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Abstract. Event-driven design is fundamental to developing resilient, responsive, and scalable reactive
systems as it supports asynchrony and loose coupling. The OMG Data Distribution Service (DDS) is a
proven event-driven technology for building data-centric reactive systems because it provides the prim-
itives for decoupling system components with respect to time, space, quality-of-service, and behavior.
DDS, by design, supports distribution scalability. However, with increasing core count in CPUs, build-
ing multicore-scalable reactive systems remains a challenge. Towards that end, we investigate the use
of Functional Reactive Programming (FRP) for DDS applications. Specifically, this paper presents our
experience in integrating and evaluating Microsoft .NET Reactive Extensions (Rx) as a programming
model for DDS-based reactive stream processing applications. We used a publicly available challenge
problem involving real-time complex analytics over high-speed sensor data captured during a soccer
game. We compare the FRP solution with an imperative solution we implemented in C++11 along
several dimensions including code size, state management, concurrency model, event synchronization,
and fitness for the purpose of “stream processing.” Our experience suggests that DDS and Rx together
provide a powerful infrastructure for reactive stream processing, which allows declarative specification
of concurrency and therefore dramatically simplifies multicore scalability.

1 Introduction

Reactive Systems, often found in domains, such as robotics, industrial control, smart grid, animation, and
video games, must meet strict timing requirements. Traditionally, reactive systems are long running systems
that must respond to the external stimuli at speeds determined by its environment [1]. The Reactive Mani-
festo [2] describes four essential traits of reactive systems: event-driven (i.e., push messages to consumers),
scalability (i.e., accommodate growing load while maximizing resource usage), resilience (i.e., isolate faults),
and responsiveness (i.e., high degree of predictability). Event-driven design is a prerequisite for the other
three traits because it enables loose coupling and asynchrony, which in turn helps to isolate faults when
they occur. Asynchronous events unify scaling up (e.g., via multiple cores) and scaling out (e.g., via multiple
machines) as a deployment-time configuration decision without hiding the network from the programming
model. Finally, asynchrony implies non-blocking behavior, which is critical for responsiveness.

Towards that end the Data Distribution Service (DDS) standard [3] provides a powerful data-centric
publish-subscribe technology to implement reactive systems because it promotes loose coupling between
distributed system components. DDS is event-driven and asynchronous — capabilities that are desired of
reactive systems. The data publishers and subscribers are decoupled with respect to (1) time (i.e., they
need not be present at the same time), (2) space (i.e., they may be located anywhere), (3) flow (i.e., data
publishers must offer equivalent or better quality-of-service (QoS) than required by data subscribers), (4)
behavior (i.e., business logic independent), (5) platforms, and (6) programming languages.

DDS is a data-centric middleware that understands the schema/structure of “data-in-motion.” The
schemas are explicit and support keyed data types much like a primary key in a database. Data/state
is maintained by the middleware in a global data-space and is distributed to the interested consumers (i.e.,
subscribers) when the values change. Keyed data types partition the global data-space into logical streams
(i.e., instances) of data that have an observable lifecycle. For example, if all the flights in the US commer-
cial airspace are modeled using DDS, a flight number “DIL-1234” may serve as a unique identifier (key) for
updates regarding a specific flight.



DDS inherently supports distribution scalability (i.e., scale-out). However, with the changing landscape
of modern hardware, reactive systems built using DDS must also support multicore scalability (é.e., scale-up).
The DDS specification does not provide any guidance on how to achieve multicore scalability. As a result,
multicore scalability depends on the application’s concurrency architecture (e.g., explicit multi-threading,
task-based, actors). Some architectures, such as Actors [4], that support both aspects of scalability may not
be always suitable due to the lack of configurable QoS support, content-aware distribution, standards for
portability and interoperability, and tool support all of which are provided by DDS. Despite these advan-
tages, developing highly multicore-scalable applications using DDS remains a challenge due to the lack of a
concurrency-friendly programming model. Overcoming this challenge is the goal of this industrial research
presented in this paper.

To that end we have investigated the use of Functional Reactive Programming (FRP) for DDS applica-
tions. FRP has emerged [5] as a promising new way to create scalable reactive applications and has already
shown its potential in a number of domains including robotics [6,7], animation [8], HD video streaming [9],
and responsive user interfaces [10]. These domains are reactive because they require interaction with a wide
range of inputs ranging from keyboards to machinery. FRP is a declarative approach to system development
wherein program specification amounts to “what” as opposed “how”. Such a program description can be
viewed as a data-flow [11] system where the state and control flow are hidden from the programmers. FRP
offers high-level abstractions that avoid the verbosity that is commonly observed in callback-based tech-
niques. Furthermore, FRP avoids shared mutable state at the application-level, which is instrumental for
multicore scalability.

Accordingly, this paper presents our experience in integrating and evaluating Microsoft .NET Reactive
Extensions (Rx) [12] with DDS. Rx is perhaps the most widely used FRP library available in most main-
stream languages including C+#, Java, JavaScript, C++, Ruby, Python, and others. Using Rx, programmers
represent asynchronous data streams with Observables, query asynchronous data streams using a library of
composable functional Operators, and parameterize the concurrency in the asynchronous data streams us-
ing Schedulers. Rx and DDS are quite complementary because Rx is based on the Subject-Observer pattern,
which is analogous to the publish/subscribe pattern of DDS. Furthermore, the core tenet of Rx composition
of operations over walues that change over time complements DDS instances, which are data objects that
change over time. Consequently, combining Rx with DDS enables a holistic end-to-end dataflow architecture
for both data distribution (which is performed by DDS) and processing (which is done by Rx). The resulting
applications admit concurrency declaratively and DDS (i.e., distribution) can be introduced elegantly where
pure data projections are found in the data-flow.

