RTI Routing Service

for

RTI Data Distribution Service

Getting Started Guide

Version 2.0

The Global Leader in DDS
Trademarks
Real-Time Innovations and RTI are registered trademarks of Real-Time Innovations, Inc. All other trademarks used in this document are the property of their respective owners.

Copy and Use Restrictions
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form (including electronic, mechanical, photocopy, and facsimile) without the prior written permission of Real-Time Innovations, Inc. The software described in this document is furnished under and subject to the RTI software license agreement. The software may be used or copied only under the terms of the license agreement.

Technical Support
Real-Time Innovations, Inc.
385 Moffett Park Drive
Sunnyvale, CA 94089
Phone: (408) 990-7444
Email: support@rti.com
Website: https://support.rti.com/
Contents

1 Welcome to RTI Routing Service
 1.1 Available Documentation...1-3

2 Installing RTI Routing Service
 2.1 Installing on a UNIX-Based System..2-1
 2.2 Installing on a Windows System...2-2
 2.3 Installing the License File...2-3
 2.4 Uninstalling...2-3

3 Running RTI Routing Service
 3.1 Starting RTI Routing Service..3-1
 3.2 Stopping RTI Routing Service..3-2

4 Using the Examples
 4.1 Example 1 - Routing All Data from One Domain to Another4-2
 4.2 Example 2 - Changing the Data to a Different Topic of the Same Type4-3
 4.3 Example 3 - Changing Some Values in the Data..................................4-4
 4.4 Example 4 - Transforming the Data's Type and Topic with the Assignment Transformation..4-5
 4.5 Example 5 - Transforming the Data with a Custom Transformation........4-6
 4.6 Example 6 - Using Remote Administration..4-7
 4.7 Example 7 - Monitoring...4-11
 4.8 Example 8 - Using the TCP Transport with RTI Routing Service.........4-16
 4.9 Example 9 - Using a File Adapter...4-20
 4.10 Example 10 - Bridging JMS and DDS...4-23
 4.11 Example 11 - Using a Socket Adapter...4-28
Chapter 1 Welcome to RTI Routing Service

Welcome to RTI Routing Service. This component of RTI Data Distribution Service, Professional/Elite Edition is an out-of-the-box solution for integrating disparate and geographically dispersed systems. It scales DDS applications across domains, LANs and WANs, including firewall and NAT traversal. RTI Routing Service also supports DDS-to-DDS bridging by allowing you to make transformations in the data along the way. This allows unmodified DDS applications to communicate even if they were developed using incompatible interface definitions. This is often the case when integrating new and legacy applications or independently developed systems. Using RTI Routing Service Adapter SDK, you can extend RTI Routing Service to interface with non-DDS systems using off-the-shelf or custom developed adapters, including to third-party JMS implementations and legacy code written to the network socket API.

Traditionally, DDS applications can only communicate with applications in the same domain. With RTI Routing Service, you can send and receive data across domains. You can even transform and filter the data along the way! Not only can you change the actual data values, you can change the data’s type. So the sending and receiving applications don’t even need to use the same data structure. You can also control which data is sent by using allow and deny lists.

Simply set up RTI Routing Service to pass data from one domain to another and specify any desired data filtering and transformations. No changes are required in the DDS applications.
Key benefits of RTI Routing Service:

- **It can significantly reduce the time and effort spent integrating and scaling DDS applications across Wide Area Networks and Systems-of-Systems.**

 Many systems today already rely on DDS to distribute their information across a Local Area Network (LAN). However, more and more of these systems are being integrated in Wide Area Networks (WANs). With RTI Routing Service, you can scale DDS real-time publish/subscribe data-distribution beyond the current local networks and make it available throughout a WAN—without making any changes to existing DDS applications. You can take an existing, even deployed system and integrate it with new applications or other existing systems without changing those existing systems.

- **With RTI Routing Service, you can build modular systems out of existing systems.** Data can be contained in private domains within subsystems and you can designate that only certain “global topics” can be seen across domains. The same mechanism controls the scope of discovery. Both application-level and discovery traffic can be scoped, facilitating scalable designs.

- **RTI Routing Service provides secure deployment across multiple sites.** You can partition networks and protect them with firewalls and NATS and precisely control the flow of data between the network segments.

- **It allows you to manage the evolution of your data model at the subsystem level.** You can use RTI Routing Service to transform data on the fly, changing topic names, type definitions, QoS, etc., seamlessly bridging different generations of DDS topic definitions.

- **RTI Routing Service provides features for development, integration and testing.** Multiple sites can each locally test and integrate their core application, expose selected topics of data, and accept data from remote sites to test integration connectivity, topic compatibility and specific use-cases.

- **It connects remotely to live, deployed systems** so you can perform live data analytics, fault condition analysis, and data verification.

- **RTI Routing Service Adapter SDK allows you to quickly build and deploy bridges to integrate DDS and non-DDS systems.** This can be done in a fraction of the time required to develop completely custom solutions. Bridges automatically inherit advanced RTI Data Distribution Service capabilities, including automatic discovery of applications; data transformation and filtering; data lifecycle management and support across operating systems; programming languages and network transports.
RTI Routing Service Adapter SDK offers an out-of-the-box solution for interfacing with third-party protocols and technology. It includes prebuilt adapters that can be used out-of-the-box to interface with third-party Java Message Service (JMS) providers or legacy code written to the network socket API. Adapters include source code so they can be easily modified to meet application-specific requirements or serve as a template for quick creation of new custom adapters.

Quickly build and deploy bridges between natively incompatible protocols and technologies using RTI Data Distribution Service.

1.1 Available Documentation

RTI Routing Service documentation includes:

- Getting Started Guide (RTI_Routing_Service_GettingStarted.pdf)—Highlights the benefits of RTI Routing Service. It provides installation and startup instructions, and walks you through several examples so you can quickly see the benefits of using RTI Routing Service.
Release Notes (RTI_Routing_Service_ReleaseNotes.pdf)—Describes system requirements and compatibility, as well as any version-specific changes and known issues.

If the optional RTI Routing Service Adapter SDK is installed, you will also have the following documents:

RTI Routing Service Adapter SDK Installation Guide (RTI_Routing_Service_AdapterSDK_InstallationGuide.pdf)—Describes installation instructions for RTI Routing Service Adapter SDK.

RTI Routing Service Adapter SDK Release Notes (RTI_Routing_Service_AdapterSDK_ReleaseNotes.pdf)—Describes system requirements and compatibility, as well as any version-specific changes and known issues for RTI Routing Service Adapter SDK.
Chapter 2 Installing RTI Routing Service

RTI Routing Service is included with RTI Data Distribution Service, Professional Edition and RTI Data Distribution Service, Elite Edition. Use the installation instructions in this chapter only if you are installing RTI Routing Service independently (not part of these editions).

This chapter describes:

- Installing on a UNIX-Based System (Section 2.1)
- Installing on a Windows System (Section 2.2)
- Installing the License File (Section 2.3)
- Uninstalling (Section 2.4)

For a list of supported system architectures, please see the Release Notes.

2.1 Installing on a UNIX-Based System

The distribution is packaged in a .tar.gz file. Unpack it as described below. You do not need to be logged in as root during installation.

1. Make sure you have GNU’s version of the tar utility (which handles long file names). On Linux systems, this is the default tar executable. On Solaris systems, use gtar.

2. Create a directory for RTI Routing Service. We will assume that you want to install under /opt/rti/ (you may replace references to /opt/rti/ with the directory of your choice).
3. Move the downloaded file into your newly created directory. In these instructions, we assume your distribution file is named RTI_Routing_Service-<version>-i86Linux2.6gcc3.4.3.tar.gz. Your filename will be different depending on your version and architecture.

