
RTI Connext DDS

Core Libraries and Utilities

User’s Manual

Version 5.1.0

© 2012-2013 Real-Time Innovations, Inc.
All rights reserved.

Printed in U.S.A. First printing.
December 2013.

Trademarks
Real-Time Innovations, RTI, DataBus, and Connext are trademarks or registered trademarks of Real-Time
Innovations, Inc. All other trademarks used in this document are the property of their respective owners.

Copy and Use Restrictions
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
(including electronic, mechanical, photocopy, and facsimile) without the prior written permission of Real-
Time Innovations, Inc. The software described in this document is furnished under and subject to the RTI
software license agreement. The software may be used or copied only under the terms of the license
agreement.

Third-Party Copyright Notices
Note: In this section, "the Software" refers to third-party software, portions of which are used in Connext;
"the Software" does not refer to Connext.
This product implements the DCPS layer of the Data Distribution Service (DDS) specification version 1.2
and the DDS Interoperability Wire Protocol specification version 2.1, both of which are owned by the
Object Management, Inc. Copyright 1997-2007 Object Management Group, Inc. The publication of these
specifications can be found at the Catalog of OMG Data Distribution Service (DDS) Specifications. This
documentation uses material from the OMG specification for the Data Distribution Service, section 7.
Reprinted with permission. Object Management, Inc. © OMG. 2005.
Portions of this product were developed using ANTLR (www.ANTLR.org). This product includes software
developed by the University of California, Berkeley and its contributors.
Portions of this product were developed using AspectJ, which is distributed per the CPL license. AspectJ
source code may be obtained from Eclipse. This product includes software developed by the University of
California, Berkeley and its contributors.
Portions of this product were developed using MD5 from Aladdin Enterprises.
Portions of this product include software derived from Fnmatch, (c) 1989, 1993, 1994 The Regents of the
University of California. All rights reserved. The Regents and contributors provide this software "as is"
without warranty.
Portions of this product were developed using EXPAT from Thai Open Source Software Center Ltd and
Clark Cooper Copyright (c) 1998, 1999, 2000 Thai Open Source Software Center Ltd and Clark Cooper
Copyright (c) 2001, 2002 Expat maintainers. Permission is hereby granted, free of charge, to any person
obtaining a copy of this software and associated documentation files (the "Software"), to deal in the
Software without restriction, including without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions: The above copyright notice and this permission
notice shall be included in all copies or substantial portions of the Software.
Copyright © 1994–2013 Lua.org, PUC-Rio.
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following
conditions:
The above copyright notice and this permission notice shall be included in all copies or substantial
portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS
OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE OFTWARE.
Technical Support
Real-Time Innovations, Inc.
232 E. Java Drive
Sunnyvale, CA 94089
Phone: (408) 990-7444
Email: support@rti.com
Website: https://support.rti.com/

http://www.ANTLR.org
http://www.eclipse.org/aspectj
http://www.eclipse.org/legal/cpl-v10.html
https://support.rti.com/

Available Documentation

To get you up and running as quickly as possible, we have divided the RTI® Connext™ (for-
merly, RTI Data Distribution Service) documentation into several parts.

❏ Getting Started Guide (RTI_CoreLibrariesAndUtilities_GettingStarted.pdf)—This doc-
ument describes how to install Connext. It also lays out the core value and concepts
behind the product and takes you step-by-step through the creation of a simple example
application. Developers should read this document first.

If you want to use the Connext Extensible Types feature, please read:

• Addendum for Extensible Types (RTI_CoreLibrariesAndUtilities_GettingStarted
_ExtensibleTypesAddendum.pdf) Extensible Types allow you to define data types in
a more flexible way. Your data types can evolve over time—without giving up porta-
bility, interoperability, or the expressiveness of the DDS type system.

If you are using Connext on an embedded platform or with a database, you will find
additional documents that specifically address these configurations:

• Addendum for Embedded Systems (RTI_CoreLibrariesAndUtilities_GettingStarted
_EmbeddedSystemsAddendum.pdf)

• Addendum for Database Setup (RTI_CoreLibrariesAndUtilities_GettingStarted
_DatabaseAddendum.pdf).

❏ What’s New (RTI_CoreLibrariesAndUtilities_WhatsNew.pdf)—This document
describes changes and enhancements in the current version of Connext. Those upgrading
from a previous version should read this document first.

❏ Release Notes and Platform Notes (RTI_CoreLibrariesAndUtilities_ReleaseNotes.pdf
and RTI_CoreLibrariesAndUtilities_PlatformNotes.pdf)—These documents provide
system requirements, compatibility, and other platform-specific information about the
product, including specific information required to build your applications using RTI,
such as compiler flags and libraries.

❏ Core Libraries and Utilities User’s Manual (RTI_CoreLibrariesAndUtilities
_UsersManual.pdf)—This document describes the features of the product and how to
use them. It is organized around the structure of the Connext APIs and certain common
high-level tasks.

❏ API Reference HTML Documentation (ReadMe.html)—This extensively cross-refer-
enced documentation, available for all supported programming languages, is your in-
depth reference to every operation and configuration parameter in the middleware. Even
experienced Connext developers will often consult this information.
iii

The Programming How To's provide a good place to begin learning the APIs. These are
hyperlinked code snippets to the full API documentation. From the ReadMe.html file,
select one of the supported programming languages, then scroll down to the Program-
ming How To’s. Start by reviewing the Publication Example and Subscription Example,
which provide step-by step examples of how to send and receive data with Connext.

Many readers will also want to look at additional documentation available online. In particular,
RTI recommends the following:

❏ Use the RTI Customer Portal (http://support.rti.com) to download RTI software, access
documentation and contact RTI Support. The RTI Customer Portal requires a username
and password. You will receive this in the email confirming your purchase. If you do not
have this email, please contact license@rti.com. Resetting your login password can be
done directly at the RTI Customer Portal.

❏ The RTI Community website (http://community.rti.com) provides a wealth of knowl-
edge to help you use RTI Connext DDS, including:

• Best Practices

• Example code for specific features, as well as more complete use-case examples,

• Solutions to common questions,

• A glossary,

• Downloads of experimental software,

• And more.

❏ Whitepapers and other articles are available from http://www.rti.com/resources.
iv

http://community.rti.com
http://support.rti.com
http://www.rti.com/resources

Contents

Available Documentation..iii

Welcome to RTI Connext ..xix
Conventions ... xix

Extensions to the DDS Standard ... xix
Environment Variables ... xix
Names of Supported Platforms ... xix

Additional Resources... xx

Part 1: Introduction

1 Overview..1-1
1.1 What is Connext? ... 1-1

1.2 What is Middleware? .. 1-2

1.3 Network Communications Models ... 1-2

1.4 Features of Connext ... 1-4

2 Data-Centric Publish-Subscribe Communications........................2-1
2.1 What is DCPS?.. 2-1

2.1.1 DCPS for Real-Time Requirements.. 2-2

2.2 Data Types, Topics, Keys, Instances, and Samples.. 2-3
2.2.1 Data Topics — What is the Data Called? .. 2-3
2.2.2 Samples, Instances, and Keys ... 2-4

2.3 DataWriters/Publishers and DataReaders/Subscribers .. 2-5

2.4 Domains and DomainParticipants .. 2-7

2.5 Quality of Service (QoS).. 2-8
2.5.1 Controlling Behavior with Quality of Service (QoS) Policies .. 2-8

2.6 Application Discovery... 2-9
v

Part 2: Core Concepts

3 Data Types and Data Samples ..3-1
3.1 Introduction to the Type System.. 3-3

3.1.1 Sequences... 3-4
3.1.2 Strings and Wide Strings ... 3-4
3.1.3 Introduction to TypeCode ... 3-4

3.2 Built-in Data Types .. 3-5
3.2.1 Registering Built-in Types ... 3-6
3.2.2 Creating Topics for Built-in Types.. 3-6
3.2.3 String Built-in Type .. 3-8
3.2.4 KeyedString Built-in Type... 3-12
3.2.5 Octets Built-in Type.. 3-18
3.2.6 KeyedOctets Built-in Type .. 3-24
3.2.7 Managing Memory for Built-in Types... 3-31
3.2.8 Type Codes for Built-in Types .. 3-34

3.3 Creating User Data Types with IDL .. 3-35
3.3.1 Variable-Length Types ... 3-37
3.3.2 Value Types.. 3-38
3.3.3 TypeCode and rtiddsgen ... 3-38
3.3.4 rtiddsgen Translations for IDL Types .. 3-39
3.3.5 Escaped Identifiers ... 3-52
3.3.6 Referring to Other IDL Files ... 3-53
3.3.7 Preprocessor Directives ... 3-53
3.3.8 Using Custom Directives... 3-53

3.4 Creating User Data Types with Extensible Markup Language (XML) .. 3-59

3.5 Creating User Data Types with XML Schemas (XSD) .. 3-64
3.5.1 Primitive Types ... 3-77

3.6 Using rtiddsgen.. 3-77
3.6.1 rtiddsgen Command-Line Arguments.. 3-79

3.7 Using Generated Types without Connext (Standalone)... 3-83
3.7.1 Using Standalone Types in C .. 3-84
3.7.2 Using Standalone Types in C++ ... 3-84
3.7.3 Standalone Types in Java... 3-85

3.8 Interacting Dynamically with User Data Types .. 3-85
3.8.1 Introduction to TypeCode ... 3-85
3.8.2 Defining New Types .. 3-86
3.8.3 Sending Only a Few Fields ... 3-87
3.8.4 Type Extension and Versioning .. 3-89
3.8.5 Sending Type Codes on the Network.. 3-89

3.9 Working with Data Samples... 3-91
3.9.1 Objects of Concrete Types ... 3-91
3.9.2 Objects of Dynamically Defined Types ... 3-92
3.9.3 Accessing the Discriminator Value in a Union... 3-93

4 Entities ..4-1
4.1 Common Operations for All Entities .. 4-2
vi

4.1.1 Creating and Deleting Entities ... 4-2
4.1.2 Enabling Entities... 4-3
4.1.3 Getting an Entity’s Instance Handle.. 4-5
4.1.4 Getting Status and Status Changes.. 4-5
4.1.5 Getting and Setting Listeners ... 4-5
4.1.6 Getting the StatusCondition ... 4-6
4.1.7 Getting, Setting, and Comparing QosPolicies.. 4-6

4.2 QosPolicies .. 4-9
4.2.1 QoS Requested vs. Offered Compatibility—the RxO Property....................................... 4-12
4.2.2 Special QosPolicy Handling Considerations for C.. 4-13

4.3 Statuses .. 4-14
4.3.1 Types of Communication Status... 4-15
4.3.2 Special Status-Handling Considerations for C... 4-17

4.4 Listeners .. 4-20
4.4.1 Types of Listeners ... 4-20
4.4.2 Creating and Deleting Listeners... 4-22
4.4.3 Special Considerations for Listeners in C ... 4-22
4.4.4 Hierarchical Processing of Listeners.. 4-22
4.4.5 Operations Allowed within Listener Callbacks... 4-24

4.5 Exclusive Areas (EAs) ... 4-24
4.5.1 Restricted Operations in Listener Callbacks... 4-26

4.6 Conditions and WaitSets ... 4-27
4.6.1 Creating and Deleting WaitSets.. 4-28
4.6.2 WaitSet Operations... 4-29
4.6.3 Waiting for Conditions .. 4-29
4.6.4 Processing Triggered Conditions—What to do when Wait() Returns 4-31
4.6.5 Conditions and WaitSet Example... 4-32
4.6.6 GuardConditions.. 4-33
4.6.7 ReadConditions and QueryConditions... 4-34
4.6.8 StatusConditions .. 4-36
4.6.9 Using Both Listeners and WaitSets .. 4-37

5 Topics ...5-1
5.1 Topics ... 5-1

5.1.1 Creating Topics ... 5-3
5.1.2 Deleting Topics.. 5-4
5.1.3 Setting Topic QosPolicies .. 5-4
5.1.4 Copying QoS From a Topic to a DataWriter or DataReader .. 5-7
5.1.5 Setting Up TopicListeners ... 5-8
5.1.6 Navigating Relationships Among Entities ... 5-8

5.2 Topic QosPolicies ... 5-8
5.2.1 TOPIC_DATA QosPolicy... 5-8

5.3 Status Indicator for Topics .. 5-10
5.3.1 INCONSISTENT_TOPIC Status... 5-10

5.4 ContentFilteredTopics ..5-11
5.4.1 Overview ..5-11
5.4.2 Where Filtering is Applied—Publishing vs. Subscribing Side .. 5-12
5.4.3 Creating ContentFilteredTopics.. 5-13
vii

5.4.4 Deleting ContentFilteredTopics.. 5-16
5.4.5 Using a ContentFilteredTopic ... 5-16
5.4.6 SQL Filter Expression Notation.. 5-19
5.4.7 STRINGMATCH Filter Expression Notation ... 5-26
5.4.8 Custom Content Filters.. 5-27

6 Sending Data...6-1
6.1 Preview: Steps to Sending Data ... 6-1

6.2 Publishers.. 6-2
6.2.1 Creating Publishers Explicitly vs. Implicitly .. 6-3
6.2.2 Creating Publishers .. 6-5
6.2.3 Deleting Publishers .. 6-7
6.2.4 Setting Publisher QosPolicies ... 6-7
6.2.5 Setting Up PublisherListeners .. 6-13
6.2.6 Finding a Publisher’s Related Entities .. 6-15
6.2.7 Waiting for Acknowledgments in a Publisher ... 6-15
6.2.8 Statuses for Publishers... 6-15
6.2.9 Suspending and Resuming Publications .. 6-16

6.3 DataWriters ... 6-16
6.3.1 Creating DataWriters ... 6-19
6.3.2 Getting All DataWriters... 6-20
6.3.3 Deleting DataWriters ... 6-20
6.3.4 Setting Up DataWriterListeners ... 6-21
6.3.5 Checking DataWriter Status.. 6-22
6.3.6 Statuses for DataWriters .. 6-22
6.3.7 Using a Type-Specific DataWriter (FooDataWriter) .. 6-30
6.3.8 Writing Data .. 6-31
6.3.9 Flushing Batches of Data Samples ... 6-34
6.3.10 Writing Coherent Sets of Data Samples .. 6-34
6.3.11 Waiting for Acknowledgments in a DataWriter .. 6-35
6.3.12 Application Acknowledgment ... 6-35
6.3.13 Required Subscriptions.. 6-40
6.3.14 Managing Data Instances (Working with Keyed Data Types)... 6-41
6.3.15 Setting DataWriter QosPolicies .. 6-44
6.3.16 Navigating Relationships Among Entities ... 6-53
6.3.17 Asserting Liveliness ... 6-55
6.3.18 Turbo Mode and Automatic Throttling for DataWriter Performance

—Experimental Features ... 6-55

6.4 Publisher/Subscriber QosPolicies ... 6-56
6.4.1 ASYNCHRONOUS_PUBLISHER QosPolicy (DDS Extension) 6-56
6.4.2 ENTITYFACTORY QosPolicy... 6-58
6.4.3 EXCLUSIVE_AREA QosPolicy (DDS Extension) .. 6-60
6.4.4 GROUP_DATA QosPolicy .. 6-62
6.4.5 PARTITION QosPolicy .. 6-64
6.4.6 PRESENTATION QosPolicy ... 6-69

6.5 DataWriter QosPolicies ... 6-73
6.5.1 AVAILABILITY QosPolicy (DDS Extension).. 6-74
6.5.2 BATCH QosPolicy (DDS Extension).. 6-78
6.5.3 DATA_WRITER_PROTOCOL QosPolicy (DDS Extension)... 6-83
viii

6.5.4 DATA_WRITER_RESOURCE_LIMITS QosPolicy (DDS Extension) 6-92
6.5.5 DEADLINE QosPolicy... 6-94
6.5.6 DESTINATION_ORDER QosPolicy .. 6-96
6.5.7 DURABILITY QosPolicy ... 6-98
6.5.8 DURABILITY SERVICE QosPolicy.. 6-101
6.5.9 ENTITY_NAME QosPolicy (DDS Extension) .. 6-103
6.5.10 HISTORY QosPolicy .. 6-104
6.5.11 LATENCYBUDGET QoS Policy ... 6-107
6.5.12 LIFESPAN QoS Policy.. 6-108
6.5.13 LIVELINESS QosPolicy ... 6-109
6.5.14 MULTI_CHANNEL QosPolicy (DDS Extension) ...6-112
6.5.15 OWNERSHIP QosPolicy ..6-114
6.5.16 OWNERSHIP_STRENGTH QosPolicy ..6-117
6.5.17 PROPERTY QosPolicy (DDS Extension) ..6-117
6.5.18 PUBLISH_MODE QosPolicy (DDS Extension) ...6-119
6.5.19 RELIABILITY QosPolicy ... 6-121
6.5.20 RESOURCE_LIMITS QosPolicy ... 6-125
6.5.21 TRANSPORT_PRIORITY QosPolicy ... 6-128
6.5.22 TRANSPORT_SELECTION QosPolicy (DDS Extension)... 6-129
6.5.23 TRANSPORT_UNICAST QosPolicy (DDS Extension) ... 6-130
6.5.24 TYPESUPPORT QosPolicy (DDS Extension) ... 6-133
6.5.25 USER_DATA QosPolicy .. 6-134
6.5.26 WRITER_DATA_LIFECYCLE QoS Policy .. 6-136

6.6 FlowControllers (DDS Extension) ... 6-138
6.6.1 Flow Controller Scheduling Policies.. 6-139
6.6.2 Managing Fast DataWriters When Using a FlowController .. 6-140
6.6.3 Token Bucket Properties .. 6-140
6.6.4 Prioritized Samples .. 6-142
6.6.5 Creating and Configuring Custom FlowControllers with Property QoS 6-144
6.6.6 Creating and Deleting FlowControllers .. 6-146
6.6.7 Getting/Setting Default FlowController Properties ... 6-147
6.6.8 Getting/Setting Properties for a Specific FlowController .. 6-147
6.6.9 Adding an External Trigger .. 6-148
6.6.10 Other FlowController Operations.. 6-148

7 Receiving Data..7-1
7.1 Preview: Steps to Receiving Data .. 7-1

7.2 Subscribers .. 7-3
7.2.1 Creating Subscribers Explicitly vs. Implicitly .. 7-6
7.2.2 Creating Subscribers .. 7-6
7.2.3 Deleting Subscribers .. 7-7
7.2.4 Setting Subscriber QosPolicies ... 7-8
7.2.5 Beginning and Ending Group-Ordered Access ... 7-13
7.2.6 Setting Up SubscriberListeners .. 7-13
7.2.7 Getting DataReaders with Specific Samples .. 7-15
7.2.8 Finding a Subscriber’s Related Entities... 7-16
7.2.9 Statuses for Subscribers ... 7-16

7.3 DataReaders.. 7-17
7.3.1 Creating DataReaders .. 7-20
ix

7.3.2 Getting All DataReaders.. 7-21
7.3.3 Deleting DataReaders .. 7-22
7.3.4 Setting Up DataReaderListeners .. 7-22
7.3.5 Checking DataReader Status and StatusConditions ... 7-23
7.3.6 Waiting for Historical Data ... 7-24
7.3.7 Statuses for DataReaders... 7-25
7.3.8 Setting DataReader QosPolicies ... 7-34
7.3.9 Navigating Relationships Among Entities ... 7-39

7.4 Using DataReaders to Access Data (Read & Take) ... 7-40
7.4.1 Using a Type-Specific DataReader (FooDataReader).. 7-40
7.4.2 Loaning and Returning Data and SampleInfo Sequences.. 7-41
7.4.3 Accessing Data Samples with Read or Take... 7-42
7.4.4 Acknowledging Samples... 7-48
7.4.5 The Sequence Data Structure .. 7-48
7.4.6 The SampleInfo Structure.. 7-49

7.5 Subscriber QosPolicies .. 7-53

7.6 DataReader QosPolicies .. 7-54
7.6.1 DATA_READER_PROTOCOL QosPolicy (DDS Extension).. 7-54
7.6.2 DATA_READER_RESOURCE_LIMITS QosPolicy (DDS Extension) 7-59
7.6.3 READER_DATA_LIFECYCLE QoS Policy ... 7-64
7.6.4 TIME_BASED_FILTER QosPolicy ... 7-65
7.6.5 TRANSPORT_MULTICAST QosPolicy (DDS Extension) .. 7-67
7.6.6 TYPE_CONSISTENCY_ENFORCEMENT QosPolicy .. 7-70

8 Working with Domains ..8-1
8.1 Fundamentals of Domains and DomainParticipants ... 8-1

8.2 DomainParticipantFactory ... 8-3
8.2.1 Setting DomainParticipantFactory QosPolicies ... 8-5
8.2.2 Getting and Setting Default QoS for DomainParticipants ... 8-6
8.2.3 Freeing Resources Used by the DomainParticipantFactory... 8-6
8.2.4 Looking Up a DomainParticipant .. 8-6
8.2.5 Getting QoS Values from a QoS Profile... 8-7

8.3 DomainParticipants ... 8-7
8.3.1 Creating a DomainParticipant...8-11
8.3.2 Deleting DomainParticipants ... 8-13
8.3.3 Deleting Contained Entities .. 8-13
8.3.4 Choosing a Domain ID and Creating Multiple Domains... 8-13
8.3.5 Setting Up DomainParticipantListeners ... 8-14
8.3.6 Setting DomainParticipant QosPolicies .. 8-16
8.3.7 Looking up Topic Descriptions .. 8-21
8.3.8 Finding a Topic ... 8-21
8.3.9 Getting the Implicit Publisher or Subscriber .. 8-22
8.3.10 Asserting Liveliness ... 8-23
8.3.11 Learning about Discovered DomainParticipants .. 8-23
8.3.12 Learning about Discovered Topics... 8-23
8.3.13 Other DomainParticipant Operations ... 8-24

8.4 DomainParticipantFactory QosPolicies.. 8-24
8.4.1 LOGGING QosPolicy (DDS Extension) .. 8-24
x

8.4.2 PROFILE QosPolicy (DDS Extension) .. 8-25
8.4.3 SYSTEM_RESOURCE_LIMITS QoS Policy (DDS Extension).. 8-27

8.5 DomainParticipant QosPolicies ... 8-28
8.5.1 DATABASE QosPolicy (DDS Extension) .. 8-28
8.5.2 DISCOVERY QosPolicy (DDS Extension)... 8-31
8.5.3 DISCOVERY_CONFIG QosPolicy (DDS Extension)... 8-34
8.5.4 DOMAIN_PARTICIPANT_RESOURCE_LIMITS QosPolicy (DDS Extension) 8-42
8.5.5 EVENT QosPolicy (DDS Extension) .. 8-48
8.5.6 RECEIVER_POOL QosPolicy (DDS Extension)... 8-50
8.5.7 TRANSPORT_BUILTIN QosPolicy (DDS Extension) ... 8-51
8.5.8 TRANSPORT_MULTICAST_MAPPING QosPolicy (DDS Extension)........................... 8-52
8.5.9 WIRE_PROTOCOL QosPolicy (DDS Extension) ... 8-54

8.6 Clock Selection ... 8-60
8.6.1 Available Clocks ... 8-60
8.6.2 Clock Selection Strategy .. 8-60

8.7 System Properties... 8-61

9 Building Applications..9-1
9.1 Running on a Computer Not Connected to a Network ... 9-1

9.2 Connext Header Files — All Architectures .. 9-2

9.3 UNIX-Based Platforms.. 9-2
9.3.1 Required Libraries.. 9-3
9.3.2 Compiler Flags.. 9-3

9.4 Windows Platforms ... 9-3
9.4.1 Using Visual Studio .NET or Visual Studio 2005 ... 9-4

9.5 Java Platforms... 9-5
9.5.1 Java Libraries... 9-5
9.5.2 Native Libraries .. 9-5

Part 3: Advanced Concepts

10 Reliable Communications..10-1
10.1 Sending Data Reliably ... 10-1

10.1.1 Best-effort Delivery Model.. 10-1
10.1.2 Reliable Delivery Model .. 10-2

10.2 Overview of the Reliable Protocol... 10-3

10.3 Using QosPolicies to Tune the Reliable Protocol... 10-6
10.3.1 Enabling Reliability .. 10-7
10.3.2 Tuning Queue Sizes and Other Resource Limits ... 10-7
10.3.3 Controlling Queue Depth with the History QosPolicy... 10-13
10.3.4 Controlling Heartbeats and Retries with DataWriterProtocol QosPolicy.................... 10-13
10.3.5 Avoiding Message Storms with DataReaderProtocol QosPolicy 10-19
10.3.6 Resending Samples to Late-Joiners with the Durability QosPolicy.............................. 10-19
10.3.7 Use Cases ... 10-20

10.4 Auto Throttling for DataWriter Performance—Experimental Feature 10-30
xi

11 Collaborative DataWriters..11-1
11.1 Collaborative DataWriters Use Cases ..11-2

11.2 Sample Combination (Synchronization) Process in a DataReader..11-3

11.3 Configuring Collaborative DataWriters ..11-3
11.3.1 Assocating Virtual GUIDs with Data Samples..11-3
11.3.2 Assocating Virtual Sequence Numbers with Data Samples..11-3
11.3.3 Specifying which DataWriters will Deliver Samples to the DataReader from a

Logical Data Source...11-3
11.3.4 Specifying How Long to Wait for a Missing Sample ...11-4

11.4 Collaborative DataWriters and Persistence Service ...11-4

12 Mechanisms for Achieving Information Durability and
Persistence ...12-1

12.1 Introduction .. 12-1
12.1.1 Scenario 1. DataReader Joins after DataWriter Restarts (Durable Writer History)....... 12-2
12.1.2 Scenario 2: DataReader Restarts While DataWriter Stays Up (Durable Reader

State) ... 12-2
12.1.3 Scenario 3. DataReader Joins after DataWriter Leaves Domain (Durable Data) 12-3

12.2 Durability and Persistence Based on Virtual GUIDs .. 12-4

12.3 Durable Writer History ... 12-5
12.3.1 Durable Writer History Use Case... 12-5
12.3.2 How To Configure Durable Writer History.. 12-6

12.4 Durable Reader State ... 12-9
12.4.1 Durable Reader State With Protocol Acknowledgment ... 12-9
12.4.2 Durable Reader State with Application Acknowledgment .. 12-10
12.4.3 Durable Reader State Use Case ...12-11
12.4.4 How To Configure a DataReader for Durable Reader State ...12-11

12.5 Data Durability... 12-13
12.5.1 RTI Persistence Service .. 12-13

13 Guaranteed Delivery of Data ..13-1
13.1 Introduction .. 13-1

13.1.1 Identifying the Required Consumers of Information ... 13-2
13.1.2 Ensuring Consumer Applications Process the Data Successfully................................... 13-3
13.1.3 Ensuring Information is Available to Late-Joining Applications 13-4

13.2 Scenarios.. 13-5
13.2.1 Scenario 1: Guaranteed Delivery to a-priori known subscribers 13-5
13.2.2 Scenario 2: Surviving a Writer Restart when Delivering Samples to a priori

Known Subscribers... 13-7
13.2.3 Scenario 3: Delivery Guaranteed by Persistence Service (Store and Forward) to a

priori Known Subscribers ... 13-7

14 Discovery ...14-1
14.1 What is Discovery? .. 14-1

14.1.1 Simple Participant Discovery ... 14-2
14.1.2 Simple Endpoint Discovery .. 14-2

14.2 Configuring the Peers List Used in Discovery .. 14-3
xii

14.2.1 Peer Descriptor Format.. 14-4
14.2.2 NDDS_DISCOVERY_PEERS Environment Variable Format... 14-6
14.2.3 NDDS_DISCOVERY_PEERS File Format... 14-7

14.3 Discovery Implementation ... 14-8
14.3.1 Participant Discovery... 14-8
14.3.2 Endpoint Discovery ... 14-15
14.3.3 Discovery Traffic Summary .. 14-20
14.3.4 Discovery-Related QoS.. 14-20

14.4 Debugging Discovery.. 14-21

14.5 Ports Used for Discovery .. 14-23
14.5.1 Inbound Ports for Meta-Traffic... 14-25
14.5.2 Inbound Ports for User Traffic .. 14-25
14.5.3 Automatic Selection of participant_id and Port Reservation .. 14-25
14.5.4 Tuning domain_id_gain and participant_id_gain... 14-25

15 Transport Plugins ...15-1
15.1 Builtin Transport Plugins.. 15-2

15.2 Extension Transport Plugins .. 15-2

15.3 The NDDSTransportSupport Class ... 15-3

15.4 Explicitly Creating Builtin Transport Plugin Instances .. 15-3

15.5 Setting Builtin Transport Properties of the Default Transport Instance
—get/set_builtin_transport_properties()... 15-4

15.6 Setting Builtin Transport Properties with the PropertyQosPolicy.. 15-5
15.6.1 Notes Regarding Loopback and Shared Memory ... 15-19
15.6.2 Setting the Maximum Gather-Send Buffer Count for UDPv4 and UDPv6.................. 15-19
15.6.3 Formatting Rules for IPv6 ‘Allow’ and ‘Deny’ Address Lists 15-20

15.7 Installing Additional Builtin Transport Plugins with register_transport() 15-20
15.7.1 Transport Lifecycles ... 15-21
15.7.2 Transport Aliases .. 15-22
15.7.3 Transport Network Addresses ... 15-22

15.8 Installing Additional Builtin Transport Plugins with PropertyQosPolicy 15-23

15.9 Other Transport Support Operations... 15-24
15.9.1 Adding a Send Route ... 15-24
15.9.2 Adding a Receive Route .. 15-24
15.9.3 Looking Up a Transport Plugin.. 15-25

16 Built-In Topics...16-1
16.1 Listeners for Built-in Entities.. 16-1

16.2 Built-in DataReaders ... 16-2
16.2.1 LOCATOR_FILTER QoS Policy (DDS Extension) ... 16-8

16.3 Accessing the Built-in Subscriber .. 16-9

16.4 Restricting Communication—Ignoring Entities.. 16-10
16.4.1 Ignoring Specific Remote DomainParticipants ...16-11
16.4.2 Ignoring Publications and Subscriptions .. 16-12
16.4.3 Ignoring Topics ... 16-12
xiii

17 Configuring QoS with XML..17-1
17.1 Example XML File.. 17-2

17.2 How to Load XML-Specified QoS Settings .. 17-2
17.2.1 Loading, Reloading and Unloading Profiles .. 17-3

17.3 How to Use XML-Specified QoS Settings .. 17-4

17.4 XML File Syntax ... 17-6

17.5 Using Environment Variables in XML.. 17-6

17.6 XML String Syntax... 17-7

17.7 How the XML is Validated ... 17-7
17.7.1 Validation at Run-Time.. 17-7
17.7.2 XML File Validation During Editing ... 17-8

17.8 Configuring QoS with XML ... 17-9
17.8.1 QosPolicies .. 17-9
17.8.2 Sequences... 17-10
17.8.3 Arrays... 17-12
17.8.4 Enumeration Values ... 17-13
17.8.5 Time Values (Durations) .. 17-13
17.8.6 Transport Properties... 17-13
17.8.7 Thread Settings ... 17-14
17.8.8 Entity Names... 17-14

17.9 QoS Profiles... 17-15
17.9.1 QoS Profiles with a Single QoS... 17-16
17.9.2 QoS Profile Inheritance.. 17-16
17.9.3 Topic Filters ... 17-18
17.9.4 Overwriting Default QoS Values.. 17-21
17.9.5 Built-in QoS Profiles... 17-21
17.9.6 Getting Qos Profiles ... 17-23

17.10 QoS Libraries .. 17-23
17.10.1 Get Qos Profile Libraries ... 17-24

17.11 URL Groups.. 17-24

17.12 Configuring Logging Via XML .. 17-24

18 Multi-channel DataWriters ...18-1
18.1 What is a Multi-channel DataWriter?.. 18-2

18.2 How to Configure a Multi-channel DataWriter... 18-4
18.2.1 Limitations... 18-5

18.3 Multi-channel Configuration on the Reader Side ... 18-6

18.4 Where Does the Filtering Occur?... 18-7
18.4.1 Filtering at the DataWriter .. 18-7
18.4.2 Filtering at the DataReader ... 18-8
18.4.3 Filtering on the Network Hardware.. 18-8

18.5 Fault Tolerance and Redundancy .. 18-8

18.6 Reliability with Multi-Channel DataWriters.. 18-9
18.6.1 Reliable Delivery .. 18-9
18.6.2 Reliable Protocol Considerations ... 18-10
xiv

18.7 Performance Considerations .. 18-10
18.7.1 Network-Switch Filtering.. 18-10
18.7.2 DataWriter and DataReader Filtering...18-11

19 Connext Threading Model ...19-1
19.1 Database Thread... 19-1

19.2 Event Thread... 19-2

19.3 Receive Threads ... 19-3

19.4 Exclusive Areas, Connext Threads and User Listeners.. 19-4

19.5 Controlling CPU Core Affinity for RTI Threads.. 19-5

19.6 Configuring Thread Settings with XML... 19-5

20 Sample-Data Memory Management ...20-1
20.1 Sample-Data Memory Management for DataWriters... 20-1

20.1.1 Memory Management without Batching.. 20-2
20.1.2 Memory Management with Batching ... 20-2
20.1.3 Writer-Side Memory Management when Using Java ... 20-3
20.1.4 Writer-Side Memory Management when Working with Large Data 20-4

20.2 Sample-Data Memory Management for DataReaders ... 20-6
20.2.1 Memory Management for DataReaders Using Generated Type-Plugins 20-6
20.2.2 Reader-Side Memory Management when Using Java .. 20-7
20.2.3 Memory Management for DynamicData DataReaders .. 20-8
20.2.6 Memory Management for Fragmented Samples ... 20-10
20.2.7 Reader-Side Memory Management when Working with Large Data 20-10

21 Troubleshooting...21-1
21.1 What Version am I Running? ... 21-1

21.1.1 Finding Version Information in Revision Files .. 21-1
21.1.2 Finding Version Information Programmatically.. 21-1

21.2 Controlling Messages from Connext... 21-2
21.2.1 Format of Logged Messages ... 21-3
21.2.2 Configuring Logging via XML ... 21-6
21.2.3 Customizing the Handling of Generated Log Messages.. 21-7

Part 4: Request-Reply Communication Pattern

22 Introduction to the Request-Reply Communication Pattern22-1
22.1 The Request-Reply Pattern ... 22-2

22.1.1 Request-Reply Correlation.. 22-3

22.2 Single-Request, Multiple-Replies .. 22-3

22.3 Multiple Repliers.. 22-4

22.4 Combining Request-Reply and Publish-Subscribe ... 22-5

23 Using the Request-Reply Communication Pattern23-1
23.1 Requesters ... 23-2
xv

23.1.1 Creating a Requester .. 23-2
23.1.2 Destroying a Requester.. 23-3
23.1.3 Setting Requester Parameters ... 23-3
23.1.4 Summary of Requester Operations.. 23-4
23.1.5 Sending Requests.. 23-5
23.1.6 Processing Incoming Replies with a Requester ... 23-5

23.2 Repliers .. 23-8
23.2.1 Creating a Replier... 23-9
23.2.2 Destroying a Replier .. 23-9
23.2.3 Setting Replier Parameters.. 23-10
23.2.4 Summary of Replier Operations... 23-10
23.2.5 Processing Incoming Requests with a Replier ..23-11
23.2.6 Sending Replies .. 23-13

23.3 SimpleRepliers.. 23-13
23.3.1 Creating a SimpleReplier... 23-14
23.3.2 Destroying a SimpleReplier .. 23-14
23.3.3 Setting SimpleReplier Parameters.. 23-14
23.3.4 Getting Requests and Sending Replies with a SimpleReplierListener 23-14

23.4 Accessing Underlying DataWriters and DataReaders.. 23-15

Part 5: RTI Secure WAN Transport

24 Secure WAN Transport ..24-1
24.1 WAN Traversal via UDP Hole-Punching ... 24-2

24.1.1 Protocol Details... 24-2

24.2 WAN Locators .. 24-5

24.3 Datagram Transport-Layer Security (DTLS).. 24-6
24.3.1 Security Model .. 24-6
24.3.2 Liveliness Mechanism.. 24-7

24.4 Certificate Support... 24-7

24.5 License Issues ... 24-8

25 Configuring RTI Secure WAN Transport ...25-1
25.1 Example Applications ... 25-1

25.2 Setting Up a Transport with the Property QoS.. 25-2

25.3 WAN Transport Properties ... 25-3

25.4 Secure Transport Properties.. 25-8

25.5 Explicitly Instantiating a WAN or Secure Transport Plugin...25-11
25.5.1 Additional Header Files and Include Directories.. 25-12
25.5.2 Additional Libraries... 25-12
25.5.3 Compiler Flags.. 25-12
xvi

Part 6: RTI Persistence Service

26 Introduction to RTI Persistence Service...26-1

27 Configuring Persistence Service..27-1
27.1 How to Load the XML Configuration... 27-1

27.2 XML Configuration File .. 27-2
27.2.1 Configuration File Syntax ... 27-4
27.2.2 XML Validation... 27-4

27.3 QoS Configuration ... 27-5

27.4 Configuring the Persistence Service Application.. 27-6

27.5 Configuring Remote Administration.. 27-7

27.6 Configuring Persistent Storage .. 27-8

27.7 Configuring Participants..27-11

27.8 Creating Persistence Groups .. 27-12
27.8.1 QoSs.. 27-16
27.8.2 DurabilityService QoS Policy.. 27-16
27.8.3 Sharing a Publisher/Subscriber ... 27-17
27.8.4 Sharing a Database Connection.. 27-17
27.8.5 Memory Management ... 27-17

27.9 Configuring Durable Subscriptions in Persistence Service ... 27-18
27.9.1 Sample Memory Management With Durable Subscriptions ... 27-19

27.10 Synchronizing of Persistence Service Instances .. 27-20

27.11 Enabling RTI Distributed Logger in Persistence Service ... 27-20

27.12 Enabling RTI Monitoring Library in Persistence Service... 27-21

27.13 Support for Extensible Types ... 27-21
27.13.1 Type Version Discrimination... 27-22

28 Running RTI Persistence Service ..28-1
28.1 Starting Persistence Service .. 28-1

28.2 Stopping Persistence Service.. 28-2

29 Administering Persistence Service from a Remote Location......29-1
29.1 Enabling Remote Administration.. 29-1

29.2 Remote Commands ... 29-1
29.2.1 start ... 29-2
29.2.2 stop ... 29-2
29.2.3 shutdown... 29-2
29.2.4 status... 29-2

29.3 Accessing Persistence Service from a Connext Application.. 29-2

30 Advanced Persistence Service Scenarios30-1
30.1 Scenario: Load-balanced Persistence Services ... 30-1

30.2 Scenario: Delegated Reliability ... 30-2

30.3 Scenario: Slow Consumer ... 30-3
xvii

Part 7: RTI CORBA Compatibility Kit

31 Introduction to RTI CORBA Compatibility Kit31-1

32 Generating CORBA-Compatible Code with rtiddsgen...............32-1
32.1 Generating C++ Code.. 32-2

32.2 Generating Java Code.. 32-2

33 Supported IDL Types ...33-1

Part 8: RTI RTSJ Extension Kit

34 Introduction to RTI RTSJ Extension Kit...34-1

35 Using RTI RTSJ Extension Kit ..35-1

Part 9: RTI TCP Transport

36 Configuring the RTI TCP Transport ..36-1
36.1 TCP Communication Scenarios ... 36-1

36.1.1 Communication Within a Single LAN .. 36-1
36.1.2 Symmetric Communication Across NATs .. 36-2
36.1.3 Asymmetric Communication Across NATs ... 36-3

36.2 Configuring the TCP Transport ... 36-4
36.2.1 Choosing a Transport Mode ... 36-4
36.2.2 Explicitly Instantiating the TCP Transport Plugin .. 36-5
36.2.3 Configuring the TCP Transport with the Property QosPolicy... 36-6
36.2.4 Setting the Initial Peers .. 36-8
36.2.5 TCP/TLS Transport Properties... 36-8
xviii

Welcome to RTI Connext

RTI Connext solutions provide a flexible data distribution infrastructure for integrating data
sources of all types. At its core is the world's leading ultra-high performance, distributed net-
working DataBus™. It connects data within applications as well as across devices, systems and
networks. Connext also delivers large data sets with microsecond performance and granular
quality-of-service control. Connext is a standards-based, open architecture that connects devices
from deeply embedded real-time platforms to enterprise servers across a variety of networks.

Conventions
The terminology and example code in this manual assume you are using C++ without
namespace support.

C, C++/CLI, C#, and Java APIs are also available; they are fully described in the API Reference
HTML documentation.

Namespace support in C++, C++/CLI, and C# is also available; see the API Reference HTML
documentation (from the Modules page, select Using DDS:: Namespace) for details.

Extensions to the DDS Standard

Connext implements the DDS Standard published by the OMG. It also includes features that are
extensions to DDS. These include additional Quality of Service parameters, function calls, struc-
ture fields, etc.

Extensions also include product-specific APIs that complement the DDS API. These include
APIs to create and use transport plug-ins, and APIs to control the verbosity and logging capabil-
ities. These APIs are prefixed with NDDS, such as NDDSTransportSup-
port::register_transport().

Environment Variables

Connext documentation refers to pathnames that have been customized during installation.
NDDSHOME refers to the installation directory of Connext.

Names of Supported Platforms

Connext runs on several different target platforms. To support this vast array of platforms, Con-
next separates the executable, library, and object files for each platform into individual directo-
ries.
xix

Each platform name has four parts: hardware architecture, operating system, operating system
version and compiler. For example, i86Linux2.4gcc3.2 is the directory that contains files specific
to Linux® version 2.4 for the Intel processor, compiled with gcc version 3.2.

For a full list of supported platforms, see the Platform Notes.

Additional Resources
The details of each API (such as function parameters, return values, etc.) and examples are in the
API Reference HTML documentation. In case of discrepancies between the information in this
document and the API Reference HTML documentation, the latter should be considered more
up-to-date.
xx

1

Part 1: Introduction

This introduces the general concepts behind data-centric publish-subscribe communications
and provides a brief tour of Connext.

❏ Chapter 1: Overview

❏ Chapter 2: Data-Centric Publish-Subscribe Communications

Chapter 1 Overview

RTI Connext (formerly, RTI Data Distribution Service) is network middleware for distributed real-
time applications. Connext simplifies application development, deployment and maintenance
and provides fast, predictable distribution of time-critical data over a variety of transport net-
works.

With Connext, you can:

❏ Perform complex one-to-many and many-to-many network communications.

❏ Customize application operation to meet various real-time, reliability, and quality-of-ser-
vice goals.

❏ Provide application-transparent fault tolerance and application robustness.

❏ Use a variety of transports.

This chapter introduces basic concepts of middleware and common communication models,
and describes how Connext’s feature-set addresses the needs of real-time systems.

1.1 What is Connext?
Connext is network middleware for real-time distributed applications. It provides the communi-
cations service programmers need to distribute time-critical data between embedded and/or
enterprise devices or nodes. Connext uses the publish-subscribe communications model to make
data distribution efficient and robust.

Connext implements the Data-Centric Publish-Subscribe (DCPS) API within the OMG’s Data
Distribution Service (DDS) for Real-Time Systems. DDS is the first standard developed for the
needs of real-time systems. DCPS provides an efficient way to transfer data in a distributed sys-
tem.

With Connext, systems designers and programmers start with a fault-tolerant and flexible com-
munications infrastructure that will work over a wide variety of computer hardware, operating
systems, languages, and networking transport protocols. Connext is highly configurable so pro-
grammers can adapt it to meet the application’s specific communication requirements.
1-1

What is Middleware?
1.2 What is Middleware?
Middleware is a software layer between an application and the operating system. Network middle-
ware isolates the application from the details of the underlying computer architecture, operating
system and network stack (see Figure 1.1). Network middleware simplifies the development of
distributed systems by allowing applications to send and receive information without having to
program using lower-level protocols such as sockets and TCP or UDP/IP.

Publish-subscribe middleware Connext is based on a publish-subscribe communications model.
Publish-subscribe (PS) middleware provides a simple and intuitive way to distribute data. It
decouples the software that creates and sends data—the data publishers—from the software that
receives and uses the data—the data subscribers. Publishers simply declare their intent to send
and then publish the data. Subscribers declare their intent to receive, then the data is automati-
cally delivered by the middleware.

Despite the simplicity of the model, PS middleware can handle complex patterns of information
flow. The use of PS middleware results in simpler, more modular distributed applications. Per-
haps most importantly, PS middleware can automatically handle all network chores, including
connections, failures, and network changes, eliminating the need for user applications to pro-
gram of all those special cases. What experienced network middleware developers know is that
handling special cases accounts for over 80% of the effort and code.

1.3 Network Communications Models
The communications model underlying the network middleware is the most important factor in
how applications communicate. The communications model impacts the performance, the ease
to accomplish different communication transactions, the nature of detecting errors, and the
robustness to different error conditions. Unfortunately, there is no “one size fits all” approach to
distributed applications. Different communications models are better suited to handle different
classes of application domains.

This section describes three main types of network communications models:

❏ Point-to-point

❏ Client-server

Figure 1.1 Network Middleware

Connext is middleware that insulates applications from the raw operating-system
network stack.
1-2

Network Communications Models
❏ Publish-subscribe

Point-to-point model Point-to-point is the simplest form of communication, as illustrated in
Figure 1.2. The telephone is an example of an everyday point-to-point communications device.
To use a telephone, you must know the address (phone number) of the other party. Once a con-
nection is established, you can have a reasonably high-bandwidth conversation. However, the
telephone does not work as well if you have to talk to many people at the same time. The tele-
phone is essentially one-to-one communication.

TCP is a point-to-point network protocol designed in the 1970s. While it provides reliable, high-
bandwidth communication, TCP is cumbersome for systems with many communicating nodes.

Client-server model To address the scalability issues of the Point-to-Point model, developers
turned to the Client-Server model. Client-server networks designate one special server node
that connects simultaneously to many client nodes, as illustrated in Figure 1.3. Client-server is a
"many-to-one" architecture. Ordering pizza over the phone is an example of client-server com-
munication. Clients must know the phone number of the pizza parlor to place an order. The par-
lor can handle many orders without knowing ahead of time where people (clients) are located.
After the order (request), the parlor asks the client where the response (pizza) should be sent. In
the client-server model, each response is tied to a prior request. As a result, the response can be
tailored to each request. In other words, each client makes a request (order) and each reply
(pizza) is made for one specific client in mind.

The client-server network architecture works best when information is centralized, such as in
databases, transaction processing systems, and file servers. However, if information is being
generated at multiple nodes, a client-server architecture requires that all information are sent to
the server for later redistribution to the clients. This approach is inefficient and precludes deter-
ministic communications, since the client does not know when new information is available.
The time between when the information is available on the server, and when the client asks and
receives it adds a variable latency to the system.

Publish-subscribe model In the publish-subscribe communications model, computer applica-
tions (nodes) “subscribe” to data they need and “publish” data they want to share. Messages
pass directly between the publisher and the subscribers, rather than moving into and out of a
centralized server. Most time-sensitive information intended to reach many people is sent by a
publish-subscribe system. Examples of publish-subscribe systems in everyday life include tele-
vision, magazines, and newspapers.

A
B

Point-to-point is one-to-one communications.

Figure 1.2 Point-to-Point

Client

Client-server is many-to-one communications.

Server

Client

Client

Client

request

Figure 1.3 Client-Server

reply
1-3

Features of Connext
Publish-subscribe communication architectures are good for distributing large quantities of
time-sensitive information efficiently, even in the presence of unreliable delivery mechanisms.
This direct and simultaneous communication among a variety of nodes makes publish-sub-
scribe network architecture the best choice for systems with complex time-critical data flows.

While the publish-subscribe model provides system architects with many advantages, it may
not be the best choice for all types of communications, including:

❏ File-based transfers (alternate solution: FTP)

❏ Remote Method Invocation (alternate solutions: CORBA, COM, SOAP)

❏ Connection-based architectures (alternate solution: TCP/IP)

❏ Synchronous transfers (alternate solution: CORBA)

1.4 Features of Connext
Connext supports mechanisms that go beyond the basic publish-subscribe model. The key bene-
fit is that applications that use Connext for their communications are entirely decoupled. Very lit-
tle of their design time has to be spent on how to handle their mutual interactions. In particular,
the applications never need information about the other participating applications, including
their existence or locations. Connext automatically handles all aspects of message delivery, with-
out requiring any intervention from the user applications, including:

❏ determining who should receive the messages,

❏ where recipients are located,

❏ what happens if messages cannot be delivered.

This is made possible by how Connext allows the user to specify Quality of Service (QoS) param-
eters as a way to configure automatic-discovery mechanisms and specify the behavior used
when sending and receiving messages. The mechanisms are configured up-front and require no
further effort on the user's part. By exchanging messages in a completely anonymous manner,
Connext greatly simplifies distributed application design and encourages modular, well-struc-
tured programs.

Furthermore, Connext includes the following features, which are designed to meet the needs of
distributed real-time applications:

❏ Data-centric publish-subscribe communications Simplifies distributed application pro-
gramming and provides time-critical data flow with minimal latency.

• Clear semantics for managing multiple sources of the same data.

Publish-subscribe is many-to-many communications.

Figure 1.4 Publish-Subscribe
Subscriber

Publisher

Publisher

Subscriber

Subscriber
1-4

Features of Connext
• Efficient data transfer, customizable Quality of Service, and error notification.

• Guaranteed periodic samples, with maximum rate set by subscriptions.

• Notification by a callback routine on data arrival to minimize latency.

• Notification when data does not arrive by an expected deadline.

• Ability to send the same message to multiple computers efficiently.

❏ User-definable data types Enables you to tailor the format of the information being sent
to each application.

❏ Reliable messaging Enables subscribing applications to specify reliable delivery of
samples.

❏ Multiple Communication Networks Multiple independent communication networks
(domains) each using Connext can be used over the same physical network. Applications
are only able to participate in the domains to which they belong. Individual applications
can be configured to participate in multiple domains.

❏ Symmetric architecture Makes your application robust:

• No central server or privileged nodes, so the system is robust to node failures.

• Subscriptions and publications can be dynamically added and removed from the sys-
tem at any time.

❏ Pluggable Transports Framework Includes the ability to define new transport plug-ins
and run over them. Connext comes with a standard UDP/IP pluggable transport and a
shared memory transport. It can be configured to operate over a variety of transport
mechanisms, including backplanes, switched fabrics, and new networking technologies.

❏ Multiple Built-in Transports Includes UDP/IP and shared memory transports.

❏ Multi-language support Includes APIs for the C, C++, C++/CLI, C#, and Java™ pro-
gramming languages.

❏ Multi-platform support Includes support for flavors of UNIX®, real-time operating sys-
tems, and Windows®. (Consult the Platform Notes to see which platforms are supported
in this release.)

❏ Compliance with Standards

• API complies with the DCPS layer of the OMG’s DDS specification.

• Data types comply with OMG Interface Definition Language™ (IDL).

• Data packet format complies with the International Engineering Consortium’s (IEC’s)
publicly available specification for the RTPS wire protocol.
1-5

Chapter 2 Data-Centric Publish-Subscribe
Communications

This chapter describes the formal communications model used by Connext: the Data-Centric
Publish-Subscribe (DCPS) standard. DCPS is a formalization (through a standardized API) and
extension of the publish-subscribe communications model presented in Section 1.3.

This chapter includes the following sections:

❏ What is DCPS? (Section 2.1)

❏ Data Types, Topics, Keys, Instances, and Samples (Section 2.2)

❏ DataWriters/Publishers and DataReaders/Subscribers (Section 2.3)

❏ Domains and DomainParticipants (Section 2.4)

❏ Quality of Service (QoS) (Section 2.5)

❏ Application Discovery (Section 2.6)

2.1 What is DCPS?
DCPS is the portion of the OMG DDS (Data Distribution Service) Standard that addresses data-
centric publish-subscribe communications. The DDS standard defines a language-independent
model of publish-subscribe communications that has standardized mappings into various
implementation languages. Connext offers C, C++, C++/CLI, C#, and Java versions of the DCPS
API.

The publish-subscribe approach to distributed communications is a generic mechanism that can
be employed by many different types of applications. The DCPS model described in this chapter
extends the publish-subscribe model to address the specific needs of real-time, data-critical
applications. As you’ll see, it provides several mechanisms that allow application developers to
control how communications works and how the middleware handles resource limitations and
error conditions.

The “data-centric” portion of the term DCPS describes the fundamental concept supported by
the design of the API. In data-centric communications, the focus is on the distribution of data
between communicating applications. A data-centric system is comprised of data publishers
and data subscribers. The communications are based on passing data of known types in named
streams from publishers to subscribers.

In contrast, in object-centric communications the fundamental concept is the interface between
the applications. An interface is comprised of a set of methods of known types (number and
2-1

What is DCPS?
types of method arguments). An object-centric system is comprised of interface servers and
interface clients, and communications are based on clients invoking methods on named inter-
faces that are serviced by the corresponding server.

Data and object-centric communications are complementary paradigms in a distributed system.
Applications may require both. However, real-time communications often fit a data-centric
model more naturally.

2.1.1 DCPS for Real-Time Requirements

DCPS, and specifically the Connext implementation, is well suited for real-time applications. For
instance, real-time applications often require the following features:

Efficiency Real-time systems require efficient data collection and delivery. Only minimal
delays should be introduced into the critical data-transfer path. Publish-subscribe is more
efficient than client-server in both latency and bandwidth for periodic data exchange.
Publish-subscribe greatly reduces the overhead required to send data over the network
compared to a client-server architecture. Occasional subscription requests, at low band-
width, replace numerous high-bandwidth client requests. Latency is also reduced, since
the outgoing request message time is eliminated. As soon as a new publication data sam-
ple becomes available, it is sent to the corresponding subscriptions.

Determinism Real-time applications often care about the determinism of delivering periodic
data as well as the latency of delivering event data. Once buffers are introduced into a
data stream to support reliable connections, new data may be held undelivered for a
unpredictable amount of time while waiting for confirmation that old data was received.
Since publish-subscribe does not inherently require reliable connections, implementa-
tions, like Connext, can provide configurable trade-offs between the deterministic delivery
of new data and the reliable delivery of all data.

Flexible delivery bandwidth Typical real-time systems include both real-time and non-real-time
nodes. The bandwidth requirements for these nodes—even for the same data—are quite
different. For example, an application may be sending data samples faster than a non-real-
time application is capable of handling. However, a real-time application may want the
same data as fast as it is produced.
DCPS allows subscribers to the same data to set individual limits on how fast data should
be delivered to each subscriber. This is similar to how some people get a newspaper every
day while others can subscribe to only the Sunday paper.

Thread awareness Real-time communications must work without slowing the thread that
sends data samples. On the receiving side, some data streams should have higher priority
so that new data for those streams are processed before lower priority streams.
Connext provides user-level configuration of its internal threads that process incoming
data. Users may configure Connext so that different threads are created with different pri-
orities to process received data of different data streams.

Fault-tolerant operation Real-time applications are often in control of systems that are required
to run in the presence of component failures. Often, those systems are safety critical or
carry financial penalties for loss of service. The applications running those systems are
usually designed to be fault-tolerant using redundant hardware and software. Backup
applications are often “hot” and interconnected to primary systems so that they can take
over as soon as a failure is detected.
Publish-subscribe is capable of supporting many-to-many connectivity with redundant
DataWriters and DataReaders. This feature is ideal for constructing fault-tolerant or high-
availability applications with redundant nodes and robust fault detection and handling
services.
2-2

Data Types, Topics, Keys, Instances, and Samples
DCPS, and thus Connext, was designed and implemented specifically to address the require-
ments above through configuration parameters known as QosPolicies defined by the DCPS
standard (see QosPolicies (Section 4.2)). The following section introduces basic DCPS terminol-
ogy and concepts.

2.2 Data Types, Topics, Keys, Instances, and Samples
In data-centric communications, the applications participating in the communication need to
share a common view of the types of data being passed around.

Within different programming languages there are several ‘primitive’ data types that all users of
that language naturally share (integers, floating point numbers, characters, booleans, etc.). How-
ever, in any non-trivial software system, specialized data types are constructed out of the lan-
guage primitives. So the data to be shared between applications in the communication system
could be structurally simple, using the primitive language types mentioned above, or it could be
more complicated, using, for example, C and C++ structs, like this:

struct Time {
long year;
short day;
short hour;
short minute;
short second;

};

struct StockPrice {
float price;
Time timeStamp;

};

Within a set of applications using DCPS, the different applications do not automatically know
the structure of the data being sent, nor do they necessarily interpret it in the same way (if, for
instance, they use different operating systems, were written with different languages, or were
compiled with different compilers). There must be a way to share not only the data, but also
information about how the data is structured.

In DCPS, data definitions are shared among applications using OMG IDL, a language-indepen-
dent means of describing data. For more information on data types and IDL, see Chapter 3.

2.2.1 Data Topics — What is the Data Called?

Shared knowledge of the data types is a requirement for different applications to communicate
with DCPS. The applications must also share a way to identify which data is to be shared. Data
(of any data type) is uniquely distinguished by using a name called a Topic. By definition, a Topic
corresponds to a single data type. However, several Topics may refer to the same data type.

Topics interconnect DataWriters and DataReaders. A DataWriter is an object in an application that
tells Connext (and indirectly, other applications) that it has some values of a certain Topic. A cor-
responding DataReader is an object in an application that tells Connext that it wants to receive
values for the same Topic. And the data that is passed from the DataWriter to the DataReader is of
the data type associated with the Topic. DataWriters and DataReaders are described more in
Section 2.3.
2-3

Data Types, Topics, Keys, Instances, and Samples
For a concrete example, consider a system that distributes stock quotes between applications.
The applications could use a data type called StockPrice. There could be multiple Topics of the
StockPrice data type, one for each company’s stock, such as IBM, MSFT, GE, etc. Each Topic uses
the same data type.

Data Type: StockPrice

struct StockPrice {
float price;

 Time timeStamp;
};

Topic: “IBM”

Topic: “MSFT”

Topic: “GE”

Now, an application that keeps track of the current value of a client’s portfolio would subscribe
to all of the topics of the stocks owned by the client. As the value of each stock changes, the new
price for the corresponding topic is published and sent to the application.

2.2.2 Samples, Instances, and Keys

The value of data associated with a Topic can change over time. The different values of the Topic
passed between applications are called samples. In our stock-price example, samples show the
price of a stock at a certain point in time. So each sample may show a different price.

For a data type, you can select one or more fields within the data type to form a key. A key is
something that can be used to uniquely identify one instance of a Topic from another instance of
the same Topic. Think of a key as a way to sub-categorize or group related data values for the
same Topic. Note that not all data types are defined to have keys, and thus, not all topics have
keys. For topics without keys, there is only a single instance of that topic.

However, for topics with keys, a unique value for the key identifies a unique instance of the
topic. Samples are then updates to particular instances of a topic. Applications can subscribe to a
topic and receive samples for many different instances. Applications can publish samples of one,
all, or any number of instances of a topic. Many quality of service parameters actually apply on
a per instance basis. Keys are also useful for subscribing to a group of related data streams
(instances) without pre-knowledge of which data streams (instances) exist at runtime.

For example, let’s change the StockPrice data type to include the symbol of the stock. Then
instead of having a Topic for every stock, which would result in hundreds or thousands of topics
and related DataWriters and DataReaders, each application would only have to publish or sub-
scribe to a single Topic, say “StockPrices.” Successive values of a stock would be presented as
successive samples of an instance of “StockPrices”, with each instance corresponding to a single
stock symbol.

Data Type: StockPrice

struct StockPrice {
float price;
Time timeStamp;
char *symbol; //@key

};

Instance 1 = (Topic: “StockPrices”) + (Key: “MSFT”)

sample a, price = $28.00

sample b, price = $27.88
2-4

DataWriters/Publishers and DataReaders/Subscribers
Instance 2 = (Topic: “StockPrices”) + (Key: “IBM”)

sample a, price = $74.02

sample b, price = $73.50

Etc.

Just by subscribing to “StockPrices,” an application can get values for all of the stocks through a
single topic. In addition, the application does not have to subscribe explicitly to any particular
stock, so that if a new stock is added, the application will immediately start receiving values for
that stock as well.

To summarize, the unique values of data being passed using DCPS are called samples. A sample is
a combination of a Topic (distinguished by a Topic name), an instance (distinguished by a key), and the
actual user data of a certain data type. As seen in Figure 2.1 on page 2-5, a Topic identifies data of a
single type, ranging from one single instance to a whole collection of instances of that given
topic for keyed data types. For more information, see Chapter 3: Data Types and Data Samples
and Chapter 5: Topics.

2.3 DataWriters/Publishers and DataReaders/Subscribers
In DCPS, applications must use APIs to create entities (objects) in order to establish publish-sub-
scribe communications between each other. The entities and terminology associated with the
data itself have been discussed already—Topics, keys, instances, samples. This section will intro-
duce the DCPS entities that user code must create to send and receive the data. Note that Entity
is actually a basic DCPS concept. In object-oriented terms, Entity is the base class from which
other DCPS classes—Topic, DataWriter, DataReader, Publisher, Subscriber, DomainParticipants—
derive. For general information on Entities, see Chapter 4: Entities.

The sending side uses objects called Publishers and DataWriters. The receiving side uses objects
called Subscribers and DataReaders. Figure 2.2 illustrates the relationship of these objects.

❏ An application uses DataWriters to send data. A DataWriter is associated with a single
Topic. You can have multiple DataWriters and Topics in a single application. In addition,
you can have more than one DataWriter for a particular Topic in a single application.

By using keys, a Topic can identify a collection of data-object instances.

Figure 2.1 Relationship of Topics, Keys, and Instances

Key = ...

Type:a_type Key = key1

a_type:instance1

Key = key2

a_type:instance2

Key = key3

a_type:instance3

Topic:a_topic
2-5

DataWriters/Publishers and DataReaders/Subscribers
❏ A Publisher is the DCPS object responsible for the actual sending of data. Publishers own
and manage DataWriters. A DataWriter can only be owned by a single Publisher while a
Publisher can own many DataWriters. Thus the same Publisher may be sending data for
many different Topics of different data types. When user code calls the write() method on
a DataWriter, the data sample is passed to the Publisher object which does the actual dis-
semination of data on the network. For more information, see Chapter 6: Sending Data.

❏ The association between a DataWriter and a Publisher is often referred to as a publication
although you never create a DCPS object known as a publication.

❏ An application uses DataReaders to access data received over DCPS. A DataReader is asso-
ciated with a single Topic. You can have multiple DataReaders and Topics in a single appli-
cation. In addition, you can have more than one DataReader for a particular Topic in a
single application.

❏ A Subscriber is the DCPS object responsible for the actual receipt of published data. Sub-
scribers own and manage DataReaders. A DataReader can only be owned by a single Sub-
scriber while a Subscriber can own many DataReaders. Thus the same Subscriber may
receive data for many different Topics of different data types. When data is sent to an
application, it is first processed by a Subscriber; the data sample is then stored in the
appropriate DataReader. User code can either register a listener to be called when new
data arrives or actively poll the DataReader for new data using its read() and take() meth-
ods. For more information, see Chapter 7: Receiving Data.

❏ The association between a DataReader and a Subscriber is often referred to as a subscription
although you never create a DCPS object known as a subscription.

Example: The publish-subscribe communications model is analogous to that of magazine publi-
cations and subscriptions. Think of a publication as a weekly periodical such as Newsweek®. The
Topic is the name of the periodical (in this case the string "Newsweek"). The type specifies the for-

Figure 2.2 Overview
2-6

Domains and DomainParticipants
mat of the information, e.g., a printed magazine. The user data is the contents (text and graphics)
of each sample (weekly issue). The middleware is the distribution service (usually the US Postal
service) that delivers the magazine from where it is created (a printing house) to the individual
subscribers (people’s homes). This analogy is illustrated in Figure 2.3. Note that by subscribing
to a publication, subscribers are requesting current and future samples of that publication (such
as once a week in the case of Newsweek), so that as new samples are published, they are delivered
without having to submit another request for data.

By default, each data sample is propagated individually, independently, and uncorrelated with
other samples. However, an application may request that several samples be sent as a coherent
set, so that they may be interpreted as such on the receiving side.

2.4 Domains and DomainParticipants
You may have several independent DCPS applications all running on the same set of computers.
You may want to isolate one (or more) of those applications so that it isn’t affected by the others.
To address this issue, DCPS has a concept called Domains.

Domains represent logical, isolated, communication networks. Multiple applications running on
the same set of hosts on different Domains are completely isolated from each other (even if they
are on the same machine). DataWriters and DataReaders belonging to different domains will
never exchange data.

Applications that want to exchange data using DCPS must belong to the same Domain. To
belong to a Domain, DCPS APIs are used to configure and create a DomainParticipant with a spe-
cific Domain Index. Domains are differentiated by the Domain Index (an integer value). Applica-
tions that have created DomainParticipants with the same Domain Index belong to the same
Domain. DomainParticipants own Topics, Publishers and Subscribers which in turn owns DataWrit-
ers and DataReaders. Thus all DCPS Entities belong to a specific domain.

An application may belong to multiple domains simultaneously by creating multiple Domain-
Participants with different domain indices. However, Publishers/DataWriters and Subscribers/
DataReaders only belong to the domain in which they were created.

As mentioned before, multiple domains may be used for application isolation which is useful
when users are testing their applications using computers on the same network or even the
same computers. By assigning each user different domains, one can guarantee that the data pro-
duced by one user’s application won’t accidentally be received by another. In addition, domains

Publisher

 Topic = "Newsweek"

Subscriber

The publish-subscribe model is analogous to publishing magazines. The Publisher sends
samples of a particular Topic to all Subscribers of that Topic. With Newsweek® magazine,
the Topic would be "Newsweek." The sample consists of the data (articles and pictures) sent
to all Subscribers every week. The middleware (Connext) is the distribution channel: all of
the planes, trucks, and people who distribute the weekly issues to the Subscribers.

Figure 2.3 An Example of Publish-Subscribe

Send Receive

Sample

Issue for Feb. 15

 Topic = "Newsweek"

Delivery Service
2-7

Quality of Service (QoS)
may be a way to scale and construct larger systems that are composed of multi-node subsys-
tems. Each subsystem would use an internal domain for intra-system communications and an
external domain to connect to other subsystems.

For more information, see Chapter 8: Working with Domains.

2.5 Quality of Service (QoS)
The publish-subscribe approach to distributed communications is a generic mechanism that can
be employed by many different types of systems. The DCPS model described here extends the
publish-subscribe model to address the needs of real-time, data-critical applications. It provides
standardized mechanisms, known as Quality of Service Policies, that allow application develop-
ers to configure how communications occur, to limit resources used by the middleware, to detect
system incompatibilities and setup error handling routines.

2.5.1 Controlling Behavior with Quality of Service (QoS) Policies

QosPolicies control many aspects of how and when data is distributed between applications.
The overall QoS of the DCPS system is made up of the individual QosPolicies for each DCPS
Entity. There are QosPolicies for Topics, DataWriters, Publishers, DataReaders, Subscribers, and
DomainParticipants.

On the publishing side, the QoS of each Topic, the Topic’s DataWriter, and the DataWriter’s Pub-
lisher all play a part in controlling how and when data samples are sent to the middleware. Sim-
ilarly, the QoS of the Topic, the Topic’s DataReader, and the DataReader’s Subscriber control
behavior on the subscribing side.

Users will employ QosPolicies to control a variety of behaviors. For example, the DEADLINE
policy sets up expectations of how often a DataReader expects to see samples. The OWNERSHIP
and OWNERSHIP_STRENGTH policy are used together to configure and arbitrate whose data
is passed to the DataReader when there are multiple DataWriters for the same instance of a Topic.
The HISTORY policy specifies whether a DataWriter should save old data to send to new sub-
scriptions that join the network later. Many other policies exist and they are presented in
QosPolicies (Section 4.2).

Some QosPolicies represent “contracts” between publications and subscriptions. For communi-
cations to take place properly, the QosPolicies set on the DataWriter side must be compatible
with corresponding policies set on the DataReader side.

For example, the RELIABILITY policy is set by the DataWriter to state whether it is configured to
send data reliably to DataReaders. Because it takes additional resources to send data reliably,
some DataWriters may only support a best-effort level of reliability. This implies that for those
DataWriters, Connext will not spend additional effort to make sure that the data sent is received
by DataReaders or resend any lost data. However, for certain applications, it could be imperative
that their DataReaders receive every piece of data with total reliability. Running a system where
the DataWriters have not been configured to support the DataReaders could lead to erratic fail-
ures.

To address this issue, and yet keep the publications and subscriptions as decoupled as possible,
DCPS provides a way to detect and notify when QosPolicies set by DataWriters and DataReaders
are incompatible. DCPS employs a pattern known as RxO (Requested versus Offered). The
DataReader sets a “requested” value for a particular QosPolicy. The DataWriter sets an “offered”
value for that QosPolicy. When Connext matches a DataReader to a DataWriter, QosPolicies are
checked to make sure that all requested values can be supported by the offered values.
2-8

Application Discovery
Note that not all QosPolicies are constrained by the RxO pattern. For example, it does not make
sense to compare policies that affect only the DataWriter but not the DataReader or vice versa.

If the DataWriter can not satisfy the requested QosPolicies of a DataReader, Connext will not con-
nect the two entities and will notify the applications on each side of the incompatibility if so con-
figured.

For example, a DataReader sets its DEADLINE QoS to 4 seconds—that is, the DataReader is
requesting that it receive new data at least every 4 seconds.

In one application, the DataWriter sets its DEADLINE QoS to 2 seconds—that is, the DataWriter
is committing to sending data at least every 2 seconds. This writer can satisfy the request of the
reader, and thus, Connext will pass the data sent from the writer to the reader.

In another application, the DataWriter sets its DEADLINE QoS to 5 seconds. It only commits to
sending data at 5 second intervals. This will not satisfy the request of the DataReader. Connext
will flag this incompatibility by calling user-installed listeners in both DataWriter and DataReader
applications and not pass data from the writer to the reader.

For a summary of the QosPolicies supported by Connext, see QosPolicies (Section 4.2).

2.6 Application Discovery
The DCPS model provides anonymous, transparent, many-to-many communications. Each time
an application sends a sample of a particular Topic, the middleware distributes the sample to all
the applications that want that Topic. The publishing application does not need to specify how
many applications receive the Topic, nor where those applications are located. Similarly, subscrib-
ing applications do not specify the location of the publications. In addition, new publications and
subscriptions of the Topic can appear at any time, and the middleware will automatically inter-
connect them.

So how is this all done? Ultimately, in each application for each publication, Connext must keep a
list of applications that have subscribed to the same Topic, nodes on which they are located, and
some additional QoS parameters that control how the data is sent. Also, Connext must keep a list
of applications and publications for each of the Topics to which the application has subscribed.

This propagation of this information (the existence of publications and subscriptions and associ-
ated QoS) between applications by Connext is known as the discovery process. While the DDS
(DCPS) standard does not specify how discovery occurs, Connext uses a standard protocol RTPS
for both discovery and formatting on-the-wire packets.

When a DomainParticipant is created, Connext sends out packets on the network to announce its
existence. When an application finds out that another application belongs to the same domain,
then it will exchange information about its existing publications and subscriptions and associ-
ated QoS with the other application. As new DataWriters and DataReaders are created, this infor-
mation is sent to known applications.

The Discovery process is entirely configurable by the user and is discussed extensively in
Chapter 14: Discovery.
2-9

Part 2: Core Concepts

This section includes the following chapters:

❏ Chapter 3: Data Types and Data Samples

❏ Chapter 4: Entities

❏ Chapter 5: Topics

❏ Chapter 6: Sending Data

❏ Chapter 7: Receiving Data

❏ Chapter 8: Working with Domains

❏ Chapter 9: Building Applications

Chapter 3 Data Types and Data Samples

How data is stored or laid out in memory can vary from language to language, compiler to com-
piler, operating system to operating system, and processor to processor. This combination of lan-
guage/compiler/operating system/processor is called a platform. Any modern middleware
must be able to take data from one specific platform (say C/gcc.3.2.2/Solaris/Sparc) and trans-
parently deliver it to another (for example, Java/JDK 1.6/Windows XP/Pentium). This process
is commonly called serialization/deserialization, or marshalling/demarshalling.

Messaging products have typically taken one of two approaches to this problem:

1. Do nothing. Messages consist only of opaque streams of bytes. The JMS BytesMessage is
an example of this approach.

2. Send everything, every time. Self-describing messages are at the opposite extreme,
embedding full reflective information, including data types and field names, with each
message. The JMS MapMessage and the messages in TIBCO Rendezvous are examples of
this approach.

The “do nothing” approach is lightweight on its surface but forces you, the user of the middle-
ware API, to consider all data encoding, alignment, and padding issues. The “send everything”
alternative results in large amounts of redundant information being sent with every packet,
impacting performance.

Connext takes an intermediate approach. Just as objects in your application program belong to
some data type, data samples sent on the same Connext topic share a data type. This type defines
the fields that exist in the data samples and what their constituent types are. The middleware
stores and propagates this meta-information separately from the individual data samples,
allowing it to propagate samples efficiently while handling byte ordering and alignment issues
for you.

To publish and/or subscribe to data with Connext, you will carry out the following steps:

1. Select a type to describe your data.

You have a number of choices. You can choose one of these options, or you can mix and
match them.

• Use a built-in type provided by the middleware.

This option may be sufficient if your data typing needs are very simple. If your data is
highly structured, or you need to be able to examine fields within that data for filter-
ing or other purposes, this option may not be appropriate. The built-in types are
described in Built-in Data Types (Section 3.2).

• Use the RTI code generator, rtiddsgen, to define a type at compile-time using a lan-
guage-independent description language.
3-1

Code generation offers two strong benefits not available with dynamic type defini-
tion: (1) it allows you to share type definitions across programming languages, and (2)
because the structure of the type is known at compile time, it provides rigorous static
type safety.

The code generator accepts input in a number of formats to make it easy to integrate
Connext with your development processes and IT infrastructure:

• OMG IDL. This format is a standard component of both the DDS and CORBA
specifications. It describes data types with a C++-like syntax. This format is
described in Creating User Data Types with IDL (Section 3.3).

• XML schema (XSD), either independent or embedded in a WSDL file. XSD should
be the format of choice for those using Connext alongside or connected to a web-
services infrastructure. This format is described in Creating User Data Types with
XML Schemas (XSD) (Section 3.5).

• XML in a DDS-specific format. This XML format is terser, and therefore easier to
read and write by hand, than an XSD file. It offers the general benefits of XML-
extensibility and ease of integration, while fully supporting DDS-specific data
types and concepts. This format is described in Creating User Data Types with
Extensible Markup Language (XML) (Section 3.4).

• Define a type programmatically at run time.

This method may be appropriate for applications with dynamic data description
needs: applications for which types change frequently or cannot be known ahead of
time. It is described in Defining New Types (Section 3.8.2).

2. Register your type with a logical name.

If you've chosen to use a built-in type instead of defining your own, you can omit this
step; the middleware pre-registers the built-in types for you.

This step is described in the Defining New Types (Section 3.8.2).

3. Create a Topic using the type name you previously registered.

If you've chosen to use a built-in type instead of defining your own, you will use the API
constant corresponding to that type's name.

Creating and working with Topics is discussed in Chapter 5: Topics.

4. Create one or more DataWriters to publish your data and one or more DataReaders to sub-
scribe to it.

The concrete types of these objects depend on the concrete data type you've selected, in
order to provide you with a measure of type safety.

Creating and working with DataWriters and DataReaders are described in Chapter 6:
Sending Data and Chapter 7: Receiving Data, respectively.

Whether publishing or subscribing to data, you will need to know how to create and delete data
samples and how to get and set their fields. These tasks are described in Working with Data
Samples (Section 3.9).