This paper makes the following contributions.

1. To test our hypothesis regarding multicore scalability and ease of programming using FRP (i.e., Rx with
DDS), we describe in Section 3 the challenges we faced in our earlier effort at using a plain, DDS-based
imperative programming solution using C++11 for the 2013 Distributed Event-Based Systems (DEBS)
Grand Challenge [13]. The challenge problem involves real-time complex analytics over high-velocity
sensor data captured during a soccer game.

2. To overcome these limitations using FRP, in Section 4.1 we present the design of a new library
(RxDDS.NET) built in C# that adapts DDS data streams to Rx Observables. The library enables
composition of functional operators on data instances received over DDS, which lends itself easily to
reactive stream processing.

3. In Section 4.2, we present our solution to the DEBS 2013 Grand Challenge Problem using our
RxDDS.NET FRP solution. Our implementation adheres to the core tenets of functional programming
and avoids application-level shared mutable state in most cases.

4. In Section 4.3, we compare our FRP-based solution with the imperative (C++11) solution to the same
Grand Challenge problem and describe our experiences. We present the insights we obtained on the
architectural differences and the lessons learned with respect to “fitness for a purpose”, code size, state
management, concurrency model, and finally, abstractions for stream processing.

The rest of the paper is organized as follows: Section 2 provides background information and compares
our proposed solution to prior efforts; Section 3 highlights the limitations in our imperative programming
solution to achieve scalability for multicores using the DEBS 2013 challenge problem as a real-world use case;
Section 4 describes our FRP solution that integrates Rx and DDS, and reports on our experience building



a FRP-based solution to solve the DEBS 2013 challenge problem; and finally Section 5 provides concluding
remarks and lessons learned.

2 Background and Related Work

This section first provides a brief overview of the DDS standard alluding to the details relevant to this paper.
Next, we discuss related research comparing these solutions to our approach.

2.1 OMG DDS Data-Centric Pub/Sub Middleware

The OMG Data Distribution Service (DDS) describes a data-centric publish/subscribe standard with support
for a number of QoS properties. Using DDS applications can share a global data space (or domain) governed
by data schema specified using the XTypes [14] standard. Each topic data schema is described as a structured
data type in Interface Definition Language (IDL). The data type can be keyed on one or more fields. Each
key identifies an instance (similar to a primary key in a database table) and DDS provides mechanisms to
control the lifecycle of instances. Instance lifecycle supports CRUD (create, read, update, delete) operations.
Complex delivery models can be associated with data-flows by simply configuring the topic QoS.

DataWriter and DataReader DataWriters(data producers) and DataReaders(data consumers) are end-
points used in DDS applications to write and read typed data messages (DDS samples) from the global data
space, respectively. DDS ensures that the endpoints are compatible with respect to the topic name, data
type, and the QoS policies. Creating a DataReader with a known topic and data type implicitly crates a
subscription, which may or may not match with a DataWriter depending upon the QoS.

Data Caching A data sample received by a DataReader is stored in a local cache managed by the mid-
dleware. The application accesses this data using one of two functions: read () or take(); read() leaves the
data in middleware cache until it is removed by either calling take() or it is overwritten by the subsequent
data samples. The Resource Limits QoS prevents the middleware caches from growing out of bounds. The
feature called query conditions provides a powerful mechanism to write SQL-like expressions on the data
type members and retrieve data samples that satisfy the defined predicates.

DDS Quality-of-Service DDS supports multiple QoS policies. Most QoS policies have request/offered
semantics (request by a DataReader and offered by a DataWriter) and can configure the data-flow between
each pair of DataReader and DataWriter. We used the following QoS policies in our solution.

— Reliability QoS: controls the reliability of the data-flow between DataWriters and DataReaders.
BEST_EFFORT and RELIABLE are two possible alternatives. BEST_EFFORT configuration does not use any
cpu/memory resources to ensure delivery of samples. RELIABLE, on the other hand, uses an ack/nack
based protocol to provide a spectrum of reliability guarantees from strict (i.e., fully reliable) to best
effort. The reliability can be tuned using the History QoS policy.

— History QoS: This QoS policy specifies how much data must be stored in DDS middleware caches by
a DataWriter or DataReader. It controls whether DDS should deliver only the most recent value (i.e.,
history depth=1), attempt to deliver all intermediate values (i.e., history depth=unlimited), or anything
in between.

— Time-based Filter QoS: High rate data-flows can be throttled using the Time-based Filter QoS
policy. A minimum separation configuration parameter used by this QoS specifies the minimum period
between two successive arrivals of data samples. When configured, the DataReader receives only a subset
of data.

— Resource Limits QoS: This QoS policy controls the memory used to cache samples. The maximum
number of samples, maximum number of samples-per-instance and maximum number of instances can
be specified.



