-of-service (QoS) policies can be specified in configuration files so that
they can be tested and validated independently of the application logic. When they are
not specified, the middleware will use default values chosen to provide good perfor-
mance for a wide range of applications.

For specific information about the parameters available to you, consult the Configura-
tion and Operation Manual.
1-3

1.1.4 Interoperability with OMG Data Distribution Service-Based Systems

The Data Distribution Service (DDS) specification from the Object Management Group
(OMG) has become the standard for real-time data distribution and publish/subscribe
messaging for high performance real-time systems, especially in the aerospace and
defense industries. RTI Message Service is the only JMS implementation to directly inter-
operate at the wire-protocol level with RTI Data Distribution Service, the leading DDS
implementation.

RTI Data Distribution Service is available not only in Java but also in several other man-
aged and unmanaged languages. It is supported on a wide variety of platforms, includ-
ing embedded hardware running real-time operating systems. For more information,
consult your RTI account representative. If you are already an RTI Data Distribution Ser-
vice user, and are interested in DDS/JMS interoperability, consult the Interoperability
Guide that accompanies this documentation.

1.2 Features of RTI Message Service
Under the hood, RTI Message Service goes beyond the basic JMS publish-subscribe
model to target the needs of applications with high-performance, real-time, and/or low-
overhead requirements and provide the following:

❏ Peer-to-peer publish-subscribe communications Simplifies distributed applica-
tion programming and provides time-critical data flow with minimal latency.

• Clear semantics for managing multiple sources of the same data.

• Efficient data transfer, customizable Quality of Service, and error notifica-
tion.

• Guaranteed periodic messages, with minimum and maximum rates set by
subscriptions, including notifications when applications fail to meet their
deadlines.

• Synchronous or asynchronous message delivery to allow applications con-
trol over the degree of concurrency.

• Ability to send the same message to multiple subscribers efficiently,
including support for reliable multicast with customizable levels of posi-
tive and negative message acknowledgement.
1-4

Features of RTI Message Service
1. W

e
lc

o
m

e

❏ Reliable messaging—Enables subscribing applications to not only specify reli-
able delivery of messages, but to customize the degree of reliability required.
Data flows can be configured for (1) guaranteed delivery at any cost, at one
extreme, (2) the lowest possible latency and highest possible determinism, even
if it means that some messages will be lost, at the other extreme, or (3) many
points in between.

❏ Multiple communication networks—Multiple independent communication net-
works (domains), each using RTI Message Service, can be used over the same phys-
ical network to isolate unrelated systems and subsystems. Individual
applications can be configured to participate in one or multiple domains.

❏ Symmetric architecture—Makes your application robust:

• No central server or privileged nodes, so the system is robust to applica-
tion and/or node failures.

• Topics, subscriptions, and publications can be dynamically added and
removed from the system at any time.

Multiple network transports—RTI Message Service includes support for UDP/IP (v4 and
v6)—including, for example, Ethernet, wireless, and Infiniband networks—and shared
memory transports. It also includes the ability to dynamically plug in support for addi-
tional network transports and route messages over them. It can optionally be config-
ured to operate over a variety of transport mechanisms, including backplanes, switched
fabrics, and other networking technologies.

Multi-platform and heterogeneous system support—Applications based on RTI Message
Service can communicate transparently with each other regardless of the underlying
operating system or hardware. Consult the Release Notes to see which platforms are
supported in this release.

Vendor neutrality and standards compliance—The RTI Message Service API complies
with the JMS specification. Unlike other JMS implementations, it also supports a wire
protocol that is open and standards-based: the Real-Time Publish/Subscribe (RTPS)
protocol specification from the Object Management Group (OMG), which extends the
International Engineering Consortium’s (IEC’s) publicly available RTPS specification.
This protocol also enables interoperability between RTI Message Service and RTI Data
Distribution Service and between various DDS implementations. See Interoperability
with OMG Data Distribution Service-Based Systems (Section 1.1.4).
1-5

1.3 JMS Conformance
RTI Message Service is a high-performance messaging platform for demanding applica-
tions, including applications with real-time requirements. Not all portions of the JMS
specification are relevant or appropriate for this domain, and some required features are
not included in the specification. For more information about JMS conformance, includ-
ing both limitations and significant extensions, see Appendix A, "JMS Conformance," in
the User’s Manual.

1.4 Understanding and Navigating the Documentation
To get you from your download to running software as quickly as possible, we have
divided this documentation into several parts.

❏ Release Notes—Provides system-level requirements and other platform-specific
information about the product. Those responsible for installing RTI Message Service
should read this document first.

❏ Getting Started Guide—Describes how to download and install RTI Message Ser-
vice. It also lays out the core value and concepts behind the product and takes
you step-by-step through the creation of a simple example application. Develop-
ers should read this document first.

❏ User’s Manual—Describes the features of the product, their purpose and value,
and how to use them. It is aimed at developers who are responsible for imple-
menting the functional requirements of a distributed system, and is organized
around the structure of the JMS APIs and certain common high-level scenarios.

❏ Configuration and Operation Manual—Provides lower-level, more in-depth
configuration information and focuses on system-level concerns. It is aimed at
engineers who are responsible for configuring, optimizing, and administering
RTI Message Service-based distributed systems.

Many readers will also want to consult additional documentation available online. In
particular, RTI recommends the following:

❏ RTI Self-Service Portal—http://www.rti.com/support. Select the Find Solution
link to see sample code, general information on RTI Message Service, performance
information, troubleshooting tips, and other technical details.
1-6

http://www.rti.com/support

Understanding and Navigating the Documentation
1. W

e
lc

o
m

e

❏ RTI Example Performance Test—This recommended download includes example
code and configuration files for testing and optimizing the performance of a sim-
ple RTI Message Service-based application on your system. The program will test
both throughput and latency under a wide variety of middleware configura-
tions. It also includes documentation on tuning the middleware and the underly-
ing operating system.

To download this test, first log into your self-service support portal as described
above. Click Find Solution in the menu bar at the top of the page then click Per-
formance under All Solutions in the resulting page. Finally, click on or search
for Example Performance Test to download the test.

You can also review the data from several performance benchmarks here:
 http://www.rti.com/products/jms/latency-throughput-benchmarks.html.

❏ Java Message Service (JMS) API Documentation—RTI Message Service APIs are
compliant with the JMS specification. This specification is a part of the broader
Java Enterprise Edition (Java EE) product from Sun Microsystems; Java EE 5 is
documented at http://java.sun.com/javaee/5/docs/api/. In particular, see the
javax.jms package.

❏ Java Standard Edition API Documentation—Java EE is an extension to, and relies
on types imported from, the Java Standard Edition (Java SE) product. Java SE 6 is
documented online at http://java.sun.com/javase/6/docs/api/.

❏ Whitepapers and other articles are available from http://www.rti.com/
resources/.
1-7

http://java.sun.com/javase/6/docs/api/
http://www.rti.com/resources/
http://www.rti.com/resources/
http://java.sun.com/javaee/5/docs/api/
http://www.rti.com/products/jms/latency-throughput-benchmarks.html

1-8

2. D
e

b
ug

g
ing

 the

C
o

nne
c

tio
n

Chapter 2 Debugging the Connection

Eventually, you’re likely to encounter a configuration issue or other problem that you
need to debug. This chapter describes some of the tools at your disposal.

This chapter includes the following sections:

❏ Logging Configuration (Section 2.1)

❏ Debugging Connectivity Issues (Section 2.2)

2.1 Logging Configuration
Class: com.rti.management.Logger

RTI Message Service logs extensive information about its own operation. You can custom-
ize what kind of information is logged by using the Logger class.

2.1.1 Log Verbosity

Enumeration: com.rti.management.Logger.Verbosity

Method: static Logger.Verbosity getVerbosity()

Method: static void setVerbosity(Logger.Verbosity verbosity)
2-1

By default, the middleware only displays error messages; lower-verbosity messages are
suppressed. You can change the logging verbosity at any time. The logging levels are
identified by constants in the nested Logger.Verbosity enumeration:

In very-demanding applications, especially those requiring a high degree of determin-
ism, extremely verbose logging can impact performance. RTI recommends that you
leave your verbosity set to ERROR or WARNING unless you are trying to debug a spe-
cific problem.

2.1.2 Logging by Functional Categories

Enumeration: com.rti.management.Logger.Category

Method: static Logger.Verbosity getVerbosityByCategory(Logger.Category cate-
gory)

Method: static void setVerbosityByCategory(Logger.Category category, Logger.Ver-
bosity verbosity)

Sometimes, you’re only interested in investigating a specific functional category of the
middleware’s behavior. Logging at a high level of verbosity across all categories could
yield too much output and obscure the information you’re looking for.

SILENT No messages will be logged. This is the minimum level of verbosity.

ERROR Only error messages will be logged. This is the default level of verbosity.

WARNING

Error messages will be logged. The middleware will also log information
about situations that may represent problems. For example, some configu-
rations may function in limited circumstances, but perhaps not in the way
you intended.

STATUS_LOCAL
The middleware will also log tracing information pertaining to the opera-
tion of local objects.

STATUS_REMOTE
The middleware will also log tracing information pertaining to the opera-
tion of remote objects.

STATUS_ALL The middleware will display extensive tracing information.
2-2

Debugging Connectivity Issues
2. D

e
b

ug
g

ing
 the

C

o
nne

c
tio

n

RTI Message Service recognizes the following logging categories, defined by constants of
the Logger.Category enumeration. Unlike those of the Verbosity enumeration, the Cate-
gory constants are not cumulative; that is, no category includes another.

2.1.3 Redirecting Log Output

Method: static java.io.File getOutputFile()

Method: static void setOutputFile(java.io.File out) java.io.throws IOException

By default, RTI Message Service logs all output to standard output. If your application
launches from a command line terminal and produces no other output, it may be suffi-
cient to simply pipe or redirect all output from the process to a file or another process.

However, if your application has a graphical user interface and hides standard out, of it
your application produces many kinds of output and needs to direct them separately,
RTI Message Service allows you to redirect its output to a specific file.

If the setOutputFile method has never been called, getOutputFile will return null. Call-
ing setOutputFile with a null argument will restore logging to standard output.

2.2 Debugging Connectivity Issues
If you’re observing that data isn’t flowing like you expect from your publishers to your
consumers, you may wish to run simple applications to test whether the failure is in
your application’s configuration or is related to some deeper problem, like a misconfig-
uration of your network switching infrastructure. You can use the rtiddsping and

API
Log messages pertaining to the API layer of RTI Message Service (such
as method argument validation) are in this category.

COMMUNICATION
Log messages pertaining to data serialization and deserialization and
network traffic are in this category.

DATABASE
Log messages pertaining to the internal database in which RTI Message
Service objects are stored are in this category.

ENTITIES
Log messages pertaining to local and remote JMS objects and to the
discovery process are in this category.

PLATFORM
Log messages pertaining to the underlying platform (hardware and
OS) on which RTI Message Service is running are in this category.
2-3

rtiddsspy tools for this purpose. These are simple command-line tools that send and
receive messages on your network.

❏ The rtiddsping tool publishes and subscribes to simple non-JMS “ping” messages
to test connectivity between nodes using a variety of QoS settings.

❏ The rtiddsspy tool subscribes to all JMS messages and displays their contents.

2.2.1 Ping

The rtiddsping utility can be run in publisher or subscriber mode to test connectivity
between nodes. The packets sent and received by this utility do not contain JMS mes-
sages, so the utility will not interfere with the simultaneous use of RTI Message Service
applications on the network. However, it does support many of the same QoS configu-
rations as RTI Message Service itself, allowing you to test more-advanced middleware
configurations independently from your application logic.

The rtiddsping utility is located in the scripts directory of your RTI Message Service instal-
lation. It accepts the following configuration options, all of which are optional.

Table 2.1 Utility Options for rtiddsping

Option Description

-help Prints a help message and exits.

-version Prints the version and exits.

-Verbosity <NN>

Sets the verbosity level. The range is 0 to 5.

• 0 has minimal output and does not echo the fact that data is being
sent or received.

• 1 prints the most relevant statuses, including the sending and
receiving of data. It is the default.

• 2 prints a summary of the parameters that are in use and echoes
more detailed status messages.

• 3-5 mostly affect the verbosity used by the internal RTI Message
Service modules used to implement rtiddsping. The output is not
always readable, its main purpose being to provide information
that may be useful to RTI's Support team.

Example:

rtiddsping -Verbosity 2
2-4

Debugging Connectivity Issues
2. D

e
b

ug
g

ing
 the

C

o
nne

c
tio

n

Table 2.2 Basic Communication Options for rtiddsping

Option Description

-publisher

Causes rtiddsping to send ping messages. This is the default.

Example:

rtiddsping –publisher

-subscriber

Causes rtiddsping to listen for ping messages. This option cannot be speci-
fied if -publisher is also specified.

Example:

rtiddsping –subscriber

-numSamples
<NN>

Sets the number of packets that will be sent by rtiddsping. After those sam-
ples are sent, rtiddsping will exit. If this option is not specified, rtiddsping
will continue indefinitely.

Example:

rtiddsping -numSamples 10

-sendPeriod <SS>

Sets the period (in seconds) at which rtiddsping sends the messages. The
default is one second.

Example:

rtiddsping -sendPeriod 0.5

-timeout <SS>

Sets a timeout (in seconds) that will cause rtiddsping to exit if no messages
are received for a duration that exceeds the timeout. By default, this time
is infinite.

This option only applies if the -subscriber option is also specified.

Example:

rtiddsping -timeout 30

Table 2.3 QoS Configuration Options for rtiddsping

Option Description

-reliable

Configures the reliability QoS for publishing or subscribing. The default
setting if this option is not used is best effort. See Chapter 6, "Scalable
High-Performance Applications: Message Reliability," in the User’s Manual
for more information about reliability.

Example:

rtiddsping –reliable
2-5

-durability
<KIND>

Sets the durability QoS used for publishing or subscribing.

Valid settings for <KIND> are VOLATILE or TRANSIENT_LOCAL (the
default). See Chapter 7, "Scalable High-Performance Applications: Dura-
bility and Persistence for High Availability," in the User’s Manual for more
information about this QoS.

The effect of this setting can only be observed when it is used in conjunc-
tion with reliability and a queueSize larger than 1. If all these conditions
are met, a late-joining subscriber will be able to see up to queueSize sam-
ples that were previously written by the publisher.

Example:

rtiddsping -reliable -durability TRANSIENT_LOCAL

-queueSize <NN>

Specifies the maximal number of messages to hold in the queue. In the
case of the publisher, it affects the messages that are available for a late-
joining subscriber. It defaults to 1.

See Chapter 6, "Scalable High-Performance Applications: Message Reli-
ability," in the User’s Manual for more information about queue sizing.

Example:

rtiddsping -queueSize 100

-timeFilter <SS>

Sets the time-based filter QoS for the subscriptions made by rtiddsping.
This QoS causes RTI Message Service to filter out messages that are pub-
lished at a rate faster than what the filter duration permits. For example if
the filter duration is 10 seconds, messages will be printed no faster than
once each 10 seconds. See Chapter 3, "Messages and Topics," in the User’s
Manual for more information about time-based filtering.

The value 0 indicates no filter and is the default.

This option only applies if the -subscriber option is also specified.

Example:

rtiddsping –subscriber -timeFilter 5.5

Table 2.3 QoS Configuration Options for rtiddsping

Option Description
2-6

Debugging Connectivity Issues
2. D

e
b

ug
g

ing
 the

C

o
nne

c
tio

n
-deadline <SS>

This option sets the Deadline QoS for the subscriptions made by rtiddsping.
It only applies if the -subscriber option is also specified. See Chapter 6:
Fault Tolerance for more information about this QoS.

If this option is not specified, there will be no declared deadline.

Note that this may cause the subscription QoS to be incompatible with the
publisher if the publisher did not specify a sendPeriod that is greater than
the deadline. If the QoS is incompatible rtiddsping, will not receive
updates.

Each time a missed deadline is detected, rtiddsping will print a message
that indicates the number of deadlines missed so far.

Example:

rtiddsping –subscriber -deadline 3.5

Table 2.4 Discovery Options for rtiddsping

Option Description

-domainId
<domain ID>

Sets the domain ID. The valid range is 0 to 100; the default is 0.

For more information about domains, see Chapter 4: Data Connectivity.

Example:

rtiddsping -domainId 2

-index <NN>

Sets the connection ID. If it is not -1 (automatic, the default), then it needs
to be different from the ones used by all other applications in the same com-
puter and domain ID. If this rule is not respected, rtiddsping (or the applica-
tion that starts last) will get an initialization error.

For more information about domains and the connection ID, see Chapter 4:
Data Connectivity.

Example:

rtiddsping -domainId 2 –index 1

Table 2.3 QoS Configuration Options for rtiddsping

Option Description
2-7

-peer <PEER>

Specifies a network peer to be used for discovery. Like any RTI Message Ser-
vice application, it defaults to the setting of the environment variable
NDDS_DISCOVERY_PEERS or a pre-configured multicast address if the
environment is not set.

The format used for <PEER> is the same used for initial_peers and is
described in detail in Chapter 4: Data Connectivity. The general format is:

NN@TRANSPORT://ADDRESS

where:

❏ ADDRESS is an address (in name form or using the IP notation
xxx.xxx.xxx.xxx). ADDRESS may be a multicast address. It cannot
be omitted.

❏ TRANSPORT represents the kind of transport to use.

❏ NN is the maximum connection ID expected at that location. NN
can be omitted and defaults to '4'.

Valid settings for TRANSPORT are udpv4 and shmem. The default setting
if the transport part is omitted is udpv4.

The -peer option may be repeated to specify multiple peers.

Example:

rtiddsping -peer 10.10.1.192 -peer mars -peer 4@pluto

-discoveryTTL
<NN>

Sets the TTL (time-to-live) used for multicast discovery. If not specified,
RTI Message Service will use a default value.

The valid range is 0 to 255. The value 0 limits multicast to the node itself
(i.e. can only discover applications running on the same computer). The
setting of '1' limits multicast discovery to computers on the same subnet.
Settings greater generally indicate the maximum number of routers that
may be traversed (although some routers may be configured differently).

Example:

rtiddsping -discoveryTTL 4

-appId <ID>
Sets the application ID. If unspecified, the system will pick one automati-
cally. This option is rarely used.

Table 2.4 Discovery Options for rtiddsping

Option Description
2-8

Debugging Connectivity Issues
2. D

e
b

ug
g

ing
 the

C

o
nne

c
tio

n

Table 2.5 Transport Options for rtiddsping

Option Description

-transport
<MASK>

A bit-mask that sets the enabled built-in transports. The bit values are: 1 =
UDPv4, 2 = shared memory, and 8 = UDPv6.