4. Extract the distribution from the compressed files. For example:

   ```
   gunzip RTI_Routing_Service-2.0.x-i86Linux2.6gcc3.4.3.tar.gz
   gtar xvf RTI_Routing_Service-2.0.x-i86Linux2.6gcc3.4.3.tar
   ```

 The names of these files will differ based on the name of your version and target platform.

 Using our example path, you will end up with `/opt/rti/RTI_Routing_Service_2.0.x`.

5. See Installing the License File (Section 2.3).

2.2 Installing on a Windows System

The distribution is packaged in a .zip file. Unpack it as described below. Depending on your version of Windows and where you want to expand these files, your user account may or may not require administrator privileges.

1. Create a directory for RTI Routing Service. We will assume that you want to install under `C:\Program Files\RTI` (you may replace references to `C:\Program Files\RTI` with the directory of your choice).

2. Move the downloaded files into your newly created directory.

3. Extract the distribution from the compressed files. You will need a zip file utility such as WinZip® to help you.

 Using our example path, you will end up with `C:\Program Files\RTI\RTI_Routing_Service_2.0.x`.

4. See Installing the License File (Section 2.3).
2.3 Installing the License File

If your RTI Routing Service distribution requires a license file, you will receive one via email after you download the software.

Save the license file in any location of your choice. When RTI Routing Service starts, it will look in these locations until it finds a valid license:

1. The file specified with the -licenseFile option when you start RTI Routing Service from the command-line.
2. The file specified in the environment variable RTI_LICENSE_FILE, which you may set to point to the full path of the license file, including the filename (for example, C:\RTI\my_rti_license.dat).
3. The file rti_license.dat in the current working directory.
4. The file rti_license.dat in the directory specified by the environment variable NDDSHOME.

If you have any questions about license installation, please contact support@rti.com.

2.4 Uninstalling

To uninstall RTI Routing Service, simply remove the directory where you installed the files.
Chapter 3 Running RTI Routing Service

This chapter describes:

- Starting RTI Routing Service (Section 3.1)
- Stopping RTI Routing Service (Section 3.2)

3.1 Starting RTI Routing Service

RTI Routing Service runs as a separate application. The script to run the executable is located in `<RTI Routing Service installation directory>/scripts`.

RTI Routing Service supports loading Java adapters. If your configuration is set up to load a Java adapter, follow these steps:

1. **On Windows Systems**: To use a Java adapter, you must have the Visual Studio 2005 service pack 1 redistributable libraries. You can obtain this package from Microsoft or RTI (see the RTI Data Distribution Service Release Notes for details).

2. Make sure Java 1.5 or higher is available.

3. Make sure you add the directory of the Java Virtual Machine dynamic library to your environment variable: LD_LIBRARY_PATH (on UNIX-based systems) or Path (on Windows systems). For example:

   ```bash
   setenv LD_LIBRARY_PATH \n   ${LD_LIBRARY_PATH}:/local/java/jdk1.5.0_07/jre/lib/i386/client
   ```

To start RTI Routing Service, enter:

   ```bash
   cd <installation directory for RTI Routing Service>
   ```
scripts/rtiroutingservice [options]

Example:

```
cd <installation directory for RTI Routing Service>
scripts/rtiroutingservice \ 
   -cfgFile example/shapes/topic_bridge.xml -cfgName example
```

Table 3.1 describes the command-line options.

3.2 Stopping RTI Routing Service

To stop RTI Routing Service, press `Ctrl-c`. RTI Routing Service will perform a clean shut-down.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>-appName <name></code></td>
<td>Assigns a name to the execution of the RTI Routing Service. Remote commands and status information will refer to the routing service using this name. See the RTI Routing Service User’s Manual for more information. In addition, the name of DomainParticipants created by RTI Routing Service will be based on this name. Default: The name given with <code>-cfgName</code> if present, otherwise it is “RTI_Routing_Service”.</td>
</tr>
<tr>
<td><code>-cfgFile <file></code></td>
<td>Specifies the XML configuration file. The contents of the XML file are described in the RTI Routing Service User’s Manual. In addition to the file provided using this command-line option, the router can load other XML files—see the RTI Routing Service User’s Manual.</td>
</tr>
<tr>
<td><code>-cmdName <file></code></td>
<td>Specifies the name of a file that contains commands to be executed. A command file may contain any number of commands, one per line, exactly as they would be entered in the shell prompt. See also: <code>-sleep</code></td>
</tr>
</tbody>
</table>
3.2 Stopping RTI Routing Service

Table 3.1 **RTI Routing Service Command-line Options**

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>--cfgName</code></td>
<td>This name is used to find the matching <code><routing_service></code> tag in the configuration file. It is required unless both <code>--remoteAdministrationDomainId</code> and <code>--noAutoStart</code> are used, in which case no configuration is loaded at start-up and RTI Routing Service will simply wait to be configured remotely.</td>
</tr>
<tr>
<td><code>--domainIdBase <ID></code></td>
<td>Sets the base domain ID. This value is added to the domain IDs in the configuration file. For example, if you set <code>--domainIdBase</code> to 50 and use domain IDs 0 and 1 in the configuration file, then the RTI Routing Service will use domains 50 and 51. Default: 0</td>
</tr>
<tr>
<td><code>--help</code></td>
<td>Displays help information.</td>
</tr>
<tr>
<td><code>--licenseFile <file></code></td>
<td>Specifies the license file (path and filename). Only applicable to licensed versions of RTI Routing Service. If not specified, RTI Routing Service looks for the license as described in Installing the License File (Section 2.3) in the Getting Started Guide.</td>
</tr>
<tr>
<td><code>--identifyExecution</code></td>
<td>Appends the host name and process ID to the service name provided with the <code>--appName</code> option. This helps ensure unique names for remote administration and monitoring. For example: MyRoutingService_myhost_20024</td>
</tr>
<tr>
<td><code>--maxObjectsPerThread <int></code></td>
<td>Parameter for the DomainParticipantFactory.</td>
</tr>
<tr>
<td><code>--noAutoEnable</code></td>
<td>Starts RTI Routing Service in a disabled state. Use this option if you plan to enable RTI Routing Service remotely, as described in the User's Manual. This option overwrites the value of the <code>enable</code> attribute in the <code><routing_service></code> tag.</td>
</tr>
</tbody>
</table>
Table 3.1 RTI Routing Service Command-line Options

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>-remoteAdministrationDomainId <ID></code></td>
<td>Enables remote administration and sets the domain ID for remote communication. When remote administration is enabled, RTI Routing Service will create a DomainParticipant, Publisher, Subscriber, DataWriter, and DataReader in the designated domain. The QoS values for these entities are described in the RTI Routing Service User's Manual. This option overwrites the value of the tag <code><domain_id></code> within a <code><administration></code> tag. (See the RTI Routing Service User’s Manual for information on configuring remote access). Default: remote administration is not enabled unless it is enabled from the XML file.</td>
</tr>
<tr>
<td><code>-remoteMonitoringDomainId <ID></code></td>
<td>Enables remote monitoring and sets the domain ID for status publication. When remote monitoring is enabled, RTI Routing Service will create one DomainParticipant, one Publisher, five DataWriters for data publication (one for each kind of entity), and five DataWriters for status publication (one for each kind of entity). The QoS values for these entities are described in the RTI Routing Service User’s Manual. This option overwrites the value of the tag <code><domain_id></code> within a <code><monitoring></code> tag. (See the RTI Routing Service User’s Manual for information on configuring remote monitoring). Default: remote monitoring is not enabled unless it is enabled from the XML file.</td>
</tr>
<tr>
<td><code>-sleep <seconds></code></td>
<td>Sleeps for x seconds before executing the next command. This is useful when issuing commands from a command file (see <code>-cmdName</code>).</td>
</tr>
<tr>
<td><code>-stopAfter <sec></code></td>
<td>Stops the service after the specified number of seconds.</td>
</tr>
<tr>
<td><code>-use42eAlignment</code></td>
<td>Enables compatibility with RTI Data Distribution Service 4.2e. This option should be used when compatibility with 4.2e is required and the topic data types contain double, long long, unsigned long long, or long double members. Default: disabled</td>
</tr>
</tbody>
</table>

3-4
3.2 Stopping RTI Routing Service

3. Running RTI Routing Service

- **-verbosity <n>**
 - Controls what type of messages are logged:
 - 0 - Silent
 - 1 - Exceptions (DDS and service) (default)
 - 2 - Warnings (service)
 - 3 - Information (service)
 - 4 - Warnings (DDS and service)
 - 5 - Tracing (service)
 - 6 - Tracing (DDS and service)
 - Each verbosity level, \(n \), includes all the verbosity levels smaller than \(n \).

