Using Wireshark™
with
RTI Data Distribution Service

Getting Started Guide

Version 1.2.3.20111031

RTI) The Global Leader in DDS

© 2005-2011 Real-Time Innovations, Inc.

All rights reserved.
Printed in U.S.A. First printing.
RTI October 2011.

Trademarks

Real-Time Innovations and RTI are registered trademarks of Real-Time Innovations, Inc.
All other trademarks used in this document are the property of their respective owners.

Copy and Use Restrictions

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any
form (including electronic, mechanical, photocopy, and facsimile) without the prior written
permission of Real-Time Innovations, Inc.

RTI Data Distribution Service software is furnished under and subject to the RTI software license
agreement. The software may be used or copied only under the terms of the license agreement.

Wireshark is Open Source software released under the terms of the GNU General Public License
(version 2) as published by the Free Software Foundation.

Technical Support

Real-Time Innovations, Inc.

385 Moffett Park Drive

Sunnyvale, CA 94089

Phone: (408) 990-7444

Email: support@rti.com
Website: https://support.rti.com/

http://www.gnu.org
http://www.rti.com
https://support.rti.com/

Contents

T IntroducCtion..... ... 1-1
1.1 Available DOCUMENEATION ...c.ooveveuiiiieiiiieieicirieece ettt ee 1-3

1.2 Reading GUIAec.ouoiiiiiiiiicit e 1-3

1.3 HOW t0 Get SUPPOIt.....coiiiiiiiiiiiiictcc s 1-4

2 InStAllAiON ... 2-1
2.1 Before Installation..........cociiiiiiiiiiiii s 2-1

2.2 Installing Wireshark on Windows Systems...........c.cccccoceiiiiiiiiiiccceeeceeeeeenenenens 2-1

2.3 Installing Wireshark on Linux SyStemsccccoouoviimiiiiiiiiiiceecc e, 2-2

2.4 Installing Wireshark on Solaris SYStems.............ccoviiinininininininninnc e 2-2

2.5 Uninstalling Wiresharkc.oooiiiiii 2-2
Staring Wireshark ... 3-1
Capturing RTPS PACKETS ... 4-1
Analyzing RTPS PACKELS ... 5-1

5.1 RTPS Submessage TYPeS......cccocueuiimiiiiiiiieteeece et 5-2

5.2 Displaying Packets ..o 5-2
52.1 Using a Display FAlter........cccccoviiiiiiiiiiiiiiiciias 5-4

522 Color-Coding Packetsccooiiuriiiiiiiicieiiccie s 5-10

5.3 Analyzing Packets from RTI Data Distribution Service Applications...........ccccecevevuruenen. 5-11
5.3.1 Analyzing the User Data Sample Trace.........cccccoeoeueiiiiiiiicciiicccceccenenes 5-12

5.3.2 Analyzing the Discovery Data Sample Trace.........cccccoovvviviiininvnniiiiicnes 5-16

6

Practical Uses with RTI Applications...........ccccooiiiiiiiiiiiicirccccccccccc e 6-1

6.1 Debugging Discovery Problems...........ccoouiiiiiiiiii 6-1
6.2 Visualizing YOUT SYSEEIMNcuoviiiiiiiiriiiiiiiiiiriiiicre s 6-3
6.3 Providing Information to RTI SUPPOTt.......cccoiiiiimiiiiiiiiiiiiicne 6-5

Chapter 1 Infroduction

Wireshark is a network-packet analyzer that supports many network protocols, includ-
ing Real-Time Publish-Subscribe (RTPS), the wire protocol used by RTI® Data Distribu-
tion Service middleware.

Wireshark can be used to capture and analyze RTPS packets from RTI Data Distribution
Service 4.x applications. It supports RTPS 2.1 (and lower) and is specifically tailored to
make RTPS packet analysis easier by including:

(d A set of predefined filters to quickly select different groups of packets from the
RTPS protocol.

A A column in the Packet List that shows the GUID Prefix for each RTPS packet.
(This value uniquely identifies a DomainParticipant within a Domain.)

A Coloring rules that highlight important RTPS packets. Packets not strictly related
to RTI Data Distribution Service traffic are grayed-out.

Network packet and traffic analyzers are used during application development and dis-
tributed system configuration to monitor the packets over the network. You can use fil-
ters to capture specific types of packets, then analyze the captured packets.

This manual will help you use Wireshark to analyze RTPS packets. This analysis will
give you information on two levels:

[d A high-level look at the RTPS submessages that are flowing between your RTI
RTI Data Distribution Service applications.

[d A detailed look at the contents of individual packets.

Wireshark’s main window makes it easy to see both views. Figure 1.1 shows the main
window and points out some important features.

uoyonpoyuy] |

Chapter 1

Figure 1.1
Packet

- sequence

k] with

= | automatic

g color

0 coding of

o] RTPS

o packets

RTPS

® Header

:§

[

[a]

g0

f‘, Data

O | submessage

o

§ Raw data

>

)

Wireshark’s Main Window

GUID Prefix Column — only available
in RTI’s distribution of Wireshark

Fle Edt View Go Capiwe Anayze Stalisies Help /

BEsed sl @8 Res2FL [E6 acal @YHExX
Eilter: ;ngpresslon. Ig\earlépp\yl /

Mo - |Destlnal\on |F‘rotocol |GLHD Prefix g |\nfo

DATA
Cr

L+)
ACKMNACK

0. 020581) 0x0a0a6d408 0x18830

20 0.020856 239.162.1.2 RTPS 0Ox0a0a640e Ox18880 ACKMACK

21 0.021401 239.192.1.2 RTPS 0Ox0a0af40e Ox18880 DATA(wWE)
22 0.0216l6 239,192.1.2 RTPS Ox0alab40e Ox1BBS0 DATA

23 0.022254 239,1092.1.2 RTPS Ox0a0ab40e Ox1BBE0 DATA

24 0.140703 239,192.1.2 RTFS Ox0alabd40e Ox18B80 DATA

25 2,711920 239,192.1.2 RTFS Ox0alad40e Ox18B880 HEARTEEAT
26 2.092346 239.102.1.2 RTPS 0Ox0a0aéd0e Ox18880 HEARTBEAT
27 3.022182 239.1062.1.2 RTPS 0x0a0a6d0e Ox18880 WOKEY_DATA
28 4.022386 239.162.1.2 RTPS 0Ox0a0a640e Ox18880 NOKEY_DATA
29 5.022376 239.192.1.2 RTPS Ox0a0agd40e Ox13880 MOKEY_DATA
30 5.713828 239,192.1.2 RTPS Ox0aClab40e Ox1BBB0 HEARTEEAT
31 5.093371 239,1092.1.2 RTPS Ox0aCab40e Ox1BBE0 HEARTEEAT
32 5.993520 239,192.1.2 RTFS Ox0alabd40e OxL18B80 ACKNMACK

33 5.,0936843 239,192.1.2 RTFS Ox0alaf4le Ox18B30 ACKMACK

< |

o REa[-T1mE PUBIISN-SURScr10e Wire Protocol

E Protocol version: 1.1
major: 1
minor: 1

vendor: Real-Time Innovations, Inc.
@ guidPrefix=0a0aédoe 18880001 { hostId=0a0aédle, appId=18880001 (Managedapplication: 1888000 }
E befault port mapping: domainId=29, participantIdx=4294967, nature=09
= submessage: DATA
submessageId: DATA (0x02)
E Flags: 0x07 (_ _ _ _ _ ADE]
octetsToNextHeader: 160
@ readerentityId: ENTITYID_UNKNOWN (0x000000007
[writerentityId: ENTITYID_BUILTIN_SUBSCRIPTIONS_WRITER (0x000004c2)
@ keyHashsuffix: 0x00000304 (application-defined reader (with key): 0x000003)
writerseguumber: 1
= serializedbata:
PID_TOPIC_WAME: Example Foo
H PID_TYPE_MAME: Foo
@ PID_RELIABILITY: BEST_EFFORT_RELIABILITY_QOS
M PID_RECV_QUEUE_SIZE [deprecated]: 0x00000400
[H PID_TIME_BASED_FILTER: 0 sec
@ PID_LIVELINESS: { kind=AUTOMATIC_LIVELINESS_QOS,
@ ooTh

lease_duration=INFINITE }

RUDARTI TTW + WAl ATTIC RUDARTI TTY AAS

0050 00 00 05 00 10 00 Oc OO0 00 00 45 78 &l 6d 70 6¢ ExampT

0060 65 20 46 &F 6F 00 07 00 08 00 04 00 00 00 46 &F Fo

0070 6F 00 1a 00 04 00 01 00 00 00 18 00 04 00 00 04 T
0080 00 00 04 00 O8 00 00 00 00 00 00 00 00 00 1h 00

00%0 0c 00 00 00 00 00 FF £f ff 7f £f £f £ £f 1d 00

00a0 04 00 00 00 Q0 00 1F 00 04 00 00 00 00 00 21 Q0

0ob0 08 00 OO0 00 OO0 00 00D OO0 00 00 25 00 04 00 00 OO0

0oco 00 00 23 00 08 00 ff £f ff 7f £ff ff £ff ff 27 00

Internet Protocol fip). 20 bytes

The Packet List pane on top lists the sezuence of captured submessages. The middle pane shows a decoded view

of a selected packet. The bottom pane s

ows the raw data for any selected field in a packet. You can customize

these views from the View menu. To change which columns are displayed, select Edit, Preferences, User
Interface, Columns.