If not specified, the default set of transports are used (UDPv4 + shared
memory).

Example:

rtiddsping –transport 3

-multicast
<ADDRESS>

Configures ping to receive messages over multicast. The ADDRESS
parameter indicates the address to use. ADDRESS must be in the valid
range for multicast addresses. For IP version 4, the valid range is 224.0.0.1
to 239.255.255.255.

This option only applies if the -subscriber option is also specified. If it is
not specified, IP multicast will not be used.

Example:

rtiddsping -subscriber -multicast 225.1.1.1

-msgMaxSize
<SIZE>

Configure the maximum packet size allowed by the installed transports.
This will be needed if you are using rtiddsping to communicate with an
application that has set these transport parameters to larger-than-default
values.

-shmRcvSize
<SIZE>

Increase the size of the shared memory receive buffer. You will need to do
this if you are using rtiddsping to communicate with an application that
has set these transport parameters to larger-than-default values.
2-9

2.2.2 Spy

The rtiddsspy utility subscribes to JMS messages on any topic and displays their contents
so that you can make sure that the messages you think you’re publishing are actually
making it onto the network and to the nodes you expect.

Table 2.6 Utility Options for rtiddsspy

Option Description

-help Prints a help message and exits.

-hOutput

Print information on the output format used by rtiddsspy.

This option causes rtiddsspy to print to the screen an explanation of the
output it produces when it is normally run. After the explanation, is
printed it exits.

Example:

rtiddsspy -hOutput

-version Prints the version and exits.

-Verbosity <NN>

Sets the verbosity level. The range is 0 to 5.

❏ 0 has minimal output and does not echo the fact that data is being
sent or received.

❏ 1 prints the most relevant statuses, including the sending and
receiving of data. This is the default.

❏ 2 prints a summary of the parameters that are in use and echoes
more detailed status messages.

❏ 3-5 Mostly affect the verbosity used by the internal RTI Message
Service modules used to implement rtiddsping. The output is not
always readable, its main purpose being to provide information
that may be useful to RTI's Support team.

Example:

rtiddsspy -Verbosity 2
2-10

Debugging Connectivity Issues
2. D

e
b

ug
g

ing
 the

C

o
nne

c
tio

n

Table 2.7 Output Options for rtiddsspy

Option Description

-printSample Prints the contents of each message received.

-showHandle

Causes rtiddsspy to print additional information on each message
received. The additional information is a hash of the message’s key
property, which can be used to distinguish among multiple
instances published under the same topic name. See Chapter 8,
"Scalable High-Performance Applications: Keys," in the User’s Man-
ual for more information about keys.

Example:

rtiddsspy –showHandle

-topicWidth <WIDTH>
Sets the maximum width of the topic name column. Names wider
than this will wrap around, unless -truncate is specified. The value
can be in the range [1, 255].

-truncate
Specifies that names exceeding the maximum number of characters
should be truncated.
2-11

Table 2.8 QoS Configuration Options for rtiddsspy

Option Description

-timeFilter <SS>

Sets the time-based filter QoS for the subscriptions made by rtiddsspy. This
QoS causes RTI Message Service to filter out messages that are published at a
rate faster than what the filter duration permits. For example if the filter
duration is 10 seconds, messages will be printed no faster than once each 10
seconds. See Chapter 3, "Messages and Topics," in the User’s Manual for
more information about time-based filtering.

The value 0 indicates no filter and is the default.

Example:

rtiddsspy -timeFilter 5.5

-deadline <SS>

This option sets the Deadline QoS for the subscriptions made by rtiddsspy.
See Chapter 6: Fault Tolerance for more information about this QoS.

If this option is not specified, there will be no declared deadline.

Note: this may cause the subscription QoS to be incompatible with the pub-
lisher if the publisher does not have a sendPeriod that is greater than the
deadline. If the QoS is incompatible rtiddsspy, will not receive updates.

Each time a missed deadline is detected, rtiddsspy will print a message that
indicates the number of deadlines missed so far.

Example:

rtiddsspy -deadline 3.5

Table 2.9 Discovery Options for rtiddsspy

Option Description

-topicRegex
<REGEX>

Subscribe only to topics that match the REGEX regular expression. The syn-
tax of the regular expression is that defined by the POSIX regex function.

This option may be repeated to specify topic multiple expressions. If it is
not specified, the default value is “*”, matching all topic names.

Note that when typing a regular expression to a command-line shell, some
symbols may need to be escaped to avoid interpretation by the shell. In
general, it is safest to include the expression in double quotes.

Example:

rtiddsspy -topicRegex "Alarm*"
2-12

Debugging Connectivity Issues
2. D

e
b

ug
g

ing
 the

C

o
nne

c
tio

n

-domainId
<domain ID>

Sets the domain ID. The valid range is 0 to 100; the default is 0.

For more information about domains, see Chapter 4: Data Connectivity.

Example:

rtiddsspy -domainId 2

-index <NN>

Sets the connection ID. If it is not -1 (automatic, the default), then it needs to
be different from the one used by all other applications in the same com-
puter and domain ID. If this rule is not respected, rtiddsspy (or the applica-
tion that starts last) will get an initialization error.

For more information about domains and the connection ID, see Chapter 4:
Data Connectivity.

Example:

rtiddsspy -domainId 2 –index 1

-peer <PEER>

Specifies a network peer to be used for discovery. Like any RTI Message Ser-
vice application, it defaults to the setting of the environment variable
NDDS_DISCOVERY_PEERS or a pre-configured multicast address if the
environment is not set.

The format used for <PEER> is the same used for initial_peers and is
described in detail in Chapter 4: Data Connectivity.

The general format is:

NN@TRANSPORT://ADDRESS

where:

❏ ADDRESS is an address (in name form or using the IP notation
xxx.xxx.xxx.xxx). ADDRESS may be a multicast address. It cannot
be omitted.

❏ TRANSPORT represents the kind of transport to use

❏ NN is the maximum connection ID expected at that location. NN
can be omitted and is defaulted to '4'.

Valid settings for TRANSPORT are udpv4 and shmem. The default setting
if the transport part is omitted is udpv4.

The -peer option may be repeated to specify multiple peers.

Example:

rtiddsspy -peer 10.10.1.192 -peer mars -peer 4@pluto

Table 2.9 Discovery Options for rtiddsspy

Option Description
2-13

-discoveryTTL
<NN>

Sets the TTL (time-to-live) used for multicast discovery. If not specified, RTI
Message Service will use a default value.

The valid range is 0 to 255.

❏ 0 limits multicast to the node itself (i.e. can only discover applica-
tions running on the same computer).

❏ 1 limits multicast discovery to computers on the same subnet.

❏ Values > 1 generally indicate the maximum number of routers that
may be traversed (although some routers may be configured differ-
ently).

Example:

rtiddsspy -discoveryTTL 4

-appId <ID>
Sets the application ID. If unspecified, the system will pick one automati-
cally. This option is rarely used.

Table 2.9 Discovery Options for rtiddsspy

Option Description

Table 2.10 Transport Options for rtiddsspy

Option Description

-transport <MASK>

A bit-mask that sets the enabled built-in transports. The bit values
are: 1 = UDPv4, 2 = shared memory, and 8 = UDPv6.

If not specified, the default set of transports are used (UDPv4 +
shared memory).

Example:

rtiddsspy –transport 3

-msgMaxSize <SIZE>

Configure the maximum packet size allowed by the installed trans-
ports. This will be needed if you are using rtiddsspy to communicate
with an application that has set these transport parameters to larger-
than-default values.

-shmRcvSize <SIZE>
Increase the size of the shared memory receive buffer. This will be
needed if you are using rtiddsspy to communicate with an application
that has set these transport parameters to larger-than-default values.
2-14

3. N
e

tw
o

rk Tra
nsp

o
rt

C
o

nfig
ura

tio
n

Chapter 3 Network Transport Configuration

This chapter tells you what you need to know in order to configure the way that RTI
Message Service uses the underlying network—what RTI refers to as the transport. RTI
supports the following transports out of the box:

❏ UDP/IP v4

❏ UDP/IP v6

❏ Shared memory

RTI Message Service will work automatically with any network adapter on your system
whose driver exposes it to the system as an IP interface. This includes not only tradi-
tional wired and wireless modems and Ethernet adapters but also higher-performance
or more-specialized devices like Infiniband interface cards. It also provides a transport
interface into which non-IP transports can be plugged, either by customers or RTI Pro-
fessional Services. For more information about this facility, please consult your RTI
account manager.

This chapter includes the following sections:

❏ Choosing Your Transports (Section 3.1)

❏ UDPv4 Configuration (Section 3.2)

❏ UDPv6 Configuration (Section 3.3)

❏ Shared Memory Configuration (Section 3.4)
3-1

3.1 Choosing Your Transports
By default, RTI Message Service will use shared memory to communicate among applica-
tions on the same node and UDPv4 to communicate among nodes. However, this con-
figuration may not be appropriate for all applications. For example, you may wish to
more-closely simulate the performance of several nodes with a single node by turning
of shared memory, or you may wish to use UDPv6 in place of UDPv4. You can also con-
serve system resources by disabling transports that you know you will never use.

You can activate or deactivate transports on a per-ConnectionFactory basis using the
Transport Built-in QoS policy. This policy contains a “mask” that specifies the bar (‘|’)-
delimited list of transports to use. The recognized transports are:

❏ TRANSPORTBUILTIN_UDPv4

❏ TRANSPORTBUILTIN_UDPv6

❏ TRANSPORTBUILTIN_SHMEM

Example:

<connection_factory name="Example Factory">
<transport_builtin>

<mask>
TRANSPORTBUILTIN_UDPv4|TRANSPORTBUILTIN_UDPv6

</mask>
</transport_builtin>

</connection_factory>

Note: The default addresses that the middleware uses for communication rely on the
UDPv4 and shared memory transports. If you disable one or both of these transports,
you will need to change those addresses to avoid logged warnings and possible com-
munication problems. See the Asymmetric Discovery Configuration (Section 4.2.3) for
more information.

You can also configure transports on a per-MessageProducer or per-MessageConsumer
basis using the Transport Selection QoS policy. This policy contains a list of strings indi-
cating the transports to be used.
3-2

UDPv4 Configuration
3. N

e
tw

o
rk Tra

nsp
o

rt
C

o
nfig

ura
tio

n

Example:

<topic name”Example Topic”>
<consumer_defaults>

<transport_selection>
<enabled_transports>

<element>builtin.udpv4</element>
<element>builtin.udpv6</element>
<element>builtin.shmem</element>

</enabled_transports>
</transport_selection>

</consumer_defaults>
</topic>

Because an empty list (i.e., no <element> elements is not useful, it is used as a sentinel:
it indicates that all transports that are active on the containing Connection will be used
by the producer or consumer.

The UDP/IP v4 transport supports unicast and multicast communication. RTI Message
Service uses a reliable protocol called Real-Time Publish Subscribe (RTPS) on top of UDP
to provide reliability and other services not available in UDP itself.

3.2 UDPv4 Configuration
This transport plug-in uses UDPv4 sockets to send and receive messages. It supports
both unicast and multicast communications. By default, it will use all interfaces that it
finds enabled and “UP” at Connection instantiation time to send and receive messages.

RTI Message Service implicitly initializes this plug-in if it is specified in Transport Built-in
QoS policy described above. You can configure it to only use unicast or only use multi-
cast, see the unicast_enabled and multicast_enabled properties described below.

In addition, you can configure this plug-in to selectively use the network interfaces of a
node (and restrict a plug-in from sending multicast messages on specific interfaces) by
specifying the "white" and "black" lists (the allow_interfaces, deny_interfaces,
allow_multicast_interfaces, and deny_multicast_interfaces properties).
3-3

Configure the UDPv4 transport using the Property QoS policy of a ConnectionFactory
like this:

<connection_factory name=“Example Factory”>
<property>

<value>
<element>

<name>name1</name>
<value>value1</value>

</element>
<element>

<name>name2</name>
<value>value2</value>

</element>
</value>

</property>
</connection_factory>

Table 3.1 on page 3-5 lists the UDPv4 connection properties.

Each connection will open up to four UDP/IP ports:

❏ The meta-traffic unicast port is used to exchange discovery-related meta-traffic
using unicast. This port will not be used if unicast traffic has been disabled.

❏ The meta-traffic multicast port is used to exchange discovery meta-traffic using
multicast. This port will not be used if multicast traffic has been disabled.

❏ The user traffic unicast port is used to exchange application data using unicast.
This port will not be used if unicast traffic has been disabled.

❏ The user traffic multicast port is used to exchange application data using multicast.
This port will not be used if multicast traffic has been disabled.

The numbers of these ports are described in Segregate Systems and Subsystems into
Domains (Section 4.1)

3.3 UDPv6 Configuration
This transport plug-in uses UDPv6 sockets to send and receive messages. It supports
both unicast and multicast communications. By default, it will use all interfaces that it
finds enabled and “UP” at Connection instantiation time to send and receive messages.
3-4

UDPv6 Configuration
3. N

e
tw

o
rk Tra

nsp
o

rt
C

o
nfig

ura
tio

n

Table 3.1 UDPv4 Connection Properties

Property Name Description

dds.transport.UDPv4.builtin.
parent. message_size_max

The maximum size of a message in bytes that can be sent
or received by the transport plug-in.

dds.transport.UDPv4.builtin.
parent. allow_interfaces

A list of strings, each identifying a range of interface
addresses. If the list is non-empty, allow the use of only
these interfaces; otherwise allow the use of all interfaces.

Interfaces should be specified as comma-separated
strings, with each comma delimiting an interface. For
example, "127.0.0.1,eth0"

dds.transport.UDPv4.builtin.
parent.deny_interfaces

A list of strings, each identifying a range of interface
addresses. If the list is non-empty, deny the use of these
interfaces.

This "black" list is applied after the allow_interfaces and
filters out the interfaces that should not be used.

Interfaces should be specified as comma-separated
strings, with each comma delimiting an interface. For
example, "127.0.0.1,eth0"

dds.transport.UDPv4.builtin.
parent. allow_multicast_interfaces

A list of strings, each identifying a range of interface
addresses. If the list is non-empty, allow the use of multi-
cast only these interfaces; otherwise allow the use of all
the allowed interfaces.

This "while" list sub-selects from the allowed interfaces
obtained after applying the allow_interfaces "white" list
and the deny_interfaces "black" list.

If this list is empty, all the allowed interfaces will be
potentially used for multicast.

Interfaces should be specified as comma-separated
strings, with each comma delimiting an interface. For
example, "127.0.0.1,eth0"
3-5

dds.transport.UDPv4.builtin.
parent.deny_multicast_interfaces

A list of strings, each identifying a range of interface
addresses. If the list is non-empty, deny the use of those
interfaces for multicast.

This "black" list is applied after the
allow_multicast_interfaces and filters out the interfaces
that should not be used for multicast.

Interfaces should be specified as comma-separated
strings, with each comma delimiting an interface. For
example, "127.0.0.1,eth0"

dds.transport.UDPv4.builtin.
 send_socket_buffer_size

Size in bytes of the send buffer of a socket used for send-
ing.

On most operating systems, setsockopt() will be called
to set the SENDBUF to the value of this parameter.

This value must be greater than or equal to
message_size_max.

If you configure this parameter to be equal to the OS
default, then setsockopt() (or equivalent) will not be
called to size the send buffer of the socket.

dds.transport.UDPv4.builtin.
recv_socket_buffer_size

Size in bytes of the receive buffer of a socket used for
receiving.

On most operating systems, setsockopt() will be called to
set the RECVBUF to the value of this parameter.

This value must be greater than or equal to
message_size_max.

If it is set to the OS default, then setsockopt() (or equiva-
lent) will not be called to size the receive buffer of the
socket.

dds.transport.UDPv4.builtin.
unicast_enabled

Allows the transport plug-in to use unicast for sending
and receiving.

The user can turn on or off the use of unicast UDP for
this plug-in. By default, it will be turned on. Also by
default, it will use all the allowed network interfaces that
it finds up and running when the plug-in is instanced.

Table 3.1 UDPv4 Connection Properties

Property Name Description
3-6

UDPv6 Configuration
3. N

e
tw

o
rk Tra

nsp
o

rt
C

o
nfig

ura
tio

n

dds.transport.UDPv4.builtin.
multicast_enabled

Allows the transport plug-in to use multicast for sending
and receiving.

The user can turn on or off the use of multicast UDP for
this plug-in. By default it will be turned on. Also by
default, it will use the all network interfaces allowed for
multicast that it finds up and running when the plug-in
is instanced.

dds.transport.UDPv4.builtin.
multicast_ttl

Value for the time-to-live parameter for all multicast
sends.

This is used to set the TTL of multicast packets sent by
this transport plug-in.

dds.transport.UDPv4.builtin.
multicast_loopback_disabled

Prevents the transport plug-in from putting multicast
packets onto the loopback interface. This will prevent
other applications on the same node (including itself)
from receiving those packets.

This is set to 0 by default, so multicast loopback is
enabled. Turning off multicast loopback (set to 1) may
result in minor performance gains when using multicast.

Table 3.1 UDPv4 Connection Properties

Property Name Description
3-7

dds.transport.UDPv4.builtin.
ignore_loopback_interface

Prevents the transport plug-in from using the IP loop-
back interface.

Three values are allowed:

❏ 0: Enable local traffic via this plug-in. This plug-
in will only use and report the IP loopback inter-
face only if there are no other network interfaces
(NICs) up on the system.

❏ 1: Disable local traffic via this plug-in. Do not use
the IP loopback interface even if no NICs are dis-
covered. This is useful when you want applica-
tions running on the same node to use a more
efficient plug-in like Shared Memory to talk
instead of the IP loopback.

❏ -1: Automatic. Let RTI Message Service decide
among the above two choices. If a shared mem-
ory transport plug-in is available for local traffic,
the effective value is 1 (i.e., disable UPv4 local
traffic). Otherwise, the effective value is 0, i.e.,
use UDPv4 for local traffic also.

Table 3.1 UDPv4 Connection Properties

Property Name Description
3-8

UDPv6 Configuration
3. N

e
tw

o
rk Tra

nsp
o

rt
C

o
nfig

ura
tio

n

RTI Message Service implicitly initializes this plug-in if it is specified in the Transport
Built-in QoS policy. This is not the default configuration.

You can configure this plug-in to only use unicast or only use multicast; see the
unicast_enabled and multicast_enabled properties described below.

In addition, you can configure this plug-in to selectively use the network interfaces of a
node (and restrict it from sending multicast messages on specific interfaces) by specify-
ing the "white" and "black" lists (the allow_interfaces, deny_interfaces,
allow_multicast_interfaces, and deny_multicast_interfaces properties).

dds.transport.UDPv4.builtin.
ignore_nonrunning_interfaces

Prevents the transport plug-in from using a network
interface that is not reported as RUNNING by the oper-
ating system.

