
RTI Real-Time Connect

User’s Manual

Version 5.0

© 2006-2012 Real-Time Innovations, Inc.
All rights reserved.

Printed in U.S.A. First printing.
August 2012.

Trademarks
Real-Time Innovations, RTI, and Connext are trademarks or registered trademarks of Real-Time
Innovations, Inc. All other trademarks used in this document are the property of their respective
owners.

Third Party Copyright Notices
The Oracle® TimesTen® In-Memory Database and the Oracle® Database are products of Oracle.

Copy and Use Restrictions
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any
form (including electronic, mechanical, photocopy, and facsimile) without the prior written
permission of Real-Time Innovations, Inc. All software and documentation (whether in hard copy
or electronic form) enclosed are subject to the license agreement. The software and documentation
may be used or copied only under the terms of the license agreement.

The programs in this book have been included for their instructional value. RTI does not offer any
warranties or representations in respect of their fitness for a particular purpose, nor does RTI
accept any liability for any loss or damage arising from their use.

Technical Support
Real-Time Innovations, Inc.
232 E. Java Drive
Sunnyvale, CA 94089
Phone: (408) 990-7444
Email: support@rti.com
Website: https://support.rti.com/

https://support.rti.com/

Available Documentation

The following documentation is available for RTI® Real-Time Connect:

❏ The Release Notes, RTI_RTC_ReleaseNotes.pdf. This document provides an overview of
the current release’s features and lists changes since the previous release, system require-
ments, supported architectures, and compatibility with other products.

❏ The Getting Started Guide, RTI_RTC_GettingStarted.pdf. This document provides instal-
lation instructions, a short ‘Hello World’ tutorial, and troubleshooting tips.

❏ The User’s Manual, RTI_RTC_UsersManual.pdf. This document starts with an overview
of RTI Real-Time Connect’s basic concepts, terminology, and unique features. It then
describes how to develop and implement applications that use RTI Real-Time Connect.

Additional Resources

❏ The ODBC API Reference from Microsoft is available from http://msdn.microsoft.com/en-
us/library/ms714562(VS.85).aspx.

❏ The documentation for the Oracle TimesTen In-Memory Database can be found in the doc/
directory of the Oracle TimesTen installation.

❏ The documentation for Oracle databases can be found here:
http://www.oracle.com/technology/documentation/index.html.

❏ The documentation for MySQL databases can be found here:
http://dev.mysql.com/doc/refman/5.1/en/index.html.
iii

http://msdn.microsoft.com/en-us/library/ms714562(VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms714562(VS.85).aspx
http://www.oracle.com/technology/documentation/index.html
http://dev.mysql.com/doc/refman/5.0/en/index.html

iv

Contents

1 Welcome to RTI Real-Time Connect
1.1 Intended Readers ..1-1
1.2 Background Reading ..1-2

2 Introduction
2.1 The Edge to Enterprise Integration Solution ..2-1
2.2 Real-Time Connect’s Unique Features...2-3

2.2.1 Interconnecting Standards..2-4
2.2.2 Connectivity To Edge Devices ...2-4
2.2.3 Flexibility and Scalability ...2-5
2.2.4 Matching Real-Time Performance...2-5
2.2.5 High Availability..2-5
2.2.6 Additional Benefits of Real-Time Connect...2-6

3 Architecture
3.1 Real-Time Connect Architecture...3-1

3.1.1 Real-Time Connect Daemon...3-2
3.1.2 Real-Time Connect’s Unique Features..3-3

3.2 Capturing Real-Time Data in a DBMS...3-4
3.3 Remote Real-Time Notification of Table Changes ...3-5
3.4 Bidirectional Integration ..3-6
3.5 Bridging between Domains...3-7
3.6 High-Rate Data Streams Cached before Storage..3-8
3.7 Real-Time Database Replication ...3-9

4 Using Real-Time Connect
4.1 Introduction to the Real-Time Connect Daemon ...4-2

4.1.1 How to Run the Real-Time Connect Daemon with Oracle................................4-2
4.1.2 How to Run the Real-Time Connect Daemon with MySQL..............................4-5
4.1.3 How to Run the Real-Time Connect Daemons as Windows Services..............4-7
4.1.4 Typecodes..4-7

4.2 Command-Line Parameters ..4-8
v

4.3 Environment Variables.. 4-14
4.4 Configuration File .. 4-14

4.4.1 How to Load the XML Configuration.. 4-15
4.4.2 XML Syntax and Validation... 4-16
4.4.3 Top-Level XML Tags... 4-17
4.4.4 Database Configuration Using the Real-Time Connect XML Tag 4-20

4.5 Meta-Tables ... 4-35
4.5.1 Publications Table ... 4-36
4.5.2 Subscriptions Table ... 4-51
4.5.3 Table Info .. 4-72
4.5.4 Log Table .. 4-74

4.6 User-Table Creation ... 4-77
4.7 Support for Extensible Types ... 4-80
4.8 Enabling RTI Distributed Logger in Real-Time Connect ... 4-81
4.9 Enabling RTI Monitoring Library in Real-Time Connect... 4-82

5 IDL/SQL Semantic and Data Mapping
5.1 Semantic Mapping ... 5-1
5.2 Data Representation Mapping ... 5-3

5.2.1 IDL to SQL Mapping .. 5-4
5.2.2 Primitive Types Mapping .. 5-7
5.2.3 Oracle In-Memory Database Cache Mapping ...5-11
5.2.4 Bit Field Mapping ..5-11
5.2.5 Enum Types Mapping .. 5-13
5.2.6 Simple IDL Structures .. 5-13
5.2.7 Complex IDL Structures... 5-13
5.2.8 Array Fields ... 5-15
5.2.9 Sequence Fields ... 5-16
5.2.10 NULL Values ... 5-16
5.2.11 Sparse Data Types ... 5-17

A Error Codes
B Database Limits

B.1 Maximum Columns for Oracle 11g ... B-2
B.2 Maximum Columns for MySQL .. B-2
vi

1. W
e

lc
o

m
e

Chapter 1 Welcome to RTI Real-Time Connect

Welcome to RTI® Real-Time Connect—a high-performance solution for integrating appli-
cations and data across real-time and enterprise systems from RTI.

Real-Time Connect is the integration of two complementary technologies: data-centric
publish-subscribe middleware and relational database management systems (RDBMS).
This powerful integration allows your applications to uniformly access data from real-
time/embedded and enterprise data sources via RTI Connext™ (formerly RTI Data Dis-
tribution Service), or via database interfaces. Since both these technologies are data-cen-
tric and complementary, they can be combined to enable a new class of applications. In
particular, Connext can be used to produce a truly decentralized, distributed RDBMS,
while RDBMS technology can be used to provide persistence for real-time data.

1.1 Intended Readers
This document presents the general concepts behind Real-Time Connect’s architecture
and provides basic information on how to develop applications using Real-Time Connect.

The chapters assume general knowledge of relational databases and SQL, familiarity
with the ODBC API, IDL and the Connext API, and a working knowledge of the C/C++
programming languages.
1-1

Welcome to RTI Real-Time Connect
1.2 Background Reading
For information on distributed systems and databases:

❏ George Coulouris, Jean Dollimore, Tim Kindberg. Distributed Systems: Concepts
and Design (3rd edition). Addison-Wesley, 2000

❏ M. Tamer Ozsu, Patrick Valduriez. Principles of Distributed Database Systems (2nd
Edition). Prentice Hall, 1999

❏ Andrew S. Tanenbaum, Maarten van Steen. Distributed Systems: Principles and
Paradigms (1st edition). Prentice Hall, 2002

For information on real-time systems:

❏ Qing Li, Caroline Yao. Real-Time Concepts for Embedded Systems. CMP Books, 2003

❏ Doug Abbott. Linux for Embedded and Real-Time Applications. Butterworth-Heine-
mann, 2002

❏ David E. Simon. An Embedded Software Primer. Addison-Wesley, 1999

For information on SQL:

❏ Joe Celko. Joe Celko’s SQL for Smarties: Advanced SQL Programming (expanded 2nd
Edition). Morgan Kaufmann, 1999

❏ Rick van der Lans. Introduction to SQL: Mastering the Relational Database Language
(3rd edition). Addison-Wesley, 1999

For information on ODBC:

❏ Microsoft Corporation. Microsoft ODBC 2.0 Software Development Kit and Program-
mer’s Reference. Microsoft Press, 1997

For information on the C programming language:

❏ Brian W. Kernighan, Dennis M. Ritchie. The C programming Language (2nd edition).
Prentice Hall Software Series, 1988
1-2

2. Intro
d

uc
tio

n

Chapter 2 Introduction

This chapter presents a conceptual view of Real-Time Connect’s architecture and high-
lights its unique features. It includes the following sections:

❏ The Edge to Enterprise Integration Solution (Section 2.1)

❏ Real-Time Connect’s Unique Features (Section 2.2)

2.1 The Edge to Enterprise Integration Solution
Real-Time Connect is a solution for integrating existing applications, including service-
oriented architectures (SOAs), with high performance real-time applications, data, and
edge devices. Real-Time Connect provides a run-time bridge between RTI's high-
throughput, embeddable messaging infrastructure, Connext, and integration and data
management standards such as SQL, XML, Web services and JMS. This allows develop-
ers to benefit from the performance, scalability, Quality of Service (QoS) control and
broad platform support provided by RTI's messaging technology while retaining
interoperability with existing enterprise applications, see Figure 2.1.

Real-Time Connect is a fully standards-based solution for the integration of enterprise
applications and high performance real-time applications. Enterprise applications typi-
cally use Structured Query Language (SQL) and Extensible Markup Language (XML)
for data access and Java Message Service (JMS), Service-Oriented Architectures (SOAs),
and Web services for integration.

The most commonly adopted standard in high performance real-time systems, for both
integration and data access, is Object Management Group's (OMG) Data Distribution
Service for Real-Time Systems (DDS). Real-Time Connect enables interoperability by
2-1

Introduction
bridging between enterprise and embedded standards at the data and communications
levels, allowing existing applications to be integrated with few or no changes.

Real-Time Connect also mitigates the performance mismatch between enterprise and
embedded applications. Real-time applications using Connext can deliver messages and
data at rates between 10 and 100 times faster than can be accepted by enterprise applica-
tions. Real-Time Connect decouples applications at the data level, preventing high
throughput real-time messages and data from overwhelming applications managing
business processes by buffering and storing all data in an in-memory DBMS, the Oracle
TimesTen In-Memory database which is bundled with Real-Time Connect.

Oracle TimesTen is a memory-optimized database delivering exceptionally high perfor-
mance, enabling it to easily support the high data throughput of real-time and embed-
ded applications. Using the Oracle TimesTen Cache Connect to Oracle, the data and
messages buffered by the in-memory database can be synchronized and stored in a
disk-based Oracle database for access by enterprise applications directly or through
enterprise-level integration options such as a BPEL (Business Process Execution Lan-
guage) process manager.

Multiple copies of Real-Time Connect can also run in parallel on separate systems. Differ-
ent instances can be responsible for a discrete set of messages and data, maximizing

Figure 2.1 Real-Time Connect Bridges Embedded and Enterprise Applications

Oracle TimesTen
In-Memory
Database

RTI Real-Time Connect
Daemon

Connext ODBC
SQL

Connext
Application

Connext
Application

Connext
Application

Oracle 10g
Database

High performance Permanent storage

Cache
Connect to

Oracle

BPEL Process
Manager

Web Server JMS Application SQL Application

WSDL, XML SOAs
2-2

Real-Time Connect’s Unique Features
2. Intro

d
uc

tio
n

throughput and providing load balancing. Or each instance can bridge the same mes-
sages and data providing high availability and fault tolerance.

2.2 Real-Time Connect’s Unique Features
In this section, a few of the unique qualities and features of Real-Time Connect are dis-
cussed in greater detail. Figure 2.2 shows an example system where Real-Time Connect
serves as the central integration technology to interconnect the real-time, embedded
world with the analysis and high-level decision-making processes of the enterprise
world.

Figure 2.2 Example System Using Real-Time Connect

Sensor 1 Sensor 2

Data Fusion

Sensor 1
tracks

Sensor 2
tracks

System
tracks

Console 1 Console 2

Oracle
Database

Connext App

RTI Real-Time Connect
daemon

RDBMS App

Oracle TimesTen
In-Memory database

Business System 1

Oracle BPEL Process
Manager

Business System 2

foo
bar
bird
fish

124
345
378
675

Y
N
Y
N

345
109
562
298

t
t
f
f

Summary and
Statistics
2-3

Introduction
In Figure 2.2, sensors of physical processes produce data that must be filtered, fused,
and stored for use in business processes. In addition, multiple user consoles must have
concurrent access to both raw and fused data. Real-Time Connect is used to store the raw
data at high rates into an Oracle TimesTen In-Memory database where Oracle Cache
Connect is then used to propagate the data into an Oracle 11g database for permanent
storage. Enterprise applications used for analysis or applying other business logic can
access the data stored in Oracle using SQL or other standards such as JMS, XML, and
HTTP via a BPEL process manager.

Real-Time Connect is the bridge that connects real-time/high performance to complex
analysis, edge devices to business systems, and embedded to enterprise.

2.2.1 Interconnecting Standards

Until recently, distributed real-time systems were built using custom-developed data
structures and algorithms to store and manipulate data in combination with a commer-
cial, or even proprietary, data-distribution middleware layer. This was necessary to
meet real-time performance requirements. However, in recent years, DDS, a standard
for data distribution, has emerged as the premier method to integrate and build distrib-
uted real-time systems.

For decades in enterprise systems, standards for communications, data representation
and data storage has enabled the tremendous growth of software applications for
business processes worldwide. The standards such as SQL, ODBC, JMS, HTML, XML,
and WDSL have greatly increased the interoperability of those business systems.

Real-Time Connect is the first commercial product that interconnects the DDS standard
newly established in the embedded world to the common standards of the enterprise
world. With Real-Time Connect, enterprise applications have direct access to real-time
data, and real-time applications have access to the plethora of processes and logic that
has been developed to configure and direct actions based on business decisions.

2.2.2 Connectivity To Edge Devices

For edge devices, such as sensors and hand-helds, Real-Time Connect integrates Connext
applications with databases. Applications can publish data into relational databases and
subscribe to changes in relational databases using the standard Connext application
programming interface. Integration between Connext and relational database
applications is supported by an IDL-to-SQL mapping that allows both types of
applications to access a uniform data model.
2-4

Real-Time Connect’s Unique Features
2. Intro

d
uc

tio
n

2.2.3 Flexibility and Scalability

By leveraging Connext Quality-of-Service (QoS) settings, Real-Time Connect supports an
unprecedented variety of deployment configurations to accommodate a wide range of
scenarios, from reliable point-to-point delivery to best-effort multicasting that enables
real-time transaction streaming to large numbers of subscribers. By setting QoS policies,
system throughput, response time, reliability, footprint, and network bandwidth
consumption can be tuned to meet application requirements. Previously, a system was
hard-coded with parameters set for a specific operation profile during integration. In
contrast, Real-Time Connect provides run-time configurable policy settings, which
greatly enhances system deployment flexibility.

2.2.4 Matching Real-Time Performance

Real-Time Connect integration with the Oracle TimesTen In-Memory Database allows the
user to capture data into standard relational databases at rates far exceeding most appli-
cation requirements. Data in Oracle TimesTen can be synchronized in the background to
a permanent Oracle database using the TimesTen option Cache Connect to Oracle.

Thus the in-memory database can act as a fast data cache in front of terabytes of data
storage and tremendous analysis capability of a disk-based database. Real-Time Connect
solves the “impedance mismatch” between real-time and enterprise applications.

2.2.5 High Availability

Availability is an essential requirement for most distributed real-time applications. Sys-
tems built in the Defense and Aerospace industries are typically safety critical and are
required to operate in crisis situations. In telecommunications, a minute of system
downtime may mean many millions of dollars in lost revenue. With Real-Time Connect,
automatic data caching and replication can serve as the foundation technology for high-
availability. Applications can use Real-Time Connect to maintain copies of SQL database
tables on two or more hosts in the network. In the event of a host failure, copies of the
tables are available from other hosts to continue operation.

Real-Time Connect’s automated replication management and no-single-point-of-failure
guarantees the availability of critical information. With Real-Time Connect, tables can be
stored on multiple hosts, allowing applications and services to concurrently read and
write in multiple tables. Conflict resolution can be based on application-defined time-
stamps.
2-5

Introduction
2.2.6 Additional Benefits of Real-Time Connect

❏ Achieve quick time-to-market

• Start application development immediately using well-known interfaces.

• Minimize time-consuming custom programming.

• Easily integrate into existing solutions using industry- standard interfaces.

❏ Reduce development costs

• Use widely available modeling and database tools.

• Eliminate expensive complex coding for real-time data management and
communication.

• Integrate edge devices, distributed real-time data management, and enter-
prise databases using a single set of standard Application Programming
Interfaces.

Figure 2.3 High Availability with Real-Time Connect

Oracle TimesTen
In-Memory
Database

RTI Real-Time Connect
Daemon

Connext ODBC
SQL

Connext
Application

Connext
Application

Connext
Application

Oracle 10g
Database

High performance Permanent storage

Cache
Connect to

Oracle

BPEL Process
Manager

Web Server JMS Application SQL Application

WSDL, XML SOAs
2-6

Real-Time Connect’s Unique Features
2. Intro

d
uc

tio
n

❏ Deliver cutting-edge solutions
• Process massive amounts of information across networks in real-time.

• Turn near-instantaneous responses to (remote) critical events into a busi-
ness advantage.

• Seamlessly integrate networked applications, services, and devices.

❏ Minimize operational costs

• Maintain complex networked applications with near-zero administration.

• Dynamically add or change system components.

• Run on common hardware platforms and networks.

❏ Reduce risks
• Guarantee continuous system availability through dynamic replication

management.

• Rely on continuous high-quality technical support.

• Build on years of experience in the world’s most demanding real-time
application domains.
2-7

Introduction
2-8

3. A
rc

hite
c

ture
Chapter 3 Architecture

This chapter presents a more detailed view of RTI Real-Time Connect’s architecture and
highlights the different ways that RTI Real-Time Connect can be used to integrate sys-
tems. It includes the following sections:

❏ Real-Time Connect Architecture (Section 3.1)

❏ Capturing Real-Time Data in a DBMS (Section 3.2)

❏ Remote Real-Time Notification of Table Changes (Section 3.3)

❏ Bidirectional Integration (Section 3.4)

❏ Bridging between Domains (Section 3.5)

❏ High-Rate Data Streams Cached before Storage (Section 3.6)

❏ Real-Time Database Replication (Section 3.7)

3.1 Real-Time Connect Architecture
The Real-Time Connect architecture is designed to integrate existing systems that use the
Connext API or relational databases with minimal modification to working applications.
In many situations, existing applications do not have to change at all.

As seen in Figure 3.1, Real-Time Connect consists of a daemon that acts like bridge
between two software development domains. One uses the OMG Data Distribution Ser-
vice API to publish and subscribe to data that may be generated at high rates with real-
time constraints. The other applies algorithms and logic representing business processes
to megabytes, gigabytes or terabytes of data stored in relational databases.
3-1

Architecture
3.1.1 Real-Time Connect Daemon

The Real-Time Connect Daemon oversees the incoming (subscribed) data and outgoing
(published) data. It enables automatic storage of data published by Connext applications
in a database by mapping a Topic to a table in the database and storing an instance of a
Topic as a row in that table. Also, the daemon can automatically publish changes in a
database table as a Topic. Users have total control of the Quality of Services that the dae-
mon uses for publishing and subscribing to Connext data.

The Real-Time Connect Daemon uses the Connext API, as well as SQL through the ODBC
API. In addition, there is a custom interface for each supported database management
system (DBMS). The three currently supported DBMSs are Oracle 11g, Oracle TimesTen
In-Memory Database 11.2.1, and MySQL 5.1. There is a separate daemon executable for
each of the specific DBMSs.

As illustrated in Figure 3.1, Oracle TimesTen In-Memory Database and Oracle Database
11g can be used in combination. In this case, TimesTen acts as a front-end cache to Ora-
cle Database, providing high-performance access to real-time data.

Figure 3.1 Real-Time Connect Architecture

Oracle TimesTen
In-Memory
Database

RTI Real-Time Connect
Daemon

DDS ODBC
SQL

Connext
Application

Connext
Application

Connext
Application

Oracle 10g
Database

High performance Permanent storage

Cache
Connect to

Oracle

BPEL Process
Manager

Web Server JMS Application SQL Application

WSDL, XML SOAs
3-2

Real-Time Connect Architecture
3. A

rc
hite

c
ture
3.1.2 Real-Time Connect’s Unique Features

Real-Time Connect offers a unique set of features that enable seamless integration of real-
time/embedded Connext applications and enterprise services:

❏ Storage of Connext Data in a DBMS

Real-Time Connect automatically stores received values of specified Topics in a
database. Once the data is propagated to the database, it can be accessed by a
user application via regular SQL queries.

❏ Publication of DBMS Data via Connext

Real-Time Connect automatically publishes changes in specified database tables.
Changes made via the SQL API (with the INSERT, UPDATE and DELETE state-
ments) will be published into the network via Connext, so real-time/embedded
applications and devices can respond to time-critical changes with near-zero
latency.

❏ Mapping Between IDL to SQL Data Types

Real-Time Connect provides automatic mapping between an IDL data type repre-
sentation and a SQL table schema representation. This mapping is used to
directly translate a table record to a Connext data structure and vice-versa. Previ-
ously, this translation had to be done by custom-developed code.

❏ History

Real-Time Connect can store a history of received values of a data instance. Nor-
mally, an instance of a topic is mapped to a single row in the associated database
with the IDL key used as the primary key for the table. But when Real-Time Con-
nect’s data history feature is enabled, multiple samples of a topic instance can be
stored across multiple rows in the same table of the database, supporting both
real-time and off-line analysis based on historical data.

❏ Configurable QoS

Real-Time Connect exposes many of the QoS attributes defined by the DDS stan-
dard. This gives the user full control over the quality of service when capturing
real-time data or subscribing to changes in the database. Supported QoS attri-
butes include reliability, durability, multicasting, delivery ordering, and many
others.
3-3

Architecture
3.2 Capturing Real-Time Data in a DBMS
Figure 3.2 shows how Real-Time Connect can be used to capture real-time data streams
generated by embedded Connext applications into one or more tables in a [in-memory]
DBMS. In this scenario, the Real-Time Connect Daemon has been configured with user-
customizable QoSs to subscribe to Topics. When new values arrive, the daemon stores
the data in the appropriate table in the database. Mapping the Topic described by IDL to
the equivalent SQL table schema is done automatically by the daemon with no user con-
figuration necessary.

Figure 3.2 Storing Published Connext Data in a SQL Database

Relational
Database

Table.Passengers
Flt Name Addrs

C129 A. Johnson …
C054 J. Smith ….
…
…

Table.Tracks
Flt Lat. Long.

C129 34.5 102.3
C054 27.7 46.8
…
…

RTI Real-Time Connect
Daemon

Connext App

Connext App

Connext App

Embedded Enterprise

write

SQL
UPDATE/INSERT

RDBMS AppRDBMS App

SQL SELECT

write

write
3-4

Remote Real-Time Notification of Table Changes
3. A

rc
hite

c
ture
3.3 Remote Real-Time Notification of Table Changes
Figure 3.3 shows how Real-Time Connect can be used to notify remote Connext applica-
tions running in embedded devices of time-critical changes in the database. In this sce-
nario, the Real-Time Connect Daemon has been configured with user-customizable QoSs
to publish Topics whenever the specified table changes in the database. Mapping the
SQL table schema to the equivalent Topic described by IDL is done automatically by the
daemon—no user configuration necessary.

Figure 3.3 Storing Published Connext Data in a SQL Database

Relational
Database

Table.Passengers
Flt Name Addrs

C129 A. Johnson …
C054 J. Smith ….
…
…

Table.Tracks
Flt Lat. Long.

C129 34.5 102.3
C054 27.7 46.8
…
…

RTI Real-Time Connect
Daemon

Connext App

Connext App

Connext App

Embedded Enterprise

SQL SELECT

RDBMS AppRDBMS App

SQL
UPDATE/INSERT

write
3-5

Architecture
3.4 Bidirectional Integration
Figure 3.4 shows a system that integrates the capabilities described in the last two sec-
tions. Real-Time Connect provides bidirectional dataflow between embedded Connext
applications and enterprise database systems. This approach can typically be used to
create a closed-loop system, where sensory data is collected, processed, and analyzed in
an in-memory database, and the resulting analysis creates state changes that are fed
back to remote sensors and devices to control their behavior and mode of operation.

Figure 3.4 Storing Published Connext Data in a SQL Database

Connext

Relational
Database

Table.Passengers
Flt Name Addrs

C129 A. Johnson …
C054 J. Smith ….
…
…

Table.Tracks
Flt Lat. Long.

C129 34.5 102.3
C054 27.7 46.8
…
…

RTI Real-Time Connect
Daemon

Connext App

Connext App

Connext App

Embedded Enterprise

Connext

SQL

RDBMS AppRDBMS App

SQL

Connext
3-6

Bridging between Domains
3. A

rc
hite

c
ture
3.5 Bridging between Domains
Figure 3.5 shows how Real-Time Connect can be used as a bridge between two domains
by configuring the Real-Time Connect Daemon to subscribe to data in one domain and
publishing the same data in a different domain. Data sent by Connext applications in the
first domain are stored by the daemon in a local in-memory table. Since changes in the
table are sent by the daemon into a second domain, the data is ultimately received by
Connext applications in the second domain. There is no feedback cancellation needed
since the data is being bridged across domains. Usually domain bridges have to be writ-
ten by users and modified whenever data types or Topics change. Using Real-Time Con-
nect, no programming is required to create a high performance bridge for any topic of
any data type between any domains.

Figure 3.5 Storing Published Connext Data in a SQL Database

Domain 1 Domain 2

RTI Real-Time Connect
Daemon

Connext App

Connext App

Connext App

Relational
Database

Table.Passengers
Flt Name Addrs

C129 A. Johnson …
C054 J. Smith ….
…
…

Table.Tracks
Flt Lat. Long.

C129 34.5 102.3
C054 27.7 46.8
…
…

Embedded Embedded

write

write

write

Connext App

Connext App

Connext App
3-7

Architecture
3.6 High-Rate Data Streams Cached before Storage
While disk-based persistent databases can store terabytes of data, the performance of
such DBMSs is usually too low to capture data of real-time applications streaming at
ultra-high rates of tens of thousands to over a million samples per second. Figure 3.6
shows how Real-Time Connect can use the Oracle TimesTen In-Memory database as a
front-end cache to the persistent Oracle database, with Cache Connect to Oracle trans-
ferring table data from memory to disk in the background.

This solution enables the archival of high throughput Connext data streams that would
otherwise be uncaptureable by standard database technologies.

Figure 3.6 High-rate Data Streams are Cached Before Storing onto Disk

Oracle
TimesTen

Table.Passengers
Flt Name Addrs

C129 A. Johnson …
C054 J. Smith ….
…
…

Table.Tracks
Flt Lat. Long.

C129 34.5 102.3
C054 27.7 46.8
…
…

RTI Real-Time Connect
Daemon

Connext
App

High data rates
Permanent disk

storage

High-Performance
In-Memory Database

RDBMS App RDBMS App

Connext
App

Connext
App

Oracle
Database

TimesTen Cache
Connect to Oracle
3-8

Real-Time Database Replication
3. A

rc
hite

c
ture
3.7 Real-Time Database Replication
By running multiple Real-Time Connect daemons on different nodes connected to differ-
ent databases, and configuring all of the daemons to publish and subscribe to the same
table, changes made by applications to a table on one node can be automatically repli-
cated to tables on all of the other nodes. Figure 3.7 shows how Real-Time Connect can be
used to perform lazy table replication between distributed databases.

With lazy replication, an update is sent to the subscribers after the transaction is com-
mitted into the local database. The advantages of lazy replication are short response
time and high concurrency, since locks in the data cache are immediately released after a
transaction commits and before it is sent on the network.

By setting different QoSs for the publications and subscriptions created by the Real-Time
Connect Daemon, features such as remote table initialization and application timestamp-
based conflict resolution are enabled. Real-Time Connect provides an initialization attri-
bute that automatically sets the QoS values associated with database replication.

Even different DBMSs can be synchronized by the Real-Time Connect Daemon with table
changes in Oracle TimesTen In-Memory databases propagated to corresponding tables
in Oracle 11g or MySQL 5.1 databases, and vice versa.