1.1 Awvailable Documentation

1.1 Available Documentation

(A RTI Wireshark Release Notes. Please see RTI_Wireshark_ReleaseNotes.pdf for
system requirements, installation instructions, and other important information.

(A RTI Data Distribution Service User’s Manual. This document provides details on
the RTI Data Distribution Service APl and describes how RTPS packets are used
by RTI Data Distribution Service-based applications. In particular, you should
review the Discovery chapter. Open <NDDSHOME>/doc/pdf/
RTI_DDS_UsersManual.pdf, where <NDDSHOME> is where you installed RTI
Data Distribution Service.

(A RTPS Specification. Please see http:/ /www.omg.org/spec/DDSI/2.1/.

(A Wireshark online help. There is extensive online help included with Wireshark.
Select Help, Contents from the menubar for a detailed user’s guide in HTML
format.

(A Wireshark User’s Guide. This PDF document describes how to use Wireshark’s fea-
tures. It is not included in the installation, but can be downloaded from Wire-
shark’s website (www.wireshark.org/docs). Note that it may pertain to a slightly
different version of Wireshark.

1.2 Reading Guide

We suggest that you read the documentation in the following order:

'd Read this chapter to become familiar with the system requirements.

(d Read the RTI Wireshark Release Notes.

[d Follow the steps in Chapter 2: Installation.

[d Read Chapter 4: Capturing RTPS Packets for a quick overview of how to capture
RTPS packets.

[d Read Chapter 5: Analyzing RTPS Packets to learn how to analyze each type of
RTPS packet by looking at sample files of captured RTPS packets. During this
process, you will need to reference the Real-Time Publish-Subscribe Wire Protocol
Specification.

[Read Chapter 6: Practical Uses with RTI Applications for ideas on how to use
Wireshark during RTI Data Distribution Service application development.

uoyonpoyuy] |

http://www.omg.org/spec/DDSI/2.1/
http://www.wireshark.org/docs

Chapter 1

(A Consult the Wireshark online help and user’s guide for information on other fea-
tures.

1.3 How to Get Support
Technical support for Wireshark is provided by RTI; send e-mail to support@rti.com.

Wireshark is an open source product. For information about Wireshark support, please
visit www.wireshark.org.

http://www.wireshark.org

Chapter 2 Installation

2.1

2.2

To install Wireshark, you need to login as super-user on Linux and Solaris systems, or as
administrator on Windows systems.

You will also need super-user/administrator access to capture packets. (With normal
user access, you will be able to run Wireshark, but only to view previously-saved capture
files.)

Before Installation

If you have Ethereal, Wireshark, or RTI Protocol Analyzer with Wireshark installed, we
highly recommend that you remove them before installing RTI’s distribution of Wire-

shark.

To uninstall on a Linux (Red Hat) system:
rpm -e wireshark

To uninstall on a Linux (Debian) system:

dpkg -r wireshark wireshark-common

To uninstall on a Solaris system:

pkgrm wireshark

Installing Wireshark on Windows Systems

1. Right-click on the distribution file, Wireshark-<version>-Win32.exe, and select
Run as Administrator.

2-1

uoyj|oisu| ‘g

Installation

2.3

2.4

2.5

2-2

2. Wireshark requires WinPcap 4.0.2. If WinPcap 4.0.2 is not already installed, it will
be installed with Wireshark. If it is already installed, you will be asked if you
want to re-install WinPcap or skip the WinPcap installation. You can safely skip
re-installing WinPcap.

Installing Wireshark on Linux (Red Hat) Systems
Install Wireshark using the Red Hat Package Manager (RPM):
1. Login as super-user.

2. cd <location of the distribution file>
3. rpm -1 Wireshark-<version>-<architecture>.rpm

For more information on installing RPMs, please see http://www.rpm.org.

Installing Wireshark on Linux (Debian) Systems

Install Wireshark using Debian packages. Note that two packages need to be installed:
1. Login as super-user.

2. cd <location of the distribution files>
3. dpkg -i Wireshark_common-<version>-<architecture>.deb
4. dpkg -i Wireshark-<version>-<architecture>.deb

A separate package, Tshark-<version>-<architecture>.deb, isavailable for install-
ing the terminal-based (non-GUI) version of Wireshark.

For more information on Debian packages, please see http:/ /packages.debian.org.

Installing Wireshark on Solaris Systems

Before Installation:

[Make sure you have installed the required packages listed in Section 1.1 in the
Release Notes.

(d Make sure you have modified the font cache configuration file and rebuilt the
font cache (see Section 1.1.1 in the Release Notes).

' Make sure you have root privileges.

http://www.rpm.org
http://www.rpm.org

Uninstalling Wireshark

1. cd <location of the distribution file>
2. gunzip Wireshark-<version>-<architecture>.gz

3. pkgadd -d Wireshark-<version>-<architecture>

2.6 Uninstalling Wireshark

To uninstall Wireshark:

(1 On Windows systems: From the Start menu, select Control Panel, Add/Remove
Programs (or Programs and Features), Wireshark.

[d On Linux (Red Hat) systems: While logged in as root, enter:
rpm -e wireshark

(d On Linux (Debian) systems: While logged in as root, enter:
dpkg -r wireshark-common wireshark

[d On Solaris systems: While logged in as root, enter:
pkgrm wireshark

2-3

uoyj|oisu| ‘g

Installation

2-4

Chapter 3 Starting Wireshark

Important!

To capture packets from the network, you must run Wireshark as root/administrator.

On Linux systems:

/usr/bin/wireshark &
On Solaris systems:

/usr/local/bin/wireshark &
On Windows systems:

Use the Start menu to select Wireshark.

3-1

sje)ond Buunydo) ¢

Starting Wireshark

3-2

Chapter 4 Capturing RTPS Packets

This chapter describes how to capture RTPS packets that are sent across a network.
After capturing packets, use the information in Chapter 5 to analyze them.

Wireshark will automatically capture all RTPS packets from the wire.

You can create additional filters to refine the scope of your captures. For example, you
can create filters to capture packets from specific nodes, addresses, ports, protocols, etc.
This chapter provides basic instructions on using capture filters and a few examples. For
more information, see the Wireshark User’s Guide or online documentation.

To capture all types of packets while running an RTI Data Distribution Service application:

1. Login as super-user (on Linux/Solaris systems) or administrator (on Windows

systems).
2. Start Wireshark.

3. Select Capture, Options... from the menubar. Figure 4.1 shows a sample Capture
Options window.

The defaults in the Capture Option window may very well suit your needs—
they will capture all packets sent to the selected interface. Then you can filter the
displayed results with a display filter, as described in Section 5.2.1.

If you want to change any of the defaults for this window, see the Wireshark
User’s Guide or online help.

4. Click Start to start the capture session.
Note The "Update list of packets in real-time" and “Hide capture info dia-
log” check boxes are selected by default. However, these features can slow down

the capture process and increase the chance of missing packets. We recommend
deselecting these two check boxes to limit the risk of missing packets.

4-1

sj@)ond Buunidp) v

Capturing RTPS Packets

Figure 4.1

1. Select which
Network —
Interface to use
from this pull-
down selection
box.

2. Optionally, ——
enter a capture
filter.

Starting a Capture Session

Stop capture after

Stop Capture ..

[E] ... after 1
[E] ... after 1
[... sfter 1

~| file(s)

: packet(s,
: megabyte(s)

| minute(s

Name Resclution

Enable MAC name resoluticn
[] Enable network name resolution

Enable transport name resolution

T ury
Interface: | Marvell Gigabit Ethernet Contreller: \Device\NPF_{B4D2A077-DF1C-4BDE-B509-8D016C289DC5} E]
IP address: 192.168.2.5
Link-layer header type: | Ethernet |z| Buffer size: | 1 = megabyte(s) |Wireless Settings
Capture packets in promiscuous mode
[T Limit each packetto 63 bytes
Wi | =
Capture File(s) Display Options
iz Update list of packets in real time i
[7] Use multiple files 3 Consider
Next file even 3| megabytets Automatic scrolling in live capture /Tuming
Next ile even A minutets Hide capture info dislog 4| these off —
Ring buffer with = fites see Note

5. To stop the capture:

4, Start capturing packets.

e If “Hide capture info dialog” is selected, click Stop on the Capture win-
dow or use the @ button located on the far right of the main window’s

tool bar (you may need to resize the main window to see it).

e If “Hide capture info dialog” is not selected, click Stop in the Capture Dia-

log window.