- **-version**
 - Prints the RTI Routing Service version number.

Table 3.1 RTI Routing Service Command-line Options

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
</table>
| -verbosity <n> | Controls what type of messages are logged:
0 - Silent
1 - Exceptions (DDS and service) (default)
2 - Warnings (service)
3 - Information (service)
4 - Warnings (DDS and service)
5 - Tracing (service)
6 - Tracing (DDS and service)
Each verbosity level, \(n \), includes all the verbosity levels smaller than \(n \). |
| -version | Prints the RTI Routing Service version number. |
Chapter 4 Using the Examples

This chapter describes several examples, all of which use RTI Shapes Demo to publish and subscribe to topics which are colored moving shapes (squares, circles, triangles):

- Example 1 - Routing All Data from One Domain to Another (Section 4.1)
- Example 2 - Changing the Data to a Different Topic of the Same Type (Section 4.2)
- Example 3 - Changing Some Values in the Data (Section 4.3)
- Example 4 - Transforming the Data’s Type and Topic with the Assignment Transformation (Section 4.4)
- Example 5 - Transforming the Data with a Custom Transformation (Section 4.5)
- Example 6 - Using Remote Administration (Section 4.6)
- Example 7 - Monitoring (Section 4.7)
- Example 8 - Using the TCP Transport with RTI Routing Service (Section 4.8)
- Example 9 - Using a File Adapter (Section 4.9)
- Example 10 - Bridging JMS and DDS (Section 4.10)
- Example 11 - Using a Socket Adapter (Section 4.11)

In each example, you can start all the applications on the same computer or on different computers in your network.

If you don’t have RTI Shapes Demo installed already, you should download and install it from RTI’s Downloads page (www.rti.com/downloads) or the RTI Customer Portal, accessible from www.rti.com/support (the latter requires an account name and password).

If you are not already familiar with how to start RTI Shapes Demo and change its domain ID, please see the RTI Shapes Demo User’s Manual for details.

Note: If you run RTI Shapes Demo and RTI Routing Service on different machines and these machines do not communicate over multicast, you will have to set the environment variable NDDS_DISCOVERY_PEERS to enable communication. For example,
assume that you run *RTI Routing Service* on Host 1 and *RTI Shapes Demo* on Host 2 and Host 3. In this case, the environment variable would be set as follows:

Host 1: set NDDS_DISCOVERY_PEERS= <host2>, <host3> (on Windows systems)

 setenv NDDS_DISCOVERY_PEERS <host2>, <host3> (on UNIX-based systems)

Host 2: set NDDS_DISCOVERY_PEERS=<host1>

Host 3: set NDDS_DISCOVERY_PEERS=<host1>

4.1 Example 1 - Routing All Data from One Domain to Another

This example uses the default configuration file\(^1\) for *RTI Routing Service*, which routes all data published on domain 0 to subscribers on domain 1.

1. Start *RTI Shapes Demo* on domain 0 (the default domain). We'll call this the Publishing Demo.
2. Start a second copy of *RTI Shapes Demo* on domain 1. We'll call this the Subscribing Demo.
3. In the Publishing Demo, publish some Squares, Circles, and Triangles.
4. In the Subscribing Demo, subscribe to Squares, Circles and Triangles.

 Notice that the Subscribing Demo does not receive any shapes. Since we haven’t started *RTI Routing Service* yet, data from domain 0 isn’t routed to domain 1.
5. Start *RTI Routing Service* by entering the following in a command shell:

 cd <installation directory for RTI Routing Service>
 scripts/rtiroutingservice -cfgName default

 Now you should see all the shapes in the Subscribing Demo.

 You should see that the Subscribing Demo stops receiving shapes.

\(^1\) <installation directory for RTI Routing Service>/resource/xml/RTI_ROUTING_SERVICE.xml
Additionally, you can start RTI Routing Service (Step 5) with the following parameters:

- **-verbosity 3**, to see messages from RTI Routing Service, including events that have triggered the creation of routes.
- **-domainIdBase X**, to use domains X and X+1 instead of 0 and 1 (in this case, you need to change the domain IDs used by RTI Shapes Demo accordingly). This option adds X to the domain IDs in the configuration file.

4.2 Example 2 - Changing the Data to a Different Topic of the Same Type

In this example, the routing service receives samples of topic Square and republishes them as samples of topic Circle.

1. Start RTI Shapes Demo on domain 0 (the default domain). We'll call this the Publishing Demo.
2. Start a second copy of RTI Shapes Demo on domain 1. We'll call this the Subscribing Demo.
3. Start RTI Routing Service by entering the following in a command shell:

   ```bash
   cd <installation directory for RTI Routing Service>
   scripts/rtiroutingservice \
   -cfgFile example/shapes/topic_bridge.xml -cfgName example
   ```
4. In the Publishing Demo (domain 0), publish some Squares, Circles and Triangles.
5. In the Subscribing Demo (domain 1), subscribe to Squares, Circles and Triangles.
 You will see that all the squares (and only squares) from domain 0 are republished as circles on domain 1.
7. To see how this example is configured, review the contents of example/shapes/topic_bridge.xml.
8. Try writing your own topic route that republishes triangles on domain 0 to circles on domain 1. Create some Triangle publishers and a Circle subscriber on the respective RTI Shapes Demo windows.
4.3 Example 3 - Changing Some Values in the Data

So far, we have learned how to route samples from one topic to another topic of the same data type. Now we will see how to change the value of some fields in the samples and republish them.

1. Start RTI Shapes Demo on domain 0 (the default domain). We’ll call this the Publishing Demo.
2. Start a second copy of RTI Shapes Demo on domain 1. We’ll call this the Subscribing Demo.
3. Start RTI Routing Service by entering the following in a command shell:

 cd <installation directory for RTI Routing Service>
 scripts/rtiroutingservice \
 -cfgFile example/shapes/topic_bridge_w_transf1.xml \
 -cfgName example

4. In the Publishing Demo (domain 0), publish some Squares.
5. In the Subscribing Demo (domain 1), subscribe to Squares.
 In the Subscribing Demo, notice that the (x,y) coordinates of the shapes are inverted from what appears in the Publishing Demo.
7. To see how this example is configured, review the contents of example/shapes/topic_bridge_w_transf1.xml.
8. Try changing the transformation to assign the output shapesize to the input x.
4.4 Example 4 - Transforming the Data’s Type and Topic with the Assignment Transformation

This example shows how to transform the data topic and type. We will use the rtiddsspy utility from RTI Data Distribution Service to verify the result.

