RTI Data Distribution Service C++ API

Version 4.5¢

Generated by Doxygen 1.5.5

Sun Oct 23 23:13:26 2011

Contents

RTI Data Distribution Service
1.1 Feedback and Support for this Release.

1.2 Available Documentation.

Module Index
2.1 Modules

Class Index

3.1 Class Hierarchy
Class Index

4.1 Class Listo o
Module Documentation

5.1 Clock Selection
5.2 Domain Module oo
5.3 DomainParticipantFactory oL
5.4 DomainParticipants Lo Lo
5.5 Built-in Topicso Lo
5.6 Topic Module
5.7 Topics . . o . oL
5.8 User Data Type Support
5.9 Type Code Support

5.10 Built-in Types

15
15

ii CONTENTS
5.11 Dynamic Data oo 75
5.12 Publication Moduleo L oo 80
5.13 Publishers 81
5.14 Data Writers oo 84
5.15 Flow Controllers 86
5.16 Subscription Module oL 93
5.17 Subscribers Lo 96
5.18 DataReaders 99
5.19 Read Conditions 105
5.20 Query Conditions 106
5.21 Data Samples 107
5.22 Sample States L 108
5.23 View States e 110
5.24 Instance States o 112
5.25 Infrastructure Module 115
5.26 Built-in Sequenceso oo 117
5.27 Multi-channel DataWriters 119
5.28 Pluggable Transports 121
5.29 Using Transport Plugins 127
5.30 Built-in Transport Plugins 133
5.31 Configuration Utilities 135
5.32 Unsupported Utilitieso . 139
5.33 Durability and Persistence o oL 140
5.34 Configuring QoS Profiles with XML 146
5.35 Publication Example o0, 149
5.36 Subscription Exampleo 0oL 150
5.37 Participant Use Cases 151
5.38 Topic Use Cases v v v v v v vt e e e e 154
5.39 FlowController Use Cases 156
5.40 Publisher Use Cases 160
5.41 DataWriter Use Cases v 161

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API

by Doxygen

CONTENTS iii

0.42
5.43
5.44
5.45
5.46
5.47
5.48
5.49
5.50
5.51
5.52
5.53
5.54
5.55
5.56
5.57
5.58
5.59
5.60
5.61
5.62
5.63
5.64
5.65
5.66
5.67
5.68
5.69
5.70
5.71
5.72

Subscriber Use Cases« ... oo 163
DataReader Use Cases 167
Entity Use Cases 171
Waitset Use Cases o oo 174
Transport Use Cases oo v v i v v i i i e 176
Filter Use Cases it ii i 181
Creating Custom Content Filters 186
Large Data Use Cases 190
Documentation Roadmap 192
Conventions 193
Using DDS:: Namespace 196
DDS API Reference oo 198
Queries and Filters Syntax 203
RTI Data Distribution Service API Reference 211
Programming How-To’s 212
Programming Tools L. 214
rtiddsgen . ..o oL oo 215
rtiddsping Lo 228
rtiddsspyo Lo 235
Class Id 242
Address 245
Attributeso 250
Shared Memory Transport 252
UDPv4 Transport 260
UDPv6 Transport o L 270
Participant Built-in Topics, 280
Topic Built-in Topics o o 282
Publication Built-in Topics 284
Subscription Built-in Topics 0L 286
String Built-in Type oo 288
KeyedString Built-in Type 289

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4+ API
by Doxygen

iv CONTENTS
5.73 Octets Built-in Type o 290
5.74 KeyedOctets Built-in Type 291
5.75 DDS-Specific Primitive Types 292
5.76 Time Support L 297
577 GUID Support o e 301
5.78 Sequence Number Support 304
5.79 Exception Codes oo 306
5.80 Return Codes o 308
5.81 Status Kinds oo 311
5.82 Thread Settings L 322
583 QoS Policies 325
5.84 USER.-DATA 338
5.85 TOPIC.DATA e 339
586 GROUP.DATA e 340
5.87 DURABILITY o e 341
5.88 PRESENTATION 343
5890 DEADLINE 345
590 LATENCY_BUDGET 346
591 OWNERSHIP o e 347
5.92 OWNERSHIP . STRENGTH 349
5.93 LIVELINESS 350
5.94 TIME_BASED_FILTER 352
5.95 PARTITION e 353
5.96 RELIABILITY e 354
5.97 DESTINATION_ORDER 356
5.98 HISTORY e 358
5.99 DURABILITY_SERVICE 361
5.100RESOURCE_LIMITS 362
5.101TRANSPORT_PRIORITY 364
5.102LIFESPAN e 365
5103WRITER_DATA LIFECYCLE 366

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API

by Doxygen

CONTENTS v

5.104READER_DATA_LIFECYCLE 367
5105ENTITY_FACTORY o oo oo 368
5.106Extended Qos Supporto 369
5.107Unicast Settings oo 370
5.108Multicast Settings 371
5.109Multicast Mapping 372
5.110TRANSPORT_SELECTION 373
5. 111TRANSPORT_UNICAST 374
5.112TRANSPORT_MULTICAST 375
5.113TRANSPORT_MULTICAST MAPPING 377
5.114DISCOVERY o . . 378
5.115NDDS_DISCOVERY_PEERS 379
5116TRANSPORT BUILTIN o .. 387
5117TWIRE_PROTOCOL oo o 391
5.118DATA_READER_RESOURCE_LIMITS 398
5.119DATA_WRITER_RESOURCE_LIMITS 400
5.120DATA_READER_PROTOCOL 404
5.121DATA_WRITER_ PROTOCOL 405
5.122SYSTEM_RESOURCE_LIMITS 406
5.123DOMAIN_PARTICIPANT RESOURCE_LIMITS 407
5124EVENT . . . 0o o 408
5125DATABASE o o e 409
5.126RECEIVER_POOL, 410
5127PUBLISH.MODE 411
5.128DISCOVERY_CONFIG 415
5.129TYPESUPPORTo oo 420
5.130ASYNCHRONOUS_PUBLISHER 421
5131EXCLUSIVE_AREA o 422
5.132BATCH oo e 423
5.133LOCATORFILTER, 424
5134MULTICHANNEL o o 425

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4+ API
by Doxygen

vi CONTENTS
5.135PROPERTY 426
5 136AVAILABILITYo oo 432
5.137Entity Supporto 433
5.138Conditions and WaitSets L L. 434
5139ENTITY NAME oo o e 435
5.140PROFILE 436
5.141WriteParams Lo o 437
5. 142LOGGING o oo 438
5.1430ctet Buffer Supporto 439
5.144Sequence SUpport oL o 443
5.145String Support 444

6 Class Documentation 451
6.1 DDS_AllocationSettings_t Struct Reference 451
6.2 DDS_AsynchronousPublisherQosPolicy Struct Reference 453
6.3 DDS_AvailabilityQosPolicy Struct Reference 458
6.4 DDS_BatchQosPolicy Struct Reference 462
6.5 DDS_BooleanSeq Struct Reference 466
6.6 DDS_BuiltinTopicKey_t Struct Reference 467
6.7 DDS _BuiltinTopicReaderResourceLimits_t Struct Reference . . . 468
6.8 DDS_ChannelSettings_t Struct Reference 471
6.9 DDS_ChannelSettingsSeq Struct Reference 474
6.10 DDS_CharSeq Struct Reference 475
6.11 DDS_ContentFilterProperty_t Struct Reference 476
6.12 DDS_Cookie_t Struct Reference 478
6.13 DDS_DatabaseQosPolicy Struct Reference 479
6.14 DDS_DataReaderCacheStatus Struct Reference 484
6.15 DDS_DataReaderProtocolQosPolicy Struct Reference 485
6.16 DDS_DataReaderProtocolStatus Struct Reference 489
6.17 DDS_DataReaderQos Struct Reference 499
6.18 DDS_DataReaderResourceLimitsQosPolicy Struct Reference . . . 505

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++ API

by Doxygen

CONTENTS vii

6.19
6.20
6.21
6.22
6.23
6.24
6.25
6.26
6.27
6.28
6.29
6.30

6.31
6.32
6.33
6.34
6.35
6.36
6.37
6.38
6.39
6.40
6.41
6.42
6.43
6.44
6.45
6.46
6.47
6.48

DDS_DataWriterCacheStatus Struct Reference 517
DDS _DataWriterProtocolQosPolicy Struct Reference 518
DDS_DataWriterProtocolStatus Struct Reference 523
DDS _DataWriterQos Struct Reference 536
DDS _DataWriterResourceLimitsQosPolicy Struct Reference . . . 543
DDS_DeadlineQosPolicy Struct Reference 549
DDS DestinationOrderQosPolicy Struct Reference 552
DDS_DiscoveryConfigQosPolicy Struct Reference 555
DDS DiscoveryQosPolicy Struct Reference 564
DDS _DomainParticipantFactoryQos Struct Reference 568
DDS_DomainParticipantQos Struct Reference 570
DDS _DomainParticipantResourceLimitsQosPolicy Struct Refer-

EICE . o o v o e e e e e e 575
DDS _DoubleSeq Struct Reference 594
DDS DurabilityQosPolicy Struct Reference 595
DDS_DurabilityServiceQosPolicy Struct Reference 599
DDS_Duration_t Struct Reference 602
DDS_DynamicData Struct Reference 603
DDS_DynamicDatalnfo Struct Reference 700
DDS _DynamicDataMemberInfo Struct Reference 701
DDS_DynamicDataProperty_t Struct Reference 704
DDS_DynamicDataSeq Struct Reference 706
DDS_DynamicDataTypeProperty_t Struct Reference 707
DDS_DynamicDataTypeSerializationProperty_t Struct Reference 708
DDS_EndpointGroup_t Struct Reference 710
DDS_EndpointGroupSeq Struct Reference 711
DDS _EntityFactoryQosPolicy Struct Reference 712
DDS_EntityNameQosPolicy Struct Reference 714
DDS_EnumMember Struct Reference 716
DDS_EnumMemberSeq Struct Reference 717
DDS_EventQosPolicy Struct Reference 718

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4+ API
by Doxygen

viii CONTENTS
6.49 DDS_ExclusiveAreaQosPolicy Struct Reference 721
6.50 DDS_FloatSeq Struct Reference 724
6.51 DDS_FlowControllerProperty_t Struct Reference 725
6.52 DDS_FlowControllerTokenBucketProperty_t Struct Reference . . 727
6.53 DDS_GroupDataQosPolicy Struct Reference 731
6.54 DDS_GUID_t Struct Reference 733
6.55 DDS_HistoryQosPolicy Struct Reference 734
6.56 DDS_InconsistentTopicStatus Struct Reference 738
6.57 DDS _InstanceHandleSeq Struct Reference 740
6.58 DDS_KeyedOctets Struct Reference 741
6.59 DDS _KeyedOctetsSeq Struct Reference 743
6.60 DDS_KeyedString Struct Reference 744
6.61 DDS_KeyedStringSeq Struct Reference 746
6.62 DDS_LatencyBudgetQosPolicy Struct Reference 747
6.63 DDS_LifespanQosPolicy Struct Reference 749
6.64 DDS_LivelinessChangedStatus Struct Reference 751
6.65 DDS_LivelinessLostStatus Struct Reference 753
6.66 DDS _LivelinessQosPolicy Struct Reference 755
6.67 DDS_Locator_t Struct Reference 759
6.68 DDS_LocatorFilter_t Struct Reference 761
6.69 DDS _LocatorFilterQosPolicy Struct Reference 763
6.70 DDS_LocatorFilterSeq Struct Reference 765
6.71 DDS_LocatorSeq Struct Reference 766
6.72 DDS _LoggingQosPolicy Struct Reference 767
6.73 DDS_LongDoubleSeq Struct Reference 769
6.74 DDS_LonglLongSeq Struct Reference 770
6.75 DDS_LongSeq Struct Reference 771
6.76 DDS_MultiChannelQosPolicy Struct Reference 772
6.77 DDS_Octets Struct Reference 775
6.78 DDS_OctetSeq Struct Reference e
6.79 DDS_OctetsSeq Struct Reference 778

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API

by Doxygen

CONTENTS

ix

6.80 DDS_OfferedDeadlineMissedStatus Struct Reference
6.81 DDS_OfferedIncompatibleQosStatus Struct Reference
6.82 DDS_OwnershipQosPolicy Struct Reference
6.83 DDS_OwnershipStrengthQosPolicy Struct Reference
6.84 DDS_ParticipantBuiltinTopicData Struct Reference
6.85 DDS_ParticipantBuiltinTopicDataSeq Struct Reference
6.86 DDS_PartitionQosPolicy Struct Reference
6.87 DDS_PresentationQosPolicy Struct Reference
6.88 DDS_ProductVersion_t Struct Reference
6.89 DDS _ProfileQosPolicy Struct Reference
6.90 DDS_Property_t Struct Reference
6.91 DDS_PropertyQosPolicy Struct Reference
6.92 DDS_PropertySeq Struct Reference
6.93 DDS_ProtocolVersion_t Struct Reference
6.94 DDS_PublicationBuiltinTopicData Struct Reference
6.95 DDS_PublicationBuiltinTopicDataSeq Struct Reference.
6.96 DDS_PublicationMatchedStatus Struct Reference
6.97 DDS_PublisherQos Struct Reference
6.98 DDS_PublishModeQosPolicy Struct Reference
6.99 DDS_QosPolicyCount Struct Reference
6.100DDS_QosPolicyCountSeq Struct Reference
6.101DDS_ReaderDataLifecycleQosPolicy Struct Reference.
6.102DDS _ReceiverPoolQosPolicy Struct Reference
6.103DDS _ReliabilityQosPolicy Struct Reference
6.104DDS_ReliableReader ActivityChangedStatus Struct Reference . .
6.105DDS_ReliableWriterCacheChangedStatus Struct Reference
6.106DDS_ReliableWriterCacheEventCount Struct Reference
6.107DDS _RequestedDeadlineMissedStatus Struct Reference
6.108DDS_RequestedIncompatibleQosStatus Struct Reference
6.109DDS _ResourceLimitsQosPolicy Struct Reference
6.110DDS_RtpsReliableReaderProtocol_t Struct Reference

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4+ API

by Doxygen

CONTENTS

6.111DDS_RtpsReliableWriterProtocol_t Struct Reference 863
6.112DDS_RtpsWellKnownPorts_t Struct Reference 879
6.113DDS_Sampleldentity_t Struct Reference 885
6.114DDS_Samplelnfo Struct Reference 886
6.115DDS_SamplelnfoSeq Struct Reference 895
6.116DDS_SampleLostStatus Struct Reference 896
6.117DDS_SampleRejectedStatus Struct Reference 897
6.118DDS_SequenceNumber_t Struct Reference 899
6.119DDS_ShortSeq Struct Reference 900
6.120DDS _StringSeq Struct Reference 901
6.121DDS_StructMember Struct Reference 903
6.122DDS_StructMemberSeq Struct Reference 905
6.123DDS _SubscriberQos Struct Reference 906
6.124DDS _SubscriptionBuiltinTopicData Struct Reference 908
6.125DDS_SubscriptionBuiltinTopicDataSeq Struct Reference 916
6.126 DDS_SubscriptionMatchedStatus Struct Reference 917
6.127DDS _SystemResourceLimitsQosPolicy Struct Reference 920
6.128DDS _ThreadSettings_t Struct Reference 922
6.129DDS_Time_t Struct Reference 925
6.130DDS_TimeBasedFilterQosPolicy Struct Reference 926
6.131DDS _TopicBuiltinTopicData Struct Reference 930
6.132DDS_TopicBuiltinTopicDataSeq Struct Reference 934
6.133DDS _TopicDataQosPolicy Struct Reference 935
6.134DDS _TopicQos Struct Reference 937
6.135DDS _TransportBuiltinQosPolicy Struct Reference 941
6.136DDS_TransportMulticastMapping_t Struct Reference 943

6.137DDS _TransportMulticastMappingFunction_t Struct Reference . . 945
6.138DDS _TransportMulticastMappingQosPolicy Struct Reference . . 946

6.139DDS _TransportMulticastMappingSeq Struct Reference 948
6.140DDS _TransportMulticastQosPolicy Struct Reference 949
6.141DDS _TransportMulticastSettings_t Struct Reference 951

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API
by Doxygen

CONTENTS xi

6.142DDS _TransportMulticastSettingsSeq Struct Reference 953

6.143DDS _TransportPriorityQosPolicy Struct Reference 954

6.144DDS _TransportSelectionQosPolicy Struct Reference. 956

6.145DDS _TransportUnicastQosPolicy Struct Reference 958

6.146DDS _TransportUnicastSettings_t Struct Reference 960

6.147DDS _TransportUnicastSettingsSeq Struct Reference 962

6.148DDS _TypeCode Struct Reference 963

6.149DDS_TypeCodeFactory Struct Reference 989

6.150DDS _TypeSupportQosPolicy Struct Reference 1002
6.151DDS_UnionMember Struct Reference 1004
6.152DDS_UnionMemberSeq Struct Reference 1006
6.153DDS _UnsignedLonglLongSeq Struct Reference 1007
6.154DDS _UnsignedLongSeq Struct Reference 1008
6.155DDS _UnsignedShortSeq Struct Reference 1009
6.156DDS_UserDataQosPolicy Struct Reference 1010
6.157DDS_ValueMember Struct Reference 1012
6.158DDS_ValueMemberSeq Struct Reference 1014
6.159DDS _Vendorld_t Struct Reference 1015
6.160DDS_WaitSetProperty_t Struct Reference 1016
6.161DDS_WcharSeq Struct Reference 1018
6.162DDS_WireProtocolQosPolicy Struct Reference 1019
6.163DDS_WriteParams_t Struct Reference 1027
6.164DDS_WriterDataLifecycleQosPolicy Struct Reference 1030
6.165DDS_WstringSeq Struct Reference 1033
6.166DDSCondition Class Reference 1034
6.167DDSConditionSeq Struct Reference 1035
6.168DDSContentFilter Class Reference 1036
6.169DDSContentFilteredTopic Class Reference 1040
6.170DDSDataReader Class Reference 1046
6.171DDSDataReaderListener Class Reference 1065
6.172DDSDataReaderSeq Class Reference 1069

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4+ API
by Doxygen

xii CONTENTS

6.173DDSDataWriter Class Reference 1070
6.174DDSDataWriterListener Class Reference 1090
6.175DDSDomainEntity Class Reference 1095
6.176 DDSDomainParticipant Class Reference 1096
6.177DDSDomainParticipantFactory Class Reference 1167
6.178DDSDomainParticipantListener Class Reference 1191
6.179DDSDynamicDataReader Class Reference 1193
6.180DDSDynamicDataTypeSupport Class Reference. 1194
6.181DDSDynamicDataWriter Class Reference 1200
6.182DDSEntity Class Reference 1201
6.183DDSFlowController Class Reference 1207
6.184DDSGuardCondition Class Reference 1211
6.185DDSKeyedOctetsDataReader Class Reference 1213
6.186DDSKeyedOctetsDataWriter Class Reference 1224
6.187DDSKeyedOctetsTypeSupport Class Reference 1237
6.188DDSKeyedStringDataReader Class Reference 1241
6.189DDSKeyedStringDataWriter Class Reference 1252
6.190DDSKeyedStringTypeSupport Class Reference 1262
6.191DDSListener Class Reference 1266
6.192DDSMultiTopic Class Reference 1270
6.193DDSOctetsDataReader Class Reference 1274
6.194DDSOctetsDataWriter Class Reference 1279
6.195DDSOctetsTypeSupport Class Reference 1285

6.196 DDSParticipantBuiltinTopicDataDataReader Class Reference . . 1289
6.197DDSParticipantBuiltinTopicDataTypeSupport Class Reference . 1290
6.198DDSPropertyQosPolicyHelper Class Reference 1291
6.199DDSPublicationBuiltinTopicDataDataReader Class Reference . . 1292
6.200DDSPublicationBuiltinTopicDataTypeSupport Class Reference . 1293

6.201DDSPublisher Class Reference 1294
6.202DDSPublisherListener Class Reference 1317
6.203DDSPublisherSeq Class Reference 1318

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API
by Doxygen

CONTENTS xiii

6.204DDSQueryCondition Class Reference 1319
6.205DDSReadCondition Class Reference 1321
6.206DDSStatusCondition Class Reference 1323
6.207DDSStringDataReader Class Reference 1326
6.208DDSStringDataWriter Class Reference 1330
6.209DDSStringTypeSupport Class Reference 1333
6.210DDSSubscriber Class Reference 1337
6.211DDSSubscriberListener Class Reference 1360
6.212DDSSubscriberSeq Class Reference 1362

6.213DDSSubscriptionBuiltinTopicDataDataReader Class Reference . 1363
6.214DDSSubscriptionBuiltinTopicDataTypeSupport Class Reference 1364

6.215DDSTopic Class Reference 1365
6.216DDSTopicBuiltinTopicDataDataReader Class Reference 1371
6.217DDSTopicBuiltinTopicDataTypeSupport Class Reference 1372
6.218DDSTopicDescription Class Reference 1373
6.219DDSTopicListener Class Reference 1376
6.220DDSTypeSupport Class Reference 1378
6.221DDSWaitSet Class Reference 1379
6.222Foo0 Struct Reference oo 1387
6.223FooDataReader Struct Reference 1388
6.224FooDataWriter Struct Reference 1419
6.225FooSeq Struct Referenceo 1437
6.226FooTypeSupport Struct Reference 1452
6.227TNDDS _Config_LibraryVersion_t Struct Reference 1461
6.228NDDS_Transport_Address_t Struct Reference 1463
6.229NDDS _Transport_Property_t Struct Reference 1464
6.230NDDS _Transport_Shmem_Property_t Struct Reference 1472
6.231NDDS _Transport_UDPv4_Property_t Struct Reference 1475
6.232NDDS _Transport_UDPv6_Property_t Struct Reference 1484
6.233NDDSConfiglogger Class Reference 1492
6.234NDDSConfigVersion Class Reference 1496

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4+ API
by Doxygen

xiv CONTENTS

6.235NDDSTransportSupport Class Reference 1498
6.236NDDSUtility Class Reference 1506
6.237Transport AllocationSettings_t Struct Reference 1507
7 Example Documentation 1509
7.1 HelloWorld.cxxo 1509
7.2 HelloWorld.idl. o 1515
7.3 HelloWorld_publisher.cxx 1516
7.4 HelloWorld_subscriber.cxx 1521
7.5 HelloWorldPlugin.cxx 1527
7.6 HelloWorldSupport.cxx 1547

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API
by Doxygen

Chapter 1

RTI Data Distribution
Service

Real-Time Innovations, Inc.

RTI Data Distribution Service is a data-centric communications middleware
that allows developers to build high-performance distributed communications
in a heterogeneous computer environment.

The Application Programming Interface (API) of RTI Data Distribution Service
4 is based on the OMG’s Data Distribution Service (DDS) specification. The
most recent publication of this specification can be found in the Catalog of
OMG Specifications under ”Middleware Specifications”.

1.1 Feedback and Support for this Release.

For more information, visit our knowledge base, accessible from
http://www.rti.com/support, to see sample code, general information
on RTT Data Distribution Service, performance information, troubleshooting
tips, and technical details.

By its very nature, the knowledge base is continuously evolving and improv-
ing. We hope that you will find it helpful. If there are questions that
you would like to see addressed or comments you would like to share, please
send e-mail to support@rti.com. We can only guarantee a response for cus-
tomers with a current maintenance contract or subscription. To purchase a
maintenance contract or subscription, contact your local RTI representative
(see http://www.rti.com/company/contact.html), send an email request to
sales@rti.com, or call +1 (408) 990-7400.

2 RTI Data Distribution Service

Please do not hesitate to contact RTI with questions or comments about this
release. We welcome any input on how to improve RTT Data Distribution Service
to suit your needs.

1.2 Available Documentation.

The documentation of this release is provided in two forms: the HTML API
reference and PDF documents. If you are new to RTI Data Distribution Service
4, the Documentation Roadmap (p.192) will provide direction on how to
learn about this product.

1.2.1 The PDF documents are:

" What’s New. An overview of the new features in this release.

Release Notes. System requirements, compatibility, what’s fixed in this
release, and known issues.

Getting Started Guide. Download and installation instructions. It also
lays out the core value and concepts behind the product and takes you
step-by-step through the creation of a simple example application. Devel-
opers should read this document first.

Getting Started Guide, Database Addendum. Additional installation
and setup information for database usage.

Getting Started Guide, Embedded Systems Addendum. Additional in-
stallation and setup information for embedded systems.

User’s Manual. Introduction to RTI Data Distribution Service, product
tour and conceptual presentation of the functionality of RTIT Data Distri-
bution Service.

Platform Notes. Specific details, such as compilation setting and li-
braries, related to building and using RTI Data Distribution Service on
the various supported platforms.

C API Reference Manual. PDF version of the online HTML documen-
tation for the C APIL

" C++ API Reference Manual. PDF version of the online HTML docu-
mentation for the C++ API.

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API
by Doxygen

1.2 Available Documentation. 3

" Java API Reference Manual. PDF version of the online HTML docu-
mentation for the Java API.

.NET API Reference Manual. PDF version of the online HTML docu-
mentation for the NET API.

1.2.2 The HTML API reference contains:

" DDS API Reference (p.198) - The DDS API reference.

" RTI Data Distribution Service API Reference (p.211) - RTI Data
Distribution Service API’s independent of the DDS standard.

Programming How-To’s (p.212) - Describes and shows the common
tasks done using the API.

Programming Tools (p.214) - RTI Data Distribution Service helper
tools.

The HTML API documentation can be accessed through the tree view in the
left frame of the web browser window. The bulk of the documentation is found
under the entry labeled ”Modules”.

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4+ API
by Doxygen

RTI Data Distribution Service

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API
by Doxygen

Chapter 2

Module Index

2.1 Modules

Here is a list of all modules:

Documentation Roadmap 192
Conventions L 193
Using DDS:: Namespace oo v i vt 196
DDS API Reference 198
Domain Module 32
DomainParticipantFactory 34
DomainParticipants oL oL 36
Built-in Topics 41
Participant Built-in Topics 280

Topic Built-in Topics 282
Publication Built-in Topics 284
Subscription Built-in Topics 286

Topic Module 48
Topics o 49

User Data Type Support 50

Type Code Support 55
Built-in Types oo 70
String Built-in Type 288
KeyedString Built-in Type 289

Octets Built-in Type 290
KeyedOctets Built-in Type 291

Dynamic Data L 75
DDS-Specific Primitive Types 292
Publication Module L. 80

Publishers e 81

Module Index

Data Writers 84
Flow Controllers 86
Subscription Module L oo 93
Subscribers 96
DataReaders 99
Read Conditions 105
Query Conditions L. 106
Data Samples Lo 107
Sample States 108
View States 110
Instance States L. 112
Infrastructure Module 115
Time Support 297
GUID Support o 301
Sequence Number Support 304
Exception Codes 306
Return Codes 308
Status Kinds 311
QoS Policies 325
USER.DATA 338
TOPICDATA 339
GROUP.DATA o 340
DURABILITY e 341
PRESENTATION 343
DEADLINE 345
LATENCY_BUDGET 346
OWNERSHIP 347
OWNERSHIP.STRENGTH 349
LIVELINESS 350
TIME_BASED FILTER 352
PARTITION e 353
RELIABILITY e 354
DESTINATION_.ORDER 356
HISTORY e 358
DURABILITY.SERVICE 361
RESOURCE_LIMITS 362
TRANSPORT_PRIORITY 364
LIFESPAN 365
WRITER_DATA LIFECYCLE 366
READER_DATA _LIFECYCLE 367
ENTITY_FACTORY oo oo 368
Extended Qos Support oL 369
Thread Settings 322
TRANSPORT_SELECTION 373
TRANSPORT_UNICAST 374

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API
by Doxygen

2.1 Modules 7

Unicast Settings 370
TRANSPORT_MULTICAST 375
Multicast Settings L. 371
Multicast Mapping oL 372
TRANSPORT_MULTICAST MAPPING 377
DISCOVERY o 378
NDDS DISCOVERY_PEERS 379
TRANSPORT_BUILTIN 387
WIRE_PROTOCOL 391
DATA_ READER_RESOURCE_LIMITS 398
DATA_WRITER_RESOURCE_LIMITS 400
DATA_ READER_PROTOCOL 404
DATA_WRITER_PROTOCOL 405
SYSTEM_RESOURCE_LIMITS 406
DOMAIN_PARTICIPANT RESOURCE_LIMITS 407
EVENT 408
DATABASE 409
RECEIVER.POOL 410
PUBLISH.MODE 411
DISCOVERY_CONFIG 415
TYPESUPPORT 420
ASYNCHRONOUS_PUBLISHER 421
EXCLUSIVEAREA, 422
BATCH o 423
LOCATORFILTER 424
MULTICHANNEL o .. 425
PROPERTY 426
AVAILABILITY e 432
ENTITY.NAME o 435
PROFILEo 436
LOGGING e 438
Entity Support 433
Conditions and WaitSets 434
WriteParams oo 437
Octet Buffer Support L 439
Sequence Support oo 443
Built-in Sequences 117
String Support 444
Queries and Filters Syntax 203
RTT Data Distribution Service API Reference 211
Clock Selection 29
Multi-channel DataWriters 119
Pluggable Transports 121
Using Transport Plugins 127
Built-in Transport Plugins 133

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4+ API
by Doxygen

Module Index

Shared Memory Transport 252

UDPv4 Transport 260

UDPv6 Transport 270
Configuration Utilities 135
Unsupported Utilities 139
Durability and Persistence oL oL 140
Configuring QoS Profiles with XML 146
Programming How-To’s 212
Publication Example oo 149
Subscription Example L o oL 150
Participant Use Cases 151
Topic Use Cases o o i i i i it i e e 154
FlowController Use Cases 156
Publisher Use Cases 160
DataWriter Use Caseso i v 161
Subscriber Use Cases o i i 163
DataReader Use Cases 167
Entity Use Cases 171
Waitset Use Cases v it 174
Transport Use Cases 176
Filter Use Cases oo i i i it it 181
Creating Custom Content Filters 186
Large Data Use Cases 190
Programming Tools 214
rtiddsgeno 215
rtiddsping Lo 228
rtiddsspy e 235
Class Id e 242
Addresso 245
Attributeso 250

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API
by Doxygen

Chapter 3

Class Index

3.1 Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

DDS_AllocationSettings t
DDS_AsynchronousPublisherQosPolicy
DDS_AvailabilityQosPolicy oo
DDS_BatchQosPolicy
DDS BooleanSeq
DDS BuiltinTopicKey to
DDS_BuiltinTopicReaderResourceLimits_t
DDS_ChannelSettings t
DDS_ChannelSettingsSeq o L.
DDS_CharSeq o
DDS_ContentFilterPropertyt
DDS_Cookiet e
DDS_DatabaseQosPolicy oo
DDS_DataReaderCacheStatus
DDS_DataReaderProtocolQosPolicy
DDS_DataReaderProtocolStatus
DDS_DataReaderQos
DDS_DataReaderResourceLimitsQosPolicy
DDS_DataWriterCacheStatus
DDS_DataWriterProtocolQosPolicy
DDS_DataWriterProtocolStatus
DDS DataWriterQos
DDS_DataWriterResourceLimitsQosPolicy
DDS_DeadlineQosPolicy
DDS_ DestinationOrderQosPolicy

478

10 Class Index

DDS_DiscoveryConfigQosPolicy 555
DDS_DiscoveryQosPolicy 564
DDS_DomainParticipantFactoryQos 568
DDS_DomainParticipantQoso 570
DDS_DomainParticipantResourceLimitsQosPolicy 575
DDS DoubleSeq 594
DDS_DurabilityQosPolicy 595
DDS_DurabilityServiceQosPolicy 599
DDS Durationt 602
DDS DynamicData 603
DDS_DynamicDatalnfo 700
DDS_DynamicDataMemberInfo 701
DDS_DynamicDataProperty_t 704
DDS DynamicDataSeq oo 706
DDS_DynamicDataTypeProperty t 707
DDS_DynamicDataTypeSerializationProperty t 708
DDS_EndpointGroup_t 710
DDS_EndpointGroupSeq 711
DDS_EntityFactoryQosPolicy 712
DDS_EntityNameQosPolicy 714
DDS_EnumMembero 716
DDS_EnumMemberSeq oo v
DDS_EventQosPolicy 718
DDS_ExclusiveAreaQosPolicy 0oL 721
DDS FloatSeq 724
DDS_FlowControllerProperty t 725
DDS_FlowControllerTokenBucketProperty_t 727
DDS_GroupDataQosPolicy 731
DDS.GUIDt 733
DDS_HistoryQosPolicy o 734
DDS InconsistentTopicStatus 738
DDS InstanceHandleSeq L. 740
DDS KeyedOctets 741
DDS KeyedOctetsSeq 743
DDS KeyedString 744
DDS KeyedStringSeq oo 746
DDS_LatencyBudgetQosPolicy 747
DDS_LifespanQosPolicy 749
DDS_LivelinessChangedStatus 751
DDS_LivelinessLostStatus, 753
DDS_LivelinessQosPolicy L. 755
DDS Locatort 759
DDS_LocatorFilter-t 761
DDS_LocatorFilterQosPolicy 763
DDS_LocatorFilterSeq o 765
DDS LocatorSeq 766

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API
by Doxygen

3.1 Class Hierarchy 11

DDS_LoggingQosPolicy 767
DDS_LongDoubleSeq o 769
DDS_LongLongSeq« . o 770
DDS LongSeq o o oo 771
DDS_MultiChannelQosPolicy 772
DDS. Octets o oo 775
DDS OctetSeq e T
DDS_OctetsSeq 778
DDS_OfferedDeadlineMissedStatus 779
DDS_OfferedIncompatibleQosStatus 781
DDS_OwnershipQosPolicy 783
DDS_OwnershipStrengthQosPolicy 790
DDS_ParticipantBuiltinTopicData 792
DDS_ParticipantBuiltinTopicDataSeq 795
DDS_PartitionQosPolicy o oo 796
DDS _PresentationQosPolicy oL 799
DDS_ProductVersion_to 804
DDS_ProfileQosPolicy 806
DDS Property_t 809
DDS_PropertyQosPolicy 810
DDS_ PropertySeq 813
DDS_ProtocolVersion_t 814
DDS_PublicationBuiltinTopicData 815
DDS_PublicationBuiltinTopicDataSeq 823
DDS_PublicationMatchedStatus 824
DDS_PublisherQos 827
DDS_PublishModeQosPolicy 829
DDS_QosPolicyCount L 833
DDS_QosPolicyCountSeq 834
DDS_ReaderDataLifecycleQosPolicy 835
DDS_ReceiverPoolQosPolicy oo 838
DDS _ReliabilityQosPolicy o 841
DDS_ReliableReaderActivityChangedStatus 845
DDS_ReliableWriterCacheChangedStatus 847
DDS_ReliableWriterCacheEventCount 850
DDS_RequestedDeadlineMissedStatus 851
DDS_RequestedIncompatibleQosStatus 853
DDS_ResourceLimitsQosPolicy 855
DDS_RtpsReliableReaderProtocol t 860
DDS_RtpsReliableWriterProtocol t 863
DDS_RtpsWellKnownPorts t 879
DDS_Sampleldentity t o 885
DDS_Samplelnfo 886
DDS_SamplelnfoSeq 895
DDS_SampleLostStatus o 896
DDS_SampleRejectedStatuso 897

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4+ API
by Doxygen

12 Class Index
DDS_SequenceNumber_t o 899
DDS ShortSeq 900
DDS StringSeq 901
DDS_StructMember 903
DDS_StructMemberSeqo oo 905
DDS_SubscriberQos 906
DDS_SubscriptionBuiltinTopicData 908
DDS_SubscriptionBuiltinTopicDataSeq 916
DDS_SubscriptionMatchedStatus, 917
DDS_SystemResourceLimitsQosPolicy 920
DDS_ThreadSettings_t 922
DDS Timet 925
DDS_TimeBasedFilterQosPolicy 926
DDS_TopicBuiltinTopicData 930
DDS_TopicBuiltinTopicDataSeq 934
DDS_TopicDataQosPolicy L. 935
DDS TopicQos« o o i 937
DDS_TransportBuiltinQosPolicy 941
DDS_TransportMulticastMapping t 943
DDS_TransportMulticastMappingFunctiont 945
DDS_TransportMulticastMappingQosPolicy 946
DDS_TransportMulticastMappingSeq 948
DDS_TransportMulticastQosPolicy 949
DDS_TransportMulticastSettings t 951
DDS_TransportMulticastSettingsSeq 953
DDS_TransportPriorityQosPolicy 954
DDS_TransportSelectionQosPolicy 956
DDS_TransportUnicastQosPolicy 958
DDS_TransportUnicastSettings t 960
DDS_TransportUnicastSettingsSeq 962
DDS TypeCode o e 963
DDS_TypeCodeFactory 989
DDS_TypeSupportQosPolicy 1002
DDS_UnionMember 1004
DDS_UnionMemberSeq 1006
DDS_UnsignedLonglongSeq 1007
DDS_UnsignedLongSeq oo 1008
DDS_UnsignedShortSeqo 1009
DDS_UserDataQosPolicy 1010
DDS_ValueMember 1012
DDS_ValueMemberSeq 1014
DDS Vendorld_t 1015
DDS_WaitSetPropertyt o 1016
DDS_WcharSeq 1018
DDS_WireProtocolQosPolicy 1019
DDS_WriteParams_t 1027

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API

by Doxygen

3.1 Class Hierarchy 13

DDS_WriterDataLifecycleQosPolicy 1030
DDS_WstringSeq oo 1033
DDSCondition 1034
DDSGuardCondition 1211
DDSReadCondition 1321
DDSQueryCondition Lo 1319
DDSStatusCondition 1323
DDSConditionSeq 1035
DDSContentFilter 1036
DDSDataReaderSeq 1069
DDSDomainParticipantFactory oo 1167
DDSEntity 1201
DDSDomainEntity o 1095
DDSDataReader 1046
DDSDynamicDataReader 1193
DDSKeyedOctetsDataReader 1213
DDSKeyedStringDataReader 1241
DDSOctetsDataReader 1274
DDSParticipantBuiltinTopicDataDataReader 1289
DDSPublicationBuiltinTopicDataDataReader 1292
DDSStringDataReader 1326
DDSSubscriptionBuiltinTopicDataDataReader 1363
DDSTopicBuiltinTopicDataDataReader 1371
FooDataReader 1388
DDSDataWriter 1070
DDSDynamicDataWriter 1200
DDSKeyedOctetsDataWriter 1224
DDSKeyedStringDataWriter 1252
DDSOctetsDataWriter 1279
DDSStringDataWriter00 1330
FooDataWriter 1419
DDSPublisher.o o 1294
DDSSubscribero 1337
DDSTopic« o o 1365
DDSDomainParticipant 1096
DDSFlowController 1207
DDSListener 1266
DDSDataReaderListener 1065
DDSSubscriberListener 1360
DDSDomainParticipantListener 1191
DDSDataWriterListener 1090
DDSPublisherListener 1317
DDSDomainParticipantListener 1191
DDSTopicListener 1376

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4+ API
by Doxygen

14 Class Index

DDSDomainParticipantListener 1191
DDSParticipantBuiltinTopicDataTypeSupport 1290
DDSPropertyQosPolicyHelper 0oL 1291
DDSPublicationBuiltinTopicDataTypeSupport 1293
DDSPublisherSeq 1318
DDSSubscriberSeqo 1362
DDSSubscriptionBuiltinTopicDataTypeSupport 1364
DDSTopicBuiltinTopicDataTypeSupport 1372
DDSTopicDescription oL o 1373
DDSContentFilteredTopic 1040
DDSMultiTopic 1270
DDSTopic o 1365
DDSTypeSupport 1378
DDSDynamicDataTypeSupport 1194
DDSKeyedOctetsTypeSupport 1237
DDSKeyedStringTypeSupport 1262
DDSOctetsTypeSupporto 1285
DDSStringTypeSupport oo 1333
FooTypeSupport 1452
DDSWaitSet o 1379
Foo . . . o e 1387
FooSeq 1437
NDDS_Config_LibraryVersion_t 1461
NDDS_Transport Address_t, 1463
NDDS_Transport_Property_t 1464
NDDS _Transport_Shmem _Property t 1472
NDDS _Transport_UDPv4_ Property t 1475
NDDS _Transport_UDPv6_Property t 1484
NDDSConfiglogger 1492
NDDSConfigVersion 1496
NDDSTransportSupport e 1498
NDDSUSGHEY © .« o v oovoee e e e e e 1506
TransportAllocationSettings t 1507

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API

by Doxygen

Chapter 4

Class Index

4.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

DDS_AllocationSettings_t (Resource allocation settings) 451
DDS_AsynchronousPublisherQosPolicy (Configures the mecha-

nism that sends user data in an external middleware thread

) 453
DDS_AvailabilityQosPolicy (Configures the availability of data) . 458
DDS_BatchQosPolicy (Used to configure batching of multiple sam-

ples into a single network packet in order to increase through-

put for small samples) L. 462
DDS_BooleanSeq (Instantiates FooSeq (p.1437) < DDS_Boolean
(P-296) >) . . . 466

DDS_BuiltinTopicKey_t (The key type of the built-in topic types) 467
DDS_BuiltinTopicReaderResourceLimits_t (Built-in topic

reader’s resource limits) Lo oL 468
DDS_ChannelSettings_t (Type used to configure the properties of
achannel) L Lo 471
DDS_ChannelSettingsSeq (Declares IDL sequence< DDS -
ChannelSettings_t (p.471) >) 474
DDS_CharSeq (Instantiates FooSeq (p.1437) < DDS_Char
(P-294) >) . . . 475

DDS_ContentFilterProperty_t (<<eXtension>> (p.194) Type
used to provide all the required information to enable content
filtering) 476
DDS_Cookie_t (<<eXtension>> (p. 19/) Sequence of bytes iden-
tifying a written data sample, used when writing with param-
EHEIS) . . . 478

16 Class Index

DDS_DatabaseQosPolicy (Various threads and resource limits set-
tings used by RTI Data Distribution Service to control its

internal database) Lo oL 479
DDS _DataReaderCacheStatus (<<eXtension>> (p.19/) The
status of the reader’scache) 484

DDS_DataReaderProtocolQosPolicy (Along with DDS_-
WireProtocolQosPolicy (p-1019) and DDS -
DataWriterProtocolQosPolicy (p.518), this QoS policy
configures the DDS on-the-network protocol (RTPS)) 485

DDS _DataReaderProtocolStatus (<<eXtension>> (p.194)

The status of a reader’s internal protocol related metrics, like
the number of samples received, filtered, rejected; and status

of wire protocol traffic) L. 489
DDS _DataReaderQos (QoS policies supported by a DDS-
DataReader (p.1046) entity) 499

DDS _DataReaderResourceLimitsQosPolicy (Various settings
that configure how a DDSDataReader (p.1046) allocates

and uses physical memory for internal resources) 505
DDS_DataWriterCacheStatus (<<eXtension>> (p.19/) The

status of the writer’scache). L. 517
DDS _DataWriterProtocolQosPolicy (Protocol that applies only

to DDSDataWriter (p.1070) instances) 518

DDS_DataWriterProtocolStatus (<<eXtension>> (p.194)
The status of a writer’s internal protocol related metrics, like
the number of samples pushed, pulled, filtered; and status of

wire protocol traffic) oo Lo L 523
DDS_DataWriterQos (QoS policies supported by a DDS-
DataWriter (p.1070) entity) 536

DDS_DataWriterResourceLimitsQosPolicy (Various settings
that configure how a DDSDataWriter (p.1070) allocates

and uses physical memory for internal resources) 543
DDS DeadlineQosPolicy (Expresses the maximum duration (dead-
line) within which an instance is expected to be updated) . . 549

DDS _DestinationOrderQosPolicy (Controls how the middleware
will deal with data sent by multiple DDSDataWriter
(p.1070) entities for the same instance of data (i.e., same

DDSTopic (p.1365) and key)) 552
DDS _DiscoveryConfigQosPolicy (Settings for discovery configura-
tlom) .o 555

DDS _DiscoveryQosPolicy (Configures the mechanism used by the
middleware to automatically discover and connect with new

remote applications) Lo oL 564
DDS_DomainParticipantFactoryQos (QoS policies supported by

a DDSDomainParticipantFactory (p.1167)) 568
DDS_DomainParticipantQos (QoS policies supported by a DDS-

DomainParticipant (p.1096) entity) 570

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API
by Doxygen

4.1 Class List 17

DDS_DomainParticipantResourceLimitsQosPolicy (Various
settings that configure how a DDSDomainParticipant
(p-1096) allocates and uses physical memory for internal
resources, including the maximum sizes of various properties) 575

DDS _DoubleSeq (Instantiates FooSeq (p.1437) < DDS_Double
(P-295) >) . . o 594

DDS_DurabilityQosPolicy (This QoS policy specifies whether or
not RTI Data Distribution Service will store and deliver pre-
viously published data samples to new DDSDataReader
(p. 1046) entities that join the network later) 595

DDS_DurabilityServiceQosPolicy (Various settings to con-
figure the external RTI Persistence Service used by
RTI Data Distribution Service for DataWriters with a
DDS _DurabilityQosPolicy (p.595) setting of DDS_-
PERSISTENT DURABILITY _QOS (p.342) or DDS -

TRANSIENT DURABILITY _QOS (p.342)) 599
DDS_Duration_t (Type for duration representation) 602
DDS_DynamicData (A sample of any complex data type, which can

be inspected and manipulated reflectively) 603
DDS_DynamicDatalnfo (A descriptor for a DDS_DynamicData

(p-603) object) 700
DDS_DynamicDataMemberInfo (A descriptor for a single member

(i.e. field) of dynamically defined data type) 701
DDS_DynamicDataProperty_t (A collection of attributes used to

configure DDS_DynamicData (p.603) objects) 704
DDS DynamicDataSeq (An ordered collection of DDS._-

DynamicData (p.603) elements) 706

DDS_DynamicDataTypeProperty_t (A collection of attributes

used to configure DDSDynamicDataTypeSupport

(p-1194) objects) 707
DDS _DynamicDataTypeSerializationProperty_t (Properties

that govern how data of a certain type will be serialized on

thenetwork) L 708
DDS_EndpointGroup_t (Specifies a group of endpoints that can be

collectively identified by a name and satisfied by a quorum) . 710
DDS_EndpointGroupSeq (A sequence of DDS -

EndpointGroup_t (p.710)) 711
DDS_EntityFactoryQosPolicy (A QoS policy for all DDSEntity

(p- 1201) types that can act as factories for one or more other

DDSEntity (p.1201) types) oL 712
DDS_EntityNameQosPolicy (Assigns a name and a role name

to a DDSDomainParticipant (p. 1096), DDSDataWriter

(p.1070) or DDSDataReader (p.1046). These names will

be visible during the discovery process and in RTI tools to

help you visualize and debug your system) 714
DDS_EnumMember (A description of a member of an enumeration) 716

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4+ API
by Doxygen

18 Class Index

DDS_EnumMemberSeq (Defines a sequence of enumerator mem-

bers) ... 17
DDS_EventQosPolicy (Settings forevent) 718
DDS_ExclusiveAreaQosPolicy (Configures multi-thread concur-

rency and deadlock prevention capabilities) 721
DDS_FloatSeq (Instantiates FooSeq (p.1437) < DDS_Float

(P-295) >)« oo 724
DDS_FlowControllerProperty_t (Determines the flow control

characteristics of the DDSFlowController (p.1207)) . .. 725

DDS _FlowControllerTokenBucketProperty_t
(DDSFlowController (p.1207) uses the popular token
bucket approach for open loop network flow control. The flow
control characteristics are determined by the token bucket
Properties) oo 727

DDS_GroupDataQosPolicy (Attaches a buffer of opaque data that
is distributed by means of Built-in Topics (p.41) during

discovery). . ..o 731
DDS_GUID_t (Type for GUID (Global Unique Identifier) represen-
tation) ... 733

DDS_HistoryQosPolicy (Specifies the behavior of RTI Data Distri-
bution Service in the case where the value of a sample changes
(one or more times) before it can be successfully communi-

cated to one or more existing subscribers) 734
DDS _InconsistentTopicStatus (DDS_INCONSISTENT _-

TOPIC_STATUS (p.316)) oo c v v 738
DDS InstanceHandleSeq (Instantiates FooSeq (p.1437) <

DDS_InstanceHandle_t (p.52) >). 740
DDS _KeyedOctets (Built-in type consisting of a variable-length ar-

ray of opaque bytes and a string that is the key) 741
DDS KeyedOctetsSeq (Instantiates FooSeq (p.1437) < DDS_-

KeyedOctets (p.741) >) 743
DDS _KeyedString (Keyed string built-in type) 744
DDS KeyedStringSeq (Instantiates FooSeq (p.1437) < DDS_-

KeyedString (p.744) >). 746

DDS_LatencyBudgetQosPolicy (Provides a hint as to the maxi-
mum acceptable delay from the time the data is written to

the time it is received by the subscribing applications) 747
DDS_LifespanQosPolicy (Specifies how long the data written by the
DDSDataWriter (p.1070) is considered valid) 749
DDS_LivelinessChangedStatus (DDS_LIVELINESS _-
CHANGED_STATUS (p.319))o .. 751
DDS_LivelinessLostStatus (DDS_LIVELINESS_LOST -
STATUS (p.319)) . o o oo 753

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API
by Doxygen

4.1 Class List 19

DDS_LivelinessQosPolicy (Specifies and configures the mechanism
that allows DDSDataReader (p.1046) entities to detect
when DDSDataWriter (p.1070) entities become discon-
nected or "dead.”) Lo 755
DDS Locator_t (<<eXtension>> (p.19/) Type used to represent
the addressing information needed to send a message to an

RTPS Endpoint using one of the supported transports) . . . 759
DDS _LocatorFilter_t (Specifies the configuration of an individual
channel within a MultiChannel DataWriter) 761

DDS_LocatorFilterQosPolicy (The QoS policy used to report the
configuration of a MultiChannel DataWriter as part of DDS _-

PublicationBuiltinTopicData (p.815)) 763
DDS _LocatorFilterSeq (Declares IDL sequence< DDS_-
LocatorFilter_t (p.761) >) 765
DDS_LocatorSeq (Declares IDL sequence < DDS_Locator_t
(P-759) >) . . o 766
DDS_LoggingQosPolicy (Configures the RTT Data Distribution Ser-
vice logging facility) L 767
DDS_LongDoubleSeq (Instantiates FooSeq (p.1437) < DDS._-
LongDouble (p.295) >) 769
DDS _LongLongSeq (Instantiates FooSeq (p.1437) < DDS._-
LongLong (p.295) >) it 770
DDS LongSeq (Instantiates FooSeq (p.1437) < DDS Long
(P-295) >) . o o 771

DDS_MultiChannelQosPolicy (Configures the ability of a
DataWriter to send data on different multicast groups (ad-

dresses) based on the value of the data) 772
DDS _Octets (Built-in type consisting of a variable-length array of
opaque bytes) 775
DDS_OctetSeq (Instantiates FooSeq (p.1437) < DDS_Octet
(P-294) >) . . . T
DDS _OctetsSeq (Instantiates FooSeq (p.1437) < DDS_Octets
(D-TT5) >) o oo 778
DDS_OfferedDeadlineMissedStatus (DDS_OFFERED -
DEADLINE _MISSED _STATUS (p.317)). 779
DDS_OfferedIncompatibleQosStatus (DDS_OFFERED -
INCOMPATIBLE QOS_STATUS (p.317)). 781

DDS_OwnershipQosPolicy (Specifies whether it is allowed for mul-
tiple DDSDataWriter (p.1070) (s) to write the same in-
stance of the data and if so, how these modifications should
be arbitrated) Lo o 783
DDS_OwnershipStrengthQosPolicy (Specifies the value of the
strength used to arbitrate among multiple DDSDataWriter
(p-1070) objects that attempt to modify the same instance of
a data type (identified by DDSTopic (p. 1365) + key)) . . . 790

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4+ API
by Doxygen

20 Class Index

DDS_ParticipantBuiltinTopicData (Entry created when a Do-

mainParticipant object is discovered) 792
DDS _ParticipantBuiltinTopicDataSeq (Instantiates FooSeq

(p. 1437) < DDS_ParticipantBuiltinTopicData (p.792)

D 795
DDS _PartitionQosPolicy (Set of strings that introduces a logi-

cal partition among the topics visible by a DDSPublisher

(p.1294) and a DDSSubscriber (p.1337)). 796
DDS_PresentationQosPolicy (Specifies how the samples represent-

ing changes to data instances are presented to a subscribing

application) 799
DDS _ProductVersion_t (<<eXtension>> (p.194) Type used to

represent the current version of RTI Data Distribution Service)804
DDS_ProfileQosPolicy (Configures the way that XML documents

containing QoS profiles are loaded by RTI Data Distribution

Service) e 806
DDS _Property_t (Properties are name/value pairs objects) 809
DDS _PropertyQosPolicy (Stores name/value(string) pairs that can

be used to configure certain parameters of RTI Data Distribu-

tion Service that are not exposed through formal QoS policies.

Can also be used to store and propagate application-specific

name/value pairs that can be retrieved by user code during

discovery). . . oL 810
DDS _PropertySeq (Declares IDL sequence < DDS_Property_t

(p-809) >) . . . 813
DDS _ProtocolVersion_t (<<eXtension>> (p. 194) Type used to

represent the version of the RTPS protocol) 814

DDS_PublicationBuiltinTopicData (Entry created when a DDS-
DataWriter (p.1070) is discovered in association with its
Publisher) 815

DDS _PublicationBuiltinTopicDataSeq (Instantiates FooSeq
(p.1437) < DDS_PublicationBuiltinTopicData (p.815)

>) 823
DDS_PublicationMatchedStatus (DDS_PUBLICATION -

MATCHED_STATUS (p.319)) 824
DDS_PublisherQos (QoS policies supported by a DDSPublisher

(p-1294) entity) 827

DDS_PublishModeQosPolicy (Specifies how RTI Data Distribu-
tion Service sends application data on the network. This QoS
policy can be used to tell RTT Data Distribution Service to
use its own thread to send data, instead of the user thread). 829
DDS_QosPolicyCount (Type to hold a counter for a DDS_-

QosPolicyId_t (p.334)) 833
DDS_QosPolicyCountSeq (Declares IDL sequence < DDS_-
QosPolicyCount (p.833) >) 834

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API
by Doxygen

4.1 Class List 21

DDS_ReaderDataLifecycleQosPolicy (Controls how a
DataReader manages the lifecycle of the data that it
hasreceived) 835

DDS_ReceiverPoolQosPolicy (Configures threads used by RTI
Data Distribution Service to receive and process data from

transports (for example, UDP sockets)) 838
DDS_ReliabilityQosPolicy (Indicates the level of reliability of-
fered /requested by RTT Data Distribution Service) 841

DDS_ReliableReaderActivityChangedStatus
(<<eXtension>> (p.194) Describes the activity (i.e.
are acknowledgements forthcoming) of reliable readers
matched to a reliable writer) 845
DDS_ReliableWriterCacheChangedStatus (<<eXtension>>
(p- 194) A summary of the state of a data writer’s cache of
unacknowledged samples written) 847
DDS_ReliableWriterCacheEventCount (<<eXtension>>
(p.-194) The number of times the number of unacknowl-
edged samples in the cache of a reliable writer hit a certain

well-defined threshold) 850
DDS_RequestedDeadlineMissedStatus (DDS_-

REQUESTED DEADLINE MISSED_STATUS

(P-317)) o o 851
DDS_RequestedIncompatibleQosStatus (DDS -

REQUESTED_INCOMPATIBLE_QOS_STATUS

(P-317)) o o 853

DDS_ResourceLimitsQosPolicy (Controls the amount of physical
memory allocated for DDS entities, if dynamic allocations are
allowed, and how they occur. Also controls memory usage

among different instance values for keyed topics) 855
DDS_RtpsReliableReaderProtocol t (Qos related to reliable
reader protocol defined in RTPS) 860
DDS_RtpsReliableWriterProtocol t (QoS related to the reliable
writer protocol defined in RTPS). 863
DDS_RtpsWellKnownPorts_t (RTPS well-known port mapping
configuration) L Lo 879

DDS_Sampleldentity_t (Type definition for an Sample Identity) . 885
DDS_SamplelInfo (Information that accompanies each sample that

isreadortaken) 886
DDS_SampleInfoSeq (Declares IDL sequence < DDS._-

SampleInfo (p.886) >) 895
DDS_SampleLostStatus (DDS_SAMPLE_LOST_STATUS

(p-318)) o 896
DDS_SampleRejectedStatus (DDS_SAMPLE_REJECTED _-

STATUS (p.318)) o ot 897
DDS_SequenceNumber_t (Type for sequence number representa-

BIOn) .o 899

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4+ API
by Doxygen

22 Class Index

DDS_ShortSeq (Instantiates FooSeq (p.1437) < DDS_Short

(D-294) >) o 900
DDS _StringSeq (Instantiates FooSeq (p.1437) < charx > with

value type semantics) 901
DDS_StructMember (A description of a member of a struct) . . . 903

DDS_StructMemberSeq (Defines a sequence of struct members) . 905
DDS _SubscriberQos (QoS policies supported by a DDSSubscriber
(p-1337) entity) 906
DDS _SubscriptionBuiltinTopicData (Entry created when a
DDSDataReader (p. 1046) is discovered in association with
its Subscriber) 908
DDS_SubscriptionBuiltinTopicDataSeq (Instantiates FooSeq
(p. 1437) < DDS_SubscriptionBuiltinTopicData (p. 908)

D 916
DDS _SubscriptionMatchedStatus (DDS_SUBSCRIPTION -
MATCHED _STATUS (p.320)) 917

DDS_SystemResourceLimitsQosPolicy (Configures DDSDo-
mainParticipant (p.1096)-independent resources used by
RTI Data Distribution Service. Mainly used to change the
maximum number of DDSDomainParticipant (p. 1096) en-
tities that can be created within a single process (address

SPACE))t v e e e e 920
DDS_ThreadSettings_t (The properties of a thread of execution) . 922
DDS_Time_t (Type for time representation) 925

DDS _TimeBasedFilterQosPolicy (Filter that allows a DDS-
DataReader (p.1046) to specify that it is interested only

in (potentially) a subset of the values of the data) 926
DDS_TopicBuiltinTopicData (Entry created when a Topic object

discovered) 930
DDS _TopicBuiltinTopicDataSeq (Instantiates FooSeq (p.1437)

< DDS_TopicBuiltinTopicData (p.930) >) 934

DDS _TopicDataQosPolicy (Attaches a buffer of opaque data that
is distributed by means of Built-in Topics (p.41) during

discovery). . ..o 935
DDS _TopicQos (QoS policies supported by a DDSTopic (p. 1365)
entity) 937
DDS _TransportBuiltinQosPolicy (Specifies which built-in trans-
portsareused) 941
DDS_TransportMulticastMapping_t (Type representing a list of
multicast mapping elements) 943
DDS_TransportMulticastMappingFunction.t 945

DDS _TransportMulticastMappingQosPolicy (Specifies a list of
topic_expressions and multicast addresses that can be used by

an Entity with a specific topic name to receive data). 946
DDS_TransportMulticastMappingSeq (Declares IDL sequence<
DDS_TransportMulticastMapping t (p.943) >). 948

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API
by Doxygen

4.1 Class List

23

DDS_TransportMulticastQosPolicy (Specifies the multicast ad-
dress on which a DDSDataReader (p. 1046) wants to receive
its data. It can also specify a port number as well as a subset
of the available (at the DDSDomainParticipant (p. 1096)
level) transports with which to receive the multicast data)

DDS_TransportMulticastSettings_t (Type representing a list of
multicast locators) Lo Lo L

DDS_TransportMulticastSettingsSeq (Declares IDL sequence<
DDS_TransportMulticastSettings_t (p.951) >)

DDS_TransportPriorityQosPolicy (This QoS policy allows the ap-
plication to take advantage of transports that are capable of
sending messages with different priorities).

DDS_TransportSelectionQosPolicy (Specifies the physical trans-
ports a DDSDataWriter (p.1070) or DDSDataReader
(p- 1046) may use to send or receive data)

DDS_TransportUnicastQosPolicy (Specifies a subset of transports
and a port number that can be used by an Entity to receive
data)

DDS_TransportUnicastSettings_t (Type representing a list of uni-
cast locators) oL

DDS_TransportUnicastSettingsSeq (Declares IDL sequence<
DDS_TransportUnicastSettings_t (p.960) >)

DDS_TypeCode (The definition of a particular data type, which you
can use to inspect the name, members, and other properties
of types generated with rtiddsgen (p. 215) or to modify types
you define yourself at runtime)

DDS_TypeCodeFactory (A singleton factory for creating, copying,
and deleting data type definitions dynamically)

DDS_TypeSupportQosPolicy (Allows you to attach application-
specific values to a DataWriter or DataReader that are passed
to the serialization or deserialization routine of the associated
datatype)

DDS_UnionMember (A description of a member of a union). . . .

DDS_UnionMemberSeq (Defines a sequence of union members)

DDS_UnsignedLongLongSeq (Instantiates FooSeq (p.1437) <
DDS UnsignedLongLong (p.295) >).

DDS_UnsignedLongSeq (Instantiates FooSeq (p.1437) < DDS_-
UnsignedLong (p.295) >)

DDS _UnsignedShortSeq (Instantiates FooSeq (p.1437) < DDS_-
UnsignedShort (p.294) >)

DDS_UserDataQosPolicy (Attaches a buffer of opaque data that
is distributed by means of Built-in Topics (p.41) during
discovery).

DDS_ValueMember (A description of a member of a value type)

DDS_ValueMemberSeq (Defines a sequence of value members) . .