With the steps above, you will capture all the packets that come through your selected
interface. Such an indiscriminate capture session may yield hundreds or thousands of
packets. While modern computers are amazingly fast, processing each captured packet
does take a certain amount of time. Filtering out uninteresting packets can help you
squeeze the most out of your computer. Therefore we suggest that you apply a capture
filter so that Wireshark only captures the type of packets you want to see.

Simply enter a valid capture filter string in the Capture Filter box (see Figure 4.1) before

you press Capture. Table 4.1 provides some examples.

For more information, see Wireshark’s documentation (Help, Wireshark Online, User’s

Guide).

4-2

Table 4.1

Example Capture Filters

To Capture ...

Enter ...

Capture only RTPS

udp[8:4] == 0x52545053 or (ip[6:2] & OxIFFF != 0)

Only UDP packets

udp

Only UDP multicast packets

udp and ip multicast

Only non-UDP multicast

udp and not ip multicast

Only UDP from/to 10.10.1.192

udp and host 10.10.1.192

Only packets from IP

10.10.100.14 to 10.10.100.74

addresses

src host 10.10.100.14 and dst host 10.10.100.74

Note: Wireshark does not validate capture filter strings as they are entered. It will not
alert you about an incorrect expression until after you press the Capture button. It may
be helpful for you to test your capture filter string with wireshark with the -f argument
to try a capture filter expression. (See Help, Manual Pages, wireshark.)

For help analyzing captured RTPS packets, see Chapter 5.

4-3

sj@)ond Buunidp) v

Capturing RTPS Packets

4-4

Chapter 5 Analyzing RTPS Packets

This chapter will help you interpret the submessages within captured RTPS packets.
There are two levels of analysis that you may be interested in:

[A high-level understanding of what is transpiring during a sequence of captured
RTPS packets.

This chapter will help you learn to “read” a sequence of packets by walking
through the provided sample capture files. You may also find it helpful to review
the Object Discovery chapter in the RTI Data Distribution Service User’s Manual.

[A more in-depth understanding of an individual packet’s contents.

This chapter will show you how to display the decoded contents of individual
packets. Wireshark decodes each RTPS packet and shows you the value for each
field in the packet’s structure.

While the low-level details of a packet’s contents are beyond the scope of this
manual, this information is available in the Real-Time Publish-Subscribe Wire Pro-
tocol Specification (see Available Documentation (Section 1.1)).

This chapter includes the following sections:

[d RTPS Submessage Types (Section 5.1)
(A Displaying Packets (Section 5.2)
[d Analyzing Packets from RTI Data Distribution Service Applications (Section 5.3)

5-1

sje)ond BuizAipuy ‘g

Chapter 5

5.1

Figure 5.1

RTPS Submessage Types

Each RTPS packet (message) consists of a header and one or more submessages. When
you display captured packets, the Info column (seen in Figure 5.1) lists the types of
submessages in each packet.

Analyzing Packets

10.10.100.14 239.192. Ox0alagd0e Ox18880 DATA

1.2 RTPS

0 10.10.100.14 239,1592.1.2 RTPS Ox0adagdde Ox1EBEE0 ACKMACK
20 0.020856 10.10.100.14 239.1592.1.2 RTPS Ox0adasd0e Ox1BEE0 ACKNMNACK
21 0.02140L1 10.10.100.14 239,192.1.2 RTPS Ox0aland e OwlSE80 DATACwWH)
22 0.021ala 10.10.100.14 239,192.1.2 RTPS Ox0adagdde Ox1BEE0 DATA
23 0.022254 10.10.100.14 239.152.1.2 RTPS Ox0adaddde Ox18880 DATA
24 0.140703 10.10.100.14 239,192.1.2 RTPS Ox0a0agd0e Ox1BE80 DATA
25 2.7119%20 10.10.100.14 239,192.1.2 RTPS Ox0adagdde Ox1BEE0 HEARTBEAT
26 2.902B846 10.10.100.14 239.152.1.2 RTPS Ox0adaddde Ox18EE0 HEARTBEAT
27 3.022182 10.10.100.14 239.192.1.2 RTPS Ox0afagd e Ox1BEE0 MOKEY_DATA)
28 4.022386 10.10.100.14 239,192.1.2 RTPS Ox0alagd e Ox1EBEED MOKEY_DATA)
28 5.022576 10.10.100.14 239,152.1.2 RTPS Ox0adaddde Ox1EEE0 MOKEY_DATA)

5.2

5-2

The Info column shows you what submessages are in each packet. The highlighted packet
contains a Reader announcement.

Table 5.1 lists the submessages you may see in the Info Column. The details of each type
of submessage are described in the Real-Time Publish-Subscribe Wire Protocol Specification.

Displaying Packets

Wireshark has two features that make it easy to focus on packets with a particular set of
values:

(d Display filters limit the display to just packets that meet a set of criteria. See
Section 5.2.1.

[d Coloring rules allow you to color-code packets based on a set of criteria so they
stand out more in the full packet list. See Section 5.2.2.

For more information on filters and colors, select Help, Wireshark Online, User’s
Guide from the menubar.

5.2 Displaying Packets

Table 5.1 RTPS 2.x Submessage Types

Submessage Type

Description

ACKNACK

Provides information on the state of a Reader to a Writer.

ACKNACK_BATCH

Provides information on the state of a Reader to a Writer for batched data.

ACKNACK_SESSION

Provides information on the state of a Reader to a multi-channel Writer

DATA

Contains information regarding the value of an application Data-object. The
information is a fixed string with the following format:

(1[231])
Where:
1 =aletter representing the entity ID:
P (upper case) = DomainParticipant
t = Built-in topic writer
w = built-in publication writer
r = built-in subscription writer
p (lower case) = built-in participant writer
m = peer-to-peer participant message writer
? = unknown writer
2, 3 = two letters that describe the last two bits of the statusInfo inline QoS:
Bit-1 Bit-0 Text

0 0 _
0 1 _D
1 0 _
1 1 uD
Where bit 0="Disposed" flag, and bit 1 = Unregistered flag
For example, you may see:
DATA(p[__1)
DATA(p[_DI])

DATA_BATCH

Contains information regarding the values of a batch of application data objects.

DATA_FRAG

Contains a fragment of information regarding the value of an application Data-
object.

For RTI Data Distribution Service 4.2e and higher, a new format is used; captured
submessages of the earlier format are displayed as DATA_FRAG_deprecated.

DATA_SESSION

Contains information regarding the value of an application Data-object when sent
by a multi-channel Writer.

GAP

Describes the information that is no longer relevant to Readers.

5-3

sj@)ond BuizAipuy ‘g

Chapter 5

Table 5.1 RTPS 2.x Submessage Types

Submessage Type

Description

HEARTBEAT

Describes the information that is available in a Writer.

HEARTBEAT_BATCH

Describes the information that is available in a Writer for batched data.

HEARTBEAT_SESSION

Describes the information that is available in a multi-channel Writer.

HEARTBEAT_VIRTUAL

Describes the information that is available from virtual Writers.

INFO_SOURCE

Provides information about the source from which subsequent Entity
submessages originated.

INFO_DESTINATION

Provides information about the final destination of subsequent Entity
submessages.

INFO_REPLY

Provides information about where to reply to the entities that appear in
subsequent submessages. The locator provided is limited to contain a single
UDPv4 address and port.

INFO_REPLY2

Provides information about where to reply to the entities that appear in
subsequent submessages. The list of locators provided allows for any transport
type and can accommodate 16-byte addresses.

INFO_TS? Provides a source timestamp for subsequent Entity submessages.
NACK_FRAG Provides information on the state of a Reader to a Writer.

Contains information regarding the value of an application Data-object that
NOKEY_DATA cannot be referenced by a key.

For RTI Data Distribution Service 4.2e and higher, this submessage is not used.

NOKEY_DATA_FRAG

Contains a fragment of information regarding the value of an application data-
object that cannot be referenced by a key.

For RTI Data Distribution Service 4.2e and higher, this submessage is not used.

PAD

Provides padding to meet any desired memory-alignment requirements.

a. INFO_TS is an abbreviation for INFOTIMESTAMP

5.2.1 Using a Display Filter

A display filter only shows packets that match a certain set of criteria. You may want to
start by showing only RTPS packets. Wireshark provides a display filter for just this pur-
pose. There are also predefined filters for displaying just discovery (meta) traffic, or just
user data traffic.