1. Start RTI Shapes Demo on domain 0 (the default domain). We'll call this the Publishing Demo.

2. Start RTI Routing Service by entering the following in a command shell:

   ```
   cd <installation directory for RTI Routing Service>
   scripts/rtiroutingservice \ 
   -cfgFile example/shapes/topic_bridge_w_transf2.xml \ 
   -cfgName example
   ```

3. In the Publishing Demo (domain 0), publish some Squares.

4. We will use the rtiddsspy utility from RTI Data Distribution Service to verify the transformation of the data topic and type. If you have the RTI Data Distribution Service middleware libraries and utilities installed, run these commands:

   ```
   rtiddsspy -domainId 0 -printSample
   rtiddsspy -domainId 1 -printSample
   ```

 rtiddsspy is a utility provided with RTI Data Distribution Service; it monitors publications on any RTI Data Distribution Service domain.

 You will notice that the publishing samples received by rtiddsspy for domain 0 is of type ShapeType and topic Square. The subscribing samples received by rtiddsspy for domain 1 is of type Point and topic Position. Notice that the two data structures are different.

5. Stop RTI Routing Service by pressing Ctrl-c.

6. To see how this example is configured, review the contents of example/shapes/topic_bridge_w_transf2.xml.
4.5 Example 5 - Transforming the Data with a Custom Transformation

The previous example used a built-in transformation. Now we will use our own transformation between shapes. RTI Routing Service allows loading shared libraries that implement the transformation API to create custom transformations. To build a custom transformation, you must have the RTI Data Distribution Service middleware libraries installed.

1. Compile the transformation in example/shapes/transformation/src:
 - On UNIX-based systems:
 a. Set the environment variable NDDSHOME as described in the RTI Data Distribution Service Getting Started Guide.
 b. Enter:
        ```
cd <installation directory for RTI Routing Service>
cd example/shapes/transformation/make
```
 c. Enter:
        ```
gmake -f Makefile.<arch>
```
 The transformation shared library, libshapestransf.so, will be copied to <installation directory for RTI Routing Service>bin/<architecture>.
 - On Windows systems:
 a. Set the environment variable NDDSHOME as described in the RTI Data Distribution Service Getting Started Guide.
 b. Open the Visual Studio solution under example/shapes/transformation/windows. For example, if you are using Visual Studio 2005, open shapestransf-vs2005.sln.
 c. Build the solution.
 The transformation shared library, shapestransf.dll, will be copied to <installation directory for RTI Routing Service>\bin<architecture>.

2. Run RTI Shapes Demo and RTI Routing Service as in the previous examples:
 a. Start RTI Shapes Demo on domain 0 (the default domain). We'll call this the Publishing Demo.
 b. Start a second copy of RTI Shapes Demo on domain 1. We'll call this the Subscribing Demo.
c. Start RTI Routing Service by entering the following in a command shell:

\[
\text{cd } <\text{installation directory for RTI Routing Service}> \\
\text{scripts/rtiroutingservice } \\
-\text{cfgFile example/shapes/topic_bridge_w_custom_transf.xml } \\
-\text{cfgName example}
\]

3. In the Publishing Demo (domain 0), publish some Squares.

4. In the Subscribing Demo (domain 1), subscribe to Squares.
 Notice that squares on domain 1 have only two possible values for ‘x’.

5. Stop RTI Routing Service by pressing Ctrl-c.

6. To see how this example is configured, review the contents of example/shapes/topic_bridge_w_custom_transf.xml. Notice how the transformation is instantiated inside the topic route.

7. Change the fixed ‘x’ values for the Squares in the configuration file and restart RTI Routing Service.

8. Stop RTI Routing Service by pressing Ctrl-c.

9. Edit the source code to make the transformation multiply the value of the field by the given integer constant instead of assigning the constant.

 Hint: look for the function ShapesTransformationPlugin_createSample(), called from ShapesTransformation_transform() and use DDS_DynamicData_get_long() before DDS_DynamicData_set_long().

10. Recompile the transformation (the new shared library will be copied automatically) and run RTI Routing Service as before.

4.6 Example 6 - Using Remote Administration

In this example, we will configure RTI Routing Service remotely. We won’t see data being routed until we remotely enable an auto topic route after the application is started. Then we will change a QoS value and see that it takes effect on the fly.

1. Start RTI Shapes Demo on domain 0 (the default domain). We’ll call this the Publishing Demo.

2. Start a second copy of RTI Shapes Demo on domain 1. We’ll call this the Subscribing Demo.
3. Start *RTI Routing Service* by entering the following in a command shell:

   ```
   cd <installation directory for RTI Routing Service>  
   scripts/rtiroutingservice  
      -cfgFile example/shapes/administration.xml  
      -appName MyRoutingService -cfgName example  
   ```

4. In the Publishing Demo (domain 0), publish some Squares, Circles and Triangles.

5. In the Subscribing Demo (domain 1), subscribe to Squares, Circles and Triangles.

 Notice that no data is routed to domain 1.

6. On a different or the same machine, start the *RTI Routing Service* shell:

   ```
   cd <installation directory for RTI Routing Service>  
   scripts/rtirssh -domainId 0  
   ```

 Notes:

 - We use domain 0 in the shell because *RTI Routing Service* is configured in `administration.xml` to receive remote commands on that domain. You could have started *RTI Routing Service* with the `-remoteAdministrationDomainId X` command-line option and then used domain X for the shell.

7. In the shell, enter the following command:

   ```
   > enable MyRoutingService RemoteConfigExample::Session::Shapes  
   ```

 Notice that the shapes are now received on domain 1. The above command consists of two parts: the name of the routing service, which you gave when you launched the application with the option `-appName`, and the name of the entity you wanted to enable. That name is formed by appending its parent entities’ names starting from the domain route as defined in the configuration file `administration.xml`.

 Note that you could have run *RTI Routing Service* without `-appName`. The name would have been the one provided with `-cfgName` (“example”). You could also have used `-identifyExecution` to generate the name based on the host and application ID. In this case, you would have used this automatic name in the shell.

8. Examine the file `example/shapes/time_filter_qos.xml` on the routing service machine. It contains an XML snippet that defines a QoS value for an auto topic route’s DataReader. Execute the following command in the shell:

   ```
   > update MyRoutingService RemoteConfigExample::Session::Shapes  
   ```
4.6 Example 6 - Using Remote Administration

`example/shapes/time_filter_qos.xml`

Note: The path to the XML file in this example is relative to the working directory from which you run RTI Routing Service.

Notice that the receiving application only gets shapes every 2 seconds. The auto topic route has been configured to read (and forward) samples with a minimum separation of 2 seconds.

RTI Routing Service can be configured remotely using files located on the routing service machine or the shell machine. In step 9 you will edit the configuration files on both machines. Step 10 shows how to specify which of the two configuration files you want to use. *If you are running the shell and RTI Routing Service on the same machine, skip steps 9 and 10.*

9. Edit the XML configuration files on both machines:
 a. In `example/shapes/time_filter_qos.xml` on the routing service machine, change the minimum separation to 0 seconds.
 b. In `example/shapes/time_filter_qos.xml` on the shell machine, change the minimum separation to 5 seconds.

10. Run the following commands in the shell:
 a. Enter the following command. Notice the use of `remote` at the end—this means you want to use the XML file on the routing service machine (the remote machine, which is the default if nothing specified).
      ```shell
      > update MyRoutingService RemoteConfigExample::Session::Shapes example/shapes/time_filter_qos.xml remote
      **Note:** The path to the XML file in this example is relative to the working directory from which you run RTI Routing Service.
      ```
 Since no time filter applies, the shapes are received as they are published.
 b. Enter the following command. This time we use `local` at the end—this means you want to use the XML file on the shell machine (the local machine).
      ```shell
      > update MyRoutingService RemoteConfigExample::Session::Shapes example/shapes/time_filter_qos.xml local
      **Note:** The path to the XML file in this example is relative to the working directory from which you run the RTI Routing Service shell.
      You will see that now the shapes are only received every 5 seconds.
c. Enter the following command. Once again, we use `remote` at the end to switch back to the XML file on the routing service machine.

```bash
> update MyRoutingService RemoteConfigExample::Session::Shapes example/shapes/time_filter_qos.xml remote
```

Shapes are once again received as they are published.