This chapter describes:

❏ Introduction to the Type System (Section 3.1 on Page 3-3)

❏ Built-in Data Types (Section 3.2 on Page 3-5)

❏ Creating User Data Types with IDL (Section 3.3 on Page 3-35)

❏ Creating User Data Types with Extensible Markup Language (XML) (Section 3.4 on Page
3-59)
3-2

Introduction to the Type System
❏ Creating User Data Types with XML Schemas (XSD) (Section 3.5 on Page 3-64)

❏ Using rtiddsgen (Section 3.6 on Page 3-77)

❏ Using Generated Types without Connext (Standalone) (Section 3.7 on Page 3-83)

❏ Interacting Dynamically with User Data Types (Section 3.8 on Page 3-85)

❏ Working with Data Samples (Section 3.9 on Page 3-91)

3.1 Introduction to the Type System
A user data type is any custom type that your application defines for use with Connext. It may be
a structure, a union, a value type, an enumeration, or a typedef (or language equivalents).

Your application can have any number of user data types. They can be composed of any of the
primitive data types listed below or of other user data types.

Only structures, unions, and value types may be read and written directly by Connext; enums,
typedefs, and primitive types must be contained within a structure, union, or value type. In
order for a DataReader and DataWriter to communicate with each other, the data types associated
with their respective Topic definitions must be identical.

❏ octet, char, wchar

❏ short, unsigned short

❏ long, unsigned long

❏ long long, unsigned long long

❏ float

❏ double, long double

❏ boolean

❏ enum (with or without explicit values)

❏ bounded and unbounded string and wstring

The following type-building constructs are also supported:

❏ module (also called a package or namespace)

❏ pointer

❏ array of primitive or user type elements

❏ bounded/unbounded sequence of elements1—a sequence is a variable-length ordered col-
lection, such as a vector or list

❏ typedef

❏ bitfield2

❏ union

❏ struct

❏ value type, a complex type that supports inheritance and other object-oriented features

1. Sequences of sequences are not supported directly. To work around this constraint, typedef the inner sequence
and form a sequence of that new type.

2. Data types containing bitfield members are not supported by DynamicData.
3-3

Introduction to the Type System
To use a data type with Connext, you must define that type in a way the middleware under-
stands and then register the type with the middleware. These steps allow Connext to serialize,
deserialize, and otherwise operate on specific types. They will be described in detail in the fol-
lowing sections.

3.1.1 Sequences

A sequence contains an ordered collection of elements that are all of the same type. The opera-
tions supported in the sequence are documented in the API Reference HTML documentation,
which is available for all supported programming languages (select Modules, RTI Connext
DDS API Reference, Infrastructure Module, Sequence Support).

Java sequences implement the java.util.List interface from the standard Collections framework.

C++ users will find sequences conceptually similar to the deque class in the Standard Template
Library (STL).

Elements in a sequence are accessed with their index, just like elements in an array. Indices start
from zero. Unlike arrays, however, sequences can grow in size. A sequence has two sizes associ-
ated with it: a physical size (the "maximum") and a logical size (the "length"). The physical size
indicates how many elements are currently allocated by the sequence to hold; the logical size
indicates how many valid elements the sequence actually holds. The length can vary from zero
up to the maximum. Elements cannot be accessed at indices beyond the current length.

A sequence may be declared as bounded or unbounded. A sequence's "bound" is the maximum
number of elements that the sequence can contain at any one time. The bound is very important
because it allows Connext to preallocate buffers to hold serialized and deserialized samples of
your types; these buffers are used when communicating with other nodes in your distributed
system. If a sequence had no bound, Connext would not know how large to allocate its buffers
and would therefore have to allocate them on the fly as individual samples were read and writ-
ten—severely impacting the latency and determinism of your application. Therefore, Connext
supports only bounded sequences; any unbounded sequences found in an IDL file will be given
a default bound of 100 elements (see rtiddsgen Command-Line Arguments (Section 3.6.1)).

3.1.2 Strings and Wide Strings

Connext supports both strings consisting of single-byte characters (the IDL string type) and
strings consisting of wide characters (IDL wstring). The wide characters supported by Connext
are four bytes long, large enough to store not only two-byte Unicode/UTF16 characters but also
UTF32 characters.

Like sequences, strings may be bounded or unbounded. A string's "bound" is its maximum
length (not counting the trailing NULL character in C and C++).

3.1.3 Introduction to TypeCode

Type schemas—the names and definitions of a type and its fields—are represented by TypeCode
objects. A type code value consists of a type code kind (see the TCKind enumeration below) and
a list of members. For compound types like structs and arrays, this list will recursively include
one or more type code values.

enum TCKind {
 TK_NULL,
 TK_SHORT,
 TK_LONG,
 TK_USHORT,
 TK_ULONG,
3-4

Built-in Data Types
 TK_FLOAT,
 TK_DOUBLE,
 TK_BOOLEAN,
 TK_CHAR,
 TK_OCTET,
 TK_STRUCT,
 TK_UNION,
 TK_ENUM,
 TK_STRING,
 TK_SEQUENCE,
 TK_ARRAY,
 TK_ALIAS,
 TK_LONGLONG,
 TK_ULONGLONG,
 TK_LONGDOUBLE,
 TK_WCHAR,
 TK_WSTRING,
 TK_VALUE,
 TK_SPARSE
}

Type codes unambiguously match type representations and provide a more reliable test than
comparing the string type names.

The TypeCode class, modeled after the corresponding CORBA API, provides access to type-
code information. For details on the available operations for the TypeCode class, see the API
Reference HTML documentation, which is available for all supported programming languages
(select Modules, RTI Connext DDS API Reference, Topic Module, Type Code Support).

3.1.3.1 Sending TypeCodes on the Network

In addition to being used locally, serialized type codes are typically published automatically
during discovery as part of the built-in topics for publications and subscriptions. See Built-in
DataReaders (Section 16.2). This allows applications to publish or subscribe to topics of arbitrary
types. This functionality is useful for generic system monitoring tools like the rtiddsspy debug
tool (see the API Reference HTML documentation).

Note: Type codes are not cached by Connext upon receipt and are therefore not available from
the built-in data returned by the DataWriter's get_matched_subscription_data() operation or the
DataReader's get_matched_publication_data() operation.

If your data type has an especially complex type code, you may need to increase the value of the
type_code_max_serialized_length field in the DomainParticipant's
DOMAIN_PARTICIPANT_RESOURCE_LIMITS QosPolicy (DDS Extension) (Section 8.5.4). Or,
to prevent the propagation of type codes altogether, you can set this value to zero (0). Be aware
that some features of monitoring tools, as well as some features of the middleware itself (such as
ContentFilteredTopics) will not work correctly if you disable TypeCode propagation.

3.2 Built-in Data Types
Connext provides a set of standard types that are built into the middleware. These types can be
used immediately; they do not require writing IDL, invoking the rtiddsgen utility (see
Section 3.6), or using the dynamic type API (see Section 3.2.7).

The supported built-in types are String, KeyedString, Octets, and KeyedOctets. (The latter two
types are called Bytes and KeyedBytes, respectively, on Java and .NET platforms.)
3-5

Built-in Data Types
The built-in type API is located under the DDS namespace in C++ and .NET. For Java, the API is
contained inside the package com.rti.dds.type.builtin.

Built-in data types are discussed in the following sections:

❏ Registering Built-in Types (Section 3.2.1)

❏ Creating Topics for Built-in Types (Section 3.2.2)

❏ String Built-in Type (Section 3.2.3)

❏ String Built-in Type (Section 3.2.3)

❏ KeyedString Built-in Type (Section 3.2.4)

❏ Octets Built-in Type (Section 3.2.5)

❏ KeyedOctets Built-in Type (Section 3.2.6)

❏ Type Codes for Built-in Types (Section 3.2.8)

3.2.1 Registering Built-in Types

By default, the built-in types are automatically registered when a DomainParticipant is created.
You can change this behavior by setting the DomainParticipant’s dds.builtin_type.auto_register
property to 0 (false) using the PROPERTY QosPolicy (DDS Extension) (Section 6.5.17).

3.2.2 Creating Topics for Built-in Types

To create a topic for a built-in type, just use the standard DomainParticipant operations,
create_topic() or create_topic_with_profile() (see Creating Topics (Section 5.1.1)); for the
type_name parameter, use the value returned by the get_type_name() operation, listed below
for each API.

Note: In the following examples, you will see the sentinel "<BuiltinType>."
For C and C++: <BuiltinType> = String, KeyedString, Octets or KeyedOctets
For Java and .NET1: <BuiltinType> = String, KeyedString, Bytes or KeyedBytes

C API:

const char* DDS_<BuiltinType>TypeSupport_get_type_name();

C++ API with namespace:

const char* DDS::<BuiltinType>TypeSupport::get_type_name();

C++ API without namespace:

const char* DDS<BuiltinType>TypeSupport::get_type_name();

C++/CLI API:

System::String^ DDS:<BuiltinType>TypeSupport::get_type_name();

C# API:

System.String DDS.<BuiltinType>TypeSupport.get_type_name();

1. RTI Connext .NET language binding is currently supported for C# and C++/CLI.
3-6

Built-in Data Types
Java API:

String
com.rti.dds.type.builtin.<BuiltinType>TypeSupport.get_type_name();

3.2.2.1 Topic Creation Examples

For simplicity, error handling is not shown in the following examples.

C Example:

DDS_Topic * topic = NULL;

/* Create a builtin type Topic */
topic = DDS_DomainParticipant_create_topic(

participant, "StringTopic",
DDS_StringTypeSupport_get_type_name(),
&DDS_TOPIC_QOS_DEFAULT, NULL, DDS_STATUS_MASK_NONE);

C++ Example with Namespaces1:

using namespace DDS;
...

/* Create a String builtin type Topic */
Topic * topic = participant->create_topic(

"StringTopic", StringTypeSupport::get_type_name(),
DDS_TOPIC_QOS_DEFAULT, NULL, DDS_STATUS_MASK_NONE);

C++/CLI Example:

using namespace DDS;
...

/* Create a builtin type Topic */
Topic^ topic = participant->create_topic(

"StringTopic", StringTypeSupport::get_type_name(),
 DomainParticipant::TOPIC_QOS_DEFAULT,
 nullptr, StatusMask::STATUS_MASK_NONE);

C# Example:

using namespace DDS;
...

/* Create a builtin type Topic */
Topic topic = participant.create_topic(

"StringTopic", StringTypeSupport.get_type_name(),
 DomainParticipant.TOPIC_QOS_DEFAULT,
 null, StatusMask.STATUS_MASK_NONE);

Java Example:

import com.rti.dds.type.builtin.*;
...

/* Create a builtin type Topic */
Topic topic = participant.create_topic(

"StringTopic", StringTypeSupport.get_type_name(),
 DomainParticipant.TOPIC_QOS_DEFAULT,
 null, StatusKind.STATUS_MASK_NONE);

1. This example uses C++ namespaces. If you're not using namespaces in your own code, prefix the name of each
DDS class with 'DDS.' For example, DDS::StringDataWriter becomes DDSStringDataWriter.
3-7

Built-in Data Types
3.2.3 String Built-in Type

The String built-in type is represented by a NULL-terminated character array (char *) in C and
C++ and an immutable String object in Java and .NET1. This type can be used to publish and
subscribe to a single string.

3.2.3.1 Creating and Deleting Strings

In C and C++, Connext provides a set of operations to create (DDS::String_alloc()), destroy
(DDS::String_free()), and clone strings (DDS::String_dup()). Select Modules, RTI Connext
DDS API Reference, Infrastructure Module, String support in the API Reference HTML docu-
mentation, which is available for all supported programming languages.

Memory Considerations in Copy Operations:

When the read/take operations that take a sequence of strings as a parameter are used in
copy mode, Connext allocates the memory for the string elements in the sequence if they
are initialized to NULL.

If the elements are not initialized to NULL, the behavior depends on the language:

• In Java and .NET, the memory associated with the elements is reallocated with every
sample, because strings are immutable objects.

• In C and C++, the memory associated with the elements must be large enough to hold
the received data. Insufficient memory may result in crashes.

When take_next_sample() and read_next_sample() are called in C and C++, you must
make sure that the input string has enough memory to hold the received data. Insuffi-
cient memory may result in crashes.

3.2.3.2 String DataWriter

The string DataWriter API matches the standard DataWriter API (see Using a Type-Specific
DataWriter (FooDataWriter) (Section 6.3.7)). There are no extensions.

The following examples show how to write simple strings with a string built-in type DataWriter.
For simplicity, error handling is not shown.

C Example:

DDS_StringDataWriter * stringWriter = ... ;
DDS_ReturnCode_t retCode;
char * str = NULL;

/* Write some data */
retCode = DDS_StringDataWriter_write(

 stringWriter, "Hello World!", &DDS_HANDLE_NIL);

str = DDS_String_dup("Hello World!");
retCode = DDS_StringDataWriter_write(stringWriter, str, &DDS_HANDLE_NIL);
DDS_String_free(str);

C++ Example with Namespaces2:

#include "ndds/ndds_namespace_cpp.h"
using namespace DDS;
...

1. RTI Connext .NET language binding is currently supported for C# and C++/CLI.
2. This example uses C++ namespaces. If you're not using namespaces in your own code, prefix the name of each

DDS class with 'DDS.' For example, DDS::StringDataWriter becomes DDSStringDataWriter.
3-8

Built-in Data Types
StringDataWriter * stringWriter = ... ;

/* Write some data */
ReturnCode_t retCode = stringWriter->write("Hello World!", HANDLE_NIL);
char * str = DDS::String_dup("Hello World!");
retCode = stringWriter->write(str, HANDLE_NIL);

DDS::String_free(str);

C++/CLI Example:

using namespace System;
using namespace DDS;
...

StringDataWriter^ stringWriter = ... ;

/* Write some data */
stringWriter->write("Hello World!", InstanceHandle_t::HANDLE_NIL);
String^ str = "Hello World!";
stringWriter->write(str, InstanceHandle_t::HANDLE_NIL);

C# Example:

using System;
using DDS;
...

StringDataWriter stringWriter = ... ;

/* Write some data */
stringWriter.write("Hello World!", InstanceHandle_t.HANDLE_NIL);
String str = "Hello World!";
stringWriter.write(str, InstanceHandle_t.HANDLE_NIL);

Java Example:

import com.rti.dds.publication.*;
import com.rti.dds.type.builtin.*;
import com.rti.dds.infrastructure.*;
...
StringDataWriter stringWriter = ... ;

/* Write some data */
stringWriter.write("Hello World!", InstanceHandle_t.HANDLE_NIL);
String str = "Hello World!";
stringWriter.write(str, InstanceHandle_t.HANDLE_NIL);

3.2.3.3 String DataReader

The string DataReader API matches the standard DataReader API (see Using a Type-Specific
DataReader (FooDataReader) (Section 7.4.1)). There are no extensions.

The following examples show how to read simple strings with a string built-in type DataReader.
For simplicity, error handling is not shown.

C Example:

struct DDS_StringSeq dataSeq = DDS_SEQUENCE_INITIALIZER;
struct DDS_SampleInfoSeq infoSeq = DDS_SEQUENCE_INITIALIZER;
DDS_StringDataReader * stringReader = ... ;
DDS_ReturnCode_t retCode;
int i;
3-9

Built-in Data Types
/* Take and print the data */
retCode = DDS_StringDataReader_take(stringReader, &dataSeq,

 &infoSeq, DDS_LENGTH_UNLIMITED,
 DDS_ANY_SAMPLE_STATE,
 DDS_ANY_VIEW_STATE,
 DDS_ANY_INSTANCE_STATE);

for (i = 0; i < DDS_StringSeq_get_length(&data_seq); ++i) {
 if (DDS_SampleInfoSeq_get_reference(&info_seq, i)->valid_data) {
 DDS_StringTypeSupport_print_data(

 DDS_StringSeq_get(&data_seq, i));
 }
}
/* Return loan */
retCode = DDS_StringDataReader_return_loan(stringReader,

 &data_seq, &info_seq);

C++ Example with Namespaces1:

#include "ndds/ndds_namespace_cpp.h"
using namespace DDS;
...

StringSeq dataSeq;
SampleInfoSeq infoSeq;
StringDataReader * stringReader = ... ;

/* Take a print the data */
ReturnCode_t retCode = stringReader->take(dataSeq, infoSeq,

 LENGTH_UNLIMITED,
 ANY_SAMPLE_STATE,

 ANY_VIEW_STATE,
 ANY_INSTANCE_STATE);

for (int i = 0; i < data_seq.length(); ++i) {
 if (infoSeq[i].valid_data) {
 StringTypeSupport::print_data(dataSeq[i]);
 }
}
/* Return loan */
retCode = stringReader->return_loan(dataSeq, infoSeq);

C++/CLI Example:

using namespace System;
using namespace DDS;
...

StringSeq^ dataSeq = gcnew StringSeq();
SampleInfoSeq^ infoSeq = gcnew SampleInfoSeq();
StringDataReader^ stringReader = ... ;

/* Take and print the data */
stringReader->take(dataSeq, infoSeq,

 ResourceLimitsQosPolicy::LENGTH_UNLIMITED,
 SampleStateKind::ANY_SAMPLE_STATE,

1. This example uses C++ namespaces. If you're not using namespaces in your own code, prefix the name of each
DDS class with 'DDS.' For example, DDS::StringDataWriter becomes DDSStringDataWriter.
3-10

Built-in Data Types
 ViewStateKind::ANY_VIEW_STATE,
 InstanceStateKind::ANY_INSTANCE_STATE);

for (int i = 0; i < data_seq.length(); ++i) {
 if (infoSeq->get_at(i)->valid_data) {
 StringTypeSupport::print_data(dataSeq->get_at(i));
 }
}
/* Return loan */
stringReader->return_loan(dataSeq, infoSeq);

C# Example:

using System;
using DDS;
...

StringSeq dataSeq = new StringSeq();
SampleInfoSeq infoSeq = new SampleInfoSeq();
StringDataReader stringReader = ... ;

/* Take and print the data */
stringReader.take(dataSeq, infoSeq,

ResourceLimitsQosPolicy.LENGTH_UNLIMITED,
SampleStateKind.ANY_SAMPLE_STATE,
ViewStateKind.ANY_VIEW_STATE,
InstanceStateKind.ANY_INSTANCE_STATE);

for (int i = 0; i < data_seq.length(); ++i) {
 if (infoSeq.get_at(i)).valid_data) {
 StringTypeSupport.print_data(dataSeq.get_at(i));
 }
}

Java Example:

import com.rti.dds.infrastructure.*;
import com.rti.dds.subscription.*;
import com.rti.dds.type.builtin.*;
...

StringSeq dataSeq = new StringSeq();
SampleInfoSeq infoSeq = new SampleInfoSeq();
StringDataReader stringReader = ... ;

/* Take and print the data */
stringReader.take(dataSeq, infoSeq,

ResourceLimitsQosPolicy.LENGTH_UNLIMITED,
SampleStateKind.ANY_SAMPLE_STATE,
ViewStateKind.ANY_VIEW_STATE,
InstanceStateKind.ANY_INSTANCE_STATE);

for (int i = 0; i < data_seq.length(); ++i) {
 if (((SampleInfo)infoSeq.get(i)).valid_data) {
 System.out.println((String)dataSeq.get(i));
 }
}
/* Return loan */
stringReader.return_loan(dataSeq, infoSeq);
3-11

Built-in Data Types
3.2.4 KeyedString Built-in Type

The Keyed String built-in type is represented by a (key, value) pair, where key and value are
strings. This type can be used to publish and subscribe to keyed strings. The language specific
representations of the type are as follows:

C/C++ Representation (without namespaces):

struct DDS_KeyedString {
 char * key;
 char * value;
};

C++/CLI Representation:

namespace DDS {
public ref struct KeyedString: {

 public:
 System::String^ key;
 System::String^ value;
 ...

};
};

C# Representation:

namespace DDS {
public class KeyedString {

 public System.String key;
 public System.String value;
 };
};

Java Representation:

namespace DDS {
public class KeyedString {

 public System.String key;
 public System.String value;
 };
};

3.2.4.1 Creating and Deleting Keyed Strings

Connext provides a set of constructors/destructors to create/destroy Keyed Strings. For details,
see the API Reference HTML documentation, which is available for all supported programming
languages (select Modules, RTI Connext DDS API Reference, Topic Module, Built-in Types).

If you want to manipulate the memory of the fields 'value' and 'key' in the KeyedString struct in
C/C++, use the operations DDS::String_alloc(), DDS::String_dup(), and DDS::String_free(),
as described in the API Reference HTML documentation (select Modules, RTI Connext DDS
API Reference, Infrastructure Module, String Support).

3.2.4.2 Keyed String DataWriter

The keyed string DataWriter API is extended with the following methods (in addition to the
standard methods described in Using a Type-Specific DataWriter (FooDataWriter) (Section
6.3.7)):

DDS::ReturnCode_t DDS::KeyedStringDataWriter::dispose(
const char* key,

 const DDS::InstanceHandle_t* instance_handle);
3-12

Built-in Data Types
DDS::ReturnCode_t DDS::KeyedStringDataWriter::dispose_w_timestamp(
const char* key,
const DDS::InstanceHandle_t* instance_handle,
const struct DDS::Time_t* source_timestamp);

DDS::ReturnCode_t DDS::KeyedStringDataWriter::get_key_value(
char * key,
const DDS::InstanceHandle_t* handle);

DDS::InstanceHandle_t DDS::KeyedStringDataWriter::lookup_instance(
const char * key);

DDS::InstanceHandle_t DDS::KeyedStringDataWriter::register_instance(
const char* key);

DDS::InstanceHandle_t
DDS_KeyedStringDataWriter::register_instance_w_timestamp(

const char * key,
const struct DDS_Time_t* source_timestamp);

DDS::ReturnCode_t DDS::KeyedStringDataWriter::unregister_instance(
const char * key,
const DDS::InstanceHandle_t* handle);

DDS::ReturnCode_t
DDS::KeyedStringDataWriter::unregister_instance_w_timestamp(

const char* key,
const DDS::InstanceHandle_t* handle,
const struct DDS::Time_t* source_timestamp);

DDS::ReturnCode_t DDS::KeyedStringDataWriter::write (
const char * key,
const char * str,
const DDS::InstanceHandle_t* handle);

DDS::ReturnCode_t DDS::KeyedStringDataWriter::write_w_timestamp(
const char * key,
const char * str,
const DDS::InstanceHandle_t* handle,
const struct DDS::Time_t* source_timestamp);

These operations are introduced to provide maximum flexibility in the format of the input
parameters for the write and instance management operations. For additional information and a
complete description of the operations, see the API Reference HTML documentation, which is
available for all supported programming languages.

The following examples show how to write keyed strings using a keyed string built-in type
DataWriter and some of the extended APIs. For simplicity, error handling is not shown.

C Example:

DDS_KeyedStringDataWriter * stringWriter = ... ;
DDS_ReturnCode_t retCode;
struct DDS_KeyedString * keyedStr = NULL;
char * str = NULL;

/* Write some data using the KeyedString structure */
keyedStr = DDS_KeyedString_new(255, 255);
strcpy(keyedStr->key, "Key 1");
strcpy(keyedStr->value, "Value 1");
3-13

Built-in Data Types
retCode = DDS_KeyedStringDataWriter_write_string_w_key(
 stringWriter, keyedStr,
 &DDS_HANDLE_NIL);

DDS_KeyedString_delete(keyedStr);

/* Write some data using individual strings */
retCode = DDS_KeyedStringDataWriter_write_string_w_key(

stringWriter, "Key 1",
"Value 1", &DDS_HANDLE_NIL);

str = DDS_String_dup("Value 2");

retCode = DDS_KeyedStringDataWriter_write_string_w_key(
stringWriter, "Key 1",
str, &DDS_HANDLE_NIL);

DDS_String_free(str);

C++ Example with Namespaces1:

#include "ndds/ndds_namespace_cpp.h"
using namespace DDS;
...

KeyedStringDataWriter * stringWriter = ... ;

/* Write some data using the KeyedString */
KeyedString * keyedStr = new KeyedString(255, 255);
strcpy(keyedStr->key, "Key 1");
strcpy(keyedStr->value, "Value 1");

ReturnCode_t retCode = stringWriter->write(keyedStr, HANDLE_NIL);

delete keyedStr;
#include "ndds/ndds_namespace_cpp.h"
using namespace DDS;
...

KeyedStringDataWriter * stringWriter = ... ;

/* Write some data using the KeyedString */
KeyedString * keyedStr = new KeyedString(255, 255);
strcpy(keyedStr->key, "Key 1");
strcpy(keyedStr->value, "Value 1");

ReturnCode_t retCode = stringWriter->write(keyedStr, HANDLE_NIL);

delete keyedStr;

C++/CLI Example:

using namespace System;
using namespace DDS;
...

KeyedStringDataWriter^ stringWriter = ... ;

/* Write some data using the KeyedString */
KeyedString^ keyedStr = gcnew KeyedString();
keyedStr->key = "Key 1";
keyedStr->value = "Value 1";

1. This example uses C++ namespaces. If you're not using namespaces in your own code, prefix the name of each
DDS class with 'DDS.' For example, DDS::StringDataWriter becomes DDSStringDataWriter.
3-14

Built-in Data Types
stringWriter->write(keyedStr, InstanceHandle_t::HANDLE_NIL);

/* Write some data using individual strings */
stringWriter->write("Key 1","Value 1",InstanceHandle_t::HANDLE_NIL);

String^ str = "Value 2";
stringWriter->write("Key 1", str, InstanceHandle_t::HANDLE_NIL);

C# Example

using System;
using DDS;
...

KeyedStringDataWriter stringWriter = ... ;

/* Write some data using the KeyedString */
KeyedString keyedStr = new KeyedString();
keyedStr.key = "Key 1";
keyedStr.value = "Value 1";

stringWriter.write(keyedStr, InstanceHandle_t.HANDLE_NIL);

/* Write some data using individual strings */
stringWriter.write("Key 1", "Value 1", InstanceHandle_t.HANDLE_NIL);

String str = "Value 2";
stringWriter.write("Key 1", str, InstanceHandle_t.HANDLE_NIL);

Java Example :

import com.rti.dds.publication.*;
import com.rti.dds.type.builtin.*;
import com.rti.dds.infrastructure.*;
...

KeyedStringDataWriter stringWriter = ... ;

/* Write some data using the KeyedString */
KeyedString keyedStr = new KeyedString();
keyedStr.key = "Key 1";
keyedStr.value = "Value 1";

stringWriter.write(keyedStr, InstanceHandle_t.HANDLE_NIL);

/* Write some data using individual strings */
stringWriter.write("Key 1", "Value 1", InstanceHandle_t.HANDLE_NIL);

String str = "Value 2";

stringWriter.write("Key 1", str, InstanceHandle_t.HANDLE_NIL);

3.2.4.3 Keyed String DataReader

The KeyedString DataReader API is extended with the following operations (in addition to the
standard methods described in Using a Type-Specific DataReader (FooDataReader) (Section
7.4.1)):

DDS::ReturnCode_t DDS::KeyedStringDataReader::get_key_value(
char * key, const DDS::InstanceHandle_t* handle);

DDS::InstanceHandle_t DDS::KeyedStringDataReader::lookup_instance(
3-15

Built-in Data Types
const char * key);

For additional information and a complete description of these operations in all supported lan-
guages, see the API Reference HTML documentation, which is available for all supported pro-
gramming languages.

Memory considerations in copy operations:

For read/take operations with copy semantics, such as read_next_sample() and
take_next_sample(), Connext allocates memory for the fields 'value' and 'key' if they are
initialized to NULL.

If the fields are not initialized to NULL, the behavior depends on the language:

• In Java and .NET, the memory associated to the fields 'value' and 'key' will be reallo-
cated with every sample.

• In C and C++, the memory associated with the fields 'value' and 'key' must be large
enough to hold the received data. Insufficient memory may result in crashes.

The following examples show how to read keyed strings with a keyed string built-in type
DataReader. For simplicity, error handling is not shown.

C Example:

struct DDS_KeyedStringSeq dataSeq = DDS_SEQUENCE_INITIALIZER;
struct DDS_SampleInfoSeq infoSeq = DDS_SEQUENCE_INITIALIZER;
DDS_KeyedKeyedStringDataReader * stringReader = ... ;
DDS_ReturnCode_t retCode;
int i;

/* Take and print the data */
retCode = DDS_KeyedStringDataReader_take(stringReader, &dataSeq,

 &infoSeq,
 DDS_LENGTH_UNLIMITED,
 DDS_ANY_SAMPLE_STATE,
 DDS_ANY_VIEW_STATE,
 DDS_ANY_INSTANCE_STATE);

for (i = 0; i < DDS_KeyedStringSeq_get_length(&data_seq); ++i) {
 if (DDS_SampleInfoSeq_get_reference(&info_seq, i)->valid_data) {
 DDS_KeyedStringTypeSupport_print_data(

 DDS_KeyedStringSeq_get_reference(&data_seq, i));
 }
}
/* Return loan */
retCode = DDS_KeyedStringDataReader_return_loan(

stringReader, &data_seq, &info_seq);

C++ Example with Namespaces1:

#include "ndds/ndds_namespace_cpp.h"
using namespace DDS;
...

KeyedStringSeq dataSeq;
SampleInfoSeq infoSeq;
KeyedStringDataReader * stringReader = ... ;

/* Take a print the data */

1. This example uses C++ namespaces. If you're not using namespaces in your own code, prefix the name of each
DDS class with 'DDS.' For example, DDS::StringDataWriter becomes DDSStringDataWriter.
3-16

Built-in Data Types
ReturnCode_t retCode = stringReader->take(dataSeq, infoSeq,
 LENGTH_UNLIMITED,
 ANY_SAMPLE_STATE,

 ANY_VIEW_STATE,
 ANY_INSTANCE_STATE);

for (int i = 0; i < data_seq.length(); ++i) {
 if (infoSeq[i].valid_data) {
 KeyedStringTypeSupport::print_data(&dataSeq[i]);
 }
}
/* Return loan */
retCode = stringReader->return_loan(dataSeq, infoSeq);

C++/CLI Example:

using namespace System;
using namespace DDS;
...

KeyedStringSeq^ dataSeq = gcnew KeyedStringSeq();
SampleInfoSeq^ infoSeq = gcnew SampleInfoSeq();
KeyedStringDataReader^ stringReader = ... ;

/* Take and print the data */
stringReader->take(dataSeq, infoSeq,

 ResourceLimitsQosPolicy::LENGTH_UNLIMITED,
 SampleStateKind::ANY_SAMPLE_STATE,
 ViewStateKind::ANY_VIEW_STATE,
 InstanceStateKind::ANY_INSTANCE_STATE);

for (int i = 0; i < data_seq.length(); ++i) {
 if (infoSeq->get_at(i)->valid_data) {
 KeyedStringTypeSupport::print_data(dataSeq->get_at(i));
 }
}
/* Return loan */
stringReader->return_loan(dataSeq, infoSeq);

C# Example:

using System;
using DDS;
...

KeyedStringSeq dataSeq = new KeyedStringSeq();
SampleInfoSeq infoSeq = new SampleInfoSeq();
KeyedStringDataReader stringReader = ... ;

/* Take and print the data */
stringReader.take(dataSeq, infoSeq,

ResourceLimitsQosPolicy.LENGTH_UNLIMITED,
SampleStateKind.ANY_SAMPLE_STATE,
ViewStateKind.ANY_VIEW_STATE,
InstanceStateKind.ANY_INSTANCE_STATE);

for (int i = 0; i < data_seq.length(); ++i) {
 if (infoSeq.get_at(i)).valid_data) {
 KeyedStringTypeSupport.print_data(dataSeq.get_at(i));
 }
}
/* Return loan */
3-17

Built-in Data Types
stringReader.return_loan(dataSeq, infoSeq);

Java Example:

import com.rti.dds.infrastructure.*;
import com.rti.dds.subscription.*;
import com.rti.dds.type.builtin.*;
...

KeyedStringSeq dataSeq = new KeyedStringSeq();
SampleInfoSeq infoSeq = new SampleInfoSeq();
KeyedStringDataReader stringReader = ... ;

/* Take and print the data */
stringReader.take(dataSeq, infoSeq,

ResourceLimitsQosPolicy.LENGTH_UNLIMITED,
SampleStateKind.ANY_SAMPLE_STATE,
ViewStateKind.ANY_VIEW_STATE,
InstanceStateKind.ANY_INSTANCE_STATE);

for (int i = 0; i < data_seq.length(); ++i) {
 if (((SampleInfo)infoSeq.get(i)).valid_data) {
 System.out.println((

(KeyedString)dataSeq.get(i)).toString());
 }
}
/* Return loan */
stringReader.return_loan(dataSeq, infoSeq);

3.2.5 Octets Built-in Type

The octets built-in type is used to send sequences of octets. The language-specific representa-
tions are as follows:

C/C++ Representation (without Namespaces):

struct DDS_Octets {
 int length;
 unsigned char * value;
};

C++/CLI Representation:

namespace DDS {
 public ref struct Bytes: {
 public:
 System::Int32 length;
 System::Int32 offset;
 array<System::Byte>^ value;
 ...
 };
};

C# Representation:

namespace DDS {
public class Bytes {

 public System.Int32 length;
 public System.Int32 offset;
 public System.Byte[] value;

 ...
 };
};
3-18

Built-in Data Types
Java Representation:

package com.rti.dds.type.builtin;

public class Bytes implements Copyable {
 public int length;
 public int offset;
 public byte[] value;
 ...
};

3.2.5.1 Creating and Deleting Octets

Connext provides a set of constructors/destructors to create and destroy Octet objects. For
details, see the API Reference HTML documentation, which is available for all supported pro-
gramming languages (select Modules, RTI Connext DDS API Reference, Topic Module, Built-
in Types).

If you want to manipulate the memory of the value field inside the Octets struct in C/C++, use
the operations DDS::OctetBuffer_alloc(), DDS::OctetBuffer_dup(), and
DDS::OctetBuffer_free(), described in the API Reference HTML documentation (select Mod-
ules, RTI Connext DDS API Reference, Infrastructure Module, Octet Buffer Support).

3.2.5.2 Octets DataWriter

In addition to the standard methods (see Using a Type-Specific DataWriter (FooDataWriter)
(Section 6.3.7)), the octets DataWriter API is extended with the following methods:

DDS::ReturnCode_t DDS::OctetsDataWriter::write(
 const DDS::OctetSeq & octets,
 const DDS::InstanceHandle_t & handle);

DDS::ReturnCode_t DDS::OctetsDataWriter::write(
 const unsigned char * octets,
 int length,
 const DDS::InstanceHandle_t& handle);

DDS::ReturnCode_t DDS::OctetsDataWriter::write_w_timestamp(
 const DDS::OctetSeq & octets,
 const DDS::InstanceHandle_t & handle,
 const DDS::Time_t & source_timestamp);

DDS::ReturnCode_t DDS::OctetsDataWriter::write_w_timestamp(
 const unsigned char * octets,
 int length,
 const DDS::InstanceHandle_t& handle,
 const DDS::Time_t& source_timestamp);

These methods are introduced to provide maximum flexibility in the format of the input param-
eters for the write operations. For additional information and a complete description of these
operations in all supported languages, see the API Reference HTML documentation.

The following examples show how to write an array of octets using an octets built-in type
DataWriter and some of the extended APIs. For simplicity, error handling is not shown.

C Example:

DDS_OctetsDataWriter * octetsWriter = ... ;
DDS_ReturnCode_t retCode;
struct DDS_Octets * octets = NULL;
char * octetArray = NULL;

/* Write some data using the Octets structure */
3-19

Built-in Data Types
octets = DDS_Octets_new_w_size(1024);
octets->length = 2;
octets->value[0] = 46;
octets->value[1] = 47;

retCode = DDS_OctetsDataWriter_write(octetsWriter, octets, &DDS_HANDLE_NIL);
DDS_Octets_delete(octets);

/* Write some data using an octets array */
octetArray = (unsigned char *)malloc(1024);
octetArray[0] = 46;
octetArray[1] = 47;

retCode = DDS_OctetsDataWriter_write_octets (octetsWriter, octetArray, 2,
 &DDS_HANDLE_NIL);

free(octetArray);

C++ Example with Namespaces1:

#include "ndds/ndds_namespace_cpp.h"
using namespace DDS;
...

OctetsDataWriter * octetsWriter = ... ;

/* Write some data using the Octets structure */
Octets * octets = new Octets(1024);
octets->length = 2;
octets->value[0] = 46;
octets->value[1] = 47;

ReturnCode_t retCode = octetsWriter->write(octets, HANDLE_NIL);

delete octets;

/* Write some data using an octet array */
unsigned char * octetArray = new unsigned char[1024];
octetArray[0] = 46;
octetArray[1] = 47;
retCode = octetsWriter->write(octetArray, 2, HANDLE_NIL);

delete []octetArray;

C++/CLI Example:

using namespace System;
using namespace DDS;
...

BytesDataWriter^ octetsWriter = ...;

/* Write some data using Bytes */
Bytes^ octets = gcnew Bytes(1024);
octets->value[0] =46;
octets->value[1] =47;
octets.length = 2;
octets.offset = 0;

octetWriter->write(octets, InstanceHandle_t::HANDLE_NIL);

1. This example uses C++ namespaces. If you're not using namespaces in your own code, prefix the name of each
DDS class with 'DDS.' For example, DDS::StringDataWriter becomes DDSStringDataWriter.
3-20

Built-in Data Types
/* Write some data using individual strings */
array<Byte>^ octetAray = gcnew array<Byte>(1024);
octetArray[0] = 46;
octetArray[1] = 47;
octetsWriter->write(octetArray, 0, 2, InstanceHandle_t::HANDLE_NIL);

C# Example:

using System;
using DDS;
...

BytesDataWriter stringWriter = ...;

/* Write some data using the Bytes */
Bytes octets = new Bytes(1024);
octets.value[0] = 46;
octets.value[1] = 47;
octets.length = 2;
octets.offset = 0;

octetWriter.write(octets, InstanceHandle_t.HANDLE_NIL);

/* Write some data using individual strings */
byte[] octetArray = new byte[1024];
octetArray[0] = 46;
octetArray[1] = 47;
octetsWriter.write(octetArray, 0, 2, InstanceHandle_t.HANDLE_NIL);

Java Example:

import com.rti.dds.publication.*;
import com.rti.dds.type.builtin.*;
import com.rti.dds.infrastructure.*;
...

BytesDataWriter octetsWriter = ... ;

/* Write some data using the Bytes class*/
Bytes octets = new Bytes(1024);
octets.length = 2;
octets.offset = 0;
octets.value[0] = 46;
octets.value[1] = 47;

octetsWriter.write(octets, InstanceHandle_t.HANDLE_NIL);

/* Write some data using a byte array */
byte[] octetArray = new byte[1024];
octetArray[0] = 46;
octetArray[1] = 47;

octetsWriter.write(octetArray, 0, 2, InstanceHandle_t.HANDLE_NIL);

3.2.5.3 Octets DataReader

The octets DataReader API matches the standard DataReader API (see Using a Type-Specific
DataReader (FooDataReader) (Section 7.4.1)). There are no extensions.
3-21

Built-in Data Types
Memory considerations in copy operations:

For read/take operations with copy semantics, such as read_next_sample() and
take_next_sample(), Connext allocates memory for the field 'value' if it is initialized to
NULL.

If the field 'value' is not initialized to NULL, the behavior depends on the language:

• In Java and .NET, the memory for the field 'value' will be reallocated if the current size
is not large enough to hold the received data.

• In C and C++, the memory associated with the field 'value' must be big enough to
hold the received data. Insufficient memory may result in crashes.

The following examples show how to read octets with an octets built-in type DataReader. For
simplicity, error handling is not shown.

C Example:

struct DDS_OctetsSeq dataSeq = DDS_SEQUENCE_INITIALIZER;
struct DDS_SampleInfoSeq infoSeq = DDS_SEQUENCE_INITIALIZER;
DDS_OctetsDataReader * octetsReader = ... ;
DDS_ReturnCode_t retCode;
int i;

/* Take and print the data */
retCode = DDS_OctetsDataReader_take(octetsReader, &dataSeq,

 &infoSeq, DDS_LENGTH_UNLIMITED,
 DDS_ANY_SAMPLE_STATE,
 DDS_ANY_VIEW_STATE,
 DDS_ANY_INSTANCE_STATE);

for (i = 0; i < DDS_OctetsSeq_get_length(&dataSeq); ++i) {
 if (DDS_SampleInfoSeq_get_reference(&infoSeq, i)->valid_data) {
 DDS_OctetsTypeSupport_print_data(

 DDS_OctetsSeq_get_reference(&dataSeq, i));
 }
}
/* Return loan */
retCode = DDS_OctetsDataReader_return_loan(octetsReader, &dataSeq, &infoSeq);

C++ Example with Namespaces1:

#include "ndds/ndds_namespace_cpp.h"
using namespace DDS;
...
OctetsSeq dataSeq;
SampleInfoSeq infoSeq;
OctetsDataReader * octetsReader = ... ;

/* Take a print the data */
ReturnCode_t retCode = octetsReader->take(dataSeq, infoSeq,

LENGTH_UNLIMITED, ANY_SAMPLE_STATE,
ANY_VIEW_STATE,ANY_INSTANCE_STATE);

for (int i = 0; i < data_seq.length(); ++i) {
 if (infoSeq[i].valid_data) {
 OctetsTypeSupport::print_data(&dataSeq[i]);
 }
}
/* Return loan */
retCode = octetsReader->return_loan(dataSeq, infoSeq);

1. This example uses C++ namespaces. If you're not using namespaces in your own code, prefix the name of each
DDS class with 'DDS.' For example, DDS::StringDataWriter becomes DDSStringDataWriter.
3-22

Built-in Data Types
C++/CLI Example:

using namespace System;
using namespace DDS;
...

BytesSeq^ dataSeq = gcnew BytesSeq();
SampleInfoSeq^ infoSeq = gcnew SampleInfoSeq();
BytesDataReader^ octetsReader = ... ;

/* Take and print the data */
octetsReader->take(dataSeq, infoSeq,

 ResourceLimitsQosPolicy::LENGTH_UNLIMITED,
 SampleStateKind::ANY_SAMPLE_STATE,
 ViewStateKind::ANY_VIEW_STATE,
 InstanceStateKind::ANY_INSTANCE_STATE);

for (int i = 0; i < data_seq.length(); ++i) {
 if (infoSeq->get_at(i)->valid_data) {
 BytesTypeSupport::print_data(dataSeq->get_at(i));
 }
}
/* Return loan */
octetsReader->return_loan(dataSeq, infoSeq);

C# Example:

using System;
using DDS;
...
BytesSeq dataSeq = new BytesSeq();
SampleInfoSeq infoSeq = new SampleInfoSeq();
BytesDataReader octetsReader = ... ;

/* Take and print the data */
octetsReader.take(dataSeq, infoSeq,

ResourceLimitsQosPolicy.LENGTH_UNLIMITED,
SampleStateKind.ANY_SAMPLE_STATE,
ViewStateKind.ANY_VIEW_STATE,
InstanceStateKind.ANY_INSTANCE_STATE);

for (int i = 0; i < data_seq.length(); ++i) {
 if (infoSeq.get_at(i)).valid_data) {
 BytesTypeSupport.print_data(dataSeq.get_at(i));
 }
}
/* Return loan */
octetsReader.return_loan(dataSeq, infoSeq);

Java Example:

import com.rti.dds.infrastructure.*;
import com.rti.dds.subscription.*;
import com.rti.dds.type.builtin.*;
...
BytesSeq dataSeq = new BytesSeq();
SampleInfoSeq infoSeq = new SampleInfoSeq();
BytesDataReader octetsReader = ... ;

/* Take and print the data */
octetsReader.take(dataSeq, infoSeq,

ResourceLimitsQosPolicy.LENGTH_UNLIMITED,
SampleStateKind.ANY_SAMPLE_STATE,
3-23

Built-in Data Types
ViewStateKind.ANY_VIEW_STATE,
InstanceStateKind.ANY_INSTANCE_STATE);

for (int i = 0; i < data_seq.length(); ++i) {
 if (((SampleInfo)infoSeq.get(i)).valid_data) {
 System.out.println(((Bytes)dataSeq.get(i)).toString());
 }
}
/* Return loan */
octetsReader.return_loan(dataSeq, infoSeq);

3.2.6 KeyedOctets Built-in Type

The keyed octets built-in type is used to send sequences of octets with a key. The language-spe-
cific representations of the type are as follows:

C/C++ Representation (without Namespaces):

struct DDS_KeyedOctets {
 char * key;
 int length;
 unsigned char * value;
};

C++/CLI Representation:

namespace DDS {
 public ref struct KeyedBytes {
 public:
 System::String^ key;
 System::Int32 length;
 System::Int32 offset;
 array<System::Byte>^ value;
 ...
 };
};

C# Representation:

namespace DDS {
 public class KeyedBytes {
 public System.String key;
 public System.Int32 length;
 public System.Int32 offset;
 public System.Byte[] value;
 …
 };
};

Java Representation:

package com.rti.dds.type.builtin;
public class KeyedBytes {
 public String key;
 public int length;
 public int offset;
 public byte[] value;
 ...
};

3.2.6.1 Creating and Deleting KeyedOctets

Connext provides a set of constructors/destructors to create/destroy KeyedOctets objects. For
details, see the API Reference HTML documentation, which is available for all supported pro-
3-24

Built-in Data Types
gramming languages (select Modules, RTI Connext DDS API Reference, Topic Module, Built-
in Types).

To manipulate the memory of the value field in the KeyedOctets struct in C/C++: use
DDS::OctetBuffer_alloc(), DDS::OctetBuffer_dup(), and DDS::OctetBuffer_free(). See the API
Reference HTML documentation (select Modules, RTI Connext DDS API Reference, Infra-
structure Module, Octet Buffer Support).

To manipulate the memory of the key field in the KeyedOctets struct in C/C++: use
DDS::String_alloc(), DDS::String_dup(), and DDS::String_free(). See the API Reference
HTML documentation (select Modules, RTI Connext DDS API Reference, Infrastructure Mod-
ule, String Support).

3.2.6.2 Keyed Octets DataWriter

In addition to the standard methods (see Using a Type-Specific DataWriter (FooDataWriter)
(Section 6.3.7)), the keyed octets DataWriter API is extended with the following methods:

DDS::ReturnCode_t DDS::KeyedOctetsDataWriter::dispose(
const char* key,
const DDS::InstanceHandle_t & instance_handle);

DDS::ReturnCode_t DDS::KeyedOctetsDataWriter::dispose_w_timestamp(
const char* key,
const DDS::InstanceHandle_t & instance_handle,
const DDS::Time_t & source_timestamp);

DDS::ReturnCode_t DDS::KeyedOctetsDataWriter::get_key_value(
char * key,
const DDS::InstanceHandle_t& handle);

DDS::InstanceHandle_t DDS::KeyedOctetsDataWriter::lookup_instance(
const char * key);

DDS::InstanceHandle_t DDS::KeyedOctetsDataWriter::register_instance(
const char* key);

DDS::InstanceHandle_t
DDS::KeyedOctetsDataWriter::register_instance_w_timestamp(

const char * key,
const DDS::Time_t & source_timestamp);

DDS::ReturnCode_t DDS::KeyedOctetsDataWriter::unregister_instance(
const char * key,
const DDS::InstanceHandle_t & handle);

DDS::ReturnCode_t
DDS::KeyedOctetsDataWriter::unregister_instance_w_timestamp(

const char* key,
const DDS::InstanceHandle_t & handle,
const DDS::Time_t & source_timestamp);

DDS::ReturnCode_t DDS::KeyedOctetsDataWriter::write(
const char * key,
const unsigned char * octets,
int length,
const DDS::InstanceHandle_t& handle);

DDS::ReturnCode_t DDS::KeyedOctetsDataWriter::write(
const char * key,
const DDS::OctetSeq & octets,
3-25

Built-in Data Types
const DDS::InstanceHandle_t & handle);

DDS::ReturnCode_t DDS::KeyedOctetsDataWriter::write_w_timestamp(
const char * key,
const unsigned char * octets,
int length,
const DDS::InstanceHandle_t& handle,
const DDS::Time_t& source_timestamp);

DDS::ReturnCode_t DDS::KeyedOctetsDataWriter::write_w_timestamp(
const char * key,
const DDS::OctetSeq & octets,
const DDS::InstanceHandle_t & handle,
const DDS::Time_t & source_timestamp);

These methods are introduced to provide maximum flexibility in the format of the input param-
eters for the write and instance management operations. For more information and a complete
description of these operations in all supported languages, see the API Reference HTML docu-
mentation.

The following examples show how to write keyed octets using a keyed octets built-in type
DataWriter and some of the extended APIs. For simplicity, error handling is not shown.

C Example:

DDS_KeyedOctetsDataWriter * octetsWriter = ... ;
DDS_ReturnCode_t retCode;
struct DDS_KeyedOctets * octets = NULL;
char * octetArray = NULL;

/* Write some data using the KeyedOctets structure */
octets = DDS_KeyedOctets_new_w_size(128,1024);
strcpy(octets->key, "Key 1");
octets->length = 2;
octets->value[0] = 46;
octets->value[1] = 47;

retCode = DDS_KeyedOctetsDataWriter_write(
 octetsWriter, octets, &DDS_HANDLE_NIL);

DDS_KeyedOctets_delete(octets);

/* Write some data using an octets array */
octetArray = (unsigned char *)malloc(1024);
octetArray[0] = 46;
octetArray[1] = 47;

retCode = DDS_KeyedOctetsDataWriter_write_octets_w_key (
octetsWriter, "Key 1", octetArray, 2, &DDS_HANDLE_NIL);

free(octetArray);

C++ Example with Namespaces1:

#include "ndds/ndds_namespace_cpp.h"
using namespace DDS;
...

KeyedOctetsDataWriter * octetsWriter = ... ;

1. This example uses C++ namespaces. If you're not using namespaces in your own code, prefix the name of each
DDS class with 'DDS.' For example, DDS::StringDataWriter becomes DDSStringDataWriter.
3-26

Built-in Data Types
/* Write some data using the KeyedOctets structure */
KeyedOctets * octets = new KeyedOctets(128,1024);
strcpy(octets->key, "Key 1");
octets->length = 2;
octets->value[0] = 46;
octets->value[1] = 47;

ReturnCode_t retCode = octetsWriter->write(octets, HANDLE_NIL);

delete octets;

/* Write some data using an octet array */
unsigned char * octetArray = new unsigned char[1024];
octetArray[0] = 46;
octetArray[1] = 47;

retCode = octetsWriter->write("Key 1", octetArray, 2, HANDLE_NIL);

delete []octetArray;

C++/CLI Example:

using namespace System;
using namespace DDS;
...

KeyedOctetsDataWriter^ octetsWriter = ... ;

/* Write some data using KeyedBytes */
KeyedBytes^ octets = gcnew KeyedBytes(1024);
octets->key = "Key 1";
octets->value[0] =46;
octets->value[1] =47;
octets.length = 2;
octets.offset = 0;

octetWriter->write(octets, InstanceHandle_t::HANDLE_NIL);

/* Write some data using individual strings */
array<Byte>^ octetAray = gcnew array<Byte>(1024);
octetArray[0] = 46;
octetArray[1] = 47;

octetsWriter->write(
"Key 1", octetArray, 0, 2, InstanceHandle_t::HANDLE_NIL);

C# Example:

using System;
using DDS;
...

KeyedBytesDataWriter stringWriter = ... ;

/* Write some data using the KeyedBytes */
KeyedBytes octets = new KeyedBytes(1024);
octets.key = "Key 1";
octets.value[0] = 46;
octets.value[1] = 47;
octets.length = 2;
octets.offset = 0;
3-27

Built-in Data Types
octetWriter.write(octets, InstanceHandle_t.HANDLE_NIL);

/* Write some data using individual strings */
byte[] octetArray = new byte[1024];
octetArray[0] = 46;
octetArray[1] = 47;

octetsWriter.write(
"Key 1", octetArray, 0, 2, InstanceHandle_t.HANDLE_NIL);

Java Example:

import com.rti.dds.publication.*;
import com.rti.dds.type.builtin.*;
import com.rti.dds.infrastructure.*;
...

KeyedBytesDataWriter octetsWriter = ... ;

/* Write some data using the KeyedBytes class*/
KeyedBytes octets = new KeyedBytes(1024);
octets.key = "Key 1";
octets.length = 2;
octets.offset = 0;
octets.value[0] = 46;
octets.value[1] = 47;
octetsWriter.write(octets, InstanceHandle_t.HANDLE_NIL);

/* Write some data using a byte array */
byte[] octetArray = new byte[1024];
octetArray[0] = 46;
octetArray[1] = 47;
octetsWriter.write(

"Key 1", octetArray, 0, 2, InstanceHandle_t.HANDLE_NIL);

3.2.6.3 Keyed Octets DataReader

The KeyedOctets DataReader API is extended with the following methods (in addition to the
standard methods described in Using a Type-Specific DataReader (FooDataReader) (Section
7.4.1)):

DDS::ReturnCode_t DDS::KeyedOctetsDataReader::get_key_value(
char * key,
const DDS::InstanceHandle_t* handle);

DDS::InstanceHandle_t DDS::KeyedOctetsDataReader::lookup_instance(
const char * key);

For more information and a complete description of these operations in all supported lan-
guages, see the API Reference HTML documentation.

Memory considerations in copy operations:

For read/take operations with copy semantics, such as read_next_sample() and
take_next_sample(), Connext allocates memory for the fields 'value' and 'key' if they are
initialized to NULL.

If the fields are not initialized to NULL, the behavior depends on the language:

• In Java and .NET, the memory of the field 'value' will be reallocated if the current size
is not large enough to hold the received data. The memory associated with the field
'key' will be reallocated with every sample (the key is an immutable object).
3-28

Built-in Data Types
• In C and C++, the memory associated with the fields 'value' and 'key' must be large
enough to hold the received data. Insufficient memory may result in crashes.

The following examples show how to read keyed octets with a keyed octets built-in type
DataReader. For simplicity, error handling is not shown.

C Example:

struct DDS_KeyedOctetsSeq dataSeq = DDS_SEQUENCE_INITIALIZER;
struct DDS_SampleInfoSeq infoSeq = DDS_SEQUENCE_INITIALIZER;
DDS_KeyedOctetsDataReader * octetsReader = ... ;
DDS_ReturnCode_t retCode;
int i;

/* Take and print the data */
retCode = DDS_KeyedOctetsDataReader_take(

octetsReader,
&dataSeq, &infoSeq, DDS_LENGTH_UNLIMITED,
DDS_ANY_SAMPLE_STATE, DDS_ANY_VIEW_STATE,
DDS_ANY_INSTANCE_STATE);

for (i = 0; i < DDS_KeyedOctetsSeq_get_length(&data_seq); ++i) {
 if (DDS_SampleInfoSeq_get_reference(&info_seq, i)->valid_data) {
 DDS_KeyedOctetsTypeSupport_print_data(
 DDS_KeyedOctetsSeq_get_reference(&data_seq, i));
 }
}
/* Return loan */
retCode = DDS_KeyedOctetsDataReader_return_loan(

octetsReader, &data_seq, &info_seq);

C++ Example with Namespaces1:

#include "ndds/ndds_namespace_cpp.h"
using namespace DDS;
...
KeyedOctetsSeq dataSeq;
SampleInfoSeq infoSeq;
KeyedOctetsDataReader * octetsReader = ... ;

/* Take a print the data */
ReturnCode_t retCode = octetsReader->take(

dataSeq, infoSeq, LENGTH_UNLIMITED,
ANY_SAMPLE_STATE, ANY_VIEW_STATE, ANY_INSTANCE_STATE);

for (int i = 0; i < data_seq.length(); ++i) {
 if (infoSeq[i].valid_data) {
 KeyedOctetsTypeSupport::print_data(&dataSeq[i]);
 }
}
/* Return loan */
retCode = octetsReader->return_loan(dataSeq, infoSeq);

C++/CLI Example:

using namespace System;
using namespace DDS;
...
KeyedBytesSeq^ dataSeq = gcnew KeyedBytesSeq();
SampleInfoSeq^ infoSeq = gcnew SampleInfoSeq();

1. This example uses C++ namespaces. If you're not using namespaces in your own code, prefix the name of each
DDS class with 'DDS.' For example, DDS::StringDataWriter becomes DDSStringDataWriter.
3-29

Built-in Data Types
KeyedBytesDataReader^ octetsReader = ... ;

/* Take and print the data */
octetsReader->take(dataSeq, infoSeq,

 ResourceLimitsQosPolicy::LENGTH_UNLIMITED,
 SampleStateKind::ANY_SAMPLE_STATE,
 ViewStateKind::ANY_VIEW_STATE,
 InstanceStateKind::ANY_INSTANCE_STATE);

for (int i = 0; i < data_seq.length(); ++i) {
 if (infoSeq->get_at(i)->valid_data) {
 KeyedBytesTypeSupport::print_data(dataSeq->get_at(i));
 }
}
/* Return loan */
octetsReader->return_loan(dataSeq, infoSeq);

C# Example:

using System;
using DDS;
...
KeyedBytesSeq dataSeq = new KeyedButesSeq();
SampleInfoSeq infoSeq = new SampleInfoSeq();
KeyedBytesDataReader octetsReader = ... ;

/* Take and print the data */
octetsReader.take(dataSeq, infoSeq,

ResourceLimitsQosPolicy.LENGTH_UNLIMITED,
SampleStateKind.ANY_SAMPLE_STATE,
ViewStateKind.ANY_VIEW_STATE,
InstanceStateKind.ANY_INSTANCE_STATE);

for (int i = 0; i < data_seq.length(); ++i) {
 if (infoSeq.get_at(i)).valid_data) {
 KeyedBytesTypeSupport.print_data(dataSeq.get_at(i));
 }
}
/* Return loan */
octetsReader.return_loan(dataSeq, infoSeq);

Java Example:

import com.rti.dds.infrastructure.*;
import com.rti.dds.subscription.*;
import com.rti.dds.type.builtin.*;
...
KeyedBytesSeq dataSeq = new KeyedBytesSeq();
SampleInfoSeq infoSeq = new SampleInfoSeq();
KeyedBytesDataReader octetsReader = ... ;

/* Take and print the data */
octetsReader.take(dataSeq, infoSeq,

ResourceLimitsQosPolicy.LENGTH_UNLIMITED,
SampleStateKind.ANY_SAMPLE_STATE,
ViewStateKind.ANY_VIEW_STATE,
InstanceStateKind.ANY_INSTANCE_STATE);

for (int i = 0; i < data_seq.length(); ++i) {
 if (((SampleInfo)infoSeq.get(i)).valid_data) {
 System.out.println(((KeyedBytes)dataSeq.get(i)).toString());
 }
}

3-30

Built-in Data Types
/* Return loan */
octetsReader.return_loan(dataSeq, infoSeq);

3.2.7 Managing Memory for Built-in Types

When a sample is written, the DataWriter serializes it and stores the result in a buffer obtained
from a pool of preallocated buffers. In the same way, when a sample is received, the DataReader
deserializes it and stores the result in a sample coming from a pool of preallocated samples.

For data types generated by rtiddsgen, the size of the buffers and samples in both pools is known
based on the IDL or XML description of the type.

For example:

struct MyString {
 string<128> value;
};

This IDL-defined type has a maximum serialized size of 133 bytes (4 bytes for length + 128 char-
acters + 1 NULL terminating character). So the serialization buffers will have a size of 133 bytes.
It can hold samples with 128 characters strings. Consequently, the preallocated samples will be
sized to keep this length.

However, for built-in types, the maximum size of the buffers/samples is unknown and depends
on the nature of the application using the built-in type.

For example, a video surveillance application that is using the keyed octets built-in type to pub-
lish a stream of images will require bigger buffers than a market-data application that uses the
same built-in type to publish market-data values.

To accommodate both kinds of applications and optimize memory usage, you can configure the
maximum size of the built-in types on a per-DataWriter or per-Datareader basis using the PROP-
ERTY QosPolicy (DDS Extension) (Section 6.5.17). Table 3.1 on page 3-32 lists the supported
built-in type properties. When the properties are defined in the DomainParticipant, they are
applicable to all DataWriters and DataReaders belonging to the DomainParticipant, unless they are
overwritten in the DataWriters and DataReaders.

Note: These properties must be set consistently with respect to the corresponding *.max_size
properties in the DomainParticipant (see Table 3.16 on page 3-90). The value of the alloc_size
property must be less than or equal to the max_size property with the same name prefix in the
DomainParticipant.

Section 3.2.7.1 includes examples of how to set the maximum size of a string built-in type for a
DataWriter programmatically, for each API. You can also set the maximum size of the built-in
types using XML QoS Profiles. For example, the following XML shows how to set the maximum
size of a string built-in type for a DataWriter.

<dds>
 <qos_library name="BuiltinExampleLibrary">
 <qos_profile name="BuiltinExampleProfile">
 <datawriter_qos>
 <property>
 <value>
 <element>
 <name>dds.builtin_type.string.alloc_size</name>
 <value>2048</value>
 </element>
 </value>
 </property>
 </datawriter_qos>
 <datareader_qos>
3-31

Built-in Data Types
 <property>
 <value>
 <element>
 <name>dds.builtin_type.string.alloc_size</name>
 <value>2048</value>
 </element>
 </value>
 </property>
 </datareader_qos>
 </qos_profile>
 </qos_library>
</dds>

3.2.7.1 Examples—Setting the Maximum Size for a String Programmatically

For simplicity, error handling is not shown in the following examples.

C Example:

DDS_DataWriter * writer = NULL;
DDS_StringDataWriter * stringWriter = NULL;
DDS_Publisher * publisher = ... ;
DDS_Topic * stringTopic = ... ;
struct DDS_DataWriterQos writerQos = DDS_DataWriterQos_INITIALIZER;
DDS_ReturnCode_t retCode;

Table 3.1 Properties for Allocating Size of Built-in Types, per DataWriter and DataReader

Built-in
Type Property Description

string dds.builtin_type.string.alloc_size

Maximum size of the strings published by the DataWriter
or received by the DataReader (includes the NULL-termi-
nated character).
Default: dds.builtin_type.string.max_size if defined (see
Table 3.16 on page 3-90). Otherwise, 1024.

keyed-
string

dds.builtin_type.keyed_string.
alloc_key_size

Maximum size of the keys used by the DataWriter or
DataReader (includes the NULL-terminated character).
Default: dds.builtin_type.keyed_string.max_key_size if
defined (see Table 3.16 on page 3-90). Otherwise, 1024.

dds.builtin_type.keyed_string.
alloc_size

Maximum size of the strings published by the DataWriter
or received by the DataReader (includes the NULL-termi-
nated character).
Default: dds.builtin_type.keyed_string.max_size if
defined (see Table 3.16 on page 3-90). Otherwise, 1024.

octets dds.builtin_type.octets.alloc_size

Maximum size of the octet sequences published by the
DataWriter or DataReader.
Default: dds.builtin_type.octets.max_size if defined (see
Table 3.16 on page 3-90). Otherwise, 2048.

keyed-
octets

dds.builtin_type.keyed_octets.
alloc_key_size

Maximum size of the key published by the DataWriter or
received by the DataReader (includes the NULL-termi-
nated character).
Default: dds.builtin_type.keyed_octets.max_key_size if
defined (see Table 3.16 on page 3-90). Otherwise, 1024.

dds.builtin_type.keyed_octets.
alloc_size

Maximum size of the octet sequences published by the
DataWriter or DataReader.
Default: dds.builtin_type.keyed_octets.max_size if
defined (see Table 3.16 on page 3-90). Otherwise, 2048.
3-32

Built-in Data Types
retCode = DDS_DomainParticipant_get_default_datawriter_qos (
 participant, &writerQos);

retCode = DDS_PropertyQosPolicyHelper_add_property (
 &writerQos.property,
 "dds.builtin_type.string.alloc_size", "1000",

 DDS_BOOLEAN_FALSE);

writer = DDS_Publisher_create_datawriter(
 publisher, stringTopic, &writerQos,
 NULL, DDS_STATUS_MASK_NONE);

stringWriter = DDS_StringDataWriter_narrow(writer);
DDS_DataWriterQos_finalize(&writerQos);

C++ Example with Namespaces1:

#include "ndds/ndds_namespace_cpp.h"
using namespace DDS;
...

Publisher * publisher = ... ;
Topic * stringTopic = ... ;
DataWriterQos writerQos;

ReturnCode_t retCode = participant->get_default_datawriter_qos(writerQos);

retCode = PropertyQosPolicyHelper::add_property (
 &writerQos.property, dds.builtin_type.string.alloc_size", "1000",

 BOOLEAN_FALSE);

DataWriter * writer = publisher->create_datawriter(
 stringTopic, writerQos, NULL, STATUS_MASK_NONE);

StringDataWriter * stringWriter = StringDataWriter::narrow(writer);

C++/CLI Example:

using namespace DDS;
...

Topic^ stringTopic = ... ;
Publisher^ publisher = ... ;
DataWriterQos^ writerQos = gcnew DataWriterQos();

participant->get_default_datawriter_qos(writerQos);

PropertyQosPolicyHelper::add_property(writerQos->property_qos,
"dds.builtin_type.string.alloc_size","1000", false);

DataWriter^ writer = publisher->create_datawriter(stringTopic, writerQos,
nullptr, StatusMask::STATUS_MASK_NONE);

StringDataWriter^ stringWriter = safe_cast<StringDataWriter^>(writer);

C# Example:

using DDS;
...

1. This example uses C++ namespaces. If you're not using namespaces in your own code, prefix the name of each
DDS class with 'DDS.' For example, DDS::StringDataWriter becomes DDSStringDataWriter.
3-33

Built-in Data Types
Topic stringTopic = ... ;
Publisher publisher = ... ;
DataWriterQos writerQos = new DataWriterQos();

participant.get_default_datawriter_qos(writerQos);

PropertyQosPolicyHelper.add_property (writerQos.property_qos,
 "dds.builtin_type.string.alloc_size", "1000", false);

StringDataWriter stringWriter =
(StringDataWriter) publisher.create_datawriter(stringTopic,

writerQos, null, StatusMask.STATUS_MASK_NONE);

Java Example:

import com.rti.dds.publication.*;
import com.rti.dds.type.builtin.*;
import com.rti.dds.infrastructure.*;
...

Topic stringTopic = ... ;
Publisher publisher = ... ;
DataWriterQos writerQos = new DataWriterQos();

participant.get_default_datawriter_qos(writerQos);

PropertyQosPolicyHelper.add_property (writerQos.property,
 "dds.builtin_type.string.alloc_size", "1000", false);

StringDataWriter stringWriter =
(StringDataWriter) publisher.create_datawriter(stringTopic, writerQos,

null, StatusKind.STATUS_MASK_NONE);

3.2.8 Type Codes for Built-in Types

The type codes associated with the built-in types are generated from the following IDL type def-
initions:

module DDS {
/* String */
struct String {

string<max_size> value;
};
/* KeyedString */
struct KeyedString {

string<max_size> key; //@key
string<max_size> value;

};
/* Octets */
struct Octets {

sequence<octet, max_size> value;
};
/* KeyedOctets */
struct KeyedOctets {

string<max_size> key; //@key
sequence<octet, max_size> value;

};
};
3-34

Creating User Data Types with IDL
The maximum size (max_size) of the strings and sequences that will be included in the type
code definitions can be configured on a per-DomainParticipant-basis by using the properties in
Table 3.2.

3.3 Creating User Data Types with IDL
You can create user data types in a text file using IDL (Interface Description Language). IDL is
programming-language independent, so the same file can be used to generate code in C, C++,
C++/CLI, and Java (the languages supported by rtiddsgen). The rtiddsgen utility parses the IDL
file and automatically generates all the necessary routines and wrapper functions to bind the
types for use by Connext at run time. You will end up with a set of required routines and struc-
tures that your application and Connext will use to manipulate the data.

Connext only uses a subset of the IDL syntax. IDL was originally defined by the OMG for the use
of CORBA client/server applications in an enterprise setting. Not all of the constructs that can
be described by the language are as useful in the context of high-performance data-centric
embedded applications. These include the constructs that define method and function proto-
types like “interface.”

Table 3.2 Properties for Allocating Size of Built-in Types, per DomainParticipant

Built-in
Type Property Description

String dds.builtin_type.string.max_size

Maximum size of the strings published by the DataWriters
and received by the DataReaders belonging to a DomainPar-
ticipant (includes the NULL-terminated character).
Default: 1024

Keyed-
String

dds.builtin_type.keyed_string.
max_key_size

Maximum size of the keys used by the DataWriters and
DataReaders belonging to a DomainParticipant (includes the
NULL-terminated character).
Default: 1024

dds.builtin_type.keyed_string.
max_size

Maximum size of the strings published by the DataWriters
and received by the DataReaders belonging to a DomainPar-
ticipant using the built-in type (includes the NULL-termi-
nated character).
Default: 1024

Octets dds.builtin_type.octets.max_size

Maximum size of the octet sequences published by the
DataWriters and DataReaders belonging to a DomainPartici-
pant.
Default: 2048

Keyed-
Octets

dds.builtin_type.keyed_octets.
max_key_size

Maximum size of the key published by the DataWriter and
received by the DataReaders belonging to the
DomainParticipant (includes the NULL-terminated charac-
ter).
Default:1024.

dds.builtin_type.keyed_octets.
max_size

Maximum size of the octet sequences published by the
DataWriters and DataReaders belonging to a DomainPartici-
pant.
Default: 2048
3-35

Creating User Data Types with IDL
The rtiddsgen utility will parse any file that follows version 3.0.3 of the IDL specification. It will
quietly ignore all syntax that is not recognized by Connext. In addition, even though “anony-
mous sequences” (sequences of sequences with no intervening typedef) are currently legal in
IDL, they have been deprecated by the specification, and thus rtiddsgen does not support them.

Certain keywords are considered reserved by the IDL specification; see Table 3.3.

The IDL constructs supported by rtiddsgen are described in Table 3.5, “Specifying Data Types in
IDL for C and C++,” on page 3-39 and Table 3.7, “Specifying Data Types in IDL for Java,” on
page 3-46. Use these tables to map primitive types to their equivalent IDL syntax, and vice
versa.

For C and C++, rtiddsgen uses typedefs instead of the language keywords for primitive types.
For example, DDS_Long instead of long or DDS_Double instead of double. This ensures that
the types are of the same size regardless of the platform.1

The remainder of this section includes:

❏ Variable-Length Types (Section 3.3.1)

❏ Value Types (Section 3.3.2)

❏ TypeCode and rtiddsgen (Section 3.3.3)

❏ rtiddsgen Translations for IDL Types (Section 3.3.4)

❏ Escaped Identifiers (Section 3.3.5)

❏ Referring to Other IDL Files (Section 3.3.6)

❏ Preprocessor Directives (Section 3.3.7)

❏ Using Custom Directives (Section 3.3.8)

Table 3.3 Reserved IDL Keywords

abstract emits local pseudo typeid

alias enum long public typename

any eventtype mirrorport publishes typeprefix

attribute exception module raises union

boolean factory multiple readonly unsigned

case FALSE native sequence uses

char finder object setraises valuebase

component fixed octet short valuetype

connector float oneway string void

const getraises out struct wchar

consumes home port supports wstring

context import porttype switch

custom in primarykey TRUE

default inout private truncatable

double interface provides typedef

1. The number of bytes sent on the wire for each data type is determined by the Common Data Representation
(CDR) standard. For details on CDR, please see the Common Object Request Broker Architecture (CORBA) Specifica-
tion, Version 3.1, Part 2: CORBA Interoperability, Section 9.3, CDR Transfer Syntax (http://www.omg.org/technology/
documents/corba_spec_catalog.htm).
3-36

http://www.omg.org/technology/documents/corba_spec_catalog.htm
http://www.omg.org/technology/documents/corba_spec_catalog.htm

Creating User Data Types with IDL
3.3.1 Variable-Length Types

When rtiddsgen generates code for data structures with variable-length types—strings and
sequences—it includes functions that create, initialize and finalize (destroy) those objects. These
support functions will properly initialize pointers and allocate and deallocate the memory used
for variable-length types. All Connext APIs assume that the data structures passed to them are
properly initialized.

For variable-length types, the actual length (instead of the maximum length) of data is transmit-
ted on the wire when the sample is written (regardless of whether the type has hard-coded
bounds).

3.3.1.1 Sequences

C, C++, C++/CLI, and C# users can allocate memory from a number of sources: from the heap,
the stack, or from a custom allocator of some kind. In those languages, sequences provide the
concept of memory "ownership." A sequence may own the memory allocated to it or be loaned
memory from another source. If a sequence owns its memory, it will manage its underlying
memory storage buffer itself. When a sequence's maximum size is changed, the sequence will
free and reallocate its buffer as needed. However, if a sequence was created with loaned mem-
ory by user code, then its memory is not its own to free or reallocate. Therefore, you cannot set
the maximum size of a sequence whose memory is loaned. See the API Reference HTML docu-
mentation, which is available for all supported programming languages (select Modules, RTI
Connext DDS API Reference, Infrastructure Module, Sequence Support) for more informa-
tion about how to loan and unloan memory for sequence.

In IDL, as described above, a sequence may be declared as bounded or unbounded. A
sequence's "bound" is the greatest value its maximum may take. If you use the initializer func-
tions rtiddsgen provides for your types, all sequences will have their maximums set to their
declared bounds. However, the amount of data transmitted on the wire when the sample is writ-
ten will vary.

3.3.1.2 Strings and Wide Strings

The initialization functions that rtiddsgen provides for your types will allocate all of the memory
for strings in a type to their declared bounds. Take care—if you assign a string pointer (char *) in
a data structure allocated or initialized by a Connext-generated function, you should release
(free) the memory originally allocated for the string, otherwise the memory will be leaked.

To Java and .NET users, an IDL string is a String object: it is immutable and knows its own
length. C and C++ users must take care, however, as there is no way to determine how much
memory is allocated to a character pointer "string"; all that can be determined is the string's cur-
rent logical length. In some cases, Connext may need to copy a string into a structure that user
code has provided. Connext does not free the memory of the string provided to it, as it cannot
know from where that memory was allocated.

In the C and C++ APIs, Connext therefore uses the following conventions:

❏ A string's memory is "owned" by the structure that contains that string. Calling the final-
ization function provided for a type will free all recursively contained strings. If you
have allocated a contained string in a special way, you must be careful to clean up your
own memory and assign the pointer to NULL before calling the type’s finalize() method,
so that Connext will skip over that string.

❏ You must provide a non-NULL string pointer for Connext to copy into. Otherwise, Con-
next will log an error.
3-37

Creating User Data Types with IDL
❏ When you provide a non-NULL string pointer in your data structure, Connext will copy
into the provided memory without performing any additional memory allocations. Be
careful—if you provide Connext with an uninitialized pointer or allocate a string that is
too short, you may corrupt the memory or cause a program crash. Connext will never try
to copy a string that is longer than the bound of the destination string. However, your
application must insure that any string that it allocates is long enough.

Connext provides a small set of C functions for dealing with strings. These functions simplify
common tasks, avoid some platform-specific issues (such as the lack of a strdup() function on
some platforms), and provide facilities for dealing with wide strings, for which no standard C
library exists. Connext always uses these functions internally for managing string memory; you
are recommended—but not required—to use them as well. See the API Reference HTML docu-
mentation, which is available for all supported programming languages (select Modules, RTI
Connext DDS API Reference, Infrastructure Module, String Support) for more information
about strings.

3.3.2 Value Types

A value type is like a structure, but with support for additional object-oriented features such as
inheritance. It is similar to what is sometimes referred to in Java as a POJO—a Plain Old Java
Object.

Readers familiar with value types in the context of CORBA should consult Table 3.4 to see which
value type-related IDL keywords are supported and what their behavior is in the context of Con-
next.