54

5.2 Displaying Packets

To display RTPS packets only:

1. In the main window, clear anything you have in the filter text box with the Clear
button, then click the Filter button.

2. Select the preconfigured filter named “Only RTPS packets.”

3. Click OK to close the Filter Expression window.

Figure 5.2 Selecting a Display Filter

[E=SEE =)

‘ -Edi Filter

1. Select a

C) Only meta traffic
predefinedfilter.

Only user traffic

Only NDDSPING packets
Packets with topic info
Data Writer Announce
Data Reader Announce
Participant Announce

Data Writer Destruction

Data Reader Destruction

Darticimant Narkrictine

Properties

Filter name: | Only RTPS packets

Filter string: | rtps2 8L licmp

2. Click OK

5-5

Chapter 5

As another example, let’s look at how to display only RTPS packets that contain
HEARTBEAT submessages.

To display HEARTBEAT packets only:

1. Clear anything you have in the filter text box with the Clear button, then click
the Expression... button.

2. In the new Filter Expression window, scroll down in the Field name list until
you see RTPS. Expand the RTPS tree (click the + sign) to see the choices for this
protocol, as seen in Figure 5.3.

Figure 5.3 Creating a Display Filter

Scroll down to RTPS or RTPS2.

Click the + sign to expand
the free.

Use these fields to create
a display filter.

Field name

> = RTPS -

NS U oe W

rtps.version - version (RTPS protocel version n

rtps.version.major - major (RTPS major protoc

rtps.version.miner - minor (RTPS miner protor

rtps.domain_id - domain_id (Demain ID)

rtps.participant_idx - participant_idx (Participa 2

rtps.traffic_nature - traffic_nature (Nature of th_

rtps.vendorld - vendorld (Unique identifier of 1
rtps.guidPrefix - guidPrefix (GuidPrefix of the F
rtps.hostld - hostld (Sub-component "hostld' «
rtps.appld - appld (Sub-component ‘appld’ of
rtps.appld.instanceld - appld.instanceld (insta
rtps.appld.appKind - appid.appKind ('appKind
rtps.smuid - submessageld (defines the type of

rtps.smuflags - flags (bitmask representing the —
om ;

In the Field name list, select rtps.sm.id.
In the Relation list, select ==.
In the Predefined values: list, select HEARTBEAT.

Click OK to close the Filter Expression window.

Relation
is present
1=
>
£
>z

=

Value {unsigned, 1 byte)
0

Predefined values:

PAD

DATA
MNOKEY_DATA
ACKMACK

GAP

INFO_TS
INFO_SRC
IMFO_REPLY_IP4
INFO_DST
IMNFO_REPLY

Range (offsetlength)

OK] I Cancel

. Click Apply in the main window to apply the new filter. Now you will see only

RTPS messages that contain a HEARTBEAT submessage, as shown in Figure 5.4.

5-6

5.2 Displaying Packets

Wireshark also allows you to save filter expressions for future use. For more information,

see the Wireshark User’s Guide or online help.

Figure 5.4 Filtering by Submessage Type

1. Use the Expression... button to help you
enter afilfer.

2. Click Apply.

‘ Eilter: Irtps am.id == 07 i’

- | E xprezzion | Qearl Qppl_ul

Nao. - | Time: | Source Destination | Pratocol | GUID Prefis Info
3 0.007EL2 10.10.100.14 239.192.1.2 RTPS Ox0afdagd0e Ox188B0 HEARTEBEAT
4 0, 008461 10.10.100.14 239.1%92.1.2 RTPS 0Ox0aladdile Ox18880 HEARTEEAT
5 0. 008605 10.10.100.14 239.192.1.2 RTPS Ox0aladdde 0Ox18880 HEARTEEAT
6 0, 008741 10.10.100.14 239.1%92.1.2 RTPS Ox0alagdde Ox18880 HEARTEEAT
10 0.009665 10.10.100.14 239.192.1.2 RTPS Ox0afdagd0e Ox188B0 HEARTEBEAT
12 0.0L008S 10.10.100.14 239.1%92.1.2 RTPS 0Ox0aladdile Ox18880 HEARTEEAT
13 0.010232 10.10.100.14 239.192.1.2 RTPS Ox0aladdde 0Ox18880 HEARTEEAT
3. Now only 16 0.011622 10.10.100.14 239.1%92.1.2 RTPS (OxDalagd0de Ox18880 HEARTEEAT
pgcke‘]‘s 25 2.711920 10.10.100.14 239.192.1.2 RTPS Ox0afdagd0e Ox188B0 HEARTEBEAT
con’roining a 26 2.5992846 10.10.100.14 239.1%92.1.2 RTPS 0Ox0aladdile Ox18880 HEARTEEAT
HEARTBEAT 30 5.713828 10.10.100.14 239.192.1.2 RTPS Ox0aladdde 0Ox18880 HEARTEEAT
31 5.593371 10.10.100.14 239.1%92.1.2 RTPS Ox0alagdde Ox18880 HEARTEEAT
are 30 B.0999946 10.10.100.14 239.192.1.2 RTPS Ox0afdagd0e Ox188B0 HEARTEBEAT
disployed. 43 12.005336 10.10.100.14 239.1%92.1.2 RTPS 0Ox0aladdile Ox18880 HEARTEEAT
53 19.609355 10.10.100,14 239.192.1.2 RTPS Ox0aladdde 0Ox18880 HEARTEEAT
54 15,610037 10.10.100,.14 239.1%92.1.2 RTPS Ox0alagdde Ox18880 HEARTEEAT
55 19. 610180 10.10.100.14 239.192.1.2 RTPS Ox0afdagd0e Ox188B0 HEARTEBEAT
56 1%,610317 10.10.100,.14 239.1%92.1.2 RTPS 0Ox0aladdile Ox18880 HEARTEEAT
FEET ATy T an aan ad S5A ano a1 = FTRE AefaneEdne fed 8000 e snToe s

Displaying RTPS and RTPS2 Messages:

Table 5.2 briefly describes the meaning of each field that can be used in a display filter
for RTPS. To display packets for RTPS2, change the prefix from “rtps” to “rtps2.” (These
fields can also be used in coloring rules, see Section 5.2.2.) To display both RTPS and
RTPS2, rules must include both versions logically OR’ed together. For details on the
meaning of these fields, see the Real-Time Publish-Subscribe Wire Protocol Specification (see
Available Documentation (Section 1.1)).

Table 5.2 Display-Filter Fields for RTPS Messages

Field

Description

Header fields:

rtps.version

Protocol version (major.minor)

rtps.version.minor

Protocol minor version

rtps.version.major

Protocol major version

rtps.domain_id

Domain ID of this communication (see note below)

rtps.participant_idx

Participant index (see note below)

rtps.traffic_nature

Nature of the traffic (see note below)

rtps.vendorld

Vendor ID

sj@)ond BuizAipuy ‘S

Chapter 5

Table 5.2 Display-Filter Fields for RTPS Messages

5-8

Field Description
. . GUID Prefix of the packet (this does NOT match a GUID
rtps.guidPrefix .
Prefix from a submessage)
rtps.hostld Host ID component of the packet GUID Prefix
rtps.appld App ID component of the packet GUID Prefix
rtps.appld.instanceld Instz.ance ID of the App Id component of the packet GUID
Prefix
rtps.appld.appKind App Kind of the App Id component of the packet GUID

Prefix

Submessage-specific fields:

rtps.sm.id

Submessage type (see Table 5.1)

rtps.sm.flags

Byte representing the submessage flags

rtps.sm.octectsToTextHeader

Value of the octetsToNextHeader from the submessage
header

rtps.sm.guidPrefix

Generic GUID Prefix that appears inside a submessage
(this does not match the GUID Prefix of the packet
header)

rtps.sm.guidPrefix.hostId

Host ID component of the submessage GUID Prefix

rtps.sm.guidPrefix.appld

App ID component of the submessage GUID Prefix

rtps.sm.guidPrefix.appld.instanceld

Instanceld component of the App ID of the submessage
GUID Prefix

rtps.sm.guidPrefix.appld.appKind

Object kind component of the App ID of the submessage
GUID Prefix

rtps.sm.entityld

Object entity ID as it appear in a DATA submessage
(keyHashSuffix)

rtps.sm.entityld.entityKey

‘entityKey' field of the object entity ID

rtps.sm.entityld.entityKind

‘entityKind' field of the object entity ID

rtps.sm.rdentityld

Reader entity ID as it appear in a submessage

rtps.sm.rdentityld.entityKey

‘entityKey' field of the reader entity ID

rtps.sm.rdentityld.entityKind

'entityKind' field of the reader entity ID

rtps.sm.wrentityld

Writer entity ID as it appear in a submessage

rtps.sm.wrentityld.entityKey

‘entityKey' field of the writer entity ID

rtps.sm.wrentityld.entityKind

‘entityKind' field of the writer entity ID

rtps.sm.seqNumber

Writer sequence number

5.2 Displaying Packets

Table 5.2 Display-Filter Fields for RTPS Messages

Field Description
Parameters:
rtps.param.id Parameter ID
rtps.param.length Parameter length