11. Disable the auto topic route again by entering:

```bash
> disable MyRoutingService RemoteConfigExample::Session::Shapes
```

The shapes are no longer received on Domain 1.

**Note:** At this point, you could still update the auto topic route’s configuration. You could also change immutable QoS values, since the DataWriter and DataReader haven’t been created yet. These changes would take effect the next time you called `enable`.

12. Run these commands in the shell and see what happens after each one:

```bash
> enable MyRoutingService RemoteConfigExample::Session::SquaresToCircles
> disable MyRoutingService RemoteConfigExample::Session::SquaresToCircles
> enable MyRoutingService RemoteConfigExample::Session::SquaresToTriangles
```

These commands change the output topic that is published after receiving the input Square topic. As you can see, you can use the shell to switch topic routes after **RTI Routing Service** has been started.

13. Stop the shell by running this command in the shell:

```bash
> exit
```

14. Stop **RTI Routing Service** by pressing **Ctrl-c**.
4.7 Example 7 - Monitoring

With RTI Routing Service you can publish status information. The monitoring configuration is quite flexible and allows selecting the entities that you want to monitor and how often they should publish their status.

1. Start RTI Shapes Demo on domain 0 (the default domain). We’ll call this the Publishing Demo.

2. Start a second copy of RTI Shapes Demo on domain 1. We’ll call this the Subscribing Demo.

3. In the Publishing Demo (domain 0), publish two Squares, two Circles, and two Triangles.

4. In the Subscribing Demo (domain 1), subscribe to Squares, Circles and Triangles.

5. Start RTI Routing Service by entering the following in a command shell:

   cd <installation directory for RTI Routing Service>
   scripts/rtiroutingservice \
   -cfgFile example/shapes/monitoring.xml -cfgName example \ 
   -appName MyRoutingService

   This configuration file routes Squares and Circles using two different topic routes.

6. Now you can subscribe to the monitoring topics (see Chapter 5 in the User’s Manual for more information). You can do it in your own application, or using an RTI utility, such as RTI Spreadsheet Add-in for Microsoft Excel or rtiddsspy. We will use rtiddsspy. If you have RTI Data Distribution Service installed, run this command:

   rtiddsspy -domainId 2 -printSample

   rtiddsspy is a utility provided with RTI Data Distribution Service; it monitors publications on any RTI Data Distribution Service domain.

   If you have RTI Spreadsheet Add-in for Microsoft Excel, you can visualize the monitoring information in Microsoft Excel on Windows systems. In that case, open example/shapes/monitoring_visualization.xls.

   Note: We use domain 2 in rtiddsspy because RTI Routing Service is configured in monitoring.xml to publish status information on that domain. You could have started RTI Routing Service with the -remoteMonitoringDomainId X command-line option and then used domain X for rtiddsspy.
7. Depending on the publication period of the entity in the XML file we used, you will receive status samples at different rates. In rtiddspy, check the statistics about the two topic routes we are using. We will focus on the input samples per second:

```
routing_service_name: "MyRoutingService"
domain_route_name: "DomainRoute"
session_name: "Session"
name: "Squares"
input_samples_per_s:
 publication_period_metrics:
 period_ms: <d0070000000000000000C>
 count: <400000000000000000000C>
 mean: 31.982072
 minimum: 51.935129
 maximum: 31.963033
 std_dev: 0.015352
 historical_metrics:
```

```
routing_service_name: "MyRoutingService"
domain_route_name: "DomainRoute"
session_name: "Session"
name: "Circles"
input_samples_per_s:
 publication_period_metrics:
 period_ms: <3813000000000000000000>
 count: <a10000000000000000000>
 mean: 32.142143
 minimum: 31.936129
 maximum: 32.394132
 std_dev: 0.396236
 historical_metrics:
```

The number of samples per second in our case is 32. That value depends on the publication rate of RTI Shapes Demo, configurable with the option `-pubInterval <milliseconds between writes>`. In our example we started the Publishing Demo with `-pubInterval 64`.
Using RTI Spreadsheet Add-in for Microsoft Excel, select the Topic Route worksheet (from the tabs at the bottom of Excel); you should be able to see the following bar chart, among other data and figures:

8. Create two additional Square publishers on the publishing demo (domain 0).
9. Check rtiddspy again for new status information:

```python
routing_service_name: "MyRoutingService"
domain_route_name: "DomainRoute"
session_name: "Session"
name: "Squares"
input_samples_per_s:
publisher_period_metrics:
 period_ms: <d007000000000000>
 count: <800000000000000>
 mean: 63,872,57
 minimum: 63,872,57
 maximum: 63,872,57
 std_dev: 0,000001
historical_metrics:

routing_service_name: "MyRoutingService"
domain_route_name: "DomainRoute"
session_name: "Session"
name: "Circles"
input_samples_per_s:
publisher_period_metrics:
 period_ms: <d013000000000000>
 count: <800000000000000>
 mean: 31,952,072
 minimum: 31,904,287
 maximum: 32,000,000
 std_dev: 0,035670
historical_metrics:
```

In the topic route Squares we are receiving double amount of data.
Also look at the status of the domain route:

```plaintext
routing_service_name: "MyRoutingService"
name: "DomainRoute"
input_samples_per_s:
 publication_period_metrics:
 period_usec: <beb200000000000>
 count: <bd000000000000>
 mean: 47.759258
 minimum: 30.353824
 maximum: 63.383066
 std_dev: 0.459341
historical_metrics:
```

It contains an aggregation of the two contained topic routes, giving us a mean of nearly 48 samples per second.

We can update the monitoring configuration at run time using the remote administration feature. In the configuration file, we enabled remote administration on domain 0.

10. On a different or the same machine, start the RTI Routing Service shell:

   ```bash
 > cd <installation directory for RTI Routing Service>
 > scripts/rtirssh -domainId 0
   ```

11. We are receiving the status of the topic route Circles every five seconds. To receive it more often, use the following command:

   ```bash
 > update MyRoutingService DomainRoute::Session::Circles
 topic_route.entity_monitoring.status_publication_period.sec=2
   ```

12. In some cases, you might want to know only about one specific topic route. If you only want to know about the topic route Circles but not Squares, you can disable monitoring for Squares:

   ```bash
 > update MyRoutingService DomainRoute::Session::Squares
 topic_route.entity_monitoring.enabled=false
   ```

13. To enable it again, enter:

   ```bash
 > update MyRoutingService DomainRoute::Session::Squares
 topic_route.entity_monitoring.enabled=true
   ```

14. If you are no longer interested in monitoring this routing service, you can completely disable it with the following command:

   ```bash
 > update MyRoutingService routing_service.monitoring.enabled=false
   ```

   Now you won’t receive any more status samples.

15. You can enable it again any time by entering:

   ```bash
 > update MyRoutingService routing_service.monitoring.enabled=true
   ```

16. Stop rtiddsspy by pressing Ctrl-c.
17. Stop the shell:
   > exit

18. Stop RTI Routing Service by pressing Ctrl-c.
4.8 Example 8 - Using the TCP Transport with RTI Routing Service

This example shows how to use RTI Routing Service to bridge data between different LANs over TCP. RTI Routing Service will act as the gateway in a LAN with which other DDS applications can communicate to send or receive data. Chapter 7 of the RTI Routing Service User’s Manual has more information about scenarios and detailed configuration parameters.
You will run two copies of RTI Routing Service. One copy will run on a machine that is behind a firewall/router with a public IP (First Peer); the other will run on a machine in another LAN (Second Peer).