3.3.3 TypeCode and rtiddsgen

Type codes are enabled by default when you run rtiddsgen. The -notypecode option disables
generation of type code information. Type-code support does increase the amount of memory
used, so if you need to save on memory, you may consider disabling type codes. (The -notype-
code option is described in rtiddsgen Command-Line Arguments (Section 3.6.1)

Locally, your application can access the type code for a generated type "Foo" by calling the
Foo::get_typecode() operation in the code for the type generated by rtiddsgen (unless type-code
support is disabled with the -notypecode option).

Note: Type-code support must be enabled if you are going to use ContentFilteredTopics (Section
5.4) with the default SQL filter. You may disable type codes and use a custom filter, as described
in Creating ContentFilteredTopics (Section 5.4.3).

Table 3.4 Value Type Support

Aspect Level of Support in rtiddsgen

Inheritance Single inheritance from other value types

Public state members Supported

Private state members Become public when code is generated

Custom keyword
Ignored (the value type is parsed without the keyword and code is generated to
work with it)

Abstract value types No code generated (the value type is parsed, but no code is generated)

Operations No code generated (the value type is parsed, but no code is generated)

Truncatable keyword
Ignored (the value type is parsed without the keyword and code is generated to
work with it)
3-38

Creating User Data Types with IDL
3.3.4 rtiddsgen Translations for IDL Types

This section describes how to specify your data types in an IDL file. The rtiddsgen utility sup-
ports all the types listed in the following tables:

❏ Table 3.5, “Specifying Data Types in IDL for C and C++,” on page 3-39

❏ Table 3.6, “Specifying Data Types in IDL for C++/CLI,” on page 3-43

❏ Table 3.7, “Specifying Data Types in IDL for Java,” on page 3-46

In each table, the middle column shows the syntax for an IDL data type in the IDL file. The
rightmost column shows the corresponding language mapping created by rtiddsgen.

Table 3.5 Specifying Data Types in IDL for C and C++

IDL Type Sample Entry in IDL File Sample Output Generated by rtiddsgen

char
(see Note 1
below)

struct PrimitiveStruct {
char char_member;

};

typedef struct PrimitiveStruct
{

DDS_Char char_member;
} PrimitiveStruct;

wchar
struct PrimitiveStruct {

wchar wchar_member;
};

typedef struct PrimitiveStruct
{

DDS_Wchar wchar_member;
} PrimitiveStruct;

octet
struct PrimitiveStruct {
 octet octet_member;
};

typedef struct PrimitiveStruct
{
 DDS_Octet octect_member;
} PrimitiveStruct;

short
struct PrimitiveStruct {

short short_member;
};

typedef struct PrimitiveStruct
{
 DDS_Short short_member;
} PrimitiveStruct;

unsigned
short

struct PrimitiveStruct {
unsigned short

 unsigned_short_member;
};

typedef struct PrimitiveStruct
{
 DDS_UnsignedShort
 unsigned_short_member;
} PrimitiveStruct;

long
struct PrimitiveStruct {

long long_member;
};

typedef struct PrimitiveStruct
{

DDS_Long long_member;
} PrimitiveStruct;

unsigned
long

struct PrimitiveStruct {
unsigned long

 unsigned_long_member;
};

typedef struct PrimitiveStruct
{

DDS_UnsignedLong
unsigned_long_member;

} PrimitiveStruct;

long long
struct PrimitiveStruct {

long long long_long_member;
};

typedef struct PrimitiveStruct
{
 DDS_LongLong long_long_member;
} PrimitiveStruct;

unsigned
long long

struct PrimitiveStruct {
unsigned long long

 unsigned_long_long_member;
};

typedef struct PrimitiveStruct
{

DDS_UnsignedLongLong
 unsigned_long_long_member;
} PrimitiveStruct;

float
struct PrimitiveStruct {

float float_member;
};

typedef struct PrimitiveStruct
{
 DDS_Float float_member;
} PrimitiveStruct;
3-39

Creating User Data Types with IDL
double
struct PrimitiveStruct {

double double_member;
};

typedef struct PrimitiveStruct
{

DDS_Double double_member;
} PrimitiveStruct;

long dou-
ble
(see Note 2
below)

struct PrimitiveStruct {
long double long_double_member;

};

typedef struct PrimitiveStruct
{
 DDS_LongDouble long_double_member;
} PrimitiveStruct;

pointer
(see Note 9
below)

struct MyStruct {
 long * member;
};

typedef struct MyStruct {
 DDS_Long * member;
} MyStruct;

boolean
struct PrimitiveStruct {

boolean boolean_member;
};

typedef struct PrimitiveStruct
{

DDS_Boolean boolean_member;
} PrimitiveStruct;

enum

enum PrimitiveEnum {
ENUM1,
ENUM2,
ENUM3

};

enum PrimitiveEnum {
ENUM1 = 10,
ENUM2 = 20,
ENUM3 = 30

};

typedef enum PrimitiveEnum
{
 ENUM1,
 ENUM2,
 ENUM3
} PrimitiveEnum;

typedef enum PrimitiveEnum
{
 ENUM1 = 10,
 ENUM2 = 20,
 ENUM3 = 30
} PrimitiveEnum;

constant const short SIZE = 5;
C: #define SIZE 5
C++: static const DDS_Short size = 5;

bitfield

(see Note
12 below)

struct BitfieldType {
short myShort_1 : 1;
unsigned short myUnsignedShort_1:
1;
long myLong_1: 1;
unsigned long myUnsignedLong_1 :1;
char myChar_1 : 1;
wchar myWChar_1 : 1;
octet myOctet_1 : 1;
short : 0;
long myLong_5 : 5;
long myLong_30 : 30;
short myShort_6 : 6;
short myShort_3and4 : 3+4;
short myShort;
short myShort_8 : 8;
long myLong_32: 32;

};

typedef struct BitfieldType
{

DDS_Short myShort_1 : 1;
DDS_UnsignedShort myUnsignedShort_1
: 1;
DDS_Long myLong_1 : 1;
DDS_UnsignedLong myUnsignedLong_1 :
1;
DDS_Char myChar_1 : 1;
DDS_Wchar myWChar_1 : 1;
DDS_Octet myOctet_1 : 1;
DDS_Short : 0;
DDS_Long myLong_5 : 5;
DDS_Long myLong_30 : 30;
DDS_Short myShort_6 : 6;
DDS_Short myShort_3and4 : 3+4;
DDS_Short myShort;
DDS_Short myShort_8 : 8;
DDS_Long myLong_32 : 32;

} BitfieldType;

struct

(see Note
10 below)

struct PrimitiveStruct {
 char char_member;
};

typedef struct PrimitiveStruct
{
 char char_member;
} PrimitiveStruct;

Table 3.5 Specifying Data Types in IDL for C and C++

IDL Type Sample Entry in IDL File Sample Output Generated by rtiddsgen
3-40

Creating User Data Types with IDL
union

(see Note 3
and Note
10 below)

union PrimitiveUnion switch (long){
 case 1:
 short short_member;
 default:
 long long_member;
};

typedef struct PrimitiveUnion
{
 DDS_Long _d;
 struct {
 DDS_Short short_member;
 DDS_Long long_member;
 } _u;
} PrimitiveUnion;

typedef typedef short TypedefShort; typedef DDS_Short TypedefShort;

array of
above
types

struct OneDArrayStruct {
short short_array[2];

};

struct TwoDArrayStruct {
short short_array[1][2];

};

typedef struct OneDArrayStruct
{
 DDS_Short short_array[2];
} OneDArrayStruct;

typedef struct TwoDArrayStruct
{
 DDS_Short short_array[1][2];
} TwoDArrayStruct;

bounded
sequence of
above
types

(see Note
11 below)

struct SequenceStruct {
 sequence<short,4> short_sequence;
};

typedef struct SequenceStruct
{
 DDSShortSeq short_sequence;
} SequenceStruct;

Note: Sequences of primitive types have been
predefined by Connext.

unbounded
sequence of
above
types

(see Note
11 below)

struct SequenceStruct {
 sequence<short> short_sequence;
};

typedef struct SequenceStruct
{
 DDSShortSeq short_sequence;
} SequenceStruct;

Note: rtiddsgen will supply a default bound.
You can specify that bound with the “-sequenc-
eSize” command-line option; see
Section 3.6.1.

array of
sequences

struct ArraysOfSequences{
 sequence<short,4>
 sequences_array[2];
};

typedef struct ArraysOfSequences
{
 DDS_ShortSeq sequences_array[2];
} ArraysOfSequences;

sequence of
arrays

(see Note
11 below)

typedef short ShortArray[2];

struct SequenceofArrays {
 sequence<ShortArray,2>
 arrays_sequence;
};

typedef DDS_Short ShortArray[2];

DDS_SEQUENCE_NO_GET(ShortArraySeq,
 ShortArray);

typedef struct SequenceOfArrays
{
 ShortArraySeq arrays_sequence;
} SequenceOfArrays;

DDS_SEQUENCE_NO_GET is a Connext
macro that defines a new sequence type for a
user data type. In this case, the user data type is
ShortArray.

Table 3.5 Specifying Data Types in IDL for C and C++

IDL Type Sample Entry in IDL File Sample Output Generated by rtiddsgen
3-41

Creating User Data Types with IDL
sequence of
sequences

(see Note 4
and Note
11 below)

typedef sequence<short,4>
 ShortSequence;

struct SequencesOfSequences{
 sequence<ShortSequence,2>
 sequences_sequence;
};

typedef DDS_ShortSeq ShortSequence;

DDS_SEQUENCE(ShortSequenceSeq,
 ShortSequence);

typedef struct SequencesOfSequences{
 ShortSequenceSeq

sequences_sequence;
} SequencesOfSequences;

bounded
string

struct PrimitiveStruct {
string<20> string_member;

};

typedef struct PrimitiveStruct {
char* string_member;

 /* maximum length = (20) */
} PrimitiveStruct;

unbounded
string

struct PrimitiveStruct {
string string_member;

};

typedef struct PrimitiveStruct {
char* string_member;

 /* maximum length = (255) */
} PrimitiveStruct;

Note: rtiddsgen will supply a default bound.
You can specify that bound with the -string-
Size command-line option, see Section 3.6.1.

bounded
wstring

struct PrimitiveStruct {
wstring<20> wstring_member;

};

typedef struct PrimitiveStruct {
 DDS_Wchar * wstring_member;
 /* maximum length = (20)

*/
} PrimitiveStruct;

unbounded
wstring

struct PrimitiveStruct {
 wstring wstring_member;
};

typedef struct PrimitiveStruct {

 DDS_Wchar * wstring_member;

 /* maximum length = (255) */

} PrimitiveStruct;

Note: rtiddsgen will supply a default bound.

module

module PackageName {
 struct Foo {
 long field;
 };
};

With the -namespace option (only available
for C++):

namespace PackageName{
 typedef struct Foo {

DDS_Long field;
 } Foo;
};

Without the -namespace option:
typedef struct PackageName_Foo {
 DDS_Long field;
} PackageName_Foo;

Table 3.5 Specifying Data Types in IDL for C and C++

IDL Type Sample Entry in IDL File Sample Output Generated by rtiddsgen
3-42

Creating User Data Types with IDL
valuetype

(see Note 9
and Note
10 below)

valuetype MyValueType {
 public MyValueType2 * member;
};

valuetype MyValueType {
 public MyValueType2 member;
};

valuetype MyValueType: MyBaseValueType
{

 public MyValueType2 * member;
};

C++: class MyValueType {
public:
 MyValueType2 * member;
};

class MyValueType {
public:
 MyValueType2 member;
};

class MyValueType : public MyBa-
seValueType
{
public:
 MyValueType2 * member;
};

C: typedef struct MyValueType {
 MyValueType2 * member;
} MyValueType;

typedef struct MyValueType {
 MyValueType2 member;
} MyValueType;

typedef struct MyValueType
{
 MyBaseValueType parent;
 MyValueType2 * member;
} MyValueType;

Table 3.6 Specifying Data Types in IDL for C++/CLI

IDL Type Sample Entry in IDL File Sample Output Generated by rtiddsgen

char
(see Note 1
below)

struct PrimitiveStruct {
char char_member;

};

public ref class PrimitiveStruct {
System::Char char_member;

};

wchar
struct PrimitiveStruct {

wchar wchar_member;
};

public ref class PrimitiveStruct {
System::Char wchar_member;

};

octet
struct PrimitiveStruct {
 octet octet_member;
};

public ref class PrimitiveStruct {
 System::Byte octet_member;
};

short
struct PrimitiveStruct {

short short_member;
};

public ref class PrimitiveStruct {
 System::Int16 short_member;
};

unsigned
short

struct PrimitiveStruct {
unsigned short

 unsigned_short_member;
};

public ref class PrimitiveStruct {
 System::UInt16 unsigned_short_member;
};

long
struct PrimitiveStruct {

long long_member;
};

public ref class PrimitiveStruct {
 System::Int32 long_member;
};

unsigned
long

struct PrimitiveStruct {
 unsigned long unsigned_long_member;
};

public ref class PrimitiveStruct {
 System::UInt32 unsigned_long_member;
};

Table 3.5 Specifying Data Types in IDL for C and C++

IDL Type Sample Entry in IDL File Sample Output Generated by rtiddsgen
3-43

Creating User Data Types with IDL
long long
struct PrimitiveStruct {

long long long_long_member;
};

public ref class PrimitiveStruct {
 System::Int64 long_long_member;
};

unsigned
long long

struct PrimitiveStruct {
unsigned long long

unsigned_long_long_member;
};

public ref class PrimitiveStruct {
System::UInt64

 unsigned_long_long_member;
};

float
struct PrimitiveStruct {

float float_member;
};

public ref class PrimitiveStruct {
 System::Single float_member;
};

double
struct PrimitiveStruct {

double double_member;
};

public ref class PrimitiveStruct {
System::Double double_member;

} PrimitiveStruct;

long dou-
ble
(see Note 2
below)

struct PrimitiveStruct {
long double long_double_member;

};

public ref class PrimitiveStruct {
 DDS::LongDouble long_double_member;
} PrimitiveStruct;

boolean
struct PrimitiveStruct {

boolean boolean_member;
};

public ref class PrimitiveStruct {
System::Boolean boolean_member;

};

enum

enum PrimitiveEnum {
ENUM1,
ENUM2,
ENUM3

};

enum PrimitiveEnum {
ENUM1 = 10,
ENUM2 = 20,
ENUM3 = 30

};

public enum class
PrimitiveEnum : System::Int32 {
 ENUM1,
 ENUM2,
 ENUM3
};

public enum class
PrimitiveEnum : System::Int32 {
 ENUM1 = 10,
 ENUM2 = 20,
 ENUM3 = 30
};

constant const short SIZE = 5;

public ref class SIZE {
 public:
 static System::Int16 VALUE = 5;
};

struct

(see Note
10 below)

struct PrimitiveStruct {
 char char_member;
};

public ref class PrimitiveStruct {

 System::Char char_member;

};

union

(see Note 3
and Note
10 below)

union PrimitiveUnion switch (long){
 case 1:
 short short_member;
 default:
 long long_member;
};

public ref class PrimitiveUnion
{
 System::Int32 _d;
 struct PrimitiveUnion_u {
 System::Int16 short_member;
 System::Int32 long_member;
 } _u;
};

array of
above
types

struct OneDArrayStruct {
short short_array[2];

};

public ref class OneDArrayStruct {
array<System::Int16>^ short_array;
/*length == 2*/

};

Table 3.6 Specifying Data Types in IDL for C++/CLI

IDL Type Sample Entry in IDL File Sample Output Generated by rtiddsgen
3-44

Creating User Data Types with IDL
bounded
sequence of
above
types

(see Note
11 below)

struct SequenceStruct {
 sequence<short,4> short_sequence;
};

public ref class SequenceStruct {
ShortSeq^ short_sequence;

 /*max = 4*/
};

Note: Sequences of primitive types have been
predefined by Connext.

unbounded
sequence of
above
types

(see Note
11 below)

struct SequenceStruct {
 sequence<short> short_sequence;
};

public ref class SequenceStruct {
ShortSeq^ short_sequence;

 /*max = <default bound>*/
};

Note: rtiddsgen will supply a default bound.
You can specify that bound with the
-sequenceSize command-line option; see
Section 3.6.1.

array of
sequences

struct ArraysOfSequences{
 sequence<short,4>
 sequences_array[2];
};

public ref class ArraysOfSequences
{
 array<DDS::ShortSeq^>^

sequences_array;
 // maximum length = (2)
};

bounded
string

struct PrimitiveStruct {
string<20> string_member;

};

public ref class PrimitiveStruct {
 System::String^ string_member;
 // maximum length = (20)
};

unbounded
string

struct PrimitiveStruct {
string string_member;

};

public ref class PrimitiveStruct {
 System::String^ string_member;
 // maximum length = (255)
};

Note: rtiddsgen will supply a default bound.
You can specify that bound with the -string-
Size command-line option, see Section 3.6.1.

bounded
wstring

struct PrimitiveStruct {
wstring<20> wstring_member;

};

public ref class PrimitiveStruct {
 System::String^ string_member;
 // maximum length = (20)
};

unbounded
wstring

struct PrimitiveStruct {
 wstring wstring_member;
};

public ref class PrimitiveStruct {
 System::String^ string_member; //

maximum length = (255)
};

Note: rtiddsgen will supply a default bound.
You can specify that bound with the -string-
Size command-line option, see Section 3.6.1.

module

module PackageName {
 struct Foo {
 long field;
 };
};

namespace PackageName {
 public ref class Foo {
 System::Int32 field;
 };
};

Table 3.6 Specifying Data Types in IDL for C++/CLI

IDL Type Sample Entry in IDL File Sample Output Generated by rtiddsgen
3-45

Creating User Data Types with IDL
Table 3.7 Specifying Data Types in IDL for Java

IDL Type Sample Entry in IDL file Sample Java Output Generated by
rtiddsgen

char

(see Note 5
below)

struct PrimitiveStruct {
 char char_member;
};

public class PrimitiveStruct
{
 public char char_member;
 ...
}

wchar

(see Note 5
below)

struct PrimitiveStruct {
 wchar wchar_member;
};

public class PrimitiveStruct
{
 public char wchar_member;
 ...
}

octet
struct PrimitiveStruct {
 octet octet_member;
};

public class PrimitiveStruct
{
 public byte byte_member;
 ...
}

short
struct PrimitiveStruct {
 short short_member;
};

public class PrimitiveStruct
{
 public short short_member;
 ...
}

unsigned
short

(see Note 6
below)

struct PrimitiveStruct {
 unsigned short
 unsigned_short_member;
};

public class PrimitiveStruct
{
 public short unsigned_short_member;
 ...
}

long
struct PrimitiveStruct {
 long long_member;
};

public class PrimitiveStruct
{
 public int long_member;
 ...
}

unsigned
long

(see Note 6
below)

struct PrimitiveStruct {
 unsigned long
 unsigned_long_member;
};

public class PrimitiveStruct
{
 public int unsigned_long_member;
 ...
}

long long
struct PrimitiveStruct {
 long long long_long_member;
};

public class PrimitiveStruct
{
 public long long_long_member;
 ...
}

unsigned
long long

(see Note 7
below)

struct PrimitiveStruct {
 unsigned long long
 unsigned_long_long_member;
};

public class PrimitiveStruct
{
 public long
 unsigned_long_long_member;
 ...
}

float
struct PrimitiveStruct {
 float float_member;
};

public class PrimitiveStruct
{
 public float float_member;
 ...
}

3-46

Creating User Data Types with IDL
double
struct PrimitiveStruct {
 double double_member;
};

public class PrimitiveStruct
{
 public double double_member;
 ...
}

long double

(see Note 7
below)

struct PrimitiveStruct {
 long double long_double_member;
};

public class PrimitiveStruct
{
 public double long_double_member;
 ...
}

pointer
(see Note 9
below)

struct MyStruct {
 long * member;
};

public class MyStruct {
 public int member;
 ...
};

boolean
struct PrimitiveStruct {
 boolean boolean_member;
};

public class PrimitiveStruct
{
 public boolean boolean_member;
 ...
}

enum

enum PrimitiveEnum {
 ENUM1,
 ENUM2,
 ENUM3
};

public class PrimitiveEnum extends Enum
{
 public static PrimitiveEnum ENUM1 =

new PrimitiveEnum ("ENUM1", 0);

 public static PrimitiveEnum ENUM2 =

new PrimitiveEnum ("ENUM2", 1);

 public static PrimitiveEnum ENUM3 =

new PrimitiveEnum ("ENUM3", 2);

 public static PrimitiveEnum
valueOf(int ordinal);

 ...
}

enum PrimitiveEnum {
 ENUM1 = 10,
 ENUM2 = 20,
 ENUM3 = 30
};

public class PrimitiveEnum extends Enum
{
 public static PrimitiveEnum ENUM1 =

new PrimitiveEnum ("ENUM1", 10);

 public static PrimitiveEnum ENUM2 =

new PrimitiveEnum ("ENUM2", 10);

 public static PrimitiveEnum ENUM3 =

new PrimitiveEnum ("ENUM3", 20);

 public static PrimitiveEnum
valueOf(int ordinal);

 ...
}

constant const short SIZE = 5;
public class SIZE {
 public static final short VALUE = 5;
}

Table 3.7 Specifying Data Types in IDL for Java

IDL Type Sample Entry in IDL file Sample Java Output Generated by
rtiddsgen
3-47

Creating User Data Types with IDL

bitfield

(see Note 12
below)

struct BitfieldType {
 short myShort_1 : 1;
 long myLong_1: 1;
 char myChar_1 : 1;
 wchar myWChar_1 : 1;
 octet myOctet_1 : 1;
 short : 0;
 long myLong_5 : 5;
 long myLong_30 : 30;
 short myShort_6 : 6;
 short myShort_3and4 : 3+4;
 short myShort;
 short myShort_8 : 8;
 long myLong_32: 32;
};

public class BitfieldType
{
 public short myShort_1;
 public int myLong_1;
 public byte myChar_1;
 public char myWChar_1;
 public byte myOctet_1;
 public int myLong_5;
 public int myLong_30;
 public short myShort_6;
 public short myShort_3and4;
 public short myShort;
 public short myShort_8;
 public int myLong_32;
 ...
}

struct

(see Note 10
below)

struct PrimitiveStruct {
 char char_member;
};

public class PrimitiveStruct

{

 public char char_member;

}

union

(see Note 10
below)

union PrimitiveUnion switch (long){
 case 1:
 short short_member;
 default:
 long long_member;
};

public class PrimitiveUnion {
 public int _d;
 public short short_member;
 public int long_member;
 ...
}

typedef of
primitives,
enums,
strings

(see Note 8
below)

typedef short ShortType;

struct PrimitiveStruct {
 ShortType short_member;
};

/* typedefs are unwounded to the original
 type when used */
public class PrimitiveStruct
{
 public short short_member;
 ...
}

typedef of
sequences
or arrays

(see Note 8
below)

typedef short ShortArray[2];

/* Wrapper class */
public class ShortArray
{
 public short[] userData = new
 short[2];
 ...
}

array

struct OneDArrayStruct {
 short short_array[2];
};

public class OneDArrayStruct
{
 public short[] short_array = new
 short[2];
 ...
}

struct TwoDArrayStruct {
 short short_array[1][2];
};

public class TwoDArrayStruct
{
 public short[][] short_array = new
 short[1][2];
 ...
}

Table 3.7 Specifying Data Types in IDL for Java

IDL Type Sample Entry in IDL file Sample Java Output Generated by
rtiddsgen
3-48

Creating User Data Types with IDL

-

”

bounded
sequence

(see Note 11
below)

struct SequenceStruct {
 sequence<short,4>
 short_sequence;
};

public class SequenceStruct
{
 public ShortSeq short_sequence = new
 ShortSeq((4));
 ...
}

Note: Sequences of primitive types have been pre
defined by Connext.

unbounded
sequence

(see Note 11
below)

struct SequenceStruct {
 sequence<short> short_sequence;
};

public class SequenceStruct
{
 public ShortSeq short_sequence = new
 ShortSeq((100));
 ...
}

Note: rtiddsgen will supply a default bound. You
can specify that bound with the “-sequenceSize
command-line option; see Section 3.6.1.

array of
sequences

struct ArraysOfSequences{
 sequence<short,4>
 sequences_array[2];
};

public class ArraysOfSequences
{
 public ShortSeq[] sequences_array =
 new ShortSeq[2];
 ...
}

sequence of
arrays

(see Note 11
below)

typedef short ShortArray[2];

struct SequenceOfArrays{
 sequence<ShortArray,2>
 arrays_sequence;
};

/* Wrapper class */
public class ShortArray
{
 public short[] userData = new
 short[2];
 ...
}

/* Sequence of wrapper class objects */
public final class ShortArraySeq
 extends ArraySequence
{
 ...
}

public class SequenceOfArrays
{
 public ShortArraySeq arrays_sequence
 = new ShortArraySeq((2));
 ...
}

Table 3.7 Specifying Data Types in IDL for Java

IDL Type Sample Entry in IDL file Sample Java Output Generated by
rtiddsgen
3-49

Creating User Data Types with IDL

-

sequence of
sequences

(see Note 4
and Note 11
below)

typedef sequence<short,4>
 ShortSequence;

struct SequencesOfSequences{
 sequence<ShortSequence,2>
 sequences_sequence;
};

/* Wrapper class */
public class ShortSequence
{
 public ShortSeq userData = new
 ShortSeq((4));
 ...
}

/* Sequence of wrapper class objects */
public final class ShortSequenceSeq
 extends ArraySequence
{
 ...
}

public class SequencesOfSequences
{
 public ShortSequenceSeq
 sequences_sequence = new
 ShortSequenceSeq((2));
 ...
}

bounded
string

struct PrimitiveStruct {
 string<20> string_member;
};

public class PrimitiveStruct
{
 public String string_member = new
 String();
 /* maximum length = (20) */
 ...
}

unbounded
string

struct PrimitiveStruct {
 string string_member;
};

public class PrimitiveStruct
{
 public String string_member = new
 String();

 /* maximum length = (255) */
 ...
}

Note: rtiddsgen will supply a default bound. You
can specify that bound with the -stringSize com
mand-line option, see Section 3.6.1.

bounded
wstring

struct PrimitiveStruct {
 wstring<20> wstring_member;
};

public class PrimitiveStruct
{
 public String wstring_member = new
 String();
 /* maximum length = (20) */
 ...
}

unbounded
wstring

struct PrimitiveStruct {
 wstring wstring_member;
};

public class PrimitiveStruct
{
 public String wstring_member = new
 String();
 /* maximum length = (255) */
 ...
}

Note: rtiddsgen will supply a default bound.

Table 3.7 Specifying Data Types in IDL for Java

IDL Type Sample Entry in IDL file Sample Java Output Generated by
rtiddsgen
3-50

Creating User Data Types with IDL
Notes for Table 3.5 through Table 3.7:

1. Note that in C and C++, primitive types are not represented as native language types
(e.g. long, char, etc.) but as custom types in the DDS namespace (DDS_Long,
DDS_Char, etc.). These typedefs are used to ensure that a field’s size is the same across
platforms.

2. Some platforms do not support long double or have different sizes for that type than
defined by IDL (16 bytes). On such platforms, DDS_LongDouble (as well as the
unsigned version) is mapped to a character array that matches the expected size of that
type by default. If you are using a platform whose native mapping has exactly the
expected size, you can instruct Connext to use the native type instead. That is, if
sizeof(long double) == 16, you can tell Connext to map DDS_LongDouble to long dou-
ble by defining the following macro either in code or on the compile line:

-DRTI_CDR_SIZEOF_LONG_DOUBLE=16

3. Unions in IDL are mapped to structs in C and C++, so that Connext will not have to
dynamically allocate memory for unions containing variable-length fields such as strings
or sequences. To be efficient, the entire struct (or class in C++/CLI) is not sent when the
union is published. Instead, Connext uses the discriminator field of the struct to decide
what field in the struct is actually sent on the wire.

4. So-called "anonymous sequences" —sequences of sequences in which the sequence ele-
ment has no type name of its own—are not supported. Such sequences are deprecated in
CORBA and may be removed from future versions of IDL. For example, this is not sup-
ported:

Not
Supported—>

sequence<sequence<short,4>,4> MySequence;

Sequences of typedef’ed types, where the typedef is really a sequence, are supported. For
example, this is supported:

Supported—> typedef sequence<short,4> MyShortSequence;

module

module PackageName {
 struct Foo {
 long field;
 };
};

package PackageName;

public class Foo
{
 public int field;
 …
}

valuetype

(see Note 9
and Note 10
below)

valuetype MyValueType {
 public MyValueType2 * member;
};

valuetype MyValueType {
 public MyValueType2 member;
};

valuetype MyValueType:
MyBaseValueType {

 public MyValueType2 * member;
};

public class MyValueType {
 public MyValueType2 member;
 ….
};

public class MyValueType {
 public MyValueType2 member;
 ….
};

public class MyValueType extends
MyBaseValueType

{
 public MyValueType2 member;
 ….
}

Table 3.7 Specifying Data Types in IDL for Java

IDL Type Sample Entry in IDL file Sample Java Output Generated by
rtiddsgen
3-51

Creating User Data Types with IDL
 sequence<MyShortSequence,4> MySequence;

5. IDL wchar and char are mapped to Java char, 16-bit unsigned quantities representing
Unicode characters as specified in the standard OMG IDL to Java mapping. In C++/CLI,
char and wchar are mapped to System::Char.

6. The unsigned version for integer types is mapped to its signed version as specified in the
standard OMG IDL to Java mapping.

7. There is no current support in Java for the IDL long double type. This type is mapped to
double as specified in the standard OMG IDL to Java mapping.

8. Java does not have a typedef construct, nor does C++/CLI. Typedefs for types that are
neither arrays nor sequences (struct, unions, strings, wstrings, primitive types and
enums) are "unwound" to their original type until a simple IDL type or user-defined IDL
type (of the non-typedef variety) is encountered. For typedefs of sequences or arrays,
rtiddsgen will generate wrapper classes if -corba is not used; no wrapper classes are gen-
erated if -corba is used.

9. In C and C++, all the members in a value type, structure or union that are declared with
the pointer symbol (‘*’) will be mapped to references (pointers). In C++/CLI and Java,
the pointer symbol is ignored because the members are always mapped as references.

10. In-line nested types are not supported inside structures, unions or valuetypes. For exam-
ple, this is not supported:

Not
Supported—>

struct Outer {
 short outer_short;

 struct Inner {
 char inner_char;
 short inner_short;
 } outer_nested_inner;
 };

11. The sequence <Type>Seq is implicitly declared in the IDL file and therefore it cannot be
declared explicitly by the user. For example, this is not supported:

Not
Supported—> typedef sequence<Foo> FooSeq; //error

12. Data types containing bitfield members are not supported by DynamicData (Section 3.8).

3.3.5 Escaped Identifiers

To use an IDL keyword as an identifier, the keyword must be “escaped” by prepending an
underscore, ‘_’. In addition, you must run rtiddsgen with the -enableEscapeChar option. For
example:

struct MyStruct {
 octet _octet; // octet is a keyword. To use the type

// as a member name we add ‘_’
};

The use of ‘_’ is a purely lexical convention that turns off keyword checking. The generated code
will not contain ‘_’. For example, the mapping to C would be as follows:

struct MyStruct {
 unsigned char octet;
};

Note: If you generate code from an IDL file to a language ‘X’ (for example, C++), the keywords
of this language cannot be used as IDL identifiers, even if they are escaped. For example:

struct MyStruct {
3-52

Creating User Data Types with IDL
 long int; // error
 long _int; // error
};

3.3.6 Referring to Other IDL Files

IDL files may refer to other IDL files using a syntax borrowed from C, C++, and C++/CLI pre-
processors:

#include “Bar.idl”

If such a statement is encountered by rtiddsgen and you are generating code for C, C++, and
C++/CLI, rtiddsgen will assume that code has been generated for Bar.idl with corresponding
header files, Bar.h and BarPlugin.h.

The generated code will automatically have:

#include “Bar.h”
#include “BarPlugin.h”

added where needed to compile correctly.

Because Java types do not refer to one another in the same way, it is not possible for rtiddsgen to
automatically generate Java import statements based on an IDL #include statement. Any
#include statements will be ignored when Java code is generated. To add imports to your gener-
ated Java code, you should use the //@copy directive (see Section 3.3.8.2).

3.3.7 Preprocessor Directives

rtiddsgen supports the standard preprocessor directives defined by the IDL specification, such as
#if, #endif, #include, and #define.

To support these directives, rtiddsgen calls an external C preprocessor before parsing the IDL file.
On Windows systems, the preprocessor is ‘cl.exe.’ On other architectures, the preprocessor is
‘cpp.’ You can change the default preprocessor with the –ppPath option. If you do not want to
run the preprocessor, use the –ppDisable option. See rtiddsgen Command-Line Arguments
(Section 3.6.1).

3.3.8 Using Custom Directives

The following rtiddsgen-specific directives can be used in your IDL file:

//@key (see Section 3.3.8.1)

//@copy (see Section 3.3.8.2)
//@copy-c
//@copy-cppcli
//@copy-java
//@copy-java-begin

//@copy-declaration
//@copy-c-declaration
//@copy-cppcli-declaration
//@copy-java-declaration

//@copy-java-declaration-begin

//@resolve-name [true | false] (see Section 3.3.8.3)

//@top-level [true | false] (see Section 3.3.8.4)
3-53

Creating User Data Types with IDL
Notes:

❏ To apply multiple directives to the same member or structure in an IDL file, put each
additional directive on a new line, as shown below:

struct A {
 long a; //@key
 //@ID 20
 long b;
}; //@Extensibility FINAL_EXTENSIBILITY
 //@top-level false

❏ Custom directives start with “//@”. Do not put a space between the slashes and the @, or
the directive will not be recognized by rtiddsgen.

❏ The directives are case-sensitive. For instance, you must use //@key (not //@Key).

3.3.8.1 The @key Directive

To declare a key for your data type, insert the @key directive in the IDL file after one or more
fields of the data type.

With each key, Connext associates an internal 16-byte representation, called a key-hash.

If the maximum size of the serialized key is greater than 16 bytes, to generate the key-hash, Con-
next computes the MD5 key-hash of the serialized key in network-byte order. Otherwise (if the
maximum size of the serialized key is <= 16 bytes), the key-hash is the serialized key in network-
byte order.

Only struct definitions in IDL may have key fields. When rtiddsgen encounters //@key, it consid-
ers the previously declared field in the enclosing structure to be part of the key. Table 3.8 on
page 3-54 shows some examples of keys.

Table 3.8 Example Keys

Type Key Fields

struct NoKey {
 long member1;
 long member2;
}

struct SimpleKey {
 long member1; //@key
 long member2;
}

member1

struct NestedNoKey {
 SimpleKey member1;
 long member2;
}

struct NestedKey {
 SimpleKey member1; //@key
 long member2;
}

member1.member1

struct NestedKey2 {
 NoKey member1; //@key
 long member2;
}

member1.member1
member1.member2

valuetype BaseValueKey {
 public long member1; //@key
}

member1
3-54

Creating User Data Types with IDL
3.3.8.2 The @copy and Related Directives

To copy a line of text verbatim into the generated code files, use the @copy directive in the IDL
file. This feature is particularly useful when you want your generated code to contain text that is
valid in the target programming language but is not valid IDL. It is often used to add user com-
ments or headers or preprocessor commands into the generated code.

//@copy // Modification History
//@copy // --------------------
//@copy // 17Jul05aaa, Created.
//@copy
//@copy // #include “MyTypes.h”

These variations allow you to use the same IDL file for multiple languages:

For example, to add import statements to generated Java code:

//@copy-java import java.util.*;

The above line would be ignored if the same IDL file was used to generate non-Java code.

In C, C++, and C++/CLI, the lines are copied into all of the “foo*.[h, c, cxx, cpp]” files generated
from “foo.idl”. For Java, the lines are copied into all of the “*.java” files that were generated
from the original “.idl” file. The lines will not be copied into any additional files that are gener-
ated using the “-example” command line option.

@copy-java-begin copies a line of text at the beginning of all the Java files generated for a type.
The directive only applies to the first type that is immediately below in the IDL file. A similar
directive for Ada files is also available, @copy-ada-begin.

If you want rtiddsgen to copy lines only into the files that declare the data types—”foo.h” for C,
C++, and C++/CLI, “foo.java” for Java—use the “//@copy*declaration” forms of this directive.

Note that the first whitespace character to follow “//@copy” is considered a delimiter and will
not be copied into generated files. All subsequent text found on the line, including any leading
whitespaces will be copied.

valuetype DerivedValueKey :BaseValueKey {
 public long member2; //@key
}

member1
member2

valuetype DerivedValue : BaseValueKey {
 public long member2;
}

member1

struct ArrayKey {
 long member1[3]; //@key
}

member1[0]
member1[1]
member1[2]

Table 3.8 Example Keys

Type Key Fields

Table 3.9

@copy-c Copies code if the language is C or C++

@copy-cppcli Copies code if the language is C++/CLI

@copy-java Copies code if the language is Java.

@copy-ada Copies code if the language is Ada.
3-55

Creating User Data Types with IDL
3.3.8.3 The @resolve-name Directive

In IDL, the “module” keyword is used to create namespaces for the declaration of types and
classes defined within the file. Here is an example IDL definition:

module PackageName {
 struct Foo {
 long field;
 };
};

For C++ and C++/CLI, you may use the -namespace command-line option, which causes rtidds-
gen to generate a namespace, such as the following:

namespace PackageName{
typedef struct Foo {

DDS_Long field;
} Foo;

} PackageName;

When generating C++/CLI, the -namespace option is considered to always be passed. Module
names are never prepended to class names.

For C, or if you do not use the -namespace command-line option for C++ or C++/CLI, the name
of the module is concatenated with the name of the structure to create the namespace. The
resulting code looks like this:

typedef struct PackageName_Foo {
 DDS_Long field;
} PackageName_Foo;

In Java, a Foo.java file will be created in a directory called PackageName to use the equivalent
concept as defined by Java. The file PackageName/Foo.java will contain a declaration of Foo
class:

public class Foo {
 public int field;
 ...
};

In a more complicated example, consider the following IDL definition:

module PackageName {
 struct Bar {
 long field;
 };
 struct Foo {
 Bar barField;
 };

Table 3.10

//@copy-declaration
Copies the text into the file where the type is declared (<type>.h for C
and C++, or <type>.java for Java)

//@copy-c-declaration Same as //@copy-declaration, but for C and C++ code

//@copy-cppcli-declaration Same as //@copy-declaration, but for C++/CLI code

//@copy-java-declaration Same as //@copy-declaration, but for Java-only code

//@copy-ada-declaration Same as //@copy-declaration, but for Ada-only code

//@copy-java-declaration-begin
Same as //@copy-java-declaration, but only copies the text into the
file where the type is declared

//@copy-ada-declaration-begin Same as //@copy-java-declaration-begin, but only for Ada-only code
3-56

Creating User Data Types with IDL
};

When rtiddsgen generates code for the above definition, it will resolve the “Bar” type to be
within the scope of the PackageName module and automatically generate fully-qualified type
names.

In C or C++, if you do not use -namespace, the resulting code will be:

typedef struct PackageName_Bar {
 DDS_Long field;
} PackageName_Foo;

typedef struct PackageName_Foo {
 PackageName_Bar barField;
} PackageName_Foo;

In C++, if you use -namespace, the resulting code will be:

namespace PackageName {
 typedef struct Bar {
 DDS_Long field;
 } Bar;

 typedef struct Foo
 {
 PackageName::Bar barField;
 } Foo;
}

And in Java, PackageName/Bar.java and PackageName/Foo.java would be created with the
following code respectively:

public class Bar {
 public int field;
 ...
};

and

public class Foo {
 public PackageName.Bar barField = PackageName.Bar.create();
 ...
};

However, sometimes you may not want rtiddsgen to resolve the types of variables when mod-
ules are used. In the example above, instead of referring to the Bar as defined by the same pack-
age, you may want the barField in Foo to use Bar directly without prepending a module name.
To specify that rtiddsgen should not resolve the scope of a type, use the ‘//@resolve-name false’
directive.

For example:

module PackageName {
 struct Bar {
 long field;
 };

 struct Foo {
 Bar barField; //@resolve-name false
 };
};
3-57

Creating User Data Types with IDL
When this directive is used, then for the field preceding the directive, rtiddsgen respects the reso-
lution of its type name indicated in the IDL file. It will use the type unmodified in the gener-
ated code. In C and C++:

typedef struct PackageName_Bar {
 DDS_Long field;
} PackageName_Foo;

typedef struct PackageName_Foo {
 Bar barField;
} PackageName_Foo;

And in Java, in PackageName/Bar.java and PackageName/Foo.java respectively:

public class Bar {
 public int field;
 ...
};

and

public class Foo {
 public Bar barField = Bar.create();
 ...
};

It is up to you to include the correct header files (or if using Java, to import the correct packages)
so that the compiler resolves the ‘Bar’ type correctly.

When used at the end of the declaration of a structure in IDL, then the directive applies to all
types within the structure.

struct MyStructure {
 Foo member1;

Bar member2;
}; //@resolve-name false

By default, without using the directive, rtiddsgen will try to resolve the type of a field and to use
the fully qualified name in the generated code. If the type is not found to be defined within the
same scope as the structure in which it is used or in a parent scope, then rtiddsgen will generate
code with just the type name itself, assuming that the name will be resolved by the compiler
through other means available to the user (header files or import statements). A type is in the
same scope as the structure if both the type and the structure in which it is used are defined
within the same module.

3.3.8.4 The @top-level Directive

By default, rtiddsgen generates user-level type-specific methods for all structures/unions found
in an IDL file. These methods include the methods used by DataWriters and DataReaders to send
and receive data of a given type. General methods for writing and reading that take a void
pointer are not offered by Connext because they are not type safe. Instead, type-specific methods
must be created to support a particular data type.

We use the term ‘top-level type’ to refer to the data type for which you intend to create a DCPS
Topic that can be published or subscribed to. For top-level types, rtiddsgen must create all of the
type-specific methods previously described in addition to the code to serialize/deserialize those
types. However, some of structures/unions defined in the IDL file are only embedded within
higher-level structures and are not meant to be published or subscribed to individually. For non-
top-level types, the DataWriters and DataReaders methods to send or receive data of those types
are superfluous and do not need to be created. Although the existence of these methods is not a
3-58

Creating User Data Types with Extensible Markup Language (XML)
problem in and of itself, code space can be saved if these methods are not generated in the first
place.

You can mark non-top-level types in an IDL file with the directive ‘//@top-level false’ to tell rtid-
dsgen not to generate type-specific methods. Code will still be generated to serialize and deseri-
alize those types, since they may be embedded in top-level types.

In this example, rtiddsgen will generate DataWriter/DataReader code for TopLevelStruct only:

struct EmbeddedStruct{
 short member;
}; //@top-level false

struct TopLevelStruct{
 EmbeddedStruct member;
};

3.4 Creating User Data Types with Extensible Markup Language
(XML)
You can describe user data types with Extensible Markup Language (XML) notation. Connext
provides DTD and XSD files that describe the XML format; see <NDDSHOME>/resource/
qos_profiles_5.x.y/rtiddsgen/schema/rti_dds_topic_types.dtd and <NDDSHOME>/resource/
qos_profiles_5.x.y/rtiddsgen/schema/rti_dds_topic_types.xsd, respectively (in 5.x.y, the x and y
stand for the version numbers of the current release).

The XML validation performed by rtiddsgen always uses the DTD definition. If the <!DOC-
TYPE> tag is not in the XML file, rtiddsgen will look for the default DTD document in
<NDDSHOME>/resource/rtiddsgen/schema. Otherwise, it will use the location specified in
<!DOCTYPE>.

We recommend including a reference to the XSD/DTD files in the XML documents. This pro-
vides helpful features in code editors such as Visual Studio® and Eclipse™, including validation
and auto-completion while you are editing the XML. We recommend including the reference to
the XSD document in the XML files because it provides stricter validation and better auto-com-
pletion than the DTD document.

To include a reference to the XSD document in your XML file, use the attribute
xsi:noNamespaceSchemaLocation in the <types> tag. For example1:

<?xml version="1.0" encoding="UTF-8"?>
<types xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:noNamespaceSchemaLocation=
"<same as NDDSHOME>/resource/rtiddsgen/schema/rti_dds_topic_types.xsd">
 ...

</types>

To include a reference to the DTD document in your XML file, use the <!DOCTYPE> tag. For
example1:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE types SYSTEM

"<same as NDDSHOME>/resource/rtiddsgen/schema/rti_dds_topic_types.dtd">
<types>
 ...

1. Replace <same as NDDSHOME> with the full path to the Connext installation directory.
3-59

Creating User Data Types with Extensible Markup Language (XML)
</types>

Table 3.11 shows how to map the type system constructs into XML.

Table 3.11 Mapping Type System Constructs to XML

Type/Construct Example

IDL XML IDL XML

char char
struct PrimitiveStruct {

char char_member;
};

<struct name="PrimitiveStruct">
<member name="char_member"
 type="char"/>

</struct>

wchar wchar
struct PrimitiveStruct {

wchar wchar_member;
};

<struct name="PrimitiveStruct">
<member name="wchar_member"
 type="wchar"/>

</struct>

octet octet
struct PrimitiveStruct {

octet octet_member;
};

<struct name="PrimitiveStruct">
<member name="octet_member"
 type="octet"/>

</struct>

short short
struct PrimitiveStruct {

short short_member;
};

<struct name="PrimitiveStruct">
<member name="short_member"
 type="short"/>

</struct>

unsigned
short

unsignedShort

struct PrimitiveStruct {
unsigned short
 unsigned_short_member;

};

<struct name="PrimitiveStruct">
 <member name="unsigned_short_member"

type="unsignedShort"/>
</struct>

long long
struct PrimitiveStruct {

long long_member;
};

<struct name="PrimitiveStruct">
<member name="long_member"type="long"/>

</struct>

unsigned
long

unsignedLong

struct PrimitiveStruct {
unsigned long

unsigned_long_member;
};

<struct name="PrimitiveStruct">
 <member name= "unsigned_long_member"

 type="unsignedLong"/>
</struct>

long long longLong

struct PrimitiveStruct {
 long long
 long_long_member;
};

<struct name="PrimitiveStruct">
<member name="long_long_member"
 type="longLong"/>

</struct>

unsigned
long long

unsigned-
LongLong

struct PrimitiveStruct {
 unsigned long long
unsigned_long_long_member;
};

<struct name="PrimitiveStruct">
<member name="unsigned_long_long_member"
 type="unsignedLongLong"/>

</struct>

float float
struct PrimitiveStruct {

float float_member;
};

<struct name="PrimitiveStruct">
<member name="float_member"
 type="float"/>

</struct>

double double
struct PrimitiveStruct {

double double_member;
};

<struct name="PrimitiveStruct">
<member name="double_member"
 type="double"/>

</struct>

long dou-
ble

longDouble

struct PrimitiveStruct {
long double

long_double_member;
};

<struct name="PrimitiveStruct">
<member name= "long_double_member"
 type="longDouble"/>

</struct>

boolean boolean
struct PrimitiveStruct {

boolean boolean_member;
};

<struct name="PrimitiveStruct">
<member name="boolean_member"
 type="boolean"/>

</struct>
3-60

Creating User Data Types with Extensible Markup Language (XML)
unbounde
d string

string without
stringMaxLength
attribute or with
stringMaxLength
set to -1

struct PrimitiveStruct {
string string_member;

};

<struct name="PrimitiveStruct">
<member name="string_member"
 type="string"/>

</struct>

or
<struct name="PrimitiveStruct">

<member name="string_member"
 type="string" stringMaxLength="-1"/>

</struct>

bounded
string

string with string-
MaxLength attri-
bute

struct PrimitiveStruct {
string<20> string_member;

};

<struct name="PrimitiveStruct">
<member name="string_member"
type="string" stringMaxLength="20"/>

</struct>

unbounde
d wstring

wstring without
stringMaxLength
attribute or with
stringMaxLength
set to -1

struct PrimitiveStruct {
wstring wstring_member;

};

<struct name="PrimitiveStruct">
<member name="wstring_member"
 type="wstring"/>

</struct>

or
<struct name="PrimitiveStruct">

<member name="wstring_member"
 type="wstring" stringMaxLength="-1"/>

</struct>

bounded
wstring

wstring with
stringMaxLength
attribute

struct PrimitiveStruct {
wstring<20>

 wstring_member;
};

<struct name="PrimitiveStruct">
<member name="wstring_member"

 type="wstring" stringMaxLength="20"/>
</struct>

pointer

pointer attribute
with values
true,false,0 or 1
 Default (if not
present): 0

struct PrimitiveStruct {
long * long_member;

};

<struct name="PointerStruct">
<member name="long_member" type="long"
 pointer="true"/>

</struct>

bitfielda
bitfield attribute
with the bitfield
length

struct BitfieldStruct {
short short_member: 1;
unsigned short
unsignedShort_member: 1;
short short_nmember_2: 0;
long long_member : 5;

};

<struct name="BitFieldStruct">
 <member name="short_member"
 type="short" bitField="1"/>
 <member name="unsignedShort_member"
 type="unsignedShort" bitField="1"/>
 <member type="short" bitField="0"/>
 <member name="long_member"
 type="long" bitField="5"/>
</struct>

key direc-
tive b

key attribute with
values true, false,
0 or 1

Default (if not
present): 0

struct KeyedPrimitiveStruct
{
 short short_member; //
@key
};

<struct name="KeyedPrimitiveStruct">
<member name="short_member"
 type="short" key="true"/>

</struct>

resolve-
name
directive b

resolveName
attribute with val-
ues true, false, 0
or 1

Default (if not
present): 1

struct
UnresolvedPrimitiveStruct {

PrimitiveStruct
primitive_member;
//@resolve-name false

};

<struct name=
"UnresolvedPrimitiveStruct">
<member name="primitive_member"
 type="PrimitiveStruct"
 resolveName="false"/>

</struct>

Table 3.11 Mapping Type System Constructs to XML

Type/Construct Example

IDL XML IDL XML
3-61

Creating User Data Types with Extensible Markup Language (XML)
top-level
directive b

topLevel
attribute with val-
ues true, false, 0
or 1

Default (if not
present): 1

struct
TopLevelPrimitiveStruct {
 short short_member;
}; //@top-level false

<struct name="TopLevelPrimitiveStruct"
 topLevel="false">
 <member name="short_member"
 type="short"/>
</struct>

Other
directives b

directive tag
//@copy This text will be

copied in the generated
files

<directive kind="copy">
This text will be copied in the
generated files

</directive>

enum enum tag

enum PrimitiveEnum {
ENUM1,
ENUM2,
ENUM3

};

<enum name="PrimitiveEnum">
<enumerator name="ENUM1"/>
<enumerator name="ENUM2"/>
<enumerator name="ENUM3"/>

</enum>

enum PrimitiveEnum {
ENUM1 = 10,
ENUM2 = 20,
ENUM3 = 30

};

<enum name="PrimitiveEnum">
<enumerator name="ENUM1" value="10"/>
<enumerator name="ENUM2" value="20"/>
<enumerator name="ENUM3" value="30"/>

</enum>

constant const tag const double PI = 3.1415;
<const name="PI" type="double"
 value="3.1415"/>

struct struct tag
struct PrimitiveStruct {
 short short_member;
};

<struct name="PrimitiveStruct">
 <member name="short_member"
 type="short"/>
</struct>

union union tag

union PrimitiveUnion switch
(long) {

case 1:
 short short_member;

case 2:
 case 3:
 float float_member;
 default:
 long long_member;
};

<union name="PrimitiveUnion">
 <discriminator type="long"/>
 <case>
 <caseDiscriminator value="1"/>
 <member name="short_member"
 type="short"/>
 </case>
 <case>
 <caseDiscriminator value="2"/>
 <caseDiscriminator value="3"/>
 <member name="float_member"
 type="float"/>
 </case>
 <case>
 <caseDiscriminator value="default"/>
 <member name="long_member"
 type="long"/>
 </case>
</union>

valuetype valuetype tag

valuetype BaseValueType {
 public long long_member;
};

valuetype DerivedValueType:
BaseValueType {
 public long
 long_member_2;
};

<valuetype name="BaseValueType">
 <member name="long_member"
 type="long" visibility="public"/>
</valuetype>

<valuetype name="DerivedValueType"
 baseClass="BaseValueType">
 <member name="long_member_2"
 type="long" visibility="public"/>
</valuetype>

Table 3.11 Mapping Type System Constructs to XML

Type/Construct Example

IDL XML IDL XML
3-62

Creating User Data Types with Extensible Markup Language (XML)
typedef typedef tag

typedef short ShortType; <typedef name="ShortType" type="short"/>

struct PrimitiveStruct {
short short_member;

};
typedef PrimitiveStruct

PrimitiveStructType;

<struct name="PrimitiveStruct">
 <member name="short_member"
 type="short"/>
</struct>

<typedef name="PrimitiveStructType"
 type="nonBasic"
 nonBasicTypeName="PrimitiveStruct"/>

arrays
Attribute
arrayDimensions

struct OneArrayStruct {
short short_array[2];

};

<struct name="OneArrayStruct">
<member name="short_array"
type="short" arrayDimensions="2"/>

</struct>

struct TwoArrayStruct {
short short_array[1][2];

};

<struct name="TwoArrayStruct">
<member name="short_array"
type="short" arrayDimensions="1,2"/>

</struct>

bounded
sequence

Attribute
sequence-
MaxLength > 0

struct SequenceStruct {
sequence<short,4>

short_sequence;
};

<struct name="SequenceStruct">
<member name="short_sequence"
 type="short"

 sequenceMaxLength="4"/>
</struct>

unbounde
d sequence

Attribute
sequence-
MaxLength set to
-1

struct SequenceStruct {
sequence<short>

short_sequence;
};

<struct name="SequenceStruct">
<member name="short_sequence"
 type="short" sequenceMaxLength="-1"/>

</struct>

array of
sequences

Attributes
sequence-
MaxLength
And arrayDimen-
sions

struct
ArrayOfSequencesStruct {
 sequence<short,4>
 short_sequence_array[2];
};

<struct name= "ArrayOfSequenceStruct">
 <member name= "short_sequence_array"
 type="short" arrayDimensions="2"
 sequenceMaxLength="4"/>
</struct>

sequence
of arrays

Must be imple-
mented with a
typedef tag

typedef short
 ShortArray[2];

struct
SequenceOfArraysStruct {

sequence<ShortArray,2>
short_array_sequence;

};

<typedef name="ShortArray"
 type="short" dimensions="2"/>

<struct name=
"SequenceOfArrayStruct">

 <member name= "short_array_sequence"
 type="nonBasic"
 nonBasicTypeName="ShortSequence"
 sequenceMaxLength="2"/>
</struct>

sequence
of
sequences

Must be imple-
mented with a
typedef tag

typedef sequence<short,4>
ShortSequence;

struct
SequenceOfSequencesStruct
{
 sequence<ShortSequence,2>
 short_sequence_sequence;
};

<typedef name="ShortSequence"
 type="short"sequenceMaxLength="4"/>
<struct name="SequenceofSequencesStruct">
 <member name="short_sequence_sequence"
 type="nonBasic"
 nonBasicTypeName="ShortSequence"
 sequenceMax-Length="2"/>
</struct>

Table 3.11 Mapping Type System Constructs to XML

Type/Construct Example

IDL XML IDL XML
3-63

Creating User Data Types with XML Schemas (XSD)
3.5 Creating User Data Types with XML Schemas (XSD)
You can describe data types with XML schemas (XSD), either independent or embedded in a
Web Services Description Language (WSDL) file. The format is based on the standard IDL-to-
WSDL mapping described in the OMG document "CORBA to WSDL/SOAP Interworking Spec-
ification." Defining a mapping between IDL and WSDL types enables integration between Con-
next and Web Services Technologies using WSDL.

Example Header for XSD:

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:dds="http://www.omg.org/dds"
 xmlns:tns="http://www.omg.org/IDL-Mapped/"
 targetNamespace="http://www.omg.org/IDL-Mapped/">
<xsd:import namespace="http://www.omg.org/dds"
 schemaLocation="rti_dds_topic_types_common.xsd"/>

……

</xsd:schema>

Example Header for WSDL:

<?xml version="1.0" encoding="UTF-8"?>
<definitions xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:dds="http://www.omg.org/dds"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:tns="http://www.omg.org/IDL-Mapped/"
 targetNamespace="http://www.omg.org/IDL-Mapped/">
 <types>
 <xsd:schema targetNamespace="http://www.omg.org/IDL-Mapped/">
 <xsd:import namespace="http://www.omg.org/dds"
 schemaLocation="rti_dds_topic_types_common.xsd"/>
……

 </xsd:schema>
 </types>
</definitions>

module module tag

module PackageName {
struct PrimitiveStruct {

long long_member;
};

};

<module name="PackageName">
<struct name="PrimitiveStruct">
<member name="long_member" type="long"/>
</struct>

</module>

include include tag #include
 "PrimitiveTypes.idl"

<include file="PrimitiveTypes.xml"/>

a. Data types containing bitfield members are not supported by DynamicData (Section 3.8).
b. Directives are RTI extensions to the standard IDL grammar. For additional information about directives see Using Custom
Directives (Section 3.3.8).

Table 3.11 Mapping Type System Constructs to XML

Type/Construct Example

IDL XML IDL XML
3-64

Creating User Data Types with XML Schemas (XSD)

ch

w

oc

sh

u
sh

lo

u
lo
Table 3.12 describes how to map IDL types to XSD. The Connext code generator, rtiddsgen, will
only accept XSD or WSDL files that follow this mapping.

Table 3.12 Mapping Type System Constructs to XSD

Type/Construct Example

IDL XSD IDL XSD

ar dds:chara
struct PrimitiveStruct {
 char char_member;
};

<xsd:complexType name="PrimitiveStruct">
<xsd:sequence>

<xsd:element name="char_member"
 minOccurs="1" maxOccurs="1"

 type="dds:char">
</xsd:sequence>

</xsd:complexType>

char dds:wchara
struct PrimitiveStruct {
 wchar wchar_member;
};

<xsd:complexType name="PrimitiveStruct">
<xsd:sequence>

<xsd:element name="wchar_member"
 minOccurs="1" maxOccurs="1"
 type="dds:wchar">

</xsd:sequence>
</xsd:complexType>

tet xsd:unsignedByte
struct PrimitiveStruct {
 octet octet_member;
};

<xsd:complexType name="PrimitiveStruct">
<xsd:sequence>

<xsd:element name="octet_member"
 minOccurs="1" maxOccurs="1"
 type="xsd:unsignedByte">

</xsd:sequence>
</xsd:complexType>

ort xsd:short
struct PrimitiveStruct {
 short short_member;
};

<xsd:complexType name="PrimitiveStruct">
<xsd:sequence>

<xsd:element name="short_member"
 minOccurs="1" maxOccurs="1"

 type="xsd:short"/>
</xsd:sequence>

</xsd:complexType>

nsigned
ort

xsd:unsigned-
Short

struct PrimitiveStruct {
 unsigned short
unsigned_short_member;
};

<xsd:complexType name="PrimitiveStruct">
<xsd:sequence>
<xsd:element name="unsigned_short_member"

 minOccurs="1" maxOccurs="1"
 type="xsd:unsignedShort"/>
</xsd:sequence>

</xsd:complexType>

ng xsd:int
struct PrimitiveStruct {
 long long_member;
};

<xsd:complexType name="PrimitiveStruct">
<xsd:sequence>

<xsd:element name="long_member"
 minOccurs="1" maxOccurs="1"
 type="xsd:int"/>

</xsd:sequence>
</xsd:complexType>

nsigned
ng

xsd:unsignedInt

struct PrimitiveStruct {
 unsigned long
unsigned_long_member;
};

<xsd:complexType name="PrimitiveStruct">
<xsd:sequence>

<xsd:element name= "unsigned_long_member"
 minOccurs="1" maxOccurs="1"
 type="xsd:unsignedInt"/>

</xsd:sequence>
</xsd:complexType>
3-65

Creating User Data Types with XML Schemas (XSD)

lo

u
lo

fl

d

lo
d

bo

u
st
ng long xsd:long

struct PrimitiveStruct {
 long long
long_long_member;
};

<xsd:complexType name="PrimitiveStruct">
<xsd:sequence>

<xsd:elementname= "long_long_member"
 minOccurs="1" maxOccurs="1"
 type="xsd:long"/>

</xsd:sequence>
</xsd:complexType>

nsigned
ng long

xsd:unsigned-
Long

struct PrimitiveStruct {
 unsigned long long
unsigned_long_long_member;
};

<xsd:complexType name="PrimitiveStruct">
<xsd:sequence>

<xsd:element name=
 "unsigned_long_long_member"
 minOccurs="1" maxOccurs="1"
 type="xsd:unsignedLong"/>

</xsd:sequence>
</xsd:complexType>

oat xsd:float
struct PrimitiveStruct {
 float float_member;
};

<xsd:complexType name="PrimitiveStruct">
<xsd:sequence>

<xsd:element name="float_member"
 minOccurs="1" maxOccurs="1"
 type="xsd:float"/>

</xsd:sequence>
</xsd:complexType>

ouble xsd:double
struct PrimitiveStruct {
 double double_member;
};

<xsd:complexType name="PrimitiveStruct">
<xsd:sequence>

<xsd:element name="double_member"
 minOccurs="1" maxOccurs="1"
 type="xsd:double"/>

</xsd:sequence>
</xsd:complexType>

ng
ouble

dds:longDoublea

struct PrimitiveStruct {
 long double
long_double_member;
};

<xsd:complexType name="PrimitiveStruct">
<xsd:sequence>

<xsd:element name="long_double_member"
 minOccurs="1" maxOccurs="1"
 type="dds:longDouble"/>

</xsd:sequence>
</xsd:complexType>

olean xsd:boolean

struct PrimitiveStruct {
 boolean
boolean_member;
};

<xsd:complexType name="PrimitiveStruct">
<xsd:sequence>

<xsd:element name="boolean_member"
 minOccurs="1" maxOccurs="1"
 type="xsd:boolean"/>

</xsd:sequence>
</xsd:complexType>

nbounded
ring

xsd:string
struct PrimitiveStruct {
 string string_member;
};

<xsd:complexType name="PrimitiveStruct">
<xsd:sequence>
<xsd:element name="string_member"
 minOccurs="1" maxOccurs="1"
 type="xsd:string"/>
</xsd:sequence>

</xsd:complexType>

Table 3.12 Mapping Type System Constructs to XSD

Type/Construct Example

IDL XSD IDL XSD
3-66

Creating User Data Types with XML Schemas (XSD)

bo
st

u
w

bo
w

p

unded
ring

xsd:string with
restriction to
specify the maxi-
mum length

struct PrimitiveStruct {
 string<20> string_member;
};

<xsd:complexType name="PrimitiveStruct">
<xsd:sequence>

<xsd:element name="string_member"
 minOccurs="1" maxOccurs="1">
 <xsd:simpleType>

<xsd:restriction base="xsd:string">
<xsd:maxLength value="20"
 fixed="true"/>

</xsd:restriction>
 </xsd:simpleType>
</xsd:element>

</xsd:sequence>
</xsd:complexType>

nbounded
string

dds:wstringa
struct PrimitiveStruct {
 wstring wstring_member;
};

<xsd:complexType name="PrimitiveStruct">
<xsd:sequence>

<xsd:element name="wstring_member"
 minOccurs="1" maxOccurs="1"
 type="dds:wstring"/>

</xsd:sequence>
</xsd:complexType>

unded
string

xsd:wstring with
restriction to
specify the maxi-
mum length

struct PrimitiveStruct {
 wstring<20>
 wstring_member;
};

<xsd:complexType name="PrimitiveStruct">
<xsd:sequence>

<xsd:element name="wstring_member"
 minOccurs="1" maxOccurs="1">

<xsd:simpleType>
<xsd:restriction base=

 "dds:wstring">
<xsd:maxLength value="20"
 fixed="true"/>
</xsd:restriction>

</xsd:simpleType>
</xsd:element>

</xsd:sequence>
</xsd:complexType>

ointer

<!-- @pointer
<true|false|1|0>
-->
Default (if not
specified): false

struct PrimitiveStruct {
 long * long_member;
};

<xsd:complexType name="PrimitiveStruct">
<xsd:sequence>

<xsd:element name="long_member"
 minOccurs="1" maxOccurs="1"
 type="xsd:int"/>
<!-- @pointer true -->

</xsd:sequence>
</xsd:complexType>

Table 3.12 Mapping Type System Constructs to XSD

Type/Construct Example

IDL XSD IDL XSD
3-67

Creating User Data Types with XML Schemas (XSD)

bi

ke
d

re
na
ti

to
d

ot
d

tfieldb
<!-- @bitField
 <bitfield length>
-->

struct BitfieldStruct {
 short short_member: 1;
 unsigned short
 unsignedShort_member: 1;
 short: 0;
 long long_member: 5;
};

<xsd:complexType name="BitfieldStruct">
<xsd:sequence>

<xsd:element name="short_member"
 minOccurs="1" maxOccurs="1"
 type="xsd:short"/>
<!-- @bitField 1 -->
<xsd:element name=‘unsignedShort_member"
 minOccurs="1" maxOccurs="1"
 type="xsd:unsignedShort"/>
<!-- @bitField 1 -->
<xsd:element name="_ANONYMOUS_3"

 minOccurs="1" maxOccurs="1"
 type="xsd:short"/>
<!-- @bitField 0 -->
<xsd:element name="long_member"
 minOccurs="1" maxOccurs="1"
 type="xsd:int"/>
<!-- @bitField 5 -->

</xsd:sequence>
</xsd:complexType>

y
irectivec

<!-- @key

<true|false|1|0>
-->

Default (if not
specified): false

struct
KeyedPrimitiveStruct {
 long long_member; //@key
};

<xsd:complexType name="KeyedPrimitiveStruct">
<xsd:sequence>

<xsd:element name="long_member"
 minOccurs="1" maxOccurs="1"
 type="xsd:int"/>
<!-- @key true -->

</xsd:sequence>
</xsd:complexType>

solve-
me direc-

vec

<!-- @resolve-
Name

<true|false|1|0>
-->

Default (if not
specified): true

struct
UnresolvedPrimitiveStruct
{
PrimitiveStruct

primitive_member;
//@resolve-name false

};

<xsd:complexType name=
 "UnresolvedPrimitiveStruct">
<xsd:sequence>

<xsd:element name="primitive_member"
 minOccurs="1" maxOccurs="1"
 type="PrimitiveStruct"/>
<!-- @resolveName false -->

</xsd:sequence>
</xsd:complexType>

p-level
irectivec

<!-- @topLevel
<true|false|1|0>
-->

Default (if not
specified): true

struct
TopLevelPrimitiveStruct {
short short_member;

}; //@top-level false

<xsd:complexType
 name="TopLevelPrimitiveStruct">
<xsd:sequence>

<xsd:element name="short_member"
 minOccurs="1" maxOccurs="1"
 type="xsd:short"/>

</xsd:sequence>
</xsd:complexType>
<!-- @topLevel false -->

her
irectivesc

<!--
 @<directive
kind>
 <value>
-->

//@copy This text will be
copied in the generated
files

<!--@copy This text will be copied in the
 generated files -->

Table 3.12 Mapping Type System Constructs to XSD

Type/Construct Example

IDL XSD IDL XSD
3-68

Creating User Data Types with XML Schemas (XSD)

en

co

st
um
xsd:simpleType
with enumeration

enum PrimitiveEnum {
 ENUM1,
 ENUM2,
 ENUM3
};

enum PrimitiveEnum {
 ENUM1 = 10,
 ENUM2 = 20,
 ENUM3 = 30
};

<xsd:simpleType name="PrimitiveEnum">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="ENUM1"/>
 <xsd:enumeration value="ENUM2"/>
 <xsd:enumeration value="ENUM3"/>
 </xsd:restriction>
</xsd:simpleType>

<xsd:simpleType name="PrimitiveEnum">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="ENUM1">
 <xsd:annotation>
 <xsd:appinfo>
 <ordinal>10</ordinal>
 </xsd:appinfo>
 </xsd:annotation>
 </xsd:enumeration>
 <xsd:enumeration value="ENUM2">
 <xsd:annotation>
 <xsd:appinfo>
 <ordinal>20</ordinal>
 </xsd:appinfo>
 </xsd:annotation>
 </xsd:enumeration>
 <xsd:enumeration value="ENUM3">
 <xsd:annotation>
 <xsd:appinfo>
 <ordinal>30</ordinal>
 </xsd:appinfo>
 </xsd:annotation>
 </xsd:enumeration>
 </xsd:restriction>
</xsd:simpleType>

nstant IDL constants are mapped by substituting their value directly in the generated file

ruct
xsd:complexType
with
xsd:sequence

struct PrimitiveStruct {
short short_member;

};

<xsd:complexType name="PrimitiveStruct">
<xsd:sequence>

<xsd:element name="short_member"
 minOccurs="1" maxOccurs="1"

 type="xsd:short"/>
</xsd:sequence>

</xsd:complexType>

Table 3.12 Mapping Type System Constructs to XSD

Type/Construct Example

IDL XSD IDL XSD
3-69

Creating User Data Types with XML Schemas (XSD)

u

va
nion
xsd:complexType
with xsd:choice

union PrimitiveUnion
switch (long) {
case 1:
 short short_member;
default:
 long long_member;

};

<xsd:complexType name="PrimitiveUnion">
 <xsd:sequence>
 <xsd:element name="discriminator"
 type="xsd:int"/>
 <xsd:choice>
 <!-- case 1 -->d

 <xsd:element name="short_member"
 minOccurs="0" maxOccurs="1"
 type="xsd:short">
 <xsd:annotation>
 <xsd:appinfo>
 <case>1</case>
 </xsd:appinfo>
 </xsd:annotation>
 </xsd:element>
 <!-- case default -->
 <xsd:element name="long_member"
 minOccurs="0" maxOccurs="1"
 type="xsd:int">
 <xsd:annotation>
 <xsd:appinfo>
 <case>default</case>
 </xsd:appinfo>
 </xsd:annotation>
 </xsd:element>
 </xsd:choice>
 </xsd:sequence>
</xsd:complexType>

luetype
xsd:complexType
with @valuetype
directive

valuetype BaseValueType {
public long

long_member;
};

valuetype
DerivedValueType:
BaseValueType {
public long

long_member2;
public long

long_member3;
};

<xsd:complexType name="BaseValueType">
<xsd:sequence>

<xsd:element name=”long_member"
 maxOccurs="1" minOccurs="1"
 type="xs:int"/>
 <!-- @visibility public -->

</xsd:sequence>
</xs:complexType>
<!-- @valuetype true -->

<xs:complexType name="DerivedValueType">
<xs:complexContent>

<xs:extension base="BaseValueType">
<xs:sequence>

<xs:element name= "long_member2"
 maxOccurs="1" minOccurs="1"
 type="xs:int"/>
<!-- @visibility public -->
<xs:element name= "long_member3"

 maxOccurs="1" minOccurs="1"
 type="xs:int"/>
<!-- @visibility public -->

</xs:sequence>
</xs:extension>

</xs:complexContent>
</xs:complexType>
<!-- @valuetype true -->

Table 3.12 Mapping Type System Constructs to XSD

Type/Construct Example

IDL XSD IDL XSD
3-70

Creating User Data Types with XML Schemas (XSD)

ty

ar
pedef

Type definitions
are mapped to
XML schema type
restrictions

typedef short ShortType;

struct PrimitiveStruct {
 short short_member;
};

typedef PrimitiveType
PrimitiveStructType;

<xsd:simpleType name="ShortType">
<xsd:restriction base="xsd:short"/>

</xsd:simpleType>

<!—- Struct definition -->
<xsd:complexType name="PrimitiveStruct">
<xsd:sequence>

<xsd:element name="short_member"
 minOccurs="1" maxOccurs="1"
 type="xsd:short"/>

</xsd:sequence>
</xsd:complexType>

<!—- Typedef definition -->
<xsd:complexType
 name="PrimitiveTypeStructType">
<xsd:complexContent>

<xsd:restriction base=”PrimitiveStruct”>
<xsd:sequence>

<xsd:element name="short_member"
 minOccurs="1" maxOccurs="1"

 type="xsd:short"/>
</xsd:sequence>

</xsd:restriction>
</xsd:complexContent>

</xsd:complexType>

rays

n xsd:complex-
Type with
sequence contain-
ing one element
with min & max
occurs

There is one
xsd:complexType
per array dimen-
sion

struct OneArrayStruct {
 short short_array[2];
};

<!-- Array type -->
<xsd:complexType name=
 "OneArrayStruct_short_array_ArrayOfShort">
<xsd:sequence>
<xsd:element name="item" minOccurs="2"
 maxOccurs="2" type="xsd:short">
</xsd:element>
</xsd:sequence>
</xsd:complexType>
<!-- Struct w unidimensional array member -->
<xsd:complexType name="OneArrayStruct">
<xsd:sequence>
<xsd:element name="short_array"
 minOccurs="1" maxOccurs="1"
 type=
 "OneArrayStruct_short_array_ArrayOfShort"/>
</xsd:sequence>
</xsd:complexType>

Table 3.12 Mapping Type System Constructs to XSD

Type/Construct Example

IDL XSD IDL XSD
3-71

Creating User Data Types with XML Schemas (XSD)

ar
(c

>

>

bo
se

>

rays
ont’d)

n xsd:complex-
Type with
sequence contain-
ing one element
with min & max
occurs

There is one
xsd:complexType
per array dimen-
sion

struct TwoArrayStruct {
 short short_array[2][1];
};

<!--Second dimension array type -->
<xsd:complexType name=
 "TwoArrayStruct_short_array_ArrayOfShort">

<xsd:sequence>
<xsd:element name="item" minOccurs="2"
 maxOccurs="2" type="xsd:short">
</xsd:element>

</xsd:sequence>
</xsd:complexType>

<!-- First dimension array type -->
<xsd:complexType name=
 "TwoArrayStruct_short_array_ArrayOfArrayOfShort"

<xsd:sequence>
<xsd:element name="item"
 minOccurs="1" maxOccurs="1"

 type=
 "TwoArrayStruct_short_array_ArrayOfShort">

</xsd:element>
</xsd:sequence>

</xsd:complexType>

<!--Struct containing a bidimensional array
 member -->
<xsd:complexType name="TwoArrayStruct">

<xsd:sequence>
<xsd:element name="short_array"
 minOccurs="1" maxOccurs="1"

 type=
"TwoArrayStruct_short_array_ArrayOfArrayOfShort"/

</xsd:sequence>
</xsd:complexType>

unded
quence

xsd:complexType
with sequence
containing one
element with min
& max occurs

struct SequenceStruct {
sequence<short,4>
 short_sequence;

};

<!-- Sequence type -->
<xsd:complexType name=
"SequenceStruct_short_sequence_SequenceOfShort">
<xsd:sequence>

<xsd:element name="item" minOccurs="0"
 maxOccurs="4" type="xsd:short">
</xsd:element>

</xsd:sequence>
</xsd:complexType>

<!-- Struct containing a bounded sequence
 member -->
<xsd:complexType name="SequenceStruct">
<xsd:sequence>

<xsd:element name="short_sequence"
 minOccurs="1" maxOccurs="1"
 type=

"SequenceStruct_short_sequence_SequenceOfShort"/
</xsd:sequence>

</xsd:complexType>

Table 3.12 Mapping Type System Constructs to XSD

Type/Construct Example

IDL XSD IDL XSD
3-72

Creating User Data Types with XML Schemas (XSD)

u
ed
se

>

nbound-

quence

xsd:complexType
with sequence
containing one
element with min
& max occurs

struct SequenceStruct {
sequence<short>
 short_sequence;

};

<!-- Sequence type -->
<xsd:complexType name=
"SequenceStruct_short_sequence_SequenceOfShort">
<xsd:sequence>
 <xsd:element name="item"

 minOccurs="0" maxOccurs="unbounded"
 type="xsd:short"/>
</xsd:sequence>

</xsd:complexType>

<!-- Struct containing an unbounded sequence
 member -->
<xsd:complexType name="SequenceStruct">
<xsd:sequence>

<xsd:element name="short_sequence"
 minOccurs="1" maxOccurs="1"

 type=
"SequenceStruct_short_sequence_SequenceOfShort"/
</xsd:sequence>

</xsd:complexType>

Table 3.12 Mapping Type System Constructs to XSD

Type/Construct Example

IDL XSD IDL XSD
3-73

Creating User Data Types with XML Schemas (XSD)

ar
se

f

f

ray of
quences

n + 1 xsd:com-
plexType with
sequence contain-
ing one element
with min & max
occurs

There is one
xsd:complexType
per array dimen-
sion and one
xsd:complexType
for the sequence

struct
ArrayOfSequencesStruct {
sequence<short,4>

 sequence_sequence[2];
};

<!-- Sequence declaration -->
<xsd:complexType
 name=
"ArrayOfSequencesStruct_sequence_array_SequenceO
Short">
 <xsd:sequence>
 <xsd:element name="item"
 minOccurs="0" maxOccurs="4"
 type="xsd:short">
 </xsd:element>
 </xsd:sequence>
</xsd:complexType>

<!-- Array declaration -->
<xsd:complexType
 name=
"ArrayOfSequencesStruct_sequence_array_ArrayOf
SequenceOfShort">
 <xsd:sequence>
 <xsd:element name="item"
 minOccurs="2" maxOccurs="2"
 type=
"ArrayOfSequencesStruct_sequence_array_SequenceO
Short">
 </xsd:element>
 </xsd:sequence>
</xsd:complexType>

<!-- Structure containing a member that is an
 array of sequences -->
<xsd:complexType name="ArrayOfSequencesStruct">
 <xsd:sequence>
 <xsd:element name="sequence_array"
 minOccurs="1" maxOccurs="1"
 type=
"ArrayOfSequencesStruct_sequence_array_ArrayOf
SequenceOfShort"/>
 </xsd:sequence>
</xsd:complexType>

Table 3.12 Mapping Type System Constructs to XSD

Type/Construct Example

IDL XSD IDL XSD
3-74

Creating User Data Types with XML Schemas (XSD)

se
ar

O

e

quence of
rays

Sequences of
arrays must be
implemented
using an explicit
type definition
(typedef) for the
array

typedef short
ShortArray[2];

struct
SequenceOfArraysStruct {
sequence<ShortArray,2>

 arrays_sequence;
};

<!-- Array declaration -->
<xsd:complexType name="ShortArray">
<xsd:sequence>

<xsd:element name="item"
 minOccurs="2" maxOccurs="2"
 type="xsd:short">

</xsd:element>
</xsd:sequence>

</xsd:complexType>

<!-- Sequence declaration -->
<xsd:complexType name=
"SequencesOfArraysStruct_array_sequence_Sequence
fShortArray">
<xsd:sequence>

<xsd:element name="item"
 minOccurs="0" maxOccurs="2"
 type="ShortArray">

</xsd:element>
</xsd:sequence>

</xsd:complexType>

<!-- Struct containing a sequence of arrays -->
<xsd:complexType name="SequenceOfArraysStruct">
<xsd:sequence>

<xsd:element name="arrays_sequence"
 minOccurs="1" maxOccurs="1"

 type=
"SequencesOfArraysStruct_arrays_sequence_Sequenc
OfShortArray"/>
</xsd:sequence>

</xsd:complexType>

Table 3.12 Mapping Type System Constructs to XSD

Type/Construct Example

IDL XSD IDL XSD
3-75

Creating User Data Types with XML Schemas (XSD)

se
se

e

>

>

m

in

ve

ec-

quence of
quences

Sequences of
sequences must
be implemented
using an explicit
type definition
(typedef) for the
second sequence

typedef sequence<short,4>
ShortSequence;

struct
SequenceOfSequences {
sequence<ShortSequence, 2>

sequences_sequence;
};

<!-- Internal sequence declaration -->
<xsd:complexType name="ShortSequence">
<xsd:sequence>

<xsd:element name="item"
 minOccurs="0" maxOccurs="4"
 type="xsd:short">
 </xsd:element>
 </xsd:sequence>
</xsd:complexType>

<!-- External sequence declaration -->
<xsd:complexType name=
"SequencesOfSequences_sequences_sequence_Sequenc
OfShortSequence">
 <xsd:sequence>
 <xsd:element name="item"
 minOccurs="0" maxOccurs="2"
 type="ShortSequence">
 </xsd:element>
 </xsd:sequence>
</xsd:complexType>

<!--Struct containing a sequence of sequences --
<xsd:complexType name="SequenceOfSequences">
 <xsd:sequence>
 <xsd:element name="sequences_sequence"
 minOccurs="1" maxOccurs="1"
 type="SequencesOfSequences_
 sequences_sequence_SequenceOfShortSequence"/
 </xsd:sequence>
</xsd:complexType>

odule

Modules are
mapped adding
the name of the
module before the
name of each type
inside the module

module PackageName {
 struct PrimitiveStruct {

long long_member;
};

};

<xsd:complexType name=
 "PackageName.PrimitiveStruct">
 <xsd:sequence>
 <xsd:element name="long_member"
 minOccurs="1" maxOccurs="1"
 type="xsd:int"/>
</xsd:sequence>

</xsd:complexType>

clude xsd:include #include
"PrimitiveType.idl"

<xsd:include schemaLocation=
 "PrimitiveType.xsd"/>

a. All files that use the primitive types char, wchar, long double and wstring must reference rti_dds_topic_types_common.xsd. See Primiti
Types (Section 3.5.1).
b. Data types containing bitfield members are not supported by DynamicData (Section 3.8).
c. Directives are RTI extensions to the standard IDL grammar. For additional information about directives see Using Custom Directives (S
tion 3.3.8).
d. The discriminant values can be described using comments (as specified by the standard) or xsd:annotation tags. We recommend using
annotations because comments may be removed by XSD/XML parsers.