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4+ API
by Doxygen

24

Class Index

DDS_Vendorld_t (<<eXtension>> (p.194) Type used to repre-
sent the vendor of the service implementing the RTPS protocol)1015
DDS_WaitSetProperty_t (<<eXtension>> (p. 194) Specifies the
DDSWaitSet (p. 1379) behavior for multiple trigger events) 1016
DDS _WcharSeq (Instantiates FooSeq (p.1437) < DDS_Wchar

(D-294) >) . . o 1018
DDS_WireProtocolQosPolicy (Specifies the wire-protocol-related
attributes for the DDSDomainParticipant (p.1096)) . . . 1019

DDS _WriteParams t (<<eXtension>> (p.194) Input pa-
rameters for writing with FooDataWriter::write_w_-
params (p.1430), FooDataWriter::dispose_w_params
(p. 1434), FooDataWriter::register_instance_w_params, Foo-
DataWriter::unregister_instance_w_params (p. 1427)

DDS_WriterDataLifecycleQosPolicy (Controls how a DDS-

DataWriter (p.1070) handles the lifecycle of the instances

(keys) that it is registered to manage) 1030
DDS_WstringSeq (Instantiates FooSeq (p.1437) < DDS_Wchar

(D.204)% >) o 1033
DDSCondition (<<interface>> (p. 194) Root class for all the con-

ditions that may be attached to a DDSWaitSet (p.1379)) . 1034
DDSConditionSeq (Instantiates FooSeq (p.1437) < DDSCondi-

tion (. 1034) >) o i 1035
DDSContentFilter (<<interface>> (p.194) Interface to be used

by a custom filter of a DDSContentFilteredTopic (p. 1040))1036
DDSContentFilteredTopic (<<interface>> (p.19/) Specializa-

tion of DDSTopicDescription (p.1373) that allows for

content-based subscriptions) oL 1040
DDSDataReader (<<interface>> (p.19/) Allows the application

to: (1) declare the data it wishes to receive (i.e. make a

subscription) and (2) access the data received by the attached

DDSSubscriber (p.1337)) 1046
DDSDataReaderListener (<<interface>> (p.194) DDSLis-

tener (p.1266) for reader status) 1065
DDSDataReaderSeq (Declares IDL sequence < DDS-

DataReader (p.1046) >) 1069

DDSDataWriter (<<interface>> (p.194) Allows an application
to set the value of the data to be published under a given

DDSTopic (p.1365))« . o oo 1070
DDSDataWriterListener (<<interface>> (p.194) DDSLis-
tener (p.1266) for writer status) 1090

DDSDomainEntity (<<interface>> (p.19/) Abstract base class
for all DDS entities except for the DDSDomainParticipant

(p-1096)) . . o o o 1095
DDSDomainParticipant (<<interface>> (p.194) Container for
all DDSDomainEntity (p.1095) objects) 1096

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API

by Doxygen

4.1 Class List 25

DDSDomainParticipantFactory (<<singleton>> (p.19/)
<<interface>> (p. 194) Allows creation and destruction of

DDSDomainParticipant (p. 1096) objects) 1167
DDSDomainParticipantListener (<<interface>> (p.194) Lis-

tener for participant status) 1191
DDSDynamicDataReader (Reads (subscribes to) objects of type

DDS_DynamicData (p.603)). 1193

DDSDynamicDataTypeSupport (A factory for registering a dy-
namically defined type and creating DDS_DynamicData

(p.-603) objects) 1194

DDSDynamicDataWriter (Writes (publishes) objects of type
DDS_DynamicData (p.603)). 1200
DDSEntity (<<interface>> (p. 19/) Abstract base class for all the
DDS objects that support QoS policies, a listener, and a status
condition) 1201
DDSFlowController (<<interface>> (p.194) A flow controller
is the object responsible for shaping the network traffic by
determining when attached asynchronous DDSDataWriter

(p. 1070) instances are allowed to write data) 1207

DDSGuardCondition (<<interface>> (p.194) A specific
DDSCondition (p.1034) whose trigger_value is com-

pletely under the control of the application) 1211
DDSKeyedOctetsDataReader (<<interface>> (p.194) Instan-

tiates DataReader < DDS_KeyedOctets (p.741) >). . . . 1213
DDSKeyedOctetsDataWriter (<<interface>> (p.194) Instan-

tiates DataWriter < DDS_KeyedOctets (p.741) >). . . . 1224
DDSKeyedOctetsTypeSupport (<<interface>> (p-194)

DDS _KeyedOctets (p.741) type support). 1237
DDSKeyedStringDataReader (<<interface>> (p.19/) Instan-

tiates DataReader < DDS_KeyedString (p.744) >) 1241
DDSKeyedStringDataWriter (<<interface>> (p. 194) Instanti-

ates DataWriter < DDS_KeyedString (p.744) >) 12
DDSKeyedStringTypeSupport (<<interface>> (p.194) Keyed

string type support)o 1262
DDSListener (<<interface>> (p.194) Abstract base class for all

Listener interfaces) 1266

DDSMultiTopic ([Not supported (optional)] <<interface>>
(p-194) A specialization of DDSTopicDescrip-
tion (p.1373) that allows subscriptions that com-
bine/filter /rearrange data coming from several topics
) 1270

DDSOctetsDataReader (<<interface>> (p.194) Instantiates

DataReader < DDS_Octets (p.775) >) 1274

DDSOctetsDataWriter (<<interface>> (p.194) Instantiates
DataWriter < DDS_Octets (p.775) >) 1279

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4+ API
by Doxygen

26 Class Index

DDSOctetsTypeSupport (<<interface>> (p.19/) DDS._-
Octets (p.775) type support) 128

DDSParticipantBuiltinTopicDataDataReader (Instantiates
DataReader < DDS_ParticipantBuiltinTopicData
(D-792) >) . o o 1289

DDSParticipantBuiltinTopicDataTypeSupport (Instantiates
TypeSupport < DDS_ParticipantBuiltinTopicData

(P-792) >) . . o 1290
DDSPropertyQosPolicyHelper (Policy Helpers which facilitate
management of the properties in the input policy) 1291

DDSPublicationBuiltinTopicDataDataReader (Instantiates
DataReader < DDS_PublicationBuiltinTopicData
(D-B15) >) o 1292

DDSPublicationBuiltinTopicDataTypeSupport (Instantiates
TypeSupport < DDS_PublicationBuiltinTopicData

(D-815) >) o o 1293
DDSPublisher (<<interface>> (p.19/) A publisher is the object
responsible for the actual dissemination of publications) . . . 1294
DDSPublisherListener (<<interface>> (p.194) DDSListener
(p.1266) for DDSPublisher (p.1294) status) 1317
DDSPublisherSeq (Declares IDL sequence < DDSPublisher
(D-1204) >) oo 1318

DDSQueryCondition (<<interface>> (p.194) These are spe-
cialised DDSReadCondition (p.1321) objects that allow
the application to also specify a filter on the locally available
data) . ..o 1319
DDSReadCondition (<<interface>> (p.194) Conditions specifi-
cally dedicated to read operations and attached to one DDS-
DataReader (p.1046)) 1321
DDSStatusCondition (<<interface>> (p.194) A specific
DDSCondition (p.1034) that is associated with each

DDSEntity (p.1201))o 1323
DDSStringDataReader (<<interface>> (p.194) Instantiates
DataReader < charx >). 1326
DDSStringDataWriter (<<interface>> (p.194) Instantiates
DataWriter < charx >). 1330
DDSStringTypeSupport (<<interface>> (p.19/) String type
SUPDOTE) v v v o e e 1333

DDSSubscriber (<<interface>> (p.194) A subscriber is the ob-
ject responsible for actually receiving data from a subscription

) 1337
DDSSubscriberListener (<<interface>> (p. 194) DDSListener

(p. 1266) for status about a subscriber) 1360
DDSSubscriberSeq (Declares IDL sequence < DDSSubscriber

(D 1337) >) o 1362

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API
by Doxygen

4.1 Class List 27

DDSSubscriptionBuiltinTopicDataDataReader (Instantiates
DataReader < DDS_SubscriptionBuiltinTopicData
(D-908) >) o 1363

DDSSubscriptionBuiltinTopicDataTypeSupport (Instantiates
TypeSupport < DDS_SubscriptionBuiltinTopicData

(D-908) >) o 1364

DDSTopic (<<interface>> (p. 19/) The most basic description of

the data to be published and subscribed) 136
DDSTopicBuiltinTopicDataDataReader (Instantiates

DataReader < DDS_TopicBuiltinTopicData (p.930)

S) 1371
DDSTopicBuiltinTopicDataTypeSupport (Instantiates

TypeSupport < DDS_TopicBuiltinTopicData (p.930) >) 1372

DDSTopicDescription (<<interface>> (p.194) Base class
for DDSTopic (p.1365), DDSContentFilteredTopic

(p.1040), and DDSMultiTopic (p.1270)) 1373
DDSTopicListener (<<interface>> (p.19/) DDSListener
(p.1266) for DDSTopic (p. 1365) entities) 1376

DDSTypeSupport (<<interface>> (p.19/) An abstract marker
interface that has to be specialized for each concrete user data
type that will be used by the application) 1378
DDSWaitSet (<<interface>> (p.19/) Allows an application
to wait until one or more of the attached DDSCon-
dition (p.1034) objects has a trigger value of DDS_-
BOOLEAN_TRUE (p. 293) or else until the timeout expires

) 1379
Foo (A representative user-defined data type) 1387
FooDataReader (<<interface>> (p.194) <<generic>>

(p. 194) User data type-specific data reader) 1388
FooDataWriter (<<interface>> (p.19/) <<generic>> (p.19/)

User data type specific data writer) 1419

FooSeq (<<interface>> (p.194) <<generic>> (p.194) A type-
safe, ordered collection of elements. The type of these ele-
ments is referred to in this documentation as Foo (p.1387)

) 1437
FooTypeSupport (<<interface>> (p.194) <<generic>>
(p- 194) User data type specific interface) 14

NDDS _Config _LibraryVersion_t (The version of a single library
shipped as part of an RTI Data Distribution Service distribu-

oM) .o 1461
NDDS_Transport_Address_t (Addresses are stored individually as

network-ordered bytes) L. 1463
NDDS _Transport_Property_t (Base structure that must be inher-

ited by derived Transport Plugin classes) 1464

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4+ API
by Doxygen

28

Class Index

NDDS_Transport_Shmem_Property_t (Subclass of NDDS_-
Transport_Property_t (p.1464) allowing specification of
parameters that are specific to the shared-memory transport) 1472

NDDS _Transport_ UDPv4 _Property_t (Configurable IPv4/UDP

Transport-Plugin properties) 1475
NDDS_Transport _UDPv6_Property_t (Configurable IPv6/UDP

Transport-Plugin properties) 1484
NDDSConfigLogger (<<interface>> (p. 194) The singleton type

used to configure RTI Data Distribution Service logging) . . 1492
NDDSConfigVersion (<<interface>> (p.194) The version of an

RTI Data Distribution Service distribution). 1496

NDDSTransportSupport (<<interface>> (p.194) The utility
class used to configure RTT Data Distribution Service plug-

gable transports) Lo Lo 1498
NDDSUtility (Unsupported utility APIs) 1506
TransportAllocationSettings_t (Allocation settings used by various

internal buffers) oo 1507

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API

by Doxygen

Chapter 5

Module Documentation

5.1 Clock Selection

APIs related to clock selection. RTI Data Distribution Service uses clocks to
measure time and generate timestamps.

The middleware uses two clocks, an internal clock and an external clock. The
internal clock is used to measure time and handles all timing in the middleware.
The external clock is used solely to generate timestamps, such as the source
timestamp and the reception timestamp, in addition to providing the time given
by DDSDomainParticipant::get_current_time (p. 1147).

5.1.1 Available Clocks

Two clock implementations are generally available, the monotonic clock and the
realtime clock.

The monotonic clock provides times that are monotonic from a clock that is not
adjustable. This clock is useful to use in order to not be subject to changes in
the system or realtime clock, which may be adjusted by the user or via time
synchronization protocols. However, this time generally starts from an arbitrary
point in time, such as system startup. Note that this clock is not available for
all architectures. Please see the Platform Notes for the architectures on which
it is supported. For the purposes of clock selection, this clock can be referenced
by the name ”monotonic”.

The realtime clock provides the realtime of the system. This clock may generally
be monotonic but may not be guaranteed to be so. It is adjustable and may be
subject to small and large changes in time. The time obtained from this clock
is generally a meaningful time in that it is the amount of time from a known

30 Module Documentation

epoch. For the purposes of clock selection, this clock can be referenced by the
names "realtime” or ”system”.

5.1.2 Clock Selection Strategy

By default, both the internal and external clocks use the realtime clock. If you
want your application to be robust to changes in the system time, you may use
the monotonic clock as the internal clock, and leave the system clock as the
external clock. Note, however, that this may slightly diminish performance in
that both the send and receive paths may need to obtain times from both clocks.
Since the monotonic clock is not available on all architectures, you may want
to specify ”monotonic,realtime” for the internal_clock (see the table below). By
doing so, the middleware will attempt to use the monotonic clock if available,
and will fall back to the realtime clock if the monotonic clock is not available.

If you want your application to be robust to changes in the system time, you
are not relying on source timestamps, and you want to avoid obtaining times
from both clocks, you may use the monotonic clock for both the internal and
external clocks.

5.1.3 Configuring Clock Selection

To configure the clock selection, use the PROPERTY (p.426) QoS policy
associated with the DDSDomainParticipant (p. 1096).

See also:

DDS_PropertyQosPolicy (p.810)

The following table lists the supported clock selection properties.

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API
by Doxygen

5.1 Clock Selection

31

Property

Description

dds.clock.external_clock

Comma-delimited list of clocks to
use for the external clock, in the
order of preference. Valid clock
names are ”realtime”, ”system”,
and ”monotonic”.

Default: "realtime”

dds.clock.internal_clock

Comma-delimited list of clocks to
use for the internal clock, in the
order of preference. Valid clock
names are “realtime”, ”system”,
and ”monotonic”.

Default: ”realtime”

Table 5.1: Clock Selection Properties

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++ API

by Doxygen

32 Module Documentation

5.2 Domain Module

Contains the DDSDomainParticipant (p.1096) class that acts as an entry-
point of RTI Data Distribution Service and acts as a factory for many of the
classes. The DDSDomainParticipant (p.1096) also acts as a container for
the other objects that make up RTI Data Distribution Service.

Modules

" DomainParticipantFactory

DDSDomainParticipantFactory (p. 1167) entity and associated elements

" DomainParticipants

DDSDomainParticipant (p. 1096) entity and associated elements

" Built-in Topics

Built-in objects created by RTI Data Distribution Service but accessible to
the application.

Defines

" #define DDSTheParticipantFactory DDSDomainParticipantFac-
tory::get_instance()

Can be used as an alias for the singleton factory returned by the operation
DDSDomainParticipantFactory::get_instance() (p. 1171).

Typedefs

" typedef DDS_.DOMAINID_TYPE_NATIVE DDS_Domainld_t

An integer that indicates in which domain a DDSDomainParticipant
(p- 1096) communicates.

5.2.1 Detailed Description

Contains the DDSDomainParticipant (p.1096) class that acts as an entry-
point of RTT Data Distribution Service and acts as a factory for many of the
classes. The DDSDomainParticipant (p.1096) also acts as a container for
the other objects that make up RTI Data Distribution Service.

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API
by Doxygen

5.2 Domain Module 33

5.2.2 Define Documentation

5.2.2.1 #define DDSTheParticipantFactory DDSDomainPartici-
pantFactory::get_instance()

Can be used as an alias for the singleton factory returned by the operation
DDSDomainParticipantFactory::get_instance() (p.1171).

See also:

DDSDomainParticipantFactory::get_instance (p. 1171)

Examples:

HelloWorld_publisher.cxx, and HelloWorld_subscriber.cxx.

5.2.3 Typedef Documentation

5.2.3.1 typedef DDS_DOMAINID TYPE_NATIVE
DDS_Domainld_t

An integer that indicates in which domain a DDSDomainParticipant
(p-1096) communicates.

Participants with the same DDS_Domainld_t (p.33) are said to be in the
same domain, and can thus communicate with one another.

The lower limit for a domain ID is 0. The upper limit for a domain ID is de-
termined by the guidelines stated in DDS_RtpsWellKnownPorts_t (p.879)
(specifically DDS_RtpsWellKnownPorts_t::domain_id_gain (p.881))

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4+ API
by Doxygen

34 Module Documentation

5.3 DomainParticipantFactory

DDSDomainParticipantFactory (p.1167) entity and associated elements

Classes

" class DDSDomainParticipantFactory

<<singleton>> (p.194) <<interface>> (p.194) Allows creation and de-
struction of DDSDomainParticipant (p. 1096) objects.

~ struct DDS_DomainParticipantFactoryQos
QoS policies supported by a DDSDomainParticipantFactory (p. 1167).

Variables

~ struct DDS_DomainParticipantQos DDS_PARTICIPANT_QOS _-
DEFAULT

Special value for creating a DomainParticipant with default QoS.

5.3.1 Detailed Description

DDSDomainParticipantFactory (p.1167) entity and associated elements

5.3.2 Variable Documentation

5.3.2.1 struct DDS_DomainParticipantQos
DDS_PARTICIPANT _QOS_DEFAULT

Special value for creating a DomainParticipant with default QoS.

When used in DDSDomainParticipantFactory::create_participant
(p. 1184), this special value is used to indicate that the DDSDomainPartici-
pant (p.1096) should be created with the default DDSDomainParticipant
(p-1096) QoS by means of the operation DDSDomainParticipantFac-
tory::get_default_participant_qos() (p.1174) and using the resulting QoS
to create the DDSDomainParticipant (p.1096).

When used in DDSDomainParticipantFactory::set_default_-
participant_qos (p.1173), this special value is used to indicate that the
default QoS should be reset back to the initial value that would be used if the

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API
by Doxygen

5.3 DomainParticipantFactory 35

DDSDomainParticipantFactory::set_default_participant_qos (p.1173)
operation had never been called.

When used in DDSDomainParticipant::set_qos (p. 1152), this special value
is used to indicate that the QoS of the DDSDomainParticipant (p.1096)
should be changed to match the current default QoS set in the DDSDomain-
ParticipantFactory (p.1167) that the DDSDomainParticipant (p.1096)
belongs to.

RTT Data Distribution Service treats this special value as a constant.

Note: You cannot use this value to get the default QoS values from the Do-
mainParticipant factory; for this purpose, use DDSDomainParticipantFac-
tory::get_default_participant_qos (p. 1174).

See also:

NDDS_DISCOVERY _PEERS (p.379)
DDSDomainParticipantFactory::create_participant() (p. 1184)
DDSDomainParticipantFactory::set_default_participant_qos()
(p.1173)

DDSDomainParticipant::set_qos() (p.1152)

Examples:

HelloWorld _publisher.cxx, and HelloWorld_subscriber.cxx.

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4+ API
by Doxygen

36 Module Documentation

5.4 DomainParticipants

DDSDomainParticipant (p.1096) entity and associated elements

Classes

" class DDSDomainParticipantListener

<<interface>> (p.194) Listener for participant status.

" class DDSDomainParticipant

<<interface>> (p.194) Container for all DDSDomainEntity (p. 1095)
objects.

~ struct DDS_DomainParticipantQos
QoS policies supported by a DDSDomainParticipant (p. 1096) entity.

Variables

~ struct DDS_TopicQos DDS_TOPIC_QOS_DEFAULT
Special value for creating a DDSTopic (p. 1365) with default QoS.

" struct DDS_PublisherQos DDS_PUBLISHER_QOS_DEFAULT
Special value for creating a DDSPublisher (p. 1294) with default QoS.

" struct DDS_SubscriberQos DDS_SUBSCRIBER_QOS _-
DEFAULT

Special value for creating a DDSSubscriber (p. 1337) with default QoS.

struct DDS_FlowControllerProperty_t DDS_FLOW _-
CONTROLLER_PROPERTY_DEFAULT

<<eXtension>> (p.194) Special value for creating a DDSFlowCon-
troller (p. 1207) with default property.

const char xconst DDS_SQLFILTER_NAME

<<eXtension>> (p.194) The name of the built-in SQL filter that can be
used with ContentFilteredTopics and MultiChannel DataWriters.

const char xconst DDS_STRINGMATCHFILTER_NAME

<<eXtension>> (p.194) The name of the built-in StringMatch filter that
can be used with ContentFilteredTopics and MultiChannel DataWriters.

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API
by Doxygen

5.4 DomainParticipants 37

5.4.1 Detailed Description

DDSDomainParticipant (p.1096) entity and associated elements

5.4.2 Variable Documentation
5.4.2.1 struct DDS _TopicQos DDS_TOPIC_QOS_DEFAULT

Special value for creating a DDSTopic (p. 1365) with default QoS.

When used in DDSDomainParticipant::create_topic (p. 1131), this special
value is used to indicate that the DDSTopic (p. 1365) should be created with
the default DDSTopic (p. 1365) QoS by means of the operation get_default_-
topic_qos and using the resulting QoS to create the DDSTopic (p. 1365).

When used in DDSDomainParticipant::set_default_topic_qos (p.1118),
this special value is used to indicate that the default QoS should be reset back
to the initial value that would be used if the DDSDomainParticipant::set _-
default_topic_qos (p. 1118) operation had never been called.

When used in DDSTopic::set_qos (p. 1367), this special value is used to in-
dicate that the QoS of the DDSTopic (p.1365) should be changed to match
the current default QoS set in the DDSDomainParticipant (p. 1096) that the
DDSTopic (p. 1365) belongs to.

Note: You cannot use this value to get the default QoS values for a Topic; for this
purpose, use DDSDomainParticipant::get_default_topic_qos (p.1117).

See also:

DDSDomainParticipant::create_topic (p.1131)
DDSDomainParticipant::set_default_topic_qos (p.1118)
DDSTopic::set_qos (p. 1367)

Examples:

HelloWorld_publisher.cxx, and HelloWorld_subscriber.cxx.

5.4.2.2 struct DDS_PublisherQos DDS_PUBLISHER_QOS _-
DEFAULT

Special value for creating a DDSPublisher (p. 1294) with default QoS.

When used in DDSDomainParticipant::create_publisher (p.1125), this
special value is used to indicate that the DDSPublisher (p. 1294) should be cre-
ated with the default DDSPublisher (p. 1294) QoS by means of the operation

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4+ API
by Doxygen

38 Module Documentation

get_default_publisher_qos and using the resulting QoS to create the DDSPub-
lisher (p.1294).

When used in DDSDomainParticipant::set_default_publisher_qos
(p.1120), this special value is used to indicate that the default QoS should
be reset back to the initial value that would be used if the DDSDomain-
Participant::set_default_publisher_qos (p.1120) operation had never been
called.

When used in DDSPublisher::set_qos (p. 1314), this special value is used to
indicate that the QoS of the DDSPublisher (p.1294) should be changed to
match the current default QoS set in the DDSDomainParticipant (p. 1096)
that the DDSPublisher (p.1294) belongs to.

Note: You cannot use this value to get the default QoS values for a Publisher;
for this purpose, use DDSDomainParticipant::get_default_publisher_qos
(p. 1120).

See also:

DDSDomainParticipant::create_publisher (p. 1125)
DDSDomainParticipant::set_default_publisher_qgos (p. 1120)
DDSPublisher::set_qos (p. 1314)

Examples:

HelloWorld _publisher.cxx.

5.4.2.3 struct DDS_SubscriberQos DDS_SUBSCRIBER_QOS _-
DEFAULT

Special value for creating a DDSSubscriber (p. 1337) with default QoS.

When used in DDSDomainParticipant::create_subscriber (p.1128), this
special value is used to indicate that the DDSSubscriber (p.1337) should
be created with the default DDSSubscriber (p.1337) QoS by means of the
operation get_default_subscriber_qos and using the resulting QoS to create the
DDSSubscriber (p. 1337).

When wused in DDSDomainParticipant::set_default_subscriber_qos
(p. 1123), this special value is used to indicate that the default QoS should be
reset back to the initial value that would be used if the DDSDomainPar-
ticipant::set_default_subscriber_qos (p.1123) operation had never been
called.

When used in DDSSubscriber::set_qos (p. 1356), this special value is used to
indicate that the QoS of the DDSSubscriber (p. 1337) should be changed to
match the current default QoS set in the DDSDomainParticipant (p. 1096)
that the DDSSubscriber (p. 1337) belongs to.

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API
by Doxygen

5.4 DomainParticipants 39

Note: You cannot use this value to get the default QoS values for a Subscriber;
for this purpose, use DDSDomainParticipant::get_default_subscriber_-
qos (p.1122).

See also:

DDSDomainParticipant::create_subscriber (p. 1128)
DDSDomainParticipant::get_default_subscriber_qos (p. 1122)
DDSSubscriber::set_qos (p. 1356)

Examples:

HelloWorld_subscriber.cxx.

5.4.2.4 struct DDS_FlowControllerProperty_t
DDS_FLOW_CONTROLLER PROPERTY _DEFAULT

<<eXtension>> (p.194) Special value for creating a DDSFlowController
(p- 1207) with default property.

When used in DDSDomainParticipant::create_flowcontroller (p.1140),
this special value is used to indicate that the DDSFlowController (p.1207)
should be created with the default DDSFlowController (p. 1207) property by
means of the operation get_default_flowcontroller_property and using the result-
ing QoS to create the DDS_FlowControllerProperty_t (p. 725).

When wused in DDSDomainParticipant::set_default_flowcontroller -
property (p.1111), this special value is used to indicate that the default
QoS should be reset back to the initial value that would be used if the
DDSDomainParticipant::set_default_flowcontroller_property (p.1111)
operation had never been called.

When used in DDSFlowController::set_property (p.1208), this special
value is used to indicate that the property of the DDSFlowController
(p-1207) should be changed to match the current default property set in the
DDSDomainParticipant (p. 1096) that the DDSFlowController (p.1207)
belongs to.

Note: You cannot use this value to get the default property values for a Flow-
Controller; for this purpose, use .

See also:

DDSDomainParticipant::create_flowcontroller (p.1140)
DDSDomainParticipant::set_default_flowcontroller_property
(p.1111)

DDSFlowController::set_property (p.1208)

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4+ API
by Doxygen

40 Module Documentation

5.4.2.5 const charx const DDS_SQLFILTER_NAME

<<eXtension>> (p.194) The name of the built-in SQL filter that can be
used with ContentFilteredTopics and MultiChannel DataWriters.

See also:

Queries and Filters Syntax (p.203)

5.4.2.6 const charx const DDS_STRINGMATCHFILTER_NAME
<<eXtension>> (p.194) The name of the built-in StringMatch filter that
can be used with ContentFilteredTopics and MultiChannel DataWriters.

The StringMatch Filter is a subset of the SQL filter; it only supports the
MATCH relational operator on a single string field.

See also:

Queries and Filters Syntax (p.203)

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API
by Doxygen

5.5 Built-in Topics 41

5.5 Built-in Topics

Built-in objects created by RTT Data Distribution Service but accessible to the
application.

Modules

" Participant Built-in Topics

Builtin topic for accessing information about the DomainParticipants discov-
ered by RTI Data Distribution Service.

" Topic Built-in Topics

Builtin topic for accessing information about the Topics discovered by RTI
Data Distribution Service.

" Publication Built-in Topics

Builtin topic for accessing information about the Publications discovered by
RTI Data Distribution Service.

" Subscription Built-in Topics

Builtin topic for accessing information about the Subscriptions discovered by
RTI Data Distribution Service.

Classes

~ struct DDS_Locator_t

<<eXtension>> (p.194) Type used to represent the addressing information
needed to send a message to an RTPS Endpoint using one of the supported
transports.

" struct DDS_LocatorSeq
Declares IDL sequence < DDS_Locator_t (p. 759) >.

~ struct DDS_Protocol Version_t

<<eXtension>> (p.194) Type used to represent the version of the RTPS
protocol.

~ struct DDS_Vendorld_t

<<eXtension>> (p.194) Type used to represent the vendor of the service
implementing the RTPS protocol.

~ struct DDS_ProductVersion_t

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4+ API
by Doxygen

42 Module Documentation

<<eXtension>> (p.194) Type used to represent the current version of RTI
Data Distribution Service.

" struct DDS_BuiltinTopicKey _t
The key type of the built-in topic types.

~ struct DDS_ContentFilterProperty_t

<<eXtension>> (p.194) Type used to provide all the required information
to enable content filtering.

Defines

" #define DDS_LOCATOR_ADDRESS_ LENGTH_MAX 16

Declares length of address field in locator.

" #define DDS_PROTOCOLVERSION_1.0{ 1,0}

The protocol version 1.0.

~ #define DDS_PROTOCOLVERSION_ 1.1 { 1,1 }

The protocol version 1.1.

~ #define DDS_PROTOCOLVERSION_1.2 { 1,2 }

The protocol version 1.2.

" #define DDS_PROTOCOLVERSION_20{ 2,0}

The protocol version 2.0.

~ #define DDS_PROTOCOLVERSION 2.1 { 2,1 }

The protocol version 2.1.

~ #define DDS_PROTOCOLVERSION { 2,1 }

The most recent protocol version. Currently 1.2.

" #define DDS_VENDOR_ID_LENGTH_MAX 2
Length of vendor id.

~ #define DDS_PRODUCTVERSION_UNKNOWN { 0, 0, 0", 0 }

The value used when the product version is unknown.

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++ API
by Doxygen

5.5 Built-in Topics 43

Variables

~ struct DDS_Locator_.t DDS_LOCATOR_INVALID

An tnvalid locator.

" const DDS_Long DDS_LOCATOR_KIND_INVALID

Locator of this kind is invalid.

" const DDS_UnsignedLong DDS_LOCATOR_PORT_INVALID

An invalid port.

" const DDS_Octet DDS_LOCATOR_ADDRESS_INVALID [DDS -
LOCATOR-ADDRESS_LENGTH_-MAX]

An invalid address.

" const DDS_Long DDS_LOCATOR_KIND _UDPv4
A locator for a UDPv4 address.

" const DDS_Long DDS_LOCATOR_KIND_SHMEM

A locator for an address acessed via shared memory.

" const DDS_Long DDS_LOCATOR_KIND _UDPv6
A locator for a UDPv6 address.

" const DDS_Long DDS_LOCATOR_KIND_RESERVED

Locator of this kind is reserved.

5.5.1 Detailed Description

Built-in objects created by RTT Data Distribution Service but accessible to the
application.

RTT Data Distribution Service must discover and keep track of the remote en-
tities, such as new participants in the domain. This information may also be
important to the application, which may want to react to this discovery, or else
access it on demand.

A set of built-in topics and corresponding DDSDataReader (p. 1046) objects
are introduced to be used by the application to access these discovery informa-
tion.

The information can be accessed as if it was normal application data. This allows
the application to know when there are any changes in those values by means
of the DDSListener (p.1266) or the DDSCondition (p. 1034) mechanisms.

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++ API
by Doxygen

44 Module Documentation

The built-in data-readers all belong to a built-in DDSSubscriber (p. 1337),
which can be retrieved by using the method DDSDomainParticipant::get_-
builtin_subscriber (p.1143). The built-in DDSDataReader (p.1046) ob-
jects can be retrieved by using the operation DDSSubscriber::lookup_-
datareader (p.1351), with the topic name as a parameter.

Built-in entities have default listener settings as well. The built-in DDSSub-
scriber (p. 1337) and all of its built-in topics have 'nil’ listeners with all statuses
appearing in their listener masks (acting as a NO-OP listener that does not reset
communication status). The built-in DataReaders have null listeners with no
statuses in their masks.

The information that is accessible about the remote entities by means of the
built-in topics includes all the QoS policies that apply to the corresponding
remote Entity. This QoS policies appear as normal ’data’ fields inside the data
read by means of the built-in Topic. Additional information is provided to
identify the Entity and facilitate the application logic.

The built-in DDSDataReader (p.1046) will not provide data pertaining to
entities created from the same DDSDomainParticipant (p.1096) under the
assumption that such entities are already known to the application that created
them.

Refer to DDS_ParticipantBuiltinTopicData (p.792), DDS -
TopicBuiltinTopicData (p.930), DDS_SubscriptionBuiltinTopicData
(p.908) and DDS_PublicationBuiltinTopicData (p.815) for a description
of all the built-in topics and their contents.

The QoS of the built-in DDSSubscriber (p.1337) and DDSDataReader
(p- 1046) objects is given by the following table:

5.5.2 Define Documentation
5.5.2.1 #define DDS_LOCATOR_ADDRESS_LENGTH_MAX 16

Declares length of address field in locator.

5.5.2.2 #define DDS_PROTOCOLVERSION_1.0 { 1, 0 }

The protocol version 1.0.

5.5.2.3 #define DDS_ PROTOCOLVERSION_ 1.1 { 1,1}

The protocol version 1.1.

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API
by Doxygen

5.5 Built-in Topics 45

5.5.2.4 #define DDS_PROTOCOLVERSION_12 { 1,2}

The protocol version 1.2.

5.5.2.5 #define DDS_ PROTOCOLVERSION 20 { 2,0}

The protocol version 2.0.

5.5.2.6 #define DDS_PROTOCOLVERSION 21 { 2,1 }

The protocol version 2.1.

5.5.2.7 #tdefine DDS_PROTOCOLVERSION { 2, 1 }

The most recent protocol version. Currently 1.2.

5.5.2.8 #define DDS_VENDOR_ID_LENGTH_MAX 2

Length of vendor id.

5.5.2.9 #define DDS_PRODUCTVERSION_UNKNOWN { 0, 0,
’0%, 0 }

The value used when the product version is unknown.

5.5.3 Variable Documentation
5.5.3.1 struct DDS_Locator_.t DDS_LOCATOR_INVALID

An invalid locator.

5.5.3.2 const DDS_Long DDS_LOCATOR_KIND_INVALID

Locator of this kind is invalid.

5.5.3.3 const DDS _UnsignedLong DDS_LOCATOR_PORT -
INVALID

An invalid port.

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4+ API
by Doxygen

46 Module Documentation

5.5.3.4 const DDS_Octet DDS_LOCATOR_ADDRESS _-
INVALID[DDS _ LOCATOR_ADDRESS LENGTH_MAX]

An invalid address.

5.5.3.5 const DDS_Long DDS_LOCATOR_KIND _UDPv4

A locator for a UDPv4 address.

5.5.3.6 const DDS_Long DDS_LOCATOR_KIND_SHMEM

A locator for an address acessed via shared memory.

5.5.3.7 const DDS_Long DDS_LOCATOR_KIND_UDPv6

A locator for a UDPv6 address.

5.5.3.8 const DDS_Long DDS_LOCATOR_KIND_RESERVED

Locator of this kind is reserved.

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API
by Doxygen

5.5 Built-in Topics 47
QoS Value
DDS_UserDataQosPolicy 0-length sequence
(p.1010)

DDS_TopicDataQosPolicy 0-length sequence
(p-935)
DDS_GroupDataQosPolicy 0-length sequence
(p-731)
DDS _DurabilityQosPolicy DDS_TRANSIENT_LOCAL -
(p-595) DURABILITY_QOS
(p. 342)
DDS _- Does not apply as

DurabilityServiceQosPolicy
(p-599)

DDS_DurabilityQosPolicyKind
(p-341) is DDS_TRANSIENT _-
LOCAL_DURABILITY_QOS
(p. 342)

DDS_PresentationQosPolicy
(p-799)

access_scope = DDS_TOPIC _-
PRESENTATION_QOS (p.344)
coherent_access =
DDS_BOOLEAN _FALSE
(p.294) ordered_access =
DDS_BOOLEAN _FALSE
(p-294)

DDS _DeadlineQosPolicy (p.549)

Period = infinite

DDS_LatencyBudgetQosPolicy

duration = 0

(p. 747)

DDS_OwnershipQosPolicy DDS_SHARED _-

(p-783) OWNERSHIP_QOS
(p. 348)

DDS - value = 0

OwnershipStrengthQosPolicy

(p-790)

DDS _LivelinessQosPolicy
(p.755)

kind = DDS_AUTOMATIC _-
LIVELINESS_QOS (p.351)
lease_duration = 0

DDS -
TimeBasedFilterQosPolicy
(p- 926)

minimum_separation = 0

DDS_PartitionQosPolicy (p.796)

0-length sequence

DDS_ReliabilityQosPolicy

kind = DDS_RELIABLE -

(p. 841) RELIABILITY _QOS (p.355)
max_blocking_time = 100
milliseconds

DDS_- DDS_BY_RECEPTION -

DestinationOrderQosPolicy TIMESTAMP _-

(p.552) DESTINATIONORDER_QOS
(p-357)

kind = DDS KEEP _LAST -

DDS HistoryQosPolicy (p 734)

by Doxygen

Generated on Sun Oct 23 23:13:26 2011 for

RS TORY)OS §e5visy GostiART
1

DDS_ResourceLimitsQosPolicy
(p- 855)

max_samples =
DDS_LENGTH_UNLIMITED
(p. 362) max_instances =
DDS_LENGTH_UNLIMITED
(p- 362) max_samples_per_instance =
DDS_LENGTH_UNLIMITED

N\

48 Module Documentation

5.6 Topic Module

Contains the DDSTopic (p.1365), DDSContentFilteredTopic (p.1040),
and DDSMultiTopic (p. 1270) classes, the DDSTopicListener (p.1376) in-
terface, and more generally, all that is needed by an application to define
DDSTopic (p. 1365) objects and attach QoS policies to them.

Modules

" Topics
DDSTopic (p. 1365) entity and associated elements

" User Data Type Support

Defines generic classes and macros to support user data types.

" Type Code Support

<<eXtension>> (p.194) A DDS_TypeCode (p.963) is a mechanism for
representing a type at runtime. RTI Data Distribution Service can use type
codes to send type definitions on the network. You will need to understand
this API in order to use the Dynamic Data (p. 75) capability or to inspect
the type information you receive from remote readers and writers.

" Built-in Types

<<eXtension>> (p.194) RTI Data Distribution Service provides a set of
very simple data types for you to use with the topics in your application.

" Dynamic Data

<<eXtension>> (p.194) The Dynamic Data API provides a way to inter-
act with arbitrarily complex data types at runtime without the need for code
generation.

DDS-Specific Primitive Types
Basic DDS value types for use in user data types.

5.6.1 Detailed Description

Contains the DDSTopic (p.1365), DDSContentFilteredTopic (p.1040),
and DDSMultiTopic (p. 1270) classes, the DDSTopicListener (p. 1376) in-
terface, and more generally, all that is needed by an application to define
DDSTopic (p. 1365) objects and attach QoS policies to them.

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API
by Doxygen

5.7 Topics 49

5.7 Topics

DDSTopic (p. 1365) entity and associated elements

Classes

" class DDSTopicDescription

<<interface>> (p.194) Base class for DDSTopic (p.1365), DDSCon-
tentFiltered Topic (p. 1040), and DDSMultiTopic (p. 1270).

" class DDSContentFiltered Topic

<<interface>> (p.194) Specialization of DDSTopicDescription
(p. 1373) that allows for content-based subscriptions.

" class DDSMultiTopic

[Not supported (optional)/ <<interface>> (p.194) A specialization
of DDSTopicDescription (p.1373) that allows subscriptions that com-
bine/filter /rearrange data coming from several topics.

" class DDSTopic

<<interface>> (p.194) The most basic description of the data to be pub-
lished and subscribed.

class DDSTopicListener

<<interface>> (p.194) DDSListener (p. 1266) for DDSTopic (p. 1565)
entities.

class DDSContentFilter

<<interface>> (p.194) Interface to be used by a custom filter of a
DDSContentFilteredTopic (p. 1040)

struct DDS _InconsistentTopicStatus
DDS_INCONSISTENT_-TOPIC_STATUS (p. 316)

" struct DDS_TopicQos
QoS policies supported by a DDSTopic (p. 1365) entity.

5.7.1 Detailed Description

DDSTopic (p. 1365) entity and associated elements

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++ API
by Doxygen

50 Module Documentation

5.8 User Data Type Support

Defines generic classes and macros to support user data types.

Classes

" struct FooTypeSupport

<<interface>> (p.194) <<generic>> (p.194) User data type specific in-
terface.

" class DDSTypeSupport

<<interface>> (p.194) An abstract marker interface that has to be spe-
ctalized for each concrete user data type that will be used by the application.

~ struct Foo

A representative user-defined data type.

~ struct DDS_InstanceHandleSeq
Instantiates FooSeq (p.1437) < DDS_InstanceHandle_t (p.52) > .

Defines

" #define DDS_TYPESUPPORT_CPP(TTypeSupport, TData)

Declares the interface required to support a user data type.

" #define DDS_DATAWRITER _CPP_METP (TDataWriter, TData)

Declares the interface required to support a user data type specific data writer.

" #define DDS_ DATAREADER _CPP_METP(TDataReader,
TDataSeq, TData)

Declares the interface required to support a user data type-specific data
reader.

Typedefs

" typedef DDS_HANDLE_TYPE_NATIVE DDS _InstanceHandle_t

Type definition for an instance handle.

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API
by Doxygen

5.8 User Data Type Support 51

Functions

" DDS_Boolean DDS _InstanceHandle_equals (const DDS_-
InstanceHandle_t xself, const DDS_InstanceHandle_t xother)

Compares this instance handle with another handle for equality.

"~ DDS_Boolean DDS _InstanceHandle_is_nil (const DDS -
InstanceHandle_t xself)

Compare this handle to DDS_HANDLE_NIL (p. 54).

Variables

~ const DDS_InstanceHandle_.t DDS_HANDLE_NIL
The NIL instance handle.

5.8.1 Detailed Description

Defines generic classes and macros to support user data types.

DDS specifies strongly typed interfaces to read and write user data. For each
data class defined by the application, there is a number of specialised classes
that are required to facilitate the type-safe interaction of the application with
RTT Data Distribution Service.

RTI Data Distribution Service provides an automatic means to generate all
these type-specific classes with the rtiddsgen (p.215) utility. The complete
set of automatic classes created for a hypothetical user data type named Foo
(p. 1387) are shown below.

The macros defined here declare the strongly typed APIs needed to support an
arbitrary user defined data of type Foo (p.1387).

See also:

rtiddsgen (p.215)

5.8.2 Define Documentation

5.8.2.1 #define DDS_TYPESUPPORT_CPP(TTypeSupport,
TData)

Declares the interface required to support a user data type.

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4+ API
by Doxygen

52 Module Documentation

Defines:

Foo TypeSupport (p.1452) TypeSupport of type Foo (p.1387), i.e.
FooTypeSupport (p.1452)

Examples:

HelloWorldSupport.cxx.

5.8.2.2 #define DDS_DATAWRITER_CPP_METP(TDataWriter,
TData)

Declares the interface required to support a user data type specific data writer.
Uses:
Foo TypeSupport (p. 1452) user data type, Foo (p.1387)

Defines:

FooDataWriter (p.1419) DDSDataWriter (p.1070) of type Foo
(p.1387), i.e. FooDataWriter (p.1419)

5.8.2.3 #define DDS_DATAREADER_CPP_METP(TDataReader,
TDataSeq, TData)

Declares the interface required to support a user data type-specific data reader.

Uses:

Foo TypeSupport (p.1452) user data type, Foo (p.1387) FooSeq
(p. 1437) sequence of user data type, sequence<: :Foo>

Defines:

FooDataReader (p.1388) DDSDataReader (p.1046) of type Foo
(p.1387), i.e. FooDataReader (p.1388)

See also:

FooSeq (p. 1437)

5.8.3 Typedef Documentation

5.8.3.1 typedef DDS_HANDLE_TYPE_NATIVE
DDS _InstanceHandle_t

Type definition for an instance handle.

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API
by Doxygen

5.8 User Data Type Support 53

Handle to identiy different instances of the same DDSTopic (p.1365) of a
certain type.

See also:

FooDataWriter::register_instance (p. 1421)
DDS_Samplelnfo::instance_handle (p.891)

Examples:

HelloWorld _publisher.cxx.

5.8.4 Function Documentation

5.8.4.1 DDS_Boolean DDS InstanceHandle_equals (const
DDS _InstanceHandle_t * self, const DDS _InstanceHandle_t
* other)

Compares this instance handle with another handle for equality.

Parameters:

self <<in>> (p. 195) This handle. Cannot be NULL.

other <<in>> (p.195) The other handle to be compared with this han-
dle. Cannot be NULL.

Returns:

DDS_BOOLEAN_TRUE (p.293) if the two handles have equal values,
or DDS_BOOLEAN _FALSE (p.294) otherwise.

See also:

DDS _InstanceHandle_is_nil (p. 53)

5.8.4.2 DDS_Boolean DDS InstanceHandle_is_nil (const
DDS _InstanceHandle_t x self)

Compare this handle to DDS_HANDLE_NIL (p. 54).

Returns:

DDS_BOOLEAN _TRUE (p.293) if the given instance handle is equal
to DDS_HANDLE_NIL (p.54) or DDS_BOOLEAN_FALSE (p.294)
otherwise.

See also:

DDS _InstanceHandle_equals (p. 53)

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4+ API
by Doxygen

54 Module Documentation

5.8.5 Variable Documentation

5.8.5.1 const DDS_InstanceHandle_.t DDS_HANDLE_NIL

The NIL instance handle.
Special DDS_InstanceHandle_t (p. 52) value

See also:

DDS_InstanceHandle_is_nil (p. 53)

Examples:

HelloWorld _publisher.cxx.

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API
by Doxygen

5.9 Type Code Support 55

5.9 Type Code Support

<<eXtension>> (p.194) A DDS_TypeCode (p. 963) is a mechanism for
representing a type at runtime. RTI Data Distribution Service can use type
codes to send type definitions on the network. You will need to understand this
API in order to use the Dynamic Data (p.75) capability or to inspect the
type information you receive from remote readers and writers.

Classes

~ struct DDS_TypeCode

The definition of a particular data type, which you can use to inspect the
name, members, and other properties of types generated with rtiddsgen
(p- 215) or to modify types you define yourself at runtime.

struct DDS_StructMember

A description of a member of a struct.

struct DDS_StructMemberSeq

Defines a sequence of struct members.

~ struct DDS_UnionMember

A description of a member of a union.

struct DDS_UnionMemberSeq

Defines a sequence of union members.

struct DDS_EnumMember

A description of a member of an enumeration.

struct DDS_EnumMemberSeq

Defines a sequence of enumerator members.

~ struct DDS_ValueMember

A description of a member of a value type.

~ struct DDS_ValueMemberSeq

Defines a sequence of value members.

struct DDS_TypeCodeFactory

A singleton factory for creating, copying, and deleting data type definitions
dynamically.

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4+ API
by Doxygen

56 Module Documentation

Defines

" #define DDS_TYPECODE_MEMBER_ID_INVALID
A sentinel indicating an invalid DDS_TypeCode (p. 963) member ID.

" #define DDS_TYPECODE_INDEX_INVALID
A sentinel indicating an invalid DDS_TypeCode (p. 963) member indez.

" #define DDS_TYPECODE_NOT_BITFIELD
Indicates that a member of a type is not a bitfield.

" #define DDS_VM_NONE

Constant used to indicate that a value type has no modifiers.

" #define DDS_VM_CUSTOM

Constant used to indicate that a value type has the custom modifier.

" #define DDS_VM_ABSTRACT

Constant used to indicate that a value type has the abstract modifier.

" #define DDS_VM_TRUNCATABLE

Constant used to indicate that a value type has the truncatable modifier.

" #define DDS_PRIVATE_ MEMBER

Constant used to indicate that a value type member is private.

" #define DDS_PUBLIC_MEMBER

Constant used to indicate that a value type member is public.

" #define DDS_TYPECODE_NONKEY_MEMBER

A flag indicating that a type member is optional and not part of the key.

~ #define DDS_TYPECODE_KEY_MEMBER
A flag indicating that a type member is part of the key for that type, and

therefore required.

" #define DDS_TYPECODE_NONKEY_REQUIRED MEMBER

A flag indicating that a type member is not part of the key but is nevertheless
required.

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API
by Doxygen

5.9 Type Code Support

57

Typedefs

" typedef short DDS_ValueModifier

Modifier type for a value type.

" typedef short DDS_Visibility

Type to indicate the visibility of a value type member.

Enumerations

enum DDS_TCKind {
DDS_TK_NULL,
DDS_TK_SHORT,
DDS_TK_LONG,
DDS_TK_USHORT,
DDS_TK_ULONG,
DDS_TK_FLOAT,
DDS_TK_DOUBLE,
DDS_TK_BOOLEAN,
DDS_TK_CHAR,
DDS_TK_OCTET,
DDS_TK_STRUCT,
DDS_TK_UNION,
DDS_TK_ENUM,
DDS_TK_STRING,
DDS_TK _SEQUENCE,
DDS_TK_ARRAY,
DDS_TK_ALIAS,
DDS_TK_LONGLONG,
DDS_TK_ULONGLONG,
DDS_-TK_LONGDOUBLE,
DDS.TK_WCHAR,
DDS_TK _WSTRING,
DDS_TK_VALUE,
DDS_TK_SPARSE }

Enumeration type for DDS_TypeCode (p. 963) kinds.

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4+ API
by Doxygen

58 Module Documentation

Variables

" DDS_TypeCode DDS_g_tc_null
Basic NULL type.

" DDS_TypeCode DDS_g_tc_long

Basic 32-bit signed integer type.

"~ DDS_TypeCode DDS_g_tc_ushort

Basic unsigned 16-bit integer type.

" DDS_TypeCode DDS_g_tc_ulong

Basic unsigned 32-bit integer type.

"~ DDS_TypeCode DDS_g_tc_float

Basic 82-bit floating point type.

"~ DDS_TypeCode DDS_g_tc_double

Basic 64-bit floating point type.

"~ DDS_TypeCode DDS_g_tc_boolean

Basic Boolean type.

" DDS_TypeCode DDS _g_tc_octet

Basic octet/byte type.

" DDS_TypeCode DDS_g_tc_longlong

Basic 64-bit integer type.

"~ DDS_TypeCode DDS_g_tc_ulonglong

Basic unsigned 64-bit integer type.

"~ DDS_TypeCode DDS_g_tc_longdouble

Basic 128-bit floating point type.

"~ DDS_TypeCode DDS_g_tc_wchar

Basic four-byte character type.

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API
by Doxygen

5.9 Type Code Support 59

5.9.1 Detailed Description

<<eXtension>> (p.194) A DDS_TypeCode (p. 963) is a mechanism for
representing a type at runtime. RTI Data Distribution Service can use type
codes to send type definitions on the network. You will need to understand this
API in order to use the Dynamic Data (p.75) capability or to inspect the
type information you receive from remote readers and writers.

Type codes are values that are used to describe arbitrarily complex types at
runtime. Type code values are manipulated via the DDS_TypeCode (p. 963)
class, which has an analogue in CORBA.

A DDS_TypeCode (p. 963) value consists of a type code kind (represented by
the DDS_TCKind (p. 65) enumeration) and a list of members (that is, fields).
These members are recursive: each one has its own DDS_TypeCode (p. 963),
and in the case of complex types (structures, arrays, and so on), these contained
type codes contain their own members.

There are a number of uses for type codes. The type code mechanism can be used
to unambiguously match type representations. The DDS_TypeCode::equal
(p-967) method is a more reliable test than comparing the string type names,
requiring equivalent definitions of the types.

5.9.2 Accessing a Local ::DDS _TypeCode

When generating types with rtiddsgen (p.215), type codes are enabled by
default. (The -notypecode option can be used to disable generation of DDS_-
TypeCode (p. 963) information.) For these types, a DDS_TypeCode (p. 963)
may be accessed by calling the Foo_get_typecode function for a type ”Foo”,
which returns a DDS_TypeCode (p. 963) pointer.

This API also includes support for dynamic creation of DDS_TypeCode
(p-963) values, typically for use with the Dynamic Data (p.75) APIL. You
can create a DDS_TypeCode (p.963) using the DDS_TypeCodeFactory
(p-989) class. You will construct the DDS_TypeCode (p.963) recursively,
from the outside in: start with the type codes for primitive types, then compose
them into complex types like arrays, structures, and so on. You will find the
following methods helpful:

" DDS_TypeCodeFactory::get_primitive_tc (p.993), which provides
the DDS_TypeCode (p.963) instances corresponding to the primitive
types (e.g. DDS_TK_LONG (p.65), DDS_-TK_SHORT (p.65), and
so on).

DDS_TypeCodeFactory::create_string_tc (p.997) and DDS._-
TypeCodeFactory::create_wstring_tc (p.998) create a DDS._-
TypeCode (p.963) representing a text string with a certain bound (i.e.

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4+ API
by Doxygen

60 Module Documentation

maximum length).

" DDS_TypeCodeFactory::create_array tc (p.999) and DDS -
TypeCodeFactory::create_sequence_tc (p.998) create a DDS_-
TypeCode (p.963) for a collection based on the DDS_TypeCode
(p. 963) for its elements.

" DDS_TypeCodeFactory::create_struct_tc (p-994), DDS -
TypeCodeFactory::create_value_tc (p-994), and DDS -
TypeCodeFactory::create_sparse_tc (p.1000) create a DDS. -
TypeCode (p. 963) for a structured type.

5.9.3 Accessing a Remote ::DDS_TypeCode

In addition to being used locally, RTI Data Distribution Service can transmit
DDS_TypeCode (p.963) on the network between participants. This informa-
tion can be used to access information about types used remotely at runtime,
for example to be able to publish or subscribe to topics of arbitrarily types
(see Dynamic Data (p.75)). This functionality is useful for a generic system
monitoring tool like rtiddsspy.

Remote DDS_TypeCode (p.963) information is shared during discovery over
the publication and subscription built-in topics and can be accessed using the
built-in readers for these topics; see Built-in Topics (p. 41). Discovered DDS _-
TypeCode (p.963) values are not cached by RTI Data Distribution Service
upon receipt and are therefore not available from the built-in topic data re-
turned by DDSDataWriter::get_matched_subscription_data (p.1081) or
DDSDataReader::get_matched_publication_data (p. 1054).

The space available locally to deserialize a discovered remote DDS_-
TypeCode (p.963) is specified by the DDSDomainParticipant (p.1096)’s
DDS_DomainParticipantResourceLimitsQosPolicy::type_code_max_-

serialized length (p.590) QoS parameter. To support especially complex
type codes, it may be necessary for you to increase the value of this parameter.

See also:

DDS_TypeCode (p.963)

Dynamic Data (p.75)

rtiddsgen (p. 215)
DDS_SubscriptionBuiltinTopicData (p. 908)
DDS_PublicationBuiltinTopicData (p.815)

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API
by Doxygen

5.9 Type Code Support 61

5.9.4 Define Documentation
5.9.4.1 #define DDS_TYPECODE_MEMBER_ID_INVALID

A sentinel indicating an invalid DDS_TypeCode (p. 963) member ID.

5.9.4.2 H#define DDS_TYPECODE_INDEX_INVALID

A sentinel indicating an invalid DDS_TypeCode (p. 963) member index.

5.9.4.3 #define DDS_TYPECODE_NOT_BITFIELD

Indicates that a member of a type is not a bitfield.

5.9.4.4 H#define DDS_VM_NONE

Constant used to indicate that a value type has no modifiers.

See also:

DDS_ValueModifier (p.64)

Examples:

HelloWorld.cxx.

5.9.4.5 #define DDS_VM_CUSTOM

Constant used to indicate that a value type has the custom modifier.

This modifier is used to specify whether the value type uses custom marshaling.

See also:

DDS_ValueModifier (p.64)

5.9.4.6 F#define DDS_-VM_ABSTRACT

Constant used to indicate that a value type has the abstract modifier.

An abstract value type may not be instantiated.

See also:

DDS_ValueModifier (p.64)

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4+ API
by Doxygen

62 Module Documentation

5.9.4.7 +#define DDS_-VM_TRUNCATABLE

Constant used to indicate that a value type has the truncatable modifier.

A value with a state that derives from another value with a state can be declared
as truncatable. A truncatable type means the object can be truncated to the
base type.

See also:

DDS_ValueModifier (p.64)

5.9.4.8 #define DDS_PRIVATE_MEMBER
Constant used to indicate that a value type member is private.

See also:
DDS _Visibility (p.64)
DDS_PUBLIC_MEMBER (p.62)

Examples:

HelloWorld.cxx.

5.9.4.9 #define DDS_PUBLIC_MEMBER
Constant used to indicate that a value type member is public.

See also:

DDS_Visibility (p.64)
DDS_PRIVATE_MEMBER (p. 62)

5.9.4.10 #define DDS_TYPECODE_NONKEY_MEMBER

A flag indicating that a type member is optional and not part of the key.

Only sparse value types (i.e. types of DDS_TCKind (p.65) DDS._-
TK_SPARSE (p.65)) support this flag. Non-key members of other type
kinds should use the flag DDS_TYPECODE_NONKEY_REQUIRED -
MEMBER (p. 63).

If a type is used with the Dynamic Data (p.75) facility, a DDS_-
DynamicData (p.603) sample of the type will only contain a value for a

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API
by Doxygen

5.9 Type Code Support 63

DDS_TYPECODE_NONKEY_MEMBER (p.62) field if one has been ex-
plicitly set (see, for example, DDS_DynamicData::set_long (p.666)). The
middleware will not assume any default value.

See also:

DDS_TYPECODE KEY MEMBER (p.63)
DDS_TYPECODE NONKEY REQUIRED MEMBER (p.63)
DDS_TYPECODE_KEY_MEMBER (p.63)
DDS_TypeCode::add_member (p. 985)
DDS_TypeCode::add_member_ex (p. 987)
DDS_TypeCode::is_member_key (p.973)
DDS_TypeCode::is_member_required (p.974)
DDS_StructMember::is_key (p.904)
DDS_ValueMember::is_key (p.1013)

5.9.4.11 #define DDS_TYPECODE_KEY_MEMBER

A flag indicating that a type member is part of the key for that type, and
therefore required.

If a type is used with the Dynamic Data (p.75) facility, all DDS_-
DynamicData (p.603) samples of the type will contain a value for all DDS _-
TYPECODE_KEY MEMBER (p.63) fields, even if the type is a sparse
value type (i.e. of kind DDS_TK_SPARSE (p.65)). If you do not set a value
of the member explicitly (see, for example, DDS_DynamicData::set_long
(p.666)), the middleware will assume a default ”zero” value: numeric values
will be set to zero; strings and sequences will be of zero length.

See also:

DDS_TYPECODE NONKEY REQUIRED MEMBER (p.63)
DDS_TYPECODE NONKEY MEMBER (p.62)
DDS_TypeCode::add_member (p. 985)
DDS_TypeCode::add_member_ex (p. 987)
DDS_TypeCode::is_member_key (p.973)
DDS_TypeCode::is_member_required (p.974)
DDS_StructMember::is_key (p.904)
DDS_ValueMember::is_key (p.1013)

5.9.4.12 #define DDS_TYPECODE_NONKEY _REQUIRED -

MEMBER

A flag indicating that a type member is not part of the key but is nevertheless
required.

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4+ API
by Doxygen

64 Module Documentation

This is the most common kind of member.

If a type is used with the Dynamic Data (p.75) facility, all DDS_-
DynamicData (p.603) samples of the type will contain a value for all DDS _-
TYPECODE_NONKEY_REQUIRED MEMBER (p.63) fields, even if
the type is a sparse value type (i.e. of kind DDS_TK_SPARSE (p.65)). If
you do not set a value of the member explicitly (see, for example, DDS_-
DynamicData::set_long (p.666)), the middleware will assume a default
”zero” value: numeric values will be set to zero; strings and sequences will
be of zero length.

See also:

DDS_TYPECODE_KEY_MEMBER (p.63)
DDS_TYPECODE_NONKEY_MEMBER (p.62)
DDS_TYPECODE KEY_MEMBER (p. 63)
DDS_TypeCode::add_member (p. 985)
DDS_TypeCode::add_member_ex (p. 987)
DDS_TypeCode::is_member_key (p.973)
DDS_TypeCode::is_member_required (p.974)
DDS_StructMember::is_key (p.904)
DDS_ValueMember::is_key (p.1013)

5.9.5 Typedef Documentation

5.9.5.1 typedef short DDS_ValueModifier

Modifier type for a value type.

See also:

DDS_VM_NONE (p. 61)
DDS_VM_CUSTOM (p.61)
DDS_VM_ABSTRACT (p.61)
DDS_VM_TRUNCATABLE (p. 62)

5.9.5.2 typedef short DDS_Visibility

Type to indicate the visibility of a value type member.

See also:

DDS_PRIVATE MEMBER (p. 62)
DDS_PUBLIC_MEMBER (p.62)

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API
by Doxygen

5.9 Type Code Support 65

5.9.6 Enumeration Type Documentation
5.9.6.1 enum DDS_TCKind

Enumeration type for DDS_TypeCode (p. 963) kinds.
Type code kinds are modeled as values of this type.

Enumerator:

DDS_TK_NULL Indicates that a type code does not describe anything.

DDS_TK SHORT short type.
DDS_TK_LONG long type.

DDS_TK _USHORT unsigned short type.
DDS_TK ULONG unsigned long type.
DDS_TK_FLOAT float type.
DDS_TK_DOUBLE double type.
DDS_TK_BOOLEAN boolean type.
DDS_TK_CHAR char type.

DDS_TK OCTET octet type.
DDS_TK STRUCT struct type.
DDS_TK _UNION union type.

DDS_TK ENUM enumerated type.
DDS_TK STRING string type.
DDS_TK SEQUENCE sequence type.
DDS_TK_ ARRAY array type.
DDS_TK_ALIAS alias (typedef) type.
DDS_TK_LONGLONG long long type.
DDS_ TK ULONGLONG unsigned long long type.
DDS_TK LONGDOUBLE long double type.
DDS_ TK WCHAR wide char type.
DDS_ TK WSTRING wide string type.
DDS_TK _VALUE value type.

DDS_TK _SPARSFE A sparse value type.

A sparse value type is one in which all of the fields are not necessarily
sent on the network as a part of every sample.