The transport checks the flags reported by the operating
system for each network interface upon initialization. An
interface which is not reported as UP will not be used.
This property allows the same check to be extended to
the IFF_RUNNING flag implemented by some operating
systems. The RUNNING flag is defined to mean that "all
resources are allocated", and may be off if there is no link
detected, e.g., the network cable is unplugged.

Two values are allowed:

0: Do not check the RUNNING flag when enumerating
interfaces, just make sure the interface is UP. This is the
default.

1: Check the flag when enumerating interfaces, and
ignore those that are not reported as RUNNING. This
can be used on some operating systems to cause the
transport to ignore interfaces that are enabled but not
connected to the network.

Table 3.1 UDPv4 Connection Properties

Property Name Description
3-9

Configure the UDPv6 transport using the Property QoS policy of a ConnectionFactory
like this:

<connection_factory name="Example Factory">
<property>

<value>
<element>

<name>name1</name>
<value>value1</value>

</element>
<element>

<name>name2</name>
<value>value2</value>

</element>
</value>

</property>
</connection_factory>

Table 3.2 on page 3-11 lists the UDPv6 Connection Properties.

Each connection will open up to four UDP/IP ports:

❏ The meta-traffic unicast port is used to exchange discovery-related meta-traffic
using unicast. This port will not be used if unicast traffic has been disabled.

❏ The meta-traffic multicast port is used to exchange discovery meta-traffic using
multicast. This port will not be used if multicast traffic has been disabled.

❏ The user traffic unicast port is used to exchange application data using unicast.
This port will not be used if unicast traffic has been disabled.

❏ The user traffic multicast port is used to exchange application data using multicast.
This port will not be used if multicast traffic has been disabled.
3-10

UDPv6 Configuration
3. N

e
tw

o
rk Tra

nsp
o

rt
C

o
nfig

ura
tio

n

The numbers of these ports are described in Section 4.1, "Segregate Systems and Subsys-
tems into Domains," in the User’s Manual.

Table 3.2 UDPv6 Connection Properties

Property Name Description

dds.transport.UDPv6.builtin.
parent.message_size_max

The maximum size of a message in bytes that can be sent or
received by the transport plug-in.

dds.transport.UDPv6.builtin.
parent.allow_interfaces

A list of strings, each identifying a range of interface addresses.
If the list is non-empty, allow the use of multicast only these
interfaces; otherwise allow the use of all the allowed interfaces.

This "while" list sub-selects from the allowed interfaces
obtained after applying the allow_interfaces "white" list and
the deny_interfaces "black" list.

If this list is empty, all the allowed interfaces will be potentially
used for multicast.

Interfaces should be specified as comma-separated strings,
with each comma delimiting an interface. For example,
"127.0.0.1,eth0"

dds.transport.UDPv6.builtin.
parent.deny_interfaces

A list of strings, each identifying a range of interface addresses.
If the list is non-empty, deny the use of these interfaces.

This "black" list is applied after the allow_interfaces and filters
out the interfaces that should not be used.

Interfaces should be specified as comma-separated strings,
with each comma delimiting an interface. For example,
"127.0.0.1,eth0"

dds.transport.UDPv6.builtin.
parent.
allow_multicast_interfaces

A list of strings, each identifying a range of interface addresses.
If the list is non-empty, allow the use of multicast only these
interfaces; otherwise allow the use of all the allowed interfaces.

This "while" list sub-selects from the allowed interfaces
obtained after applying the allow_interfaces "white" list and
the deny_interfaces "black" list.

If this list is empty, all the allowed interfaces will be potentially
used for multicast.

Interfaces should be specified as comma-separated strings,
with each comma delimiting an interface. For example,
"127.0.0.1,eth0"
3-11

dds.transport.UDPv6.builtin.
parent.
deny_multicast_interfaces

A list of strings, each identifying a range of interface addresses.
If the list is non-empty, deny the use of those interfaces for mul-
ticast.

This "black" list is applied after the allow_multicast_interfaces
and filters out the interfaces that should not be used for multi-
cast.

Interfaces should be specified as comma-separated strings,
with each comma delimiting an interface. For example,
"127.0.0.1,eth0"

dds.transport.UDPv6.builtin.
send_socket_buffer_size

Size in bytes of the send buffer of a socket used for sending.

On most operating systems, setsockopt() will be called to set
the SENDBUF to the value of this parameter.

This value must be greater than or equal to message_size_max.
The maximum value is operating system-dependent.

If you configure this parameter to be the OS default, then set-
sockopt() (or equivalent) will not be called to size the send buf-
fer of the socket.

dds.transport.UDPv6.builtin.
recv_socket_buffer_size

Size in bytes of the receive buffer of a socket used for receiving.

On most operating systems, setsockopt() will be called to set
the RECVBUF to the value of this parameter.

This value must be greater than or equal to message_size_max.
The maximum value is operating system-dependent.

If it is set to the OS default, then setsockopt() (or equivalent)
will not be called to size the receive buffer of the socket.

dds.transport.UDPv6.builtin.
unicast_enabled

Allows the transport plug-in to use unicast for sending and
receiving.

By default, unicast will be turned on. Also by default, the trans-
port will use all the allowed network interfaces that it finds up
and running when the Connection is instanced.

dds.transport.UDPv6.builtin.
multicast_enabled

Allows the transport plug-in to use multicast for sending and
receiving.

By default, multicast will be turned on. Also by default, the
transport will use all network interfaces allowed for multicast
that it finds up and running when the plug-in is instanced.

Table 3.2 UDPv6 Connection Properties

Property Name Description
3-12

UDPv6 Configuration
3. N

e
tw

o
rk Tra

nsp
o

rt
C

o
nfig

ura
tio

n

dds.transport.UDPv6.builtin.
multicast_ttl

Value for the time-to-live parameter for all multicast sends
using this plug-in.

dds.transport.UDPv6.builtin.
multicast_loopback_disabled

Prevents the transport plug-in from putting multicast packets
onto the loopback interface. This will prevent other applica-
tions on the same node (including itself) from receiving those
packets.

This is set to 0 by default, so multicast loopback is enabled.
Turning off multicast loopback (set to 1) may result in minor
performance gains when using multicast.

dds.transport.UDPv6.builtin.
ignore_loopback_interface

Prevents the transport plug-in from using the IP loopback inter-
face. Three values are allowed:

❏ 0: Enable local traffic via this plug-in. This plug-in will
only use and report the IP loopback interface only if
there are no other network interfaces (NICs) up on the
system.

❏ 1: Disable local traffic via this plug-in. Do not use the IP
loopback interface even if no NICs are discovered. This
is useful when you want applications running on the
same node to use a more efficient plug-in like Shared
Memory to talk instead of the IP loopback.

❏ -1: Automatic. Let RTI Message Service decide among
the above two choices. If a shared memory transport
plug-in is available for local traffic, the effective value is
1 (i.e., disable UPv4 local traffic). Otherwise, the effec-
tive value is 0, i.e., use UDPv4 for local traffic also.

Table 3.2 UDPv6 Connection Properties

Property Name Description
3-13

3.4 Shared Memory Configuration
This plug-in uses system shared memory to send messages between processes on the
same node.

Note: For the sake of efficiency, activating the shared memory transport will deactivate
the use of IP loopback communication. This optimization prevents the middleware from
sending duplicate copies of each message bound for the local host over both transports,
only to discard one copy of each message upon reception. It is therefore critical for all
applications on the same host that you intend to communicate together to have the
same shared memory and UDP transport configurations.

dds.transport.UDPv6.builtin.
ignore_nonrunning_interfaces

Prevents the transport plug-in from using a network interface
that is not reported as RUNNING by the operating system.

The transport checks the flags reported by the operating system
for each network interface upon initialization. An interface
which is not reported as UP will not be used. This property
allows the same check to be extended to the IFF_RUNNING
flag implemented by some operating systems. The RUNNING
flag is defined to mean that "all resources are allocated", and
may be off if there is no link detected, e.g., the network cable is
unplugged.

Two values are allowed:

0: Do not check the RUNNING flag when enumerating inter-
faces, just make sure the interface is UP. This is the default.

1: Check the flag when enumerating interfaces, and ignore
those that are not reported as RUNNING. This can be used on
some operating systems to cause the transport to ignore inter-
faces that are enabled but not connected to the network.

dds.transport.UDPv6.builtin.
enable_v4mapped

Specify whether the UDPv6 transport will process IPv4
addresses.

Set this to 1 to turn on processing of IPv4 addresses. Note that
this may make the UDPv6 transport incompatible the UDPv4
transport within the same Connection.

Table 3.2 UDPv6 Connection Properties

Property Name Description
3-14

Shared Memory Configuration
3. N

e
tw

o
rk Tra

nsp
o

rt
C

o
nfig

ura
tio

n

3.4.1 Compatibility of Sender and Receiver Transports

Opening a receiver “port” on shared memory corresponds to creating a shared memory
segment using a name based on the port number. The transport plug-in's properties are
embedded in the shared memory segment.

When a sender tries to send to the shared memory port, it verifies that properties of the
receiver's shared memory transport are compatible with those specified in its transport
plug-in. If not, the sender will fail to attach to the port and will output messages such as
below (with numbers appropriate to the properties of the transport plug-ins involved).

NDDS_Transport_Shmem_attachShmem:failed to initialize incompatible
properties
NDDS_Transport_Shmem_attachShmem:countMax 0 > -19417345 or max size
-19416188 > 2147482624

In this scenario, the properties of the sender or receiver transport plug-in instances
should be adjusted so that they are compatible.

3.4.2 Crashing and Restarting Programs

If a process using shared memory crashes (say because the user typed in ^C), resources
associated with its shared memory ports may not be properly cleaned up. Later, if
another RTI Message Service process needs to open the same ports (say, the crashed pro-
gram is restarted), it will attempt to reuse the shared memory segment left behind by
the crashed process.

The reuse is allowed if and only if the properties of the transport plug-in are compatible
with those embedded in the shared memory segment (i.e., of the original creator). Oth-
erwise, the process will fail to open the ports and will output messages such as below
(with numbers appropriate to the properties of the transport plug-ins involved).

NDDS_Transport_Shmem_create_recvresource_rrEA:failed to initialize
shared memory resource Cannot recycle existing shmem: size not com-
patible for key 0x1234

In this scenario, the shared memory segments must be cleaned up using appropriate
platform specific commands. For details, please refer to the Release Notes.

3.4.3 Shared Resource Keys

The transport uses the shared memory segment keys given by this formula:

0x400000 + port
3-15

The transport also uses signaling shared semaphore keys given by this formula:

0x800000 + port

The transport also uses mutex shared semaphore keys given by this formula:

0xb00000 + port

where the port is a function of the domain ID and the connection ID, as described in
Chapter 4: Data Connectivity.

3.4.4 Configuration

Configure the shared memory transport using the Property QoS policy of a Connection-
Factory like this:

<connection_factory name="Example Factory">
<property>

<value>
<element>

<name>name1</name>
<value>value1</value>

</element>
<element>

<name>name2</name>
<value>value2</value>

</element>
</value>

</property>
</connection_factory>

Table 3.3 lists the shared memory configuration properties.

Table 3.3 Shared Memory Configuration Properties

Property Name Description

dds.transport.shmem.builtin.
parent.message_size_max

The maximum size of a message in bytes that can be sent or
received by the transport plug-in.

dds.transport.shmem.builtin.
received_message_count_max

Number of messages that can be buffered in the receive queue.

This does not guarantee that the transport plug-in will actually
be able to buffer received_message_count_max messages of the
maximum size set in message_size_max.

The total number of bytes that can be buffered is actually con-
trolled by receive_buffer_size.
3-16

Shared Memory Configuration
3. N

e
tw

o
rk Tra

nsp
o

rt
C

o
nfig

ura
tio

n

dds.transport.shmem.builtin.
receive_buffer_size

The total number of bytes that can be buffered in the receive
queue.

This number controls how much memory is allocated by the
plug-in for the receive queue. The actual number of bytes allo-
cated is:

size =
receive_buffer_size + message_size_max +
received_message_count_max * fixedOverhead

where fixedOverhead is some small number of bytes used by
the queue data structure. The following rules are noted:

If receive_buffer_size < (message_size_max *
received_message_count_max), then the transport plug-in will
not be able to store received_message_count_max messages of
size receive_buffer_size.

If receive_buffer_size > (message_size_max *
received_message_count_max), then there will be memory
allocated that cannot be used by the plug-in and thus wasted.

To optimize memory usage, you are allowed to specify a size
for the receive queue less than that required to hold the maxi-
mum number of messages which are all of the maximum size.

In most situations, the average message size may be far less
than the maximum message size. So for example, if the maxi-
mum message size is 64 K bytes, and the user configures the
plug-in to buffer at least 10 messages, then 640 K bytes of mem-
ory would be needed if all messages were 64 K bytes. Should
this be desired, then receive_buffer_size should be set to 640 K
bytes.

However, if the average message size is only 10 K bytes, then
the user could set the receive_buffer_size to 100 K bytes. This
allows the user to optimize the memory usage of the plug-in for
the average case and yet allow the plug-in to handle the
extreme case.

NOTE, the queue will always be able to hold 1 message of
message_size_max bytes, no matter what the value of
receive_buffer_size is.

Table 3.3 Shared Memory Configuration Properties

Property Name Description
3-17

3-18

4. D
a

ta
 C

o
nne

c
tivity
Chapter 4 Data Connectivity

Sometimes application designers and system administrators require greater control
over which messaging objects will communicate than can be controlled simply by topic
names.

❏ Multiple distinct applications may exist independently on the same physical net-
work with the requirement that they remain entirely isolated from one another.

❏ You may require control over the network addresses used by the middleware or
over the style of addressing used (e.g. unicast or multicast).

❏ Messages pertaining to different data objects (e.g., stock symbols or radar tracks)
may be destined for different multicast addresses and different consumers in
order to control the load on your network.

❏ You may wish to restrict the flow of discovery-related traffic in order to decrease
the demands on your network and speed up your system’s start-up time.

This chapter describes how to achieve these and similar use cases. It includes the follow-
ing sections:

❏ Segregate Systems and Subsystems into Domains (Section 4.1)

❏ Tune Discovery for Faster Startup and Improved Scalability (Section 4.2)

❏ Tune Reliability Performance (Section 4.3)
4-1

4.1 Segregate Systems and Subsystems into Domains
Every Connection in an RTI Message Service application belongs to exactly one domain. A
domain is a virtual network that overlays your physical network; connections belonging
to different domains will never exchange messages or even know of the existence of one
another. Domains therefore constitute the coarsest-granularity mechanism for isolating
subsystems—or entire distributed applications—from one another.

All connections created from the same factory will belong to the same domain. The
domain is identified by a non-negative integer, its domain ID, that is specified in your
configuration file:

<connection_factory>
<domain_id>2</domain_id>

</connection_factory>

If no domain ID is specified, it takes the default value zero (0).

A single application program may create connections in any number of domains. It may
do so, for example, to bridge selected messages between different domains.

It is also possible for an application program to create multiple connections in the same
domain. However, RTI recommends that applications do this only when there is a well-
defined reason to do so. Connections are heavyweight objects that internally allocate
threads, sockets, and other system resources; creating a large number of them can
adversely impact performance and resource usage.

Every Connection object is internally identified by a connection ID that is unique within a
given host. (This additional level of disambiguation is necessary when an application
chooses to create multiple connections within the same domain.) The middleware will
assign this ID on your behalf; in most cases, you do not need to set it or even know what
its value is. However, it is used to determine which UDP ports the connection will
attempt to open, so if you need to determine the connection’s port usage deterministi-
cally, you will need to set it manually.

RTI Message Service uses the ports described in Table 4.1. Table 4.2 describes the parame-
ters used in Table 4.1.
4-2

Segregate Systems and Subsystems into Domains
4. D

a
ta

 C
o

nne
c

tivity
Table 4.1 Ports Used by RTI Message Service

Port Formula

Meta-traffic unicast port—used to exchange
discovery meta-traffic using unicast.

port_base
 + (domain_id_gain * domain_id)

 + (connection_id_gain * connection_id)
 + builtin_unicast_port_offset

= metatraffic_unicast_port

Meta-traffic multicast port—used to exchange
discovery meta-traffic using multicast.

port_base
+ (domain_id_gain * domain_id)

+ builtin_multicast_port_offset

= metatraffic_multicast_port

User traffic unicast port—used to exchange
application data using unicast.

 port_base
+ (domain_id_gain * domain_id)

+ (connection_id_gain * connection_id)
+ user_unicast_port_offset

= usertraffic_unicast_port

User traffic multicast port—used to exchange
application data using multicast.

port_base
+ (domain_id_gain * domain_id)

+ user_multicast_port_offset

= usertraffic_multicast_port

Table 4.2 Port Calculation Parameters

Parameter Description

port_base

All mapped well-known ports are offset by this value.

[default] 7400

[range] >= 1, but resulting ports must be within the range imposed by
the underlying transport.

domain_id_gain

Multiplier of the domain_id. Together with connection_id_gain, it
determines the highest domain ID and connection ID allowed on this
network.

See Section 4.1.1 for details.
4-3

connection_id_
gain

Multiplier of the connection_id. See domain_id_gain for its implications
on the highest domain ID and connection ID allowed on this network.

Additionally, connection_id_gain also determines the range of
builtin_unicast_port_offset and user_unicast_port_offset.

connection_id_gain >

 abs(builtin_unicast_port_offset - user_unicast_port_offset)

[default] 2

[range] > 0, but resulting ports must be within the range imposed by the
underlying transport.

See Section 4.1.1 for details.

builtin_multicast_
port_offset

Additional offset for meta-traffic multicast port.

It must be unique from other port-specific offsets.

[default] 0

[range] >= 0, but resulting ports must be within the range imposed by
the underlying transport.

builtin_unicast_
port_offset

Additional offset for meta-traffic unicast port.

It must be unique from other port-specific offsets.

[default] 10

[range] >= 0, but resulting ports must be within the range imposed by
the underlying transport.

user_multicast_
port_offset

Additional offset for user traffic multicast port.

It must be unique from other port-specific offsets.

[default] 1

[range] >= 0, but resulting ports must be within the range imposed by
the underlying transport.

user_unicast_
port_offset

Additional offset for user traffic unicast port.

It must be unique from other port-specific offsets.

[default] 11

[range] >= 0, but resulting ports must be within the range imposed by
the underlying transport.

Table 4.2 Port Calculation Parameters

Parameter Description
4-4

Segregate Systems and Subsystems into Domains
4. D

a
ta

 C
o

nne
c

tivity
To summarize:

❏ Set the domain ID if you need to isolate multiple systems and/or subsystems
from one another, even when they exist simultaneously on the same physical
network.