Table 3.12 Mapping Type System Constructs to XSD

Type/Construct Example

IDL XSD IDL XSD
3-76

Using rtiddsgen
3.5.1 Primitive Types

The primitive types char, wchar, long double, and wstring are not supported natively in XSD.
Connext provides definitions for these types in the file <NDDSHOME>/resource/rtiddsgen/
schema/rti_dds_topic_types_common.xsd. All files that use the primitive types char, wchar, long
double and wstring must reference rti_dds_topic_types_common.xsd. For example:

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:dds="http://www.omg.org/dds">

<xsd:import namespace="http://www.omg.org/dds"
 schemaLocation="rti_dds_topic_types_common.xsd"/>
<xsd:complexType name="Foo">

<xsd:sequence>
<xsd:element name="myChar" minOccurs="1"
 maxOccurs="1" type="dds:char"/>

</xsd:sequence>
</xsd:complexType>

</xsd:schema>

3.6 Using rtiddsgen
The rtiddsgen utility provided with Connext creates the code needed to define and register a user-
data type with Connext. Using this tool is optional if:

❏ You are using dynamic types (see Managing Memory for Built-in Types (Section 3.2.7))

❏ You are using one of the built-in types (see Built-in Data Types (Section 3.2))

To use rtiddsgen, you must supply a description of the type in an IDL, XML, XSD, or WSDL file.
The supported syntax for each one of the notations is described in Section 3.8.5.1 (IDL),
Section 3.4 (XML) and Section 3.5 (XSD and WSDL). You can define multiple data types in the
same type-definition file.

Notes:

❏ Before running rtiddsgen on a Windows system, run VCVARS32.BAT from the same
command prompt that you will use to run rtiddsgen.

❏ Before using an rtiddsgen-generated makefile to compile an application, make sure the
${NDDSHOME} environment variable is set as described in the Getting Started Guide. For
INTEGRITY architectures, ${NDDSHOME} must be set when generating the project
files.

The script to run rtiddsgen is in your ${NDDSHOME}/scripts directory.

Table 3.13 on page 3-78 (for C, C++, and C++/CLI and C#) and Table 3.14 on page 3-78 (for Java)
show the files that rtiddsgen creates for an example IDL file called Hello.idl. (The file extension
will depend on the chosen language: .c for C, .cxx for C++, .cpp for C++/CLI, .cs for C#.)
3-77

Using rtiddsgen
Table 3.13 Files Created by rtiddsgen for C, C++, C++/CLI, C# for Example “Hello.idl”

Generated Files Description

Required files for the user data type. The source files should be compiled and linked with the user applica-
tion. The header files are required to use the data type in source.
You should not modify these files unless you intend to customize the generated code supporting your
type.

Hello.[c,cxx, cpp]
HelloSupport.[c, cxx, cpp]
HelloPlugin.[c,cxx, cpp]

Generated code for the data types. These files contain the implementa-
tion for your data types.

Hello.h
HelloSupport.h
HelloPlugin.h

Header files that contain declarations used in the implementation of
your data types.

Optional files generated when you use the “-example <arch>” command-line option.
You may modify and use these files as a way to create simple applications that publish or subscribe to the
user data type.

Hello_publisher.[c, cxx, cpp, cs]

Example code for an application that publishes the user data type. This
example shows the basic steps to create all of the Connext objects needed
to send data.
You will need to modify the code to set and change the values being
sent in the data structure. Otherwise, just compile and run.

Hello_subscriber.[c, cxx, cpp,cs]

Example code for an application that subscribes to the user data type.
This example shows the basic steps to create all of the Connext objects
needed to receive data using a “listener” function.
No modification of this file is required. It is ready for you to compile
and run.

Hello.dsw or Hello.sln,
Hello_publisher.dsp or
Hello_publisher.vcproj,
Hello_subscriber.dsp or
Hello_subscriber.vcproj

Microsoft Visual C++ or Visual Studio .NET Project workspace and
project files, generated only for “i86Win32” architectures. To compile
the generated source code, open the workspace file and build the two
projects.

makefile_Hello_<architecture>
Makefile for non-Windows-based architectures. An example <architec-
ture> would be linux2.4gcc3.2.2.

Table 3.14 Files Created by rtiddsgen for Java for Example “Hello.idl”

Data Type Generated Files Description

Since the Java language requires individual files to be created for each class, rtiddsgen will generate a
source file for every IDL construct that translates into a class in Java.

Constants <Name>.java Class associated with the constant

Enums <Name>.java Class associated with enum type

Structures/
Unions

<Name>.java
<Name>Seq.java
<Name>DataReader.java
<Name>DataWriter.java
<Name>TypeSupport.java

Structure/Union class
Sequence class
Connext DataReader and DataWriter classes
Support (serialize, deserialize, etc.) class

Typedef of
sequences or
arrays

<Name>.java
<Name>Seq.java
<Name>TypeSupport.java

Wrapper class
Sequence class
Support (serialize, deserialize, etc.) class
3-78

Using rtiddsgen
3.6.1 rtiddsgen Command-Line Arguments

There are several command-line options you can pass to rtiddsgen:

rtiddsgen [-d <outdir>]
 [-language <C|C++|Java|C++/CLI|C#|Ada>]
 [-namespace] (C++ only)
 [-package <packagePrefix>] (Java only)
 [-example <arch>]
 [-replace]
 [-debug]

Note: CORBA
support requires
the RTI CORBA
Compatibility
Kit

 [-corba [client header file]] [-orb \<CORBA ORB\>]]
 [-optimization <level of optimization>]
 [-stringSize <Unbounded strings size>]
 [-sequenceSize <Unbounded sequences size>]
 [-notypecode]
 [-ppDisable]
 [-ppPath <preprocessor executable>]
 [-ppOption <option>]
 [-D <name>[=<value>]]
 [-U <name>]
 [-I <directory>]
 [-noCopyable]
 [-use42eAlignment]
 [-enableEscapeChar]
 [-typeSequenceSuffix <Suffix>]
 [-dataReaderSuffix <Suffix>]

 [-dataWriterSuffix <Suffix>]
 [-convertToXml |
 -convertToXsd |
 -convertToWsdl |
 -convertToIdl]
 [-convertToCcl]
 [-convertToCcs]
 [-expandOctetSeq]
 [-expandCharSeq]
 [-dllExportMacroSuffix]
 [-version]
 [-help]

 [-verbosity [1-3]]

Optional files generated when you use the “-example <arch>” command-line option. You may modify and
use these files as a way to create simple applications that publish or subscribe to the user data type.

Structures/
Unions

<Name>Publisher.java
<Name>Subscriber.java

Example code for applications that publish or subscribe to
the user data type. You should modify the code in the pub-
lisher application to set and change the value of the pub-
lished data. Otherwise, both files should be ready to
compile and run.

makefile_Hello_<architecture>
Makefile for non-Windows-based architectures. An exam-
ple <architecture> is linux2.4gcc3.2.2.

Structures/
Unions/
Typedefs/
Enums

<Name>TypeCode.java
(Note: this is not generated if
you use -notypecode)

Type code class associated with the IDL type given by
<Name>.

Table 3.14 Files Created by rtiddsgen for Java for Example “Hello.idl”

Data Type Generated Files Description
3-79

Using rtiddsgen
 [[-inputIdl] <IDLInputFile.idl> |
 [-inputXml] <XMLInputFile.xml> |
 [-inputXsd] <XSDInputFile.xsd> |
 [-inputWsdl] <WSDLInputFile.wsdl>]

Table 3.15 describes the options (in alphabetical order).

3.6.1.1 Return Values for rtiddsgen

The rtiddsgen script returns a 0 (zero) if there are no errors or -1 if any errors are encountered.

Table 3.15 Options for rtiddsgen

Option Description

-convertToCcl
Converts the input type description file into CCL format. This option creates a
new file with the same name as the input file and a .ccl extension.

-convertToCcs
Converts the input type description file into CCs format. This option creates a
new file with the same name as the input file and a .ccs extension.

-convertToIdl
Converts the input type description file into IDL format. This option creates a
new file with the same name as the input file and a .idl extension.

-convertToWsdl
Converts the input type description file into WSDL format. This option creates
a new file with the same name as the input file and a .wsdl extension.

-convertToXml
Converts the input type description file into XML format. This option creates a
new file with the same name as the input file and a .xml extension.

-convertToXsd
Converts the input type description file into XSD format. This option creates a
new file with the same name as the input file and a .xsd extension.

-corba
This option is only available when using the RTI CORBA Compatibility Kit for
Connext (available for purchase as a separate product). Please see Part 7: RTI
CORBA Compatibility Kit.

-D <name>[=<value>]
Defines preprocessor macros.
Note: On Windows systems, enclose the argument in quotation marks:
-D "<name>[=<value>]"

-d
Generates the output in the specified directory. By default, rtiddsgen will gener-
ate files in the directory where the input type-definition file is found.

-dataReaderSuffix <suffix>
Assigns a suffix to the name of a DataReader interface. Only applies if -corba is
also specified. By default, the suffix is 'DataReader'. Therefore, given the type
'Foo' the name of the DataReader interface will be 'FooDataReader'.

-dataWriterSuffix <suffix>
Assigns a suffix to the name of a DataWriter interface. Only applies if -corba is
also specified. By default, the suffix is 'DataWriter'. Therefore, given the type
'Foo' the name of the DataWriter interface will be 'FooDataWriter'.

-debug
Creates XML files for debugging rtiddsgen only. Use this option only at the
direction of RTI support; it is unlikely to be useful to you otherwise.

-dllExportMacroSuffix <suffix>

Defines the suffix of the macro that is used to export symbols when building
Windows DLLs. The default macro is NDDS_USER_DLL_EXPORT. When
this option is specified, the name of the macro is
NDDS_USER_DLL_EXPORT_<suffix>.

-enableEscapeChar
Enables use of the escape character '_' in IDL identifiers. When -corba is used,
this option is always enabled.

-example <arch>

 Generates example application code and makefiles (for UNIX-based systems)
or workspace and project files (for Windows systems) based on the type-defini-
tion file. The parameter specifies the architecture for the example makefiles.
Valid options for <arch> are listed in the Platform Notes.
3-80

Using rtiddsgen
-expandOctetSeq
 When converting to CCS or CCL files, expand octet sequences. The default is
to use a blob type.

-expandCharSeq
When converting to CCS or CCL files, expand char sequences. The default is to
use a string type.

-I <directory>
Adds to the list of directories to be searched for type-definition files (IDL, XML,
XSD or WSDL files). Note: A type-definition file in one format cannot include a
file in another format.

-inputIdl Indicates that the input file is an IDL file, regardless of the file extension.

-inputWsdl Indicates that the input file is a WSDL file, regardless of the file extension.

-inputXml Indicates that the input file is a XML file, regardless of the file extension.

-inputXsd Indicates that the input file is a XSD file, regardless of the file extension.

IDLInputFile.idl
File containing IDL descriptions of your data types. If -inputIdl is not used, the
file must have a ‘.idl’ extension.

-help Prints out the command line options for rtiddsgen.

-language
Specifies the language to use for the generated files. The default language is
C++; you can also choose C, C++/CLI, C#, Java, or Ada.

-metp
Generates code for the Multi-Encapsulation Type Support (METP) library.
The METP library requires a special version of Connext; please contact sup-
port@rti.com for more information.

-namespace
Specifies the use of C++ namespace. (For C++ only. For C++/CLI and C#, it is
implied-namespaces are always used.)

-noCopyable

Forces rtiddsgen to put ‘copy’ logic into the corresponding TypeSupport class
rather than the type itself. This option is only used for Java code generation.
This option is not compatible with the use of ndds_standalone_type.jar (see
Section 3.7). Note that when generating code for Java, the -corba option implies
the -noCopyable option (whether or not you specify -noCopyable).a

-notypecode

Disables type-code support. By using this option, you can generate code that
can be used in a standalone manner—see Using Generated Types without Con-
next (Standalone) (Section 3.7).
Note: If you are using a large data type (more than 64 K) and type code support,
you will see a warning when type code information is sent. Connext has a type
code size limit of 64K. To avoid the warning when working with data types
with type codes larger than 64K, turn off type code support by using -notype-
code.

-replace
Allows rtiddsgen to overwrite any existing generated files. If it is not present
and existing files are found, rtiddsgen will print a warning but will not over-
write them.

-optimization See Optimizing Typedefs (-optimization) (Section 3.6.1.2 on Page 3-82)

-orb

Specifies the CORBA ORB. The majority of code generated is independent of
the ORB. However, for some IDL features the code generated depends on the
ORB. rtiddsgen generates code compatible with ACE-TAO or JacORB. To select
an ACE_TAO version use the -orb parameter. The default is ACE_TAO1.6.
This option can only be used with the -corba option.

-package
Specifies the root package into which generated classes will be placed. It
applies to Java only. If the type-definition file contains module declarations,
those modules will be considered subpackages of the package specified here.

Table 3.15 Options for rtiddsgen

Option Description
3-81

Using rtiddsgen
3.6.1.2 Optimizing Typedefs (-optimization)

The -optimization option specifies how support for typedefs is generated in C and C++ code.
This option is only useful when there are typedefs defined in the IDL file. This option only
applies to C and C++ because the Java language does not contain the typedef construct. In other
words, rtiddsgen always resolves typedef’ed names to their most basic types when generating
Java code (except for typedefs of arrays and sequences which are converted to wrapper

-ppDisable Disables the preprocessor.

-ppOption <option>
Specifies a preprocessor option. This parameter can be used multiple times to
provide the command-line options for the specified preprocessor. See -ppPath.

-ppPath
 <preprocessor
 executable>

Specifies the preprocessor. If you only specify the name of an executable (not a
complete path to that executable), the executable must be found in your Path.
The default value is "cpp" for non-Windows architectures and "cl.exe" for Win-
dows architectures.If you use -ppPath to provide the full path and filename for
cl.exe or the cpp preprocessor, you must also use -ppOption (described below)
to set the following preprocessor options:
If you use a non-default path for cl.exe, you also need to set:
 -ppOption /nologo -ppOption /C -ppOption /E -ppOption /X

If you use a non-default path for cpp, you also need to set:
 -ppOption -C

-sequenceSize
Sets the size assigned to unbounded sequences. The default value is 100 ele-
ments.

-stringSize
Sets the size assigned to unbounded strings, not counting a terminating NULL
character. The default value is 255 bytes.

-typeSequenceSuffix <suffix>
Assigns a suffix to the names of the implicit sequences defined for IDL types.
Only applies if -corba is also specified. By default, the suffix is 'Seq'. Therefore,
given the type 'Foo' the name of the implicit sequence will be 'FooSeq'.

-U <name> Cancels any previous definition of <name>.

-use42eAlignment

Makes the generated code compatible with RTI Data Distribution Service 4.2e.
This option should be used when compatibility with 4.2e is required and the
topic data types contain double, long long, unsigned long long, or long double
members.

-verbosity [1-3]

rtiddsgen verbosity:
 1: exceptions
 2: exceptions and warnings
 3: exceptions, warnings and information (Default)

-version
Displays the version of rtiddsgen being used, such as 5.x.y. (Note: To see ‘patch’
revision information (such as 5.x.y.z), see What Version am I Running? (Section
21.1).

WSDLInputFile.wsdl
WSDL file containing XSD descriptions of your data types. If -inputWsdl is not
used, the file must have an .wsdl extension.

XMLInputFile.idl
File containing XML descriptions of your data types. If -inputXml is not used,
the file must have an .xml extension.

XSDInputFile.xsd
File containing XSD descriptions of your data types. If -inputXsd is not used,
the file must have an .xsd extension.

a. CORBA support is only available when using the RTI CORBA Compatibility Kit (available for purchase as a separate prod-
uct). See Part 7: RTI CORBA Compatibility Kit.

Table 3.15 Options for rtiddsgen

Option Description
3-82

Using Generated Types without Connext (Standalone)
classes—see Note 8 on Page 3-52). Effectively, Java code is always generated with an equivalent
optimization level of 2. Choices are:

❏ 0 (default): No optimization. Typedef’ed types are treated as full types and type-plugin
and support code is generated and invoked when the typedefs are used in other struc-
tures.

❏ 1: The compiler generates type-plugin and support code for typedefs but optimizes its
use. If a type is a typedef that can be resolved either to a primitive type (char, short, long,
etc.) or to another type that is defined in the same IDL file, then when the typedef is used
in the definition of another structure, rtiddsgen will generate code that invokes the plugin
and support code of the most basic type to which the typedef can be resolved.

This will save at least one function call for serialization, deserialization, and other manip-
ulation of the parent structure. This optimization level is always safe to use unless the
user intends to modify the generated type-plugin and support code. In that case, we rec-
ommend using the default of no optimization of typedefs.

❏ 2: Same as level 1 with the addition that the type-plugin and support code for typedefs
are not generated (since they would not be used by the code for data types defined in the
same IDL file that uses the typedefs).

This typedef optimization level is only recommend if you only have a single IDL file that
contains the definitions of all of the user data types passed by Connext on the network. If
you have multiple IDL files, and types defined in one file use typedefs that are defined in
another, then rtiddsgen will generate code assuming that the type-plugin and support
code were generated for the typedef’ed types. If level 2 optimization was used when
generating the code for the IDL file that contained the typedefs, then the plugin and sup-
port code for the typedefs would not have been generated, and compilation and linking
errors will result.

For example, consider this declaration:

typedef short MyShort

struct MyStructure {
 MyShort member;
};

With optimization 0: The type-plugin and support code for MyStructure will use the generated
code for MyShort to serialize, deserialize, or otherwise manipulate the member field of MyS-
tructure.

With optimization 1: The type plug-in and support code for MyStructure will directly serialize,
deserialize or otherwise manipulate the member field of MyStructure as a short—saving a func-
tion call. However, plugin and support code for MyShort is still generated because it would be
used by the code generated from another IDL file that refers to MyShort.

With optimization 2: The type-plugin and support code for MyStructure will directly serialize,
deserialize or otherwise manipulate the member field of MyStructure as a short–saving a func-
tion call. In addition, no plugin or support code for MyShort is generated.

3.7 Using Generated Types without Connext (Standalone)
You can use the generated type-specific source and header files without linking the Connext
libraries or even including the Connext header files. That is, the generated files for your data
types can be used standalone.
3-83

Using Generated Types without Connext (Standalone)
The directory <NDDSHOME>/resource/rtiddsgen/standalone contains the required helper
files:

❏ include: header and templates files for C and C++.

❏ src: source files for C and C++.

❏ class: Java jar file.

Note: You must use rtiddsgen’s -notypecode option to generate code for standalone use.

3.7.1 Using Standalone Types in C

The generated files that can be used standalone are:

❏ <idl file name>.c: Types source file

❏ <idl file name>.h: Types header file

The type plug-in code (<idl file>Plugin.[c,h]) and type-support code (<idl file>Support.[c,h])
cannot be used standalone.

To use the rtiddsgen-generated types in a standalone manner:

1. Make sure you use rtiddsgen’s -notypecode option to generate the code.

2. Include the directory <NDDSHOME>/resource/rtiddsgen/standalone/include in the
list of directories to be searched for header files.

3. Add the source files, ndds_standalone_type.c and <idl file name>.c, to your project.

4. Include the file <idl file name>.h in the source files that will use the generated types in a
standalone manner.

5. Compile the project using the following two preprocessor definitions:

a. NDDS_STANDALONE_TYPE

b. The definition for your platform (RTI_VXWORKS, RTI_QNX, RTI_WIN32,
RTI_INTY, RTI_LYNX or RTI_UNIX)

3.7.2 Using Standalone Types in C++

The generated files that can be used standalone are:

❏ <idl file name>.cxx: Types source file

❏ <idl file name>.h: Types header file

The type-plugin code (<idl file>Plugin.[cxx,h]) and type-support code (<idl file>Sup-
port.[cxx,h]) cannot be used standalone.

To use the generated types in a standalone manner:

1. Make sure you use rtiddsgen’s -notypecode option to generate the code.

2. Include the directory <NDDSHOME>/resource/rtiddsgen/standalone/include in the
list of directories to be searched for header files.

3. Add the source files, ndds_standalone_type.cxx and <idl file name>.cxx, to your proj-
ect.

4. Include the file <idl file name>.h in the source files that will use the rtiddsgen types in a
standalone manner.
3-84

Interacting Dynamically with User Data Types
5. Compile the project using the following two preprocessor definitions:

a. NDDS_STANDALONE_TYPE

b. The definition for your platform (such as RTI_VXWORKS, RTI_QNX, RTI_WIN32,
RTI_INTY, RTI_LYNX or RTI_UNIX)

3.7.3 Standalone Types in Java

The generated files that can be used standalone are:

❏ <idl type>.java

❏ <idl type>Seq.java

The type code (<idl file>TypeCode.java), type-support code (<idl type>TypeSupport.java),
DataReader code (<idl file>DataReader.java) and DataWriter code (<idl file>DataWriter.java)
cannot be used standalone.

To use the generated types in a standalone manner:

1. Make sure you use rtiddsgen’s -notypecode option to generate the code.

2. Include the file ndds_standalone_type.jar in the classpath of your project.

3. Compile the project using the standalone types files (<idl type>.java and <idl
type>Seq.java).

3.8 Interacting Dynamically with User Data Types

3.8.1 Introduction to TypeCode

Type schemas—the names and definitions of a type and its fields—are represented by TypeCode
objects. A type code value consists of a type code kind (see the TCKind enumeration below) and
a list of members. For compound types like structs and arrays, this list will recursively include
one or more type code values.

enum TCKind {
 TK_NULL,
 TK_SHORT,
 TK_LONG,
 TK_USHORT,
 TK_ULONG,
 TK_FLOAT,
 TK_DOUBLE,
 TK_BOOLEAN,
 TK_CHAR,
 TK_OCTET,
 TK_STRUCT,
 TK_UNION,
 TK_ENUM,
 TK_STRING,
 TK_SEQUENCE,
 TK_ARRAY,
 TK_ALIAS,
 TK_LONGLONG,
 TK_ULONGLONG,
3-85

Interacting Dynamically with User Data Types
 TK_LONGDOUBLE,
 TK_WCHAR,
 TK_WSTRING,
 TK_VALUE,
 TK_SPARSE
}

Type codes unambiguously match type representations and provide a more reliable test than
comparing the string type names.

The TypeCode class, modeled after the corresponding CORBA API, provides access to type-
code information. For details on the available operations for the TypeCode class, see the API
Reference HTML documentation, which is available for all supported programming languages
(select Modules, RTI Connext DDS API Reference, Topic Module, Type Code Support).

Type codes are enabled by default when you run rtiddsgen. The -notypecode option disables
generation of type code information. Type-code support does increase the amount of memory
used, so if you need to save on memory, you may consider disabling type codes. See rtiddsgen
Command-Line Arguments (Section 3.6.1).

Note: Type-code support must be enabled if you are going to use ContentFilteredTopics (Section
5.4) with the default SQL filter. You may disable type codes and use a custom filter, as described
in Creating ContentFilteredTopics (Section 5.4.3).

3.8.2 Defining New Types

Note: This section does not apply when using the separate add-on product, Ada 2005 Language
Support, which does not support Dynamic Types.

Locally, your application can access the type code for a generated type "Foo" by calling the
Foo_get_typecode() operation in the code for the type generated by rtiddsgen (unless type-code
support is disabled with the -notypecode option). But you can also create TypeCodes at run time
without any code generation.

Creating a TypeCode is parallel to the way you would define the type statically: you define the
type itself with some name, then you add members to it, each with its own name and type.

For example, consider the following statically defined type. It might be in C, C++, or IDL; the
syntax is largely the same.

struct MyType {
 long my_integer;
 float my_float;
 bool my_bool;

string<128> my_string; // @key
};

This is how you would define the same type at run time in C++:

DDS_ExceptionCode_t ex = DDS_NO_EXCEPTION_CODE;
DDS_StructMemberSeq structMembers; // ignore for now
DDS_TypeCodeFactory* factory = DDS_TypeCodeFactory::get_instance();
DDS_TypeCode* structTc = factory->create_struct_tc(

"MyType", structMembers, ex);

// If structTc is NULL, check 'ex' for more information.
structTc->add_member("my_integer", DDS_TYPECODE_MEMBER_ID_INVALID,

 factory->get_primitive_tc(DDS_TK_LONG),
 DDS_TYPECODE_NONKEY_MEMBER, ex);

structTc->add_member("my_float", DDS_TYPECODE_MEMBER_ID_INVALID,
3-86

Interacting Dynamically with User Data Types
 factory->get_primitive_tc(DDS_TK_FLOAT),
 DDS_TYPECODE_NONKEY_MEMBER, ex);

structTc->add_member("my_bool", DDS_TYPECODE_MEMBER_ID_INVALID,
 factory->get_primitive_tc(DDS_TK_BOOLEAN),
 DDS_TYPECODE_NONKEY_MEMBER, ex);

structTc->add_member("my_string", DDS_TYPECODE_MEMBER_ID_INVALID,
 factory->create_string_tc(128),

 DDS_TYPECODE_KEY_MEMBER, ex);

More detailed documentation for the methods and constants you see above, including example
code, can be found in the API Reference HTML documentation, which is available for all sup-
ported programming languages.

If, as in the example above, you know all of the fields that will exist in the type at the time of its
construction, you can use the StructMemberSeq to simplify the code:

DDS_StructMemberSeq structMembers;
structMembers.ensure_length(4, 4);
DDS_TypeCodeFactory* factory = DDS_TypeCodeFactory::get_instance();

structMembers[0].name = DDS_String_dup("my_integer");
structMembers[0].type = factory->get_primitive_tc(DDS_TK_LONG);

structMembers[1].name = DDS_String_dup("my_float");
structMembers[1].type = factory->get_primitive_tc(DDS_TK_FLOAT);

structMembers[2].name = DDS_String_dup("my_bool");
structMembers[2].type = factory->get_primitive_tc(DDS_TK_BOOLEAN);

structMembers[3].name = DDS_String_dup("my_string");
structMembers[3].type = factory->create_string_tc(128);
structMembers[3].is_key = DDS_BOOLEAN_TRUE;

DDS_ExceptionCode_t ex = DDS_NO_EXCEPTION_CODE;
DDS_TypeCode* structTc = factory->create_struct_tc("MyType",

 structMembers, ex);

After you have defined the TypeCode, you will register it with a DomainParticipant using a logi-
cal name. You will use this logical name later when you create a Topic.

DDSDynamicDataTypeSupport* type_support =
 new DDSDynamicDataTypeSupport(structTc,
 DDS_DYNAMIC_DATA_TYPE_PROPERTY_DEFAULT);

DDS_ReturnCode_t retcode = type_support->register_type(participant,
 "My Logical Type Name");

Now that you have created a type, you will need to know how to interact with objects of that
type. Continue reading Section 3.8.3 below for more information.

3.8.3 Sending Only a Few Fields

In some cases, your data model may contain a large number of potential fields, but it may not be
desirable or appropriate to include a value for every one of them with every data sample.
3-87

Interacting Dynamically with User Data Types
❏ It may use too much bandwidth. You may have a very large data structure, parts of
which are updated very frequently. Rather than resending the entire data structure with
every change, you may wish to send only those fields that have changed and rely on the
recipients to reassemble the complete state themselves.

❏ It may not make sense. Some fields may only have meaning in the presence of other
fields. For example, you may have an event stream in which certain fields are only rele-
vant for certain kinds of events.

To support these and similar cases, Connext supports sparse value types. A sample of such a
type only contains the field values that were explicitly set by the sender. A recipient of that sam-
ple will receive an error when trying to look up the value of any other field.

An endpoint (DataWriter or DataReader) using a sparse value type will not communicate with
another endpoint using a non-sparse value type or structure type, even if the two types contain
similar member definitions, because these kinds of types have different semantics. A structure
or non-sparse value type is a commitment to provide exactly the data described by the type's
members and in a certain order. In contrast, a sparse value type is a commitment to provide
some subset of those data values in no particular order.

Because direct programming language representations of data types typically have no way to
express the concept of sparse fields (there is no way, for example, for a C structure to omit some
of its fields), using sparse types requires use of the dynamic type API described in Defining New
Types (Section 3.8.2). You will use the Dynamic Data API to work with sparse samples, just as
you would with samples of any other dynamically defined type. For more information about
working with sparse samples, see Objects of Dynamically Defined Types (Section 3.9.2) or the
API Reference HTML documentation (select Modules, RTI Connext DDS API Reference, Topic
Module, Dynamic Data).

A sparse version of the "MyType" type described above would be defined like this:

DDS_ExceptionCode_t ex = DDS_NO_EXCEPTION_CODE;
DDS_TypeCodeFactory* factory = DDS_TypeCodeFactory::get_instance();
DDS_TypeCode* sparseTc = factory->create_sparse_tc(
 "MySparseType", DDS_VM_NONE, NULL, ex);

// add members
sparseTc->add_member("my_integer", ID_MY_INTEGER,

 factory->get_primitive_tc(DDS_TK_LONG),
 DDS_TYPECODE_NONKEY_MEMBER, ex);

sparseTc->add_member("my_float", ID_MY_FLOAT,
 factory->get_primitive_tc(DDS_TK_FLOAT),
 DDS_TYPECODE_NONKEY_MEMBER, ex);

sparseTc->add_member("my_bool", ID_MY_BOOL,
 factory->get_primitive_tc(DDS_TK_BOOLEAN),
 DDS_TYPECODE_NONKEY_MEMBER, ex);

sparseTc->add_member("my_string", ID_MY_STRING,
 factory->create_string_tc(128),
 DDS_TYPECODE_KEY_MEMBER, ex);

Detailed descriptions of the methods and constants you see above can be found in the API Ref-
erence HTML documentation.

Integral to the definition of a sparse type are the member IDs of its fields. An ID is a two-byte
integer that uniquely identifies a field within its parent type; these IDs are chosen by the type's
designer. (In the code example above, ID_MY_INTEGER, ID_MY_FLOAT, and ID_MY_BOOL
are examples of user-defined symbolic constants representing member ID values.) When a
sparse sample is serialized, the middleware will embed the IDs of the fields that are present, so
that recipients will know how to deserialize it.
3-88

Interacting Dynamically with User Data Types
Although member IDs are a relatively efficient way to describe a sample's contents, they do use
network bandwidth. This can be an important issue if you are considering using sparse types to
decrease the size of your data samples on the network. Although the relative cost of adding
member IDs to your packets will vary depending on the sizes and layout of your fields, the fol-
lowing is a good rule of thumb: if you expect a given data sample to contain less than half of the
fields that are legal for its type, sparse types will probably save you on bandwidth. If, on the
other hand, most samples contain most fields, you will probably be better off using a plain struc-
ture type and simply ignoring irrelevant fields on the receiving side.

3.8.4 Type Extension and Versioning

As your system evolves, you may find that your data types need to change. And unless your
system is relatively small, you may not be able to bring it all down at once in order to modify
them. Instead, you may need to upgrade your types one component at a time—or even on the
fly, without bringing any part of the system down.

You can use the sparse types described above to efficiently version types—and not just at the
level of entire types, but at the level of individual fields.

❏ You can add new fields to a type at any time. Because the type is sparse, existing pub-
lishers of the type that have not been updated will simply omit the new field in any data
samples they send. If you anticipate changing your types in future versions of your sys-
tem, make sure that you ignore fields that you do not recognize, so that your application
will be robust to future type changes.

sparseTc->add_member("myNewInteger", ID_MY_NEW_INTEGER,
DDS_TheTypeCodeFactory->get_primitive_tc(TK_LONG),
DDS_TYPECODE_NONKEY_MEMBER, ex);

❏ You cannot remove fields from an existing type. Doing so would break older applica-
tions and invalidate historical samples that might already be in the caches of upgraded
applications. Instead, simply stop sending values for the fields you wish to deprecate.

3.8.5 Sending Type Codes on the Network

In addition to being used locally, serialized type codes are typically published automatically
during discovery as part of the built-in topics for publications and subscriptions. See Built-in
DataReaders (Section 16.2). This allows applications to publish or subscribe to topics of arbitrary
types. This functionality is useful for generic system monitoring tools like the rtiddsspy debug
tool. For details on using rtiddsspy, see the API Reference HTML documentation (select Mod-
ules, Programming Tools).

Note: Type codes are not cached by Connext upon receipt and are therefore not available from
the built-in data returned by the DataWriter's get_matched_subscription_data() operation or the
DataReader's get_matched_publication_data() operation.

If your data type has an especially complex type code, you may need to increase the value of the
type_code_max_serialized_length field in the DomainParticipant's
DOMAIN_PARTICIPANT_RESOURCE_LIMITS QosPolicy (DDS Extension) (Section 8.5.4). Or,
to prevent the propagation of type codes altogether, you can set this value to zero (0). Be aware
that some features of monitoring tools, as well as some features of the middleware itself (such as
ContentFilteredTopics) will not work correctly if you disable TypeCode propagation.
3-89

Interacting Dynamically with User Data Types
3.8.5.1 Type Codes for Built-in Types

The type codes associated with the built-in types are generated from the following IDL type def-
initions:

module DDS {
/* String */
struct String {

string<max_size> value;
};
/* KeyedString */
struct KeyedString {

string<max_size> key; //@key
string<max_size> value;

};
/* Octets */
struct Octets {

sequence<octet, max_size> value;
};
/* KeyedOctets */
struct KeyedOctets {

string<max_size> key; //@key
sequence<octet, max_size> value;

};
};

The maximum size (max_size) of the strings and sequences that will be included in the type
code definitions can be configured on a per-DomainParticipant-basis by using the properties in
Table 3.16.

Table 3.16 Properties for Allocating Size of Built-in Types, per DomainParticipant

Built-
in

Type
Property Description

String dds.builtin_type.string.max_size

Maximum size of the strings published by the DataWriters
and received by the DataReaders belonging to a DomainPartic-
ipant (includes the NULL-terminated character).
Default: 1024

Keyed-
String

dds.builtin_type.keyed_string.
max_key_size

Maximum size of the keys used by the DataWriters and
DataReaders belonging to a DomainParticipant (includes the
NULL-terminated character).
Default: 1024

dds.builtin_type.keyed_string.
max_size

Maximum size of the strings published by the DataWriters
and received by the DataReaders belonging to a DomainPartic-
ipant using the built-in type (includes the NULL-terminated
character).
Default: 1024

Octets dds.builtin_type.octets.max_size

Maximum size of the octet sequences published by the
DataWriters and DataReaders belonging to a DomainPartici-
pant.
Default: 2048
3-90

Working with Data Samples
3.9 Working with Data Samples
You should now understand how to define and work with data types, whether you're using the
simple data types built into the middleware (see Built-in Data Types (Section 3.2)), dynamically
defined types (see Managing Memory for Built-in Types (Section 3.2.7)), or code generated from
IDL, XML, XSD, or WSDL files (see Sections 3.3 through 3.5).

Now that you have chosen one or more data types to work with, this section will help you
understand how to create and manipulate objects of those types.

3.9.1 Objects of Concrete Types

If you use one of the built-in types, or decide to generate custom types from an IDL or XML file,
your Connext data type is like any other data type in your application: a class or structure with
fields, methods, and other members that you interact with directly.

In C and C++, you create and delete your own objects from factories, just as you create Connext
objects from factories. In the case of user data types, the factory is a singleton object called the
type support. Objects allocated from these factories are deeply allocated and fully initialized.

/* In the generated header file: */
struct MyData {

char* myString;
};

/* In your code: */
MyData* sample = MyDataTypeSupport_create_data();
char* str = sample->myString; /*empty, non-NULL string*/

/* ... */

MyDataTypeSupport_delete_data(sample);

In C++, as in C, you create and delete objects using the TypeSupport factories.

MyData* sample = MyDataTypeSupport::create_data();
char* str = sample->myString; // empty, non-NULL string
// ...
MyDataTypeSupport::delete_data(sample);

Keyed-
Octets

dds.builtin_type.keyed_octets.
max_key_size

Maximum size of the key published by the DataWriter and
received by the DataReaders belonging to the
DomainParticipant (includes the NULL-terminated charac-
ter).
Default:1024.

dds.builtin_type.keyed_octets.
max_size

Maximum size of the octet sequences published by the
DataWriters and DataReaders belonging to a DomainPartici-
pant.
Default: 2048

Table 3.16 Properties for Allocating Size of Built-in Types, per DomainParticipant

Built-
in

Type
Property Description
3-91

Working with Data Samples
In C# and C++/CLI, you can use a no-argument constructor to allocate objects. Those objects
will be deallocated by the garbage collector as appropriate.

// In the generated code (C++/CLI):
public ref struct MyData {

public:
System::String^ myString;

};

// In your code, if you are using C#:
MyData sample = new MyData();
System.String str = sample.myString; // empty, non-null string

// In your code, if you are using C++/CLI:
MyData^ sample = gcnew MyData();
System::String^ str = sample->myString; // empty, non-nullptr string

In Java, you can use a no-argument constructor to allocate objects. Those objects will be deallo-
cated by the garbage collector as appropriate.

// In the generated code:
public class MyData {

public String myString = "";
}

// In your code:
MyData sample = new MyData();
String str = sample->myString; // empty, non-null string

3.9.2 Objects of Dynamically Defined Types

If you are working with a data type that was discovered or defined at run time, you will use the
reflective API provided by the DynamicData class to get and set the fields of your object.

Consider the following type definition:

struct MyData {
long myInteger;

};

As with a statically defined type, you will create objects from a TypeSupport factory. How to cre-
ate or otherwise obtain a TypeCode, and how to subsequently create from it a Dynamic-
DataTypeSupport, is described in Defining New Types (Section 3.8.2).

For more information about the DynamicData and DynamicDataTypeSupport classes, consult
the API Reference HTML documentation, which is available for all supported programming
languages (select Modules, RTI Connext DDS API Reference, Topic Module, Dynamic Data).

In C:

DDS_DynamicDataTypeSupport* support = ...;
DDS_DynamicData* sample = DDS_DynamicDataTypeSupport_create_data(support);
DDS_Long theInteger = 0;
DDS_ReturnCode_t success = DDS_DynamicData_set_long(sample,

"myInteger", DDS_DYNAMIC_DATA_MEMBER_ID_UNSPECIFIED, 5);
/* Error handling omitted. */
success = DDS_DynamicData_get_long(sample, &theInteger,

"myInteger", DDS_DYNAMIC_DATA_MEMBER_ID_UNSPECIFIED);
/* Error handling omitted. "theInteger" now contains the value 5
 if no error occurred.
 */
3-92

Working with Data Samples
In C++:

DDSDynamicDataTypeSupport* support = ...;
DDS_DynamicData* sample = support->create_data();
DDS_ReturnCode_t success = sample->set_long("myInteger",

 DDS_DYNAMIC_DATA_MEMBER_ID_UNSPECIFIED, 5);
// Error handling omitted.
DDS_Long theInteger = 0;
success = sample->get_long(&theInteger, "myInteger",

 DDS_DYNAMIC_DATA_MEMBER_ID_UNSPECIFIED);
// Error handling omitted.
// "theInteger" now contains the value 5 if no error occurred.

In C++/CLI:

using DDS;
DynamicDataTypeSupport^ support = ...;
DynamicData^ sample = support->create_data();
sample->set_long("myInteger",

DynamicData::MEMBER_ID_UNSPECIFIED, 5);

int theInteger = sample->get_long("myInteger",
 0 /*redundant w/ field name*/);

/* Exception handling omitted.
 * "theInteger" now contains the value 5 if no error occurred.
 */

In C#:

using namespace DDS;
DynamicDataTypeSupport support = ...;
DynamicData sample = support.create_data();
sample.set_long("myInteger", DynamicData.MEMBER_ID_UNSPECIFIED, 5);

int theInteger = sample.get_long("myInteger",
DynamicData.MEMBER_ID_UNSPECIFIED);

/* Exception handling omitted.
 * "theInteger" now contains the value 5 if no error occurred.
 */

In Java:

import com.rti.dds.dynamicdata.*;
DynamicDataTypeSupport support = ...;
DynamicData sample = (DynamicData) support.create_data();
sample.set_int("myInteger", DynamicData.MEMBER_ID_UNSPECIFIED, 5);

int theInteger = sample.get_int("myInteger",
DynamicData.MEMBER_ID_UNSPECIFIED);

/* Exception handling omitted.
 * "theInteger" now contains the value 5 if no error occurred.
 */

3.9.3 Accessing the Discriminator Value in a Union

A union type can only hold a single member. The member_id for this member is equal to the
discriminator value. To get the value of the discriminator, use the operation
get_member_info_by_index() on the DynamicData using an index value of 0. This operation
fills in a DynamicDataMemberInfo structure, which includes a member_id field that is the value
of the discriminator.
3-93

Working with Data Samples
Once you know the discriminator value, you can use the proper version of get_<type>() (such as
get_long()) to access the member value.

For example:

DynamicDataMemberInfo memberInfo = new DynamicDataMemberInfo();
myDynamicData.get_member_info_by_index(memberInfo, 0);
int discriminatorValue = memberInfo.member_id;
int myMemberValue = myDynamicData.get_long(null, discriminatorValue);
3-94

Chapter 4 Entities

The main classes extend an abstract base class called an Entity. Every Entity has a set of associ-
ated events known as statuses and a set of associated Quality of Service Policies (QosPolicies). In
addition, a Listener may be registered with the Entity to be called when status changes occur.
Entities may also have attached Conditions, which provide a way to wait for status changes.

This chapter describes the common operations and general designed patterns shared by all Enti-
ties including DomainParticipants, Topics, Publishers, DataWriters, Subscribers, and DataReaders. In
subsequent chapters, the specific statuses, Listeners, Conditions, and QosPolicies for each class
will be discussed in detail.
4-1

Common Operations for All Entities
4.1 Common Operations for All Entities
All Entities (DomainParticipants, Topics, Publishers, DataWriters, Subscribers, and DataReaders) pro-
vide operations for:

❏ Creating and Deleting Entities (Section 4.1.1)

❏ Enabling Entities (Section 4.1.2)

❏ Getting an Entity’s Instance Handle (Section 4.1.3)

❏ Getting Status and Status Changes (Section 4.1.4)

❏ Getting and Setting Listeners (Section 4.1.5)

❏ Getting the StatusCondition (Section 4.1.6)

❏ Getting, Setting, and Comparing QosPolicies (Section 4.1.7)

4.1.1 Creating and Deleting Entities

The factory design pattern is used in creating and deleting Entities. Instead of declaring and con-
structing or destructing Entities directly, a factory object is used to create an Entity. Almost all
entity factories are objects that are also entities. The only exception is the factory for a Domain-
Participant. See Table 4.1.

All entities that are factories have:

❏ Operations to create and delete child entities. For example:

DDSPublisher::create_datawriter,
DDSDomainParticipant::delete_topic

❏ Operations to get and set the default QoS values used when creating child entities. For
example:

DDSSubscriber::get_default_datareader_qos,
DDSDomainParticipantFactory::set_default_participant_qos

❏ An ENTITYFACTORY QosPolicy (Section 6.4.2) to specify whether or not the newly cre-
ated child entity should be automatically enabled upon creation.

Table 4.1 Entity Factories

Entity Created by

DomainParticipant
DomainParticipantFactory
(a static singleton object provided by Connext)

Topic

DomainParticipant

Publisher

Subscriber

DataWritera

DataReadera

DataWritera Publisher

DataReadera Subscriber

a. DataWriters may be created by a DomainParticipant or a Publisher. Similarly, DataReaders may be created by a
DomainParticipant or a Subscriber.
4-2

Common Operations for All Entities
An entity that is a factory cannot be deleted until all the child entities created by it have been
deleted.

Each Entity obtained through create_<entity>() must eventually be deleted by calling
delete_<entity>, or by calling delete_contained_entities().

4.1.2 Enabling Entities

The enable() operation changes an Entity from a non-operational to an operational state. Entity
objects can be created disabled or enabled. This is controlled by the value of the ENTITYFAC-
TORY QosPolicy (Section 6.4.2) on the corresponding factory for the Entity (not on the Entity
itself).

By default, all Entities are automatically created in the enabled state. This means that as soon as
the Entity is created, it is ready to be used. In some cases, you may want to create the Entity in a
‘disabled’ state. For example, by default, as soon as you create a DataReader, the DataReader will
start receiving new samples for its Topic if they are being sent. However, your application may
still be initializing other components and may not be ready to process the data at that time. In
that case, you can tell the Subscriber to create the DataReader in a disabled state. After all of the
other parts of the application have been created and initialized, then the DataReader can be
enabled to actually receive messages.

To create a particular entity in a disabled state, modify the EntityFactory QosPolicy of its corre-
sponding factory entity before calling create_<entity>(). For example, to create a disabled
DataReader, modify the Subscriber’s QoS as follows:

DDS_SubscriberQos subscriber_qos;

subscriber->get_qos(subscriber_qos);
subscriber_qos.entity_factory.autoenable_created_entities =

 DDS_BOOLEAN_FALSE;
subscriber->set_qos(subscriber_qos);

DDSDataReader* datareader = subscriber->create_datareader(
topic, DDS_DATAREADER_QOS_DEFAULT, listener);

When the application is ready to process received data, it can enable the DataReader:

datareader->enable();

4.1.2.1 Rules for Calling enable()

In the following, a ‘Factory’ refers to a DomainParticipant, Publisher, or Subscriber; a ‘child’ refers
to an entity created by the factory:

❏ If the factory is disabled, its children are always created disabled, regardless of the set-
ting in the factory's EntityFactoryQoS.

❏ If the factory is enabled, its children will be created either enabled or disabled, according
to the setting in the factory's EntityFactory Qos.

❏ Calling enable() on a child whose factory object is still disabled will fail and return
DDS_RECODE_RECONDITION_NOT_MET.

❏ Calling enable() on a factory with EntityFactoryQoS set to DDS_BOOLEAN_TRUE will
recursively enable all of the factory’s children. If the factory’s EntityFactoryQoS is set to
DDS_BOOLEAN_FALSE, only the factory itself will be enabled.

❏ Calling enable() on an entity that is already enabled returns DDS_RETCODE_OK and
has no effect.
4-3

Common Operations for All Entities
❏ There is no complementary “disable” operation. You cannot disable an entity after it is
enabled. Disabled entities must have been created in that state.

❏ An entity’s Listener will only be invoked if the entity is enabled.

❏ The existence of an entity is not propagated to other DomainParticipants until the entity is
enabled (see Chapter 14: Discovery).

❏ If a DataWriter/DataReader is to be created in an enabled state, then the associated Topic
must already be enabled. The enabled state of the Topic does not matter, if the Publisher/
Subscriber has its EntityFactory QosPolicy to create children in a disabled state.

❏ When calling enable() for a DataWriter/DataReader, both the Publisher/Subscriber and the
Topic must be enabled, or the operation will fail and return
DDS_RETCODE_PRECONDITION_NOT_MET.

The following operations may be invoked on disabled Entities:

❏ get_qos() and set_qos() Some DDS-specified QosPolicies are immutable—they cannot
be changed after an Entity is enabled. This means that for those policies, if the entity was
created in the disabled state, get/set_qos() can be used to change the values of those pol-
icies until enabled() is called on the Entity. After the Entity is enabled, changing the val-
ues of those policies will not affect the Entity. However, there are mutable QosPolicies
whose values can be changed at anytime–even after the Entity has been enabled.

Finally, there are extended QosPolicies that are not a part of the DDS specification but
offered by Connext to control extended features for an Entity. Some of those extended
QosPolicies cannot be changed after the Entity has been created—regardless of whether
the Entity is enabled or disabled.

Into which exact categories a QosPolicy falls—mutable at any time, immutable after
enable, immutable after creation—is described in the documentation for the specific pol-
icy.

❏ get_status_changes() and get_*_status() The status of an Entity can be retrieved at any
time (but the status of a disabled Entity never changes). (Note: get_*_status() resets the
related status so it no longer considered “changed.”)

❏ get_statuscondition() An Entity’s StatusCondition can be checked at any time (although
the status of a disabled Entity never changes).

❏ get_listener() and set_listener() An Entity’s Listener can be changed at any time.

❏ create_*() and delete_*() A factory Entity can still be used to create or delete any child
Entity that it can produce. Note: following the rules discussed previously, a disabled
Entity will always create its children in a disabled state, no matter what the value of the
EntityFactory QosPolicy is.

❏ lookup_*() An Entity can always look up children it has previously created.

Most other operations are not allowed on disabled Entities. Executing one of those operations
when an Entity is disabled will result in a return code of DDS_RETCODE_NOT_ENABLED.
The documentation for a particular operation will explicitly state if it is not allowed to be used if
the Entity is disabled.

Note: The builtin transports are implicitly registered when (a) the DomainParticipant is enabled,
(b) the first DataWriter/DataReader is created, or (c) you look up a builtin data reader, whichever
happens first. Any changes to the builtin transport properties that are made after the builtin
transports have been registered will have no affect on any DataWriters/DataReaders.
4-4

Common Operations for All Entities
4.1.3 Getting an Entity’s Instance Handle

The Entity class provides an operation to retrieve an instance handle for the object. The opera-
tion is simply:

InstanceHandle_t get_instance_handle()

An instance handle is a global ID for the entity that can be used in methods that allow user
applications to determine if the entity was locally created, if an entity is owned (created) by
another entity, etc.

4.1.4 Getting Status and Status Changes

The get_status_changes() operation retrieves the set of events, also known in DDS terminology
as communication statuses, in the Entity that have changed since the last time
get_status_changes() was called. This method actually returns a value that must be bitwise
AND’ed with an enumerated bit mask to test whether or not a specific status has changed. The
operation can be used in a polling mechanism to see if any statuses related to the Entity have
changed. If an entity is disabled, all communication statuses are in the “unchanged” state so the
list returned by the get_status_changes() operation will be empty.

A set of statuses is defined for each class of Entities. For each status, there is a corresponding
operation, get_<status-name>_status(), that can be used to get its current value. For example, a
DataWriter has a DDS_OFFERED_DEADLINE_MISSED status; it also has a
get_offered_deadline_missed_status() operation:

DDS_StatusMask statuses;
DDS_OfferedDeadlineMissedStatus deadline_stat;

statuses = datawriter->get_status_changes();

if (statuses & DDS_OFFERED_DEADLINE_MISSED_STATUS) {
datawriter->get_offered_deadline_missed_status(&deadline_stat);
printf(“Deadline missed %d times.\n”,

deadline_stat.total_count);
}

To reset a status (so that it is no longer considered “changed”), call get_<status-name>_status().
Or, in the case of the DDS_DATA_AVAILABLE status, call read(), take(), or one of their vari-
ants.

Note: If you use a StatusCondition to be notified that a particular status has changed, the Status-
Condition’s trigger_value will remain true unless you call get_*_status() to reset the status.

See also: Statuses (Section 4.3) and StatusConditions (Section 4.6.8).

4.1.5 Getting and Setting Listeners

Each type of Entity has an associated Listener, see Listeners (Section 4.4). A Listener represents a
set of functions that users may install to be called asynchronously when the state of communica-
tion statuses change.

The get_listener() operation returns the current Listener attached to the Entity.

The set_listener() operation installs a Listener on an Entity. The Listener will only be invoked on
the changes of statuses specified by the accompanying mask. Only one listener can be attached
to each Entity. If a Listener was already attached, set_listener() will replace it with the new one.
4-5

Common Operations for All Entities
The get_listener() and set_listener() operations are directly provided by the DomainParticipant,
Topic, Publisher, DataWriter, Subscriber, and DataReader classes so that listeners and masks used in
the argument list are specific to each Entity.

Note: The set_listener() operation is not synchronized with the listener callbacks, so it is possi-
ble to set a new listener on an participant while the old listener is in a callback. Therefore you
should be careful not to delete any listener that has been set on an enabled participant unless
some application-specific means are available of ensuring that the old listener cannot still be in
use.

See Section 4.4 for more information about Listeners.

4.1.6 Getting the StatusCondition

Each type of Entity may have an attached StatusCondition, which can be accessed through the
get_statuscondition() operation. You can attach the StatusCondition to a WaitSet, to cause your
application to wait for specific status changes that affect the Entity.

See Section 4.6 for more information about StatusConditions and WaitSets.

4.1.7 Getting, Setting, and Comparing QosPolicies

Each type of Entity has an associated set of QosPolicies (see Section 4.2). QosPolicies allow you
to configure and set properties for the Entity.

While most QosPolicies are defined by the DDS specification, some are offered by Connext as
extensions to control parameters specific to the implementation.

There are two ways to specify a QoS policy:

❏ Programmatically, as described in this section.

❏ QosPolicies can also be configured from XML resources (files, strings)—with this
approach, you can change the QoS without recompiling the application. The QoS settings
are automatically loaded by the DomainParticipantFactory when the first DomainPartici-
pant is created. See Chapter 17: Configuring QoS with XML.

The get_qos() operation retrieves the current values for the set of QosPolicies defined for the
Entity.

QosPolicies can be set programmatically when an Entity is created, or modified with the Entity's
set_qos() operation.

The set_qos() operation sets the QosPolicies of the entity. Note: not all QosPolicy changes will
take effect instantaneously; there may be a delay since some QosPolicies set for one entity, for
example, a DataReader, may actually affect the operation of a matched entity in another applica-
tion, for example, a DataWriter.

The get_qos() and set_qos() operations are passed QoS structures that are specific to each
derived entity class, since the set of QosPolicies that effect each class of entities is different.

The equals() operation compares two Entity’s QoS structures for equality. It takes two parame-
ters for the two Entities’ QoS structures to be compared, then returns TRUE is they are equal (all
values are the same) or FALSE if they are not equal.

Each QosPolicy has default values (listed in the API Reference HTML documentation). If you
want to use custom values, there are three ways to change QosPolicy settings:

❏ Before Entity creation (if custom values should be used for multiple Entities). See
Section 4.1.7.1.
4-6

Common Operations for All Entities
❏ During Entity creation (if custom values are only needed for a particular Entity). See
Section 4.1.7.2.

❏ After Entity creation (if the values initially specified for a particular Entity are no longer
appropriate). See Section 4.1.7.3.

Regardless of when or how you make QoS changes, there are some rules to follow:

❏ Some QosPolicies interact with each other and thus must be set in a consistent manner.
For instance, the maximum value of the HISTORY QosPolicy’s depth parameter is limited
by values set in the RESOURCE_LIMITS QosPolicy. If the values within a QosPolicy
structure are inconsistent, then set_qos() will return the error
INCONSISTENT_POLICY, and the operation will have no effect.

❏ Some policies can only be set when the Entity is created, or before the Entity is enabled.
Others can be changed at any time. In general, all standard DDS QosPolicies can be
changed before the Entity is enabled. A subset can be changed after the Entity is enabled.
Connext-specific QosPolicies either cannot be changed after creation or can be changed at
any time. The changeability of each QosPolicy is documented in the API Reference
HTML documentation as well as in Table 4.2. If you attempt to change a policy after it
cannot be changed, set_qos() will fail with a return IMMUTABLE_POLICY.

4.1.7.1 Changing the QoS Defaults Used to Create Entities: set_default_*_qos()

Each parent factory has a set of default QoS settings that are used when the child entity is cre-
ated. The DomainParticipantFactory has default QoS values for creating DomainParticipants. A
DomainParticipant has a set of default QoS for each type of entity that can be created from the
DomainParticipant (Topic, Publisher, Subscriber, DataWriter, and DataReader). Likewise, a Publisher
has a set of default QoS values used when creating DataWriters, and a Subscriber has a set of
default QoS values used when creating DataReaders.

An entity’s QoS are set when it is created. Once an entity is created, all of its QoS—for itself and
its child entities—are fixed unless you call set_qos() or set_qos_with_profile() on that entity.
Calling set_default_<entity>_qos() on a parent entity will have no effect on child entities that
have already been created.

You can change these default values so that they are automatically applied when new child enti-
ties are created. For example, suppose you want all DataWriters for a particular Publisher to have
their RELIABILITY QosPolicy set to RELIABLE. Instead of making this change for each DataW-
riter when it is created, you can change the default used when any DataWriter is created from the
Publisher by using the Publisher’s set_default_datawriter_qos() operation.

DDS_DataWriterQos default_datawriter_qos;

// get the current default values
publisher->get_default_datawriter_qos(default_datawriter_qos);

// change to desired default values
default_datawriter_qos.reliability.kind =

DDS_RELIABLE_RELIABILITY_QOS;

// set the new default values
publisher->set_default_datawriter_qos(default_datawriter_qos);

// created datawriters will use new default values
datawriter = publisher->create_datawriter(topic, NULL, NULL, NULL);

Note: It is not safe to get or set the default QoS values for an entity while another thread may be
simultaneously calling get_default_<entity>_qos(), set_default_<entity>_qos(), or
4-7

Common Operations for All Entities
create_<entity>() with DDS_<ENTITY>_QOS_DEFAULT as the qos parameter (for the same
entity).

Another way to make QoS changes is by using XML resources (files, strings). For more informa-
tion, see Chapter 17: Configuring QoS with XML.

4.1.7.2 Setting QoS During Entity Creation

If you only want to change a QosPolicy for a particular entity, you can pass in the desired
QosPolicies for an entity in its creation routine.

To customize an entity's QoS before creating it:

1. (C API Only) Initialize a QoS object with the appropriate INITIALIZER constructor.

2. Call the relevant get_<entity>_default_qos() method.

3. Modify the QoS values as desired.

4. Create the entity.

For example, to change the RELIABLE QosPolicy for a DataWriter before creating it:

// Initialize the QoS object
DDS_DataWriterQos datawriter_qos;

// Get the default values
publisher->get_default_datawriter_qos(datawriter_qos);

// Modify the QoS values as desired
datawriter_qos.reliability.kind = DDS_BEST_EFFORT_RELIABILITY_QOS;

// Create the DataWriter with new values
datawriter =

publisher->create_datawriter(topic, datawriter_qos, NULL, NULL);

Another way to set QoS during entity creation is by using a QoS profile. For more information,
see Chapter 17: Configuring QoS with XML.

4.1.7.3 Changing the QoS for an Existing Entity

Some policies can also be changed after the entity has been created. To change such a policy after
the entity has been created, use the entity’s set_qos() operation.

For example, suppose you want to tweak the DEADLINE QoS for an existing DataWriter:

DDS_DataWriterQos datawriter_qos;

// get the current values
datawriter->get_qos(datawriter_qos);

// make desired changes
datawriter_qos.deadline.period.sec = 3;
datawriter_qos.deadline.period.nanosec = 0;

// set new values
datawriter->set_qos(datawriter_qos);

Another way to make QoS changes is by using a QoS profile. For more information, see
Chapter 17: Configuring QoS with XML.

Note: In the code examples presented in this section, we are not testing for the return code for
the set_qos(), set_default_*_qos() functions. If the values used in the QosPolicy structures are
4-8

QosPolicies
inconsistent then the functions will fail and return INCONSISTENT_POLICY. In addition,
set_qos() may return IMMUTABLE_POLICY if you try to change a QosPolicy on an Entity after
that policy has become immutable. User code should test for and address those anomalous conditions.

4.1.7.4 Comparing QoS Values

4.1.7.5 Default QoS Values

Connext provides special constants for each Entity type that can be used in set_qos() and
set_default_*_qos() to reset the QosPolicy values to the original DDS default values:

❏ DDS_PARTICIPANT_QOS_DEFAULT

❏ DDS_PUBLISHER_QOS_DEFAULT

❏ DDS_SUBSCRIBER_QOS_DEFAULT

❏ DDS_DATAWRITER_QOS_DEFAULT

❏ DDS_DATAREADER_QOS_DEFAULT

❏ DDS_TOPIC_QOS_DEFAULT

For example, if you want to set a DataWriter’s QoS back to their DDS-specified default values:

datawriter->set_qos(DDS_DATAWRITER_QOS_DEFAULT);

Or if you want to reset the default QosPolicies used by a Publisher to create DataWriters back to
their DDS-specified default values:

publisher->set_default_datawriter_qos(DDS_DATAWRITER_QOS_DEFAULT);

Note: These defaults cannot be used to initialize a QoS structure for an entity. For example, the
following is NOT allowed:

Not Allowed—> DataWriterQos dataWriterQos = DATAWRITER_QOS_DEFAULT;
// modify QoS...
create_datawriter(dataWriterQos);

4.2 QosPolicies
Connext’s behavior is controlled by the Quality of Service (QoS) policies of the data communica-
tion entities (DomainParticipant, Topic, Publisher, Subscriber, DataWriter, and DataReader) used in
your applications. This section summarizes each of the QosPolicies that you can set for the vari-
ous entities.

The QosPolicy class is the abstract base class for all the QosPolicies. It provides the basic mecha-
nism for an application to specify quality of service parameters. Table 4.2 on page 4-10 lists each
supported QosPolicy (in alphabetical order), provides a summary, and points to a section in the
manual that provides further details.

The detailed description of a QosPolicy that applies to multiple Entities is provided in the first
chapter that discusses an Entity whose behavior the QoS affects. Otherwise, the discussion of a
QosPolicy can be found in the chapter of the particular Entity to which the policy applies. As
you will see in the detailed description sections, all QosPolicies have one or more parameters
that are used to configure the policy. The how’s and why’s of tuning the parameters are also dis-
cussed in those sections.
4-9

QosPolicies

A
P

A

B

D
e

D

D
r

D

D t

D

-

D
.

D

D
-

D
L .
As first discussed in Controlling Behavior with Quality of Service (QoS) Policies (Section 2.5.1),
QosPolicies may interact with each other, and certain values of QosPolicies can be incompatible
with the values set for other policies.

The set_qos() operation will fail if you attempt to specify a set of values would result in an
inconsistent set of policies. To indicate a failure, set_qos() will return
INCONSISTENT_POLICY. Section 4.2.1 provides further information on QoS compatibility
within an Entity as well as across matching Entities, as does the discussion/reference section for
each QosPolicy listed in Table 4.2 on page 4-10.

The values of some QosPolicies cannot be changed after the Entity is created or after the Entity is
enabled. Others may be changed at any time. The detailed section on each QosPolicy states
when each policy can be changed. If you attempt to change a QosPolicy after it becomes immu-
table (because the associated Entity has been created or enabled, depending on the policy),
set_qos() will fail with a return code of IMMUTABLE_POLICY.

Table 4.2 QosPolicies

QosPolicy Summary

synchronous-
ublisher

Configures the mechanism that sends user data in an external middleware thread. See
Section 6.4.1.

vailability

This QoS policy is used in the context of two features:

For a Collaborative DataWriter, specifies the group of DataWriters expected to collaboratively
provide data and the timeouts that control when to allow data to be available that may skip
samples.

For a Durable Subscription, configures a set of Durable Subscriptions on a DataWriter.

 See Section 6.5.1.

atch
Specifies and configures the mechanism that allows Connext to collect multiple user data
samples to be sent in a single network packet, to take advantage of the efficiency of sending
larger packets and thus increase effective throughput. See Section 6.5.2.

atabase
Various settings and resource limits used by Connext to control its internal database. Se
Section 8.5.1.

ataReaderProtocol This QosPolicy configures the Connext on-the-network protocol, RTPS. See Section 7.6.1.

ataReaderResourceLimits
Various settings that configure how DataReaders allocate and use physical memory fo
internal resources. See Section 7.6.2.

ataWriterProtocol This QosPolicy configures the Connext on-the-network protocol, RTPS. See Section 6.5.3.

ataWriterResourceLimits
Controls how many threads can concurrently block on a write() call of this DataWriter. Also
controls the number of batches managed by the DataWriter and the instance-replacemen
kind used by the DataWriter. See Section 6.5.4.

eadline

For a DataReader, specifies the maximum expected elapsed time between arriving data sam
ples.
For a DataWriter, specifies a commitment to publish samples with no greater elapsed time
between them.
See Section 6.5.5.

estinationOrder
Controls how Connext will deal with data sent by multiple DataWriters for the same topic
Can be set to "by reception timestamp" or to "by source timestamp." See Section 6.5.6.

iscovery
Configures the mechanism used by Connext to automatically discover and connect with
new remote applications. See Section 8.5.2.

iscoveryConfig
Controls the amount of delay in discovering entities in the system and the amount of dis
covery traffic in the network. See Section 8.5.3.

omainParticipantResource-
imits

Various settings that configure how DomainParticipants allocate and use physical memory
for internal resources, including the maximum sizes of various properties. See Section 8.5.4
4-10

QosPolicies

D

D
-

E

E

E
e

E

G .

H
s

L

L
.

L
s

L

M
)

O

O
-

P

P
e

P
e

P

-
-

P
e

R
e

R
-

urability
Specifies whether or not Connext will store and deliver data that were previously published
to new DataReaders. See Section 6.5.7.

urabilityService
Various settings to configure the external Persistence Service used by Connext for DataWrit
ers with a Durability QoS setting of Persistent Durability. See Section 6.5.8.

ntityFactory Controls whether or not child entities are created in the enabled state. See Section 6.4.2.

ntityName Assigns a name and role_name to an Entity. See Section 6.5.9.

vent
Configures the DomainParticipant’s internal thread that handles timed events. Se
Section 8.5.5.

xclusiveArea
Configures multi-thread concurrency and deadlock prevention capabilities. See
Section 6.4.3.

roupData
Along with TOPIC_DATA QosPolicy (Section 5.2.1) and USER_DATA QosPolicy (Section
6.5.25), this QosPolicy is used to attach a buffer of bytes to Connext's discovery meta-data
See 6.4.4.

istory
Specifies how much data must be stored by Connext for the DataWriter or DataReader. Thi
QosPolicy affects the RELIABILITY QosPolicy (Section 6.5.19) as well as the DURABILITY
QosPolicy (Section 6.5.7). See Section 6.5.10.

atencyBudget Suggestion to Connext on how much time is allowed to deliver data. See Section 6.5.11.

ifespan
Specifies how long Connext should consider data sent by an user application to be valid
See Section 6.5.12.

iveliness
Specifies and configures the mechanism that allows DataReaders to detect when DataWriter
become disconnected or "dead." See Section 6.5.13.

ogging Configures the properties associated with Connext logging. See Section 8.4.1.

ultiChannel
Configures a DataWriter’s ability to send data on different multicast groups (addresses
based on the value of the data. See Section 6.5.14.

wnership
Along with Ownership Strength, specifies if DataReaders for a topic can receive data from
multiple DataWriters at the same time. See Section 6.5.15.

wnershipStrength
Used to arbitrate among multiple DataWriters of the same instance of a Topic when Owner
ship QoSPolicy is EXLUSIVE. See Section 6.5.16.

artition
Adds string identifiers that are used for matching DataReaders and DataWriters for the same
Topic. See Section 6.4.5.

resentation
Controls how Connext presents data received by an application to the DataReaders of th
data. See Section 6.4.6.

rofile
Configures the way that XML documents containing QoS profiles are loaded by RTI. Se
Section 8.4.2.

roperty

Stores name/value(string) pairs that can be used to configure certain parameters of Con
next that are not exposed through formal QoS policies. It can also be used to store and prop
agate application-specific name/value pairs, which can be retrieved by user code during
discovery. See Section 6.5.17.

ublishMode
Specifies how Connext sends application data on the network. By default, data is sent in th
user thread that calls the DataWriter’s write() operation. However, this QosPolicy can be
used to tell Connext to use its own thread to send the data. See Section 6.5.18.

eaderDataLifeCycle
Controls how a DataReader manages the lifecycle of the data that it has received. Se
Section 7.6.3.

eceiverPool
Configures threads used by Connext to receive and process data from transports (for exam
ple, UDP sockets). See Section 8.5.6.

Table 4.2 QosPolicies

QosPolicy Summary
4-11

QosPolicies

R

R
e
s

S -

T
.

T
f

T

T -

T
s

T
r

T

T

T
-

T
e
-

U
f

W
e

W
r

4.2.1 QoS Requested vs. Offered Compatibility—the RxO Property

Some QosPolicies that apply to entities on the sending and receiving sides must have their val-
ues set in a compatible manner. This is known as the policy’s ‘requested vs. offered’ (RxO) prop-
erty. Entities on the publishing side ‘offer’ to provide a certain behavior. Entities on the
subscribing side ‘request’ certain behavior. For Connext to connect the sending entity to the
receiving entity, the offered behavior must satisfy the requested behavior.

For some QosPolicies, the allowed values may be graduated in a way that the offered value will
satisfy the requested value if the offered value is either greater than or less than the requested
value. For example, if a DataWriter’s DEADLINE QosPolicy specifies a duration less than or
equal to a DataReader’s DEADLINE QosPolicy, then the DataWriter is promising to publish data
at least as fast or faster than the DataReader requires new data to be received. This is a compatible

eliability Specifies whether or not Connext will deliver data reliably. See Section 6.5.19.

esourceLimits
Controls the amount of physical memory allocated for entities, if dynamic allocations ar
allowed, and how they occur. Also controls memory usage among different instance value
for keyed topics. See Section 6.5.20.

ystemResourceLimits
Configures DomainParticipant-independent resources used by Connext. Mainly used to
change the maximum number of DomainParticipants that can be created within a single pro
cess (address space). See Section 8.4.3.

imeBasedFilter
Set by a DataReader to limit the number of new data values received over a period of time
See Section 7.6.4.

opicData
Along with Group Data QosPolicy and User Data QosPolicy, used to attach a buffer o
bytes to Connext's discovery meta-data. See Section 5.2.1.

ransportBuiltin Specifies which built-in transport plugins are used. See Section 8.5.7.

ransportMulticast
Specifies the multicast address on which a DataReader wants to receive its data. Can specify
a port number as well as a subset of the available transports with which to receive the mul
ticast data. See Section 7.6.5.

ransportMulticastMapping
Specifies the automatic mapping between a list of topic expressions and multicast addres
that can be used by a DataReader to receive data for a specific topic. See Section 8.5.8.

ransportPriority
Set by a DataWriter to tell Connext that the data being sent is a different "priority" than othe
data. See Section 6.5.21.

ransportSelection
Allows you to select which physical transports a DataWriter or DataReader may use to send
or receive its data. See Section 6.5.22.

ransportUnicast
Specifies a subset of transports and port number that can be used by an Entity to receive
data. See Section 6.5.23.

ypeConsistencyEnforcement
Defines rules that determine whether the type used to publish a given data stream is con
sistent with that used to subscribe to it. See Section 7.6.6.

ypeSupport
Used to attach application-specific value(s) to a DataWriter or DataReader. These values ar
passed to the serialization or deserialization routine of the associated data type. Also con
trols whether padding bytes are set to 0 during serialization. See Section 6.5.24.

serData
Along with Topic Data QosPolicy and Group Data QosPolicy, used to attach a buffer o
bytes to Connext's discovery meta-data. See Section 6.5.25.

ireProtocol
Specifies IDs used by the RTPS wire protocol to create globally unique identifiers. Se
Section 8.5.9.

riterDataLifeCycle
Controls how a DataWriter handles the lifecycle of the instances (keys) that the DataWrite
is registered to manage. See Section 6.5.26.