Figure 3.7 Replicating Tables Across Databases

Enterprise Enterprise

Relational
Database

Table.Passengers
Flt Name Addrs

C129 A. Johnson …
C054 J. Smith ….
…
…

Table.Tracks
Flt Lat. Long.

C129 34.5 102.3
C054 27.7 46.8
…
…

RTI Real-Time Connect
Daemon

SQL

RDBMS AppRDBMS App

SQL

Relational
Database

Table.Passengers
Flt Name Addrs

C129 A. Johnson …
C054 J. Smith ….
…
…

Table.Tracks
Flt Lat. Long.

C129 34.5 102.3
C054 27.7 46.8
…
…

RTI Real-Time Connect
Daemon

SQL

Connext AppConnext App

SQL
3-9

Architecture
3-10

4. U
sing

 RTI Re
a

l-
Tim

e
 C

o
nne

c
t

Chapter 4 Using Real-Time Connect

This chapter provides detailed information on using the Real-Time Connect Daemon to
subscribe to and store data received as Topics into relational databases, as well as to
publish as Topic changes in relational database tables.

The contents of this chapter assume you have a working knowledge of Connext and rela-
tional databases, especially the MySQL, Oracle and/or Oracle TimesTen In-Memory
databases. The chapter also assumes familiarity with IDL (Interface Definition Lan-
guage), the DDS and SQL specifications and APIs. Finally, you should be able to create
and run applications using Connext to publish and subscribe to data, as well as applica-
tions that can access Oracle databases using SQL through either ODBC or JDBC inter-
faces.

Users can configure the Real-Time Connect Daemon to subscribe to Topics and store
received values in a table, or to publish database changes as Topics using a combination
of methods:

❏ Command-line parameters

❏ Environment variables

❏ Configuration file

❏ Configuration tables in the database

This chapter includes the following sections:

❏ Introduction to the Real-Time Connect Daemon (Section 4.1)

❏ Command-Line Parameters (Section 4.2)

❏ Environment Variables (Section 4.3)

❏ Configuration File (Section 4.4)

❏ Meta-Tables (Section 4.5)

❏ User-Table Creation (Section 4.6)
❏ Enabling RTI Monitoring Library in Real-Time Connect (Section 4.9)
4-1

Using Real-Time Connect
4.1 Introduction to the Real-Time Connect Daemon
Real-Time Connect bridges the world of Connext and the world of relational databases.
The main element of the bridge is an executable that must run on the same host as the
database management system (DBMS). This executable is called the Real-Time Connect
Daemon.

Real-Time Connect uses Connext and supports three databases: Oracle Database 11g, Ora-
cle TimesTen In-Memory Database 11.2.1, and MySQL 5.1. There is a separate executable
that you must run depending on which database you are using.

❏ Oracle Database: rtirtc_oracle[.exe]

❏ Oracle TimesTen In-Memory Database: rtirtc_timesten[.exe]

❏ MySQL: rtirtc_mysql[.exe]

These executables can be executed as foreground processes during development or as
background processes or as a service on Windows systems. You can configure the gen-
eral behavior of the Real-Time Connect Daemon by using command-line parameters,
environment variables and configuration files. Meta-tables in the database are used to
configure the specific topics and tables that are bridged by the daemon.

Besides using compatible versions of Connext and Oracle/Oracle TimesTen/MySQL
databases (see the Release Notes for a list of compatible versions), the Real-Time Connect
Daemon expects that typecodes for the IDL types used by Connext applications have been
generated and being propagated. If typecodes for IDL types were not generated, users
must create the tables (used by the daemon for storing or publishing data) themselves
or declare the types in the configuration files.

4.1.1 How to Run the Real-Time Connect Daemon with Oracle

To run Real-Time Connect correctly with an Oracle database, you must complete the pro-
cedures described in this section.

These procedures are not needed when using Real-Time Connect with the Oracle
TimesTen In-Memory database.

To work with an Oracle database, there is a shared library distributed with Real-Time
Connect that must be installed correctly on the host of the Oracle database server. Com-
munication by the Real-Time Connect Daemon with the Oracle server is accomplished
through external procedures executed by the server when triggers installed by the dae-
mon are fired. These external procedures are provided in the shared library (on UNIX-
based systems) or DLL (on Windows systems) called [lib]rtirtc_oracleq[.so,.dll].
4-2

Introduction to the Real-Time Connect Daemon
4. U

sing
 RTI Re

a
l-

Tim
e

 C
o

nne
c

t

This library is distributed with Real-Time Connect and can be found in the lib/
<platform> directory of the installation directory. The correct version of the library to
use depends on the platform on which Oracle server is running. For example,
<platform> can be

❏ x64Linux2.6cc4.1.1 for Red Hat Enterprise Linux 5 systems on 64-bit x86 processors

❏ i86Linux2.6cc4.1.1 for Red Hat Enterprise Linux 5 systems on 32-bit x86 processors

❏ i86Win32 for Windows systems on 32-bit x86 processors

Since the library, [lib]rtirtc_oracleq[.so,.dll], internally uses Connext, the corresponding
shared libraries, [lib]nddsc[.so,.dll] and [lib]nddscore[.so,.dll], distributed with Con-
next must also be installed on the Oracle server host.

Notes:

❏ The exact platforms that are supported on Windows and Linux systems may be
different for Oracle versus Oracle TimesTen In-Memory databases. Please consult
the Release Notes for specific details of the supported platforms for your release of
Real-Time Connect.

❏ Not only do the libraries have to be present on the Oracle server host, the Oracle
server must also be configured to find the libraries. There are separate procedures
for the librtirtc_oracleq and libnddsxxx libraries. These procedures are detailed
below.

4.1.1.1 Installing and Configuring the Oracle Server to Access (lib)rtirti_oracleq[.so,.dll]

There are two options for installing [lib]rtirti_oracleq[.so,.dll]:

1. Copy the appropriate version of the library into either $ORACLE_HOME/bin or
$ORACLE_HOME/lib on the server host. $ORACLE_HOME is the installation
directory of the Oracle DBMS.

or

2. Copy the appropriate version of the library into any directory on the server host.
It can even be used directly from the Real-Time Connect installation directory if
that directory can be accessed by the Oracle server.

With the second option, the location of the [lib]rtirti_oracleq[.so,.dll] library
must be defined in the file extproc.ora (located at $ORACLE_HOME/hs/admin
on UNIX operating systems and at ORACLE_HOME\hs\admin on Windows)
or in the file listener.ora (located at $ORACLE_HOME/network/admin) using
the ENVS parameter.

Additional information on how to load external procedures can be found in the
Oracle manual by following this URL:
4-3

Using Real-Time Connect
http://download.oracle.com/docs/cd/E11882_01/appdev.112/e10471/
adfns_externproc.htm

Important: With either option, if [lib]rtirti_oracleq[.so,.dll] is not located in
$ORACLE_HOME/bin, the rtirtc_oracle daemon executable must be started
with the additional command-line option “-queuelibpath <directory containing
[lib]rtirti_oracleq[.so.dll]>”— see Command-Line Parameters (Section 4.2).

4.1.1.2 Installing (lib)nddsc[.so,.dll) and (lib)nddscore(.so,.dll) on the Oracle Server

The shared library, [lib]rtirti_oracleq[.so,.dll], installed in the previous section will
need access to additional shared libraries provided by Connext.

The libraries [lib]nddsc[.so,.dll] and [lib]nddscore[.so,.dll] should be copied to the
server host from the appropriate lib/<platform> directory in the installation of Connext.
Then follow the procedure below to add these files to the library search path for the
Oracle server.

UNIX-based Systems

The directory containing the Connext libraries should be added to the environ-
ment variable LD_LIBRARY_PATH. This environment variable must be set in
the environment of the user who started the Oracle server.

A better method for setting this environment variable is in the extproc.ora file or
with the ENVS parameter in the file listener.ora.

Refer to the Oracle Net manual and this link for more information on the lis-
tener.ora file: http://download.oracle.com/docs/cd/E11882_01/network.112/
e10835/listener.htm.

Refer to this link for more information on extproc.ora: http://download.ora-
cle.com/docs/cd/E11882_01/appdev.112/e10471/adfns_externproc.htm.

Windows Systems

Using the dialog opened with Start, Settings, Control Panel, System, Advanced
tab, Environment Variables button, add the directory (with backslash ‘\’ and
semicolon separators ‘;’) containing the Connext libraries to the System variable
“Path”. You will need to reboot the computer for this change to take effect.

A better method for setting this environment variable (it only requires restarting
the Oracle database service and the Oracle listener service) is using the ext-
proc.ora file or the ENVS parameter in the file listener.ora.

Refer to the Oracle Net manual and this link for more information on the lis-
tener.ora file: http://download.oracle.com/docs/cd/E11882_01/network.112/
e10835/listener.htm.
4-4

http://download.oracle.com/docs/cd/E11882_01/network.112/e10835/listener.htm
http://download.oracle.com/docs/cd/E11882_01/network.112/e10835/listener.htm
http://download.oracle.com/docs/cd/E11882_01/appdev.112/e10471/adfns_externproc.htm
http://download.oracle.com/docs/cd/E11882_01/appdev.112/e10471/adfns_externproc.htm
http://download.oracle.com/docs/cd/E11882_01/network.112/e10835/listener.htm
http://download.oracle.com/docs/cd/E11882_01/network.112/e10835/listener.htm

Introduction to the Real-Time Connect Daemon
4. U

sing
 RTI Re

a
l-

Tim
e

 C
o

nne
c

t

Refer to this link for more information on extproc.ora: http://download.ora-
cle.com/docs/cd/E11882_01/appdev.112/e10471/adfns_externproc.htm.

4.1.2 How to Run the Real-Time Connect Daemon with MySQL

Before Real-Time Connect will run correctly with a MySQL database, the procedures
described in this section must be completed.

4.1.2.1 Installing MySQL ODBC 5.1.6 driver

The Real-Time Connect Daemon requires the installation of the MySQL ODBC 5.1.6 driver
(or higher). The driver is not bundled with the MySQL server and must be installed sep-
arately.

The ODBC connector can be downloaded from http://dev.mysql.com/downloads/
connector/odbc/5.1.html.

The installation guide can be found at http://dev.mysql.com/doc/refman/5.1/en/
connector-odbc-installation.html.

The MySQL ODBC driver requires an ODBC driver manager. In Windows, the ODBC
driver manager is automatically installed with the OS. For Linux systems we recom-
mend the use of UnixODBC 2.2.12 (or higher), a complete, free/open ODBC solution for
Unix and Linux systems. The driver manager can be downloaded from http://
www.unixodbc.org.

4.1.2.2 Installing and Configuring the MySQL Server to Access (lib)rtirti_mysqlq[.so,.dll]

To work with a MySQL database, there is a shared library distributed with Real-Time
Connect that must be installed correctly on the host of the MySQL database server. Com-
munication by the Real-Time Connect Daemon with the MySQL server is accomplished
through user-defined functions (UDF) executed by the MySQL server when triggers
installed by the Real-Time Connect Daemon are fired. These functions are provided in a
shared library (on UNIX-based systems) or DLL (on Windows systems) called
[lib]rtirtc_mysqlq[.so,.dll].

This library is distributed with Real-Time Connect and can be found in the lib/<plat-
form> directory of the installation directory. The correct version of the library to use
depends on the platform on which MySQL server is running. For example, <platform>
can be:

❏ x64Linux2.6cc4.1.1 for Red Hat Enterprise Linux 5 systems on 64-bit x86 processors

❏ i86Linux2.6cc4.1.1 for Red Hat Enterprise Linux 5 systems on 32-bit x86 processors

❏ i86Win32 for Windows systems on 32-bit x86 processors
4-5

http://dev.mysql.com/doc/refman/5.1/en/connector-odbc-installation.html
http://dev.mysql.com/doc/refman/5.1/en/connector-odbc-installation.html
http://dev.mysql.com/downloads/connector/odbc/3.51.html
http://dev.mysql.com/downloads/connector/odbc/5.1.html
http://dev.mysql.com/downloads/connector/odbc/5.1.html
http://www.unixodbc.org
http://www.unixodbc.org
http://download.oracle.com/docs/cd/E11882_01/appdev.112/e10471/adfns_externproc.htm
http://download.oracle.com/docs/cd/E11882_01/appdev.112/e10471/adfns_externproc.htm

Using Real-Time Connect
To install [lib]rtirtc_mysqlq[.so,.dll] copy the appropriate version of
[lib]rtirtc_mysqlq[.so,.dll] into the MySQL server’s plugin directory (the directory
named by the plugin_dir system variable). The plugin directory can be changed by set-
ting the value of plugin_dir when the MySQL server is started. For example, you can
set its value in the my.cnf configuration file:

[mysqld]
plugin_dir=/path/to/plugin/directory

For additional information about the plugin directory see the following link:
http://dev.mysql.com/doc/refman/5.1/en/install-plugin.html

4.1.2.3 Installing libnddsc[.so,.dll) and libnddscore(.so,.dll) on the MySQL Server

Since the library librtirtc_mysqlq[.so,.dll] internally uses Connext, the corresponding
shared libraries [lib]nddsc[.so,.dll] and [lib]nddscore[.so,.dll] distributed with Connext
also need to be installed on the MySQL server host.

Note: Please consult the Release Notes for specific details of the supported platforms for
your release of Real-Time Connect to MySQL.

The libraries nddsc and nddscore must be located in a directory that is searched by the
system dynamic linker.

UNIX-based Systems:

❏ Copy the shared libraries to a directory such as /usr/lib.

❏ Alternatively, add the libraries to the environment variable LD_LIBRARY_PATH
that must be set for the user who starts the MySQL server. This method requires
restarting the MySQL server.

Windows Systems:

❏ Copy the .dll files to the system directory (WINDOWS\System32 or WIN-
DOWS\System).

❏ Alternatively, you can add the directories containing the libraries to the System
variable Path as follows:

Using the dialog opened with Start, Settings, Control Panel, System, Advanced
tab, Environment Variables button, add the directories (with backslash ‘\’ and
semicolon separators ‘;’) containing the libraries to the System variable “Path”. If
the MySQL server is running as a service, you will need to reboot the computer
for this change to take effect.
4-6

http://dev.mysql.com/doc/refman/5.1/en/install-plugin.html

Introduction to the Real-Time Connect Daemon
4. U

sing
 RTI Re

a
l-

Tim
e

 C
o

nne
c

t

4.1.2.4 Starting the MySQL Server in ANSI_QUOTES mode

The MySQL server can operate in different sql modes. The Real-Time Connect Daemon
requires the MySQL server to be configured in ANSI_QUOTES mode. Under that con-
figuration, the MySQL server treats ‘”’ as an identifier quote character instead of a string
quote character.

To verify if the MySQL server is already configured in ANSI_QUOTES mode, run the
following SQL statement:

SELECT @@global.sql_mode;

If the string ‘ANSI_QUOTES’ is not part of the result, the MySQL server needs to be
configured in ANSI_QUOTES mode using the option --sql_mode=’ANSI_QUOTES’ to
start the server

That same effect can be achieved at runtime by executing the following SQL statement:

SET GLOBAL sql_mode = ‘ANSI_QUOTES’

Note: The specific configuration of the MySQL server may require the use of additional
SQL mode strings when starting the server.

4.1.3 How to Run the Real-Time Connect Daemons as Windows Services

On Windows, the Real-Time Connect Daemons, rtirtc_oracle.exe, rtirtc_timesten.exe and
rtirtc_mysql.exe, can be run as system services. During the installation process, you
may choose to install these daemons as Windows services, which can then be controlled
through the Start, Programs, Administrative Tools, Services application. The Real-Time
Connect services will be installed in manual mode. Use the Services application to
change this automatic to have the services start when the Windows machine boots up.

The configuration file used by the Windows services is the default file, <Real-Time Con-
nect installation directory>/resource/xml/RTI_REAL_TIME_CONNECT.xml. .

You can change the location of the configuration file by running the Windows service
with the command line option, -cfgFile (see Section 4.2).

4.1.4 Typecodes

Typecodes are runtime parsible descriptions of data, generated for user data types from
an IDL file by the Connext utility rtiddsgen. Typecodes are automatically propagated
during the discovery process of Connext applications. Unless the user has specifically
disabled rtiddsgen from generating typecodes, applications built with types generated
by rtiddsgen should be propagating typecodes for all of the Topics that they use, and
4-7

Using Real-Time Connect
thus are compatible with Real-Time Connect. Please consult Connext documentation for
more information about typecodes and their generation.

An important note is that typecodes can become quite large as the corresponding IDL
type becomes more complex. By default, Connext applications allocate 2048 bytes to
store a typecode. The default size for the Real-Time Connect Daemon is 2048 bytes as
well. The typecode size is controlled by the QoS parameter, DomainPartici-
pantQos::resource_limits.type_code_max_serialized_length, in the Connext API. In
Real-Time Connect, you can change the typecode limit using XML QoS Profiles (see
Table 4.2).

If the Real-Time Connect Daemon discovers Topics that have typecodes that (a) are larger
than what it has been configured to handle or (b) have no associated typecodes at all,
the daemon will not be able to subscribe to or publish those topics unless the user man-
ually creates the corresponding tables in the database or defines the topic types in the
configuration file (see Table 4.2). The only way to determine whether or not this situa-
tion exists is to examine the log messages printed by the daemon.

A status message will indicate when there is no typecode found for a Topic. This mes-
sage may have been generated because the typecode associated with the topic is too
large for the daemon. By increasing the DomainPartici-
pantQos::resource_limits.type_code_max_serialized_length QoS policy, the daemon
can be configured to handle larger typecodes for complex IDL types.

The Real-Time Connect Daemon will store all the typecodes that it receives with discov-
ered Topics. These typecodes may be used by the daemon to create user-accessible
tables in the database from which changes are published or data received via Connext is
stored. See Publications Table (Section 4.5.1) and Subscriptions Table (Section 4.5.2) for
more information of how typecodes are used by the daemon.

4.2 Command-Line Parameters
Any user can start a Real-Time Connect Daemon. The user name/ID and password with
which it connects to a database is specified in the configuration file, see Table 4.9.

When starting a Real-Time Connect Daemon, the following command-line parameters are
supported; the -cfgName parameter is required.

Usage: rtirtc_mysql [options]
Options:

 -cfgFile <file> Configuration file. This parameter is optional
 since the configuration can be loaded from
4-8

Command-Line Parameters
4. U

sing
 RTI Re

a
l-

Tim
e

 C
o

nne
c

t

 other locations

-cfgName <name> Configuration name. This parameter is required
 and it is used to find a <real_time_connect>
 matching tag in the configuration files

-appName <name> Application name
 Used to name the domain participants
 Default: -cfgName

-logFile <file> Log file

-noDaemon Run as a regular process. Messages are sent to
 stdout and stderr

-use42eAlignment Enables compatibility with
 RTI Data Distribution Service 4.2e
 This option should be used when compatibility
 with 4.2e is required and the topic data types
 contain double, long long, unsigned long long,
 or long double members
-queueLibPath <path> Location of the library rtirtc_oracleq
 Default: $ORACLE_HOME/bin

-queueDomainId <int> Domain ID of the channel connecting the MySQL
 server with RTI Real-Time Connect
 Default: 1

-dbTransport <1|2> Transport used to communicate the MySQL server
 with RTI Real-Time Connect
 * 1: UDPv4
 * 2: Shared Memory
 Default: 2 (Shared memory)
 -typeMode <0|1> Type mode
 Specifies whether the names and semantics of
 the data types follow Oracle or TimesTen type
 rules
 Default: 0 (Oracle type mode)

-verbosity [0-6] RTI Real-Time Connect verbosity
 * 0 - silent
 * 1 - exceptions (Core Libraries and Service)
 * 2 - warnings (Service)
 * 3 - information (Service)
 * 4 - warnings (Core Libraries and Service)
 * 5 - tracing (Service)
 * 6 - tracing (Core Libraries and Service)
 Default: 1 (exceptions)

-version Prints the RTI Real-Time Connect version

-licenseFile <file> License file. This parameter is optional

-help Displays this information
4-9

Using Real-Time Connect
Table 4.1 Command-line Options

Option Description

-appName <application name>

Assigns a name to the Real-Time Connect execution.

The application name is used to set the Entity-
NameQosPolicy of the DomainParticipants created by
Real-Time Connect.

-cfgFile <configuration file>

Specifies an XML configuration file for Real-Time Con-
nect.

The parameter is optional since the Real-Time Connect
configuration can be loaded from other locations. See
Section 4.4.1 for further details.

-cfgName <configuration name>

Required.

Specifies the name of the configuration to load. The
Real-Time Connect Daemon will look for the first tag
<real_time_connect> with that name. (See Configura-
tion File (Section 4.4).)

-dbTransport <1|2>

This parameter is only available for the rtirtc_oracle-
[.exe] for Oracle Database 11g and the rtirtc_mysql-
[.exe] for MySQL.

By default, Real-Time Connect uses shared memory to
communicate with the MySQL and Oracle database
servers.

The -dbTransport parameter can be used to change the
communication transport. There are two possible val-
ues:

1: UDPv4

2: Shared memory (default)

Note: Shared memory communication between the
Real-Time Connect Daemon and the database servers
does not work on Windows 2003, Windows Vista or
Windows 7 systems when the Real-Time Connect dae-
mon runs with the option -nodaemon and the data-
base server runs as a service. For this use case,
communication can be enabled by using UDPv4 as the
transport.

-help
Prints out a usage message listing the command-line
parameters.
4-10

Command-Line Parameters
4. U

sing
 RTI Re

a
l-

Tim
e

 C
o

nne
c

t

-licenseFile <file>

Specifies the license file (path and filename). Only
applicable to licensed versions of Real-Time Connect.
If not specified, Real-Time Connect looks for the license
as described in Chapter 9 in the Getting Started Guide.

-logFile <log file>

Pathname of the file to be used for log messages.

If specified, log messages will automatically be stored
in the file.

-noDaemon

Start as a normal process.

Without this option, running the Real-Time Connect
Daemon executable will start a daemon process on
Linux systems, or start a service on Windows systems.
As a daemon, no log messages of any kind are printed
to stdout or stderr. However, by specifying this option,
the daemon will start as a regular process, which can
be run as a background process using the standard OS
with the command-line option (“&”), and log messages
will be printed to stdout and stderr.

-queueDomainId <domain ID>

This parameter is only available for the rtirtc_oracle-
[.exe] for Oracle Database 11g and the rtirtc_mysql-
[.exe] for MySQL.

The Real-Time Connect Daemon uses Connext to com-
municate with the MySQL and Oracle 11g servers.
This command-line option sets the domain ID used for
the connection between the daemon and the servers.

Default: 1

-queueLibPath
<directory containing
[lib]rtirtc_oracleq[.so,.dll]>

This parameter is only available for the rtirtc_oracle-
[.exe] for Oracle Database 11g:

The Oracle server must find and load
[lib]rtirti_oracle[.so,.dll] in order to connect to the
Real-Time Connect Daemon. See How to Run the Real-
Time Connect Daemon with Oracle (Section 4.1.1) for
more information. By default, the daemon will ask the
Oracle server to look in the directory
$ORACLE_HOME/bin.

If [lib]rtirti_oracle[.so,.dll] is installed on the server in
a different directory, then the Real-Time Connect Dae-
mon must be started with this option set to that direc-
tory.

Table 4.1 Command-line Options

Option Description
4-11

Using Real-Time Connect
-typeMode

This parameter is only available for
rtirtc_timesten[.exe]

Specifies whether the names and semantics of the data
types in the TimesTen database follow Oracle or
TimesTen type rules.

There are two possible values:

 0: Oracle type mode (default)

 1: TimesTen type mode

For additional information about TypeMode refer to
Oracle® TimesTen In-Memory Database Reference

Note: To work with Oracle In-Memory Database
Cache this option must be set to 0.

Table 4.1 Command-line Options

Option Description
4-12

Command-Line Parameters
4. U

sing
 RTI Re

a
l-

Tim
e

 C
o

nne
c

t

-verbosity <verbosity level>

Real-Time Connect verbosity level:

0 - No verbosity

1 - Exceptions (Connext and Real-Time Connect)
(default)

2 - Warnings (Real-Time Connect)

3 - Information (Real-Time Connect)

4 - Warnings (Connext and Real-Time Connect)

5 - Tracing (Real-Time Connect)

6 - Tracing (Connext and Real-Time Connect)

Each verbosity level, n, includes all the verbosity levels
smaller than n.

As the Real-Time Connect Daemon runs, it may gener-
ate log messages reflecting error conditions, warning
messages or general execution status. The messages
may be produced by the daemon or by Connext.

The messages produced by the daemon can be redi-
rected to three possible destinations: stdout/stderr, a
file, and log tables in the databases to which it is con-
nected.Each of these destinations may be enabled
independently of each other. The first two, stdout/
stderr and file, are controlled by command line param-
eters discussed above, and the last, log table, is con-
trolled in the configuration of a connection, as
discussed in Database Connection Options (Section
4.4.4.3).

In this Real-Time Connect version, the messages pro-
duced by Connext can be redirected only to stdout/
stderr.

-version Prints the Real-Time Connect version.

Table 4.1 Command-line Options

Option Description
4-13

Using Real-Time Connect
4.3 Environment Variables
Since the Real-Time Connect Daemon will be making connections to databases using
ODBC, on UNIX-based systems, the following environment variables may be used to
find DSNs (data source names) via ODBCINI files.

❏ ODBCINI: location of INI file for database connections. If not set, ODBCINI will
be set to “$HOME/.odbc.ini”, where $HOME is the home directory of the user
who started the daemon.

❏ SYSODBCINI: location of system INI file, used if the DSN is not found in the
file specified by ODBCINI.

If the Real-Time Connect Daemon cannot find a valid DSN in any ODBC.INI file, then no
connections to any databases can be made.

On a Windows system, the equivalent functionality of the ODBCINI file is found in the
Windows registry. You create and modify DSNs using the application found in Start,
Programs, Administrative Tools, Data Sources (ODBC).

4.4 Configuration File
When you start Real-Time Connect, you can provide a configuration file in XML format
(it is not required). Among other things, this file can be used to specify the set of data-
bases to which the daemon will connect and the properties of the database connections.

This section describes:

❏ How to Load the XML Configuration (Section 4.4.1)

❏ XML Syntax and Validation (Section 4.4.2)

❏ Top-Level XML Tags (Section 4.4.3)

❏ Database Configuration Using the Real-Time Connect XML Tag (Section 4.4.4)
4-14

Configuration File
4. U

sing
 RTI Re

a
l-

Tim
e

 C
o

nne
c

t

4.4.1 How to Load the XML Configuration

Real-Time Connect loads its XML configuration from multiple locations. This section
presents the various approaches, listed in load order.

The first three locations only contain QoS Profiles and are inherited from Connext (see
Chapter 15 in the RTI Core Libraries and Utilities User's Manual).

❏ $NDDSHOME/resource/qos_profiles_5.0.x1/xml/NDDS_QOS_PROFILES.xml

This file contains the Connext default QoS values; it is loaded automatically if it
exists. (First to be loaded.)

❏ File in NDDS_QOS_PROFILES

The files (or XML strings) separated by semicolons referenced in this environ-
ment variable are loaded automatically.

❏ <working directory>/USER_QOS_PROFILES.xml

This file is loaded automatically if it exists.

The next locations are specific to Real-Time Connect.

❏ <Real-Time Connect executable location>/../../resource/xml/
RTI_REAL_TIME_CONNECT.xml

This file contains the default Real-Time Connect configuration and QoS Profiles; it
is loaded if it exists. The default configuration does not work out-of-the-box
because it requires setting the parameters that configure the database connec-
tions such as dsn, username and password (see Section 4.4.4).

❏ <working directory>/USER_REAL_TIME_CONNECT.xml

This file is loaded automatically if it exists.

❏ File specified using the command line parameter -cfgFile

The command-line option -cfgFile (see Section 4.2) can be used to specify a con-
figuration file.

You may use a combination of the above approaches.

1. x stands for the version number of the current release.
4-15

Using Real-Time Connect
4.4.2 XML Syntax and Validation

The XML configuration file must follow these syntax rules:

❏ The syntax is XML; the character encoding is UTF-8.

❏ Opening tags are enclosed in <>; closing tags are enclosed in </>.

❏ A tag value is a UTF-8 encoded string. Legal values are alphanumeric characters.
The routing service’s parser will remove all leading and trailing spaces1 from the
string before it is processed.

For example, " <tag> value </tag>" is the same as "<tag>value</tag>".

❏ All values are case-sensitive unless otherwise stated.

❏ Comments are enclosed as follows: <!-- comment -->.

❏ The root tag of the configuration file must be <dds> and end with </dds>.