rtps.param.ntpTime

Any generic ntpTime used in any parameter

rtps.param.ntpTime.sec

Second part of a ntpTime

rtps.param.ntpTime.fraction

Fraction part of a ntpTime

rtps.param.topiCName

Topic associated with a PID_TOPIC

rtps.param.strength

Value of the strength parameter in a PID_STRENGTH

rtps.param.typeName

Value of PID_TYPE_NAME

rtps.param.userData

Raw data of PID_USER_DATA

rtps.param. groupData

Raw data of PID_GROUP_DATA

rtps.param.topicData

Raw data of PID_TOPIC_DATA

rtps.param.contentFilterName

Value of the content filter as sent in a
PID_CONTENT_FILTER_PROPERTY parameter

rtps.param.relatedTopicName

Value of the related topic name as sent in a
PID_CONTENT_FILTER_PROPERTY parameter

rtps.param.filterName

Value of the filter name as sent in a
PID_CONTENT_FILTER_PROPERTY parameter

rtps.issueData

Value of the issue data transferred in the packets

Note: The domain_id, participant_idx, and traffic_nature are described in the latest
RTPS 2 specification. The values of traffic_nature correspond to the following kinds of

traffic:

[10 = Meta Traffic Unicast
(1 11 = User Traffic Unicast
[0 = Meta Traffic Multicast
(A 1 = User Traffic Multicast

Important: The packet decoder assumes the applications are using the default value for
the receive_port. Therefore, it is important to note that if the receive_port has been
explicitly changed (in the locators.receive_port field of the TransportUnicast or Trans-
portMulticast QosPolicy), then the domain_id, participant_idx, and traffic_nature val-
ues will be calculated incorrectly; in this case, these three fields should not be used in

5-9

sj@)ond BuizAipuy ‘g

Chapter 5

display filters nor assumed to be correct in the decoded packet view. We expect this
(changing of the receive_port) to be a rare occurrence.

5.2.2 Color-Coding Packets
Wireshark allows you to display packets in different colors. Coloring rules are based on
the same criteria used to create display filters (described in Section 5.2.1). For instance,
you can show discovery-related packets in blue and user-data packets in green. Unlike
display filters, coloring rules do not hide captured packets.
Wireshark includes RTPS-related coloring rules that are automatically enabled; they are
listed in Table 5.3. (You can turn them off, change the colors, or edit them in other ways.
See the Wireshark User’s Guide for details.) To understand the elements in the strings,
refer to the Real-Time Publish-Subscribe Wire Protocol Specification (see Available Docu-
mentation (Section 1.1)). Figure 5.5 shows a sample display.
Figure 5.5 Using Coloring Rules
(SRR VR UL)] R RLU N R R =0 B ETF Jalyandunes U IEasll ACKENALE

71 0.021401 10.10.100.14 239.192.1.2 RTPS 0x0aDaB40e Ox1BBB0 DATA(wH)

22 0.021616 10.10.100.14 239.192.1.2 RTPS 0Ox0aDab40e Ox1BBB0 DATA

23 0.022254 10.10.100.14 239.192.1.2 RTPS 0x0a0a640e 0x1BB80 DATA

24 0.140703 10.10.100.14 239.192.1.2 RTPS 0x0aDaG40e 0x18B80 DATA

25 2.711920 10.10.100.14 239.192.1.2 RTPS 0x0a0aB40e Ox1BE80 HEARTBEAT

26 2.992846 10.10.100.14 239.192.1.2 RTPS 0x020a6402 Ox18880 HEARTBEAT

27 3.022182 10.10.100.14 239.192.1.2 RTPS 0x0a30aG40e 0x18380 NOKEY_DATA

28 4.022386 10.10.100.14 239.192.1.2 RTPS Ox0aDaB40e Ox1BBBO NOKEY_DATA

29 5.022576 10.10.100.14 239.192.1.2 RTPS 0x0a0aB40e Ox1BBB0 NOKEY_DATA

30 5.713828 10.10.100.14 239.192.1.2 RTPS 0x0a20aG402 0x18880 HEARTBEAT

31 5.993371 10.10.100.14 239.192.1.2 RTPS 0x0a0ab40e 0x1B880 HEARTBEAT

32 5.993520 10.10.100.14 239.192.1.2 RTPS Ox0a0aB40e Ox1BBB0 ACKNACK

33 5.993643 10.10.100.14 239.192.1.2 RTPS 0x020aG402 Ox188380 ACKNACK

5-10

Coloring rules make is easy to see different types of submessages.

To create a new coloring rule:
1. Select View, Coloring Rules..., then click the New button to open an Edit Color
Filter window.
Enter a name for the color filter, such as HeartBeatPackets.

Enter a color filter expression using the same syntax as for a display filter. If you
need help, click the Expression... button. For examples, see Table 5.3.

4. Select foreground (text) and background colors for packets that match the filter
expression.

Tip: To select a color, click in the color-selection triangle; use the colored circle to
quickly change the contents of the triangle.

5.3 Analyzing Packets from RTI Data Distribution Service Applications

Table 5.3 Default Coloring Rules

5.3

Coloring Rule

String

RTI DDSPing (green)

udp[16-23] == "rtiddsping"

User traffic (red)

(rtps.sm.wrEntityld.entityKind == 0x02) | |
(rtps.sm.wrEntityld.entityKind == 0x03) | |
(rtps2.sm.wrEntityld.entityKind == 0x02) | |
(rtps2.sm.wrEntityld.entityKind == 0x03)

Meta traffic (blue)

(rtps.sm.wrEntityld.entityKind == 0xc2) | |
(rtps.sm.wrEntityld.entityKind == 0xc3) | |
(rtps2.sm.wrEntityld.entityKind == 0xc2) | |
(rtps2.sm.wrEntityld.entityKind == 0xc3)

Non-RTPS traffic (gray)

Irtps && !rtps2

5. Click OK to close the Edit Color Filter window.

6. Click Apply in the Coloring Rules window.

Tip: The order of the coloring rules is important. The rules are applied in the
order in which they appear in the dialog box. So if there are two rules that are
true for the same packet, the first will be used and the second one ignored. You
can use the Up and Down buttons on the dialog to change the order of the rules.

Analyzing Packets from RTI Data Distribution Service

Applications

RTI's distribution of Wireshark includes two files that contain packets captured from RTI
Data Distribution Service applications:

userDataTrace.pkt A short trace of captured user data packets. This shows the flow of
packets in an established system (after all the objects have discovered each other).

discoveryTrace.pkt A longer trace of the packets sent during the discovery (startup)

process.

The location of the sample files depends on your operating system:

[Linux: /ust/share/wireshark

[Solaris: /usr/local/share/wireshark

5-11

sj@)ond BuizAipuy ‘S

Chapter 5

5.3.1

5-12

(d Windows: <WiresharkHOME>\rti (where <WiresharkHOME> is where Wire-
shark is installed)

By looking at these sample files, you will learn how to:

'd Load a captured sequence of packets from a file.
[d Understand the flow of RTPS messages by looking at a sample sequence.
[d View the contents of individual RTPS packets.

Note: these sample traces were taken with a beta version of RTI Data Distribution Service
(4.0f), which used RTPS 1.1. The protocol used in RTI Data Distribution Service 4.2 and
higher uses RTPS 2.x. Therefore, the actual sequence of packets exchanged will be differ-
ent in your traces. These samples are provided only to show you how to read a sequence
of RTPS packets.

Analyzing the User Data Sample Trace

Use the File, Open... command to open the file, userDataTrace.pkt (see Section 5.3 for its
location).

The sample file contains a sequence of RTPS packets that illustrate the protocol when
two RTI Data Distribution Service 4.0 applications use reliable communications to send/
receive data.

This scenario involves two hosts, each running one RTI Data Distribution Service applica-
tion.

[d Host 1 (10.10.100.2, named kirkwood) is running an RTI Data Distribution Service
publishing application, Appl.

(d Host 2 (10.10.50.247, named kootenay) is running an RTI Data Distribution Service
subscribing application, App2.

(d The QoS for the writer and reader have been set up to use Reliable communica-
tions.

A App1 writes user data every 4 seconds.

To create the sample capture file, Wireshark started capturing packets on the subscribing
host (kirkwood) after the discovery process completed, using the following capture fil-
ter:

udp and src or dst kootenay

5.3 Analyzing Packets from RTI Data Distribution Service Applications

Figure 5.6 shows the packets captured by Wireshark, which includes three types of RTPS
packets:

[d Data from the writer to the reader
(A Acknowledgements from the reader to the writer
[J Heartbeats sent regularly from the writer to the reader

Table 5.4 and Figure 5.7 describe the trace.