2.2 Related Work

Reactive Programming and in particular the functional reactive programming (FRP) have been used to solve
a number of challenges in distributed and networked systems. Here we provide a sampling of related efforts
focussing on event-based systems.

A research roadmap towards applying reactive programming in distributed event-based systems has been
presented in [15]. In this work the authors highlight the key research challenges in designing distributed
reactive programming systems to deal with “data-in-motion”. Our work on RxDDS.NET addresses the key
open questions raised in this prior work. In our case we are integrating FRP with DDS that enables us to
build a loosely coupled, highly scalable and distributed publish/subscribe system, which can process complex
events stemming from the high velocity data streams at every processing element in the distributed system
using FRP.

Nettle is a domain-specific language developed in Haskell to solve the low-level, complex and error-prone
problems of network control [16]. Nettle uses FRP including both the discrete and continuous abstractions
and has been applied in the context of OpenFlow software defined networking switches. OpenFlow is a
centralized but programmable switch which enables the separation of the network control plane from the
data plane. Thus, the centralized switch must react to events and take control actions. Although the use
case of Nettle is quite different from our work in RxDDS.NET, both approaches aim to demonstrate the
integration of FRP with an existing technology: in our case it is FRP with DDS while with Nettle it is FRP
with OpenFlow.

The ASEBA project demonstrates the use of reactive programming in the event-based control of complex
robots [17]. The key reason for using reactive programming was the need for fast reactivity to events that
rise at the level of physical devices. The problem addressed by ASEBA is diametrically opposite to that
addressed by Nettle [16]. In Nettle, the FRP logic was maintained in the centralized controller provided by
the OpenFlow switch. In contrast, the authors of the ASEBA work argue that a centralized controller for
robots adds substantial delay and presents a scalability issue. Therefore, there was a need to handle these
events as close as possible to the physical devices themselves. Consequently, reactive programming was used
at the level of sensors and actuators, which are as close to the physical objects as possible.

Our work on RxDDS.NET is orthogonal to the issues of where to place the reactive programming logic.
In our case such a logic is placed with every processing element, such as the subscriber (i.e., DataReader)
that receives the topic data. Thus, if such a subscriber was placed at a robot actuator, then RxDDS.NET
can provide similar capabilities as ASEBA. On the other hand, if our subscriber was an OpenFlow switch,
then we can provide similar capabilities as Nettle.

Prior work on Eventlets [18] comes close to our work on RxDDS.NET. Eventlets provides a container
abstraction to encapsulate the complex event processing logic inside a component so that a component-based
service oriented architecture can be realized. Application lifecycle can be managed in much the same way
as in any component-based abstraction. The key difference between Eventlets and RxDDS.NET is that the
former applies to service oriented architectures and component-based systems, while our work is used in the
context of publish/subscribe systems. Although this distinction is evident, there are ongoing efforts to merge
component abstractions with pub/sub systems. Thus, we believe that in future we may be able to leverage
the desired properties of component abstractions in our work.

An ongoing project called Escalier [19] has very similar goals as our work. The key difference is the
language binding: Escalier provides a Scala language binding for DDS while we are leveraging the Rx exten-
sions provided in .NET framework and hence our work can potentially use all the languages supported by
the .NET Rx platform. The future goals of the Escalier project are to provide a complete FRP framework,
however, we have not yet found sufficient published literature on the subject nor are we able to determine
from the github site whether this project is actively maintained or not.

3 Experiences Developing an Imperative Solution

To test our hypothesis regarding the limitations of imperative programming-based DDS solutions to support
multicore scalability, this section describes a DDS-based imperative programming solution that uses C++11
to solve the DEBS 2013 grand challenge problem. To that end, we first briefly describe the DEBS 2013 Grand
Challenge Problem. Subsequently we describe the imperative solution and highlight the challenges we faced.



3.1 DEBS 2013 Grand Challenge Problem

The ACM International Conference on Distributed Event-based Systems (DEBS) 2013 Grand Challenge
problem comprises real-life data and queries in event-based systems. The goal of the DEBS 2013 Grand
Challenge is to implement an event-based system for real-time, complex event processing of high velocity
sensor data collected from a soccer game [13]. The real-time analytics for the DEBS Grand Challenge
comprises continuous statistics gained by processing raw sensor data such as running analysis, ball possession,
heat map, and shots on the goal. Contemporary approaches to gathering data for soccer matches utilizes
a complex system of multiple cameras to record every part of a soccer field and computers to process the
feed from the cameras. The DEBS Grand Challenge adopts a different approach by using inertial sensors to
collect all data.

The sensor data is collected by a real-time localization system from an actual soccer game. The data
is recorded in a file and provided to the DEBS Grand Challenge teams. The sensors are located near each
player’s shoe, in the ball, and attached to each goal keeper’s hands. The sensors attached to players generate
data at 200Hz while the ball sensor outputs data at 2,000Hz. Each data sample contains the sensor ID,
a timestamp in picoseconds, and three-dimensional coordinates of location, velocity, and acceleration. The
challenge problem consists of four distinct queries for which innovative solutions are sought.

The goal of query 1 is to calculate the running statistics of each player. Two sets of results — current
running statistics and aggregate running statistics must be returned. Current running statistics should return
the distance, speed and running intensity of a player over the observed interval, where running intensity is
classified into six states (stop, trot, low, medium, high and sprint) based on the current speed. Aggregate
running statistics for each player are calculated from the current running statistics and must be reported for
four different time windows: 1 minute, 5 minutes, 20 minutes and entire game duration.