Table 4.2 QosPolicies

QosPolicy Summary
4-12

QosPolicies
situation (see Section 6.5.5).

Other QosPolicies require the values on the sending side and the subscribing side to be exactly
equal for compatibility to be met. For example, if a DataWriter’s OWNERSHIP QosPolicy is set
to SHARED, and the matching DataReader’s value is set to EXCLUSIVE, then this is an incom-
patible situation since the DataReader and DataWriter have different expectations of what will
happen if more than one DataWriter publishes an instance of the Topic (see OWNERSHIP
QosPolicy (Section 6.5.15)).

Finally there are QosPolicies that do not require compatibility between the sending entity and
the receiving entity, or that only apply to one side or the other. Whether or not related entities on
the publishing and subscribing sides must use compatible settings for a QosPolicy is indicated
in the policy’s RxO property, which is provided in the detailed section on each QosPolicy.

RxO = YESThe policy is set at both the publishing and subscribing ends and the values must be
set in a compatible manner. What it means to be compatible is defined by the QosPolicy.

RxO = NOThe policy is set only on one end or at both the publishing and subscribing ends, but
the two settings are independent. There the requested vs. offered semantics are not used
for these QosPolicies.

For those QosPolicies that follow the RxO semantics, Connext will compare the values of those
policies for compatibility. If they are compatible, then Connext will connect the sending entity to
the receiving entity allowing data to be sent between them. If they are found to be incompatible,
then Connext will not interconnect the entities preventing data to be sent between them.

In addition, Connext will record this event by changing the associated communication status in
both the sending and receiving applications, see Types of Communication Status (Section 4.3.1).
Also, if you have installed Listeners on the associated Entities, then Connext will invoke the asso-
ciated callback functions to notify user code that an incompatible QoS combination has been
found, see Types of Listeners (Section 4.4.1).

For Publishers and DataWriters, the status corresponding to this situation is
OFFERED_INCOMPATIBLE_QOS_STATUS. For Subscribers and DataReaders, the corresponding
status is REQUESTED_INCOMPATIBLE_QOS_STATUS. The question of why a DataReader is
not receiving data sent from a matching DataWriter can often be answered if you have instru-
mented the application with Listeners for the statuses noted previously.

4.2.2 Special QosPolicy Handling Considerations for C

Many QosPolicy structures contain variable-length sequences to store their parameters. In the
C++, C++/CLI, C# and Java languages, the memory allocation related to sequences are handled
automatically through constructors/destructors and overloaded operators. However, the C lan-
guage is limited in what it provides to automatically handle memory management. Thus, Con-
next provides functions and macros in C to initialize, copy, and finalize (free) QosPolicy
structures defined for Entities.

In the C language, it is not safe to use an Entity’s QosPolicy structure declared in user code
unless it has been initialized first. In addition, user code should always finalize an Entity’s
QosPolicy structure to release any memory allocated for the sequences–even if the Entity’s
QosPolicy structure was declared as a local, stack variable.

Thus, for a general Entity’s QosPolicy, Connext will provide:

❏ DDS_<Entity>Qos_INITIALIZER This is a macro that should be used when a
DDS_<Entity>Qos structure is declared in a C application.

struct DDS_<Entity>Qos qos = DDS_<Entity>Qos_INITIALIZER;
4-13

Statuses
❏ DDS_<Entity>Qos_initialize() This is a function that can be used to initialize a
DDS_<Entity>Qos structure instead of the macro above.

struct DDS_<Entity>Qos qos;
DDS_<Entity>QOS_initialize(&qos);

❏ DDS_<Entity>Qos_finalize() This is a function that should be used to finalize a
DDS_<Entity>Qos structure when the structure is no longer needed. It will free any
memory allocated for sequences contained in the structure.

struct DDS_<Entity>Qos qos = DDS_<Entity>Qos_INITIALIZER;
...
<use qos>
...
// now done with qos
DDS_<Entity>QoS_finalize(&qos);

❏ DDS<Entity>Qos_copy() This is a function that can be used to copy one
DDS_<Entity>Qos structure to another. It will copy the sequences contained in the
source structure and allocate memory for sequence elements if needed. In the code
below, both dstQos and srcQos must have been initialized at some point earlier in the
code.

DDS_<Entity>QOS_copy(&dstQos, &srcQos);

4.3 Statuses
This section describes the different statuses that exist for an entity. A status represents a state or
an event regarding the entity. For instance, maybe Connext found a matching DataReader for a
DataWriter, or new data has arrived for a DataReader.

Your application can retrieve an Entity’s status by:

❏ explicitly checking for any status changes with get_status_changes().

❏ explicitly checking a specific status with get_<status_name>_status().

❏ using a Listener, which provides asynchronous notification when a status changes.

❏ using StatusConditions and WaitSets, which provide a way to wait for status changes.

If you want your application to be notified of status changes asynchronously: create and install a
Listener for the Entity. Then internal Connext threads will call the listener methods when the sta-
tus changes. See Listeners (Section 4.4).

If you want your application to wait for status changes: set up StatusConditions to indicate the
statuses of interest, attach the StatusConditions to a WaitSet, and then call the WaitSet’s wait()
operation. The call to wait() will block until statuses in the attached Conditions changes (or until
a timeout period expires). See Conditions and WaitSets (Section 4.6).

This section includes the following:

❏ Types of Communication Status (Section 4.3.1)

❏ Special Status-Handling Considerations for C (Section 4.3.2)
4-14

Statuses
4.3.1 Types of Communication Status

Each Entity is associated with a set of Status objects representing the “communication status” of
that Entity. The list of statuses actively monitored by Connext is provided in Table 4.3 on page 4-
18. A status structure contains values that give you more information about the status; for exam-
ple, how many times the event has occurred since the last time the user checked the status, or
how many time the event has occurred in total.

Changes to status values cause activation of corresponding StatusCondition objects and trigger
invocation of the corresponding Listener functions to asynchronously inform the application that
the status has changed. For example, a change in a Topic’s INCONSISTENT_TOPIC_STATUS
may trigger the TopicListener’s on_inconsistent_topic() callback routine (if such a Listener is
installed).

Statuses can be grouped into two categories:

❏ Plain communication status: In addition to a flag that indicates whether or not a status
has changed, a plain communication status also contains state and thus has a correspond-
ing structure to hold its current value.

❏ Read communication status: A read communication status is more like an event and has
no state other than whether or not it has occurred. Only two statuses listed in Table 4.3
are read communications statuses: DATA_AVAILABLE and DATA_ON_READERS.

As mentioned in Section 4.1.4, all entities have a get_status_changes() operation that can be
used to explicitly poll for changes in any status related to the entity. For plain statuses, each entry
has operations to get the current value of the status; for example, the Topic class has a
get_inconsistent_topic_status() operation. For read statuses, your application should use the
take() operation on the DataReader to retrieve the newly arrived data that is indicated by
DATA_AVAILABLE and DATA_ON_READER.

Note that the two read communication statuses do not change independently. If data arrives for
a DataReader, then its DATA_AVAILABLE status changes. At the same time, the
DATA_ON_READERS status changes for the DataReader’s Subscriber.

Both types of status have a StatusChangedFlag. This flag indicates whether that particular com-
munication status has changed since the last time the status was read by the application. The
way the StatusChangedFlag is maintained is slightly different for the plain communication status
and the read communication status, as described in the following sections:

❏ Changes in Plain Communication Status (Section 4.3.1.1)

❏ Changes in Read Communication Status (Section 4.3.1.2)

4.3.1.1 Changes in Plain Communication Status

As seen in Figure 4.1 on page 4-16, for the plain communication status, the StatusChangedFlag
flag is initially set to FALSE. It becomes TRUE whenever the plain communication status
changes and is reset to FALSE each time the application accesses the plain communication status
via the proper get_*_status() operation.

The communication status is also reset to FALSE whenever the associated listener operation is
called, as the listener implicitly accesses the status which is passed as a parameter to the opera-
tion.

The fact that the status is reset prior to calling the listener means that if the application calls the
get_*_status() operation from inside the listener, it will see the status already reset.

An exception to this rule is when the associated listener is the 'nil' listener. The 'nil' listener is
treated as a NO-OP and the act of calling the 'nil' listener does not reset the communication sta-
tus. (See Types of Listeners (Section 4.4.1).)
4-15

Statuses
For example, the value of the StatusChangedFlag associated with the
REQUESTED_DEADLINE_MISSED status will become TRUE each time new deadline occurs
(which increases the RequestedDeadlineMissed status’ total_count field). The value changes to
FALSE when the application accesses the status via the corresponding
get_requested_deadline_missed_status() operation on the proper Entity.

4.3.1.2 Changes in Read Communication Status

As seen in Figure 4.2 on page 4-17, for the read communication status, the StatusChangedFlag
flag is initially set to FALSE. The StatusChangedFlag becomes TRUE when either a data sample
arrives or the ViewStateKind, SampleStateKind, or InstanceStateKind of any existing sample
changes for any reason other than a call to one of the read/take operations. Specifically, any of
the following events will cause the StatusChangedFlag to become TRUE:

❏ The arrival of new data.

❏ A change in the InstanceStateKind of a contained instance. This can be caused by either:

• Notification that an instance has been disposed by:

• the DataWriter that owns it, if OWNERSHIP = EXCLUSIVE

• or by any DataWriter, if OWNERSHIP = SHARED

• The loss of liveliness of the DataWriter of an instance for which there is no other
DataWriter.

• The arrival of the notification that an instance has been unregistered by the only
DataWriter that is known to be writing the instance.

Depending on the kind of StatusChangedFlag, the flag transitions to FALSE (that is, the status
is reset) as follows:

❏ The DATA_AVAILABLE StatusChangedFlag becomes FALSE when either
on_data_available() is called or the read/take operation (or their variants) is called on
the associated DataReader.

❏ The DATA_ON_READERS StatusChangedFlag becomes FALSE when any of the follow-
ing occurs:

• on_data_on_readers() is called.

• on_data_available() is called on any DataReader belonging to the Subscriber.

• read(), take(), or one of their variants is called on any DataReader belonging to the Sub-
scriber.

Figure 4.1 Status Changes for Plain Communication Status

StatusChangedFlag = FALSE StatusChangedFlag = TRUE

status changes

User calls get_*_status(), or
after listener is invoked
4-16

Statuses
4.3.2 Special Status-Handling Considerations for C

Some status structures contain variable-length sequences to store their values. In the C++, C++/
CLI, C# and Java languages, the memory allocation related to sequences are handled automati-
cally through constructors/destructors and overloaded operators. However, the C language is
limited in what it provides to automatically handle memory management. Thus, Connext pro-
vides functions and macros in C to initialize, copy, and finalize (free) status structures.

In the C language, it is not safe to use a status structure that has internal sequences declared in
user code unless it has been initialized first. In addition, user code should always finalize a sta-
tus structure to release any memory allocated for the sequences–even if the status structure was
declared as a local, stack variable.

Figure 4.2 Status Changes for Read Communication Status
4-17

Statuses
Table 4.3 Communication Statuses

Related
Entity Status (DDS_*_STATUS) Description Reference

Topic INCONSISTENT_TOPIC
Another Topic exists with the same name but dif-
ferent characteristics—for example, a different
type.

Section 5.3.1

Data-
Writer

APPLICATION_
ACKNOWLEDGMENT

This status indicates that a DataWriter has
received an application-level acknowledgment
for a sample. The listener provides the identities
of the sample and acknowledging DataReader, as
well as user-specified response data sent from the
DataReader by the acknowledgment message.

Section 6.3.12

DATA_WRITER_CACHE
The status of the DataWriter’s cache.
This status does not have a Listener.

Section 6.3.6.1

DATA_WRITER_PROTOCOL

The status of a DataWriter’s internal protocol
related metrics (such as the number of samples
pushed, pulled, filtered) and the status of wire
protocol traffic.
This status does not have a Listener.

Section 6.3.6.2

LIVELINESS_LOST

The liveliness that the DataWriter has committed
to (through its Liveliness QosPolicy) was not
respected (assert_liveliness() or write() not called
in time), thus DataReader entities may consider
the DataWriter as no longer active.

Section 6.3.6.3

OFFERED_DEADLINE_
MISSED

The deadline that the DataWriter has committed
through its Deadline QosPolicy was not
respected for a specific instance of the Topic.

Section 6.3.6.4

OFFERED_INCOMPATIBLE_
QOS

An offered QosPolicy value was incompatible
with what was requested by a DataReader of the
same Topic.

Section 6.3.6.5

PUBLICATION_MATCHED

The DataWriter found a DataReader that matches
the Topic, has compatible QoSs and a common
partition, or a previously matched DataReader has
been deleted.

Section 6.3.6.6

RELIABLE_WRITER_
CACHE_CHANGED

The number of unacknowledged samples in a
reliable DataWriter's cache has reached one of the
predefined trigger points.

Section 6.3.6.7

RELIABLE_READER_
ACTIVITY_CHANGED

One or more reliable DataReaders has either been
discovered, deleted, or changed between active
and inactive state as specified by the Liveli-
nessQosPolicy of the DataReader.

Section 6.3.6.8
4-18

Statuses
Thus, for a general status structure, Connext will provide:

❏ DDS_<STATUS>STATUS_INITIALIZER This is a macro that should be used when a
DDS_<Status>Status structure is declared in a C application.

struct DDS_<Status>Status status = DDS_<Status>Status_INITIALIZER;

❏ DDS_<Status>Status_initialize() This is a function that can be used to initialize a
DDS_<Status>Status structure instead of the macro above.

struct DDS_<Status>Status status;
DDS_<Status>Status_initialize(&Status);

❏ DDS_<Status>Status_finalize() This is a function that should be used to finalize a
DDS_<Status>Status structure when the structure is no longer needed. It will free any
memory allocated for sequences contained in the structure.

struct DDS_<Status>Status status = DDS_<Status>Status_INITIALIZER;
...
<use status>

Subscriber DATA_ON_READERS
New data is available for any of the readers that
were created from the Subscriber.

Section 7.2.9

Data-
Reader

DATA_AVAILABLE
New data (one or more samples) are available for
the specific DataReader.

Section 7.3.7.1

DATA_READER_CACHE
The status of the reader's cache.
This status does not have a Listener.

Section 7.3.7.2

DATA_READER_PROTOCOL

The status of a DataReader’s internal protocol
related metrics (such as the number of samples
received, filtered, rejected) and the status of wire
protocol traffic.
This status does not have a Listener.

Section 7.3.7.3

LIVELINESS_CHANGED

The liveliness of one or more DataWriters that
were writing instances read by the DataReader
has either been discovered, deleted, or changed
between active and inactive state as specified by
the LivelinessQosPolicy of the DataWriter.

Section 7.3.7.4

REQUESTED_DEADLINE_
MISSED

New data was not received for an instance of the
Topic within the time period set by the
DataReader’s Deadline QosPolicy.

Section 7.3.7.5

REQUESTED_
INCOMPATIBLE_QOS

A requested QosPolicy value was incompatible
with what was offered by a DataWriter of the
same Topic.

Section 7.3.7.6

SAMPLE_LOST
A sample sent by Connext has been lost (never
received).

Section 7.3.7.7

SAMPLE_REJECTED
A received sample has been rejected due to a
resource limit (buffers filled).

Section 7.3.7.8

SUBSCRIPTION_MATCHED

The DataReader has found a DataWriter that
matches the Topic, has compatible QoSs and a
common partition, or an existing matched
DataWriter has been deleted.

Section 7.3.7.9

Table 4.3 Communication Statuses

Related
Entity Status (DDS_*_STATUS) Description Reference
4-19

Listeners
...
// now done with Status
DDS_<Status>Status_finalize(&status);

❏ DDS<Status>Status_copy() This is a function that can be used to copy one DDS_<Sta-
tus>Status structure to another. It will copy the sequences contained in the source struc-
ture and allocate memory for sequence elements if needed. In the code below, both
dstStatus and srcStatus must have been initialized at some point earlier in the code.

DDS_<Status>Status_copy(&dstStatus, &srcStatus);

Note that many status structures do not have sequences internally. For those structures, you do
not need to use the macro and methods provided above. However, they have still been created
for your convenience.

4.4 Listeners
This section describes Listeners and how to use them:

❏ Types of Listeners (Section 4.4.1)

❏ Creating and Deleting Listeners (Section 4.4.2)

❏ Special Considerations for Listeners in C (Section 4.4.3)

❏ Hierarchical Processing of Listeners (Section 4.4.4)

❏ Operations Allowed within Listener Callbacks (Section 4.4.5)

Listeners are triggered by changes in an entity’s status. For instance, maybe Connext found a
matching DataReader for a DataWriter, or new data has arrived for a DataReader.

4.4.1 Types of Listeners

The Listener class is the abstract base class for all listeners. Each entity class (DomainParticipant,
Topic, Publisher, DataWriter, Subscriber, and DataReader) has its own derived Listener class that add
methods for handling entity-specific statuses. The hierarchy of Listener classes is presented in
Figure 4.3. The methods are called by an internal Connext thread when the corresponding status
for the Entity changes value.

You can choose which changes in status will trigger a callback by installing a listener with a bit-
mask. Bits in the mask correspond to different statuses. The bits that are true indicate that the lis-
tener will be called back when there are changes in the corresponding status.

You can specify a listener and set its bit-mask before or after you create an Entity:

During Entity creation:

DDS_StatusMask mask = DDS_REQUESTED_DEADLINE_MISSED_STATUS |
 DDS_DATA_AVAILABLE_STATUS;

datareader = subscriber->create_datareader(topic,
 DDS_DATAREADER_QOS_DEFAULT,
 listener, mask);

or afterwards:
4-20

Listeners
DDS_StatusMask mask = DDS_REQUESTED_DEADLINE_MISSED_STATUS |
 DDS_DATA_AVAILABLE_STATUS;

datareader->set_listener(listener, mask);

As you can see in the above examples, there are two components involved when setting up lis-
teners: the listener itself and the mask. Both of these can be null. Table 4.4 describes what hap-
pens when a status change occurs. See Hierarchical Processing of Listeners (Section 4.4.4) for
more information.

DDSListener

DDSDataReaderListener DDSDataWriterListener DDSTopicListener

DDSDomainParticipantListener

DDSSubscriberListener DDSPublisherListener

Figure 4.3 Listener Class Hierarchy

Table 4.4 Effect of Different Combinations of Listeners and Status Bit Masks

No Bits Set in Mask Some/All Bits Set in Mask

Listener is
Specified

Connext finds the next most relevant lis-
tener for the changed status.

For the statuses that are enabled in the
mask, the most relevant listener will be
called.
The 'statusChangedFlag' for the relevant
status is reset.

Listener is
NULL

Connext behaves as if the listener is not
installed and finds the next most relevant
listener for that status.

Connext behaves as if the listener callback is
installed, but the callback is doing nothing.
This is called a ‘nil’ listener.
4-21

Listeners
4.4.2 Creating and Deleting Listeners

There is no factory for creating or deleting a Listener; use the natural means in each language
binding (for example, “new” or “delete” in C++ or Java). For example:

class HelloWorldListener : public DDSDataReaderListener {
 virtual void on_data_available(DDSDataReader* reader);
};
void HelloWorldListener::on_data_available(DDSDataReader* reader)
{
 printf("received data\n");
}
// Create a Listener
HelloWorldListener *reader_listener = NULL;
reader_listener = new HelloWorldListener();

// Delete a Listener
delete reader_listener;

A listener cannot be deleted until the entity it is attached to has been deleted. For example, you
must delete the DataReader before deleting the DataReader’s listener.

Note: Due to a thread-safety issue, the destruction of a DomainParticipantListener from an
enabled DomainParticipant should be avoided—even if the DomainParticipantListener has been
removed from the DomainParticipant. (This limitation does not affect the Java API.)

4.4.3 Special Considerations for Listeners in C

In C, a Listener is a structure with function pointers to the user callback routines. Often, you may
only be interested in a subset of the statuses that can be monitored with the Listener. In those
cases, you may not set all of the functions pointers in a listener structure to a valid function. In
that situation, we recommend that the unused, callback-function pointers are set to NULL.
While setting the DDS_StatusMask to enable only the callbacks for the statuses in which you
are interested (and thus only enabling callbacks on the functions that actually exist) is safe, we
still recommend that you clear all of the unused callback pointers in the Listener structure.

To help, in the C language, we provide a macro that can be used to initialize a Listener structure
so that all of its callback pointers are set to NULL. For example

DDS_<Entity>Listener listener = DDS_<Entity>Listener_INITIALIZER;
// now only need to set the listener callback pointers for statuses // to
be monitored

There is no need to do this in languages other than C.

4.4.4 Hierarchical Processing of Listeners

As seen in Figure 4.3 on page 4-21, Listeners for some entities derive from the Connext Listeners for
related entities. This means that the derived Listener has all of the methods of its parent class.
You can install Listeners at all levels of the object hierarchy. At the top is the DomainPartici-
pantListener; only one can be installed in a DomainParticipant. Then every Subscriber and Publisher
can have their own Listener. Finally, each Topic, DataReader and DataWriter can have their own lis-
teners. All are optional.

Suppose, however, that an Entity does not install a Listener, or installs a Listener that does not
have particular communication status selected in the bitmask. In this case, if/when that particu-
lar status changes for that Entity, the corresponding Listener for that Entity’s parent is called. Sta-
tus changes are “propagated” from child Entity to parent Entity until a Listener is found that is
registered for that status. Connext will give up and drop the status-change event only if no Lis-
4-22

Listeners
teners have been installed in the object hierarchy to be called back for the specific status. This is
true for plain communication statuses. Read communication statuses are handle somewhat dif-
ferently, see Processing Read Communication Statuses (Section 4.4.4.1).

For example, suppose that Connext finds a matching DataWriter for a local DataReader. This event
will change the SUBSCRIPTION_MATCHED status. So the local DataReader object is checked
to see if the application has installed a listener that handles the SUBSCRIPTION_MATCH sta-
tus. If not, the Subscriber that created the DataReader is checked to see if it has a listener installed
that handles the same event. If not, the DomainParticipant is checked. The DomainParticipantLis-
tener methods are called only if none of the descendent entities of the DomainParticipant have lis-
teners that handle the particular status that has changed. Again, all listeners are optional. Your
application does not have to handle any communication statuses.

Table 4.5 lists the callback functions that are available for each Entity’s status listener.

4.4.4.1 Processing Read Communication Statuses

The processing of the DATA_ON_READERS and DATA_AVAILABLE read communication
statuses are handled slightly differently since, when new data arrives for a DataReader, both sta-
tuses change simultaneously. However, only one, if any, Listener will be called to handle the
event.

If there is a Listener installed to handle the DATA_ON_READERS status in the DataReader’s
Subscriber or in the DomainParticipant, then that Listener’s on_data_on_readers() function will be
called back. The DataReaderListener’s on_data_available() function is called only if the
DATA_ON_READERS status is not handle by any relevant listeners.

This can be useful if you have generic processing to do whenever new data arrives for any
DataReader. You can execute the generic code in the on_data_on_readers() method, and then dis-
patch the processing of the actual data to the specific DataReaderListener’s on_data_available()
function by calling the notify_datareaders() method on the Subscriber.

For example:

void on_data_on_readers (DDSSubscriber *subscriber)
{

Table 4.5 Listener Callback Functions

Entity Listener for: Callback Functions

DomainParticipants

Topics on_inconsistent_topic()

Publishers and DataWriters

on_liveliness_lost()

on_offered_deadline_missed()

on_offered_incompatible_qos()

on_publication_matched()

on_reliable_reader_activity_changed()

on_reliable_writer_cache_changed()

Subscribers on_data_on_readers()

Subscribers and DataReaders

on_data_available

on_liveliness_changed()

on_requested_deadline_missed()

on_requested_incompatible_qos()

on_sample_lost()

on_sample_rejected()

on_subscription_matched()
4-23

Exclusive Areas (EAs)
 // Do some general processing that needs to be done
 // whenever new data arrives, but is independent of
 // any particular DataReader

 < generic processing code here >

 // Now dispatch the actual processing of the data
 // to the specific DataReader for which the data
 // was received

 subscriber->notify_datareaders();
}

4.4.5 Operations Allowed within Listener Callbacks

Due to the potential for deadlock, some Connext APIs should not be invoked within the func-
tions of listener callbacks. Exactly which Connext APIs are restricted depends on the Entity upon
which the Listener is installed, as well as the configuration of ‘Exclusive Areas,’ as discussed in
Section 4.5.

Please read and understand Exclusive Areas (EAs) (Section 4.5) and Restricted Operations in
Listener Callbacks (Section 4.5.1) to ensure that the calls made from your Listeners are allowed
and will not cause potential deadlock situations.

4.5 Exclusive Areas (EAs)
Listener callbacks are invoked by internal Connext threads. To prevent undesirable, multi-
threaded interaction, the internal threads may take and hold semaphores (mutexes) used for
mutual exclusion. In your listener callbacks, you may want to invoke functions provided by the
Connext API. Internally, those Connext functions also may take mutexes to prevent errors due to
multi-threaded access to critical data or operations.

Once there are multiple mutexes to protect different critical regions, the possibility for deadlock
exists. Consider Figure 4.4’s scenario, in which there are two threads and two mutexes.

Thread1 Thread2

take(MutexA)

take(MutexB)

take(MutexB)

take(MutexA)

Deadlock!

XX

Figure 4.4 Multiple Mutexes Leading to a Deadlock Condition

Thread1 takes MutexA while simultaneously Thread2 takes MutexB. Then, Thread1 takes
MutexB and simultaneously Thread2 takes MutexA. Now both threads are blocked since they
hold a mutex that the other thread is trying to take. This is a deadlock condition.
4-24

Exclusive Areas (EAs)
While the probability of entering the deadlock situation in Figure 4.4 depends on execution tim-
ing, when there are multiple threads and multiple mutexes, care must be taken in writing code
to prevent those situations from existing in the first place. Connext has been carefully created
and analyzed so that we know our threads internally are safe from deadlock interactions.

However, when Connext threads that are holding mutexes call user code in listeners, it is possi-
ble for user code to inadvertently cause the threads to deadlock if Connext APIs that try to take
other mutexes are invoked. To help you avoid this situation, RTI has defined a concept known as
Exclusive Areas, some restrictions regarding the use of Connext APIs within user callback code,
and a QoS policy that allows you to configure Exclusive Areas.

Connext uses Exclusive Areas (EAs) to encapsulate mutexes and critical regions. Only one thread
at a time can be executing code within an EA. The formal definition of EAs and their implemen-
tation ensures safety from deadlock and efficient entering and exiting of EAs. While every Entity
created by Connext has an associated EA, EAs may be shared among several entities. A thread is
automatically in the entity's EA when it is calling the entity’s listener.

Connext allows you to configure all the Entities within an application in a single domain to share
a single Exclusive Area. This would greatly restrict the concurrency of thread execution within
Connext’s multi-threaded core. However, doing so would release all restrictions on using Con-
next APIs within your callback code.

You may also have the best of both worlds by configuring a set of Entities to share a global EA
and others to have their own. For the Entities that have their own EAs, the types of Connext oper-
ations that you can call from the Entity’s callback are restricted.

To understand why the general EA framework limits the operations that can be called in an EA,
consider a modification to the example previously presented in Figure 4.4. Suppose we create a
rule that is followed when we write our code. “For all situations in which a thread has to take
multiple mutexes, we write our code so that the mutexes are always taken in the same order.”
Following the rule will ensure us that the code we write cannot enter a deadlock situation due to
the taking of the mutexes, see Figure 4.5.

Connext defines an ordering of the mutexes it creates. Generally speaking, there are three
ordered levels of Exclusive Areas:

Thread1 Thread2

take(MutexA)

take(MutexB)

take(MutexA)

take(MutexB)

X

give(MutexB)

give(MutexA)

Figure 4.5 Taking Multiple Mutexes in a Specific Order to Eliminate Deadlock

By creating an order in which multiple mutexes are taken, you can guarantee that no
deadlock situation will arise. In this case, if a thread must take both MutexA and MutexB,
we write our code so that in those cases MutexA is always taken before MutexB.
4-25

Exclusive Areas (EAs)
❏ ParticipantEA There is only one ParticipantEA per participant. The creation and dele-
tion of all Entities (create_xxx(), delete_xxx()) take the ParticipantEA. In addition, the
enable() method for an Entity and the setting of the Entity’s QoS, set_qos(), also take the
ParticipantEA. There are other functions that take the ParticipantEA:
get_discovered_participants(), get_publishers(), get_subscribers(),
get_discovered_topics(), ignore_participant(), ignore_topic(), ignore_publication(),
ignore_subscription(), remove_peer(), and register_type().

❏ SubscriberEA This EA is created on a per-Subscriber basis by default. You can assume
that the methods of a Subscriber will take the SubscriberEA. In addition, the DataReaders
created by a Subscriber share the EA of its parent. This means that the methods of a
DataReader (including take() and read()) will take the EA of its Subscriber. Therefore,
operations on DataReaders of the same Subscriber, will be serialized, even when invoked
from multiple concurrent application threads. As mentioned, the enable() and set_qos()
methods of both Subscribers and DataReaders will take the ParticipantEA. The same is true
for the create_datareader() and delete_datareader() methods of the Subscriber.

❏ PublisherEA This EA is created on a per-Publisher basis by default. You can assume that
the methods of a Publisher will take the PublisherEA. In addition, the DataWriters created
by a Publisher share the EA of its parent. This means that the methods of a DataWriter
including write() will take the EA of its Publisher. Therefore, operations on DataWriters of
the same Publisher will be serialized, even when invoked from multiple concurrent appli-
cation threads. As mentioned, the enable() and set_qos() methods of both Publishers and
DataWriters will take the ParticipantEA, as well as the create_datawriter() and
delete_datawriter() methods of the Publisher.

In addition, you should also be aware that:

❏ The three EA levels are ordered in the following manner:
ParticipantEA < SubscriberEA < PublisherEA

❏ When executing user code in a listener callback of an Entity, the internal Connext thread is
already in the EA of that Entity or used by that Entity.

❏ If a thread is in an EA, it can call methods associated with either a higher EA level or that
share the same EA. It cannot call methods associated with a lower EA level nor ones that
use a different EA at the same level.

4.5.1 Restricted Operations in Listener Callbacks

Based on the background and rules provided in Exclusive Areas (EAs) (Section 4.5), this section
describes how EAs restrict you from using various Connext APIs from within the Listener call-
backs of different Entities. Reader callbacks take the SubscriberEA. Writer callbacks take the
PublisherEA. DomainParticipant callbacks take the ParticipantEA.

Note: these restrictions do not apply to builtin topic listener callbacks.

By default, each Publisher and Subscriber creates and uses its own EA, and shares it with its chil-
dren DataWriters and DataReaders, respectively. In that case:

Within a DataWriter/DataReader’s Listener callback, do not:

❏ create any entities

❏ delete any entities

❏ enable any entities

❏ set QoS’s on any entities

Within a Subscriber/DataReader’s Listener callback, do not call any operations on:
4-26

Conditions and WaitSets
❏ Other Subscribers

❏ DataReaders that belong to other Subscribers

❏ Publishers/DataWriters that have been configured to use the ParticipantEA (see below)

Within a Publisher/DataWriter Listener callback, do not call any operations on:

❏ Other Publishers

❏ DataWriters that belong to other Publishers

❏ Any Subscribers

❏ Any DataReaders

Connext will enforce the rules to avoid deadlock, and any attempt to call an illegal method from
within a Listener callback will return DDS_RETCODE_ILLEGAL_OPERATION.

However, as previously mentioned, if you are willing to trade-off concurrency for flexibility, you
may configure individual Publishers and Subscribers (and thus their DataWriters and DataReaders)
to share the EA of their participant. In the limit, only a single ParticipantEA is shared among all
Entities. When doing so, the restrictions above are lifted at a cost of greatly reduced concurrency.
You may create/delete/enable/set_qos’s and generally call all of the methods of any other
entity in the Listener callbacks of Entities that share the ParticipantEA.

Use the EXCLUSIVE_AREA QosPolicy (DDS Extension) (Section 6.4.3) of the Publisher or Sub-
scriber to set whether or not to use a shared exclusive area. By default, Publishers and Subscribers
will create and use their own individual EAs. You can configure a subset of the Publishers and
Subscribers to share the ParticipantEA if you need the Listeners associated with those entities or
children entities to be able to call any of the restricted methods listed above.

Regardless of how the EXCLUSIVE_AREA QosPolicy is set, the following operations are never
allowed in any Listener callback:

❏ Destruction of the entity to which the Listener is attached. For instance, a DataWriter/
DataReader Listener callback must not destroy its DataWriter/DataReader.

❏ Within the TopicListener callback, you cannot call any operations on DataReaders, DataW-
riters, Publishers, Subscribers or DomainParticipants.

4.6 Conditions and WaitSets
Conditions and WaitSets provide another way for Connext to communicate status changes
(including the arrival of data) to your application. While a Listener is used to provide a callback
for asynchronous access, Conditions and WaitSets provide synchronous data access. In other
words, Listeners are notification-based and Conditions are wait-based.

A WaitSet allows an application to wait until one or more attached Conditions becomes true (or
until a timeout expires).

Briefly, your application can create a WaitSet, attach one or more Conditions to it, then call the
WaitSet’s wait() operation. The wait() blocks until one or more of the WaitSet’s attached Condi-
tions becomes TRUE.

A Condition has a trigger_value that can be TRUE or FALSE. You can retrieve the current value
by calling the Condition’s only operation, get_trigger_value().

There are three kinds of Conditions. A Condition is a root class for all the conditions that may be
attached to a WaitSet. This basic class is specialized in three classes:
4-27

Conditions and WaitSets
❏ GuardConditions (Section 4.6.6) are created by your application. Each GuardCondition
has a single, user-settable, boolean trigger_value. Your application can manually trigger
the GuardCondition by calling set_trigger_value(). Connext does not trigger or clear this
type of condition—it is completely controlled by your application.

❏ ReadConditions and QueryConditions (Section 4.6.7) are created by your application,
but triggered by Connext. ReadConditions provide a way for you to specify the data sam-
ples that you want to wait for, by indicating the desired sample-states, view-states, and
instance-states1.

❏ StatusConditions (Section 4.6.8) are created automatically by Connext, one for each Entity.
A StatusCondition is triggered by Connext when there is a change to any of that Entity’s
enabled statuses.

Figure 4.6 on page 4-29 shows the relationship between these objects and other Entities in the
system.

A WaitSet can be associated with more than one Entity (including multiple DomainParticipants).
It can be used to wait on Conditions associated with different DomainParticipants. A WaitSet can
only be in use by one application thread at a time.

4.6.1 Creating and Deleting WaitSets

There is no factory for creating or deleting a WaitSet; use the natural means in each language
binding (for example, “new” or “delete” in C++ or Java).

There are two ways to create a WaitSet—with or without specifying WaitSet properties
(DDS_WaitSetProperty_t, described in Table 4.6). Waiting for Conditions (Section 4.6.3)
describes how the properties are used.

To create a WaitSet with default behavior:

WaitSet* waitset = new WaitSet();

To create a WaitSet with properties:

DDS_WaitSetProperty_t prop;
Prop.max_event_count = 5;
DDSWaitSet* waitset = new DDSWaitSet(prop);

To delete a WaitSet:

delete waitset;

1. These states are described in The SampleInfo Structure (Section 7.4.6).

Table 4.6 WaitSet Properties (DDS_WaitSet_Property_t)

Type Field Name Description

long max_event_count Maximum number of trigger events to cause a WaitSet to wake up.

DDS_Duration_t max_event_delay

Maximum delay from occurrence of first trigger event to cause a
WaitSet to wake up.
This value should reflect the maximum acceptable latency
increase (time delay from occurrence of the event to waking up
the waitset) incurred as a result of waiting for additional events
before waking up the waitset.
4-28

Conditions and WaitSets
4.6.2 WaitSet Operations

WaitSets have only a few operations, as listed in Table 4.7 on page 4-30. For details, see the API
Reference HTML documentation.

4.6.3 Waiting for Conditions

The WaitSet’s wait() operation allows an application thread to wait for any of the attached Condi-
tions to trigger (become TRUE).

If any of the attached Conditions are already TRUE when wait() is called, it returns immediately.

Figure 4.6 Conditions and WaitSets
4-29

Conditions and WaitSets
If none of the attached Conditions are already TRUE, wait() blocks—suspending the calling
thread. The waiting behavior depends on whether or not properties were set when the WaitSet
was created:

❏ If properties are not specified when the WaitSet is created:

The WaitSet will wake up as soon as a trigger event occurs (that is, when an attached Con-
dition becomes true). This is the default behavior if properties are not specified.

This ‘immediate wake-up’ behavior is optimal if you want to minimize latency (to wake
up and process the data or event as soon as possible). However, "waking up" involves a
context switch—the operating system must signal and schedule the thread that is wait-
ing on the WaitSet. A context switch consumes significant CPU and therefore waking up
on each data update is not optimal in situations where the application needs to maximize
throughput (the number of messages processed per second). This is especially true if the
receiver is CPU limited.

❏ If properties are specified when the WaitSet is created:

The properties configure the waiting behavior of a WaitSet. If no conditions are true at
the time of the call to wait, the WaitSet will wait for (a) max_event_count trigger events
to occur, (b) up to max_event_delay time from the occurrence of the first trigger event, or
(c) up to the timeout maximum wait duration specified in the call to wait(). (Note: The
resolution of the timeout period is constrained by the resolution of the system clock.)

If wait() does not timeout, it returns a list of the attached Conditions that became TRUE and
therefore unblocked the wait.

If wait() does timeout, it returns TIMEOUT and an empty list of Conditions.

Only one application thread can be waiting on the same WaitSet. If wait() is called on a WaitSet
that already has a thread blocking on it, the operation will immediately return
PRECONDITION_NOT_MET.

Note: If you detach a Condition from a Waitset that is currently in a wait state (that is, you are
waiting on it), wait() may return OK and an empty sequence of conditions.

Table 4.7 WaitSet Operations

Operation Description

attach_condition

Attaches a Condition to this WaitSet.

You may attach a Condition to a WaitSet that is currently being waited upon
(via the wait() operation). In this case, if the Condition has a trigger_value of
TRUE, then attaching the Condition will unblock the WaitSet.

Adding a Condition that is already attached to the WaitSet has no effect. If the
Condition cannot be attached, Connext will return an OUT_OF_RESOURCES
error code.

detach_condition
Detaches a Condition from the WaitSet. Attempting to detach a Condition that is
not to attached the WaitSet will result in a PRECONDITION_NOT_MET
error code.

wait
Blocks execution of the thread until one or more attached Conditions becomes true, or
until a user-specified timeout expires. See Section 4.6.3.

get_conditions Retrieves a list of attached Conditions.

get_property Retrieves the DDS_WaitSetProperty_t structure of the associated WaitSet.

set_property
Sets the DDS_WaitSetProperty_t structure, to configure the associated WaitSet to
return after one or more trigger events have occurred.
4-30

Conditions and WaitSets
4.6.3.1 How WaitSets Block

The blocking behavior of the WaitSet is illustrated in Figure 4.7. The result of a wait() operation
depends on the state of the WaitSet, which in turn depends on whether at least one attached Con-
dition has a trigger_value of TRUE.

If the wait() operation is called on a WaitSet with state BLOCKED, it will block the calling
thread. If wait() is called on a WaitSet with state UNBLOCKED, it will return immediately.

When the WaitSet transitions from BLOCKED to UNBLOCKED, it wakes up the thread (if there
is one) that had called wait() on it. There is no implied “event queuing” in the awakening of a
WaitSet. That is, if several Conditions attached to the WaitSet have their trigger_value transition
to true in sequence, Connext will only unblock the WaitSet once.

4.6.4 Processing Triggered Conditions—What to do when Wait() Returns

When wait() returns, it provides a list of the attached Condition objects that have a trigger_value
of true. Your application can use this list to do the following for each Condition in the returned
list:

❏ If it is a StatusCondition:

• First, call get_status_changes() to see what status changed.

• If the status changes refer to plain communication status: call
get_<communication_status>() on the relevant Entity.

• If the status changes refer to DATA_ON_READERS1: call get_datareaders() on the rel-
evant Subscriber.

• If the status changes refer to DATA_AVAILABLE: call read() or take() on the relevant
DataReader.

❏ If it is a ReadCondition or a QueryCondition: You may want to call read_w_condition() or
take_w_condition() on the DataReader, with the ReadCondition as a parameter (see
read_w_condition and take_w_condition (Section 7.4.3.6)).

Note that this is just a suggestion, you do not have to use the “w_condition” operations
(or any read/take operations, for that matter) simply because you used a WaitSet. The
“w_condition” operations are just a convenient way to use the same status masks that
were set on the ReadCondition or QueryCondition.

❏ If it is a GuardCondition: check to see which GuardCondition changed, then react accord-
ingly. Recall that GuardConditions are completely controlled by your application.

Figure 4.7 WaitSet Blocking Behavior

1. And then read/take on the returned DataReader objects.
4-31

Conditions and WaitSets
See Conditions and WaitSet Example (Section 4.6.5) to see how to determine which of the
attached Conditions is in the returned list.

4.6.5 Conditions and WaitSet Example

This example creates a WaitSet and then waits for one or more attached Conditions to become
true.

// Create a WaitSet
WaitSet* waitset = new WaitSet();

// Attach Conditions
DDSCondition* cond1 = ...;
DDSCondition* cond2 = entity->get_statuscondition();
DDSCondition* cond3 = reader->create_readcondition(

DDS_NOT_READ_SAMPLE_STATE,
DDS_ANY_VIEW_STATE,
DDS_ANY_INSTANCE_STATE);

DDSCondition* cond4 = new DDSGuardCondition();

DDSCondition* cond5 = ...;
DDS_ReturnCode_t retcode;

retcode = waitset->attach_condition(cond1);
if (retcode != DDS_RETCODE_OK) {
 // ... error
}
retcode = waitset->attach_condition(cond2);
if (retcode != DDS_RETCODE_OK) {
 // ... error
}
retcode = waitset->attach_condition(cond3);
if (retcode != DDS_RETCODE_OK) {
 // ... error
}
retcode = waitset->attach_condition(cond4);
if (retcode != DDS_RETCODE_OK) {
 // ... error
}
retcode = waitset->attach_condition(cond5);
if (retcode != DDS_RETCODE_OK) {
 // ... error
}

// Wait for a condition to trigger or timeout

DDS_Duration_t timeout = { 0, 1000000 }; // 1ms
DDSConditionSeq active_conditions; // holder for active conditions
bool is_cond1_triggered = false;
bool is_cond2_triggered = false;
DDS_ReturnCode_t retcode;

retcode = waitset->wait(active_conditions, timeout);

if (retcode == DDS_RETCODE_TIMEOUT) {
 // handle timeout
 printf("Wait timed out. No conditions were triggered.\n");
 }
4-32

Conditions and WaitSets
else if (retcode != DDS_RETCODE_OK) {
 // ... check for cause of failure
} else {
 // success

 if (active_conditions.length() == 0) {
 printf("Wait timed out!! No conditions triggered.\n");
 } else
 // check if "cond1" or "cond2" are triggered:
 for(i = 0; i < active_conditions.length(); ++i) {
 if (active_conditions[i] == cond1) {
 printf("Cond1 was triggered!");
 is_cond1_triggered = true;
 }

 if (active_conditions[i] == cond2) {
 printf("Cond2 was triggered!");
 is_cond2_triggered = true;
 }

 if (is_cond1_triggered && is_cond2_triggered) {
 break;
 }
 }
 }
}

if (is_cond1_triggered) {
 // ... do something because "cond1" was triggered ...
}

if (is_cond2_triggered) {
 // ... do something because "cond2" was triggered ...
}

// Delete the waitset
delete waitset;
waitset = NULL;

4.6.6 GuardConditions

GuardConditions are created by your application. GuardConditions provide a way for your appli-
cation to manually awaken a WaitSet. Like all Conditions, it has a single boolean trigger_value.
Your application can manually trigger the GuardCondition by calling set_trigger_value().

Connext does not trigger or clear this type of condition—it is completely controlled by your
application.

A GuardCondition has no factory. It is created as an object directly by the natural means in each
language binding (e.g., using “new” in C++ or Java). For example:

// Create a Guard Condition
Condition* my_guard_condition = new GuardCondition();

// Delete a Guard Condition
delete my_guard_condition;

When first created, the trigger_value is FALSE.
4-33

Conditions and WaitSets
A GuardCondition has only two operations, get_trigger_value() and set_trigger_value().

When your application calls set_trigger_value(DDS_BOOLEAN_TRUE), Connext will awaken
any WaitSet to which the GuardCondition is attached.

4.6.7 ReadConditions and QueryConditions

ReadConditions are created by your application, but triggered by Connext. ReadConditions provide
a way for you to specify the data samples that you want to wait for, by indicating the desired
sample-states, view-states, and instance-states1. Then Connext will trigger the ReadCondition
when suitable samples are available.

A QueryCondition is a special ReadCondition that allows you to specify a query expression and
parameters, so you can filter on the locally available (already received) data. QueryConditions
use the same SQL-based filtering syntax as ContentFilteredTopics for query expressions, param-
eters, etc. Unlike ContentFilteredTopics, QueryConditions are applied to data already received, so
they do not affect the reception of data.

Multiple mask combinations can be associated with a single content filter. This is important
because the maximum number of content filters that may be created per DataReader is 32, but
more than 32 QueryConditions may be created per DataReader, if they are different mask-combi-
nations of the same content filter.

ReadConditions and QueryConditions are created by using the DataReader’s
create_readcondition() and create_querycondition() operations. For example:

DDSReadCondition* my_read_condition = reader->create_readcondition(
DDS_NOT_READ_SAMPLE_STATE,
DDS_ANY_VIEW_STATE,
DDS_ANY_INSTANCE_STATE);

DDSQueryCondition* my_query_condition = reader->create_querycondition(
DDS_NOT_READ_SAMPLE_STATE,
DDS_ANY_VIEW_STATE,
DDS_ANY_INSTANCE_STATE
query_expression,
query_parameters);

Note: If you are using a ReadCondition to simply detect the presence of new data, consider using
a StatusCondition (Section 4.6.8) with the DATA_AVAILABLE_STATUS instead, which will per-
form better in this situation.

A DataReader can have multiple attached ReadConditions and QueryConditions. A ReadCondition
or QueryCondition may only be attached to one DataReader.

To delete a ReadCondition or QueryCondition, use the DataReader’s delete_readcondition() opera-
tion:

DDS_ReturnCode_t delete_readcondition (DDSReadCondition *condition)

After a ReadCondition is triggered, use the FooDataReader’s read/take “with condition” opera-
tions (see Section 7.4.3.6) to access the samples.

Table 4.8 lists the operations available on ReadConditions.

4.6.7.1 How ReadConditions are Triggered

A ReadCondition has a trigger_value that determines whether the attached WaitSet is BLOCKED
or UNBLOCKED. Unlike the StatusCondition, the trigger_value of the ReadCondition is tied to the
presence of at least one sample with a sample-state, view-state, and instance-state that matches

1. These states are described in The SampleInfo Structure (Section 7.4.6).
4-34

Conditions and WaitSets
those set in the ReadCondition. Furthermore, for the QueryCondition to have a
trigger_value==TRUE, the data associated with the sample must be such that the
query_expression evaluates to TRUE.

The trigger_value of a ReadCondition depends on the presence of samples on the associated
DataReader. This implies that a single ‘take’ operation can potentially change the trigger_value
of several ReadConditions or QueryConditions. For example, if all samples are taken, any ReadCon-
ditions and QueryConditions associated with the DataReader that had trigger_value==TRUE
before will see the trigger_value change to FALSE. Note that this does not guarantee that Wait-
Set objects that were separately attached to those conditions will not be awakened. Once we
have trigger_value==TRUE on a condition, it may wake up the attached WaitSet, the condition
transitioning to trigger_value==FALSE does not necessarily 'unwakeup' the WaitSet, since
'unwakening' may not be possible. The consequence is that an application blocked on a WaitSet
may return from wait() with a list of conditions, some of which are no longer “active.” This is
unavoidable if multiple threads are concurrently waiting on separate WaitSet objects and taking
data associated with the same DataReader.

Consider the following example: A ReadCondition that has a sample_state_mask =
{NOT_READ} will have a trigger_value of TRUE whenever a new sample arrives and will tran-
sition to FALSE as soon as all the newly arrived samples are either read (so their status changes
to READ) or taken (so they are no longer managed by Connext). However, if the same ReadCondi-
tion had a sample_state_mask = {READ, NOT_READ}, then the trigger_value would only
become FALSE once all the newly arrived samples are taken (it is not sufficient to just read them,
since that would only change the SampleState to READ), which overlaps the mask on the Read-
Condition.

4.6.7.2 QueryConditions

A QueryCondition is a special ReadCondition that allows your application to also specify a filter
on the locally available data.

The query expression is similar to a SQL WHERE clause and can be parameterized by argu-
ments that are dynamically changeable by the set_query_parameters() operation.

QueryConditions are triggered in the same manner as ReadConditions, with the additional require-
ment that the sample must also satisfy the conditions of the content filter associated with the
QueryCondition.

Table 4.8 ReadCondition and QueryCondition Operations

Operation Description

get_datareader
Returns the DataReader to which the ReadCondition or QueryCondition is
attached.

get_instance_state_mask

Returns the instance states that were specified when the ReadCondition or Que-
ryCondition was created. These are the sample’s instance states that Connext
checks to determine whether or not to trigger the ReadCondition or QueryCondi-
tion .

get_sample_state_mask
Returns the sample-states that were specified when the ReadCondition or Query-
Condition was created. These are the sample states that Connext checks to deter-
mine whether or not to trigger the ReadCondition or QueryCondition.

get_view_state_mask
Returns the view-states that were specified when the ReadCondition or Query-
Condition was created. These are the view states that Connext checks to deter-
mine whether or not to trigger the ReadCondition or QueryCondition.
4-35

Conditions and WaitSets
4.6.8 StatusConditions

StatusConditions are created automatically by Connext, one for each Entity. Connext will trigger
the StatusCondition when there is a change to any of that Entity’s enabled statuses.

By default, when Connext creates a StatusCondition, all status bits are turned on, which means it
will check for all statuses to determine when to trigger the StatusCondition. If you only want Con-
next to check for specific statuses, you can use the StatusCondition’s set_enabled_statuses() oper-
ation and set just the desired status bits.

The trigger_value of the StatusCondition depends on the communication status of the Entity
(e.g., arrival of data, loss of information, etc.), ‘filtered’ by the set of enabled statuses on the Sta-
tusCondition.

The set of enabled statuses and its relation to Listeners and WaitSets is detailed in How Status-
Conditions are Triggered (Section 4.6.8.1).

Table 4.10 lists the operations available on StatusConditions.

Unlike other types of Conditions, StatusConditions are created by Connext, not by your applica-
tion. To access an Entity’s StatusCondition, use the Entity’s get_statuscondition() operation. For
example:

Condition* my_status_condition = entity->get_statuscondition();

After a StatusCondition is triggered, call the Entity’s get_status_changes() operation to see which
status(es) changed.

Table 4.9 QueryCondition Operations

Operation Description

get_query_expression Returns the query expression specified when the QueryCondition was created.

get_query_parameters

Returns the query parameters associated with the QueryCondition. That is, the
parameters specified on the last successful call to set_query_parameters(), or if
set_query_parameters() was never called, the arguments specified when the Que-
ryCondition was created.

set_query_parameters Changes the query parameters associated with the QueryCondition.

Table 4.10 StatusCondition Operations

Operation Description

set_enabled_statuses

Defines the list of communication statuses that are taken into account to deter-
mine the trigger_value of the StatusCondition. This operation may change the
trigger_value of the StatusCondition.
WaitSets behavior depend on the changes of the trigger_value of their attached
conditions. Therefore, any WaitSet to which the StatusCondition is attached is
potentially affected by this operation.
If this function is not invoked, the default list of enabled statuses includes all the
statuses.

get_enabled_statuses

Retrieves the list of communication statuses that are taken into account to deter-
mine the trigger_value of the StatusCondition. This operation returns the statuses
that were explicitly set on the last call to set_enabled_statuses() or, if
set_enabled_statuses() was never called, the default list

get_entity
Returns the Entity associated with the StatusCondition. Note that there is exactly
one Entity associated with each StatusCondition.
4-36

Conditions and WaitSets
4.6.8.1 How StatusConditions are Triggered

The trigger_value of a StatusCondition is the boolean OR of the ChangedStatusFlag of all the
communication statuses to which it is sensitive. That is, trigger_value is FALSE only if all the
values of the ChangedStatusFlags are FALSE.

The sensitivity of the StatusCondition to a particular communication status is controlled by the
list of enabled_statuses set on the Condition by means of the set_enabled_statuses() operation.

Once a StatusCondition’s trigger_value becomes true, it remains true until the status that
changed is reset. To reset a status, call the related get_*_status() operation. Or, in the case of the
data available status, call read(), take(), or one of their variants.

Therefore, if you are using a StatusCondition on a WaitSet to be notified of events, your thread
will wake up when one of the statuses associated with the StatusCondition becomes true. If you
do not reset the status, the StatusCondition’s trigger_value remains true and your WaitSet will
not block again—it will immediately wake up when you call wait().

4.6.9 Using Both Listeners and WaitSets

You can use Listeners and WaitSets in the same application. For example, you may want to use
WaitSets and Conditions to access the data, and Listeners to be warned asynchronously of errone-
ous communication statuses.

We recommend that you choose one or the other mechanism for each particular communication
status (not both). However, if both are enabled, the Listener mechanism is used first, then the
WaitSet objects are signaled.
4-37

Chapter 5 Topics

For a DataWriter and DataReader to communicate, they need to use the same Topic. A Topic
includes a name and an association with a user data type that has been registered with Connext.
Topic names are how different parts of the communication system find each other. Topics are
named streams of data of the same data type. DataWriters publish samples into the stream;
DataReaders subscribe to data from the stream. More than one Topic can use the same user data
type, but each Topic needs a unique name.

Topics, DataWriters, and DataReaders relate to each other as follows:

❏ Multiple Topics (each with a unique name) can use the same user data type.

❏ Applications may have multiple DataWriters for each Topic.

❏ Applications may have multiple DataReaders for each Topic.

❏ DataWriters and DataReaders must be associated with the same Topic in order for them to
be connected.

❏ Topics are created and deleted by a DomainParticipant, and as such, are owned by that
DomainParticipant. When two applications (DomainParticipants) want to use the same
Topic, they must both create the Topic (even if the applications are on the same node).

This chapter includes the following sections:

❏ Topics (Section 5.1)

❏ Topic QosPolicies (Section 5.2)

❏ Status Indicator for Topics (Section 5.3)

❏ ContentFilteredTopics (Section 5.4)

Builtin Topics: Connext uses ‘Builtin Topics’ to discover and keep track of remote entities, such as
new participants in the domain. Builtin Topics are discussed in Chapter 16.

5.1 Topics
Before you can create a Topic, you need a user data type (see Chapter 3) and a DomainParticipant
(Section 8.3). The user data type must be registered with the DomainParticipant (as we saw in the
User Data Types chapter in Section 3.8.5.1).

Once you have created a Topic, what do you do with it? Topics are primarily used as parameters
in other Entities’ operations. For instance, a Topic is required when a Publisher or Subscriber cre-
ates a DataWriter or DataReader, respectively. Topics do have a few operations of their own, as
5-1

Topics
listed in Table 5.1. For details on using these operations, see the reference section or the API Ref-
erence HTML documentation.

Figure 5.1 Topic Module

Note: MultiTopics are not supported.

Table 5.1 Topic Operations

Purpose Operation Description Reference

Configuring
the Topic

enable Enables the Topic. Section 4.1.2

get_qos
Gets the Topic’s current QosPolicy settings. This is most
often used in preparation for calling set_qos().

Section 5.1.3
set_qos

Sets the Topic’s QoS. You can use this operation to change
the values for the Topic’s QosPolicies. Note, however,
that not all QosPolicies can be changed after the Topic has
been created.

equals Compares two Topic’s QoS structures for equality. Section 5.1.3.2

set_qos_with_
profile

Sets the Topic’s QoS based on a specified QoS profile.

get_listener Gets the currently installed Listener.

Section 5.1.5
set_listener

Sets the Topic’s Listener. If you create the Topic without a
Listener, you can use this operation to add one later. Set-
ting the listener to NULL will remove the listener from
the Topic.

narrow
A type-safe way to cast a pointer. This takes a DDSTop-
icDescription pointer and ‘narrows’ it to a DDSTopic
pointer.

Section 6.3.7
5-2

Topics
5.1.1 Creating Topics

Topics are created using the DomainParticipant’s create_topic() or create_topic_with_profile()
operation:

DDSTopic * create_topic (const char *topic_name,
 const char *type_name,
 const DDS_TopicQos &qos,
 DDSTopicListener *listener,
 DDS_StatusMask mask)

DDSTopic * create_topic_with_profile (
const char *topic_name,
const char *type_name,
const char *library_name,
const char *profile_name,
DDSTopicListener *listener,
DDS_StatusMask mask)

A QoS profile is way to use QoS settings from an XML file or string. With this approach, you can
change QoS settings without recompiling the application. For details, see Chapter 17: Configuring
QoS with XML.

topic_name Name for the new Topic, must not exceed 255 characters.

type_name Name for the user data type, must not exceed 255 characters. It must be the same
name that was used to register the type, and the type must be registered with the
same DomainParticipant used to create this Topic. See Section 3.6.

qos If you want to use the default QoS settings (described in the API Reference HTML
documentation), use DDS_TOPIC_QOS_DEFAULT for this parameter (see
Figure 5.2). If you want to customize any of the QosPolicies, supply a QoS struc-
ture (see Section 5.1.3).

If you use DDS_TOPIC_QOS_DEFAULT, it is not safe to create the topic while
another thread may be simultaneously calling the DomainParticipant’s
set_default_topic_qos() operation.

listener Listeners are callback routines. Connext uses them to notify your application of spe-
cific events (status changes) that may occur with respect to the Topic. The listener
parameter may be set to NULL if you do not want to install a Listener. If you use
NULL, the Listener of the DomainParticipant to which the Topic belongs will be
used instead (if it is set). For more information on TopicListeners, see Section 5.1.5.

Checking
Status

get_inconsistent_
topic_status

Allows an application to retrieve a Topic’s
INCONSISTENT_TOPIC_STATUS status.

Section 5.3.1

get_status_changes
Gets a list of statuses that have changed since the last
time the application read the status or the listeners were
called.

Section 4.1.4

Navigating
Relation-
ships

get_name Gets the topic_name string used to create the Topic.
Section 5.1.1

get_type_name Gets the type_name used to create the Topic.

get_participant Gets the DomainParticipant to which this Topic belongs. Section 5.1.6.1

Table 5.1 Topic Operations

Purpose Operation Description Reference
5-3

Topics
mask This bit-mask indicates which status changes will cause the Listener to be invoked.
The bits in the mask that are set must have corresponding callbacks implemented
in the Listener. If you use NULL for the Listener, use
DDS_STATUS_MASK_NONE for this parameter. If the Listener implements all
callbacks, use DDS_STATUS_MASK_ALL. For information on statuses, see Lis-
teners (Section 4.4).

library_name A QoS Library is a named set of QoS profiles. See QoS Libraries (Section 17.10). If
NULL is used for library_name, the DomainParticipant’s default library is
assumed.

profile_name A QoS profile groups a set of related QoS, usually one per entity. See QoS Profiles
(Section 17.9). If NULL is used for profile_name, the DomainParticipant’s default
profile is assumed and library_name is ignored.

Note: It is not safe to create a topic while another thread is calling lookup_topicdescription() for
that same topic (see Section 8.3.7).

For more examples, see Configuring QoS Settings when the Topic is Created (Section 5.1.3.1).

5.1.2 Deleting Topics

To delete a Topic, use the DomainParticipant’s delete_topic() operation:

DDS_ReturnCode_t delete_topic (DDSTopic * topic)

Note, however, that you cannot delete a Topic if there are any existing DataReaders or DataWriters
(belonging to the same DomainParticipant) that are still using it. All DataReaders and DataWriters
associated with the Topic must be deleted first.

5.1.3 Setting Topic QosPolicies

A Topic’s QosPolicies control its behavior, or more specifically, the behavior of the DataWriters
and DataReaders of the Topic. You can think of the policies as the ‘properties’ for the Topic. The
DDS_TopicQos structure has the following format:

DDS_TopicQos struct {
DDS_TopicDataQosPolicy topic_data;
DDS_DurabilityQosPolicy durability;
DDS_DurabilityServiceQosPolicy durability_service;
DDS_DeadlineQosPolicy deadline;

const char *type_name = NULL;

// register the type
type_name = FooTypeSupport::get_type_name();
retcode = FooTypeSupport::register_type(participant, type_name);
if (retcode != DDS_RETCODE_OK) {

// handle error
}

// create the topic
DDSTopic* topic = participant->create_topic("Example Foo",

type_name, DDS_TOPIC_QOS_DEFAULT,
NULL, DDS_STATUS_MASK_NONE);

if (topic == NULL) {
// process error here

};

Figure 5.2 Creating a Topic with Default QosPolicies
5-4

Topics
DDS_LatencyBudgetQosPolicy latency_budget;
DDS_LivelinessQosPolicy liveliness;
DDS_ReliabilityQosPolicy reliability;
DDS_DestinationOrderQosPolicy destination_order;
DDS_HistoryQosPolicy history;
DDS_ResourceLimitsQosPolicy resource_limits;
DDS_TransportPriorityQosPolicy transport_priority;
DDS_LifespanQosPolicy lifespan;
DDS_OwnershipQosPolicy ownership;

} DDS_TopicQos;

Table 5.2 summarizes the meaning of each policy (arranged alphabetically). For information on
why you would want to change a particular QosPolicy, see the section noted in the Reference
column. For defaults and valid ranges, please refer to the API Reference HTML documentation
for each policy.

Table 5.2 Topic QosPolicies

QosPolicy Description

Deadline

For a DataReader, specifies the maximum expected elapsed time between arriving
data samples.
For a DataWriter, specifies a commitment to publish samples with no greater
elapsed time between them.
See Section 6.5.5.

DestinationOrder
Controls how Connext will deal with data sent by multiple DataWriters for the
same topic. Can be set to "by reception timestamp" or to "by source timestamp".
See Section 6.5.6.

Durability
Specifies whether or not Connext will store and deliver data that were previously
published to new DataReaders. See Section 6.5.7.

DurabilityService
Various settings to configure the external Persistence Service used by Connext for
DataWriters with a Durability QoS setting of Persistent Durability. See Section 6.5.8.

History
Specifies how much data must to stored by Connext for the DataWriter or
DataReader. This QosPolicy affects the RELIABILITY QosPolicy (Section 6.5.19) as
well as the DURABILITY QosPolicy (Section 6.5.7). See Section 6.5.10.

LatencyBudget
Suggestion to Connext on how much time is allowed to deliver data. See
Section 6.5.11.

Lifespan
Specifies how long Connext should consider data sent by an user application to be
valid. See Section 6.5.12.

Liveliness
Specifies and configures the mechanism that allows DataReaders to detect when
DataWriters become disconnected or "dead." See Section 6.5.13.

Ownership
Along with Ownership Strength, specifies if DataReaders for a topic can receive
data from multiple DataWriters at the same time. See Section 6.5.15.

Reliability Specifies whether or not Connext will deliver data reliably. See Section 6.5.19.

ResourceLimits
Controls the amount of physical memory allocated for entities, if dynamic alloca-
tions are allowed, and how they occur. Also controls memory usage among differ-
ent instance values for keyed topics. See Section 6.5.20.

TopicData
Along with Group Data QosPolicy and User Data QosPolicy, used to attach a buf-
fer of bytes to Connext's discovery meta-data. See Section 5.2.1.

TransportPriority
Set by a DataWriter to tell Connext that the data being sent is a different "priority"
than other data. See Section 6.5.21.
5-5

Topics
5.1.3.1 Configuring QoS Settings when the Topic is Created

As described in Creating Topics (Section 5.1.1), there are different ways to create a Topic, depend-
ing on how you want to specify its QoS (with or without a QoS profile).

❏ In Figure 5.2 on page 5-4, we saw an example of how to create a Topic with default
QosPolicies by using the special constant, DDS_TOPIC_QOS_DEFAULT, which indi-
cates that the default QoS values for a Topic should be used. The default Topic QoS values
are configured in the DomainParticipant; you can change them with the DomainPartici-
pant’s set_default_topic_qos() or set_default_topic_qos_with_profile() operations (see
Section 8.3.6.5).

❏ To create a Topic with non-default QoS values, without using a QoS profile, use the DomainPar-
ticipant’s get_default_topic_qos() operation to initialize a DDS_TopicQos structure.
Then change the policies from their default values before passing the QoS structure to
create_topic().

❏ You can also create a Topic and specify its QoS settings via a QoS profile. To do so, call
create_topic_with_profile().

❏ If you want to use a QoS profile, but then make some changes to the QoS before creating
the Topic, call get_topic_qos_from_profile(), modify the QoS and use the modified QoS
when calling create_topic().

5.1.3.2 Comparing QoS Values

The equals() operation compares two Topic’s DDS_TopicQoS structures for equality. It takes two
parameters for the two Topics’ QoS structures to be compared, then returns TRUE is they are
equal (all values are the same) or FALSE if they are not equal.

5.1.3.3 Changing QoS Settings After the Topic Has Been Created

There are 2 ways to change an existing Topic’s QoS after it is has been created—again depending
on whether or not you are using a QoS Profile.

❏ To change QoS programmatically (that is, without using a QoS Profile), see the example
code in Figure 5.3 on page 5-7. It retrieves the current values by calling the Topic’s
get_qos() operation. Then it modifies the value and calls set_qos() to apply the new
value. Note, however, that some QosPolicies cannot be changed after the Topic has been
enabled—this restriction is noted in the descriptions of the individual QosPolicies.

❏ You can also change a Topic’s (and all other Entities’) QoS by using a QoS Profile. For an
example, see Figure 5.4 on page 5-6. For more information, see Chapter 17: Configuring
QoS with XML.

retcode = topic->set_qos_with_profile(
“FooProfileLibrary”,”FooProfile”);

if (retcode != DDS_RETCODE_OK) {
// handle error

}

Figure 5.4 Changing the QoS of an Existing Topic with a QoS Profile
5-6

Topics
5.1.4 Copying QoS From a Topic to a DataWriter or DataReader

Only the TOPIC_DATA QosPolicy strictly applies to Topics—it is described in this chapter, while
the others are described in the sections noted in the Reference column of Table 5.2. The rest of
the QosPolicies for a Topic can also be set on the corresponding DataWriters and/or DataReaders.
Actually, the values that Connext uses for those policies are taken directly from those set on the
DataWriters and DataReaders. The values for those policies are stored only for reference in the
DDS_TopicQos structure.

Because many QosPolicies affect the behavior of matching DataWriters and DataReaders, the
DDS_TopicQos structure is provided as a convenient way to set the values for those policies in
a single place in the application. Otherwise, you would have to modify the individual QosPoli-
cies within separate DataWriter and DataReader QoS structures. And because some QosPolicies
are compared between DataReaders and DataWriters, you will need to make certain that the indi-
vidual values that you set are compatible (see Section 4.2.1).

The use of the DDS_TopicQos structure to set the values of any QosPolicy except
TOPIC_DATA—which only applies to Topics—is really a way to share a single set of values with
the associated DataWriters and DataReaders, as well as to avoid creating those entities with
inconsistent QosPolicies.

To cause a DataWriter to use its Topic’s QoS settings, either:

❏ Pass DDS_DATAWRITER_QOS_USE_TOPIC_QOS to create_datawriter(), or

❏ Call the Publisher’s copy_from_topic_qos() operation

To cause a DataReader to use its Topic’s QoS settings, either:

❏ Pass DDS_DATAREADER_QOS_USE_TOPIC_QOS to create_datareader(), or

❏ Call the Subscriber’s copy_from_topic_qos() operation

Please refer to the API Reference HTML documentation for the Publisher’s create_datawriter()
and Subscriber’s create_datareader() methods for more information about using values from the
Topic QosPolicies when creating DataWriters and DataReaders.

DDS_TopicQos topic_qos;1

// Get current QoS. topic points to an existing DDSTopic.
if (topic->get_qos(topic_qos) != DDS_RETCODE_OK) {

// handle error
}

// Next, make changes.
// New ownership kind will be Exclusive
topic_qos.ownership.kind = DDS_EXCLUSIVE_OWNERSHIP_QOS;

// Set the new QoS
if (topic->set_qos(topic_qos) != DDS_RETCODE_OK) {
 // handle error
}

1. For the C API, you need to use DDS_TopicQos_INITIALIZER or DDS_TopicQos_initialize(). See Spe-
cial QosPolicy Handling Considerations for C (Section 4.2.2)

Figure 5.3 Changing the QoS of an Existing Topic (without a QoS Profile)
5-7

Topic QosPolicies
5.1.5 Setting Up TopicListeners

When you create a Topic, you have the option of giving it a Listener. A TopicListener includes just
one callback routine, on_inconsistent_topic(). If you create a TopicListener (either as part of the
Topic creation call, or later with the set_listener() operation), Connext will invoke the TopicLis-
tener’s on_inconsistent_topic() method whenever it detects that another application has created
a Topic with same name but associated with a different user data type. For more information, see
INCONSISTENT_TOPIC Status (Section 5.3.1).

Note: Some operations cannot be used within a listener callback, see Restricted Operations in
Listener Callbacks (Section 4.5.1).

If a Topic’s Listener has not been set and Connext detects an inconsistent Topic, the DomainPartici-
pantListener (if it exists) will be notified instead (see Section 8.3.5). So you only need to set up a
TopicListener if you need to perform specific actions when there is an error on that particular
Topic. In most cases, you can set the TopicListener to NULL and process inconsistent-topic errors
in the DomainParticipantListener instead.

5.1.6 Navigating Relationships Among Entities

5.1.6.1 Finding a Topic’s DomainParticipant

To retrieve a handle to the Topic’s DomainParticipant, use the get_participant() operation:

DDSDomainParticipant*DDSTopicDescription::get_participant()

Notice that this method belongs to the DDSTopicDescription class, which is the base class for
DDSTopic.

5.1.6.2 Retrieving a Topic’s Name or Type Name

If you want to retrieve the topic_name or type_name used in the create_topic() operation, use
these methods:

const char* DDSTopicDescription::get_type_name();
const char* DDSTopicDescription::get_name();

Notice that these methods belong to the DDSTopicDescription class, which is the base class for
DDSTopic.

5.2 Topic QosPolicies
This section describes the only QosPolicy that strictly applies to Topics (and no other types of
Entities)—the TOPIC_DATA QosPolicy. For a complete list of the QosPolicies that can be set for
Topics, see Table 5.2 on page 5-5.

Most of the QosPolicies that can be set on a Topic can also be set on the corresponding DataWriter
and/or DataReader. The Topic’s QosPolicy is essentially just a place to store QoS settings that you
plan to share with multiple entities that use that Topic (see how in Section 5.1.3); they are not
used otherwise and are not propagated on the wire.

5.2.1 TOPIC_DATA QosPolicy

This QosPolicy provides an area where your application can store additional information related
to the Topic. This information is passed between applications during discovery (see Chapter 14:
5-8

Topic QosPolicies
Discovery) using builtin-topics (see Chapter 16: Built-In Topics). How this information is used
will be up to user code. Connext does not do anything with the information stored as
TOPIC_DATA except to pass it to other applications. Use cases are usually application-to-appli-
cation identification, authentication, authorization, and encryption purposes.

The value of the TOPIC_DATA QosPolicy is sent to remote applications when they are first dis-
covered, as well as when the Topic’s set_qos() method is called after changing the value of the
TOPIC_DATA. User code can set listeners on the builtin DataReaders of the builtin Topics used by
Connext to propagate discovery information. Methods in the builtin topic listeners will be called
whenever new applications, DataReaders, and DataWriters are found. Within the user callback,
you will have access to the TOPIC_DATA that was set for the associated Topic.

Currently, TOPIC_DATA of the associated Topic is only propagated with the information that
declares a DataWriter or DataReader. Thus, you will need to access the value of TOPIC_DATA
through DDS_PublicationBuiltinTopicData or DDS_SubscriptionBuiltinTopicData (see
Chapter 16: Built-In Topics).

The structure for the TOPIC_DATA QosPolicy includes just one field, as seen in Table 5.3. The
field is a sequence of octets that translates to a contiguous buffer of bytes whose contents and
length is set by the user. The maximum size for the data are set in the
DOMAIN_PARTICIPANT_RESOURCE_LIMITS QosPolicy (DDS Extension) (Section 8.5.4).

This policy is similar to the GROUP_DATA (Section 6.4.4) and USER_DATA (Section 6.5.25) pol-
icies that apply to other types of Entities.

5.2.1.1 Example

One possible use of TOPIC_DATA is to send an associated XML schema that can be used to pro-
cess the data stored in the associated user data structure of the Topic. The schema, which can be
passed as a long sequence of characters, could be used by an XML parser to take samples of the
data received for a Topic and convert them for updating some graphical user interface, web
application or database.

5.2.1.2 Properties

This QosPolicy can be modified at any time. A change in the QosPolicy will cause Connext to
send packets containing the new TOPIC_DATA to all of the other applications in the domain.

Because Topics are created independently by the applications that use the Topic, there may be dif-
ferent instances of the same Topic (same topic name and data type) in different applications. The
TOPIC_DATA for different instances of the same Topic may be set differently by different appli-
cations.

5.2.1.3 Related QosPolicies

❏ GROUP_DATA QosPolicy (Section 6.4.4)

❏ USER_DATA QosPolicy (Section 6.5.25)

❏ DOMAIN_PARTICIPANT_RESOURCE_LIMITS QosPolicy (DDS Extension) (Section
8.5.4)

Table 5.3 DDS_TopicDataQosPolicy

Type Field Name Description

DDS_OctetSeq value default: empty
5-9

Status Indicator for Topics
5.2.1.4 Applicable Entities

❏ Topics (Section 5.1)

5.2.1.5 System Resource Considerations

As mentioned earlier, the maximum size of the TOPIC_DATA is set in the
topic_data_max_length field of the DOMAIN_PARTICIPANT_RESOURCE_LIMITS QosPolicy
(DDS Extension) (Section 8.5.4). Because Connext will allocate memory based on this value, you
should only increase this value if you need to. If your system does not use TOPIC_DATA, then
you can set this value to 0 to save memory. Setting the value of the TOPIC_DATA QosPolicy to
hold data longer than the value set in the topic_data_max_length field will result in failure and
an INCONSISTENT_QOS_POLICY return code.

However, should you decide to change the maximum size of TOPIC_DATA, you must make cer-
tain that all applications in the domain have changed the value of topic_data_max_length to be
the same. If two applications have different limits on the size of TOPIC_DATA, and one applica-
tion sets the TOPIC_DATA QosPolicy to hold data that is greater than the maximum size set by
another application, then the DataWriters and DataReaders of that Topic between the two applica-
tions will not connect. This is also true for the GROUP_DATA (Section 6.4.4) and USER_DATA
(Section 6.5.25) QosPolicies.