Real-Time Connect provides DTD and XSD files that describe the format of the XML con-
tent. We recommend including a reference to one of these documents in the XML file
that contains the Real-Time Connect’s configuration—this provides helpful features in
code editors such as Visual Studio and Eclipse, including validation and auto-comple-
tion while you are editing the XML file.

The DTD and XSD definitions of the XML elements are in <Real-Time Connect installa-
tion directory>/resource/schema/rti_real_time_connect.dtd and <Real-Time Connect
installation directory>/resource/schema/rti_real_time_connect.xsd, respectively.

To include a reference to the XSD document in your XML file, use the attribute
xsi:noNamespaceSchemaLocation in the <dds> tag. For example:

<?xml version="1.0" encoding="UTF-8"?>
<dds xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation= "<installation directory for Real-Time
Connect>/resource/schema/rti_real_time_connect.xsd">
 ...
</dds>

To include a reference to the DTD document in your XML file, use the <!DOCTYPE>
tag.

1. Leading and trailing spaces in enumeration fields will not be considered valid if you use the distributed
XSD document to do validation at run-time with a code editor.
4-16

Configuration File
4. U

sing
 RTI Re

a
l-

Tim
e

 C
o

nne
c

t

For example:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE dds SYSTEM "<installation directory for RTI Real-Time Con-
nect>/resource/schema/rti_routing_service.dtd">
<dds>
 ...
</dds>

We recommend including a reference to the XSD file in the XML documents; this pro-
vides stricter validation and better auto-completion than the corresponding DTD file.

4.4.3 Top-Level XML Tags

Let’s look at an example configuration file. You will learn the meaning of each line as
you read the rest of the sections.

<?xml version="1.0"?>
<dds>

<real_time_connect name="Example">
<database_mapping_options>

<identifier_separator_char>$
</identifier_separator_char>

</database_mapping_options>

<mysql_connection>
<dsn>Example_MySQL</dsn>
<user_name>Student</user_name>
<password>mypsswrd</password>

</mysql_connection>

<oracle_connection>
<dsn>Example_Oracle</dsn>
<user_name>Student</user_name>
<password>mypsswrd</password>

</oracle_connection>

<timesten_connection>
<dsn>Example_TT</dsn>

</timesten_connection>
</real_time_connect>

</dds>

Table 4.2 describe the top-level tags allowed within the root <dds> tag. Notice that the
<real_time_connect> tag is required.
4-17

Using Real-Time Connect
Table 4.2 Top-Level Tags

Tags within <dds> Description
Number
of Tags

Allowed

<qos_library>

Specifies a QoS library and profiles.

The contents of this tag are specified in the same manner as
for an Connext QoS profile file—see Chapter 15 in the RTI Core
Libraries and Utilities User’s Manual.

The profiles you specify here can be used in three ways.

❏ By setting the attribute is_default_qos in the tag
<qos_profile> to true. In this case, that profile is the
default configuration for all the Entities created by the
Real-Time Connect daemon.

❏ By referring to a profile using the XML tag
<profile_name> within <publication> and <subscrip-
tion> (see Section 4.4.4.4).

❏ By referring to a profile in the profile_name column of
the tables RTIDDS_PUBLICATIONS or
RTIDDS_SUBSCRIPTIONS (see Section 4.5.1 and
Section 4.5.2).

0 or more

<real_time_connect>

Specifies a Real-Time Connect configuration.

This tag is used to specify the set of databases to which the
daemon will connect.

Note: There is no way to dynamically configure the Real-Time
Connect Daemon Daemon to connect to a database after it has
started. All database connections must be specified within
this tag before the daemon starts.

See Table 4.3 for a description of the elements contained
inside <real_time_connect>.

1 or more
(required)
4-18

Configuration File
4. U

sing
 RTI Re

a
l-

Tim
e

 C
o

nne
c

t

Because a configuration file may contain multiple <real_time_connect> tags, one file
can be used to configure multiple daemon executions. When you start RTI Real-Time
Connect, you have to use the -cfgName option to specify which <real_time_connect>
tag to use.

For example:

<dds>
...
<real_time_connect name="rtcA">

...
</ real_time_connect >

<real_time_connect name="rtcB">
...

</real_time_connect>
...

</dds>

Starting Real-Time Connect with the following command will use the
<real_time_connect> tag with the name rtcA:

rtirtc_mysql -cfgFile example.xml -cfgName rtcA

<types>

Defines types that can be used to create database tables.

The type description is done using the Connext XML format
for type definitions. For more information, see Section 3.4 in
the RTI Core Libraries and Utilities User's Manual.
For example:

<types>
 <struct name="Point">
 <member name="x" type="long"/>
 <member name="y" type="long"/>
 </struct>
</types>

Real-Time Connect supports automatic table creation by using
the types defined within this tag or the typecode sent by Con-
next applications.

See Section 4.6 for additional information on user table cre-
ation.

0 or 1

Table 4.2 Top-Level Tags

Tags within <dds> Description
Number
of Tags

Allowed
4-19

Using Real-Time Connect
If there is no <real_time_connect> tag matching the name provided with the command
line option –cfgName, the daemon will report an error and it will list the available con-
figurations.

4.4.4 Database Configuration Using the Real-Time Connect XML Tag

Table 4.3 describes the tags allowed with the <real_time_connect> section of the XML
file.

Table 4.3 Real-Time Connect Tags

Tags within
<real_time_connect> Description Number of Tags Allowed

<database_mapping_
options>

Configures how the IDL identifier
names are mapped to the database
column names. See Section 4.4.4.2.

0 or 1

<general_options>

Contains attributes that are inde-
pendent of any particular database
connection made by the Real-Time
Connect Daemon. See
Section 4.4.4.1.

0 or 1

<mysql_connection>
Configures a connection to a
MySQL database. See
Section 4.4.4.3.

1 or more (required) if running
rtirtc_mysql;

0 or more (ignored) if running
other DBMS version of the daemon

<oracle_connection>
Configures a connection to an Ora-
cle database. See Section 4.4.4.3.

1 or more (required) if running
rtirtc_oracle;

0 or more (ignored) if running
other DBMS version of the daemon

<timesten_connection>
Configures a connection to an Ora-
cle TimesTen database. See
Section 4.4.4.3.

1 or more (required) if running
rtirtc_timesten;

0 or more (ignored) if running
other DBMS version of the dae-
mon
4-20

Configuration File
4. U

sing
 RTI Re

a
l-

Tim
e

 C
o

nne
c

t

4.4.4.1 General Options

Table 4.4 describes the general options; these attributes are independent of any particu-
lar database connection made by the Real-Time Connect Daemon.

Table 4.4 General Options Tags

Tags within
<general_options > Description

Number
of Tags

Allowed

<administration> See Table 4.5, “Administration Tags” 0 or 1

<enable_table_replication>

Real-Time Connect can be configured to perform real-time,
lazy database replication (see Section 3.7) by setting this
attribute to true.

Default: false

0 or 1

<max_objects_per_thread>

This parameter controls the maximum number of objects
per thread that Connext can store. If you run into prob-
lems related to the creation of Entities, increasing this
number may be necessary. See the RTI Core Libraries and
Utilities User’s Manual for more information.

Default: Connext default (1024)

0 or 1

<typecode_from_table_
schema>

This tag can be used to enable typecode generation from
table schemas.

If this parameter is set to true and a publication or sub-
scription is created for a database table without an associ-
ated typecode, Real-Time Connect will create the typecode
from the table schema.

The new typecode will be made available to other Con-
next applications or RTC daemons via discovery traffic.

When Real-Time Connect is used for table replication, the
default value for this parameter is true allowing auto-
matic table creation in the replicas.

Default: false (except when enable_table_replication is set
to true).

0 or 1
4-21

Using Real-Time Connect
4.4.4.1.1 Enabling Table Replication

Enabling database replication will automatically configure the QoS values of publica-
tions and subscriptions to provide conflict resolution and table initialization (see
Table 4.6 and Table 4.7). The attribute also enables automatic table creation (see
<typecode_from_table_schema> in Table 4.4) and propagation of NULL values.

Table 4.5 Administration Tags

Tags within
<administration> Description

Number
of Tags

Allowed

<distributed_logger>
Configures RTI Distributed Logger.
See Enabling RTI Distributed Logger in Real-Time Connect
(Section 4.8)

0 or 1

<domain_id>
Specifies which domain ID Real-Time Connect will use to send
log messages when Distributed Logger is enabled.

1
(required)

<profile_name>

Determines which QoS profile to use when creating the
DomainParticipant that will be used for Distributed Logger
(when enabled). The value is the fully qualified name of the
QoS Profile, represented as a string with this form:
<QoS profile library name>::<QoS profile name>

0 or 1

Table 4.6 DataWriter QoS Changes when <enable_table_replication> is True

QoS Change Purpose

reliability.kind = RELIABLE_RELIABILITY_QOS Enables reliability

destination_order.kind =
BY_SOURCE_TIMESTAMP_DESTINATIONORDER_QOS

destination_order.source_timestamp_tolerance.sec = 0
destination_order.source_timestamp_tolerance.nanosec = 0
ownership.kind = SHARED_OWNERSHIP_QOS

Performs conflict resolution

protocol.serialize_key_with_dispose = true
writer_data_lifecycle.autodispose_unregistered_instances = false

Propagates delete operations

durability.kind = TRANSIENT_LOCAL_DURABILITY_QOS
Sends table contents to late
joiners (table initialization)

history.depth = 1
history.kind = KEEP_LAST_HISTORY_QOS

Keeps one record per primary
key value
4-22

Configuration File
4. U

sing
 RTI Re

a
l-

Tim
e

 C
o

nne
c

t

These QoS changes have priority over the values set using QoS Profiles. However, they
can be overwritten per publication and per subscription by setting the corresponding
fields in the RTIDDS_PUBLICATIONS and RTIDDS_SUBSCRIPTIONS meta tables (see
Section 4.5.1 and Section 4.5.2).

4.4.4.1.2 Conflict Resolution

Because there are no global (network-wide) locks on records when a transaction is being
executed, conflicts can occur. The best way to avoid conflicts is to have only one host
modify a specific row (instance) or table (topic), but that is not always possible. The sec-
ond best way is to design the application in such a way that conflicts can never occur,
for instance due to data flow dependencies. But that also is often hard to achieve.

By default, conflict resolution is not enabled when you set <enable_table_replication>
to true. You can enable conflict resolution by setting the column

writer_resource_limits.instance_replacement =
DDS_DISPOSED_INSTANCE_REPLACEMENT

writer_resource_limits.replace_empty_instances =
DDS_BOOLEAN_FALSE

Enables replacement of
deleted rows

Table 4.7 DataReader QoS Changes when <enable_table_replication> is True

QoS Change Purpose

reliability.kind = RELIABLE_RELIABILITY_QOS Enables reliability

destination_order.source_timestamp_tolerance.sec =
DURATION_INFINITE_SEC

destination_order.source_timestamp_tolerance.nanosec =
DURATION_INFINITE_ NSEC

ownership.kind = SHARED_OWNERSHIP_QOS;

Performs conflict resolution

Note:
<enable_table_replication>
sets some QoS related to con-
flict resolution, but it does not
enable the feature. See
Section 4.4.4.1.2 for additional
details

protocol.propagate_dispose_of_unregistered_instances = true
Enables propagation of delete
operations

durability.kind = TRANSIENT_LOCAL_DURABILITY_QOS;
Sends table contents to late
joiners (table initialization)

history.kind = KEEP_LAST_HISTORY_QOS;
Keeps one sample per pri-
mary key value

Table 4.6 DataWriter QoS Changes when <enable_table_replication> is True

QoS Change Purpose
4-23

Using Real-Time Connect
dr.destination_order.kind in RTIDDS_SUBSCRIPTIONS to
BY_SOURCE_TIMESTAMP_DESTINATIONORDER_QOS (see Section 4.5.2.1.18).
With this setting, eventual consistency can be guaranteed. Conflicts can cause a tempo-
rary inconsistency between the databases, but eventually these are resolved by the Real-
Time Connect conflict-resolution mechanism. By default, conflicts are resolved using a
timestamp corresponding to the system time when the update occurred. You can over-
write this behavior by providing your own timestamp in a separate database column
(see Section 4.5.1.1.9).

If you do not need conflict resolution, you can disable it by setting the column
dr.destination_order.kind in RTIDDS_SUBSCRIPTIONS to
BY_RECEPTION_TIMESTAMP_DESTINATIONORDER_QOS.

4.4.4.1.3 Table Initialization

When a host starts using a table in the distributed shared database, it is essential that the
local table is up-to-date. Real-Time Connect supports two approaches to filling the local
table's contents:

1. If all the rows in the table are updated frequently, it is sufficient to apply these
updates to the data cache.

2. The table can be synchronized by explicitly requesting the table's contents from
the other hosts. This is called table initialization.

If table initialization is not needed, you can disable it by setting the columns dw.dura-
bility.kind in RTIDDS_PUBLICATIONS and dw.durability.kind in
RTIDDS_SUBSCRIPTIONS to VOLATILE_DURABILITY_QOS.

4.4.4.2 Database Mapping Options

Table 4.8 describes the options that are allowed with the <database_mapping_options>
tag.
4-24

Configuration File
4. U

sing
 RTI Re

a
l-

Tim
e

 C
o

nne
c

t

Table 4.8 Database Mapping Options

Tags within
<database_mapping_

options>
Description

Number
of Tags

Allowed

<close_bracket_char>

Sets the closing bracket character that is used in the index
component of the arrays and sequences members names.

See Array Fields (Section 5.2.8) and Sequence Fields (Section
5.2.9) for more information about the mapping of IDL arrays
and sequences into SQL columns.

The default value of ‘]’ will generate columns names that
must be referenced using double quotes.

Default: ‘]’

0 or 1

<identifier_separator_
char>

Sets the character that is used as a separator in the hierarchical
names generated when mapping IDL fields into SQL table
columns.

The attribute is also used to configure the separator character
for the columns in the meta tables.

The default value of ‘.’ in Oracle and Oracle TimesTen will
generate columns names that must be referenced using dou-
ble quotes. See IDL to SQL Mapping (Section 5.2.1) for more
information about double quoted identifiers.

Default: ‘.’ For Oracle/TimesTen; ‘$’ for MySQL

0 or 1

<idl_member_prefix_
max_length>

Controls the prefix length of the IDL member identifiers that
will be used to truncate column names when a table is auto-
matically created.

If the default value (-1) is used, Real-Time Connect will not
truncate IDL member identifiers when these are used to create
column names.

If a positive value, n, is provided, Real-Time Connect will use
the first n characters from the IDL member identifier to com-
pose the associated column name.

A value of 0 tells Real-Time Connect to compose the column
name using only the last characters of the identifiers, as
defined by <idl_member_suffix_max_length>.

This value can be overridden per table by assigning a value to
the idl_member_prefix_max_length column in the meta-
tables.

Default: -1 (unlimited)

0 or 1
4-25

Using Real-Time Connect
<idl_member_suffix_
max_length>

Controls the suffix length of the IDL member identifiers that
will be used to truncate column names when a table is auto-
matically created.

If a positive value, n, is provided, Real-Time Connect will use
the last n characters from the IDL member identifier to com-
pose the associated column name.

A value of 0 tells Real-Time Connect to compose the column
name using only the first characters of the identifiers, as
defined by <idl_member_prefix_max_length>.

This value can be overridden per table by assigning a value to
the idl_member_suffix_max_length column in the meta-
tables.

Note that although <idl_member_prefix_max_length> and
<idl_member_suffix_max_length> can be individually set to
zero, they cannot be both zero at the same time.

Default: -1 (unlimited)

0 or 1

<open_bracket_char>

Sets the opening bracket character that is used in the index
component of the arrays and sequences members names.

See Array Fields (Section 5.2.8) and Sequence Fields (Section
5.2.9) for more information about the mapping of IDL arrays
and sequences into SQL columns.

The default value of ‘[’ will generate columns names that
must be referenced using double quotes.

Default: ‘[‘

0 or 1

Table 4.8 Database Mapping Options

Tags within
<database_mapping_

options>
Description

Number
of Tags

Allowed
4-26

Configuration File
4. U

sing
 RTI Re

a
l-

Tim
e

 C
o

nne
c

t

4.4.4.3 Database Connection Options

The database connection tags in the XML file direct the
Real-Time Connect Daemon to connect to a particular
database as specified by a DSN (data source name) and
configure the connection.

The database connection tags are DBMS-specific:

❏ <mysql_connection>

❏ <oracle_connection>

❏ <timesten_connection>

A <real_time_connect> tag may have multiple database
connection tags. The DBMS-specific Real-Time Connect
Daemon will only parse the tags that apply to it. As
explained earlier, the Real-Time Connect Daemon will
make a connection to a database using the DSN attribute
for every connection tag that it parses. This is the only
way to direct the daemon to connect to a database. No
other connections will be made after startup.

Example:

<real_time_connect name=”MyRtc”>
<mysql_connection>

<dsn>Example_MySQL</dsn>
<user_name>Student</user_name>
<password>mypsswrd</password>
<send_period>100</send_period>
<database_logging>

<enabled>true</enabled>
<history_depth>100</history_depth>

</database_logging>
<publications>

<publication>...</publication>
</publications>
<subscriptions>

<subscription>...</subscription>
</subscriptions>

</mysql_connection>
</real_time_connect>

Table 4.9 describes tags allowed within all three types of <database_connection> tags.
Tables 4.10 through 4.12 describe additional tags for each connection type.
4-27

Using Real-Time Connect
Table 4.9 Common Tags for all Database Connections

Common Tags
for <mysql_connection>,

<oracle_connection>,
<timesten_connection>

Description Number of
Tags Allowed

<database_logging>

<enabled>

<history_depth>

If enabled, the Real-Time Connect Daemon’s log mes-
sages will be stored in a table named
“RTIRTC_LOG” in the database specified by the
DSN.

Optionally, you can specify the history depth of the
log. This value limits the size of the table,
RTIRTC_LOG, in the database that the daemon uses
for logging messages. The default is 1000 rows, and
a value of -1 implies no limit. When the table is
filled, new log messages will replace the oldest mes-
sages, effectively using the table as a circular buffer.

Default: disabled

0 or 1

<dsn>

You must specify a valid DSN that is found in a
ODBCINI file or the Windows registry (see Environ-
ment Variables (Section 4.3)). The Real-Time Connect
Daemon will make a connection to this DSN.

Real-Time Connect detects changes in an Oracle
TimesTen data store by reading from the transaction
log. Consequently, Real-Time Connect will not work
for DSN configurations where logging is turned off
(Logging=0). This limitation applies only to Oracle
TimesTen In-Memory Database, not to Oracle Data-
base 11g or MySQL.

1 (required)

<password> Specifies the password to connect to the database.

1 (required) in
<mysql_
connection>
and <oracle_
connection>

0 or 1 (optional)
in <timesten_
connection>

<publications>

This tags allows inserting publications in the table
RTIRTC_PUBLICATIONS when the daemon starts
up. See Initial Subscriptions and Publications (Sec-
tion 4.4.4.4).

0 or 1
4-28

Configuration File
4. U

sing
 RTI Re

a
l-

Tim
e

 C
o

nne
c

t

<send_period>

The send_period value specifies the milliseconds
interval at which the Real-Time Connect Daemon
publishes database changes. The value must be
greater than or equal to 0. With a value of 0 the dae-
mon publishes database changes as soon as they are
available. A shorter time interval reduces latency.

Default: 100 ms

0 or 1

<subscriptions>

This tags allows inserting subscriptions in the table
RTIRTC_SUBSCRIPTIONS when the daemon starts
up. See Initial Subscriptions and Publications (Sec-
tion 4.4.4.4).

0 or 1

<user_name>

Specifies the user name to connect to the database.

This attribute is mandatory for Oracle and MySQL
databases, since there is no default user for database
connections.

It is optional for Oracle TimesTen: if this attribute is
missing, then the connection to the database will
use the username of the UID who owns the Real-
Time Connect Daemon process.

1 (required) in
<mysql_conn
ection> and
<oracle_conne
ction>

0 or 1 (optional)
in
<timesten_co
nnection>

Table 4.9 Common Tags for all Database Connections

Common Tags
for <mysql_connection>,

<oracle_connection>,
<timesten_connection>

Description Number of
Tags Allowed
4-29

Using Real-Time Connect
Table 4.10 Tags for MySQL Connections

Additional Tags
Allowed within

<mysql_connection>
Description

Number
of Tags

Allowed

<transaction_max_
duration>

Provides an estimation of the maximum duration of a data-
base transaction. If a table change is not committed in the
interval specified by this attribute, it will not be published to
Connext.

Uncommitted table changes are stored in a per-table queue.
The maximum size of that queue can be configured setting the
value of the changes_queue_maximum_size column in the
RTIDDS_PUBLICATIONS table (see Section 4.5.1.1.21).

If a change in the uncommitted changes queue has not been
committed after transaction_max_duration milliseconds, it
will be discarded by the Real-Time Connect Daemon.

With a value of -1, the Real-Time Connect Daemon will not dis-
card changes into the uncommitted queue until they are com-
mitted.

Default: 5000

0 or 1

Table 4.11 Tags for Oracle Connections

Additional Tags
Allowed within

<oracle_connection>
Description

Number
of Tags

Allowed

<blob_default_size>

Limits the size of BLOB columns for tables that do not have
an associated TypeCode (see Section 4.1.4) in the
RTIRTC_TBL_INFO meta table (see Section 4.5.3).

If a user table has an associated TypeCode, the maximum size
of the BLOB columns is determined on a per-column basis
using the TypeCode information.

Default: 65536

0 or 1

<clob_default_size>

Limits the size of CLOB and NCLOB columns for tables that
do not have an associated TypeCode (see Section 4.1.4) in the
RTIRTC_TBL_INFO meta table (see Section 4.5.3).

If a user table has an associated TypeCode, the maximum size
of the CLOB and NCLOB columns is determined on a per-col-
umn basis using the TypeCode information.

Default: 65536

0 or 1
4-30

Configuration File
4. U

sing
 RTI Re

a
l-

Tim
e

 C
o

nne
c

t

4.4.4.4 Initial Subscriptions and Publications

As explained in Meta-Tables (Section 4.5), the daemon is configured to publish and sub-
scribe to data in the database by inserting entries in two meta-tables,
RTIDDS_PUBLICATIONS and RTIDDS_SUBSCRIPTIONS. In your XML configuration
you can specify initial values to insert in these tables.

For example:

<mysql_connection>
...

<subscriptions delete="true">
<subscription>

<table_owner>user</table_owner>
<table_name>mytable1</table_name>
<domain_id>54</domain_id>
<topic_name>mytopic1</topic_name>
<type_name>mytype1</type_name>

</subscription
...
<subscription>

...
</subscription>
...

</subscriptions>

Table 4.12 Tags for TimesTen Connections

Additional Tags Allowed
within

<timesten_connection>
Description

Number
of tags

Allowed

<xla_buffer_size>

This attribute is only used if the Oracle TimesTen DSN spec-
ifies a diskless connection.
See Setting the XLA Staging Buffer Size for Diskless
Connnections (Section 4.4.4.5)
Default: 409600

0 or 1
4-31

Using Real-Time Connect
<publications>
<publication overwrite="true">

<table_owner>user</table_owner>
<table_name>mytable2</table_name>
<domain_id>54</domain_id>
<topic_name>mytopic2</topic_name>
<type_name>mytype2</type_name>

</publication>

<publication>
...
</publication>
...

</publications>
</mysql_connection>

Within <subscriptions> and <publications> tags, you can specify as many <subscrip-
tion> and <publication> tags as you want. The content of each tag inside <subscrip-
tion>/<publication> represents the value for a column with the same name in the table
RTIDDS_SUBSCRIPTIONS/RTIDDS_PUBLICATIONS. Each of these <subscription>/
<publication> tags may result in the insertion or update of a row in the corresponding
meta-table.

All the rows in the tables can be deleted before inserting new rows if the attribute
“delete” in <publications>/<subscriptions> is set to true.

If a <publication> or <subscription> already exists in its table (the primary key is the
same), then the insertion won’t succeed. However you can set the attribute “overwrite”
to true. In that case, if the insertion fails, an update is performed on that row.

Note that there are columns in the tables RTIDDS_PUBLICATIONS and
RTIDDS_SUBSCRIPTIONS that don’t have a corresponding tag inside <publications>
and <subscriptions>. Those columns represent configuration of QoS. However, you can
configure the quality of service by using <profile_name>, where you can refer to a QoS
profile in your own XML configuration file or in any of the other QoS profile files
loaded by the daemon (see How to Load the XML Configuration (Section 4.4.1)).

Table 4.13 Subscriptions Tags

Tags Allowed
within

<subscriptions>
Description

Number
of Tags

Allowed

<subscription>
Configures a subscription by inserting or updating a row in the
table RTIDDS_SUBSCRIPTIONS. See Table 4.14 on page 4-33.

1 or
more
4-32

Configuration File
4. U

sing
 RTI Re

a
l-

Tim
e

 C
o

nne
c

t

Table 4.14 Subscription Tags

Tags Allowed within
<subscription> Description

Number of
Tags

Allowed

<domain_id>
Inserts the tag value into the column with the same name
in the table RTIDDS_SUBSCRIPTIONS

See Section 4.5.2.
1 (required)

<table_name>

<table_owner>

<topic_name>

<cache_initial_size>

Inserts the tag value into the column with the same name
in the table RTIDDS_SUBSCRIPTIONS

If the value is not specified, NULL is inserted.

See Section 4.5.2.

0 or 1

<cache_maximum_size>

<commit_type>

<delete_on_dispose>

<filter_duplicates>

<idl_member_prefix_
max_length>

<idl_member_suffix_
max_length>

<ordered_store>

<persist_state>

<process_batch>

<process_period>

<profile_name>

<table_history_depth>

<type_name>

Table 4.15 Publications Tags

Tags Allowed within
<publications> Description

Number of
Tags

Allowed

<publication>
Configures a publication by inserting or updating a row
in the table RTIDDS_PUBLICATIONS. See Table 4.16 on
page 4-34.

1 or more
4-33

Using Real-Time Connect
4.4.4.5 Setting the XLA Staging Buffer Size for Diskless Connnections

For diskless connections, the minimum size of the Oracle TimesTen XLA staging buffer
must be at least as big as the largest single SQL transaction executed through the data-
base connection. The size of a transaction is related to the aggregated size of data values
that have changed as a result of the transaction. For example, if a transaction modifies
every column in a row of a table, then the transaction is at least as large as the size (in
bytes) of a row.

Note that a single transaction may modify multiple rows of a table. It is up to the user to
determine what the largest transaction size in a database may be and set the XLABUF-
FERSIZE attribute for the Real-Time Connect Daemon appropriately. However, the maxi-
mum transaction size is only the minimum value that should be set for
XLABUFFERSIZE. You may need to set XLABUFFERSIZE to be much larger, since the
XLA staging buffer in Oracle TimesTen must hold more than a single non-committed
transaction simultaneously if there are multiple threads or processes accessing the same
database at the same time. Recall that this discussion only pertains to Oracle TimesTen
DSNs that specify a diskless connection.

If the XLABUFFERSIZE is too small, then SQLExecute or SQLExecDirect statements that
were working will return an error indicating that a buffer is full. You should see these
errors in your own applications as well as in the Real-Time Connect Daemon if the dae-
mon is subscribing to Topics and trying to store the received data in the database. These

Table 4.16 Publication Tags

Tags Allowed within
<publication> Description

Number
of Tags

Allowed

<domain_id>
Inserts the tag value into the column with the same name
in the table RTIDDS_PUBLICATIONS.
See Section 4.5.1

1
(required)

<table_name>

<table_owner>

<topic_name>

<idl_member_prefix_
max_length>

Inserts the tag value into the column with the same name
in the table RTIDDS_PUBLICATIONS.
If the value is not specified, NULL is inserted.

See Section 4.5.1

0 or 1

<idl_member_suffix_
max_length>

<resolution_column >

<profile_name>

<table_history_depth>

<type_name>
4-34

Meta-Tables
4. U

sing
 RTI Re

a
l-

Tim
e

 C
o

nne
c

t

ODBC errors will appear in the daemon log. If you encounter this situation, you should
increase the value of XLABUFFERSIZE appropriately. The Oracle TimesTen native error
codes that you may see when the XLABUFFERSIZE is too small are:

❏ TT8009: Transaction Log API Buffer size too small or too large

❏ TT986: Log buffer overflow; transaction must rollback

❏ TT987: Log record larger than log buffer; transaction must rollback

More details about Oracle TimesTen error codes can be found in the Oracle TimesTen In-
Memory Database Error Messages and SNMP Traps Release 11.2.1.