Fields of a sparse value type fall into one of three categories:

~ Key fields (see DDS_TYPECODE_KEY_MEMBER (p. 63))

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4+ API
by Doxygen

66 Module Documentation

" Non-key, but required members (see DDS_TYPECODE -
NONKEY_REQUIRED MEMBER (p.63))

" Non-key, optional members (see DDS_TYPECODE -
NONKEY_MEMBER (p.62))

Fields of the first two kinds must appear in every sample. These are
also the only kinds of fields on which you can perform content filtering
(see DDSContentFilteredTopic (p. 1040)), because filter evaluation
on a non-existent field is not well defined.

5.9.7 Variable Documentation
5.9.7.1 DDS_TypeCode DDS_g_tc_null

Basic NULL type.

For new code, DDS_TypeCodeFactory::get_primitive_tc (p.993) is pre-
ferred to using this global variable.

See also:

DDS_TypeCodeFactory::get_primitive_tc (p.993)

5.9.7.2 DDS_TypeCode DDS_g_tc_long

Basic 32-bit signed integer type.

For new code, DDS_TypeCodeFactory::get_primitive_tc (p.993) is pre-
ferred to using this global variable.

See also:

DDS_TypeCodeFactory::get_primitive_tc (p. 993)
DDS_Long (p.295)

5.9.7.3 DDS_TypeCode DDS_g_tc_ushort

Basic unsigned 16-bit integer type.

For new code, DDS_TypeCodeFactory::get_primitive_tc (p.993) is pre-
ferred to using this global variable.

See also:

DDS_TypeCodeFactory::get_primitive_tc (p.993)
DDS_UnsignedShort (p.294)

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API
by Doxygen

5.9 Type Code Support 67

5.9.7.4 DDS_TypeCode DDS_g_tc_ulong

Basic unsigned 32-bit integer type.

For new code, DDS_TypeCodeFactory::get_primitive_tc (p.993) is pre-
ferred to using this global variable.

See also:

DDS_TypeCodeFactory::get_primitive_tc (p.993)
DDS_UnsignedLong (p.295)

5.9.7.5 DDS_TypeCode DDS_g_tc_float

Basic 32-bit floating point type.

For new code, DDS_TypeCodeFactory::get_primitive_tc (p.993) is pre-
ferred to using this global variable.

See also:

DDS_TypeCodeFactory::get_primitive_tc (p.993)
DDS_Float (p.295)

5.9.7.6 DDS_TypeCode DDS_g_tc_double

Basic 64-bit floating point type.

For new code, DDS_TypeCodeFactory::get_primitive_tc (p.993) is pre-
ferred to using this global variable.

See also:

DDS_TypeCodeFactory::get_primitive_tc (p.993)
DDS_Double (p.295)

5.9.7.7 DDS_TypeCode DDS_g _tc_boolean

Basic Boolean type.

For new code, DDS_TypeCodeFactory::get_primitive_tc (p.993) is pre-
ferred to using this global variable.

See also:

DDS_TypeCodeFactory::get_primitive_tc (p.993)
DDS_Boolean (p.296)

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4+ API
by Doxygen

68 Module Documentation

5.9.7.8 DDS_TypeCode DDS_g_tc_octet

Basic octet/byte type.

For new code, DDS_TypeCodeFactory::get_primitive_tc (p.993) is pre-
ferred to using this global variable.

See also:

DDS_TypeCodeFactory::get_primitive_tc (p. 993)
DDS_Octet (p.294)

5.9.7.9 DDS_TypeCode DDS_g_tc_longlong

Basic 64-bit integer type.

For new code, DDS_TypeCodeFactory::get_primitive_tc (p.993) is pre-
ferred to using this global variable.

See also:

DDS_TypeCodeFactory::get_primitive_tc (p. 993)
DDS_LongLong (p.295)

5.9.7.10 DDS_TypeCode DDS_g_tc_ulonglong

Basic unsigned 64-bit integer type.

For new code, DDS_TypeCodeFactory::get_primitive_tc (p.993) is pre-
ferred to using this global variable.

See also:

DDS_TypeCodeFactory::get_primitive_tc (p. 993)
DDS_UnsignedLongLong (p.295)

5.9.7.11 DDS_TypeCode DDS_g_tc_longdouble

Basic 128-bit floating point type.

For new code, DDS_TypeCodeFactory::get_primitive_tc (p.993) is pre-
ferred to using this global variable.

See also:

DDS_TypeCodeFactory::get_primitive_tc (p. 993)
DDS_LongDouble (p.295)

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API
by Doxygen

5.9 Type Code Support 69

5.9.7.12 DDS_TypeCode DDS_g_tc_wchar

Basic four-byte character type.

For new code, DDS_TypeCodeFactory::get_primitive_tc (p.993) is pre-
ferred to using this global variable.

See also:

DDS_TypeCodeFactory::get_primitive_tc (p.993)
DDS_Wchar (p.294)

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4+ API
by Doxygen

70

Module Documentation

5.10 Built-in Types

<<eXtension>> (p. 194) RTI Data Distribution Service provides a set of very
simple data types for you to use with the topics in your application.

Modules

" String Built-in Type

Built-in type consisting of a single character string.

" KeyedString Built-in Type

Built-in type consisting of a string payload and a second string that is the
key.

" Octets Built-in Type

Built-in type consisting of a variable-length array of opaque bytes.

" KeyedOctets Built-in Type

Built-in type consisting of a variable-length array of opaque bytes and a string
that is the key.

5.10.1 Detailed Description

<<eXtension>> (p. 194) RTI Data Distribution Service provides a set of very
simple data types for you to use with the topics in your application.

The middleware provides four built-in types:

String: A payload consisting of a single string of characters. This type
has no key.

DDS KeyedString (p.744): A payload consisting of a single string of
characters and a second string, the key, that identifies the instance to
which the sample belongs.

DDS _Octets (p. 775): A payload consisting of an opaque variable-length
array of bytes. This type has no key.

DDS_KeyedOctets (p. 741): A payload consisting of an opaque variable-
length array of bytes and a string, the key, that identifies the instance to
which the sample belongs.

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API

by Doxygen

5.10 Built-in Types 71

The String and DDS_KeyedString (p. 744) types are appropriate for simple
text-based applications. The DDS_Octets (p.775) and DDS_KeyedOctets
(p.741) types are appropriate for applications that perform their own custom
data serialization, such as legacy applications still in the process of migrating to
RTI Data Distribution Service. In most cases, string-based or structured data is
preferable to opaque data, because the latter cannot be easily visualized in tools
or used with content-based filters (see DDSContentFiltered Topic (p. 1040)).

The built-in types are very simple in order to get you up and running as quickly
as possible. If you need a structured data type you can define your own type
with exactly the fields you need in one of two ways:

" At compile time, by generating code from an IDL or XML file using the
rtiddsgen (p.215) utility

" At runtime, by using the Dynamic Data (p.75) API

5.10.2 Managing Memory for Builtin Types

When a sample is written, the DataWriter serializes it and stores the result in
a buffer obtained from a pool of preallocated buffers. In the same way, when
a sample is received, the DataReader deserializes it and stores the result in a
sample coming from a pool of preallocated samples.

For builtin types, the maximum size of the buffers/samples and depends on the
nature of the application using the builtin type.

You can configure the maximum size of the builtin types on a per-DataWriter
and per-DataReader basis using the DDS_PropertyQosPolicy (p.810) in
DataWriters, DataReaders or Participants.

The following table lists the supported builtin type properties to configure mem-
ory allocation. When the properties are defined in the DomainParticipant, they
are applicable to all DataWriters and DataReaders belonging to the Domain-
Participant unless they are overwrittem in the DataWriters and DataReaders.

The previous properties must be set consistently with respect to the correspond-
ing *.max_size properties that set the maximum size of the builtin types in the
typecode.

5.10.3 Typecodes for Builtin Types

The typecodes associated with the builtin types are generated from the following
IDL type definitions:

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4+ API
by Doxygen

72

Module Documentation

module DDS {

};

struct String {
string value;

};

struct KeyedString {
string key;
string value;

};

struct Octets {
sequence<octet> value;

};

struct KeyedOctets {
string key;
sequence<octet> value;

};

The maximum size of the strings and sequences that will be included in the type
code definitions can be configured on a per-DomainParticipant-basis by using

the properties in following table.

For more information about the built-in types, including how to control mem-
ory usage and maximum lengths, please see chapter 3, Data Types and Data
Samples, in the RTI Data Distribution Service User’s Manual.

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API

by Doxygen

5.10 Built-in Types

73

Property

Description

dds.builtin_type.string.alloc_size

Maximum size of the strings
published by the
DDSStringDataWriter (p. 1330)
or received the
DDSStringDataReader (p. 1326)
(includes the NULL-terminated
character).

Default:
dds.builtin_type.string.max_size if
defined. Otherwise, 1024.

dds.builtin_type.keyed string.alloc_-
key_size

Maximum size of the keys used by
the
DDSKeyedStringDataWriter
(p.1252) or
DDSKeyedStringDataReader
(p-1241) (includes the
NULL-terminated character).
Default: dds.builtin_type.keyed_-
string.max_key size if defined.
Otherwise, 1024.

dds.builtin_type.keyed_string.alloc_-
size

Maximum size of the strings
published by the
DDSKeyedStringDataWriter
(p. 1252) or received by the
DDSKeyedStringDataReader
(p-1241) (includes the
NULL-terminated character).
Default: dds.builtin_type.keyed_-
string.max_size if defined.
Otherwise, 1024.

dds.builtin_type.octets.alloc_size

Maximum size of the octet
sequences published the
DDSOctetsDataWriter (p. 1279)
or received by the
DDSOctetsDataReader

(p. 1274).

Default:
dds.builtin_type.octets.max _size if
defined. Otherwise, 2048.

dds.builtin_type.keyed_octets.alloc_-
key _size

Maximum size of the key published
by the
DDSKeyedOctetsDataWriter
(p- 1224) or received by the
DDSKeyedOctetsDataReader
(p-1213) (includes the
NULL-terminated character).

Generated on Sun Oct 23 23:13:26 2011 for

by Doxygen

Hiefmala oidshiidn sypadkegadi- API
octets.max_key _size if defined.
Otherwise, 1024.

dds.builtin_type.keyed_octets.alloc_-
size

Maximum size of the octets
sequences published by a
DDSKeyedOctetsDataWriter
(p- 1224) or received by a
DDSKeyedOctetsDataReader
(v 1912)

74

Module Documentation

Property

Description

dds.builtin_type.string.max_size

Maximum size of the strings
published by the StringDataWriters
and received by the
StringDataReaders belonging to a
DomainParticipant (includes the
NULL-terminated character).
Default: 1024.

dds.builtin_type.keyed_string.max_-
key _size

Maximum size of the keys used by
the KeyedStringDataWriters and
KeyedStringDataReaders belonging
to a DomainParticipant (includes
the NULL-terminated character).
Default: 1024.

dds.builtin_type.keyed_string.max_-
size

Maximum size of the strings
published by the
KeyedStringDataWriters and
received by the
KeyedStringDataReaders belonging
to a DomainParticipant using the
builtin type (includes the
NULL-terminated character).
Default: 1024

dds.builtin_type.octets.max_size

Maximum size of the octet
sequences published by the
OctetsDataWriters and received by
the OctetsDataReader belonging to
a DomainParticipant.

Default: 2048

dds.builtin_type.keyed_octets.max -
key _size

Maximum size of the keys used by
the KeyedOctetsStringDataWriters
and KeyedOctetsStringDataReaders
belonging to a DomainParticipant
(includes the NULL-terminated
character).

Default: 1024.

dds.builtin_type.keyed_octets.max _-
size

Maximum size of the octet
sequences published by the
KeyedOctetsDataWriters and
received by the
KeyedOctetsDataReaders belonging
to a DomainParticipant.

Default: 2048

Table 5.4: Properties for Allocating Size of Builtin Types, per DomainPartici-

pant

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API

by Doxygen

5.11 Dynamic Data 75

5.11 Dynamic Data

<<eXtension>> (p.19/) The Dynamic Data API provides a way to inter-
act with arbitrarily complex data types at runtime without the need for code
generation.

Classes

" class DDSDynamicDataTypeSupport

A factory for registering a dynamically defined type and creating DDS_-
DynamicData (p. 603) objects.

class DDSDynamicDataReader
Reads (subscribes to) objects of type DDS_DynamicData (p. 603).

class DDSDynamicDataWriter
Writes (publishes) objects of type DDS_DynamicData (p. 603).

struct DDS_DynamicDataProperty_t

A collection of attributes used to configure DDS_DynamicData (p. 603)
objects.

struct DDS_DynamicDataTypeSerializationProperty_t

Properties that govern how data of a certain type will be serialized on the
network.

struct DDS_DynamicDatalnfo
A descriptor for a DDS_DynamicData (p. 603) object.

struct DDS_DynamicDataMemberInfo
A descriptor for a single member (i.e. field) of dynamically defined data type.

struct DDS_DynamicData

A sample of any complex data type, which can be inspected and manipulated
reflectively.

struct DDS_DynamicDataSeq
An ordered collection of DDS_DynamicData (p. 603) elements.

struct DDS_DynamicDataTypeProperty_t

A collection of attributes used to configure DDSDynamicDataTypeSup-
port (p.1194) objects.

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4+ API
by Doxygen

76 Module Documentation

Defines

" #define DDS_DYNAMIC_DATA MEMBER_ID -
UNSPECIFIED

A sentinel value that indicates that no member ID is needed in order to
perform some operation.

Typedefs

" typedef DDS_Long DDS_DynamicDataMemberld

An integer that uniquely identifies some member of a data type within that
type.

Variables

~ struct DDS_DynamicDataProperty .t DDS_DYNAMIC_DATA -
PROPERTY _DEFAULT

Sentinel constant indicating default values for DDS_-
DynamicDataProperty_t (p. 704).

© struct DDS_DynamicDataTypeProperty .t DDS_DYNAMIC -
DATA_TYPE_PROPERTY_DEFAULT

Sentinel constant indicating default values for DDS._-
DynamicDataTypeProperty_t (p. 707).

5.11.1 Detailed Description

<<eXtension>> (p.194) The Dynamic Data API provides a way to inter-
act with arbitrarily complex data types at runtime without the need for code
generation.

This API allows you to define new data types, modify existing data types, and
interact reflectively with samples. To use it, you will take the following steps:

1. Obtain a DDS_TypeCode (p.963) (see Type Code Support (p.55))
that defines the type definition you want to use.

A DDS _TypeCode (p.963) includes a type’s kind (DDS_TCKind (p.65)),
name, and members (that is, fields). You can create your own DDS_TypeCode
(p.963) using the DDS_TypeCodeFactory (p.989) class — see, for example,
the DDS_TypeCodeFactory::create_struct_tc (p.994) method. Alterna-
tively, you can use a remote DDS_TypeCode (p.963) that you discovered

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API
by Doxygen

5.11 Dynamic Data 77

on the network (see Built-in Topics (p.41)) or one generated by rtiddsgen
(p. 215).

2. Wrap the DDS_TypeCode (p.963) in a DDSDynamicDataType-
Support (p.1194) object.

See the constructor DDSDynamicDataTypeSup-
port::DDSDynamicDataTypeSupport (p.1195). This object lets you
connect the type definition to a DDSDomainParticipant (p.1096) and
manage data samples (of type DDS_DynamicData (p.603)).

3. Register the DDSDynamicDataTypeSupport (p.1194) with one or
more domain participants.

See DDSDynamicDataTypeSupport::register_type (p. 1197). This action
associates the data type with a logical name that you can use to create topics.
(Starting with this step, working with a dynamically defined data type is almost
exactly the same as working with a generated one.)

4. Create a DDSTopic (p.1365) from the DDSDomainParticipant
(p. 1096).

Use the name under which you registered your data type — see DDSDomain-
Participant::create_topic (p.1131). This DDSTopic (p.1365) is what you
will use to produce and consume data.

5. Create a DDSDynamicDataWriter (p.1200) and/or DDSDynam-
icDataReader (p.1193).

These objects will produce and /or consume data (of type DDS_DynamicData
(p.603)) on the DDSTopic (p.1365). You can create these objects directly
from the DDSDomainParticipant (p.1096) — see DDSDomainPartici-
pant::create_datawriter (p.1159) and DDSDomainParticipant::create_-
datareader (p.1163) — or by first creating intermediate DDSPublisher
(p-1294) and DDSSubscriber (p.1337) objects — see DDSDomainPartic-
ipant::create_publisher (p.1125) and DDSDomainParticipant::create_-
subscriber (p.1128).

6. Write and/or read the data of interest.
7. Tear down the objects described above.

You should delete them in the reverse order in which you created them. Note
that unregistering your data type with the DDSDomainParticipant (p. 1096)
is optional; all types are automatically unregistered when the DDSDomain-
Participant (p. 1096) itself is deleted.

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4+ API
by Doxygen

78 Module Documentation

5.11.2 Define Documentation

5.11.2.1 #define DDS_DYNAMIC_DATA MEMBER_ID -
UNSPECIFIED

A sentinel value that indicates that no member ID is needed in order to perform
some operation.

Most commonly, this constant will be used in ”get” operations to indicate that
a lookup should be performed based on a name, not on an ID.

See also:

DDS_DynamicDataMemberld (p. 78)

5.11.3 Typedef Documentation
5.11.3.1 typedef DDS_Long DDS_DynamicDataMemberld

An integer that uniquely identifies some member of a data type within that
type.

The range of a member ID is the range of an unsigned short integer, except for
the value 0, which is reserved.
See also:

DDS_DYNAMIC_DATA_MEMBER_ID_UNSPECIFIED (p. 78)

5.11.4 Variable Documentation

5.11.4.1 struct DDS_DynamicDataProperty_t
DDS_DYNAMIC_DATA PROPERTY _DEFAULT

Sentinel constant indicating default values for DDS _-
DynamicDataProperty_t (p.704).
Pass this object instead of your own DDS_DynamicDataProperty_t (p. 704)

object to use the default property values:

DDS_DynamicData* sample = new DDS_DynamicData(
myTypeCode,
&DDS_DYNAMIC_DATA_PROPERTY_DEFAULT) ;

See also:

DDS_DynamicDataProperty_t (p.704)

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API
by Doxygen

5.11 Dynamic Data 79

5.11.4.2 struct DDS_DynamicDataTypeProperty_t
DDS DYNAMIC_DATA _TYPE_ PROPERTY DEFAULT

Sentinel constant indicating default values for DDS -
DynamicDataTypeProperty_t (p. 707).

Pass this object instead of your own DDS_DynamicDataTypeProperty_t
(p.707) object to use the default property values:

DDS_DynamicDataTypeSupport* support = new DDS_DynamicDataTypeSupport (
myTypeCode,
&DDS_DYNAMIC_DATA_TYPE_PROPERTY_DEFAULT) ;

See also:

DDS_DynamicDataTypeProperty_t (p.707)

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4+ API
by Doxygen

80 Module Documentation

5.12 Publication Module

Contains the DDSFlowController (p.1207), DDSPublisher (p.1294), and
DDSDataWriter (p.1070) classes as well as the DDSPublisherListener
(p.1317) and DDSDataWriterListener (p.1090) interfaces, and more gen-
erally, all that is needed on the publication side.

Modules

" Publishers
DDSPublisher (p. 1294) entity and associated elements

" Data Writers
DDSDataWriter (p. 1070) entity and associated elements

~ Flow Controllers

<<eXtension>> (p.194) DDSFlowController (p.1207) and associated
elements

5.12.1 Detailed Description

Contains the DDSFlowController (p.1207), DDSPublisher (p.1294), and
DDSDataWriter (p.1070) classes as well as the DDSPublisherListener
(p-1317) and DDSDataWriterListener (p.1090) interfaces, and more gen-
erally, all that is needed on the publication side.

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API
by Doxygen

5.13 Publishers 81

5.13 Publishers

DDSPublisher (p.1294) entity and associated elements

Classes

" class DDSPublisherListener
<<interface>> (p.194) DDSListener (p.1266) for DDSPublisher
(p- 1294) status.

" class DDSPublisherSeq
Declares IDL sequence < DDSPublisher (p. 1294) > .

" class DDSPublisher
<<interface>> (p.194) A publisher is the object responsible for the actual
dissemination of publications.

" struct DDS_PublisherQos

QoS policies supported by a DDSPublisher (p. 1294) entity.

Variables
" struct DDS_DataWriterQos DDS_DATAWRITER_QOS -
DEFAULT
Special value for creating DDSDataWriter (p. 1070) with default QoS.
" struct DDS_DataWriterQos DDS_DATAWRITER_QOS_USE -
TOPIC_QOS

Special value for creating DDSDataWriter (p.1070) with a combination
of the default DDS_DataWriterQos (p.536) and the DDS_TopicQos

(p- 937).

5.13.1 Detailed Description

DDSPublisher (p.1294) entity and associated elements

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4+ API
by Doxygen

82 Module Documentation

5.13.2 Variable Documentation

5.13.2.1 struct DDS_DataWriterQos DDS_DATAWRITER_QOS _-
DEFAULT

Special value for creating DDSDataWriter (p. 1070) with default QoS.

When used in DDSPublisher::create_datawriter (p. 1303), this special value
is used to indicate that the DDSDataWriter (p.1070) should be created
with the default DDSDataWriter (p.1070) QoS by means of the operation
get_default_datawriter_qos and using the resulting QoS to create the DDS-
DataWriter (p. 1070).

When used in DDSPublisher::set_default_datawriter_qgos (p.1299), this
special value is used to indicate that the default QoS should be reset back
to the initial value that would be used if the DDSPublisher::set_default_-
datawriter_qos (p. 1299) operation had never been called.

When used in DDSDataWriter::set_qos (p. 1083), this special value is used
to indicate that the QoS of the DDSDataWriter (p. 1070) should be changed
to match the current defualt QoS set in the DDSPublisher (p. 1294) that the
DDSDataWriter (p. 1070) belongs to.

Note: You cannot use this value to get the default QoS values for a DataWriter;
for this purpose, use DDSDomainParticipant::get_default_datawriter_-
qos (p.1106).

See also:

DDSPublisher::create_datawriter (p.1303)
DDSPublisher::set_default_datawriter_qos (p. 1299)
DDSDataWriter::set_qos (p. 1083)

Examples:

HelloWorld _publisher.cxx.

5.13.2.2 struct DDS_DataWriterQos DDS_DATAWRITER_QOS _-
USE_TOPIC_QOS

Special value for creating DDSDataWriter (p.1070) with a combination of
the default DDS_DataWriterQos (p.536) and the DDS_TopicQos (p. 937).

The use of this value is equivalent to the application obtaining the default
DDS_DataWriterQos (p.536) and the DDS_TopicQos (p.937) (by means
of the operation DDSTopic::get_qgos (p.1369)) and then combining these
two QoS using the operation DDSPublisher::copy_from_topic_qos (p. 1312)
whereby any policy that is set on the DDS_TopicQos (p.937) "overrides” the

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API
by Doxygen

5.13 Publishers 83

corresponding policy on the default QoS. The resulting QoS is then applied to
the creation of the DDSDataWriter (p. 1070).

This value should only be used in DDSPublisher::create_datawriter
(p.- 1303).

See also:

DDSPublisher::create_datawriter (p. 1303)
DDSPublisher::get_default_datawriter_qos (p. 1298)
DDSTopic::get_qos (p. 1369)
DDSPublisher::copy_from_topic_qos (p. 1312)

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4+ API
by Doxygen

84 Module Documentation

5.14 Data Writers

DDSDataWriter (p. 1070) entity and associated elements

Classes

~ struct FooDataWriter

<<interface>> (p.194) <<generic>> (p.194) User data type specific
data writer.

class DDSDataWriterListener
<<interface>> (p.194) DDSListener (p. 1266) for writer status.

~ class DDSDataWriter

<<interface>> (p.194) Allows an application to set the value of the data
to be published under a given DDSTopic (p. 1365).

~ struct DDS_OfferedDeadlineMissedStatus
DDS_OFFERED _DEADLINE _MISSED_STATUS (p. 317)

struct DDS_LivelinessLostStatus
DDS_LIVELINESS_LOST_STATUS (p. 319)

struct DDS_OfferedIncompatibleQosStatus
DDS_OFFERED_INCOMPATIBLE QOS_STATUS (p. 517)

struct DDS_PublicationMatchedStatus
DDS_PUBLICATION_MATCHED_STATUS (p. 519)

~ struct DDS_ReliableWriterCacheEventCount

<<eXtension>> (p.194) The number of times the number of unacknowl-
edged samples in the cache of a reliable writer hit a certain well-defined
threshold.

~ struct DDS_ReliableWriterCacheChangedStatus

<<eXtension>> (p.194) A summary of the state of a data writer’s cache
of unacknowledged samples written.

struct DDS_ReliableReaderActivityChangedStatus

<<eXtension>> (p.194) Describes the activity (i.e. are acknowledgements
forthcoming) of reliable readers matched to a reliable writer.

struct DDS_DataWriterCacheStatus

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API
by Doxygen

5.14 Data Writers 85

<<eXtension>> (p.194) The status of the writer’s cache.

® struct DDS_DataWriterProtocolStatus

<<eXtension>> (p.194) The status of a writer’s internal protocol related
metrics, like the number of samples pushed, pulled, filtered; and status of
wire protocol traffic.

~ struct DDS_DataWriterQos
QoS policies supported by a DDSDataWriter (p. 1070) entity.

5.14.1 Detailed Description

DDSDataWriter (p. 1070) entity and associated elements

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4+ API
by Doxygen

86 Module Documentation

5.15 Flow Controllers

<<eXtension>> (p.19/) DDSFlowController (p.1207) and associated el-
ements

Classes

~ class DDSFlowController

<<interface>> (p.194) A flow controller is the object responsible for shap-
ing the network traffic by determining when attached asynchronous DD.S-
DataWriter (p. 1070) instances are allowed to write data.

" struct DDS_FlowControllerTokenBucketProperty_t

DDSFlowController (p. 1207) uses the popular token bucket approach for
open loop network flow control. The flow control characteristics are deter-
mined by the token bucket properties.

" struct DDS_FlowControllerProperty _t

Determines the flow control characteristics of the DDSFlowController
(p. 1207).

Enumerations

enum DDS_FlowControllerSchedulingPolicy {
DDS_RR_FLOW_CONTROLLER_SCHED_POLICY,
DDS_EDF_FLOW_CONTROLLER_SCHED_POLICY,

DDS_HPF FLOW_CONTROLLER_SCHED POLICY }
Kinds of flow controller scheduling policy.

Variables

" char * DDS_DEFAULT FLOW_CONTROLLER_NAME

[default] Special wvalue of DDS_PublishModeQosPolicy::flow_-
controller_name (p. 831) that refers to the built-in default flow controller.

" char *x DDS_FIXED RATE FLOW_CONTROLLER_NAME

Special wvalue of DDS_PublishModeQosPolicy::flow_controller_name
(p. 831) that refers to the built-in fized-rate flow controller.

" char * DDS_ON_DEMAND _FLOW_CONTROLLER _NAME

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API
by Doxygen

5.15 Flow Controllers 87

Special wvalue of DDS_PublishModeQosPolicy::flow_controller_name
(p- 831) that refers to the built-in on-demand flow controller.

5.15.1 Detailed Description

<<eXtension>> (p.194) DDSFlowController (p.1207) and associated el-
ements

DDSFlowController (p.1207) provides the network traffic shaping ca-
pability to asynchronous DDSDataWriter (p.1070) instances. For use
cases and advantages of publishing asnychronously, please refer to DDS_-
PublishModeQosPolicy (p._829) of DDS_DataWriterQos (p.536).

See also:

DDS_PublishModeQosPolicy (p.829)
DDS_DataWriterQos::publish_mode (p. 541)
DDS_AsynchronousPublisherQosPolicy (p.453)

5.15.2 Enumeration Type Documentation
5.15.2.1 enum DDS _FlowControllerSchedulingPolicy

Kinds of flow controller scheduling policy.

Samples written by an asynchronous DDSDataWriter (p.1070) are not sent
in the context of the FooDataWriter::write (p. 1427) call. Instead, the mid-
dleware puts the samples in a queue for future processing. The DDSFlow-
Controller (p.1207) associated with each asynchronous DataWriter instance
determines when the samples are actually sent.

Each DDSFlowController (p.1207) maintains a separate FIFO queue for
each unique destination (remote application). Samples written by asynchronous
DDSDataWriter (p.1070) instances associated with the flow controller, are
placed in the queues that correspond to the intended destinations of the sample.

When tokens become available, a flow controller must decide which queue(s)
to grant tokens first. This is determined by the flow controller’s scheduling
policy. Once a queue has been granted tokens, it is serviced by the asynchronous
publishing thread. The queued up samples will be coalesced and sent to the
corresponding destination. The number of samples sent depends on the data
size and the number of tokens granted.

QoS:
DDS_FlowControllerProperty_t (p. 725)

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4+ API
by Doxygen

88 Module Documentation

Enumerator:

DDS_RR FLOW_CONTROLLER _SCHED_POLICY Indicates to
flow control in a round-robin fashion.
Whenever tokens become available, the flow controller distributes the
tokens uniformly across all of its (non-empty) destination queues.
No destinations are prioritized. Instead, all destinations are treated
equally and are serviced in a round-robin fashion.

DDS_EDF_FLOW_CONTROLLER_SCHED_POLICY Indicates
to flow control in an earliest-deadline-first fashion.

A sample’s deadline is determined by the time it was written plus
the latency budget of the DataWriter at the time of the write call
(as specified in the DDS_LatencyBudgetQosPolicy (p.747)). The
relative priority of a flow controller’s destination queue is determined
by the earliest deadline across all samples it contains.

When tokens become available, the DDSFlowController (p.1207)
distributes tokens to the destination queues in order of their deadline
priority. In other words, the queue containing the sample with the ear-
liest deadline is serviced first. The number of tokens granted equals
the number of tokens required to send the first sample in the queue.
Note that the priority of a queue may change as samples are sent (i.e.
removed from the queue). If a sample must be sent to multiple destina-
tions or two samples have an equal deadline value, the corresponding
destination queues are serviced in a round-robin fashion.

Hence, under the default DDS -
LatencyBudgetQosPolicy::duration (p.748) setting, an EDF_-
FLOW_CONTROLLER_SCHED_POLICY DDSFlowController (p.1207)
preserves the order in which the user calls FooDataWriter::write
(p. 1427) across the DataWriters associated with the flow controller.
Since the DDS_LatencyBudgetQosPolicy (p.747) is mutable, a
sample written second may contain an earlier deadline than the sam-
ple written first if the DDS_LatencyBudgetQosPolicy::duration
(p. 748) value is sufficiently decreased in between writing the two sam-
ples. In that case, if the first sample is not yet written (still in queue
waiting for its turn), it inherits the priority corresponding to the (ear-
lier) deadline from the second sample.

In other words, the priority of a destination queue is always determined
by the earliest deadline among all samples contained in the queue. This
priority inheritance approach is required in order to both honor the up-
dated DDS_LatencyBudgetQosPolicy::duration (p.748) and ad-
here to the DDSDataWriter (p.1070) in-order data delivery guar-
antee.

[default] for DDSDataWriter (p.1070)

DDS_HPF FLOW_CONTROLLER_SCHED_POLICY Indicates
to flow control in an highest-priority-first fashion.

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API
by Doxygen

5.15 Flow Controllers 89

Determines the next destination queue to service as determined by
the publication priority of the DDSDataWriter (p.1070), channel of
multi-channel DataWriter, or individual sample.

The relative priority of a flow controller’s destination queue is deter-
mined by the highest publication priority of all samples it contains.

When tokens become available, the DDSFlowController (p.1207)
distributes tokens to the destination queues in order of their publica-
tion priority. In other words, the queue containing the sample with
the highest publication priority is serviced first. The number of tokens
granted equals the number of tokens required to send the first sample
in the queue. Note that the priority of a queue may change as samples
are sent (i.e. removed from the queue). If a sample must be sent to
multiple destinations or two samples have an equal publication prior-
ity, the corresponding destination queues are serviced in a round-robin
fashion.

This priority inheritance approach is required in order to both
honor the designated publication priority and adhere to the DDS-
DataWriter (p. 1070) in-order data delivery guarantee.

5.15.3 Variable Documentation
5.15.3.1 charx DDS_DEFAULT _FLOW_CONTROLLER_NAME

[default] Special value of DDS_PublishModeQosPolicy::flow_controller -
name (p.831) that refers to the built-in default flow controller.

RTI Data Distribution Service provides several built-in DDSFlowController
(p. 1207) for use with an asynchronous DDSDataWriter (p.1070). The user
can choose to use the built-in flow controllers and optionally modify their prop-
erties or can create a custom flow controller.

By default, flow control is disabled. That is, the built-in DDS_DEFAULT _-
FLOW_CONTROLLER_NAME (p.89) flow controller does not apply any
flow control. Instead, it allows data to be sent asynchronously as soon as it is
written by the DDSDataWriter (p. 1070).

Essentially, this is equivalent to a user-created DDSFlowController (p. 1207)
with the following DDS_FlowControllerProperty_t (p.725) settings:

- DDS_FlowControllerProperty_t::scheduling_policy (p.726) = DDS _-
EDF_FLOW_CONTROLLER_SCHED_POLICY (p.88)

- DDS_FlowControllerProperty_t::token_bucket (p.726) max_tokens =
DDS_LENGTH_UNLIMITED (p. 362)

- DDS_FlowControllerProperty_t::token_bucket (p.726) tokens_added -
per_period = DDS_ LENGTH_UNLIMITED (p. 362)

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4+ API
by Doxygen

90 Module Documentation

- DDS_FlowControllerProperty_t::token_bucket (p.726) tokens_-
leaked_per_period = 0

- DDS _FlowControllerProperty_t::token_bucket (p.726) period = 1 sec-
ond

- DDS_FlowControllerProperty_t::token_bucket (p.726) bytes_per_-
token = DDS_LENGTH_UNLIMITED (p. 362)

See also:

DDSPublisher::create_datawriter (p. 1303)
DDSDomainParticipant::lookup_flowcontroller (p.1142)
DDSFlowController::set_property (p.1208)
DDS_PublishModeQosPolicy (p.829)
DDS_AsynchronousPublisherQosPolicy (p.453)

5.15.3.2 charx DDS_FIXED_ RATE_FLOW_CONTROLLER_NAME

Special value of DDS_PublishModeQosPolicy::flow_controller_name
(p-831) that refers to the built-in fixed-rate flow controller.

RTI Data Distribution Service provides several builtin DDSFlowController
(p.1207) for use with an asynchronous DDSDataWriter (p.1070). The user
can choose to use the built-in flow controllers and optionally modify their prop-
erties or can create a custom flow controller.

The built-in DDS_FIXED RATE FLOW_CONTROLLER_NAME
(p-90) flow controller shapes the network traffic by allowing data to be sent
only once every second. Any accumulated samples destined for the same
destination are coalesced into as few network packets as possible.

Essentially, this is equivalent to a user-created DDSFlowController (p. 1207)
with the following DDS_FlowControllerProperty_t (p.725) settings:

- DDS_FlowControllerProperty _t::scheduling_policy (p.726) = DDS_-
EDF FLOW_CONTROLLER_SCHED _POLICY (p.88)

- DDS_FlowControllerProperty _t::token_bucket (p.726) max_tokens =
DDS_LENGTH_UNLIMITED (p. 362)

- DDS _FlowControllerProperty_t::token_bucket (p.726) tokens_added -
per_period = DDS_LENGTH_UNLIMITED (p. 362)

- DDS_FlowControllerProperty_t::token_bucket (p.726) tokens -
leaked per_period = DDS_LENGTH_UNLIMITED (p. 362)

- DDS_FlowControllerProperty_t::token_bucket (p.726) period = 1 sec-
ond

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API
by Doxygen

5.15 Flow Controllers 91

- DDS_FlowControllerProperty_t::token_bucket (p.726) bytes_per_-
token = DDS_LENGTH_UNLIMITED (p. 362)

See also:

DDSPublisher::create_datawriter (p.1303)
DDSDomainParticipant::lookup_flowcontroller (p. 1142)
DDSFlowController::set_property (p.1208)
DDS_PublishModeQosPolicy (p.829)
DDS_AsynchronousPublisherQosPolicy (p.453)

5.15.3.3 charx DDS_ON_DEMAND _FLOW_CONTROLLER -
NAME

Special value of DDS_PublishModeQosPolicy::flow_controller_name
(p. 831) that refers to the built-in on-demand flow controller.

RTI Data Distribution Service provides several builtin DDSFlowController
(p-1207) for use with an asynchronous DDSDataWriter (p.1070). The user
can choose to use the built-in flow controllers and optionally modify their prop-
erties or can create a custom flow controller.

The built-in DDS_ON_DEMAND _FLOW_CONTROLLER_NAME
(p-91) allows data to be sent only when the user calls DDSFlowCon-
troller::trigger flow (p.1209). With each trigger, all accumulated data
since the previous trigger is sent (across all DDSPublisher (p.1294) or
DDSDataWriter (p.1070) instances). In other words, the network traffic
shape is fully controlled by the user. Any accumulated samples destined for
the same destination are coalesced into as few network packets as possible.

This external trigger source is ideal for users who want to implement some form
of closed-loop flow control or who want to only put data on the wire every so
many samples (e.g. with the number of samples based on NDDS_Transport -
Property _t::gather_send_buffer_count_max (p. 1467)).

Essentially, this is equivalent to a user-created DDSFlowController (p. 1207)
with the following DDS_FlowControllerProperty_t (p.725) settings:

- DDS_FlowControllerProperty_t::scheduling_policy (p.726) = DDS_-
EDF_FLOW_CONTROLLER_SCHED_POLICY (p.88)

- DDS _FlowControllerProperty_t::token_bucket (p.726) max tokens =
DDS_LENGTH_UNLIMITED (p. 362)

- DDS_FlowControllerProperty_t::token_bucket (p.726) tokens_added -
per_period = DDS_LENGTH_UNLIMITED (p. 362)

- DDS_FlowControllerProperty_t::token_bucket (p.726) tokens_-
leaked per_period = DDS_LENGTH_UNLIMITED (p. 362)

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4+ API
by Doxygen

92 Module Documentation

- DDS_FlowControllerProperty_t::token_bucket (p.726) period =
DDS_DURATION_INFINITE (p.300)

- DDS _FlowControllerProperty_t::token_bucket (p.726) bytes_per_-
token = DDS_LENGTH_UNLIMITED (p. 362)

See also:

DDSPublisher::create_datawriter (p. 1303)
DDSDomainParticipant::lookup_flowcontroller (p.1142)
DDSFlowController::trigger_flow (p. 1209)
DDSFlowController::set_property (p.1208)
DDS_PublishModeQosPolicy (p.829)
DDS_AsynchronousPublisherQosPolicy (p.453)

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API
by Doxygen

5.16 Subscription Module 93

5.16 Subscription Module

Contains the DDSSubscriber (p.1337), DDSDataReader (p.1046),
DDSReadCondition (p. 1321), and DDSQueryCondition (p. 1319) classes,
as well as the DDSSubscriberListener (p. 1360) and DDSDataReaderLis-
tener (p.1065) interfaces, and more generally, all that is needed on the sub-
scription side.

Modules

" Subscribers
DDSSubscriber (p. 1337) entity and associated elements

" DataReaders
DDSDataReader (p. 1046) entity and associated elements

" Data Samples

DDS_SampleInfo (p.886), DDS_SampleStateKind (p.108), DDS_-
ViewStateKind (p.110), DDS_InstanceStateKind (p. 113) and associ-
ated elements

5.16.1 Detailed Description

Contains the DDSSubscriber (p.1337), DDSDataReader (p.1046),
DDSReadCondition (p. 1321), and DDSQueryCondition (p. 1319) classes,
as well as the DDSSubscriberListener (p.1360) and DDSDataReaderLis-
tener (p.1065) interfaces, and more generally, all that is needed on the sub-
scription side.

5.16.2 Access to data samples

Data is made available to the application by the following operations on
DDSDataReader (p.1046) objects: FooDataReader::read (p.1391),
FooDataReader::read_w_condition (p.1398), FooDataReader::take
(p.1392), FooDataReader::take_w_condition (p.1400), and the other
variants of read() and take().

The general semantics of the read () operation is that the application only gets
access to the corresponding data (i.e. a precise instance value); the data remains
the responsibility of RTT Data Distribution Service and can be read again.

The semantics of the take () operations is that the application takes full respon-
sibility for the data; that data will no longer be available locally to RTI Data

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4+ API
by Doxygen

94 Module Documentation

Distribution Service. Consequently, it is possible to access the same information
multiple times only if all previous accesses were read() operations, not take().

Each of these operations returns a collection of Data values and associated
DDS_Samplelnfo (p. 886) objects. Each data value represents an atom of data
information (i.e., a value for one instance). This collection may contain samples
related to the same or different instances (identified by the key). Multiple
samples can refer to the same instance if the settings of the HISTORY (p. 358)
QoS allow for it.

To return the memory back to the middleware, every read() or take()
that retrieves a sequence of samples must be followed with a call to
FooDataReader::return_loan (p.1415).

See also:

Interpretation of the Samplelnfo (p.887)

5.16.2.1 Data access patterns

The application accesses data by means of the operations read or take on the
DDSDataReader (p.1046). These operations return an ordered collection of
DataSamples consisting of a DDS_SampleInfo (p.886) part and a Data part.

The way RTI Data Distribution Service builds the collection depends on QoS
policies set on the DDSDataReader (p. 1046) and DDSSubscriber (p. 1337),
as well as the source_timestamp of the samples, and the parameters passed to
the read() / take() operations, namely:

" the desired sample states (any combination of DDS_SampleStateKind
(p. 108))

" the desired view states (any combination of DDS_ViewStateKind
(p- 110))

the desired instance states (any combination of DDS_-
InstanceStateKind (p.113))

The read() and take() operations are non-blocking and just deliver what is
currently available that matches the specified states.

The read w_condition() and take_w_condition() operations take a
DDSReadCondition (p.1321) object as a parameter instead of sample, view
or instance states. The behaviour is that the samples returned will only be
those for which the condition is DDS_BOOLEAN_TRUE (p.293). These
operations, in conjunction with DDSReadCondition (p.1321) objects and a
DDSWaitSet (p.1379), allow performing waiting reads.

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API
by Doxygen

5.16 Subscription Module 95

Once the data samples are available to the data readers, they can be read or
taken by the application. The basic rule is that the application may do this in
any order it wishes. This approach is very flexible and allows the application
ultimate control.

To access data coherently, or in order, the PRESENTATION (p.343) QoS
must be set properly.

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4+ API
by Doxygen

96 Module Documentation

5.17 Subscribers

DDSSubscriber (p. 1337) entity and associated elements

Classes

~ class DDSSubscriberListener

<<interface>> (p.194) DDSListener (p.1266) for status about a sub-
scriber.

" class DDSSubscriberSeq

Declares IDL sequence < DDSSubscriber (p.1337) > .

~ class DDSSubscriber

<<interface>> (p.194) A subscriber is the object responsible for actually
receiving data from a subscription.

" struct DDS_SubscriberQos

QoS policies supported by a DDSSubscriber (p. 1337) entity.

Variables

" struct DDS_DataReaderQos DDS_DATAREADER_QOS -
DEFAULT

Special value for creating data reader with default QoS.

" struct DDS_DataReaderQos DDS_DATAREADER_QOS_USE -
TOPIC_QOS

Special value for creating DDSDataReader (p.1046) with a combination
of the default DDS_DataReaderQos (p.499) and the DDS_TopicQos
(p- 937).

5.17.1 Detailed Description

DDSSubscriber (p. 1337) entity and associated elements

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API
by Doxygen

5.17 Subscribers 97

5.17.2 Variable Documentation

5.17.2.1 struct DDS_DataReaderQos DDS_DATAREADER_QOS _-
DEFAULT

Special value for creating data reader with default QoS.

When used in DDSSubscriber::create_datareader (p.1346), this special
value is used to indicate that the DDSDataReader (p. 1046) should be created
with the default DDSDataReader (p.1046) QoS by means of the operation
get_default_datareader_qos and using the resulting QoS to create the DDS-
DataReader (p. 1046).

When used in DDSSubscriber::set_default_datareader_qos (p.1342), this
special value is used to indicate that the default QoS should be reset back
to the initial value that would be used if the DDSSubscriber::set_default_-
datareader_qos (p. 1342) operation had never been called.

When used in DDSDataReader::set_qos (p. 1059), this special value is used
to indicate that the QoS of the DDSDataReader (p. 1046) should be changed
to match the current defualt QoS set in the DDSSubscriber (p. 1337) that the
DDSDataReader (p.1046) belongs to.

Note: You cannot use this value to get the default QoS values for a DataReader;
for this purpose, use DDSDomainParticipant::get_default_datareader_-
qos (p.1108).

See also:

DDSSubscriber::create_datareader (p. 1346)
DDSSubscriber::set_default_datareader_qos (p. 1342)
DDSDataReader::set_qgos (p. 1059)

Examples:

HelloWorld_subscriber.cxx.

5.17.2.2 struct DDS_DataReaderQos DDS_DATAREADER_QOS -
USE_TOPIC_QOS

Special value for creating DDSDataReader (p.1046) with a combination of
the default DDS_DataReaderQos (p.499) and the DDS_TopicQos (p. 937).

The use of this value is equivalent to the application obtaining the default
DDS_DataReaderQos (p.499) and the DDS_TopicQos (p.937) (by means
of the operation DDSTopic::get_qos (p. 1369)) and then combining these two
QoS using the operation DDSSubscriber::copy_from_topic_qos (p.1356)
whereby any policy that is set on the DDS_TopicQos (p.937) ”overrides”

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4+ API
by Doxygen

98 Module Documentation

the corresponding policy on the default QoS. The resulting QoS is then applied
to the creation of the DDSDataReader (p.1046).

This value should only be used in DDSSubscriber::create_datareader
(p. 1346).

See also:

DDSSubscriber::create_datareader (p. 1346)
DDSSubscriber::get_default_datareader_qos (p. 1341)
DDSTopic::get_qos (p. 1369)
DDSSubscriber::copy_from_topic_qos (p. 1356)

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API
by Doxygen

5.18 DataReaders 99

5.18 DataReaders

DDSDataReader (p.1046) entity and associated elements

Modules

" Read Conditions
DDSReadCondition (p. 1321) and associated elements

" Query Conditions

DDSQueryCondition (p. 1319) and associated elements

Classes

~ struct FooDataReader

<<interface>> (p.194) <<generic>> (p.194) User data type-specific
data reader.

" class DDSDataReaderSeq
Declares IDL sequence < DDSDataReader (p. 1046) > .

class DDSDataReaderListener
<<interface>> (p.194) DDSListener (p. 1266) for reader status.

~ class DDSDataReader

<<interface>> (p.194) Allows the application to: (1) declare the data it

wishes to receive (i.e. make a subscription) and (2) access the data received
by the attached DDSSubscriber (p. 1337).

struct DDS_RequestedDeadlineMissedStatus
DDS_REQUESTED _DEADLINE_MISSED_STATUS (p. 317)

struct DDS_LivelinessChangedStatus
DDS_LIVELINESS_CHANGED_STATUS (p. 319)

struct DDS_RequestedIncompatibleQosStatus
DDS_REQUESTED_INCOMPATIBLE_QOS_STATUS (p. 317)

struct DDS_SampleLostStatus
DDS_SAMPLE_LOST_STATUS (p. 518)

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4+ API
by Doxygen

100 Module Documentation
~ struct DDS_SampleRejectedStatus
DDS_SAMPLE REJECTED_STATUS (p. 518)
" struct DDS_SubscriptionMatchedStatus
DDS_SUBSCRIPTION_-MATCHED_STATUS (p. 520)
"~ struct DDS_DataReaderCacheStatus
<<eXtension>> (p.194) The status of the reader’s cache.
" struct DDS_DataReaderProtocolStatus
<<eXtension>> (p.194) The status of a reader’s internal protocol related
metrics, like the number of samples received, filtered, rejected; and status of
wire protocol traffic.
" struct DDS_DataReaderQos
QoS policies supported by a DDSDataReader (p. 1046) entity.
Enumerations

enum DDS_SampleLostStatusKind {
DDS_NOT_LOST,
DDS_LOST_BY_WRITER,
DDS_LOST_BY_INSTANCES_LIMIT,

DDS_LOST_BY_REMOTE_WRITERS_PER_INSTANCE -
LIMIT,

DDS_LOST_ BY_INCOMPLETE COHERENT _SET,
DDS_LOST_BY_LARGE_COHERENT_SET,
DDS_LOST_BY_SAMPLES_PER_ REMOTE_WRITER_LIMIT,
DDS_LOST_ BY_VIRTUAL_WRITERS_LIMIT,
DDS_LOST_BY REMOTE_WRITERS_ PER_SAMPLE_LIMIT,
DDS_LOST_BY_AVAILABILITY _WAITING_TIME,

DDS_LOST BY_REMOTE_WRITER_SAMPLES_PER -
VIRTUAL_QUEUE_LIMIT }

Kinds of reasons why a sample was lost.

enum DDS_SampleRejectedStatusKind {
DDS_NOT_REJECTED,
DDS_ REJECTED BY _INSTANCES_LIMIT,

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API

by Doxygen

5.18 DataReaders 101

DDS_REJECTED_BY_SAMPLES_LIMIT,
DDS_REJECTED BY_SAMPLES_ PER_INSTANCE_LIMIT,
DDS_REJECTED _BY_REMOTE_WRITERS_LIMIT,

DDS_REJECTED BY REMOTE_WRITERS_PER -
INSTANCE_LIMIT,

DDS_REJECTED _BY_SAMPLES_PER_REMOTE_WRITER -
LIMIT,

DDS_REJECTED _BY_VIRTUAL_WRITERS_LIMIT,

DDS_REJECTED_BY_REMOTE_WRITERS_PER_SAMPLE -
LIMIT }

Kinds of reasons for rejecting a sample.

5.18.1 Detailed Description

DDSDataReader (p.1046) entity and associated elements

5.18.2 Enumeration Type Documentation
5.18.2.1 enum DDS_SampleLostStatusKind
Kinds of reasons why a sample was lost.

Enumerator:

DDS_NOT_LOST The sample was not lost.
See also:

ResourceLimitsQosPolicy
DDS_ LOST_BY_WRITER A DataWriter removed the sample before

being received by the DDSDataReader (p. 1046).
This constant is an extension to the DDS standard.
DDS_ LOST_BY_INSTANCES_LIMIT A resource limit on the num-
ber of instances was reached.
This constant is an extension to the DDS standard.
See also:

ResourceLimitsQosPolicy

DDS_LOST BY REMOTE_WRITERS_PER INSTANCE_LIMIT
A resource limit on the number of remote writers for a single instance
from which a DDSDataReader (p.1046) may read was reached.

This constant is an extension to the DDS standard.

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4+ API
by Doxygen

102 Module Documentation

See also:

DDS_DataReaderResourceLimitsQosPolicy (p.505)

DDS_ LOST_BY_INCOMPLETE_COHERENT_SET A sample is
lost because it is part of an incomplete coherent set.

This constant is an extension to the DDS standard.

DDS LOST-BY LARGE_COHERENT_SET A sample is lost be-
cause it is part of a large coherent set.
This constant is an extension to the DDS standard.

DDS LOST_BY SAMPLES PER REMOTE WRITER_LIMIT

A resource limit on the number of samples from a given remote writer
that a DDSDataReader (p.1046) may store was reached.

This constant is an extension to the DDS standard.
See also:

DDS_DataReaderResourceLimitsQosPolicy (p.505)

DDS LOST BY_VIRTUAL_WRITERS_LIMIT A resource limit
on the number of virtual writers from which a DDSDataReader
(p. 1046) may read was reached.

This constant is an extension to the DDS standard.
See also:

DDS_DataReaderResourceLimitsQosPolicy (p.505)
DDS_ LOST_ BY REMOTE WRITERS_PER_SAMPLE_LIMIT

A resource limit on the number of remote writers per sample was
reached.

This constant is an extension to the DDS standard.

See also:

DDS_DataReaderResourceLimitsQosPolicy (p.505)

DDS_LOST_BY_AVAILABILITY WAITING_TIME DDS -
AvailabilityQosPolicy::max_data_availability_waiting_time
(p- 460) expired.
This constant is an extension to the DDS standard.
See also:

DDS_DataReaderResourceLimitsQosPolicy (p.505)

DDS_LOST_ BY REMOTE WRITER SAMPLES PER VIRTUAL QUEUE_LIMIT
A resource limit on the number of samples published by a remote
writer on behalf of a virtual writer that a DDSDataReader (p. 1046)
may store was reached.

This constant is an extension to the DDS standard.
See also:

DDS_DataReaderResourceLimitsQosPolicy (p.505)

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API
by Doxygen

5.18 DataReaders 103

5.18.2.2 enum DDS _SampleRejectedStatusKind
Kinds of reasons for rejecting a sample.

Enumerator:

DDS_NOT_-REJECTED Samples are never rejected.
See also:

DDS_DataReaderResourceLimitsQosPolicy (p.505)

DDS_REJECTED_BY_INSTANCES_LIMIT A resource limit on
the number of instances was reached.
See also:

DDS_DataReaderResourceLimitsQosPolicy (p.505)
DDS REJECTED_BY_SAMPLES_LIMIT A resource limit on the

number of samples was reached.
See also:

DDS_DataReaderResourceLimitsQosPolicy (p.505)

DDS_REJECTED_BY_ SAMPLES_PER_INSTANCE_LIMIT A
resource limit on the number of samples per instance was reached.

See also:
ResourceLimitsQosPolicy

DDS_ REJECTED_BY_REMOTE_WRITERS_LIMIT A resource
limit on the number of remote writers from which a DDSDataReader
(p. 1046) may read was reached.

This constant is an extension to the DDS standard.
See also:
DDS_DataReaderResourceLimitsQosPolicy (p.505)

DDS_ REJECTED_BY REMOTE_WRITERS PER INSTANCE_LIMIT
A resource limit on the number of remote writers for a single instance
from which a DDSDataReader (p.1046) may read was reached.

This constant is an extension to the DDS standard.
See also:

DDS_DataReaderResourceLimitsQosPolicy (p.505)
DDS_REJECTED_BY_SAMPLES_PER_ REMOTE_WRITER_LIMIT

A resource limit on the number of samples from a given remote writer
that a DDSDataReader (p.1046) may store was reached.

This constant is an extension to the DDS standard.
See also:

DDS_DataReaderResourceLimitsQosPolicy (p.505)

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4+ API
by Doxygen

104 Module Documentation

DDS REJECTED_BY_VIRTUAL_WRITERS_LIMIT A resource
limit on the number of virtual writers from which a DDSDataReader
(p.1046) may read was reached.

This constant is an extension to the DDS standard.
See also:
DDS_DataReaderResourceLimitsQosPolicy (p.505)

DDS_REJECTED_BY_REMOTE_WRITERS_PER_SAMPLE_LIMIT
A resource limit on the number of remote writers per sample was
reached.

This constant is an extension to the DDS standard.
See also:

DDS_DataReaderResourceLimitsQosPolicy (p.505)

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API
by Doxygen

5.19 Read Conditions 105

5.19 Read Conditions

DDSReadCondition (p.1321) and associated elements

Classes

~ class DDSReadCondition

<<interface>> (p.194) Conditions specifically dedicated to read operations
and attached to one DDSDataReader (p. 1046).

5.19.1 Detailed Description

DDSReadCondition (p.1321) and associated elements

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4+ API
by Doxygen

106 Module Documentation

5.20 Query Conditions

DDSQueryCondition (p.1319) and associated elements

Classes

" class DDSQueryCondition

<<interface>> (p.194) These are specialised DDSReadCondition
(p. 1321) objects that allow the application to also specify a filter on the
locally available data.

5.20.1 Detailed Description

DDSQueryCondition (p.1319) and associated elements

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API
by Doxygen

5.21 Data Samples 107

5.21 Data Samples

DDS _Samplelnfo (p.886), DDS_SampleStateKind (p.108), DDS -
ViewStateKind (p.110), DDS_InstanceStateKind (p. 113) and associated
elements

Modules

" Sample States
DDS_SampleStateKind (p. 108) and associated elements

" View States
DDS_ViewStateKind (p. 110) and associated elements

" Instance States
DDS_InstanceStateKind (p. 113) and associated elements

Classes

© struct DDS_Samplelnfo

Information that accompanies each sample that is read or taken.

© struct DDS_SampleInfoSeq
Declares IDL sequence < DDS_Samplelnfo (p.886) > .

5.21.1 Detailed Description

DDS_SampleInfo (p.886), DDS_SampleStateKind (p.108), DDS_-
ViewStateKind (p.110), DDS_InstanceStateKind (p.113) and associated
elements

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4+ API
by Doxygen

108 Module Documentation

5.22 Sample States

DDS_SampleStateKind (p. 108) and associated elements

Typedefs

" typedef DDS_UnsignedLong DDS_SampleStateMask
A bit-mask (list) of sample states, i.e. DDS_SampleStateKind (p. 108).

Enumerations

" enum DDS_SampleStateKind {
DDS_READ_SAMPLE_STATE = 0x0001 << 0,
DDS_NOT_READ_SAMPLE_STATE = 0x0001 << 1 }

Indicates whether or not a sample has ever been read.

Variables

" const DDS_SampleStateMask DDS_ANY_SAMPLE_STATE

Any sample state DDS_READ_SAMPLE_STATE (p.109) | DDS_-
NOT.READ_SAMPLE_STATE (p. 109).

5.22.1 Detailed Description

DDS_SampleStateKind (p. 108) and associated elements

5.22.2 Typedef Documentation
5.22.2.1 typedef DDS_UnsignedLong DDS_SampleStateMask

A bit-mask (list) of sample states, i.e. DDS_SampleStateKind (p. 108).

5.22.3 Enumeration Type Documentation
5.22.3.1 enum DDS_SampleStateKind

Indicates whether or not a sample has ever been read.

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API
by Doxygen

5.22 Sample States 109

For each sample received, the middleware internally maintains a sample_state
relative to each DDSDataReader (p.1046). The sample state can be either:

" DDS_READ_SAMPLE_STATE (p.109) indicates that the DDS-
DataReader (p.1046) has already accessed that sample by means of a
read or take operation.

" DDS_NOT_READ _SAMPLE_STATE (p.109) indicates that the
DDSDataReader (p.1046) has not accessed that sample before.

The sample state will, in general, be different for each sample in the collection
returned by read or take.

Enumerator:

DDS_READ_SAMPLE_STATE Sample has been read.
DDS_ NOT_READ_SAMPLE_STATE Sample has not been read.
5.22.4 Variable Documentation

5.22.4.1 const DDS_SampleStateMask DDS_ANY_SAMPLE -
STATE

Any sample state DDS_READ_SAMPLE_STATE (p.109) | DDS_NOT_-
READ_SAMPLE_STATE (p. 109).

Examples:

HelloWorld_subscriber.cxx.

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4+ API
by Doxygen

110 Module Documentation

5.23 View States

DDS_ViewStateKind (p. 110) and associated elements

Typedefs

" typedef DDS_UnsignedLong DDS_ViewStateMask
A bit-mask (list) of view states, i.e. DDS_ViewStateKind (p.110).

Enumerations

" enum DDS_ViewStateKind {
DDS_NEW_VIEW _STATE = 0x0001 << 0,
DDS_NOT_NEW_VIEW_STATE = 0x0001 << 1 }

Indicates whether or not an instance is new.

Variables

" const DDS_ViewStateMask DDS_ANY_VIEW _STATE

Any view state DDS_NEW_VIEW_STATE (p.111) | DDS_NOT--
NEW_VIEW_STATE (p. 111).

5.23.1 Detailed Description

DDS_ViewStateKind (p. 110) and associated elements

5.23.2 Typedef Documentation
5.23.2.1 typedef DDS _UnsignedLong DDS_ViewStateMask

A Dbit-mask (list) of view states, i.e. DDS_ViewStateKind (p.110).

5.23.3 Enumeration Type Documentation

5.23.3.1 enum DDS_ViewStateKind

Indicates whether or not an instance is new.

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API
by Doxygen

5.23 View States 111

For each instance (identified by the key), the middleware internally maintains
a view state relative to each DDSDataReader (p.1046). The view state can
be either:

" DDS_NEW_VIEW _STATE (p.111) indicates that either this is the
first time that the DDSDataReader (p. 1046) has ever accessed samples
of that instance, or else that the DDSDataReader (p. 1046) has accessed
previous samples of the instance, but the instance has since been reborn
(i.e. become not-alive and then alive again). These two cases are distin-
guished by examining the DDS_Samplelnfo::disposed_generation_-
count (p.891) and the DDS_Samplelnfo::no_writers_generation_-
count (p.892).

" DDS_NOT_NEW_VIEW _STATE (p.111) indicates that the DDS-
DataReader (p. 1046) has already accessed samples of the same instance
and that the instance has not been reborn since.

The view_state available in the DDS_SamplelInfo (p. 886) is a snapshot of the
view state of the instance relative to the DDSDataReader (p.1046) used to
access the samples at the time the collection was obtained (i.e. at the time read
or take was called). The view_state is therefore the same for all samples in the
returned collection that refer to the same instance.

Once an instance has been detected as not having any ”live” writers and all the
samples associated with the instance are "taken” from the DDSDataReader
(p. 1046), the middleware can reclaim all local resources regarding the instance.
Future samples will be treated as "never seen.”

Enumerator:

DDS_ NEW_VIEW_STATE New instance. This latest generation of
the instance has not previously been accessed.

DDS_ NOT_NEW_VIEW_STATE Not a new instance. This latest
generation of the instance has previously been accessed.

5.23.4 Variable Documentation
5.23.4.1 const DDS_ViewStateMask DDS_ANY _VIEW_STATE

Any view state DDS_NEW_VIEW _STATE (p.111) | DDS_NOT_NEW -
VIEW _STATE (p.111).

Examples:

HelloWorld_subscriber.cxx.

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4+ API
by Doxygen

112 Module Documentation

5.24 Instance States

DDS _InstanceStateKind (p. 113) and associated elements

Typedefs

" typedef DDS_UnsignedLong DDS InstanceStateMask
A bit-mask (list) of instance states, i.e. DDS_InstanceStateKind (p. 113).