5.3 Status Indicator for Topics
There is only one communication status defined for a Topic, ON_INCONSISTENT_TOPIC. You
can use the get_inconsistent_topic_status() operation to access the current value of the status or
use a TopicListener to catch the change in the status as it occurs. See Section 4.4 for a general dis-
cussion on Listeners and Statuses.

5.3.1 INCONSISTENT_TOPIC Status

In order for a DataReader and a DataWriter with the same Topic to communicate, their types must
be consistent according to the DataReader’s type-consistency enforcement policy value, defined
in its TYPE_CONSISTENCY_ENFORCEMENT QosPolicy (Section 7.6.6)). This status indicates
that another DomainParticipant has created a Topic using the same name as the local Topic, but
with an inconsistent type.

The status is a structure of type DDS_InconsistentTopicStatus, see Table 5.4. The total_count
keeps track of the total number of (DataReader, DataWriter) pairs with topic names that match the
Topic to which this status is attached, but whose types are inconsistent. The TopicListener’s
on_inconsistent_topic() operation is invoked when this status changes (an inconsistent topic is
found). You can also retrieve the current value by calling the Topic’s
get_inconsistent_topic_status() operation.

The value of total_count_change reflects the number of inconsistent topics that were found
since the last time get_inconsistent_topic_status() was called by user code or
on_inconsistent_topic() was invoked by Connext.
5-10

ContentFilteredTopics
5.4 ContentFilteredTopics
A ContentFilteredTopic is a Topic with filtering properties. It makes it possible to subscribe to
topics and at the same time specify that you are only interested in a subset of the Topic’s data.

For example, suppose you have a Topic that contains a temperature reading for a boiler, but you
are only interested in temperatures outside the normal operating range. A ContentFilteredTopic
can be used to limit the number of data samples a DataReader has to process and may also reduce
the amount of data sent over the network.

This section includes the following:

❏ Overview (Section 5.4.1)

❏ Where Filtering is Applied—Publishing vs. Subscribing Side (Section 5.4.2)

❏ Creating ContentFilteredTopics (Section 5.4.3)

❏ Deleting ContentFilteredTopics (Section 5.4.4)

❏ Using a ContentFilteredTopic (Section 5.4.5)

❏ SQL Filter Expression Notation (Section 5.4.6)

❏ STRINGMATCH Filter Expression Notation (Section 5.4.7)

❏ Custom Content Filters (Section 5.4.8)

5.4.1 Overview

A ContentFilteredTopic creates a relationship between a Topic, also called the related topic, and
user-specified filtering properties. The filtering properties consist of an expression and a set of
parameters.

❏ The filter expression evaluates a logical expression on the Topic content. The filter
expression is similar to the WHERE clause in a SQL expression.

❏ The parameters are strings that give values to the 'parameters' in the filter expression.
There must be one parameter string for each parameter in the filter expression.

A ContentFilteredTopic is a type of topic description, and can be used to create DataReaders.
However, a ContentFilteredTopic is not an entity—it does not have QosPolicies or Listeners.

A ContentFilteredTopic relates to other entities in Connext as follows:

❏ ContentFilteredTopics are used when creating DataReaders, not DataWriters.

❏ Multiple DataReaders can be created with the same ContentFilteredTopic.

❏ A ContentFilteredTopic belongs to (is created/deleted by) a DomainParticipant.

❏ A ContentFilteredTopic and Topic must be in the same DomainParticipant.

Table 5.4 DDS_InconsistentTopicStatus Structure

Type Field Name Description

DDS_Long total_count
Total cumulative count of (DataReader, DataWriter) pairs whose topic
names match the Topic to which this status is attached, but whose
types are inconsistent.

DDS_Long total_count_change The change in total_count since the last time this status was read.
5-11

ContentFilteredTopics
❏ A ContentFilteredTopic can only be related to a single Topic.

❏ A Topic can be related to multiple ContentFilteredTopics.

❏ A ContentFilteredTopic can have the same name as a Topic, but ContentFilteredTopics
must have unique names within the same DomainParticipant.

❏ A DataReader created with a ContentFilteredTopic will use the related Topic's QoS and
Listeners.

❏ Changing filter parameters on a ContentFilteredTopic causes all DataReaders using the
same ContentFilteredTopic to see the change.

❏ A Topic cannot be deleted as long as at least one ContentFilteredTopic that has been cre-
ated with it exists.

❏ A ContentFilteredTopic cannot be deleted as long as at least one DataReader that has been
created with the ContentFilteredTopic exists.

5.4.2 Where Filtering is Applied—Publishing vs. Subscribing Side

Filtering may be performed on either side of the distributed application. (The DataWriter obtains
the filter expression and parameters from the DataReader during discovery.)

Connext also supports network-switch filtering for multi-channel DataWriters (see Chapter 18:
Multi-channel DataWriters).

A DataWriter will automatically filter data samples for a DataReader if all of the following are
true; otherwise filtering is performed by the DataReader.

1. The DataWriter is filtering for no more than
writer_resource_limits.max_remote_reader_filters DataReaders at the same time.

• There is a resource-limit on the DataWriter called
writer_resource_limits.max_remote_reader_filters (see
DATA_WRITER_RESOURCE_LIMITS QosPolicy (DDS Extension) (Section 6.5.4)).
This value can be from 0-32. 0 means do not filter any DataReader and 32 (default
value) means filter up to 32 DataReaders.

• If a DataWriter is filtering max_remote_reader_filters DataReaders at the same time
and a new filtered DataReader is created, then the newly created DataReader
(max_remote_reader_filters + 1) is not filtered. Even if one of the first
(max_remote_reader_filters) DataReaders is deleted, that already created DataReader
(max_remote_reader_filters + 1) will still not be filtered. However, any subsequently
created DataReaders will be filtered as long as the number of DataReaders currently
being filtered is not more than writer_resource_limits.max_remote_reader_filters.

2. The DataReader is not subscribing to data using multicast.

3. There are no more than 4 matching DataReaders in the same locator (see Peer Descriptor
Format (Section 14.2.1)).

4. The DataWriter has infinite liveliness. (See LIVELINESS QosPolicy (Section 6.5.13).)

5. The DataWriter is not using an Asynchronous Publisher. (That is, the DataWriter’s
PUBLISH_MODE QosPolicy (DDS Extension) (Section 6.5.18) kind is set to
DDS_SYNCHRONOUS_PUBLISHER_MODE_QOS.) See Note below.

6. If you are using a custom filter (not the default one), it must be registered in the Domain-
Participant of the DataWriter and the DataReader.

Notes:
5-12

ContentFilteredTopics
Connext supports limited writer-side filtering if asynchronous publishing is enabled. The mid-
dleware will not send any sample to a destination if the sample is filtered out by all the
DataReaders on that destination. However, if there is one DataReader to which the sample has to
be sent, all the DataReaders on the destination will do reader side filtering for the incoming sam-
ple.

In addition to filtering new samples, a DataWriter can also be configured to filter previously
written samples stored in the DataWriter’s queue for newly discovered DataReaders. To do so,
use the refilter field in the DataWriter’s HISTORY QosPolicy (Section 6.5.10).

5.4.3 Creating ContentFilteredTopics

To create a ContentFilteredTopic that uses the default SQL filter, use the DomainParticipant’s
create_contentfilteredtopic() operation:

DDS_ContentFilteredTopic *create_contentfilteredtopic
(const char * name,
 const DDS_Topic * related_topic,
 const char * filter_expression,
 const DDS_StringSeq & expression_parameters)

Or, to use a custom filter or the builtin STRINGMATCH filter (see Section 5.4.7), use the
create_contentfilteredtopic_with_filter() variation:

DDS_ContentFilteredTopic *create_contentfilteredtopic_with_filter
(const char * name,
 DDSTopic * related_topic,
 const char * filter_expression,
 const DDS_StringSeq & expression_parameters,
 const char * filter_name =

 DDS_SQLFILTER_NAME)
name Name of the ContentFilteredTopic. Note that it is legal for a ContentFil-

teredTopic to have the same name as a Topic in the same DomainParticipant,
but a ContentFilteredTopic cannot have the same name as another Content-
FilteredTopic in the same DomainParticipant. This parameter cannot be
NULL.

related_topic The related Topic to be filtered. The related topic must be in the same
DomainParticipant as the ContentFilteredTopic. This parameter cannot be
NULL. The same related topic can be used in many different ContentFil-
teredTopics.

filter_expression A logical expression on the contents on the Topic. If the expression evalu-
ates to TRUE, a sample is received; otherwise it is discarded. This parame-
ter cannot be NULL. Once a ContentFilteredTopic is created, its
filter_expression cannot be changed. The notation for this expression
depends on the filter that you are using (specified by the filter_name
parameter). See SQL Filter Expression Notation (Section 5.4.6) and
STRINGMATCH Filter Expression Notation (Section 5.4.7).

expression_parameters A string sequence of filter expression parameters. Each parameter cor-
responds to a positional argument in the filter expression: element 0 corre-
sponds to positional argument 0, element 1 to positional argument 1, and
so forth.

The expression_parameters can be changed with
set_expression_parameters() (Section 5.4.5.2),
append_to_expression_parameter() (Section 5.4.5.4) and
remove_from_expression_parameter() (Section 5.4.5.5).
5-13

ContentFilteredTopics
filter_name Name of the content filter to use for filtering. The filter must have been pre-
viously registered with the DomainParticipant (see Registering a Custom
Filter (Section 5.4.8.2)). There are two builtin filters,
DDS_SQLFILTER_NAME1 (the default filter) and
DDS_STRINGMATCHFILTER_NAME1—these are automatically regis-
tered.

To use the STRINGMATCH filter, call
create_contentfilteredtopic_with_filter() with
"DDS_STRINGMATCHFILTER_NAME" as the filter_name. STRING-
MATCH filter expressions have the syntax:
<field name> MATCH <string pattern> (see Section 5.4.7).

.If you run rtiddsgen with -notypecode, then you must use the "with_filter" version with a cus-
tom filter instead—do not use the builtin SQL filter or the STRINGMATCH filter with the -not-
ypecode option because they require type-codes. See rtiddsgen Command-Line Arguments
(Section 3.6.1).

To summarize:

❏ To use the builtin default SQL filter:

• Do not use -notypecode when running rtiddsgen

• Call create_contentfilteredtopic()

• See SQL Filter Expression Notation (Section 5.4.6)

❏ To use the builtin STRINGMATCH filter:

• Do not use -notypecode when running rtiddsgen

• Call create_contentfilteredtopic_with_filter(), setting the filter_name to
DDS_STRINGMATCHFILTER_NAME

• See STRINGMATCH Filter Expression Notation (Section 5.4.7)

❏ To use a custom filter:

• call create_contentfilteredtopic_with_filter(), setting the filter_name to a registered
custom filter

❏ To use rtiddsgen with -notypecode:

• call create_contentfilteredtopic_with_filter(), setting the filter_name to a registered
custom filter

Note: Be careful with memory management of the string sequence in some of the ContentFil-
teredTopic APIs. See the String Support section in the API Reference HTML documentation
(within the Infrastructure module) for details on sequences.

5.4.3.1 Creating ContentFilteredTopics for Built-in Types

To create a ContentFilteredTopic for a built-in type (see Built-in Data Types (Section 3.2)), use the
standard DomainParticipant operations, create_contentfilteredtopic() or
create_contentfilteredtopic_with_filter.

The field names used in the filter expressions for the built-in SQL (see Section 5.4.6) and String-
Match filters (see Section 5.4.7) must correspond to the names provided in the IDL description of
the built-in types.

1. In the Java and C# APIs, you can access the names of the builtin filters by using
DomainParticipant.SQLFILTER_NAME and DomainParticipant.STRINGMATCHFILTER_NAME.
5-14

ContentFilteredTopics
ContentFilteredTopic Creation Examples:

For simplicity, error handling is not shown in the following examples.

C Example:

DDS_Topic * topic = NULL;
DDS_ContentFilteredTopic * contentFilteredTopic = NULL;
struct DDS_StringSeq parameters = DDS_SEQUENCE_INITIALIZER;

/* Create a string ContentFilteredTopic */
topic = DDS_DomainParticipant_create_topic(

participant, "StringTopic",
DDS_StringTypeSupport_get_type_name(),
&DDS_TOPIC_QOS_DEFAULT,NULL, DDS_STATUS_MASK_NONE);

contentFilteredTopic =
DDS_DomainParticipant_create_contentfilteredtopic(
participant, "StringContentFilteredTopic",
topic, "value = 'Hello World!'", ¶meters);

C++ Example with Namespaces:

using namespace DDS;
...

/* Create a String ContentFilteredTopic */
Topic * topic = participant->create_topic(

"StringTopic", StringTypeSupport::get_type_name(),
TOPIC_QOS_DEFAULT, NULL, STATUS_MASK_NONE);

StringSeq parameters;

ContentFilteredTopic * contentFilteredTopic =
participant->create_contentfilteredtopic(

"StringContentFilteredTopic", topic,
"value = 'Hello World!'", parameters);

C++/CLI Example:

using namespace DDS;
...

/* Create a String ContentFilteredTopic */
Topic^ topic = participant->create_topic(

"StringTopic", StringTypeSupport::get_type_name(),
 DomainParticipant::TOPIC_QOS_DEFAULT,
 nullptr, StatusMask::STATUS_MASK_NONE);

StringSeq^ parameters = gcnew StringSeq();

ContentFilteredTopic^ contentFilteredTopic =
participant->create_contentfilteredtopic(

"StringContentFilteredTopic", topic,
"value = 'Hello World!'", parameters);

C# Example:

using namespace DDS;
...

/* Create a String ContentFilteredTopic */
5-15

ContentFilteredTopics
Topic topic = participant.create_topic(
"StringTopic", StringTypeSupport.get_type_name(),
 DomainParticipant.TOPIC_QOS_DEFAULT,
 null, StatusMask.STATUS_MASK_NONE);

StringSeq parameters = new StringSeq();

ContentFilteredTopic contentFilteredTopic =
participant.create_contentfilteredtopic(

"StringContentFilteredTopic", topic,
"value = 'Hello World!'", parameters);

Java Example:

import com.rti.dds.type.builtin.*;
...

/* Create a String ContentFilteredTopic */
Topic topic = participant.create_topic(

"StringTopic", StringTypeSupport.get_type_name(),
 DomainParticipant.TOPIC_QOS_DEFAULT,
 null, StatusKind.STATUS_MASK_NONE);

StringSeq parameters = new StringSeq();

ContentFilteredTopic contentFilteredTopic =
participant.create_contentfilteredtopic(

"StringContentFilteredTopic", topic,
"value = 'Hello World!'", parameters);

5.4.4 Deleting ContentFilteredTopics

To delete a ContentFilteredTopic, use the DomainParticipant’s delete_contentfilteredtopic()
operation:

1. Make sure no DataReaders are using the ContentFilteredTopic. (If this is not true, the
operation returns PRECONDITION_NOT_MET.)

2. Delete the ContentFilteredTopic by using the DomainParticipant’s
delete_contentfilteredtopic() operation.

DDS_ReturnCode_t delete_contentfilteredtopic
 (DDSContentFilteredTopic * a_contentfilteredtopic)

5.4.5 Using a ContentFilteredTopic

Once you’ve created a ContentFilteredTopic, you can use the operations listed in Table 5.5.

Table 5.5 ContentFilteredTopic Operations

Operation Description Reference

append_to_expression_parameter Concatenates a string value to the input expres-
sion parameter

Section 5.4.5.4

get_expression_parameters Gets the expression parameters. Section 5.4.5.1

get_filter_expression Gets the expression. Section 5.4.5.6

get_related_topic Gets the related Topic. Section 5.4.5.7
5-16

ContentFilteredTopics
5.4.5.1 Getting the Current Expression Parameters

To get the expression parameters, use the ContentFilteredTopic’s get_expression_parameters()
operation:

DDS_ReturnCode_t get_expression_parameters
(struct DDS_StringSeq & parameters)

parameters The filter expression parameters.

The memory for the strings in this sequence is managed as described in the String
Support section of the API Reference HTML documentation (within the Infra-
structure module). In particular, be careful to avoid a situation in which Connext
allocates a string on your behalf and you then reuse that string in such a way that
Connext believes it to have more memory allocated to it than it actually does. This
parameter cannot be NULL.

This operation gives you the expression parameters that were specified on the last successful
call to set_expression_parameters() or, if that was never called, the parameters specified when
the ContentFilteredTopic was created.

5.4.5.2 Setting Expression Parameters

To change the expression parameters associated with a ContentFilteredTopic:

DDS_ReturnCode_t set_expression_parameters
(const struct DDS_StringSeq & parameters)

parameters The filter expression parameters. Each element in the parameter sequence corre-
sponds to a positional parameter in the filter expression. When using the default
DDS_SQLFILTER_NAME, parameter strings are automatically converted to the
member type. For example, "4" is converted to the integer 4. This parameter can-
not be NULL.

Note: The ContentFilteredTopic’s operations do not manage the sequences; you must ensure
that the parameter sequences are valid. Please refer to the String Support section in the API Ref-
erence HTML documentation (within the Infrastructure module) for details on sequences.

5.4.5.3 Setting an Expression

To change the filter expression as well as the expression parameters associated with a Content-
FilteredTopic:

DDS_ReturnCode set_expression(
const char * expression, const struct DDS_StringSeq & parameters

expression The new expression to be set in the ContentFilteredTopic.

parameters The filter expression parameters. Same considerations as for
set_expression_parameters() are applied; see Setting Expression Parameters
(Section 5.4.5.2).

narrow Casts a DDS_TopicDescription pointer to a Con-
tentFilteredTopic pointer.

Section 5.4.5.8

remove_from_expression_parameter Removes a string value from the input expression
parameter

Section 5.4.5.5

set_expression_parameters Changes the expression parameters. Section 5.4.5.2

Table 5.5 ContentFilteredTopic Operations

Operation Description Reference
5-17

ContentFilteredTopics
5.4.5.4 Appending a String to an Expression Parameter

To concatenate a string to an expression parameter, use the ContentFilteredTopic's
append_to_expression_parameter() operation:

DDS_ReturnCode_t append_to_expression_parameter(
 const DDS_Long index,

const char* value);

When using the STRINGMATCH filter, index must be 0.

This function is only intended to be used with the builtin SQL and STRINGMATCH filters. This
function can be used in expression parameters associated with MATCH operators (see SQL
Extension: Regular Expression Matching (Section 5.4.6.4)) to add a pattern to the match pattern
list. For example, if filter_expression is:

symbol MATCH 'IBM'

Then append_to_expression_parameter(0, "MSFT") would generate the expression:

symbol MATCH 'IBM,MSFT'

5.4.5.5 Removing a String from an Expression Parameter

To remove a string from an expression parameter use the ContentFilteredTopic's
remove_from_expression_parameter() operation:

DDS_ReturnCode_t remove_from_expression_parameter(
 const DDS_Long index,
 const char* value)

When using the STRINGMATCH filter, index must be 0.

This function is only intended to be used with the builtin SQL and STRINGMATCH filters. It
can be used in expression parameters associated with MATCH operators (see SQL Extension:
Regular Expression Matching (Section 5.4.6.4)) to remove a pattern from the match pattern list.
For example, if filter_expression is:

symbol MATCH 'IBM,MSFT'

Then remove_from_expression_parameter(0, "IBM") would generate the expression:

symbol MATCH 'MSFT'

5.4.5.6 Getting the Filter Expression

To get the filter expression that was specified when the ContentFilteredTopic was created:

const char* get_filter_expression ()

There is no corresponding set operation. The filter expression can only be set when the Content-
FilteredTopic is created.

5.4.5.7 Getting the Related Topic

To get the related topic that was specified when the ContentFilteredTopic was created:

DDS_Topic * get_related_topic ()

5.4.5.8 ‘Narrowing’ a ContentFilteredTopic to a TopicDescription

To safely cast a DDS_TopicDescription pointer to a ContentFilteredTopic pointer, use the Con-
tentFilteredTopic’s narrow() operation:

DDS_TopicDescription* narrow ()
5-18

ContentFilteredTopics
5.4.6 SQL Filter Expression Notation

A SQL filter expression is similar to the WHERE clause in SQL. The SQL expression format pro-
vided by Connext also supports the MATCH operator as an extended operator (see
Section 5.4.6.4).

The following sections provide more information:

❏ SQL Grammar (Section 5.4.6.1)

❏ Token Expressions (Section 5.4.6.2)

❏ Type Compatibility in the Predicate (Section 5.4.6.3)

❏ SQL Extension: Regular Expression Matching (Section 5.4.6.4)

❏ Composite Members (Section 5.4.6.5)

❏ Strings (Section 5.4.6.6)

❏ Enumerations (Section 5.4.6.7)

❏ Pointers (Section 5.4.6.8)

❏ Arrays (Section 5.4.6.9)

❏ Sequences (Section 5.4.6.10)

❏ Example SQL Filter Expressions (Section 5.4.6.11)

5.4.6.1 SQL Grammar

This section describes the subset of SQL syntax, in Backus–Naur Form (BNF), that you can use
to form filter expressions.

The following notational conventions are used:

❏ NonTerminals are typeset in italics.

❏ 'Terminals' are quoted and typeset in a fixed width font. They are written in upper
case in most cases in the BNF-grammar below, but should be case insensitive.

❏ TOKENS are typeset in bold.

❏ The notation (element // ',') represents a non-empty, comma-separated list of ele-
ments.

Expression ::= FilterExpression
 | TopicExpression
 | QueryExpression
 .
FilterExpression ::= Condition
TopicExpression ::= SelectFrom { Where } ';'
QueryExpression ::= { Condition }{ 'ORDER BY' (FIELDNAME // ',') }
 .

SelectFrom ::= 'SELECT' Aggregation 'FROM' Selection
 .
Aggregation ::= '*'
 | (SubjectFieldSpec // ',')
 .
SubjectFieldSpec ::= FIELDNAME
 | FIELDNAME 'AS' IDENTIFIER
 | FIELDNAME IDENTIFIER
 .
Selection ::= TOPICNAME
 | TOPICNAME NaturalJoin JoinItem
5-19

ContentFilteredTopics
 .
JoinItem ::= TOPICNAME
 | TOPICNAME NaturalJoin JoinItem
 | '(' TOPICNAME NaturalJoin JoinItem ')'
 .
NaturalJoin ::= 'INNER JOIN'
 | 'INNER NATURAL JOIN'
 | 'NATURAL JOIN'
 | 'NATURAL INNER JOIN'
 .
Where ::= 'WHERE' Condition
 .
Condition ::= Predicate
 | Condition 'AND' Condition
 | Condition 'OR' Condition
 | 'NOT' Condition
 | '(' Condition ')'
 .
Predicate ::= ComparisonPredicate
 | BetweenPredicate
 .
ComparisonPredicate ::= ComparisonTerm RelOp ComparisonTerm
 .
ComparisonTerm ::= FieldIdentifier
 | Parameter
 .
BetweenPredicate ::= FieldIdentifier 'BETWEEN' Range
 | FieldIdentifier 'NOT BETWEEN' Range
 .
FieldIdentifier ::= FIELDNAME
 | IDENTIFIER
 .
RelOp ::= '=' | '>' | '>=' | '<' | '<=' | '<>' | 'LIKE' | 'MATCH'
 .
Range ::= Parameter 'AND' Parameter
 .
Parameter ::= INTEGERVALUE
 | CHARVALUE
 | FLOATVALUE
 | STRING
 | ENUMERATEDVALUE
 | BOOLEANVALUE
 | PARAMETER
 .

Note: INNER JOIN, INNER NATURAL JOIN, NATURAL JOIN, and NATURAL INNER JOIN
are all aliases, in the sense that they have the same semantics. They are all supported
because they all are part of the SQL standard.

5.4.6.2 Token Expressions

The syntax and meaning of the tokens used in SQL grammar is described as follows:

IDENTIFIER—An identifier for a FIELDNAME, defined as any series of characters 'a', ...,

'z', 'A', ..., 'Z', '0', ..., '9', '_' but may not start with a digit.

 IDENTIFIER: LETTER (PART_LETTER)*
 where LETTER: ["A"-"Z","_","a"-"z"]
 PART_LETTER: ["A"-"Z","_","a"-"z","0"-"9"]
5-20

ContentFilteredTopics
FIELDNAME—A reference to a field in the data structure. A dot '.' is used to navigate through
nested structures. The number of dots that may be used in a FIELDNAME is unlimited.
The FIELDNAME can refer to fields at any depth in the data structure. The names of the
field are those specified in the IDL definition of the corresponding structure, which may
or may not match the fieldnames that appear on the language-specific (e.g., C/C++, Java)
mapping of the structure. To reference the n+1 element in an array or sequence, use the
notation '[n]', where n is a natural number (zero included). FIELDNAME must resolve
to a primitive IDL type; that is either boolean, octet, (unsigned) short, (unsigned) long,
(unsigned) long long, float double, char, wchar, string, wstring, or enum.

 FIELDNAME: FieldNamePart ("." FieldNamePart)*
 where FieldNamePart : IDENTIFIER ("[" Index "]")*
 Index> : (["0"-"9"])+
 | ["0x","0X"](["0"-"9", "A"-"F", "a"-"f"])+

Primitive IDL types referenced by FIELDNAME are treated as different types in Predicate
according to the following table:

TOPICNAME—An identifier for a topic, and is defined as any series of characters 'a', ...,
'z', 'A', ..., 'Z', '0', ..., '9', '_' but may not start with a digit.

TOPICNAME : IDENTIFIER

INTEGERVALUE—Any series of digits, optionally preceded by a plus or minus sign, representing a
decimal integer value within the range of the system. 'L' or 'l' must be used for long
long, otherwise long is assumed. A hexadecimal number is preceded by 0x and must be a
valid hexadecimal expression.

 INTEGERVALUE : (["+","-"])? (["0"-"9"])+ [("L","l")]?
 | (["+","-"])? ["0x","0X"](["0"-"9",

 "A"-"F", "a"-"f"])+ [("L","l")]?

CHARVALUE—A single character enclosed between single quotes.

CHARVALUE : "'" (~["'"])? "'"

FLOATVALUE—Any series of digits, optionally preceded by a plus or minus sign and optionally
including a floating point ('.'). 'F' or 'f' must be used for float, otherwise double is
assumed. A power-of-ten expression may be postfixed, which has the syntax en or En,
where n is a number, optionally preceded by a plus or minus sign.

FLOATVALUE : (["+","-"])? (["0"-"9"])* (".")? (["0"-"9"])+
(EXPONENT)?[("F",’f’)]?

 where EXPONENT: ["e","E"] (["+","-"])? (["0"-"9"])+

STRING—Any series of characters encapsulated in single quotes, except the single quote itself.

STRING : "'" (~["'"])* "'"

Predicate Data Type IDL Type

BOOLEANVALUE boolean

INTEGERVALUE octet, (unsigned) short, (unsigned) long, (unsigned) long long

FLOATVALUE float, double

CHARVALUE char, wchar

STRING string, wstring

ENUMERATEDVALUE enum
5-21

ContentFilteredTopics

ENUMERATEDVALUE—A reference to a value declared within an enumeration. Enumerated values

consist of the name of the enumeration label enclosed in single quotes. The name used for
the enumeration label must correspond to the label names specified in the IDL definition
of the enumeration.

ENUMERATEDVALUE : "'" ["A" - "Z", "a" - "z"]
["A" - "Z", "a" - "z", "_", "0" - "9"]* "'"

BOOLEANVALUE—Can either be 'TRUE' or 'FALSE', and is case insensitive.

 BOOLEANVALUE : ["TRUE","FALSE"]

PARAMETER—Takes the form %n, where n represents a natural number (zero included) smaller
than 100. It refers to the (n + 1)th argument in the given context. This argument can only
be in primitive type value format. It cannot be a FIELDNAME.

PARAMETER : "%" (["0"-"9"])+

5.4.6.3 Type Compatibility in the Predicate

As seen in Table 5.6, only certain combinations of type comparisons are valid in the Predicate.

5.4.6.4 SQL Extension: Regular Expression Matching

The relational operator MATCH may only be used with string fields. The right-hand operator is
a string pattern. A string pattern specifies a template that the left-hand field must match.

MATCH is case-sensitive. These characters have special meaning: ,/?*[]-^!\%

The pattern allows limited "wild card" matching under the rules in Table 5.7 on page 5-23.

The syntax is similar to the POSIX® fnmatch syntax1. The MATCH syntax is also similar to the
'subject' strings of TIBCO Rendezvous®. Some example expressions include:

"symbol MATCH 'NASDAQ/[A-G]*'"
"symbol MATCH 'NASDAQ/GOOG,NASDAQ/MSFT'"

Table 5.6 Valid Type Comparisons

BOOLEAN
VALUE

INTEGER
VALUE

FLOAT
VALUE

CHAR
VALUE STRING ENUMERATED

VALUE

BOOLEAN YES

INTEGERVALUE YES YES

FLOATVALUE YES YES

CHARVALUE YES YES YES

STRING YES YES a YES

ENUMERATED
VALUE

YES YES b YES b YES c

a. See Section 5.4.6.4.
b. Because of the formal notation of the Enumeration values, they are compatible with string and char literals, but
they are not compatible with string or char variables, i.e., "MyEnum='EnumValue'" is correct, but "MyEnum=MyS-
tring" is not allowed.
c. Only for same-type Enums.

1. See http://www.opengroup.org/onlinepubs/000095399/functions/fnmatch.html.
5-22

http://www.opengroup.org/onlinepubs/000095399/functions/fnmatch.html

ContentFilteredTopics
5.4.6.5 Composite Members

Any member can be used in the filter expression, with the following exceptions:

❏ 128-bit floating point numbers (long doubles) are not supported

❏ bitfields are not supported

❏ LIKE is not supported

Composite members are accessed using the familiar dot notation, such as "x.y.z > 5". For
unions, the notation is special due to the nature of the IDL union type.

On the publishing side, you can access the union discriminator with myunion._d and the actual
member with myunion._u.mymember. If you want to use a ContentFilteredTopic on the sub-
scriber side and filter a sample with a top-level union, you can access the union discriminator
directly with _d and the actual member with mymember in the filter expression.

5.4.6.6 Strings

The filter expression and parameters can use IDL strings. String constants must appear between
single quotation marks (').

For example:

" fish = 'salmon' "

Strings used as parameter values must contain the enclosing quotation marks (') within the
parameter value; do not place the quotation marks within the expression statement. For exam-
ple, the expression " symbol MATCH %0 " with parameter 0 set to " 'IBM' " is legal, whereas the
expression " symbol MATCH '%0' " with parameter 0 set to " IBM " will not compile.

5.4.6.7 Enumerations

A filter expression can use enumeration values, such as GREEN, instead of the numerical value.
For example, if x is an enumeration of GREEN, YELLOW and RED, the following expressions
are valid:

"x = 'GREEN'"
"X < 'RED'"

Table 5.7 Wild Card Matching

Character Meaning

,
A , separates a list of alternate patterns. The field string is matched if it matches
one or more of the patterns.

/
A / in the pattern string matches a / in the field string. It separates a sequence of
mandatory substrings.

?
A ? in the pattern string matches any single non-special characters in the field
string.

* A * in the pattern string matches 0 or more non-special characters in field string.

% This special character is used to designate filter expression parameters.

\ (Not supported) Escape character for special characters.

[charlist] Matches any one of the characters in charlist.

[!charlist] or
[^charlist]

(Not supported) Matches any one of the characters not in charlist.

[s-e] Matches any character from s to e, inclusive.

[!s-e] or [^s-e] (Not supported) Matches any character not in the interval s to e.
5-23

ContentFilteredTopics
5.4.6.8 Pointers

Pointers can be used in filter expressions and are automatically dereferenced to the correct
value.

For example:

struct Point {
 long x;
 long y;
};

struct Rectangle {
 Point *u_l;
 Point *l_r;
};

The following expression is valid on a Topic of type Rectangle:

"u_l.x > l_r.x"

5.4.6.9 Arrays

Arrays are accessed with the familiar [] notation.

For example:

struct ArrayType {
 long value[255][5];
};

The following expression is valid on a Topic of type ArrayType:

"value[244][2] = 5"

In order to compare an array of bytes(octets in idl), instead of comparing each individual ele-
ment of the array using [] notation, Connext provides a helper function, hex(). The hex() function
can be used to represent an array of bytes (octets in IDL). To use the hex() function, use the nota-
tion &hex() and pass the byte array as a sequence of hexadecimal values.

For example:

&hex (07 08 09 0A 0B 0c 0D 0E 0F 10 11 12 13 14 15 16)

Here the leftmost-pair represents the byte and index 0.

Note: If the length of the octet array represented by the hex() function does not match the length
of the field being compared, it will result in a compilation error.

For example:

struct ArrayType {
 octet value[2];
};

The following expression is valid:

"value = &hex(12 0A)"

5.4.6.10 Sequences

Sequence elements can be accessed using the () or [] notation.

For example:

struct SequenceType {
 sequence<long> s;
};
5-24

ContentFilteredTopics
The following expressions are valid on a Topic of type SequenceType:

"s(1) = 5"
"s[1] = 5"

5.4.6.11 Example SQL Filter Expressions

Assume that you have a Topic with two floats, X and Y, which are the coordinates of an object
moving inside a rectangle measuring 200 x 200 units. This object moves quite a bit, generating
lots of samples that you are not interested in. Instead you only want to receive samples outside
the middle of the rectangle, as seen in Figure 5.5. That is, you want to filter out data points in the
gray box.

The filter expression would look like this (remember the expression is written so that samples
that we do want will pass):

"(X < 50 or X > 150) and (Y < 50 or Y > 150)"

While this filter works, it cannot be changed after the ContentFilteredTopic has been created.
Suppose you would like the ability to adjust the coordinates that are considered outside the
acceptable range (changing the size of the gray box). You can achieve this by using filter param-
eters. An more flexible way to write the expression is this:

"(X < %0 or X > %1) and (Y < %2 or Y > %3)"

Recall that when you create a ContentFilteredTopic (see Section 5.4.3), you pass a
expression_parameters string sequence as one of the parameters. Each element in the string
sequence corresponds to one argument.

See the String and Sequence Support sections of the API Reference HTML documentation
(from the Modules page, select RTI Connext DDS API Reference, Infrastructure Module).

In C++, the filter parameters could be assigned like this:

FilterParameter[0] = "50";
FilterParameter[1] = "150";
FilterParameter[2] = "50";
FilterParameter[3] = "150";

Figure 5.5 Filtering Example
5-25

ContentFilteredTopics
With these parameters, the filter expression is identical to the first approach. However, it is now
possible to change the parameters by calling set_expression_parameters(). For example, per-
haps you decide that you only want to see data points where X < 10 or X > 190. To make this
change:

FilterParameter[0] = 10
FilterParameter[1] = 190
set_expression_parameters(....)

Note: The new filter parameters will affect all DataReaders that have been created with this Con-
tentFilteredTopic.

5.4.7 STRINGMATCH Filter Expression Notation

The STRINGMATCH Filter is a subset of the SQL filter; it only supports the MATCH relational
operator on a single string field. It is introduced mainly for the use case of partitioning data
according to channels in the DataWriter's MULTI_CHANNEL QosPolicy (DDS Extension) (Sec-
tion 6.5.14) in Market Data applications.

A STRINGMATCH filter expression has the following syntax:

<field name> MATCH <string pattern>

The STRINGMATCH filter is provided to support the narrow use case of filtering a single string
field of the sample against a comma-separated list of matching string values. It is intended to be
used in conjunction with ContentFilteredTopic helper routines
append_to_expression_parameter() (Section 5.4.5.4) and
remove_from_expression_parameter() (Section 5.4.5.5), which allow you to easily append and
remove individual string values from the comma-separated list of string values.

The STRINGMATCH filter must contain only one <field name>, and a single occurrence of the
MATCH operator. The <string pattern> must be either the single parameter %0, or a single,
comma-separated list of strings without intervening spaces.

During creation of a STRINGMATCH filter, the <string pattern> is automatically parameterized.
That is, during creation, if the <string pattern> specified in the filter expression is not the param-
eter %0, then the comma-separated list of strings is copied to the initial contents of parameter 0
and the <string pattern> in the filter expression is replaced with the parameter %0.

The initial matching string list is converted to an explicit parameter value so that subsequent
additions and deletions of string values to and from the list of matching strings may be per-
formed with the append_to_expression_parameter() and
remove_from_expression_parameter() operations mentioned above.

5.4.7.1 Example STRINGMATCH Filter Expressions

❏ This expression evaluates to TRUE if the value of symbol is equal to NASDAQ/MSFT:

 symbol MATCH 'NASDAQ/MSFT'

❏ This expression evaluates to TRUE if the value of symbol is equal to NASDAQ/IBM or
NASDAQ/MSFT:

symbol MATCH 'NASDAQ/IBM,NASDAQ/MSFT'

❏ This expression evaluates to TRUE if the value of symbol corresponds to NASDAQ and
starts with a letter between M and Y:

symbol MATCH 'NASDAQ/[M-Y]*'
5-26

ContentFilteredTopics
5.4.7.2 STRINGMATCH Filter Expression Parameters

In the builtin STRINGMATCH filter, there is one, and only one, parameter: parameter 0. (If you
want to add more parameters, see Appending a String to an Expression Parameter (Section
5.4.5.4).) The parameter can be specified explicitly using the same syntax as the SQL filter or
implicitly by using a constant string pattern. For example:

symbol MATCH %0 (Explicit parameter)
symbol MATCH ‘IBM’ (Implicit parameter initialized to IBM)

Strings used as parameter values must contain the enclosing quotation marks (') within the
parameter value; do not place the quotation marks within the expression statement. For exam-
ple, the expression " symbol MATCH %0 " with parameter 0 set to " 'IBM' " is legal, whereas the
expression " symbol MATCH '%0' " with parameter 0 set to " IBM " will not compile.

5.4.8 Custom Content Filters

By default, a ContentFilteredTopic will use a SQL-like content filter, DDS_SQLFILTER_NAME
(see SQL Filter Expression Notation (Section 5.4.6)), which implements a superset of the content
filter. There is another builtin filter, DDS_STRINGMATCHFILTER_NAME (see STRING-
MATCH Filter Expression Notation (Section 5.4.7)). Both of these are automatically registered.

If you want to use a different filter, you must register it first, then create the ContentFiltered-
Topic using create_contentfilteredtopic_with_filter() (see Creating ContentFilteredTopics (Sec-
tion 5.4.3)).

One reason to use a custom filter is that the default filter can only filter based on relational oper-
ations between topic members, not on a computation involving topic members. For example, if
you want to filter based on the sum of the members, you must create your own filter.

Notes:

❏ The API for using a custom content filter is subject to change in a future release.

❏ Custom content filters are not supported when using the .NET APIs.

5.4.8.1 Filtering on the Writer Side with Custom Filters

There are two approaches for performing writer-side filtering. The first approach is to evaluate
each written sample against filters of all the readers that have content filter specified and iden-
tify the readers whose filter passes the sample.

The second approach is to evaluate the written sample once for the writer and then rely on the
filter implementation to provide a set of readers whose filter passes the sample. This approach
allows the filter implementation to cache the result of filtering, if possible. For example, consider
a scenario where the data is described by the struct shown below, where 10<x<20:

struct MyData {
int x;
int y;

};

If the filter expression is based only on the x field, the filter implementation can maintain a hash
map for all the different values of x and cache the filtering results in the hash map. Then any
future evaluations will only be O(1), because it only requires a lookup in the hash map.

But if in the same example, a reader has a content filter that is based on both x and y, or just y,
the filter implementation cannot cache the result—because the filter was only maintaining a
hash map for x. In this case, the filter implementation can inform Connext that it will not be cach-
ing the result for those DataReaders. The filter can use DDS_ExpressionProperty to indicate to the
middleware whether or not it will cache the results for DataReader. Table 5.8 describes
5-27

ContentFilteredTopics
DDS_ExpressionProperty.

5.4.8.2 Registering a Custom Filter

To use a custom filter, it must be registered in the following places:

❏ Register the custom filter in any subscribing application in which the filter is used to cre-
ate a ContentFilteredTopic and corresponding DataReader.

❏ In each publishing application, you only need to register the custom filter if you want to
perform writer-side filtering. A DataWriter created with an associated filter will use that
filter if it discovers a matched DataReader that uses the same filter.

For example, suppose Application A on the subscription side creates a Topic named X and a
ContentFilteredTopic named filteredX (and a corresponding DataReader), using a previously
registered content filter, myFilter. With only that, you will have filtering on the subscription
side. If you also want to perform filtering in any application that publishes Topic X, then you also
need to register the same definition of the ContentFilter myFilter in that application.

To register a new filter, use the DomainParticipant’s register_contentfilter() operation1:

DDS_ReturnCode_t register_contentfilter(const char * filter_name,
 const DDSContentFilter * contentfilter)

)

filter_name The name of the filter. The name must be unique within the DomainParticipant.
The filter_name cannot have a length of 0. The same filtering functions and
handle can be registered under different names.

content_filter This class specifies the functions that will be used to process the filter.

You must derive from the DDSContentFilter base class and implement the vir-
tual compile, evaluate, and finalize functions described below.

Optionally, you can derive from the DDSWriterContentFilter base class instead,
to implement additional filtering operations that will be used by the DataWriter.
When performing writer-side filtering, these operations allow a sample to be
evaluated once for the DataWriter, instead of evaluating the sample for every
DataReader that is matched with the DataWriter. An instance of the derived class
is then used as an argument when calling register_contentfilter().

• compile

The function that will be used to compile a filter expression and parameters.
Connext will call this function when a ContentFilteredTopic is created and
when the filter parameters are changed. This parameter cannot be NULL.
See Compile Function (Section 5.4.8.5). This is a member of DDSContentFil-
ter and DDSWriterContentFilter.

Table 5.8 DDS_ExpressionProperty

Type Field Name Description

DDS_Boolean key_only_filter
Indicates if the filter expression is based only on key fields. In this
case, Connext itself can cache the filtering results.

DDS_Boolean
writer_side_filter_
optimization

Indicates if the filter implementation can cache the filtering result for
the expression provided. If this is true then Connext will do no cach-
ing or explicit filter evaluation for the associated DataReader. It will
instead rely on the filter implementation to provide appropriate
results.

1. This operation is an extension to the DDS standard.
5-28

ContentFilteredTopics
• evaluate

The function that will be called by Connext each time a sample is received. Its
purpose is to evaluate the sample based on the filter. This parameter cannot
be NULL. See Evaluate Function (Section 5.4.8.6). This is a member of
DDSContentFilter and DDSWriterContentFilter.

• finalize

The function that will be called by Connext when an instance of the custom
content filter is no longer needed. This parameter may be NULL. See Final-
ize Function (Section 5.4.8.7). This is a member of DDSContentFilter and
DDSWriterContentFilter.

• writer_attach

The function that will be used to create some state required to perform filter-
ing on the writer side using the operations provided in DDSWriterContent-
Filter. Connext will call this function for every DataWriter; it will be called
only the first time the DataWriter matches a DataReader using the specified fil-
ter. This function will not be called for any subsequent DataReaders that
match the DataWriter and are using the same filter. See Writer Attach Func-
tion (Section 5.4.8.8). This is a member of DDSWriterContentFilter.

• writer_detach

The function that will be used to delete any state created using the
writer_attach function. Connext will call this function when the DataWriter is
deleted. See Writer Detach Function (Section 5.4.8.9). This is a member of
DDSWriterContentFilter.

• writer_compile

The function that will be used by the DataWriter to compile filter expression
and parameters provided by the reader. Connext will call this function when
the DataWriter discovers a DataReader with a ContentFilteredTopic or when a
DataWriter is notified of a change in DataReader’s filter parameter. This func-
tion will receive as an input a DDS_Cookie_t which uniquely identifies the
DataReader for which the function was invoked. See Writer Compile Func-
tion (Section 5.4.8.10). This is a member of DDSWriterContentFilter.

• writer_evaluate

The function that will be called by Connext every time a DataWriter writes a
new sample. Its purpose is to evaluate the sample for all the readers for
which the DataWriter is performing writer-side filtering and return the list of
DDS_Cookie_t associated with the DataReaders whose filter pass the sample.
See Writer Evaluate Function (Section 5.4.8.11).

• writer_return_loan

The function that will be called by Connext to return the loan on a sequence
of DDS_Cookie_t provided by the writer_evaluate function. See Writer
Return Loan Function (Section 5.4.8.12). This is a member of DDSWriterCon-
tentFilter.

• writer_finalize

The function that will be called by Connext to notify the filter implementa-
tion that the DataWriter is no longer matching with a DataReader for which it
was previously performing writer-side filtering. This will allow the filter to
purge any state it was maintaining for the DataReader. See Writer Finalize
5-29

ContentFilteredTopics
Function (Section 5.4.8.13). This is a member of DDSWriterContentFilter.

5.4.8.3 Unregistering a Custom Filter

To unregister a filter, use the DomainParticipant’s unregister_contentfilter() operation1, which is
useful if you want to reuse a particular filter name. (Note: You do not have to unregister the fil-
ter before deleting the parent DomainParticipant. If you do not need to reuse the filter name to
register another filter, there is no reason to unregister the filter.)

DDS_ReturnCode_t unregister_contentfilter(const char * filter_name)

filter_name The name of the previously registered filter. The name must be unique within
the DomainParticipant. The filter_name cannot have a length of 0.

If you attempt to unregister a filter that is still being used by a ContentFiltered-
Topic, unregister_contentfilter() will return PRECONDITION_NOT_MET.

If there are still existing discovered DataReaders with the same filter_name and
the filter's compile function has previously been called on the discovered
DataReaders, the filter’s finalize function will be called on those discovered
DataReaders before the content filter is unregistered. This means filtering will be
performed on the application that is creating the DataReader.

5.4.8.4 Retrieving a ContentFilter

If you know the name of a ContentFilter, you can get a pointer to its structure. If the ContentFil-
ter has not already been registered, this operation will return NULL.

DDS_ContentFilter *lookup_contentfilter (const char * filter_name)

5.4.8.5 Compile Function

The compile function specified in the ContentFilter will be used to compile a filter expression
and parameters. Please note that the term ‘compile’ is intentionally defined very broadly. It is
entirely up to you, as the user, to decide what this function should do. The only requirement is
that the error_code parameter passed to the compile function must return OK on successful exe-
cution. For example:

DDS_ReturnCode_t sample_compile_function(
 void ** new_compile_data,

const char * expression,
 const DDS_StringSeq & parameters,

const DDS_TypeCode * type_code,
 const char * type_class_name,
 void * old_compile_data)
{
 new_compile_data = (void)DDS_String_dup(parameters[0]);
 return DDS_RETCODE_OK;
}

new_compile_data A user-specified opaque pointer of this instance of the content filter. This
value is passed to the evaluate and finalize functions.

expression An ASCIIZ string with the filter expression the ContentFilteredTopic was
created with. Note that the memory used by the parameter pointer is
owned by Connext. If you want to manipulate this string, you must make
a copy of it first. Do not free the memory for this string.

1. This operation is an extension to the DDS standard.
5-30

ContentFilteredTopics
parameters A string sequence of expression parameters used to create the ContentFil-
teredTopic. The string sequence is equal (but not identical) to the string
sequence passed to create_contentfilteredtopic() (see
expression_parameters in Section 5.4.3).

Important: The sequence passed to the compile function is owned by Connext and
must not be referred to outside the compile function.

type_code A pointer to the type code of the related Topic. A type code is a description
of the topic members, such as their type (long, octet, etc.), but does not
contain any information with respect to the memory layout of the struc-
tures. The type code can be used to write filters that can be used with any
type. See Using Generated Types without Connext (Standalone) (Section
3.7). [Note: If you are using the Java API, this parameter will always be
NULL.]

type_class_name Fully qualified class name of the related Topic.

old_compile_data The new_compile_data value from a previous call to this instance of a con-
tent filter. If compile is called more than once for an instance of a Con-
tentFilteredTopic (such as if the expression parameters are changed), then
the new_compile_data value returned by the previous invocation is
passed in the old_compile_data parameter (which can be NULL). If this
is a new instance of the filter, NULL is passed. This parameter is useful
for freeing or reusing previously allocated resources.

5.4.8.6 Evaluate Function

The evaluate function specified in the ContentFilter will be called each time a sample is
received. This function’s purpose is to determine if a sample should be filtered out (not put in
the receive queue).

For example:

DDS_Boolean sample_evaluate_function(
void* compile_data,
const void* sample,
struct DDS_FilterSampleInfo * meta_data) {

char *parameter = (char*)compile_data;
DDS_Long x;
Foo *foo_sample = (Foo*)sample;

sscanf(parameter,"%d",&x);

return (foo_sample->x > x ? DDS_BOOLEAN_FALSE : DDS_BOOLEAN_TRUE);
}

The function may use the following parameters:

compile_data The last return value from the compile function for this instance of the con-
tent filter. Can be NULL.

sample A pointer to a C structure with the data to filter. Note that the evaluate func-
tion always receives deserialized data.

meta_data A pointer to the meta data associated with the sample.

Note: Currently the meta_data field only supports related_sample_identity
(described in Table 6.15, “DDS_WriteParams_t,” on page 6-32).
5-31

ContentFilteredTopics
5.4.8.7 Finalize Function

The finalize function specified in the ContentFilter will be called when an instance of the cus-
tom content filter is no longer needed. When this function is called, it is safe to free all resources
used by this particular instance of the custom content filter.

For example:

void sample_finalize_function (void* compile_data) {
 /* free parameter string from compile function */
 DDS_String_free((char *)compile_data);
}

The finalize function may use the following optional parameters:

system_key See Section 5.4.8.5.

handle This is the opaque returned by the last call to the compile function.

5.4.8.8 Writer Attach Function

The writer_attach function specified in the WriterContentFilter will be used to create some state
that can be used by the filter to perform writer-side filtering more efficiently. It is entirely up to
you, as the implementer of the filter, to decide if the filter requires this state.

The function has the following parameter:

writer_filter_data A user-specified opaque pointer to some state created on the writer side
that will help perform writer-side filtering efficiently.

5.4.8.9 Writer Detach Function

The writer_detach function specified in the WriterContentFilter will be used to free up any state
that was created using the writer_attach function.

The function has the following parameter:

writer_filter_data A pointer to the state created using the writer_attach function.

5.4.8.10 Writer Compile Function

The writer_compile function specified in the WriterContentFilter will be used by a DataWriter to
compile a filter expression and parameters associated with a DataReader for which the DataW-
riter is performing filtering. The function will receive as input a DDS_Cookie_t that uniquely
identifies the DataReader for which the function was invoked.

The function has the following parameters:

writer_filter_data A pointer to the state created using the writer_attach function.

prop A pointer to DDS_ExpressionProperty. This is an output parameter. It
allows you to indicate to Connext if a filter expression can be optimized (as
described in Filtering on the Writer Side with Custom Filters (Section
5.4.8.1)).

expression An ASCIIZ string with the filter expression the ContentFilteredTopic was
created with. Note that the memory used by the parameter pointer is
owned by Connext. If you want to manipulate this string, you must make a
copy of it first. Do not free the memory for this string.

parameters A string sequence of expression parameters used to create the ContentFil-
teredTopic. The string sequence is equal (but not identical) to the string
sequence passed to create_contentfilteredtopic() (see
expression_parameters in Creating ContentFilteredTopics (Section 5.4.3)).
5-32

ContentFilteredTopics
Important: The sequence passed to the compile function is owned by Con-
next and must not be referred to outside the writer_compile function.

type_code A pointer to the type code of the related Topic. A type code is a description
of the topic members, such as their type (long, octet, etc.), but does not con-
tain any information with respect to the memory layout of the structures.
The type code can be used to write filters that can be used with any type.
See Using Generated Types without Connext (Standalone) (Section 3.7).
[Note: If you are using the Java API, this parameter will always be NULL.]

type_class_name The fully qualified class name of the related Topic.

cookie DDS_Cookie_t to uniquely identify the DataReader for which the
writer_compile function was called.

5.4.8.11 Writer Evaluate Function

The writer_evaluate function specified in the WriterContentFilter will be used by a DataWriter
to retrieve the list of DataReaders whose filter passed the sample. The writer_evaluate function
returns a sequence of cookies which identifies the set of DataReaders whose filter passes the sam-
ple.

The function has the following parameters:

writer_filter_data A pointer to the state created using the writer_attach function.

sample A pointer to the data to be filtered. Note that the writer_evaluate function
always receives deserialized data.

meta_data A pointer to the meta-data associated with the sample.

Note: Currently the meta_data field only supports
related_sample_identity (described in Table 6.15, “DDS_WriteParams_t,”
on page 6-32).

5.4.8.12 Writer Return Loan Function

Connext uses the writer_return_loan function specified in the WriterContentFilter to indicate to
the filter implementation that it has finished using the sequence of cookies returned by the fil-
ter’s writer_evaluate function. Your filter implementation should not free the memory associ-
ated with the cookie sequence before the writer_return_loan function is called.

The function has the following parameters:

writer_filter_data A pointer to the state created using the writer_attach function.

cookies The sequence of cookies for which the writer_return_loan function was
called.

5.4.8.13 Writer Finalize Function

The writer_finalize function specified in the WriterContentFilter will be called when the DataW-
riter no longer matches with a DataReader that was created with ContentFilteredTopic. This will
allow the filter implementation to delete any state it was maintaining for the DataReader.

The function has the following parameters:

writer_filter_data A pointer to the state created using the writer_attach function.

cookie A DDS_Cookie_t to uniquely identify the DataReader for which the
writer_finalize was called.
5-33

Chapter 6 Sending Data

This chapter discusses how to create, configure, and use Publishers and DataWriters to send data.
It describes how these entities interact, as well as the types of operations that are available for
them.

This chapter includes the following sections:

❏ Preview: Steps to Sending Data (Section 6.1)

❏ Publishers (Section 6.2)

❏ DataWriters (Section 6.3)

❏ Publisher/Subscriber QosPolicies (Section 6.4)

❏ DataWriter QosPolicies (Section 6.5)

❏ FlowControllers (DDS Extension) (Section 6.6)

The goal of this chapter is to help you become familiar with the Entities you need for sending
data. For up-to-date details such as formal parameters and return codes on any mentioned oper-
ations, please see the API Reference HTML documentation.

6.1 Preview: Steps to Sending Data
To send samples of a data instance:

1. Create and configure the required Entities:

a. Create a DomainParticipant (see Section 8.3.1).

b. Register user data types1 with the DomainParticipant. For example, the ‘FooData-
Type’.

c. Use the DomainParticipant to create a Topic with the registered data type.

d. Optionally2, use the DomainParticipant to create a Publisher.

e. Use the Publisher or DomainParticipant to create a DataWriter for the Topic.

f. Use a type-safe method to cast the generic DataWriter created by the Publisher to a
type-specific DataWriter. For example, ‘FooDataWriter’.

1. Type registration is not required for built-in types (see Section 3.2.1).
2. You are not required to explicitly create a Publisher; instead, you can use the 'implicit Publisher' created from the

DomainParticipant. See Creating Publishers Explicitly vs. Implicitly (Section 6.2.1).
6-1

Publishers
g. Optionally, register data instances with the DataWriter. If the Topic’s user data type
contain key fields, then registering a data instance (data with a specific key value) will
improve performance when repeatedly sending data with the same key. You may reg-
ister many different data instances; each registration will return an instance handle cor-
responding to the specific key value. For non-keyed data types, instance registration
has no effect. See Section 2.2.2 for more information on keyed data types and
instances.

2. Every time there is changed data to be published:

a. Store the data in a variable of the correct data type (for instance, variable ‘Foo’ of the
type ‘FooDataType’).

b. Call the FooDataWriter’s write() operation, passing it a reference to the variable
‘Foo’. For non-keyed data types or for non-registered instances, also pass in
DDS_HANDLE_NIL.

For keyed data types, you should pass in the instance handle corresponding to the
instance stored in ‘Foo’, if you have registered the instance previously. This means
that the data stored in ‘Foo’ has the same key value that was used to create instance
handle.

c. The write() function will take a snapshot of the contents of ‘Foo’ and store it in Con-
next internal buffers from where the data sample is sent under the criteria set by the
Publisher’s and DataWriter’s QosPolicies. If there are matched DataReaders, then the
data sample will have been passed to the physical transport plug-in/device driver by
the time that write() returns.

6.2 Publishers
An application that intends to publish information needs the following Entities: DomainPartici-
pant, Topic, Publisher, and DataWriter. All Entities have a corresponding specialized Listener and a
set of QosPolicies. A Listener is how Connext notifies your application of status changes relevant
to the Entity. The QosPolicies allow your application to configure the behavior and resources of
the Entity.

❏ A DomainParticipant defines the domain in which the information will be made available.

❏ A Topic defines the name under which the data will be published, as well as the type (for-
mat) of the data itself.

❏ An application writes data using a DataWriter. The DataWriter is bound at creation time
to a Topic, thus specifying the name under which the DataWriter will publish the data and
the type associated with the data. The application uses the DataWriter’s write() operation
to indicate that a new value of the data is available for dissemination.

❏ A Publisher manages the activities of several DataWriters. The Publisher determines when
the data is actually sent to other applications. Depending on the settings of various
QosPolicies of the Publisher and DataWriter, data may be buffered to be sent with the data
of other DataWriters or not sent at all. By default, the data is sent as soon as the DataW-
riter’s write() function is called.

You may have multiple Publishers, each managing a different set of DataWriters, or you
may choose to use one Publisher for all your DataWriters.

For more information, see Creating Publishers Explicitly vs. Implicitly (Section 6.2.1).
6-2

Publishers
Figure 6.1 on page 6-3 shows how these Entities are related, as well as the methods defined for
each Entity.

Publishers are used to perform the operations listed in Table 6.1 on page 6-4. You can find more
information about the operations by looking in the section listed under the Reference column.
For details such as formal parameters and return codes, please see the API Reference HTML
documentation.

Note: Some operations cannot be used within a listener callback, see Restricted Operations in
Listener Callbacks (Section 4.5.1).

6.2.1 Creating Publishers Explicitly vs. Implicitly

To send data, your application must have a Publisher. However, you are not required to explicitly
create one. If you do not create one, the middleware will implicitly create a Publisher the first
time you create a DataWriter using the DomainParticipant’s operations. It will be created with
default QoS (DDS_PUBLISHER_QOS_DEFAULT) and no Listener.

Figure 6.1 Publication Module
6-3

Publishers
Table 6.1 Publisher Operations

Working
with ... Operation Description Reference

DataWriters

begin_coherent_
changes

Indicates that the application will begin a coherent set
of modifications.

Section 6.3.10

create_datawriter Creates a DataWriter that will belong to the Publisher.
Section 6.3.1create_datawriter_

with_profile
Sets the DataWriter’s QoS based on a specified QoS
profile.

copy_from_topic_qos
Copies relevant QosPolicies from a Topic into a
DataWriterQoS structure.

Section 6.2.4.6

delete_contained_
entities

Deletes all of the DataWriters that were created by the
Publisher.

Section 6.2.3.1

delete_datawriter Deletes a DataWriter that belongs to the Publisher. Section 6.3.3

end_coherent_changes
Ends the coherent set initiated by
begin_coherent_changes().

Section 6.3.10

get_all_datawriters
Retrieves all the DataWriters created from this Pub-
lisher.

Section 6.3.2

get_default_
datawriter_qos

Copies the Publisher’s default DataWriterQoS values
into a DataWriterQos structure.

Section 6.3.15

get_status_changes
Will always return 0 since there are no Statuses cur-
rently defined for Publishers.

Section 4.1.4

lookup_datawriter
Retrieves a DataWriter previously created for a specific
Topic.

Section 6.2.6

set_default_datawriter_
qos

Sets or changes the default DataWriterQos values.
Section 6.2.4.5

set_default_datawriter_
qos_with_profile

Sets or changes the default DataWriterQos values
based on a QoS profile.

wait_for_
acknowledgments

Blocks until all data written by the Publisher’s reliable
DataWriters are acknowledged by all matched reliable
DataReaders, or until the a specified timeout duration,
max_wait, elapses.

Section 6.2.7

Libraries
and Profiles

get_default_library Gets the Publisher’s default QoS profile library.

Section 6.2.4.4

get_default_profile Gets the Publisher’s default QoS profile.

get_default_profile_
library

Gets the library that contains the Publisher’s default
QoS profile.

set_default_library Sets the default library for a Publisher.

set_default_profile Sets the default profile for a Publisher.

Participants get_participant
Gets the DomainParticipant that was used to create the
Publisher.

Section 6.2.6
6-4

Publishers
A Publisher (implicit or explicit) gets its own default QoS and the default QoS for its child
DataWriters from the DomainParticipant. These default QoS are set when the Publisher is created.
(This is true for Subscribers and DataReaders, too.)

The 'implicit Publisher' can be accessed using the DomainParticipant’s get_implicit_publisher()
operation (see Section 8.3.9). You can use this ‘implicit Publisher’ just like any other Publisher (it
has the same operations, QosPolicies, etc.). So you can change the mutable QoS and set a Lis-
tener if desired.

DataWriters are created by calling create_datawriter() or create_datawriter_with_profile()—
these operations exist for DomainParticipants and Publishers. If you use the DomainParticipant to
create a DataWriter, it will belong to the implicit Publisher. If you use a Publisher to create a
DataWriter, it will belong to that Publisher.

The middleware will use the same implicit Publisher for all DataWriters that are created using the
DomainParticipant’s operations.

Having the middleware implicitly create a Publisher allows you to skip the step of creating a
Publisher. However, having all your DataWriters belong to the same Publisher can reduce the con-
currency of the system because all the write operations will be serialized.

6.2.2 Creating Publishers

Before you can explicitly create a Publisher, you need a DomainParticipant (see Section 8.3). To
create a Publisher, use the DomainParticipant’s create_publisher() or
create_publisher_with_profile() operations:

DDSPublisher * create_publisher (const DDS_PublisherQos &qos,
 DDSPublisherListener *listener,
 DDS_StatusMask mask)

DDSPublisher * create_publisher_with_profile (
const char *library_name,

Publishers

enable Enables the Publisher. Section 4.1.2

equals Compares two Publisher’s QoS structures for equality. Section 6.2.4.2

get_qos
Gets the Publisher’s current QosPolicy settings. This is
most often used in preparation for calling set_qos().

Section 6.2.4set_qos

Sets the Publisher’s QoS. You can use this operation to
change the values for the Publisher’s QosPolicies. Note,
however, that not all QosPolicies can be changed after
the Publisher has been created.

set_qos_with_profile
Sets the Publisher’s QoS based on a specified QoS pro-
file.

get_listener Gets the currently installed Listener.

Section 6.2.5
set_listener

Sets the Publisher’s Listener. If you created the Pub-
lisher without a Listener, you can use this operation to
add one later.

suspend_publications
Provides a hint that multiple data-objects within the
Publisher are about to be written. Connext does not
currently use this hint. Section 6.2.9

resume_publications Reverses the action of suspend_publications().

Table 6.1 Publisher Operations

Working
with ... Operation Description Reference
6-5

Publishers
const char *profile_name,
DDSPublisherListener *listener,
DDS_StatusMask mask)

A QoS profile is way to use QoS settings from an XML file or string. With this approach, you can
change QoS settings without recompiling the application. For details, see Chapter 17: Configur-
ing QoS with XML.

qos If you want the default QoS settings (described in the API Reference HTML documenta-
tion), use DDS_PUBLISHER_QOS_DEFAULT for this parameter (see Figure 6.2). If you
want to customize any of the QosPolicies, supply a QoS structure (see Figure 6.3). The
QoS structure for a Publisher is described in Section 6.4.

Note: If you use DDS_PUBLISHER_QOS_DEFAULT, it is not safe to create the Pub-
lisher while another thread may be simultaneously calling set_default_publisher_qos().

listener Listeners are callback routines. Connext uses them to notify your application when spe-
cific events (status changes) occur with respect to the Publisher or the DataWriters created
by the Publisher. The listener parameter may be set to NULL if you do not want to install a
Listener. If you use NULL, the Listener of the DomainParticipant to which the Publisher
belongs will be used instead (if it is set). For more information on PublisherListeners, see
Section 6.2.5.

mask This bit-mask indicates which status changes will cause the Publisher’s Listener to be
invoked. The bits set in the mask must have corresponding callbacks implemented in the
Listener. If you use NULL for the Listener, use DDS_STATUS_MASK_NONE for this
parameter. If the Listener implements all callbacks, use DDS_STATUS_MASK_ALL. For
information on statuses, see Listeners (Section 4.4).

library_name A QoS Library is a named set of QoS profiles. See QoS Libraries (Section 17.10). If
NULL is used for library_name, the DomainParticipant’s default library is assumed (see
Section 6.2.4.4).

profile_name A QoS profile groups a set of related QoS, usually one per entity. See QoS Profiles
(Section 17.9). If NULL is used for profile_name, the DomainParticipant’s default profile is
assumed and library_name is ignored.

For more examples, see Configuring QoS Settings when the Publisher is Created (Section
6.2.4.1).

After you create a Publisher, the next step is to use the Publisher to create a DataWriter for each
Topic, see Section 6.3.1. For a list of operations you can perform with a Publisher, see Table 6.1 on
page 6-4.

Figure 6.2 Creating a Publisher with Default QosPolicies

// create the publisher
DDSPublisher* publisher =

participant->create_publisher(DDS_PUBLISHER_QOS_DEFAULT,
 NULL,
 DDS_STATUS_MASK_NONE);

if (publisher == NULL) {
 // handle error
};
6-6

Publishers
6.2.3 Deleting Publishers

This section applies to both implicitly and explicitly created Publishers.

To delete a Publisher:

1. You must first delete all DataWriters that were created with the Publisher. Use the Pub-
lisher’s delete_datawriter() operation to delete them one at a time, or use the
delete_contained_entities() operation (Section 6.2.3.1) to delete them all at the same
time.

DDS_ReturnCode_t delete_datawriter (DDSDataWriter *a_datawriter)

2. Delete the Publisher by using the DomainParticipant’s delete_publisher() operation.

DDS_ReturnCode_t delete_publisher (DDSPublisher *p)

Note: A Publisher cannot be deleted within a Listener callback, see Restricted Operations in Lis-
tener Callbacks (Section 4.5.1).

6.2.3.1 Deleting Contained DataWriters

The Publisher’s delete_contained_entities() operation deletes all the DataWriters that were cre-
ated by the Publisher.

DDS_ReturnCode_t delete_contained_entities ()

After this operation returns successfully, the application may delete the Publisher (see
Section 6.2.3).

6.2.4 Setting Publisher QosPolicies

A Publisher’s QosPolicies control its behavior. Think of the policies as the configuration and
behavior ‘properties’ of the Publisher. The DDS_PublisherQos structure has the following for-
mat:

DDS_PublisherQos struct {
DDS_PresentationQosPolicy presentation;
DDS_PartitionQosPolicy partition;
DDS_GroupDataQosPolicy group_data;
DDS_EntityFactoryQosPolicy entity_factory;
DDS_AsynchronousPublisherQosPolicy asynchronous_publisher;
DDS_ExclusiveAreaQosPolicy exclusive_area;

 DDS_EntityNameQosPolicy publisher_name;
} DDS_PublisherQos;

Note: set_qos() cannot always be used in a listener callback; see Restricted Operations in Lis-
tener Callbacks (Section 4.5.1).

Table 6.2 summarizes the meaning of each policy. (They appear alphabetically in the table.) For
information on why you would want to change a particular QosPolicy, see the referenced sec-
tion. For defaults and valid ranges, please refer to the API Reference HTML documentation for
each policy.

6.2.4.1 Configuring QoS Settings when the Publisher is Created

As described in Creating Publishers (Section 6.2.2), there are different ways to create a Publisher,
depending on how you want to specify its QoS (with or without a QoS Profile).
6-7

Publishers
❏ In Figure 6.2 on page 6-6 we saw an example of how to explicitly create a Publisher with
default QosPolicies. It used the special constant, DDS_PUBLISHER_QOS_DEFAULT,
which indicates that the default QoS values for a Publisher should be used. Default Pub-
lisher QosPolicies are configured in the DomainParticipant; you can change them with the
DomainParticipant’s set_default_publisher_qos() or
set_default_publisher_qos_with_profile() operation (see Section 8.3.6.5).

❏ To create a Publisher with non-default QoS settings, without using a QoS profile, see
Figure 6.3 on page 6-9. It uses the DomainParticipant’s get_default_publisher_qos()
method to initialize a DDS_PublisherQos structure. Then the policies are modified from
their default values before the QoS structure is passed to create_publisher().

❏ You can also create a Publisher and specify its QoS settings via a QoS Profile. To do so, call
create_publisher_with_profile(), as seen in Figure 6.4 on page 6-9.

❏ If you want to use a QoS profile, but then make some changes to the QoS before creating
the Publisher, call the DomainParticipantFactory’s get_publisher_qos_from_profile(),
modify the QoS and use the modified QoS structure when calling create_publisher(), as
seen in Figure 6.5 on page 6-10.

For more information, see Creating Publishers (Section 6.2.2) and Chapter 17: Configuring QoS
with XML.

Table 6.2 Publisher QosPolicies

QosPolicy Description

ASYNCHRONOUS_PUBLISHER QosPol-
icy (DDS Extension) (Section 6.4.1)

Configures the mechanism that sends user data in an exter-
nal middleware thread.

ENTITYFACTORY QosPolicy (Section
6.4.2)

Controls whether or not child entities are created in the
enabled state.

ENTITY_NAME QosPolicy (DDS
Extension) (Section 6.5.9)

Assigns a name and role_name to a Publisher.

EXCLUSIVE_AREA QosPolicy (DDS
Extension) (Section 6.4.3)

Configures multi-thread concurrency and deadlock preven-
tion capabilities.

GROUP_DATA QosPolicy (Section 6.4.4)

Along with TOPIC_DATA QosPolicy (Section 5.2.1) and
USER_DATA QosPolicy (Section 6.5.25), this QosPolicy is
used to attach a buffer of bytes to Connext's discovery meta-
data.

PARTITION QosPolicy (Section 6.4.5)
Adds string identifiers that are used for matching DataRead-
ers and DataWriters for the same Topic.

PRESENTATION QosPolicy (Section 6.4.6)
Controls how Connext presents data received by an applica-
tion to the DataReaders of the data.
6-8

Publishers

DDS_PublisherQos publisher_qos;1

// get defaults
if (participant->get_default_publisher_qos(publisher_qos) !=

DDS_RETCODE_OK){
// handle error

}
// make QoS changes here
// for example, this changes the ENTITY_FACTORY QoS
publisher_qos.entity_factory.autoenable_created_entities =

DDS_BOOLEAN_FALSE;
// create the publisher
DDSPublisher* publisher =

participant->create_publisher(publisher_qos,
NULL, DDS_STATUS_MASK_NONE);

if (publisher == NULL) {
// handle error

}

1. For the C API, you need to use DDS_PublisherQos_INITIALIZER or DDS_PublisherQos_initialize(). See
Section 4.2.2

Figure 6.3 Creating a Publisher with Non-default QosPolicies (not from a profile)

// create the publisher with QoS profile
DDSPublisher* publisher =

participant->create_publisher_with_profile(
“MyPublisherLibary”,
“MyPublisherProfile”,
NULL, DDS_STATUS_MASK_NONE);

if (publisher == NULL) {
// handle error

}

Figure 6.4 Creating a Publisher with a QoS Profile
6-9

Publishers
6.2.4.2 Comparing QoS Values

The equals() operation compares two Publisher’s DDS_PublisherQoS structures for equality. It
takes two parameters for the two Publisher’s QoS structures to be compared, then returns TRUE
is they are equal (all values are the same) or FALSE if they are not equal.

6.2.4.3 Changing QoS Settings After the Publisher Has Been Created

There are 2 ways to change an existing Publisher’s QoS after it is has been created—again
depending on whether or not you are using a QoS Profile.

❏ To change an existing Publisher’s QoS programmatically (that is, without using a QoS
profile): get_qos() and set_qos(). See the example code in Figure 6.6. It retrieves the cur-
rent values by calling the Publisher’s get_qos() operation. Then it modify the value and
call set_qos() to apply the new value. Note, however, that some QosPolicies cannot be
changed after the Publisher has been enabled—this restriction is noted in the descriptions
of the individual QosPolicies.

❏ You can also change a Publisher’s (and all other Entities’) QoS by using a QoS Profile and
calling set_qos_with_profile(). For an example, see Figure 6.7. For more information, see
Chapter 17: Configuring QoS with XML.

DDS_PublisherQos publisher_qos;1

// Get publisher QoS from profile
retcode = factory->get_publisher_qos_from_profile(publisher_qos,

“PublisherLibrary”,
“PublisherProfile”);

if (retcode != DDS_RETCODE_OK) {
// handle error

}
// Makes QoS changes here
// New entity_factory autoenable_created_entities will be true
publisher_qos.entity_factory.autoenable_created_entities =

DDS_BOOLEAN_TRUE;
// create the publisher with modified QoS
DDSPublisher* publisher = participant->create_publisher(

“Example Foo”,
type_name,
publisher_qos,
NULL, DDS_STATUS_MASK_NONE);

if (publisher == NULL) {
// handle error

}

1. For the C API, you need to use DDS_PublisherQos_INITIALIZER or DDS_PublisherQos_initialize(). See
Section 4.2.2

Figure 6.5 Getting QoS Values from a Profile, Changing QoS Values, Creating a Publisher with
Modified QoS Values
6-10

Publishers

6.2.4.4 Getting and Setting the Publisher’s Default QoS Profile and Library

You can retrieve the default QoS profile used to create Publishers with the get_default_profile()
operation.

You can also get the default library for Publishers, as well as the library that contains the Pub-
lisher’s default profile (these are not necessarily the same library); these operations are called
get_default_library() and get_default_library_profile(), respectively. These operations are for
informational purposes only (that is, you do not need to use them as a precursor to setting a
library or profile.) For more information, see Chapter 17: Configuring QoS with XML.

virtual const char * get_default_library ()
const char * get_default_profile ()
const char * get_default_profile_library ()

There are also operations for setting the Publisher’s default library and profile:

DDS_ReturnCode_t set_default_library (const char * library_name)
DDS_ReturnCode_t set_default_profile (const char * library_name,

 const char * profile_name)

These operations only affect which library/profile will be used as the default the next time a
default Publisher library/profile is needed during a call to one of this Publisher’s operations.

When calling a Publisher operation that requires a profile_name parameter, you can use NULL
to refer to the default profile. (This same information applies to setting a default library.) If the
default library/profile is not set, the Publisher inherits the default from the DomainParticipant.

set_default_profile() does not set the default QoS for DataWriters created by the Publisher; for
this functionality, use the Publisher’s set_default_datawriter_qos_with_profile(), see

DDS_PublisherQos publisher_qos;1

// Get current QoS. publisher points to an existing DDSPublisher.
if (publisher->get_qos(publisher_qos) != DDS_RETCODE_OK) {

// handle error
}
// make changes
// New entity_factory autoenable_created_entities will be true
publisher_qos.entity_factory.autoenable_created_entities =DDS_BOOLEAN_TRUE;
// Set the new QoS
if (publisher->set_qos(publisher_qos) != DDS_RETCODE_OK) {
 // handle error
}

1. For the C API, you need to use DDS_PublisherQos_INITIALIZER or DDS_PublisherQos_Initialize(). See
Section 4.2.2

Figure 6.6 Changing the Qos of an Existing Publisher

retcode = publisher->set_qos_with_profile(
“PublisherProfileLibrary”,”PublisherProfile”);

if (retcode != DDS_RETCODE_OK) {
 // handle error
}

Figure 6.7 Changing the QoS of an Existing Publisher with a QoS Profile
6-11

Publishers
Section 6.2.4.5 (you may pass in NULL after having called the Publisher’s set_default_profile()).

set_default_profile() does not set the default QoS for newly created Publishers; for this function-
ality, use the DomainParticipant’s set_default_publisher_qos_with_profile() operation, see
Section 8.3.6.5.