Figure 5.6 User Data Sample Packets

| Ma. - | Timne | Source | Destination | Protocol | GUID Prefis Infa

VFIEREINTN]

002026402 000200 HEARTBEAT

2 1.124057 o

3 1.12417%9 10.10.50,247 10.10.100.2 RTPS 0x0a0a32F7 0xE3cf0 ACKMACK

4 3.999752 10.10.100.2 10.10.50.247 RTPS 0x0a0asd02 0x05200 PAD, NOKEY_DA
3 4.123881 10.10.100.2 10.10.50.247 RTPS 0x0a0and02 0x09200 HEARTBEAT

G 4.124773 10.10.50,247 10.10.100.2 RTPS 0x0a0a32F7 0xE3cf0 ACKMACK

7 F.0999506 10.10.100.2 10.10.50.247 RTPS 0x0a0asd02 0x05200 PAD, NOKEY_DA
8 10.123530 10.10.100.2 10.10.50.247 RTPS Ox0a0asd 02 0x09200 HEARTEBEAT

9 10.125047 10.10.30,247 10.10.100.2 RTPS 0x0a0a32F7 0xE3cf0 ACKMACZK

Table 5.4 Analysis of User Data Sample Trace

Direction | Packet # Description

Data packet sent to the reader (NOKEY_DATA submessage).
Packet has sequence number = 60 (expand the protocol tree in the
Appl — App2 Packet Details pane and check the writerSeqNumber value, as seen
in Figure 5.8).

2 HEARTBEAT from writer to reader

ACKNACK to acknowledge all data packets up to (but not
including) sequence number 61 (expand the protocol tree in the

Appl < App2 3 Packet Details pane and check the 'readerSNState.bitmapBase'
value).
4 Another data packet (sequence number 61).
Appl = App2 -
5 HEARTBEAT from writer to reader.
Appl < App2 6 Acknowledges packet #4.
7 Another data packet (sequence number 62).
Appl — App2 -
8 HEARTBEAT from writer to reader.
Appl « App2 9 ACKNACK to acknowledge packet #7.

5-13

sj@)ond BuizAipuy ‘S

Chapter 5

Figure 5.7 User Data Sample Packet Flow

5-14

Appl

5.3 Analyzing Packets from RTI Data Distribution Service Applications

Figure 5.8 Examining Packet Details

Select a packet in the Packet List

GUID Prefn Tnio {

Protocol

Time

Source Llestination

10 U 10,10, RTPS ! 0 0 O PAD, N
2 1.124057 10,10, 50, 247 RTFS 0x0afagd 02 Ox0%200 HEARTEBEAT
3 1.12417% 10.10.50.247 1o.10.100. 2 RTPS 0x0a0a32f7 0xE3cf0 ACKMACK
4 3, 995752 10.10.100.2 10,10, 50, 247 RTFS Ox0anagd 0z Ox0S%200 PAD, MOKEY_DATA
5 4.1238581 10.10.100.2 10010, 50, 247 RTF= OxOadand 02 O0x0%200 HEARTEEAT
6 4,124773 10.10.50.247 10,100,100, 2 RTPS 0x0a0a32f7 0xE3cf0 ACKMNACK
TO7.e9%508 10.10.100.2 10,10, 50, 247 RTFS Ox0atand 02 Ox0%9200 PAD, MORKEY_DATA
8 10.123530 10.10.100.2 10,10, 50, 247 RTPS Ox0adand 02 0x059200 HEARTEBEAT
G 10,123647 10.10,50.247 10,110,100, 2 RTFS 0x0a0a32f7 0x63cf0 ACKMACK

1] | M

H Frame 1 (90 bytes on wire, 90 bytes captured)
M Ethernet IT, Src: Intel_0Ob:d2:a7 (00:11:11:0b:d2:a7), Dst: Intel_09:38:dc (00:11:11:09:38:dc)
H Internet Protocol, Src: 10.10.100.2 (10.10.100.20, Dst: 10.10.50.247 (10.10.50.247]
[H User Datagram Protocol, Src Port: 1190 (1190), Dst Port: 8273 (8273)
= rReal-Time Publish-subscribe wire Protocol
= Protocol version: 1.1
major: 1
minor: 1
vendor: Real-Time Innovations, Inc.
H guidrPrefix=0a0a6402 09200001 { hostld=0a0a6402, appId=09200001 (Managedapplication: 0%2000) }
@ befault port mapping: domainId=87, participantIdx=0, nature=UNICAST_USERTRAFFIC
B Submessage: PAD
submessageId: PAD (0x0l)
H Flags: 0x01 (_ _ _ _ _ _ _ E D
oCtetsToWextHeader: 0
= Ssubmessage: MOKEY_DATA
submessageld: MOKEY_DATA (0x03)
B Flags: 0x01 ¢_ _ _ _ _ _ _ E)
octetsToNextHeader: 24
H readerEntityId: ENTITYID_UNKNOWN (OxO00000007)
H writerEntityId: 0x00000303 (Application-defined writer tno key): 0x000003)
Humkb 0

serializedbata: 3B000000398E8142 k\

Expand the submessage details to see the sequence number and other details.

sj@)ond BuizAipuy ‘S

Chapter 5

5.3.2

5-16

Analyzing the Discovery Data Sample Trace

Use the File, Open... command to open the file, discoveryTrace.pkt (see Section 5.3 for
its location).

The sample file contains a sequence of RTPS packets that illustrate the protocol when
two RTI Data Distribution Service applications use best-effort communications to send/
receive data.

This scenario involves two hosts, each running one RTI Data Distribution Service applica-
tion.

'd Host 1 (10.10.100.2) is running an RTI Data Distribution Service publishing appli-
cation, Appl.

[Host 2 (10.10.50.247) is running an RTI Data Distribution Service subscribing
application, App2.

[d Both applications have a maximum participant index of 1 and have each other in
their initial peer_list.

(d All QoS are at default values, including the use of automatic discovery via the
default UDPv4 transport.

Wireshark was set up to start capturing packets before either application was started. The
publishing application was started first, followed (about 6 seconds later) by the sub-
scribing application. Figure 5.9 shows the packets captured by Wireshark.

Let’s walk through the RTPS packets to understand what occurred in this sequence.
Table 5.5 describes what happened (non-RTPS packets are omitted). In the table, the
term “meta DATA” refers to DATA packets containing meta (discovery) data (as
opposed to user data).

5.3 Analyzing Packets from RTI Data Distribution Service Applications

Figure 5.9 Discovery Data Sample File

LU LY) ik nown Source port:

2 0.00015% 10.10.100.2 10.10.50.247 RTPS Ox0a0a6402 0x0C1B0 DATA

3 0.000230 10.10.100.2 10.10.50.247 RTPS 0x0a0a6402 0x0ClB0 DATA

4 6.041247 10.10.50.247 10.10.100.2 UDP Unknown Source port: 36816 Des
5 6.04136%9 10.10.50.247 10.10.100.2 RTPS 0x0a0a32f7 Ox46000 DATA

6 6.041385 10.10,50.247 10.10.100.2 RTPS 0x0a0a32F7 Ox48000 DATA

76041581 10.10.100.2 10.10.50.247 RTPS Ox0a0a6402 0x0C1B0 DATA

8 6.04201% 10.10.100.2 10.10.50.247 RTPS 0x0a0a6402 0x0Cl80 DATA

9 6.042100 10.10.100.2 10.10.50.247 RTPS 0x0a0as402 0x0C180 HEARTEBEAT
10 6.042198 10.10.100.2 10.10.50.247 RTPS 0x0a0a6402 0x0C1B80 HEARTBEAT
11 6.042302 10.10.100.2 10.10.50.247 RTPS 0x0a0a6402 0x0C180 ATKMNACK
12 6.042373 10.10.100.2 10.10.50.247 RTPS Ox0a0a6402 0x0c1B0 ACKNACK
13 6.04245%2 10.,10.100.2 10.10.50.247 RTPS 0x0a0a6402 0x0Cl80 DATA
14 6.042513 10.10.100.2 10.10.50.247 RTPS 0x0a0as402 0x0Cl80 DATA
15 6.042878 10.10.50.247 10.10.100.2 RTPS 0x0a0a32f7 Ox46000 DATA
16 6.0428946 10.10,50.247 10.10.100.2 RTPS 0x0a0a3277 Ox48000 DATA
17 6.042081 10.10.50.247 10.10.100.2 RTPS 0x0a0a32f7 0x46000 HEARTEEAT
18 6.043024 10.10,50.247 10.10.100.2 RTPS 0x0a0a32f7 0x46000 HEARTEBEAT
1% 6.043076 10.10,50.247 10.10.100.2 RTPS 0x0a0a3277 Ox46000 ACKMNACK