Enumerations

enum DDS _InstanceStateKind {
DDS_ALIVE_INSTANCE_STATE = 0x0001 << 0,

DDS_NOT_ALIVE_DISPOSED_INSTANCE_STATE = 0x0001
<< 1,

DDS_NOT_ALIVE_NO_WRITERS_INSTANCE_STATE =
0x0001 << 2 }

Indicates is the samples are from a live DDSDataWriter (p. 1070) or not.

Variables

~ const DDS_InstanceStateMask DDS_ANY_INSTANCE_STATE

Any instance state ALIVE_INSTANCE_STATE | NOT-ALIVE.-
DISPOSED_INSTANCE_STATE \ NOT_ALIVE_NO_WRITERS_-
INSTANCE_STATE.

~ const DDS _InstanceStateMask DDS_NOT_ALIVE_INSTANCE -
STATE

Not alive instance state NOT_-ALIVE_DISPOSED_INSTANCE_STATE |
NOT_ALIVE_NO-WRITERS_INSTANCE_STATE.

5.24.1 Detailed Description

DDS InstanceStateKind (p. 113) and associated elements

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API
by Doxygen

5.24 Instance States 113

5.24.2 Typedef Documentation
5.24.2.1 typedef DDS_UnsignedLong DDS _InstanceStateMask

A Dbit-mask (list) of instance states, i.e. DDS_InstanceStateKind (p.113).

5.24.3 Enumeration Type Documentation
5.24.3.1 enum DDS InstanceStateKind

Indicates is the samples are from a live DDSDataWriter (p. 1070) or not.

For each instance, the middleware internally maintains an instance state. The
instance state can be:

" DDS_ALIVE_ INSTANCE_STATE (p. 114) indicates that (a) samples
have been received for the instance, (b) there are live DDSDataWriter
(p. 1070) entities writing the instance, and (c) the instance has not been
explicitly disposed (or else more samples have been received after it was
disposed).

" DDS_NOT_ALIVE_DISPOSED_INSTANCE_STATE (p. 114) indi-
cates the instance was explicitly disposed by a DDSDataWriter (p. 1070)
by means of the dispose operation.

" DDS_NOT_ALIVE NO_WRITERS INSTANCE_STATE (p.114)
indicates the instance has been declared as not-alive by the DDS-
DataReader (p.1046) because it detected that there are no live DDS-
DataWriter (p. 1070) entities writing that instance.

The precise behavior events that cause the instance state to change depends on
the setting of the OWNERSHIP QoS:

" If OWNERSHIP (p.347) is set to DDS_EXCLUSIVE -
OWNERSHIP _QOS (p.348), then the instance state becomes
DDS_NOT_ALIVE DISPOSED INSTANCE _STATE (p. 114) only
if the DDSDataWriter (p.1070) that "owns” the instance explicitly
disposes it. The instance state becomes DDS_ALIVE_INSTANCE -
STATE (p.114) again only if the DDSDataWriter (p. 1070) that owns
the instance writes it.

" If OWNERSHIP (p. 347) is set to DDS_SHARED_OWNERSHIP _-
QOS (p. 348), then the instance state becomes DDS_NOT_ALIVE -
DISPOSED INSTANCE _STATE (p.114) if any DDSDataWriter

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4+ API
by Doxygen

114 Module Documentation

(p-1070) explicitly disposes the instance. The instance state becomes
DDS_ALIVE_INSTANCE_STATE (p.114) as soon as any DDS-
DataWriter (p.1070) writes the instance again.

The instance state available in the DDS_SampleInfo (p.886) is a snapshot of
the instance state of the instance at the time the collection was obtained (i.e.
at the time read or take was called). The instance state is therefore the same
for all samples in the returned collection that refer to the same instance.

Enumerator:

DDS_ALIVE_INSTANCE_STATE Instance is currently in existence.

DDS_NOT_-ALIVE_DISPOSED_INSTANCE_STATE Not alive
disposed instance. The instance has been disposed by a DataWriter.

DDS_NOT_-ALIVE_NO_-WRITERS_INSTANCE_STATE Not
alive no writers for instance. None of the DDSDataWriter (p. 1070)
objects are currently alive (according to the LIVELINESS (p. 350))
are writing the instance.

5.24.4 Variable Documentation

5.24.4.1 const DDS_InstanceStateMask DDS_ANY_INSTANCE -
STATE

Any instance state ALIVE_INSTANCE_STATE | NOT_ALIVE DISPOSED -
INSTANCE_STATE | NOT_ALIVE NO_WRITERS_INSTANCE_STATE.

Examples:

HelloWorld_subscriber.cxx.

5.24.4.2 const DDS _InstanceStateMask DDS_NOT_ALIVE -
INSTANCE_STATE

Not alive instance state NOT_ALIVE_DISPOSED_INSTANCE_STATE | NOT -
ALIVE_NO_WRITERS_INSTANCE_STATE.

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API
by Doxygen

5.25 Infrastructure Module 115

5.25 Infrastructure Module

Defines the abstract classes and the interfaces that are refined by the other
modules. Contains common definitions such as return codes, status values, and
QoS policies.

Modules

" Time Support

Time and duration types and defines.

" GUID Support
<<eXtension>> (p.194) GUID type and defines.

Sequence Number Support

<<eXtension>> (p.194) Sequence number type and defines.

Exception Codes
<<eXtension>> (p.194) Ezception codes.

Return Codes

Types of return codes.

Status Kinds

Kinds of communication status.

" QoS Policies
Quality of Service (QoS) policies.

Entity Support
DDSEntity (p. 1201), DDSListener (p. 1266) and related items.

Conditions and WaitSets
DDSCondition (p. 1034) and DDSWaitSet (p. 1379) and related items.

WriteParams
Octet Buffer Support

<<eXtension>> (p.194) Octet buffer creation, cloning, and deletion.

Sequence Support

The FooSeq (p. 1437) interface allows you to work with variable-length col-
lections of homogeneous data.

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4+ API
by Doxygen

116 Module Documentation

" String Support

<<eXtension>> (p.194) String creation, cloning, assignment, and dele-
tion.

5.25.1 Detailed Description

Defines the abstract classes and the interfaces that are refined by the other
modules. Contains common definitions such as return codes, status values, and
QoS policies.

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API
by Doxygen

5.26 Built-in Sequences 117

5.26 Built-in Sequences

Defines sequences of primitive data type.

Classes

" struct DDS_CharSeq
Instantiates FooSeq (p.1437) < DDS_Char (p. 294) >.

~ struct DDS_WcharSeq
Instantiates FooSeq (p.1437) < DDS_Wchar (p. 294) >.

struct DDS_OctetSeq
Instantiates FooSeq (p.1437) < DDS_Octet (p. 294) >.

" struct DDS_ShortSeq
Instantiates FooSeq (p.1437) < DDS_Short (p.294) >.

struct DDS_UnsignedShortSeq
Instantiates FooSeq (p.1437) < DDS_UnsignedShort (p. 294) >.

struct DDS_LongSeq
Instantiates FooSeq (p.1437) < DDS_Long (p. 295) >.

struct DDS_UnsignedLongSeq
Instantiates FooSeq (p.1437) < DDS_UnsignedLong (p. 295) >.

struct DDS_LongLongSeq
Instantiates FooSeq (p.1437) < DDS_LongLong (p. 295) >.

struct DDS_UnsignedLongLongSeq
Instantiates FooSeq (p.1437) < DDS_UnsignedLongLong (p. 295) >.

struct DDS_FloatSeq
Instantiates FooSeq (p.1437) < DDS_Float (p. 295) >.

" struct DDS_DoubleSeq
Instantiates FooSeq (p.1437) < DDS_Double (p. 295) >.

" struct DDS_LongDoubleSeq
Instantiates FooSeq (p.1437) < DDS_LongDouble (p.295) >.

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4+ API
by Doxygen

118 Module Documentation

~ struct DDS_BooleanSeq
Instantiates FooSeq (p.1437) < DDS_Boolean (p.296) >.

~ struct DDS_StringSeq
Instantiates FooSeq (p.1437) < charx > with value type semantics.

© struct DDS_WstringSeq
Instantiates FooSeq (p.1437) < DDS_Wchar (p. 294)% >.

5.26.1 Detailed Description

Defines sequences of primitive data type.

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API
by Doxygen

5.27 Multi-channel DataWriters 119

5.27 Multi-channel DataWriters

APIs related to Multi-channel DataWriters.

5.27.1 What is a Multi-channel DataWriter?

A Multi-channel DDSDataWriter (p.1070) is a DDSDataWriter (p. 1070)
that is configured to send data over multiple multicast addresses, according to
some filtering criteria applied to the data.

To determine which multicast addresses will be used to send the data, the mid-
dleware evaluates a set of filters that are configured for the DDSDataWriter
(p.1070). Each filter ”guards” a channel (a set of multicast addresses). Each
time a multi-channel DDSDataWriter (p.1070) writes data, the filters are
applied. If a filter evaluates to true, the data is sent over that filter’s associated
channel (set of multicast addresses). We refer to this type of filter as a Channel
Guard filter.

5.27.2 Configuration on the Writer Side

To configure a multi-channel DDSDataWriter (p.1070), simply define a list
of all its channels in the DDS_MultiChannelQosPolicy (p.772).

The DDS_MultiChannelQosPolicy (p.772) is propagated along with
discovery traffic. The value of this policy is available in DDS_-
PublicationBuiltinTopicData::locator _filter (p.822).

5.27.3 Configuration on the Reader Side

No special changes are required in a subscribing application to get data from a
multichannel DDSDataWriter (p. 1070). If you want the DDSDataReader
(p. 1046) to subscribe to only a subset of the channels, use a DDSContentFil-
teredTopic (p. 1040).

For more information on Multi-channel DataWriters, refer to the User’s Manual.

5.27.4 Reliability with Multi-Channel DataWriters
5.27.4.1 Reliable Delivery

Reliable delivery is only guaranteed when the DDS -
PresentationQosPolicy::access_scope (p.802) is set to DDS_-
INSTANCE_PRESENTATION_QOS (p.344) and the filters in DDS _-
MultiChannelQosPolicy (p.772) are keyed-only based.

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4+ API
by Doxygen

120 Module Documentation

If any of the guard filters are based on non-key fields, RTI Data Distribution
Service only guarantees reception of the most recent data from the MultiChannel
DataWriter.

5.27.4.2 Reliable Protocol Considerations

Reliability is maintained on a per-channel basis. FEach channel has its
own reliability channel send queue. The size of that queue is limited
by DDS_ResourceLimitsQosPolicy::max_samples (p.857) and/or DDS_-
DataWriterResourceLimitsQosPolicy::max_batches (p. 546).

The protocol parameters described in DDS_DataWriterProtocolQosPolicy
(p.518) are applied per channel, with the following exceptions:

DDS_RtpsReliableWriterProtocol_t::low_watermark (p.866) and
DDS_RtpsReliableWriterProtocol_t::high_watermark (p.866): The low
watermark and high watermark control the queue levels (in number of samples)
that determine when to switch between regular and fast heartbeat rates. With
MultiChannel DataWriters, high_watermark and low_watermark refer to the
DataWriter’s queue (not the reliability channel queue). Therefore, periodic
heartbeating cannot be controlled on a per-channel basis.

Important: With MultiChannel DataWriters, low_watermark and high_-
watermark refer to application samples even if batching is enabled. This be-
havior differs from the one without MultiChannel DataWriters (where low_-
watermark and high watermark refer to batches).

DDS_RtpsReliableWriterProtocol_t::heartbeats_per_max_samples
(p.870): This field defines the number of heartbeats per send queue. For
MultiChannel DataWriters, the value is applied per channel. However, the send
queue size that is used to calculate the a piggyback heartbeat rate is defined per
DataWriter (see DDS_ResourceLimitsQosPolicy::max_samples (p.857))

Important: With MultiChannel DataWriters, heartbeats_per_max_samples
refers to samples even if batching is enabled. This behavior differs from the one
without MultiChannels DataWriters (where heartbeats_per_max_samples refers
to batches).

With batching and MultiChannel DataWriters, the size of the
DataWriter’s send queue should be configured using DDS_-
ResourceLimitsQosPolicy::max_samples (p.857) instead of max_batches
DDS_DataWriterResourceLimitsQosPolicy::max_batches (p.546) in
order to take advantage of heartbeats_per_max_samples.

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API
by Doxygen

5.28 Pluggable Transports 121

5.28 Pluggable Transports

APIs related to RTT Data Distribution Service pluggable transports.

Modules

" Using Transport Plugins

Configuring transports used by RTI Data Distribution Service.

" Built-in Transport Plugins

Transport plugins delivered with RTI Data Distribution Service.

5.28.1 Detailed Description

APIs related to RTT Data Distribution Service pluggable transports.

5.28.2 Overview

RTI Data Distribution Service has a pluggable transports architecture. The core
of RTI Data Distribution Service is transport agnostic; it does not make any
assumptions about the actual transports used to send and receive messages.
Instead, the RTI Data Distribution Service core uses an abstract ”transport
APT” to interact with the transport plugins which implement that API.

A transport plugin implements the abstract transport API and performs the
actual work of sending and receiving messages over a physical transport. A
collection of builtin plugins (see Built-in Transport Plugins (p.133)) is
delivered with RTT Data Distribution Service for commonly used transports.
New transport plugins can easily be created, thus enabling RTT Data Distribu-
tion Service applications to run over transports that may not even be conceived
yet. This is a powerful capability and that distinguishes RTT Data Distribution
Service from competing middleware approaches.

RTI Data Distribution Service also provides a set of APIs for installing and con-
figuring transport plugins to be used in an application. So that RTT Data Distri-
bution Service applications work out of the box, a subset of the builtin transport
plugins is preconfigured by default (see DDS_TransportBuiltinQosPolicy
(p-941)). You can ”turn-off” some or all of the builtin transport plugins. In
addition, you can configure other transport plugins for use by the application.

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4+ API
by Doxygen

122 Module Documentation

5.28.3 Transport Aliases

In order to use a transport plugin instance in an RTT Data Distribution Service
application, it must be registered with a DDSDomainParticipant (p. 1096).
When you register a transport, you specify a sequence of ”alias” strings to
symbolically refer to the transport plugin. The same alias strings can be used
to register more than one transport plugin.

You can register multiple transport plugins with a DDSDomainParticipant
(p-1096). An alias symbolically refers to one or more transport plugins regis-
tered with the DDSDomainParticipant (p.1096). Builtin transport plugin
instances can be referred to using preconfigured aliases (see TRANSPORT _-
BUILTIN (p.387)).

A transport plugin’s class name is automatically used as an implicit alias. It
can be used to refer to all the transport plugin instances of that class.

You can use aliases to refer to transport plugins, in order to specify:

- the transport plugins to use for discovery (see DDS_-
DiscoveryQosPolicy::enabled_transports (p.565)), and for DDS-
DataWriter (p.1070) and DDSDataReader (p.1046) entities (see DDS _-
TransportSelectionQosPolicy (p.956)).

- the multicast addresses on which to receive discovery messages (see DDS_-
DiscoveryQosPolicy::multicast_receive_addresses (p.566)), and the mul-
ticast addresses and ports on which to receive user data (see DDS_-
DataReaderQos::multicast (p.503)).

- the unicast ports used for user data (see DDS._-
TransportUnicastQosPolicy (p.958)) on both DDSDataWriter (p.1070)
and DDSDataReader (p. 1046) entities.

- the transport plugins used to parse an address string in a locator (Locator
Format (p.380) and NDDS_DISCOVERY_PEERS (p.379)).

A DDSDomainParticipant (p. 1096) (and contained its entities) start using a
transport plugin after the DDSDomainParticipant (p.1096) is enabled (see
DDSEntity::enable (p.1204)). An entity will use all the transport plugins
that match the specified transport QoS policy. All transport plugins are treated
uniformly, regardless of how they were created or registered; there is no notion
of some transports being more ”special” that others.

5.28.4 Transport Lifecycle

A transport plugin is owned by whoever created it. Thus, if you create and
register a transport plugin with a DDSDomainParticipant (p. 1096), you are
responsible for deleting it by calling its destructor. Note that builtin transport
plugins (TRANSPORT_BUILTIN (p.387)) and transport plugins that are

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API
by Doxygen

5.28 Pluggable Transports 123

loaded through the PROPERTY (p.426) QoS policy (see Loading Trans-
port Plugins through Property QoS Policy of Domain Participant
(p. 128)) are automatically managed by RTI Data Distribution Service.

A user-created transport plugin must not be deleted while it is still in use by a
DDSDomainParticipant (p.1096). This generally means that a user-created
transport plugin instance can only be deleted after the DDSDomainPartici-
pant (p.1096) with which it was registered is deleted (see DDSDomainPar-
ticipantFactory::delete_participant (p. 1186)). Note that a transport plugin
cannot be "unregistered” from a DDSDomainParticipant (p. 1096).

A transport plugin instance cannot be registered with more than one DDS-
DomainParticipant (p.1096) at a time. This requirement is necessary to
guarantee the multi-threaded safety of the transport API.

If the same physical transport resources are to be used with more than one
DDSDomainParticipant (p.1096) in the same address space, the transport
plugin should be written in such a way so that it can be instantiated multiple
times—once for each DDSDomainParticipant (p. 1096) in the address space.
Note that it is always possible to write the transport plugin so that multiple
transport plugin instances share the same underlying resources; however the
burden (if any) of guaranteeing multi-threaded safety to access shared resource
shifts to the transport plugin developer.

5.28.5 Transport Class Attributes

A transport plugin instance is associated with two kinds of attributes:

- the class attributes that are decided by the plugin writer; these are invariant
across all instances of the transport plugin class, and

- the instance attributes that can be set on a per instance basis by the transport
plugin user.

Every transport plugin must specify the following class attributes.

transport class id (see NDDS_Transport_Property_t::classid (p. 1466))
Identifies a transport plugin implementation class. It denotes a unique
”class” to which the transport plugin instance belongs. The class is
used to distinguish between different transport plugin implementations.
Thus, a transport plugin vendor should ensure that its transport plugin
implementation has a unique class.

Two transport plugin instances report the same class iff they have com-
patible implementations. Transport plugin instances with mismatching
classes are not allowed (by the RTI Data Distribution Service Core) to
communicate with one another.

Multiple implementations (possibly from different vendors) for a physical

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4+ API
by Doxygen

124 Module Documentation

transport mechanism can co-exist in an RTI Data Distribution Service
application, provided they use different transport class IDs.

The class ID can also be used to distinguish between different transport
protocols over the same physical transport network (e.g., UDP vs. TCP
over the IP routing infrastructure).

transport significant address bit count (see NDDS_Transport_Property_t::address_bit_cou
RTI Data Distribution Service’s addressing is modeled after the IPv6 and
uses 128-bit addresses (Address (p.245)) to route messages.

A transport plugin is expected to map the transport’s internal addressing
scheme to 128-bit addresses. In general, this mapping is likely to use only
N least significant bits (LSB); these are specified by this attribute.

+ -—+
| Network Address | Transport Local Address |
N
address_bits_count

Only these bits are used
by the transport plugin.

The remaining bits of an address using the 128-bit address representa-
tion will be considered as part of the "network address” (see Transport
Network Address (p.125)) and thus ignored by the transport plugin’s
internal addressing scheme.

For unicast addresses, the transport plugin is expected to ignore the higher
(128 - NDDS_Transport_Property_t::address_bit_count (p.1466))
bits. RTI Data Distribution Service is free to manipulate those bits freely
in the addresses passed in/out to the transport plugin APIs.

Theoretically, the significant address bits count, N is related to the size of
the underlying transport network as follows:

address_bits_count >= ceil(logs(total_addressable_transport_unicast_inter faces))

The equality holds when the most compact (theoretical) internal address
mapping scheme is used. A practical address mapping scheme may waste
some bits.

5.28.6 Transport Instance Attributes

The per instance attributes to configure the plugin instance are generally passed
in to the plugin constructor. These are defined by the transport plugin writer,
and can be used to:

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API
by Doxygen

5.28 Pluggable Transports 125

- customize the behavior of an instance of a transport plugin, including the send
and the receiver buffer sizes, the maximum message size, various transport level
classes of service (CoS), and so on.

- specify the resource values, network interfaces to use, various transport level
policies, and so on.

RTI Data Distribution Service requires that every transport plugin in-
stance must specify the NDDS_Transport_Property_t::message_size_max
(p. 1467) and NDDS_Transport_Property_t::gather_send_buffer_count_-
max (p. 1467).

It is up to the transport plugin developer to make these available for configura-
tion to transport plugin user.

Note that it is important that the instance attributes are ” compatible” between
the sending side and the receiving side of communicating applications using
different instances of a transport plugin class. For example, if one side is con-
figured to send messages larger than can be received by the other side, then
communications via the plugin may fail.

5.28.7 Transport Network Address

The address bits not used by the transport plugin for its internal addressing
constitute its network address bits.

In order for RTI Data Distribution Service to properly route the messages,
each unicast interface in the RTI Data Distribution Service domain must have
a unique address. RTI Data Distribution Service allows the user to specify
the value of the network address when installing a transport plugin via the
NDDSTransportSupport::register_transport() (p.1499) APIL

The network address for a transport plugin should be chosen such that the re-
sulting fully qualified 128-bit address will be unique in the RTT Data Distribution
Service domain. Thus, if two instances of a transport plugin are registered with
a DDSDomainParticipant (p.1096), they will be at different network ad-
dresses in order for their unicast interfaces to have unique fully qualified 128-bit
addresses. It is also possible to create multiple transports with the same net-
work address, as it can be useful for certain use cases; note that this will require
special entity configuration for most transports to avoid clashes in resource use
(e.g. sockets for UDPv4 transport).

5.28.8 Transport Send Route

By default, a transport plugin is configured to send outgoing messages destined
to addresses in the network address range at which the plugin was registered.

RTI Data Distribution Service allows the user to configure the routing of outgo-

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4+ API
by Doxygen

126 Module Documentation

ing messages via the NDDSTransportSupport::add_send_route() (p. 1501)
API, so that a transport plugin will be used to send messages only to certain
ranges of destination addresses. The method can be called multiple times for a
transport plugin, with different address ranges.

Outgoing Address Range 1 -> Transport Plugin

Outgoing Address Range K -> Transport Plugin

+ — + — 4+ — +
+ — + — 4+ — +

The user can set up a routing table to restrict the use of a transport plugin to
send messages to selected addresses ranges.

5.28.9 Transport Receive Route

By default, a transport plugin is configured to receive incoming messages des-
tined to addresses in the network address range at which the plugin was regis-
tered.

RTT Data Distribution Service allows the user to configure the routing of in-
coming messages via the NDDSTransportSupport::add_receive_route()
(p.1502) API, so that a transport plugin will be used to receive messages only
on certain ranges of addresses. The method can be called multiple times for a
transport plugin, with different address ranges.

Transport Plugin <- Incoming Address Range 1

<-

Transport Plugin <- Incoming Address Range M

+ — 4+ — + — 4+

+ — + — + — +

The user can set up a routing table to restrict the use of a transport plugin
to receive messages from selected ranges. For example, the user may restrict a
transport plugin to

- receive messages from a certain multicast address range.

- receive messages only on certain unicast interfaces (when multiple unicast
interfaces are available on the transport plugin).

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API
by Doxygen

5.29 Using Transport Plugins 127

5.29 Using Transport Plugins

Configuring transports used by RTI Data Distribution Service.

Classes

" class NDDSTransportSupport

<<interface>> (p.194) The utility class used to configure RTI Data Dis-
tribution Service pluggable transports.

Typedefs

" typedef NDDS_TRANSPORT_HANDLE_TYPENATIVE NDDS -
Transport_Handle_t

An opaque type representing the handle to a transport plugin registered with

a DDSDomainParticipant (p. 1096).

"~ typedef NDDS_Transport_Plugin *(x NDDS_Transport_create_plugin
)(NDDS_Transport_Address_t xdefault_network_address_out, const
struct DDS_PropertyQosPolicy *property_in)

Function prototype for creating plugin through DDS_PropertyQosPolicy
(p- 810).

Functions

" DDS_Boolean NDDS Transport Handle_is nil (const NDDS -
Transport_Handle_t xself)

Is the given transport handle the NIL transport handle?

Variables

" const NDDS_Transport_Handle_t NDDS_TRANSPORT -
HANDLE_NIL

The NIL transport handle.

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++ API
by Doxygen

128 Module Documentation

5.29.1 Detailed Description

Configuring transports used by RTI Data Distribution Service.

There is more than one way to install a transport plugin for use with RTT Data
Distribution Service:

© If it is a builtin transport plugin, by specifying a bitmask in DDS _-
TransportBuiltinQosPolicy (p.941) (see Built-in Transport Plu-
gins (p.133))

For all other non-builtin transport plugins, by dynamically loading the plu-
gin through PROPERTY (p. 426) QoS policy settings of DDSDomain-
Participant (p. 1096) (on UNIX, Solaris and Windows systems only) (see
Loading Transport Plugins through Property QoS Policy of Do-
main Participant (p. 128))

By explicitly creating a transport plugin and registering the plugin with
a DDSDomainParticipant (p.1096) through NDDSTransportSup-
port::register_transport (p. 1499) (for both builtin and non-builtin plu-

gins)

In the first two cases, the lifecycle of the transport plugin is automatically
managed by RTI Data Distribution Service. In the last case, user is responsible
for deleting the transport plugin after the DDSDomainParticipant (p. 1096)
is deleted. See Transport Lifecycle (p. 122) for details.

5.29.2 Loading Transport Plugins through Property QoS
Policy of Domain Participant

On UNIX, Solaris and Windows operating systems, a non-builtin transport plu-
gin written in C/C++ and built as a dynamic-link library (*.dll/*.so) can be
loaded by RTI Data Distribution Service through the PROPERTY (p.426)
QoS policy settings of the DDSDomainParticipant (p.1096). The dynamic-
link library (and all the dependent libraries) need to be in the path during run-
time (in LD_LIBRARY _PATH environment variable on Linux/Solaris sys-
tems,and in PATH environment variable for Windows systems).

To allow dynamic loading of the transport plugin, the transport plugin must
implement the RTI Data Distribution Service abstract transport API and
must provide a function with the signature NDDS_Transport_create_plugin
(p-129) that can be called by RTI Data Distribution Service to create an in-
stance of the transport plugin. The name of the dynamic library that contains
the transport plugin implementation, the name of the function and properties
that can be used to create the plugin, and the aliases and network address that

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API
by Doxygen

5.29 Using Transport Plugins 129

are used to register the plugin can all be specified through the PROPERTY
(p. 426) QoS policy of the DDSDomainParticipant (p.1096).

The following table lists the property names that are used to load the transport
plugins dynamically:

A transport plugin is dynamically created and registered to the DDSDomain-
Participant (p.1096) by RTI Data Distribution Service when:

" the DDSDomainParticipant (p.1096) is enabled,
" the first DataWriter /DataReader is created, or

" you lookup a builtin DataReader (DDSSubscriber::lookup. -
datareader (p.1351)),

whichever happens first.

Any changes to the transport plugin related properties in PROPERTY (p. 426)
QoS policy after the transport plugin has been registered with the DDSDo-
mainParticipant (p.1096) will have no effect.

See also:

Transport Use Cases (p.176)

5.29.3 Typedef Documentation

5.29.3.1 typedef NDDS_TRANSPORT HANDLE TYPE_NATIVE
NDDS _Transport_Handle_t

An opaque type representing the handle to a transport plugin registered with a
DDSDomainParticipant (p.1096).

A transport handle represents the association between a DDSDomainPartic-
ipant (p.1096) and a transport plugin.

5.29.3.2 typedef NDDS_Transport_Plugin«(x NDDS_-
Transport_create_plugin) (NDDS_Transport_Address_t
xdefault_network_address_out, const struct
DDS_PropertyQosPolicy #property_in)

Function prototype for creating plugin through DDS_PropertyQosPolicy
(p. 810).

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4+ API
by Doxygen

130 Module Documentation

By specifying some predefined property names in DDS_PropertyQosPolicy
(p.810), RTI Data Distribution Service can call a function from a dynamic
library to create a transport plugin and register the returned plugin with a
DDSDomainParticipant (p. 1096).

This is the function prototype of the function as specified in ?<TRANSPORT _-
PREFIX>.create_function” of DDS_PropertyQosPolicy (p.810) QoS policy
that will be called by RTI Data Distribution Service to create the transport
plugin. See Loading Transport Plugins through Property QoS Policy
of Domain Participant (p.128) for details.

Parameters:

network_address_out <<out>> (p.195) Optional output parameter.
If the network address is mnot specified in ”<TRANSPORT -
PREFIX>.network_address” in DDS_PropertyQosPolicy (p.810),
this is the default network address that is used to regis-
ter the returned transport plugin using NDDSTransportSup-
port::register_transport (p.1499). This parameter will never be
null. The default value is a zeroed-out network address.

property_in <<in>> (p.195) property_in contains all the name-
value pair properties that matches the format "<TRANSPORT -
PREFIX>.<property_name>" in DDS _PropertyQosPolicy
(p-810) that can be used to create the transport plugin. Only
<property name> is passed in - the plugin prefix will be stripped out
in the property name. Note: predefined <TRANSPORT_PREFIX>
properties ”library”, ”create_function”, ”aliases” and ”network_-
address” will not be passed to this function. This parameter will
never be null.

Returns:

Upon success, a valid non-NIL transport plugin. NIL upon failure.

5.29.4 Function Documentation

5.29.4.1 DDS_Boolean NDDS_Transport_Handle_is_nil (const
NDDS _Transport_Handle_t self)

Is the given transport handle the NIL transport handle?

Returns:

DDS_BOOLEAN_TRUE (p.293) if the given transport handle is
equal to NDDS_TRANSPORT HANDLE NIL (p.131) or DDS -
BOOLEAN_FALSE (p.294) otherwise.

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API
by Doxygen

5.29 Using Transport Plugins 131

5.29.5 Variable Documentation

5.29.5.1 const NDDS _Transport_Handle_t
NDDS_TRANSPORT_HANDLE_NIL

The NIL transport handle.

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4+ API
by Doxygen

132

Module Documentation

Property Name

Description

Required?

dds.transport.load -
plugins

Comma-separated
strings indicating the
prefix names of all
plugins that will be
loaded by RTI Data
Distribution Service.

Up to 8 plugins may be
specified. For example,
”dds.transport. WAN.war
dds.transport. DTLS.dtls
In the following
examples,
<TRANSPORT -
PREFIX> is used to
indicate one element of
this string that is used
as a prefix in the
property names for all
the settings that are
related to the plugin.
<TRANSPORT _-
PREFIX> must begin
with ”dds.transport.”
(such as
”dds.transport.mytransp

YES

nl,
]‘777

ort”).

<TRANSPORT -
PREFIX> . library

Should be set to the
name of the dynamic
library (x.so for
Unix/Solaris, and *.dll
for Windows) that
contains the transport
plugin implementation.
This library (and all
the other dependent
dynamic libraries)
needs to be in the path
during run time for
used by RTT Data
Distribution Service
(in the LD -
LIBRARY_PATH
environment variable
on UNIX/Solaris
systems, in PATH for
Windows systems).

YES

<TRANSPORT -

Should be set to the

YES

BREEIE>osIsatCoct 23 2

function

308196 11 he.lwet vika D
with the prototype of
NDDS_Transport_-
create_plugin (p. 129)
that can be called by
RTI Data Distribution
Service to create an
instance of the plugin.

The resultine transport

stribution Service C++4 API]
by Doxygen

5.30 Built-in Transport Plugins 133

5.30 Built-in Transport Plugins

Transport plugins delivered with RTI Data Distribution Service.

Modules

" Shared Memory Transport

Built-in transport plug-in for inter-process communications using shared
memory (NDDS_TRANSPORT_-CLASSID_SHMEM (p. 256)).

" UDPv4 Transport

Built-in transport plug-in using UDP/IPvj (NDDS_TRANSPORT--
CLASSID_UDPu) (p. 263)).

" UDPv6 Transport

Built-in transport plug-in using UDP/IPv6 (NDDS_TRANSPORT--
CLASSID_UDPv6 (p. 273)).

5.30.1 Detailed Description

Transport plugins delivered with RTI Data Distribution Service.

The TRANSPORT _BUILTIN (p.387) specifies the collection of transport
plugins that can be automatically configured and managed by RTI Data Distri-
bution Service as a convenience to the user.

These transport plugins can simply be turned ”"on” or ”off” by a specifying
a bitmask in DDS_TransportBuiltinQosPolicy (p.941), thus bypassing the
steps for setting up a transport plugin. RTI Data Distribution Service precon-
figures the transport plugin properties, the network address, and the aliases to
”factory defined” values.

If a Dbuiltin transport plugin is turned “on” in DDS_-
TransportBuiltinQosPolicy (p.941), the plugin is implicitly created
and registered to the corresponding DDSDomainParticipant (p.1096) by
RTI Data Distribution Service when:

" the DDSDomainParticipant (p.1096) is enabled,
" the first DataWriter /DataReader is created, or

" you lookup a builtin DataReader (DDSSubscriber::lookup_-
datareader (p.1351)),

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4+ API
by Doxygen

134 Module Documentation

whichever happens first.

Each builtin transport contains its own set of properties. For example, the
::UDPv4 Transport (p.260) allows the application to specify whether or not
multicast is supported, the maximum size of the message, and provides a mech-
anism for the application to filter out network interfaces.

The builtin transport plugin properties can be changed by the method
NDDSTransportSupport::set_builtin_transport_property() (p.1503) or
by using the PROPERTY (p.426) QoS policy associated with the DDS-
DomainParticipant (p.1096). Builtin transport plugin properties speci-
fied in DDS_PropertyQosPolicy (p.810) always overwrite the ones speci-
fied through NDDSTransportSupport::set_builtin_transport_property()
(p.1503). Refer to the specific builtin transport for the list of property names
that can be specified through PROPERTY (p. 426) QoS policy.

Any changes to the builtin transport properties after the builtin transports have
been registered with will have no effect.

See also:

NDDSTransportSupport::set_builtin_transport_property()
(p. 1503) DDS_PropertyQosPolicy (p.810)

The built-in transport plugins can also be instantiated and registered by the
user, following the steps for Registering a transport with a participant
(p.178). This is useful when the application needs different values for the net-
work addresses.

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API
by Doxygen

5.31 Configuration Utilities 135

5.31 Configuration Utilities

Utility API’s independent of the DDS standard.

Classes

" class NDDSConfigVersion

<<interface>> (p.194) The version of an RTI Data Distribution Service
distribution.

" class NDDSConfigLogger

<<interface>> (p. 194) The singleton type used to configure RTI Data Dis-
tribution Service logging.

" struct NDDS_Config LibraryVersion_t

The version of a single library shipped as part of an RTI Data Distribution
Service distribution.

Enumerations

" enum NDDS_Config LogVerbosity {
NDDS_CONFIG_LOG_VERBOSITY _SILENT,
NDDS_CONFIG_LOG_VERBOSITY _ERROR,
NDDS_CONFIG_LOG_VERBOSITY _WARNING,
NDDS_CONFIG_LOG_VERBOSITY _STATUS_LOCAL,
NDDS_CONFIG_LOG_VERBOSITY_STATUS REMOTE,
NDDS_CONFIG_LOG_VERBOSITY_STATUS_ALL }

The verbosities at which RTI Data Distribution Service diagnostic informa-
tion is logged.

" enum NDDS_Config_LogCategory {
NDDS_CONFIG_LOG_CATEGORY _PLATFORM,
NDDS_CONFIG_LOG_CATEGORY_COMMUNICATION,
NDDS_CONFIG_LOG_CATEGORY_DATABASE,
NDDS_CONFIG_LOG_CATEGORY _ENTITIES,
NDDS_CONFIG_LOG_CATEGORY_API }

Categories of logged messages.

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4+ API
by Doxygen

136 Module Documentation

" enum NDDS_Config_LogPrintFormat { ,
NDDS_CONFIG_LOG_PRINT FORMAT DEFAULT,
NDDS_CONFIG_LOG_PRINT_FORMAT _TIMESTAMPED,
NDDS_CONFIG_LOG_PRINT_FORMAT _VERBOSE,

NDDS_CONFIG_LOG_PRINT_FORMAT_VERBOSE -
TIMESTAMPED,

NDDS_CONFIG_LOG_PRINT_FORMAT _DEBUG,
NDDS_CONFIG_LOG_PRINT_FORMAT_MINIMAL,
NDDS_CONFIG_LOG_PRINT FORMAT MAXIMAL }

The format used to output RTI Data Distribution Service diagnostic infor-
mation.

5.31.1 Detailed Description

Utility APT’s independent of the DDS standard.

5.31.2 Enumeration Type Documentation
5.31.2.1 enum NDDS_Config_LogVerbosity

The verbosities at which RTT Data Distribution Service diagnostic information
is logged.

Enumerator:

NDDS_CONFIG_LOG_VERBOSITY_SILENT No further output
will be logged.

NDDS CONFIG_LOG_VERBOSITY_ERROR Ounly error mes-
sages will be logged.

An error indicates something wrong in the functioning of RTI Data
Distribution Service. The most common cause of errors is incorrect
configuration.

NDDS_CONFIG_-LOG_-VERBOSITY_WARNING Both error and
warning messages will be logged.

A warning indicates that RTI Data Distribution Service is taking an
action that may or may not be what you intended. Some configuration
information is also logged at this verbosity to aid in debugging.

NDDS_CONFIG_-LOG_-VERBOSITY_STATUS_LOCAL Errors,
warnings, and verbose information about the lifecycles of local RTI
Data Distribution Service objects will be logged.

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API
by Doxygen

5.31 Configuration Utilities 137

NDDS_CONFIG_LOG_VERBOSITY_STATUS_REMOTE
Errors, warnings, and verbose information about the lifecycles of
remote RTI Data Distribution Service objects will be logged.

NDDS_CONFIG_LOG_VERBOSITY_STATUS_ALL Errors,
warnings, verbose information about the lifecycles of local and remote
RTT Data Distribution Service objects, and periodic information
about RTI Data Distribution Service threads will be logged.

5.31.2.2 enum NDDS_Config_LogCategory

Categories of logged messages.

The DDSLogger::get_verbosity by _category and DDSLogger::set_verbosity_by -
category can be used to specify different verbosities for different categories of
messages.

Enumerator:

NDDS_CONFIG_LOG_.CATEGORY_PLATFORM Log messages
pertaining to the underlying platform (hardware and OS) on which
RTT Data Distribution Service is running are in this category.

NDDS_CONFIG_LOG_CATEGORY_COMMUNICATION Log
messages pertaining to data serialization and deserialization and
network traffic are in this category.

NDDS_CONFIG_LOG_-CATEGORY_DATABASE lLog messages
pertaining to the internal database in which RTI Data Distribution
Service objects are stored are in this category.

NDDS_CONFIG_-LOG-CATEGORY_ENTITIES Llog messages
pertaining to local and remote entities and to the discovery process
are in this category.

NDDS_CONFIG_LOG_-CATEGORY_API Log messages pertaining
to the APT layer of RTT Data Distribution Service (such as method
argument validation) are in this category.

5.31.2.3 enum NDDS_Config LogPrintFormat

The format used to output RTI Data Distribution Service diagnostic informa-
tion.

Enumerator:

NDDS_CONFIG_LOG_PRINT_FORMAT_DEFAULT Print mes-
sage, method name, and activity context (default).

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4+ API
by Doxygen

138 Module Documentation

NDDS_CONFIG_-LOG_-PRINT_FORMAT _TIMESTAMPED
Print message, method name, activity context, and timestamp.

NDDS_CONFIG_-LOG_PRINT_FORMAT VERBOSE Print mes-
sage with all available context information (includes thread identifier,
activity context).

NDDS_CONFIG_LOG_PRINT FORMAT VERBOSE_TIMESTAMPED
Print message with all available context information, and timestamp.

NDDS_CONFIG_LOG_PRINT_FORMAT _DEBUG Print a set of
field that may be useful for internal debug.

NDDS_CONFIG_LOG_PRINT_ FORMAT _MINIMAL Print only
message number and method name.

NDDS_CONFIG_LOG_PRINT FORMAT MAXIMAL Print all
available fields.

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API
by Doxygen

5.32 Unsupported Utilities 139

5.32 Unsupported Utilities

Unsupported APIs used by examples in the RTT Data Distribution Service dis-
tribution as well as in rtiddsgen-generated examples.
Classes

" class NDDSUtility
Unsupported utility APls.

5.32.1 Detailed Description

Unsupported APIs used by examples in the RTT Data Distribution Service dis-
tribution as well as in rtiddsgen-generated examples.

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4+ API
by Doxygen

140 Module Documentation

5.33 Durability and Persistence

APIs related to RTT Data Distribution Service Durability and Persistence. RTI
Data Distribution Service offers the following mechanisms for achieving dura-
bility and persistence:

" Durable Writer History (p.140)
" Durable Reader State (p. 140)
" Data Durability (p.141)

To use any of these features, you need a relational database, which is not in-
cluded with RTI Data Distribution Service. Supported databases are listed in
the Release Notes.

These three features can be used separately or in combination.

5.33.1 Durable Writer History

This feature allows a DDSDataWriter (p. 1070) to locally persist its local his-
tory cache so that it can survive shutdowns, crashes and restarts. When an
application restarts, each DDSDataWriter (p. 1070) that has been configured
to have durable writer history automatically loads all the data in its history
cache from disk and can carry on sending data as if it had never stopped ex-
ecuting. To the rest of the system, it will appear as if the DDSDataWriter
(p.1070) had been temporarily disconnected from the network and then reap-
peared.

See also:

Configuring Durable Writer History (p.142)

5.33.2 Durable Reader State

This feature allows a DDSDataReader (p.1046) to locally persists its state
and remember the data it has already received. When an application restarts,
each DDSDataReader (p.1046) that has been configured to have durable
reader state automatically loads its state from disk and can carry on receiving
data as if it had never stopped executing. Data that had already been received
by the DDSDataReader (p.1046) before the restart will be suppressed so it
is not sent over the network.

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API
by Doxygen

5.33 Durability and Persistence 141

5.33.3 Data Durability

This feature is a full implementation of the OMG DDS Persistence Profile. The
DURABILITY (p. 341) QoS lets an application configure a DDSDataWriter
(p-1070) such that the information written by the DDSDataWriter (p. 1070)
survives beyond the lifetime of the DDSDataWriter (p.1070). In this man-
ner, a late-joining DDSDataReader (p.1046) can subscribe and receive the
information even after the DDSDataWriter (p. 1070) application is no longer
executing. To use this feature, you need RTI Persistence Service — an optional
product that can be purchased separately.

5.33.4 Durability and Persistence Based on Virtual GUID

Every modification to the global dataspace made by a DDSDataWriter
(p. 1070) is identified by a pair (virtual GUID, sequence number).

" The virtual GUID (Global Unique Identifier) is a 16-byte character identi-
fier associated with a DDSDataWriter (p.1070) or DDSDataReader
(p- 1046); it is used to uniquely identify this entity in the global data space.

" The sequence number is a 64-bit identifier that identifies changes published
by a specific DDSDataWriter (p. 1070).

Several DDSDataWriter (p.1070) entities can be configured with the same
virtual GUID. If each of these DDSDataWriter (p. 1070) entities publishes a
sample with sequence number ’0’, the sample will only be received once by the
DDSDataReader (p.1046) entities subscribing to the content published by
the DDSDataWriter (p.1070) entities.

RTT Data Distribution Service also uses the virtual GUID (Global Unique Iden-
tifier) to associate a persisted state (state in permanent storage) to the corre-
sponding DDS entity.

For example, the history of a DDSDataWriter (p.1070) will be persisted in
a database table with a name generated from the virtual GUID of the DDS-
DataWriter (p.1070). If the DDSDataWriter (p. 1070) is restarted, it must
have associated the same virtual GUID to restore its previous history.

Likewise, the state of a DDSDataReader (p.1046) will be persisted in a
database table whose name is generated from the DDSDataReader (p. 1046)
virtual GUID

A DDSDataWriter (p.1070)’s virtual GUID can be configured using DDS _-
DataWriterProtocolQosPolicy::virtual_guid (p.519). Similarly, a DDS-
DataReader (p.1046)’s virtual GUID can be configured using DDS -
DataReaderProtocolQosPolicy::virtual guid (p. 486).

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4+ API
by Doxygen

142 Module Documentation

The DDS_PublicationBuiltinTopicData (p.815) and DDS._-
SubscriptionBuiltinTopicData (p.908) structures include the virtual
GUID associated with the discovered publication or subscription.

Refer to the User’s Manual for additional use cases.

See also:

DDS_DataWriterProtocolQosPolicy::virtual guid (p.519) DDS -
DataReaderProtocolQosPolicy::virtual_guid (p. 486).

5.33.5 Configuring Durable Writer History

To configure a DDSDataWriter (p.1070) to have durable writer history, use
the PROPERTY (p.426) QoS policy associated with the DDSDataWriter
(p.1070) or the DDSDomainParticipant (p.1096).

Properties defined for the DDSDomainParticipant (p.1096) will be ap-
plied to all the DDSDataWriter (p.1070) objects belonging to the DDSDo-
mainParticipant (p.1096), unless the property is overwritten by the DDS-
DataWriter (p.1070).

See also:

DDS_PropertyQosPolicy (p.810)

The following table lists the supported durable writer history properties.

5.33.6 Configuring Durable Reader State

To configure a DDSDataReader (p.1046) with durable reader state, use
the PROPERTY (p.426) QoS policy associated with the DDSDataReader
(p-1046) or DDSDomainParticipant (p. 1096).

A property defined in the DDSDomainParticipant (p. 1096) will be applica-
ble to all the DDSDataReader (p. 1046) belonging to the DDSDomainPar-
ticipant (p. 1096) unless it is overwritten by the DDSDataReader (p. 1046).

See also:

DDS_PropertyQosPolicy (p.810)

The following table lists the supported durable reader state properties.

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API
by Doxygen

5.33 Durability and Persistence 143

5.33.7 Configuring Data Durability

RTI Data Distribution Service implements DDS_TRANSIENT -
DURABILITY_QOS (p. 342) and DDS_PERSISTENT -
DURABILITY _QOS (p.342) durability using RTI Persistence Service,
available for purchase as a separate RTI product.

For more information on RTT Persistence Service, refer to the User’s Manual,
or the RTI Persistence Service online documentation.
See also:

DURABILITY (p.341)

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4+ API
by Doxygen

144

Module Documentation

Property

Description

dds.data_writer.history.plugin_name

Must be set to ”dds.data_-
writer.history.odbc_plugin.builtin”
to enable durable writer history in
the DataWriter. This property is
required.

dds.data_writer.history.odbc_-
plugin.dsn

The ODBC DSN (Data Source
Name) associated with the database
where the writer history must be
persisted. This property is required.

dds.data_writer.history.odbc_
plugin.driver

This property tells RTT Data
Distribution Service which ODBC
driver to load. If the property is not
specified, RTT Data Distribution
Service will try to use the standard
ODBC driver manager library:
UnixOdbc (odbe32.d11) on
UNIX/Linux systems; the Windows
ODBC driver manager (libodbe.so)
on Windows systems).

dds.data_writer.history.odbc_-
plugin.username

Configures the username used to
connect to the database. This
property is not used if it is
unspecified. There is no default
value.

dds.data_writer.history.odbc_-
plugin.password

Configures the password used to
connect to the database. This
property is not used if it is
unspecified. There is no default
value.

dds.data_writer.history.odbc_-
plugin.shared

If set to 1, RTI Data Distribution
Service creates a single connection
per DSN that will be shared across
DataWriters within the same
Publisher.

If set to 0 (the default), a
DDSDataWriter (p.1070) will
create its own database connection.
Default: 0 (false)

dds.data_writer.history.odbc_-
plugin.instance_cache_max_size

These properties configure the
resource limits associated with the
ODBC writer history caches. To
minimize the number of accesses to
the database, RTI Data Distribution
Service uses two caches, one for
samples and one for instances. The
initial and maximum sizes of these

Generated on Sun Oct 23 23:13:26 2011 fq

r BT ancBendigntiod Swivigethiese- AP
properties. The resource lifffifgoxyeen
initial_instances, max_instances,
initial_samples, max_samples and
max_samples_per_instance in the
DDS_ResourceLimitsQosPolicy
(p. 855) are used to configure the
maximum number of samples and
mMmactancea Fthat can he afored in the

5.33 Durability and Persistence

145

Property

Description

dds.data_reader.state.odbc.dsn

The ODBC DSN (Data Source
Name) associated with the database
where the DDSDataReader

(p. 1046) state must be persisted.
This property is required.

dds.data_reader.state.filter -
redundant_samples

To enable durable reader state, this
property must be set to 1.
Otherwise, the reader state will not
be kept and/or persisted. When the
reader state is not maintained, RTI
Data Distribution Service does not
filter duplicate samples that may be
coming from the same virtual writer.
By default, this property is set to 1.

dds.data_reader.state.odbc.driver

This property is used to indicate
which ODBC driver to load. If the
property is not specified, RTI Data
Distribution Service will try to use
the standard ODBC driver manager
library: UnixOdbc (odbe32.dll) on
UNIX/Linux systems; the Windows
ODBC driver manager (libodbe.so)
on Windows systems).

dds.data_-
reader.state.odbc.username

This property configures the
username used to connect to the
database. This property is not used
if it is unspecified. There is no
default value.

dds.data_reader.state.odbc.password

This property configures the
password used to connect to the
database. This property is not used
if it is unspecified. There is no
default value.

dds.data_reader.state.restore

This property indicates if the
persisted DDSDataReader

(p.- 1046) state must be restored or
not once the DDSDataReader

(p.- 1046) is restarted. If this
property is 0, the previous state will
be deleted from the database. If it is
1, the DDSDataReader (p. 1046)
will restore its previous state from
the database content. Default: 1

dds.data_reader.state.checkpoint -
frequency

This property controls how often
the reader state is stored in the
database. A value of N means to

Generated on Sun Oct 23 23:13:26 2011 for
by Doxygen

BToDdtheDsbatibotics Sevevicd\C++ API
samples.

A high frequency will provide better
performance. However, if the reader
is restarted it may receive some
duplicate samples. These samples
will be filtered by the middleware
and they will not be propagated to

+he annlicatinm

146 Module Documentation

5.34 Configuring QoS Profiles with XML

APIs related to XML QoS Profiles.

5.34.1 Loading QoS Profiles from XML Resources

A ’QoS profile’ is a group of QoS settings, specified in XML format. By using
QoS profiles, you can change QoS settings without recompiling the application.

The Qos profiles are loaded when the following operations are called:

DDSDomainParticipantFactory:

DDSDomainParticipantFactory:

(p. 1185)

DDSDomainParticipantFactory:

with_profile (p.1173)

DDSDomainParticipantFactory:

(p. 1174)

DDSDomainParticipantFactory:
DDSDomainParticipantFactory:

DDSDomainParticipantFactory:

profile (p.1178)

DDSDomainParticipantFactory:

(p. 1182)

DDSDomainParticipantFactory:

topic_name (p. 1183)

DDSDomainParticipantFactory:

(p-1178)

DDSDomainParticipantFactory:

(p.1179)

DDSDomainParticipantFactory:

profile (p. 1179)

DDSDomainParticipantFactory:

profile_w_topic_name (p. 1180)

DDSDomainParticipantFactory:

profile (p.1181)

:create_participant (p.1184)

:create_participant_with_profile

:set_default_participant_qos_-

:get_default_participant_qos

:set_default_library (p.1175)
:set_default_profile (p. 1176)

:get_participant_qos_from -

:get_topic_qos_from_profile

:get_topic_qos_from_profile_ w_-

:get_publisher_qos_from_profile

:get_subscriber_qos_from_profile

:get_datawriter_qos_from_-

:get_datawriter_qos_from -

:get_datareader_qos_from -

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API

by Doxygen

5.34 Configuring QoS Profiles with XML 147

DDSDomainParticipantFactory::get_datareader_qos_from_-
profile_w_topic_name (p. 1181)

DDSDomainParticipantFactory::get_qos_profile_libraries
(p.1183)

DDSDomainParticipantFactory::get_qos_profiles (p. 1184)
DDSDomainParticipantFactory::load _profiles (p. 1188)

The QoS profiles are reloaded replacing previously loaded profiles when the
following operations are called:

DDSDomainParticipantFactory::set_qos (p. 1187)

DDSDomainParticipantFactory::reload_profiles (p. 1189)

The DDSDomainParticipantFactory::unload_profiles() (p.1189) opera-
tion will free the resources associated with the XML QoS profiles.

There are five ways to configure the XML resources (listed by load order):

" The file NDDS_QOS_PROFILES.xml in $NDDSHOME/resource/qos_-
profiles 4.5e/xml is loaded if it exists and DDS_-
ProfileQosPolicy::ignore_resource_profile (p.808) in DDS._-
ProfileQosPolicy (p.806) is set to DDS_BOOLEAN_FALSE (p.294)
(first to be loaded). An example file, NDDS_QOS_PROFILES.example.xml,
is available for reference.

The URL groups separated by semicolons referenced by the enviroment
variable NDDS_QOS_PROFILES are loaded if they exist and DDS_-
ProfileQosPolicy::ignore_environment_profile (p.807) in DDS_-
ProfileQosPolicy (p.806) is set to DDS_BOOLEAN_FALSE (p. 294).

" The file USER_-QOS_PROFILES.xml in the working directory will
be loaded if it exists and DDS_ProfileQosPolicy::ignore_user_-
profile (p.807) in DDS_ProfileQosPolicy (p.806) is set to DDS_-
BOOLEAN FALSE (p.294).

" The URL groups referenced by DDS_ProfileQosPolicy::url_profile
(p-807) in DDS_ProfileQosPolicy (p.806) will be loaded if specified.

" The sequence of XML strings referenced by DDS_-
ProfileQosPolicy::string_profile (p.807) will be loaded if specified
(last to be loaded).

The above methods can be combined together.

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4+ API
by Doxygen

148 Module Documentation

5.34.2 URL

The location of the XML resources (ounly files and strings are supported) is
specified using a URL (Uniform Resource Locator) format. For example:

File Specification: file:///usr/local/default_dds.xml

String Specification: str://” <dds><qos_library> . . . It;/qos_-
library>&]1t/dds>"

If the URL schema name is omitted, RTT Data Distribution Service will assume
a file name. For example:

File Specification: /usr/local/default_dds.xml

5.34.2.1 URL groups

To provide redundancy and fault tolerance, you can specify multiple locations
for a single XML document via URL groups. The syntax of a URL group is as
follows:

[URL1 | URL2 | URL2 | . . .| URLn]
For example:

[file:///usr/local/default_dds.xml | file:///usr/local/alternative_-
default_dds.xml]

Only one of the elements in the group will be loaded by RTT Data Distribution
Service, starting from the left.

Brackets are not required for groups with a single URL.

5.34.2.2 NDDS_QOS_PROFILES environment variable
The environment variable NDDS_QOS_PROFILES contains a list of URL
groups separated by ’;’

The URL groups referenced by the enviroment variable are loaded if they exist
and DDS_ProfileQosPolicy::ignore_environment_profile (p.807) is set to
DDS_BOOLEAN _FALSE (p.294)

For more information on XML Configuration, refer to the User’s Manual.

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API
by Doxygen

5.35 Publication Example 149

5.35 Publication Example

A data publication example.

5.35.1 A typical publication example

Prep

" Create user data types using rtiddsgen (p.215)

Set up

Get the factory (p.151)

Set up participant (p.151)

Set up publisher (p. 160)

Register user data type(s) (p.154)
Set up topic(s) (p. 154)

Set up data writer(s) (p.161)

Adjust the desired quality of service (QoS)

" Adjust QoS on entities as necessary (p.171)

Send data

" Send data (p. 162)

Tear down

" Tear down data writer(s) (p.162)

" Tear down topic(s) (p. 155)

" Tear down publisher (p.160)

" Tear down participant (p.152)

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4+ API
by Doxygen

150 Module Documentation

5.36 Subscription Example

A data subscription example.

5.36.1 A typical subscription example
Prep
" Create user data types using rtiddsgen (p.215)
Set up
" Get the factory (p.151)
" Set up participant (p.151)
Set up subscriber (p. 163)
Register user data type(s) (p.154)
Set up topic(s) (p.154)
" Set up data reader(s) (p.167)

Set up data reader (p.168) OR Set up subscriber (p. 163) to receive
data

Adjust the desired quality of service (QoS)
" Adjust QoS on entities as necessary (p.171)
Receive data

" Access received data either via a reader (p.168) OR via a subscriber
(p.164) (possibly in a ordered or coherent (p.165) manner)

Tear down
" Tear down data reader(s) (p.170)
" Tear down topic(s) (p. 155)
" Tear down subscriber (p. 165)

" Tear down participant (p.152)

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API
by Doxygen

5.37 Participant Use Cases 151

5.37 Participant Use Cases

Working with domain partcipants. Working with domain participants.

5.37.1 Turning off auto-enable of newly created partici-
pant(s)

Get the factory (p.151)

" Change the value of the ENTITY _FACTORY (p.368) for the DDS-
DomainParticipantFactory (p. 1167)

DDS_DomainParticipantFactoryQos factory_qos;
if (factory->get_qos(factory_qos) != DDS_RETCODE_OK) {
printf ("**xError: failed to get domain participant factory gos\n");

}

/* Change the QosPolicy to create disabled participants */
factory_qos.entity_factory.autoenable_created_entities = DDS_BOOLEAN_FALSE;

if (factory->set_qos(factory_qos) != DDS_RETCODE_OK) {

printf ("x**Error: failed to set domain participant factory gos\n");

}

5.37.2 Getting the factory
" Get the DDSDomainParticipantFactory (p.1167) instance:

DDSDomainParticipantFactory* factory = NULL;
factory = DDSDomainParticipantFactory::get_instance();
if (factory == NULL) {

// ... error

}

5.37.3 Setting up a participant

" Get the factory (p.151)

" Create DDSDomainParticipant (p. 1096):

struct DDS_DomainParticipantQos participant_qos;
DDS_DomainParticipant* participant;

struct DDS_DomainParticipantListener participant_listener;
DDS_ReturnCode_t retcode;

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4+ API
by Doxygen

152 Module Documentation

/* Set the initial peers. These list all the computers the application
may communicate with along with the maximum number of RTI Data
Distribution Service participants that can concurrently run on that
computer. This list only needs to be a superset of the actual list of
computers and participants that will be running at any time.

*/

const char* NDDS_DISCOVERY_INITIAL_PEERS[] = {

"host1",
"10.10.30.192",
"1@localhost",
"20@host2",
"my://", /* all unicast addresses on transport plugins with alias "my" */
"2@shmem://", /* shared memory */
"FFOO:ABCD::0",
"sf://0/0/R", /* StarFabric transport plugin */
"1Q@FF00:0:1234::0",
"225.1.2.3",
"3@225.1.0.55",
"FAAO: :0#0/0/R",
3

/* initialize participant_qos with default values */
retcode = DDS_DomainParticipantFactory_get_default_participant_qos(factory,
&participant_qgos);
if (retcode != DDS_RETCODE_OK) {
printf ("**xError: failed to get default participant gos\n");
}

if (!DDS_StringSeq_from_array(&participant_qos.discovery.initial_peers,
NDDS_DISCOVERY_INITIAL_PEERS,
NDDS_DISCOVERY_INITIAL_PEERS_LENGTH)) {
printf ("*x*Error: failed to set discovery.initial_peers qos\n");

// Create the participant

DDSDomainParticipant* participant =

factory->create_participant (domain_id,
participant_qos,
participant_listener,
DDS_STATUS_MASK_NONE) ;

if (participant == NULL) {
printf ("**xError: failed to create domain participant\n");

};

return participant;

5.37.4 Tearing down a participant

Get the factory (p.151)

Delete DDSDomainParticipant (p. 1096):

DDS_ReturnCode_t retcode;

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API
by Doxygen

5.37 Participant Use Cases 153

retcode = factory->delete_participant(participant);

if (retcode !'= DDS_RETCODE_OK) {
// ... check for cause of failure

}

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4+ API
by Doxygen

154 Module Documentation

5.38 Topic Use Cases

Working with topics.

5.38.1 Registering a user data type

Set up participant (p.151)

Register user data type of type T under the name ”My_Type”

const char* type_name = "My_Type";
DDS_ReturnCode_t retcode;

retcode = FooTypeSupport::register_type(participant, type_name);
if (retcode != DDS_RETCODE_OK) {
// ... error

}

5.38.2 Setting up a topic
Set up participant (p.151)

Ensure user data type is registered (p. 154)

" Create a DDSTopic (p. 1365) under the name ”my_topic”

const char* topic_name = "my_topic";

const char* type_type = "My_Type"; // user data type
DDS_TopicQos topic_qgos;

DDS_ReturnCode_t retcode;

// MyTopicListener is user defined and
// extends DDSTopicListener
DDSTopicListener* topic_listener = new MyTopicListener(); // or = NULL

retcode = participant->get_default_topic_qgos(topic_qgos);

if (retcode !'= DDS_RETCODE_OK) {
// ... error

}

DDSTopic* topic = participant->create_topic(topic_name, type_name,
topic_qos, topic_listener,
DDS_STATUS_MASK_ALL) ;
if (topic == NULL) {
// ... error

};

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API
by Doxygen

5.38 Topic Use Cases 155

5.38.3 Tearing down a topic
Delete DDSTopic (p. 1365):

DDS_ReturnCode_t retcode;
retcode = participant->delete_topic(topic);
if (retcode !'= DDS_RETCODE_OK) {

// ... check for cause of failure

}

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4+ API
by Doxygen

156 Module Documentation

5.39 FlowController Use Cases

Working with flow controllers.