The aim of query 2 is to calculate the ball possession time for each player and for each team. We calculate
the total time of the ball possession and the number of hits for each players. For team ball possession, the
total time of the ball possession and percentage of ball possession for the specified team are generated. Like
query 1, the team ball possession statistics must be provided for four different time windows. Finally, the
statistics for these queries need to be updated at 50Hz.

Query 3 provides heat map statistics capturing how long each player stays in various regions of the field.
The soccer field is divided into defined grids with = rows and y columns (8x13, 16x25, 32x50, 64x100) and
results should be generated for each grid size. Moreover, distinct calculations need to be provided for different
time windows like query 1 and query 2. As a result, query 3 must output 16 result streams, a combination
of 4 different grid sizes and 4 time windows, in total. Each stream includes the percentage of time that a
player spends in each user-defined cell boundary.

Query 4 provides statistics for shots on goal, which is defined as a player attempting to score a goal. It
needs to keep track of shots scored or saved by the goalkeeper or other players. The result stream of the
query includes the player ID and the ball sensor data.

3.2 An Imperative Solution in C++411

Our implementation of the four queries uses a DDS-based solution in C++11. The key architectural pieces of
our solution, illustrated in Figure 1, comprise processing blocks and a high-level data-flow. Each processing
block consists of one or more DDS DataWriters and DataReaders to publish or subscribe to data, respectively,
where the data-flow in the network is logically partitioned by topics. Using DDS, application developers do
not need to consider the network connections of each data-flow between DataWriters and DataReaders
because it is handled by the underlying middleware. The architectural setup is geared towards solving all
four queries of the DEBS 2013 challenge problem.

We defined data structures in IDL for each data-flow as well as its point-to-point segments. Key attributes,
such as sensor_id and player_id, define unique DDS instances to group the updates for the same physical
entity (e.g., a sensor). Through the grouping mechanisms enabled by defining a key in DDS, a processor can
easily distinguish between multiple players. The keys also help in partitioning the data-flow(s) across multiple
processors to exploit inherent parallelism in the per-player data streams. Each DataReader in the processing
blocks has a (in-memory) cache managed by the middleware to store and access the samples when needed.
For instance, we utilized the cache data to implement the historical statistics required in some queries, such
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Fig. 1. High Level Data Flow Architecture

as aggregated data for the specified number of minutes. Cached data was also used for calculating distances
between the ball and players to find the closest player to the ball for query 2 at a certain time.

The SensorDataGenerator processing block publishes sensor data in a real-time manner. The published
data is sent to multiple processing blocks to be processed in parallel. In the case of query 1, a processor
named AverageProcessor merges the data of two sensors attached to a player by averaging the sensor values.
In the processing block, the ball data is filtered out because only the player’s information is needed for
query 1. We utilized Time-based Filter QoS to efficiently manage constrained resources and satisfy the
required update interval of 50Hz. The next processing block for query 1 is CurrentRunningAnalyzer in which
a player’s running state, speed and distance are calculated, and the results are published to clients and the
AggregateRunningAnalyzer. Finally, in the Aggregate RunningAnalyzer, the accumulated values of distance
and speed categorized by a player’s running states are streamed as a result, which is divided into multiple
streams for the specified time windows.

When a new sample arrives at the DataReader of a processor, a callback function, on_data_available()
provided by the DataReader’s listener interface is invoked. Since the processor of the query computes the
required statistics when a new sample arrives, we implement our business logic in the callback function.

The statistics needed for query 2 are ball possession of players and teams. To acquire these statistics,
we created two processing blocks: PlayerBallPossessionProcessor and TeamBallPossessionProcessor. In the
PlayerBallPossessionProcessor, the sensor data of players and balls are subscribed from SensorDataGenera-
tor to find ball possession by computing the distance between players and the ball, and the ball’s acceleration.

Query 3 is perhaps the most straightforward query in its logic. However, the amount of data required
to be kept in the system to accurately calculate the results grows quickly and hence needs to be handled
properly. To do this, we have a receiving node, called AccumulatingHeatMapProcesser (Accumulator), that
processes player positions from the AverageProcessor at 50Hz. This Accumulator reads in the location data
for each player and builds a logical data structure of 6,401 integers: the total number of samples that were
recorded for that second, and then values for each of the 64x100 row/column cell value.

Query 4’s goal is to detect events of a player shooting in the direction of the goal. Shots on goal occur
when a player hits the ball (i.e., his foot is close to the ball and the ball’s acceleration is greater than
55 m/s%) and the projection of the ball’s movement would lead it within one of the two goal areas. Since
detection of hit events is already carried out to compute query 2, ShotsOnGoalProcessor subscribes to a
data-stream published by by PlayerBallPossessionProcessor. Similarly, the filtered data-stream reporting
data about the ball currently used in the game is used instead of raw sensor data.



3.3 Challenges Faced

An advantage DDS provided us in building our imperative solution was the way in which we could focus
on developing the algorithms to address each query while relying on the network middleware to provide us
out-of-box solutions needed for reliable and real-time data distribution to scale out by employing multiple
machines. However, we faced some challenges while solving this problem.