20 6.043174 10.10,50.247 10.10.100.2 RTP= 0x0a0a32T7 0x46000 ACKMACK

21 6.043219 10.10.100.2 10.10.50.247 RTP= 0x0a0a6402 0x0C180 ATKMNACK

22 6.043330 10.10.100.2 10.10.50.247 RTPS Ox0a0a6402 0x0C1B80 HEARTEBEAT

23 6.043368 10.10.50.247 10.10.100.2 RTP= 0x0a0a32T7 Ox45000 DATA

24 6.043380 10.10.50.247 10.10.100.2 RTPS 0x0a0a32f7 Ox48000 DATA

25 6.043389 10.10.100.2 10.10.50.247 RTP= 0x0a0a6402 0x0C1B80 HEARTBEAT

26 6.043457 10.10,50.247 10.10.100.2 RTP= 0x0a0a3277 Ox46000 ACKMNACK

27 6.043514 10.10.50.247 10.10.100.2 RTPS 0x0a0a32f7 0x46000 HEARTEEAT

28 6.043551 10.10.50.247 10.10.100.2 RTP= 0x0a0a32f7 0x46000 HEARTEBEAT

29 6.043640 10.10.50.247 10.10.100.2 RTPS 0x0a0a32f7 0x46000 DATALr+), HEARTEBEAT
30 6.043668 10.10.100.2 10.10.50.247 RTP= 0x0a0aB402 0x0C180 DATALw+), HEARTEBEAT
31 6.043670 10.10.50.247 10.10.100.2 RTP= 0x0a0a32F7 Oxd46000 ACKMNACK

32 6.0436%1 10.10.100.2 10.10.50.247 RTPS Ox0a0a6402 0x0clB0 ACKNACK

33 6.0436%8 10.10.50.247 10.10.100.2 RTP= 0x0a0a32F7 0x46000 ACKNACK

34 6.04375% 10.10.100.2 10.10.50.247 RTPS 0x0a0asd402 0x0Cl80 ACKMNACK

35 6.0437%4 10,10.50.247 10.10.100.2 RTP= 0x0a0a32T7 0x46000 ACKNACK

36 6.043829 10.10.50.247 10.10.100.2 RTP= 0x0a0a32F7 0x46000 DATALr+), HEARTEBEAT
37 6.043073 10.10.100.2 10.10.50.247 RTPS Ox0a0a6402 0x0clB0 ACKNACK

38 6.044072 10.10.50.247 10.10.100.2 RTP= 0x0a0a32T7 Ox45000 DATA

39 6.044087 10.10.50.247 10.10.100.2 RTPS 0x0a0a32f7 Ox48000 DATA
40 6.044098 10,10.100.2 10.10.50.247 RTPS 0x0a0aB402 0x0C1B0 DATALw+), HEARTEBEAT
41 6.044132 10.10.100.2 10.10.50.247 RTPS 0x0a0a6402 0x0C180 ACKMNACK
42 6.044198 10.10.50.247 10.10.100.2 RTPS 0x0a0a32f7 0x46000 ACKMATK
43 6.044278 10.10.100.2 10.10.50.247 RTPS 0x0a0a6402 0x0Cl80 DATA
44 6.044331 10.10.100.2 10.10.50.247 RTPS 0x0a0as402 0x0Cl80 DATA
45 7.989018 10.10.100.2 10.10.50.247 RTPS 0x0a0a6402 Ox0C180 PAD, MOKEY_DATA
46 11.98869¢ 10,10,100.2 10.10.50.247 RTPS 0x0a0ag402 0x0C180 PAD, MNOKEY_DATA
47 15.988537 10.10.100.2 10.10.50.247 RTPS Ox0a0abd02 O0x0c1B0 PAD, MNOKEY_DATA
48 19.98829¢ 10.,10,100.2 10.10.50.247 RTPS 0x0a0ac6402 0x0c180 PAD, MOKEY_DATA

4] | 4

5-17

sj@)ond BuizAipuy ‘S

Chapter 5

Table 5.5 Analysis of Sample File’s Packets

Direction

Packet #

Description

Appl - App2

When the writer participant starts, RTI Data Distribution Service
announces the creation of a new participant to all potential participants in
the initial_peer_list.

Potential participants are initially calculated as:

for each peer in initial_peer_list, peer/participant(i), where i <= maximum
participant index.

Since the participant's maximum participant index is 1 and initial_peer_list
contains only 10.10.50.247, the potential participant list is {10.10.50.247/
participant(0), 10.10.50.247 / participant(1)}.

Since each participant gets its own receive locator, we send separate (but
identical) packets to each potential participant listening on its own locator,
as shown in packets #2 and #3.

#1 is sent by the RTI Data Distribution Service pluggable transport module
to see if the specified locator is a reachable destination. Since there is no
other RTI Data Distribution Service application in the system on the same
domain index, there will be no response to packets #2 and #3.

Appl < App2

Similar to the writer participant, when the reader participant (on participant
index 1) starts, RTI Data Distribution Service announces the new
participant.

Appl - App2

78

When the writer participant learns about the new participant, it announces
itself again to the new participant (and all other potential participants).

9,10

Writer participant uses HEARTBEATSs to tell the reader participant how
many readers (0) and writers (1) it has. The reader participant will know
from this that it has to get a meta DATA from the writer.

To be strict, this sequence number does not imply that there is 1 writer, but
that the writer participant has made 1 change to the internal participant
meta group. This number would get incremented if the writer was changed
or deleted.

11,12

ACKNACKS from writer participant asking the reader participant about its
readers and writer.

13,14

Repeat announcements about the writer participant. Repeat announcements
reduce the chance that the newly created reader participant will drop the
reply from the writer participant.

5-18

5.3 Analyzing Packets from RTI Data Distribution Service Applications

Table 5.5 Analysis of Sample File’s Packets

Direction | Packet # Description
15.16 Reader participant learns about the writer participant and announces itself
! to the world again.
Appl < App2| 17,18 ilie}i;:lser participant tells the writer participant how many readers and writers
Reader participant asks the writer to update the reader and writer meta
19, 20
DATA.
21 Writer, likewise, asks the reader to send updates of its reader meta DATA.
Appl — App2 . .
22 Wrriter responds to #19 and tells the reader that it doesn't have any readers.
Appl <~ App2| 23,24 |Reader refreshes its participant declaration to the world.
Appl - App2 25 Wrriter responds to #20, saying it has 1 writer.
26 Reader responds, asking for the writer meta DATA it hasn’t received.
Appl - App2 27 -9 Reader participant repeats its response to the query in #21 by sending the
meta DATA for its reader.
Appl - App2 30 X\zleter participant sends the meta DATA for its writer. This is a response to
Appl < App2 31 Reader participant acknowledges the receipt of the meta DATA. This is a
response to #22.
Appl - App2 32 Reader and writer participants exchange meta information about what meta
Appl « App2 33 DATA they have received from each other. #32 is a response to #27 (not #29).
Appl - App2 34 #33 is a response to #25.
35 Writer participant acknowledges receipt of meta DATA. This is a response to
Appl « App2 #30.
36 Reader participant send meta DATA for its reader. This is a response to #32.
Appl - App2 37 Writer participant acknowledges receipt of this meta DATA. This is a
response to #29.
Appl < App2| 38,39 |Reader participant announces itself to the world.
40 Writer responds to reader participant's query in #33. Note that this is
Appl - App2 redundant with #30 due to cross talk.
41 Redundant acknowledgements.
Appl < App2 42 Redundant acknowledgements.
43 -44 | Writer reannounces itself to the world.
Appl — App2 — . ,
45-48 | Writer finally begins sending user data.

5-19

sj@)ond BuizAipuy ‘g

Chapter 5

5-20

Chapter 6 Practical Uses with RTI Applications

This chapter offers a few suggestions on how Wireshark can be used during RTI Data
Distribution Service application development:

[d Debugging Discovery Problems (Section 6.1)
[Visualizing Your System (Section 6.2)
[Providing Information to RTI Support (Section 6.3)

6.1 Debugging Discovery Problems

While many object discovery problems are difficult to diagnose, others are quite obvi-
ous once you use the right diagnostic tools. By inspecting all RTPS packets with Wire-
shark, you may be able to narrow the problem down to one of the following:

(d The participants are not discovering each other. In this case, you will see periodic
sending of DATA packets, but no response from the other host that is not being
discovered.

[The participants have discovered each other, but their contained readers/writers
are not getting hooked up correctly. In this case, you may see HEARTBEAT and
ACKNACK packets for the reserved meta-data representing the reader and
writer from one participant to another, but the other participant is not respond-
ing back in accordance to the RTPS protocol.