5.39.1 Creating a flow controller

Set up participant (p.151)

" Create a flow controller

DDS_ReturnCode_t retcode;

DDSFlowController *controller = NULL;

DDS_FlowControllerProperty_t property;

retcode = participant->get_default_flowcontroller_property(property) ;
if (retcode !'= DDS_RETCODE_OK) {

printf ("#**Error: failed to get default flow controller property\n");
}

// optionally modify flow controller property values

controller = participant->create_flowcontroller(
"my flow controller name", property);

if (controller == NULL) {

printf ("***Error: failed to create flow controller\n");

}

5.39.2 Flow controlling a data writer

Set up participant (p.151)
Create flow controller (p. 156)

Create an asynchronous data writer, FooDataWriter (p.1419), of user
data type Foo (p.1387):

DDS_DataWriterQos writer_qos;
DDS_ReturnCode_t retcode;

// MyWriterListener is user defined and
// extends DDSDataWriterListener
MyWriterListener* writer_listener = new MyWriterListener(); // or = NULL

retcode = publisher->get_default_datawriter_qos(writer_qos);

if (retcode !'= DDS_RETCODE_OK) {
// ... error

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API
by Doxygen

5.39 FlowController Use Cases 157

}

/* Change the writer QoS to publish asnychronously */
writer_qos.publish_mode.kind = DDS_ASYNCHRONOUS_PUBLISH_MODE_QOS;

/* Setup to use the previously created flow controller */
writer_qos.publish_mode.flow_controller_name =
DDS_String_dup("my flow controller name");

/* Samples queued for asynchronous write are subject to the History Qos policy */
writer_qos.history.kind = DDS_KEEP_ALL_HISTORY_QOS;

FooDataWriter* writer = publisher->create_datawriter(topic,
writer_qos,
writer_listener,

DDS_STATUS_MASK_ALL) ;
if (writer == NULL) {
// ... error

s
/* Send data asynchronously... */

/* Wait for asynchronous send completes, if desired */
retcode = writer->wait_for_asynchronous_publishing(timout);

if (retcode != DDS_RETCODE_OK) {
printf ("***Error: failed to wait for asynchronous publishing\n");

}

5.39.3 Using the built-in flow controllers

RTT Data Distribution Service provides several built-in flow controllers.

The DDS_DEFAULT FLOW_CONTROLLER NAME (p.89) built-
in flow controller provides the basic asynchronous writer behavior.
When calling FooDataWriter::write (p.1427), the call signals the
DDSPublisher (p.1294) asynchronous publishing thread (DDS._-
PublisherQos::asynchronous_publisher (p.828)) to send the actual
data. As with any DDS_ASYNCHRONOUS_PUBLISH_ MODE_QOS
(p.-413) DDSDataWriter (p.1070), the FooDataWriter::write (p.1427)
call returns immediately afterwards. The data is sent immediately in the
context of the DDSPublisher (p.1294) asynchronous publishing thread.

When using the DDS_FIXED RATE_ FLOW_CONTROLLER_NAME
(p-90) flow controller, data is also sent in the context of the DDSPub-
lisher (p.1294) asynchronous publishing thread, but at a regular fixed in-
terval. The thread accumulates samples from different DDSDataWriter
(p-1070) instances and generates data on the wire only once per DDS_-
FlowControllerTokenBucketProperty _t::period (p.729).

In contrast, the DDS_ON_DEMAND_FLOW_CONTROLLER_NAME
(p. 91) flow controller permits flow only when DDSFlowController::trigger -

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4+ API
by Doxygen

158 Module Documentation

flow (p.1209) is called. The data is still sent in the context of the DDSPub-
lisher (p.1294) asynchronous publishing thread. The thread accumulates sam-
ples from different DDSDataWriter (p. 1070) instances (across any DDSPub-
lisher (p.1294)) and sends all data since the previous trigger.

The properties of the built-in DDSFlowController (p.1207) instances can be
adjusted.

Set up participant (p.151)

Lookup built-in flow controller
DDSFlowController *controller = NULL;

controller = participant->lookup_flowcontroller(
DDS_DEFAULT_FLOW_CONTROLLER_NAME) ;

/* This should never happen, built-in flow controllers are always created */
if (controller == NULL) {
printf ("***Error: failed to lookup flow controller\n");

}

Change property of built-in flow controller, if desired

DDS_ReturnCode_t retcode;
DDS_FlowControllerProperty_t property;

/* Get the property of the flow controller */
retcode = controller->get_property(property);

if (retcode != DDS_RETCODE_OK) {
printf ("#**Error: failed to get flow controller property\n");

}

/* Change the property value as desired */
property.token_bucket.period.sec = 2;
property.token_bucket.period.nanosec = 0;

/* Update the flow controller property */
retcode = controller->set_property(property);

if (retcode != DDS_RETCODE_OK) {

printf ("**xError: failed to set flow controller property\n");

}

Create a data writer using the correct flow controller name
(p. 156)

5.39.4 Shaping the network traffic for a particular trans-
port

Set up participant (p.151)

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API
by Doxygen

5.39 FlowController Use Cases 159

Create the transports (p.176)
Create a separate flow controller for each transport (p. 156)

Configure DDSDataWriter (p. 1070) instances to only use a single trans-
port

Associate all data writers using the same transport to the cor-
responding flow controller (p. 156)

For each transport, the corresponding flow controller limits the network
traffic based on the token bucket properties

5.39.5 Coalescing multiple samples in a single network
packet

Set up participant (p.151)

Create a flow controller with a desired token bucket period
(p. 156)

Associate the data writer with the flow controller (p. 156)

Multiple samples written within the specified period will be coalesced
into a single network packet (provided that tokens_added_per_period
and bytes_per_token permit).

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4+ API
by Doxygen

160 Module Documentation

5.40 Publisher Use Cases

Working with publishers.

5.40.1 Setting up a publisher

Set up participant (p.151)

Create a DDSPublisher (p.1294)

DDS_PublisherQos publisher_qos;

// MyPublisherListener is user defined and
// extends DDSPublisherListener
DDSPublisherListener* publisher_listener =
= new MyPublisherListener(); // or = NULL

participant->get_default_publisher_qos(publisher_qos);

DDSPublisher* publisher = participant->create_publisher(publisher_qos,
publisher_listener,
DDS_STATUS_MASK_ALL) ;

if (publisher == NULL) {

// ... error

};

5.40.2 Tearing down a publisher
Delete DDSPublisher (p.1294):

DDS_ReturnCode_t retcode;
retcode = participant->delete_publisher (publisher);
if (retcode != DDS_RETCODE_OK) {

// ... check for cause of failure

}

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API
by Doxygen

5.41 DataWriter Use Cases 161

5.41 DataWriter Use Cases

Working with data writers.

5.41.1 Setting up a data writer

Set up publisher (p. 160)
Set up a topic (p. 154)

" Create a data writer, FooDataWriter (p.1419), of user data type Foo
(p.1387):

DDS_DataWriterQos writer_qos;
DDS_ReturnCode_t retcode;

// MyWriterListener is user defined and
// extends DDSDataWriterListener
MyWriterListener* writer_listener = new MyWriterListener(); // or = NULL

retcode = publisher->get_default_datawriter_qos(writer_qgos);
if (retcode !'= DDS_RETCODE_OK) {

// ... error

}

FooDataWriter* writer = publisher->create_datawriter (topic,
writer_qos,
writer_listener,
DDS_STATUS_MASK_ALL) ;
if (writer == NULL) {
// ... error

};

5.41.2 Managing instances
" Getting an instance "key” value of user data type Foo (p.1387)

Foo* data = ...; // user data
retcode = writer->get_key_value(*data, instance_handle);
if (retcode !'= DDS_RETCODE_OK) {

// ... check for cause of failure

}

" Registering an instance of type Foo (p.1387)

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4+ API
by Doxygen

162 Module Documentation

DDS_InstanceHandle_t instance_handle = DDS_HANDLE_NIL;

instance_handle = writer->register_instance(data);

Unregistering an instance of type Foo (p.1387)
retcode = writer—)unregister_instance(data, instance_handle);
if (retcode !'= DDS_RETCODE_OK) {

// ... check for cause of failure

}

Disposing of an instance of type Foo (p.1387)
retcode = writer->dispose(data, instance_handle);
if (retcode != DDS_RETCODE_OK) {

// ... check for cause of failure

}

5.41.3 Sending data

Set up data writer (p.161)
Register instance (p.161)

" Write instance of type Foo (p.1387)
Foo* data; // user data

DDS_InstanceHandle_t instance_handle =
DDS_HANDLE_NIL; // or a valid registered handle

DDS_ReturnCode_t retcode;
retcode = writer->write(data, instance_handle);
if (retcode !'= DDS_RETCODE_OK) {

// ... check for cause of failure

}

5.41.4 Tearing down a data writer

Delete DDSDataWriter (p. 1070):

DDS_ReturnCode_t retcode;
retcode = publisher->delete_datawriter(writer);
if (retcode !'= DDS_RETCODE_O0K) {

// ... check for cause of failure

}

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API
by Doxygen

5.42 Subscriber Use Cases 163

5.42 Subscriber Use Cases

Working with subscribers.

5.42.1 Setting up a subscriber

" Set up participant (p.151)

" Create a DDSSubscriber (p. 1337)

DDS_SubscriberQos subscriber_qos;
DDS_ReturnCode_t retcode;

// MySubscriberListener is user defined and
// extends DDSSubscriberListener
DDSSubscriberListener* subscriber_listener =
new MySubscriberListener(); // or = NULL

retcode = participant->get_default_subscriber_qos(subscriber_qos);

if (retcode !'= DDS_RETCODE_O0K) {
// ... error

};

DDSSubscriber* subscriber =
participant->create_subscriber (subscriber_qos,
subscriber_listener,
DDS_STATUS_MASK_ALL) ;
if (subscriber == NULL) {
// ... error

};

5.42.2 Set up subscriber to access received data

" Set up subscriber (p.163)

" Set up to handle the DDS_DATA_ON_READERS_STATUS status, in one
or both of the following two ways.

" Enable DDS_DATA_ON_READERS_STATUS for the DDSSub-
scriberListener associated with the subscriber (p.172)

— The processing to handle the status change is done in the DDSSub-
scriberListener::on_data_on_readers() (p.1361) method of the
attached listener.

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4+ API
by Doxygen

164 Module Documentation

— Typical processing will access the received data (p. 164), either in
arbitrary order or in a coherent and ordered manner (p. 165).

" Enable DDS_DATA ON_READERS STATUS for the DDSSta-
tusCondition associated with the subscriber (p.173)

— The processing to handle the status change is done when the sub-
scriber’s attached status condition is triggered (p.174) and
the DDS_.DATA_ON_READERS_STATUS status on the subscriber
is changed.

— Typical processing will access the received data (p. 164), either in
an arbitrary order or in a coherent and ordered manner (p. 165).

5.42.3 Access received data via a subscriber

" Ensure subscriber is set up to access received data (p. 163)

" Get the list of readers that have data samples available:

DDSDataReaderSeq reader_seq; // holder for list/set of readers
DDS_SampleStateMask sample_state_mask = DDS_NOT_READ_SAMPLE_STATE;
DDS_ViewStateMask view_state_mask = DDS_ANY_VIEW_STATE;
DDS_InstanceStateMask instance_state_mask = DDS_ANY_INSTANCE_STATE;

DDS_ReturnCode_t retcode;

// get_datareadersX is not supported yet.

retcode = subscriber->get_datareaders(reader_seq,
sample_state_mask,
view_state_mask,
instance_state_mask) ;

if (retcode != DDS_RETCODE_OK) {

// ... check for cause of failure

}

" Upon successfully getting the list of readers with data, process the data
readers to either:

— Read the data in each reader (p.169), OR
— Take the data in each reader (p. 168)

If the intent is to access the data coherently or in order (p.165), the
list of data readers must be processed in the order returned:

for(int i = 0; i < reader_seq.length(); ++i) {

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API
by Doxygen

5.42 Subscriber Use Cases 165

TDataReader* reader = reader_seql[il;
// Take the data from reader,

// OR
// Read the data from reader

" Alternatively, call DDSSubscriber::notify _datareaders() (p.1355)
to invoke the DDSDataReaderListener (p.1065) for each of the data
readers.

retcode = subscriber->notify_datareaders();
if (retcode !'= DDS_RETCODE_OK) {

// ... check for cause of failure

}

5.42.4 Access received data coherently and/or in order

To access the received data coherently and/or in an ordered manner, according
to the settings of the DDS_PresentationQosPolicy (p.799) attached to a
DDSSubscriber (p. 1337):

" Ensure subscriber is set up to access received data (p. 163)

~ Indicate that data will be accessed via the subscriber:

retcode = subscriber->begin_access();
if (retcode != DDS_RETCODE_OK) {

// ... check for cause of failure

}

" Access received data via the subscriber, making sure that the
data readers are processed in the order returned. (p.164)

~ Indicate that the data access via the subscriber is done:

retcode = subscriber->end_access();

if (retcode '= DDS_RETCODE_OK) {
// ... check for cause of failure

}

5.42.5 Tearing down a subscriber

" Delete DDSSubscriber (p. 1337):

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4+ API
by Doxygen

166 Module Documentation

DDS_ReturnCode_t retcode;

retcode = participant->delete_subscriber(subscriber);

if (retcode '= DDS_RETCODE_OK) {
// ... check for cause of failure

}

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API
by Doxygen

5.43 DataReader Use Cases 167

5.43 DataReader Use Cases

Working with data readers.

5.43.1 Setting up a data reader

Set up subscriber (p. 163)
Set up a topic (p. 154)

" Create a data reader, FooDataReader (p.1388), of user data type Foo
(p.1387) :

DDS_DataReaderQos reader_qos;
DDS_ReturnCode_t retcode;

// MyReaderListener is user defined and

// extends DDSDataReaderListener

DDSDataReaderListener* reader_listener =
new MyReaderListener(); // or = NULL

retcode = subscriber->get_default_datareader_qos(reader_qos);

if (retcode !'= DDS_RETCODE_OK) {
// ... error

};

FooDataReader* reader = subscriber->create_datareader(topic,
reader_qos,
reader_listener,
DDS_STATUS_MASK_ALL) ;
if (reader == NULL) {
// ... error

};
5.43.2 Managing instances

" Given a data reader

FooDataReader* reader = ...;

" Getting an instance "key” value of user data type Foo (p.1387)

Foo data; // user data of type Foo
/...

retcode = reader—>get_key_value(data, instance_handle);

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4+ API
by Doxygen

168 Module Documentation

if (retcode !'= DDS_RETCODE_OK) {
// ... check for cause of failure

}

5.43.3 Set up reader to access received data
" Set up data reader (p.167)

" Set up to handle the DDS_DATA_AVAILABLE_STATUS status, in one or
both of the following two ways.

" Enable DDS_DATA_AVAILABLE STATUS for the DDS-
DataReaderListener associated with the data reader (p.172)

— The processing to handle the status change is done in the DDS-
DataReaderListener::on_data_available (p.1067) method of the
attached listener.

— Typical processing will access the received data (p. 168).

" Enable DDS_DATA_AVAILABLE _STATUS for the DDSStatus-
Condition associated with the data reader (p.173)

— The processing to handle the status change is done when the data
reader’s attached status condition is triggered (p.174) and
the DDS_DATA _AVAILABLE_STATUS status on the data reader is
changed.

— Typical processing will access the received data (p. 168).

5.43.4 Access received data via a reader
" Ensure reader is set up to access received data (p. 168)

" Access the received data, by either:

— Taking the received data in the reader (p.168), OR
— Reading the received data in the reader (p.169)

5.43.5 Taking data

" Ensure reader is set up to access received data (p. 168)

" Take samples of user data type T. The samples are removed from the
Service. The caller is responsible for deallocating the buffers.

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API
by Doxygen

5.43 DataReader Use Cases 169

FooSeq data_seq; // holder for sequence of user data type Foo
DDS_SampleInfoSeq info_seq; // holder for sequence of DDS_SampleInfo
long max_samples = DDS_LENGTH_UNLIMITED;
DDS_SampleStateMask sample_state_mask = DDS_ANY_SAMPLE_STATE;
DDS_ViewStateMask view_state_mask = DDS_ANY_VIEW_STATE;

DDS_InstanceStateMask instance_state_mask = DDS_ANY_INSTANCE_STATE;
DDS_ReturnCode_t retcode;

retcode = reader->take(data_seq, info_seq,
max_samples,
sample_state_mask,
view_state_mask,
instance_state_mask);

if (retcode == DDS_RETCODE_NO_DATA) {

return;
} else if (retcode != DDS_RETCODE_OK) {
// ... check for cause of failure

}

" Use the received data

// Use the received data samples ’data_seq’ and associated information ’info_seq’
for(int i = 0; i < data_seq.length(); ++i) {

// use... data_seq[il

// use... info_seq[il

Return the data samples and the information buffers back to the mid-
dleware. IMPORTANT': Once this call returns, you must not retain any
pointers to any part of any sample or sample info object.

retcode = reader->return_loan(data_seq, info_seq);

if (retcode !'= DDS_RETCODE_OK) {
// ... check for cause of failure

}

5.43.6 Reading data

Ensure reader is set up to access received data (p. 168)

" Read samples of user data type Foo (p.1387). The samples are not
removed from the Service. It remains responsible for deallocating the

buffers.
FooSeq data_seq; // holder for sequence of user data type Foo
DDS_SampleInfoSeq info_seq; // holder for sequence of DDS_SampleInfo
long max_samples = DDS_LENGTH_UNLIMITED;

DDS_SampleStateMask sample_state_mask = DDS_NOT_READ_SAMPLE_STATE;

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4+ API
by Doxygen

170 Module Documentation

DDS_ViewStateMask view_state_mask = DDS_ANY_VIEW_STATE;
DDS_InstanceStateMask instance_state_mask = DDS_ANY_INSTANCE_STATE;

DDS_ReturnCode_t retcode;

retcode = reader->read(data_seq, info_seq,
max_samples,
sample_state_mask,
view_state_mask,
instance_state_mask) ;

if (retcode == DDS_RETCODE_NO_DATA) {

return;
} else if (retcode != DDS_RETCODE_OK) {
// ... check for cause of failure

}

Use the received data

// Use the received data samples ’data_seq’ and associated
// information ’info_seq’
for(int i = 0; i < data_seq.length(); ++i) {

// use... data_seq[il

// use... info_seq[i]

" Return the data samples and the information buffers back to the middle-
ware

retcode = reader—)return_loan(data_seq, info_seq);
if (retcode !'= DDS_RETCODE_OK) {

// ... check for cause of failure

}

5.43.7 Tearing down a data reader
Delete DDSDataReader (p. 1046):

DDS_ReturnCode_t retcode;
retcode = subscriber->delete_datareader(reader);
if (retcode !'= DDS_RETCODE_OK) {

// ... check for cause of failure

}

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API
by Doxygen

5.44 Entity Use Cases 171

5.44 Entity Use Cases

Working with entities.

5.44.1 Enabling an entity

" To enable an DDSEntity (p.1201)

if (entity->enable() != DDS_RETCODE_OK) {
printf ("x*xError: failed to enable entity\n");

}

5.44.2 Checking if a status changed on an entity.

" Given an DDSEntity (p.1201) and a DDS_StatusKind (p.316) to
check for, get the list of statuses that have changed since the last time
they were respectively cleared.

DDS_StatusMask status_changes_mask = entity->get_status_changes();

Check if status_kind was changed since the last time it was cleared.
A plain communication status change is cleared when the status is read
using the entity’s get_<plain communication status>() method. A
read communication status change is cleared when the data is taken from
the middleware via a TDataReader_take() call [see Changes in Status
(p. 313) for details].

if (status_changes_mask & status_kind) {
return true;
} else { /* ... YES, status_kind changed ... */
return false; /* ... NO, status_kind did NOT change ... */
}

5.44.3 Changing the QoS for an entity

The QoS for an entity can be specified at the entity creation time. Once an
entity has been created, its QoS can be manipulated as follows.

" Get an entity’s QoS settings using get_qos (abstract) (p. 1203)

if (entity->get_qos(qos) != DDS_RETCODE_OK) {
printf ("**xError: failed to get qos\n");
}

" Change the desired qos policy fields

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4+ API
by Doxygen

172 Module Documentation

/* Change the desired qos policies */
/* qos.policy.field = ... */

" Set the qos using set_qos (abstract) (p.1202).

switch (entity->set_qgos(qos)) {
case DDS_RETCODE_OK: { /* success */
} break;
case DDS_RETCODE_IMMUTABLE_POLICY: {
printf ("#**xError: tried changing a policy that can only be"
" set at entity creation time\n");
} break;
case DDS_RETCODE_INCONSISTENT_POLICY: {
printf ("*x*Error: tried changing a policy to a value inconsistent"
" with other policy settings\n");
} break;
default: {
printf ("#**Error: some other failure\n");

}

5.44.4 Changing the listener and enabling/disabling sta-
tuses associated with it

The listener for an entity can be specified at the entity creation time. By default
the listener is enabled for all the statuses supported by the entity.

Once an entity has been created, its listener and/or the statuses for which it is
enabled can be manipulated as follows.

" User defines entity listener methods

/* ... methods defined by EntityListener ... */

public class MyEntityListener implements DDSListener {
// ... methods defined by EntityListener ...

3

Get an entity’s listener using get_listener (abstract) (p.1204)
entity_listener = entity->get_listener();
Enable status_kind for the listener

enabled_status_list |= status_kind;

Disable status_kind for the listener

enabled_status_list &= “status_kind;

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API
by Doxygen

5.44 Entity Use Cases 173

" Set an entity’s listener to entity_listener using set_listener (ab-
stract) (p.1203). Only enable the listener for the statuses specified by
the enabled_status_list.

if (entity->set_listener(entity_listener, enabled_status_list)
!= DDS_RETCODE_OK) {
printf ("#**Error: setting entity listener\n");

5.44.5 Enabling/Disabling statuses associated with a sta-
tus condition

Upon entity creation, by default, all the statuses are enabled for the DDS_-
StatusCondition associated with the entity.

Once an entity has been created, the list of statuses for which the DDS_-
StatusCondition is triggered can be manipulated as follows.

" Given an entity, a status_kind, and the associated status_condition:

statuscondition = entity->get_statuscondition();

" Get the list of statuses enabled for the status_condition

enabled_status_list = statuscondition->get_enabled_statuses();

" Check if the given status_kind is enabled for the status_condition

if (enabled_status_list & status_kind) {

/*... YES, status_kind is enabled ... */
} else {
/* ... NO, status_kind is NOT enabled ... */

}

Enable status_kind for the status_condition

if (statuscondition->set_enabled_statuses(enabled_status_list | status_kind)
!= DDS_RETCODE_OK) {
/* ... check for cause of failure */

Disable status_kind for the status_condition

if (statuscondition->set_enabled_statuses(enabled_status_list & “status_kind)
!= DDS_RETCODE_OK) {
/* ... check for cause of failure */

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4+ API
by Doxygen

174 Module Documentation

5.45 Waitset Use Cases

Using wait-sets and conditions.

5.45.1 Setting up a wait-set
" Create a wait-set

DDSWaitSet* waitset = new DDSWaitSet();

~ Attach conditions

DDSCondition* condl = ...;

DDSCondition* cond2 = entity->get_statuscondition();

DDSCondition* cond3 = reader->create_readcondition(DDS_NOT_READ_SAMPLE_STATE,
DDS_ANY_VIEW_STATE,
DDS_ANY_INSTANCE_STATE) ;

DDSCondition* cond4 = new DDSGuardCondition();
DDSCondition* condb = ...;
DDS_ReturnCode_t retcode;

retcode = waitset->attach_condition(condl);
if (retcode !'= DDS_RETCODE_OK) {

// ... error
}
retcode = waitset->attach_condition(cond2);
if (retcode !'= DDS_RETCODE_O0K) {

// ... error
¥
retcode = waitset->attach_condition(cond3);
if (retcode !'= DDS_RETCODE_OK) {

// ... error
¥
retcode = waitset->attach_condition(cond4);
if (retcode !'= DDS_RETCODE_OK) {

// ... error
}
retcode = waitset->attach_condition(cond5);
if (retcode !'= DDS_RETCODE_OK) {

// ... error

}

5.45.2 Waiting for condition(s) to trigger

Set up a wait-set (p.174)

" Wait for a condition to trigger or timeout, whichever occurs first

DDS_Duration_t timeout = { 0, 1000000 }; // ims

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API
by Doxygen

5.45 Waitset Use Cases 175

DDSConditionSeq active_conditions; // holder for active conditions

bool is_condl_triggered = false;
bool is_cond2_triggered = false;

DDS_ReturnCode_t retcode;
retcode = waitset->wait(active_conditions, timeout);
if (retcode != DDS_RETCODE_OK) {

// ... check for cause of failure

} else {
// success

if (active_conditions.length() == 0) {
// timeout!
printf("Wait timed out!! None of the conditions was triggered.\n");

} else {
// check if "condl" or "cond2" are triggered:
for(int i = 0; i < active_conditions.length(); ++i) {

if (active_conditions[i] == condl) {
printf("Condl was triggered!");
is_condl_triggered = true;

}

if (active_conditions[i] == cond2) {
printf("Cond2 was triggered!");
is_cond2_triggered = true;

}

if (is_condl_triggered && is_cond2_triggered) {
break;
}

}
if (is_condl_triggered) {
// ... do something because "condl" was triggered ...
}
if (is_cond2_triggered) {

// ... do something because "cond2" was triggered ...

}

5.45.3 Tearing down a wait-set

Delete the wait-set

delete waitset;
waitset = NULL;

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4+ API
by Doxygen

176 Module Documentation

5.46 Transport Use Cases

Working with pluggable transports.

5.46.1 Changing the automatically registered built-in
transports

" The DDS_TRANSPORTBUILTIN MASK DEFAULT (p.388)
specifies the transport plugins that will be automatically registered with
a newly created DDSDomainParticipant (p.1096) by default.

This default can be changed by changing the value of the value of
TRANSPORT BUILTIN (p.387) Qos Policy on the DDSDomain-
Participant (p.1096)

" To change the DDS_DomainParticipantQos::transport_builtin
(p.572) Qos Policy:

DDS_DomainParticipantQos participant_qos;
factory->get_default_participant_qos(participant_qos);

participant_qos.transport_builtin.mask = DDS_TRANSPORTBUILTIN_SHMEM |
DDS_TRANSPORTBUILTIN_UDPv4;

5.46.2 Changing the properties of the automatically reg-
istered builtin transports

The behavior of the automatically registered builtin transports can be altered
by changing their properties.

" Tell the DDSDomainParticipantFactory (p.1167) to create the par-
ticipants disabled, as described in Turning off auto-enable of newly
created participant(s) (p.151)

" Get the property of the desired builtin transport plugin, say ::UDPv4
Transport (p.260)

struct NDDS_Transport_UDPv4_Property_t property = NDDS_TRANSPORT_UDPV4_PROPERTY_DEFAULT;

if (NDDSTransportSupport::get_builtin_transport_property(
participant,
DDS_TRANSPORTBUILTIN_UDPv4,
(struct NDDS_Transport_Property_t&)property)
!= DDS_RETCODE_OK) {
printf ("#**Error: get builtin transport property\n");

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API
by Doxygen

5.46 Transport Use Cases 177

" Change the property fields as desired. Note that the properties should
be changed carefully, as inappropriate values may prevent communica-
tions. For example, the ::UDPv4 Transport (p.260) properties can be
changed to support large messages (assuming the underlying operating
system’s UDPv4 stack supports the large message size). Note: if mes-
sage_size_max is increased from the default for any of the built-in trans-
ports, then the DDS_ReceiverPoolQosPolicy::buffer_size (p.840) on
the DomainParticipant should also be changed.

/* Increase the UDPv4 maximum message size to 64K (large messages). */
property.parent.message_size_max = 65535;
property.recv_socket_buffer_size = 65535;
property.send_socket_buffer_size = 65535;

" Set the property of the desired builtin transport plugin, say ::UDPv4
Transport (p.260)

if (NDDSTransportSupport::set_builtin_transport_property(
participant,
DDS_TRANSPORTBUILTIN_UDPv4,
(struct NDDS_Transport_Property_t&)property)
!= DDS_RETCODE_OK) {
printf ("***Error: set builtin transport property\n");

Enable the participant (p.171) to turn on communications with other
participants in the domain using the new properties for the automatically
registered builtin transport plugins.

5.46.3 Creating a transport

" A transport plugin is created using methods provided by the supplier of
the transport plugin.

For example to create an instance of the ::UDPv4 Transport (p.260)

NDDS_Transport_Plugin* transport = NULL;

struct NDDS_Transport_UDPv4_Property_t property = NDDS_TRANSPORT_UDPV4_PROPERTY_DEFAULT;
transport = NDDS_Transport_UDPv4_new(&property) ;

if (tramsport == NULL) {

printf ("**xError: creating transport plugin\n");

}

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4+ API
by Doxygen

178 Module Documentation

5.46.4 Deleting a transport

" A transport plugin can only be deleted only after the DDSDomainPar-
ticipant (p.1096) with which it is registered is deleted.

" The virtual destructor provided by the abstract transport plugin API can
be used to delete a transport plugin.

transport->delete_cEA(transport, NULL);

5.46.5 Registering a transport with a participant

The basic steps for setting up transport plugins for use in an RTI Data Distri-
bution Service application are described below.

" Tell the DDSDomainParticipantFactory (p.1167) to create the par-
ticipants disabled, as described in Turning off auto-enable of newly
created participant(s) (p.151)

Optionally Changing the automatically registered built-in transports (p. 176)

Optionally Changing the properties of the automatically registered builtin
transports (p. 176)

Create a disabled DDSDomainParticipant (p.1096), as described in
Setting up a participant (p.151)

Decide on the network address (p.125) for the transport plugin. The
network address should be chosen so that the resulting fully qualified ad-
dress is globally unique (across all transports used in the domain).

/* Decide on a network address (96 bits for UDPv4), such that the fully
qualified unicast address for the transport’s interfaces will be
globally unique. For example, we use the network address:
1234:1234:1234:0000
It will be prepended to the unicast addresses of the transport plugin’s
interfaces, to give a fully qualified address that is unique in the
domain.
*/
NDDS_Transport_Address_t network_address = {{1,2,3,4, 1,2,3,4, 1,2,3,4, 0,0,0,0}};

Decide on the aliases (p. 122) for the transport plugin. An alias can refer
to one or more transport plugins. The transport class name (see Builtin
Transport Class Names (p.385)) are automatically appended to the
user-provided aliases. Alias names are useful in creating logical groupings
of transports, e.g. all the transports that are configured to support large
messages may be given the alias ”large_message”.

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API
by Doxygen

5.46 Transport Use Cases 179

/* Decide aliases, i.e. the names by which this transport plugin will be known */
const char* ALIASES[] = {

llmy" N

"large_message",
}
const DDS_Long ALIASES_LENGTH = sizeof (ALIASES)/sizeof (const char*);

/* Initialize the aliases StringSeq */

DDS_StringSeq aliases;

if (laliases.from_array(ALIASES, ALIASES_LENGTH)) {
printf ("x**Error: creating initializing aliases\n");

}

" Register the transport plugin with the DDSDomainParticipant
(p-1096). Note that a transport plugin should NOT be registered with
more than one DomainParticipant. It is the responsibility of the ap-
plication programmer to ensure that this requirement is not violated.

NDDS_Transport_Handle_t handle = NDDS_TRANSPORT_HANDLE_NIL;

handle = NDDSTransportSupport::register_transport(

participant, /* Disabled Domain Participant */
transport, /* Transport plugin */

aliases, /* Transport aliases */
network_address); /* Transport network address */

if (NDDS_Transport_Handle_is_nil(&handle)) {
printf ("**xError: registering transport\n");

}
Optionally Adding receive routes for a transport (p.179)
Optionally Adding send routes for a transport (p. 180)

Enable the participant (p.171) to turn on communications with other
participants in the domain, using the newly registered transport plugins,
and automatically registered builtin transport plugins (if any).

5.46.6 Adding receive routes for a transport
" Receive routes can be added to restrict address ranges on which incoming

messages can be received. Any number of receive routes can be added,
but these must be done before the participant is enabled.

To restrict the address range from which incoming messages can be re-
ceived by the transport plugin:

/* Restrict to receiving messages only on interfaces

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4+ API
by Doxygen

180

Module Documentation

1234:1234:1234:10.10.%. %
*/

NDDS_Transport_Address_t subnet = {{1,2,3,4, 1,2,3,4, 1,2,3,4, 10,10,0,0}}

if (NDDSTransportSupport::add_receive_route(handle, subnet, 112)
!= DDS_RETCODE_OK) {
printf ("***Error: adding receive route\n");

}

5.46.7 Adding send routes for a transport

Send routes can be added to restrict the address ranges to which outgoing
messages can be sent by the transport plugin. Any number of send routes
can be added, but these must be done before the participant is enabled.

To restrict address ranges to which outgoing messages can be sent by the
transport plugin:

/* Restrict to sending messages only to addresses (subnets)
1234:1234:1234:10.10.30. %
*/

NDDS_Transport_Address_t subnet = {{1,2,3,4, 1,2,3,4, 1,2,3,4, 10,10,30,0}};

if (NDDSTransportSupport::add_send_route(handle, subnet, 120)
!= DDS_RETCODE_OK) {
printf ("***xError: adding send route\n");

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API

by Doxygen

5.47 Filter Use Cases 181

5.47 Filter Use Cases

Working with data filters.

5.47.1 Introduction

RTI Data Distribution Service supports filtering data either during the exchange
from DDSDataWriter (p. 1070) to DDSDataReader (p.1046), or after the
data has been stored at the DDSDataReader (p.1046).

Filtering during the exchange process is performed by a DDSContentFil-
teredTopic (p. 1040), which is created by the DDSDataReader (p.1046) as
a way of specifying a subset of the data samples that it wishes to receive.

Filtering samples that have already been received by the DDSDataReader
(p.1046) is performed by creating a DDSQueryCondition (p.1319), which
can then used to check for matching samples, be alerted when match-
ing samples arrive, or retrieve matching samples through use of the
FooDataReader::read_w_condition (p.1398) or FooDataReader::take -
w_condition (p.1400) functions. (Conditions may also be used with
the APIs FooDataReader::read _next_instance_w_condition (p.1412) and
FooDataReader::take_next_instance_w_condition (p.1414).)

Filtering may be performed on any topic, either keyed or un-keyed, except
the Built-in Topics (p.41). Filtering may be perfomed on any field, subset
of fields, or combination of fields, subject only to the limitations of the filter
syntax, and some restrictions against filtering some sparse value types of the
Dynamic Data (p.75) APL

RTI Data Distribution Service contains built in support for filtering using SQL
syntax, described in the Queries and Filters Syntax (p.203) module.

5.47.1.1 Overview of ContentFilteredTopic

Each DDSContentFilteredTopic (p.1040) is created based on an exist-
ing DDSTopic (p.1365). The DDSTopic (p.1365) specifies the field_-
names and field_types of the data contained within the topic. = The
DDSContentFilteredTopic (p.1040), by means of its filter_expression
and expression_parameters, futher specifies the values of the data which the
DDSDataReader (p. 1046) wishes to receive.

Custom filters may also be constructed and utilized as described in the Creat-
ing Custom Content Filters (p. 186) module.

Once the DDSContentFilteredTopic (p.1040) has been created, a DDS-
DataReader (p.1046) can be created using the filtered topic. The filter’s
characteristics are exchanged between the DDSDataReader (p. 1046) and any

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4+ API
by Doxygen

182 Module Documentation

matching DDSDataWriter (p.1070) during the discovery processs.

If the DDSDataWriter (p. 1070) allows (by DDS -
DataWriterResourceLimitsQosPolicy::max_remote_reader_filters

(p-545)) and the number of filtered DDSDataReader (p.1046) is less
than or equal to 32, and the DDSDataReader (p.1046) ’s is empty, then
the DDSDataWriter (p.1070) will performing filtering and send to the
DDSDataReader (p. 1046) only those samples that meet the filtering criteria.

If disallowed by the DDSDataWriter (p.1070), or if more than 32 DDS-
DataReader (p.1046) require filtering, or the DDSDataReader (p.1046)
has set the , then the DDSDataWriter (p.1070) sends all samples to the
DDSDataReader (p. 1046), and the DDSDataReader (p. 1046) discards any
samples that do not meet the filtering criteria.

Although the filter_expression cannot be changed once the DDSContent-
FilteredTopic (p. 1040) has been created, the expression_parameters can be
modified using DDSContentFiltered Topic::set_expression_parameters
(p.1043). Any changes made to the filtering criteria by means of DDSCon-
tentFilteredTopic::set_expression_parameters (p. 1043), will be conveyed
to any connected DDSDataWriter (p. 1070). New samples will be subject to
the modified filtering criteria, but samples that have already been accepted or
rejected are unaffected. However, if the DDSDataReader (p.1046) connects
to a DDSDataWriter (p. 1070) that re-sends its data, the re-sent samples will
be subjected to the new filtering criteria.

5.47.1.2 Overview of QueryCondition

DDSQueryCondition (p.1319) combine aspects of the content filtering ca-
pabilities of DDSContentFilteredTopic (p.1040) with state filtering capa-
bilities of DDSReadCondition (p.1321) to create a reconfigurable means of
filtering or searching data in the DDSDataReader (p. 1046) queue.

DDSQueryCondition (p.1319) may be created on a disabled DDS-
DataReader (p.1046), or after the DDSDataReader (p.1046) has been en-
abled. If the DDSDataReader (p. 1046) is enabled, and has already recevied
and stored samples in its queue, then all data samples in the are filtered against
the DDSQueryCondition (p.1319) filter criteria at the time that the DDS-
QueryCondition (p.1319) is created. (Note that an exclusive lock is held on
the DDSDataReader (p.1046) sample queue for the duration of the DDS-
QueryCondition (p. 1319) creation).

Once created, incoming samples are filtered against all DDSQueryCondition
(p. 1319) filter criteria at the time of their arrival and storage into the DDS-
DataReader (p.1046) queue.

The number of DDSQueryCondition (p.1319) filters that an in-
dividual DDSDataReader (p.1046) may create is set by DDS._-

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API
by Doxygen

5.47 Filter Use Cases 183

DataReaderResourceLimitsQosPolicy::max_query_condition_filters
(p.516), to an upper maximum of 32.

5.47.2 Filtering with ContentFilteredTopic

Set up subscriber (p. 163)
Set up a topic (p. 154)

" Create a ContentFilteredTopic, of user data type Foo (p.1387):

DDS_ContentFilteredTopic *cft = NULL;
DDS_StringSeq parameters(2);
const char* cft_param_list[] = {"1", "100"};

cft_parameters.from_array(cft_param_list, 2);
cft = participant->create_contentfilteredtopic("ContentFilteredTopic",
Foo_topic,
"value > %0 AND value < %1",
cft_parameters) ;
if (cft == NULL) {
printf ("create_contentfilteredtopic error\n");
subscriber_shutdown(participant) ;
return -1;

" Create a FooReader using the ContentFiltered Topic:

DDSDataReader *reader = NULL;

reader = subscriber->create_datareader(cft,
datareader_qos, // or DDS_DATAREADER_QOS_DEFAULT
reader_listener, // or NULL
DDS_STATUS_MASK_ALL) ;

if (reader == NULL) {
printf ("create_datareader error\n");
subscriber_shutdown(participant);
return -1;

}

FooDataReader *Foo_reader = FooDataReader: :narrow(reader);
if (Foo_reader == NULL) {
printf ("DataReader narrow error\n");
subscriber_shutdown(participant);
return -1;

Once setup, reading samples with a DDSContentFilteredTopic
(p.1040) is exactly the same as normal reads or takes, as decribed in
DataReader Use Cases (p. 167).

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4+ API
by Doxygen

184 Module Documentation

" Changing filter crieria using set_expression_parameters:

cft->get_expression_parameters(cft_parameters) ;
DDS_String_free(cft_parameters[0]);
DDS_String_free(cft_parameters[1]);
cft_parameters[0] = DDS_String_dup("5");
cft_arameters[1] = DDS_String_dup("9");
retcode = cft->set_expression_parameters(cft_arameters);
if (retcode !'= DDS_RETCODE_OK) {
printf ("set_expression_parameters error\n");
subscriber_shutdown(participant);
return -1;

5.47.3 Filtering with Query Conditions
Given a data reader of type Foo (p. 1387)

DDSDataReader *reader = ...;
FooDataReader *Foo_reader = FooDataReader: :narrow(reader);

Creating a QueryCondition

DDSQueryCondition *queryCondition = NULL;
DDS_StringSeq qc_parameters(2);
const char *qc_param_list[] = {"0","100"};

qc_parameters.from_array(qc_param_list,2);

queryCondition = reader->create_querycondition(DDS_NOT_READ_SAMPLE_STATE,
DDS_ANY_VIEW_STATE,
DDS_ALIVE_INSTANCE_STATE,
"value > %0 AND value < %1",
qc_parameters) ;

if (queryCondition == NULL) {
printf ("create_query_condition error\n");
goto error_exit;

Reading matching samples with a DDSQueryCondition (p.1319)

FooSeq data_seq;

DDS_SampleInfoSeq info_seq;

retcode = Foo_reader->read_w_condition(data_seq, info_seq,
DDS_LENGTH_UNLIMITED,
queryCondition) ;

if (retcode == DDS_RETCODE_NO_DATA) {
printf("no matching data\n");

} else if (retcode != DDS_RETCODE_OK) {
printf ("read_w_condition error %d\n", retcode);
subscriber_shutdown(participant) ;

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API
by Doxygen

5.47 Filter Use Cases 185

return -1;
} else {
for (i = 0; i < data_seq.length(); ++i) {
if (info_seq[i].valid_data) {
/* process your data here */
}
retcode = Foo_reader—>return_loan(data_seq, info_seq);
if (retcode != DDS_RETCODE_OK) {
printf("return loan error %d\n", retcode);
subscriber_shutdown(participant);
return -1;

DDSQueryCondition::set_query_parameters (p.1320) is used sim-
ilarly to DDSContentFilteredTopic::set_expression_parameters
(p.1043), and the same coding techniques can be used.

" Any DDSQueryCondition (p.1319) that have been created must be
deleted before the DDSDataReader (p.1046) can be deleted. This can
be done using DDSDataReader::delete_contained_entities (p. 1052)
or manually as in:

retcode = reader->delete_readcondition(queryCondition);

5.47.4 Filtering Performance

Although RTIT Data Distribution Service supports filtering on any field or combi-
nation of fields using the SQL syntax of the built-in filter, filters for keyed topics
that filter solely on the contents of key fields have the potential for much higher
performance. This is because for key field only filters, the DDSDataReader
(p-1046) caches the results of the filter (pass or not pass) for each instance.
When another sample of the same instance is seen at the DDSDataReader
(p. 1046), the filter results are retrieved from cache, dispensing with the need to
call the filter function.

This optimization applies to all filtering using the built-in SQL filter, performed
by the DDSDataReader (p.1046), for either DDSContentFiltered Topic
(p.1040) or DDSQueryCondition (p.1319). This does not apply to filtering
perfomed for DDSContentFilteredTopic (p. 1040) by the DDSDataWriter
(p. 1070).

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4+ API
by Doxygen

186 Module Documentation

5.48 Creating Custom Content Filters

Working with custom content filters.

5.48.1 Introduction

By default, RTT Data Distribution Service creates content filters with the DDS _-
SQL_FILTER, which implements a superset of the DDS-specified SQL. WHERE
clause. However, in many cases this filter may not be what you want. Some
examples are:

" The default filter can only filter based on the content of a sample, not on a
computation on the content of a sample. You can use a custom filter that
is customized for a specific type and can filter based on a computation of
the type members.

" You want to use a different filter language then SQL

This HOWTO explains how to write your own custom filter and is divided into
the following sections:

" The Custom Content Filter API (p. 186)

" Example Using C format strings (p. 187)

5.48.2 The Custom Content Filter API

A custom content filter is created by calling the DDSDomainPartici-
pant::register_contentfilter (p.1112) function with a DDSContentFilter
(p.1036) that contains a compile, an evaluate function and a finalize func-
tion. DDSContentFilteredTopic (p.1040) can be created with DDSDo-
mainParticipant::create_contentfilteredtopic_with_filter (p.1136) to use
this filter.

A custom content filter is used by RTT Data Distribution Service at the follow-
ing times during the life-time of a DDSContentFiltered Topic (p. 1040) (the
function called is shown in parenthesis).

" When a DDSContentFilteredTopic (p.1040) is created (compile
(. 187))

" When the filter parameters are changed on the DDSContentFil-
teredTopic (p.1040) (compile (p.187)) with DDSContentFiltered-
Topic::set_expression_parameters (p. 1043)

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API
by Doxygen

5.48 Creating Custom Content Filters 187

" When a sample is filtered (evaluate (p.187)). This function is called by
the RTT Data Distribution Service core with a de-serialized sample

" When a DDSContentFilteredTopic (p.1040) is deleted (finalize
(p.187))

5.48.2.1 The compile function

The compile (p.187) function is used to compile a filter expression and ex-
pression parameters. Please note that the term compile is intentionally loosely
defined. It is up to the user to decide what this function should do and return.

See DDSContentFilter::compile (p. 1037) for details.

5.48.2.2 The evaluate function

The evaluate (p. 188) function is called each time a sample is received to de-
termine if a sample should be filtered out and discarded.

See DDSContentFilter::evaluate (p.1038) for details.

5.48.2.3 The finalize function

The finalize (p. 188) function is called when an instance of the custom content
filter is no longer needed. When this function is called, it is safe to free all
resources used by this particular instance of the custom content filter.

See DDSContentFilter::finalize (p.1039) for details.

5.48.3 Example Using C format strings

Assume that you have a type Foo (p. 1387).

You want to write a custom filter function that will drop all samples where the
value of Foo.x > x and x is a value determined by an expression parameter. The
filter will only be used to filter samples of type Foo (p. 1387).

5.48.3.1 Writing the Compile Function

The first thing to note is that we can ignore the filter expression, since we
already know what the expression is. The second is that x is a parameter that
can be changed. By using this information, the compile function is very easy to
implement. Simply return the parameter string. This string will then be passed
to the evaluate function every time a sample of this type is filtered.

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4+ API
by Doxygen

188 Module Documentation

Below is the entire compile (p. 187) function.

DDS_ReturnCode_t MyContentFilter::compile(
void** new_compile_data, const char * /* expression */,
const DDS_StringSeq& parameters,const DDS_TypeCode* /* type_code */,
const char * /* type_class_name */,
void * /* old_compile_data */) {

new_compile_data = (void)DDS_String_dup(parameters[0]);

return DDS_RETCODE_OK;

5.48.3.2 Writing the Evaluate Function

The next step is to implement the evaluate function. The evaluate function
receives the parameter string with the actual value to test against. Thus the
evaluate function must read the actual value from the parameter string before
evaluating the expression. Below is the entire evaluate (p. 187) function.

DDS_Boolean MyContentFilter::evaluate(
void* compile_data,const void* sample) {

char *parameter = (charx)compile_data;
DDS_Long x;

Foo *foo_sample = (Foox)sample;
sscanf (parameter,"%d",&x) ;

return (foo_sample->x > x ? DDS_BOOLEAN_FALSE : DDS_BOOLEAN_TRUE);

5.48.3.3 Writing the Finalize Function

The last function to write is the finalize function. It is safe to free all resources
used by this particular instance of the custom content filter that is allocated in
compile. Below is the entire finalize (p. 187) function.

void MyContentFilter::finalize(
void* compile_data) {
/* free parameter string from compile function */
DDS_String_free((char *)compile_data);

5.48.3.4 Registering the Filter

Before the custom filter can be used, it must be registered with RTI Data
Distribution Service:

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API
by Doxygen

5.48 Creating Custom Content Filters 189

DDSDomainParticipant *myParticipant=NULL;
/* myParticipant = ¥/
DDSContentFilter *myCustomFilter = new MyContentFilter();
if (myParticipant->register_contentfilter(
(char*) "MyCustomFilter",

myCustomFilter) != DDS_RETCODE_OK) {
printf("Failed to register custom filter\n");

5.48.3.5 Unregistering the Filter

When the filter is no longer needed, it can be unregistered from RTI Data
Distribution Service:

DDSDomainParticipant *myParticipant = NULL;

/* myParticipant = */

DDSContentFilter *myCustomFilter =
myParticipant->lookup_contentfilter ((char*)"MyCustomFilter");

if (myCustomFilter != NULL) {
if (myParticipant->unregister_contentfilter(
(charx) "MyCustomFilter") != DDS_RETCODE_OK) {
printf("Failed to unregister custom filter\n");

}

delete myCustomFilter;

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4+ API
by Doxygen

190 Module Documentation

5.49 Large Data Use Cases

Working with large data types.

5.49.1 Introduction

RTI Data Distribution Service supports data types whose size exceeds the maxi-
mum message size of the underlying transports. A DDSDataWriter (p. 1070)
will fragment data samples when required. Fragments are automatically re-
assembled at the receiving end.

Once all fragments of a sample have been received, the new sample is
passed to the DDSDataReader (p.1046) which can then make it avail-
able to the user. Note that the new sample is treated as a regular sam-
ple at that point and its availability depends on standard QoS settings such
as DDS_ResourceLimitsQosPolicy::max_samples (p.857) and DDS_-
KEEP _LAST HISTORY _QOS (p.359).

The large data feature is fully supported by all DDS API’s, so its use is mostly
transparent. Some additional considerations apply as explained below.

5.49.2 Writing Large Data

In order to use the large data feature with the DDS_RELIABLE -
RELIABILITY_QOS (p. 355) setting, the DDSDataWriter (p.1070) must
be configured as an asynchronous writer (DDS_ASYNCHRONOUS -
PUBLISH_MODE_QOS (p.413)) with associated DDSFlowController
(p. 1207).

While the use of an asynchronous writer and flow controller is optional when us-
ing the DDS_BEST _EFFORT _RELIABILITY _QOS (p.355) setting, most
large data use cases will benefit from the use of a flow controller to prevent
flooding the network when fragments are being sent.

" Set up writer (p.161)

" Add flow control (p. 156)

5.49.3 Receiving Large Data

Large data is supported by default and in most cases, no further changes are
required.

The DDS_DataReaderResourceLimitsQosPolicy (p.505) allows tuning

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API
by Doxygen

5.49 Large Data Use Cases 191

the resources available to the DDSDataReader (p. 1046) for reassembling frag-
mented large data.

" Set up reader (p.167)

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4+ API
by Doxygen

192 Module Documentation

5.50 Documentation Roadmap

This section contains a roadmap for the new user with pointers on what to read
first.

If you are new to RTI Data Distribution Service, we recommend starting in the
following order:

See the Getting Started Guide. This document provides download and
installation instructions. It also lays out the core value and concepts
behind the product and takes you step-by-step through the creation of a
simple example application.

The User’s Manual describes the features of the product and how to use
them. It is organized around the structure of the DDS APIs and certain
common high-level tasks.

The documentation in the DDS API Reference (p.198) provides an
overview of API classes and modules for the DDS data-centric publish-
subscribe (DCPS) package from a programmer’s perspective. Start by
reading the documentation on the main page.

After reading the high level module documentation, look at the Publi-
cation Example (p. 149) and Subscription Example (p. 150) for step-
by-step examples of creating a publication and subscription. These are
hyperlinked code snippets to the full API documentation, and provide a
good place to begin learning the APIs.

Next, work through your own application using the example code files
generated by rtiddsgen (p.215).

To integrate similar code into your own application and build system, you
will likely need to refer to the Platform Notes.

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API
by Doxygen

5.51 Conventions 193

5.51 Conventions

This section describes the conventions used in the API documentation.

5.51.1 Unsupported Features

[Not supported (optional)] This note means that the optional feature from
the DDS specification is not supported in the current release.

5.51.2 API Naming Conventions
5.51.2.1 Structure & Class Names

RTT Data Distribution Service 4 makes a distinction between wvalue types and
interface types. Value types are types such as primitives, enumerations, strings,
and structures whose identity and equality are determined solely by explicit
state. Interface types are those abstract opaque data types that conceptually
have an identity apart from their explicit state. Examples include all of the
DDSEntity (p.1201) subtypes, the DDSCondition (p.1034) subtypes, and
DDSWaitSet (p. 1379). Instances of value types are frequently transitory and
are declared on the stack. Instances of interface types typically have longer
lifecycles, are accessible by pointer only, and may be managed by a factory
object.

Value and interface types are distinguished by their names: value types have
names beginning with ”DDS_” (i.e. with an underscore); interface types have
names beginning with "DDS” (i.e. with no underscore). Another way to think
of it: C-style types — structures, enumerations, etc. — have names beginning
with ”"DDS_"; C4++ classes have names beginning with ”DDS.”

5.51.3 API Documentation Terms

In the API documentation, the term module refers to a logical grouping of
documentation and elements in the APL.

At this time, typedefs that occur in the API, such as DDS_ReturnCode._-
t (p.309) do not show up in the compound list or indices. This is a known
limitation in the generated HTML.

5.51.4 Stereotypes

Commonly used stereotypes in the API documentation include the following.

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4+ API
by Doxygen

194 Module Documentation

5.51.4.1 Extensions

<<eXtension>> (p.194)
— An RTI Data Distribution Service product extension to the DDS
standard specification.

— The extension APIs complement the standard APIs specified by the
OMG DDS specification. They are provided to improve product
usability and enable access to product-specific features such as plug-
gable transports.

5.51.4.2 Types

" <<interface>> (p.194)

— Pure interface type with no state.

— Languages such as Java natively support the concept of an inter-
face type, which is a collection of method signatures devoid of any
dynamic state.

— In C++, this is achieved via a class with all pure virtual methods
and devoid of any instance variables (ie no dynamic state).

— Interfaces are generally organized into a type hierarchy. Static type-
casting along the interface type hierarchy is ”safe” for valid objects.

" <<generic>> (p.194)

— A generic type is a skeleton class written in terms of generic pa-
rameters. Type-specific instantiations of such types are convention-
ally referred to in this documentation in terms of the hypothetical
type "Foo”; for example: FooSeq (p.1437), FooDataType, Foo-
DataWriter (p. 1419), and FooDataReader (p. 1388).

— For portability and efficiency, we implement generics using C prepro-
cessor macros, rather than using C++ templates.

— A generic type interface is declared via a #define macro.

— Concrete types are generated from the generic type statically at com-
pile time. The implementation of the concrete types is provided via
the generic macros which can then be compiled as normal C or C++
code.

" <<singleton>> (p.194)

— Singleton class. There is a single instance of the class.

— Generally acccessed via a get_instance() static method.

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API
by Doxygen

5.51 Conventions 195

5.51.4.3 Method Parameters
To<<in>> (p.195)

— An input parameter.

T <<out>> (p.195)

— An output parameter.

" <<inout>> (p.195)

— An input and output parameter.

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4+ API
by Doxygen

196 Module Documentation

5.52 Using DDS:: Namespace

This section describes the C++ namespace support in the DDS API.

5.52.1 DDS Namespace Support

In this documentation, all C++ classes, value types, interface types and con-
stants have names beginning with either ?DDS_” or ”DDS”. Alternatively,
DDS namespace can also be used to refer to all these classes, types or constant.

All the C+4 API that begins with either ”DDS_” or ”DDS” can be re-
placed with its namespace equivalent. For example, DDSDomainPartici-
pant (p.1096) has a namespace equivalent of DDS::DomainParticipant,
and DDS_DomainParticipantQos (p.570) has a namespace equivalent of
DDS::DomainParticipantQos.

In order to use the DDS namespace, an additional header file, ndds_-
namespace_cpp.h , will need to be included in your source file:

#include '"ndds/ndds_cpp.h"
#include "ndds/ndds_namespace_cpp.h"

DDS: :DomainParticipant *participant = NULL;

DDS: :DomainParticipantQos participant_qos;

DDS: :DomainParticipantListener *listener = NULL;

DDS: :StatusKind status_kind = DDS::INCONSISTENT_TOPIC_STATUS;
DDS::Long counter = OL;

If the namespace header file is not included in the source file, DDS namespace
cannot be used in the RTI Data Distribution Service API.

5.52.2 DDS Namespace and Primitive Types

By default, DDS namespace support for primitive types are included. With
DDS namespace support, the difference between DDS types and native types
can just be the capitalization in some cases:

#include "ndds/ndds_cpp.h"
#include "ndds/ndds_namespace_cpp.h"

using namespace DDS;
Long ddsCounter = OL;

long nativeCounter = OL;

If you want to exclude the DDS namespace support for primitive
types, you can define NDDS_EXCLUDE_PRIMITIVE_TYPES FROM -

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API
by Doxygen

5.52 Using DDS:: Namespace 197

NAMESPACE in you application before including the namespace header file.
DDS namespace support for primitive types will then be excluded:

#include "ndds/ndds_cpp.h"
#define NDDS_EXCLUDE_PRIMITIVE_TYPES_FROM_NAMESPACE
#include "ndds/ndds_namespace_cpp.h"

using namespace DDS;
DDS_Long ddsCounter = 0;

long nativeCounter = 0;

For the rest of the documentation, the DDS prefix is used for all class
/types/constants names. However, all the API with the DDS prefix can be
replaced with DDS namespace instead if the namespace header file is included.

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4+ API
by Doxygen

198 Module Documentation

5.53 DDS API Reference

RTI Data Distribution Service modules following the DDS module definitions.

Modules

" Domain Module

Contains the DDSDomainParticipant (p. 1096) class that acts as an en-
trypoint of RTI Data Distribution Service and acts as a factory for many
of the classes. The DDSDomainParticipant (p. 1096) also acts as a con-
tainer for the other objects that make up RTI Data Distribution Service.

" Topic Module

Contains the DDSTopic (p. 1365), DDSContentFilteredTopic (p. 1040),
and DDSMultiTopic (p. 1270) classes, the DDSTopicListener (p. 1376)
interface, and more generally, all that is needed by an application to define
DDSTopic (p. 1365) objects and attach QoS policies to them.

~ Publication Module

Contains the DDSFlowController (p.1207), DDSPublisher (p.1294),
and DDSDataWriter (p. 1070) classes as well as the DDSPublisherLis-
tener (p.1317) and DDSDataWriterListener (p.1090) interfaces, and
more generally, all that is needed on the publication side.

" Subscription Module

Contains the DDSSubscriber (p.1337), DDSDataReader (p.1046),
DDSReadCondition (p.1321), and DDSQueryCondition (p.1319)
classes, as well as the DDSSubscriberListener (p.1360) and DDS-
DataReaderListener (p. 1065) interfaces, and more generally, all that is
needed on the subscription side.

" Infrastructure Module

Defines the abstract classes and the interfaces that are refined by the other
modules. Contains common definitions such as return codes, status values,
and QoS policies.

" Queries and Filters Syntax

5.53.1 Detailed Description

RTI Data Distribution Service modules following the DDS module definitions.

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API
by Doxygen

5.53 DDS API Reference 199

5.53.2 Overview

Information flows with the aid of the following constructs: DDSPublisher
(p.1294) and DDSDataWriter (p.1070) on the sending side, DDSSub-
scriber (p.1337) and DDSDataReader (p. 1046) on the receiving side.

" A DDSPublisher (p. 1294) is an object responsible for data distribution.
It may publish data of different data types. A TDataWriter acts as a typed
(i.e. each DDSDataWriter (p.1070) object is dedicated to one applica-
tion data type) accessor to a publisher. A DDSDataWriter (p.1070)
is the object the application must use to communicate to a publisher the
existence and value of data objects of a given type. When data object
values have been communicated to the publisher through the appropriate
data-writer, it is the publisher’s responsibility to perform the distribution
(the publisher will do this according to its own QoS, or the QoS attached
to the corresponding data-writer). A publication is defined by the associ-
ation of a data-writer to a publisher. This association expresses the intent
of the application to publish the data described by the data-writer in the
context provided by the publisher.

A DDSSubscriber (p.1337) is an object responsible for receiving pub-
lished data and making it available (according to the Subscriber’s QoS)
to the receiving application. It may receive and dispatch data of different
specified types. To access the received data, the application must use a
typed TDataReader attached to the subscriber. Thus, a subscription is
defined by the association of a data-reader with a subscriber. This as-
sociation expresses the intent of the application to subscribe to the data
described by the data-reader in the context provided by the subscriber.

DDSTopic (p.1365) objects conceptually fit between publications and sub-
scriptions. Publications must be known in such a way that subscriptions can re-
fer to them unambiguously. A DDSTopic (p. 1365) is meant to fulfill that pur-
pose: it associates a name (unique in the domain i.e. the set of applications that
are communicating with each other), a data type, and QoS related to the data
itself. In addition to the topic QoS, the QoS of the DDSDataWriter (p. 1070)
associated with that Topic and the QoS of the DDSPublisher (p.1294) as-
sociated to the DDSDataWriter (p.1070) control the behavior on the pub-
lisher’s side, while the corresponding DDSTopic (p. 1365), DDSDataReader
(p.1046) and DDSSubscriber (p. 1337) QoS control the behavior on the sub-
scriber’s side.

When an application wishes to publish data of a given type, it must create
a DDSPublisher (p.1294) (or reuse an already created one) and a DDS-
DataWriter (p.1070) with all the characteristics of the desired publication.
Similarly, when an application wishes to receive data, it must create a DDSSub-

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4+ API
by Doxygen

200 Module Documentation

scriber (p.1337) (or reuse an already created one) and a DDSDataReader
(p- 1046) to define the subscription.

5.53.3 Conceptual Model

The overall conceptual model is shown below.

Notice that all the main communication objects (the specializations of Entity)
follow unified patterns of:

" Supporting QoS (made up of several QosPolicy); QoS provides a generic
mechanism for the application to control the behavior of the Service and
tailor it to its needs. Each DDSEntity (p.1201) supports its own spe-
cialized kind of QoS policies (see QoS Policies (p. 325)).

Accepting a DDSListener (p.1266); listeners provide a generic mecha-
nism for the middleware to notify the application of relevant asynchronous
events, such as arrival of data corresponding to a subscription, violation of
a QoS setting, etc. Each DDSEntity (p.1201) supports its own special-
ized kind of listener. Listeners are related to changes in status conditions
(see Status Kinds (p.311)).