❏ Set the connection ID if you need to be able to predict the network ports that will
be used by a given connection.

❏ Set one or more of the fields of the rtps_well_known_ports element if you need
to select those ports specifically—for example, if you need to route RTI Message
Service traffic through a firewall, and the range of ports allowed through are not
under your control, or if another application requires all of the ports in the
default range.

Example:

<connection_factory>
<domain_id>1</domain_id>
<wire_protocol>

<connection_id>1</connection_id>
<rtps_well_known_ports>

<port_base>7400</port_base>
<domain_id_gain>250</domain_id_gain>
<connection_id_gain>2</connection_id_gain>
<builtin_multicast_port_offset>

0
</builtin_multicast_port_offset>
<builtin_unicast_port_offset>

10
</builtin_unicast_port_offset>
<user_multicast_port_offset>

1
</user_multicast_port_offset>
<user_unicast_port_offset>

11
</user_unicast_port_offset>

</rtps_well_known_ports>
</wire_protocol>

</connection_factory>

4.1.1 domain_id_gain and connection_id_gain

In general, there are two ways to set up domain_id_gain and connection_id_gain
parameters.
4-5

If domain_id_gain > connection_id_gain, it results in a port mapping layout where all
connections within a single domain occupy a consecutive range of domain_id_gain
ports. Precisely, all ports occupied by the domain fall within:

(port_base + (domain_id_gain * domain_id))

and

(port_base + (domain_id_gain * (domain_id + 1)) - 1)

In such a case, the highest domain ID is limited only by the underlying transport's max-
imum port. The highest connection ID, however, must satisfy:

max_connection_id < (domain_id_gain / connection_id_gain)

However, if domain_id_gain <= connection_id_gain, it results in a port mapping lay-
out where a given domain's connections occupy ports spanned across the entire valid
port range allowed by the underlying transport. For instance, it results in the following
potential mapping:

In this case, the highest connection_id is limited only by the underlying transport's max-
imum port. The highest domain_id, however, must satisfy:

max_domain_id < (connection_id_gain / domain_id_gain)

Additionally, domain_id_gain also determines the range of the port-specific offsets.

domain_id_gain >
abs(builtin_multicast_port_offset - user_multicast_port_offset)

domain_id_gain >
abs(builtin_unicast_port_offset - user_unicast_port_offset)

Violating this may result in port aliasing and undefined discovery behavior.

Mapped Port Domain ID Connection ID

higher port number 1 2

0 2

1 1

0 1

1 0

lower port number 0 0
4-6

Tune Discovery for Faster Startup and Improved Scalability
4. D

a
ta

 C
o

nne
c

tivity
[default] 250

[range] > 0, but resulting ports must be within the range imposed by the underlying
transport

4.2 Tune Discovery for Faster Startup and Improved
Scalability
RTI Message Service automatically maintains information about the connections, produc-
ers, and consumers on the network with a dynamic process called discovery. This section
describes how to configure the middleware’s built-in discovery service; before you con-
tinue, be sure you have read Section 2.4, Introduction to Peer-to-Peer Discovery, in the
User’s Manual.

By default, the discovery process uses IP multicast. If your application exists on a single
subnet, you probably don’t need to do anything. However, you may need to change
your discovery configuration if any of the following conditions apply to you:

❏ You need to change the addresses used by the discovery service. You want either
to change the multicast address or to use unicast addresses instead.

❏ The middleware’s default balance between responsiveness and network band-
width utilization does not meet your needs. You either need to make the middle-
ware respond to topology changes more quickly (possibly at the cost of making
the product more “chatty”) or to decrease the amount of bandwidth used by the
discovery process (possibly at the cost of decreasing responsiveness).

❏ You want to custom-tune which applications discover which other applications
in order to optimize network bandwidth utilization and thereby increase perfor-
mance in a large system. Doing so will require careful system-wide address
selection and may require asymmetric configuration to obtain the desired behav-
ior.
4-7

4.2.1 Introduction: Discovery Announcements

The discovery process occurs at the granularity of a single Connection and the message
producers and consumers created from it. The remote connections known to a given
local connection are referred to as its peers. The discovery process between a connection
and its peers can be thought of as two simultaneous sub-processes:

❏ Connection Discovery Protocol: Because the discovery process is dynamic—that
is, applications can join and leave the network at any time—connections
announce themselves to one another in a best-effort fashion. They cannot know
which potential peers exist in actuality, and so they rely on a kind of “probabilis-
tic reliability,” sending multiple announcements to one another to make it very
likely that at least one announcement will go through before an application-spec-
ified timeout expires.

❏ Endpoint Discovery Protocol: Once a peer Connection has been discovered, the
local Connection will open reliable data channels to communicate information
about message producers and consumers. As it receives each remote endpoint
declaration, it will look for matches among its own endpoints: producers and
consumers on the same topic with compatible configurations.

Communication will not occur between a given pair of peers unless and until each has
discovered the other and matched the relevant endpoints.

4.2.1.1 Connection Discovery

Connections send announcements to one another under well-defined circumstances.
These announcements are sent to all known peer connections.

When it is first created…

A Connection sends a certain number of “initial” announcements when it is first cre-
ated. These declarations are separated by a random amount of time in between
application-specified minimum and maximum values. These parameters are part of
the DiscoveryConfig QoS policy; the following XML shows the default values:

<connection_factory name="Example Factory">
<discovery_config>

<initial_connection_announcements>
5

</initial_connection_announcements>
<min_initial_connection_announcement_period>

<sec>1</sec>
<nanosec>0</nanosec>

</min_initial_connection_announcement_period>
4-8

Tune Discovery for Faster Startup and Improved Scalability
4. D

a
ta

 C
o

nne
c

tivity
<max_initial_connection_announcement_period>
<sec>1</sec>
<nanosec>0</nanosec>

</max_initial_connection_announcement_period>
</discovery_config>

</connection_factory>

Upon receiving an announcement from a never-before-seen peer Connection…

When a Connection receives an announcement from a peer connection from which it
has never before received an announcement, it will resend its own announcement
to encourage reciprocal discovery to complete more quickly.

Periodically…

Each Connection resends its own announcement at a rate specified in the Discovery-
Config QoS policy. The following XML shows the default value:

<connection_factory name="Example Factory">
<discovery_config>

<connection_liveliness_assert_period>
<sec>30</sec>
<nanosec>0</nanosec>

</connection_liveliness_assert_period>
</discovery_config>

</connection_factory>

When it is disposed…

When the Connection is finally garbage collected, it will send out a final announce-
ment.

If a Connection receives no announcements from one of its peers for an application-con-
figured period of time, it will consider that peer to have left the network, and will purge
all information about it and its producers and consumers from its internal database.
Communication with that peer will cease at that time. This timeout is part of the Discov-
eryConfig QoS policy; the following XML shows the default value:

<connection_factory name="Example Factory">
<discovery_config>

<connection_liveliness_lease_duration>
<sec>100</sec>
<nanosec>0</nanosec>

</connection_liveliness_lease_duration>
</discovery_config>

</connection_factory>
4-9

4.2.1.2 Endpoint Discovery

As soon as a Connection has discovered a new peer Connection, it will send to its new
peer data about its own endpoints—message producers and consumers. That allows
endpoint discovery to be carried out in parallel with Connection discovery; it need not
wait for Connection discovery to complete.

Unlike during the Connection discovery process, endpoint discovery is conducted
between known peers, not just potential peers. That means that the middleware can use
true reliability, not just the probabilistic model used for Connection discovery. That
means that producer and consumer announcements will be sent only when endpoints
are created and deleted; periodic announcements are not necessary.

When a remote MessageProducer/MessageConsumer is discovered, the local Connection
determines if it has a matching MessageConsumer/MessageProducer. A ‘match’ between
the local and remote entities occurs only if the MessageConsumer and MessageProducer
have the same Topic, same key setting, and compatible QoS policies.

4.2.2 Addresses Used for Discovery

There are two categories of addresses to consider: (1) those at which a Connection
expects to find its remote peers and (2) those at which those peers can contact that local
Connection. The former are referred to as the Connection’s “initial peers”; they represent
potential communication partners. The latter are referred to a Connection’s “receive loca-
tors”: the network addresses and ports at which it is listening for incoming data.

4.2.2.1 Peer Descriptor Format

A locator—the combination of network transport and address that represents a physical
destination for network packets—can be represented in a string form. A “peer descrip-
tor” string represents a range of potential connections that could exist at a given locator.
This string format is used to describe both initial peer locators and receive locators.

3 @ udpv4 :// 239.255.0.1

Connection ID limit separator Transport separator Network Address

<—————————— Locator —————————>

<—————————————————Peer Descriptor————————————————>
4-10

Tune Discovery for Faster Startup and Improved Scalability
4. D

a
ta

 C
o

nne
c

tivity
A peer descriptor consists of two components:

❏ [optional] A connection ID limit, which specifies the maximum connection ID
that will be contacted by the RTI Message Service discovery process at the given
locator. For unicast locators: If it is omitted, a default value of 4 is implied. For mul-
ticast locators: It is ignored, and therefore should be omitted from multicast peer
descriptors.

❏ A locator, as described in Locator Format (Section 4.2.2.1.1).

These are separated by the '@' character. The separator should be omitted if a connection
ID limit is not explicitly specified.

4.2.2.1.1 Locator Format

A locator specifies a transport and an address. These are combined in a string form that
resembles a URL.

A locator consists of:

❏ [optional] Transport name. This identifies the transport plug-in that will be used
to parse the address portion of the locator.

❏ [optional] An address specified in IPv4 or IPv6 format.

These are separated by the “://” string. The separator is specified if and only if a trans-
port name is specified.

If a transport name is specified, the address may be omitted; in that case, all the unicast
addresses associated with the transport are implied. Thus, a locator string may specify
several addresses.

If an address is specified, the transport name and the separator string may be omitted;
in that case, all the available transport plug-ins may be used to parse the address string.

The transport names for the built-in transport plug-ins are:

❏ shmem - Shared Memory Transport

❏ udpv4 - UDP/IP v4 Transport

❏ udpv6 - UDP/IP v6 Transport
4-11

4.2.2.1.1 Peer Descriptor Examples

4.2.2.2 Initial Peers

A Connection’s “initial peers” list is a collection of strings in peer descriptor format (see
section Peer Descriptor Format (Section 4.2.2.1)) that describe peer Connection’s that may
exist on the network. A Connection will attempt to carry out the Connection Discovery
Protocol with all of those potential remote Connection’s. When a remote Connection is
actually discovered—that is, a reciprocal Connection announcement is received—it will
begin carrying out the Endpoint Discovery Protocol with that remote Connection.

Table 4.3 NDDS_DISCOVERY_PEERS Environment Variable Examples

Peer Descriptor Description of Host(s)

239.255.0.1 multicast

localhost localhost

192.168.1.1 10.10.30.232 (IPv4)

FAA0::1 FAA0::0 (IPv6)

himalaya,gangotri himalaya and gangotri

1@himalaya,1@gangotri
himalaya and gangotri (with a maximum connection ID of 1 on
each host)

FAA0::0localhost
FAA0::0localhost (could be a UDPv4 transport plug-in registered
at network address of FAA0::0) (IPv6)

udpv4://himalaya himalaya accessed using the "udpv4" transport plug-ins) (IPv4)

udpv4://FAA0::0localhost
localhost using the "udpv4" transport plug-ins) registered at net-
work address FAA0::0

udpv4://
all unicast addresses accessed via the "udpv4" (UDPv4) transport
plug-ins)

shmem://
all unicast addresses accessed via the "shmem" (shared memory)
transport plug-ins

shmem://FCC0::0
all unicast addresses accessed via the "shmem" (shared memory)
transport plug-ins registered at network address FCC0::0
4-12

Tune Discovery for Faster Startup and Improved Scalability
4. D

a
ta

 C
o

nne
c

tivity
The initial peers list is part of the Discovery QoS policy. The following shows the default
value as it would be described in a configuration file:

<connection_factory name="Example Factory">
<discovery>

<initial_peers>
<!-- UDPv4 multicast address: -->
<element>udpv4://239.255.0.1</element>
<!-- UDPv4 localhost unicast address: -->
<element>4@udpv4://127.0.0.1</element>
<!-- Shared memory: -->
<element>shmem://</element>

</initial_peers>
</discovery>

</connection_factory>

4.2.2.3 Receive Locators

Connection declarations contain, among other things, a list of the locators at which the
Connection can be contacted. (See Locator Format (Section 4.2.2.1.1) for more informa-
tion.) This list will contain:

❏ If the UDP/IP v4 transport is active, the UDPv4 unicast addresses of all network
interfaces configured for use with RTI Message Service.

❏ If the UDP/IP v6 transport is active, the UDPv6 unicast addresses of all network
interfaces configured for use with RTI Message Service.

❏ If the shared memory transport is active, the shared memory segment corre-
sponding to the Connection’s domain. For more information about domains, see
Segregate Systems and Subsystems into Domains (Section 4.1) .

If the UDPv4 and/or UDPv6 transports are active, an optional IP multicast address.
This address, called the multicast receive address, is configured with the Discovery QoS
policy; the following XML shows the default value:

<connection_factory name="Example Factory">
<discovery >

<multicast_receive_addresses>
<element>udpv4://239.255.0.1</element>

</multicast_receive_addresses>
</discovery >

</connection_factory>
4-13

Note that the multicast receive address is specified in the configuration file as if it were a
list of addresses. However, only a single address is currently supported; any subsequent
list items will be ignored.

For more information about network transport configuration, see Chapter 3: Network
Transport Configuration.

4.2.2.4 Addressing and Transports

Your choice of initial peers and multicast receive address are not decoupled from your
choice of network transports. See Chapter 3: Network Transport Configuration.

❏ If you disable the UDPv4 or shared memory transport but leave your initial peer
list unchanged, the middleware will log warnings indicating that the default
peers could not be resolved. This is because the default peer list includes locators
that depend on those transports.

❏ If you disable the UDPv4 transport but leave your multicast receive address
unchanged, the middleware will log warnings indicating that the address could
not be resolved. This is because the default multicast receive address depends on
that transport.

❏ If you wish to disable the Connection’s use of a particular network transport, you
must disable it at the transport level; it is not enough to simply remove uses of it
from the peer list and multicast receive address.

Example: Use shared memory transport only

<connection_factory name="Example Factory">
<transport_builtin>

<mask>TRANSPORTBUILTIN_SHMEM</mask>
</transport_builtin>
<discovery>

<initial_peers>
<element>shmem://</element>

</initial_peers>
<multicast_receive_addresses>

<!-- empty -->
</multicast_receive_addresses>

</discovery>
</connection_factory>
Example: Disable shared memory
<connection_factory name="Example Factory">

<transport_builtin>
<mask>TRANSPORTBUILTIN_UDPv4</mask>

</transport_builtin>
4-14

Tune Discovery for Faster Startup and Improved Scalability
4. D

a
ta

 C
o

nne
c

tivity
<discovery>
<initial_peers>

<element>udpv4://239.255.0.1</element>
<element><-- optional: 4@... -->

udpv4://127.0.0.1
</element>

</initial_peers>
</discovery>

</connection_factory>

4.2.3 Asymmetric Discovery Configuration

In general, all applications on the same physical network and in the same domain are
logically “intended” to communicate. In practice, however, you may find such a config-
uration undesirable. You may know, for example, that certain subsystems have very lit-
tle need to exchange data, and you may wish to decrease your system’s bandwidth
and/or memory usage and increase its scalability by limiting cross-talk.

You can design such a system using multiple domains, and route any traffic that must
flow between them explicitly through a bridge: an application that joins both domains
and publishes on one what it has received from the other. In some cases, you can also
achieve similar results in a lighter-weight manner by manipulating the network
addresses used by the middleware. This section will take you through two examples of
such configurations.

4.2.3.1 Scenario: Overlapping Subsystems

Suppose your network contains two subsystems that, for the most part, do not need to
exchange messages between them. However, there are a few applications that sit “in the
middle” and need to send and receive messages to and from both subsystems. Building
bridges could introduce performance bottlenecks and make the configuration more
complex.

As an alternative, you can manipulate the addressing to achieve the same results with-
out sacrificing your peer-to-peer architecture or introducing additional system compo-
nents.
4-15

❏ Use one multicast address for communication within the first subsystem.

❏ Use a second multicast address to communication within the second subsystem.

❏ Configure applications in both subsystems to announce to both addresses.

Example: Subsystem A Configuration

<connection_factory name="A Factory">
<discovery>

<initial_peers>
<!-- Multicast address for subsystem A: -->
<element>239.255.0.1</element>

</initial_peers>
<multicast_receive_addresses>

<!-- Multicast address for subsystem A: -->
<element>239.255.0.1</element>

</multicast_receive_addresses>
</discovery>

</connection_factory>

Example: Subsystem B Configuration

<connection_factory name="B Factory">
<discovery>

<initial_peers>
<!-- Multicast address for subsystem B: -->
<element>239.255.0.2</element>

</initial_peers>
<multicast_receive_addresses>

<!-- Multicast address for subsystem B: -->
<element>239.255.0.2</element>

</multicast_receive_addresses>
</discovery>

</connection_factory>

Example: A+B Applications

<connection_factory name="AB Factory">
<discovery>

<initial_peers>
<!-- Multicast address for subsystem A: -->
<element>239.255.0.1</element>
<!-- Multicast address for subsystem B: -->
<element>239.255.0.2</element>

</initial_peers>
<multicast_receive_addresses>
4-16

Tune Discovery for Faster Startup and Improved Scalability
4. D

a
ta

 C
o

nne
c

tivity
<!-- Empty -->
</multicast_receive_addresses>

</discovery>
</connection_factory>

As you can see, the configurations above can be adapted to support any number of
overlapping subsystems: simply choose more multicast addresses.

You may also notice that the A+B applications do not actually appear in the initial peer
list of either the A or B applications. They will nevertheless communicate because of the
ability of RTI Message Service to add new peers dynamically: when an A or B application
receives an announcement from an A+B application, it will automatically add that
application to its peer list and begin communicating with it. In this case, because the
A+B applications do not specify a multicast receive address, communication in the A-to-
A+B and B-to-A+B directions will take place using IP unicast or shared memory (since
the shared memory transport was not turned off). If you expect most A+B applications
to subscribe to the same topics, you may want to consider allocating an additional mul-
ticast address for use just by that overlapping group; use it as the multicast receive
address of the AB Factory.