4.5 Meta-Tables
After the Real-Time Connect Daemon has started and successfully made a connection to a
database, the user will still need to configure the daemon to publish table changes as
Topics as well as subscribe to Topics for storing received data into a table. This configu-
ration is done by inserting entries into two tables RTIDDS_PUBLICATIONS and
RTIDDS_SUBSCRIPTIONS. These tables will be created by the Real-Time Connect Dae-
mon if they do not already exist in the database.

The two tables are referred to as meta-tables since their data is not user data but informa-
tion used by the daemon to create DataWriters and DataReaders, as well as correspond-
ing user tables in the database. The tables are just ordinary tables that users can create
themselves before starting the Real-Time Connect Daemon if so desired. However, if the
user chooses to do so, it is important that the tables be created with the exact tables sche-
mas presented below, otherwise the daemon may not work correctly. If the daemon
finds existing meta-tables upon startup, it will process every row in the tables as if they
were newly inserted. The meta-tables RTIDDS_PUBLICATIONS and
RTIDDS_SUBSCRIPTIONS can be populated using the <publication> and <subscrip-
tion> tags in the configuration file (see Section 4.4.4.4) or running Insert/Update SQL
statements.

There are two more meta-tables created by the Real-Time Connect Daemon:

❏ The meta-table RTIRTC_TBL_INFO will store the typecode associated with the
user tables created automatically by the RTC daemon (see Section 4.5.3).

❏ The meta-table RTIRTC_LOG will be created to store log messages generated by
the Real-Time Connect Daemon. Use of this table is controlled by command-line
parameters and the connection discussed in Section 4.2 andSection 4.4.4.3.
4-35

Using Real-Time Connect
The following sections discuss the usage of these tables and describe the actions taken
by the daemon when these tables are modified:

❏ Publications Table (Section 4.5.1)

❏ Subscriptions Table (Section 4.5.2)

❏ Table Info (Section 4.5.3)

❏ Log Table (Section 4.5.4)

4.5.1 Publications Table

When entries (rows) are added to the meta-table RTIDDS_PUBLICATIONS, the Real-
Time Connect Daemon will try to create a DataWriter (and Publisher along with a
DomainParticipant if required) and use it to send changes to the designated user table
via the Connext.

If the RTIDDS_PUBLICATIONS table does not exist at startup, the Real-Time Connect
Daemon will create it with the table owner set to the user name of the database connec-
tion as specified in the daemon’s configuration file, see Section 4.4. The schema and
meaning of the columns of this table are described in the next section.

Users may insert new rows or modify the column values of existing rows in this table at
anytime. For a new row, the daemon will first check to see if the designated user table
exists. If so, it will immediately create the DataWriter with the QoS values as specified
by the entry. The name of the Topic to publish may be specified by the topic_name col-
umn or be automatically constructed as <table_owner>.<table_name> if the
topic_name entry is NULL.

If the user table does not exist, the Real-Time Connect Daemon will look for the typecode
associated with the topic defined in the topic_name column. If it finds the typecode, the
daemon will create the user table with a SQL table schema derived from the typecode
following the IDL type to SQL type mapping described in Chapter 5: IDL/SQL Seman-
tic and Data Mapping. Then the daemon will proceed to create the associated DataW-
riter. More about the creation of user tables by the daemon can be found in User-Table
Creation (Section 4.6).

How the daemon discovers and stores typecodes is described in Typecodes (Section
4.1.4). If the Real-Time Connect Daemon has not yet have a typecode associated with the
topic_name, it will defer the creation of the DataWriter until the typecode is discovered.
When a new typecode is discovered, the daemon will scan all rows in the
RTIDDS_PUBLICATIONS meta-table and create the user tables and DataWriters for
entries that were pending on the discovery of the typecode.
4-36

Meta-Tables
4. U

sing
 RTI Re

a
l-

Tim
e

 C
o

nne
c

t

The daemon will also create the DataWriter if there is an entry in the
RTIDDS_PUBLICATIONS table without an associated typecode, but the user subse-
quently creates the corresponding table.

If user applications modify an existing row in the RTIDDS_PUBLICATIONS table, the
Real-Time Connect Daemon will first delete the DataWriter that was created for that entry
(if it exists) and then go through the same process of trying to create the user table and
DataWriter as if the row was newly inserted. If user applications delete an existing row
in the RTIDDS_PUBLICATIONS table, the Real-Time Connect Daemon will delete the
associated DataWriter (if it exists).

A flow chart describing this logic is provided below.

wait for
change

what kind of
change?

does user
table exist?

does type-
code exist?

create user-
table in DB

create new
pub

delete existing
pub

INSERT

UPDATE

No

No, defer creation until typecode is discovered

Yes

Yes

if necessary, create
DomainParticipant

in RTIDDS_PUBLICATIONS meta-table
4-37

Using Real-Time Connect
4.5.1.1 Publications Table Schema

The RTIDDS_PUBLICATIONS table is created with the following SQL statement.

Oracle TimesTen (with command-line option -typeMode 1):

Create Table RTIDDS_PUBLICATIONS (
 table_owner VARCHAR(128) NOT NULL,
 table_name VARCHAR(128) NOT NULL,
 domain_id INTEGER NOT NULL,
 topic_name VARCHAR(200),
 type_name VARCHAR(200),
 table_history_depth INTEGER,
 resolution_column VARCHAR(255),
 idl_member_prefix_max_length INTEGER,
 idl_member_suffix_max_length INTEGER,
 profile_name VARCHAR(255),
 "pub.present.access_scope" VARCHAR(25),
 "pub.present.ordered_access" TINYINT,
 "pub.partition.name" VARCHAR(256),
 "dw.durability.kind" VARCHAR(30),
 "dw.liveliness.lease_dur.sec" INTEGER,
 "dw.liveliness.lease_dur.nsec" INTEGER,
 "dw.deadline.period.sec" INTEGER,
 "dw.deadline.period.nsec" INTEGER,
 "dw.history.kind" VARCHAR(21),
 "dw.history.depth" INTEGER,
 "dw.ownership.kind" VARCHAR(23),
 "dw.ownership_strength.value" INTEGER,
 "dw.publish_mode.kind" VARCHAR(29),
 "dw.res_limits.max_samples" INTEGER,
 "dw.res_limits.max_instances" INTEGER,
 PRIMARY KEY(table_owner,table_name,domain_id,topic_name)
)

Oracle TimesTen (with command-line option -typeMode 0):

Create Table RTIDDS_PUBLICATIONS (
 table_owner TT_VARCHAR(128) NOT NULL,
 table_name TT_VARCHAR(128) NOT NULL,
 domain_id TT_INTEGER NOT NULL,
 topic_name TT_VARCHAR(200),
 type_name TT_VARCHAR(200),
 table_history_depth TT_INTEGER,
 resolution_column TT_VARCHAR(255),
 idl_member_prefix_max_length TT_INTEGER,
 idl_member_suffix_max_length TT_INTEGER,
4-38

Meta-Tables
4. U

sing
 RTI Re

a
l-

Tim
e

 C
o

nne
c

t

 profile_name TT_VARCHAR(255),
 "pub.present.access_scope" TT_VARCHAR(25),
 "pub.present.ordered_access" TT_TINYINT,
 "pub.partition.name" TT_VARCHAR(256),
 "dw.durability.kind" TT_VARCHAR(30),
 "dw.liveliness.lease_dur.sec" TT_INTEGER,
 "dw.liveliness.lease_dur.nsec" TT_INTEGER,
 "dw.deadline.period.sec" TT_INTEGER,
 "dw.deadline.period.nsec" TT_INTEGER,
 "dw.history.kind" TT_VARCHAR(21),
 "dw.history.depth" TT_INTEGER,
 "dw.ownership.kind" TT_VARCHAR(23),
 "dw.ownership_strength.value" TT_INTEGER,
 "dw.publish_mode.kind" TT_VARCHAR(29),
 "dw.res_limits.max_samples" TT_INTEGER,
 "dw.res_limits.max_instances" TT_INTEGER,
 PRIMARY KEY(table_owner,table_name,domain_id,topic_name)
)

Oracle Database 11g:

Create Table RTIDDS_PUBLICATIONS (
 table_owner VARCHAR(128) NOT NULL,
 table_name VARCHAR(128) NOT NULL,
 domain_id NUMBER(10) NOT NULL,
 topic_name VARCHAR(200),
 type_name VARCHAR(200),
 table_history_depth NUMBER(10),
 resolution_column VARCHAR(255),
 idl_member_prefix_max_length NUMBER(10),
 idl_member_suffix_max_length NUMBER(10),
 profile_name VARCHAR(255),
 "pub.present.access_scope" VARCHAR(25),
 "pub.present.ordered_access" NUMBER(3),
 "pub.partition.name" VARCHAR(256),
 "dw.durability.kind" VARCHAR(30),
 "dw.liveliness.lease_dur.sec" NUMBER(10),
 "dw.liveliness.lease_dur.nsec" NUMBER(10),
 "dw.deadline.period.sec" NUMBER(10),
 "dw.deadline.period.nsec" NUMBER(10),
 "dw.history.kind" VARCHAR(21),
 "dw.history.depth" NUMBER(10),
 "dw.ownership.kind" VARCHAR(23),
 "dw.ownership_strength.value" NUMBER(10),
 "dw.publish_mode.kind" VARCHAR(29),
4-39

Using Real-Time Connect
 "dw.res_limits.max_samples" NUMBER(10),
 "dw.res_limits.max_instances" NUMBER(10),
 PRIMARY KEY(table_owner,table_name,domain_id,topic_name)
)

MySQL1:

Create Table RTIDDS_PUBLICATIONS (
 table_owner VARCHAR(128) NOT NULL,
 table_name VARCHAR(128) NOT NULL,
 domain_id INTEGER NOT NULL,
 topic_name VARCHAR(200),
 type_name VARCHAR(200),
 table_history_depth INTEGER,
 resolution_column VARCHAR(255),
 idl_member_prefix_max_length INTEGER,
 idl_member_suffix_max_length INTEGER,
 profile_name VARCHAR(255),
 "pub.present.access_scope" VARCHAR(25),
 "pub.present.ordered_access" TINYINT,
 "pub.partition.name" VARCHAR(256),
 "dw.durability.kind" VARCHAR(30),
 "dw.liveliness.lease_dur.sec" INTEGER,
 "dw.liveliness.lease_dur.nsec" INTEGER,
 "dw.deadline.period.sec" INTEGER,
 "dw.deadline.period.nsec" INTEGER,
 "dw.history.kind" VARCHAR(21),
 "dw.history.depth" INTEGER,
 "dw.ownership.kind" VARCHAR(23),
 "dw.ownership_strength.value" INTEGER,
 "dw.publish_mode.kind" VARCHAR(29),
 "dw.res_limits.max_samples" INTEGER,
 "dw.res_limits.max_instances" INTEGER,
 changes_queue_maximum_size INTEGER,
 RTIRTC_SCN BIGINT DEFAULT 0,
 PRIMARY KEY(table_owner,table_name,domain_id,topic_name)
)

Users should use the same SQL statement in their own applications if they want to cre-
ate and populate this table before the Real-Time Connect Daemon is started. Table 4.17
describes how each column is used by the daemon in creating and using DataWriters
that publish table changes.

1. See Starting the MySQL Server in ANSI_QUOTES mode (Section 4.1.2.4).
4-40

Meta-Tables
4. U

sing
 RTI Re

a
l-

Tim
e

 C
o

nne
c

t

Table 4.17 RTIDDS_PUBLICATIONS Table Schema

Column Name SQL Type Null
-able Default if NULL Described in...

table_ownera VARCHAR(128) No N/A Section 4.5.1.1.4

table_namea VARCHAR(128) No N/A Section 4.5.1.1.4

domain_ida INTEGER No N/A Section 4.5.1.1.5

topic_namea VARCHAR(200) Yes <table_owner>.<table_name> Section 4.5.1.1.6

type_name VARCHAR(200) Yes <topic_name> Section 4.5.1.1.7

table_history_depth INTEGER Yes 0 Section 4.5.1.1.8

resolution_column VARCHAR(255) Yes None Section 4.5.1.1.9

idl_member_prefix_max_length INTEGER Yes
Value specified in the configura-
tion file

Section 4.5.1.1.10

idl_member_suffix_max_length INTEGER Yes
Value specified in the configura-
tion file

Section 4.5.1.1.10

profile_name VARCHAR(255) Yes
Real-Time Connect will not use a
profile to create the publication

Section 4.5.1.1.11

pub.present.access_scope VARCHAR(25) Yes
INSTANCE_PRESENTATION_
QOS

Section 4.5.1.1.12

pub.present.ordered_access TINYINT Yes 0 (false) Section 4.5.1.1.12

pub.partition.name VARCHAR(256) Yes Empty string partition Section 4.5.1.1.13

dw.durability.kind VARCHAR(30) Yes VOLATILE_DURABILITY_QOS Section 4.5.1.1.14

dw.liveliness.lease_dur.sec INTEGER Yes Infinite Section 4.5.1.1.15

dw.liveliness.lease_dur.nsec INTEGER Yes Infinite Section 4.5.1.1.15

dw.deadline.period.sec INTEGER Yes Infinite Section 4.5.1.1.16

dw.deadline.period.nsec INTEGER Yes Infinite Section 4.5.1.1.16

dw.history.kind VARCHAR(21) Yes KEEP_LAST_HISTORY_QOS Section 4.5.1.1.17

dw.history.depth INTEGER Yes 1 Section 4.5.1.1.17

dw.ownership.kind VARCHAR(23) Yes SHARED_OWNERSHIP_QOS Section 4.5.1.1.18

dw.ownership_strength.value INTEGER Yes 0 Section 4.5.1.1.18

dw.publish_mode.kind VARCHAR(29) Yes
SYNCHRONOUS_PUBLISH_
MODE_QOS

Section 4.5.1.1.19

dw.res_limits.max_samples INTEGER Yes Infinite Section 4.5.1.1.20

dw.res_limits.max_instances INTEGER Yes Infinite Section 4.5.1.1.20

changes_queue_maximum_size INTEGER Yes Infinite Section 4.5.1.1.21

RTIRTC_SCN BIGINT Yes Next SCN number Section 4.5.1.1.22
4-41

Using Real-Time Connect
4.5.1.1.4 table_owner, table_name

These columns specify the user table for which changes will be published using a
DataWriter. Because a DBMS uses a combination of <table_owner>.<table_name> to
identify a table, both of these columns must have valid values should the user want
these entries to refer to an existing table.

If no table exists in the database with the identifier “<table_owner>.<table_name>” at
the time that the daemon sees this entry in the RTIDDS_PUBLICATIONS meta-table, it
will create a user table with this name automatically, see User-Table Creation (Section
4.6).

Note: In MySQL, the value of the table_owner column corresponds to the table schema
or database name.

4.5.1.1.5 domain_id

This column specifies the domain ID that will be used to publish changes in the table.
Before creating a DataWriter, if no DomainParticipant has previously been created with
the domain ID, the Real-Time Connect Daemon will create a DomainParticipant with the
specified ID.

If the publications entry has associated a QoS profile, Real-Time Connect will use the val-
ues in this profile to create the participant. The participant will also be configured using
the QoS values of a profile when the attribute, is_default_qos, is set to 1 in that profile
(see the RTI Core Libraries and Utilities User’s Manual for additional details).

4.5.1.1.6 topic_name

These column defines the Topic that will be used to publish the changes in the associ-
ated table. The <topic_name> need to match the Topic used by subscriptions in user
applications that expect to received data changes from the table. If the Real-Time Connect
Daemon has discovered the typecode associated with the <topic_name> and the user
table does not exist in the database, the daemon will use the typecode to create the table
using entries in the <table_owner> and <table_name> column. See User-Table Creation
(Section 4.6) for more details.

4.5.1.1.7 type_name

This column defines the registered name of the type associated with the Topic defined
using the column <topic_name>. If the user table does not exist in the database, the dae-
mon will use the type name to find a typecode in the XML configuration file. See User-

a. Primary key column
4-42

Meta-Tables
4. U

sing
 RTI Re

a
l-

Tim
e

 C
o

nne
c

t

Table Creation (Section 4.6) for more details.

4.5.1.1.8 table_history_depth

The <table_history_depth> column in the RTIDDS_PUBLICATIONS determines
whether or not the Real-Time Connect Daemon will create the user table with additional
meta-columns that support the storing of historic, or past, values of instances of Topics
by DataReaders created with the RTIDDS_SUBSCRIPTIONS table. It is only used if
the daemon creates the table because it does not exist.

More about the ability to store historic data in the table as well as the added meta-col-
umns can be found in table_history_depth (Section 4.5.2.1.5) and in User-Table Creation
(Section 4.6).

This column is useful in the case that the user wants the Real-Time Connect Daemon to
both publish and subscribe to a Topic for the same user table. The value set in
<table_history_depth> will enable the daemon to create the user table correctly if the
user wants to store more than a single value for an instance of the Topic in the table.

The possible values for <table_history_depth> column are:

❏ NULL or 0

These values should be used if the user does not want to store more than a single
value for an instance of a Topic in the table.

If the Real-Time Connect Daemon creates the table, it will not add any meta-col-
umns for table history to the table schema.

❏ Any other value

For any non-zero value in this column, the Real-Time Connect Daemon will add
meta-columns for table history to the table schema when it creates the user table
automatically.

A table’s schema or definition cannot be changed to accommodate the table-his-
tory meta-columns after a table has been created. So a non-zero value for this col-
umn is useful if the user wants the table to be created with the ability to store
historic values in support of entries in the RTIDDS_SUBSCRIPTIONS table
that may be made later.

4.5.1.1.9 resolution_column

This column is used to designate one of the columns of the user table for use as the time-
stamp when data changes are published with the DataWriter. Instead of using the sys-
tem time, when a row in the user table changes, the Real-Time Connect Daemon will take
4-43

Using Real-Time Connect
the current value of the designated column and use it in the DataW-
riter::write_w_timestamp() method when publishing the value of the row.

The possible values for the <resolution_column> column are:

❏ NULL

If this column is NULL, then the Real-Time Connect Daemon will just call DDS-
DataWriter::write() to publish the table changes. This implies that the source
timestamp used by Connext will be the system time when the write occurred.

❏ “column_name”

The column name of any column in the user table that has a valid type. The col-
umn must be one of the following SQL types: INTEGER, SMALLINT, BIGINT, or
TIMESTAMP.

If the user directs the daemon to use a column from the user table as the time-
stamp, then it is imperative to the proper operation of the publication that the
value in the timestamp column is monotonically increasing with every table
change. So when a change is made to a row of the table, the value in the column
<resolution_column> must be larger than the last value of this column that was
published.

The <resolution_column> can be used with the <dr.destination_order.kind> column of
the RTIDDS_SUBSCRIPTIONS table to implement a conflict resolution policy in a sys-
tem where Real-Time Connect is used to implement database table replication across a
network. See dr.destination_order.kind (Section 4.5.2.1.18) and TableReplicationMode
on page 4-22 for more information.

4.5.1.1.10 idl_member_prefix_max_length, idl_member_suffix_max_length

These columns define how Real-Time Connect maps IDL member identifiers into column
names. In particular, they control how the column names are formed by using as a pre-
fix n characters from the identifier’s prefix and m characters from the identifier’s suffix.

They can assume any value greater than or equal to -1. They cannot both be set to zero.

If a positive value n is provided for idl_member_prefix_max_length, Real-Time Connect
will use the first n characters from the IDL member identifier to compose the associated
column name. A value of 0 tells Real-Time Connect to compose the column name using
only the last characters of the identifiers, as defined by the
‘idl_member_suffix_max_length’ column. A value of -1, instructs Real-Time Connect to
use all the available characters.

If a positive value n is provided for idl_member_suffix_max_length, Real-Time Connect
will use the last n characters from the IDL member identifier to compose the associated
4-44

Meta-Tables
4. U

sing
 RTI Re

a
l-

Tim
e

 C
o

nne
c

t

column name. A value of 0 tells Real-Time Connect to compose the column name using
only the first characters of the identifiers, as defined by the
‘idl_member_prefix_max_length’ column. A value of -1, instructs Real-Time Connect to
use all the available characters.

4.5.1.1.11 profile_name

This column specifies the name of the QoS Profile that Real-Time Connect will use to cre-
ate the publication.

The name must have the following format:

<QoS profile library name>::<QoS profile name>

See the Connext documentation for a complete description of QoS Profiles.

The QoS values specified in the publication table (if they are not NULL) take precedence
over the same values specified in the QoS profile.

4.5.1.1.12 pub.present.access_scope, pub.present.ordered_access

These two columns map directly to the DDS_PresentationQosPolicy of the
DDS_PublisherQos used by the Publisher that is created with the DataWriter for pub-
lishing changes to the table. The DDS_PresentationQosPolicy specifies how the samples
representing changes to data instances are presented to a subscribing application.

The specific columns affect the relative order of changes seen by subscribers to the table.
The values of these columns must be coordinated with the values of the
DDS_PresentationQosPolicy used by the Subscriber in the receiving application or else
published data may not be received by the subscriber.

The possible values for the <pub.present.access_scope> column are:

❏ “INSTANCE_PRESENTATION_QOS” (default value if the column is NULL)

❏ “TOPIC_PRESENTATION_QOS”

❏ “GROUP_PRESENTATION_QOS”

The possible values for the <pub.present.ordered_access> column are:

❏ 0 (default value if the column is NULL)

❏ 1

For the best performance of the Real-Time Connect Daemon, you should set <pub.pres-
ent.access_scope> to “TOPIC_PRESENTATION_QOS” and <pub.pres-
ent.ordered_access> to 1. This will require that the corresponding values in the
4-45

Using Real-Time Connect
DDS_PresentationQosPolicy of the Subscriber in the receiving applications to be
changed to those values as well.

See the Connext documentation for more details on how this QoS policy may be used.
See also sub.present.access_scope, sub.present.ordered_access (Section 4.5.2.1.14).

4.5.1.1.13 pub.partition.name

For publishing table changes, Real-Time Connect creates a DataWriter per table. The
pub.partition.name column maps directly to the DDS_PartitionQosPolicy of the
DDS_PublisherQos used by the Publisher that is created with the DataWriter. The
DDS_PartitionQosPolicy introduces a logical partition concept inside the ‘physical’ par-
tition concept introduced by the domain ID. A Publisher can communicate with a Sub-
scriber only if they have some partition in common. The value of the pub.partition.name
column specifies a list of partitions separated by commas to which the Publisher
belongs.

See the Connext documentation for more details on how this QoS policy may be used.
See also sub.partition.name (Section 4.5.2.1.15)

4.5.1.1.14 dw.durability.kind

This column maps directly to the DDS_DurabilityQosPolicy of the DataWriter created to
publish table changes. By changing this policy, the Real-Time Connect Daemon can be
configured to resend past changes to the database table to remote applications as soon
as their subscriptions are discovered.

Only changes made by local applications to the table will be sent. That is, if the daemon
is configured to subscribe to and store changes into the table from remote DataWriters,
those changes are not sent. In addition, the changes will only be sent if the DataReader
is created with a reliable setting for its DDS_ReliabilityQosPolicy.

The number of past changes that will be sent is limited by the values of the <dw.his-
tory.kind>, <dw.history.depth> and <dw.res_limits.max_samples> columns.

The possible values for the <dw.durability.kind> column are:

❏ “VOLATILE_DURABILITY_QOS”

This value prevents the daemon from sending past changes to the table to newly
discovered DataReaders.

This also the default value if the column is NULL.

❏ “TRANSIENT_LOCAL_DURABILITY_QOS”
4-46

Meta-Tables
4. U

sing
 RTI Re

a
l-

Tim
e

 C
o

nne
c

t

This value will enable the daemon to send past changes to the table to newly dis-
covered DataReaders. The DataReaders must be created with reliable
DDS_ReliabilityQosPolicy.

NOTE: If a table exists when the Real-Time Connect Daemon creates a DataWriter, the
daemon will initialize the DataWriter with the current contents of the table such that
those values will be sent to new DataReaders with their DDS_DurabilityQosPolicy set
to ”TRANSIENT_LOCAL_DURABILITY_QOS.”

See the Connext documentation for more details on how this QoS policy may be used.
See also dr.durability.kind (Section 4.5.2.1.16) and dr.reliability.kind (Section 4.5.2.1.17).

4.5.1.1.15 dw.liveliness.lease_dur

These columns specify the lease duration for the DDS_LivelinessQosPolicy for the
DataWriter created to publish table changes. The user may need to change the lease
duration if remote applications have modified their DataReaders’ corresponding
DDS_LivelinessQosPolicy to non-default values.

The possible values of the <dw.liveliness.lease_dur.sec> (seconds) and <dw.liveli-
ness.lease_dur.nsec> (nanoseconds) columns are:

❏ An infinite lease duration is specified if both columns are NULL or contain the
value 2147483647 (231 - 1). This is the DDS default value.

❏ A non-zero value representing the number of seconds and nanoseconds for the
lease duration.

Note: DDS_LivelinessQosPolicy.kind is always set to
DDS_AUTOMATIC_LIVELINESS_QOS.

See the Connext documentation for more details on how this QoS policy may be used.
See also dr.liveliness.lease_dur (Section 4.5.2.1.19).

4.5.1.1.16 dw.deadline.period

These columns specify the deadline period for the DDS_DeadlineQosPolicy for the
DataWriter created to publish table changes. The user may need to change the deadline
period if remote applications have modified their DataReaders’ corresponding
DDS_DeadlineQosPolicy to non-default values.

The possible values of the <dw.deadline.period.sec> (seconds) and <dw.dead-
line.period.nsec> (nanoseconds) columns are:

❏ An infinite deadline period is specified if both columns are NULL or contain the
value 2147483647 (231 - 1). This is the DDS default value.
4-47

Using Real-Time Connect
❏ A non-zero value representing the number of seconds and nanoseconds for the
deadline period.

The DDS_DeadlineQosPolicy sets a commitment by the DataWriter to publish a value
for every data instance to DataReaders every deadline period. If this value is set to a
non-infinite value, user applications must update the value of every instance of the
Topic stored in the table within each deadline period or the contract with DataReaders
that subscribe to the changes to the table will be violated.

See the Connext documentation for more details on how this QoS policy may be used.
See also dr.deadline.period (Section 4.5.2.1.20).

4.5.1.1.17 dw.history.kind, dw.history.depth

These columns directly map to the DDS_HistoryQosPolicy for the DataWriter created to
publish table changes. The values set for this QoS policy affect the
DDS_ReliabilityQosPolicy and the DDS_DurabilityQosPolicy.

Using a “KEEP_ALL_HISTORY_QOS” will ensure that reliable DataReaders will
receive every change to the table reliably. With a “KEEP_LAST_HISTORY_QOS,” the
Real-Time Connect Daemon will only guarantee that the last <dw.history.depth> changes
for each data instance are sent reliably.

If the <dw.durability.kind> column of the row is set to “TRANSIENT_LOCAL_DURA-
BILITY_QOS”, then these columns determine how many past data changes are sent to
new subscribers to table changes.

The possible values of the <dw.history.kind> and <dw.history.depth> columns are:

❏ “KEEP_LAST_HISTORY_QOS”

For this setting, the column <dw.history.depth> determines how many pub-
lished changes for each data instance in the table are stored in the DataWriter to
support reliability or durability.

<dw.history.depth> should be set to an integer greater than 0. The default value
for history depth is 1 if this column is NULL.

❏ “KEEP_ALL_HISTORY_QOS” (default value if the column is NULL)

This setting implies that the DataWriter created to publish table changes will
store all of the changes to the table that it has sent. The total number of changes
that can be stored is limited by the value in the
<dw.res_limits.-max_samples> column.

For this setting, the value in <dw.history.depth> is ignored.
4-48

Meta-Tables
4. U

sing
 RTI Re

a
l-

Tim
e

 C
o

nne
c

t

See the Connext documentation for more details on how this QoS policy may be used.
See also dw.durability.kind (Section 4.5.1.1.14) and dw.res_limits.max_samples,
dw.res_limits.max_instances (Section 4.5.1.1.20).

4.5.1.1.18 dw.ownership.kind, dw.ownership_strength.value

These columns directly map to the DDS_OwnershipQosPolicy and DDS_Ownership-
StrengthQosPolicy for the DataWriter created to publish table changes. These policies
control whether or not DataReaders are allowed to receive changes to an instance of a
Topic from multiple DataWriters simultaneously.

The possible values of the <dw.ownership.kind> and <dw.ownership_strength.value>
columns are:

❏ “SHARED_OWNERSHIP_QOS” (default value if the column is NULL)

This setting allows DataReaders to receive updates for an instance of a Topic
from multiple DataWriters at the same time.

❏ “EXCLUSIVE_OWNERSHIP_QOS”

This setting prevents a DataReader from receiving changes from more than a sin-
gle DataWriter for an instance of a Topic at the same time.