Note that only one Listener per entity is allowed (instead of a list of
them). The reason for that choice is that this allows a much simpler (and,
thus, more efficient) implementation as far as the middleware is concerned.
Moreover, if it were required, the application could easily implement a
listener that, when triggered, triggers in return attached ’sub-listeners’.

" Accepting a DDSStatusCondition (p.1323) (and a set of DDSRead-
Condition (p. 1321) objects for the DDSDataReader (p. 1046)); condi-
tions (in conjunction with DDSWaitSet (p. 1379) objects) provide sup-
port for an alternate communication style between the middleware and
the application (i.e., wait-based rather than notification-based).

All DCPS entities are attached to a DDSDomainParticipant (p.1096). A
domain participant represents the local membership of the application in a do-
main. A domain is a distributed concept that links all the applications able to
communicate with each other. It represents a communication plane: only the
publishers and the subscribers attached to the same domain may interact.

DDSDomainEntity (p.1095) is an intermediate object whose only purpose is
to state that a DomainParticipant cannot contain other domain participants.

At the DCPS level, data types represent information that is sent atomically.
For performance reasons, only plain data structures are handled by this level.

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API
by Doxygen

5.53 DDS API Reference 201

By default, each data modification is propagated individually, independently,
and uncorrelated with other modifications. However, an application may re-
quest that several modifications be sent as a whole and interpreted as such at
the recipient side. This functionality is offered on a Publisher/Subscriber ba-
sis. That is, these relationships can only be specified among DDSDataWriter
(p.- 1070) objects attached to the same DDSPublisher (p.1294) and retrieved
among DDSDataReader (p.1046) objects attached to the same DDSSub-
scriber (p.1337).

By definition, a DDSTopic (p. 1365) corresponds to a single data type. How-
ever, several topics may refer to the same data type. Therefore, a DDSTopic
(p. 1365) identifies data of a single type, ranging from one single instance to a
whole collection of instances of that given type. This is shown below for the
hypothetical data type Foo (p.1387).

In case a set of instances is gathered under the same topic, different instances
must be distinguishable. This is achieved by means of the values of some data
fields that form the key to that data set. The key description (i.e., the list of
data fields whose value forms the key) has to be indicated to the middleware.
The rule is simple: different data samples with the same key value represent
successive values for the same instance, while different data samples with differ-
ent key values represent different instances. If no key is provided, the data set
associated with the DDSTopic (p. 1365) is restricted to a single instance.

Topics need to be known by the middleware and potentially propagated. Topic
objects are created using the create operations provided by DDSDomainPar-
ticipant (p. 1096).

The interaction style is straightforward on the publisher’s side: when the appli-
cation decides that it wants to make data available for publication, it calls the
appropriate operation on the related DDSDataWriter (p. 1070) (this, in turn,
will trigger its DDSPublisher (p.1294)).

On the subscriber’s side however, there are more choices: relevant information
may arrive when the application is busy doing something else or when the appli-
cation is just waiting for that information. Therefore, depending on the way the
application is designed, asynchronous notifications or synchronous access may
be more appropriate. Both interaction modes are allowed, a DDSListener
(p. 1266) is used to provide a callback for synchronous access and a DDSWait-
Set (p.1379) associated with one or several DDSCondition (p.1034) objects
provides asynchronous data access.

The same synchronous and asynchronous interaction modes can also be used
to access changes that affect the middleware communication status (see Sta-
tus Kinds (p.311)). For instance, this may occur when the middleware asyn-
chronously detects an inconsistency. In addition, other middleware information
that may be relevant to the application (such as the list of the existing topics)
is made available by means of built-in topics (p.41) that the application can
access as plain application data, using built-in data-readers.

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4+ API
by Doxygen

202 Module Documentation

5.53.4 Modules

DCPS consists of five modules:

Infrastructure module (p.115) defines the abstract classes and the
interfaces that are refined by the other modules. It also provides support
for the two interaction styles (notification-based and wait-based) with the
middleware.

Domain module (p.32) contains the DDSDomainParticipant
(p-1096) class that acts as an entrypoint of the Service and acts as a
factory for many of the classes. The DDSDomainParticipant (p. 1096)
also acts as a container for the other objects that make up the Service.

Topic module (p.48) contains the DDSTopic (p.1365) class, the
DDSTopicListener (p.1376) interface, and more generally, all that is
needed by the application to define DDSTopic (p. 1365) objects and at-
tach QoS policies to them.

" Publication module (p.80) contains the DDSPublisher (p. 1294) and
DDSDataWriter (p.1070) classes as well as the DDSPublisherLis-
tener (p.1317) and DDSDataWriterListener (p. 1090) interfaces, and
more generally, all that is needed on the publication side.

" Subscription module (p.93) contains the DDSSubscriber (p. 1337),
DDSDataReader (p.1046), DDSReadCondition (p.1321), and
DDSQueryCondition (p.1319) classes, as well as the DDSSub-
scriberListener (p. 1360) and DDSDataReaderListener (p. 1065) in-
terfaces, and more generally, all that is needed on the subscription side.

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API
by Doxygen

5.54 Queries and Filters Syntax 203

5.54 Queries and Filters Syntax

5.54.1 Syntax for DDS Queries and Filters

A subset of SQL syntax is used in several parts of the specification:

" The filter_expression in the DDSContentFilteredTopic (p. 1040)
" The query_expression in the DDSQueryCondition (p. 1319)
" The topic_expression in the DDSMultiTopic (p. 1270)

Those expressions may use a subset of SQL, extended with the possibility to
use program variables in the SQL expression. The allowed SQL expressions are
defined with the BNF-grammar below.

The following notational conventions are made:

NonTerminals are typeset in italics.

’Terminals’ are quoted and typeset in a fixed width font. They are
written in upper case in most cases in the BNF-grammar below, but should
be case insensitive.

" TOKENS are typeset in bold.

The notation (element // ’,)’) represents a non-empty comma-separated
list of elements.

5.54.2 SQL grammar in BNF

Ezpression ::= FilterExpresstion
| TopicEzpression
| QueryEzpression

FilterEzpression ::= C(Condition

TopicEzpression SelectFrom { Where } ’;°

QueryEzpression { Condition }{ ’ORDER BY’ (FIELD-
NAME // *,?) }

SelectFrom = ’SELECT’ Aggregation ’FROM’ Selection
Aggregation = 0K

| (SubjectFieldSpec // ’,7)
SubjectFieldSpec ::= FIELDNAME

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4+ API
by Doxygen

204 Module Documentation
| FIELDNAME °As’ IDENTIFIER
| FIELDNAME IDENTIFIER
Selection ::= TOPICNAME
| TOPICNAME Naturaldoin JoinItem
JoinItem ::= TOPICNAME
| TOPICNAME Naturaldoin JoinItem
| >(> TOPICNAME ©Naturaldoin JoinItem)’
NaturalJotn ::= ’INNER JOIN’
| >INNER NATURAL JOIN’
| ’NATURAL JOIN’
| ’NATURAL INNER JOIN’
Where ::= WHERE’ Condition
Condition ::= Predicate
| Condition ’AND’ Condition
| Condition ’0R’ Condition
| ’NOT’> Condition
| >(> Condition)’
Predicate ::= ComparisonPredicate
| BetweenPredicate
ComparisonPredicate ::= ComparisonTerm RelOp ComparisonTerm
ComparisonTerm ::= Fieldldentifier
| Parameter
BetweenPredicate ::= FieldIdentifier °’BETWEEN’ Range
FieldIdentifier °’NOT BETWEEN’ Range
FieldIdentifier ::= FIELDNAME
| IDENTIFIER
RelOp = =2 | > | >=2 | < | <=’ | <>’ | PLIKE’ | °’MATCH’
Range = Parameter ’AND’ Parameter
Parameter ::= INTEGERVALUE
| CHARVALUE
| FLOATVALUE
| STRING
| ENUMERATEDVALUE
| BOOLEANVALUE
| PARAMETER

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API

by Doxygen

5.54 Queries and Filters Syntax 205

Note — INNER JOIN, INNER NATURAL JOIN, NATURAL JOIN, and NAT-
URAL INNER JOIN are all aliases, in the sense that they have the same se-
mantics. They are all supported because they all are part of the SQL standard.

5.54.3 Token expression

The syntax and meaning of the tokens used in the SQL grammar is described
as follows:

" IDENTIFIER - An identifier for a FIELDNAME, and is defined as any
series of characters 'a’; ..., ’z’, "A’, ..., ’Z’,°0’, ..., ’9’, ’ but may not start
with a digit.

Formal notation:

IDENTIFIER: LETTER (PART_LETTER)*
where LETTER : ["A"_"Z",",","a"_"Z"]
PART LETTER : [WAN_NZN W Hgin_nn ngn_ngn]

" FIELDNAME - A fieldname is a reference to a field in the data structure.
The dot ’." is used to navigate through nested structures. The number of
dots that may be used in a FIELDNAME is unlimited. The FIELDNAME
can refer to fields at any depth in the data structure. The names of the field
are those specified in the IDL definition of the corresponding structure,
which may or may not match the fieldnames that appear on the language-
specific (e.g., C/C++, Java) mapping of the structure. To reference to the
n+1 element in an array or sequence, use the notation ’[n]’, where n is a
natural number (zero included). FIELDNAME must resolve to a primitive
IDL type; that is either boolean, octet, (unsigned) short, (unsigned) long,
(unsigned) long long, float double, char, wchar, string, wstring, or enum.

Formal notation:

FIELDNAME: FieldNamePart ("." FieldNamePart)x*
where FieldNamePart : IDENTIFIER ("[" Indez "1")x*
Indez> : (["0"-"9"]1)+
| ["OX","OX"]([“o"_'lgl', llAIl_IIFII’ Ilall_llfll])+

Primitive IDL types referenced by FIELDNAME are treated as different types
in Predicate according to the following table:

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4+ API
by Doxygen

206 Module Documentation

Predicate Data Type IDL Type

BOOLEANVALUE boolean

INTEGERVALUE octet, (unsigned) short, (unsigned)
long, (unsigned) long long

FLOATVALUE float, double

CHARVALUE char, wchar

STRING string, wstring

ENUMERATEDVALUE enum

" TOPICNAME - A topic name is an identifier for a topic, and is defined
as any series of characters ’a’, ..., 'z’, A’ ..., ’Z’,’0’, ..., ’9’, ’_ but may
not start with a digit.

Formal notation:

TOPICNAME : IDENTIFIER

" INTEGERVALUE - Any series of digits, optionally preceded by a plus
or minus sign, representing a decimal integer value within the range of the
system. A hexadecimal number is preceded by 0x and must be a valid
hexadecimal expression.

Formal notation:
INTEGERVALUE : ([n+u’u_u])? (["O"—"Q"])+ [("L","l")]?
| ([u+u,n_u])? [uoxu’uoxu]([nou_ugn, "A"-"F", Ilall_llfll])+ [("L","l")]?

" CHARVALUE - A single character enclosed between single quotes.

Formal notation:

CHARVALUE : "o (”[ll}ll])? non

" FLOATVALUE - Any series of digits, optionally preceded by a plus or
minus sign and optionally including a floating point (’.’). A power-of-ten
expression may be postfixed, which has the syntax en or En, where n is
a number, optionally preceded by a plus or minus sign.

Formal notation:

FLOATVALUE : ([ll+ll’ll_ll]>? ([lloll_llgll])* (u.n)? ([noll_llgn])+ (EXPONENT)?
where EXPONENT : ["e","E"] ([u+u’u_n])? ([uou_u9||])+

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API
by Doxygen

5.54 Queries and Filters Syntax 207

STRING - Any series of characters encapsulated in single quotes, except
the single quote itself.

Formal notation:

STRING : "2" (~["’"])x "o

" ENUMERATEDVALUE - An enumerated value is a reference to a
value declared within an enumeration. Enumerated values consist of the
name of the enumeration label enclosed in single quotes. The name used
for the enumeration label must correspond to the label names specified in
the IDL definition of the enumeration.

Formal notation:
ENUMERATEDVALUE : ni»n [IIAII P IIZII s l|al| p— Ilzll] [llAH P IIZII s llall p— Ilzl| 5 ||7|l s lloll P llgll]* nn

" BOOLEANVALUE - Can either be 'TRUE’ or "FALSE’, case insensi-

tive.

Formal notation (case insensitive):

BOOLEANVALUE : ["TRUE","FALSE"]

" PARAMETER - A parameter is of the form %n, where n represents a
natural number (zero included) smaller than 100. It refers to the n + 1

th argument in the given context. Argument can only in primitive type
value format. It cannot be a FIELDNAME.

Formal notation:

PARAMETER : "%" (["0"-"9"1)+

5.54.4 Type compatability in Predicate

Only certain combination of type comparisons are valid in Predicate. The fol-
lowing table marked all the compatible pairs with "YES’:

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4+ API
by Doxygen

208 Module Documentation
INTE- ENU-
BOOLEARERVALWEOAT-| CHAR- | STRING MER-
VALUE VALUE | VALUE ATED-
VALUE
YES
BOOLEAN
INTE- YES YES
GERVALUE
YES YES
FLOAT-
VALUE
YES YES YES
CHAR-
VALUE
YES YES
STRING YES(x1)
ENU- YES
MER- YES(x2) | YES(x2) | YES(x3)
ATED-
VALUE

" (1) See SQL Extension: Regular Expression Matching (p.208)

" (%2) Because the formal notation of the Enumeration values, they are
compatible with string and char literals, but they are not compatible with

string or char variables, i.e., ”MyEnum="EnumValue

but ”MyEnum=MyString” is not allowed.

" (*3) Only for same type Enums.

977

would be correct,

5.54.5 SQL Extension: Regular Expression Matching

The relational operator MATCH may only be used with string fields. The right-
hand operator is a string pattern. A string pattern specifies a template that
the left-hand field value must match. The characters ,/?7«[]-"!% have special

meanings.

MATCH is case-sensitive.

The pattern allows limited ”wild card” matching under the following rules:

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API
by Doxygen

5.54 Queries and Filters Syntax

209

Character

Meaning

9

? 7 separates a list of alternate
patterns. The field string is
matched if it matches one or more
of the patterns.

” /7 in the pattern string matches a
/ in the field string. This character
is used to separate a sequence of
mandatory substrings.

7?7 in the pattern string matches
any single non-special characters in
the field string.

”%” in the pattern string matches 0
or more non-special characters in
field string.

[charlist]

Matches any one of the characters
from the list of characters in
charlist.

[s-e€]

Matches any character any
character from s to e, inclusive.

%

7% is used to designate filter
expressions parameters.

['charlist] or [charlist]

Matches any characters not in
charlist (not supported).

[!s-e] or ["s-€]

Matches any characters not in the
interval [s-e] (not supported).

\

Escape character for special
characters (not supported)

The syntax is similar to the POSIX fnmatch syntax (1003.2-1992 section B.6).
The MATCH syntax is also similar to the ’subject’ strings of TIBCO Ren-
dezvous.

5.54.6 Examples

Assuming Topic ”Location” has as an associated type a structure with fields
"flight_id, x, y, z”, and Topic ”FlightPlan” has as fields ”flight_id, source, des-
tination”. The following are examples of using these expressions.

Example of a filter_expression (for DDSContentFilteredTopic (p. 1040))
or a query_expression (for DDSQueryCondition (p.1319)):

"z < 1000 AND x < 23"

Examples of a filter_expression using MATCH (for DDSContentFiltered-
Topic (p. 1040)) operator:

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4+ API
by Doxygen

210 Module Documentation

"symbol MATCH ’NASDAQ/GOOG’"

"symbol MATCH ’NASDAQ/[A-M]x’"
Example of a topic_expression (for DDSMultiTopic (p.1270) [Not sup-
ported (optional)]):

"SELECT flight_id, x, y, z AS height FROM ’Location’ NATURAL JOIN
’FlightPlan’ WHERE height < 1000 AND x <23"

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API
by Doxygen

5.55 RTI Data Distribution Service API Reference 211

5.55 RTI Data Distribution Service API Refer-
ence

RTT Data Distribution Service product specific APT’s.

Modules

~ Clock Selection
APIs related to clock selection.

Multi-channel DataWriters
APIs related to Multi-channel DataWriters.

Pluggable Transports
APIs related to RTI Data Distribution Service pluggable transports.

Configuration Utilities
Utility API’s independent of the DDS standard.

Unsupported Utilities

Unsupported APIs used by examples in the RTI Data Distribution Service
distribution as well as in rtiddsgen-generated examples.

Durability and Persistence
APIs related to RTI Data Distribution Service Durability and Persistence.

" Configuring QoS Profiles with XML
APIs related to XML QoS Profiles.

5.55.1 Detailed Description

RTT Data Distribution Service product specific APT’s.

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4+ API
by Doxygen

212 Module Documentation

5.56 Programming How-To’s

These "How To”s illustrate how to apply RTI Data Distribution Service APIs
to common use cases.

Modules

" Publication Example

A data publication example.

Subscription Example

A data subscription example.

Participant Use Cases

Working with domain partcipants.

Topic Use Cases
Working with topics.

FlowController Use Cases

Working with flow controllers.

" Publisher Use Cases
Working with publishers.

DataWriter Use Cases

Working with data writers.

Subscriber Use Cases

Working with subscribers.

DataReader Use Cases

Working with data readers.

Entity Use Cases

Working with entities.

Waitset Use Cases

Using wait-sets and conditions.

Transport Use Cases
Working with pluggable transports.

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API
by Doxygen

5.56 Programming How-To’s 213

" Filter Use Cases
Working with data filters.

" Creating Custom Content Filters

Working with custom content filters.

" Large Data Use Cases
Working with large data types.

5.56.1 Detailed Description

These "How To”s illustrate how to apply RTI Data Distribution Service APIs
to common use cases.

These are a good starting point to familiarize yourself with DDS. You can use
these code fragments as ”templates” for writing your own code.

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4+ API
by Doxygen

214 Module Documentation

5.57 Programming Tools

Modules

~ rtiddsgen

Generates source code from data types declared in IDL, XML, XSD, or
WSDL files.

" rtiddsping

Sends or receives simple messages using RTI Data Distribution Service.

" rtiddsspy

Debugging tool which receives all RTI Data Distribution Service communi-
cation.

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API
by Doxygen

5.58 rtiddsgen

215

5.58 rtiddsgen

Generates source code from data types declared in IDL, XML, XSD, or WSDL
files. Generates code necessary to allocate, send, receive, and print user-defined

data types.

5.58.1 Usage

rtiddsgen [-d <outdir>]
[-language <C|C++|Java|C++/CLI|C#|Ada>]

[-debug]

[-namespace]

[-package <packagePrefix>]
[-example <arch>]
[-replacel

[-corba [client header file] [-orb <CORBA ORB>]]
[-optimization <level of optimization>]
[-stringSize <Unbounded strings size>]
[-sequenceSize <Unbounded sequences size>]
[-notypecodel

[-ppDisable]

[-ppPath <preprocessor executable>]
[-ppOption <option>]

[-D <name>[=<value>]]

[-U <name>]

[-I <directory>]

[-noCopyable]

[-use42eAlignment]

[-enableEscapeChar]
[-typeSequenceSuffix <Suffix>]
[-dataReaderSuffix <Suffix>]
[-dataWriterSuffix <Suffix>]
[-convertToXml |

-convertToXsd |

-convertToWsdl |

-convertToIdl]

[-convertToCcl]

[-convertToCcs]

[-expandOctetSeq]

[-expandCharSeq]

[-metp]

[-version]

[-help]

[-verbosity [1-3]]

[[-inputIdl] <IDLInputFile.idl> |

[-inputXml] <XMLInputFile.xml> |
[-inputXsd] <XSDInputFile.xsd> |
[-inputWsdl] <WSDLInputFile.wsdl>]

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4+ API

by Doxygen

216 Module Documentation

-d Specifies where to put the generated files. If omitted, the input file’s directory
is used.

-language Generates output for only the language specified. The default is
C++.

Use of generated Ada 2005 code requires installation of RTT Ada 2005 Language
Support. Please contact support@rti.com for more information.

-namespace Specifies the use of C++ namespaces (for C++ only).
-package Specifies a packagePrefix to use as the root package (for Java only).

-example Generates example programs and makefiles (for UNIX-based sys-
tems) or workspace and project files (for Windows systems) based on the input
types description file.

The <arch> parameter specifies the architecture for the example makefiles.
For -language C/C++, valid options for <arch> are:

sparcSol2.9gcc3.2, sparcSol2.9gcc3.3, sparcSol2.9cc5.4, sparc64Sol2.10cc5.8,
sparcSol2.10gcc3.4.2, sparc64S0l12.10gcc3.4.2, i86S012.9gcc3.3.2,
i86S012.10gcc3.4.4, x645012.10gcc3.4.3,

x64Darwinl0gcc4.2.1,

i86Linux2.4gcc3.2, i86Linux2.4gcc3.2.2, x64Linux2.4gcc3.2.3,
i86Linux2.6gcc3.4.3, x64Linux2.6gcc3.4.5, i86Linux2.6gcc4.1.1,
x64Linux2.6gcc4.1.1, i86Linux2.6gcc4.1.2, x64Linux2.6gcc4.1.2,
x64Linux2.6gcc4.3.2, i86Linux2.6gcc4.4.3, x64Linux2.6gcc4.4.3,
i86Linux2.6gcc3.4.6, i86RedHawk5.1gcc4.1.2, i86Susel0.1gcc4.1.0,

x64Susel0.1gccd. 1.0, armvT7leLinux2.6gccd.4.1,
cell64Linux2.6ppud.1.1,

ppcdxxFPLinux2.6gcc4.3.3, ppc7400Linux2.6gcc3.3.3,
ppc85xxWRLinux2.6gcc4.3.2,

i86Win32VC60, i86Win32VC70, i86Win32VS2003, i86Win32VS52005,
x64Win64VS2005, i86Win32VS2008, x64Win64VS2008, i86Win32VS2010,
x64Win64VvS2010,

armv4WinCE6.0VS2005, i86WinCE6.0VS2005,

ppc7400Lynx4.0.0gcc3.2.2, ppc7400Lynx4.2.0gcc3.2.2,
ppc750Lynx4.0.0gcc3.2.2, ppc7400Lynx4.2.0gcc3.4.3,
ppc7400Lynx5.0.0gcc3.4.3, i86Lynx4.0.0gcc3.2.2, i86Lynx4.2.0gcc3.2.2,
i86LynxOS_SE3.0.0gcc3.4.3,

ppc604Vxb.4gee, pentiumVx5.5gee, ppcd05Vx5.5gce, ppc604Vxb.5gcc,
ppc603Vxb.5gcc, pentiumVx6.0gcc3.3.2, ppc604Vx6.0gce3.3.2, pen-
tiumVx6.0gce3.3.2_rtp, ppc604Vx6.0gce3.3.2_rtp, pentiumVx6.3gcc3.4.4,
ppc604Vx6.3gcc3.4.4, pentiumVx6.3gcc3.4.4_rtp, ppc604Vx6.3gcc3.4.4_rtp,

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API
by Doxygen

5.58 rtiddsgen 217

pentiumVx6.5gcc3.4.4, ppc604Vx6.5gcc3.4.4, pentiumVx6.5gcc3.4.4_rtp,
ppc604Vx6.5gcc3.4.4 rtp, pentiumVx6.6gcc4.1.2, pentiumVx6.6gccd.1.2_-
rtp, ppcd05Vx6.6gccd. 1.2, ppcd05Vx6.6gccd. 1.2 rtp, ppc604Vx6.6gccd. 1.2,
ppc604Vx6.6gccd.1.2 rtp, ppc604Vx6.7gecd. 1.2, ppc604Vx6.7gccd.1.2_smp,
ppc604Vx6.7gccd.1.2 rtp, ppc604Vx6.8gccd. 1.2, ppc604Vx6.8gccd.1.2_rtp,
pentiumVx6.8gcc4.1.2, pentiumVx6.8gcc4.1.2_rtp, ppc604Vx6.9gccd.3.3,
ppc604Vx6.9gccd.3.3 rtp, pentiumVx6.9gccd.3.3, pentiumVx6.9gccd.3.3_rtp,
pentium64Vx6.9gcc4.3.3, pentium64Vx6.9gcc4.3.3 rtp,

ppc7400Inty5.0.7.mvme5100-7400, ppc7400Inty5.0.7.mvme5100-7400-ipk,
ppc7400Inty5.0.9.mvme5100-7400-ghnet2,

pHAIX5.3x1¢9.0, 64p5AIX5.3x1c9.0,
i86QNX6.4.1qcc_gpp i86QNX6.5qcc_gpp4.4.2
For -language C++/CLI and C#, valid options for <arch> are:

i86Win32dotnet2.0, x64Win64dotnet2.0, i86Win32dotnet4.0,
x64Win64dotnet4.0

For -language java, valid options for <arch> are:

i865012.9jdk, i86S012.10jdk, x645012.10jdk, sparcSol2.9jdk,
sparcSol2.10jdk, sparc64S012.10jdk, x64Darwinl0gcc4.2.1jdk,

i86Linux2.4gcc3.2jdk, i86Linux2.4gcc3.2.2jdk, x64Linux2.4gcc3.2.3jdk,
i86Linux2.6gcc3.4.3jdk, x64Linux2.6gcc3.4.5jdk, i86Linux2.6gcc4.1.1jdk,
x64Linux2.6gcc4.1.1jdk, i86Linux2.6gccd.4.3jdk, x64Linux2.6gccd.4.3jdk,
i86Linux2.6gcc4.1.2jdk, x64Linux2.6gcc4.1.2jdk, x64Linux2.6gcc4.3.2jdk,
i86Linux2.6gcc3.4.6jdk, i86RedHawk5.1gcc4.1.2jdk i86Susel0.1gce4.1.0jdk,
x64Susel0.1gccd.1.0jdk, cell64Linux2.6ppud.1.1jdk, i86Win32jdk,
x64Win64jdk, ppc7400Lynx4.0.0gcc3.2.2jdk, ppc750Lynx4.0.0gcc3.2.2jdk,
ppc7400Lynx5.0.0gcc3.4.3jdk, i86Lynx4.0.0gcc3.2.2jdk, p5HAIX5.3x1c9.0jdk,
64p5AIX5.3x1c9.0jdk

For -language Ada, valid option for <arch> is i86Linux2.6gcc4.1.2

-replace Overwrites any existing output files. Warning: This removes any
changes you may have made to the original files.

-debug Generates intermediate files for debugging purposes.

-corba [client header file] [-orb <CORBA ORB>| Specifies that you want to
produce CORBA-compliant code.

Use [client header file] and [-orb <CORBA ORB>| for C++ only. The majority
of code generated is independent of the ORB. However, for some IDL features,
the code generated depends on the ORB. This version of rtiddsgen generates
code compatible with ACE-TAO or JacORB. To pick the ACE_TAO version,
use the -orb parameter; the default is ACE_TAOL.6.

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4+ API
by Doxygen

218 Module Documentation

client header file: the name of the header file for the IDL types generated by the
CORBA IDL compiler. This file will be included in the rtiddsgen type header
file instead of generating type definitions.

CORBA support requires the RTI CORBA Compatibility Kit, an add-
on product that provides a different version of rtiddsgen. Please contact
support@rti.com for more information.

-optimization Sets the optimization level. (Only applies to C/C++)

" 0 (default): No optimization.

" 1: Compiler generates extra code for typedefs but optimizes its use. If the
type that is used is a typedef that can be resolved either to a primitive type
or to another type defined in the same file, the generated code will invoke
the code of the most basic type to which the typedef can be resolved,
unless the most basic type is an array or a sequence. This level can be
used if the generated code is not expected to be modified.

2: Maximum optimization. Functionally the same as level 1, but extra
code for typedef is not generated. This level can be used if the typedefs
are only referred by types within the same file.

-typeSequenceSuffix Assigns a suffix to the name of the implicit sequence
defined for IDL types. (Only applies to CORBA)

By default, the suffix is ’Seq’. For example, given the type 'Foo’ the name of
the implicit sequence will be "FooSeq’.

-dataReaderSuffix Assigns a suffix to the name of the DataReader interface.
(Only applies to CORBA)

By default, the suffix is 'DataReader’. For example, given the type 'Foo’ the
name of the DataReader interface will be 'FooDataReader’.

-dataWriterSuffix Assigns a suffix to the name of the DataWriter interface.
(Only applies to CORBA)

By default, the suffix is 'DataWriter’. For example, given the type 'Foo’ the
name of the DataWriter interface will be "FooDataWriter’.

-stringSize Sets the size for unbounded strings. Default: 255 bytes.
-sequenceSize Sets the size for unbounded sequences. Default: 100 elements.
-notypecode: Disables the generation of type code information.
-ppDisable: Disables the preprocessor.

-ppPath <preprocessor executable>: Specifies the preprocessor path. If you
only specify the name of an executable (not a complete path to that executable),
the executable must be found in your Path.

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API
by Doxygen

5.58 rtiddsgen 219

The default value is ”cpp” for non-Windows architectures, ”cl.exe” for Windows
architectures.

If the default preprocessor is not found in your Path and you use -ppPath
to provide its full path and filename, you must also use -ppOption (described
below) to set the following preprocessor options:

If you use a non-default path for cl.exe, you also need to set:

-ppOption /nologo -ppOption /C -ppOption /E -ppOption /X

If you use a non-default path for cpp, you also need to set:

-ppOption -C

-ppOption <option>: Specifies a preprocessor option. This parameter can
be used multiple times to provide the command-line options for the specified
preprocessor. See -ppPath (above).

-D <name>[=<value>|: Defines preprocessor macros.
-U <name>: Cancels any previous definition of name.

-I <directory>: Adds to the list of directories to be searched for type-definition
files (IDL, XML, XSD or WSDL files). Note: A type-definition file in one format
cannot include a file in another format.

-noCopyable: Forces rtiddsgen to put copy logic into the corresponding Type-
Support class rather than the type itself (for Java code generation only).

This option is not compatible with the use of ndds_standalone_type.jar.

-use42eAlignment: Generates code compliant with RTI Data Distribution
Service 4.2e.

If your RTI Data Distribution Service application’s data type uses a ’dou-
ble’,’long long’,’unsigned long long’, or ’long double’ it will not be backwards
compatible with RTI Data Distribution Service 4.2e applications unless you use
the -used2eAlignment flag when generating code with rtiddsgen.

-enableEscapeChar: Enables use of the escape character ’_” in IDL identifiers.
With CORBA this option is always enabled.

-convertToXml: Converts the input type-description file to XML format.
-convertToldl: Converts the input type-description file to IDL format.
-convertToXsd: Converts the input type-description file to XSD format.
-convertToWsdl: Converts the input type-description file to WSDL format.
-convertToCcl: Converts the input type-description file to CCL format.
-convertToCcs: Converts the input type-description file to CCS format.

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4+ API
by Doxygen

220 Module Documentation

-expandOctetSeq: When converting to CCS or CCL files, expand octet se-
quences. The default is to use a blob type.

-expandCharSeq: When converting to CCS or CCL files, expand char se-
quences. The default is to use a string type.

-metp: Generates code for the Multi-Encapsulation Type Support (METP)
library.

-version: Prints the version, such as 4.5x. (Does not show ’patch’ revision
number.)

-help: Prints this rtiddsgen usage help.

-verbosity: rtiddsgen verbosity.

" 1: exceptions
" 2: exceptions and warnings

" 3 (default): exceptions, warnings and information

-inputIdl: Indicates that the input file is an IDL file, regardless of the file
extension.

-inputXml: Indicates that the input file is a XML file, regardless of the file
extension.

-inputXsd: Indicates that the input file is a XSD file, regardless of the file
extension.

-inputWsdl: Indicates that the input file is a WSDL file, regardless of the file
extension.

IDLInputFile.idl: File containing IDL descriptions of your data types. If
-inputldl is not used, the file must have an .idl extension.

XMLInputFile.xml: File containing XML descriptions of your data types. If
-inputXml is not used, the file must have an .xml extension.

XSDInputFile.xsd: File containing XSD descriptions of your data types. If
-inputXsd is not used, the file must have an .xsd extension.

XSDInputFile.wsdl: WSDL file containing XSD descriptions of your data
types. If -inputWsdl is not used, the file must have an .wsdl extension.

5.58.2 Description

rtiddsgen takes a language-independent specification of the data (in IDL, XML,
XSD or WSDL notation) and generates supporting classes and code to distribute
instances of the data over RTI Data Distribution Service.

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API
by Doxygen

5.58 rtiddsgen 221

To use rtiddsgen, you first write a description of your data types in IDL, XML,
XSD or WSDL format.

5.58.3 C++ Example

The following is an example generating the RTI Data Distribution Service type
myDataType:

IDL notation

struct myDataType {
long value;
}s

XML notation

<?xml version="1.0" encoding="UTF-8"7>
<types xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemalocation="rti_dds_topic_types.xsd">
<struct name="myDataType">
<member name="value" type="long"/>
</struct>
</types>

XSD notation

<?xml version="1.0" encoding="UTF-8"7>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:dds="http://www.omg.org/dds"
xmlns:tns="http://www.omg.org/IDL-Mapped/"
targetNamespace="http://www.omg.org/IDL-Mapped/">
<xsd:import namespace="http://www.omg.org/dds" schemalocation="rti_dds_topic_types_common.xsd"/>
<xsd:complexType name="myDataType">
<xsd:sequence>
<xsd:element name="value" minOccurs="1" maxOccurs="1" type="xsd:int"/>
</xsd:sequence>
</xsd:complexType>
</xsd:schema>

WSDL notation

<?xml version="1.0" encoding="UTF-8"7>
<definitions xmlns="http://schemas.xmlsoap.org/wsdl/" xmlns:dds="http://www.omg.org/dds" xmlns:xsd="http://
<types>
<xsd:schema targetNamespace="http://www.omg.org/IDL-Mapped/">
<xsd:import namespace="http://www.omg.org/dds" schemalocation="rti_dds_topic_types_common.xsd"/>

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4+ API
by Doxygen

222 Module Documentation

<xsd:complexType name="myDataType">

<xsd:sequence>
<xsd:element name="value" minOccurs="1" maxOccurs="1" type="xsd:int"/>

</xsd:sequence>

</xsd:complexType>

</xsd:schema>
</types>
</definitions>

Assuming the name of the idl file is myFileName. (idl|xml|xsd|wsdl) then all you
need to do is type:
rtiddsgen myFileName.(idl|xml|xsd|wsdl)

This generates myFileName.cxx, myFileName.h, myFileNamePlugin.cxx, my-
FileNamePlugin.h, myFileNameSupport.cxx and myFileNameSupport.h. By
default, rtiddsgen will not overwrite these files. You must use the -replace
argument to do that.

5.58.4 IDL Language

In the IDL language, data types are described in a fashion almost identical to
structures in ”C.” The complete description of the language can be found at the
OMG website.

rtiddsgen does not support the full IDL language.

For detailed information about the IDL support in RTT Data Distribution Ser-
vice see Chapter 3 of the user manual.

Below are the IDL types that are currently supported:

char

wchar

octet

short

unsigned short
long

unsigned long
long long
unsigned long long

float

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API
by Doxygen

5.58 rtiddsgen 223

" double

long double

boolean

bounded string
unbounded string
bounded wstring
unbounded wstring
enum

typedef

struct

valuetypes (limited support)
union

sequences

unbounded sequences
arrays

array of sequences

constant

The following non-IDL types are also supported by rtiddsgen:

" Dbitfield

~ valued enum

Use of Unsupported Types in an IDL File

You may include unsupported data types in the IDL file. rtiddsgen does not
consider this an error. This allows you to use types that are defined in non-
IDL languages with either hand-written or non-rtiddsgen written plug-ins. For
example, the following is allowable:

//@copy #include "Bar.h"

//@copy #include "BarHandGeneratedPlugin.h"
struct Foo {

short height;

Bar barMember;

};

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4+ API
by Doxygen

224

Module Documentation

In the above case, Bar is defined externally by the user.

Multiple Types in a Single File

You can specify multiple types in a single idl file. This can simplify management
of files in your distributed program.

Use of Directives in an IDL File

The following directives can be used in your IDL file: Note: Do not put a space
between the slashes and the @ sign. Note: Directives are case-sensitive (for
example: use key, not Key).

//@key The field declared just before this directive in the enclosing struc-
ture is part of the key. Any number of a structure’s fields may be declared
part of the key.

//@copy This copies a line of text into the generated code verbatim (for all
languages). The text is copied into all of the type-specific files generated
by rtiddsgen (except the examples).

//Qcopy-c Same as //@copy, but for C++/C-only code.
//Qcopy-java Same as //@copy, but for Java-only code.

//Qcopy-java-begin This copies a line of text at the beginning of all the
Java files generated for a type. The directive only applies to the first type
that is immediately below in the IDL file.

//@copy-declaration This is like //@copy, but only copies the text into
the file where the type is declared (<type>.h for C++/C, or <type>.java
for Java).

//@copy-c-declaration Same as //@copy-declaration, but for C++/C-only
code.

//@copy-java-declaration Same as //@copy-declaration, but for Java-only
code.

//@copy-java-declaration-begin This is like //@copy-java-begin but only
copies the text into the file where the type is declared.

//@resolve-name [true|false] This specifies whether or not rtiddsgen should
resolve the scope of a type. If this directive is not present or set to true,
rtiddsgen resolves the scope. Otherwise rtiddsgen delegates the resolution
of a type to the user.

//@top-level [true|false] This specifies whether or not rtiddsgen should
generate type-support code for a particular struct or union. The default
is true.

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API

by Doxygen

5.58 rtiddsgen 225

5.58.5 XML Language

The data types can be described using XML.

RTI Data Distribution Service provides DTD and XSD files that describe the
XML format.

The DTD definition of the XML elements can be found in ../../../re-
source/dtd /rti_dds_topic_types.dtd” under <NDDSHOME> /resource/dtd.

The XSD definition of the XML elements can be found in ../../../re-
source/dtd/rti_dds_topic_types.dtd” under <NDDSHOME> /resource/xsd.

The XML validation performed by rtiddsgen always uses the DTD definition.
If the <!IDOCTYPE> tag is not present in the XML file, rtiddsgen will look for
the DTD document under <NDDSHOME> /resource/dtd. Otherwise, it will
use the location specified in <IDOCTYPE>.

For detailed information about the mapping between IDL and XML see Chapter
3 of the RTI Data Distribution Service User Manual.

5.58.6 XSD Language

The data types can be described using XML schemas (XSD files). The XSD
specification is based on the standard IDL to WSDL mapping described in the
OMG document CORBA to WSDL/SOAP Interworking Specification

For detailed information about the mapping between IDL and XML see Chapter
3 of the RTT Data Distribution Service User Manual.

5.58.7 WSDL Language

The data types can be described using XML schemas contained in WSDL
files. The XSD specification is based on the standard IDL to WSDL map-
ping described in the OMG document CORBA to WSDL/SOAP Interworking
Specification

For detailed information about the mapping between IDL and XML see Chapter
3 of the RTI Data Distribution Service User Manual.

5.58.8 Using Generated Types Without RTI Data Distri-
bution Service (Standalone)

You can use the generated type-specific source and header files without linking
the RTT Data Distribution Service libraries or even including the RTI Data
Distribution Service header files. That is, the generated files for your data
types can be used standalone.

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4+ API
by Doxygen

226 Module Documentation

The directory <NDDSHOME> /resource/standalone contains the helper files
required to work in standalone mode:

" include: header and templates files for C/C++.

" sre: source files for C/C++.

" class: Java jar file.

Using Standalone Types in C

The generated files that can be used standalone are:

~ <idl file name>.c : Types source file

© <idl file name>.h : Types header file

You cannot use the type plug-in (<idl file>Plugin.c <idl file>Plugin.h) or the
type support (<idl file>Support.c <idl file>Support.h) code standalone.

To use the rtiddsgen-generated types in a standalone manner:

" Include the directory <NDDSHOME> /resource/standalone/include in
the list of directories to be searched for header files.

Add the source files ndds_standalone_type.c and <idl file name>.c to your
project.

Include the file <idl file name>.h in the source files that will use the
generated types in a standalone way.

Compile the project using the two following preprocessor definitions:

— NDDS_STANDALONE_TYPE

— The definition for your platform: RTI.VXWORKS, RTI_QNX, RTI -
WIN32, RTTIINTY, RTI.LYNX or RTI_.UNIX

Using Standalone Types in C++

The generated files that can be used standalone are:

<idl file name>.cxx : Types source file

<idl file name>.h : Types header file

You cannot use the type plugin (<idl file>Plugin.cxx <idl file>Plugin.h) or the
type support (<idl file>Support.cxx <idl file>Support.h) code standalone.

To use the generated types in a standalone manner:

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API
by Doxygen

5.58 rtiddsgen 227

Include the directory <NDDSHOME> /resource/standalone/include in
the list of directories to be searched for header files.

Add the source files ndds_standalone_type.cxx and <idl file name>.cxx to
your project.

Include the file <idl file name>.h in the source files that will use the
generated types in a standalone way.

" Compile the project using the two following preprocessor definitions:

— NDDS_STANDALONE_TYPE

— The definition for your platform: RTI.VXWORKS, RTI_QNX, RTI -
WIN32, RTTINTY, RTI_.LYNX or RTI_UNIX

Standalone Types in Java

The generated files that can be used standalone are:

© <idl type>.java
" <idl type>Seq.java
You cannot use the type code (<idl file>TypeCode.java), the type support

(<idl type>TypeSupport.java), the data reader (<idl file>DataReader.java) or
the data writer code (<idl file>DataWriter.java) standalone.

To use the generated types in a standalone manner:

" Include the file ndds_standalone_type.jar in the classpath of your project.

" Compile the project using the standalone types files (<idl type>.java <idl
type>Seq.java).

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4+ API
by Doxygen

228 Module Documentation

5.59 rtiddsping

Sends or receives simple messages using RTI Data Distribution Service. The
rtiddsping utility uses RTT Data Distribution Service to send and receive precon-
figured "Ping” messages to other rtiddsping applications which can be running
in the same or different computers.

The rtiddsping utility can used to test the network and/or computer config-
uration and the environment settings that affect the operation of RTI Data
Distribution Service.

Usage
rtiddsping [-help] [-version]
[-domainId <domainId>] ... defaults to O
[-index <NN>] ... defaults to -1 (auto)
[-appId <ID>] ... defaults to a middleware-selected value
[-Verbosity <NN>] ... can be 0..5
[-peer <PEER>] ... PEER format is NNOTRANSPORT://ADDRESS
[-discoveryTTL <NN>] ... can be 0..255
[-transport <MASK>] ... defaults to DDS_TRANSPORTBUILTIN_MASK DEFAULT
[-msgMaxSize <SIZE>] ... defaults to -1 (transport default)
[-shmRcvSize <SIZE>] ... defaults to -1 (transport default)
[-deadline <SS>] ... defaults to -1 (no deadline)
[-durability <TYPE>] ... TYPE can be VOLATILE or TRANSIENT_LOCAL
[-multicast <ADDRESS>] ... defaults to no multicast
[-numSamples <NN>] ... defaults to infinite
[-publisher] ... this is the default
[-queueSize <NN>] ... defaults to 1
[-reliable] ... defaults to best-efforts
[-sendPeriod <SS>] ... SS is in seconds, defaults to 1
[-subscriber]
[-timeFilter <SS>] ... defaults to O (no filter)
[-timeout <SS>] ... SS is in seconds, defaults to infinite
[-topicName <NAME>] ... defaults to PingTopic
[-typeName <NAME>] ... defaults to PingType
[-useKeys <NN>] ... defaults to PingType

[-qosFile <file>]
[-qosProfile <lib::prof>]

Example: rtiddsping -domainId 3 -publisher -numSamples 100

VxWorks Usage

rtiddsping " [<options>]"
The options use the same syntax as above.

Example rtiddsping "-domainId 3 -publisher -numSamples 100"

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API
by Doxygen

5.59 rtiddsping 229

If the stack of the shell is not large enough to run rtiddsping, use "taskSpawn":

taskSpawn <name>,<priority>,<taskspawn options>,<stack size in bytes>,rtiddsping,"[\<options\>]"
The options use the same syntax as above.

Example taskSpawn "rtiddsping",100,0x8,50000,rtiddsping,"-domainId 3 -publisher -numSamples 100"

Options:

-help Prints a help message and exits.

-version Prints the version and exits.

-Verbosity <NN> Sets the verbosity level. The range is 0 to 5.

0 has minimal output and does not echo the fact that data is being sent or
received.

1 prints the most relevant statuses, including the sending and receiving of data.
This is the default.

2 prints a summary of the parameters that are in use and echoes more detailed
status messages.

3-5 Mostly affects the verbosity used by the internal RTT Data Distribution
Service modules that implement rtiddsping. The output is not always readable;
its main purpose is to provide information that may be useful to RTT’s support
team.

Example: rtiddsping -Verbosity 2

-domainld <NN>

Sets the domain ID. The valid range is 0 to 100.

Example: rtiddsping -domainld 31

-appld <ID>

Sets the application ID. If unspecified, the system will pick one automatically.
This option is rarely used.

Example: rtiddsping -appld 34556

-index <NN>

Sets the participantIndex. If participantIndex is not -1 (auto), it must be dif-
ferent than the one used by all other applications in the same computer and
domainlId. If this is not respected, rtiddsping (or the application that starts
last) will get an initialization error.

Example: rtiddsping -index 2
-peer <PEER>

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4+ API
by Doxygen

230 Module Documentation

Specifies a PEER to be used for discovery. Like any RTI Data Distribution Ser-
vice application, it defaults to the setting of the environment variable NDDS _-
DISCOVERY _PEERS or a preconfigured multicast address if the environment
is not set.

The format used for PEER is the same one used for NDDS_DISCOVERY _-
PEERS and is described in detail in NDDS_DISCOVERY_PEERS (p. 379).
A brief summary follows:

The general format is: NNQTRANSPORT://ADDRESS where:

ADDRESS is an address (in name form or using the IP notation
xxx.xxx.xxx.xxx). ADDRESS may be a multicast address.

TRANSPORT represents the kind of transport to use and NN is the max-
imum participantIndex expected at that location. NN can be omitted and
it is defaulted to ’4’

" Valid settings for TRANSPORT are 'udpv4’ and ’shmem’. The default
setting if the transport is omitted is 'udpv4’.

ADDRESS cannot be omitted if the -peer’ option is specified.

The -peer option may be repeated to specify multiple peers.
Example: rtiddsping -peer 10.10.1.192 -peer mars -peer 4@pluto
-discoveryTTL <TTL>

Sets the TTL (time-to-live) used for multicast discovery. If not specified, it
defaults to the built-in RTT Data Distribution Service default.

The valid range is 0 to 255. The value ’0’ limits multicast to the node itself
(i-e., can only discover applications running on the same computer). The value
']’ limits multicast discovery to computers on the same subnet. Values higher
than 1 generally indicate the maximum number of routers that may be traversed
(although some routers may be configured differently).

Example: rtiddsping -discoveryTTL 16
-transport <MASK>

A bit-mask that sets the enabled builtin transports. If not specified, the default
set of transports is used (UDPv4 4 shmem). The bit values are: 1=UDPv4,
2=shmem, 8=UDPv6.

-msgMaxSize <SIZE>

Configure the maximum message size allowed by the installed transports. This
is needed if you are using rtiddsping to communicate with an application that
has set these transport parameters to larger than default values.

-shmRcvSize <SIZE>

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API
by Doxygen

5.59 rtiddsping 231

Increase the shared memory receive-buffer size. This is needed if you are using
rtiddsping to communicate with an application that has set these transport
parameters to larger than default values.

-deadline <SS>
This option only applies if the ’-subscriber’ option is also specified.
Sets the DEADLINE QoS for the subscriptions made by rtiddsping.

Note that this may cause the subscription QoS to be incompatible with the
publisher if the publisher did not specify a sendPeriod greater than the deadline.
If the QoS is incompatible, rtiddsping will not receive updates.

Each time a deadline is detected, rtiddsping will print a message indicating the
number of deadlines received so far.

Example: rtiddsping -deadline 3.5
-durability <TYPE>

Sets the DURABILITY QoS used for publishing or subscribing. Valid settings
are: VOLATILE and TRANSIENT_LOCAL (default). The effect of this setting
can only be observed when it is used in in conjunction with reliability and a
queueSize larger than 1. If all these conditions are met, a late-joining subscriber
will be able to see up to queueSize samples that were previously written by the
publisher.

Example: rtiddsping -durability VOLATILE
-multicast <ADDRESS>
This option only applies if the ’-subscriber’ option is also specified.

Configures ping to receive messages over multicast. The <ADDRESS> param-
eter indicates the address to use. ADDRESS must be in the valid range for mul-
ticast addresses. For IP version 4 the valid range is 224.0.0.1 to 239.255.255.255

Example: rtiddsping -multicast 225.1.1.1
-numSamples <NN>

Sets the number of samples that will be sent by rtiddsping. After those samples
are sent, rtiddsping will exit. messages.

Example: rtiddsping -numSamples 10

-publisher

Causes rtiddsping to send ping messages. This is the default.
Example: rtiddsping -publisher

-queueSize <NN>

Specifies the maximal number of samples to hold in the queue. In the case of the
publisher, it affects the samples that are available for a late-joining subscriber.

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4+ API
by Doxygen

232 Module Documentation

Example: rtiddsping -queueSize 100
-reliable

Configures the RELIABILITY QoS for publishing or subscribing. The default
setting (if -reliable is not used) is BEST_EFFORT

Example: rtiddsping -reliable

-sendPeriod <SS>

Sets the period (in seconds) at which rtiddsping sends the messages.
Example: rtiddsping -sendPeriod 0.5

-subscriber

Causes rtiddsping to listen for ping messages. This option cannot be specified
if -publisher’ is also specified.

Example: rtiddsping -subscriber
-timeFilter <SS>
This option only applies if the ’-subscriber’ option is also specified.

Sets the TIME_BASED_FILTER QoS for the subscriptions made by rtiddsping.
This QoS causes RTI Data Distribution Service to filter out messages that are
published at a rate faster than what the filter duration permits. For example,
if the filter duration is 10 seconds, messages will be printed no faster than once
every 10 seconds.

Example: rtiddsping -timeFilter 5.5
-timeout <SS>
This option only applies if the ’-subscriber’ option is also specified.

Sets a timeout (in seconds) that will cause rtiddsping to exit if no samples are
received for a duration that exceeds the timeout.

Example: rtiddsping -timeout 30
-topicName <NAME>

Sets the topic name used by rtiddsping. The default is 'RTIddsPingTopic’. To
communicate, both the publisher and subscriber must specify the same topic
name.

Example: rtiddsping -topicName Alarm
-typeName <NAME>

Sets the type name used by rtiddsping. The default is 'RTIddsPingType’. To
communicate, both publisher and subscriber must specify the same type name.

Example: rtiddsping -typeName AlarmDescription

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API
by Doxygen

5.59 rtiddsping 233

-useKeys <NN>

This option causes rtiddsping to use a topic whose data contains a key. The
value of the NN parameter indicates the number of different data objects (each
identified by a different value of the key) that will be published by rtiddsping.
The value of NN only affects the publishing behavior. However NN still needs
to be specified when the -useKeys option is used with the -subscriber option.

For communication to occur, both the publisher and subscriber must agree on
whether the topic that they publish/subscribe contains a key. Consequently, if
you specify the -useKeys parameter for the publisher, you must do the same
with the subscriber. Otherwise communication will not be stablished.

Example: rtiddsping -useKeys 20
-qosFile <file>

Allow you to specify additional QoS XML settings using url_profile. For more
information on the syntax, see Chapter 15 in the RTT Data Distribution Service
User’s Manual.

Example: rtiddsping -qosFile /home/user/QoSProfileFile.xml

-qosProfile <lib::prof>

This option specifies the library name and profile name that the tool should use.
QoS settings

rtiddsping is configured internally using a special set of QoS settings in a pro-
file called InternalPingLibrary::InternalPingProfile. This is the default profile
unless a profile called DefaultPingLibrary::DefaultPingProfile is found. You
can use the command-line option -qosProfile to tell rtiddsping to use a differ-
ent lib::profile instead of DefaultPingLibrary::DefaultPingProfile. Like all the
other RTT Data Distribution Service applications, rtiddsping loads all the pro-
files specified using the environment variable NDDS_QOS_PROFILES or the file
named USER_QOS_PROFILES found in the current working directory.

The QoS settings used internally are available in the file RTIDDSSPING_QOS _-
PROFILES.example.xml.

Description
The usage depends on the operating system from which rtiddsping is executed.
Examples for UNIX, Linux, and Windows Systems

On UNIX, Linux, Windows and other operating systems that have a shell, the
syntax matches the one of the regular commands available in the shell. In the
examples below, the string ’shell prompt>’ represents the prompt that the shell
prints and are not part of the command that must be typed.

shell prompt> rtiddsping -domainId 3 -publisher -numSamples 100
shell prompt> rtiddsping -domainId 5 -subscriber -timeout 20

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4+ API
by Doxygen

234 Module Documentation

shell prompt> rtiddsping -help

VxWorks examples:

On VxWorks systems, the libraries libnddscore.so, libnddsc.so and libnddscpp.so
must first be loaded. The rtiddsping command must be typed to the VxWorks
shell (either an rlogin shell, a target-server shell, or the serial line prompt). The
arguments are passed embedded into a single string, but otherwise have the
same syntax as for Unix/Windows. In the Unix, Linux, Windows and other
operating systems that have a shell, the syntax matches the one of the regular
commands available in the shell. In the examples below, the string *vxworks
prompt>’ represents the prompt that the shell prints and are not part of the
command that must be typed.

vxworks prompt> rtiddsping "-domainIld 3 -publisher -numSamples 100"
vxworks prompt> rtiddsping "-domainId 5 -subscriber -timeout 20"
vxworks prompt> rtiddsping "-help"

or, alternatively (to avoid overflowing the stack):

vxworks prompt> taskSpawn "rtiddsping", 100, 0x8, 50000, rtiddsping, "-domainIld 3 -publisher -nu

vxworks prompt> taskSpawn "rtiddsping", 100, 0x8, 50000, rtiddsping, "-domainId 5
vxworks prompt> taskSpawn "rtiddsping", 100, 0x8, 50000, rtiddsping, "-help"

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API
by Doxygen

-subscriber -t

5.60 rtiddsspy 235

5.60 rtiddsspy

Debugging tool which receives all RTT Data Distribution Service communication.
The rtiddsspy utility allows the user to monitor groups of publications available
on any RTT Data Distribution Service domain.

Note: If you have more than one DataWriter for the same Topic, and these
DataWriters have different settings for the Ownership QoS, then rtiddsspy will
only receive (and thus report on) the samples from the first DataWriter.

To run rtiddsspy, like any RTI Data Distribution Service application, you must
have the NDDS_DISCOVERY _PEERS environment variable that defines your
RTI Data Distribution Service domain; otherwise you must specify the peers as
command line parameters.

Usage

rtiddsspy [-help] [-version]

[-domainId <domainId>] ... defaults to O

[-index <NN>] ... defaults to -1 (auto)

[-appId <ID>] ... defaults to a middleware-selected value
[-Verbosity <NN>] ... can be 0..5

[-peer <PEER>] ... PEER format is NN@TRANSPORT://ADDRESS
[-discoveryTTL <NN>] ... can be 0..255

[-transport <MASK>] ... defaults to DDS_TRANSPORTBUILTIN_MASK_DEFAULT
[-msgMaxSize <SIZE>] ... defaults to -1 (transport default)
[-shmRcvSize <SIZE>] ... defaults to -1 (transport default)
[-tcMaxSize <SIZE>] ... defaults to 4096

[-hOutput]

[-deadline <SS>] ... defaults to -1 (no deadline)

[-history <DEPTH>] ... defaults to 8192

[-timeFilter <SS>] ... defaults to O (no filter)

[-useFirstPublicationQos]
[-showHandle]

[-typeRegex <REGEX>] ... defaults to "x"
[-topicRegex <REGEX>] ... defaults to "x*"
[-typeWidth <WIDTH>] ... can be 1..255
[-topicWidth <WIDTH>] ... can be 1..255

[-truncate]

[-printSample]

[-qosFile <file>]
[-qosProfile <1lib::prof>]

Example: rtiddsspy -domainId 3 -topicRegex "Alarmx"

VxWorks Usage

rtiddsspy "[<options>]"

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4+ API
by Doxygen

236 Module Documentation

The options use the same syntax as above.
Example rtiddsspy "-domainId 3 -topicRegex Alarmx"
rtiddsspy requires about 25 kB of stack. If the stack size of the shell from which it is invok
taskSpawn <name>, <priority>, <taskspawn options>, <stack size in bytes>, rtiddsspy, "[\<opt
The options use the same syntax as above.

Example taskSpawn "rtiddsspy", 100, 0x8, 50000, rtiddsspy, "-domainId 3 -topicRegex Alarmx"

Options:

-help Prints a help message and exits.

-version Prints the version and exits.

-Verbosity <NN> Sets the verbosity level. The range is 0 to 5.

0 has minimal output and does not echo the fact that data is being sent or
received.

1 prints the most relevant statuses, including the sending and receiving of data.
This is the default.

2 prints a summary of the parameters being used and echoes more detailed
status messages.

3-5 Mostly affect the verbosity used by the internal RTI Data Distribution
Service modules that implement rtiddsspy. The output is not always readable;
its main purpose is to provide information that may be useful to RTT’s support
team.

Example: rtiddsspy -Verbosity 2

-domainId <NN>

Sets the domain ID. The valid range is 0 to 100.

Example: rtiddsspy -domainld 31

-appld <ID>

Sets the application ID. If unspecified, the system will pick one automatically.
This option is rarely used.

Example: rtiddsspy -appld 34556

-index <NN>

Sets the participantIndex. If participantIndex is not -1 (auto), it must be dif-
ferent than the one used by all other applications in the same computer and

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API
by Doxygen

5.60 rtiddsspy 237

domainld. If this is not respected, rtiddsspy (or the application that starts last)
will get an initialization error.

Example: rtiddsspy -index 2
-peer <PEER>

Specifies a PEER to be used for discovery. Like any RTT Data Distribution Ser-
vice application, it defaults to the setting of the environment variable NDDS _-
DISCOVERY _PEERS or a preconfigured multicast address if the environment
is not set.

The format used for PEER is the same used for the NDDS_DISCOVERY _-
PEERS and is described in detail in NDDS_DISCOVERY_PEERS (p. 379).
A brief summary follows:

The general format is: NNQTRANSPORT://ADDRESS where:

ADDRESS is an address (in name form or using the IP notation
xxx.xxx.xxx.xxx). ADDRESS may be a multicast address.

TRANSPORT represents the kind of transport to use and NN is the max-
imum participantIndex expected at that location. NN can be omitted and
it is defaulted to '4’

" Valid settings for TRANSPORT are 'udpv4’ and ’shmem’. The default
setting if the transport is omitted is 'udpv4’

ADDRESS cannot be omitted if the -peer’ option is specified.

The -peer option may be repeated to specify multiple peers.
Example: rtiddsspy -peer 10.10.1.192 -peer mars -peer 4@pluto
-discoveryTTL <TTL>

Sets the TTL (time-to-live) used for multicast discovery. If not specified, it
defaults to the built-in RTT Data Distribution Service default.

The valid range is 0 to 255. The value ’0’ limits multicast to the node itself (i.e.
can only discover applications running on the same computer). The value ’1’
limits multicast discovery to computers on the same subnet. Settings greater
than 1 generally indicate the maximum number of routers that may be traversed
(although some routers may be configured differently).

Example: rtiddsspy -discoveryTTL 16
-transport <MASK>

SPecifies a bit-mask that sets the enabled builtin transports. If not specified,
the default set of transports is used (UDPv4 + shmem). The bit values are:
1=UDPv4, 2=shmem, 8=UDPv6.

-msgMaxSize <SIZE>

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4+ API
by Doxygen

238 Module Documentation

Configures the maximum message size allowed by the installed transports. This
is needed if you are using rtiddsspy to communicate with an application that
has set these transport parameters to larger than default values.

-shmRcvSize <SIZE>

Increases the shared memory receive-buffer size. This is needed if you are us-
ing rtiddsspy to communicate with an application that has set these transport
parameters to larger than default values.

-tcMaxSize <SIZE>

Configures the maximum size, in bytes, of a received type code.

-hOutput

Prints information on the output format used by rtiddsspy.

This option prints an explanation of the output and then exits.

Example: rtiddsspy -hOutput

-deadline <SS>

Sets the requested DEADLINE QoS for the subscriptions made by rtiddsspy.

Note that this may cause the subscription QoS to be incompatible with the
publisher if the publisher did not specify an offered deadline that is greater or
equal to the one requested by rtiddsspy. If the QoS is incompatible rtiddsspy
will not receive updates from that writer.

Each time a deadline is detected rtiddsspy will print a message that indicates
the number of deadlines received so far.

Example: rtiddsspy -deadline 3.5
-timeFilter <SS>

Sets the TIME_BASED_FILTER QoS for the subscriptions made by rtiddsspy.
This QoS causes RTI Data Distribution Service to filter-out messages that are
published at a rate faster than what the filter duration permits. For example if
the filter duration is 10 seconds, messages will be printed no faster than once
each 10 seconds.

Example: rtiddsspy -timeFilter 10.0
-history <DEPTH>
Sets the HISTORY depth QoS for the subscriptions made by rtiddsspy.

This may be relevant if the publisher has batching turned on, or if the -
useFirstPublicationQos option is used that is causing a reliable or durable sub-
scription to be created.

Example: rtiddsspy -history 1

-useFirstPublicationQos

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API
by Doxygen

5.60 rtiddsspy 239

Sets the RELIABILITY and DURABILITY QoS of the subscription based on
the first discovered publication of that topic.

See also -history option.
Example: rtiddsspy -useFirstPublicationQos
-showHandle

Prints additional information about each sample received. The additional infor-
mation is the ’instance_handle’ field in the SampleHeader, which can be used to
distinguish among multiple instances of data objects published under the same
topic and type names.

Samples displayed that share the topic and type names and also have the same
value for the instance_handle represent value updates to the same data object.
On the other hand, samples that share the topic and type names but display
different values for the instance_handle.