The dynamic peer addition capability described above is governed by the QoS parame-
ter accept_unknown_peers in the Discovery QoS policy. This Boolean flag takes the
value true by default, which is why it is not included in the XML above. The following
configuration causes an application to communicate only with other applications that
appear in its initial_peers list:

<connection_factory name="Example Factory">
<discovery>

<accept_unknown_peers>false</accept_unknown_peers>
</discovery>

</connection_factory>
4-17

4.2.3.2 Scenario: One-Way Communication with High Fan-Out
In some systems, a single publisher (or a small number of publishers) dis-
tribute(s) messages to a very large number of subscribers. These subscrib-
ers do not exchange data with each other, so their performance can
potentially be improved and their memory footprint decreased by avoid-
ing that part of the discovery process.

To configure the system in this way, do the following:

❏ Use IP multicast to distribute messages from the publisher to the subscribers. The pub-
lisher sends, and subscribers receive, messages to and from this address. Traffic
on this address does not flow the in the other direction.

❏ Use IP unicast to send acknowledgements and any other subscriber-to-publisher
back channel messages. Unicast is appropriate in this case because of the small
number of recipients (possibly only one); it ensures that the network interfaces
and CPUs on the other subscribing machines will not be burdened with unneces-
sary traffic.

Because the subscribers do not send their own discovery declarations to any address on
which they listen, they will never discovery each other.
4-18

Tune Discovery for Faster Startup and Improved Scalability
4. D

a
ta

 C
o

nne
c

tivity
Example: Publisher configuration

<connection_factory name="Publisher Factory">
<discovery>

<initial_peers>
<!-- Multicast address to talk to subscribers: -->
<element>239.255.0.1</element>

</initial_peers>
<multicast_receive_addresses>

<!-- Empty: only listen over unicast -->
</multicast_receive_addresses>

</discovery>
</connection_factory>

Example: Subscriber configuration

<connection_factory name="Subscriber Factory">
<discovery>

<initial_peers>
<!-- Publisher's unicast address -->
<element>192.168.1.100</element>
<!-- More addresses if other (potential) publish-

ers: ... -->
</initial_peers>
<multicast_receive_addresses>

<!-- Multicast address to talk to publisher: -->
<element>239.255.0.1</element>

</multicast_receive_addresses>
</discovery>

</connection_factory>

If storing particular nodes’ unicast addresses in the configuration file represents a con-
figuration management challenge for you, consider one of these alternatives:

❏ Use a second multicast address for subscriber-to-publisher (meta-) traffic instead of
unicast addresses. Set this address as the publisher’s multicast receive address
and add it to the subscriber’s initial peers. This configuration also has the benefit
of requiring no changes if the number of publisher’s increases. One caveat: mul-
ticast traffic is typically more expensive for the operating system’s network stack
to process than unicast traffic, so the subscribers’ responsiveness to the publisher
could be impacted. This penalty may or may not be noticeable in your system,
however.
4-19

❏ Select the unicast address at runtime using an environment variable, a per-node
configuration file, a communication back channel, or some other mechanism.
Use this address to override the RTI configuration file using the runtime mecha-
nism described Chapter 2, "Connecting to the Network," in the User’s Manual.

4.2.4 Discovery Implementation

Note: This section contains advanced material not required by most users.

4.2.4.1 Connection Discovery

Let’s examine what happens when a new remote Connection is discovered. To summa-
rize Connection Discovery (Section 4.2.1.1):

❏ Once a remote connection has been added to the RTI Message Service internal
database, RTI Message Service keeps track of that remote connection’s
connection_liveliness_lease_duration. If a declaration from that connection is
not received at least once within the connection_liveliness_lease_duration, the
remote connection is considered stale, and the remote connection, together with
all its entities, will be removed from the database of the local connection.

❏ To keep from being purged by other connections, each connection needs to peri-
odically send a declaration to refresh its liveliness. The rate at which these decla-
rations are sent is controlled by the connection_liveliness_assert_period in the
connection’s Discovery Config QoS policy. This exchange, which keeps Connec-
tion A from appearing ‘stale,’ is illustrated in Figure 4.2, “Periodic ‘connection
DATAs’,” on page 4-22.

Figure 4.3, “Ungraceful Termination of a Connection,” on page 4-23 shows what
happens when Connection A terminates ungracefully and therefore needs to be
seen as ‘stale.’
4-20

Tune Discovery for Faster Startup and Improved Scalability
4. D

a
ta

 C
o

nne
c

tivity
❏ The connection_liveliness_assert_period,
connection_liveliness_lease_duration,
min_initial_connection_announcement_period and
max_initial_connection_announcement_period can be set as follows:

<connection_factory name="A">
<discovery_config>

 <connection_liveliness_assert_period>
 <sec>1</sec>
 <nanosec>0</nanosec>
 </connection_liveliness_assert_period>

<connection_liveliness_lease_duration>
<sec>10</sec>
<nanosec>0</nanosec>

</connection_liveliness_lease_duration>
<!-- Default values: -->
<min_initial_connection_announcement_period>

<sec>1</sec>
<nanosec>0</nanosec>

</min_initial_connection_announcement_period>
<max_initial_connection_announcement_period>

<sec>1</sec>
<nanosec>0</nanosec>

</max_initial_connection_announcement_period>
</discovery_config>

</connection_factory>

4.2.4.2 Endpoint Discovery

When you create a MessageProducer/MessageConsumer for your user data, a publication/
subscription declaration describing the newly created object is sent from the local dis-
covery endpoint producer to the remote Connections that are currently in the local data-
base.

Similarly, if the application deletes any producers/consumers, the connection sends
publication/subscription deletion declarations.

When a remote entity record is added or removed in the database, matching is per-
formed with all the local entities. Only after there is a successful match on both ends can
an application’s user-created MessageConsumers and MessageProducers communicate
with each other.
4-21

Figure 4.2 Periodic ‘connection DATAs’

The Connection on Node A sends a ‘connection DATA’ to Node B, which is in Node A’s peers list. This occurs
regardless of whether or not there is an RTI Message Service application on Node B.

① The green short dashed lines are periodic connection DATAs. The time between these messages is
controlled by the connection_liveliness_assert_period (in A’s <discovery_config> settings).

➁ In addition to the periodic connection DATAs, ‘initial repeat messages’ (shown in blue, with longer
dashes) are sent from A to B. These messages are sent at a random time between
min_initial_connection_announement_period and max_initial_connection_announcement_period (in A’s
<discovery_config> settings). The number of these initial repeat messages is set in
initial_connection_announcements.

connection A DATA

Connection created

Connection destroyed
connection A DATA
(delete)

Node A Node B

① Connection A’s
connection_liveliness_assert_period
(in A’s discovery_config settings)

①

①

①

①

①

①

➁

➁

➁ Random time between
min_initial_connection_announcement_period
and
max_initial_connection_announcement_period
(in A’s discovery_config settings)
4-22

Tune Discovery for Faster Startup and Improved Scalability
4. D

a
ta

 C
o

nne
c

tivity
Figure 4.3 Ungraceful Termination of a Connection

Connection A is removed from Connection B’s database if it is not refreshed within the liveliness lease
duration. Dashed lines are periodic connection DATA messages.

(Periodic resends of ‘connection B DATA’ from B to A are omitted from this diagram for simplicity.
Initial repeat messages from A to B are also omitted from this diagram—these messages are sent at a
random time between min_initial_connection_announcement_period and
max_initial_connection_announcement_period.)

Connection A DATA

Connection created

Connection
ungracefully terminated

Node A Node B

Remote Connection A
considered ‘stale,’
removed from database

Connection created

New remote connection
A added to database➀

➀

➁ Connection A’s
connection_liveliness_lease_duration

➁

➁

➀ Connection A’s
connection_liveliness_assert_period
4-23

4.2.4.3 Discovery Traffic Summary

This diagram shows both phases of the discovery process. Connection A is created first, followed by
Connection B. Each has the other in its peers list. After they have discovered each other, a
MessageProducer is created on Connection A. Periodic connection DATAs, HBs and ACK/NACKs are
omitted from this diagram.

connection A DATA

Connection A
Node A Node B

connection B DATA

publication C DATA

connection A DATA

Remote MessageProducer C
discovered, added to database

Newly discovered
Connection B added to

database

connection B DATA

publication C DATA (delete)

connection A DATA (delete)

connection B DATA (delete)

Newly discovered Connection A
added to database

Connection B created

MessageProducer C created

MessageProducer C deleted

Remote MessageProducer C
deleted, removed from
database

Connection A destroyed

Remote Connection A
removed from database

➀ wait random time (between
min_initial_connection_announcement_period
and
max_initial_connection_announcement_period)
for [initial_connection_announcements] = 1
(using values for connection A)

➁ same as ➀, but using connection
B’s settings

➀

➁

Connection B destroyed

initial repeat of
connection A DATA

initial repeat of

connection B DATA

➁

➀

4-24

Tune Discovery for Faster Startup and Improved Scalability
4. D

a
ta

 C
o

nne
c

tivity
4.2.5 Debugging Discovery

To understand the flow of messages during discovery, you can increase the verbosity of
the messages logged by RTI Message Service so that you will see whenever a new object
is discovered and whenever there is a match between a local entity and a remote entity.

This can be achieved with the logging API:

com.rti.management.Logger.setVerbosityByCategory(
com.rti.management.Logger.Category.ENTITIES,
com.rti.management.Logger.Verbosity.STATUS_REMOTE);

Using the scenario in the summary diagram in section Discovery Traffic Summary (Sec-
tion 4.2.4.3), these are the messages as seen on Connection A:

[D0049|ENABLE]DISCPluginManager_onAfterLocalParticipantEnabled:annou
ncing new local participant: 0XA0A01A1,0X5522,0X1,0X1C1
[D0049|ENABLE]DISCPluginManager_onAfterLocalParticipantEnabled:at
{46c614d9,0C43B2DC}

(The above messages mean: First connection A declaration sent out when connection A is
enabled.)

DISCSimpleParticipantDiscoveryPluginReaderListener_onDataAvailable:d
iscovered new participant: host=0x0A0A01A1, app=0x0000552B,
instance=0x00000001
DISCSimpleParticipantDiscoveryPluginReaderListener_onDataAvailable:a
t {46c614dd,8FA13C1F}
DISCParticipantDiscoveryPlugin_assertRemoteParticipant:plugin dis-
covered/updated remote participant: 0XA0A01A1,0X552B,0X1,0X1C1
DISCParticipantDiscoveryPlugin_assertRemoteParticipant:at
{46c614dd,8FACE677}
DISCParticipantDiscoveryPlugin_assertRemoteParticipant:plugin
accepted new remote participant: 0XA0A01A1,0X552B,0X1,0X1C1
DISCParticipantDiscoveryPlugin_assertRemoteParticipant:at
{46c614dd,8FACE677}

(The above messages mean: Received connection B declaration.)

DISCSimpleParticipantDiscoveryPlugin_remoteParticipantDiscovered:re-
announcing participant self: 0XA0A01A1,0X5522,0X1,0X1C1
DISCSimpleParticipantDiscoveryPlugin_remoteParticipantDiscovered:at
{46c614dd,8FC02AF7}

(The above messages mean: Resending connection A declaration to the newly discovered
remote connection.)
4-25

PRESPsService_linkToLocalReader:assert remote
0XA0A01A1,0X552B,0X1,0X200C2, local 0x000200C7 in reliable reader
service
PRESPsService_linkToLocalWriter:assert remote
0XA0A01A1,0X552B,0X1,0X200C7, local 0x000200C2 in reliable writer
service
PRESPsService_linkToLocalWriter:assert remote
0XA0A01A1,0X552B,0X1,0X4C7, local 0x000004C2 in reliable writer ser-
vice
PRESPsService_linkToLocalWriter:assert remote
0XA0A01A1,0X552B,0X1,0X3C7, local 0x000003C2 in reliable writer ser-
vice
PRESPsService_linkToLocalReader:assert remote
0XA0A01A1,0X552B,0X1,0X4C2, local 0x000004C7 in reliable reader ser-
vice
PRESPsService_linkToLocalReader:assert remote
0XA0A01A1,0X552B,0X1,0X3C2, local 0x000003C7 in reliable reader ser-
vice
PRESPsService_linkToLocalReader:assert remote
0XA0A01A1,0X552B,0X1,0X100C2, local 0x000100C7 in best effort reader
service

(The above messages mean: Automatic matching of the discovery consumers and produc-
ers. A built-in remote endpoint's object ID always ends with Cx.)

DISCSimpleParticipantDiscoveryPluginReaderListener_onDataAvailable:d
iscovered modified participant: host=0x0A0A01A1, app=0x0000552B,
instance=0x00000001
DISCParticipantDiscoveryPlugin_assertRemoteParticipant:plugin dis-
covered/updated remote participant: 0XA0A01A1,0X552B,0X1,0X1C1
DISCParticipantDiscoveryPlugin_assertRemoteParticipant:at
{46c614dd,904D876C}

(The above messages mean: Received connection B declaration.)

DISCPluginManager_onAfterLocalEndpointEnabled:announcing new local
publication: 0XA0A01A1,0X5522,0X1,0X80000003
DISCPluginManager_onAfterLocalEndpointEnabled:at {46c614d9,1013B9F0}
DISCSimpleEndpointDiscoveryPluginPDFListener_onAfterLocalWriterEnabl
ed:announcing new publication: 0XA0A01A1,0X5522,0X1,0X80000003
DISCSimpleEndpointDiscoveryPluginPDFListener_onAfterLocalWriterEnabl
ed:at {46c614d9,101615EB}

(The above messages mean: Publication C declaration has been sent.)
4-26

Tune Discovery for Faster Startup and Improved Scalability
4. D

a
ta

 C
o

nne
c

tivity
DISCSimpleEndpointDiscoveryPlugin_subscriptionReaderListenerOnDataAv
ailable:discovered subscription: 0XA0A01A1,0X552B,0X1,0X80000004
DISCSimpleEndpointDiscoveryPlugin_subscriptionReaderListenerOnDataAv
ailable:at {46c614dd,94FAEFEF}
DISCEndpointDiscoveryPlugin_assertRemoteEndpoint:plugin discovered/
updated remote endpoint: 0XA0A01A1,0X552B,0X1,0X80000004
DISCEndpointDiscoveryPlugin_assertRemoteEndpoint:at
{46c614dd,950203DF}

 (The above messages mean: Receiving subscription D declaration from Node B.)

PRESPsService_linkToLocalWriter:assert remote
0XA0A01A1,0X552B,0X1,0X80000004, local 0x80000003 in best effort
writer service

(The above message means: User-created MessageProducer C and MessageConsumer D
are matched.)

[D0049|DELETE_CONTAINED]DISCPluginManager_onAfterLocalEndpointDelete
d:announcing disposed local publication:
0XA0A01A1,0X5522,0X1,0X80000003
[D0049|DELETE_CONTAINED]DISCPluginManager_onAfterLocalEndpointDelete
d:at {46c61501,288051C8}
[D0049|DELETE_CONTAINED]DISCSimpleEndpointDiscoveryPluginPDFListener
_onAfterLocalWriterDeleted:announcing disposed publication:
0XA0A01A1,0X5522,0X1,0X80000003
[D0049|DELETE_CONTAINED]DISCSimpleEndpointDiscoveryPluginPDFListener
_onAfterLocalWriterDeleted:at {46c61501,28840E15}

(The above messages mean: Publication C declaration(delete) has been sent.)

DISCPluginManager_onBeforeLocalParticipantDeleted:announcing before
disposed local participant: 0XA0A01A1,0X5522,0X1,0X1C1
DISCPluginManager_onBeforeLocalParticipantDeleted:at
{46c61501,28A11663}

(The above messages mean: Connection A declaration(delete) has been sent.)

DISCParticipantDiscoveryPlugin_removeRemoteParticipantsByCookie:plug
in removing 3 remote entities by cookie
DISCParticipantDiscoveryPlugin_removeRemoteParticipantsByCookie:at
{46c61501,28E38A7C}
DISCParticipantDiscoveryPlugin_removeRemoteParticipantI:plugin dis-
covered disposed remote participant: 0XA0A01A1,0X552B,0X1,0X1C1
DISCParticipantDiscoveryPlugin_removeRemoteParticipantI:at
{46c61501,28E68E3D}
4-27

DISCParticipantDiscoveryPlugin_removeRemoteParticipantI:remote
entity removed from database: 0XA0A01A1,0X552B,0X1,0X1C1
DISCParticipantDiscoveryPlugin_removeRemoteParticipantI:at
{46c61501,28E68E3D}

(The above messages mean: Removing discovered entities from local database, before
shutting down.)

As you can see, the messages are encoded, since they are primarily used by RTI support
personnel.

If a remote entity is discovered, but does not match with a local entity as expected,
check the QoS of both the remote and local entity.

4.3 Tune Reliability Performance
You can tune the behavior of the reliability protocol to create the right balance between
performance and “chattiness” for your application. This fine-grained configuration is
not necessary for all applications, and a misconfiguration can lead to poor performance
or a loss of reliability, so only continue with this section if you know that the default
behavior is not meeting your needs.

Before you can tune the protocol, you will need to understand how it works.

4.3.1 Introduction to the Reliability Protocol

The reliability protocol consists of two primary metadata messages, which are sent and
received internally by the middleware.

❏ A message producer sends heartbeats to its message consumers. These identify
the range of historical messages—identified by sequence number—that the pro-
ducer currently has available.

❏ A message consumer responds to a heartbeat with an acknowledgement message
indicating the messages it has received. (The same RTPS message functions as
both a positive and negative acknowledgement (“ACK” and “NACK”). How-
ever, ACK and NACK are sometimes colloquially discussed as if they were sepa-
rate messages, depending on whether or not the consumer is up-to-date.)
4-28

Tune Reliability Performance
4. D

a
ta

 C
o

nne
c

tivity
In order to achieve maximum determinism and make your tuning job easier, the reliabil-
ity protocol is almost entirely driven by the message producer. A message consumer
will send an ACK/NACK under only two conditions:

❏ It has just matched with a new producer. To encourage the producer to send it his-
torical data as quickly as possible, it will send the producer a “zero-ACK”: an
ACK/NACK message indicating no previously received messages.

❏ It has received a heartbeat from a producer. It will respond to the heartbeat with
an ACK/NACK indicating its progress.

A consumer can also be configured to indicate negative acknowledgement
only—that is, to respond to heartbeats only when it has not received all mes-
sages. This behavior sacrifices some degree of reliability in exchange for
improved performance in topologies with many consumers for each producer.

Except when it matches a producer for the first time, a consumer will never send an
ACK/NACK of its own volition.

Similarly, a producer sends historical data—for durability or repair purposes—only
upon receipt of a NACK. It will not preemptively send such data.

Message producers send heartbeats in two ways:

❏ Periodically: A producer sends heartbeats at an application-configurable rate.
This rate will adjust according to the circumstances:

❏ The late-joiner heartbeat rate is faster than the steady-state heartbeat rate in order
to bring subscribers up-to-date as quickly as possible.