The DataReader will receive changes for a topic instance from the DataWriter
with the greatest value of ownership strength. If the liveliness of the DataWriter
fails or if the DataWriter fails to write within a deadline period, then the
DataReader will receive published changes to the topic instance from the
DataWriter with the next highest ownership strength.

The ownership strength set is set in the <dw.ownerhip_strength.value> column.
The default value is 0 if the column is NULL.

See the Connext documentation for more details on how this QoS policy may be used.
See also dw.liveliness.lease_dur (Section 4.5.1.1.15), dw.deadline.period (Section
4.5.1.1.16), and dr.ownership.kind (Section 4.5.2.1.22).

4.5.1.1.19 dw.publish_mode.kind

This column controls the type of DataWriter that Real-Time Connect will create for pub-
lishing data. This column can take the following values:

❏ ASYNCHRONOUS_PUBLISH_MODE_QOS

❏ SYNCHRONOUS_PUBLISH_MODE_QOS (default value)
4-49

Using Real-Time Connect
Asynchronous DataWriters were introduced in Connext to support large data packets
(greater than 64Kb). If IDL data types exceed the 64Kb limit and reliable communication
is used, dw.publish_mode.kind must be set to
‘ASYNCHRONOUS_PUBLISH_MODE_QOS’.

See the Connext documentation for more details on the differences between synchronous
and asynchronous DataWriters.

4.5.1.1.20 dw.res_limits.max_samples, dw.res_limits.max_instances

These columns set some parameters for the DDS_ResourceLimitsQosPolicy for the
DataWriter created to publish table changes. In particular, they control the amount of
memory that the system is allowed to allocate for storing published data values as well
as the total number of data instances (different primary keys) that can be handled by the
DataWriter.

A value of -1 for either of these columns means infinite. An infinite setting means that
the DataWriter is allowed to allocate memory as needed to store published table
changes and manage new keys.

❏ The default value for dw.res_limits.max_samples (if set to NULL) is 32.

❏ The default value for dw.res_limits.max_instances (if set to NULL) is -1.

The number of keys that the DataWriter is allowed to manage places an upper limit on
the number of rows that the related table in the database can have.

See the Connext documentation for more details on how this QoS policy may be used.

4.5.1.1.21 changes_queue_maximum_size

This column is available only for connections to a MySQL database. The value of the
column configures the maximum size of the queue that maintains the list of uncommit-
ted changes. Note that there is a separate queue per table.

A value of -1 is used to indicate unlimited size.

4.5.1.1.22 RTIRTC_SCN

The System Change Number (SCN) column is available only for connections to a
MySQL database. The value of this column is automatically maintained by Real-Time
Connect and is usually of no interest to the application. For more information about the
RTIRTC_SCN column see Section 4.6.
4-50

Meta-Tables
4. U

sing
 RTI Re

a
l-

Tim
e

 C
o

nne
c

t

4.5.2 Subscriptions Table

When entries (rows) are added to the meta-table RTIDDS_SUBSCRIPTIONS, the Real-
Time Connect Daemon will try to create a DataReader (and Subscriber along with a
DomainParticipant if required) and use it to receive data via the Connext for a Topic and
store values into the designated user table.

If the RTIDDS_SUBSCRIPTIONS table does not exist at startup, the Real-Time Connect
Daemon will create it with the table owner set to the user name of the database connec-
tion as specified in the daemon’s configuration file, see Section 4.4. The schema and
meaning of the columns of this table are described in the next section.

You may insert new rows or modify the column values of existing rows in this table at
any time. For a new row, the daemon will first check to see if the designated user table
exists. If so, it will immediately create the DataReader with the QoS values specified by
the entry. The name of the Topic to subscribe to may be specified by the topic_name col-
umn or automatically constructed as <table_owner>.<table_name> if the topic_name
entry is NULL.

If the user table does not exist, the Real-Time Connect Daemon will look for the typecode
associated with the type defined in the topic_name column. If it finds the typecode, the
daemon will create the user table with a SQL table schema derived from the typecode
following the IDL type to SQL type mapping described in Chapter 5: IDL/SQL Seman-
tic and Data Mapping. Then the daemon will proceed to create the associated
DataReader. More about the creation of user tables by the daemon can be found in User-
Table Creation (Section 4.6).

How the daemon discovers and stores typecodes is described in Typecodes (Section
4.1.4).

If the Real-Time Connect Daemon does not yet have a typecode associated with the
topic_name, it will defer the creation of the DataReader until the typecode is discov-
ered. When a new typecode is discovered, the daemon will scan all rows in the
RTIDDS_SUBSCRIPTIONS meta-table and create the user tables and DataReaders for
entries that were pending on the discovery of the typecode.

The daemon will also create the DataReader if there is an entry in the
RTIDDS_SUBSCRIPTIONS table without an associated typecode, but the user subse-
quently creates the corresponding table.

If user applications modify an existing row in the RTIDDS_SUBSCRIPTIONS table,
the Real-Time Connect Daemon will first delete the DataReader that was created for that
entry (if it exists) and then go through the same process of trying to create the user table
and DataReader as if the row was newly inserted.
4-51

Using Real-Time Connect
If user applications delete an existing row in the RTIDDS_SUBSCRIPTIONS table, the
Real-Time Connect Daemon will delete the associated DataReader (if it exists).

A flow chart describing this logic is provided below.

4.5.2.1 Subscriptions Table Schema

The RTIDDS_SUBSCRIPTIONS table is created with the following SQL statement.

Oracle TimesTen (with command-line option -typeMode 1):

Create Table RTIDDS_SUBSCRIPTIONS (
 table_owner VARCHAR(128) NOT NULL,
 table_name VARCHAR(128) NOT NULL,
 domain_id INTEGER NOT NULL,

wait for
change

what kind of
change?

does user
table exist?

does type-
code exist?

create user-
table in DB

create new
sub

delete existing
sub

INSERT

UPDATE

No

No, defer creation until typecode is discovered

Yes

Yes

if necessary, create
DomainParticipant

in RTIDDS_SUBSCRIPTIONS meta-table
4-52

Meta-Tables
4. U

sing
 RTI Re

a
l-

Tim
e

 C
o

nne
c

t

 topic_name VARCHAR(200),
 type_name VARCHAR(200),
 table_history_depth INTEGER,
 process_batch INTEGER,
 "process_period.sec" INTEGER,
 "process_period.nsec" INTEGER,
 commit_type VARCHAR(17),
 cache_maximum_size INTEGER,
 cache_initial_size INTEGER,
 delete_on_dispose INTEGER,
 idl_member_prefix_max_length INTEGER,
 idl_member_suffix_max_length INTEGER,
 profile_name VARCHAR(255),
 filter_duplicates TINYINT,
 ordered_store TINYINT,
 persist_state TINYINT,
 "sub.present.access_scope" VARCHAR(25),
 "sub.present.ordered_access" TINYINT,
 "sub.partition.name" VARCHAR(256),
 "dr.durability.kind" VARCHAR(30),
 "dr.reliability.kind" VARCHAR(27),
 "dr.destination_order.kind" VARCHAR(43),
 "dr.liveliness.lease_dur.sec" INTEGER,
 "dr.liveliness.lease_dur.nsec" INTEGER,
 "dr.deadline.period.sec" INTEGER,
 "dr.deadline.period.nsec" INTEGER,
 "dr.history.kind" VARCHAR(21),
 "dr.history.depth" INTEGER,
 "dr.ownership.kind" VARCHAR(23),
 "dr.time_filter.min_sep.sec" INTEGER,
 "dr.time_filter.min_sep.nsec" INTEGER,
 "dr.res_limits.max_samples" INTEGER,
 "dr.res_limits.max_instances" INTEGER,
 "dr.unicast.receive_port" INTEGER,
 "dr.multicast.receive_address" VARCHAR(39),
 "dr.multicast.receive_port" INTEGER,
 PRIMARY KEY(table_owner,table_name,domain_id,topic_name)
)

Oracle TimesTen (with command-line option -typeMode 0):

Create Table RTIDDS_SUBSCRIPTIONS (
 table_owner TT_VARCHAR(128) NOT NULL,
 table_name TT_VARCHAR(128) NOT NULL,
 domain_id TT_INTEGER NOT NULL,
 topic_name TT_VARCHAR(200),
 type_name TT_VARCHAR(200),
 table_history_depth TT_INTEGER,
4-53

Using Real-Time Connect
 process_batch TT_INTEGER,
 "process_period.sec" TT_INTEGER,
 "process_period.nsec" TT_INTEGER,
 commit_type TT_VARCHAR(17),
 cache_maximum_size TT_INTEGER,
 cache_initial_size TT_INTEGER,
 delete_on_dispose TT_INTEGER,
 idl_member_prefix_max_length TT_INTEGER,
 idl_member_suffix_max_length TT_INTEGER,
 profile_name TT_VARCHAR(255),
 filter_duplicates TT_TINYINT,
 ordered_store TT_TINYINT,
 persist_state TT_TINYINT,
 "sub.present.access_scope" TT_VARCHAR(25),
 "sub.present.ordered_access" TT_TINYINT,
 "sub.partition.name" TT_VARCHAR(256),
 "dr.durability.kind" TT_VARCHAR(30),
 "dr.reliability.kind" TT_VARCHAR(27),
 "dr.destination_order.kind" TT_VARCHAR(43),
 "dr.liveliness.lease_dur.sec" TT_INTEGER,
 "dr.liveliness.lease_dur.nsec" TT_INTEGER,
 "dr.deadline.period.sec" TT_INTEGER,
 "dr.deadline.period.nsec" TT_INTEGER,
 "dr.history.kind" TT_VARCHAR(21),
 "dr.history.depth" TT_INTEGER,
 "dr.ownership.kind" TT_VARCHAR(23),
 "dr.time_filter.min_sep.sec" TT_INTEGER,
 "dr.time_filter.min_sep.nsec" TT_INTEGER,
 "dr.res_limits.max_samples" TT_INTEGER,
 "dr.res_limits.max_instances" TT_INTEGER,
 "dr.unicast.receive_port" TT_INTEGER,
 "dr.multicast.receive_address" TT_VARCHAR(39),
 "dr.multicast.receive_port" TT_INTEGER,
 PRIMARY KEY(table_owner,table_name,domain_id,topic_name)
)

Oracle Database 11g:

Create Table RTIDDS_SUBSCRIPTIONS (
 table_owner VARCHAR(128) NOT NULL,
 table_name VARCHAR(128) NOT NULL,
 domain_id NUMBER(10) NOT NULL,
 topic_name VARCHAR(200),
 type_name VARCHAR(200),
 table_history_depth NUMBER(10),
 process_batch NUMBER(10),
 "process_period.sec" NUMBER(10),
 "process_period.nsec" NUMBER(10),
4-54

Meta-Tables
4. U

sing
 RTI Re

a
l-

Tim
e

 C
o

nne
c

t

 commit_type VARCHAR(17),
 cache_maximum_size NUMBER(10),
 cache_initial_size NUMBER(10),
 delete_on_dispose NUMBER(10),
 idl_member_prefix_max_length NUMBER(10),
 idl_member_suffix_max_length NUMBER(10),
 profile_name VARCHAR(255),
 filter_duplicates NUMBER(3),
 ordered_store NUMBER(3),
 persist_state NUMBER(3),
 "sub.present.access_scope" VARCHAR(25),
 "sub.present.ordered_access" NUMBER(3),
 "sub.partition.name" VARCHAR(256),
 "dr.durability.kind" VARCHAR(30),
 "dr.reliability.kind" VARCHAR(27),
 "dr.destination_order.kind" VARCHAR(43),
 "dr.liveliness.lease_dur.sec" NUMBER(10),
 "dr.liveliness.lease_dur.nsec" NUMBER(10),
 "dr.deadline.period.sec" NUMBER(10),
 "dr.deadline.period.nsec" NUMBER(10),
 "dr.history.kind" VARCHAR(21),
 "dr.history.depth" NUMBER(10),
 "dr.ownership.kind" VARCHAR(23),
 "dr.time_filter.min_sep.sec" NUMBER(10),
 "dr.time_filter.min_sep.nsec" NUMBER(10),
 "dr.res_limits.max_samples" NUMBER(10),
 "dr.res_limits.max_instances" NUMBER(10),
 "dr.unicast.receive_port" NUMBER(10),
 "dr.multicast.receive_address" VARCHAR(39),
 "dr.multicast.receive_port" NUMBER(10),
 PRIMARY KEY(table_owner,table_name,domain_id,topic_name)
)

MySQL1:

Create Table RTIDDS_SUBSCRIPTIONS (
 table_owner VARCHAR(128) NOT NULL,
 table_name VARCHAR(128) NOT NULL,
 domain_id INTEGER NOT NULL,
 topic_name VARCHAR(200),
 type_name VARCHAR(200),
 table_history_depth INTEGER,
 process_batch INTEGER,
 "process_period.sec" INTEGER,
 "process_period.nsec" INTEGER,
 commit_type VARCHAR(17),

1. See Starting the MySQL Server in ANSI_QUOTES mode (Section 4.1.2.4).
4-55

Using Real-Time Connect
 cache_maximum_size INTEGER,
 cache_initial_size INTEGER,
 delete_on_dispose INTEGER,
 idl_member_prefix_max_length INTEGER,
 idl_member_suffix_max_length INTEGER,
 profile_name VARCHAR(255),
 filter_duplicates TINYINT,
 ordered_store TINYINT,
 persist_state TINYINT,
 "sub.present.access_scope" VARCHAR(25),
 "sub.present.ordered_access" TINYINT,
 "sub.partition.name" VARCHAR(256),
 "dr.durability.kind" VARCHAR(30),
 "dr.reliability.kind" VARCHAR(27),
 "dr.destination_order.kind" VARCHAR(43),
 "dr.liveliness.lease_dur.sec" INTEGER,
 "dr.liveliness.lease_dur.nsec" INTEGER,
 "dr.deadline.period.sec" INTEGER,
 "dr.deadline.period.nsec" INTEGER,
 "dr.history.kind" VARCHAR(21),
 "dr.history.depth" INTEGER,
 "dr.ownership.kind" VARCHAR(23),
 "dr.time_filter.min_sep.sec" INTEGER,
 "dr.time_filter.min_sep.nsec" INTEGER,
 "dr.res_limits.max_samples" INTEGER,
 "dr.res_limits.max_instances" INTEGER,
 "dr.unicast.receive_port" INTEGER,
 "dr.multicast.receive_address" VARCHAR(39),
 "dr.multicast.receive_port" INTEGER,
 RTIRTC_SCN BIGINT DEFAULT 0,
 PRIMARY KEY(table_owner,table_name,domain_id,topic_name)
)

Users should use the same SQL statement in their own applications if they want to cre-
ate and populate this table before the Real-Time Connect Daemon is started. Table 4.18
describes how each column is used by the daemon in creating DataReaders and storing
received data into tables.

Table 4.18 RTIDDS_SUBSCRIPTIONS Table Schema

Column Name SQL Type Null-
able Default if NULL Described in...

table_ownera VARCHAR(128) No N/A Section 4.5.2.1.1

table_namea VARCHAR(128) No N/A Section 4.5.2.1.1

domain_ida INTEGER No N/A Section 4.5.2.1.2
4-56

Meta-Tables
4. U

sing
 RTI Re

a
l-

Tim
e

 C
o

nne
c

t

topic_namea VARCHAR(200) YES <table_owner>.<table_name> Section 4.5.2.1.3

type_name VARCHAR(200) YES <topic_name> Section 4.5.2.1.4

table_history_depth INTEGER YES 0 Section 4.5.2.1.5

process_batch INTEGER YES 10 Section 4.5.2.1.6

process_period.sec INTEGER YES 0 Section 4.5.2.1.6

process_period.nsec INTEGER YES 100000000 Section 4.5.2.1.6

commit_type VARCHAR(17) YES COMMIT_ON_PROCESS Section 4.5.2.1.6

cache_maximum_size INTEGER YES 0 Section 4.5.2.1.7

cache_initial_size INTEGER YES 0 Section 4.5.2.1.7

delete_on_dipose INTEGER YES 0 Section 4.5.2.1.8

idl_member_prefix_max_length INTEGER YES
Value specified in the configura-
tion file

Section 4.5.2.1.9

idl_member_suffix_max_length INTEGER YES
Value specified in the configura-
tion file

Section 4.5.2.1.9

profile_name VARCHAR(255) YES
Real-Time Connect will not use a
profile to create the publication

Section 4.5.2.1.10

filter_duplicates TINYINT YES 0 Section 4.5.2.1.11

ordered_store TINYINT YES 1 Section 4.5.2.1.12

persist_state TINYINT YES 0 Section 4.5.2.1.13

sub.present.access_scope VARCHAR(25) YES
INSTANCE_PRESENTATION_
QOS

Section 4.5.2.1.14

sub.present.ordered_access TINYINT YES 0 (false) Section 4.5.2.1.14

sub.partition.name VARCHAR(256) YES Empty partition string Section 4.5.2.1.15

dr.durability.kind VARCHAR(30) YES VOLATILE_DURABILITY_QOS Section 4.5.2.1.16

dr.reliability.kind VARCHAR(27) YES
BEST_EFFORT_RELIABILITY_Q
OS

Section 4.5.2.1.17

dr.destination_order.kind VARCHAR(43) YES
BY_RECEPTION_TIMESTAMP_
DESTINATIONORDER_QOS

Section 4.5.2.1.18

dr.liveliness.lease_dur.sec INTEGER YES Infinite Section 4.5.2.1.19

dr.liveliness.lease_dur.nsec INTEGER YES Infinite Section 4.5.2.1.19

dr.deadline.period.sec INTEGER YES Infinite Section 4.5.2.1.20

dr.deadline.period.nsec INTEGER YES Infinite Section 4.5.2.1.20

dr.history.kind VARCHAR(21) YES KEEP_LAST_HISTORY_QOS Section 4.5.2.1.21

Table 4.18 RTIDDS_SUBSCRIPTIONS Table Schema

Column Name SQL Type Null-
able Default if NULL Described in...
4-57

Using Real-Time Connect
4.5.2.1.1 table_owner, table_name

These columns specify the user table into which data received by a DataReader will be
stored. Because a DBMS uses a combination of <table_owner>.<table_name> to identify
a table, both of these columns must have valid values should the user want these entries
to refer to an existing table.

If no table exists in the database with the identifier “<table_owner>.<table_name>” at
the time that the daemon sees this entry in the RTIDDS_SUBSCRIPTIONS meta-table,
it will create a user table with this name automatically, see User-Table Creation (Section
4.6).

Note: In MySQL, the value of the table_owner column corresponds to the table schema
or database name.

4.5.2.1.2 domain_id

This column specifies the domain ID that will be used to subscribe to Topics whose val-
ues will be stored in the table. Before creating a DataReader, if no DomainParticipant
has previously been created with the domain ID, the Real-Time Connect Daemon will cre-
ate a DomainParticipant with the specified ID.

If the subscriptions entry has an associated QoS profile, Real-Time Connect will use the
values in this profile to create the participant. The participant will also be configured
using the QoS values of a profile when the attribute, is_default_qos, is set to 1 in that
profile (see the RTI Core Libraries and Utilities User’s Manual for additional details).

dr.history.depth INTEGER YES 1 Section 4.5.2.1.21

dr.ownership.kind VARCHAR(23) YES SHARED_OWNERSHIP_QOS Section 4.5.2.1.22

dr.time_filter.min_sep.sec INTEGER YES 0 Section 4.5.2.1.23

dr.time_filter.min_sep.nsec INTEGER YES 0 Section 4.5.2.1.23

dr.res_limits.max_samples INTEGER YES Infinite Section 4.5.2.1.24

dr.res_limits.max_instances INTEGER YES Infinite Section 4.5.2.1.24

dr.unicast.receive_port INTEGER YES 0 Section 4.5.2.1.25

dr.multicast_receive_address VARCHAR(15) YES None Section 4.5.2.1.26

dr.multicast.receive_port INTEGER YES 0 Section 4.5.2.1.27

RTIRTC_SCN BIGINT YES Next SCN number Section 4.5.2.1.28

a. Primary key column.

Table 4.18 RTIDDS_SUBSCRIPTIONS Table Schema

Column Name SQL Type Null-
able Default if NULL Described in...
4-58

Meta-Tables
4. U

sing
 RTI Re

a
l-

Tim
e

 C
o

nne
c

t

4.5.2.1.3 topic_name

This column defines the Topic that will be subscribed to and whose received values will
be stored in the associated table. The “<topic_name>” entry needs to match the Topic
used by the DataWriters that are sending data changes.

If the Real-Time Connect Daemon has discovered the typecode associated with the
<topic_name> and the user table does not exist in the database, the daemon will use the
typecode to create the table using entries in the <table_owner> and <table_name> col-
umn. See User-Table Creation (Section 4.6) for more details.

4.5.2.1.4 type_name

This column defines the registered name of the type associated with the Topic defined
using the column <topic_name>. If the user table does not exist in the database, the dae-
mon will use the type name to find a typecode in the XML configuration file. See User-
Table Creation (Section 4.6) for more details.

4.5.2.1.5 table_history_depth

This column determines the number of values of each instance received by the
DataReader that can be stored in the table by the Real-Time Connect Daemon. For non-
keyed Topics, there is only a single instance, thus the <table_history_depth> would cor-
respond to the maximum size of the table (in rows).

For keyed Topics, the Real-Time Connect Daemon may store up to <table_history_depth>
values of each instance of the Topic that the DataReader receives. When the history
depth is reached, the rows are reused as a circular buffer with the newest values replac-
ing the oldest.

To support this capability, the associated user table may be created with additional col-
umns, meta-columns, to help the Real-Time Connect Daemon manage history for a table.
Whether or not meta-columns need to be added to support table history is based on the
value of the entry in <table_history_depth>.

The two meta-columns for supporting table history are:

❏ RTIRTC_HISTORY_SLOT: INTEGER

This column is also added to the Primary Key of the table. There is usually no
need for users to access this column, it is only used by the daemon. It is only
needed since many DBMS systems do not allow you to alter the value of a Pri-
mary Key column.

❏ RTIRTC_HISTORY_ORDER: INTEGER
4-59

Using Real-Time Connect
This value of this column is maintained by the Real-Time Connect Daemon when
it stores data received via Connext into the table. The column stores a strictly
incrementing counter that represents the received sequence number (starting at
0) of the data that is stored in that row.

User should use a combination of the instance key and the value of
RTIRTC_HISTORY_ORDER to find the latest data received for an instance in
the table.

The possible values for the <table_history_depth> column are:

❏ NULL or 0

Only the current value of an instance of the Topic is stored. For non-keyed topics,
this implies the table will only have a single row. For keyed topics, each instance
will correspond to a single row in the table. This is the most common value for
tables that are published with Connext.

No meta-columns are added to help manage history.

❏ 1

Exactly the same behavior as NULL or 0, a single value is stored in the table per
instance of the Topic. However, table-history meta-columns are added to the
table schema if the Real-Time Connect Daemon creates the user table automati-
cally.

This value is useful for preparing the table to store more than a single value per
instance after the table is created. Because table schema cannot be changed to
accommodate the table-history meta-columns after a table has been created,
using a value of 1 for this column is useful if the user wants to store historic val-
ues of instances, but does not know how many instances to store at the time the
entry is made.

❏ n > 1

Meta-columns will be added to accommodate the storing of historic values for
instances. The last n values received for an instance will be stored by the table.

❏ -1

Meta-columns will be added to accommodate the storing of historic values for
instances. All values received by the DataReader will be stored by the table.

See User-Table Creation (Section 4.6) for more information on meta-columns.
4-60

Meta-Tables
4. U

sing
 RTI Re

a
l-

Tim
e

 C
o

nne
c

t

4.5.2.1.6 process_batch, process_period, commit_type

These columns allow users to tune the Real-Time Connect Daemon for optimal through-
put performance. When the daemon receives data from a DataReader, it may be config-
ured to delay storing the data into a table and/or committing the transaction until more
data arrives. For a data streams with high throughput, thousands of samples per sec-
onds, the ability for the daemon to process incoming data in batches greatly improves
the efficiency and ultimately the maximum sustainable throughput rate for a given
Topic.

The trade-off is latency. The more data that is processed in a single batch, the more effi-
ciently the processing can occur. However, A greater delay between the receiving of the
data by the daemon and the time that it can be accessed by user applications in the data-
base.

The column <process_batch> controls how many data samples are processed at a time
by the Real-Time Connect Daemon. Instead of executing SQL UPDATE or INSERT every
time data is received, the daemon only stores the data after it receives a certain number
of samples set by <process_batch>. If the value <process_batch> is greater than 1, then
it is essential that the <process_period.[sec,nsec]> is set to be non-zero. Thus, the dae-
mon will process stored data periodically, even if the total number of data samples
received is less than <process_batch>.

<process_period.[sec,nsec]> is an upper limit on the amount of delay that will be
incurred before received data is stored in the database. The period can be set to 0 only if
<process_batch> is set to 1. This means that the daemon will store each data sample as
it is received so there is no need for periodic processing of the received samples. Use
these values to have the daemon store the data with minimal latency (at the cost of
lower overall throughput).

Finally, using the column <commit_type>, you can choose whether or not the SQL
UPDATE/INSERT statements are committed when each data sample is stored or after
all of the data being processed have been stored. There is significant performance
enhancement if the storing of multiple data samples is committed as a single transac-
tion.

However, if there is a problem during an SQL commit, for example, the transaction log
of the database is full, then the entire transaction is rolled back which means that none
of the received data in that batch will be stored in the table. If the storing of each data
sample is committed separately, then an error committing any one sample will only
result in the loss of that sample.
4-61

Using Real-Time Connect
The possible values of the <process_batch> column are:

❏ n > 0

The daemon will process data samples in batches of n. A value less than or equal
to 0 will result in an error that is logged by the daemon.

A value of n = 1 means that the daemon will store each data sample as it arrives.

The default value is 10 if this column is NULL.

The possible values of the <process_period.sec> (seconds) and <process_period.nsec>
(nanoseconds) columns are:

❏ 0

If both columns are 0, then the daemon will not commit received samples peri-
odically.

❏ n > 0

A background thread will process received but un-stored data at the period spec-
ified by these columns. It is essential that a non-zero period be used if
<process_batch> is greater than 1 to insure that all received data is eventually
stored.

The default value for process period is 0.1 seconds (0 sec, 100000000 nanosec) if
both columns are NULL.

The possible values of the <commit_type> column are:

❏ “COMMIT_ON_PROCESS” (default value if the columns are NULL)

This value will direct the Real-Time Connect Daemon to commit the storage of a
batch of data as a single transaction. This will result in higher performance at the
risk of losing more data than necessary when the transaction is rolled-back
because an error with the database.

❏ “COMMIT_ON_SAMPLE”

This value will direct the daemon to commit the storage of each data sample as a
separate transaction. Although the daemon will use more resources, if an error
occurs when a transaction is committed, only that data sample is lost.

4.5.2.1.7 cache_maximum_size, cache_initial_size

These columns control the size of a cache, used to store keys that exist in the table, that
the Real-Time Connect Daemon maintains for each DataReader. When a data instance is
4-62

Meta-Tables
4. U

sing
 RTI Re

a
l-

Tim
e

 C
o

nne
c

t

received, the daemon first checks the cache to see if a row corresponding to the data
already exists in the table. If the key is in the cache, then the daemon executes an SQL
UPDATE to store the data in the table.

If the key does not exist in the cache, then the Real-Time Connect Daemon will INSERT a
row with the key instead. The key cache can greatly enhance the performance of the
daemon in storing data into the database by saving an SQL operation each time data is
received. Without a cache, the daemon would need to execute 2 SQL statements. to store
data; with the cache, only 1.

The trade off is the memory used to store keys versus the performance gain.

The default values of <cache_maximum_size> and <cache_initial_size> are 0 if the col-
umns are NULL. The sizes are specified as the number of keys.

For small tables, the cache could be sized to hold all of the keys. Thus the size of the
cache would be the maximum number of rows in the table. However, this is not practi-
cal for large tables and thus the cache will be smaller.

4.5.2.1.8 delete_on_dispose

This column configures the behavior of the Real-Time Connect Daemon when a DataW-
riter disposes an instance stored into the database. When delete_on_dispose is initial-
ized to 0 (the default value), the rows corresponding to the instance will not be deleted
from the database. If delete_on_dispose is initialized to 1, all the rows associated with
the instance will be deleted from the database.

4.5.2.1.9 idl_member_prefix_max_length, idl_member_suffix_max_length

These columns define how Real-Time Connect maps IDL member identifiers into column
names. In particular, they control how the column names are formed by using as a pre-
fix n characters from the identifier’s prefix and m characters from the identifier’s suffix.