This option causes rtiddsspy to print an explanation of updates to the values of
different data objects.

Example: rtiddsspy -showHandle
-typeRegex <REGEX>

Subscribe only to types that match the REGEX regular expression. The syntax
of the regular expression is defined by the POSIX regex function.

When typing a regular expression to a command-line shell, some symbols may
need to be escaped to avoid interpretation by the shell. In general, it is safest
to include the expression in double quotes.

This option may be repeated to specify multiple topic expressions.
Example: rtiddsspy -typeRegex ”SensorArray+”
-topicRegex <REGEX>

Subscribe only to topics that match the REGEX regular expression. The syntax
of the regular expression is defined by the POSIX regex function.

When typing a regular expression to a command-line shell, some symbols may
need to be escaped to avoid interpretation by the shell. In general, it is safest
to include the expression in double quotes.

This option may be repeated to specify topic multiple expressions.
Example: rtiddsspy -topicRegex ” Alarmx”
-typeWidth <WIDTH>

Sets the maximum width of the Type name column. Names wider than this will
wrap around, unless —truncate is specified. Can be 1..255.

-topicWidth <WIDTH>

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4+ API
by Doxygen

240 Module Documentation

Sets the maximum width of the Topic name column. Names wider than this
will wrap around, unless —truncate is specified. Can be 1..255.

-truncate

Specifies that names exceeding the maximum number of characters should be
truncated.

-printSample
Prints the value of the received samples.
-qosFile <file>

Allows you to specify additional QoS XML settings using url_profile. For more
information on the syntax, see Chapter 15 in the RTT Data Distribution Service
User’s Manual.

Example: rtiddsspy -qosFile /home/user/QoSProfileFile.xml
-qosProfile <lib::prof>

Specifies the library name and profile name to be used.

QoS settings

rtiddsspy is configured to discover as many entities as possible. To do so, an
internal profile is defined, called InternalSpyLibrary::InternalSpyProfile. This is
the default profile, unless a profile called DefaultSpyLibrary::DefaultSpyProfile
is found. You can use the command-line option -qosProfile to tell rtiddsspy to
use a speficied lib::profile instead of DefaultSpyLibrary::DefaultSpyProfile. Like
all the other RTI Data Distribution Service applications, rtiddsspy loads all the
profiles specified using the environment variable NDDS_QOS_PROFILES or the
file named USER_QOS_PROFILES found in the current working directory.

The QoS settings used internally are available in the file RTIDDSSPY_QOS -
PROFILES.example.xml.

Usage Examples
The usage depends on the operating system from which rtiddsspy is executed.
Examples for UNIX, Linux, Windows systems

On UNIX, Linux, Windows and other operating systems that have a shell, the
syntax matches the one of the regular commands available in the shell. In the
examples below, the string ’shell prompt>’ represents the prompt that the shell
prints and are not part of the command that must be typed.

shell prompt> rtiddsspy -domainId 3
shell prompt> rtiddsspy -domainId 5 -topicRegex "Alarmx*"
shell prompt> rtiddsspy -help

Examples for VxWorks Systems

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API
by Doxygen

5.60 rtiddsspy 241

On VxWorks systems, the libraries libnddscore.so, libnddsc.so and libnddscpp.so
must first be loaded. The rtiddsspy command must be typed to the VxWorks
shell (either an rlogin shell, a target-server shell, or the serial line prompt).
The arguments are passed embedded into a single string, but otherwise have
the same syntax as for Unix/Windows. In UNIX, Linux, Windows and other
operating systems that have a shell, the syntax matches the one of the regular
comamnds available in the shell. In the examples below, the string 'vxworks
prompt>’ represents the prompt that the shell prints and are not part of the
command that must be typed.

vxworks prompt> rtiddsspy "-domainId 3"
vxworks prompt> rtiddsspy "-domainld 5 5 -topicRegex "Alarmx"
vxworks prompt> rtiddsspy "-help"

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4+ API
by Doxygen

242

Module Documentation

5.61 Class Id

Transport class ID. Specifies the ID of a Transport-Plugin ’class’.

Defines

#define NDDS_TRANSPORT_CLASSID _ INVALID (-1)
Invalid Transport Class ID.

#define NDDS_TRANSPORT_CLASSID_DTLS (6)
DTLS Secure Transport-Plugin class ID.

#define NDDS_TRANSPORT_CLASSID_WAN (7)
WAN Transport-Plugin class ID.

#define NDDS_TRANSPORT_CLASSID TCPV4 LAN (8)
IPvj TCP/IP Transport-Plugin class ID for LAN case.

#define NDDS_TRANSPORT_CLASSID_TCPV4_WAN (9)
IPvj TCP/IP Transport-Plugin class ID for WAN case.

#define NDDS_TRANSPORT_CLASSNAME _TCPV4_-
WAN ”tcpvd_wan”

IPvj TCP/IP Transport-Plugin class name for WAN case.

#define NDDS_TRANSPORT_CLASSID_TLSV4_LAN (10)
IPvj TCP/IP Transport-Plugin class ID for LAN case with TLS enabled.

#define NDDS_TRANSPORT_CLASSID_TLSV4 WAN (11)
IPvj TCP/IP Transport-Plugin class ID for WAN case with TLS enabled.

#define NDDS_TRANSPORT_CLASSID_PCIE (12)
PCIE Transport-Plugin class ID.

#define NDDS_TRANSPORT_CLASSID_ITP (13)

Internet Transport-Plugin class ID.

#define NDDS_TRANSPORT_CLASSID_RESERVED -
RANGE (1000)

Transport-Plugin class IDs below this are reserved by RTI.

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API

by Doxygen

5.61 Class Id 243

Typedefs

" typedef RTILINT32 NDDS _Transport_ClassId_t
Type for storing RTI Data Distribution Service Transport-Plugin class IDs.

5.61.1 Detailed Description

Transport class ID. Specifies the ID of a Transport-Plugin ’class’.

Each implementation of a Transport Plugin must have a unique ID. For example,
a UDP/IP Transport-Plugin implemenation must have a different ID than a
Shared Memory Transport Plugin.

User-implemented Transport Plugins must have an ID higher than NDDS_-
TRANSPORT_CLASSID _RESERVED _RANGE (p.244).

5.61.2 Define Documentation
5.61.2.1 #define NDDS_TRANSPORT_CLASSID_INVALID (-1)

Invalid Transport Class ID.

Transport-Plugins implementations should set their class ID to a value different
than this.

5.61.2.2 #define NDDS_TRANSPORT_CLASSID _DTLS (6)

DTLS Secure Transport-Plugin class ID.

5.61.2.3 #define NDDS_TRANSPORT_CLASSID WAN (7)

WAN Transport-Plugin class ID.

5.61.2.4 #define NDDS_TRANSPORT _CLASSID TCPV4_LAN (8)

IPv4 TCP/IP Transport-Plugin class ID for LAN case.

5.61.2.5 #define NDDS_TRANSPORT_CLASSID_TCPV4_-
WAN (9)

IPv4 TCP/IP Transport-Plugin class ID for WAN case.

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4+ API
by Doxygen

244 Module Documentation

5.61.2.6 #define NDDS_TRANSPORT_CLASSNAME_TCPV4 -
WAN ”tcpv4_wan”

IPv4 TCP/IP Transport-Plugin class name for WAN case.

5.61.2.7 #tdefine NDDS_TRANSPORT_CLASSID_TLSV4 -
LAN (10)

IPv4 TCP/IP Transport-Plugin class ID for LAN case with TLS enabled.

5.61.2.8 #define NDDS_TRANSPORT_CLASSID_TLSV4 -
WAN (11)

IPv4 TCP/IP Transport-Plugin class ID for WAN case with TLS enabled.

5.61.2.9 #define NDDS_TRANSPORT_CLASSID PCIE (12)

PCIE Transport-Plugin class ID.

5.61.2.10 #define NDDS_TRANSPORT _CLASSID_ITP (13)

Internet Transport-Plugin class ID.

5.61.2.11 #tdefine NDDS_TRANSPORT_CLASSID_RESERVED -
RANGE (1000)

Transport-Plugin class IDs below this are reserved by RTT.

User-defined Transport-Plugins should use a class ID greater than this number.
5.61.3 Typedef Documentation

5.61.3.1 typedef RTI_INT32 NDDS_Transport_ClassId_t

Type for storing RTT Data Distribution Service Transport-Plugin class IDs.

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API
by Doxygen

5.62 Address 245

5.62 Address

Transport-independent addressing scheme using IPv6 presentation strings and
numerically stored in network-ordered format.

Classes

"~ struct NDDS _Transport_Address_t

Addresses are stored individually as network-ordered bytes.

Defines

* #define NDDS_TRANSPORT_ADDRESS_INVALID {{0, 0, 0, 0,
0,0,0,0,0,0,0,0,0,0,0,0}}

An invalid transport address. Used as an initializer.

~ #define NDDS_TRANSPORT_ADDRESS_STRING_BUFFER -
SIZE (40)

The minimum size of the buffer that should be passed to NDDS_Transport._-
Address_to_string (p. 247).

Functions

" RTILINT32 NDDS_Transport_Address_to_string (const NDDS_-
Transport_Address_t xself, char sxbuffer_inout, RTI_INT32 buffer_-
length_in)

Converts a numerical address to a printable string representation.

" RTIINT32 NDDS_Transport_Address_from string (NDDS_-
Transport_Address_t xaddress_out, const char *address_in)

Converts an address (IPvj dotted notation or IPv6 presentation string) into
a numerical address.

" void NDDS_Transport_Address_print (const NDDS_Transport._-
Address_t *address_in, const char *desc_in, RTI_INT32 indent_in)

Prints an address to standard out.

" RTILINT32 NDDS_Transport_Address_is_.ipv4 (const NDDS_-
Transport_Address_t xaddress_in)

Checks if an address is an IPv4 address.

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4+ API
by Doxygen

246 Module Documentation

" RTIINT32 NDDS_Transport_Address_is_multicast (const NDDS_-
Transport_Address_t xaddress_in)

Checks if an address is an IPv4 or IPv6 multicast address.

5.62.1 Detailed Description

Transport-independent addressing scheme using IPv6 presentation strings and
numerically stored in network-ordered format.

The APIs of RTI Data Distribution Service uses IPv6 address notation for all
transports.

Transport-Plugin implementations that are not IP-based are required to map
whatever addressing scheme natively used by the physical transport (if any) to
an address in IPv6 notation and vice versa.

IPv6 addresses are numerically stored in 16 bytes. An IPv6 address can be

presented In string notation in a variety of ways. For example,

"00AF:0000: 0037 : FEO1:0000:0000: 034B: 0089"
"AF:0:37:FE01:0:0:34B:89"
"AF:0:37:FEO1::34B:89"
are all valid IPv6 presentation of the same address.
IPv4 address in dot notation can be used to specify the last 4 bytes of the

address. For example,

"0000:0000:0000:0000:0000:0000:192.168.0.1"
"0:0:0:0:0:0:192.168.0.1"
"::192.168.0.1"

are all valid IPv6 presentation of the same address.

For a complete description of valid IPv6 address notation, consult the IPv6
Addressing Architecture (RFC 2373).

Addresses are divided into unicast addresses and multicast addresses.

Multicast addresses are defined as

~ Addresses that start with 0xFF. That is
FFXX:XXXX : XXXX | XXXX ! XXXX : XXXX ! XXXX : XXXX.

or an IPv4 multicast address

" Address in the range [::224.0.0.0, ::239.255.255.255]

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API
by Doxygen

5.62 Address 247

Multicast addresses do not refer to any specific destination (network interface).
Instead, they usually refer to a group of network interfaces, often called a ”mul-
ticast group”.

Unicast addresses always refer to a specific network interface.

5.62.2 Define Documentation

5.62.2.1 #define NDDS_ TRANSPORT _ADDRESS INVALID {{0,
0,o0,000,0,0,0,0,0,0,0,0,0, 0}}

An invalid transport address. Used as an initializer.

For example: NDDS_Transport_Address_t (p.1463) address = NDDS_-
TRANSPORT_ADDRESS_INVALID

5.62.2.2 #define NDDS_TRANSPORT_ADDRESS_STRING _-
BUFFER _SIZE (40)

The minimum size of the buffer that should be passed to NDDS_Transport _-
Address_to_string (p.247).

The string size includes space for 8 tuples of 4 characters each plus 7 delimiting
colons plus a terminating NULL.

5.62.3 Function Documentation

5.62.3.1 RTI_INT32 NDDS_Transport_Address_to_string (const
NDDS Transport_Address_t x self, char x buffer_inout,
RTI_INT32 buffer_length_in)

Converts a numerical address to a printable string representation.

Precondition:

The buffer_inout provided must be at least NDDS_TRANSPORT _-
ADDRESS_STRING_BUFFER SIZE (p. 247) characters long.

Parameters:

self <<in>> (p. 195) The address to be converted.

buffer_inout <<inout>> (p.195) Storage passed in which to return the
string corresponding to the address.

buffer_length_in <<in>> (p.195) The length of the storage buffer.

Must be >= NDDS_TRANSPORT_ADDRESS_STRING -
BUFFER_SIZE (p. 247)

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4+ API
by Doxygen

248 Module Documentation

Returns:

1 upon success; 0 upon failure (not enough space in the provided buffer)

5.62.3.2 RTI_INT32 NDDS _Transport_Address_from string
(NDDS_Transport_Address_t * address_out, const char x
address_in)

Converts an address (IPv4 dotted notation or IPv6 presentation string) into a
numerical address.

The address string must be in IPv4 dotted notation (X.X.X.X) or IPv6 presen-
tation notation. The string cannot be a hostname since this function does not
perform a hostname lookup.

Parameters:

address_out <<out>> (p.195) Numerical value of the address.
address_in <<in>> (p.195) String representation of an address.

Returns:

1 if address_out contains a valid address
0 if it was not able to convert the string into an address.

5.62.3.3 void NDDS _Transport_Address_print (const
NDDS _Transport_Address_t * address_in, const char x
desc_in, RTI_INT32 indent_in)

Prints an address to standard out.

Parameters:

address_in <<in>> (p.195) Address to be printed.
desc_in <<in>> (p.195) A prefix to be printed before the address.
indent_in <<in>> (p. 195) Indentation level for the printout.

5.62.3.4 RTI_INT32 NDDS_Transport_Address_is_ipv4 (const
NDDS _Transport_Address_t * address_in)

Checks if an address is an IPv4 address.

Parameters:

address_in <<in>> (p.195) Address to be tested.

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API
by Doxygen

5.62 Address 249

Note:

May be implemented as a macro for efficiency.

Returns:

1 if address is an IPv4 address
0 otherwise.

5.62.3.5 RTI_INT32 NDDS_Transport_Address_is_multicast (const
NDDS _Transport_Address_t * address_in)

Checks if an address is an IPv4 or IPv6 multicast address.

Parameters:

address_in <<in>> (p.195) Address to be tested.

May be implemented as a macro for efficiency.

Returns:

1 if address is a multicast address
0 otherwise.

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4+ API
by Doxygen

250 Module Documentation

5.63 Attributes

Base ”class” of the properties of any Transport Plugin.

Classes

~ struct NDDS _Transport_Property_t

Base structure that must be inherited by derived Transport Plugin classes.

Defines

" #defne ~ NDDS_TRANSPORT_PROPERTY_BIT_BUFFER -
ALWAYS_LOANED (0x2)

Specified zero-copy behavior of transport.

" #define NDDS_TRANSPORT_PROPERTY_GATHER_SEND -
BUFFER_COUNT_MIN (3)

Minimum number of gather-send buffers that must be supported by a Trans-
port Plugin implementation.

5.63.1 Detailed Description

Base 7class” of the properties of any Transport Plugin.

5.63.2 Define Documentation

5.63.2.1 #define NDDS_TRANSPORT_PROPERTY _BIT_-
BUFFER_ALWAYS_LOANED (0x2)

Specified zero-copy behavior of transport.

A Transport Plugin may commit to one of three behaviors for zero copy receives:
1. Always does zero copy.
2. Sometimes does zero copy, up to the transport discretion.

3. Never does zero copy.

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API
by Doxygen

5.63 Attributes 251

This bit should be set only if the Transport Plugin commits to always doing
a zero copy receive, or more specifically, always loaning a buffer through its
receive rEA() call.

In that case, the NDDS core will not need to allocate storage for a message that
it retrieves with the receive_rEA() call.

5.63.2.2 #define NDDS_TRANSPORT _PROPERTY _GATHER -
SEND BUFFER_COUNT_MIN (3)

Minimum number of gather-send buffers that must be supported by a Transport
Plugin implementation.

For the NDDS_Transport_Property_t (p.1464) structure to be valid, the
value of NDDS_Transport_Property_t::gather_send_buffer_count_max
(p. 1467) must be greater than or equal to this value.

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4+ API
by Doxygen

252 Module Documentation

5.64 Shared Memory Transport

Built-in transport plug-in for inter-process communications using shared mem-
ory (NDDS_TRANSPORT_CLASSID _SHMEM (p. 256)).

Classes

~ struct NDDS _Transport_Shmem_Property_t

Subclass of NDDS_Transport_Property_t (p. 1464) allowing specification
of parameters that are specific to the shared-memory transport.

Defines

" #define NDDS_TRANSPORT_CLASSID_SHMEM (2)
Builtin Shared-Memory Transport-Plugin class ID.

~ #define NDDS_TRANSPORT_SHMEM_ADDRESS_BIT _-
COUNT (0)

Default wvalue of NDDS_Transport_Property_t::address_bit_count
(p. 1466).

" #define NDDS_TRANSPORT_SHMEM_PROPERTIES -
BITMAP DEFAULT (NDDS TRANSPORT PROPERTY_BIT -
BUFFER_ALWAYS_LOANED)

Default wvalue of NDDS_Transport_Property_t::properties_bitmap
(p. 1466).

" #define NDDS_TRANSPORT_SHMEM_GATHER_SEND _-
BUFFER_COUNT_MAX_DEFAULT (1024)

Default wvalue of NDDS_Transport_Property_t::gather_send_buffer_-
count_maz (p. 1467).

" #define NDDS_TRANSPORT_SHMEM_MESSAGE_SIZE -
MAX_DEFAULT (9216)

Default wvalue of NDDS_Transport_Property_t::message_size_max
(p. 1467).

" #define NDDS_TRANSPORT_SHMEM_RECEIVED _-
MESSAGE_COUNT _MAX DEFAULT (32)

Default wvalue of NDDS_Transport_.Shmem_Property_t::received_-
message_count_max (p. 1472).

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API
by Doxygen

5.64 Shared Memory Transport 253

" #define NDDS_TRANSPORT_SHMEM_RECEIVE BUFFER -
SIZE_DEFAULT

Default value of NDDS_Transport_Shmem_Property_t::receive_buffer_-
size (p.1473).

" #define NDDS_TRANSPORT_SHMEM_PROPERTY _-
DEFAULT

Use this to initialize stack variable.

Functions

" NDDS_Transport_Plugin * NDDS_Transport_Shmem new (const
struct NDDS_Transport_Shmem_Property_t sproperty_in)

Create a new shmem process transport.

" NDDS_Transport_Plugin * NDDS _Transport_Shmem _create
(NDDS _Transport_Address_t *default_network_address_out, const
struct DDS_PropertyQosPolicy *property_in)

Create a new shmem process transport, using PropertyQosPolicy.

5.64.1 Detailed Description

Built-in transport plug-in for inter-process communications using shared mem-

ory (NDDS_TRANSPORT_CLASSID_SHMEM (p. 256)).

This plugin uses System Shared Memory to send messages between processes
on the same node.

The transport plugin has exactly one "receive interface”; since the address_-
bit_count is 0, it can be assigned any address. Thus the interface is located by
the "network address” associated with the transport plugin.

5.64.2 Compatibility of Sender and Receiver Transports

Opening a receiver ”port” on shared memory corresponds to creating a shared
memory segment using a name based on the port number. The transport plu-
gin’s properties are embedded in the shared memory segment.

When a sender tries to send to the shared memory port, it verifies that properties
of the receiver’s shared memory transport are compatible with those specified
in its transport plugin. If not, the sender will fail to attach to the port and will
output messages such as below (with numbers appropriate to the properties of
the transport plugins involved).

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4+ API
by Doxygen

254 Module Documentation

NDDS_Transport_Shmem_attachShmem:failed to initialize incompatible properties
NDDS_Transport_Shmem_attachShmem:countMax O > -19417345 or max size -19416188 >

In this scenario, the properties of the sender or receiver transport plugin in-
stances should be adjusted, so that they are compatible.

5.64.3 Crashing and Restarting Programs

If a process using shared memory crashes (say because the user typed in "C),
resources associated with its shared memory ports may not be properly cleaned
up. Later, if another RTI Data Distribution Service process needs to open the
same ports (say, the crashed program is restarted), it will attempt to reuse the
shared memory segment left behind by the crashed process.

The reuse is allowed iff the properties of transport plugin are compatible with
those embedded in the shared memory segment (i.e., of the original creator).
Otherwise, the process will fail to open the ports, and will output messages such
as below (with numbers appropriate to the properties of the transport plugins
involved).

NDDS_Transport_Shmem_create_recvresource_rrEA:failed to initialize shared

2147482624

memory resource Cannot recycle existing shmem: size not compatible for key 0x1234

In this scenario, the shared memory segments must be cleaned up using ap-
propriate platform specific commands. For details, please refer to the platform
notes.

5.64.4 Shared Resource Keys

The transport uses the shared memory segment keys, given by the formula
below.

0x400000 + port

The transport also uses signaling shared semaphore keys given by the formula
below.

0x800000 + port

The transport also uses mutex shared semaphore keys given by the formula
below.

0xb00000 + port

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API
by Doxygen

5.64 Shared Memory Transport 255

wher the port is a function of the domain_id and the participant_id, as
described in DDS_WireProtocolQosPolicy::participant_id (p.1023)

See also:

DDS_WireProtocolQosPolicy::participant_id (p. 1023)
NDDSTransportSupport::set_builtin_transport_property()
(p- 1503)

5.64.5 Creating and Registering Shared Memory Trans-
port Plugin

RTT Data Distribution Service can implicitly create this plugin and register
with the DDSDomainParticipant (p.1096) if this transport is specified in
DDS_TransportBuiltinQosPolicy (p.941).

To specify the properties of the builtin shared memory transport that is implic-
itly registered, you can either:

"~ call NDDSTransportSupport::set_builtin_transport_property
(p- 1503) or

" specify the pre-defined property names in DDS_PropertyQosPolicy
(p.810) associated with the DDSDomainParticipant (p.1096). (see
Shared Memory Transport Property Names in Property QoS
Policy of Domain Participant (p.256)).

Builtin transport plugin properties specified in DDS_PropertyQosPolicy
(p.810) always overwrite the ones specified through NDDSTransportSup-
port::set_builtin_transport_property() (p.1503). The default value is as-
sumed on any unspecified property.

Note that all properties should be set before the transport is implicitly created
and registered by RTI Data Distribution Service. See Built-in Transport
Plugins (p. 133) for details on when a builtin transport is registered.

To explicitly create an instance of this plugin, NDDS_Transport_-
Shmem new() (p.257) should be called. The instance should be reg-
istered with RTI Data Distribution Service, see NDDSTransportSup-
port::register_transport (p.1499). In some configurations, you may have
to disable the builtin shared memory transport plugin instance (DDS_-
TransportBuiltinQosPolicy (p.941), DDS_TRANSPORTBUILTIN -
SHMEM (p. 389)), to avoid port conflicts with the newly created plugin in-
stance.

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4+ API
by Doxygen

256 Module Documentation

5.64.6 Shared Memory Transport Property Names in
Property QoS Policy of Domain Participant

The following table lists the predefined property names that can be set in the

DDS_PropertyQosPolicy (p.810) of a DDSDomainParticipant (p. 1096)
to configure the builtin shared memory transport plugin.

5.64.7 Define Documentation
5.64.7.1 #define NDDS_TRANSPORT_CLASSID_SHMEM (2)

Builtin Shared-Memory Transport-Plugin class ID.

5.64.7.2 #tdefine NDDS_TRANSPORT_SHMEM_ADDRESS_BIT.-
COUNT (0)

Default value of NDDS_Transport Property_t::address_bit_count
(p. 1466).

5.64.7.3 +#define NDDS_TRANSPORT_SHMEM -
PROPERTIES BITMAP DEFAULT (
NDDS_TRANSPORT_PROPERTY _BIT_BUFFER -
ALWAYS_LOANED)

Default value of NDDS_Transport_Property_t::properties_bitmap
(p. 1466).

5.64.7.4 #define NDDS_TRANSPORT_SHMEM_GATHER _-
SEND _BUFFER_COUNT_MAX _DEFAULT (1024)

Default value of NDDS_Transport_Property_t::gather_send_buffer_-
count_max (p. 1467).

5.64.7.5 #define NDDS_TRANSPORT_SHMEM _MESSAGE -
SIZE_MAX_DEFAULT (9216)

Default value of NDDS_Transport_Property_t::message_size_max
(p. 1467).

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API
by Doxygen

5.64 Shared Memory Transport 257

5.64.7.6 #define NDDS_TRANSPORT_SHMEM_RECEIVED _-
MESSAGE_COUNT_MAX _DEFAULT (32)

Default value of NDDS _Transport_Shmem Property_t::received_-
message_count_max (p. 1472).

5.64.7.7 +#define NDDS_TRANSPORT_SHMEM _RECEIVE -
BUFFER_SIZE DEFAULT

Value:

(NDDS_TRANSPORT_SHMEM_RECEIVED_MESSAGE_COUNT_MAX_DEFAULT * \
NDDS_TRANSPORT_SHMEM_MESSAGE_SIZE_MAX_DEFAULT / 4)

Default value of NDDS_Transport_Shmem_Property_t::receive_buffer_-
size (p. 1473).

5.64.7.8 #define NDDS_TRANSPORT_SHMEM_PROPERTY _-
DEFAULT

Use this to initialize stack variable.

5.64.8 Function Documentation

5.64.8.1 NDDS Transport_Pluginx NDDS_Transport_Shmem_new
(const struct NDDS_Transport_Shmem _Property_t x
property_in)

Create a new shmem process transport.
An application may create multiple transports, possibly for use in different
domains.

Parameters:

property_in <<in>> (p.195) Desired behavior of this transport. May
be NULL for default property. The transport plugin can only support
one unicast receive interface; therefore the interface selection lists are
ignored.

Returns:

handle to a Shmem inter-process Transport Plugin on success
NULL on failure.

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4+ API
by Doxygen

258 Module Documentation

5.64.8.2 NDDS _Transport_Pluginx NDDS_Transport_Shmem_create
(NDDS_Transport_Address_t * default_network_-
address_out, const struct DDS_PropertyQosPolicy
property_in)

Create a new shmem process transport, using PropertyQosPolicy.

An application may create multiple transports, possibly for use in different
domains.

Parameters:

default_network_address_out <<out>> (p.195) Network address to
be used when registering the transport.

property_in <<in>> (p.195) Desired behavior of this transport. May
be NULL for default property. The transport plugin can only support
one unicast receive interface; therefore the interface selection lists are
ignored.

Returns:

handle to a Shmem inter-process Transport Plugin on success
NULL on failure.

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API
by Doxygen

5.64 Shared Memory Transport

259

Name

Descriptions

dds.transport.shmem.builtin.parent.ad
bit_count

See NDDS _Transport_-
dRrseperty_t::address_bit_count
(p. 1466)

bitmap

See NDDS _Transport_-

dds.transport.shmem.builtin.parent.proparojeerty _t::properties_bitmap

(p. 1466)

dds.transport.shmem.builtin.parent.gg
send_buffer_count_max

See NDDS _Transport_-
tIRroperty_t::gather_send_-
buffer_count_max

(p. 1467)

size_max

See NDDS _Transport_-

dds.transport.shmem.builtin.parent. meFagperty _t::message_size_max

(p. 1467)

interfaces

See NDDS _Transport_-

dds.transport.shmem.builtin.parent.alloRroperty_t::allow_interfaces_list

(p. 1468) and

NDDS _Transport_Property_-
t::allow_interfaces_list_length
(p. 1468).

Interfaces should be specified as
comma-separated strings, with each
comma delimiting an interface. For
example: 127.0.0.1,eth0

dds.transport.shmem.builtin.parent.dq
interfaces

See NDDS _Transport_-
nProperty_t::deny_interfaces_list
(p. 1468) and

NDDS _Transport_Property _-
t::deny_interfaces_list_length

(p- 1469).

Interfaces should be specified as
comma-separated strings, with each
comma delimiting an interface. For
example: 127.0.0.1,eth0

dds.transport.shmem.builtin.parent.al
multicast_interfaces

See

loNDDS _Transport_Property_-
t::allow_multicast_interfaces_list
(p.1469) and NDDS_Transport_-
Property_t::allow_multicast _-
interfaces_list_length

(p. 1470).

Interfaces should be specified as
comma-separated strings, with each
comma delimiting an interface. For
example: 127.0.0.1,ethO

See

PYRRHEEE interfaces

GeudscstedispostislOeerzaiagiitig 2oant fde DG Dranspint ropeCty--API

t::deny_multicast_interfaces_list
(p. 1470) and NDDS_Transport_-
Property_t::deny_multicast _-
interfaces_list_length (p. 1470).
Interfaces should be specified as
comma-separated strings, with each
comma delimiting an interface. For

avamnles 19700 1 o+thN

260

Module Documentation

5.65 UDPv4 Transport

Built-in transport plug-in using UDP/IPv4 (NDDS_TRANSPORT -
CLASSID_UDPv4 (p. 263)).

Classes

" struct NDDS_Transport_UDPv4_Property_t

Configurable IPv4/UDP Transport-Plugin properties.

Defines

#define NDDS_TRANSPORT_CLASSID _UDPv4 (1)
Builtin IPv4 UDP/IP Transport-Plugin class ID.

#define NDDS_TRANSPORT_UDPV4_ADDRESS_BIT -
COUNT (32)

Default wvalue of NDDS_Transport_Property_t::address_bit_count
(p. 1466).

#define NDDS_TRANSPORT_UDPV4_PROPERTIES -
BITMAP_DEFAULT (0)

Default wvalue of NDDS_Transport_Property_t::properties_bitmap
(p. 1466).

#define NDDS_TRANSPORT_UDPV4 GATHER_SEND -

BUFFER_COUNT _MAX DEFAULT (16)

Default wvalue of NDDS_Transport_Property_t::gather_send_buffer_-
count_mazx (p. 1467).

#defme NDDS_TRANSPORT_UDPV4 SOCKET BUFFER -
SIZE_OS_DEFAULT (-1)

Used to specify that os default be used to specify socket buffer size.

#define NDDS_TRANSPORT_UDPV4_MESSAGE_SIZE -
MAX_DEFAULT (9216)

Default wvalue of NDDS_Transport_Property_t::message_size_max
(p. 1467).

#defne NDDS_TRANSPORT_UDPV4 MULTICAST_TTL_-
DEFAULT (1)

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API

by Doxygen

5.65 UDPv4 Transport 261

Default wvalue of NDDS_Transport_-UDPvj_Property_t::multicast_ttl
(p. 1478).

" #define NDDS_TRANSPORT_UDPV4 BLOCKING_NEVER

Value for NDDS_Transport_UDPuvj_Property_t::send_blocking
(p- 1481) to specify non-blocking sockets.

" #define NDDS_TRANSPORT_UDPV4 BLOCKING_ALWAYS

[default] Value for NDDS_Transport.UDPv/_Property_t::send._-
blocking (p. 1481) to specify blocking sockets.

" #define NDDS_TRANSPORT_UDPV4_BLOCKING -
DEFAULT NDDS_TRANSPORT_UDPV4 BLOCKING_ALWAYS

Default value for NDDS_Transport_-UDPuv/j_Property_t::send_blocking
(p. 1481) to specify blocking sockets.

" #tdefine NDDS_TRANSPORT_UDPV4_PROPERTY _-
DEFAULT
Use this to initialize a NDDS_Transport.UDPv/_Property_t (p.1475)
structure.
Functions

NDDS_Transport_Plugin * NDDS_Transport_ UDPv4_new (const
struct NDDS_Transport_UDPv4_Property_t «property_in)

Create an instance of a UDPv4 Transport Plugin.

" RTI.INT32 NDDS_Transport _UDPv4_string_to_address_cEA
(NDDS_Transport_Plugin xself, NDDS _Transport_Address_t
saddress_out, const char *address_in)

Realization of NDDS_Transport_String-To_Address_Fen_cEA for IP trans-
ports.

" RTIINT32 NDDS_Transport_ UDPv4_get_receive_interfaces_cEA
(NDDS_Transport_Plugin xself, RTI_INT32 «found_more_than_provided_-
for_.out, RTI_INT32 xinterface_reported_count_out, NDDS_Transport_-
Interface_t interface_array_inout[], RTI_LINT32 interface_array_size_in)

Realization of NDDS_Transport_Get_Receive_Interfaces_-Fen_cEA — for IP
transports.

" NDDS_Transport_Plugin * NDDS _Transport_UDPv4_create
(NDDS_Transport_Address_t xdefault_network_address_out, const
struct DDS_PropertyQosPolicy *property_in)

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4+ API
by Doxygen

262 Module Documentation

Create an instance of a UDPv/4 Transport Plugin, using PropertyQosPolicy.

5.65.1 Detailed Description

Built-in transport plug-in using UDP/IPv4 (NDDS_TRANSPORT -
CLASSID_UDPv4 (p.263)).

This transport plugin uses UDPv4 sockets to send and receive messages. It
supports both unicast and multicast communications in a single instance of the
plugin. By default, this plugin will use all interfaces that it finds enabled and
”"UP” at instantiation time to send and receive messages.

The user can configure an instance of this plugin to only use unicast or only use
multicast, see NDDS_Transport_UDPv4 _Property_t::unicast_enabled
(p.1478) and NDDS_Transport_UDPv4_Property_t::multicast_enabled
(p. 1478).

In addition, the user can configure an instance of this plugin to selectively use
the network interfaces of a node (and restrict a plugin from sending multicast
messages on specific interfaces) by specifying the ”white” and ”black” lists in the
base property’s fields (NDDS _Transport_Property_t::allow_interfaces_list
(p-1468), NDDS_Transport_Property_t::deny_interfaces_list (p.1468),
NDDS_Transport_Property_t::allow_multicast_interfaces_list (p. 1469),
NDDS_Transport_Property_t::deny_multicast_interfaces_list (p. 1470)).

RTT Data Distribution Service can implicitly create this plugin and register
with the DDSDomainParticipant (p.1096) if this transport is specified in
DDS_TransportBuiltinQosPolicy (p.941).

To specify the properties of the builtin UDPv4 transport that is implicitly reg-
istered, you can either:

call NDDSTransportSupport::set_builtin_transport_property
(p.- 1503) or

specify the predefined property names in DDS_PropertyQosPolicy
(p.810) associated with the DDSDomainParticipant (p.1096). (see
UDPv4 Transport Property Names in Property QoS Policy of
Domain Participant (p.263)).

Builtin transport plugin properties specified in DDS_PropertyQosPolicy
(p.810) always overwrite the ones specified through NDDSTransportSup-
port::set_builtin_transport_property() (p.1503). The default value is as-
sumed on any unspecified property.

Note that all properties should be set before the transport is implicitly cre-
ated and registered by RTI Data Distribution Service. Any properties set after

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API
by Doxygen

5.65 UDPv4 Transport 263

the builtin transport is registered will be ignored. See Built-in Transport
Plugins (p. 133) for details on when a builtin transport is registered.

To explicitly create an instance of this plugin, NDDS_Transport_UDPv4_-
new() (p.265) should be called. The instance should be registered with
RTI Data Distribution Service, see NDDSTransportSupport::register_-
transport (p.1499). In some configurations one may have to disable the
builtin UDPv4 transport plugin instance (DDS_TransportBuiltinQosPolicy
(p.-941), DDS_TRANSPORTBUILTIN _UDPv4 (p.389)), to avoid port
conflicts with the newly created plugin instance.

5.65.2 UDPv4 Transport Property Names in Property
QoS Policy of Domain Participant
The following table lists the predefined property names that can be set in DDS _-

PropertyQosPolicy (p.810) of a DDSDomainParticipant (p. 1096) to con-
figure the builtin UDPv4 transport plugin.

See also:

NDDSTransportSupport::set_builtin_transport_property()
(p- 1503)

5.65.3 Define Documentation

5.65.3.1 #define NDDS_TRANSPORT_CLASSID UDPv4 (1)

Builtin IPv4 UDP/IP Transport-Plugin class ID.

5.65.3.2 #define NDDS_TRANSPORT_UDPV4_ADDRESS_BIT _-
COUNT (32)

Default value of NDDS _Transport_Property_t::address_bit_count
(p. 1466).
5.65.3.3 #define NDDS_TRANSPORT _UDPV4_PROPERTIES -

BITMAP_DEFAULT (0)

Default value of NDDS_Transport_Property_t::properties_bitmap
(p. 1466).

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4+ API
by Doxygen

264 Module Documentation

5.65.3.4 #define NDDS_TRANSPORT_UDPV4_GATHER_SEND -
BUFFER_COUNT_MAX_DEFAULT (16)

Default value of NDDS_Transport_Property_t::gather_send_buffer_-
count_max (p. 1467).

This is also the maximum value that can be used when instantiating the udp
transport.

16 is sufficient for RTT Data Distribution Service, but more may improve dis-
covery and reliable performance. Porting note: find out what the maximum
gather buffer count is on your OS!

5.65.3.5 #define NDDS_TRANSPORT_UDPV4_SOCKET .-
BUFFER _SIZE_OS_DEFAULT (-1)

Used to specify that os default be used to specify socket buffer size.

5.65.3.6 H#define NDDS_TRANSPORT_UDPV4_MESSAGE_SIZE -
MAX_DEFAULT (9216)

Default value of NDDS_Transport_Property_t::message_size_max
(p. 1467).

5.65.3.7 #define NDDS_TRANSPORT _UDPV4 MULTICAST -
TTL_DEFAULT (1)

Default value of NDDS_Transport UDPv4 Property_t::multicast_ttl
(p. 1478).

5.65.3.8 #define NDDS_TRANSPORT_UDPV4_BLOCKING _-
NEVER

Value for NDDS_Transport_UDPv4_Property_t::send_blocking (p. 1481)

to specify non-blocking sockets.

5.65.3.9 #define NDDS_TRANSPORT_UDPV4 BLOCKING _-
ALWAYS

[default] Value for NDDS_Transport_UDPv4 Property_t::send_-
blocking (p. 1481) to specify blocking sockets.

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API
by Doxygen

5.65 UDPv4 Transport 265

5.65.3.10 #define NDDS_TRANSPORT_UDPV4_BLOCKING _-
DEFAULT NDDS_TRANSPORT_UDPV4_BLOCKING -
ALWAYS

Default value for NDDS_Transport_UDPv4_Property_t::send_blocking
(p- 1481) to specify blocking sockets.

5.65.3.11 #define NDDS_TRANSPORT_UDPV4 PROPERTY _-
DEFAULT

Value:

\

{ NDDS_TRANSPORT_CLASSID_UDPv4, \
NDDS_TRANSPORT_UDPV4_ADDRESS_BIT_COUNT, \
NDDS_TRANSPORT_UDPV4_PROPERTIES_BITMAP_DEFAULT, \
NDDS_TRANSPORT_UDPV4_GATHER_SEND_BUFFER_COUNT_MAX_DEFAULT, \
NDDS_TRANSPORT_UDPV4_MESSAGE_SIZE_MAX_DEFAULT, \
NULL, O, /* allow_interfaces_list */ \

NULL, O, /* deny_interfaces_list */ \
NULL, 0, /* allow_multicast_interfaces_list */ \
NULL, O, /* deny_multicast_interfaces_list */ \

oA

NDDS_TRANSPORT_UDPV4_MESSAGE_SIZE_MAX_DEFAULT, \

NDDS_TRANSPORT_UDPV4_MESSAGE_SIZE_MAX_DEFAULT, \

1, /* use unicast */ \

NDDS_TRANSPORT_UDPV4_USE_MULTICAST_DEFAULT, /* use multicast */ \

NDDS_TRANSPORT_UDPV4_MULTICAST_TTL_DEFAULT, \

0, /* multicast loopback enabled */ \

-1, /* (auto-)ignore loopback */ \

1, /* ignore_nonup_interfaces */ \

0, /* do not ignore non-RUNNING */ \

0, /* no_zero_copy */ \

NDDS_TRANSPORT_UDPV4_BLOCKING_DEFAULT, \

0, 0, Oxff /* no mapping to IP_TOS by default =/, \

1, /* send_ping */ \

500 /* 500 millisecs is the default polling period*/, \

0 /* reuse multicast receive resource */ }

Use this to initialize a NDDS_Transport_UDPv4 _Property_t (p.1475)

structure.

5.65.4 Function Documentation

5.65.4.1 NDDS Transport_Pluginx NDDS_Transport_UDPv4_new
(const struct NDDS_Transport_UDPv4_Property_t *
property_in)

Create an instance of a UDPv4 Transport Plugin.

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4+ API
by Doxygen

266 Module Documentation

An application may create and register multiple instances of this Transport Plu-
gin with RTT Data Distribution Service. This may be to partition the network
interfaces across multiple RTT Data Distribution Service domains. However,
note that the underlying transport, the operating system’s IP layer, is still a
”singleton”. For example, if a unicast transport has already bound to a port,
and another unicast transport tries to bind to the same port, the second attempt
will fail.

The transport plugin honors the interface/multicast ”white” and ”black” lists
specified in the NDDS_Transport_UDPv4_Property_t::parent (p. 1476):

NDDS Transport_Property_t::allow_interfaces_list (p. 1468),

NDDS _Transport_Property_t::deny_interfaces_list (p. 1468),

NDDS _Transport_Property_t::allow_multicast_interfaces_list
(p. 1469),

NDDS _Transport_Property_t::deny_multicast_interfaces_list
(p. 1470)

The format of a string in these lists is assumed to be in standard IPv4 dot
notation, possibly containing wildcards. For example:

©10.10.30.232
" 10.10.k.%

" 192.168.1.x

" etc. Strings not in the correct format will be ignored.

Parameters:

property_in <<in>> (p.195) Desired behavior of this transport. May
be NULL for default property.

Returns:

A UDPv4 Transport Plugin instance on success; or NULL on failure.

5.65.4.2 RTI_INT32 NDDS _Transport_ UDPv4_string to_-
address_cEA (NDDS_Transport_Plugin * self,
NDDS _Transport_Address_t * address_out, const char x
address_in)

Realization of NDDS_Transport_String_To_Address_Fcn_cEA for IP transports.

Converts a host name string to a IPv4 address.

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API
by Doxygen

5.65 UDPv4 Transport 267

Parameters:

self NOT USED. May be NULL.

address_out <<out>> (p.195) The corresponding numerical value in
IPv6 format.

address_in <<in>> (p.195) The name of the IPv4 address. It can be a
dot notation name or a host name. If NULL, then the IP address of
the localhost will be returned.

See also:

NDDS_Transport_String_To_Address_Fcn_ cEA for complete documenta-
tion.

5.65.4.3 RTI_INT32 NDDS_Transport UDPv4_get_receive_-
interfaces cEA (NDDS_Transport_Plugin x self,
RTI_INT32 x found_more_than_provided_for_out,
RTI_INT32 * interface_reported_count_out,
NDDS Transport_Interface_t interface_array_inout[],
RTI_INT32 interface_array_size_in)

Realization of NDDS_Transport_Get_Receive_Interfaces_Fen_cEA for TP trans-
ports.

Retrieves a list of available IPv4 network interfaces. The addresses returned
from IPv4 plugin will be of the pattern 0.0.0.0.0.0.0.0.0.0.0.0.x.x.x.x.

See also:

NDDS_Transport_Get_Receive_Interfaces_Fen_cEA for complete documen-
tation.

5.65.4.4 NDDS _Transport_Pluginx NDDS_Transport._-
UDPv4 _create (NDDS_Transport_Address_t
x default_network_address_out, const struct
DDS_PropertyQosPolicy * property_in)

Create an instance of a UDPv4 Transport Plugin, using PropertyQosPolicy.

An application may create and register multiple instances of this Transport Plu-
gin with RTT Data Distribution Service. This may be to partition the network
interfaces across multiple RTI Data Distribution Service domains. However,
note that the underlying transport, the operating system’s IP layer, is still a
7singleton”. For example, if a unicast transport has already bound to a port,
and another unicast transport tries to bind to the same port, the second attempt
will fail.

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4+ API
by Doxygen

268 Module Documentation

The transport plugin honors the interface/multicast ”white” and ”black” lists
specified in the NDDS_Transport_UDPv4_Property_t::parent (p. 1476):

NDDS Transport_Property_t::allow_interfaces_list (p. 1468),
NDDS _Transport_Property_t::deny_interfaces_list (p. 1468),

NDDS _Transport_Property_t::allow_multicast_interfaces_list
(p. 1469),

NDDS _Transport_Property_t::deny_multicast_interfaces_list
(p. 1470)

The format of a string in these lists is assumed to be in standard IPv4 dot
notation, possibly containing wildcards. For example:

”10.10.30.232

" 10.10.%.%

" 192.168.1.x

" etc. Strings not in the correct format will be ignored.

Parameters:

default_network_address_out <<out>> (p.195) Network address to
be used when registering the transport.

property_in <<in>> (p.195) Desired behavior of this transport,
through the property field in DDS_DomainParticipantQos
(p.570).
Returns:

A UDPv4 Transport Plugin instance on success; or NULL on failure.

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API
by Doxygen

5.65 UDPv4 Transport

269

Property Name

Description

bit_count

See NDDS _Transport_-

dds.transport.UDPv4.builtin.parent.adPessperty _t::address_bit_count

(p. 1466)

bitmap

See NDDS _Transport_-

dds.transport.UDPv4.builtin.parent.proBegperty _t::properties_bitmap

(p. 1466)

send_buffer_count_max

See NDDS _Transport_-

dds.transport.UDPv4.builtin.parent.gatPaoperty _t::gather_send _-

buffer_count_max
(p. 1467)

dds.transport.UDPv4.builtin.parent.n
size_max

See NDDS _Transport_-
eRBugperty_t::message_size_max
(p. 1467)

dds.transport.UDPv4.builtin.parent.al
interfaces

See NDDS _Transport_-
IdRreperty_t::allow_interfaces_list
(p. 1468) and

NDDS _Transport_Property_-
t::allow_interfaces_list_length
(p. 1468).

Interfaces should be specified as
comma-separated strings, with each
comma delimiting an interface. For
example, 127.0.0.1,eth0

dds.transport.UDPv4.builtin.parent.d
interfaces

See NDDS _Transport_-
erlProperty_t::deny_interfaces_list
(p. 1468) and

NDDS _Transport_Property_-
t::deny_interfaces_list_length

(p- 1469).

Interfaces should be specified as
comma-separated strings, with each
comma delimiting an interface. For
example: 127.0.0.1,eth0

multicast_interfaces

See

dds.transport.UDPv4.builtin.parent.alldNDDS _Transport_Property_-

t::allow_multicast_interfaces_list
(p.1469) and NDDS_Transport_-
Property_t::allow_multicast _-
interfaces_list_length

(p. 1470).

Interfaces should be specified as
comma-separated strings, with each
comma delimiting an interface. For
example: 127.0.0.1,ethO

See

PYRRHEEE interfaces

Gddsrstad sposut) Dde 4. Bail tizgaoenifadeHYDING Dranspont SropeCtyt-APT

t::deny_multicast_interfaces_list
(p.1470) and NDDS_Transport_-
Property_t::deny_multicast _-
interfaces_list_length (p. 1470).
Interfaces should be specified as
comma-separated strings, with each
comma delimiting an interface. For

avamnles 19700 1 o+thN

270

Module Documentation

5.66 UDPv6 Transport

Built-in transport plug-in using UDP/IPv6 (NDDS_TRANSPORT -
CLASSID_UDPV6 (p.273)).

Classes

~ struct NDDS_Transport_UDPv6_Property_t

Configurable IPv6/UDP Transport-Plugin properties.

Defines

#define NDDS_TRANSPORT_CLASSID _UDPv6 (5)
Builtin IPv6 UDP/IP Transport-Plugin class ID.

#define NDDS_TRANSPORT_UDPV6_ADDRESS_BIT -
COUNT (128)

Default wvalue of NDDS_Transport_Property_t::address_bit_count
(p. 1466).

#define NDDS_TRANSPORT_UDPV6_PROPERTIES -
BITMAP_DEFAULT (0)

Default wvalue of NDDS_Transport_Property_t::properties_bitmap
(p. 1466).

#define NDDS_TRANSPORT_UDPV6_GATHER_SEND -

BUFFER_COUNT _MAX DEFAULT (16)

Default wvalue of NDDS_Transport_Property_t::gather_send_buffer_-
count_mazx (p. 1467).

#defme NDDS_TRANSPORT_UDPV6_SOCKET BUFFER -
SIZE_OS_DEFAULT (-1)

Used to specify that os default be used to specify socket buffer size.

#define NDDS_TRANSPORT_UDPV6_MESSAGE_SIZE -
MAX_DEFAULT (9216)

Default wvalue of NDDS_Transport_Property_t::message_size_max
(p. 1467).

#defne NDDS_TRANSPORT_UDPV6_MULTICAST_TTL_-
DEFAULT (1)

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API

by Doxygen

5.66 UDPv6 Transport 271

Default wvalue of NDDS_Transport_-UDPv6_Property_t::multicast_ttl
(p. 1487).

" #define NDDS_TRANSPORT_UDPV6_BLOCKING_NEVER
Value for NDDS_Transport_UDPv6_Property_t::send_blocking
(p- 1489) to specify non-blocking sockets.

" #define NDDS_TRANSPORT_UDPV6_BLOCKING_ALWAYS

[default] Value for NDDS_Transport-UDPuv6_Property_t::send_-
blocking (p. 1489) to specify blocking sockets.

"~ #tdefine NDDS_TRANSPORT_UDPV6_PROPERTY _-
DEFAULT
Use this to initialize a NDDS_Transport.-UDPv6_Property_-t (p.1484)
structure.
Functions

" NDDS_Transport_Plugin * NDDS_Transport_ UDPv6_new (const
struct NDDS_Transport_UDPv6_Property_t «property_in)

Create an instance of a UDPv6 Transport Plugin.

" RTILINT32 NDDS Transport _ UDPv6_string to_address_cEA
(NDDS_Transport_Plugin xself, NDDS _Transport_Address_t
«address_out, const char xaddress_in)

Realization of NDDS_Transport_String-To_Address_Fcn_cEA for IP trans-
ports.

" RTILINT32 NDDS_Transport_UDPv6_get_receive_interfaces_cEA
(NDDS_Transport_Plugin *self, RTI_INT32 «found_more_than_provided_-
for_out, RTIINT32 sxinterface_reported_count_out, NDDS_Transport_-
Interface_t interface_array_inout[], RTI_INT32 interface_array_size_in)

Realization of NDDS_Transport_Get_Receive_Interfaces_Fen_cEA for IP
transports.

" NDDS_Transport_Plugin * NDDS_Transport_UDPv6_create
(NDDS_Transport_Address_t xdefault_network_address_out, const
struct DDS_PropertyQosPolicy *property_in)

Create an instance of a UDPv6 Transport Plugin, using PropertyQosPolicy.

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4+ API
by Doxygen

272 Module Documentation

5.66.1 Detailed Description

Built-in transport plug-in using UDP/IPv6 (NDDS_TRANSPORT -
CLASSID_UDPv6 (p.273)).

This transport plugin uses UDPv6 sockets to send and receive messages. It
supports both unicast and multicast communications in a single instance of the
plugin. By default, this plugin will use all interfaces that it finds enabled and
”"UP” at instantiation time to send and receive messages.

The user can configure an instance of this plugin to only use unicast or only use
multicast, see NDDS_Transport_UDPv6_Property_t::unicast_enabled
(p.1486) and NDDS_Transport_UDPv6_Property_t::multicast_enabled
(p. 1487).

In addition, the user can configure an instance of this plugin to selectively use
the network interfaces of a node (and restrict a plugin from sending multicast
messages on specific interfaces) by specifying the ”white” and "black” lists in the
base property’s fields (NDDS_Transport_Property_t::allow_interfaces_list
(p-1468), NDDS_Transport_Property_t::deny_interfaces_list (p.1468),
NDDS _Transport_Property _t::allow_multicast_interfaces_list (p.1469),
NDDS_Transport_Property_t::deny_multicast_interfaces_list (p. 1470)).

RTI Data Distribution Service can implicitly create this plugin and register it
with the DDSDomainParticipant (p.1096) if this transport is specified in
the DDS_TransportBuiltinQosPolicy (p.941).

To specify the properties of the builtin UDPv6 transport that is implicitly reg-
istered, you can either:

© call NDDSTransportSupport::set_builtin_transport_property
(p-1503) or

specify the predefined property names in DDS_PropertyQosPolicy
(p.810) associated with the DDSDomainParticipant (p.1096). (see
UDPv6 Transport Property Names in Property QoS Policy of
Domain Participant (p.273)).

Builtin transport plugin properties specified in DDS_PropertyQosPolicy
(p.810) always overwrite the ones specified through NDDSTransportSup-
port::set_builtin_transport_property() (p.1503). The default value is as-
sumed on any unspecified property.

Note that all properties should be set before the transport is implicitly created
and registered by RTI Data Distribution Service. Any properties that are set
after the builtin transport is registered will be ignored. See Built-in Transport
Plugins (p. 133) for details on when a builtin transport is registered.

To explicitly create an instance of this plugin, NDDS_Transport_ UDPv6_-
new() (p.275) should be called. The instance should be registered with

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API
by Doxygen

5.66 UDPv6 Transport 273

RTT Data Distribution Service, see NDDSTransportSupport::register_-
transport (p.1499). In some configurations, you may have to disable the
builtin UDPv6 transport plugin instance (DDS_TransportBuiltinQosPolicy
(p-941), DDS_TRANSPORTBUILTIN _UDPv6 (p.389)), to avoid port
conflicts with the newly created plugin instance.

5.66.2 UDPv6 Transport Property Names in Property
QoS Policy of Domain Participant

The following table lists the predefined property names that can be set in DDS _-

PropertyQosPolicy (p.810) of a DDSDomainParticipant (p. 1096) to con-
figure the builtin UDPv6 transport plugin.

See also:

NDDSTransportSupport::set_builtin_transport_property()
(p. 1503)

5.66.3 Define Documentation
5.66.3.1 #define NDDS_TRANSPORT_CLASSID_UDPv6 (5)

Builtin IPv6 UDP/IP Transport-Plugin class ID.

5.66.3.2 #define NDDS_TRANSPORT_UDPV6_ADDRESS_BIT -
COUNT (128)

Default value of NDDS _Transport_Property_t::address_bit_count
(p. 1466).

5.66.3.3 #tdefine NDDS_TRANSPORT_UDPV6_PROPERTIES -
BITMAP_DEFAULT (0)

Default value of NDDS_Transport_Property_t::properties_bitmap
(p. 1466).

5.66.3.4 #define NDDS_TRANSPORT _UDPV6_GATHER SEND -
BUFFER_COUNT MAX DEFAULT (16)

Default value of NDDS_Transport_Property_t::gather_send_buffer_-
count_max (p. 1467).

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4+ API
by Doxygen

274 Module Documentation

This is also the maximum value that can be used when instantiating the udp
transport.

16 is sufficient for NDDS, but more may improve discovery and reliable perfor-
mance. Porting note: find out what the maximum gather buffer count is on
your OS!

5.66.3.5 H#define NDDS_TRANSPORT_UDPV6_SOCKET _-
BUFFER _SIZE_OS _DEFAULT (-1)

Used to specify that os default be used to specify socket buffer size.

5.66.3.6 #define NDDS_TRANSPORT_UDPV6_MESSAGE_SIZE -
MAX_DEFAULT (9216)

Default value of NDDS_Transport_Property_t::message_size_max
(p. 1467).

5.66.3.7 #define NDDS_TRANSPORT_UDPV6_MULTICAST -
TTL_DEFAULT (1)

Default value of NDDS_Transport_ UDPv6_Property_t::multicast_ttl
(p. 1487).

5.66.3.8 H#define NDDS_TRANSPORT_UDPV6_BLOCKING _-
NEVER

Value for NDDS_Transport UDPv6_Property_t::send_blocking (p. 1489)
to specify non-blocking sockets.

5.66.3.9 #define NDDS_TRANSPORT_UDPV6_BLOCKING _-
ALWAYS

[default] Value for NDDS _Transport_UDPv6_Property_t::send_-
blocking (p. 1489) to specify blocking sockets.

5.66.3.10 #define NDDS_TRANSPORT_UDPV6_PROPERTY _-
DEFAULT

Value:

{\

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API
by Doxygen

5.66 UDPv6 Transport 275

{ NDDS_TRANSPORT_CLASSID_UDPv6, \
NDDS_TRANSPORT_UDPV6_ADDRESS_BIT_COUNT, \
NDDS_TRANSPORT_UDPV6_PROPERTIES_BITMAP_DEFAULT, \
NDDS_TRANSPORT_UDPV6_GATHER_SEND_BUFFER_COUNT_MAX_DEFAULT, \
NDDS_TRANSPORT_UDPV6_MESSAGE_SIZE_MAX_DEFAULT, \
NULL, O, /* allow_interfaces_list */ \

NULL, O, /* deny_interfaces_list */ \
NULL, O, /* allow_multicast_interfaces_list */ \
NULL, O, /* deny_multicast_interfaces_list */ \

AN

NDDS_TRANSPORT_UDPV6_MESSAGE_SIZE_MAX_DEFAULT, \

NDDS_TRANSPORT_UDPV6_MESSAGE_SIZE_MAX_DEFAULT, \

1, /* use unicast */ \

NDDS_TRANSPORT_UDPV6_USE_MULTICAST_DEFAULT, /* use multicast */ \

NDDS_TRANSPORT_UDPV6_MULTICAST_TTL_DEFAULT, \

0, /* multicast loopback enabled */ \

-1, /* (auto-)ignore loopback */ \

0, /* do not ignore non-RUNNING */ \

0, /* no_zero_copy */ \

NDDS_TRANSPORT_UDPV6_BLOCKING_DEFAULT, \

0, /* enable_v4dmapped */ \

0, 0, Oxff /* no mapping to IPV6_TCLASS by default */ }

Use this to initialize a NDDS_Transport_UDPv6_Property_t (p.1484)
structure.

5.66.4 Function Documentation

5.66.4.1 NDDS Transport_Pluginx NDDS_Transport_UDPv6_new
(const struct NDDS_Transport_UDPv6_Property_t *
property_in)

Create an instance of a UDPv6 Transport Plugin.

An application may create and register multiple instances of this Transport Plu-
gin with RTT Data Distribution Service. This may be to partition the network
interfaces across multiple RTI Data Distribution Service domains. However,
note that the underlying transport, the operating system’s IP layer, is still a
"singleton”. For example, if a unicast transport has already bound to a port,
and another unicast transport tries to bind to the same port, the second attempt
will fail.

The transport plugin honors the interface/multicast ”white” and ”black” lists
specified in the NDDS_Transport UDPv6_Property_t::parent (p. 1485):

NDDS Transport_Property_t::allow_interfaces_list (p. 1468),

NDDS _Transport_Property_t::deny_interfaces_list (p. 1468),

NDDS _Transport_Property_t::allow_multicast_interfaces_list
(p. 1469),

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4+ API
by Doxygen

276 Module Documentation

NDDS _Transport_Property_t::deny_multicast_interfaces_list
(p. 1470)

The format of a string in these lists is assumed to be in standard IPv6 dot
notation, possibly containing wildcards. For example:

© 10.10.30.232

7 10.10.%.%

192.168.1.%

" etc. Strings not in the correct format will be ignored.

Parameters:

property_in <<in>> (p.195) Desired behavior of this transport. May
be NULL for default property.

Returns:

A UDPv6 Transport Plugin instance on success; or NULL on failure.

5.66.4.2 RTIINT32 NDDS _Transport _ UDPv6_string to_-
address_cEA (NDDS_Transport_Plugin * self,
NDDS _Transport_Address_t * address_out, const char x
address_in)

Realization of NDDS_Transport_String_To_Address_Fcn_cEA for IP transports.

Converts a host name string to a IPv6 address.

Parameters:

self NOT USED. May be NULL.

address_out <<out>> (p.195) The corresponding numerical value in
[Pv6 format.

address_in <<in>> (p.195) The name of the IPv6 address. It can be a
dot notation name or a host name. If NULL, then the IP address of
the localhost will be returned.

See also:

NDDS_Transport_String_To_Address_Fcn_cEA for complete documenta-
tion.

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API
by Doxygen

5.66 UDPv6 Transport 277

5.66.4.3 RTI_INT32 NDDS_Transport UDPv6_get_receive_-
interfaces cEA (NDDS_Transport_Plugin x self,
RTI_INT32 * found_more_than_provided_for_out,
RTI_INT32 x interface_reported_count_out,
NDDS Transport_Interface_t interface_array_inout[],
RTI_INT32 interface_array_size_in)

Realization of NDDS_Transport_Get_Receive_Interfaces_Fen_cEA for TP trans-
ports.

Retrieves a list of available IPv6 network interfaces. The addresses returned
from IPv6 plugin will be full 128-bit addresses.

See also:

NDDS_Transport_Get_Receive_Interfaces_Fen_cEA for complete documen-
tation.

5.66.4.4 NDDS _Transport_Pluginx NDDS_Transport._-
UDPv6_create (NDDS_Transport_Address_t
x default_network_address_out, const struct
DDS _PropertyQosPolicy * property_in)

Create an instance of a UDPv6 Transport Plugin, using PropertyQosPolicy.

An application may create and register multiple instances of this Transport Plu-
gin with RTI Data Distribution Service. This may be to partition the network
interfaces across multiple RTI Data Distribution Service domains. However,
note that the underlying transport, the operating system’s IP layer, is still a
”singleton”. For example, if a unicast transport has already bound to a port,
and another unicast transport tries to bind to the same port, the second attempt
will fail.