6.2.4.5 Getting and Setting Default QoS for DataWriters

These operations set the default QoS that will be used for new DataWriters if create_datawriter()
is called with DDS_DATAWRITER_QOS_DEFAULT as the ‘qos’ parameter:

DDS_ReturnCode_t set_default_datawriter_qos (const DDS_DataWriterQos &qos)

DDS_ReturnCode_t set_default_datawriter_qos_with_profile (
const char *library_name,
const char *profile_name)

The above operations may potentially allocate memory, depending on the sequences contained
in some QoS policies.

To get the default QoS that will be used for creating DataWriters if create_datawriter() is called
with DDS_PARTICIPANT_QOS_DEFAULT as the ‘qos’ parameter:

DDS_ReturnCode_t get_default_datawriter_qos (DDS_DataWriterQos & qos)

This operation gets the QoS settings that were specified on the last successful call to
set_default_datawriter_qos() or set_default_datawriter_qos_with_profile(), or if the call was
never made, the default values listed in DDS_DataWriterQos.

Note: It is not safe to set the default DataWriter QoS values while another thread may be simulta-
neously calling get_default_datawriter_qos(), set_default_datawriter_qos(), or
create_datawriter() with DDS_DATAWRITER_QOS_DEFAULT as the qos parameter. It is also
not safe to get the default DataWriter QoS values while another thread may be simultaneously
calling set_default_datawriter_qos(),

6.2.4.6 Other Publisher QoS-Related Operations

❏ Copying a Topic’s QoS into a DataWriter’s QoS This method is provided as a convenience
for setting the values in a DataWriterQos structure before using that structure to create a
DataWriter. As explained in Section 5.1.3, most of the policies in a TopicQos structure do
not apply directly to the Topic itself, but to the associated DataWriters and DataReaders of
that Topic. The TopicQos serves as a single container where the values of QosPolicies that
must be set compatibly across matching DataWriters and DataReaders can be stored.

Thus instead of setting the values of the individual QosPolicies that make up a DataWrit-
erQos structure every time you need to create a DataWriter for a Topic, you can use the
Publisher’s copy_from_topic_qos() operation to “import” the Topic’s QosPolicies into a
DataWriterQos structure. This operation copies the relevant policies in the TopicQos to the
corresponding policies in the DataWriterQos.

This copy operation will often be used in combination with the Publisher’s
get_default_datawriter_qos() and the Topic’s get_qos() operations. The Topic’s QoS val-
ues are merged on top of the Publisher’s default DataWriter QosPolicies with the result
used to create a new DataWriter, or to set the QoS of an existing one (see Section 6.3.15).

❏ Copying a Publisher’s QoS C API users should use the DDS_PublisherQos_copy() opera-
tion rather than using structure assignment when copying between two QoS structures.
The copy() operation will perform a deep copy so that policies that allocate heap mem-
ory such as sequences are copied correctly. In C++, C++/CLI, C# and Java, a copy con-
structor is provided to take care of sequences automatically.
6-12

Publishers
❏ Clearing QoS-Related Memory Some QosPolicies contain sequences that allocate mem-
ory dynamically as they grow or shrink. The C API’s DDS_PublisherQos_finalize()
operation frees the memory used by sequences but otherwise leaves the QoS unchanged.
C API users should call finalize() on all DDS_PublisherQos objects before they are freed,
or for QoS structures allocated on the stack, before they go out of scope. In C++, C++/
CLI, C# and Java, the memory used by sequences is freed in the destructor.

6.2.5 Setting Up PublisherListeners

Like all Entities, Publishers may optionally have Listeners. Listeners are user-defined objects that
implement a DDS-defined interface (i.e. a pre-defined set of callback functions). Listeners pro-
vide the means for Connext to notify applications of any changes in Statuses (events) that may be
relevant to it. By writing the callback functions in the Listener and installing the Listener into the
Publisher, applications can be notified to handle the events of interest. For more general informa-
tion on Listeners and Statuses, see Section 4.4.

Note: Some operations cannot be used within a listener callback, see Restricted Operations in
Listener Callbacks (Section 4.5.1).

As illustrated in Figure 6.1 on page 6-3, the PublisherListener interface extends the DataWriterLis-
tener interface. In other words, the PublisherListener interface contains all the functions in the
DataWriterListener interface. There are no Publisher-specific statuses, and thus there are no Pub-
lisher-specific functions.

Instead, the methods of a PublisherListener will be called back for changes in the Statuses of any
of the DataWriters that the Publisher has created. This is only true if the DataWriter itself does not
have a DataWriterListener installed, see Section 6.3.4. If a DataWriterListener has been installed
and has been enabled to handle a Status change for the DataWriter, then Connext will call the
method of the DataWriterListener instead.

If you want a Publisher to handle status events for its DataWriters, you can set up a PublisherLis-
tener during the Publisher’s creation or use the set_listener() method after the Publisher is created.
The last parameter is a bit-mask with which you should set which Status events that the Pub-
lisherListener will handle. For example,

DDS_StatusMask mask = DDS_OFFERED_DEADLINE_MISSED_STATUS |
 DDS_OFFERED_INCOMPATIBLE_QOS_STATUS;

publisher = participant->create_publisher(DDS_PUBLISHER_QOS_DEFAULT,
 listener, mask);

or

DDS_StatusMask mask = DDS_OFFERED_DEADLINE_MISSED_STATUS |
 DDS_OFFERED_INCOMPATIBLE_QOS_STATUS;

publisher->set_listener(listener, mask);

As previously mentioned, the callbacks in the PublisherListener act as ‘default’ callbacks for all
the DataWriters contained within. When Connext wants to notify a DataWriter of a relevant Status
change (for example, PUBLICATION_MATCHED), it first checks to see if the DataWriter has
the corresponding DataWriterListener callback enabled (such as the on_publication_matched()
operation). If so, Connext dispatches the event to the DataWriterListener callback. Otherwise, Con-
next dispatches the event to the corresponding PublisherListener callback.

A particular callback in a DataWriter is not enabled if either:

❏ The application installed a NULL DataWriterListener (meaning there are no callbacks for
the DataWriter at all).
6-13

Publishers
❏ The application has disabled the callback for a DataWriterListener. This is done by turning
off the associated status bit in the mask parameter passed to the set_listener() or
create_datawriter() call when installing the DataWriterListener on the DataWriter. For
more information on DataWriterListeners, see Section 6.3.4.

Similarly, the callbacks in the DomainParticipantListener act as ‘default’ callbacks for all the Pub-
lishers that belong to it. For more information on DomainParticipantListeners, see Section 8.3.5.

For example, Figure 6.8 shows how to create a Publisher with a Listener that simply prints the
events it receives.

Figure 6.8 Example Code to Create a Publisher with a Simple Listener

class MyPublisherListener : public DDSPublisherListener {
 public:
 virtual void on_offered_deadline_missed(DDSDataWriter* writer,
 const DDS_OfferedDeadlineMissedStatus& status);

 virtual void on_liveliness_lost(DDSDataWriter* writer,
 const DDS_LivelinessLostStatus& status);

 virtual void on_offered_incompatible_qos(DDSDataWriter* writer,
 const DDS_OfferedIncompatibleQosStatus& status);

 virtual void on_publication_matched(DDSDataWriter* writer,
 const DDS_PublicationMatchedStatus& status);

 virtual void
on_reliable_writer_cache_changed(DDSDataWriter* writer,

 const DDS_ReliableWriterCacheChangedStatus& status);

virtual void on_reliable_reader_activity_changed
(DDSDataWriter* writer,

 const DDS_ReliableReaderActivityChangedStatus& status);
};

void MyPublisherListener::on_offered_deadline_missed(
DDSDataWriter* writer,

 const DDS_OfferedDeadlineMissedStatus& status)
{
 printf(“on_offered_deadline_missed\n”);
}

// ...Implement all remaining listeners in a similar manner...

DDSPublisherListener *myPubListener = new MyPublisherListener();

DDSPublisher* publisher = participant->create_publisher(
 DDS_PUBLISHER_QOS_DEFAULT,

myPubListener, DDS_STATUS_MASK_ALL);
6-14

Publishers
6.2.6 Finding a Publisher’s Related Entities

These Publisher operations are useful for obtaining a handle to related entities:

❏ get_participant(): Gets the DomainParticipant with which a Publisher was created.

❏ lookup_datawriter(): Finds a DataWriter created by the Publisher with a Topic of a particu-
lar name. Note that in the event that multiple DataWriters were created by the same Pub-
lisher with the same Topic, any one of them may be returned by this method.

❏ DDS_Publisher_as_Entity(): This method is provided for C applications and is neces-
sary when invoking the parent class Entity methods on Publishers. For example, to call
the Entity method get_status_changes() on a Publisher, my_pub, do the following:

DDS_Entity_get_status_changes(DDS_Publisher_as_Entity(my_pub))

DDS_Publisher_as_Entity() is not provided in the C++, C++/CLI, C# and Java APIs
because the object-oriented features of those languages make it unnecessary.

6.2.7 Waiting for Acknowledgments in a Publisher

The Publisher’s wait_for_acknowledgments() operation blocks the calling thread until either all
data written by the Publisher’s reliable DataWriters is acknowledged or the duration specified by
the max_wait parameter elapses, whichever happens first.

Note that if a thread is blocked in the call to wait_for_acknowledgments() on a Publisher and a
different thread writes new samples on any of the Publisher’s reliable DataWriters, the new sam-
ples must be acknowledged before unblocking the thread that is waiting on
wait_for_acknowledgments().

DDS_ReturnCode_t wait_for_acknowledgments
(const DDS_Duration_t & max_wait)

This operation returns DDS_RETCODE_OK if all the samples were acknowledged, or
DDS_RETCODE_TIMEOUT if the max_wait duration expired first.

There is a similar operation available for individual DataWriters, see Section 6.3.11.

The reliability protocol used by Connext is discussed in Chapter 10: Reliable Communications.

6.2.8 Statuses for Publishers

There are no statuses specific to the Publisher itself. The following statuses can be monitored by
the PublisherListener for the Publisher’s DataWriters.

❏ OFFERED_DEADLINE_MISSED Status (Section 6.3.6.4)

❏ LIVELINESS_LOST Status (Section 6.3.6.3)

❏ OFFERED_INCOMPATIBLE_QOS Status (Section 6.3.6.5)

❏ PUBLICATION_MATCHED Status (Section 6.3.6.6)

❏ RELIABLE_WRITER_CACHE_CHANGED Status (DDS Extension) (Section 6.3.6.7)

❏ RELIABLE_READER_ACTIVITY_CHANGED Status (DDS Extension) (Section 6.3.6.8)
6-15

DataWriters
6.2.9 Suspending and Resuming Publications

The operations suspend_publications() and resume_publications() provide a hint to Connext
that multiple data-objects within the Publisher are about to be written. Connext does not cur-
rently use this hint.

6.3 DataWriters
To create a DataWriter, you need a DomainParticipant and a Topic.

You need a DataWriter for each Topic that you want to publish. Once you have a DataWriter, you
can use it to perform the operations listed in Table 6.3. The most important operation is write(),
described in Section 6.3.8. For more details on all operations, see the API Reference HTML docu-
mentation.

DataWriters are created by using operations on a DomainParticipant or a Publisher, as described in
Section 6.3.1. If you use the DomainParticipant’s operations, the DataWriter will belong to an
implicit Publisher that is automatically created by the middleware. If you use a Publisher’s opera-
tions, the DataWriter will belong to that Publisher. So either way, the DataWriter belongs to a Pub-
lisher.

Note: Some operations cannot be used within a listener callback, see Restricted Operations in
Listener Callbacks (Section 4.5.1).

Table 6.3 DataWriter Operations

Working with
... Operation Description Reference

DataWriters

assert_liveliness Manually asserts the liveliness of the DataWriter. Section 6.3.17

enable Enables the DataWriter. Section 4.1.2

equals
Compares two DataWriter’s QoS structures for
equality.

Section 6.3.15.2

get_qos Gets the QoS. Section 6.3.15

lookup_instance
Gets a handle, given an instance. (Useful for
keyed data types only.)

Section 6.3.14.3

set_qos Modifies the QoS. Section 6.3.15

set_qos_with_profile Modifies the QoS based on a QoS profile. Section 6.3.15

get_listener Gets the currently installed Listener.
Section 6.3.4

set_listener Replaces the Listener.
6-16

DataWriters
FooData-
Writer
(See

Section 6.3.7)

dispose
States that the instance no longer exists. (Useful
for keyed data types only.)

Section 6.3.14.2
dispose_w_timestamp

Same as dispose, but allows the application to
override the automatic source_timestamp. (Use-
ful for keyed data types only.)

flush
Makes the batch available to be sent on the net-
work.

Section 6.3.9

get_key_value
Maps an instance_handle to the corresponding
key.

Section 6.3.14.4

narrow
A type-safe way to cast a pointer. This takes a
DDSDataWriter pointer and ‘narrows’ it to a ‘Foo-
DataWriter’ where ‘Foo’ is the related data type.

Section 6.3.7

register_instance

States the intent of the DataWriter to write values
of the data-instance that matches a specified key.
Improves the performance of subsequent writes
to the instance. (Useful for keyed data types only.)

Section 6.3.14.1

register_instance_w_
timestamp

Like register_instance, but allows the application
to override the automatic source_timestamp.
(Useful for keyed data types only.)

unregister_instance
Reverses register_instance. Relinquishes the own-
ership of the instance. (Useful for keyed data
types only.)

unregister_instance_w_
timestamp

Like unregister_instance, but allows the applica-
tion to override the automatic source_timestamp.
(Useful for keyed data types only.)

write Writes a new value for a data-instance.
Section 6.3.8

write_w_timestamp
Same as write, but allows the application to over-
ride the automatic source_timestamp.

FooData-
Writer
(See

Section 6.3.7)

write_w_params
Same as write, but allows the application to spec-
ify parameters such as source timestamp and
instance handle.

Section 6.3.8

dispose_w_params
Same as dispose, but allows the application to
specify parameters such as source timestamp and
instance handle..

Section 6.3.14.2

register_w_params
Same as register, but allows the application to
specify parameters such as source timestamp,
instance handle.

Section 6.3.14.1

unregister_w_params
Same as unregister, but allows the application to
specify parameters such as source timestamp, and
instance handle.

Table 6.3 DataWriter Operations

Working with
... Operation Description Reference
6-17

DataWriters
Matched
Subscriptions

get_matched_
subscriptions

Gets a list of subscriptions that have a matching
Topic and compatible QoS. These are the subscrip-
tions currently associated with the DataWriter.

Section 6.3.16.1
get_matched_
subscription_data

Gets information on a subscription with a match-
ing Topic and compatible QoS.

get_matched_
subscription_locators

Gets a list of locators for subscriptions that have a
matching Topic and compatible QoS. These are
the subscriptions currently associated with the
DataWriter.

get_matched_
subscription_
participant_data

Gets information about the DomainParticipant of a
matching subscription.

Section 6.3.16.2

Status

get_status_changes
Gets a list of statuses that have changed since the
last time the application read the status or the lis-
teners were called.

Section 4.1.4

get_liveliness_lost_status Gets LIVELINESS_LOST status.

Section 6.3.6

get_offered_deadline_
missed_status

Gets OFFERED_DEADLINE_MISSED status.

get_offered_
incompatible_qos_status

Gets OFFERED_INCOMPATIBLE_QOS status.

get_publication_match_
status

Gets PUBLICATION_MATCHED_QOS status.

get_reliable_writer_
cache_changed_status

Gets RELIABLE_WRITER_CACHE_CHANGED
status

get_reliable_reader_
activity_changed_status

Gets
RELIABLE_READER_ACTIVITY_CHANGED
status

get_datawriter_cache_
status

Gets DATA_WRITER_CACHE_status

get_datawriter_protocol_
status

Gets DATA_WRITER_PROTOCOL status

get_matched_
subscription_datawriter_
protocol_status

Gets DATA_WRITER_PROTOCOL status for this
DataWriter, per matched subscription identified
by the subscription_handle.

Section 6.3.6get_matched_
subscription_datawriter_
protocol_status_
by_locator

Gets DATA_WRITER_PROTOCOL status for this
DataWriter, per matched subscription as identi-
fied by a locator.

Other

get_publisher
Gets the Publisher to which the DataWriter
belongs. Section 6.3.16.3

get_topic Get the Topic associated with the DataWriter.

wait_for_
acknowledgements

Blocks the calling thread until either all data writ-
ten by the DataWriter is acknowledged by all
matched Reliable DataReaders, or until the a speci-
fied timeout duration, max_wait, elapses.

Section 6.3.11

Table 6.3 DataWriter Operations

Working with
... Operation Description Reference
6-18

DataWriters
6.3.1 Creating DataWriters

Before you can create a DataWriter, you need a DomainParticipant, a Topic, and optionally, a Pub-
lisher.

DataWriters are created by calling create_datawriter() or create_datawriter_with_profile()—
these operations exist for DomainParticipants and Publishers. If you use the DomainParticipant to
create a DataWriter, it will belong to the implicit Publisher described in Section 6.2.1. If you use a
Publisher’s operations to create a DataWriter, it will belong to that Publisher.

DDSDataWriter* create_datawriter (DDSTopic *topic,
 const DDS_DataWriterQos &qos,
 DDSDataWriterListener *listener,
 DDS_StatusMask mask)

DDSDataWriter * create_datawriter_with_profile (
 DDSTopic * topic,
 const char * library_name,
 const char * profile_name,
 DDSDataWriterListener * listener,
 DDS_StatusMask mask)

A QoS profile is way to use QoS settings from an XML file or string. With this approach, you can
change QoS settings without recompiling the application. For details, see Chapter 17: Configur-
ing QoS with XML.

topic The Topic that the DataWriter will publish. This must have been previously created by the
same DomainParticipant.

qos If you want the default QoS settings (described in the API Reference HTML documenta-
tion), use the constant DDS_DATAWRITER_QOS_DEFAULT for this parameter (see
Figure 6.9 on page 6-20). If you want to customize any of the QosPolicies, supply a QoS
structure (see Section 6.3.15).

Note: If you use DDS_DATAWRITER_QOS_DEFAULT for the qos parameter, it is not safe
to create the DataWriter while another thread may be simultaneously calling the Pub-
lisher’s set_default_datawriter_qos() operation.

listener Listeners are callback routines. Connext uses them to notify your application of specific
events (status changes) that may occur with respect to the DataWriter. The listener parame-
ter may be set to NULL; in this case, the PublisherListener (or if that is NULL, the Domain-
ParticipantListener) will be used instead. For more information, see Section 6.3.4.

mask This bit-mask indicates which status changes will cause the Listener to be invoked. The
bits set in the mask must have corresponding callbacks implemented in the Listener. If you
use NULL for the Listener, use DDS_STATUS_MASK_NONE for this parameter. If the Lis-
tener implements all callbacks, use DDS_STATUS_MASK_ALL. For information on sta-
tuses, see Listeners (Section 4.4).

library_name A QoS Library is a named set of QoS profiles. See QoS Libraries (Section 17.10).

profile_name A QoS profile groups a set of related QoS, usually one per entity. See QoS Profiles
(Section 17.9).

For more examples on how to create a DataWriter, see Configuring QoS Settings when the
DataWriter is Created (Section 6.3.15.1)

After you create a DataWriter, you can use it to write data. See Writing Data (Section 6.3.8).
6-19

DataWriters
Note: When a DataWriter is created, only those transports already registered are available to the
DataWriter. The built-in transports are implicitly registered when (a) the DomainParticipant is
enabled, (b) the first DataWriter is created, or (c) you look up a built-in data reader, whichever
happens first.

6.3.2 Getting All DataWriters

To retrieve all the DataWriters created by the Publisher, use the Publisher’s get_all_datawriters()
operation:

DDS_ReturnCode_t get_all_datawriters(DDS_Publisher* self,
 struct DDS_DataWriterSeq* writers);

6.3.3 Deleting DataWriters

To delete a single DataWriter, use the Publisher’s delete_datawriter() operation:

DDS_ReturnCode_t delete_datawriter (DDSDataWriter *a_datawriter)

Note: A DataWriter cannot be deleted within its own writer listener callback, see Restricted
Operations in Listener Callbacks (Section 4.5.1)

// MyWriterListener is user defined, extends DDSDataWriterListener
DDSDataWriterListener* writer_listener = new MyWriterListener();

DDSDataWriter* writer = publisher->create_datawriter(
topic,
DDS_DATAWRITER_QOS_DEFAULT,
writer_listener,
DDS_STATUS_MASK_ALL);

if (writer == NULL) {
 // ... error
};

// narrow it for your specific data type
FooDataWriter* foo_writer = FooDataWriter::narrow(writer);

Figure 6.9 Creating a DataWriter with Default QosPolicies and a Listener
6-20

DataWriters
To delete all of a Publisher’s DataWriters, use the Publisher’s delete_contained_entities() opera-
tion (see Section 6.2.3.1).

6.3.4 Setting Up DataWriterListeners

DataWriters may optionally have Listeners. Listeners are essentially callback routines and provide
the means for Connext to notify your application of the occurrence of events (status changes) rel-
evant to the DataWriter. For more general information on Listeners, see Listeners (Section 4.4).

Note: Some operations cannot be used within a listener callback, see Restricted Operations in
Listener Callbacks (Section 4.5.1).

If you do not implement a DataWriterListener, the associated PublisherListener is used instead. If
that Publisher also does not have a Listener, then the DomainParticipant’s Listener is used if one
exists (see Section 6.2.5 and Section 8.3.5).

Listeners are typically set up when the DataWriter is created (see Section 6.2). You can also set one
up after creation by using the set_listener() operation. Connext will invoke a DataWriter’s Lis-
tener to report the status changes listed in Table 6.4 (if the Listener is set up to handle the partic-
ular status, see Section 6.3.4).

Special instructions for deleting DataWriters if you are using the ‘Timestamp’ APIs and
BY_SOURCE_TIMESTAMP Destination Order:

This note only applies when the DataWriter’s DestinationOrderQosPolicy’s kind is
BY_SOURCE_TIMESTAMP.

Calls to delete_datawriter() may fail if your application has previously used the “with time-
stamp” APIs (write_w_timestamp(), register_instance_w_timestamp(),
unregister_instance_w_timestamp(), or dispose_w_timestamp()) with a timestamp that is
larger than the time at which delete_datawriter() is called.

To prevent delete_datawriter() from failing in this situation, either:

❏ Change the WriterDataLifeCycle QoS Policy so that Connext will not auto-dispose
unregistered instances:

writer_qos.writer_data_lifecycle.
autodispose_unregistered_instances =

DDS_BOOLEAN_FALSE;
or

❏ Explicitly call unregister_instance_w_timestamp() for all instances modified with the
*_w_timestamp() APIs before calling delete_datawriter().

Table 6.4 DataWriterListener Callbacks

This DataWriterListener
callback... ... is triggered by ...

on_instance_replaced()
A replacement of an existing instance by a new instance; see Con-
figuring DataWriter Instance Replacement (Section 6.5.20.2)

on_liveliness_lost A change to LIVELINESS_LOST Status (Section 6.3.6.3)

on_offered_deadline_missed
A change to OFFERED_DEADLINE_MISSED Status (Section
6.3.6.4)

on_offered_incompatible_qos
A change to OFFERED_INCOMPATIBLE_QOS Status (Section
6.3.6.5)
6-21

DataWriters
6.3.5 Checking DataWriter Status

You can access an individual communication status for a DataWriter with the operations shown
in Table 6.5.

These methods are useful in the event that no Listener callback is set to receive notifications of
status changes. If a Listener is used, the callback will contain the new status information, in
which case calling these methods is unlikely to be necessary.

The get_status_changes() operation provides a list of statuses that have changed since the last
time the status changes were ‘reset.’ A status change is reset each time the application calls the
corresponding get_*_status(), as well as each time Connext returns from calling the Listener call-
back associated with that status.

For more on status, see Setting Up DataWriterListeners (Section 6.3.4), Statuses for DataWriters
(Section 6.3.6), and Listeners (Section 4.4).

6.3.6 Statuses for DataWriters

There are several types of statuses available for a DataWriter. You can use the get_*_status()
operations (Section 6.3.15) to access them, or use a DataWriterListener (Section 6.3.4) to listen for
changes in their values. Each status has an associated data structure and is described in more
detail in the following sections.

on_publication_matched A change to PUBLICATION_MATCHED Status (Section 6.3.6.6)

on_reliable_writer_cache_changed
A change to RELIABLE_WRITER_CACHE_CHANGED Status
(DDS Extension) (Section 6.3.6.7)

on_reliable_reader_activity_changed
A change to RELIABLE_READER_ACTIVITY_CHANGED Status
(DDS Extension) (Section 6.3.6.8)

Table 6.4 DataWriterListener Callbacks

This DataWriterListener
callback... ... is triggered by ...

Table 6.5 DataWriter Status Operations

Use this operation... ...to retrieve this status:

get_datawriter_cache_status DATA_WRITER_CACHE_STATUS (Section 6.3.6.1)

get_datawriter_protocol_status

DATA_WRITER_PROTOCOL_STATUS (Section 6.3.6.2)
get_matched_subscription_datawriter_
protocol_status

get_matched_subscription_datawriter_
protocol_status_by_locator

get_liveliness_lost_status LIVELINESS_LOST Status (Section 6.3.6.3)

get_offered_deadline_missed_status OFFERED_DEADLINE_MISSED Status (Section 6.3.6.4)

get_offered_incompatible_qos_status OFFERED_INCOMPATIBLE_QOS Status (Section 6.3.6.5)

get_publication_match_status PUBLICATION_MATCHED Status (Section 6.3.6.6)

get_reliable_writer_cache_changed_status RELIABLE_WRITER_CACHE_CHANGED Status (DDS
Extension) (Section 6.3.6.7)

get_reliable_reader_activity_changed_status RELIABLE_READER_ACTIVITY_CHANGED Status
(DDS Extension) (Section 6.3.6.8)

get_status_changes A list of what changed in all of the above.
6-22

DataWriters
❏ DATA_WRITER_CACHE_STATUS (Section 6.3.6.1)

❏ DATA_WRITER_PROTOCOL_STATUS (Section 6.3.6.2)

❏ LIVELINESS_LOST Status (Section 6.3.6.3)

❏ OFFERED_DEADLINE_MISSED Status (Section 6.3.6.4)

❏ OFFERED_INCOMPATIBLE_QOS Status (Section 6.3.6.5)

❏ PUBLICATION_MATCHED Status (Section 6.3.6.6)

❏ RELIABLE_WRITER_CACHE_CHANGED Status (DDS Extension) (Section 6.3.6.7)

❏ RELIABLE_READER_ACTIVITY_CHANGED Status (DDS Extension) (Section 6.3.6.8)

6.3.6.1 DATA_WRITER_CACHE_STATUS

This status keeps track of the number of samples in the DataWriter’s queue.

This status does not have an associated Listener. You can access this status by calling the DataW-
riter’s get_datawriter_cache_status() operation, which will return the status structure described
in Table 6.6.

6.3.6.2 DATA_WRITER_PROTOCOL_STATUS

This status includes internal protocol related metrics (such as the number of samples pushed,
pulled, filtered) and the status of wire-protocol traffic.

❏ Pulled samples are samples sent for repairs (that is, samples that had to be resent), for late
joiners, and all samples sent by the local DataWriter when push_on_write (in
DATA_WRITER_PROTOCOL QosPolicy (DDS Extension) (Section 6.5.3)) is
DDS_BOOLEAN_FALSE.

❏ Pushed samples are samples sent on write() when push_on_write is
DDS_BOOLEAN_TRUE.

❏ Filtered samples are samples that are not sent due to DataWriter filtering (time-based fil-
tering and ContentFilteredTopics).

This status does not have an associated Listener. You can access this status by calling the follow-
ing operations on the DataWriter (all of which return the status structure described in Table 6.7
on page 6-24):

❏ get_datawriter_protocol_status() returns the sum of the protocol status for all the
matched subscriptions for the DataWriter.

❏ get_matched_subscription_datawriter_protocol_status() returns the protocol status of a
particular matched subscription, identified by a subscription_handle.

❏ get_matched_subscription_datawriter_protocol_status_by_locator() returns the proto-
col status of a particular matched subscription, identified by a locator. (See Locator For-
mat (Section 14.2.1.1).)

Table 6.6 DDS_DataWriterCacheStatus

Type Field Name Description

DDS_Long sample_count_peak
Highest number of samples in the DataWriter’s queue over the
lifetime of the DataWriter.

DDS_Long sample_count
Current number of samples in the DataWriter’s queue (including
unregister and dispose samples)
6-23

DataWriters
Note: Status for a remote entity is only kept while the entity is alive. Once a remote entity is no
longer alive, its status is deleted. If you try to get the matched subscription status for a remote
entity that is no longer alive, the ‘get status’ call will return an error.

Table 6.7 DDS_DataWriterProtocolStatus

Type Field Name Description

DDS_LongLong

pushed_sample_count
The number of user samples pushed on write from a local
DataWriter to a matching remote DataReader.

pushed_sample_count_change
The incremental change in the number of user samples
pushed on write from a local DataWriter to a matching remote
DataReader since the last time the status was read.

pushed_sample_bytes
The number of bytes of user samples pushed on write from a
local DataWriter to a matching remote DataReader.

pushed_sample_bytes_change
The incremental change in the number of bytes of user sam-
ples pushed on write from a local DataWriter to a matching
remote DataReader since the last time the status was read.

DDS_LongLong

filtered_sample_count
The number of user samples preemptively filtered by a local
DataWriter due to Content-Filtered Topics.

filtered_sample_count_change
The incremental change in the number of user samples pre-
emptively filtered by a local DataWriter due to ContentFil-
teredTopics since the last time the status was read.

filtered_sample_bytes
The number of user samples preemptively filtered by a local
DataWriter due to ContentFilteredTopics.

filtered_sample_bytes_change
The incremental change in the number of user samples pre-
emptively filtered by a local DataWriter due to ContentFil-
teredTopics since the last time the status was read.

DDS_LongLong

sent_heartbeat_count
The number of Heartbeats sent between a local DataWriter
and matching remote DataReaders.

sent_heartbeat_count_change
The incremental change in the number of Heartbeats sent
between a local DataWriter and matching remote DataReaders
since the last time the status was read.

sent_heartbeat_bytes
The number of bytes of Heartbeats sent between a local
DataWriter and matching remote DataReader.

sent_heartbeat_bytes_change
The incremental change in the number of bytes of Heartbeats
sent between a local DataWriter and matching remote
DataReaders since the last time the status was read.

DDS_LongLong

pulled_sample_count
The number of user samples pulled from local DataWriter by
matching DataReaders.

pulled_sample_count_change
The incremental change in the number of user samples pulled
from local DataWriter by matching DataReaders since the last
time the status was read.

pulled_sample_bytes
The number of bytes of user samples pulled from local
DataWriter by matching DataReaders.

pulled_sample_bytes_change
The incremental change in the number of bytes of user sam-
ples pulled from local DataWriter by matching DataReaders
since the last time the status was read.
6-24

DataWriters
DDS_LongLong

received_ack_count
The number of ACKs from a remote DataReader received by a
local DataWriter.

received_ack_count_change
The incremental change in the number of ACKs from a
remote DataReader received by a local DataWriter since the
last time the status was read.

received_ack_bytes
The number of bytes of ACKs from a remote DataReader
received by a local DataWriter.

received_ack_bytes_change
The incremental change in the number of bytes of ACKs from
a remote DataReader received by a local DataWriter since the
last time the status was read.

DDS_LongLong

received_nack_count
The number of NACKs from a remote DataReader received by
a local DataWriter.

received_nack_count_change
The incremental change in the number of NACKs from a
remote DataReader received by a local DataWriter since the
last time the status was read.

received_nack_bytes
The number of bytes of NACKs from a remote DataReader
received by a local DataWriter.

received_nack_bytes_change
The incremental change in the number of bytes of NACKs
from a remote DataReader received by a local DataWriter since
the last time the status was read.

DDS_LongLong

sent_gap_count
The number of GAPs sent from local DataWriter to matching
remote DataReaders.

sent_gap_count_change
The incremental change in the number of GAPs sent from
local DataWriter to matching remote DataReaders since the last
time the status was read.

sent_gap_bytes
The number of bytes of GAPs sent from local DataWriter to
matching remote DataReaders.

sent_gap_bytes_change
The incremental change in the number of bytes of GAPs sent
from local DataWriter to matching remote DataReaders since
the last time the status was read.

DDS_LongLong

rejected_sample_count
The number of times a sample is rejected for unanticipated
reasons in the send path.

rejected_sample_count_change
The incremental change in the number of times a sample is
rejected due to exceptions in the send path since the last time
the status was read.

DDS_Long send_window_size
Current maximum number of outstanding samples allowed
in the DataWriter's queue.

Table 6.7 DDS_DataWriterProtocolStatus

Type Field Name Description
6-25

DataWriters
DDS_Sequence
Number_t

first_available_sample_
sequence_number

Sequence number of the first available sample in the DataW-
riter's reliability queue.

last_available_sample_
sequence_number

Sequence number of the last available sample in the DataW-
riter's reliability queue.

first_unacknowledged_sample_
sequence_number

Sequence number of the first unacknowledged sample in the
DataWriter's reliability queue.

first_available_sample_virtual_
sequence_number

Virtual sequence number of the first available sample in the
DataWriter's reliability queue.

last_available_sample_virtual_
sequence_number

Virtual sequence number of the last available sample in the
DataWriter's reliability queue.

first_unacknowledged_sample_
virtual_sequence_number

Virtual sequence number of the first unacknowledged sample
in the DataWriter's reliability queue.

DDS_Sequence
Number_t

first_unacknowledged_sample_
subscription_handle

Instance Handle of the matching remote DataReader for which
the DataWriter has kept the first available sample in the reli-
ability queue.

first_unelapsed_keep_duration_
sample_sequence_number

Sequence number of the first sample kept in the DataWriter's
queue whose keep_duration (applied when
disable_positive_acks is set) has not yet elapsed.

Table 6.7 DDS_DataWriterProtocolStatus

Type Field Name Description
6-26

DataWriters
6.3.6.3 LIVELINESS_LOST Status

A change to this status indicates that the DataWriter failed to signal its liveliness within the time
specified by the LIVELINESS QosPolicy (Section 6.5.13).

It is different than the RELIABLE_READER_ACTIVITY_CHANGED Status (DDS Extension)
(Section 6.3.6.8) status that provides information about the liveliness of a DataWriter’s matched
DataReaders; this status reflects the DataWriter’s own liveliness.

The structure for this status appears in Table 6.8 on page 6-27.

The DataWriterListener’s on_liveliness_lost() callback is invoked when this status changes. You
can also retrieve the value by calling the DataWriter’s get_liveliness_lost_status() operation.

6.3.6.4 OFFERED_DEADLINE_MISSED Status

A change to this status indicates that the DataWriter failed to write data within the time period
set in its DEADLINE QosPolicy (Section 6.5.5).

The structure for this status appears in Table 6.9.

The DataWriterListener’s on_offered_deadline_missed() operation is invoked when this status
changes. You can also retrieve the value by calling the DataWriter’s
get_deadline_missed_status() operation.

6.3.6.5 OFFERED_INCOMPATIBLE_QOS Status

A change to this status indicates that the DataWriter discovered a DataReader for the same Topic,
but that DataReader had requested QoS settings incompatible with this DataWriter’s offered QoS.

The structure for this status appears in Table 6.10.

Table 6.8 DDS_LivelinessLostStatus

Type Field Name Description

DDS_Long total_count
Cumulative number of times the DataWriter failed to explicitly signal
its liveliness within the liveliness period.

DDS_Long total_count_change
The change in total_count since the last time the Listener was called
or the status was read.

Table 6.9 DDS_OfferedDeadlineMissedStatus

Type Field Name Description

DDS_Long total_count
Cumulative number of times the DataWriter failed to write
within its offered deadline.

DDS_Long total_count_change
The change in total_count since the last time the Listener was
called or the status was read.

DDS_Instance
Handle_t

last_instance_handle
Handle to the last data-instance in the DataWriter for which an
offered deadline was missed.

Table 6.10 DDS_OfferedIncompatibleQoSStatus

Type Field Name Description

DDS_Long total_count
Cumulative number of times the DataWriter discovered a
DataReader for the same Topic with a requested QoS that is
incompatible with that offered by the DataWriter.

DDS_Long total_count_change
The change in total_count since the last time the Listener was
called or the status was read.
6-27

DataWriters
The DataWriterListener’s on_offered_incompatible_qos() callback is invoked when this status
changes. You can also retrieve the value by calling the DataWriter’s
get_offered_incompatible_qos_status() operation.

6.3.6.6 PUBLICATION_MATCHED Status

A change to this status indicates that the DataWriter discovered a matching DataReader.

A ‘match’ occurs only if the DataReader and DataWriter have the same Topic, same data type
(implied by having the same Topic), and compatible QosPolicies. In addition, if user code has
directed Connext to ignore certain DataReaders, then those DataReaders will never be matched.
See Section 16.4.2 for more on setting up a DomainParticipant to ignore specific DataReaders.

The structure for this status appears in Table 6.11.

The DataWriterListener’s on_publication_matched() callback is invoked when this status
changes. You can also retrieve the value by calling the DataWriter’s
get_publication_match_status() operation.

DDS_QosPolicyId_t last_policy_id

The ID of the QosPolicy that was found to be incompatible the
last time an incompatibility was detected. (Note: if there are
multiple incompatible policies, only one of them is reported
here.)

 DDS_
QosPolicyCountSeq

policies

A list containing—for each policy—the total number of times
that the DataWriter discovered a DataReader for the same Topic
with a requested QoS that is incompatible with that offered by
the DataWriter.

Table 6.10 DDS_OfferedIncompatibleQoSStatus

Type Field Name Description

Table 6.11 DDS_PublicationMatchedStatus

Type Field Name Description

DDS_Long

total_count
Cumulative number of times the DataWriter discovered a
"match" with a DataReader.

total_count_change
The change in total_count since the last time the Listener was
called or the status was read.

current_count
The number of DataReaders currently matched to the DataW-
riter.

current_count_peak The highest value that current_count has reached until now.

current_count_change
The change in current_count since the last time the listener
was called or the status was read.

DDS_Instance
Handle_t

last_subscription_handle
Handle to the last DataReader that matched the DataWriter
causing the status to change.
6-28

DataWriters
6.3.6.7 RELIABLE_WRITER_CACHE_CHANGED Status (DDS Extension)

A change to this status indicates that the number of unacknowledged samples1 in a reliable
DataWriter's cache has reached one of these trigger points:

❏ The cache is empty (contains no unacknowledged samples)

❏ The cache is full (the number of unacknowledged samples has reached the value speci-
fied in DDS_ResourceLimitsQosPolicy::max_samples)

❏ The number of unacknowledged samples has reached a high or low watermark. See the
high_watermark and low_watermark fields in Table 6.36 of the
DATA_WRITER_PROTOCOL QosPolicy (DDS Extension) (Section 6.5.3).

For more about the reliable protocol used by Connext and specifically, what it means for a sam-
ple to be ‘unacknowledged,’ see Chapter 10: Reliable Communications.

The structure for this status appears in Table 6.12. The supporting structure,
DDS_ReliableWriterCacheEventCount, is described in Table 6.13.

The DataWriterListener’s on_reliable_writer_cache_changed() callback is invoked when this sta-
tus changes. You can also retrieve the value by calling the DataWriter’s
get_reliable_writer_cache_changed_status() operation.

If a reliable DataWriter's send window is finite, with both
RtpsReliableWriterProtocol_t.min_send_window_size and
RtpsReliableWriterProtocol_t.max_send_window_size set to positive values, then
full_reliable_writer_cache_status counts the number of times the unacknowledged sample
count reaches the send window size.

1. If batching is enabled, this still refers to a number of samples, not batches.

Table 6.12 DDS_ReliableWriterCacheChangedStatus

Type Field Name Description

DDS_ReliableWriter
CacheEventCount

empty_reliable_writer_
cache

How many times the reliable DataWriter's cache of unac-
knowledged samples has become empty.

full_reliable_writer_
cache

How many times the reliable DataWriter's cache of unac-
knowledged samples has become full.

low_watermark_
reliable_writer_cache

How many times the reliable DataWriter's cache of unac-
knowledged samples has fallen to the low watermark.

high_watermark_
reliable_writer_cache

How many times the reliable DataWriter's cache of unac-
knowledged samples has risen to the high watermark.

DDS_Long

unacknowledged_
sample_count

The current number of unacknowledged samples in the
DataWriter's cache.

unacknowledged_
sample_count_peak

The highest value that unacknowledged_sample_count
has reached until now.

Table 6.13 DDS_ReliableWriterCacheEventCount

Type Field Name Description

DDS_Long total_count The total number of times the event has occurred.

DDS_Long total_count_change
The number of times the event has occurred since the Listener was
last invoked or the status read.
6-29

DataWriters
6.3.6.8 RELIABLE_READER_ACTIVITY_CHANGED Status (DDS Extension)

This status indicates that one or more reliable DataReaders has become active or inactive.

This status is the reciprocal status to the LIVELINESS_CHANGED Status (Section 7.3.7.4) on the
DataReader. It is different than LIVELINESS_LOST Status (Section 6.3.6.3) status on the DataW-
riter, in that the latter informs the DataWriter about its own liveliness; this status informs the
DataWriter about the liveliness of its matched DataReaders.

A reliable DataReader is considered active by a reliable DataWriter with which it is matched if
that DataReader acknowledges the samples that it has been sent in a timely fashion. For the defi-
nition of "timely" in this context, see DATA_WRITER_PROTOCOL QosPolicy (DDS Extension)
(Section 6.5.3).

This status is only used for DataWriters whose RELIABILITY QosPolicy (Section 6.5.19) is set to
RELIABLE. For best-effort DataWriters, all counts in this status will remain at zero.

The structure for this status appears in Table 6.14.

The DataWriterListener’s on_reliable_reader_activity_changed() callback is invoked when this
status changes. You can also retrieve the value by calling the DataWriter’s
get_reliable_reader_activity_changed_status() operation.

6.3.7 Using a Type-Specific DataWriter (FooDataWriter)

Recall that a Topic is bound to a data type that specifies the format of the data associated with the
Topic. Data types are either defined dynamically or in code generated from definitions in IDL or
XML; see Chapter 3: Data Types and Data Samples. For each of your application's generated
data types, such as 'Foo', there will be a FooDataWriter class (or a set of functions in C). This
class allows the application to use a type-safe interface to interact with samples of type 'Foo'.
You will use the FooDataWriter's write() operation used to send data. For dynamically defined
data-types, you will use the DynamicDataWriter class.

In fact, you will use the FooDataWriter any time you need to perform type-specific operations,
such as registering or writing instances. Table 6.3 indicates which operations must be called
using FooDataWriter. For operations that are not type-specific, you can call the operation using
either a FooDataWriter or a DDSDataWriter object1.

You may notice that the Publisher’s create_datawriter() operation returns a pointer to an object of
type DDSDataWriter; this is because the create_datawriter() method is used to create DataWrit-

Table 6.14 DDS_ReliableReaderActivityChangedStatus

Type Field Name Description

DDS_Long

active_count
The current number of reliable readers currently matched with
this reliable DataWriter.

inactive_count
The number of reliable readers that have been dropped by this
reliable DataWriter because they failed to send acknowledge-
ments in a timely fashion.

active_count_change
The change in the number of active reliable DataReaders since the
Listener was last invoked or the status read.

inactive_count_change
The change in the number of inactive reliable DataReaders since
the Listener was last invoked or the status read.

DDS_Instance
Handle_t

last_instance_handle
The instance handle of the last reliable DataReader to be deter-
mined to be inactive.

1. In the C API, the non type-specific operations must be called using a DDS_DataWriter pointer.
6-30

DataWriters
ers of any data type. However, when executed, the function actually returns a specialization (an
object of a derived class) of the DataWriter that is specific for the data type of the associated
Topic. For a Topic of type ‘Foo’, the object actually returned by create_datawriter() is a FooData-
Writer.

To safely cast a generic DDSDataWriter pointer to a FooDataWriter pointer, you should use the
static narrow() method of the FooDataWriter class. The narrow() method will return NULL if
the generic DDSDataWriter pointer is not pointing at an object that is really a FooDataWriter.

For instance, if you create a Topic bound to the type ‘Alarm’, all DataWriters created for that Topic
will be of type ‘AlarmDataWriter.’ To access the type-specific methods of AlarmDataWriter, you
must cast the generic DDSDataWriter pointer returned by create_datawriter(). For example:

DDSDataWriter* writer = publisher->create_datawriter(topic,writer_qos,
NULL, NULL);

AlarmDataWriter *alarm_writer = AlarmDataWriter::narrow(writer);
if (alarm_writer == NULL) {
 // ... error
};

In the C API, there is also a way to do the opposite of narrow(). FooDataWriter_as_datawriter()
casts a FooDataWriter as a DDSDataWriter, and FooDataReader_as_datareader() casts a FooDa-
taReader as a DDSDataReader.

6.3.8 Writing Data

The write() operation informs Connext that there is a new value for a data-instance to be pub-
lished for the corresponding Topic. By default, calling write() will send the data immediately
over the network (assuming that there are matched DataReaders). However, you can configure
and execute operations on the DataWriter’s Publisher to buffer the data so that it is sent in a batch
with data from other DataWriters or even to prevent the data from being sent. Those sending
“modes” are configured using the PRESENTATION QosPolicy (Section 6.4.6) as well as the Pub-
lisher’s suspend/resume_publications() operations. The actual transport-level communications
may be done by a separate, lower-priority thread when the Publisher is configured to send the
data for its DataWriters. For more information on threads, see Chapter 19: Connext Threading
Model.

When you call write(), Connext automatically attaches a stamp of the current time that is sent
with the data sample to the DataReader(s). The timestamp appears in the source_timestamp field
of the DDS_SampleInfo structure that is provided along with your data using DataReaders (see
The SampleInfo Structure (Section 7.4.6)).

DDS_ReturnCode_t write (const Foo &instance_data,
const DDS_InstanceHandle_t &handle)

You can use an alternate DataWriter operation called write_w_timestamp(). This performs the
same action as write(), but allows the application to explicitly set the source_timestamp. This is
useful when you want the user application to set the value of the timestamp instead of the
default clock used by Connext.

DDS_ReturnCode_t write_w_timestamp (const Foo &instance_data,
const DDS_InstanceHandle_t &handle,
const DDS_Time_t &source_timestamp)

Note that, in general, the application should not mix these two ways of specifying timestamps.
That is, for each DataWriter, the application should either always use the automatic timestamp-
ing mechanism (by calling the normal operations) or always specify a timestamp (by calling the
“w_timestamp” variants of the operations). Mixing the two methods may result in not receiving
sent data.
6-31

DataWriters
You can also use an alternate DataWriter operation, write_w_params(), which performs the
same action as write(), but allows the application to explicitly set the fields contained in the
DDS_WriteParams structure, see Table 6.15 on page 6-32.

Table 6.15 DDS_WriteParams_t

Type Field Name Description

DDS_Boolean replace_auto

Allows retrieving the actual value of those fields that were
automatic.
When this field is set to true, the fields that were configured
with an automatic value (for example,
DDS_AUTO_SAMPLE_IDENTITY in identity) receive their
actual value after write_w_params is called.

DDS_
SampleIdentity_t

identity

Identity of the sample being written. The identity consists of a
pair (Virtual Writer GUID, Virtual Sequence Number).
When the value DDS_AUTO_SAMPLE_IDENTITY is used, the
write_w_params() operation will determine the sample iden-
tity as follows:

• The Virtual Writer GUID (writer_guid) is the virtual
GUID associated with the DataWriter writing the sam-
ple. This virtual GUID is configured using the member
virtual_guid in DATA_WRITER_PROTOCOL_STATUS
(Section 6.3.6.2).

• The Virtual Sequence Number (sequence_number) is
increased by one with respect to the previous value.

The virtual sequence numbers for a given virtual GUID must be
strictly monotonically increasing. If you try to write a sample
with a sequence number smaller or equal to the last sequence
number, the write operation will fail.
A DataReader can inspect the identity of a received sample by
accessing the fields original_publication_virtual_guid and
original_publication_virtual_sequence_number in The Sam-
pleInfo Structure (Section 7.4.6).

DDS_
SampleIdentity_t

related_sample_
identity

The identity of another sample related to this one.
The value of this field identifies another sample that is logically
related to the one that is written.
For example, the DataWriter created by a Replier (sets
Chapter 22: Introduction to the Request-Reply Communication
Pattern) uses this field to associate the identity of the request
sample to reponse sample.
To specify that there is no related sample identity use the value
DDS_UNKNOWN_SAMPLE_IDENTITY,
A DataReader can inspect the related sample identity of a
received sample by accessing the fields
related_original_publication_virtual_guid and
related_original_publication_virtual_sequence_number in
The SampleInfo Structure (Section 7.4.6).

DDS_Time source_timestamp

Source timestamp that will be associated to the sample that is
written.
If source_timestamp is set to DDS_TIMER_INVALID, the mid-
dleware will assign the value.
A DataReader can inspect the source_timestamp value of a
received sample by accessing the field source_timestamp The
SampleInfo Structure (Section 7.4.6).
6-32

DataWriters
Note: Prioritized samples are not supported when using the Java, Ada, or .NET APIs. Therefore
the priority field in DDS_WriteParams_t does not exist when using these APIs.

When using the C API, a newly created variable of type DDS_WriteParams_t should be initial-
ized by setting it to DDS_WRITEPARAMS_DEFAULT.

The write() operation also asserts liveliness on the DataWriter, the associated Publisher, and the
associated DomainParticipant. It has the same effect with regards to liveliness as an explicit call to
assert_liveliness(), see Section 6.3.17 and the LIVELINESS QosPolicy (Section 6.5.13). Maintain-
ing liveliness is important for DataReaders to know that the DataWriter still exists and for the
proper behavior of the OWNERSHIP QosPolicy (Section 6.5.15).

See also: Clock Selection (Section 8.6).

6.3.8.1 Blocking During a write()

The write() operation may block if the RELIABILITY QosPolicy (Section 6.5.19) kind is set to
Reliable and the modification would cause data to be lost or cause one of the limits specified in
the RESOURCE_LIMITS QosPolicy (Section 6.5.20) to be exceeded. Specifically, write() may
block in the following situations (note that the list may not be exhaustive), even if its HISTORY
QosPolicy (Section 6.5.10) is KEEP_LAST:

❏ If max_samples1 < max_instances, the DataWriter may block regardless of the depth
field in the HISTORY QosPolicy (Section 6.5.10).

❏ If max_samples < (max_instances * depth), in the situation where the max_samples
resource limit is exhausted, Connext may discard samples of some other instance, as long
as at least one sample remains for such an instance. If it is still not possible to make space
available to store the modification, the writer is allowed to block.

❏ If min_send_window_size < max_samples, it is possible for the send_window_size
limit to be reached before Connext is allowed to discard samples, in which case the
DataWriter will block.

This operation may also block when using BEST_EFFORT Reliability (Section 6.5.20) and ASYN-
CHRONOUS Publish Mode (Section 6.5.18) QoS settings. In this case, the DataWriter will queue

DDS_
InstanceHandle_t

handle
The instance handle.
This value can be either the handle returned by a previous call
to register_instance or the special value DDS_HANDLE_NIL.

DDS_Long priority

Positive integer designating the relative priority of the sample,
used to determine the transmission order of pending transmis-
sions.
To use publication priorities, the DataWriter’s PUBLISH_MODE
QosPolicy (DDS Extension) (Section 6.5.18) must be set for
asynchronous publishing and the DataWriter must use a
FlowController with a highest-priority first
scheduling_policy.
For Multi-channel DataWriters, the publication priority of
a sample may be used as a filter criteria for determining
channel membership.
For additional information in Priority Samples see Prioritized
Samples (Section 6.6.4).

Table 6.15 DDS_WriteParams_t

Type Field Name Description

1. max_samples in is DDS_ResourceLimitsQosPolicy
6-33

DataWriters
samples until they are sent by the asynchronous publishing thread. The number of samples that
can be stored is determined by the HISTORY QosPolicy (Section 6.5.10). If the asynchronous
thread does not send samples fast enough (such as when using a slow FlowController
(Section 6.6)), the queue may fill up. In that case, subsequent write calls will block.

If this operation does block for any of the above reasons, the RELIABILITY max_blocking_time
configures the maximum time the write operation may block (waiting for space to become avail-
able). If max_blocking_time elapses before the DataWriter can store the modification without
exceeding the limits, the operation will fail and return RETCODE_TIMEOUT.

6.3.9 Flushing Batches of Data Samples

The flush() operation makes a batch of data samples available to be sent on the network.

DDS_ReturnCode_t flush ()

If the DataWriter’s PUBLISH_MODE QosPolicy (DDS Extension) (Section 6.5.18) kind is not
ASYNCHRONOUS, the batch will be sent on the network immediately in the context of the call-
ing thread.

If the DataWriter’s PublishModeQosPolicy kind is ASYNCHRONOUS, the batch will be sent in
the context of the asynchronous publishing thread.

The flush() operation may block based on the conditions described in Blocking During a write()
(Section 6.3.8.1).

If this operation does block, the max_blocking_time in the RELIABILITY QosPolicy (Section
6.5.19) configures the maximum time the write operation may block (waiting for space to
become available). If max_blocking_time elapses before the DataWriter is able to store the mod-
ification without exceeding the limits, the operation will fail and return TIMEOUT.

For more information on batching, see the BATCH QosPolicy (DDS Extension) (Section 6.5.2).

6.3.10 Writing Coherent Sets of Data Samples

A publishing application can request that a set of data-sample changes be propagated in such a
way that they are interpreted at the receivers' side as a cohesive set of modifications. In this case,
the receiver will only be able to access the data after all the modifications in the set are available
at the subscribing end.

This is useful in cases where the values are inter-related. For example, suppose you have two
data-instances representing the ‘altitude’ and ‘velocity vector’ of the same aircraft. If both are
changed, it may be important to ensure that reader see both together (otherwise, it may errone-
ously interpret that the aircraft is on a collision course).

To use this mechanism:

1. Call the Publisher’s begin_coherent_changes() operation to indicate the start a coherent
set.

2. For each sample in the coherent set: call the FooDataWriter’s write() operation.

3. Call the Publisher’s end_coherent_changes() operation to terminate the set.

Calls to begin_coherent_changes() and end_coherent_changes() can be nested.

See also: the coherent_access field in the PRESENTATION QosPolicy (Section 6.4.6).
6-34

DataWriters
6.3.11 Waiting for Acknowledgments in a DataWriter

The DataWriter’s wait_for_acknowledgments() operation blocks the calling thread until either
all data written by the reliable DataWriter is acknowledged by (a) all reliable DataReaders that are
matched and alive and (b) by all required subscriptions (see Required Subscriptions (Section
6.3.13)), or until the duration specified by the max_wait parameter elapses, whichever happens
first.

Note that if a thread is blocked in the call to wait_for_acknowledgments() on a DataWriter and a
different thread writes new samples on the same DataWriter, the new samples must be acknowl-
edged before unblocking the thread waiting on wait_for_acknowledgments().

DDS_ReturnCode_t wait_for_acknowledgments (
const DDS_Duration_t & max_wait)

This operation returns DDS_RETCODE_OK if all the samples were acknowledged, or
DDS_RETCODE_TIMEOUT if the max_wait duration expired first.

If the DataWriter does not have its RELIABILITY QosPolicy (Section 6.5.19) kind set to RELI-
ABLE, the operation will immediately return DDS_RETCODE_OK.

There is a similar operation available at the Publisher level, see Waiting for Acknowledgments in
a Publisher (Section 6.2.7).

The reliability protocol used by Connext is discussed in Chapter 10: Reliable Communications.
The application acknowledgment mechanism is discussed in Application Acknowledgment
(Section 6.3.12) and Chapter 13: Guaranteed Delivery of Data.

6.3.12 Application Acknowledgment

The RELIABILITY QosPolicy (Section 6.5.19) determines whether or not data published by a
DataWriter will be reliably delivered by Connext to matching DataReaders. The reliability protocol
used by Connext is discussed in Chapter 10: Reliable Communications.

With protocol-level reliability alone, the producing application knows that the information is
received by the protocol layer on the consuming side. However, the producing application can-
not be certain that the consuming application read that information or was able to successfully
understand and process it. The information could arrive in the consumer’s protocol stack and be
placed in the DataReader cache but the consuming application could either crash before it reads
it from the cache, not read its cache, or read the cache using queries or conditions that prevent
that particular data sample from being accessed. Furthermore, the consuming application could
access the sample, but not be able to interpret its meaning or process it in the intended way.

The mechanism to let a DataWriter know to keep the sample around, not just until it has been
acknowledged by the reliability protocol, but until the application has been able to process the
sample is aptly called Application Acknowledgment. A reliable DataWriter will keep the samples
until the application acknowledges the samples. When the subscriber application is restarted,
the middleware will know that the application did not acknowledge successfully processing the
samples and will resend them.

6.3.12.1 Application Acknowledgment Kinds

Connext supports three kinds of application acknowledgment, which is configured in the RELI-
ABILITY QosPolicy (Section 6.5.19)):

1. DDS_PROTOCOL_ACKNOWLEDGMENT_MODE (Default): In essence, this mode is
identical to using no application-level acknowledgment. Samples are acknowledged
according to the Real-Time Publish-Subscribe (RTPS) reliability protocol. RTPS AckNack
messages will acknowledge that the middleware received the sample.
6-35

DataWriters
2. DDS_APPLICATION_AUTO_ACKNOWLEDGMENT_MODE: Samples are automati-
cally acknowledged by the middleware after the subscribing application accesses them,
either through calling take() or read() on the sample. The samples are acknowledged
after return_loan() is called.

3. DDS_APPLICATION_EXPLICIT_ACKNOWLEDGMENT_MODE: Samples are
acknowledged after the subscribing application explicitly calls acknowledge on the sam-
ple. This can be done by either calling the DataReader’s acknowledge_sample() or
acknowledge_all() operations. When using acknowledge_sample(), the application will
provide the DDS_SampleInfo to identify the sample being acknowledge. When using
acknowledge_all, all the samples that have been read or taken by the reader will be
acknowledged.

Note: Even in DDS_APPLICATION_EXPLICIT_ACKNOWLEDGMENT_MODE, some
samples may be automatically acknowledged. This is the case when samples are filtered
out by the reader using time-based filter, or using content filters. Additionally, when the
reader is explicitly configured to use KEEP_LAST history kind, samples may be replaced
in the reader queue due to resource constraints. In that case, the sample will be automat-
ically acknowledged by the middleware if it has not been read by the application before
it was replaced. To truly guarantee successful processing of samples, it is recommended
to use KEEP_ALL history kind.

6.3.12.2 Explicitly Acknowledging a Single Sample (C++)

void MyReaderListener::on_data_available(DDSDataReader *reader)
{

Foo sample;
DDS_SampleInfo info;
FooDataReader* fooReader = FooDataReader::narrow(reader);
DDS_ReturnCode_t retcode = fooReader->take_next_sample(sample, info);
if (retcode == DDS_RETCODE_OK) {

if (info.valid_data) {
// Process sample
..
retcode = reader->acknowledge_sample(info);
if (retcode != DDS_RETCODE_OK) {

// Error
}

}
} else {

// Not OK or NO DATA
}

}

6.3.12.3 Explicitly Acknowledging All Samples (C++)

void MyReaderListener::on_data_available(DDSDataReader *reader)
{

...
// Loop while samples available
for(;;) {

retcode = string_reader->take_next_sample(sample, info);
if (retcode == DDS_RETCODE_NO_DATA) {

// No more samples
break;

}
// Process sample
...

}
retcode = reader->acknowledge_all();
6-36

DataWriters
if (retcode != DDS_RETCODE_OK) {
// Error

}
}

6.3.12.4 Notification of Delivery with Application Acknowledgment

A DataWriter can use the wait_for_acknowledgments() operation to be notified when all the
samples in the DataWriter’s queue have been acknowledged. See Waiting for Acknowledgments
in a DataWriter (Section 6.3.11).

retCode = fooWriter->write(sample, DDS_HANDLE_NIL);
if (retCode != DDS_RETCODE_OK) {

// Error
}
retcode = writer->wait_for_acknowledgments(timeout);
if (retCode != DDS_RETCODE_OK) {

if (retCode == DDS_RETCODE_TIMEOUT) {
// Timeout: Sample not acknowledged yet

} else {
// Error

}
}

Connext does not provide a way to get delivery notifications on a per DataReader and sample
basis. If your application requires acknowledgment of message receipt, use the Request/Reply
communication pattern with an Acknowledgment type (see Chapter 22: Introduction to the
Request-Reply Communication Pattern).

6.3.12.5 Application-Level Acknowledgment Protocol

When the subscribing application confirms it has successfully processed a sample, an AppAck
RTPS message is sent to the publishing application. This message will be resent until the pub-
6-37

DataWriters
lishing application confirms receipt of the AppAck message by sending an AppAckConf RTPS
message. See Figures 6.10 through 6.12.

Figure 6.10 AppAck RTPS Messages Sent when Application Acknowledges a Sample

Figure 6.11 AppAck RTPS Messages Resent Until Acknowledged Through AppAckConf RTPS Message
6-38

DataWriters
6.3.12.6 Periodic and Non-Periodic AppAck Messages

You can configure whether AppAck RTPS messages are sent immediately or periodically
through the DATA_READER_PROTOCOL QosPolicy (DDS Extension) (Section 7.6.1 on page 7-
54). The samples_per_app_ack (in Table 7.20, “DDS_RtpsReliableReaderProtocol_t,” on page 7-
56) determines the minimum number of samples acknowledged by one application-level
Acknowledgment message. The middleware will not send an AppAck message until it has at
least this many samples pending acknowledgment. By default, samples_per_app_ack is 1 and
the AppAck RTPS message is sent immediately. Independently, the app_ack_period (in
Table 7.20, “DDS_RtpsReliableReaderProtocol_t,” on page 7-56) determines the rate at which a
DataReader will send AppAck messages.

6.3.12.7 Application Acknowledgment and Persistence Service

Application Acknowledgment is fully supported by RTI Persistence Service. The combination of
Application Acknowledgment and Persistence Service is actually a common configuration. In
addition to keeping samples available until fully acknowledged, Persistence Service, when used
in peer-to-peer mode, can take advantage of AppAck messages to avoid sending duplicate mes-
sages to the subscribing application. Because AppAck messages are sent to all matching writers,
when the subscriber acknowledges the original publisher, Persistence Service will also be notified
of this event and will not send out duplicate messages. This is illustrated in Figure 6.13.

6.3.12.8 Application Acknowledgment and Routing Service

Application Acknowledgment is supported by RTI Routing Service: That is, Routing Service will
acknowledge the sample it has processed. Routing Service is an active participant in the Connext
system and not transparent to the publisher or subscriber. As such, Routing Service will acknowl-
edge to the publisher, and the subscriber will acknowledge to Routing Service. However, the pub-
lisher will not get a notification from the subscriber directly.

Figure 6.12 AppAck RTPS Messages Sent as a Sequence of Intervals, Combined to Optimize for Bandwidth
6-39

DataWriters
6.3.13 Required Subscriptions

The DURABILITY QosPolicy (Section 6.5.7) specifies whether acknowledged samples need to be
kept in the DataWriter’s queue and made available to late-joining applications. When a late join-
ing application is discovered, available samples will be sent to the late joiner. With the Durabil-
ity QoS alone, there is no way to specify or characterize the intended consumers of the
information and you do not have control over which samples will be kept for late-joining appli-
cations. If while waiting for late-joining applications, the middleware needs to free up samples,
it will reclaim samples if they have been previously acknowledged by active/matching readers.

There are scenarios where you know a priori that a particular set of applications will join the
system: e.g., a logging service or a known processing application. The Required Subscription fea-
ture is designed to keep data until these known late joining applications acknowledge the data.

Another use case is when DataReaders become temporarily inactive due to not responding to
heartbeats, or when the subscriber temporarily became disconnected and purged from the dis-
covery database. In both cases, the DataWriter will no longer keep the sample for this DataReader.
The Required Subscription feature will keep the data until these known DataReaders have
acknowledged the data.

To use Required Subscriptions, the DataReaders and DataWriters must have their RELIABILITY
QosPolicy (Section 6.5.19) kind set to RELIABLE.

6.3.13.1 Named, Required and Durable Subscriptions

Before describing the Required Subscriptions, it is important to understand a few concepts:

❏ Named Subscription: Through the ENTITY_NAME QosPolicy (DDS Extension) (Section
6.5.9), each DataReader can be given a specific name. This name can be used by tools to
identify a specific DataReader. Additionally, the DataReader can be given a role_name. For
example: LOG_APP_1 DataReader belongs to the logger applications (role_name =
“LOGGER”).

❏ Required Subscription is a named subscription to which a DataWriter is configured to
deliver data to. This is true even if the DataReaders serving those subscriptions are not
available yet. The DataWriter must store the sample until it has been acknowledged by all

Figure 6.13 Application Acknowledgment and Persistence Service

DataWriter DataReaderGlobal
Dataspace

Persistence Service
(Peer-to-Peer mode)

AppAckAppAck

AppAck

Samples acknowledged to the
Original DataWriter are not sent
by the Persistence service.

A single AppAck notifies both
the original DataWriter and
Persistence Service.
6-40

DataWriters
active reliable DataReaders and acknowledged by all required subscriptions. The DataW-
riter is not waiting for a specific DataReader, rather it is waiting for DataReaders belonging
to the required subscription by setting their role_name to the subscription name.

❏ Durable Subscription is a required subscription where samples are stored and for-
warded by an external service. In this case, the required subscription is served by RTI
Persistence Service. See Configuring Durable Subscriptions in Persistence Service (Section
27.9).

6.3.13.2 Durability QoS and Required Subscriptions

The DURABILITY QosPolicy (Section 6.5.7) and the Required Subscriptions feature complement
each other.

The DurabilityQosPolicy determines whether or not Connext will store and deliver previously
acknowledged samples to new DataReaders that join the network later. You can specify to either
not make the samples available (DDS_VOLATILE_DURABILITY_QOS kind), or to make them
available and declare you are storing the samples in memory
(DDS_TRANSIENT_LOCAL_DURABILITY_QOS or DDS_TRANSIENT_DURABILITY_QOS
kind) or in permanent storage (DDS_PERSISTENT_DURABILITY_QOS).

Required subscriptions help answer the question of when a sample is considered acknowledged
before the DurabilityQosPolicy determines whether to keep it. When required subscriptions are
used, a sample is considered acknowledged by a DataWriter when both the active DataReaders
and a quorum of required subscriptions have acknowledged the sample. (Acknowledging a
sample can be done either at the protocol or application level—see Application Acknowledg-
ment (Section 6.3.12)).

6.3.13.3 Required Subscriptions Configuration

Each DataReader can be configured to be part of a named subscription, by giving it a role_name
using the ENTITY_NAME QosPolicy (DDS Extension) (Section 6.5.9). A DataWriter can then be
configured using the AVAILABILITY QosPolicy (DDS Extension) (Section 6.5.1)
(required_matched_endpoint_groups) with a list of required named subscriptions identified by
the role_name. Additionally, the DataWriter can be configured with a quorum or minimum num-
ber of DataReaders from a given named subscription that must receive a sample.

When configured with a list of required subscriptions, a DataWriter will store a sample until the
sample is acknowledged by all active reliable DataReaders, as well as all required subscriptions.
When a quorum is specified, a minimum number of DataReaders of the required subscription
must acknowledge a sample in order for the sample to be considered acknowledged. Specifying
a quorum provides a level of redundancy in the system as multiple applications or services
acknowledge they have received the sample. Each individual DataReader is identified using its
own virtual GUID (see DATA_READER_PROTOCOL QosPolicy (DDS Extension) (Section
7.6.1)).

6.3.14 Managing Data Instances (Working with Keyed Data Types)

This section applies only to data types that use keys, see Samples, Instances, and Keys (Section
2.2.2). Using the following operations for non-keyed types has no effect.

Topics come in two flavors: those whose associated data type has specified some fields as defin-
ing the ‘key,’ and those whose associated data type has not. An example of a data-type that spec-
ifies key fields is shown in Figure 6.14.

Figure 6.14 Data Type with a Key

typedef struct Flight {
 long flightId; //@key
6-41

DataWriters
 string departureAirport;
 string arrivalAirport;
 Time_t departureTime;
 Time_t estimatedArrivalTime;
 Location_t currentPosition;
};

If the data type has some fields that act as a ‘key,’ the Topic essentially defines a collection of
data-instances whose values can be independently maintained. In Figure 6.14, the flightId is the
‘key’. Different flights will have different values for the key. Each flight is an instance of the
Topic. Each write() will update the information about a single flight. DataReaders can be
informed when new flights appear or old ones disappear.

Since the key fields are contained within the data structure, Connext could examine the key
fields each time it needs to determine which data-instance is being modified. However, for per-
formance and semantic reasons, it is better for your application to declare all the data-instances
it intends to modify—prior to actually writing any samples. This is known as registration,
described below in Section 6.3.14.1.

The register_instance() operation provides a handle to the instance (of type
DDS_InstanceHandle_t) that can be used later to refer to the instance.

6.3.14.1 Registering and Unregistering Instances

If your data type has a key, you may improve performance by registering an instance (data asso-
ciated with a particular value of the key) before you write data for the instance. You can do this
for any number of instances up the maximum number of instances configured in the DataW-
riter’s RESOURCE_LIMITS QosPolicy (Section 6.5.20). Instance registration is completely
optional.

Registration tells Connext that you are about to modify (write or dispose of) a specific instance.
This allows Connext to pre-configure itself to process that particular instance, which can improve
performance.

If you write without registering, you can pass the NIL instance handle as part of the write() call.

If you register the instance first, Connext can look up the instance beforehand and return a han-
dle to that instance. Then when you pass this handle to the write() operation, Connext no longer
needs to analyze the data to check what instance it is for. Instead, it can directly update the
instance pointed to by the instance handle.

In summary, by registering an instance, all subsequent write() calls to that instance become more
efficient. If you only plan to write once to a particular instance, registration does not ‘buy’ you
much in performance, but in general, it is good practice.

To register an instance, use the DataWriter’s register_instance() operation. For best performance,
it should be invoked prior to calling any operation that modifies the instance, such as write(),
write_w_timestamp(), dispose(), or dispose_w_timestamp().

When you are done using that instance, you can unregister it. To unregister an instance, use the
DataWriter’s unregister_instance() operation. Unregistering tells Connext that the DataWriter
does not intend to modify that data-instance anymore, allowing Connext to recover any
resources it allocated for the instance. It does not delete the instance; that is done with the
dispose_instance() operation, see Section 6.3.14.2. autodispose_unregistered_instances in the
WRITER_DATA_LIFECYCLE QoS Policy (Section 6.5.26) controls whether instances are auto-
matically disposed when they are unregistered.

unregister_instance() should only be used on instances that have been previously registered.
The use of these operations is illustrated in Figure 6.15.
6-42

DataWriters
Once an instance has been unregistered, and assuming that no other DataWriters are writing val-
ues for the instance, the matched DataReaders will eventually get an indication that the instance
no longer has any DataWriters. This is communicated to the DataReaders by means of the
DDS_SampleInfo that accompanies each data-sample (see Section 7.4.6). Once there are no
DataWriters for the instance, the DataReader will see the value of DDS_InstanceStateKind for
that instance to be NOT_ALIVE_NO_WRITERS.

The unregister_instance() operation may affect the ownership of the data instance (see the
OWNERSHIP QosPolicy (Section 6.5.15)). If the DataWriter was the exclusive owner of the
instance, then calling unregister_instance() relinquishes that ownership, and another DataW-
riter can become the exclusive owner of the instance.

The unregister_instance() operation indicates only that a particular DataWriter no longer has
anything to say about the instance.

Note that this is different than the dispose() operation discussed in the next section, which
informs DataReaders that the data-instance is no longer “alive.” The state of an instance is stored
in the DDS_SampleInfo structure that accompanies each sample of data that is received by a
DataReader. User code can access the instance state to see if an instance is “alive”—meaning
there is at least one DataWriter that is publishing samples for the instance, see Instance States
(Section 7.4.6.4).

See also:

❏ Unregistering vs. Disposing: on page 6-136.

❏ Use Cases for Unregistering without Disposing: on page 6-136.

Flight myFlight;

// writer is a previously-created FlightDataWriter
myFlight.flightId = 265;
DDS_InstanceHandle_t fl265Handle =
 writer->register_instance(myFlight);
...

// Each time we update the flight, we can pass the handle
myFlight.departureAirport = “SJC”;
myFlight.arrivalAirport = “LAX”;
myFlight.departureTime = {120000, 0};
myFlight.estimatedArrivalTime = {130200, 0};
myFlight.currentPosition = { {37, 20}, {121, 53} };

if (writer->write(myFlight, fl265Handle) != DDS_RETCODE_OK) {
// ... handle error

}
...

// Once we are done updating the flight, it can be unregistered
if (writer->unregister_instance(myFlight, fl265Handle) !=

 DDS_RETCODE_OK) {
// ... handle error

}

Figure 6.15 Registering an Instance
6-43

DataWriters
6.3.14.2 Disposing of Data

The dispose() operation informs DataReaders that, as far as the DataWriter knows, the data-
instance no longer exists and can be considered “not alive.” When the dispose() operation is
called, the instance state stored in the DDS_SampleInfo structure, accessed through DataRead-
ers, will change to NOT_ALIVE_DISPOSED for that particular instance.

See Unregistering vs. Disposing: on page 6-136.

By default, instances are automatically disposed when they are unregistered. This behavior is controlled
by the autodispose_unregistered_instances field in the WRITER_DATA_LIFECYCLE QoS Policy
(Section 6.5.26).

For example, in a flight tracking system, when a flight lands, a DataWriter may dispose the data-
instance corresponding to the flight. In that case, all DataReaders who are monitoring the flight
will see the instance state change to NOT_ALIVE_DISPOSED, indicating that the flight has
landed.

If a particular instance is never disposed, its instance state will eventually change from ALIVE
to NOT_ALIVE_NO_WRITERS once all the DataWriters that were writing that instance unreg-
ister the instance or lose their liveliness. For more information on DataWriter liveliness, see the
LIVELINESS QosPolicy (Section 6.5.13).

See also:

❏ Propagating Serialized Keys with Disposed-Instance Notifications (Section 6.5.3.5 on
page 6-89).

❏ Use Cases for Unregistering without Disposing: on page 6-136.

6.3.14.3 Looking Up an Instance Handle

Some operations, such as write(), require an instance_handle parameter. If you need to get such
as handle, you can call the FooDataWriter’s lookup_instance() operation, which takes an instance
as a parameter and returns a handle to that instance. This is useful for keyed data types.

DDS_InstanceHandle_t lookup_instance (const Foo & key_holder)

The instance must have already been registered (see Section 6.3.14.1). If the instance is not regis-
tered, this operation returns DDS_HANDLE_NIL.

6.3.14.4 Getting the Key Value for an Instance

Once you have an instance handle (using register_instance() or lookup_instance()), you can use
the DataWriter’s get_key_value() operation to retrieve the value of the key of the corresponding
instance. The key fields of the data structure passed into get_key_value() will be filled out with
the original values used to generate the instance handle. The key fields are defined when the
data type is defined, see Samples, Instances, and Keys (Section 2.2.2) for more information.

Following our example in Figure 6.15 on page 6-43, register_instance() returns a
DDS_InstanceHandle_t (fl265Handle) that can be used in the call to the FlightDataWriter’s
get_key_value() operation. The value of the key is returned in a structure of type Flight with the
flightId field filled in with the integer 265.

See also: Propagating Serialized Keys with Disposed-Instance Notifications (Section 6.5.3.5).

6.3.15 Setting DataWriter QosPolicies

The DataWriter’s QosPolicies control its resources and behavior.