[d The objects have all discovered each other, but the writer is not sending user-
data. In this case, you will see the discovery protocol complete successfully, but
not see DATA packets containing user data from the writer.

6-1

sos() [D21ODId 9

Chapter 6

6-2

When a participant containing a writer sends meta data to other participants,
and those other participants respond with ACKNACK packets to acknowledge
those discovery packets, all you can say is that the declaration for that writer was
received by all participants in the system. But just because a participant is writ-
ing DATA packets does not necessarily mean it is writing your application’s user
data. RTI Data Distribution Service also uses DATA packets to propagate internal
object information. When in doubt, check the traffic_nature field in the decoded
packet to see how the packet is being used.

A subscriber reciprocally declares its reader object with another DATA packet to
all concerned participants. This happens before the writer application starts pub-
lishing user data. RTI Data Distribution Service uses separate built-in objects to
announce and discover readers vs. writers, so it's important to check the writ-
erEntityld of the DATA packet to confirm that the participants in question have
discovered the reader/writer correctly.

Lastly, it's important to check whether the topic and type declared in the meta
data of the reader matches that in the meta data of the writer. Assuming that nei-
ther party is deliberately ignoring certain DDS entities (e.g. participant, topic,
reader, writer), if all these were acknowledged (with ACKNACK packets), the
reader participant should at this point be ready to accept user data from the
writer, and the writer will send the data to the reader. Exactly when the data will
appear on the wire will depend on when the writer writes the next sample, as
well as the QoS of both the reader and writer.

The writer is writing your data, but the reader is not able to access that data
when it calls read() or take(). In this case, you should check your QoS settings.
Compare the writer's QoS against the reader's. Perhaps the minimum_separation
in the TimeBasedFilter QosPolicy of the reader is inadvertently filtering out
received issues.

[d Once a writer is writing user data to a data reader, the initial discovery phase is

over. But there can be an "anti-discovery" problem: depending on the Liveliness
QoS, RTI Data Distribution Service may purge a remote entity that it considers to
be stale. Regardless of what kind of liveliness setting you use, the main idea is to
ensure that your participant and its entities renew their liveliness (automatically
or manually) within the declared duration. A classic symptom of communication
ceasing due to a liveliness expiration is that a participant stops sending its peri-
odic participant DATA packet. (See the RTI Data Distribution Service User’s Man-
ual or online documentation for information about the Liveliness QosPolicy.)

6.2 Visualizing Your System

NOTE: RTI Data Distribution Service can log more detailed information about
what it is doing at higher verbosity settings. See the RTI Data Distribution Service
User’s Manual’s Troubleshooting chapter for more information on setting verbos-

ity.

6.2 Visualizing Your System

Once your applications are communicating, tuning RTI Data Distribution Service to max-
imize performance may require an in-depth understanding of your network. A visual
understanding of RTI Data Distribution Service network usage is very valuable for sys-
tem tuning.

For example, you may be sending data as fast as RTI Data Distribution Service will allow
and wonder why the reader cannot keep up. Wireshark itself offers many statistical anal-
ysis tools under the Statistics menu.

As Figures 6.1 through 6.3 show, you can see how many RTPS packets are being sent,
what portion of total network bandwidth RTPS packets are taking up, which hosts are
talking to others, and how much bandwidth is being used to do so. In our “sending too
fast” example, you may find that the RTPS packets are being dropped at a host with a
relatively slow reader. In some extreme cases, even Wireshark may not see all the packets
sent, because the network card on the sniffing machine itself dropped them.

Figure 6.1 UDP Conversations

UDP Conversations

lAddress A |P0rtA |Address B |P0n B |Packets i |By1es |Packets A->B |Bytes A->B |Packets A<B |By1es
| 239.255.255.250 1300 ash 1024 16 5304 0 0 16 5304
mammothDHCP100198 6001 255.255.255.255 6001 12 6672 12 6672 0 0
mammothDHCP10074 34063 10.10.1.160 53 8 966 4 353 4 613

| targets 520 10.10.255.255 520 6 456 6 456 0 0

1 235.10.9.9 7400 ety-32 3196 4 792 0O 0 4 792
235.10.9.9 7400 ety-26 3194 4 792 0 0 4 792
235.10.9.9 7400 ety-32 3197 4 792 0 0 4 792
10.10.1.192 1023 mammothDHCP10074 874 4 336 2 144 2 192
235.10.9.9 7400 ety-32 3198 4 792 0 0 4 792
235.10.9.9 7400 ety-26 3195 4 792 0 0 4 792
rushmore 138 10.10.255.255 138 3 798 3 798 0 0
nasl 137 10.10.255.255 137 3 282 3 282 0 (4}
mammothDHCP100162 137 10.10.255.255 137 3 282 3 282 0 0
mammothDHCP100165 137 10.10.255.255 137 3 282 3 282 0 0

A e 10 e I e o e ¥ ot 100 el _na | A (a3 O

6-3

sos() [D21ODId 9

Chapter 6

Figure 6.2 1/O Graph
— 10
— 5
T T T T | T T T T | T T | T T T | T T T T | T T T T | T 0
10.0s 15.0s 20.0s 25.0s 30.0s 35.0s
& 0
Graphs X Axis
Graph 1 |Color 4] Eilter: |rip5| | Style: | Line ¥ | Tick interval] 0.1 sec *
Graph 2 | Color Eiiler: | | Style: | Line v | Pixels per tick: 2 |
Graph 3 | Color Eilter: | | Style: | Line 1Y Axis
Graph 4 | Color Eiller: | | Style: | Line v | Unit: Packets/Tick
Scale:
Graph 5| Color Eiller: | | Style: | Line 4 =

Figure 6.3 Protocol Hierarchy

Protocol |% Packets |Packels |Bvles |Mh'rl,f5 |Er|d Packets |End Bytes |End Mbit/s
=~ Frame 100.00% 128 25957 0.005 0 0 0.000
< Linux cooked-mode capture 100.00% 128 25957 0.005 0 0 0.000
~ Internet Protocol 100.00% 128 25957 0.005 0 0 0.000
~ User Datagram Protocol 100.00% 128 25957 0.005 0 0 0.000
Data 20.31% 26 7636 0.001 26 7636 0.001

Real-Time Publish-Subscribe Wire Protocol 20 3960 0.001 ;

Routing Information Protocol 4.69% 6 456 0.000 6 456 0.000
~ Remote Procedure Call 21.88% 28 3252 0.001 [} [} 0.000
Yellow Pages Service 21.88% 28 3252 0.001 28 3252 0.001
Domain Name Service 6.25% 8 966 0.000 8 966 0.000
~ NetBIOS Datagram Service 10.16% 13 3353 0.001 0] 0.000
~ SMB (Server Message Block Protocol) 10.16% 13 3353 0.001 0 0 0.000
=~ SMB MailSlot Protocol 10.16% 13 3353 0.001 a 0 0.000
Microsoft Windows Browser Protocol 10.16% 13 3353 0.001 13 3353 0.001
NetBIOS Name Service 7.03% 9 846 0.000 9 846 0.000
Hypertext Transfer Protocol 12.50% 16 5304 0.001 16 5304 0.001
Network Time Protocol 1.56% 2 184 0.000 2 184 0.000

6.3 Providing Information to RTI Support

6.3

Providing Information to RTI Support

If you ever need to contact RTI support for an issue related to RTI Data Distribution Ser-
vice, the captured packets will help RTI support diagnose the problem faster (especially
when accompanied by an RTI Data Distribution Service log created with a high verbosity

setting).
See the RTI Data Distribution Service User’s Manual’s Troubleshooting chapter for more
information on setting verbosity.

6-5

sos() [D21ODId 9

Chapter 6

6-6

	Chapter 1 Introduction
	1.1 Available Documentation
	1.2 Reading Guide
	1.3 How to Get Support

	Chapter 2 Installation
	2.1 Before Installation
	2.2 Installing Wireshark on Windows Systems
	2.3 Installing Wireshark on Linux (Red Hat) Systems
	2.4 Installing Wireshark on Linux (Debian) Systems
	2.5 Installing Wireshark on Solaris Systems
	2.6 Uninstalling Wireshark

	Chapter 3 Starting Wireshark
	Chapter 4 Capturing RTPS Packets
	Chapter 5 Analyzing RTPS Packets
	5.1 RTPS Submessage Types
	5.2 Displaying Packets
	5.2.1 Using a Display Filter
	5.2.2 Color-Coding Packets

	5.3 Analyzing Packets from RTI Data Distribution Service Applications
	5.3.1 Analyzing the User Data Sample Trace
	5.3.2 Analyzing the Discovery Data Sample Trace

	Chapter 6 Practical Uses with RTI Applications
	6.1 Debugging Discovery Problems
	6.2 Visualizing Your System
	6.3 Providing Information to RTI Support