The transport plugin honors the interface/multicast ”white” and ”black” lists
specified in the NDDS_Transport UDPv6_Property_t::parent (p. 1485):

" NDDS_Transport_Property_t::allow_interfaces_list (p. 1468),

NDDS _Transport_Property_t::deny_interfaces_list (p. 1468),

NDDS _Transport_Property_t::allow_multicast_interfaces_list
(p. 1469),

NDDS _Transport_Property_t::deny_multicast_interfaces_list
(p. 1470)

The format of a string in these lists is assumed to be in standard IPv6 dot
notation, possibly containing wildcards. For example:

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4+ API
by Doxygen

278 Module Documentation

T okokskokokokokk
" FE80:aBc::202:%:x
" x:aBCiix2:%:2%

" etc. Strings not in the correct format will be ignored.

Parameters:

default_network_address_out <<out>> (p.195) Network address to
be used when registering the transport.

property_in <<in>> (p.195) Desired behavior of this transport,
through the property field in DDS_DomainParticipantQos
(p.570).
Returns:

A UDPv6 Transport Plugin instance on success; or NULL on failure.

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API
by Doxygen

5.66 UDPv6 Transport

279

Property Name

Description

bit_count

See NDDS _Transport_-

dds.transport.UDPv6.builtin.parent.adPessperty_t::address_bit_count

(p. 1466)

bitmap

See NDDS _Transport_-

dds.transport.UDPv6.builtin.parent.proBegperty _t::properties_bitmap

(p. 1466)

send_buffer_count_max

See NDDS _Transport_-

dds.transport.UDPv6.builtin.parent.gatPaoperty _t::gather_send -

buffer_count_max
(p. 1467)

dds.transport.UDPv6.builtin.parent.n
size_max

See NDDS _Transport_-
eRBugperty_t::message_size_max
(p. 1467)

dds.transport.UDPv6.builtin.parent.al
interfaces

See NDDS _Transport_-
IdRreperty_t::allow_interfaces_list
(p. 1468) and

NDDS _Transport_Property_-
t::allow_interfaces_list_length
(p. 1468).

Interfaces should be specified as
comma-separated strings, with each
comma delimiting an interface. For
example: 127.0.0.1,eth0

dds.transport.UDPv6.builtin.parent.d
interfaces

See NDDS _Transport_-
erlProperty_t::deny_interfaces_list
(p. 1468) and

NDDS _Transport_Property_-
t::deny_interfaces_list_length

(p- 1469).

Interfaces should be specified as
comma-separated strings, with each
comma delimiting an interface. For
example: 127.0.0.1,eth0

multicast_interfaces

See

dds.transport.UDPv6.builtin.parent.alldND DS _Transport_Property_-

t::allow_multicast_interfaces_list
(p.1469) and NDDS_Transport_-
Property_t::allow_multicast _-
interfaces_list_length

(p. 1470).

Interfaces should be specified as
comma-separated strings, with each
comma delimiting an interface. For
example: 127.0.0.1,ethO

See

PYRREEE interfaces

Gddsrbtad sposut) Dde 3. Bail BizgHaoen tfadeHYDING Dranspont SropeCtyt-APT

t::deny_multicast_interfaces_list
(p.1470) and NDDS_Transport_-
Property_t::deny_multicast _-
interfaces_list_length (p. 1470).
Interfaces should be specified as
comma-separated strings, with each
comma delimiting an interface. For

avamnles 19700 1 o+thN

280 Module Documentation

5.67 Participant Built-in Topics

Builtin topic for accessing information about the DomainParticipants discovered
by RTI Data Distribution Service.
Classes

" class DDSParticipantBuiltinTopicDataTypeSupport

Instantiates TypeSupport < DDS_ParticipantBuiltin TopicData (p. 792)
> .

" class DDSParticipantBuiltinTopicDataDataReader

Instantiates DataReader < DDS_ParticipantBuiltinTopicData (p. 792)
> .

~ struct DDS_ParticipantBuiltinTopicData

Entry created when a DomainParticipant object is discovered.

"~ struct DDS_ParticipantBuiltinTopicDataSeq

Instantiates FooSeq (p.1437) < DDS_ParticipantBuiltinTopicData
(p-792) > .

Variables

" const char *x DDS_PARTICIPANT TOPIC_NAME

Participant topic name.

5.67.1 Detailed Description

Builtin topic for accessing information about the DomainParticipants discovered
by RTI Data Distribution Service.

5.67.2 Variable Documentation
5.67.2.1 const charx DDS_PARTICIPANT_TOPIC_NAME

Participant topic name.

Topic name of DDSParticipantBuiltinTopicDataDataReader (p. 1289)

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API
by Doxygen

5.67 Participant Built-in Topics 281

See also:

DDS_ParticipantBuiltinTopicData (p. 792)
DDSParticipantBuiltinTopicDataDataReader (p. 1289)

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4+ API
by Doxygen

282 Module Documentation

5.68 Topic Built-in Topics

Builtin topic for accessing information about the Topics discovered by RTI Data
Distribution Service.
Classes

" class DDSTopicBuiltinTopicDataTypeSupport
Instantiates TypeSupport < DDS_TopicBuiltinTopicData (p. 930) > .

" class DDSTopicBuiltinTopicDataDataReader
Instantiates DataReader < DDS_TopicBuiltin TopicData (p. 930) > .

~ struct DDS_TopicBuiltinTopicData

Entry created when a Topic object discovered.

"~ struct DDS_TopicBuiltinTopicDataSeq

Instantiates FooSeq (p.1437) < DDS_TopicBuiltinTopicData (p. 930)
> .

Variables

~ const char * DDS_TOPIC_TOPIC_NAME

Topic topic name.

5.68.1 Detailed Description

Builtin topic for accessing information about the Topics discovered by RTI Data
Distribution Service.

5.68.2 Variable Documentation
5.68.2.1 const charx DDS_TOPIC_TOPIC_NAME

Topic topic name.

Topic name of DDSTopicBuiltinTopicDataDataReader (p.1371)

See also:

DDS_TopicBuiltinTopicData (p.930)

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API
by Doxygen

5.68 Topic Built-in Topics 283

DDSTopicBuiltinTopicDataDataReader (p. 1371)

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4+ API
by Doxygen

284 Module Documentation

5.69 Publication Built-in Topics

Builtin topic for accessing information about the Publications discovered by RTI
Data Distribution Service.

Classes

" class DDSPublicationBuiltinTopicDataTypeSupport

Instantiates TypeSupport < DDS_PublicationBuiltin TopicData (p. 815)
> .

~ class DDSPublicationBuiltinTopicDataDataReader

Instantiates DataReader < DDS_PublicationBuiltinTopicData (p.815)
> .

" struct DDS_PublicationBuiltinTopicData

Entry created when a DDSDataWriter (p. 1070) is discovered in associa-
tion with its Publisher.

"~ struct DDS_PublicationBuiltinTopicDataSeq

Instantiates FooSeq (p.1437) < DDS_PublicationBuiltinTopicData
(p.815) > .

Variables

" const char * DDS_PUBLICATION_TOPIC_NAME

Publication topic name.

5.69.1 Detailed Description

Builtin topic for accessing information about the Publications discovered by RTI
Data Distribution Service.

5.69.2 Variable Documentation
5.69.2.1 const charx DDS_PUBLICATION_TOPIC_NAME

Publication topic name.

Topic name of DDSPublicationBuiltinTopicDataDataReader (p.1292)

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API
by Doxygen

5.69 Publication Built-in Topics 285

See also:

DDS_PublicationBuiltinTopicData (p. 815)
DDSPublicationBuiltinTopicDataDataReader (p.1292)

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4+ API
by Doxygen

286 Module Documentation

5.70 Subscription Built-in Topics

Builtin topic for accessing information about the Subscriptions discovered by
RTT Data Distribution Service.

Classes

" class DDSSubscriptionBuiltinTopicDataTypeSupport

Instantiates TypeSupport < DDS_SubscriptionBuiltinTopicData
(p.-908) > .

" class DDSSubscriptionBuiltinTopicDataDataReader

Instantiates DataReader < DDS_SubscriptionBuiltinTopicData (p. 908)
> .

~ struct DDS_SubscriptionBuiltinTopicData

Entry created when o DDSDataReader (p. 1046) is discovered in associa-
tion with its Subscriber.

"~ struct DDS_SubscriptionBuiltinTopicDataSeq

Instantiates FooSeq (p.1437) < DDS_SubscriptionBuiltinTopicData
(p-908) > .

Variables

" const char *x DDS_SUBSCRIPTION_TOPIC_NAME

Subscription topic name.

5.70.1 Detailed Description

Builtin topic for accessing information about the Subscriptions discovered by
RTI Data Distribution Service.

5.70.2 Variable Documentation
5.70.2.1 const charx DDS_SUBSCRIPTION_TOPIC_NAME

Subscription topic name.

Topic name of DDSSubscriptionBuiltinTopicDataDataReader (p. 1363)

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API
by Doxygen

5.70 Subscription Built-in Topics 287

See also:

DDS_SubscriptionBuiltinTopicData (p. 908)
DDSSubscriptionBuiltinTopicDataDataReader (p. 1363)

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4+ API
by Doxygen

288 Module Documentation

5.71 String Built-in Type

Built-in type consisting of a single character string.

Classes

" class DDSStringTypeSupport
<<interface>> (p.194) String type support.

" class DDSStringDataReader
<<interface>> (p.194) Instantiates DataReader < charx >.

" class DDSStringDataWriter
<<interface>> (p.194) Instantiates DataWriter < charx >.

5.71.1 Detailed Description

Built-in type consisting of a single character string.

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API
by Doxygen

5.72 KeyedString Built-in Type 289

5.72 KeyedString Built-in Type

Built-in type consisting of a string payload and a second string that is the key.

Classes

" class DDSKeyedStringTypeSupport
<<interface>> (p.194) Keyed string type support.

" class DDSKeyedStringDataReader

<<interface>> (p.194) Instantiates DataReader < DDS_KeyedString
(p- 744) >.

" class DDSKeyedStringDataWriter

<<interface>> (p.194) Instantiates DataWriter < DDS_KeyedString
(p- 744) >.

struct DDS_KeyedString
Keyed string built-in type.

struct DDS_KeyedStringSeq
Instantiates FooSeq (p.1437) < DDS_KeyedString (p. 744) > .

5.72.1 Detailed Description

Built-in type consisting of a string payload and a second string that is the key.

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++ API
by Doxygen

290 Module Documentation

5.73 Octets Built-in Type

Built-in type consisting of a variable-length array of opaque bytes.

Classes

" class DDSOctetsTypeSupport
<<interface>> (p.194) DDS_Octets (p. 775) type support.

class DDSOctetsDataReader

<<interface>> (p.194) Instantiates DataReader < DDS_Octets (p. 775)
>.

class DDSOctetsDataWriter

<<interface>> (p.194) Instantiates DataWriter < DDS_Octets (p. 775)
>.

struct DDS_Octets

Built-in type consisting of a variable-length array of opaque bytes.

struct DDS_OctetsSeq
Instantiates FooSeq (p.1437) < DDS_Octets (p. 775) > .

5.73.1 Detailed Description

Built-in type consisting of a variable-length array of opaque bytes.

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API
by Doxygen

5.74 KeyedOctets Built-in Type 291

5.74 KeyedOctets Built-in Type

Built-in type consisting of a variable-length array of opaque bytes and a string
that is the key.

Classes

" class DDSKeyedOctetsTypeSupport
<<interface>> (p.194) DDS_KeyedOctets (p. 7}1) type support.

" class DDSKeyedOctetsDataReader

<<interface>> (p.194) Instantiates DataReader < DDS_KeyedOctets
(p.741) >.

" class DDSKeyedOctetsDataWriter

<<interface>> (p.194) Instantiates DataWriter < DDS_KeyedOctets
(p.741) >.

struct DDS_KeyedOctets

Built-in type consisting of a variable-length array of opaque bytes and a string
that is the key.

struct DDS_KeyedOctetsSeq
Instantiates FooSeq (p.1437) < DDS_KeyedOctets (p. 7/1) >.

5.74.1 Detailed Description

Built-in type consisting of a variable-length array of opaque bytes and a string
that is the key.

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++ API
by Doxygen

292 Module Documentation

5.75 DDS-Specific Primitive Types

Basic DDS value types for use in user data types.

Defines

" #define DDS_BOOLEAN_TRUE
Defines "true” value of DDS_Boolean (p. 296) data type.

" #define DDS_BOOLEAN_FALSE
Defines ”false” value of DDS_Boolean (p.296) data type.

Typedefs

" typedef RTICdrChar DDS_Char
Defines a character data type, equivalent to IDL/CDR char.

" typedef RTICdrWchar DDS_Wchar
Defines a wide character data type, equivalent to IDL/CDR wchar.

" typedef RTICdrOctet DDS_Octet
Defines an opaque byte data type, equivalent to IDL/CDR octet.

" typedef RTICdrShort DDS_Short
Defines a short integer data type, equivalent to IDL/CDR short.

" typedef RTICdrUnsignedShort DDS_UnsignedShort

Defines an wunsigned short integer data type, equivalent to IDL/CDR
unsigned short.

" typedef RTICdrLong DDS_Long
Defines a long integer data type, equivalent to IDL/CDR long.

" typedef RTICdrUnsignedLong DDS_UnsignedLong

Defines an unsigned long integer data type, equivalent to IDL/CDR unsigned
long.

" typedef RTICdrLongLong DDS_LongLong
Defines an extra-long integer data type, equivalent to IDL/CDR long long.

" typedef RTICdrUnsignedLongLong DDS_UnsignedLongLong

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API
by Doxygen

5.75 DDS-Specific Primitive Types 293

Defines an unsigned extra-long data type, equivalent to IDL/CDR unsigned
long long.
" typedef RTICdrFloat DDS_Float

Defines a single-precision floating-point data type, equivalent to IDL/CDR
float.

" typedef RTICdrDouble DDS_Double
Defines a double-precision floating-point data type, equivalent to IDL/CDR
double.

" typedef RTICdrLongDouble DDS_LongDouble
Defines an extra-precision floating-point data type, equivalent to IDL/CDR
long double.

" typedef RTICdrBoolean DDS_Boolean
Defines a Boolean data type, equivalent to IDL/CDR boolean.

" typedef RTICdrEnum DDS_Enum

Defines an enumerated data type.

5.75.1 Detailed Description

Basic DDS value types for use in user data types.

As part of the finalization of the DDS standard, a number of DDS-specific
primitive types will be introduced. By using these types, you will ensure that
your data is serialized consistently across platforms even if the C/C++ built-in
types have different sizes on those platforms.

In this version of RTI Data Distribution Service, the DDS primitive types are
defined using the OMG’s Common Data Representation (CDR) standard. In a
future version of RTT Data Distribution Service, you will be given the choice of
whether to use these CDR-based types or C/C++ built-in types through a flag
provided to the rtiddsgen tool.

5.75.2 Define Documentation
5.75.2.1 #define DDS_BOOLEAN_TRUE

Defines ”true” value of DDS_Boolean (p.296) data type.

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4+ API
by Doxygen

294 Module Documentation

5.75.2.2 #define DDS_BOOLEAN_FALSE
Defines "false” value of DDS_Boolean (p.296) data type.

Examples:

HelloWorld.cxx.

5.75.3 Typedef Documentation
5.75.3.1 typedef RTICdrChar DDS_Char

Defines a character data type, equivalent to IDL/CDR char.

An 8-bit quantity that encodes a single byte charater from any byte-oriented
code set.

5.75.3.2 typedef RTICdrWchar DDS_Wchar

Defines a wide character data type, equivalent to IDL/CDR wchar.

An 16-bit quantity that encodes a wide character from any character set.

5.75.3.3 typedef RTICdrOctet DDS_Octet

Defines an opaque byte data type, equivalent to IDL/CDR octet.

An 8-bit quantity that is guaranteed not to undergo any conversion when trans-
mitted by the middleware.

5.75.3.4 typedef RTICdrShort DDS_Short

Defines a short integer data type, equivalent to IDL/CDR short.
A 16-bit signed short integer value.

5.75.3.5 typedef RTICdrUnsignedShort DDS_UnsignedShort

Defines an unsigned short integer data type, equivalent to IDL/CDR unsigned
short.

A 16-bit unsigned short integer value.

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API
by Doxygen

5.75 DDS-Specific Primitive Types 295

5.75.3.6 typedef RTICdrLong DDS_Long

Defines a long integer data type, equivalent to IDL/CDR long.

A 32-bit signed long integer value.

5.75.3.7 typedef RTICdrUnsignedLong DDS_UnsignedLong

Defines an unsigned long integer data type, equivalent to IDL/CDR unsigned
long.

A 32-bit unsigned long integer value.
5.75.3.8 typedef RTICdrLongLong DDS_LongLong
Defines an extra-long integer data type, equivalent to IDL/CDR long long.

A 64-bit signed long long integer value.

5.75.3.9 typedef RTICdrUnsignedLongLong
DDS _UnsignedLongLong

Defines an unsigned extra-long data type, equivalent to IDL/CDR unsigned
long long.

An 64-bit unsigned long long integer value.
5.75.3.10 typedef RTICdrFloat DDS_Float

Defines a single-precision floating-point data type, equivalent to IDL/CDR
float.

A 32-bit floating-point value.
5.75.3.11 typedef RTICdrDouble DDS _Double

Defines a double-precision floating-point data type, equivalent to IDL/CDR
double.

A 64-bit floating-point value.
5.75.3.12 typedef RTICdrLongDouble DDS_LongDouble

Defines an extra-precision floating-point data type, equivalent to IDL/CDR
long double.

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4+ API
by Doxygen

296 Module Documentation

A 128-bit floating-point value.

Since some architectures do not support long double, RTT has defined character
arrays that match the expected size of this type. On systems that do have
native long double, you have to define RTI.CDR_SIZEOF_LONG_DOUBLE as
16 to map them to native types.

5.75.3.13 typedef RTICdrBoolean DDS_Boolean

Defines a Boolean data type, equivalent to IDL/CDR boolean.

An 8-bit Boolean value that is used to denote a data item that can only take one
of the values DDS_BOOLEAN_TRUE (p.293) (1) or DDS_BOOLEAN _-
FALSE (p.294) (0).

5.75.3.14 typedef RTICdrEnum DDS_Enum

Defines an enumerated data type.

Encoded as unsigned long value. By default, the first enum identifier has the
numeric value zero (0). Successive enum identifiers take ascending numeric
values, in order of declaration from left to right.

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API
by Doxygen

5.76 Time Support 297

5.76 Time Support

Time and duration types and defines.

Classes

~ struct DDS_Time_t

Type for time representation.

~ struct DDS_Duration_t

Type for duration representation.

Defines

" #define DDS_TIME_ZERO

The default instant in time: zero seconds and zero nanoseconds.

Functions

" DDS_Boolean DDS_Time_is_zero (const struct DDS_Time_t

*time)

Check if time is zero.

" DDS_Boolean DDS_Time_is_invalid (const struct DDS_Time_t
*time)

" DDS_Boolean DDS Duration_is_infinite (const struct DDS -
Duration_t *duration)

" DDS_Boolean DDS_Duration_is_auto (const struct DDS._-
Duration_t *duration)

" DDS_Boolean DDS Duration_is_zero (const struct DDS -
Duration_t *duration)

Variables

" const DDS_Long DDS_TIME_INVALID_SEC

A sentinel indicating an invalid second of time.

" const DDS_UnsignedLong DDS_TIME _INVALID NSEC

A sentinel indicating an invalid nano-second of time.

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4+ API
by Doxygen

298 Module Documentation

" struct DDS_Time_t DDS_TIME_INVALID

A sentinel indicating an invalid time.

" const DDS_Long DDS_DURATION_INFINITE_SEC

An infinite second period of time.

" const DDS _UnsignedLong DDS_DURATION_INFINITE -
NSEC

An infinite nano-second period of time.

~ struct DDS_Duration.t DDS_DURATION_INFINITE

An infinite period of time.

~ struct DDS_Duration_.t DDS_DURATION_AUTO

Duration is automatically assigned.

" const DDS_Long DDS_DURATION_ZERO_SEC

A zero-length second period of time.

" const DDS_UnsignedLong DDS_DURATION_ZERO_NSEC

A zero-length nano-second period of time.

~ struct DDS_Duration_.t DDS_DURATION_ZERO

A zero-length period of time.

5.76.1 Detailed Description

Time and duration types and defines.

5.76.2 Define Documentation
5.76.2.1 #define DDS_TIME_ZERO

The default instant in time: zero seconds and zero nanoseconds.

5.76.3 Function Documentation

5.76.3.1 DDS_Boolean DDS_Time_is_zero (const struct
DDS _Time_t * time)

Check if time is zero.

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API
by Doxygen

5.76 Time Support 299

Returns:

DDS_BOOLEAN_TRUE (p.293) if the given time is equal to DDS_-
TIME_ZERO (p.298) or DDS_BOOLEAN_FALSE (p.294) otherwise.

5.76.3.2 DDS _Boolean DDS _Time_is_invalid (const struct
DDS_Time_t * time)

Returns:

DDS_BOOLEAN_TRUE (p.293) if the given time is not valid (i.e. is
negative)

5.76.3.3 DDS_Boolean DDS_Duration_is_infinite (const struct
DDS _Duration_t * duration)

Returns:

DDS_BOOLEAN_TRUE (p.293) if the given duration is of infinite
length.

5.76.3.4 DDS _Boolean DDS _Duration_is_auto (const struct
DDS_Duration_t * duration)

Returns:

DDS_BOOLEAN_TRUE (p. 293) if the given duration has auto value.

5.76.3.5 DDS_Boolean DDS_Duration_is_zero (const struct
DDS _Duration_t * duration)

Returns:

DDS_BOOLEAN_TRUE (p.293) if the given duration is of zero length.

5.76.4 Variable Documentation
5.76.4.1 const DDS_Long DDS_TIME_INVALID_SEC

A sentinel indicating an invalid second of time.

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4+ API
by Doxygen

300 Module Documentation

5.76.4.2 const DDS _UnsignedLong DDS_TIME_INVALID_NSEC

A sentinel indicating an invalid nano-second of time.

5.76.4.3 struct DDS_Time_t DDS_TIME_INVALID

A sentinel indicating an invalid time.

5.76.4.4 const DDS_Long DDS_DURATION_INFINITE_SEC

An infinite second period of time.

5.76.4.5 const DDS_UnsignedLong DDS_DURATION_INFINITE _-
NSEC

An infinite nano-second period of time.

5.76.4.6 struct DDS_Duration_.t DDS_DURATION_INFINITE

An infinite period of time.

5.76.4.7 struct DDS_Duration.t DDS_DURATION_AUTO

Duration is automatically assigned.

5.76.4.8 const DDS_Long DDS_ DURATION_ZERO_SEC

A zero-length second period of time.

5.76.4.9 const DDS_UnsignedLong DDS_DURATION_ZERO_NSEC

A zero-length nano-second period of time.

5.76.4.10 struct DDS_Duration_t DDS_DURATION_ZERO

A zero-length period of time.

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API
by Doxygen

5.77 GUID Support 301

5.77 GUID Support

<<eXtension>> (p.194) GUID type and defines.

Classes

" struct DDS_GUID_t
Type for GUID (Global Unique Identifier) representation.

Functions

" DDS_Boolean DDS_GUID_equals (const struct DDS_GUID_t xself,
const struct DDS_GUID_t xother)

Compares this GUID with another GUID for equality.

" int DDS_GUID_compare (const struct DDS_GUID_t xself, const
struct DDS_GUID _t xother)

Compares two GUID:s.

" void DDS_GUID copy (struct DDS_GUID_t =xself, const struct
DDS_GUID_t xother)

Copies another GUID into this GUID.

Variables

" struct DDS_GUID_t DDS_GUID_AUTO

Indicates that RTI Data Distribution Service should choose an appropriate
virtual GUID.

~ struct DDS_GUID_t DDS_GUID_UNKNOWN
Unknown GUID.

5.77.1 Detailed Description

<<eXtension>> (p.19/) GUID type and defines.

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4+ API
by Doxygen

302 Module Documentation

5.77.2 Function Documentation

5.77.2.1 DDS_Boolean DDS_GUID _equals (const struct
DDS_GUID. t self, const struct DDS_GUID_t * other)

Compares this GUID with another GUID for equality.

Parameters:

self <<in>> (p.195) This GUID. Cannot be NULL.
other <<in>> (p. 195) The other GUID to be compared with this GUID.

Cannot be NULL.

Returns:

DDS_BOOLEAN_TRUE (p.293) if the two GUIDs have equal values,
or DDS_.BOOLEAN_FALSE (p.294) otherwise.

5.77.2.2 int DDS_GUID_compare (const struct DDS_GUID_t * self,
const struct DDS_GUID _t * other)

Compares two GUIDs.

Parameters:

self <<in>> (p.195) GUID to compare. Cannot be NULL.
other <<in>> (p.195) GUID to compare. Cannot be NULL.

Returns:

If the two GUIDs are equal, the function returns 0. If self is greater than
other the function returns a positive number; otherwise, it returns a nega-
tive number.

5.77.2.3 void DDS_GUID copy (struct DDS_GUID_t * self, const
struct DDS_GUID_t « other)

Copies another GUID into this GUID.

Parameters:

self <<in>> (p.195) This GUID. Cannot be NULL.
other <<in>> (p.195) The other GUID to be copied.

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API
by Doxygen

5.77 GUID Support 303

5.77.3 Variable Documentation
5.77.3.1 struct DDS_GUID_t DDS_GUID_AUTO
Indicates that RTT Data Distribution Service should choose an appropriate vir-

tual GUID.

If this special value is assigned to DDS -
DataWriterProtocolQosPolicy::virtual guid (p.519) or DDS_-
DataReaderProtocolQosPolicy::virtual guid (p.486), RTI Data Dis-
tribution Service will assign the virtual GUID automatically based on the
RTPS or physical GUID.

5.77.3.2 struct DDS_GUID_t DDS_GUID_UNKNOWN

Unknown GUID.

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4+ API
by Doxygen

304 Module Documentation

5.78 Sequence Number Support

<<eXtension>> (p.194) Sequence number type and defines.

Classes

" struct DDS_SequenceNumber_t

Type for sequence number representation.

Variables

" struct DDS_SequenceNumber_t DDS_SEQUENCE_NUMBER -
UNKNOWN

Unknown sequence number.

" struct DDS_SequenceNumber_t DDS_SEQUENCE_NUMBER -
ZERO

Zero value for the sequence number.

~ struct DDS_SequenceNumber_t DDS_SEQUENCE_NUMBER -
MAX

Highest, most positive value for the sequence number.

" struct DDS_SequenceNumber .t DDS_AUTO_SEQUENCE -
NUMBER

The sequence number is internally determined by RTI Data Distribution Ser-
vice.

5.78.1 Detailed Description

<<eXtension>> (p.194) Sequence number type and defines.

5.78.2 Variable Documentation

5.78.2.1 struct DDS_SequenceNumber_t DDS_SEQUENCE -
NUMBER_UNKNOWN

Unknown sequence number.

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API
by Doxygen

5.78 Sequence Number Support 305

5.78.2.2 struct DDS_SequenceNumber_t DDS_SEQUENCE .-
NUMBER_ZERO

Zero value for the sequence number.

5.78.2.3 struct DDS_SequenceNumber_t DDS_SEQUENCE -
NUMBER_MAX

Highest, most positive value for the sequence number.

5.78.2.4 struct DDS_SequenceNumber_t DDS_AUTO _-
SEQUENCE_NUMBER

The sequence number is internally determined by RTT Data Distribution Service.

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4+ API
by Doxygen

306 Module Documentation

5.79 Exception Codes

<<eXtension>> (p.19/) Exception codes.

Enumerations

enum DDS_ExceptionCode_t {
DDS_NO_EXCEPTION_CODE,
DDS_USER_EXCEPTION_CODE,

DDS_SYSTEM _EXCEPTION_CODE,

DDS_BAD PARAM_SYSTEM_EXCEPTION_CODE,
DDS_NO_MEMORY_SYSTEM_EXCEPTION_CODE,
DDS_BAD_TYPECODE_SYSTEM_EXCEPTION_CODE,
DDS_BADKIND_USER_EXCEPTION_CODE,
DDS_BOUNDS_USER_EXCEPTION_CODE,

DDS_IMMUTABLE_TYPECODE_SYSTEM_EXCEPTION -
CODE = 8,

DDS_BAD_MEMBER_NAME_USER_EXCEPTION_CODE =9,
DDS_ BAD _MEMBER_ID USER_EXCEPTION_CODE = 10 }
Error codes used by the DDS_TypeCode (p. 963) class.

5.79.1 Detailed Description

<<eXtension>> (p.194) Exception codes.

These exceptions are used for error handling by the Type Code Support
(p.55) APL

5.79.2 Enumeration Type Documentation

5.79.2.1 enum DDS_ExceptionCode_t

Error codes used by the DDS_TypeCode (p.963) class.

Exceptions are modeled via a special parameter passed to the operations.

Enumerator:

DDS_NO_EXCEPTION_CODE No failure occurred.

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API
by Doxygen

5.79 Exception Codes 307

DDS_USER_EXCEPTION_CODE User exception.
This class is based on a similar class in CORBA.

DDS SYSTEM_EXCEPTION_CODE System exception.
This class is based on a similar class in CORBA.

DDS BAD_PARAM SYSTEM_EXCEPTION_CODE Exception
thrown when a parameter passed to a call is considered illegal.

DDS NO_MEMORY_SYSTEM EXCEPTION_CODE Exception
thrown when there is not enough memory for a dynamic memory
allocation.

DDS_ BAD_TYPECODE_SYSTEM_EXCEPTION_CODE
Exception thrown when a malformed type code is found (for example,
a type code with an invalid TCKind value).

DDS_BADKIND _USER_EXCEPTION_CODE The exception
BadKind is thrown when an inappropriate operation is invoked on a
TypeCode object.

DDS_BOUNDS_USER_EXCEPTION_CODE A user exception
thrown when a parameter is not within the legal bounds.

DDS IMMUTABLE TYPECODE_SYSTEM EXCEPTION_CODE
An attempt was made to modify a DDS_TypeCode (p.963) that
was received from a remote object.

The built-in publication and subscription readers provide access to
information about the remote DDSDataWriter (p.1070) and DDS-
DataReader (p.1046) entities in the distributed system. Among
other things, the data from these built-in readers contains the DDS _-
TypeCode (p.963) for these entities. Modifying this received DDS _-
TypeCode (p. 963) is not permitted.

DDS_ BAD_ MEMBER NAME _ USER_EXCEPTION_CODE The
specified DDS_TypeCode (p. 963) member name is invalid.

This failure can occur, for example, when querying a field by name
when no such name is defined in the type.

See also:

DDS_BAD_MEMBER _ID _USER_EXCEPTION_CODE
(p-307)

DDS_ BAD_MEMBER_ID_USER_EXCEPTION_CODE The
specified DDS_TypeCode (p. 963) member ID is invalid.

This failure can occur, for example, when querying a field by ID when
no such ID is defined in the type.

See also:

DDS_BAD_MEMBER_NAME_USER_EXCEPTION -
CODE (p. 307)

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4+ API
by Doxygen

308 Module Documentation

5.80 Return Codes

Types of return codes.

Enumerations

" enum DDS_ReturnCode_t {
DDS_RETCODE_OK,
DDS_RETCODE_ERROR,
DDS_RETCODE_UNSUPPORTED,

DDS_ RETCODE BAD PARAMETER,
DDS_RETCODE_PRECONDITION_NOT_MET,
DDS_RETCODE_OUT_OF_RESOURCES,

DDS_ RETCODE_NOT_ENABLED,
DDS_RETCODE_IMMUTABLE _POLICY,
DDS_RETCODE_INCONSISTENT_POLICY,
DDS_ RETCODE_ALREADY DELETED,
DDS_RETCODE_TIMEOUT,
DDS_RETCODE_NO_DATA,
DDS_RETCODE_ILLEGAL_OPERATION }

Type for return codes.

5.80.1 Detailed Description

Types of return codes.

5.80.2 Standard Return Codes

Any operation with return type DDS_ReturnCode_t (p.309) may re-
turn DDS_RETCODE _OK (p.309) DDS_RETCODE_ERROR (p.309)
or DDS_RETCODE_ILLEGAL_OPERATION (p.310). Any operation
that takes one or more input parameters may additionally return DDS_-
RETCODE_BAD _PARAMETER (p.309). Any operation on an object
created from any of the factories may additionally return DDS_RETCODE _-
ALREADY DELETED (p.310). Any operation that is stated as optional
may additionally return DDS_RETCODE_UNSUPPORTED (p. 309).

Thus, the standard return codes are:

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API
by Doxygen

5.80 Return Codes 309

DDS_RETCODE_ERROR (p. 309)
DDS_RETCODE_ILLEGAL_OPERATION (p.310)
DDS_RETCODE_ALREADY _DELETED (p. 310)
DDS_RETCODE BAD PARAMETER (p.309)

DDS_RETCODE_UNSUPPORTED (p. 309)

Operations that may return any of the additional return codes will state so
explicitly.

5.80.3 Enumeration Type Documentation

5.80.3.1 enum DDS_ReturnCode_t

Type for return codes.

Errors are modeled as operation return codes of this type.

Enumerator:

DDS_RETCODE_OK Successful return.
DDS_RETCODE_ERROR Generic, unspecified error.
DDS_RETCODE_UNSUPPORTED Unsupported operation. Can

only returned by operations that are unsupported.
DDS_ RETCODE_BAD_PARAMETER lllegal parameter value.

The value of the parameter that is passed in has llegal value. Things
that falls into this category includes NULL parameters and parameter
values that are out of range.

DDS_ RETCODE_PRECONDITION_NOT_MET A pre-condition
for the operation was not met.

The system is not in the expected state when the function is called,
or the parameter itself is not in the expected state when the function
is called.

DDS_RETCODE_OUT_-OF_RESOURCES RTI Data Distribution
Service ran out of the resources needed to complete the operation.

DDS_RETCODE_NOT_ENABLED Operation invoked on a
DDSEntity (p.1201) that is not yet enabled.

DDS_ RETCODE_IMMUTABLE_POLICY Application attempted
to modify an immutable QoS policy.

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4+ API
by Doxygen

310 Module Documentation

DDS_ RETCODE_INCONSISTENT_POLICY Application speci-
fied a set of QoS policies that are not consistent with each other.

DDS_ RETCODE_ALREADY DELETED The object target of this
operation has already been deleted.

DDS RETCODE_TIMEOUT The operation timed out.

DDS_ RETCODE_NO_DATA Indicates a transient situation where the
operation did not return any data but there is no inherent error.

DDS_ RETCODE_ILLEGAL_OPERATION The operation was
called under improper circumstances.

An operation was invoked on an inappropriate object or at an inap-
propriate time. This return code is similar to DDS_RETCODE _-
PRECONDITION _NOT_MET (p.309), except that there is no
precondition that could be changed to make the operation succeed.

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API
by Doxygen

5.81 Status Kinds 311

5.81 Status Kinds

Kinds of communication status.

Defines

" #define DDS_STATUS_MASK_NONE

No bits are set.

" #define DDS_STATUS_MASK_ALL
All bits are set.

Typedefs

" typedef DDS_UnsignedLong DDS_StatusMask
A bit-mask (list) of concrete status types, i.e. DDS_StatusKind (p. 316)]].

Enumerations

" enum DDS_StatusKind {
DDS_INCONSISTENT_TOPIC_STATUS,
DDS_OFFERED _DEADLINE_MISSED_STATUS,
DDS_REQUESTED _DEADLINE_MISSED_STATUS,
DDS_OFFERED_INCOMPATIBLE_QOS_STATUS,
DDS_REQUESTED _INCOMPATIBLE_QOS_STATUS,
DDS_SAMPLE_LOST_STATUS,
DDS_SAMPLE_REJECTED_STATUS,
DDS_DATA_ON_READERS_STATUS,
DDS_DATA_AVAILABLE_STATUS,
DDS_LIVELINESS_LOST_STATUS,
DDS_LIVELINESS _CHANGED_STATUS,
DDS_PUBLICATION_MATCHED _STATUS,
DDS_SUBSCRIPTION_MATCHED_STATUS ,
DDS_RELIABLE_WRITER_CACHE_CHANGED_STATUS,
DDS_RELIABLE_READER_ACTIVITY_CHANGED_STATUS,
DDS_DATA_WRITER_CACHE_STATUS,

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4+ API
by Doxygen

312 Module Documentation

DDS_DATA _WRITER_PROTOCOL_STATUS,

DDS_DATA READER_CACHE_STATUS,

DDS DATA READER PROTOCOL_STATUS }
Type for status kinds.

5.81.1 Detailed Description

Kinds of communication status.
Entity:
DDSEntity (p.1201)

QoS:
QoS Policies (p. 325)

Listener:

DDSListener (p.1266)

Each concrete DDSEntity (p.1201) is associated with a set of Status objects
whose value represents the communication status of that entity. Each sta-

tus value can be accessed with a corresponding method on the DDSEntity
(p. 1201).

When these status values change, the corresponding DDSStatusCondition
(p. 1323) objects are activated and the proper DDSListener (p.1266) objects
are invoked to asynchronously inform the application.

An application is notified of communication status by means of the DDSLis-
tener (p.1266) or the DDSWaitSet (p.1379) / DDSCondition (p.1034)
mechanism. The two mechanisms may be combined in the application (e.g.,
using DDSWaitSet (p. 1379) (s) / DDSCondition (p.1034) (s) to access the
data and DDSListener (p. 1266) (s) to be warned asynchronously of erroneous
communication statuses).

It is likely that the application will choose one or the other mechanism for each
particular communication status (not both). However, if both mechanisms are
enabled, then the DDSListener (p. 1266) mechanism is used first and then the
DDSWaitSet (p.1379) objects are signalled.

The statuses may be classified into:
~ read communication statuses: i.e., those that are related to arrival of data,

namely DDS_DATA_ON_READERS_STATUS (p.318) and DDS _-
DATA_AVAILABLE_STATUS (p. 318).

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API
by Doxygen

5.81 Status Kinds 313

"~ plain communication statuses: i.e., all the others.

Read communication statuses are treated slightly differently than the others be-
cause they don’t change independently. In other words, at least two changes will
appear at the same time (DDS_DATA_ON_READERS_STATUS (p.318)
and DDS_DATA _AVAILABLE_STATUS (p.318)) and even several of the
last kind may be part of the set. This 'grouping’ has to be communicated to
the application.

For each plain communication status, there is a corresponding structure to hold
the status value. These values contain the information related to the change of
status, as well as information related to the statuses themselves (e.g., contains
cumulative counts).

5.81.2 Changes in Status

Associated with each one of an DDSEntity (p.1201)’s communication status
is a logical StatusChangedFlag. This flag indicates whether that particular
communication status has changed since the last time the status was read by
the application. The way the status changes is slightly different for the Plain
Communication Status and the Read Communication status.

5.81.2.1 Changes in plain communication status

For the plain communication status, the StatusChangedFlag flag is initially
set to FALSE. It becomes TRUE whenever the plain communication status
changes and it is reset to DDS_BOOLEAN_FALSE (p.294) each time the
application accesses the plain communication status via the proper get_<plain
communication status>() operation on the DDSEntity (p.1201).

The communication status is also reset to FALSE whenever the associated lis-
tener operation is called as the listener implicitly accesses the status which is
passed as a parameter to the operation. The fact that the status is reset prior
to calling the listener means that if the application calls the get_<plain commu-
nication status> from inside the listener it will see the status already reset.

An exception to this rule is when the associated listener is the 'nil’ listener. The
‘nil’ listener is treated as a NOOP and the act of calling the 'nil’ listener does
not reset the communication status.

For example, the value of the StatusChangedFlag associated with the
DDS_ REQUESTED DEADLINE MISSED _STATUS (p.317) will be-
come TRUE each time new deadline occurs (which increases the DDS_-
RequestedDeadlineMissedStatus::total_count (p.851) field). The value
changes to FALSE when the application accesses the status via the
corresponding DDSDataReader::get_requested_deadline_missed_status

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4+ API
by Doxygen

314 Module Documentation

(p.1056) method on the proper Entity

5.81.2.2 Changes in read communication status

For the read communication status, the StatusChangedFlag flag is initially set
to FALSE. The StatusChangedFlag becomes TRUE when either a data-sample
arrives or else the DDS_ViewStateKind (p.110), DDS_SampleStateKind
(p-108), or DDS InstanceStateKind (p. 113) of any existing sample changes
for any reason other than a call to FooDataReader::read (p.1391), Foo-
DataReader::take (p. 1392) or their variants. Specifically any of the following
events will cause the StatusChangedFlag to become TRUE:

" The arrival of new data.

" A change in the DDS_InstanceStateKind (p.113) of a contained in-
stance. This can be caused by either:

— The arrival of the notification that an instance has been disposed by:

* the DDSDataWriter (p. 1070) that owns it if OWNERSHIP
(p-347) QoS kind= DDS_EXCLUSIVE_OWNERSHIP -
QOS (p. 348)

* or by any DDSDataWriter (p.1070) if OWNERSHIP
(p-347) QoS kind= DDS_SHARED_OWNERSHIP_QOS
(p. 348)

— The loss of liveliness of the DDSDataWriter (p. 1070) of an instance
for which there is no other DDSDataWriter (p. 1070).

— The arrival of the notification that an instance has been unregistered
by the only DDSDataWriter (p. 1070) that is known to be writing
the instance.

Depending on the kind of StatusChangedFlag, the flag transitions to FALSE
again as follows:

" The DDS_DATA_AVAILABLE_STATUS (p. 318)
StatusChangedFlag becomes FALSE when either the corresponding
listener operation (on_data_available) is called or the read or take oper-

ation (or their variants) is called on the associated DDSDataReader
(p- 1046).

" The DDS_DATA_ON_READERS_STATUS (p. 318)
StatusChangedFlag becomes FALSE when any of the following
events occurs:

— The corresponding listener operation (on_data_on_readers) is called.

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API
by Doxygen

5.81 Status Kinds 315

— The on_data_available listener operation is called on any DDS-
DataReader (p. 1046) belonging to the DDSSubscriber (p. 1337).

— The read or take operation (or their variants) is called on any DDS-
DataReader (p. 1046) belonging to the DDSSubscriber (p. 1337).

See also:

DDSListener (p.1266)
DDSWaitSet (p.1379), DDSCondition (p. 1034)

5.81.3 Define Documentation
5.81.3.1 #define DDS_STATUS_MASK _NONE

No bits are set.

Examples:

HelloWorld_publisher.cxx, and HelloWorld_subscriber.cxx.

5.81.3.2 #define DDS_STATUS_MASK_ALL
All bits are set.

Examples:

HelloWorld_subscriber.cxx.

5.81.4 Typedef Documentation
5.81.4.1 typedef DDS_UnsignedLong DDS_StatusMask

A bit-mask (list) of concrete status types, i.e. DDS_StatusKind (p.316)[].

The bit-mask is an efficient and compact representation of a fixed-length list of
DDS_StatusKind (p.316) values.

Bits in the mask correspond to different statuses. You can choose which changes
in status will trigger a callback by setting the corresponding status bits in this
bit-mask and installing callbacks for each of those statuses.

The bits that are true indicate that the listener will be called back for changes
in the corresponding status.

For example:

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4+ API
by Doxygen

316 Module Documentation

DDS_StatusMask mask = DDS_REQUESTED_DEADLINE_MISSED_STATUS |
DDS_DATA_AVAILABLE_STATUS;
datareader->set_listener(listener, mask);

or

DDS_StatusMask mask = DDS_REQUESTED_DEADLINE_MISSED_STATUS |
DDS_DATA_AVAILABLE_STATUS;
datareader = subscriber->create_datareader(topic,
DDS_DATAREADER_QOS_DEFAULT,
listener, mask);

5.81.5 Enumeration Type Documentation
5.81.5.1 enum DDS_StatusKind

Type for status kinds.

Each concrete DDSEntity (p. 1201) is associated with a set of *Status objects
whose values represent the communication status of that DDSEntity (p. 1201).

The communication statuses whose changes can be communicated to the appli-
cation depend on the DDSEntity (p.1201).

Each status value can be accessed with a corresponding method on the DDSEn-
tity (p.1201). The changes on these status values cause activation of the cor-
responding DDSStatusCondition (p.1323) objects and trigger invocation of
the proper DDSListener (p. 1266) objects to asynchronously inform the appli-
cation.

See also:

DDSEntity (p.1201), DDSStatusCondition (p.1323), DDSListener
(p. 1266)

Enumerator:

DDS_INCONSISTENT_TOPIC_STATUS Another topic exists with
the same name but different characteristics.

Entity:
DDSTopic (p. 1365)
Status:
DDS _InconsistentTopicStatus (p. 738)

Listener:

DDSTopicListener (p. 1376)

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API
by Doxygen

5.81 Status Kinds 317

DDS_OFFERED_DEADLINE_MISSED_STATUS The deadline
that the DDSDataWriter (p.1070) has committed through its
DDS_DeadlineQosPolicy (p.549) was not respected for a specific
instance.

Entity:
DDSDataWriter (p. 1070)
QoS:
DEADLINE (p. 345)
Status:
DDS_OfferedDeadlineMissedStatus (p. 779)
Listener:
DDSDataWriterListener (p.1090)

DDS REQUESTED_DEADLINE_MISSED_STATUS The dead-
line that the DDSDataReader (p.1046) was expecting through its
DDS _DeadlineQosPolicy (p.549) was not respected for a specific
instance.

Entity:
DDSDataReader (p.1046)
QoS:
DEADLINE (p. 345)
Status:
DDS_RequestedDeadlineMissedStatus (p. 851)
Listener:

DDSDataReaderListener (p. 1065)

DDS_OFFERED_INCOMPATIBLE QOS_STATUS A QosPolicy
value was incompatible with what was requested.

Entity:
DDSDataWriter (p. 1070)
Status:
DDS_OfferedIncompatibleQosStatus (p. 781)

Listener:
DDSDataWriterListener (p.1090)

DDS_ REQUESTED_INCOMPATIBLE QOS_STATUS A
QosPolicy value was incompatible with what is offered.

Entity:
DDSDataReader (p.1046)

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4+ API
by Doxygen

318 Module Documentation

Status:
DDS_RequestedIncompatibleQosStatus (p. 853)

Listener:

DDSDataReaderListener (p. 1065)
DDS_SAMPLE LOST_-STATUS A sample has been lost (i.e. was

never received).
Entity:

DDSSubscriber (p. 1337)
Status:

DDS_SampleLostStatus (p. 896)

Listener:
DDSSubscriberListener (p. 1360)

DDS_SAMPLE _REJECTED_STATUS A (received) sample has been
rejected.

Entity:

DDSDataReader (p. 1046)
QoS:

RESOURCE_LIMITS (p. 362)
Status:

DDS_SampleRejectedStatus (p. 897)

Listener:
DDSDataReaderListener (p. 1065)
DDS_DATA_ON_READERS_STATUS New data is available.
Entity:
DDSSubscriber (p. 1337)
Listener:

DDSSubscriberListener (p. 1360)

DDS DATA_AVAILABLE_STATUS One or more new data samples
have been received.

Entity:
DDSDataReader (p.1046)

Listener:

DDSDataReaderListener (p. 1065)

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API
by Doxygen

5.81 Status Kinds 319

DDS_LIVELINESS_LOST_STATUS The liveliness that the DDS-
DataWriter (p.1070) has committed to through its DDS_-
LivelinessQosPolicy (p.755) was not respected, thus DDS-
DataReader (p.1046) entities will consider the DDSDataWriter
(p- 1070) as no longer alive.

Entity:
DDSDataWriter (p. 1070)
QoS:
LIVELINESS (p.350)
Status:
DDS _LivelinessLostStatus (p. 753)
Listener:

DDSDataWriterListener (p. 1090)

DDS_LIVELINESS_CHANGED_STATUS The liveliness of one or
more DDSDataWriter (p.1070) that were writing instances read
through the DDSDataReader (p.1046) has changed. Some DDS-
DataWriter (p. 1070) have become alive or not_alive.

Entity:
DDSDataReader (p.1046)
QoS:
LIVELINESS (p.350)
Status:
DDS_LivelinessChangedStatus (p. 751)
Listener:

DDSDataReaderListener (p. 1065)

DDS PUBLICATION_MATCHED_STATUS The DDS-
DataWriter (p.1070) has found DDSDataReader (p.1046)
that matches the DDSTopic (p. 1365) and has compatible QoS.

Entity:

DDSDataWriter (p. 1070)
Status:

DDS_PublicationMatchedStatus (p. 824)
Listener:

DDSDataWriterListener (p.1090)

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4+ API
by Doxygen

320 Module Documentation

DDS_SUBSCRIPTION_MATCHED_STATUS The DDS-
DataReader (p.1046) has found DDSDataWriter (p.1070)
that matches the DDSTopic (p. 1365) and has compatible QoS.

Entity:

DDSDataReader (p.1046)
Status:

DDS_SubscriptionMatchedStatus (p.917)

Listener:

DDSDataReaderListener (p. 1065)

DDS_RELIABLE WRITER CACHE_CHANGED_STATUS

<<eXtension>> (p. 194) The number of unacknowledged samples
in a reliable writer’s cache has changed such that it has reached a
pre-defined trigger point.
This status is considered changed at the following times: the
cache is empty (i.e. contains no unacknowledge samples),
full (i.e. the sample count has reached the value specified
in DDS_ResourceLimitsQosPolicy::max_samples (p.857)),
or the number of samples has reached a high (see DDS -
RtpsReliableWriterProtocol_t::high_watermark (p.866)) or
low (see DDS_RtpsReliableWriterProtocol_t::low_watermark
(p. 866)) watermark.

Entity:

DDSDataWriter (p. 1070)
Status:

DDS_ReliableWriterCacheChangedStatus (p. 847)

Listener:

DDSDataWriterListener (p. 1090)

DDS_RELIABLE READER ACTIVITY CHANGED_STATUS

<<eXtension>> (p.194) One or more reliable readers has become
active or inactive.
A reliable reader is considered active by a reliable writer with which
it is matched if that reader acknowledges the samples it has been
sent in a timely fashion. For the definition of "timely” in this
case, see DDS_RtpsReliableWriterProtocol_t (p. 863) and DDS _-
ReliableReaderActivityChangedStatus (p. 845).

See also:

DDS_RtpsReliableWriterProtocol_t (p.863)
DDS_ReliableReaderActivityChangedStatus (p. 845)

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API
by Doxygen

5.81 Status Kinds 321

DDS_DATA_WRITER_CACHE_STATUS <<eXtension>>
(p- 194) The status of the writer’s cache.

DDS_DATA WRITER _PROTOCOL_STATUS <<eXtension>>
(p- 194) The status of a writer’s internal protocol related metrics

The status of a writer’s internal protocol related metrics, like the num-
ber of samples pushed, pulled, filtered; and status of wire protocol
traffic.

DDS_DATA READER CACHE_STATUS <<eXtension>>
(p- 194) The status of the reader’s cache.

DDS DATA READER PROTOCOL_STATUS <<eXtension>>
(p- 194) The status of a reader’s internal protocol related metrics

The status of a reader’s internal protocol related metrics, like the num-
ber of samples received, filtered, rejected; and status of wire protocol
traffic.

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4+ API
by Doxygen

322 Module Documentation

5.82 Thread Settings

The properties of a thread of execution.

Classes

" struct DDS_ThreadSettings_t

The properties of a thread of execution.

Defines

" #tdefine DDS_THREAD _SETTINGS _KIND _MASK _DEFAULT
The mask of default thread options.

Typedefs

" typedef DDS_UnsignedLong DDS_ThreadSettingsKindMask
A mask of which each bit is taken from DDS_ThreadSettingsKind (p. 323).

Enumerations

" enum DDS_ThreadSettingsKind {
DDS_THREAD_SETTINGS_FLOATING_POINT,
DDS_THREAD SETTINGS_STDIO,

DDS_THREAD _SETTINGS_REALTIME_PRIORITY,
DDS_THREAD SETTINGS_PRIORITY_ENFORCE }

A collection of flags used to configure threads of execution.

enum DDS_ThreadSettingsCpuRotationKind {
DDS_THREAD SETTINGS_CPU_NO_ROTATION,
DDS_THREAD_SETTINGS_CPU_RR_ROTATION }

Determines how DDS_ThreadSettings_t::cpu_list (p. 923) affects proces-
sor affinity for thread-related QoS policies that apply to multiple threads.

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API
by Doxygen

5.82 Thread Settings 323

5.82.1 Detailed Description

The properties of a thread of execution.

5.82.2 Define Documentation

5.82.2.1 #define DDS_THREAD_SETTINGS_KIND_MASK _-
DEFAULT

The mask of default thread options.

5.82.3 Typedef Documentation

5.82.3.1 typedef DDS_UnsignedLong DDS -
ThreadSettingsKindMask

A mask of which each bit is taken from DDS_ThreadSettingsKind (p. 323).

See also:

DDS_ThreadSettings_t (p.922)

5.82.4 Enumeration Type Documentation
5.82.4.1 enum DDS_ThreadSettingsKind

A collection of flags used to configure threads of execution.

Not all of these options may be relevant for all operating systems.

See also:

DDS_ThreadSettingsKindMask (p. 323)

Enumerator:
DDS_THREAD _SETTINGS_FLOATING_POINT Code executed
within the thread may perform floating point operations.

DDS_THREAD_SETTINGS_STDIO Code executed within the
thread may access standard I/0.

DDS_THREAD_SETTINGS_REALTIME_PRIORITY The
thread will be schedule on a real-time basis.

DDS THREAD_SETTINGS_PRIORITY _ENFORCE Strictly en-
force this thread’s priority.

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4+ API
by Doxygen

324 Module Documentation

5.82.4.2 enum DDS_ThreadSettingsCpuRotationKind

Determines how DDS_ThreadSettings_t::cpu_list (p.923) affects processor
affinity for thread-related QoS policies that apply to multiple threads.

5.82.5 Controlling CPU Core Affinity for RTI Threads

Most thread-related QoS settings apply to a single thread (such as for the
DDS_EventQosPolicy (p.718), DDS_DatabaseQosPolicy (p.479), and
DDS_AsynchronousPublisherQosPolicy (p.453)). However, the thread
settings in the DDS_ReceiverPoolQosPolicy (p.838) control every receive
thread created. In this case, there are several schemes to map M threads to N
processors; the rotation kind controls which scheme is used.

If DDS_ThreadSettings_t::cpu_list (p.923) is empty, the rotation is irrel-
evant since no affinity adjustment will occur. Suppose instead that DDS_-
ThreadSettings_t::cpu_list (p.923) = {0, 1} and that the middleware creates
three receive threads: {A, B, C}. If DDS_ThreadSettings_t::cpu_rotation
(p-923) is DDS_ THREAD SETTINGS_CPU_NO_ROTATION (p. 324),
threads A, B and C will have the same processor affinities (0-1), and the OS
will control thread scheduling within this bound. It is common to denote CPU
affinities as a bitmask, where set bits represent allowed processors to run on.
This mask is printed in hex, so a CPU core affinity of 0-1 can be represented
by the mask 0x3.

If DDS_ThreadSettings_t::cpu_rotation (p.923) is DDS_THREAD -
SETTINGS_CPU_RR_ROTATION (p.324), each thread will be assigned
in round-robin fashion to one of the processors in DDS_ThreadSettings_-
t::cpu_list (p.923); perhaps thread A to 0, B to 1, and C to 0. Note that the
order in which internal middleware threads spawn is unspecified.

Not all of these options may be relevant for all operating systems.

Enumerator:

DDS_ THREAD_SETTINGS_CPU_NO_ROTATION Any thread
controlled by this QoS can run on any listed processor, as determined
by OS scheduling.

DDS_ THREAD_SETTINGS_CPU_RR_ROTATION Threads con-
trolled by this QoS will be assigned one processor from the list in
round-robin order.

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API
by Doxygen

5.83 QoS Policies 325

5.83 QoS Policies

Quality of Service (QoS) policies.

Modules

USER_DATA

Attaches a buffer of opaque data that is distributed by means of Built-in
Topics (p. 41) during discovery.

TOPIC_DATA

Attaches a buffer of opaque data that is distributed by means of Built-in
Topics (p. 41) during discovery.

GROUP_DATA

Attaches a buffer of opaque data that is distributed by means of Built-in
Topics (p. 41) during discovery.

DURABILITY

This QoS policy specifies whether or not RTI Data Distribution Service will
store and deliver previously published data samples to new DDSDataReader
(p- 1046) entities that join the network later.

PRESENTATION

Specifies how the samples representing changes to data instances are pre-
sented to a subscribing application.

DEADLINE

Ezpresses the mazimum duration (deadline) within which an instance is ex-
pected to be updated.

LATENCY _BUDGET

Provides a hint as to the maximum acceptable delay from the time the data
is written to the time it is received by the subscribing applications.

OWNERSHIP

Specifies whether it is allowed for multiple DDSDataWriter (p. 1070) (s)
to write the same instance of the data and if so, how these modifications
should be arbitrated.

OWNERSHIP_STRENGTH

Specifies the value of the strength used to arbitrate among multiple DDS-
DataWriter (p. 1070) objects that attempt to modify the same instance of
a data type (identified by DDSTopic (p. 15365) + key).

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4+ API
by Doxygen

326

Module Documentation

LIVELINESS

Specifies and configures the mechanism that allows DDSDataReader
(p. 1046) entities to detect when DDSDataWriter (p.1070) entities be-
come disconnected or "dead.”.

TIME_BASED_FILTER

Filter that allows a DDSDataReader (p. 1046) to specify that it is inter-
ested only in (potentially) a subset of the values of the data.

PARTITION

Set of strings that introduces a logical partition among the topics visible by
a DDSPublisher (p. 1294) and a DDSSubscriber (p. 1537).

RELIABILITY

Indicates the level of reliability offered/requested by RTI Data Distribution
Service.

DESTINATION_ORDER

Controls the criteria used to determine the logical order among changes made
by DDSPublisher (p.129]) entities to the same instance of data (i.e.,
matching DDSTopic (p. 1565) and key).

HISTORY

Specifies the behavior of RTI Data Distribution Service in the case where the
value of an instance changes (one or more times) before it can be successfully
communicated to one or more eristing subscribers.

DURABILITY _SERVICE

Various settings to configure the external RTI Persistence Service used
by RTI Data Distribution Service for DataWriters with o DDS_-
DurabilityQosPolicy (p.595) setting of DDS_PERSISTENT.--
DURABILITY_QOS (p-342) or DDS_TRANSIENT.--
DURABILITY_QOS (p. 842).

RESOURCE_LIMITS

Controls the amount of physical memory allocated for DDS entities, if dy-
namic allocations are allowed, and how they occur. Also controls memory
usage among different instance values for keyed topics.

TRANSPORT_PRIORITY

This QoS policy allows the application to take advantage of transports that
are capable of sending messages with different priorities.

LIFESPAN

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4 API

by Doxygen

5.83 QoS Policies 327

Specifies how long the data written by the DDSDataWriter (p.1070) is
considered valid.

" WRITER_DATA LIFECYCLE

Controls how a DataWriter handles the lifecycle of the instances (keys) that
it is registered to manage.

" READER DATA LIFECYCLE

Controls how a DataReader manages the lifecycle of the data that it has
received.

" ENTITY_FACTORY

A QoS policy for all DDSEntity (p. 1201) types that can act as factories
for one or more other DDSEntity (p. 1201) types.

Extended Qos Support
<<eXtension>> (p.194) Types and defines used in extended QoS policies.

" TRANSPORT_SELECTION

<<eXtension>> (p.194) Specifies the physical transports a DDS-
DataWriter (p. 1070) or DDSDataReader (p. 1046) may use to send or
receive data.

" TRANSPORT_UNICAST

<<eXtension>> (p.194) Specifies a subset of transports and a port number
that can be used by an Entity to receive data.

" TRANSPORT MULTICAST

<<eXtension>> (p.194) Specifies the multicast address on which a DDS-
DataReader (p.1046) wants to receive its data. It can also specify a port
number, as well as a subset of the available (at the DDSDomainPartici-
pant (p. 1096) level) transports with which to receive the multicast data.

" TRANSPORT MULTICAST MAPPING

<<eXtension>> (p.194) Specifies a list of topic expressions and addresses
that can be used by an Entity with a specific topic name to receive data.

" DISCOVERY

<<eXtension>> (p.194) Specifies the attributes required to discover par-
ticipants in the domain.

" TRANSPORT_BUILTIN
<<eXtension>> (p.194) Specifies which built-in transports are used.

Generated on Sun Oct 23 23:13:26 2011 for RTI Data Distribution Service C++4+ API
by Doxygen

328

Module Documentation

WIRE_PROTOCOL

<<eXtension>> (p.194) Specifies the wire protocol related attributes for
the DDSDomainParticipant (p. 1096).

DATA _READER_RESOURCE_LIMITS

<<eXtension>> (p.194) Various settings that configure how DataReaders
allocate and use physical memory for internal resources.

DATA_WRITER_RESOURCE_LIMITS

<<eXtension>> (p.194) Various settings that configure how a DDS-
DataWriter (p. 1070) allocates and uses physical memory for internal re-
sources.

DATA_ READER_PROTOCOL
<<eXtension>> (p.194) Specifies the DataReader-specific protocol QoS.

DATA_WRITER_PROTOCOL

<<eXtension>> (p.194) Along with DDS_WireProtocolQosPolicy
(p. 1019) and DDS_DataReaderProtocolQosPolicy (p.485), this QoS
policy configures the DDS on-the-network protocol (RTPS).

SYSTEM_RESOURCE_LIMITS

<<eXtension>> (p.194) Configures DomainParticipant-independent re-
sources used by RTI Data Distribution Service.

DOMAIN_PARTICIPANT _RESOURCE_LIMITS

<<eXt