❏ The fast heartbeat rate applies when the producer’s cache of historical data is near
full in order to help slow consumers to catch up more quickly, thereby allowing
the producer to empty its cache and avoid blocking.

❏ The normal heartbeat rate applies in steady state, when the other rates do not.

Periodic heartbeats are important to maintaining reliability in the case where (1)
a message is lost and (2) another message will not be sent for some time.

❏ “Piggybacked” on application messages: Every few messages, a producer will
place a heartbeat into the same network packet as an application message. These
piggyback heartbeats are important to maintaining the responsiveness of the
reliability protocol, because they allow consumers to respond immediately upon
realizing that they have missed a previous message. (Recall that consumers send
NACKs only in response to heartbeats.)
4-29

4.3.2 Configuring Heartbeats

Heartbeats are configured on a per-Topic basis, using the MessageProducer Protocol QoS
policy.

4.3.2.1 Periodic Heartbeats

As described above, there are three heartbeat rates; which one is in force depends on the
circumstance.

❏ When a new matching message consumer is discovered after the producer has
published some messages, the producer will communicate with it using the late-
joiner heartbeat period; this period must be faster (or equal to) the normal heart-
beat period in order to help the new consumer catch up. Once the new consumer
has caught up, the producer will return to the normal heartbeat rate.

❏ When the number of unacknowledged messages in the producer’s historical
cache surpasses a specified high watermark, the producer switches to the fast
heartbeat period. This faster period encourages consumers to acknowledge mes-
sages faster, thereby allowing the producer to clear out its historical cache and
make room for new messages. If the producer can maintain room in its cache for
new messages, it will not need to block when sending a new message, which
would impact throughput and latency.

❏ When a producer is using its fast heartbeat period, and sufficient acknowledge-
ments arrive to bring the number of unacknowledged messages in its cache
below a specified low watermark, the producer will switch back to its normal heart-
beat period.
4-30

Tune Reliability Performance
4. D

a
ta

 C
o

nne
c

tivity
The following configuration example shows the default values of these parameters:

<topic name="Example Topic">
<producer_defaults>

<protocol>
<rtps_reliable_producer>

<low_watermark>0</low_watermark>
<high_watermark>1</high_watermark>
<heartbeat_period>

<sec>3</sec>
<nanosec>0</nanosec>

</heartbeat_period>
<fast_heartbeat_period>

<sec>3</sec>
<nanosec>0</nanosec>

</fast_heartbeat_period>
<late_joiner_heartbeat_period>

<sec>3</sec>
<nanosec>0</nanosec>

</late_joiner_heartbeat_period>
</rtps_reliable_producer>

</protocol>
</producer_defaults>

</topic>

The middleware will issue notifications when the high and low watermarks are crossed
so that the application can monitor the middleware’s performance.

See Chapter 2, "Connecting to the Network," in the User’s Manual for information
about how to receive status notifications.

Table 4.4 Notification Type:
StatusNotifier.RELIABLE_PRODUCER_CACHE_CHANGED_NOTIFICATION_TYPE

The number of unacknowledged messages in a reliable message producer’s cache has changed: the cache is
empty, full, or has just crossed a high or low watermark.

Attribute Name
Attribute

Type Description

unacknowledgedMessageCount int
The number of messages in the producer’s
cache that has not been acknowledged by
at least one consumer.

unacknowledgedMessageCountPeak int
The highest value that unacknowl-
edgedMessageCount has reached thus far.
4-31

4.3.2.2 Piggyback Heartbeats

A piggyback heartbeat is a heartbeat that is embedded in the same network packet as an
application data message instead of being sent separately. It is functionally identical to a
periodic heartbeat; the only difference is when it is sent.

The frequency with which a heartbeat is added to a message’s packet is defined based
on the size of the message producer’s cache. The frequency is called heartbeats per
max_messages; the following XML shows the default value:

<topic name="Example Topic">
<producer_defaults>

<protocol>
<rtps_reliable_producer>

<heartbeats_per_max_messages>
8

</heartbeats_per_max_messages>
</rtps_reliable_producer>

</protocol>
</producer_defaults>

</topic>

The term “max messages” here means one of two things:

❏ If batching is disabled (this is the default setting; see Chapter 5: Throughput
Management for more information about this feature): “max messages” refers to
the max_messages field of the Resource Limits QoS policy. This policy is
described in the Chapter 6, "Scalable High-Performance Applications: Message
Reliability," in the User’s Manual.

❏ If batching is enabled: “max messages” refers to the max_batches field of the
MessageProducer Resource Limits QoS policy. This policy is described
Section 5.1.1.2, Batching and Reliability, in the User’s Manual.

If heartbeats_per_max_messages is set to zero, no piggyback heartbeat will be sent. If
max_messages (or max_batches, as appropriate) is set to LENGTH_UNLIMITED, 100
million is assumed for the purpose of this parameter.

4.3.2.3 Configuring Discovery Reliability

The middleware’s internal endpoint—producer and consumer—discovery communica-
tion channels are reliable, and you can configure their acknowledgement behavior just
as you can configure your own message producer. These discovery settings are specified
per-ConnectionFactory within the publication_producer and subscription_producer ele-
ments of the Discovery Config QoS policy, which have the same internal structure as the
rtps_reliable_producer elements shown above.
4-32

Tune Reliability Performance
4. D

a
ta

 C
o

nne
c

tivity
For example:

<connection_factory name="Example Factory">
<discovery_config>

<publication_producer>
<heartbeats_per_max_messages>

8
</heartbeats_per_max_messages>
<low_watermark>0</low_watermark>
<high_watermark>1</high_watermark>
<heartbeat_period>

<sec>3</sec>
<nanosec>0</nanosec>

</heartbeat_period>
<fast_heartbeat_period>

<sec>3</sec>
<nanosec>0</nanosec>

</fast_heartbeat_period>
<late_joiner_heartbeat_period>

<sec>3</sec>
<nanosec>0</nanosec>

</late_joiner_heartbeat_period>
</publication_producer>
<subscription_producer>

<heartbeats_per_max_messages>
8

</heartbeats_per_max_messages>
<low_watermark>0</low_watermark>
<high_watermark>1</high_watermark>
<heartbeat_period>

<sec>3</sec>
<nanosec>0</nanosec>

</heartbeat_period>
<fast_heartbeat_period>

<sec>3</sec>
<nanosec>0</nanosec>

</fast_heartbeat_period>
<late_joiner_heartbeat_period>

<sec>3</sec>
<nanosec>0</nanosec>

</late_joiner_heartbeat_period>
</subscription_producer>

</discovery_config >
</topic>
4-33

4.3.3 Configuring Acknowledgements

By default, a MessageConsumer will respond to heartbeats regardless of whether it is
“caught up,” sending ACKs or NACKs as appropriate. This configuration provides the
highest degree of reliability, as it ensures that the MessageProducer will purge messages
from its cache only when it has received positive acknowledgement of the receipt of
those messages from all of its matched consumers.

However, the default configuration may not be appropriate in all cases. When there are
many consumers matched to a single producer, and the underlying network is highly
reliable, the vast majority of heartbeat responses will indicate that all messages have
been received—that is, that no further action on the producer’s part is necessary—and
yet the great number of these responses will place a burden on the system. To improve
performance in such cases, you may want to disable positive acknowledgements, that
is, to configure the consumers to respond to heartbeats only when they have a missed
message to report.

Consumers will automatically report their acknowledgement settings to their matched
producers. For consumers with positive acknowledgements disabled, a producer will
retain sent messages for a keep duration, after which, if no negative acknowledgements
have been received, it will discard the message.

A single producer can communicate with many consumers with different acknowledge-
ment configurations. In a mixed configuration, it will discard a sent message only after
(a) all positively acknowledging consumers have ACKed the message and (b) the keep
duration has elapsed for all non-positively acknowledging consumers.

4.3.3.1 Disabling Positive Acknowledgement for a MessageConsumer

By default, a MessageConsumer will respond to heartbeats with both positive and nega-
tive acknowledgements, as appropriate. To disable positive acknowledgements, use the
MessageConsumer Protocol QoS policy as shown:

<topic name="Example Topic">
<consumer_defaults>
 <protocol>

<disable_positive_acks>true</disable_positive_acks>
 </protocol>
</consumer_defaults>

</topic>

4.3.3.2 Modifying the MessageProducer’s Keep Duration

A MessageProducer uses an adaptive algorithm to determine how long to retain sent
messages for non-positively acknowledging consumers.
4-34

Tune Reliability Performance
4. D

a
ta

 C
o

nne
c

tivity
❏ At first, it will keep a sent message for the disable positive ACKs minimum message
keep duration. If no NACKs are received within that amount of time, the message
will be discarded.

❏ If one or more NACKs are received within the keep duration—most likely indi-
cating network congestion—the producer will adapt to the level of congestion by
gradually increasing the keep duration up to the disable positive ACKs maximum
keep duration. In this way, it will effectively throttle its own send rate to maximize
throughput while minimizing the number of dropped messages.

❏ If the level of congestion decreases, the producer will gradually decrease its keep
duration again, improving throughput as network conditions improve.

The following XML shows the default values of these two parameters:

<topic name="Example Topic">
<producer_defaults>

<protocol>
<rtps_reliable_producer>

<disable_positive_acks_min_message_keep_duration>
<sec>0</sec>
<nanosec>1000000<!-- 1 ms --></nanosec>

</disable_positive_acks_min_message_keep_duration>
<disable_positive_acks_max_message_keep_duration>

<sec>1</sec>
<nanosec>0</nanosec>

</disable_positive_acks_max_message_keep_duration>
</rtps_reliable_producer>

</protocol>
</producer_defaults>

</topic>
4-35

4-36

5. Thro
ug

hp
ut M

a
n-

a
g

e
m

e
nt
Chapter 5 Throughput Management

You want to optimize your application’s throughput. At the same time, you need to
ensure that your network resources are not overwhelmed. If a traffic surge does occur,
you need to take care that your application responds with agility and robustness to
avoid NACK storms and a loss of connectivity. RTI Message Service can help.

This chapter covers two primary aspects of your data throughput:

❏ Maximizing the message throughput of your application, including how to tune
the middleware and how to avoid problems with slow message consumers.

❏ Managing surges in network traffic that could impede your messages, including
how to avoid and respond to NACK storms.

This chapter includes the following sections:

❏ Maximizing Throughput (Section 5.1)

❏ Managing Traffic Surges (Section 5.2)

5.1 Maximizing Throughput
This section addresses two aspects of increasing throughput: increasing the efficiency of
message transmission to boost throughput and preventing consumers that can’t keep
up from slowing down the entire system.
5-1

5.1.1 Batch Messages to Increase Throughput

If your application sends relatively small—less than a kilobyte or two—messages at a
very high rate, you may find that the network itself becomes a bottleneck. The time it
takes for each packet to traverse the network stack, and the time it takes for acknowl-
edgements to return, may result in under-utilization of the network’s bandwidth.

RTI Message Service supports batching messages at the network level to allow the over-
head of packet headers, the cost of system calls, and the subscriber-side CPU burden of
sending acknowledgements to be amortized across a large number of messages. By
combining multiple messages into a single network packet in this way, the middleware
can potentially increase throughput many-fold.

Batching is often appropriate when your application sends a large number of messages
at a high rate. In other scenarios, it may not be. When your application sends a message,
and the middleware is building a batch, it will not put that message on the network
immediately. Instead, it will hold that message and wait to accumulate additional mes-
sages before sending them all at once. If there is a significant pause in between when
your application sends consecutive messages, this accumulation time—which translates
directly into end-to-end latency—may grow unacceptably long. You can bound this
latency by sending accumulated batched messages on a timer (see below), but if the
batches have only accumulated one or two messages by this time, you may see little per-
formance benefit.

5.1.1.1 Building and Sending Batches

Turning on batching is easy:

<topic name="Example Topic">
<producer_defaults>

<batch>
<enable>true</enable>

</batch>
</producer_defaults>

</topic>

A message consumer requires no special configuration in order to receive and deliver
batches. Batching is transparent on the subscribing side.

Once the middleware has begun building a batch, it will flush that batch—that is, send it
on the network—under three conditions. The XML below shows the default values of
the highlighted QoS parameters.
5-2

Maximizing Throughput
5. Thro

ug
hp

ut
M

a
na

g
e

m
e

nt
When the batch’s size
reaches a certain number
of messages:

<topic name="SampleTopic">
<producer_defaults>

<batch>
<enable>true</enable>
<max_messages>

LENGTH_UNLIMITED
</max_messages>

</batch>
</producer_defaults>

</topic>

When the batch’s size
reaches a certain number
of bytes:

<topic name="SampleTopic">
<producer_defaults>

<batch>
<enable>true</enable>
<max_data_bytes>

1024
</max_data_bytes>

</batch>
</producer_defaults>

</topic>

When the elapsed time
exceeds a certain thresh-
old:

<topic name="SampleTopic">
<producer_defaults>

<batch>
<enable>true</enable>
<max_flush_delay>

<sec>
 DURATION_INFINITE_SEC
</sec>
<nanosec>
 DURATION_INFINITE_NANOSEC
</nanosec>

</max_flush_delay>
</batch>

</producer_defaults>
</topic>

Manually:
void com.rti.RTIMessageProducer.flush() throws
javax.jms.JMSException
5-3

Example: Flush automatically based on several criteria

With the following configuration, the middleware will flush batches automatically any
time one of the following conditions becomes true:

1. The batch has accumulated 100 messages

2. The batch has grown in size of 4 KB.

3. Half a second has elapsed since the last flush.

<topic name="SampleTopic">
<producer_defaults>

<batch>
<enable>true</enable>
<max_messages>100</max_messages>
<max_data_bytes>4096</max_data_bytes>
<max_flush_delay>

<sec>0</sec>
<nanosec>500000000</nanosec>

</max_flush_delay>
</batch>

</producer_defaults>
</topic>

Example: Flush manually

In this example, the middleware’s automatic flushing mechanism is configured to oper-
ate only rarely. Instead, the application relies on manually flushing a group of messages
each time it sends them.

In the configuration file:

<topic name="SampleTopic">
<producer_defaults>

<batch>
<enable>true</enable>
<max_data_bytes>32768</max_data_bytes>

</batch>
</producer_defaults>

</topic>
5-4

Maximizing Throughput
5. Thro

ug
hp

ut
M

a
na

g
e

m
e

nt
In application code:

Message msg1 = …;
Message msg2 = …;
Message msg3 = …;
MessageProducer pub = …;

pub.send(msg1);
pub.send(msg2);
pub.send(msg3);
((RTIMessageProducer) pub).flush();

5.1.1.2 Batching and Reliability

Reliability is carried out at the level of an entire batch, not an individual message within
that batch. By allowing subscribers to issue a single ACK/NACK for an entire batch of
messages, and publishers to maintain state at the granularity of a whole batch, the reli-
ability protocol can operate much more efficiently and with lower overhead.

The heartbeats_per_max_messages parameter,
introduced in Chapter 4: Data Connectivity, is
interpreted in a different way when batching is
enabled. Because reliability is at the level of a
batch, only a single piggyback heartbeat will
ever be attached to a batch. Therefore, “heart-
beats per max messages” is really “heartbeats
per max batches,” where the maximum number
of messages is configured with the following
QoS parameter, shown below with its default
value:

<topic name="SampleTopic">
<producer_defaults>

<producer_resource_limits>
<max_batches>

LENGTH_UNLIMITED
</max_batches>

</producer_resource_limits>
</producer_defaults>

</topic>

As described in Chapter 4: Data
Connectivity, the sentinel
LENGTH_UNLIMITED is con-
sidered equal to 100 million for
the purposes of calculating how
often the middleware will send
piggyback heartbeats. For exam-
ple, the default settings will lead
to only very infrequent piggy-
back heartbeats: max_batches is
equivalent to 100 million, and
heartbeats_per_max_samples is
8, so a piggyback heartbeat will
be attached to every 12.5 million
batches. This frequency is not
enough to significantly impact
reliability behavior, even for very
high-throughput systems; reli-
ability instead relies on periodic
heartbeats.
5-5

Other reliability-related resource limits—such as max_messages in the Resource Limits
QoS policy introduced in Chapter 6, "Scalable High-Performance Applications: Message
Reliability," in the User’s Manual—remain unchanged in their interpretation. They
always apply to individual samples, not to entire batches.

5.1.2 Dealing with Slow Consumers

Unfortunately, problems can occur if one or more consumers are not able to respond to
the producer in a timely manner. If a producer’s cache is full and it has not received a
response from a particular consumer, it has only a few choices:

❏ Don’t expect acknowledgements in the first place. You can configure your con-
sumers to not provide positive acknowledgements when they receive messages,
just negative acknowledgements when they don’t receive something. This tech-
nique efficiently isolates the producer from slow consumers, but is only appro-
priate when the producer and consumer are loosely coupled and very strict
reliability is not required. See Chapter 4: Data Connectivity for more information
about this configuration.

❏ Enlarge the cache. This tactic can be a good one initially, but cannot continue
indefinitely. See Chapter 6, "Scalable High-Performance Applications: Message
Reliability," in the User’s Manual for more information about producer cache
size management and its relationship to reliability.

❏ Make room in the cache by discarding messages that have not yet been fully
acknowledged. This action puts reliable delivery at risk for all other consumers,
because if a consumer later NACKs a discarded message, the producer will be
unable to repair the missing data.

❏ Stop waiting for acknowledgements from the slow consumer. Doing so may
amount to failing the consumer over to a best-effort mode—simply not waiting
for acknowledgment before flushing sent data from the queue—or, even more
severe, refraining from sending future messages to the consumer altogether. This
tactic puts reliability at risk, but only for the offending consumer(s).

This section summarizes and cross references material from other chapters in this man-
ual and the User’s Manual to provide a comprehensive view of the slow consumer
problem.

5.1.2.1 Avoidance Strategies

The best way to handle this problem is, of course, to avoid it in the first place. In large
part, that means keeping packets off the wire if they are not needed by the consumer(s)
5-6

Maximizing Throughput
5. Thro

ug
hp

ut
M

a
na

g
e

m
e

nt
or likely to be dropped en route. For example, RTI Message Service supports powerful
mechanisms for filtering your data based on its content and/or the rate at which it
arrives. Messages that do not pass these filters will never be delivered to the application;
in many cases, they will not even be put on the network by the producer.

See Chapter 5, "Subscribing to Messages," in the User’s Manual for more information
about filters and how to configure them.

5.1.2.2 Management Strategies

Despite the best efforts of an application’s designers and implementers, pathological cir-
cumstances may cause consumers to fall behind. RTI provides applications with fine-
grained control over the alternative behaviors listed above.