They can assume any value greater than or equal to -1. They cannot both be set to zero.

If a positive value n is provided for idl_member_prefix_max_length, Real-Time Connect
will use the first n characters from the IDL member identifier to compose the associated
column name. A value of 0 tells Real-Time Connect to compose the column name using
only the last characters of the identifiers, as defined by the
‘idl_member_suffix_max_length’ column. A value of -1, instructs Real-Time Connect to
use all the available characters.

If a positive value n is provided for idl_member_suffix_max_length, Real-Time Connect
will use the last n characters from the IDL member identifier to compose the associated
column name. A value of 0 tells Real-Time Connect to compose the column name using
only the first characters of the identifiers, as defined by the
4-63

Using Real-Time Connect
‘idl_member_prefix_max_length’ column. A value of -1, instructs Real-Time Connect to
use all the available characters.

4.5.2.1.10 profile_name

This column specifies the name of the QoS Profile that Real-Time Connect will use to cre-
ate the subscription.

The name must have the following format:

<QoS profile library name>::<QoS profile name>

See the RTI Core Libraries and Utilities User’s Manual for a complete description of QoS
Profiles.

QoS values specified in the subscription table (if they are not NULL) take precedence
over the same values specified in the QoS profile.

4.5.2.1.11 filter_duplicates

There are multiple scenarios in which Real-Time Connect may receive duplicate samples
(see Chapter 11, Mechanisms for Achieving Information Durability and Persistence, in the
RTI Core Libraries and Utilities User’s Manual). For example, if RTI Persistence Service is
used in the system, Real-Time Connect could receive the same sample from the original
writer and from RTI Persistence Service.

The filter_duplicates column specifies whether or not duplicates should be filtered by
the Real-Time Connect Daemon. If duplicates are not filtered, the subscription data table
may end up containing duplicates rows.

Note: Durable Reader State configurations (see Section 11.4 in the RTI Core Libraries and
Utilities User’s Manual) are ignored by Real-Time Connect. Duplicate filtering and sub-
scription state persistence are implemented by the Real-Time Connect Daemon.

4.5.2.1.12 ordered_store

This column specifies whether or not the samples associated with a DataWriter identi-
fied by a virtual GUID 'x' (see Chapter 11, Mechanisms for Achieving Information Durabil-
ity and Persistence, in the RTI Core Libraries and Utilities User’s Manual) must be stored in
the database in order. The field only applies when filter_duplicates (Section 4.5.2.1.11)
is set to 1.

Ordered storage means that given a DataWriter with virtual GUID 'x', a sample with vir-
tual sequence number 'sn+1' will be stored after a virtual sample with virtual sequence
number 'sn'. If there is only one DataWriter with virtual GUID 'x' in the system (for
4-64

Meta-Tables
4. U

sing
 RTI Re

a
l-

Tim
e

 C
o

nne
c

t

example, if there are no RTI Persistence Services) the value of this column does not
affect behavior.

Note: Real-Time Connect stores samples in the database as soon as they are received by
the Real-Time Connect subscriptions (Connext DataReaders). If ordered_store is set to 1
and there are multiple DataWriters with the same virtual GUID in the system, old sam-
ples will not be stored in the database. A sample with sequence number 'sn' will be
ignored if a sample with sequence number 'sn+1' for the same virtual writer has been
already stored in the database.

4.5.2.1.13 persist_state

This column specifies whether or not the state of a Real-Time Connect subscription must
be persisted into the database. The field only applies when filter_duplicates
(Section 4.5.2.1.11) is set to 1. The subscription state is used on restore by Real-Time Con-
nect in order to avoid receiving duplicate samples.

4.5.2.1.14 sub.present.access_scope, sub.present.ordered_access

These two columns map directly to the DDS_PresentationQosPolicy of the
DDS_SubscriberQos used by the Subscriber that is created with the DataReader for stor-
ing received data in the table. The DDS_PresentationQosPolicy specifies how the data
instances sent by a publishing application are ordered before they are received.

The values of these columns must be coordinated with the values of the
DDS_PresentationQosPolicy used by the Publisher in the sending application or else
published data may not be received by the DataReader.

The possible values for the <sub.present.access_scope> column are:

❏ “INSTANCE_PRESENTATION_QOS”

This also the default value if the column is NULL.

❏ “TOPIC_PRESENTATION_QOS”

❏ “GROUP_PRESENTATION_QOS”

The possible values for the <sub.present.ordered_access> column are:

❏ 0 (default value if the column is NULL)

❏ 1

For the best performance of the Real-Time Connect Daemon, you should set <sub.pres-
ent.access_scope> to “TOPIC_PRESENTATION_QOS” and <sub.pres-
ent.ordered_access> to 1. This will require that the corresponding values in the
4-65

Using Real-Time Connect
DDS_PresentationQosPolicy of the Publisher in the sending applications to be changed
to those values as well.

See the Connext documentation for more details on how this QoS policy may be used.
See also pub.present.access_scope, pub.present.ordered_access (Section 4.5.1.1.12).

4.5.2.1.15 sub.partition.name

For capturing data in a table, Real-Time Connect creates a DataReader per Topic. The
sub.partition.name column maps directly to the DDS_PartitionQosPolicy of the
DDS_SubscriberQos used by the Subscriber that is created with the DataReader. The
DDS_PartitionQosPolicy introduces a logical partition concept inside the ‘physical’ par-
tition concept introduced by the domain ID. A Subscriber can communicate with a Pub-
lisher only if they have some partition in common. The value of the sub.partition.name
column specifies a list of partitions separated by commas to which the Subscriber
belongs.

See the Connext documentation for more details on how this QoS policy may be used.
See also pub.partition.name (Section 4.5.1.1.13)

4.5.2.1.16 dr.durability.kind

This column maps directly to the DDS_DurabilityQosPolicy of the DataReader created
to subscribe to Topic data that is stored in the table. By changing this policy, the
DataReader can be configured to request for past values published for the Topic to be
sent by existing applications soon as their matching DataWriters are discovered.

The DataWriter’s DDS_DurabilityQosPolicy most also be set appropriately to permit
the sending of historic, or past, published data. In addition, the column <dr.realiabil-
ity.kind> for the entry must be set to “RELIABLE_RELIABILITY_QOS” for historic data
to be received.

The possible values for the <dr.durability.kind> column are:

❏ “VOLATILE_DURABILITY_QOS” (default value if the column is NULL)

This value means that the DataReader does not request past data to be sent.

❏ “TRANSIENT_LOCAL_DURABILITY_QOS”

This value requests that existing DataWriters of the Topic send past data that
they are storing to the DataReader.

See the Connext documentation for more details on how this QoS policy may be used.
See also dw.durability.kind (Section 4.5.1.1.14) and dr.reliability.kind (Section 4.5.2.1.17).
4-66

Meta-Tables
4. U

sing
 RTI Re

a
l-

Tim
e

 C
o

nne
c

t

4.5.2.1.17 dr.reliability.kind

This column sets the DDSReliabilityQosPolicy for the DataReader created to subscribe
to Topic data that is stored in the table. The value in this column determines whether or
not DataWriters will send their data reliably to the DataReader.

If the value for <dr.durability.kind> is “TRANSIENT_LOCAL_DURABILITY_QOS”,
then the value for this column must be set to “RELIABLE_RELIABILITY_QOS”.

The possible values for the <dr.reliability.kind> column are:

❏ “BEST_EFFORT_RELIABILITY_QOS” (default value if the column is NULL)

This value means that the DataWriters will send their data to the DataReader
using best efforts. Data may be lost if the system is too busy.

❏ “RELIABLE_RELIABILITY_QOS”

This value means that the DataWriters will send their data to the DataReader
using a reliable protocol. The exact semantics of the reliable connection is con-
trolled by the DDS_HistoryQosPolicy of both the DataWriter and DataReader.

See the Connext documentation for more details on how this QoS policy may be used.
See also dw.durability.kind (Section 4.5.1.1.14), dw.history.kind, dw.history.depth (Sec-
tion 4.5.1.1.17), and dr.history.kind, dr.history.depth (Section 4.5.2.1.21).

4.5.2.1.18 dr.destination_order.kind

This column sets the DestinationOrderQosPolicy for the DataReader created to sub-
scribe to Topic data that is stored in the table. The value in this column determines how
the DataReader treats data received for the same instance of the Topic from different
DataWriters.

When a data instance is received, a timestamp associated with the data is compared to
the timestamp of the last value of the data instance. If the time of the new data is older
than the time of the last data received (for that instance), then the new data is dropped.

What this column does is to set which timestamp (the one associated with the source of
the data when it was sent or the one associated with the data when it was received) the
DataReader will use.

This column has no practical effect unless the value of the <dr.ownership.kind> column
is “SHARED_OWNERSHIP_QOS”.

The possible values for the <dr.destinaton_order.kind> column are:

❏ “BY_RECEPTION_TIMESTAMP_DESTINATIONORDER_QOS”
(default value if the column is NULL)
4-67

Using Real-Time Connect
This configures the DataReader to use the timestamp of when the data was
received to determine whether or not to drop the data. In practice, this setting
means all data received from all DataWriters will be accepted since the time-
stamp will always be newer for the new data.

❏ “BY_SOURCE_TIMESTAMP_DESTINATIONORDER_QOS”

This value means that the DataReader will use the timestamp that was sent with
the data in determining whether or not to accept the data. This timestamp was
added by the DataWriter when the data was published. Because different
DataWriters may run in applications on different machines, it is likely that the
clocks on the different machines are only synchronized to a certain resolution or
not synchronized at all.

Thus the DataReader may receive data with timestamps older than the last data
that received and thus drop those data. However if all DataReaders of the same
Topic used the source timestamp to filter the data, then all DataReaders will end
up with the same final value for a data instance.

If DataReaders used the reception timestamp, the DataReaders may end up with
different final values because data from different DataWriters may be received in
a different order by different DataReaders.

See the Connext documentation for more details on how this QoS policy may be used.
See also resolution_column (Section 4.5.1.1.9).

4.5.2.1.19 dr.liveliness.lease_dur

These columns specify the lease duration for the DDS_LivelinessQosPolicy for the
DataReader created to subscribe to Topic data that is stored in the table. This value is
useful when there are redundant DataWriters that publish values for the same data
instance for the Topic and the value set for the <dr.ownership.kind> column is
“EXCLUSIVE_OWNERSHIP_QOS”.

The liveliness of a DataWriter is monitored by the DataReader. These columns control
how quickly the DataReader can determine that the DataWriter with the highest owner-
ship strength has lost liveliness because heartbeat packets or data were not received
within the liveliness lease duration. When liveliness is lost, the DataReader will then
receive the data instance from the DataWriter with the next highest ownership strength
that is still alive.

The possible values of the <dr.liveliness.lease_dur.sec> (seconds) and <dr.liveli-
ness.lease_dur.nsec> (nanoseconds) columns are:
4-68

Meta-Tables
4. U

sing
 RTI Re

a
l-

Tim
e

 C
o

nne
c

t

❏ An infinite lease duration is specified if both columns are NULL or contain the
value 2147483647 (231 - 1). This is the DDS default value.

❏ A non-zero value representing the number of seconds and nanoseconds for the
lease duration.

Note: The DDS_LivelinessQosPolicy.kind is always set to
DDS_AUTOMATIC_LIVELINESS_QOS.

See the Connext documentation for more details on how this QoS policy may be used.
See also dw.liveliness.lease_dur (Section 4.5.1.1.15), dr.ownership.kind (Section
4.5.2.1.22), and dw.ownership.kind, dw.ownership_strength.value (Section 4.5.1.1.18).

4.5.2.1.20 dr.deadline.period

These columns specify the deadline period for the DDS_DeadlineQosPolicy for the
DataReader created to subscribe to Topic data that is stored in the table. By setting the
values in this column, the user is setting an expectation that DataWriters will publish
new values for data instances at least as fast as the deadline period.

The possible values of the <dr.deadline.period.sec> (seconds) and <dr.dead-
line.period.nsec> (nanoseconds) columns are:

❏ An infinite deadline period is specified if both columns are NULL or contain the
value 2147483647 (231 - 1). This is the DDS default value.

❏ A non-zero value representing the number of seconds and nanoseconds for the
deadline period.

See the Connext documentation for more details on how this QoS policy may be used.
See also dw.deadline.period (Section 4.5.1.1.16).

4.5.2.1.21 dr.history.kind, dr.history.depth

These columns directly map to the DDS_HistoryQosPolicy for the DataReader created
to subscribe to Topic data that is stored in the table. The values set for this QosPolicy
affect the DDS_ReliabilityQosPolicy.

Using a “KEEP_ALL_HISTORY_QOS” will ensure that reliable DataReaders will
receive every change to the table reliably. With a “KEEP_LAST_HISTORY_QOS”, the
Real-Time Connect Daemon will only guarantee that the last <dr.history.depth> changes
for each data instance are received reliably.

The possible values of the <dr.history.kind> and <dr.history.depth> columns are:

❏ “KEEP_LAST_HISTORY_QOS”
4-69

Using Real-Time Connect
For this setting, the column <dr.history.depth> determines the maximum num-
ber of values for each data instance that be buffered in the DataReader before the
Real-Time Connect Daemon stores the received values into the table.

<dr.history.depth> should be set to an integer greater than 0. The default value
for history depth is 1 if this column is NULL.

❏ “KEEP_ALL_HISTORY_QOS” (default value if the column is NULL)

This setting implies that the DataReader created to subscribe to Topic data has an
unlimited queue in which to save received data before the data is stored in the
table. The actual size of the queue is limited by the value in
<dr.res_limits.max_samples> column.

For this setting, the value in <dr.history.depth> is ignored.

See the Connext documentation for more details on how this QoS policy may be used.
See also dr.res_limits.max_samples, dr.res_limits.max_instances (Section 4.5.2.1.24).

4.5.2.1.22 dr.ownership.kind

These columns directly map to the DDS_OwnershipQosPolicy and DDS_Ownership-
StrengthQosPolicy for the DataReader created to subscribe to Topic data that is stored in
the table. These policies control whether or not the DataReader is allowed to receive
changes to an instance of a Topic from multiple DataWriters simultaneously.

The possible values of the <dr.ownership.kind> column are:

❏ “SHARED_OWNERSHIP_QOS” (default value if the column is NULL)

This setting allows the DataReader to receive updates for an instance of a Topic
from multiple DataWriters at the same time.

❏ “EXCLUSIVE_OWNERSHIP_QOS”

This setting prevents the DataReader from receiving changes from more than a
single DataWriter for an instance of a Topic at the same time.

The DataReader will receive changes for a topic instance from the DataWriter
with the greatest value of ownership strength. If the liveliness of the DataWriter
fails or if the DataWriter fails to write within a deadline period, then the
DataReader will receive published changes to the topic instance from the
DataWriter with the next highest ownership strength.

See the Connext documentation for more details on how this QoS policy may be used.
See also dr.liveliness.lease_dur (Section 4.5.2.1.19), dr.deadline.period (Section
4.5.2.1.20), and dw.ownership.kind, dw.ownership_strength.value (Section 4.5.1.1.18).
4-70

Meta-Tables
4. U

sing
 RTI Re

a
l-

Tim
e

 C
o

nne
c

t

4.5.2.1.23 dr.time_filter.min_sep

This column specifies the minimum separation duration between subsequent samples
for the DDS_TimeBasedFilterQosPolicy for the DataReader created to subscribe to Topic
data that is stored in the table. By setting the values in these columns, the user config-
ures the DataReader to see at most one change every the minimum_separation period.

The possible values of the <dr.time_filter.min_sep.sec> (seconds) and
<dr.time_filter.min_sep.nsec> (nanoseconds) columns are:

❏ A 0 minimum separation duration is specified if both columns are NULL or con-
tain the value 0. This is the DDS default value. With this value, the DataReader is
potentially interested in all the samples.

❏ A non-zero value representing the number of seconds and nanoseconds for the
minimum separation duration. That value must be smaller than the deadline
period and contained in the interval [0, 1 year].

See the Connext documentation for more details on how this QoS policy may be used.

4.5.2.1.24 dr.res_limits.max_samples, dr.res_limits.max_instances

These columns set some parameters for the DDS_ResourceLimits QosPolicy for the
DataReader created to subscribe to Topic data that is stored in the table. In particular,
they control the amount of memory that the system is allowed to allocate for storing
published data values as well as the total number of data instances (different primary
keys) that can be handled by the DataReader.

A value of -1 for either of these columns means infinite. This is also the default value for
these columns if they are NULL. An infinite setting means that the DataReader is
allowed to allocate memory as needed to store received table changes and manage new
keys.

The number of keys that the DataReader is allowed to manage places an upper limit on
the number of rows that the related table in the database can have.

See the Connext documentation for more details on how this QoS policy may be used.

4.5.2.1.25 dr.unicast.receive_port

This column is used to configure the unicast port on which the DataReader will receive
data. When the default value (NULL or 0) is used, the actual port number is determined
by a formula as a function of the domain ID.
4-71

Using Real-Time Connect
4.5.2.1.26 dr.multicast.receive_address

This column is used to set a multicast address for the DataReader to receive values for
the Topic. The column maps to the DDS_TransportMulticastQosPolicy of the
DataReader.

The possible values for the <dr.multicast.receive_address> column are:

❏ NULL

A NULL column means that the DataReader will receive Topic data using uni-
cast.

❏ A string that contains a valid multicast address in the form "xxx.xxx.xxx.xxx".

The DataReader for the table will subscribe to the Topic on the multicast address
provided.

See the Connext documentation for more details on how this QoS policy may be used.

4.5.2.1.27 dr.multicast.receive_port

This column configures the multicast port on which the DataReader will receive data.
When the default value (NULL or 0) is used, the actual port number is determined by a
formula as a function of the domain ID.

Note that the value of this field is ignored when dr.multicast.receive_address is NULL

4.5.2.1.28 RTIRTC_SCN

The System Change Number (SCN) column is available only for connections to a
MySQL database. The value of this column is automatically maintained by Real-Time
Connect and is usually of no interest to the application. For more information about the
RTIRTC_SCN column see Section 4.6.

4.5.3 Table Info

The meta-table RTIRTC_TBL_INFO stores meta information associated with the user
tables.

When a table is automatically created by the Real-Time Connect Daemon (see Section 4.6),
its TypeCode is stored in RTIRTC_TBL_INFO as a sequence of octets. When the Real-
Time Connect Daemon is restarted, the persisted TypeCodes corresponding to existing
publications and subscriptions will be made available to other Connext applications.
4-72

Meta-Tables
4. U

sing
 RTI Re

a
l-

Tim
e

 C
o

nne
c

t

4.5.3.1 Table Info Schema

The RTIRTC_TBL_INFO table is created with the following SQL statement:

Oracle TimesTen (with command-line option -typeMode 1):

Create Table RTIRTC_TBL_INFO (
table_owner VARCHAR(128) NOT NULL,
table_name VARCHAR(128) NOT NULL,
type_code VARBINARY(65000),
PRIMARY KEY(table_owner,table_name)

)

Oracle TimesTen (with command-line option -typeMode 0):

Create Table RTIRTC_TBL_INFO (
table_owner TT_VARCHAR(128) NOT NULL,
table_name TT_VARCHAR(128) NOT NULL,
type_code VARBINARY(65000),
PRIMARY KEY(table_owner,table_name)

)

Oracle:

Create Table RTIRTC_TBL_INFO (
table_owner VARCHAR(128) NOT NULL,
table_name VARCHAR(128) NOT NULL,
type_code BLOB,
PRIMARY KEY(table_owner,table_name)

)

MySQL:

Create Table RTIRTC_TBL_INFO (
table_owner VARCHAR(128) NOT NULL,
table_name VARCHAR(128) NOT NULL,
type_code VARBINARY(65000),
RTIRTC_SCN BIGINT DEFAULT 0,
PRIMARY KEY(table_owner,table_name)

)

Table 4.19 describes the meta-table columns.

Table 4.19 RTIRTC_TBL_INFO Table Schema

Column Name SQL Type Nullable Default if NULL Described In

table_owner VARCHAR(128) No N/A
Section 4.5.3.1.1

table_name VARCHAR(128) No N/A

type_code VARCHAR(65000) Yes NULL Section 4.5.3.1.2
4-73

Using Real-Time Connect
4.5.3.1.1 table_owner, table_name

These columns specify the user table associated with the meta information described in
the other columns.

Because a DBMS uses a combination of <table_owner>.<table_name> to identify a
table, both of these columns must have valid values.

Note: In MySQL, the value of the table_owner column corresponds to the table schema
or database name.

4.5.3.1.2 type_code

This column contains the TypeCode information associated to the user table identified
by <table_owner>.<table_name>.

The TypeCode information stored in this table is used when publications and subscrip-
tions are created after the Real-Time Connect Daemon is restarted.

4.5.4 Log Table

A meta-table named RTIRTC_LOG is used to store log messages generated by the dae-
mon. Whether or not this table is created and used depends on the -loglevel option (see
Section 4.2) and the LOGTODB and LOGHISTORY Real-Time Connect Daemon connec-
tion attributes (see Section 4.4.4.2).

Users should treat the contents of this table as read-only. There is no reason for users to
modify this table. The number of rows in the Log table is controlled by the LOGHIS-
TORY connection attribute. If set to -1, the table will hold as many log messages as gen-
erated by the Real-Time Connect Daemon. Otherwise, the daemon will only store the last
n log messages as specified by LOGHISTORY, using the table as a circular buffer.

Users may use the “id” column to determine the last log message that was generated by
the daemon (see Section 4.5.4.1.1).
4-74

Meta-Tables
4. U

sing
 RTI Re

a
l-

Tim
e

 C
o

nne
c

t

4.5.4.1 Log Table Schema

The RTIRTC_LOG table is created with the following SQL statement.

Oracle TimesTen (with command-line option -typeMode 1):

Create Table RTIRTC_LOG (
 id INTEGER NOT NULL,
 ts TIMESTAMP NOT NULL,
 type VARCHAR(7) NOT NULL,
 function VARCHAR(64) NOT NULL,
 line INTEGER,
 code INTEGER,
 native_code INTEGER,
 message VARCHAR(2048) NOT NULL)

Oracle TimesTen (with command-line option -typeMode 0):

Create Table RTIRTC_LOG (
 id TT_INTEGER NOT NULL,
 ts TT_TIMESTAMP NOT NULL,
 type TT_VARCHAR(7) NOT NULL,
 function TT_VARCHAR(64) NOT NULL,
 line TT_INTEGER,
 code TT_INTEGER,
 native_code TT_INTEGER,
 message TT_VARCHAR(2048) NOT NULL)

Oracle:

Create Table RTIRTC_LOG (
 id NUMBER(10) NOT NULL,
 ts TIMESTAMP NOT NULL,
 type VARCHAR(7) NOT NULL,
 function VARCHAR(64) NOT NULL,
 line NUMBER(10),
 code NUMBER(10),
 native_code NUMBER(10),
 message VARCHAR(2048) NOT NULL)
4-75

Using Real-Time Connect
MySQL:

Create Table RTIRTC_LOG (
 id INTEGER NOT NULL,
 ts TIMESTAMP NOT NULL,
 type VARCHAR(7) NOT NULL,
 function VARCHAR(64) NOT NULL,
 line INTEGER,
 code INTEGER,
 native_code INTEGER,
 message VARCHAR(2048) NOT NULL)

Each column of the Log meta-table stores a different portion of a log message generated
by the Real-Time Connect Daemon. Table 4.20 describes these columns.

4.5.4.1.1 id

This column stores a strictly incrementing integer for each log message that is generated
by the daemon. The largest value in the id column is the last message that was pro-
duced.

4.5.4.1.2 ts

This column stores the system timestamp of when the log message was generated.

4.5.4.1.3 type

This column stores the kind of log message. Possible values are: “ERROR”, “WARN-
ING”, “STATUS”, and “SPECIAL”. “SPECIAL” messages are ones that are always
printed independently of the log level.

Table 4.20 RTIRTC_LOG Table Schema

Column Name SQL Type Nullable Default if NULL Described in...

id INTEGER NO N/A Section 4.5.4.1.1

ts TIMESTAMP NO N/A Section 4.5.4.1.2

type VARCHAR(7) NO N/A Section 4.5.4.1.3

function VARCHAR(64) NO N/A Section 4.5.4.1.4

line INTEGER NO None Section 4.5.4.1.4

code INTEGER YES None Section 4.5.4.1.5

native_code INTEGER YES None Section 4.5.4.1.5

message VARCHAR(1024) NO N/A Section 4.5.4.1.5
4-76

User-Table Creation
4. U

sing
 RTI Re

a
l-

Tim
e

 C
o

nne
c

t

4.5.4.1.4 function, line

These two columns contain the function name and line number of the Real-Time Connect
Daemon code where the message was generated. It is useful only to support engineers
at RTI.

4.5.4.1.5 code, native_code, message

The code column contains the Real-Time Connect error code that correspond to the mes-
sage. This column will have NULL entries for messages of type “STATUS”.

The native_code column will contain the error code of any external APIs, e.g., ODBC,
OS, Connext, that the daemon has called and returned an error. This column may have
NULL entries.

Finally, the message column will contain a statement with details on why the message
was generated.

For a complete list of possible error codes and messages that can be generated by the
Real-Time Connect Daemon, please see Appendix A.

4.6 User-Table Creation
The Real-Time Connect Daemon may create tables automatically for user applications in
the database when entries are made in the RTIDDS_PUBLICATIONS or
RTIDDS_SUBSCRIPTIONS meta-tables (see Sections 4.5.1 and 4.5.2). The daemon will
create the table with the table owner and table name specified in an entry in one of those
tables if:

1. There is no existing table in the database with the same
<table_owner>.<table_name> identifier.

and

2. A type corresponding to the <type_name> column for the entry has been
defined in the XML configuration file (see Section 4.4.3).

or

A typecode corresponding to the <topic_name> column for the entry has been
discovered.

If either condition above is not satisfied, then the daemon will not create the user table.
If the user table already exists, then the daemon will attempt to use that table when pub-
4-77

Using Real-Time Connect
lishing or subscribing to Topics. It is up to the user to create the table with a schema that
maps to the Topic IDL type. See Data Representation Mapping (Section 5.2) for details
on how SQL table schemas and IDL types are mapped to each other.

If the table does not exist and there is no XML definition for the type and the typecode
for the IDL type specified by the entry is unknown, the Real-Time Connect Daemon will
defer creation of the table until the typecode has been discovered from other applica-
tions on the network that are using Connext. See Typecodes (Section 4.1.4) for more
details on how the daemon uses typecodes.

If the table is created by the Real-Time Connect Daemon, the daemon may add up to 5
additional columns (6 in MySQL) that store meta-data used by the daemon when stor-
ing data received via Connext or sending table changes via Connext. Although optional,
there are specific operating scenarios where these meta-columns are required for the
proper operation of the daemon. We suggest that the user understands the purpose of
the meta-columns, and if the user applications create the tables used by the Real-Time
Connect Daemon, the user code itself should add the meta-columns to the table schema
when appropriate. (There is no specific order required for the new columns.)

The meta-columns that may be created are:

❏ RTIDDS_DOMAIN_ID and RTIRTC_REMOTE

These two SQL INTEGER columns are always added to the tables created by the
daemon. These additional columns are used by the daemon when user has cre-
ated entries in both the RTIDDS_PUBLICATIONS and
RTIDDS_SUBSCRIPTIONS meta-tables for the same user table. In that situa-
tion, changes to the table made by local user applications will be published via
Connext at the same time that the daemon itself may store data into the table
received via Connext.

Real-Time Connect Daemon uses these meta-columns in order to prevent the
republishing of tables values that were changed because they were received via
Connext. User applications that create the table do not need to add these columns
if the daemon is configured only to publish data from the table or to store data
into the table.

However, it is essential that these columns do exist for the situation where both
publications and subscriptions are tied to the same table. If the meta-columns are
omitted, then when Real-Time Connect Daemon receives data via Connext, it will
be echoed (republished) as a change to the table.
4-78

User-Table Creation
4. U

sing
 RTI Re

a
l-

Tim
e

 C
o

nne
c

t

❏ RTIRTC_KEY

This SQL INTEGER column is added by the daemon if the IDL type that is used
to create the table does not contain any fields marked as a topic key (i.e., non-
keyed IDL types). In such cases, the <RTIRTC_KEY> column will be added to
the table as the primary key column. The value in that column will always be 0.
Thus, there is only a single instance of the Topic which means the table will only
ever have a single row (subject to whether or not the user wants the table to store
historical value of data instances, see the details for the <RTIRTC_-
HISTORY_SLOT> and <RTIRTC_HISTORY_ORDER> meta-columns below).