— Lack of a capability to automatically manage states of events — When an event processing block
deals with input events to generate output events, some input events might be relevant and dependent on
each other. Hence, some input events should wait until relevant events arrive at the processing block to
produce output events. In the imperative approach, we manually implemented the logic to synchronize
relevant events (e.g., events for sensor data attached to a player). Additionally, we needed to manually
manage a previous state of an event for each player to calculate distance moved between previous and
current timestamps.

— Lack of a scalable concurrency model to scale up event processing employing multicore —
Since DDS usually utilizes a dedicated single thread for a DataReader to receive an input event, there
is a need to manually create threads or a thread pool to exploit multicores when processing streams
concurrently. In the imperative solution, to utilize multicores, multiple processes are spawned and data
streams are partitioned to multiple streams by keys, where each stream is injected and processed by each
process. This approach is acceptable when scaling out to multiple machines over a network, but can be
inefficient if multicore machines need to be fully utilized for an event processing block.

— Lack of a reusable library to compute events based on different sliding time-windows — A
system for complex event processing typically requires handling events based on different sliding time-
windows (i.e., last 1 hour or 1 week). If a reusable library that takes care of this pattern is provided,
it helps to reduce development time to build such a system. Currently, we had to reinvent the solution
every time it was needed. In the imperative approach, we made use of data cache allocated by the
underlying middleware to compute average values of events changing by sliding time window. This data
cache maintains a fixed number of history of events (controlled by Resource Limits QoS) and replaces
an old event with a new event when it arrives. This replacement event was used by a DDS application to
calculate average values by a changing range of a time window. This approach assumes that events arrive
at the expected frequency (controlled by Time-based Filter QoS), and depending on the frequency, the
size of data cache should be determined manually.

— Lack of flexibility in component boundaries — In complex event systems, a mechanism to publish
or subscribe events is required to partition, merge, and reuse events by event processing blocks. As DDS
supports this mechanism through DataWriters and DataReaders, we naturally used these DDS entities for
incoming and outgoing events between event processing blocks. However, this approach incurs overhead
by sending (serializing) and receiving (de-serializing) DDS samples even if event processing blocks are
deployed in the same machine to process intermediate results.

We believe that the challenges we have outlined above are likely to be faced in similar situations that
require real-time stream processing. We believe this is where we may derive substantial benefit from using
FRP in conjunction with technologies, such as DDS pub/sub. Section 4 describes how functional reactive
programming can help address these challenges. Specifically, Section 4.3 provides a qualitative comparison
between the FRP approach and imperative approach alluding to these challenges. In the interest of brevity
we focus on query 1 and 2 in this paper.

4 Experiences Developing a FRP-based Solution

In this section, we will first describe our FRP solution that integrates Rx with DDS and provides it as a
reusable library called RxDDS.NET. Next we describe how we used the RxDDS.NET FRP library to imple-
ment DEBS 2013 Grand Challenge Problem and describe our experience through qualitative and quantitative
comparisons with our imperative solution.



4.1 Design of the RxDDS.NET Library

This section describes the design of our FRP solution that integrates .NET Reactive Extensions (Rx) frame-
work with DDS. This solution is made available as a reusable library called RxDDS.NET. We describe our
design by illustrating the points of synergy between the two.

In Rx, asynchronous data streams are represented using Observables. For example, an I0bservable<T>
produces values of type T. Observers subscribe to data streams much like the Subject-Observer pattern.
Each Observer is notified whenever a stream has a new data using the observer’s OnNext method. If the
stream completes or has an error, the OnCompleted, and OnError operations are called, respectively.
IObservable<T> supports chaining of functional operators to create pipelines of processing stages. Some
common examples of operators in Rx are Select, Where, SelectMany, Aggregate, Zip, etc. Since Rx
has first-class support for streams, Observables can be passed and returned to/from functions. Addition-
ally, Rx supports streams of streams where every object produced by an Observable is another Observable
(e.g., I0bservable< IObservable<T> >). Some Rx operators, such GroupBy, demultiplex a single stream
of T into a stream of keyed streams producing I0bservable< IGroupedObservable<Key, T> >. The keyed
streams (IGroupedObservable<Key, T>) correspond directly with DDS instances as described next.

In DDS, a topic is a logical data stream in the global data-space. DataReaders receive notifications when
an update is available on a topic. Therefore, a topic of type T maps naturally to Rx’s I0bservable<T>. DDS
supports a key field in a data type that represents a unique identifier for data streams defined in a topic. A
data stream identified by a key is called instance. If a DataReader uses a keyed data type, DDS distinguishes
each key in the data as a separate instance. An instance can be thought of as a continuously changing row in
a database table. DDS provides APIs to detect instance lifecycle events including Create, Read, Update, and
Delete (CRUD). Since each instance is a logical stream itself, a keyed topic can also be viewed as a stream
of keyed streams and therefore maps naturally to Rx’s IObservable< IGroupedObservable<Key, T> >.

Thus, when our RxDDS.NET library detects a mnew key, it reacts by producing a new
IGroupedObservable<Key, T> with the same key. Subsequently, Rx operations can be composed on the
newly created IGroupedObservable<Key, T> for instance-specific processing. As a result, pipelining and
data partitioning can be implemented very elegantly using our integrated solution.