5.1.2.2.1 Send Cache Memory Management

Applications can configure how much memory a producer is allowed to use for its send
queue initially. As the queue fills and then empties again, the producer will automati-
cally adapt the rate at which it sends heartbeats to its consumers: the fuller the send
queue, the more aggressively the producer will spur the consumers to acknowledge the
data it has sent. The application can also receive notifications of these changes.

For information about managing the memory usage of a message producer, see
Chapter 6, "Scalable High-Performance Applications: Message Reliability," in the User’s
Manual. For information on the more fine-grained reliability configuration options
available, see Chapter 4: Data Connectivity.

5.1.2.2.1 Limited Reliability

RTI gives applications control over which old data can be removed from the send queue
when it fills up. These windows of valid data can be defined in terms of time (the maxi-
mum “time to live” between when a message is written and when it should be con-
sumed) and/or space (the “depth” of old messages to be stored in the “history”). See
Chapter 6, "Scalable High-Performance Applications: Message Reliability," in the User’s
Manual for more information about these features.

If this level of reliability is sufficient, the message producer can be completely isolated
from slow consumers by disabling positive acknowledgements. In this reliability mode,
a producer informs its consumers that they only need to provide NACKs, not ACKs.
Because the producer does not expect ACKs from any consumer, a slow consumer can-
not affect it. See Chapter 4: Data Connectivity for more information about this configu-
ration.
5-7

5.1.2.2.1 Consumer Inactivation

At some point, a producer can no longer maintain resources on behalf of a consumer
that is not keeping up. RTI provides fine-grained control over:

❏ The rate at which heartbeats are sent from the producer to its consumers. See
Chapter 4: Data Connectivity.

❏ The number of heartbeats a producer will send to a consumer without response
before marking it as inactive. See below.

A consumer that is inactivated will not be forgotten entirely, but unacknowledged data
will not be maintained solely on its behalf; communication will proceed in a best-effort-
like mode with respect to that consumer. Should the consumer become responsive
again, any data that it missed and that is still available for other reasons will be made
available to it. For more information about this facility, see Chapter 6: Fault Tolerance.

5.2 Managing Traffic Surges
Dealing with Slow Consumers (Section 5.1.2) describes how you can deal with the situa-
tion in which message consumers cannot keep up with producers. Problems can also
occur if consumers respond too promptly. If many consumers miss the same message(s),
they may all NACK at once, flooding the network with reliability meta-traffic and pre-
venting application data from flowing.

This problem can be multiplied when using multicast, since resent data will be seen by
all consumers, even those that received the previous messages correctly. In the worst
case, the processing and storage resources consumed by these unnecessary resends can
starve out the processing of new data, leading to a self-perpetuating feedback loop of
NACKs and resends ricocheting back and forth across the network.

There are three ways to reduce the damage done by surges in ACK/NACK traffic:

1. Reduce ACK/NACK volumes overall.

2. Smooth NACK spikes to avoid short-term network flooding.

3. Prevent longer-term network flooding caused by poorly targeted NACK
responses.
5-8

Managing Traffic Surges
5. Thro

ug
hp

ut
M

a
na

g
e

m
e

nt
5.2.1 Step 1: Prune and Shape Network Traffic to Reduce (N)ACKs

Some of the strategies for avoiding slow consumers can also help to prevent NACK
storms. Specifically, by keeping unnecessary traffic off the network in the first place, the
middleware removes the need for a consumer to ACK/NACK it, reducing the probabil-
ity of a storm. These strategies are discussed in Managing Traffic Surges (Section 5.2).

5.2.2 Step 2: Wait Before Responding to Avoid NACK Storms

RTI provides for heartbeat and NACK “response delays”: back-off times during which a
producing or consuming application will refrain from putting traffic on the wire, with
the expectation that others may be attempting to write at the same time.

❏ The “heartbeat response delay” specifies how long after receiving a heartbeat
from a producer a consumer will wait before responding with an ACK or NACK.

❏ The “NACK response delay” governs traffic in the other direction, allowing a
producer to wait before resending messages to a consumer.

These delays are specified in terms of minimum and maximum values; the actual delay
will be some random value in between them. As seen in Figure 5.2, “Nack Storm Pre-
vention With Random Delays,” on page 5-10, this use of a randomly timed response,
configured across a time window, causes NACKs and resent messages to be spread out
in the time window instead of creating peaks of bandwidth usage.

Without a random response delay, NACKs can occur all at once, causing a spike in net-
work traffic, as shown conceptually in the diagram above. This spike can deny network
access to live application data. RTI uses random delays to smooth out those spikes,
allowing data to flow normally.
5-9

Figure 5.2 Nack Storm Prevention With Random Delays
5-10

Managing Traffic Surges
5. Thro

ug
hp

ut
M

a
na

g
e

m
e

nt
The following XML shows the default values of these parameters; they can be used sep-
arately or together:

<topic name="Example Topic">
<producer_defaults>

<protocol>
<rtps_reliable_producer>

<min_nack_response_delay>
<sec>0</sec>
<nanosec>0</nanosec>

</min_nack_response_delay>
<max_nack_response_delay>

<sec>0</sec>
<nanosec>200000000<!-- 200 ms --></nanosec>

</max_nack_response_delay>
</rtps_reliable_producer>

</protocol>
</producer_defaults>
<consumer_defaults>

<protocol>
<rtps_reliable_consumer>

<min_heartbeat_response_delay>
<sec>0</sec>
<nanosec>0</nanosec>

</min_heartbeat_response_delay>
<max_heartbeat_response_delay>

<sec>0</sec>
<nanosec>500000000<!-- 500 ms --></nanosec>

</max_heartbeat_response_delay>
</rtps_reliable_consumer>

</protocol>
</consumer_defaults>

</topic>

Configuring both the minimum and maximum delays to zero will cause the middle-
ware to always respond immediately. This will make the middleware more responsive,
provided that all of these responses can get through; this configuration may improve
performance when the network is not heavily loaded. But if the network is congested,
zero delay can lead to NACK storms.
5-11

It is also possible to configure the middleware to ignore potentially-duplicate meta-traf-
fic altogether. For example, suppose the following sequence of events:

1. A producer sends a heartbeat to a consumer indicating which messages it has
sent.

2. The consumer receives the heartbeat, realizes it has missed a message and sends
a NACK.

3. In the mean time, the producer sends another heartbeat. The consumer receives
it and sends another NACK, not having yet received a repair.

4. The producer receives the first NACK and sends a repair.

5. The producer receives the second NACK. Because it cannot know whether this sec-
ond NACK was sent before or after its repair would have been received, it must send
another repair.

6. The consumer receives both repairs. It delivers the first and silently discards the
duplicate.

If you expect heartbeats to arrive faster than messages, you may want to avoid the
extraneous message resends described above. You can do this by configuring a non-zero
NACK suppression duration (the default is zero):

<topic name="Example Topic">
<producer_defaults>

<protocol>
<rtps_reliable_producer>

<nack_suppression_duration>
<sec>0</sec>
<nanosec>100000000<!-- 100 ms --></nanosec>

</nack_suppression_duration>
</rtps_reliable_producer>

</protocol>
</producer_defaults>

</topic>

Any duplicate NACKs that a producer receives within that duration will receive no
response.
5-12

Managing Traffic Surges
5. Thro

ug
hp

ut
M

a
na

g
e

m
e

nt
A similar parameter, the heartbeat suppression duration, exists on the consumer side.
Unlike on the producer side, this delay is non-zero by default:

<topic name="Example Topic">
<consumer_defaults>

<protocol>
<rtps_reliable_consumer>

<heartbeat_suppression_duration>
<sec>0</sec>
<nanosec>62500000<!-- 62.5 ms --></nanosec>

</heartbeat_suppression_duration>
</rtps_reliable_consumer>

</protocol>
</consumer_defaults>

</topic>

5.2.3 Step 3: Use Multicast Intelligently to Prevent Feedback Loops

RTI Message Service can use both unicast and multicast addresses and switch from one to
the other seamlessly and intelligently to isolate slow consumers from their better-behav-
ing peers, helping to prevent the feedback loops of redundant resends and re-acknowl-
edgements that can result from a surge in NACK traffic.

First, consumers can be configured to listen for messages on either unicast or multicast
addresses. In topologies in which the number of consumers is limited, unicast address-
ing can provide superior isolation and decoupling without significantly impacting per-
formance. In this scenario, all repair traffic will be targeted to specific consumers,
avoiding increased loads on well-behaved consumers. For more information about con-
figuring the addresses used by the middleware, see Chapter 4: Data Connectivity.

Second, even when the middleware is configured to send application messages over
multicast, consumers will respond with NACKs over unicast to the specific producer
whose data they are missing. The producer, in turn, can respond with message repairs
either over unicast, for maximum isolation of a small number of slow consumers, or
multicast, for efficiency in the case where many consumers need repairs. How it does
this depends on its configured NACK response delay and the number of NACKs it
receives before the delay elapses.

❏ If the producer is configured with a zero NACK response delay (see Step 2: Wait
Before Responding to Avoid NACK Storms (Section 5.2.2)), it will respond to
every NACK immediately via unicast.
5-13

❏ If the NACK response delay is non-zero, the producer will wait until the delay
elapses before deciding what kind of addressing to use. If, by the time the delay
elapses, the producer has received NACKs from multiple consumers associated
with the same multicast address, the producer will send the repair to that multi-
cast address. If all NACKs originate from unique addresses, the producer will
respond over unicast to only those consumers that are not up to date.

This behavior limits the ability of poorly behaved consumers from bringing down the
rest of the network in several ways:

❏ Consumers are decoupled from each other. Since one consumer does not depend
on any other to NACK its missed data, one misbehaving consumer cannot cause
another to also misbehave or lose data.

❏ A single slow consumer will never lead to extraneous resends to up-to-date con-
sumers.

❏ The middleware can provide robustness in the face of multiple slow consumers
in one or more of several ways:

• By responding to each of them independently over unicast, so that up-to-
date consumers receive no duplicate messages that they will have to dis-
card.

• By configuring different groups of consumers with different multicast
addresses to allow multiple repairs to be sent efficiently over multicast
while limiting the impact on up-to-date consumers.

• By disabling positive ACKs (see Chapter 4: Data Connectivity) to prevent
unnecessary feedback to the producer in the event that redundant resends
do occur.
5-14

6. Fa
ult To

le
ra

nc
e

Chapter 6 Fault Tolerance

The User’s Manual describes how to use the JMS APIs and RTI configuration mecha-
nisms to create messaging applications. The advanced chapters of that manual, and the
earlier chapters of this manual, went a step further by teaching you, in-depth, about the
reliability, durability, and discovery mechanisms that help you build a robust and scal-
able system. But when that system is mission- and/or life-critical, that’s not enough.
You need to assume that something will eventually go wrong, and when it does, you
need to be notified of that problem and you need the tools to respond.

This chapter will take you step-by-step through the fault tolerance mechanisms in the
RTI middleware, from receiving notifications when messages don’t arrive on time to
automatically failing over from one publisher to another. It includes the following sec-
tions:

❏ Data Determinism: Enforcing Periodic Deadlines (Section 6.1)

❏ Monitoring Liveliness and Activity (Section 6.2)

❏ Ownership and Automatic MessageProducer Fail-Over (Section 6.3)

6.1 Data Determinism: Enforcing Periodic Deadlines
This section applies to applications with periodic or semi-periodic message flows. If
your application sends messages only sporadically, you can skip to the next section.

Many applications rely on the regular arrival of messages. RTI Message Service can
enforce this periodicity contract on behalf of your application, giving you notifications if
the declared contract is broken.
6-1

This feature has two parts, each enforced separately on message producers and consum-
ers:

❏ Endpoints declare their deadline contracts in the configuration file.

❏ Message producers offer a deadline, promising to publish a message at least once
each deadline period.

❏ Message consumers request a deadline, during which they expect to receive at
least one message from any producer that is publishing to them.

❏ The middleware issues status notifications whenever a deadline is violated, so
that the application can respond appropriately.

❏ A StatusNotifier will issue an offered deadline missed notification if the offered
deadline of a MessageProducer of its Session elapses without that producer having
sent a message.

❏ A StatusNotifier will issue a requested deadline missed notification if the requested
deadline of a MessageConsumer of its Session elapses without that consumer hav-
ing received a message.

The middleware will ensure that the offered and requested deadlines of a producer/
consumer pair are compatible before it will allow communication to proceed. Specifi-
cally, the deadline period offered by the producer must be shorter than or equal to that
requested by the consumer. If such is not the case, an incompatible QoS notification will
be provided; see below.

6.1.1 Incompatible QoS Notifications

When producers and consumers cannot communicate because of mismatched QoS con-
figurations, your application will be notified.

Offered incompatible QoS notifications, described in Table 6.1 on page 6-3, pertain to
producers.

Requested incompatible QoS notifications, described in Table 6.2 on page 6-3, pertain to
consumers.
6-2

Data Determinism: Enforcing Periodic Deadlines
6. Fa

ult To
le

ra
nc

e

Table 6.1 Notification Type: StatusNotifier. OFFERED_INCOMPATIBLE_QOS_NOTIFICATION_TYPE

A producer in this session has the same Topic as a consumer, but the two have incompatible QoS policies-
such as the deadline policy.

Attribute Name Attribute Type Description

totalCount int
The total number of times that the producer has dis-
covered an otherwise-matching consumer with
incompatible QoS since the producer was created.

totalCountChange int

The change to the totalCount attribute since the last
time this status was queried.

If your application receives status notifications via a
listener callback, this number will generally be 1. If
your application polls for status changes, it may be
take any integer value.

Table 6.2 Notification Type: StatusNotifier. REQUESTED_INCOMPATIBLE_QOS_NOTIFICATION_TYPE

A consumer in this session has the same Topic as a producer, but the two have incompatible QoS policies-
such as the deadline policy.

Attribute Name Attribute Type Description

totalCount int
The total number of times that the consumer has
discovered an otherwise-matching producer with
incompatible QoS since the consumer was created.

totalCountChange int

The change to the totalCount attribute since the last
time this status was queried.

If your application receives status notifications via a
listener callback, this number will generally be 1. If
your application polls for status changes, it may be
take any integer value.
6-3

6.1.2 Declaring Deadline Contracts

Deadline periods can be declared either identically for both producers and consumers
of the same topic or it can be defined separately. The following XML examples show the
default values.

Example: Topic-level configuration

The following configuration will be picked up by all producers and consumers of the
topic. An infinite deadline indicates that no deadline is enforced.

<topic name="Example Topic">
<deadline>

<period>
<sec>DURATION_INFINITE_SEC</sec>
<nanosec>DURATION_INFINITE_NANOSEC</nanosec>

</period>
</deadline>

</topic>

Example: Independent producer, consumer configuration

The example above is equivalent to the following independent producer and consumer
configurations:

<topic name="Example Topic">
<producer_defaults>

<deadline>
<period>

<sec>DURATION_INFINITE_SEC</sec>
<nanosec>DURATION_INFINITE_NANOSEC</nanosec>

</period>
</deadline>

</producer_defaults>
<consumer_defaults>

<deadline>
<period>

<sec>DURATION_INFINITE_SEC</sec>
<nanosec>DURATION_INFINITE_NANOSEC</nanosec>

</period>
</deadline>

</consumer_defaults>
</topic>

Take care not to define your tolerances too tightly. For example, suppose your applica-
tion calls MessageProducer.send() periodically based on a one-second timer. You may
be tempted to define your deadline period to be one second as well. However, it is likely
that non-determinism in your operating system and network and small amounts of
6-4

Data Determinism: Enforcing Periodic Deadlines
6. Fa

ult To
le

ra
nc

e

clock skew across the nodes on your network will lead to your frequently “missing”
your deadlines by small amounts. These spurious deadline misses could obscure real
problems in your system.

RTI therefore recommends that you leave yourself some slack when defining your
deadline. How much slack is appropriate will depend on how deterministic your oper-
ating system and network are.

❏ A real-time embedded operating system such as Wind River VxWorks, Lynux-
Works LynxOS, or Green Hills INTEGRITY will provide more deterministic
behavior than a desktop- or server-class operating system. Of the mainstream
operating systems, in RTI’s experience, Linux is typically more deterministic
than Microsoft Windows. Additionally, real-time Linux distributions attempt to
make the determinism of Linux approach that of real-time embedded operating
systems.

❏ The determinism of an Ethernet network decreases as its load increases. The
quality of your NICs, switches, and drivers also has a large impact.

If the loads on your producers and consumers differ, or if your nodes are more deter-
ministic than the network between them, you may want to consider configuring the
deadlines separately for your producers and consumers to introduce more slack.

Example: Introducing slack from producer to consumer

<topic name="Example Topic">
<producer_defaults>

<deadline>
<period>

<!-- 1.0 second: -->
<sec>1</sec>
<nanosec>0</nanosec>

</period>
</deadline>

</producer_defaults>
<consumer_defaults>

<deadline>
<period>

<!-- 1.1 seconds: -->
<sec>1</sec>
<nanosec>100000000</nanosec>

</period>
</deadline>

</consumer_defaults>
</topic>
6-5

6.1.2.1 Deadlines and Keys

This section applies only to topics that have been configured for keyed behavior. If you
do not use this capability, you can skip this section. For more information about keys,
see Chapter 8, "Scalable High-Performance Applications: Keys," in the User’s Manual.

If your topic is keyed, any deadline applies to all instances. That is, to offer a deadline on
a keyed topic is to commit to sending a message for each of your key values at least once
every deadline period.

For example, suppose that your application distributes stock information once per sec-
ond, and you have used stock symbols as your keys. Once you have sent a message with
a particular key value (say, “AAPL”), you have committed to continue sending mes-
sages with that key value according to your declared deadline.

6.1.2.2 Deadlines and Time-Based Filters

This section applies to time-based filters, a data sub-sampling mechanism designed to
decrease network traffic and help relatively slow consumers keep up with their pro-
ducer(s). If you are not using this capability, you can skip this section. For more informa-
tion about time-based filters, see the Chapter 5, "Subscribing to Messages," in the User’s
Manual.

The Deadline QoS policy must be set consistently with the Time-Based Filter policy. For
these two policies to be consistent, the deadline period must be longer than or equal to
the minimum_separation. That is, you are not permitted to set a deadline so short that
every message would be discarded by the time-based filter. You will not be able to cre-
ate a producer or consumer that violates this rule.