**On the First Peer (behind a firewall/router with a public IP):**

1. In the First Peer’s network, configure the firewall to forward the TCP ports used by RTI Routing Service.

   In this example, we will use port 7400.

   You do not need to configure your firewall for every single DDS application in your LAN; doing it just once for RTI Routing Service will allow other applications to communicate through the firewall.

2. Include the Second Peer’s public IP address and port in the NDDS_DISCOVERY_PEERS environment variable.

   For example, on a UNIX-based system:
   ```
 setenv NDDS_DISCOVERY_PEERS
tcpv4_wan://<server's public IP address>:<port>
   ```

   On a Windows system:
   ```
 set NDDS_DISCOVERY_PEERS=
tcpv4_wan://<server's public IP address>:<port>
   ```

   When you configure NDDS_DISCOVERY_PEERS, make sure to use a transport class prefix (tcpv4_wan, udpv4, shmem) for each entry. (See Section 12.2 in the RTI Data Distribution Service User’s Manual for details on formatting addresses in NDDS_DISCOVERY_PEERS.)

   For example:
   ```
 setenv NDDS_DISCOVERY_PEERS tcpv4_wan://10.10.1.10:7400,\udpv4://192.168.0.1,udpv4://192.168.0.2,shmem:/
   ```

3. Set the public IP address and port in the configuration file:

   a. Open the file example/shapes/tcp_transport.xml.

   b. The file contains several routing service configurations. Find the routing service configuration, `<routing_service name="TCP_1">`. Then find the “public_address” property (name=dds.transport.TCPv4.tcp1.public_address) within that configuration.

   c. Set the local public IP address and port. For example, to set the address to 10.10.1.150 and port 7400:
   ```
 <element>
 <name>
dds.transport.TCPv4.tcp1.public_address
</name>
<value>10.10.1.150:7400</value>
</element>

d. Save and close the file.

4. Run these commands and choose “TCP_1”:

 cd <installation directory for RTI Routing Service>
 scripts/rtiroutingservice \
 -cfgFile example/shapes/tcp_transport.xml \
 -cfgName TCP_1

5. On any computer in this LAN, start RTI Shapes Demo and publish some shapes on domain 0.

On the Second Peer (a machine in any other LAN):

6. Include the First Peer’s public IP address and port in the NDDS_DISCOVERY_PEERS environment variable the same way you did before.

7. Set the public IP address and port in the configuration file:

 a. The file contains several routing service configurations. Find the routing service configuration, <routing_service name="TCP_2">. Then find the “public_address” property (<name>dds.transport.TCPv4.tcp1.public_address</name>) within that configuration.

 b. Set the local public IP address and port. For example, to set the address to 10.10.1.10 and port 7400:

 <element>
 <name>
 dds.transport.TCPv4.tcp1.public_address
 </name>
 <value>10.10.1.10:7400</value>
 </element>

 c. Save and close the file.

8. Run these commands and choose “TCP_2”:

 cd <installation directory for RTI Routing Service>
 scripts/rtiroutingservice \
 -cfgFile example/shapes/tcp_transport.xml \
 -cfgName TCP_2
4.8 Example 8 - Using the TCP Transport with RTI Routing Service

9. On any computer in this LAN, start RTI Shapes Demo and create subscribers on domain 2. Do not use an already running instance of RTI Shapes Demo—you need a new one that uses a different domain ID. You should receive what is being published in the server’s LAN.

Notes:

- Running RTI Shapes Demo on a Different Computer

 If the computer running RTI Shapes Demo is different than the computer running the client routing service, add the address of the client (IP address or hostname) to the RTI Shapes Demo before starting the shapes demo. To do so, use the –peer command-line option or set the NDDS_DISCOVERY_PEERS environment variable.

- Using Two Computers in the Same LAN

 If both machines are in the same LAN, run both routing services with the configuration file tcp_transport_lan.xml and use “tcpv4_lan://” as the peer prefix in the environment variable NDDS_DISCOVERY_PEERS. You don’t need to specify an IP address in the configuration file.

- Running the Example on One Computer

 To run the example on the same machine, open the file example/shapes/tcp_transport_lan.xml and change the property dds.transport.TCPv4.tcp1.server_bind_port within TCP_1 to 7401. Run both routing services with the modified tcp_transport_lan.xml configuration file and use “tcpv4_lan://” as the peer prefix in the environment variable NDDS_DISCOVERY_PEERS. You will also need to specify port 7401 in the tcpv4_lan peer in the NDDS_DISCOVERY_PEERS environment variable of the routing service in the Second Peer to reflect this port change in the configuration file.

- Using a Secure Connection over WAN

 To run this example, you need OpenSSL 0.9.8n (or higher) and RTI TLS Support. To purchase RTI TLS Support, contact your account representative or sales@rti.com. OpenSSL is available from the RTI’s Downloads page (www.rti.com/downloads), or you may obtain it from another source. Make sure the OpenSSL libraries’ location is in your LD_LIBRARY_PATH (on UNIX-based systems) or Path (on Windows systems).
To run the example using a secure connection between the two router instances, use the configuration file `tcp_transport_tls.xml`. You will also need to set the peer prefix to “tlsv4_wan://” in the NDDS_DISCOVERY_PEERS environment variable. The `tcp_transport_tls.xml` file is based on `tcp_transport.xml` and uses a WAN configuration to establish communication.

Using a Secure Connection over LAN

To run this example using a secure connection between two routers instances within the same LAN, you need OpenSSL 0.9.8n (or higher) and RTI TLS Support. To purchase RTI TLS Support, contact your account representative or sales@rti.com. OpenSSL is available from the RTI’s Downloads page (www.rti.com/downloads), or you may obtain it from another source. Make sure the OpenSSL libraries’ location is in your LD_LIBRARY_PATH (on UNIX-based systems) or Path (on Windows systems).

To use TLS encryption over a LAN configuration, you can use the file `tcp_transport_tls_lan.xml`. You will also need to set the peer prefix to “tlsv4_lan://” in the NDDS_DISCOVERY_PEERS environment variable. The `tcp_transport_tls_lan.xml` configuration file is based on `tcp_transport_lan.xml` and uses a LAN configuration to establish communication.

4.9 Example 9 - Using a File Adapter

The previous examples showed how to use RTI Routing Service with DDS. In this one we will learn how to use an adapter, specifically RTI Routing Service Adapter SDK, to write and read data from files. RTI Routing Service allows bridging data from different data domains with a pluggable adapter interface.

To learn how to implement your own adapter, you can follow this example and the next examples and inspect the code that is distributed with these adapters. You can also start your own adapter from scratch and follow step-by-step instructions to get a basic implementation up and running. These instructions are in the RTI Routing Service User’s Manual (Section 8.3).

The file adapter can read data from files with a specific format and provide it to RTI Routing Service, or receive data from RTI Routing Service and write it into files.