Table 1. Mapping DDS concepts to Rx concepts

DDS Concept [[Corresponding Rx Concept and the RxDDS.NET API

Topic of type T Create a new IObservablejT; using DDSObservable.fromTopiciT;(..)

Topic of type T with key-type=Key Create a new IObservablej IGroupedObservablejKey, Ty ¢
using DDSObservable.fromKeyedTopiciKey, T;(..)

Detect a new instance Notify Observers about a new IGroupedObservablejKey, T; with key==instance.
Invoke Observer.OnNext()

Dispose an instance Notify Observers through Observer.OnCompleted()

Read an instance update Notify Observers about a new value of T using Observer.OnNext()

Hard error on a DataReader Notify Observers through Observer.OnError()

Communication Statuses Separate Observables for each communication status.

(e.g., deadline missed, sample lost etc.) [|For example, IObservablejDDS::SampleLostStatus; .
Notify Observers through Observer.OnNext().
Currently not implemented.

Discovery Events Separate keyed Observables for each built-in topic.

(i.e., built-in topics) For example, IObservablejDDS::SubscriptionBuiltinTopicData,,.
Notify Observers through Observer.OnNext().

Currently not implemented

Table 1 summarizes how various DDS concepts map naturally to a small number of Rx concepts. DDS
provides various events to keep track of communication status, such as deadlines missed and samples lost
between DataReaders and DataWriters. For discovery of DDS entities, the DDS middleware uses special
types of DDS entities to exchange discovery events with remote peers using predefined built-in topics. As
introduced in the table, discovery events using built-in topics and communication status events can be
received and processed by RxDDS.NET API, but they are currently not implemented in our library and
forms part of our ongoing improvements to the library.



4.2 DEBS 2013 Grand Challenge Solution using RxDDS.NET

Integration of Rx with DDS enables us to operate on “streams of data” that are made available to the
subscriber by DDS. The transformation of a data stream from DDS into an Rx Observable provides a
seamless continuation of the “data-in-motion” view. We are now able to compose and perform operations
on streams of data as opposed to operating on each data sample individually as it is made available in
the on_data_available callback. In DDS, when a new data sample arrives, DDS informs the subscriber by
calling its on_data_available callback method.

This view of performing operations on a stream of data offers a very powerful abstraction where we can
leverage existing stream operators to perform complex stream processing without the overhead of manually
maintaining state. Rx allows us to manage concurrency in application logic in a declarative manner without
explicitly creating threads, using monitor locks or wait handles. The resulting code is much cleaner and
centered on “what” as opposed to “how”.

We re-implemented the 2013 DEBS grand challenge queries by using the functional reactive style of
programming provided by our RxDDS.NET library. In the following section we show snippets of our code
as part of evaluating the qualities of the FRP solution.

4.3 Evaluating the FRP Solution

We now evaluate our FRP solution along the dimensions of challenges expounded in Section 3.3 and compare
it qualitatively with our imperative solution. Our ongoing work is focusing on quantitative evaluations.
Table 2 summarizes the key distinctions between the imperative and FRP solutions along each dimension of
the challenges.

Table 2. Comparison of Imperative and Functional Reactive Solutions

Imperative Functional Reactive

State Management Manual state management State-management can be delegated to stream op-
erators

Concurrency Explicit management of low level concurrency Declarative management of concurrency

Management

Sliding Time-window [Manual implementation of time window abstrac-|Built-in support for both discrete and time-based

Computation tion window

Component Inflexible and hard component boundaries Flexible and more agile component boundaries

Boundaries

Automatic State Management We can take advantage of built-in stream operators to delegate the
required implementation and state-management to Rx. Since the common state information no longer needs
to be maintained by the application logic, the code is succinct and can be easily parallelized.

For example, to calculate average sensor data for a player from the attached sensor readings, we had to
cache sensor data for each sensor_id as it arrived in a map of sensor_id to sensor data. If the current data
is for sensor_id 13, then the corresponding player name is extracted and a list of other sensors also attached
to this player is retrieved. Now using the retrieved sensor_ids as keys, the sensor data is retrieved from the
map and used to compute the average player data.

In the functional reactive style, there is no need to store the sensor values. We can obtain the latest
sample for each sensor attached to the player with the CombineLatest function and then calculate the
average sensor values. CombineLatest stream operator can be used to synchronize multiple streams into
one by combining a new value observed on a stream with the latest values on other streams. The Marble
diagram for CombineLatest is shown in Figure 2. Marble diagrams are a way to express and visualize how
the operators in Rx work. For details on Marble diagrams, the reader is encouraged to reference http:
//rxwiki.wikidot.com/marble-diagrams.
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Listing 1.1. CombineLatest operator example code

List<IObservable<SensorData>> sensorStreamList =
new List<IObservable<SensorData>>();
Observable
.CombineLatest (sensorStreamList)
.Select (1st => returnPlayerData(lst));

In listing 1.1, sensorStreamList is a list that contains references to each sensor stream associated with
sensors attached to a player. For example for player Nick Gertje with attached semsor_ids 13,14,97,98;
sensorStreamList for Nick Gertje holds references to sensor streams for sensors 13,14,97 and 98. Doing a
CombineLatest on sensorStreamlList returns a list (Ist in Listing 1.1) of latest sensor data for each sensor
attached to this player. returnPlayerData function is then used to obtain the average sensor values.