For a MessageConsumer, the deadline and time-based filter may interact such that even
though the MessageProducer is writing messages fast enough to fulfill its commitment to
its own deadline, the MessageConsumer may see violations of its deadline. This happens
because RTI Message Service will drop any messages received within the
minimum_separation. To avoid triggering the MessageConsumer's deadline, even
though the matched MessageProducer is meeting its own deadline, set the two QoS
parameters so that:

MessageConsumer deadline period >=
MessageConsumer minimum_separation +
MessageProducer deadline period
6-6

Data Determinism: Enforcing Periodic Deadlines
6. Fa

ult To
le

ra
nc

e

Example

<topic name="Example Topic">
<producer_defaults>

<deadline>
<period>

<!-- 1 sec: -->
<sec>1</sec>
<nanosec>0</nanosec>

</period>
</deadline>

</producer_defaults>
<consumer_defaults>

<time_based_filter>
<minimum_separation>

<!-- 0.5 sec: -->
<sec>0</sec>
<nanosec>500000000</nanosec>

</minimum_separation>
</time_based_filter>
<deadline>

<period>
<!-- 1.5 sec: -->
<sec>1</sec>
<nanosec>500000000</nanosec>

</period>
</deadline>

</consumer_defaults>
</topic>

6.1.3 Missed Deadline Notifications

When a message producer fails to publish a message within its offered deadline period,
any StatusNotifier attached to that producer’s Session will receive an offered deadline
missed notification. This is the case regardless of the requested deadline(s) of any
matched message consumers. See Table 6.3, “Notification Type: StatusNotifier.
OFFERED_DEADLINE_MISSED_NOTIFICATION_TYPE,” on page 6-8.

When a message consumer fails to receive a message within its requested deadline
period, any StatusNotifier attached to that consumer’s Session will receive a requested
deadline missed notification. This is the case regardless of the offered deadline(s) of any
matched message producers. See Table 6.3, “Notification Type: StatusNotifier.
OFFERED_DEADLINE_MISSED_NOTIFICATION_TYPE,” on page 6-8.
6-7

Table 6.3 Notification Type: StatusNotifier. OFFERED_DEADLINE_MISSED_NOTIFICATION_TYPE

A message producer in this session has failed to publish a message within its offered deadline period.

Attribute Name Attribute Type Description

totalCount int
The total number of times that the producer has
failed to meet its deadline.

totalCountChange int

The change to the totalCount attribute since the
last time this status was queried.

If your application receives status notifications via
a listener callback, this number will generally be 1.
If your application polls for status changes, it may
take any integer value.

Table 6.4 Notification Type: StatusNotifier. StatusNotifier.
REQUESTED_DEADLINE_MISSED_NOTIFICATION_TYPE

A message consumer in this session has failed to receive a message within its requested deadline period.

Attribute Name Attribute Type Description

totalCount int
The total number of times that the consumer has
failed to receive a message in accordance with its
deadline.

totalCountChange int

The change to the totalCount attribute since the
last time this status was queried.

If your application receives status notifications via
a listener callback, this number will generally be 1.
If your application polls for status changes, it may
take any integer value.
6-8

Monitoring Liveliness and Activity
6. Fa

ult To
le

ra
nc

e
6.2 Monitoring Liveliness and Activity
In a distributed application, a producer may need to know when a consumer becomes
unresponsive, and a consumer may need to know when a producer fails. These are dif-
ferent but related concepts, both of which are covered in this section:

❏ MessageProducer Liveliness. Liveliness is a MessageProducer’s ability to continue
publishing messages. A MessageConsumer can declare the rigor with which its
producer must assert, or prove, its liveliness, and the middleware will enforce
this contract. Both producers and consumers can be notified when liveliness con-
tracts are violated.

❏ MessageConsumer Activity. Activity is a MessageConsumer’s ability to remain
responsive to its producers’ heartbeats. A producer defines how fast it expects its
consumers to respond to these heartbeats, and if a consumer fails to respond
within that time, the producer will fail the consumer over into a best-effort-like
communication mode to prevent it from impacting the performance of the rest of
the system. The application will also receive a notification.

6.2.1 MessageProducer Liveliness

As long as a Connection is up and running, the middleware will automatically assert the
liveliness of the message producers of that connection at a frequency that can be speci-
fied by the application. The duration between liveliness assertions is referred to as the
liveliness lease duration. When this duration elapses without a liveliness assertion, on
either publishing or subscribing side, the application will receive a notification.

By default, the liveliness lease duration is infinite, meaning that the middleware need
not send liveliness assertions on the network, and all message producers will be consid-
ered alive until they are closed.

<topic name="Example Topic">
<liveliness>

<lease_duration>
<sec>DURATION_INFINITE_SEC</sec>
<nanosec>DURATION_INFINITE_NANOSEC</nanosec>

</lease_duration>
</liveliness>

</topic>

This configuration minimizes the bandwidth the middleware uses for meta-data.
6-9

To detect whether your publishing application has crashed, hung, or been suspended,
you can configure a finite liveliness lease duration. As with deadlines (see Declaring
Deadline Contracts (Section 6.1.2)), you can choose to either create a single configura-
tion to be shared by producers and consumers, or you can specify the contract sepa-
rately for producers and consumers; the same compatibility rules and caveats apply.

When a message producer fails to uphold its configured liveliness contract, any Status-
Notifier attached to that producer’s Session will receive a liveliness list notification. This
notification indicates that the producer may have lost liveliness with one or more of its
consumers, depending on whether or not they are configured with the same lease dura-
tion as the producer itself and how long the interruption in service lasted. See Table 6.5.

When a message producer changes its liveliness—either losing or restoring liveliness—
with respect to a particular consumer, any StatusNotifier attached to that consumer’s
Session will receive a liveliness changed notification. See Table 6.6 on page 6-11.

Table 6.5 Notification Type: StatusNotifier. LIVELINESS_LOST_NOTIFICATION_TYPE

A message producer in this session has failed to meet its liveliness contract.

Attribute Name Attribute Type Description

totalCount int
The total number of times that the producer has
failed to meet its liveliness contract.

totalCountChange int

The change to the totalCount attribute since the
last time this status was queried.

If your application receives status notifications via
a listener callback, this number will generally be 1.
If your application polls for status changes, it may
take any integer value.
6-10

Monitoring Liveliness and Activity
6. Fa

ult To
le

ra
nc

e

6.2.2 MessageConsumer Activity

Unlike MessageProducer liveliness, MessageConsumer activity is a concept that applies
only to reliable consumers. Producers do not maintain activity state for best-effort con-
sumers. If you have configured your consumer for best-effort delivery, you can skip this
section.

If a consumer is not keeping up with its producer(s), it can—depending on the reliabil-
ity settings—impact the ability of the producer to send new messages, thereby throttling
the whole system. At some point, a producer can no longer maintain unacknowledged
messages on behalf of a consumer that is not keeping up if it wishes to maintain overall
performance. It will internally consider the offending consumer(s) to be inactive, at
which point it will notify the application and stop maintaining resources on behalf of
those consumers.

A consumer that is inactivated will not be forgotten entirely, but unacknowledged data
will not be maintained solely on its behalf; communication will proceed in a best-effort-

Table 6.6 Notification Type: StatusNotifier. LIVELINESS_CHANGED_NOTIFICATION_TYPE

A message producer has lost or gained liveliness with respect to a consumer.

Attribute Name Attribute Type Description

totalCount int
The total number of times that the producer has
failed to meet its liveliness contract.

totalCountChange int

The change to the totalCount attribute since the
last time this status was queried.

If your application receives status notifications via
a listener callback, this number will generally be 1.
If your application polls for status changes, it may
take any integer value.

notAliveCount int
The total number of matched message producers
that are currently not alive.

notAliveCountChange int

The change to the notAliveCount attribute since
the last time this status was queried.

If your application receives status notifications via
a listener callback, this number will generally be 1
or -1. If your application polls for status changes, it
may take any integer value.
6-11

like mode with respect to that consumer. Should the consumer become active again, any
messages that it missed and that is still available will be provided to it.

This behavior is governed by the max heartbeat retries configuration parameter, which
indicates the maximum number of periodic heartbeats that the producer will send,
without receiving a response, before it will consider the consumer to be inactive. The
following XML shows the default value:

<topic name="Example Topic">
<producer_defaults>

<protocol>
<rtps_reliable_producer>

<max_heartbeat_retries>10</max_heartbeat_retries>
</rtps_reliable_producer>

</protocol>
</producer_defaults>

</topic>

Figure 6.1 on page 6-13 depicts the behavior, should max_heartbeat_retries be set to 3:

If the consumer begins responding to heartbeats again, it will once again be marked
active and reliable delivery can resume.

As changes in activation and inactivation occur, the application will be notified asyn-
chronously by means of a callback. See Table 6.7 on page 6-14.

To provide higher data availability for consumers that fall behind and catch up again, as
well as for consumers that may join the network late initially, you may want to config-
ure some degree of durability/persistence for your messages. See Chapter 7, "Scalable
High-Performance Applications: Durability and Persistence for High Availability," in
the User’s Manual for more information.
6-12

Monitoring Liveliness and Activity
6. Fa

ult To
le

ra
nc

e

Figure 6.1 Slow Consumer Inactivated to Clear Send Cache
6-13

Table 6.7 Notification Type: StatusNotifier.
RELIABLE_CONSUMER_ACTIVITY_CHANGED_NOTIFICATION_TYPE

A message producer in this session has marked a consumer inactive for failing to respond to heartbeats in
a timely manner.

Attribute Name Attribute Type Description

activeCount int
The total number of active reliable message consum-
ers currently matched with this message producer.

activeCountChange int

The change to the activeCount attribute since the
last time this status was queried.

If your application receives status notifications via a
listener callback, this number will generally be 1 or
-1 (depending on whether the status change
indicates a loss or gain of activity). If your
application polls for status changes, it may take any
integer value.

inactiveCount int
The total number of inactive reliable message
consumers currently matched with this message
producer.

inactiveCountChange int

The change to the inactiveCount attribute since the
last time this status was queried.

If your application receives status notifications via a
listener callback, this number will generally be 1 or
-1 (depending on whether the status change
indicates a loss or gain of activity). If your
application polls for status changes, it may take any
integer value.
6-14

Ownership and Automatic MessageProducer Fail-Over
6. Fa

ult To
le

ra
nc

e
6.3 Ownership and Automatic MessageProducer Fail-Over
Many systems contain redundant producers of the same data; if one fails, another is
supposed to take over. RTI Message Service can provide this functionality for your appli-
cation with minimal configuration. This capability is a hot fail-over capability: redundant
producers all publish data simultaneous; when a failure occurs, fail-over is instanta-
neous. The capability does not require any coordination between producers, and it does
not require any consumer-to-producer back channel communication, making it low-
overhead and extremely responsive.

Fail-over is based on two QoS policies that work together: Ownership and Ownership
Strength. The concept is simple: if a topic is configured for exclusive ownership, then con-
sumers will deliver messages only from the producer with the highest strength. If that
producer fails—either its deadline (see Data Determinism: Enforcing Periodic Deadlines
(Section 6.1)) or liveliness (see MessageProducer Liveliness (Section 6.2.1)) expires—the
consumer will start delivering messages from the next-highest-strength producer auto-
matically.

6.3.1 Configuring Ownership and Ownership Strength

There are two kinds of ownership, selected by the setting of the kind parameter:
SHARED and EXCLUSIVE.

❏ Shared ownership: SHARED_OWNERSHIP_QOS indicates that RTI Message Ser-
vice does not enforce unique ownership for the topic. In this case, message con-
sumers will deliver messages they receive regardless of the producer from which
those messages originated. This is the default setting.

❏ Exclusive ownership: EXCLUSIVE_OWNERSHIP_QOS indicates that only mes-
sages from a single producer will be delivered to the application. In other words,
at any point in time, a single MessageProducer “owns” the message stream and is
the only one whose messages will be visible to the MessageConsumer objects. The
owner is determined by selecting the MessageProducer with the highest value of
the Ownership Strength QoS policy that is currently alive, as defined by the
Liveliness QoS policy, and has not violated its Deadline contract.
6-15

Ownership can change as a result of:

❏ A MessageProducer in the system with a higher strength begins sending mes-
sages.

❏ The MessageProducer that currently has ownership misses a deadline (if a finite
deadline has been configured). This mechanism is appropriate for determining
the ownership of topics on which messages are published periodically.

❏ The MessageProducer that currently has ownership loses liveliness (if a finite live-
liness has been configured). This mechanism is appropriate for determining the
ownership of topics on which messages are not published periodically.

The determination of ownership is made independently by each MessageConsumer. Each
MessageConsumer may detect the change of ownership at a different time, depending on
its respective configurations and the timing characteristics of the platform on which it
runs. It is not a requirement that at a particular point in time all the MessageConsumer
objects for that topic have a consistent picture of which MessageProducer owns the mes-
sage stream.

It is possible that multiple MessageProducer objects with the same strength both send
messages. If that occurs, RTI Message Service will pick one of the MessageProducer objects
as the owner; the mechanism is internal, but all MessageConsumer objects will make the
same choice.
6-16

Ownership and Automatic MessageProducer Fail-Over
6. Fa

ult To
le

ra
nc

e

Example: Configuration file, exclusive ownership for periodic data

<jms>
<library name="Lib">

<topic name="Example">
<ownership>

<kind>EXCLUSIVE_OWNERSHIP_QOS</kind>
</ownership>
<deadline>

<period>
<sec>1</sec>
<nanosec>0</nanosec>

</period>
</deadline>
<!-- Optional, to avoid having to specify ownership

 at runtime everywhere:
<producer_defaults>

<ownership_strength>
<value>10</value>

</ownership_strength>
</producer_defaults>
-->

</topic>
<!-- Other administered objects... -->

</library>
</jms>
6-17

Example: Configuration file, exclusive ownership for non-periodic data

<jms>
<library name="Lib">

<topic name="Example">
<ownership>

<kind>EXCLUSIVE_OWNERSHIP_QOS</kind>
</ownership>
<liveliness>

<lease_duration>
<sec>1</sec>
<nanosec>0</nanosec>

</lease_duration>
</liveliness>
<!-- Optional, to avoid having to specify ownership

 at runtime everywhere:
<producer_defaults>

<ownership_strength>
<value>10</value>

</ownership_strength>
</producer_defaults>
-->

</topic>
<!-- Other administered objects... -->

</library>
</jms>

Example: Application code

Assuming that all applications in the distributed system share the same version of the
configuration file, setting the ownership strength will typically take place at runtime.
This example shows how this could be done.

In the code for the lower-strength publishing application:

Hashtable<String, String> props = new Hashtable<String, String>();
props.put(

RTIContext.QOS_FIELD_PREFIX +
":Lib/Example/producer_defaults/ownership_strength/value", "5");

// set other properties...
Context ctx = new InitialContext(props);
Topic myTopic = ctx.lookup("Lib/Example");

// Look up ConnectionFactory. Create Session.
MessageProducer lowStrengthPub = mySession.createMessageProducer(

myTopic);
6-18

Ownership and Automatic MessageProducer Fail-Over
6. Fa

ult To
le

ra
nc

e

In the code for the higher-strength publishing application:

Hashtable<String, String> props = new Hashtable<String, String>();
props.put(

RTIContext.QOS_FIELD_PREFIX +
":Lib/Example/producer_defaults/ownership_strength/value","10");

// set other properties...
Context ctx = new InitialContext(props);
Topic myTopic = ctx.lookup("Lib/Example");

// Look up ConnectionFactory. Create Session.
MessageProducer highStrengthPub = mySession.createMessageProducer(

myTopic);

6.3.2 Deadlines and Keys

This section pertains to the “keys” capability of RTI Message Service, which allows QoS
to be applied separately to different logical data objects within the same topic.
SeeChapter 8, "Scalable High-Performance Applications: Keys," in the User’s Manual
for more information about this capability. If you are not using keys with your topics,
you can skip this section.

For keyed topics, exclusive ownership is determined on an instance-by-instance basis.
That is, a subscriber can deliver messages written by a lower-strength MessageProducer
as long as messages with that key have not been published by a higher-strength Mes-
sageProducer.
6-19

6-20

	Contents
	Chapter 1 Welcome to RTI Message Service
	1.1 Benefits of RTI Message Service
	1.1.1 Reduced Risk Through Industry-Leading Performance and Availability
	1.1.2 Reduced Cost through Ease of Use and Simplified Deployment
	1.1.3 Unmatched Power and Flexibility to Meet Unique Requirements
	1.1.4 Interoperability with OMG Data Distribution Service-Based Systems

	1.2 Features of RTI Message Service
	1.3 JMS Conformance
	1.4 Understanding and Navigating the Documentation

	Chapter 2 Debugging the Connection
	2.1 Logging Configuration
	2.1.1 Log Verbosity
	2.1.2 Logging by Functional Categories
	2.1.3 Redirecting Log Output

	2.2 Debugging Connectivity Issues
	2.2.1 Ping
	2.2.2 Spy

	Chapter 3 Network Transport Configuration
	3.1 Choosing Your Transports
	3.2 UDPv4 Configuration
	3.3 UDPv6 Configuration
	3.4 Shared Memory Configuration
	3.4.1 Compatibility of Sender and Receiver Transports
	3.4.2 Crashing and Restarting Programs
	3.4.3 Shared Resource Keys
	3.4.4 Configuration

	Chapter 4 Data Connectivity
	4.1 Segregate Systems and Subsystems into Domains
	4.1.1 domain_id_gain and connection_id_gain

	4.2 Tune Discovery for Faster Startup and Improved Scalability
	4.2.1 Introduction: Discovery Announcements
	4.2.2 Addresses Used for Discovery
	4.2.3 Asymmetric Discovery Configuration
	4.2.4 Discovery Implementation
	4.2.5 Debugging Discovery

	4.3 Tune Reliability Performance
	4.3.1 Introduction to the Reliability Protocol
	4.3.2 Configuring Heartbeats
	4.3.3 Configuring Acknowledgements

	Chapter 5 Throughput Management
	5.1 Maximizing Throughput
	5.1.1 Batch Messages to Increase Throughput
	5.1.2 Dealing with Slow Consumers

	5.2 Managing Traffic Surges
	5.2.1 Step 1: Prune and Shape Network Traffic to Reduce (N)ACKs
	5.2.2 Step 2: Wait Before Responding to Avoid NACK Storms
	5.2.3 Step 3: Use Multicast Intelligently to Prevent Feedback Loops

	Chapter 6 Fault Tolerance
	6.1 Data Determinism: Enforcing Periodic Deadlines
	6.1.1 Incompatible QoS Notifications
	6.1.2 Declaring Deadline Contracts
	6.1.3 Missed Deadline Notifications

	6.2 Monitoring Liveliness and Activity
	6.2.1 MessageProducer Liveliness
	6.2.2 MessageConsumer Activity

	6.3 Ownership and Automatic MessageProducer Fail-Over
	6.3.1 Configuring Ownership and Ownership Strength
	6.3.2 Deadlines and Keys

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