In this example, we will first write DDS topic data (a colored square and circle) into a file and then use that file to write it back into DDS, allowing us to modify the data with a text editor.

To run this example, you must have RTI Routing Service Adapter SDK installed.
Compile the adapter

1. Compile the file adapter in adapters/file/src:
 - On UNIX-based systems:
 a. Set the NDDSHOME environment variable as described in the RTI Data Distribution Service Getting Started Guide.
 b. Enter:

 cd <RTI Routing Service installation directory>
 cd adapters/file/make
 gmake -f Makefile.<arch>

 The adapter shared library, libfileadapter.so, will be copied to <installation directory for RTI Routing Service>/bin/<architecture>.
 - On Windows systems:
 a. Set the NDDSHOME environment variable as described in the RTI Data Distribution Service Getting Started Guide.
 b. Open the Visual Studio solution under adapters/file/windows. If you are using Visual Studio 2005. For example, open fileadapter-vs2005.sln.
 c. Build the solution.

 The adapter shared library, fileadapter.dll, will be copied to <installation directory for RTI Routing Service>/bin/<architecture>.
From DDS to files:

2. Run RTI Shapes Demo and RTI Routing Service as in the previous examples:
 a. Start RTI Shapes Demo on domain 0 (the default domain).
 b. Start RTI Routing Service by entering the following in a command shell:

      ```bash
      cd <installation directory for RTI Routing Service>
      scripts/rtiroutingservice \ 
      -cfgFile example/shapes/file_bridge.xml -cfgName dds_to_file
      ```

3. In RTI Shapes Demo, publish some Squares.

4. Wait a few seconds and then stop RTI Routing Service by pressing Ctrl-c.

5. A file called MySquare.txt should have been created in the current directory.
 Open it with a text editor of your choice. It should contain several lines, each
 consisting of a list of <field>=<value> elements. Each line represents a sample
 (Square) published by RTI Shapes Demo and written by RTI Routing Service
 and the file adapter.

6. On UNIX-based systems, you can see how new samples are appended to the file
 by running `tail -f MySquare.txt` without stopping RTI Routing Service.

7. We have seen how an “output” adapter works. Open the configuration file and
 look for `<routing_service name="dds_to_file">` to see the configuration we
 have just run.

From a file to DDS

8. In RTI Shapes Demo, delete the Square publisher and create a Square subscriber.

9. Run RTI Routing Service as in the previous examples:

    ```bash
    cd <installation directory for RTI Routing Service>
    scripts/rtiroutingservice \ 
    -cfgFile example/shapes/file_bridge.xml -cfgName file_to_dds
    ```

10. You should see squares being received by RTI Shapes Demo. These samples come
 from what we recorded before.

11. You might have noticed than the rate at which the shape moves is much slower.
 This is the rate at which the file adapter is providing data to RTI Routing Service.
 To change this rate, open `example/shapes/file_bridge.xml` and look for `<route
 name="square_file"> within `<routing service name="file_to_dds">. In the
 `<property>` tag change the property ReadPeriod from 1000 (milliseconds) to
 100.

12. Stop and start again RTI Routing Service as described in Step 9. The squares
 should be received and displayed about 10 times faster.
13. Other properties that you can configure in the file adapter are: FileName, MaxSampleSize, Loop and SamplesPerRead and, in the <output>, FileName, Flush and WriteMode.

14. You can also edit the text file and publish the new data. Open MySquare.txt and replace all the occurrences of “shapesize=30” with “shapesize=100”.

15. Stop and start again RTI Routing Service as described in Step 9. The squares will have the same position and color, but they will be bigger now.

Customize the file adapter

In the example, the file adapters use a specific format, which you already saw in the file MySquare.txt. Now try adapting the example to your own format.

16. The code that reads/writes from the file is in adapters/file/src/LineConversion.c.

17. Edit the function RTI_RoutingServiceFileAdapter_read_sample to implement how file data maps into a sample.

18. Edit the function RTI_RoutingServiceFileAdapter_write_sample to implement how a sample is written to a file.

19. Compile the code as described in Step 1 on page 4-21.

4.10 Example 10 - Bridging JMS and DDS

As we saw in the previous example, RTI Routing Service can load adapter plugins to read and write data from different sources. We used a file adapter implemented in C. RTI Routing Service also supports Java plugins.

The adapter introduced in this chapter interfaces with JMS to produce and consume messages in RTI Routing Service, allowing you to bridge JMS with other data sources, like DDS.

This example shows how a JMS application can produce messages representing colored shapes with random positions and how RTI Shapes Demo can receive and display the equivalent DDS samples. This is possible thanks to a running instance of RTI Routing Service bridging JMS and DDS using the adapter. The opposite scenario, in which DDS samples are received by a JMS consumer, will also work.

To run this example, you must have RTI Routing Service Adapter SDK installed, plus RTI Message Service or an equivalent JMS implementation.

Compile the JMS Adapter:

To compile the JMS adapter, use the build script described below:
1. The script expects the following variables to be set. They can be set by editing the script file or environment variables.
 a. JAVA_HOME must point to a Java JDK installation (1.5 or higher)
 b. JAVAAEJAR must contain the full path and filename of the Java EE library (for example, /myjava/j2ee/lib/javaee.jar)

2. After setting the values for the variables, run the build script.

 On UNIX-based systems:
   ```
   cd <installation directory for RTI Routing Service>
   cd adapters/jms
   ./build
   ```

 On Windows systems:
   ```
   cd <installation directory for RTI Routing Service>
   cd adapters\jms
   build
   ```

 A Java JAR file, jmsadapter.jar, will be generated in the directory, objs.

 Compile the Example JMS Publisher and Subscriber Applications:

 Another build script can be used to build the JMS publisher and subscriber example.

 3. The script expects the same variables as Step 1.

 4. After setting the values for the variables, run the build script:

 On UNIX-based systems:
   ```
   cd <installation directory for RTI Routing Service>
   cd example/shapes/jmsPubSub
   ./build
   ```

 On Windows systems:
   ```
   cd <installation directory for RTI Routing Service>
   cd example\shapes\jmsPubSub
   build
   ```

 The class files will be generated in the directory objs.

 Run the Example JMS and DDS Publisher and Subscribers:

 5. The JMS applications expect the same environment variables as in Step 1 plus the following:
JMS_CLASSPATH must contain the classpath required to run the example with a JMS vendor of your choice. In our example, we use RTI Messaging Service, but you could choose a different vendor such as JBoss:

On UNIX-based systems:

```bash
setenv JMS_CLASSPATH $NDDSHOME/class/nddsjava.jar:$NDDSHOME/class/rtijms.jar
```

On Windows systems:

```bash
set JMS_CLASSPATH=%NDDSHOME%\class\nddsjava.jar;%NDDSHOME%\class\rtijms.jar
```

6. Run the following applications on the same or different machines:

 a. A JMS application publishing green Squares at random coordinates. Set the same environment variables mentioned in Step 5 and enter:

 On UNIX-based systems:

      ```bash
      cd example/shapes/jmsPubSub
      ./run Pub Shapes/Square Green 15
      ```

 On Windows systems:

      ```bash
      cd example\shapes\jmsPubSub
      run Pub Shapes/Square Green 15
      ```

 b. A JMS application subscribing to Circles. Set the environment variables mentioned in Step 5 and enter:

 On UNIX-based systems:

      ```bash
      cd example/shapes/jmsPubSub
      ./run Sub Shapes/Circle
      ```

 On Windows systems:

      ```bash
      cd example\shapes\jmsPubSub
      run Sub Shapes/Circle
      ```

 c. A DDS application publishing blue Circles and subscribing to Squares. Start RTI Shapes Demo on domain 0 and create a blue Circle publisher and a Square subscriber.
Now we have the following scenario, in which none of the subscribers are receiving data yet.

Configure and Run RTI Routing Service with the JMS Adapter:

We are going to use the configuration file `example/shapes/jms_rti_shapes.xml` to run RTI Routing Service and the JMS adapter with RTI Messaging Service.

7. Our example RTI Routing Service configuration file expects the environment variables JAVAEEJAR and JMS_CLASSPATH as set in Step 5. To use different configuration or set up a different JMS vendor, you can edit the file and change the values of `<jvm>/class_path>`, and the JMS connection `<property>` under the different `<domain_route>` tags.

8. When using Java adapters with RTI Routing Service, the Java Virtual Machine shared library (libjvm.so on UNIX-based systems or jvm.dll on Windows Systems) must be accessible at run-time. Add its location to LD_LIBRARY_PATH on UNIX-based systems or to the Path on Windows systems. The location will depend on your architecture. It is typically located in:

 - On UNIX-based systems: `$JAVA_HOME/jre/lib/client`
 - On Windows systems: `%JAVA_HOME%/jre/bin\client`

9. Run the following command to start RTI Routing Service:

   ```
   cd <installation directory for RTI Routing Service>
   scripts/rtiroutingservice \ 
   -cfgFile example/shapes/jms_rti.xml -cfgName jmsdds
   ```

1. In addition to jms_rti.xml, you can find in the same directory the file jms_openjms.xml, which includes the configuration to run the JMS adapter with OpenJMS as the JMS vendor.
10. *RTI Routing Service* will bridge between JMS and DDS: the JMS subscriber application will receive the blue Circles published by the *RTI Shapes Demo* DDS publisher, and the *RTI Shapes Demo* DDS subscriber will receive the green Squares published by the JMS publisher application.

How to customize the JMS adapter:

The implementation of the JMS adapter is meant to be extended to better fit your specific type system. This example will only work with JMS MapMessages and DDS types with top-level members that are of primitive or string types.

The fundamental point of extension is the translation between JMS messages and DDS DynamicData samples. To customize this translation, follow these steps:

11. To translate from JMS messages to DynamicData samples, implement the following interface (let’s call your class `mypackage.MyJMSToDynamicData`):

   ```java
   com.rti.jmsadapter.adapter.JMSToDynamicDataMessageTranslation
   ```

12. To translate from DynamicData samples to JMS messages, implement the following interface (let’s call your class `mypackage.MyDynamicDataToJMS`):

   ```java
   com.rti.jmsadapter.adapter.DynamicDataToJMSMessageTranslation
   ```

 You can find the default implementations in `adapters/jms/src/`.

13. Modify your routing service configuration file to tell the JMS adapter that it should instantiate and use your classes:

 a. In a `<route>` that reads from the JMS adapter, add a property below `<input>` with the name `JMSDynamicDataTranslator` and the value `mypackage.MyJMSToDynamicData`.
b. In a <route> that writes to the JMS adapter, add a property below <output> with the name DynamicDataJMSTranslator and the value mypackage.MyDynamicDataToJMS.

c. Make sure mypackage reachable in your classpath (within the <jvm>/<classpath> tag in your configuration file or in the environment variable CLASSPATH).

See example/shapes/jms_rti.xml for more details.

Optional Exercise:

If you have completed this example and the previous one which introduced the file adapter, as an optional exercise you can make these two adapters work together. Write a routing service configuration file that does the same thing as the example file, but have it read and write from/to JMS instead of DDS.

Hint: Your <domain_route> will contain two connections, each instantiating one of the adapter plugins (<connection_1 plugin_name="adapters::jms">, and <connection_2 plugin_name="adapters::file">).

4.11 Example 11 - Using a Socket Adapter

To run this example, you must have RTI Routing Service Adapter SDK; it must be installed on top of RTI Routing Service.

This adapter can read and write from TCP sockets, serializing and deserializing DDS DynamicData samples into a simple format.

The reader will establish a TCP connection and receive bytes, converting them to DynamicData samples for RTI Routing Service. The writer will create a TCP server and forward samples provided by RTI Routing Service to all the TCP clients that connect to it.

This adapter is similar to the file adapter in Example 9 - Using a File Adapter (Section 4.9); the following instructions assume that you have gone through that example.

Compile the adapter:

1. Compile the socket adapter in adapters/socket:
 - On UNIX-based systems:
 a. Set the NDDSHOME environment variable as described in the RTI Data Distribution Service Getting Started Guide.
b. Enter:

 cd <RTI Routing Service installation directory>
 cd adapters/socket/make
 gmake -f Makefile.<arch>

 The adapter shared library, libsocketadapter.so, will be copied to <installation directory for RTI Routing Service>/bin/<architecture>.

- On Windows systems:
 a. Set the NDDSHOME environment variable as described in the RTI Data Distribution Service Getting Started Guide.
 b. Open the Visual Studio solution under adapters/socket/windows. If you are using Visual Studio 2005, for example, open socketadapter-vs2005.sln.
 c. Build the solution.

 The adapter shared library, socketadapter.dll, will be copied to <installation directory for RTI Routing Service>/bin/<architecture>.

Run the examples:

The example configuration file for RTI Routing Service is located in example/shapes/socket_bridge.xml. It defines several <routing_service> configurations for different examples. We will use RTI Shapes Demo to publish and subscribe to colored shapes. To send TCP traffic and listen to connections coming from the socket adapter, we will use the UNIX utility, netcat (nc).

Netcat is a UNIX utility with many different uses involving TCP or UDP. Among other things, it can open TCP connections and listen to arbitrary TCP ports and accept connections. We will use netcat in this example to communicate with the socket adapter. You could use your own socket application or any other third-party TCP utility of your choice.

2. **Read from DDS and send through a TCP socket.**
 a. Start RTI Shapes Demo on domain 0 (the default domain) and publish some Squares.
 b. On machine HostA, run RTI Routing Service:

 cd <installation directory for RTI Routing Service>
 HostA> scripts/rtiroutingservice
 -cfgFile example/shapes/socket_bridge.xml -cfgName dds_to_socket
 c. On machine HostB, connect to HostA using netcat:

 HostB> nc HostA 8112
d. Data should be being printed in netcat.

e. Optionally, run netcat as before on one or more additional machines. Data will be sent to all of them.

3. Read from a TCP socket and publish into DDS.

 a. The configuration file uses “MyHost” as a host name to connect to in different places. Find and replace them to use the host where you will run netcat (we will call it HostB).

 b. Start RTI Shapes Demo on domain 0 (the default domain) and create a Square subscriber.

 c. On machine HostB, start netcat and listen to TCP connections on port 8111:

 HostB> nc -l 8111

 d. On machine HostA, run RTI Routing Service:

 HostA> scripts/rtiroutingservice \
 -cfgFile example/shapes/socket_bridge.xml -cfgName socket_to_dds

 e. From netcat (HostB), enter:

 x=100,y=100,shapesize=50,color=RED;
 x=150,y=150,shapesize=10,color=BLUE;

 You should see two squares in RTI Shapes Demo.

4. Use remote administration to change the host RTI Routing Service is writing to.

 a. On another machine, HostC run netcat:

 HostC> nc -l 8111

 b. On any machine, using the RTI Routing Service shell (see Section 4.6) on domain 1, send the following command (all on one line):

 RTI Routing Service> update socket_to_dds
 socketdds::s::square_socket route.input.property[Host]=HostC

 c. From netcat (HostC), enter:

 x=100,y=100,shapesize=10,color=RED;
 x=150,y=150,shapesize=50,color=BLUE;
d. In *RTI Shapes Demo*, the size of the shapes should have changed.

e. The *RTI Routing Service* adapter API lets an adapter update its configuration on the fly when the service receives a remote command that changes its configuration properties. Explore the code to see how `RTI_RoutingServiceSocketStreamReader_update()` is implemented.

5. There are two other `<routing_service>` tags in the configuration file. One of them (`socket_to_socket`) eliminates DDS from the picture and just reads from a socket and writes to a different one. The other one, `socket_tester`, reads from TCP and uses a Java adapter that works as an output test adapter, counting the samples received and reporting failure or success depending the expected result configured with the tag `<property>`.

Customize the Socket Adapter

In the example, the socket adapters use a specific format, which you already saw in netcat. Now try adapting the example to your own format. The code that serializes/deserializes DynamicData samples to/from a byte buffer is in `adapters/socket/src/SampleParsing.c`.

6. Edit the function `RTI_RoutingServiceSocketAdapter_parse_sample()` to implement how a DynamicData sample gets created from a byte buffer.

7. In the same file, edit the function `RTI_RoutingServiceSocketAdapter_serialize_sample()` to implement how a sample is converted to a byte buffer.

8. Compile the code as described in Step 1 on page 4-21.