Note that CombineLatest will not produce any output if one of the streams does not produce any data;
so if one of the sensor’s data does not appear for a long time, this operator will not produce any output
for that player’s average sensor data stream. To avoid that, we pass a dummy value on each sensor stream
with Once operator. Once operator was implemented such that it will send a dummy variable as the very
first data sample on a stream (when the stream is subscribed to) in order to unblock CombineLatest’s
operation. CombineLatest will use the dummy variable as the latest data on this stream until actual stream
data appears.

Listing 1.2. Once operator example code

foreach (var val in sensorList)

{

sensorStreamList

.Add(src
.Where(ss => ss.sensor_id = val)
.Once(new SensorData

{
1))

// dummy fields

The use of Once is illustrated in listing 1.2. Here for each sensor_id attached to a player stored in
sensorList, we add a reference to the stream associated with this sensor_id to sensorStreamList (as used in
listing 1.1). For each sensor stream the once operator emits a dummy value, so that averaged sensor data
for this player can be obtained even if one of his sensor’s data doesn’t show up until later in the game.

As another example of automatic state management, in query 1 the current running statistics need to be
computed from average sensor data for each player (PlayerData). The distance traveled and average speed of
a player (observed in the interval between the arrivals of two consecutive PlayerData samples) is calculated.
Since our computation depends on the previous and current data samples, we can make use of the built-in
Scan function and avoid maintaining previous state information manually. Scan is a runtime accumulator
that will return the result of the accumulator function (optionally taking in a seed value) for each new value
of source sequence. Figure 3 shows the marble diagram of the Scan operator. In the imperative approach,
we employed the middleware cache to maintain previous state.

While conventional stream processing applications can delegate state maintenance to stream operators,
as the requirement becomes more involved there will be a need to maintain state information explicitly, e.g.,
in query 2 where ball possession data for a player is published when ball possession state changes.

Since ball possession state can change on a new event information, e.g., ball hit by the same player, ball
hit by a different player, ball out of field or game ended; we cannot look at a single stream of player data
in an independent and isolated manner. This case degenerates into the developer having to write the logic
to react when new event information is produced, much like the imperative approach where we process data
when a new sample arrives. In this case we have to manually maintain state information for each player,
e.g., timestamp of last hit, previous possession time and previous number of hits in order to publish updated
player ball possession data on change in ball possession state.
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Fig. 2. Marble Diagram of CombineLatest Operator

Finally, in event processing we always have some or the other dependency between multiple events that
we must address during computation. In the imperative approach we need to design and update supporting
data-structures for capturing those dependencies — may it be waiting until a new data sample arrives on
each stream before doing the required computation, using the latest data sample as it arrives, replaying
previous values, etc. Maintaining concurrent access to these supporting data-structures becomes even more
complicated if multiple threads can access the shared state. Rx captures these event dependencies in its
built-in operators that we can readily use for our requirement. The resulting code is cleaner and is focused
on implementation’s functional aspect.

Concurrency model to scale up multi-core event processing Rx provides abstractions that make
concurrency management declarative, thereby removing the need to make explicit calls to Thread, Thread
Pool or Tasks. Rx has a free threading model such that developers can choose to subscribe to a stream,
receive notifications and process data on different threads of control with a simple call to subscribeOn or
ObserveOn respectively.

Rx concurrency “contract” is that all stages of a pipeline are replicated each time Subscribe is called.
This effectively precludes management of shared state information. To prevent synchronization overhead
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Fig. 3. Marble Diagram of Scan Operator

at each stage, onNext,onCompleted and onError are never called concurrently for a pipeline. However for
different pipelines onNext,onCompleted and onError can be called concurrently. Some inbuilt Rx operators
like Zip and CombineLatest that operate on multiple streams, are inherently concurrent and must uphold
the “contract” for the downstream pipeline.

RxDDS.Net functions: fromTopic and fromKeyedTopic create an Observable and GroupedObservable
respectively from a DDS topic. The functions, fromTopic/fromKeyedTopic are single threaded and use DDS
“receive” thread. Hence ObserveOn must be called right after creating an Observable/GroupedObservable
with fromTopic/fromKeyedTopic, to prevent holding-up the receive thread and to separate application level
threads from middleware threads. When correlating two different topics, SubscribeOn (ThreadPool) should
be called right after fromTopic/fromKeyedTopic. Unless subscribeOn(ThreadPool) is used, initialization
of the subscription takes place in the receive thread and a delayed subscription, may cause the recieve thread
to die.

In query 1, the current running statistics and aggregate running statistics are being computed for each
player independently of the other players. Thus, we can use a pool of threads to perform the necessary
computation on a per-player stream basis.

As shown in listing 1.3, the stream of average player data (playerDataStream) can be de-multiplexed into
multiple streams for each player with the GroupBy operator. Now the per-player stream computation can be
off-loaded on a specified scheduler with ObserveOn. Implementing the same logic in the imperative approach
incurred greater complexity and the code was more verbose with explicit calls for creating and managing
the thread-pool.

Listing 1.3. Concurrent event processing with multi-threading

playerDataStream
.GroupBy (data => data.player_name)
.ObserveOn (Scheduler. Default)

Library for computations based on different time-windows One of the recurrent patterns in stream
processing is to calculate statistics over a moving time window. All four queries in the 2013 DEBS grand
challenge require this support for publishing aggregate statistics collected over different time windows. In the
imperative approach we had to reimplement the necessary functionality and manually maintain pertinent
previous state information to this end.