If the IDL type does have key fields, then the fields will be mapped into columns
that are marked as primary keys. This meta-column is not added, and the table
can contain as many rows as there are different instance keys (primary keys).

❏ RTIRTC_HISTORY_SLOT and RTIRTC_HISTORY_ORDER

These SQL INTEGER columns are used to implement the ability of the Real-Time
Connect Daemon to store multiple values (historical) of the same data instance
into a table. Usually, a single data instance maps to a single row of a table. As
new values for the instance is received by the daemon, the value of the same row
is changed.

However, users may use the <table_history_depth> columns (see Sections
4.5.1.1.8 and 4.5.2.1.5) of the RTIDDS_PUBLICATIONS and
RTIDDS_SUBSCRIPTIONS meta-tables to direct the daemon to store multiple
past values of a data instance. These values are be stored in multiple rows of a
table. To support table history, the daemon must add the meta-columns
<RTIRTC_HISTORY_SLOT> and <RTIRTC_HISTORY_ORDER> to a table. They
will only be added if the <table_history_depth> column for an entry is non-
NULL and has a non-0 value.

The <RTIRTC_HISTORY_SLOT> is an auto-increment column that will also be
added as a primary key column of the table.

The <RTIRTC_HISTORY_ORDER> is a column that will contain a number that is
incremented as data is stored into the table. The oldest row of an instance will
have the lowest value for this column whereas the most recent row of an instance
will have the highest value.
4-79

Using Real-Time Connect
❏ RTIRTC_SCN

The System Change Number (SCN) meta-column (SQL_BIGINT) is only
required for connections to a MySQL database. The SCN meta-column is used to
detect committed changes in a table. Its value is automatically assigned by the
MySQL server.

Each time there is a change in a table row or a new row is inserted, the MySQL
server assigns a new SCN value to the column RTIRTC_SCN. The assignment is
done during the execution of the BEFORE UPDATE/INSERT trigger installed by
the Real-Time Connect Daemon.

4.7 Support for Extensible Types
Real-Time Connect includes partial support for the "Extensible and Dynamic Topic Types
for DDS" specification from the Object Management Group (OMG)1. This section
assumes that you are familiar with Extensible Types and you have read the Core Librar-
ies and Utilities Getting Started Guide Addendum for Extensible Types.

❏ The Real-Time Connect Daemon can publish and subscribe to topics associated
with final and extensible types.

❏ The Real-Time Connect Daemon can publish and/or subscribe to only one version
of the types associated with a topic within a domain.

❏ The DataReaders created when a new entry is inserted in the
RTIDDS_SUBSCRIPTIONS table are configured with the TypeConsistencyEn-
forcementQosPolicy’s kind set to DISALLOW_TYPE_COERCION. You cannot
overwrite this setting.

❏ You can select the type version for a given topic within a domain in two different
ways:

• By providing the type description via XML and then referring to that
description using the column type_name in the
RTIDDS_SUBSCRIPTIONS and/or RTIDDS_PUBLICATIONS tables.

• By pre-creating the database table used to store/publish the data with the
right schema.

1. The OMG specification is available here: http://www.omg.org/spec/DDS- XTypes/.
4-80

Enabling RTI Distributed Logger in Real-Time Connect
4. U

sing
 RTI Re

a
l-

Tim
e

 C
o

nne
c

t

Since the DataReaders created by the Real-Time Connect Daemon have their TypeConsis-
tencyEnforcementQosPolicy’s kind set to DISALLOW_TYPE_COERCION, they will
not match with DataWriters whose types are not equal to the DataReader’s type. If you
have the Connext Core Libraries and Utilities, you can learn more in the Core Libraries and
Utilities Getting Started Guide Addendum for Extensible Types1 (see the section on Rules for
Type-Consistency Enforcement).

4.8 Enabling RTI Distributed Logger in Real-Time Connect
Real-Time Connect provides integrated support for RTI Distributed Logger.

When you enable Distributed Logger, Real-Time Connect will publish its log messages to
Connext. Then you can use RTI Monitor2 to visualize the log message data. Since the data
is provided in a Connext topic, you can also use rtiddsspy or even write your own visual-
ization tool.

To enable Distributed Logger, modify the Real-Time Connect XML configuration file. In the
<general_options><administration> section, add the <distributed_logger> tag as
shown in the example below.

<real_time_connect name="default">
 <general_options>
 <administration>
 <domain_id>0</domain_id>
 <distributed_logger>
 <enabled>true</enabled>
 </distributed_logger>
 </administration>
 </general_options>
 ...
</real_time_connect>

Replace the value of <domain_id> with the domain ID that Real-Time Connect will use to
send log messages when Distributed Logger is enabled.

1. <Connext installation directory>/ndds.<version>/doc/pdf/
RTI_CoreLibrariesAndUtilities_GettingStarted_ExtensibleTypesAddendum.pdf)

2. RTI Monitor is a separate GUI application that can run on the same host as your application or on a dif-
ferent host.
4-81

Using Real-Time Connect
There are more configuration tags that you can use to control Distributed Logger’s behav-
ior. For example, you can specify a filter so that only certain types of log messages are
published. For details, see the RTI Distributed Logger Getting Started Guide.

4.9 Enabling RTI Monitoring Library in Real-Time Connect
To enable monitoring of the Entities that are created by Real-Time Connect, you must
specify the property rti.monitor.library in the QoS of the participants that you want to
monitor. For example:

<participant_qos>
 <property>
 <value>
 <element>
 <name>rti.monitor.library</name>
 <value>rtimonitoring</value>
 <propagate>false</propagate>
 </element>
 </value>
 </property>
</participant_qos>

The QoS associated with the DomainParticipants that are created by Real-Time Connect
can be configured in three different ways:

❏ By setting the attribute is_default_qos in the tag <qos_profile> containing the
<participant_qos> to true. In this case, that profile is the default configuration for
all the Entities created by the Real-Time Connect Daemon.

For a list of XML files where you can declare the QoS Profile, see Section 4.4.1

❏ By referring to a profile using the XML tag <profile_name> within <publication>
and <subscription> (see Section 4.4.4.4).

❏ By referring to a profile in the profile_name column of the tables
RTIDDS_PUBLICATIONS or RTIDDS_SUBSCRIPTIONS (see Section 4.5.1 and
Section 4.5.2).

Notice that since Real-Time Connect is statically linked with RTI Monitoring Library, you
do not need to have it in your Path (on Windows systems) or LD_LIBRARY_PATH (on
UNIX-based systems).
4-82

Enabling RTI Monitoring Library in Real-Time Connect
4. U

sing
 RTI Re

a
l-

Tim
e

 C
o

nne
c

t

For details on how to configure the monitoring process, see the RTI Monitoring Library
Getting Started Guide.
4-83

Using Real-Time Connect
4-84

5. ID
L/SQ

L Se
m

a
ntic

a

nd
 D

a
ta

 M
a

p
p

ing
Chapter 5 IDL/SQL Semantic and Data Mapping

This chapter describes the semantic and data representation mapping that RTI Real-Time
Connect uses to connect DDS-based applications such as Connext to MySQL, Oracle, and
Oracle TimesTen In-Memory databases.

Connext provides an API to send and receive data between networked applications fol-
lowing a publish/subscribe paradigm. Oracle provides both file-based and in-memory
products that allow applications to store and retrieve data following a relational data-
base paradigm. The corresponding standard API in the database world is SQL. Both the
Connext and SQL APIs have various language bindings in C/C++ and Java.

How Real-Time Connect maps actions (semantics) and data types (data representation)
from Connext to SQL and vice versa is described in the following sections.

❏ Semantic Mapping (Section 5.1)

❏ Data Representation Mapping (Section 5.2)

5.1 Semantic Mapping
Connext applications publish and subscribe to topics which are named data structures
using functions like DDSDataWriter::write() and DDSDataReader::read(). Relational
databases contain tables that applications access data using SQL operations such as
INSERT, UPDATE, DELETE and SELECT. Table 5.1 describes the mapping between
Connext and relational database semantic models.
5-1

IDL/SQL Semantic and Data Mapping
Table 5.1 Connext-DBMS Semantic Models

Connext Relational Database Details

Accessed via Connext API

Various language bindings
(e.g. C/C++, Java)

Accessed via SQL

Various language bind-
ings (e.g. C/C++ and
ODBC, Java and JDBC)

Data structures

Defined by IDL (Interface
Description Language).

Tables

Defined by table schema.

Fields in data structures are mapped to columns of
a table. Each row of a table represents a different
value for a data structure. The exact mapping of
IDL data structures to table schemas is described in
Data Representation Mapping (Section 5.2).

Topic

Identified by a name
string.

DataWriter can publish
values for Topics and
DataReaders can subscribe

Table

Identified by a name
string.

Applications can write
values or read values
from tables using SQL.

Topic names and table names do not have to be the
same when making a correspondence between a
Topic and a database table.

Data values

Rows in table

No history: A single row
in a table.

History: Multiple rows in
a table.

When the Real-Time Connect Daemon table history
option is turned OFF (see Sections 4.5.1.1.8 and
4.5.2.1.5), only the last value of a topic instance is
stored in the table. So a non-keyed topic will be
stored in a single row whereas for keyed topics,
there will be as many rows as there are topic
instances.

When the Real-Time Connect Daemon table history
option is turned ON, each instance will occupy up
to a user-settable maximum number of rows so that
the last N values received for the Topic are stored in
the table. When N values have been stored, the N
rows are used as a circular buffer so that new values
received will overwrite the oldest values stored.

Key

IDL data types may con-
tain one or more fields that
are used to distinguish dif-
ferent instances of the
Topic.

Primary key

Most relational data-
bases require table
schemes to identify one
or more columns to act as
the primary key for the
table.

Keys are mapped to the primary keys of a table.
When a table is created by the Real-Time Connect
Daemon, the columns corresponding to the IDL key
fields will be created as primary key columns.

For tables created by user code, the correspondence
of IDL key fields to table primary key columns
must be set correctly.
5-2

Data Representation Mapping
5. ID

L/SQ
L Se

m
a

ntic

a
nd

 D
a

ta
 M

a
p

p
ing
5.2 Data Representation Mapping
In Connext, data is stored in data structures or classes defined using the Interface Defini-
tion Language (IDL). In relational databases, data is stored in tables defined using SQL
table schemas. While there is a good correspondence of IDL primitive data types to SQL
data types, this mapping is not one-to-one. Both IDL and SQL have data types that the
other does not define nor has an unambiguous mapping. In addition, many complex
data structures in IDL such as unions and data structures that contain embedded data
structures do not have equivalents in SQL.

This section describes the mapping used by the Real-Time Connect Daemon when taking
data received with DDS and storing it in tables, or taking data from tables and publish-
ing it with Connext.

❏ IDL to SQL Mapping (Section 5.2.1) on Page 5-4

❏ Primitive Types Mapping (Section 5.2.2) on Page 5-7

❏ Oracle In-Memory Database Cache Mapping (Section 5.2.3) on Page 5-11

❏ Enum Types Mapping (Section 5.2.5) on Page 5-13

DDSDataWriter::write()
SQL INSERT or
UPDATE

Values published for Topics will be stored into a
database table by the Real-Time Connect Daemon.

Table rows modified by SQL INSERT or UPDATE
commands will be published by the Real-Time Con-
nect Daemon as values of Topics.

DDSDataReader::take()
DDSDataReader::read()

SQL SELECT

DDSDataWriter::dispose() SQL DELETE

When SQL DELETE is used to delete a row from a
table, the Real-Time Connect Daemon will call DDS-
DataWriter::dispose() to dispose the instance corre-
sponding to the row.

If a user application calls DDSDataWriter::dis-
pose() to dispose an instance, the Real-Time Connect
Daemon may be configured to delete or keep the
corresponding rows.

Table 5.1 Connext-DBMS Semantic Models

Connext Relational Database Details
5-3

IDL/SQL Semantic and Data Mapping
❏ Simple IDL Structures (Section 5.2.6) on Page 5-13

❏ Complex IDL Structures (Section 5.2.7) on Page 5-13

❏ Array Fields (Section 5.2.8) on Page 5-15

❏ Sequence Fields (Section 5.2.9) on Page 5-16

❏ NULL Values (Section 5.2.10) on Page 5-16

❏ Sparse Data Types (Section 5.2.11) on Page 5-17

5.2.1 IDL to SQL Mapping

Identifiers are used for the names of table columns in SQL and names of fields within an
IDL structure. SQL identifiers are a superset of IDL identifiers. Because of that, an IDL
identifier can always be used as a SQL identifier. However, there are some SQL identifi-
ers that cannot be used as IDL identifiers. For example, SQL allows special characters
like ‘#’ to be part of an identifier, whereas IDL does not.

There are two kind of SQL identifiers: quoted identifiers and basic identifiers. The quoted
identifiers can use any combination of characters. Those identifiers need to be sur-
rounded by double quotes when referenced. The definition of a basic identifier changes
depending on the database vendor.

In Oracle TimesTen, a basic identifier can consist of any of letters (A to Z), decimal digits
(0 to 9), $, #, @, or underscore (_). The first character must be a letter.

In Oracle, a basic identifier can consist of any of letters (A to Z), decimal digits (0 to 9), $,
#, or underscore (_). The first character must be a letter.

In MySQL, a basic identifier can consist of any letters (A to Z), decimal digits (0 to 9), $,
or underscore (_).

If the daemon creates the user table, it will use quoted strings for the identifiers of the
table and column names only if they cannot be considered as basic identifiers according
to the previous definitions. Thus, user applications should also use quoted strings when
referring to those column and table names in their SQL statements.

Ordinarily, the name of a field in an IDL data structure can just be used as the name of a
column in a table. In fact, for those data types with clear and obvious mappings, the col-
umn name can be independent of the field name used in the IDL type. However,
because there is no one-to-one mapping of all IDL data types to all SQL data types, for
certain types, the column names used in SQL table schemas must follow certain conven-
tions that tie them to the names of the fields of IDL types from which they are mapped.
This is true for only the small subset of primitive IDL data types and for the complex
5-4

Data Representation Mapping
5. ID

L/SQ
L Se

m
a

ntic

a
nd

 D
a

ta
 M

a
p

p
ing
IDL data types that would otherwise have ambiguous mappings, i.e., multiple ways to
map IDL to SQL or vice versa.

The Real-Time Connect Daemon scans for, identifies and uses special mappings of col-
umn names when serializing and deserializing IDL data to and from a table in a data-
base. There are two types of special mappings, hierarchical naming and suffixes.

Hierarchical Naming

Complex IDL types may have fields that are actually embedded structures, so a field
may actually contain multiple values. In SQL, columns usually contain a single value
for each column element, although there are a few types like BINARY(x) CHAR(x),
VARBINARY(x) and VARCHAR(x) that can store multiple values of the same type in a
single column element. To map complex IDL types to SQL table schemas, embedded
data structures are unfolded so that elements of an embedded structure are stored indi-
vidually in separate columns.

When the Real-Time Connect Daemon creates a table schema from a Topic, it will auto-
matically flatten hierarchical data structures into tables. In doing so, the names of col-
umns that store the fields of embedded structures will have hierarchical names. For
example, given this IDL definition:

struct bar { struct foo {
 long one; bar element;
 long two; };
};

The table constructed from a Topic which uses the foo type would have the following
schema by default:

CREATE table foo (INTEGER element.one, INTEGER element.two)

The Real-Time Connect Daemon allows the configuration of the separator character (‘.’)
using the attribute IdentifierSeparatorChar defined in the general options of the configu-
ration file (described in Section 4.4.4.1).

While for most embedded structures, the hierarchical naming of columns is not needed
for the Real-Time Connect Daemon to handle type translation correctly, the proper hierar-
chical naming of columns is essential for the daemon to serialize and deserialize IDL
unions and sequences. These types are variable in length, however the table must have
enough columns to hold the maximum size of the IDL data type. Hierarchical naming
allows the Real-Time Connect Daemon to identify columns that form a embedded, com-
plex element.

For variable-length types (other than sequences of “char”, “wchar” or “octet”), an extra
column with the suffix “#length” is also added to the table to hold the current length of
5-5

IDL/SQL Semantic and Data Mapping
the type. Also, each column that represents a field in an element of the variable-length
type must have a suffix “[x]” in its name that identifies the index of the element, where

 x = 0 to (max_length - 1)

During the serialization and deserialization process, the daemon will usually be work-
ing with less than the maximum length of data, and thus, will need to use the hierarchi-
cal naming along with the suffix to determine which columns belong to unused
elements that should be skipped.

This hierarchical flattening operation of member names may lead to very long column
names in the generated table and can easily exceed the maximum number of characters
supported by the database (some databases limit the column names to 30 characters).

To reduce the length of the generated names, you can instruct Real-Time Connect to con-
sider only the first n and the last m characters of the flattened name, and eventually
resolve any conflict by using a progressive number between the prefix and the suffix.
The two tags <idl_member_prefix_max_length> and
<idl_member_suffix_max_length> (see page 4-25), defined in the configuration file
(described in Section 4.4) and the columns idl_member_prefix_max_length and
idl_member_suffix_max_length in the meta-tables (described in Section 4.5.1.1.10) tell
the daemon the values to use. (The values defined in the meta-table have precedence
over the values defined in the configuration file.)

Suffixes

Suffixes are also needed for column names when multiple IDL primitive types map into
the same SQL type. Because there are more IDL primitive types than SQL primitive
types, a full mapping will result in the use of the same SQL type to hold more than one
IDL type. For example, an IDL “long double” has no equivalent in SQL. Thus, a SQL
BINARY(16) does double duty and is used to store both an IDL “long double” as well as
an IDL “octet[16]”.

If a “long double” could be treated the same as an “octet[16]” by the Real-Time Connect
Daemon, then there would be no issue and no special name mapping would be needed.
However, because the representation of a “long double” is Endianess-dependent while
an “octet[16]” is not, the Real-Time Connect Daemon must use the column name to decide
whether or not a SQL BINARY(16) value needs to be byte swapped or not when con-
verting to an IDL data type. Since “long double” has no equivalent SQL type, a “.ld”
must be appended to the name of a SQL BINARY(16) column that is used to store one.

Similarly, a suffix of “.str” is used to indicate that a SQL VARCHAR(x) stores IDL
“string”, which is a NULL-terminated sequence of the primitive type “char”. Without
the suffix in the column name, a SQL VARCHAR(x) naturally stores a sequence of chars-
the IDL type “sequence <char,x>.
5-6

Data Representation Mapping
5. ID

L/SQ
L Se

m
a

ntic

a
nd

 D
a

ta
 M

a
p

p
ing
For the Oracle database, but not the Oracle TimesTen In-Memory database, the IDL
“octet”, “octet[x]” and “sequence<octet,x>” are all stored in the Oracle type RAW. A
suffix of “.bin” is used to distinguish between using RAW to store “octet” and “octet[x]”
which can be treated the same, and “sequence<octet,x>” which must be treated differ-
ently by the Real-Time Connect Daemon.

NOTE: Because of the use of suffixes in the mapping of identifiers of certain IDL data-
types, the identifiers “str”, “ld“, and “bin” are reserved keywords that should not be
used as the name of fields in IDL structures. For example, the following IDL definitions
have the same SQL mapping which would in result in the incorrect treatment of the
type “Foo2” by the daemon. Each would result in a table schema that would have the
ten columns named “my_field[0].str”, “my_field[1].str”, ..., “my_field[2].str”.

struct Foo1 { struct Bar {
 string<10> my_field; and sequence<char,10> str;
}; };

 struct Foo2 {
 struct Bar my_field;
 }

5.2.2 Primitive Types Mapping

The following tables show the mapping between basic types in IDL and SQL:

❏ Table 5.2, “Basic Types in IDL and SQL (TimesTen),” on page 5-7

❏ Table 5.3, “Basic Types in IDL and SQL (Oracle),” on page 5-9

❏ Table 5.4, “Basic Types in IDL and SQL (MySQL),” on page 5-10

Table 5.2 Basic Types in IDL and SQL (TimesTen)

IDL Type
IDL

Field Name
SQL Type

(TypeMode 0)
SQL Type

(TypeMode 1)
Table

Column Name

char a my_field TT_CHAR(1)

or

CHAR(1)

CHAR(1) “my_field”

char[x] a my_field TT_CHAR(x)

or

CHAR(x)

CHAR(x) “my_field”
5-7

IDL/SQL Semantic and Data Mapping
sequence<char,x> my_field TT_VARCHAR(x)

or

VARCHAR2(x)

VARCHAR(x) “my_field”

wchar b my_field TT_NCHAR(x)

or

NCHAR(1)

NCHAR(1) “my_field”

wchar[x] b my_field TT_NCHAR(x) or

NCHAR(x)

NCHAR(x) “my_field”

sequence<wchar,x> my_field TT_NVARCHAR(x)

or

NVARCHAR2(x)

NVARCHAR(x) “my_field”

octet c my_field BINARY(1) BINARY(1) “my_field”

octet[x]c my_field BINARY(x) BINARY(x) “my_field”

sequence<octet,x>c my_field VARBINARY(x) VARBINARY(x) “my_field”

boolean my_field TT_TINYINT TINYINT “my_field”

short my_field TT_SMALLINT SMALLINT “my_field”

unsigned short my_field TT_SMALLINT SMALLINT “my_field”

unsigned my_field TT_INTEGER INTEGER “my_field”

unsigned long my_field TT_INTEGER INTEGER “my_field”

double my_field BINARY_DOUBLE DOUBLE “my_field”

float my_field BINARY_FLOAT REAL “my_field”

string<x> my_field TT_VARCHAR(x) or

VARCHAR2(x)

VARCHAR(x) “my_field.str” d

wstring<x> my_field TT_NVARCHAR(x)

or

NVARCHAR2(x)

NVARCHAR(x) “my_field.str” d

long long my_field TT_BIGINT BIGINT “my_field”

unsigned long long my_field TT_BIGINT BIGINT “my_field”

long double my_field BINARY(16) BINARY(16) “my_field.ld” e

unsigned long long my_field TT_TIMESTAMP TIMESTAMP “my_field”

Table 5.2 Basic Types in IDL and SQL (TimesTen) (Continued)

IDL Type
IDL

Field Name
SQL Type

(TypeMode 0)
SQL Type

(TypeMode 1)
Table

Column Name
5-8

Data Representation Mapping
5. ID

L/SQ
L Se

m
a

ntic

a
nd

 D
a

ta
 M

a
p

p
ing
a. The format on the wire of “char” and “char[x]” is the same.
b. The format on the wire of “wchar” and “wchar[x]” is the same.
c. The format on the wire of “octet”and “octet[x]” is the same.
d. The “.str” suffix is used to distinguish between “(w)string<x>” and “sequence<(w)char,x>”.
e. The “.ld” suffix is used to distinguish between “octet[x]” and “long double”.

Table 5.3 Basic Types in IDL and SQL (Oracle)

IDL Type
IDL Field

Name SQL Type
Table Column

Name

char a my_field CHAR(1) “my_field”

char[x] a my_field CHAR(x) “my_field”

sequence<char,x> my_field VARCHAR2(x) if x <=4000; otherwise CLOB “my_field”

wchar b my_field NCHAR(1) “my_field”

wchar[x] b my_field NCHAR(x) “my_field”

sequence<wchar,x> my_field NVARCHAR2(x) if x<=4000; otherwise NCLOB “my_field”

octet c my_field RAW(1) “my_field.bin” d

octet[x] c my_field RAW(x) “my_field.bin” d

sequence<octet,x> c my_field RAW(x) if x <= 2000; otherwise BLOB “my_field”

boolean my_field NUMBER(3) “my_field”

short my_field NUMBER(5) “my_field”

unsigned short my_field NUMBER(5) “my_field”

unsigned my_field NUMBER(10) “my_field”

unsigned long my_field NUMBER(10) “my_field”

double my_field BINARY_DOUBLE “my_field”

float my_field BINARY_FLOAT “my_field”

string<x> my_field VARCHAR2(x) if x<= 4000; otherwise CLOB “my_field.str” e

wstring<x> my_field NVARCHAR2(x) if x<=4000; otherwise NCLOB “my_field.str” d

long long my_field NUMBER(20) “my_field”

unsigned long long my_field NUMBER(20) “my_field”

long double my_field RAW(16) “my_field.ld” f

unsigned long long my_field TIMESTAMP “my_field”

a. The format on the wire of “char” and “char[x]” is the same.
b. The format on the wire of “wchar” and “wchar[x]” is the same.
5-9

IDL/SQL Semantic and Data Mapping
c. The format on the wire of “octet” and “octet[x]” is the same.
d. The “.bin” suffix is only used for Oracle databases (not Oracle TimesTen). The reason is that Oracle doesn't

support SQL BINARY(x) or VARBINARY(x). Binary data must be always stored as variable-length raw data
using the Oracle type RAW. Thus, Oracle RAW can be used to store IDL “octet”, “octet[x]” and
“sequence<octet,x>”. The “.bin” suffix allows the daemon to determine which is actually stored for Oracle
databases only.

e. The “.str” suffix is used to distinguish between “(w)string<x>” and “sequence<(w)char,x>”.
f. The “.ld” suffix is used to distinguish between “octet[x]” and “long double”.

Table 5.4 Basic Types in IDL and SQL (MySQL)

IDL Type IDL Field Name SQL Type Table Column Name

char a my_field CHAR(1) “my_field”

char[x] a my_field CHAR(x) “my_field”

sequence<char,x> my_field VARCHAR(x) “my_field”

wchar b my_field NCHAR(1) “my_field”

wchar[x] b my_field NCHAR(x) “my_field”

sequence<wchar,x> my_field NVARCHAR(x) “my_field”

octet c my_field BINARY(1) “my_field”

octet[x]c my_field BINARY(x) “my_field”

sequence<octet,x>c my_field VARBINARY(x) “my_field”

boolean my_field TINYINT “my_field”

short my_field SMALLINT “my_field”

unsigned short my_field SMALLINT “my_field”

unsigned my_field INTEGER “my_field”

unsigned long my_field INTEGER “my_field”

double my_field DOUBLE “my_field”

float my_field FLOAT “my_field”

string<x> my_field VARCHAR(x) “my_field.str” d

wstring<x> my_field NVARCHAR(x) “my_field.str” d

long long my_field BIGINT “my_field”

unsigned long long my_field BIGINT “my_field”

long double my_field BINARY(16) “my_field.ld” e

unsigned long long my_field DATETIME “my_field”

a. The format on the wire of “char” and “char[x]” is the same.
b. The format on the wire of “wchar” and “wchar[x]” is the same.
5-10

Data Representation Mapping
5. ID

L/SQ
L Se

m
a

ntic

a
nd

 D
a

ta
 M

a
p

p
ing
5.2.3 Oracle In-Memory Database Cache Mapping

When Real-Time Connect to TimesTen is used with Oracle In-Memory Database Cache,
the definition of cache groups requires mapping the Oracle SQL types to TimesTen SQL
types. Table 5.5 describes the mapping supported by Real-Time Connect.

5.2.4 Bit Field Mapping

IDL bit-field type is an RTI extension that maps directly to C/C++ bit fields but are
stored in primitive types in Java with only the specified number of bits being significant.
When mapped to SQL, a full primitive SQL type is used to store the value, but only a
subset of the bits are significant. A suffix must be added to the column name to indicate
to the Real-Time Connect Daemon which bits to serialize when translating the table data
into an IDL structure.

c. The format on the wire of “octet”and “octet[x]” is the same.
d. The “.str” suffix is used to distinguish between “(w)string<x>” and “sequence<(w)char,x>”.
e. The “.ld” suffix is used to distinguish between “octet[x]” and “long double”.

Table 5.5 MappingBetween Oracle and TimesTen types

Oracle Type TimesTen Type (TypeMode 0)

CHAR(x) CHAR(x)

VARCHAR2(x) VARCHAR2(x)

NCHAR(x) NCHAR(x)

NVARCHAR2(x) NVARCHAR2(x)

RAW(x) VARBINARY(x)

NUMBER(3) TT_TINYINT

NUMBER(5) TT_SMALLINT

NUMBER(10) TT_INTEGER

BINARY_DOUBLE BINARY_DOUBLE

BINARY_FLOAT BINARY_FLOAT

NUMBER(20) TT_BIGINT

TIMESTAMP This mapping is not supported
5-11

IDL/SQL Semantic and Data Mapping
The following tables show the mapping of bit fields between IDL and SQL:

❏ Table 5.6, “Bit Fields in IDL and SQL (TimesTen)”

❏ Table 5.7, “Bit Fields in IDL and SQL (Oracle)”

❏ Table 5.8, “Bit Fields in IDL and SQL (MySQL)”

Table 5.6 Bit Fields in IDL and SQL (TimesTen)

IDL Type
IDL

Field Name
SQL Type

(TypeMode 0)
SQL Type

(TypeMode 1)
Table Column

Namea

char my_field:x

TT_CHAR(1)

or

CHAR(1)

CHAR(1) “my_field:x”

wchar my_field:x

TT_NCHAR(1)

or

NCHAR(1)

NCHAR(1) “my_field:x”

octet my_field:x BINARY(1) BINARY(1) “my_field:x”

short my_field:x TT_SMALLINT SMALLINT “my_field:x”

unsigned short my_field:x TT_SMALLINT SMALLINT “my_field:x”

long my_field:x TT_INTEGER INTEGER “my_field:x”

unsigned long my_field:x TT_INTEGER INTEGER “my_field:x”

a. The column storing the last bit field in a set of bits will use name of “my_field:!x”.

Table 5.7 Bit Fields in IDL and SQL (Oracle)

IDL Type IDL Field Name SQL Type
Table Column

Namea

char my_field:x CHAR(1) “my_field:x”

wchar my_field:x NCHAR(1) “my_field:x”

octet my_field:x BINARY(1) “my_field:x”

short my_field:x NUMBER(5) “my_field:x”

unsigned short my_field:x NUMBER(5) “my_field:x”

long my_field:x NUMBER(10) “my_field:x”

unsigned long my_field:x NUMBER(10) “my_field:x”

a. The column storing the last bit field in a set of bits will use name of “my_field:!x”.
5-12

Data Representation Mapping
5. ID

L/SQ
L Se

m
a

ntic

a
nd

 D
a

ta
 M

a
p

p
ing
5.2.5 Enum Types Mapping

IDL enumeration fields are mapped to columns of type SQL INTEGER. No special nam-
ing is required.

5.2.6 Simple IDL Structures

Simple IDL structures containing only basic or primitive types directly map to SQL
schemas with fields in the structure becoming columns in the table. Table 5.9 shows the
mapping of a simple structure between IDL and SQL

5.2.7 Complex IDL Structures

IDL structures that contain more complex fields, fields that are structures, unions, or
sequences and arrays of types other than “octet”, “char” or “wchar” are mapped to SQL

Table 5.8 Bit Fields in IDL and SQL (MySQL)

IDL Type IDL Field Name SQL Type
Table Column

Namea

char my_field:x CHAR(1) “my_field:x”

wchar my_field:x NCHAR(1) “my_field:x”

octet my_field:x BINARY(1) “my_field:x”

short my_field:x SMALLINT “my_field:x”

unsigned short my_field:x SMALLINT “my_field:x”

long my_field:x INTEGER “my_field:x”

unsigned long my_field:x INTEGER “my_field:x”

a. The column storing the last bit field in a set of bits will use name of “my_field:!x”.

Table 5.9 Simple Structures in IDL and SQL

IDL Types SQL Table Schema

struct MyStruct {
 long my_key_field; //@keya

 short my_short_field;
};

CREATE TABLE “MyStructContainer” (
 “my_key_field” INTEGER NOT NULL,
 “my_short_field” SMALLINT NOT NULL,
 PRIMARY KEY(my_key_field)
);

a. IDL fields marked as keys are mapped to the primary keys of SQL tables.
5-13

IDL/SQL Semantic and Data Mapping
tables by flattening the embedded structures so that their fields are all at the top (and
only) level.

Structure fields

Elements of embedded structures map into individual table columns with names that
are hierarchically composed from the name of the field in the embedded structure and
the name of the embedded structure field itself. This naming convention is not required
for serialization to work properly. Just as long as the column types map to the types of
the embedded structure, then the Real-Time Connect Daemon will properly handle the
data irrelevant of the actual column name.

Table 5.10 shows the mapping of a complex structure between IDL and SQL.

Union fields

IDL unions are mapped by adding an extra column with the name “_d” to represent the
discriminator that is used to indicate which type is actually stored by the union. These
unions are also known as “switched unions”. All of the individual union fields are
mapped to corresponding columns in a table. However, only one of these columns will
contain valid data as indicated by the discriminator column, “_d”.

If the Real-Time Connect Daemon creates the table from an IDL containing an union, it
will generate the data columns with hierarchical names from the name of the union field
and the name of the union itself. In addition, the values of the switch/case statement in
the IDL union are encoded into the names of the data columns as well, e.g., “.c(0,1).”,
“.c(2).”, “.(def).”.

This naming convention is required for the proper serialization and deserialization of
unions. The Real-Time Connect Daemon uses the name of the fields when processing an
IDL union to know which column(s) correspond to the value of the discriminator.

Table 5.11 shows the mapping of an union between IDL and SQL.

Table 5.10 Nested Structures in IDL and SQL

IDL Type SQL Table Schema
struct MyStruct {
 short my_short_field;
 long my_long_field;
};

struct MyStructContainer {
 long my_key_field; //@key
 MyStruct my_struct_field;
};

CREATE TABLE “MyStructContainer” (
 “my_key_field” INTEGER NOT NULL,
 “my_struct_field.my_short_field” SMALLINT NOT NULL,
 “my_struct_field.my_long_field” INTEGER NOT NULL,
 PRIMARY KEY(my_key_field)
);
5-14

Data Representation Mapping
5. ID

L/SQ
L Se

m
a

ntic

a
nd

 D
a

ta
 M

a
p

p
ing
5.2.8 Array Fields

For array fields where the array type is different from “octet”, “char” and “wchar”, an
IDL array type is stored as consecutive columns of the same type in a SQL table. If the
Real-Time Connect Daemon creates a table from an IDL type that contains an array, it will
create the column names using a naming convention that prevents name collisions. By
default, the daemon simply adds the suffix “[i]”, where “i” is the array index of that ele-
ment (beginning at 0 for the first index). The open bracket and close bracket characters
can be configured using the tags in the configuration file <open_bracket_char> and
<close_bracket_char> (see page 4-26). Note, this naming convention is not required for
the Real-Time Connect Daemon to serialize/deserialize IDL array fields.

Note that array fields of type “octet”, “char” and “wchar” are mapped into a single col-
umn element of the corresponding SQL types BINARY(x), CHAR(x) and WCHAR(x),
respectively. Table 5.12 shows a mapping of an array field between IDL and SQL.

Table 5.11 Union Fields in IDL and SQL

IDL Type SQL Table Schema
union MyUnion switch(long) {
 case 0:
 case 1:
 long my_long_field;
 case 2:
 double my_double_field;
 default:
 short my_short_field;
};

struct MyUnionContainer {
 long my_key_field; //@key
 MyUnion my_union_field;
};

CREATE TABLE “MyUnionContainer” (
 “my_key_field” INTEGER NOT NULL,
 “my_union_field._d” INTEGER NOT NULL,
 “my_union_field.c(0,1).my_long_field” INTEGER,
 “my_union_field.c(2).my_double_field” DOUBLE,
 “my_union_field.c(def).my_short_field” SMALLINT,
 PRIMARY KEY(my_key_field)
);

Table 5.12 Array Fields in IDL and SQL

IDL Type SQL Table Schema

struct MyArrayContainer {
 long my_key_field; //@key
 short my_arr_field[2];
};

CREATE TABLE “MyArrayContainer” (
 “my_key_field” INTEGER NOT NULL,
 “my_arr_field[0]” SMALLINT NOT NULL,
 “my_arr_field[1]” SMALLINT NOT NULL,
 PRIMARY KEY(“my_key_field”)
);
5-15

IDL/SQL Semantic and Data Mapping
5.2.9 Sequence Fields

Sequences are basically variable-sized arrays that have a maximum length and carry an
additional integer that indicates the current size. The mapping of IDL sequences to a
table schema is similar to the array mapping, with the following differences:

❏ An extra column is added with the suffix “#length”, used to store the current
length of the sequence.

❏ The total number of columns created is equal to the maximum number of ele-
ments that the sequence can hold, although the number of columns containing
valid data at a given time is stored in the “#length” column.

❏ The naming convention of adding the suffix “[i]” to each column is required for
the Real-Time Connect Daemon to handle the mapping between IDL and SQL cor-
rectly. The open bracket and close bracket characters can be configured using the
tags <open_bracket_char> and <close_bracket_char> (see page 4-26).

❏ Sequence elements can contain the NULL value since not all elements may be
used at a given time.

Note: Sequences of the IDL types “char”, “wchar” or “octet” map directly into the vari-
able-length SQL types VARCHAR, VARWCHAR, and VARBINARY, respectively.
Table 5.13 shows the mapping of a sequence field between IDL and SQL.

5.2.10 NULL Values

Null values exist in SQL databases but do not have an equivalent in IDL. The Real-Time
Connect daemon converts NULL values into ‘0’-values when publishing from a SQL
table, in the following way:

❏ numerical types: 0

❏ fixed-length string types (CHAR, NCHAR): ""

Table 5.13 Sequence Fields in IDL and SQL

IDL Type SQL Table Schema

struct MySequenceContainer {
 long my_key_field; //@key
 sequence<short,4> my_seq_field;
};

CREATE TABLE “MySequenceContainer” (
 “my_key_field” INTEGER NOT NULL,
 “my_seq_field#length” INTEGER NOT NULL,
 “my_seq_field[0]” SMALLINT,
 “my_seq_field[1]” SMALLINT,
 “my_seq_field[2]” SMALLINT,
 “my_seq_field[3]” SMALLINT,
 PRIMARY KEY(“my_key_field”)
);
5-16

Data Representation Mapping
5. ID

L/SQ
L Se

m
a

ntic

a
nd

 D
a

ta
 M

a
p

p
ing
❏ variable-length types (VARCHAR, NVARCHAR, VARBINARY): length 0

❏ binary: every byte is set to 0

❏ timestamp: 0

5.2.11 Sparse Data Types

Sparse Data Types follow the same mapping as structures (see Section 5.2.6 and
Section 5.2.7). The fields that are not required or primary keys are created with the
nullable attribute.

Table 5.14 Simple Sparse Type

Type in Pseudo Language SQL Table Schema

sparse MySparse a {
 long my_key_field; //@key
 short my_short_field;
 long my_long_field; //@required
};

Create Table "MySparseContainer" (
 "my_key_field" INTEGER NOT NULL,
 "my_short_field" SMALLINT,
 "my_long_field" INTEGER NOT NULL,
 PRIMARY_KEY("my_key_field")
);

a. Sparse types must be built dynamically. There is no IDL construct sparse.
5-17

IDL/SQL Semantic and Data Mapping
5-18

A
. Erro

r C
o

d
e

s

Appendix A Error Codes

Table A.1 lists the native error and warning messages that may be logged by the Real-
Time Connect Daemon. While some of these messages may actually provide enough
information by themselves to help users fix the problem, many have to be used along
with other data to help with debugging the issue.

Often several of these messages will be logged for a single problem. A failure at a lower
layer will cause log messages to be printed at various levels of the Real-Time Connect
Daemon logic. These messages will be valuable to you and to RTI support engineers in
debugging issues with Real-Time Connect.

Table A.1 Real-Time Connect Errors and Warnings

Code Message Details

0 - 1023 Real-Time Connect Daemon errors
These messages are produced by the logic of the Real-Time Connect Daemon itself.

0 Unexpected error
Should never occur.

Contact support@rti.com if seen.

1 <message> General error.

2
Error storing RTI DDS sample in table
'<table>'

There was an error when storing value
received with Connext into the database.

3 Error creating <entity>

4
Error creating <entity> associated to the
table '<table>'

5 Error getting <entity>

6 <meta-table> entry not valid
There was an entry in a meta-table
(RTIDDS_PUBLICATIONS or RTIRTCSUB-
SCRIPTIONS) that was not valid.
A-1

Error Codes
7 Error creating '<type>' SQL statement
There was an error when creating or pre-
paring a SQL statement.

8 Error creating table '<table>'

9 Error opening RTI DDS connection There was a problem initializing Connext.

10
The type of the column '<column>' is not
valid

The meta-columns RTIDDS_DOMAIN_ID
and RTIRTC_REMOTE must be added to
tables that the user creates and wished to
connect to via Real-Time Connect. They will
be automatically if the Real-Time Connect
Daemon creates the table.

If the user creates the table and adds the
two columns, they must be of type INTE-
GER.

This message is produced if these columns
exist and are of the wrong type.

11 Error publishing record/instance
The Real-Time Connect Daemon had a prob-
lem publishing a table change as a Topic.

12 Error disposing record/instance
The Real-Time Connect Daemon had a prob-
lem disposing of an instance of Topic when
the user deleted a row in a table.

13 Error initializing <module> module
The Real-Time Connect Daemon had prob-
lems initializing an internal code module.

14
The definition of environment variable '%s'
is required

15
Error opening the database connection
associated to the DSN '<DSN>'

16 Error enabling database log

17
<string> too long (maximum length:
<length>)

18 Error creating connection to database log

19
The value of the column 'column' in the
table '<meta-table>' is not valid

20
Error generating '<type>' SQL statement
string

Error generating SQL statement string

The Real-Time Connect Daemon had a prob-
lem in generating the string for preparing
or executing a SQL statement.

Table A.1 Real-Time Connect Errors and Warnings

Code Message Details
A-2

A
. Erro

r C
o

d
e

s

21
Error skipping parameter for the field
'<column>'

22
Error binding parameter for the column
'<column>'

Error binding parameters

23
The column '<column>' has an unexpected
SQL Type

Supported SQL types are:
SQL_CHAR
SQL_WCHAR
SQL_VARCHAR
SQL_WVARCHAR
SQL_BINARY
SQL_VARBINARY
SQL_INTEGER
SQL_SMALLINT
SQL_TINYINT
SQL_BIGINT
SQL_REAL
SQL_FLOAT
SQL_DOUBLE
SQL_TIMESTAMP

24 Error opening configuration file ’filename’

25 Error reading configuration file ’filename’

26 Error parsing configuration file ’filename’

27
The maximum length for a <type> field is
<length>

28 Error serializing record
A problem occurred when serializing a
table row for publishing as a Topic.

29 Error deserializing RTI DDS sample
A problem occurred when deserializing
data received via Connext for storing into a
table.

30 Error creating key cache
Could not create cache of known instance
keys see cache_maximum_size,
cache_initial_size (Section 4.5.2.1.7).

31 Error inserting key in cache
Problem occurred while storing instance
key in cache see cache_maximum_size,
cache_initial_size (Section 4.5.2.1.7).

Table A.1 Real-Time Connect Errors and Warnings

Code Message Details
A-3

Error Codes
32 Null pointer argument
A precondition failed in which a NULL
pointer was passed to an internal daemon
function.

33 Error reading table '<table>'

34
The resolution column '<column>' does not
exist in the table '<table>'

The RTIDDS_PUBLICATIONS table con-
tained an entry in the ’resolution_column’
which does not match the name of an exist-
ing column in the corresponding table. See
resolution_column (Section 4.5.1.1.9).

35

The type of the resolution column '<col-
umn>' in the table '<table>' is not valid. The
type of the resolution column can be:
SQL_INTEGER, SQL_SMALLINT,
SQL_BIGINT and SQL_TIMESTAMP

A column specified in the column
’resolution_column’ in the
RTIDDS_PUBLICATIONS table is not of an
acceptable type. See resolution_column
(Section 4.5.1.1.9).

36 Error gathering instance information
Error gathering Connext instance informa-
tion through the execution of the associated
SELECT statement

37 Invalid metatable schema
The schema of the metatables is not valid.
It is possible that those tables were created
with a previous version of RTI RTC.

38 Error deleting key from cache

39 Error deleting a row from '<table>'
There was a problem deleting a row from a
user data table.

41
Error creating publication/subscription for
the '<table>' without primary key.

The user tried to create a publication/sub-
scription for a table without a primary key.

Real-Time Connect to Oracle does not sup-
port tables without primary keys.

Table A.1 Real-Time Connect Errors and Warnings

Code Message Details
A-4

A
. Erro

r C
o

d
e

s

43 Key not supported

Non-primitive IDL keys are not supported.
When Real-Time Connect tries to create a
table with complex keys, it will report this
error message.

Example with supported keys:

struct SupportedKeysSt {
 string id_str; //@key
 long id_long; //@key
 short id_short; //@key
};
Example with unsupported keys:

struct KeySt {
 long id_long;
}
struct NonSupportedKeysSt {
 KeySt id_st; //@key
}

44 Error creating subscriber state queue

45 Error updating subscription state

46 Error creating '<object>'

47 Path too long
The path to the configuration file is too
long.

48 Error creating database publication cache
The Real-Time Connect Daemon had a prob-
lem creating the publication database
cache.

49 Error adding record to publication cache
The Real-Time Connect Daemon had a prob-
lem adding a new record to the publication
database cache.

50
Column name length exceeds maximum
length

The maximum length of a column name in
Real-Time Connect is 30 characters.

To control the length of a column name, use
the configuration tags
<idl_member_prefix_max_length> and
<idl_member_suffix_max_length> under
<database_mapping_options>. See
Section 4.4.4.2 for additional details.

Table A.1 Real-Time Connect Errors and Warnings

Code Message Details
A-5

Error Codes
1024 - 2047 Connext-related errors
These messages are produced through the interaction of the Real-Time Connect Daemon with Con-
next. More information on each error can be found by examining the native Connext errors codes
that will be logged with these messages.

1024 <message> General Connext error message.

1025 Error getting <entity> default QoS

1026 Error getting <entity> QoS

1027 Error setting <entity> QoS

1028 Error creating <entity>

1029 Error getting <entity>

1030 Error enabling <entity>

1031 Error cloning type code

1032 Error reading RTI DDS samples

1033 Error setting <entity> user data

1034 Error disposing RTI DDS instance

1035 Error unregistering RTI DDS instance

1036 Error writing RTI DDS sample

1037 Error ignoring <entity>

1038 Error creating <waitset type> waitset

1039 Error waiting in <waitset type> waitset

1040 Error getting builtin transport property

1041 Error setting builtin transport property

1042
Error creating <waitset type> guard condi-
tion

1043 Error attaching condition

1044 Error registering type '<type>'

1045 Error taking REDA buffer

1046 Error creating mutex

1047 Error creating <thread> thread

1048 Error creating REDA fast buffer

1049 Error taking semaphore

Table A.1 Real-Time Connect Errors and Warnings

Code Message Details
A-6

A
. Erro

r C
o

d
e

s

1050 Error giving semaphore

1051 Error creating worker factory

1052 Error creating worker

1053 Error creating clock

1054 Error creating event manager

1055 Error creating timer

1056 Error posting event

1057 Error getting time

1058 Error creating semaphore

1059 Error loading DDS XML Profile

1060 Error getting TypeCode

1061 Error cloning TypeCode

1062 Error parsing TypeCode

1063 Error creating TypeCode

2048 - 4095 ODBC-related errors
These message are produced through the interaction of the Real-Time Connect Daemon with the
database through the ODBC driver. More information on each error can be found by examining the
native ODBC errors codes that will be logged with these messages.

2048
<message>

<message>: <ODBC driver error message>
General ODBC error message.

4096 - 8191 DBMS Log Connection-related errors
These messages are produced through the interaction of the Real-Time Connect Daemon with the
Connext. More information on each error can be found by examining the native Connext errors
codes that will be logged with these messages.

4096 <message>
General DBMS log connection error mes-
sage.

8192 - 16383 OS-related errors
These messages are produced through the interaction of the Real-Time Connect Daemon with the
operating system. More information on each error can be found by examining the native OS errors
codes that will be logged with these messages.

8192 <message> General OS error message.

8193 Error handling OS signals

Table A.1 Real-Time Connect Errors and Warnings

Code Message Details
A-7

Error Codes
8194 Unable to set signal handler for <signal>

8195 Error getting the host name

8196 Error allocating memory for <object>

From 16384 Warning messages
These are warning messages that may be logged by the Real-Time Connect Daemon.

16384

Timestamps prior to '1970-01-01 00:00:00.00'
cannot be used for conflict resolution.

The RTC daemon will always use '1970-01-
01 00:00:00,00' as the timestamp for those
cases

16385

The Timestamp value of the resolution col-
umn is NULL.

The RTC daemon will use the value '1970-
01-01 00:00:00,00'.

16386 Diskless log buffer overflow
This warning appears only with Oracle
TimesTen databases.

16387 IDL member identifier collision

The prefix/suffix-based name associated
with member A in IDL type T collides with
the name of another member inside the
same type. Real-Time Connect will resolve
the conflict using an index.

16388 Invalid configuration parameter

16389 Ignored QoS value
A QoS value has been ignored by Real-Time
Connect.

16392
Dynamic loading of monitoring library is
not supported

RTI Monitoring Library is statically linked.

In Real-Time Connect there is no need to
load this library dynamically.

32769 Requested incompatible QoS

The QoS of a Real-Time Connect subscrip-
tion is incompatible with the QoS of a Con-
next publication.

The name of the policy that is incompatible
is shown in this warning message.

Table A.1 Real-Time Connect Errors and Warnings

Code Message Details
A-8

A
. Erro

r C
o

d
e

s

32770 Offered incompatible QoS

The QoS of a Real-Time Connect publication
is incompatible with the QoS of a Connext
subscription.

The name of the policy that is incompatible
is shown in this warning message.

32771 Sample lost message
A Real-Time Connect subscription lost a
sample.

32772 Sample rejected message
A Real-Time Connect subscription rejected a
sample.

Table A.1 Real-Time Connect Errors and Warnings

Code Message Details
A-9

Error Codes
A-10

B. D
a

ta
b

a
se

 Lim
its
Appendix B Database Limits

The maximum number of columns is limited by the underlying database product. The
maximum length of a column is independent of the database and it is limited to 30 char-
acters. Table B.1 notes the database limits of Real-Time Connect.

Table B.1 Real-Time Connect Database Limits

Oracle 11g Oracle
TimesTen 11.2.1 MySQL 5.1

Maximum number of columns

For subscriptions: 1000

For publications: 625 - 650

See Section B.1

1,000

4096, although the
effective maximum
may be considerably
smaller, see Section B.2.

Maximum column-name
length (characters)

30 30 30a

CLOB/BLOB support YES
Not supported by
database

Not supported by RTC
(Maximum record size
is 65535 bytes)

CHAR maximum size (bytes) 2000 8300 255b

VARCHAR maximum size
(bytes)

4000 4194304 65535b

BINARY maximum size
(bytes)

2000 8300 255b

VARBINARY maximum size
(bytes)

2000 4194304 65535b

a. This limit is imposed by Real-Time Connect (not MySQL, which allows column names of up to 64 characters).
b. The maximum size of a row in MySQL 5.1 is limited to 65535. For example, you cannot have two fields of type VAR-
CHAR(40000) because the total width of the columns would exceed 65535 bytes. For additional information on this
restriction, see http://dev.mysql.com/doc/refman/5.1/en/column-count-limit.html.
B-1

http://dev.mysql.com/doc/refman/5.0/en/column-count-limit.html

Database Limits
B.1 Maximum Columns for Oracle 11g
For Real-Time Connect subscriptions, the maximum number of columns is 1000. This
limit is imposed by the maximum number of columns in an Oracle 11g table.

For Real-Time Connect publications, the maximum number of columns is limited by the
maximum size of the PL/SQL programs that Real-Time Connect installs in the Oracle 11g
server. The size of the PL/SQL programs depends on the column data types. For tables
in which all the columns are numbers, RTI has been able to publish with approximately
625 columns. For tables in which all the columns are of type VARCHAR2, RTI has been
able to publish with approximately 650 columns.

If the maximum number of columns is exceeded for Real-Time Connect publications, you
will see an error message similar to:

[DDSQLDaemonCore_onUpdateMetaTableEntry,line 3126:ERROR:4096:5009]
[CNA:CNAMonitorTable] ODBC call failed: ORA-24344: success with
compilation error

B.2 Maximum Columns for MySQL
The exact limit for the number of columns is driven by two factors:

❏ The maximum row size for a table, not counting BLOBs, is 65535.

❏ The maximum size of the meta information (schema) associated with a table is 64
KB. The meta information includes the column names. The longer the column
names, the smaller the maximum number of columns.

Table B.2 provides information about the maximum number of columns that RTI was
able to use for different column-name lengths and column types.

For more information about MySQL restrictions on the number of columns, see
 http://dev.mysql.com/doc/refman/5.1/en/column-count-limit.html.
B-2

http://dev.mysql.com/doc/refman/5.0/en/column-count-limit.html

Maximum Columns for MySQL
B. D

a
ta

b
a

se
 Lim

its
Table B.2 Max. Number of Columns Use by RTI for Different Column Types and Name Lengths

Column Type Column-Name Length
(characters) Maximum Number of Columns

INTEGER

30 1283aDOUBLE

CHAR (50)

VARCHAR (50)

INTEGER
15 1823a

DOUBLE

CHAR (50) 15 1308b

VARCHAR (50) 15 1283b

a. Limited by schema size
b. Limited by row size.
B-3

Database Limits
B-4

	Available Documentation
	Chapter 1 Welcome to RTI Real-Time Connect
	1.1 Intended Readers
	1.2 Background Reading

	Chapter 2 Introduction
	2.1 The Edge to Enterprise Integration Solution
	2.2 Real-Time Connect’s Unique Features
	2.2.1 Interconnecting Standards
	2.2.2 Connectivity To Edge Devices
	2.2.3 Flexibility and Scalability
	2.2.4 Matching Real-Time Performance
	2.2.5 High Availability
	2.2.6 Additional Benefits of Real-Time Connect

	Chapter 3 Architecture
	3.1 Real-Time Connect Architecture
	3.1.1 Real-Time Connect Daemon
	3.1.2 Real-Time Connect’s Unique Features

	3.2 Capturing Real-Time Data in a DBMS
	3.3 Remote Real-Time Notification of Table Changes
	3.4 Bidirectional Integration
	3.5 Bridging between Domains
	3.6 High-Rate Data Streams Cached before Storage
	3.7 Real-Time Database Replication

	Chapter 4 Using Real-Time Connect
	4.1 Introduction to the Real-Time Connect Daemon
	4.1.1 How to Run the Real-Time Connect Daemon with Oracle
	4.1.1.1 Installing and Configuring the Oracle Server to Access (lib)rtirti_oracleq[.so,.dll]
	4.1.1.2 Installing (lib)nddsc[.so,.dll) and (lib)nddscore(.so,.dll) on the Oracle Server

	4.1.2 How to Run the Real-Time Connect Daemon with MySQL
	4.1.2.1 Installing MySQL ODBC 5.1.6 driver
	4.1.2.2 Installing and Configuring the MySQL Server to Access (lib)rtirti_mysqlq[.so,.dll]
	4.1.2.3 Installing libnddsc[.so,.dll) and libnddscore(.so,.dll) on the MySQL Server
	4.1.2.4 Starting the MySQL Server in ANSI_QUOTES mode

	4.1.3 How to Run the Real-Time Connect Daemons as Windows Services
	4.1.4 Typecodes

	4.2 Command-Line Parameters
	4.3 Environment Variables
	4.4 Configuration File
	4.4.1 How to Load the XML Configuration
	4.4.2 XML Syntax and Validation
	4.4.3 Top-Level XML Tags
	4.4.4 Database Configuration Using the Real-Time Connect XML Tag
	4.4.4.1 General Options
	4.4.4.2 Database Mapping Options
	4.4.4.3 Database Connection Options
	4.4.4.4 Initial Subscriptions and Publications
	4.4.4.5 Setting the XLA Staging Buffer Size for Diskless Connnections

	4.5 Meta-Tables
	4.5.1 Publications Table
	4.5.1.1 Publications Table Schema

	4.5.2 Subscriptions Table
	4.5.2.1 Subscriptions Table Schema

	4.5.3 Table Info
	4.5.3.1 Table Info Schema

	4.5.4 Log Table
	4.5.4.1 Log Table Schema

	4.6 User-Table Creation
	4.7 Support for Extensible Types
	4.8 Enabling RTI Distributed Logger in Real-Time Connect
	4.9 Enabling RTI Monitoring Library in Real-Time Connect

	Chapter 5 IDL/SQL Semantic and Data Mapping
	5.1 Semantic Mapping
	5.2 Data Representation Mapping
	5.2.1 IDL to SQL Mapping
	5.2.2 Primitive Types Mapping
	5.2.3 Oracle In-Memory Database Cache Mapping
	5.2.4 Bit Field Mapping
	5.2.5 Enum Types Mapping
	5.2.6 Simple IDL Structures
	5.2.7 Complex IDL Structures
	5.2.8 Array Fields
	5.2.9 Sequence Fields
	5.2.10 NULL Values
	5.2.11 Sparse Data Types

	Appendix A Error Codes
	Appendix B Database Limits
	B.1 Maximum Columns for Oracle 11g
	B.2 Maximum Columns for MySQL

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