DDS does not support a time-based cache which can cache samples observed over a time-window. The
“window” abstraction which is most commonly needed by stream processing applications is provided by Rx
which supports both discrete (i.e., based on number of samples) and time-based (i.e., wall-clock) windows.
Aggregate and Scan functions perform stream accumulation wherein Aggregate produces a single result



upon stream completion and scan produces runtime accumulation results on applying the accumulator func-
tion to each new data sample over the specified time-window.Figure 4 depicts aggregation performed over a
moving time window.

We implemented a time-window aggregator operator that will aggregate values observed within a specified
time-interval based on time-stamped data. The time-window aggregator uses the time-stamp value in each
data sample to keep track of elapsed time rather than relying on wall-clock. This gives a more accurate
representation of elapsed time with respect to played-back sensor data.

Current Running Analysis
Nick Gertje

Aggregate Running Analysis
Nick Gertje

Fig. 4. Marble Diagram of Time-window Aggregator

Points of distribution (component boundaries) The integration of Rx with DDS allows the contin-
uation of the concept of “stream of data.” This concept provides incredible flexibility to the developer in
demarcating their component boundaries or points of data distribution.

The imperative solution does not possess a higher-level structure beyond what DDS offers. Hence more
often than not, developers tend to publish intermediate results over a DDS topic to be consumed by another
subscriber. If scale-out or placement of these components on different machines is required, then this design
is desirable, otherwise publishing intermediate results over a DDS topic isolates the components and imposes
a “hard” component boundary. The resulting structure is very rigid and hard to co-locate. Each query
processor in our imperative solution is a component. Moving the functionality of one into another is intrusive
and cannot be easily accomplished.

In RxDDS, a stream of intermediate results can either be distributed over a DDS topic for remote
processing or can be used for local processing by chaining stream operators. The details of whether the
“downstream” processing happens locally or remotely can be abstracted away using the Factory pattern. As
a consequence, component boundaries become more agile and the decision of data distribution need not be
taken at design time but can be deferred until deployment.

In our implementation, developers may choose to distribute data over DDS by simply passing a DDS
DataWriter to the Subscribe method as shown in Table 3. Alternatively, for local processing, a Subject<T>
could be used in the place of DDS DataWriter. The choice of a Subject vs. a DataWriter is configurable at
deployment-time.

5 Conclusions

Reactive programming is increasingly becoming important in the context of real-time stream processing
for big data analytics. Reactive programming supports four key traits: event-driven, scalable, resilient and
responsive. While reactive programming is able to support these properties, most of the generated data
must be disseminated from a large variety of sources (i.e., publishers) to numerous interested entities, called
subscribers while maintaining anonymity between them. These properties are provided by pub/sub solutions,



Table 3. Flexible Remote(DataWriter/DataReader) or Local(Subject/Observer) Processing

Publish Subscribe (on a remote machine)
intermediateStream DDSObservable
Remote (DDS) .Subscribe(aDataWriter); fromTopic(...)
.SomeQueryOperator(...);
Subject Observer (same process)
Local (Subject<T>) intermediateStream aSubject
.Subscribe(aSubject); .SomeQueryOperator(...);

such as the OMG DDS, which is particularly suited towards real-time applications. Bringing these two
technologies together helps solve both the scale-out problem (i.e., by using DDS) and scale-up using available
multiple cores on a single machine (i.e., using reactive programming).

To that end, this paper presented our experiences from an industry-academia collaboration integrating

the Rx .NET reactive programming framework with OMG DDS, which resulted in the RxDDS.NET library.
To understand the advantages gained by this effort, we have used the DEBS 2013 grand challenge problem to
compare a solution that uses RxDDS with a plain, imperative solution we developed using DDS and C++11,
and made qualitative comparisons between these two efforts.

The following lessons were learned from our team effort and alludes to future work we plan to pursue in

this space.

— Integration of Rx with DDS allows seamless continuation of the notion of “streams of data” and provides

a holistic end-to-end architecture for both — data distribution by DDS and data processing by Rx.

Rx offers first-class support for streams, which can be passed to/returned from functions and operations
can be composed on them to form pipe-lines of data processing. Initially thinking in terms of operations
on “streams” of data may not be intuitive, but soon the thought-process adapts to that view.

FRP approach abstracts away state and control flow information from programmers such that the code
is focused more on the functional aspect. The resulting code is very concise, readable and easily main-
tainable. With FRP approach, query 1 was coded in 364 lines of codes (loc) and query 2 in 349 loc,
which is 27% and 57% less respectively from the imperative approach. In the imperative approach, query
1 took 500 loc and query 2 took 825 loc.

Rx enables parameterizing concurrency in a declarative manner and avoids application level shared
mutable state which makes multi-core scalability much easier.

Our future work includes building RxDDS.NET library to map all available DDS features with Rx, to
identify most commonly used stream processing constructs which can be distilled to be a part of this
reusable library and to construct better support for concurrency with use of DDS waitsets. We are also
performing quantitative comparison of our imperative solution with FRP solution wrt to throughput
and latency.

We believe Rx along with DDS provides a powerful infrastructure for resilient and responsive reactive
systems which can be easily scaled-up or scaled-out.
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