The DDS_DataWriterQos structure has the following format:

DDS_DataWriterQos struct {
6-44

DataWriters
DDS_DurabilityQosPolicy durability;
DDS_DurabilityServiceQosPolicy durability_service;
DDS_DeadlineQosPolicy deadline;
DDS_LatencyBudgetQosPolicy latency_budget;
DDS_LivelinessQosPolicy liveliness;
DDS_ReliabilityQosPolicy reliability;
DDS_DestinationOrderQosPolicy destination_order;
DDS_HistoryQosPolicy history;
DDS_ResourceLimitsQosPolicy resource_limits;
DDS_TransportPriorityQosPolicy transport_priority;
DDS_LifespanQosPolicy lifespan;
DDS_UserDataQosPolicy user_data;
DDS_OwnershipQosPolicy ownership;
DDS_OwnershipStrengthQosPolicy ownership_strength;
DDS_WriterDataLifecycleQosPolicy writer_data_lifecycle;
// extensions to the DDS standard:
DDS_DataWriterResourceLimitsQosPolicy writer_resource_limits;
DDS_DataWriterProtocolQosPolicy protocol;
DDS_TransportSelectionQosPolicy transport_selection;
DDS_TransportUnicastQosPolicy unicast;
DDS_PublishModeQosPolicy publish_mode;
DDS_PropertyQosPolicy property;
DDS_BatchQosPolicy batch;
DDS_MultiChannelQosPolicy multi_channel;
DDS_AvailabilityQosPolicy availability;
DDS_EntityNameQosPolicy publication_name;
DDS_TypeSupportQosPolicy type_support;

} DDS_DataWriterQos;

Note: set_qos() cannot always be used within a listener callback, see Restricted Operations in
Listener Callbacks (Section 4.5.1).

Table 6.16 summarizes the meaning of each policy. (They appear alphabetically in the table.) For
information on why you would want to change a particular QosPolicy, see the referenced sec-
tion. For defaults and valid ranges, please refer to the API Reference HTML documentation.

Table 6.16 DataWriter QosPolicies

QosPolicy Description

Availability

This QoS policy is used in the context of two features:

• Availability QoS Policy and Collaborative DataWriters (Section 6.5.1.1)

• Availability QoS Policy and Required Subscriptions (Section 6.5.1.2)

For Collaborative DataWriters, Availability specifies the group of DataWriters
expected to collaboratively provide data and the timeouts that control when to
allow data to be available that may skip samples.

For Required Subscriptions, Availability configures a set of Required Subscrip-
tions on a DataWriter.

See Section 6.5.1

Batch

Specifies and configures the mechanism that allows Connext to collect multiple
user data samples to be sent in a single network packet, to take advantage of the
efficiency of sending larger packets and thus increase effective throughput. See
Section 6.5.2.

DataWriterProtocol
This QosPolicy configures the Connext on-the-network protocol, RTPS. See
Section 6.5.3.

DataWriterResourceLimits
Controls how many threads can concurrently block on a write() call of this DataW-
riter. See Section 6.5.4.
6-45

DataWriters
Deadline

• For a DataReader, it specifies the maximum expected elapsed time between
arriving data samples.

• For a DataWriter, it specifies a commitment to publish samples with no
greater elapsed time between them.

See Section 6.5.5.

DestinationOrder
Controls how Connext will deal with data sent by multiple DataWriters for the
same topic. Can be set to "by reception timestamp" or to "by source timestamp".
See Section 6.5.6.

Durability
Specifies whether or not Connext will store and deliver data that were previously
published to new DataReaders. See Section 6.5.7.

DurabilityService
Various settings to configure the external Persistence Servicea used by Connext for
DataWriters with a Durability QoS setting of Persistent Durability. See
Section 6.5.8.

EntityName Assigns a name to a DataWriter. See Section 6.5.9.

History
Specifies how much data must to stored by Connextfor the DataWriter or
DataReader. This QosPolicy affects the RELIABILITY QosPolicy (Section 6.5.19) as
well as the DURABILITY QosPolicy (Section 6.5.7). See Section 6.5.10.

LatencyBudget
Suggestion to Connext on how much time is allowed to deliver data. See
Section 6.5.11.

Lifespan
Specifies how long Connext should consider data sent by an user application to be
valid. See Section 6.5.12.

Liveliness
Specifies and configures the mechanism that allows DataReaders to detect when
DataWriters become disconnected or "dead." See Section 6.5.13.

MultiChannel
Configures a DataWriter’s ability to send data on different multicast groups
(addresses) based on the value of the data. See Section 6.5.14.

Ownership
Along with OwnershipStrength, specifies if DataReaders for a topic can receive
data from multiple DataWriters at the same time. See Section 6.5.15.

OwnershipStrength
Used to arbitrate among multiple DataWriters of the same instance of a Topic
when Ownership QosPolicy is EXLUSIVE. See Section 6.5.16.

Partition
Adds string identifiers that are used for matching DataReaders and DataWriters for
the same Topic. See Section 6.4.5.

Property

Stores name/value (string) pairs that can be used to configure certain parameters
of Connext that are not exposed through formal QoS policies. It can also be used to
store and propagate application-specific name/value pairs, which can be
retrieved by user code during discovery. See Section 6.5.17.

PublishMode

Specifies how Connext sends application data on the network. By default, data is
sent in the user thread that calls the DataWriter’s write() operation. However, this
QosPolicy can be used to tell Connext to use its own thread to send the data. See
Section 6.5.18.

Reliability Specifies whether or not Connext will deliver data reliably. See Section 6.5.19.

ResourceLimits
Controls the amount of physical memory allocated for entities, if dynamic alloca-
tions are allowed, and how they occur. Also controls memory usage among differ-
ent instance values for keyed topics. See Section 6.5.20.

TransportPriority
Set by a DataWriter to tell Connext that the data being sent is a different "priority"
than other data. See Section 6.5.21.

TransportSelection
Allows you to select which physical transports a DataWriter or DataReader may
use to send or receive its data. See Section 6.5.22.

Table 6.16 DataWriter QosPolicies

QosPolicy Description
6-46

DataWriters
Many of the DataWriter QosPolicies also apply to DataReaders (see Section 7.3). For a DataWriter
to communicate with a DataReader, their QosPolicies must be compatible. Generally, for the
QosPolicies that apply both to the DataWriter and the DataReader, the setting in the DataWriter is
considered an “offer” and the setting in the DataReader is a “request.” Compatibility means that
what is offered by the DataWriter equals or surpasses what is requested by the DataReader. Each
policy’s description includes compatibility restrictions. For more information on compatibility,
see QoS Requested vs. Offered Compatibility—the RxO Property (Section 4.2.1).

Some of the policies may be changed after the DataWriter has been created. This allows the
application to modify the behavior of the DataWriter while it is in use. To modify the QoS of an
already-created DataWriter, use the get_qos() and set_qos() operations on the DataWriter. This is
a general pattern for all Entities, described in Section 4.1.7.3.

6.3.15.1 Configuring QoS Settings when the DataWriter is Created

As described in Creating DataWriters (Section 6.3.1), there are different ways to create a DataW-
riter, depending on how you want to specify its QoS (with or without a QoS Profile).

❏ In Figure 6.9 on page 6-20, we saw an example of how to create a DataWriter with default
QosPolicies by using the special constant, DDS_DATAWRITER_QOS_DEFAULT,
which indicates that the default QoS values for a DataWriter should be used. The default
DataWriter QoS values are configured in the Publisher or DomainParticipant; you can
change them with set_default_datawriter_qos() or
set_default_datawriter_qos_with_profile(). Then any DataWriters created with the Pub-
lisher will use the new default values. As described in Section 4.1.7, this is a general pat-
tern that applies to the construction of all Entities.

❏ To create a DataWriter with non-default QoS without using a QoS Profile, see the example
code in Figure 6.16 on page 6-48. It uses the Publisher’s get_default_writer_qos() method
to initialize a DDS_DataWriterQos structure. Then, the policies are modified from their
default values before the structure is used in the create_datawriter() method.

❏ You can also create a DataWriter and specify its QoS settings via a QoS Profile. To do so,
you will call create_datawriter_with_profile(), as seen in Figure 6.17 on page 6-48.

❏ If you want to use a QoS profile, but then make some changes to the QoS before creating
the DataWriter, call get_datawriter_qos_from_profile() and create_datawriter() as seen
in Figure 6.18 on page 6-49.

For more information, see Creating DataWriters (Section 6.3.1) and Chapter 17: Configuring QoS
with XML.

TransportUnicast
Specifies a subset of transports and port number that can be used by an Entity to
receive data. See Section 6.5.23.

TypeSupport

Used to attach application-specific value(s) to a DataWriter or DataReader. These
values are passed to the serialization or deserialization routine of the associated
data type. Also controls whether padding bytes are set to 0 during serialization.
See Section 6.5.24.

UserData
Along with Topic Data QosPolicy and Group Data QosPolicy, used to attach a buf-
fer of bytes to Connext's discovery meta-data. See Section 6.5.25.

WriterDataLifeCycle
Controls how a DataWriter handles the lifecycle of the instances (keys) that the
DataWriter is registered to manage. See Section 6.5.26.

a. Persistence Service is included with Connext Messaging.

Table 6.16 DataWriter QosPolicies

QosPolicy Description
6-47

DataWriters
6.3.15.2 Comparing QoS Values

The equals() operation compares two DataWriter’s DDS_DataWriterQoS structures for equality.
It takes two parameters for the two DataWriter’s QoS structures to be compared, then returns
TRUE is they are equal (all values are the same) or FALSE if they are not equal.

Figure 6.16 Creating a DataWriter with Modified QosPolicies (not from a profile)

DDS_DataWriterQos writer_qos;1

// initialize writer_qos with default values
publisher->get_default_datawriter_qos(writer_qos);

// make QoS changes
writer_qos.history.depth = 5;

// Create the writer with modified qos
DDSDataWriter * writer = publisher->create_datawriter(

topic, writer_qos,
NULL, DDS_STATUS_MASK_NONE);

if (writer == NULL) {
// ... error

}
// narrow it for your specific data type
FooDataWriter* foo_writer = FooDataWriter::narrow(writer);

1. Note: In C, you must initialize the QoS structures before they are used, see Section 4.2.2.

// Create the datawriter
DDSDataWriter * writer =

publisher->create_datawriter_with_profile(
 topic,
 “MyWriterLibrary”,
 “MyWriterProfile”,
 NULL, DDS_STATUS_MASK_NONE);

if (writer == NULL) {
 // ... error
};

// narrow it for your specific data type
FooDataWriter* foo_writer = FooDataWriter::narrow(writer);

Figure 6.17 Creating a DataWriter with a QoS Profile
6-48

DataWriters
DDS_DataWriterQos writer_qos;1

// Get writer QoS from profile
retcode = factory->get_datawriter_qos_from_profile(

writer_qos,
“WriterProfileLibrary”,
“WriterProfile”);

if (retcode != DDS_RETCODE_OK) {
// handle error

}

// Makes QoS changes
writer_qos.history.depth = 5;

DDSDataWriter * writer = publisher->create_datawriter(
topic, writer_qos,
NULL, DDS_STATUS_MASK_NONE);

if (participant == NULL) {
// handle error

}

1. Note: In C, you must initialize the QoS structures before they are used, see Section 4.2.2.

Figure 6.18 Getting QoS Values from a Profile, Changing QoS Values, Creating a DataWriter with
Modified QoS Values
6-49

DataWriters
6.3.15.3 Changing QoS Settings After the DataWriter Has Been Created

There are two ways to change an existing DataWriter’s QoS after it is has been created—again
depending on whether or not you are using a QoS Profile.

❏ To change QoS programmatically (that is, without using a QoS Profile), use get_qos()
and set_qos(). See the example code in Figure 6.19. It retrieves the current values by call-
ing the DataWriter’s get_qos() operation. Then it modifies the value and calls set_qos() to
apply the new value. Note, however, that some QosPolicies cannot be changed after the
DataWriter has been enabled—this restriction is noted in the descriptions of the individ-
ual QosPolicies.

❏ You can also change a DataWriter’s (and all other Entities’) QoS by using a QoS Profile
and calling set_qos_with_profile(). For an example, see Figure 6.20. For more informa-
tion, see Chapter 17: Configuring QoS with XML.

DDS_DataWriterQos writer_qos;1

// Get current QoS.
if (datawriter->get_qos(writer_qos) != DDS_RETCODE_OK) {

// handle error
}
// Makes QoS changes here
writer_qos.history.depth = 5;

// Set the new QoS
if (datawriter->set_qos(writer_qos) != DDS_RETCODE_OK) {

// handle error
}

1. For the C API, you need to use DDS_ParticipantQos_INITIALIZER or DDS_ParticipantQos_initialize(). See
Section 4.2.2

Figure 6.19 Changing the QoS of an Existing DataWriter (without a QoS Profile)

retcode = writer->set_qos_with_profile(
“WriterProfileLibrary”,”WriterProfile”);

if (retcode != DDS_RETCODE_OK) {
 // handle error
}

Figure 6.20 Changing the QoS of an Existing DataWriter with a QoS Profile
6-50

DataWriters
6.3.15.4 Using a Topic’s QoS to Initialize a DataWriter’s QoS

Several DataWriter QosPolicies can also be found in the QosPolicies for Topics (see Section 5.1.3).
The QosPolicies set in the Topic do not directly affect the DataWriters (or DataReaders) that use
that Topic. In many ways, some QosPolicies are a Topic-level concept, even though the DDS stan-
dard allows you to set different values for those policies for different DataWriters and DataRead-
ers of the same Topic. Thus, the policies in the DDS_TopicQos structure exist as a way to help
centralize and annotate the intended or suggested values of those QosPolicies. Connext does not
check to see if the actual policies set for a DataWriter is aligned with those set in the Topic to
which it is bound.

There are many ways to use the QosPolicies’ values set in the Topic when setting the QosPolicies’
values in a DataWriter. The most straightforward way is to get the values of policies directly
from the Topic and use them in the policies for the DataWriter, as shown in Figure 6.21.

Figure 6.21 Copying Selected QoS from a Topic when Creating a DataWriter

DDS_DataWriterQos writer_qos;1

DDS_TopicQos topic_qos;
// topic and publisher already created

// get current QoS for the topic, default QoS for the writer
if (topic->get_qos(topic_qos) != DDS_RETCODE_OK) {

// handle error
}
if (publisher->get_default_datawriter_qos(writer_qos) != DDS_RETCODE_OK) {

// handle error
}

// Copy specific policies from the topic QoS to the writer QoS
writer_qos.deadline = topic_qos.deadline;
writer_qos.reliability = topic_qos.reliability;

// Create the DataWriter with the modified QoS
DDSDataWriter* writer = publisher->create_datawriter(topic,

writer_qos,NULL, DDS_STATUS_MASK_NONE);

1. Note in C, you must initialize the QoS structures before they are used, see Section 4.2.2.
6-51

DataWriters
You can use the Publisher’s copy_from_topic_qos() operation to copy all of the common policies
from the Topic QoS to a DataWriter QoS. This is illustrated in Figure 6.22.

In another design pattern, you may want to start with the default QoS values for a DataWriter
and override them with the QoS values of the Topic. Figure 6.23 gives an example of how to do
this.

Because this is a common pattern, Connext provides a special macro,
DDS_DATAWRITER_QOS_USE_TOPIC_QOS, that can be used to indicate that the DataW-
riter should be created with the set of QoS values that results from modifying the default DataW-
riter QosPolicies with the QoS values specified by the Topic. Figure 6.24 shows how the macro is
used.

Figure 6.22 Copying all QoS from a Topic when Creating a DataWriter

DDS_DataWriterQos writer_qos;1

DDS_TopicQos topic_qos;
// topic, publisher, writer_listener already created

if (topic->get_qos(topic_qos) != DDS_RETCODE_OK) {
// handle error

}
if (publisher->get_default_datawriter_qos(writer_qos) != DDS_RETCODE_OK)
{

// handle error
}
// copy relevant QosPolicies from topic’s qos into writer’s qos
publisher->copy_from_topic_qos(writer_qos, topic_qos);

// Optionally, modify policies as desired
writer_qos.deadline.duration.sec = 1;
writer_qos.deadline.duration.nanosec = 0;

// Create the DataWriter with the modified QoS
DDSDataWriter* writer = publisher->create_datawriter(topic,

writer_qos, writer_listener, DDS_STATUS_MASK_ALL);

1. Note in C, you must initialize the QoS structures before they are used, see Section 4.2.2.
6-52

DataWriters
The code fragments shown in Figure 6.23 and Figure 6.24 result in identical QoS settings for the
created DataWriter.

For more information on the general use and manipulation of QosPolicies, see Section 4.1.7.

6.3.16 Navigating Relationships Among Entities

6.3.16.1 Finding Matching Subscriptions

The following DataWriter operations can be used to get information on the DataReaders that are
currently associated with the DataWriter (that is, the DataReaders to which Connext will send the
data written by the DataWriter).

❏ get_matched_subscriptions()

❏ get_matched_subscription_data()

❏ get_matched_subscription_locators()

get_matched_subscriptions() will return a sequence of handles to matched DataReaders. You can
use these handles in the get_matched_subscription_data() method to get information about the
DataReader such as the values of its QosPolicies.

get_matched_subscription_locators() retrieves a list of locators for subscriptions currently
"associated" with the DataWriter. Matched subscription locators include locators for all those
subscriptions in the same domain that have a matching Topic, compatible QoS, and a common
partition that the DomainParticipant has not indicated should be "ignored." These are the locators

Figure 6.23 Combining Default Topic and DataWriter QoS (Option 1)

DDS_DataWriterQos writer_qos;1

DDS_TopicQos topic_qos;
// topic, publisher, writer_listener already created

if (topic->get_qos(topic_qos) != DDS_RETCODE_OK) {
// handle error

}
if (publisher->get_default_datawriter_qos(writer_qos) != DDS_RETCODE_OK) {

// handle error
}
if (publisher->copy_from_topic_qos(writer_qos, topic_qos) !=

DDS_RETCODE_OK) {
// handle error

}
// Create the DataWriter with the combined QoS
DDSDataWriter* writer = publisher->create_datawriter(topic, writer_qos,

writer_listener,DDS_STATUS_MASK_ALL);

1. Note in C, you must initialize the QoS structures before they are used, see Section 4.2.2.

Figure 6.24 Combining Default Topic and DataWriter QoS (Option 2)

// topic, publisher, writer_listener already created

DDSDataWriter* writer = publisher->create_datawriter (topic,
DDS_DATAWRITER_QOS_USE_TOPIC_QOS,
writer_listener, DDS_STATUS_MASK_ALL);
6-53

DataWriters
that Connext uses to communicate with matching DataReaders. (See Locator Format (Section
14.2.1.1).)

You can also get the DATA_WRITER_PROTOCOL_STATUS for matching subscriptions with
these operations (see Section 6.3.6.2):

❏ get_matched_subscription_datawriter_protocol_status()

❏ get_matched_subscription_datawriter_protocol_status_by_locator()

Notes:

❏ Status/data for a matched subscription is only kept while the matched subscription is
alive. Once a matched subscription is no longer alive, its status is deleted. If you try to get
the status/data for a matched subscription that is no longer alive, the 'get status' or ' get
data' call will return an error.

❏ DataReaders that have been ignored using the DomainParticipant’s ignore_subscription()
operation are not considered to be matched even if the DataReader has the same Topic and
compatible QosPolicies. Thus, they will not be included in the list of DataReaders
returned by get_matched_subscriptions() or get_matched_subscription_locators(). See
Section 16.4.2 for more on ignore_subscription().

❏ The get_matched_subscription_data() operation does not retrieve the following infor-
mation from built-in-topic data structures: type_code, property, and
content_filter_property. This information is available through the on_data_available()
callback (if a DataReaderListener is installed on the SubscriptionBuiltinTopicDataDa-
taReader).

❏ See also: Finding the Matching Subscription’s ParticipantBuiltinTopicData (Section
6.3.16.2)

6.3.16.2 Finding the Matching Subscription’s ParticipantBuiltinTopicData

get_matched_subscription_participant_data() allows you to get the
DDS_ParticipantBuiltinTopicData (see Table 16.1) of a matched subscription using a subscrip-
tion handle.

This operation retrieves the information on a discovered DomainParticipant associated with the
subscription that is currently matching with the DataWriter.The subscription handle passed into
this operation must correspond to a subscription currently associated with the DataWriter. Oth-
erwise, the operation will fail with RETCODE_BAD_PARAMETER. The operation may also fail
with RETCODE_PRECONDITION_NOT_MET if the subscription corresponds to the same
DomainParticipant to which the DataWriter belongs.

Use get_matched_subscriptions() (see Finding Matching Subscriptions (Section 6.3.16.1)) to
find the subscriptions that are currently matched with the DataWriter.

Note: This operation does not retrieve the ParticipantBuiltinTopicData_property. This informa-
tion is available through the on_data_available() callback (if a DataReaderListener is installed
on the SubscriptionBuiltinTopicDataDataReader.

6.3.16.3 Finding Related Entities

These operations are useful for obtaining a handle to various related entities:

❏ get_publisher()

❏ get_topic()

get_publisher() returns the Publisher that created the DataWriter. get_topic() returns the Topic
with which the DataWriter is associated.
6-54

DataWriters
6.3.17 Asserting Liveliness

The assert_liveliness() operation can be used to manually assert the liveliness of the DataWriter
without writing data. This operation is only useful if the kind of LIVELINESS QosPolicy (Sec-
tion 6.5.13) is MANUAL_BY_PARTICIPANT or MANUAL_BY_TOPIC.

How DataReaders determine if DataWriters are alive is configured using the LIVELINESS
QosPolicy (Section 6.5.13). The lease_duration parameter of the LIVELINESS QosPolicy is a
contract by the DataWriter to all of its matched DataReaders that it will send a packet within the
time value of the lease_duration to state that it is still alive.

There are three ways to assert liveliness. One is to have Connext itself send liveliness packets
periodically when the kind of LIVELINESS QosPolicy is set to AUTOMATIC. The other two
ways to assert liveliness, used when liveliness is set to MANUAL, are to call write() to send data
or to call the assert_liveliness() operation without sending data.

6.3.18 Turbo Mode and Automatic Throttling for DataWriter Performance—Experimental
Features

This section describes two experimental features. The DataWriter has many QoS settings that can
affect the latency and throughput of outgoing data. There are QoS settings to control send win-
dow size (see Understanding the Send Queue and Setting its Size (Section 10.3.2.1)) and settings
that allow to aggregate multiple samples together to reduce CPU and bandwidth utilization (see
BATCH QosPolicy (DDS Extension) (Section 6.5.2) and FlowControllers (DDS Extension) (Sec-
tion 6.6)). The choice of settings that provide the best performance depends on several factors,
such as the frequency of writing data, the size of the data, or the condition of the network. If
these factors do not change over time, you can choose values for those QoS settings that best suit
your system. If these factors do change over time in your system, you can use the following
properties to let Connext automatically adjust the QoS settings as system conditions change:

❏ dds.domain_participant.auto_throttle.enable: Configures the DomainParticipant to
gather internal measurements (during DomainParticipant creation) that are required for
the Auto Throttle feature. This allows DataWriters belonging to this DomainParticipant to
use the Auto Throttle feature. Default: false.

❏ dds.data_writer.auto_throttle.enable: Enables automatic throttling in the DataWriter so
it can automatically adjust the writing rate and the send window size; this minimizes the
need for repair samples and improves latency. Default: false. For additional information
on automatic throttling, see Turbo Mode: Automatically Adjusting the Number of Bytes
in a Batch—Experimental Feature (Section 6.5.2.4).

Note: This property takes effect only in DataWriters that belong to a DomainParticipant
that has set the property dds.domain_participant.auto_throttle.enable (described
above) to true.

❏ dds.data_writer.enable_turbo_mode: Enables Turbo Mode and adjusts the batch
max_data_bytes (see BATCH QosPolicy (DDS Extension) (Section 6.5.2)) based on how
frequently the DataWriter writes data. Default: false. For additional information, see
Turbo Mode: Automatically Adjusting the Number of Bytes in a Batch—Experimental
Feature (Section 6.5.2.4).

The Built-in QoS profile BuiltinQosLibExp::Generic.AutoTuning enables both Turbo Mode and
Auto Throttling.
6-55

Publisher/Subscriber QosPolicies
6.4 Publisher/Subscriber QosPolicies
This section provides detailed information on the QosPolicies associated with a Publisher. Note
that Subscribers have the exact same set of policies. Table 6.2 on page 6-8 provides a quick refer-
ence. They are presented here in alphabetical order.

❏ ASYNCHRONOUS_PUBLISHER QosPolicy (DDS Extension) (Section 6.4.1)

❏ ENTITYFACTORY QosPolicy (Section 6.4.2)

❏ EXCLUSIVE_AREA QosPolicy (DDS Extension) (Section 6.4.3)

❏ GROUP_DATA QosPolicy (Section 6.4.4)

❏ PARTITION QosPolicy (Section 6.4.5)

❏ PRESENTATION QosPolicy (Section 6.4.6)

6.4.1 ASYNCHRONOUS_PUBLISHER QosPolicy (DDS Extension)

This QosPolicy is used to enable or disable asynchronous publishing and asynchronous batch
flushing for the Publisher.

This QosPolicy can be used to reduce amount of time spent in the user thread to send data. You
can use it to send large data reliably. Large in this context means that the data cannot be sent as a
single packet by a transport. For example, to send data larger than 63K reliably using UDP/IP,
you must configure Connext to send the data using asynchronous Publishers.

If so configured, the Publisher will spawn two threads, one for asynchronous publishing and one
for asynchronous batch flushing. The asynchronous publisher thread will be shared by all
DataWriters (belonging to this Publisher) that have their PUBLISH_MODE QosPolicy (DDS
Extension) (Section 6.5.18) kind set to ASYNCHRONOUS. The asynchronous publishing thread
will then handle the data transmission chores for those DataWriters. This thread will only be
spawned when the first of these DataWriters is enabled.

The asynchronous batch flushing thread will be shared by all DataWriters (belonging to this Pub-
lisher) that have batching enabled and max_flush_delay different than DURATION_INFINITE
in BATCH QosPolicy (DDS Extension) (Section 6.5.2). This thread will only be spawned when
the first of these DataWriters is enabled.

This QosPolicy allows you to adjust the asynchronous publishing and asynchronous batch
flushing threads independently.

Batching and asynchronous publication are independent of one another. Flushing a batch on an
asynchronous DataWriter makes it available for sending to the DataWriter's FlowControllers
(DDS Extension) (Section 6.6). From the point of view of the FlowController, a batch is treated
like one large sample.

Connext will sometimes coalesce multiple samples into a single network datagram. For example,
samples buffered by a FlowController or sent in response to a negative acknowledgement
(NACK) may be coalesced. This behavior is distinct from sample batching. Data samples sent by
different asynchronous DataWriters belonging to the same Publisher to the same destination will
not be coalesced into a single network packet. Instead, two separate network packets will be
sent. Only samples written by the same DataWriter and intended for the same destination will be
coalesced.

This QosPolicy includes the members in Table 6.17.
6-56

Publisher/Subscriber QosPolicies
6.4.1.1 Properties

This QosPolicy cannot be modified after the Publisher is created.

Since it is only for Publishers, there are no compatibility restrictions for how it is set on the pub-
lishing and subscribing sides.

6.4.1.2 Related QosPolicies

❏ If disable_asynchronous_write is TRUE (not the default), then any DataWriters created
from this Publisher must have their PUBLISH_MODE QosPolicy (DDS Extension) (Sec-
tion 6.5.18) kind set to SYNCHRONOUS. (Otherwise create_datawriter() will return
INCONSISTENT_QOS.)

❏ If disable_asynchronous_batch is TRUE (not the default), then any DataWriters created
from this Publisher must have max_flush_delay in BATCH QosPolicy (DDS Extension)
(Section 6.5.2) set to DURATION_INFINITE. (Otherwise create_datawriter() will return
INCONSISTENT_QOS.)

❏ DataWriters configured to use the MULTI_CHANNEL QosPolicy (DDS Extension) (Sec-
tion 6.5.14) do not support asynchronous publishing; an error is returned if a multi-chan-
nel DataWriter is configured for asynchronous publishing.

6.4.1.3 Applicable Entities

❏ Publishers (Section 6.2)

6.4.1.4 System Resource Considerations

Two threads can potentially be created:

❏ For asynchronous publishing, system resource usage depends on the activity of the asyn-
chronous thread controlled by the FlowController (see FlowControllers (DDS Extension)
(Section 6.6)).

❏ For asynchronous batch flushing, system resource usage depends on the activity of the
asynchronous thread controlled by max_flush_delay in BATCH QosPolicy (DDS Exten-
sion) (Section 6.5.2).

Table 6.17 DDS_AsynchronousPublisherQosPolicy

Type Field Name Description

 DDS_Boolean disable_asynchronous_write
Disables asynchronous publishing. To write
asynchronously, this field must be FALSE (the
default).

DDS_ThreadSettings_t thread
Settings for the publishing thread. These set-
tings are OS-dependent (see the Platform
Notes).

 DDS_Boolean disable_asynchronous_batch
Disables asynchronous batch flushing. To flush
asynchronously, this field must be FALSE (the
default).

DDS_ThreadSettings_t asynchronous_batch_thread

Settings for the asynchronous batch flushing
thread.
These settings are OS-dependent (see the Plat-
form Notes).
6-57

Publisher/Subscriber QosPolicies
6.4.2 ENTITYFACTORY QosPolicy

This QosPolicy controls whether or not child entities are created in the enabled state.

This QosPolicy applies to the DomainParticipantFactory, DomainParticipants, Publishers, and Sub-
scribers, which act as ‘factories’ for the creation of subordinate entities. A DomainParticipantFac-
tory is used to create DomainParticipants. A DomainParticipant is used to create both Publishers
and Subscribers. A Publisher is used to create DataWriters, similarly a Subscriber is used to create
DataReaders.

Entities can be created either in an ‘enabled’ or ‘disabled’ state. An enabled entity can actively
participate in communication. A disabled entity cannot be discovered or take part in communi-
cation until it is explicitly enabled. For example, Connext will not send data if the write() opera-
tion is called on a disabled DataWriter, nor will Connext deliver data to a disabled DataReader.
You can only enable a disabled entity. Once an entity is enabled, you cannot disable it, see
Section 4.1.2 about the enable() method.

The ENTITYFACTORY contains only one member, as illustrated in Table 6.18.

The ENTITYFACTORY QosPolicy controls whether the entities created from the factory are
automatically enabled upon creation or are left disabled. For example, if a Publisher is config-
ured to auto-enable created entities, then all DataWriters created from that Publisher will be auto-
matically enabled.

Note: if an entity is disabled, then all of the child entities it creates are also created in a disabled
state, regardless of the setting of this QosPolicy. However, enabling a disabled entity will enable
all of its children if this QosPolicy is set to autoenable child entities.

Note: an entity can only be enabled; it cannot be disabled after its been enabled.

See Section 6.4.2.1 for an example of how to set this policy.

There are various reasons why you may want to create entities in the disabled state:

❏ To get around a “chicken and egg”-type issue. Where you need to have an entity in order
to modify it, but you don’t want the entity to be used by Connext until it has been modi-
fied.

For example, if you create a DomainParticipant in the enabled state, it will immediately
start sending packets to other nodes trying to discover if other Connext applications exist.
However, you may want to configure the built-in topic reader listener before discovery
occurs. To do this, you need to create a DomainParticipant in the disabled state because
once enabled, discovery will occur. If you set up the built-in topic reader listener after the
DomainParticipant is enabled, you may miss some discovery traffic.

❏ You may want to create entities without having them automatically start to work. This
especially pertains to DataReaders. If you create a DataReader in an enabled state and you
are using DataReaderListeners, Connext will immediately search for matching DataWriters
and callback the listener as soon as data is published. This may not be what you want to
happen if your application is still in the middle of initialization when data arrives.

Table 6.18 DDS_EntityFactoryQosPolicy

Type Field Name Description

DDS_Boolean autoenable_created_entities

DDS_BOOLEAN_TRUE: enable entities when they are cre-
ated
DDS_BOOLEAN_FALSE: do not enable entities when they
are created
6-58

Publisher/Subscriber QosPolicies
So typically, you would create all entities in a disabled state, and then when all parts of
the application have been initialized, one would enable all entities at the same time using
the enable() operation on the DomainParticipant, see Section 4.1.2.

❏ An entity’s existence is not advertised to other participants in the network until the entity
is enabled. Instead of sending an individual declaration packet to other applications
announcing the existence of the entity, Connext can be more efficient in bundling multiple
declarations into a single packet when you enable all entities at the same time.

See Section 4.1.2 for more information about enabled/disabled entities.

6.4.2.1 Example

The code in Figure 6.25 illustrates how to use the ENTITYFACTORY QoS.

6.4.2.2 Properties

This QosPolicy can be modified at any time.

It can be set differently on the publishing and subscribing sides.

6.4.2.3 Related QosPolicies

This QosPolicy does not interact with any other policies.

6.4.2.4 Applicable Entities

❏ DomainParticipantFactory (Section 8.2)

Figure 6.25 Configuring a Publisher so that New DataWriters are Disabled

DDS_PublisherQos publisher_qos;1

// topic, publisher, writer_listener already created

if (publisher->get_qos(publisher_qos) != DDS_RETCODE_OK) {
// handle error

}
publisher_qos.entity_factory.autoenable_created_entities =

 DDS_BOOLEAN_FALSE;
if (publisher->set_qos(publisher_qos) != DDS_RETCODE_OK) {

// handle error
}

// Subsequently created DataWriters are created disabled and
// must be explicitly enabled by the user-code
DDSDataWriter* writer = publisher->create_datawriter(topic,

 DDS_DATAWRITER_QOS_DEFAULT,
 writer_listener, DDS_STATUS_MASK_ALL);

... // now do other initialization

// Now explicitly enable the DataWriter, this will allow other
// applications to discover the DataWriter and for this application
// to send data when the DataWriter’s write() method is called
writer->enable();

1. Note in C, you must initialize the QoS structures before they are used, see Section 4.2.2.
6-59

Publisher/Subscriber QosPolicies
❏ DomainParticipants (Section 8.3)

❏ Publishers (Section 6.2)

❏ Subscribers (Section 7.2)

6.4.2.5 System Resource Considerations

This QosPolicy does not significantly impact the use of system resources.

6.4.3 EXCLUSIVE_AREA QosPolicy (DDS Extension)

This QosPolicy controls the creation and use of Exclusive Areas. An exclusive area (EA) is a
mutex with built-in deadlock protection when multiple EAs are in use. It is used to provide
mutual exclusion among different threads of execution. Multiple EAs allow greater concurrency
among the internal and user threads when executing Connext code.

EAs allow Connext to be multi-threaded while preventing threads from a classical deadlock sce-
nario for multi-threaded applications. EAs prevent a DomainParticipant's internal threads from
deadlocking with each other when executing internal code as well as when executing the code
of user-registered listener callbacks.

Within an EA, all calls to the code protected by the EA are single threaded. Each DomainPartici-
pant, Publisher and Subscriber represents a separate EA. All DataWriters of the same Publisher and
all DataReaders of the same Subscriber share the EA of its parent. This means that the DataWriters
of the same Publisher and the DataReaders of the same Subscriber are inherently single threaded.

Within an EA, there are limitations on how code protected by a different EA can be accessed. For
example, when data is being processed by user code received in the DataReaderListener of a
Subscriber EA, the user code may call the write() function of a DataWriter that is protected by the
EA of its Publisher. So you can send data in the function called to process received data. How-
ever, you cannot create entities or call functions that are protected by the EA of the DomainPartic-
ipant. See Exclusive Areas (EAs) (Section 4.5) for the complete documentation on Exclusive
Areas.

With this QoS, you can force a Publisher or Subscriber to share the same EA as its DomainPartici-
pant. Using this capability, the restriction of not being to create entities in a DataReaderListener's
on_data_available() callback is lifted. However, the trade-off is that the application has reduced
concurrency through the Entities that share an EA.

Note that the restrictions on calling methods in a different EA only exists for user code that is
called in registered Listeners by internal DomainParticipant threads. User code may call all Con-
next functions for any Entities from their own threads at any time.

The EXCLUSIVE_AREA includes a single member, as listed in Table 6.19. For the default value,
please refer to the API Reference HTML documentation.

The implications and restrictions of using a private or shared EA are discussed in Section 4.5.
The basic trade-off is concurrency versus restrictions on which methods can be called in user, lis-
tener, callback functions. To summarize:

Behavior when the Publisher or Subscriber’s use_shared_exclusive_area is set to FALSE:

Table 6.19 DDS_ExclusiveAreaQosPolicy

Type Field Name Description

DDS_Boolean use_shared_exclusive_area

DDS_BOOLEAN_FALSE:
subordinates will not use the same EA
DDS_BOOLEAN_TRUE:
subordinates will use the same EA
6-60

Publisher/Subscriber QosPolicies
❏ The creation of the Publisher/Subscriber will create an EA that will be used only by the
Publisher/Subscriber and the DataWriters/DataReaders that belong to them.

❏ Consequences: This setting maximizes concurrency at the expense of creating a mutex
for the Publisher or Subscriber. In addition, using a separate EA may restrict certain Con-
next operations (see Operations Allowed within Listener Callbacks (Section 4.4.5)) from
being called from the callbacks of Listeners attached to those entities and the entities that
they create. This limitation results from a built-in deadlock protection mechanism.

Behavior when the Publisher or Subscriber’s use_shared_exclusive_area is set to TRUE:

❏ The creation of the Publisher/Subscriber does not create a new EA. Instead, the Publisher/
Subscriber, along with the DataWriters/DataReaders that they create, will use a common EA
shared with the DomainParticipant.

❏ Consequences: By sharing the same EA among multiple entities, you may decrease the
amount of concurrency in the application, which can adversely impact performance.
However, this setting does use less resources and allows you to call almost any operation
on any Entity within a listener callback (see Exclusive Areas (EAs) (Section 4.5) for full
details).

6.4.3.1 Example

The code in Figure 6.26 illustrates how to change the EXCLUSIVE_AREA policy.

6.4.3.2 Properties

This QosPolicy cannot be modified after the Entity has been created.

It can be set differently on the publishing and subscribing sides.

6.4.3.3 Related QosPolicies

This QosPolicy does not interact with any other policies.

6.4.3.4 Applicable Entities

❏ Publishers (Section 6.2)

❏ Subscribers (Section 7.2)

Figure 6.26 Creating a Publisher with a Shared Exclusive Area

DDS_PublisherQos publisher_qos;1

// domain, publisher_listener have been previously created
if (participant->get_default_publisher_qos(publisher_qos) !=

DDS_RETCODE_OK) {
// handle error

}

publisher_qos.exclusive_area.use_shared_exclusive_area = DDS_BOOLEAN_TRUE;

DDSPublisher* publisher = participant->create_publisher(publisher_qos,
publisher_listener, DDS_STATUS_MASK_ALL);

1. Note in C, you must initialize the QoS structures before they are used, see Section 4.2.2.
6-61

Publisher/Subscriber QosPolicies
6.4.3.5 System Resource Considerations

This QosPolicy affects the use of operating-system mutexes. When use_shared_exclusive_area
is FALSE, the creation of a Publisher or Subscriber will create an operating-system mutex.

6.4.4 GROUP_DATA QosPolicy

This QosPolicy provides an area where your application can store additional information related
to the Publisher and Subscriber. This information is passed between applications during discov-
ery (see Chapter 14: Discovery) using built-in-topics (see Chapter 16: Built-In Topics). How this
information is used will be up to user code. Connext does not do anything with the information
stored as GROUP_DATA except to pass it to other applications.

Use cases are often application-to-application identification, authentication, authorization, and
encryption purposes. For example, applications can use this QosPolicy to send security certifi-
cates to each other for RSA-type security.

The value of the GROUP_DATA QosPolicy is sent to remote applications when they are first dis-
covered, as well as when the Publisher or Subscriber’s set_qos() method is called after changing
the value of the GROUP_DATA. User code can set listeners on the built-in DataReaders of the
built-in Topics used by Connext to propagate discovery information. Methods in the built-in topic
listeners will be called whenever new DomainParticipants, DataReaders, and DataWriters are
found. Within the user callback, you will have access to the GROUP_DATA that was set for the
associated Publisher or Subscriber.

Currently, GROUP_DATA of the associated Publisher or Subscriber is only propagated with the
information that declares a DataWriter or DataReader. Thus, you will need to access the value of
GROUP_DATA through DDS_PublicationBuiltinTopicData or
DDS_SubscriptionBuiltinTopicData (see Chapter 16: Built-In Topics).

The structure for the GROUP_DATA QosPolicy includes just one field, as seen in Table 6.20. The
field is a sequence of octets that translates to a contiguous buffer of bytes whose contents and
length is set by the user. The maximum size for the data are set in the
DOMAIN_PARTICIPANT_RESOURCE_LIMITS QosPolicy (DDS Extension) (Section 8.5.4).

This policy is similar to the USER_DATA QosPolicy (Section 6.5.25) and TOPIC_DATA QosPol-
icy (Section 5.2.1) that apply to other types of Entities.

6.4.4.1 Example

One possible use of GROUP_DATA is to pass some credential or certificate that your subscriber
application can use to accept or reject communication with the DataWriters that belong to the
Publisher (or vice versa, where the publisher application can validate the permission of
DataReaders of a Subscriber to receive its data). The value of the GROUP_DATA of the Publisher is
propagated in the ‘group_data’ field of the DDS_PublicationBuiltinTopicData that is sent with
the declaration of each DataWriter. Similarly, the value of the GROUP_DATA of the Subscriber is
propagated in the ‘group_data’ field of the DDS_SubscriptionBuiltinTopicData that is sent
with the declaration of each DataReader.

When Connext discovers a DataWriter/DataReader, the application can be notified of the discov-
ery of the new entity and retrieve information about the DataWriter/DataReader QoS by reading
the DCPSPublication or DCPSSubscription built-in topics (see Chapter 16: Built-In Topics).
Your application can then examine the GROUP_DATA field in the built-in Topic and decide

Table 6.20 DDS_GroupDataQosPolicy

Type Field Name Description

DDS_OctetSeq value Empty by default
6-62

Publisher/Subscriber QosPolicies
whether or not the DataWriter/DataReader should be allowed to communicate with local
DataReaders/DataWriters. If communication is not allowed, the application can use the Domain-
Participant’s ignore_publication() or ignore_subscription() operation to reject the newly discov-
ered remote entity as one with which the application allows Connext to communicate. See
Figure 16.2, “Ignoring Publications,” on page 16-13 for an example of how to do this.

The code in Figure 6.27 illustrates how to change the GROUP_DATA policy.

6.4.4.2 Properties

This QosPolicy can be modified at any time.

It can be set differently on the publishing and subscribing sides.

6.4.4.3 Related QosPolicies

❏ TOPIC_DATA QosPolicy (Section 5.2.1)

❏ USER_DATA QosPolicy (Section 6.5.25)

❏ DOMAIN_PARTICIPANT_RESOURCE_LIMITS QosPolicy (DDS Extension) (Section
8.5.4)

6.4.4.4 Applicable Entities

❏ Publishers (Section 6.2)

❏ Subscribers (Section 7.2)

Figure 6.27 Creating a Publisher with GROUP_DATA

DDS_PublisherQos publisher_qos;1

int i = 0;

// Bytes that will be used for the group data. In this case 8 bytes
// of some information that is meaningful to the user application
char myGroupData[GROUP_DATA_SIZE] =
 { 0x34, 0xaa, 0xfe, 0x31, 0x7a, 0xf2, 0x34, 0xaa};

// assume that domainparticipant and publisher_listener
// are already created
if (participant->get_default_publisher_qos(publisher_qos) !=

 DDS_RETCODE_OK) {
// handle error

}

// Must set the size of the sequence first
publisher_qos.group_data.value.maximum(GROUP_DATA_SIZE);
publisher_qos.group_data.value.length(GROUP_DATA_SIZE);

for (i = 0; i < GROUP_DATA_SIZE; i++) {
 publisher_qos.group_data.value[i] = myGroupData[i]
}

DDSPublisher* publisher = participant->create_publisher(publisher_qos,
publisher_listener, DDS_STATUS_MASK_ALL);

1. Note in C, you must initialize the QoS structures before they are used, see Section 4.2.2.
6-63

Publisher/Subscriber QosPolicies
6.4.4.5 System Resource Considerations

As mentioned earlier, the maximum size of the GROUP_DATA is set in the
publisher_group_data_max_length and subscriber_group_data_max_length fields of the
DOMAIN_PARTICIPANT_RESOURCE_LIMITS QosPolicy (DDS Extension) (Section 8.5.4).
Because Connext will allocate memory based on this value, you should only increase this value if
you need to. If your system does not use GROUP_DATA, then you can set this value to zero to
save memory. Setting the value of the GROUP_DATA QosPolicy to hold data longer than the
value set in the [publisher/subscriber]_group_data_max_length fields will result in failure and
an INCONSISTENT_QOS_POLICY return code.

However, should you decide to change the maximum size of GROUP_DATA, you must make
certain that all applications in the domain have changed the value of [publisher/sub-
scriber]_group_data_max_length to be the same. If two applications have different limits on the
size of GROUP DATA, and one application sets the GROUP_DATA QosPolicy to hold data that
is greater than the maximum size set by another application, then the matching DataWriters and
DataReaders of the Publisher and Subscriber between the two applications will not connect. This is
also true for the TOPIC_DATA (Section 5.2.1) and USER_DATA (Section 6.5.25) QosPolicies.

6.4.5 PARTITION QosPolicy

The PARTITION QoS provides another way to control which DataWriters will match—and thus
communicate with—which DataReaders. It can be used to prevent DataWriters and DataReaders
that would have otherwise matched with the same Topic and compatible QosPolicies from talk-
ing to each other. Much in the same way that only applications within the same domain will
communicate with each other, only DataWriters and DataReaders that belong to the same parti-
tion can talk to each other.

The PARTITION QoS applies to Publishers and Subscribers, therefore the DataWriters and
DataReaders belong to the partitions as set on the Publishers and Subscribers that created them.
The mechanism implementing the PARTITION QoS is relatively lightweight, and membership
in a partition can be dynamically changed. Unlike the creation and destruction of DomainPartici-
pants, there is no spawning and killing of threads or allocation and deallocation of memory
when Publishers and Subscribers add or remove themselves from partitions.

The PARTITION QoS consists of a set of partition names that identify the partitions of which the
Entity is a member. These names are simply strings, and DataWriters and DataReaders are consid-
ered to be in the same partition if they have more than one partition name in common in the
PARTITION QoS set on their Publishers or Subscribers.

Conceptually each partition name can be thought of as defining a “visibility plane” within the
domain. DataWriters will make their data available on all the visibility planes that correspond to
its Publisher’s partition names, and the DataReaders will see the data that is placed on any of the
visibility planes that correspond to its Subscriber’s partition names.

Figure 6.28 illustrates the concept of PARTITION QoS. In this figure, all DataWriters and
DataReaders belong to the same domain and refer to the same Topic. DataWriter1 is configured to
belong to three partitions: partition_A, partition_B, and partition_C. DataWriter2 belongs to
partition_C and partition_D.

Similarly, DataReader1 is configured to belong to partition_A and partition_B, and DataReader2
belongs only to partition_C. Given this topology, the data written by DataWriter1 is visible in
partitions A, B, and C. The oval tagged with the number “1” represents one data-sample written
by DataWriter1.

Similarly, the data written by DataWriter2 is visible in partitions C and D. The oval tagged with
the number “2” represents one data-sample written by DataWriter2.
6-64

Publisher/Subscriber QosPolicies
The result is that the data written by DataWriter1 will be received by both DataReader1 and
DataReader2, but the data written by DataWriter2 will only be visible by DataReader2.

Publishers and Subscribers always belong to a partition. By default, Publishers and Subscribers
belong to a single partition whose name is the empty string, ““. If you set the PARTITION QoS
to be an empty set, Connext will assign the Publisher or Subscriber to the default partition, ““.
Thus, for the example above, without using the PARTITION QoS, DataReaders 1 and 2 would
have received all data samples written by DataWriters 1 and 2.

6.4.5.1 Rules for PARTITION Matching

On the Publisher side, the PARTITION QosPolicy associates a set of strings (partition names)
with the Publisher. On the Subscriber side, the application also uses the PARTITION QoS to asso-
ciate partition names with the Subscriber.

Taking into account the PARTITION QoS, a DataWriter will communicate with a DataReader if
and only if the following conditions apply:

1. The DataWriter and DataReader belong to the same domain. That is, their respective
DomainParticipants are bound to the same domain ID (see Section 8.3.1).

2. The DataWriter and DataReader have matching Topics. That is, each is associated with a
Topic with the same topic_name and data type.

3. The QoS offered by the DataWriter is compatible with the QoS requested by the
DataReader.

4. The application has not used the ignore_participant(), ignore_datareader(), or
ignore_datawriter() APIs to prevent the association (see Section 16.4).

5. The Publisher to which the DataWriter belongs and the Subscriber to which the DataReader
belongs must have at least one matching partition name.

The last condition reflects the visibility of the data introduced by the PARTITION QoS. Match-
ing partition names is done by string comparison, thus partition names are case sensitive.

Figure 6.28 Controlling Visibility of Data with the PARTITION QoS
6-65

Publisher/Subscriber QosPolicies
NOTE: Failure to match partitions is not considered an incompatible QoS and does not trigger
any listeners or change any status conditions.

6.4.5.2 Pattern Matching for PARTITION Names

You may also add strings that are regular expressions1 to the PARTITION QosPolicy. A regular
expression does not define a set of partitions to which the Publisher or Subscriber belongs, as
much as it is used in the partition matching process to see if a remote entity has a partition name
that would be matched with the regular expression. That is, the regular expressions in the PAR-
TITION QoS of a Publisher are never matched against those found in the PARTITION QoS of a
Subscriber. Regular expressions are always matched against “concrete” partition names. Thus, a
concrete partition name may not contain any reserved characters that are used to define regular
expressions, for example ‘*’, ‘.’, ‘+’, etc.

If a PARTITION QoS only contains regular expressions, then the Publisher or Subscriber will be
assigned automatically to the default partition with the empty string name (““). Thus, do not be
fooled into thinking that a PARTITION QoS that only contains the string “*” matches another
PARTITION QoS that only contains the string “*”. Yes, the Publisher will match the Subscriber,
but it is because they both belong to the default ““ partition.

DataWriters and DataReaders are considered to have a partition in common if the sets of parti-
tions that their associated Publishers and Subscribers have defined have:

❏ at least one concrete partition name in common

❏ a regular expression in one Entity that matches a concrete partition name in another
Entity

The programmatic representation of the PARTITION QoS is shown in Table 6.21. The QosPolicy
contains the single string sequence, name. Each element in the sequence can be a concrete name
or a regular expression. The Entity will be assigned to the default ““ partition if the sequence is
empty.

You can have one long partition string of 256 chars, or multiple shorter strings that add up to 256
or less characters. For example, you can have one string of 4 chars and one string of 252 chars.

6.4.5.3 Example

Since the set of partitions for a Publisher or Subscriber can be dynamically changed, the Partition
QosPolicy is useful to control which DataWriters can send data to which DataReaders and vice
versa—even if all of the DataWriters and DataReaders are for the same topic. This facility is useful
for creating temporary separation groups among entities that would otherwise be connected to
and exchange data each other.

Note when using Partitions and Durability: If a Publisher changes partitions after startup, it is
possible for a reliable, late-joining DataReader to receive data that was written for both the orig-
inal and the new partition. For example, suppose a DataWriter with TRANSIENT_LOCAL
Durability initially writes samples with Partition A, but later changes to Partition B. In this case,
a reliable, late-joining DataReader configured for Partition B will receive whatever samples have

1. As defined by the POSIX fnmatch API (1003.2-1992 section B.6).

Table 6.21 DDS_PartitionQosPolicy

Type Field Name Description

DDS_StringSeq name
Empty by default.
There can be up to 64 names, with a maximum of 256 characters
summed across all names.
6-66

Publisher/Subscriber QosPolicies
been saved for the DataWriter. These may include samples which were written when the
DataWriter was using Partition A.

The code in Figure 6.29 illustrates how to change the PARTITION policy.

The ability to dynamically control which DataWriters are matched to which DataReaders (of the
same Topic) offered by the PARTITION QoS can be used in many different ways. Using parti-
tions, connectivity can be controlled based on location-based partitioning, access-control
groups, purpose, or a combination of these and other application-defined criteria. We will exam-
ine some of these options via concrete examples.

Example of location-based partitions. Assume you have a set of Topics in a traffic management
system such as “TrafficAlert,” “AccidentReport,” and “CongestionStatus.” You may want to
control the visibility of these Topics based on the actual location to which the information
applies. You can do this by placing the Publisher in a partition that represents the area to which
the information applies. This can be done using a string that includes the city, state, and country,
such as “USA/California/Santa Clara.” A Subscriber can then choose whether it wants to see the
alerts in a single city, the accidents in a set of states, or the congestion status across the US. Some
concrete examples are shown in Table 6.22.

Figure 6.29 Setting Partition Names on a Publisher

DDS_PublisherQos publisher_qos;1

// domain, publisher_listener have been previously created

if (participant->get_default_publisher_qos(publisher_qos) !=
DDS_RETCODE_OK) {

// handle error
}

// Set the partition QoS
publisher_qos.partition.name.maximum(3);
publisher_qos.partition.name.length(3);
publisher_qos.partition.name[0] = DDS_String_dup(“partition_A”);
publisher_qos.partition.name[1] = DDS_String_dup(“partition_B”);
publisher_qos.partition.name[2] = DDS_String_dup(“partition_C”);

DDSPublisher* publisher = participant->create_publisher(publisher_qos,
 publisher_listener, DDS_STATUS_MASK_ALL);

1. Note in C, you must initialize the QoS structures before they are used, see Section 4.2.2.

Table 6.22 Example of Using Location-Based Partitions

Publisher Partitions Subscriber Partitions Result

Specify a single partition name
using the pattern:
“<country>/<state>/<city>”

Specify multiple partition
names, one per region of inter-
est

Limits the visibility of the data to
Subscribers that express interest in
the geographical region.

“USA/California/Santa Clara”
(Subscriber participant is irrele-
vant here.)

Send only information for Santa
Clara, California.
6-67

Publisher/Subscriber QosPolicies
Example of access-control group partitions. Suppose you have an application where access to
the information must be restricted based on reader membership to access-control groups. You
can map this group-controlled visibility to partitions by naming all the groups (e.g. executives,
payroll, financial, general-staff, consultants, external-people) and assigning the Publisher to the
set of partitions that represents which groups should have access to the information. The Sub-
scribers specify the groups to which they belong, and the partition-matching behavior will
ensure that the information is only distributed to Subscribers belonging to the appropriate
groups. Some concrete examples are shown in Table 6.23.

A slight variation of this pattern could be used to confine the information based on security lev-
els.

Example of purpose-based partitions: Assume an application containing subsystems that can
be used for multiple purposes, such as training, simulation, and real use. In some occasions it is
convenient to be able to dynamically switch the subsystem from operating in the “simulation
world” to the “training world” or to the “real world.” For supervision purposes, it may be con-
venient to observe multiple worlds, so that you can compare the each one’s results. This can be
accomplished by setting a partition name in the Publisher that represents the “world” to which it
belongs and a set of partition names in the Subscriber that model the worlds that it can observe.

6.4.5.4 Properties

This QosPolicy can be modified at any time.

Strictly speaking, this QosPolicy does not have request-offered semantics, although it is matched
between DataWriters and DataReaders, and communication is established only if there is a match
between partition names.

(Publisher partition is irrelevant
here.)

“USA/California/Santa Clara”
Receive only information for Santa
Clara, California.

“USA/California/Santa Clara”
“USA/California/Sunnyvale”

Receive information for Santa Clara
or Sunnyvale, California.

“USA/California/*”
“USA/Nevada/*”

Receive information for California
or Nevada.

“USA/California/*”
“USA/Nevada/Reno”
“USA/Nevada/Las Vegas”

Receive information for California
and two cities in Nevada.

Table 6.22 Example of Using Location-Based Partitions

Publisher Partitions Subscriber Partitions Result

Table 6.23 Example of Access-Control Group Partitions

Publisher Partitions Subscriber Partitions Result

Specify several partition
names, one per group
that is allowed access:

Specify multiple partition
names, one per group to which
the Subscriber belongs.

Limits the visibility of the data to Subscribers
that belong to the access-groups specified by
the Publisher.

“payroll”
“financial”

(Subscriber participant is irrele-
vant here.)

Makes information available only to Sub-
scribers that have access to either financial or
payroll information.

(Publisher participant is
irrelevant here.)

“executives”
“financial”

Gain access to information that is intended
for executives or people with access to the
finances.
6-68

Publisher/Subscriber QosPolicies
6.4.5.5 Related QosPolicies

❏ DOMAIN_PARTICIPANT_RESOURCE_LIMITS QosPolicy (DDS Extension) (Section
8.5.4).

6.4.5.6 Applicable Entities

❏ Publishers (Section 6.2)

❏ Subscribers (Section 7.2)

6.4.5.7 System Resource Considerations

Partition names are propagated along with the declarations of the DataReaders and the DataWrit-
ers and can be examined by user code through built-in topics (see Chapter 16: Built-In Topics).
Thus the sum-total length of the partition names will impact the bandwidth needed to transmit
those declarations, as well as the memory used to store them.

The maximum number of partitions and the maximum number of characters that can be used
for the sum-total length of all partition names are configured using the max_partitions and
max_partition_cumulative_characters fields of the
DOMAIN_PARTICIPANT_RESOURCE_LIMITS QosPolicy (DDS Extension) (Section 8.5.4). Set-
ting more partitions or using longer names than allowed by those limits will result in failure and
an INCONSISTENT_QOS_POLICY return code.

However, should you decide to change the maximum number of partitions or maximum cumu-
lative length of partition names, then you must make certain that all applications in the domain
have changed the values of max_partitions and max_partition_cumulative_characters to be the
same. If two applications have different values for those settings, and one application sets the
PARTITION QosPolicy to hold more partitions or longer names than set by another application,
then the matching DataWriters and DataReaders of the Publisher and Subscriber between the two
applications will not connect. This similar to the restrictions for the GROUP_DATA
(Section 6.4.4), USER_DATA (Section 6.5.25), and TOPIC_DATA (Section 5.2.1) QosPolicies.

6.4.6 PRESENTATION QosPolicy

Usually DataReaders will receive data in the order that it was sent by a DataWriter. In addition,
data is presented to the DataReader as soon as the application receives the next value expected.

Sometimes, you may want a set of data for the same DataWriter to be presented to the receiving
DataReader only after ALL the elements of the set have been received, but not before. You may
also want the data to be presented in a different order than it was received. Specifically, for
keyed data, you may want Connext to present the data in keyed or instance order.

The Presentation QosPolicy allows you to specify different scopes of presentation: within a
DataWriter, across instances of a DataWriter, and even across different DataWriters of a publisher.
It also controls whether or not a set of changes within the scope must be delivered at the same
time or delivered as soon as each element is received.

There are three components to this QoS, the boolean flag coherent_access, the boolean flag
ordered_access, and an enumerated setting for the access_scope. The structure used is shown in
Table 6.24.

6.4.6.1 Coherent Access

A 'coherent set' is a set of data-sample modifications that must be propagated in such a way that
they are interpreted at the receiver's side as a consistent set; that is, the receiver will only be able
to access the data after all the modifications in the set are available at the subscribing end.
6-69

Publisher/Subscriber QosPolicies
Coherency enables a publishing application to change the value of several data-instances and
have those changes be seen atomically (as a cohesive set) by the readers.

Setting coherent_access to TRUE only behaves as described in the DDS specification when the
DataWriter and DataReader are configured for reliable delivery. Non-reliable DataReaders will
never receive samples that belong to a coherent set.

To send a coherent set of data samples, the publishing application uses the Publisher’s
begin_coherent_changes() and end_coherent_changes() operations (see Writing Coherent Sets
of Data Samples (Section 6.3.10)).

If coherent_access is TRUE, then the access_scope controls the maximum extent of the coherent
changes, as follows:

❏ If access_scope is INSTANCE, the use of begin_coherent_changes() and
end_coherent_changes() has no effect on how the subscriber can access the data. This is
because, with the scope limited to each instance, changes to separate instances are con-
sidered independent and thus cannot be grouped by a coherent change.

Table 6.24 DDS_PresentationQosPolicy

Type Field Name Description

DDS_Presentation_
QosPolicyAccessScope-
Kind

access_scope

Controls the granularity used when coherent_access and/or
ordered_access are TRUE.
If both coherent_access and ordered_access are FALSE,
access_scope’s setting has no effect.
• DDS_INSTANCE_PRESENTATION_QOS:

Queue is ordered/sorted per instance
• DDS_TOPIC_PRESENTATION_QOS:

Queue is ordered/sorted per topic (across all instances)
• DDS_GROUP_PRESENTATION_QOS:

Queue is ordered/sorted per topic across all instances
belonging to DataWriter (or DataReaders) within the same
Publisher (or Subscriber). Not supported for
coherent_access = TRUE.

• DDS_HIGHEST_OFFERED_PRESENTATION_QOS: Only
applies to Subscribers. With this setting, the Subscriber will
use the access scope specified by each remote Publisher.

DDS_Boolean coherent_access

Controls whether Connext will preserve the groupings of
changes made by the publishing application by means of
begin_coherent_changes() and end_coherent_changes().
• DDS_BOOLEAN_FALSE: Coherency is not preserved.

The value of access_scope is ignored.
• DDS_BOOLEAN_TRUE: Changes made to instances

within each DataWriter will be available to the DataReader as
a coherent set, based on the value of access_scope. Not sup-
ported for access_scope = GROUP.

DDS_Boolean ordered_access

Controls whether Connext will preserve the order of changes.
• DDS_BOOLEAN_FALSE: The order of samples is only

preserved for each instance, not across instances. The value
of access_scope is ignored.

• DDS_BOOLEAN_TRUE: The order of samples from a
DataWriter is preserved, based on the value set in
access_scope.
6-70

Publisher/Subscriber QosPolicies
❏ If access_scope is TOPIC, then coherent changes (indicated by their enclosure within
calls to begin_coherent_changes() and end_coherent_changes()) will be made available
as such to each remote DataReader independently. That is, changes made to instances
within the each individual DataWriter will be available as a coherent set with respect to
other changes to instances in that same DataWriter, but will not be grouped with changes
made to instances belonging to a different DataWriter.

❏ If access_scope is GROUP, coherent changes made to instances through a DataWriter
attached to a common Publisher are made available as a unit to remote subscribers.
Coherent access with GROUP access scope is currently not supported.

6.4.6.2 Ordered Access

If ordered_access is TRUE, then access_scope controls the scope of the order in which samples
are presented to the subscribing application, as follows:

❏ If access_scope is INSTANCE, the relative order of samples sent by a DataWriter is only
preserved on an per-instance basis. If two samples refer to the same instance (identified
by Topic and a particular value for the key) then the order in which they are stored in the
DataReader’s queue is consistent with the order in which the changes occurred. However,
if the two samples belong to different instances, the order in which they are presented
may or may not match the order in which the changes occurred.

❏ If access_scope is TOPIC, the relative order of samples sent by a DataWriter is preserved
for all samples of all instances. The coherent grouping and/or order in which samples
appear in the DataReader’s queue is consistent with the grouping/order in which the
changes occurred—even if the samples affect different instances.

❏ If access_scope is GROUP, the scope spans all instances belonging to DataWriter entities
within the same Publisher—even if they are instances of different topics. Changes made
to instances via DataWriter entities attached to the same Publisher are made available to
Subscribers on the same order they occurred.

❏ If access_scope is HIGHEST_OFFERED, the Subscriber will use the access scope specified
by each remote Publisher.

The data stored in the DataReader is accessed by the DataReader’s read()/take() APIs. The appli-
cation does not have to access the data samples in the same order as they are stored in the queue.
How the application actually gets the data from the DataReader is ultimately under the control of
the user code, see Using DataReaders to Access Data (Read & Take) (Section 7.4).

6.4.6.3 Example

Coherency is useful in cases where the values are inter-related (for example, if there are two
data-instances representing the altitude and velocity vector of the same aircraft and both are
changed, it may be useful to communicate those values in a way the reader can see both
together; otherwise, it may e.g., erroneously interpret that the aircraft is on a collision course).

Ordered access is useful when you need to ensure that samples appear on the DataReader’s
queue in the order sent by one or multiple DataWriters within the same Publisher.

To illustrate the effect of the PRESENTATION QosPolicy with TOPIC and INSTANCE access
scope, assume the following sequence of samples was written by the DataWriter: {A1, B1, C1, A2,
B2, C2}. In this example, A, B, and C represent different instances (i.e., different keys). Assume
all of these samples have been propagated to the DataReader’s history queue before your applica-
tion invokes the read() operation. The data-sample sequence returned depends on how the PRE-
SENTATION QoS is set, as shown in Table 6.25.

To illustrate the effect of a PRESENTATION QosPolicy with GROUP access_scope, assume the
following sequence of samples was written by two DataWriters, W1 and W2, within the same
6-71

Publisher/Subscriber QosPolicies
Publisher: {(W1,A1), (W2,B1), (W1,C1), (W2,A2), (W1,B2), (W2,C2)}. As in the previous example,
A, B, and C represent different instances (i.e., different keys). With access_scope set to
INSTANCE or TOPIC, the middleware cannot guarantee that the application will receive the
samples in the same order they were published by W1 and W2. With access_scope set to
GROUP, the middleware is able to provide the samples in order to the application as long as the
read()/take() operations are invoked within a begin_access()/end_access() block (see
Section 7.2.5).

6.4.6.4 Properties

This QosPolicy cannot be modified after the Publisher or Subscriber is enabled.

This QoS must be set compatibly between the DataWriter’s Publisher and the DataReader’s Sub-
scriber. The compatible combinations are shown in Table 6.27 and Table 6.28 for ordered_access
and Table 6.29 for coherent_access.

Table 6.25 Effect of ordered_access for access_scope INSTANCE and TOPIC

PRESENTATION QoS
Sequence retrieved via “read()”.

Order sent was {A1, B1, C1, A2, B2, C2}
Order received was {A1, A2, B1, B2, C1, C2}

ordered_access = FALSE
access_scope = <any>

{A1, A2, B1, B2, C1, C2}

ordered_access = TRUE
access_scope = INSTANCE

{A1, A2, B1, B2, C1, C2}

ordered_access = TRUE
access_scope = TOPIC

{A1, B1, C1, A2, B2, C2}

Table 6.26 Effect of ordered_access for access_scope GROUP

PRESENTATION QoS
Sequence retrieved via “read()”.

Order sent was {(W1,A1), (W2,B1), (W1,C1), (W2,A2),
(W1,B2), (W2,C2)}

ordered_access = FALSE
or
access_scope = TOPIC or INSTANCE

The order across DataWriters will not be preserved. Samples
may be delivered in multiple orders. For example:
{(W1,A1), (W1,C1), (W1,B2), (W2,B1), (W2,A2), (W2,C2)}
{(W1,A1), (W2,B1), (W1,B2), (W1,C1), (W2,A2), (W2,C2)}

ordered_access = TRUE
access_scope = GROUP

Samples are delivered in the same order they were published:
{(W1,A1), (W2,B1), (W1,C1), (W2,A2), (W1,B2), (W2,C2)}

Table 6.27 Valid Combinations of ordered_access and access_scope, with Subscriber’s ordered_access =
False

{ordered_access/access_scope}
Subscriber Requests:

False/Instance False/Topic False/Group False/Highest

Publisher
offers:

False/Instance ✔ incompatible incompatible ✔

False/Topic ✔ ✔ incompatible ✔

False/Group ✔ ✔ ✔ ✔

True/Instance ✔ incompatible incompatible ✔

True/Topic ✔ ✔ incompatible ✔

True/Group ✔ ✔ ✔ ✔
6-72

DataWriter QosPolicies
6.4.6.5 Related QosPolicies

The DESTINATION_ORDER QosPolicy (Section 6.5.6) is closely related and also affects the
ordering of data samples on a per-instance basis when there are multiple DataWriters.

The DATA_READER_PROTOCOL QosPolicy (DDS Extension) (Section 7.6.1) may be used to
configure the sample ordering process in the Subscribers configured with GROUP or
HIGHEST_OFFERED access_scope.

6.4.6.6 Applicable Entities

❏ Publishers (Section 6.2)

❏ Subscribers (Section 7.2)

6.4.6.7 System Resource Considerations

The use of this policy does not significantly impact the usage of resources.

6.5 DataWriter QosPolicies
This section provides detailed information about the QosPolicies associated with a DataWriter.
Table 6.16 on page 6-45 provides a quick reference. They are presented here in alphabetical
order.

❏ AVAILABILITY QosPolicy (DDS Extension) (Section 6.5.1)

❏ BATCH QosPolicy (DDS Extension) (Section 6.5.2)

❏ DATA_WRITER_PROTOCOL QosPolicy (DDS Extension) (Section 6.5.3)

❏ DATA_WRITER_RESOURCE_LIMITS QosPolicy (DDS Extension) (Section 6.5.4)

Table 6.28 Valid Combinations of ordered_access and access_scope, with Subscriber’s ordered_access =
True

{ordered_access/access_scope}
Subscriber Requests:

True/Instance True/Topic True/Group True/Highest

Publisher
offers:

False/Instance incompatible incompatible incompatible incompatible

False/Topic incompatible incompatible incompatible incompatible

False/Group incompatible incompatible incompatible incompatible

True/Instance ✔ incompatible incompatible ✔

True/Topic ✔ ✔ incompatible ✔

True/Group ✔ ✔ ✔ ✔

Table 6.29 Valid Combinations of Presentation Coherent Access and Access Scope

{coherent_access/access_scope}
Subscriber requests:

False/Instance False/Topic True/Instance True/Topic

Publisher
offers:

False/Instance ✔ incompatible incompatible incompatible

False/Topic ✔ ✔ incompatible incompatible

True/Instance ✔ incompatible ✔ incompatible

True/Topic ✔ ✔ ✔ ✔
6-73

DataWriter QosPolicies
❏ DEADLINE QosPolicy (Section 6.5.5)

❏ DESTINATION_ORDER QosPolicy (Section 6.5.6)

❏ DURABILITY QosPolicy (Section 6.5.7)

❏ DURABILITY SERVICE QosPolicy (Section 6.5.8)

❏ ENTITY_NAME QosPolicy (DDS Extension) (Section 6.5.9)

❏ HISTORY QosPolicy (Section 6.5.10)

❏ LATENCYBUDGET QoS Policy (Section 6.5.11)

❏ LIFESPAN QoS Policy (Section 6.5.12)

❏ LIVELINESS QosPolicy (Section 6.5.13)

❏ MULTI_CHANNEL QosPolicy (DDS Extension) (Section 6.5.14)

❏ OWNERSHIP QosPolicy (Section 6.5.15)

❏ OWNERSHIP_STRENGTH QosPolicy (Section 6.5.16)

❏ PROPERTY QosPolicy (DDS Extension) (Section 6.5.17)

❏ PUBLISH_MODE QosPolicy (DDS Extension) (Section 6.5.18)

❏ RELIABILITY QosPolicy (Section 6.5.19)

❏ RESOURCE_LIMITS QosPolicy (Section 6.5.20)

❏ TRANSPORT_PRIORITY QosPolicy (Section 6.5.21)

❏ TRANSPORT_SELECTION QosPolicy (DDS Extension) (Section 6.5.22)

❏ TRANSPORT_UNICAST QosPolicy (DDS Extension) (Section 6.5.23)

❏ TYPESUPPORT QosPolicy (DDS Extension) (Section 6.5.24)

❏ USER_DATA QosPolicy (Section 6.5.25)

❏ WRITER_DATA_LIFECYCLE QoS Policy (Section 6.5.26)

6.5.1 AVAILABILITY QosPolicy (DDS Extension)

This QoS policy configures the availability of data and it is used in the context of two features:

❏ Collaborative DataWriters (Section 6.5.1.1)

❏ Required Subscriptions (Section 6.5.1.2)

It contains the members listed in Table 6.30.

Table 6.30 DDS_AvailabilityQosPolicy

Type Field Name Description

DDS_Boolean
enable_required_subscripti
ons

Enables support for required subscriptions in a DataW-
riter.

For Collaborative DataWriters: Not applicable.

For Required Subscriptions: See Table 6.33.

struct
DDS_Duration_t

max_data_availability_
waiting_time

Defines how much time to wait before delivering a sam-
ple to the application without having received some of
the previous samples.

For Collaborative DataWriters: See Table 6.32.

For Required Subscriptions: Not applicable.
6-74

DataWriter QosPolicies
6.5.1.1 Availability QoS Policy and Collaborative DataWriters

The Collaborative DataWriters feature allows you to have multiple DataWriters publishing sam-
ples from a common logical data source. The DataReaders will combine the samples coming from
the DataWriters in order to reconstruct the correct order at the source. The Availability QosPolicy
allows you to configure the sample combination (synchronization) process in the DataReader.

Each sample published in a DDS domain for a given logical data source is uniquely identified by
a pair (virtual GUID, virtual sequence number). Samples from the same data source (same vir-
tual GUID) can be published by different DataWriters.

A DataReader will deliver a sample (VGUIDn, VSNm) to the application if one of the following
conditions is satisfied:

❏ (GUIDn, SNm-1) has already been delivered to the application.

❏ All the known DataWriters publishing VGUIDn have announced that they do not have
(VGUIDn, VSNm-1).

❏ None of the known DataWriters publishing VGUIDn have announced potential availabil-
ity of (VGUIDn, VSNm-1) and both timeouts in this QoS policy have expired.

A DataWriter announces potential availability of samples by using virtual heartbeats. The fre-
quency at which virtual heartbeats are sent is controlled by the protocol parameters
virtual_heartbeat_period and samples_per_virtual_ heartbeat (see Table 6.36,
“DDS_RtpsReliableWriterProtocol_t,” on page 6-84).

Table 6.32 describes the fields of this policy when used for a Collaborative DataWriter.

For further information, see Chapter 11: Collaborative DataWriters.

struct
DDS_Duration_t

max_endpoint_availability_
waiting_time

Defines how much time to wait to discover DataWriters
providing samples for the same data source.

For Collaborative DataWriters: See Table 6.32.

For Required Subscriptions: Not applicable.

struct
DDS_Endpoint-
GroupSeq

required_matched_
endpoint_groups

A sequence of endpoint groups, described in Table 6.31.

For Collaborative DataWriters: See Table 6.32.

For Required Subscriptions: See Table 6.33

Table 6.31 struct DDS_EndpointGroup_t

Type Field Name Description

char * role_name
Defines the role name of the endpoint group.

If used in the AvailabilityQosPolicy on a DataWriter, it specifies the name that
identifies a Required Subscription.

int quorum_count

Defines the minimum number of members that satisfies the endpoint group.

If used in the AvailabilityQosPolicy on a DataWriter, it specifies the number of
DataReaders with a specific role name that must acknowledge a sample before
the sample is considered to be acknowledged by the Required Subscription.

Table 6.30 DDS_AvailabilityQosPolicy

Type Field Name Description
6-75

DataWriter QosPolicies
6.5.1.2 Availability QoS Policy and Required Subscriptions

In the context of Required Subscriptions, the Availability QosPolicy can be used to configure a
set of required subscriptions on a DataWriter.

Required Subscriptions are preconfigured, named subscriptions that may leave and subsequently
rejoin the network from time to time, at the same or different physical locations. Any time a
required subscription is disconnected, any samples that would have been delivered to it are
stored for delivery if and when the subscription rejoins the network.

Table 6.33 describes the fields of this policy when used for a Required Subscription.

For further information, see Required Subscriptions (Section 6.3.13).

Table 6.32 Configuring Collaborative DataWriters with DDS_AvailabilityQosPolicy

Field Name Description for Collaborative DataWriters

max_data_availability_
waiting_time

Defines how much time to wait before delivering a sample to the applica-
tion without having received some of the previous samples.

A sample identified by (VGUIDn, VSNm) will be delivered to the applica-
tion if this timeout expires for the sample and the following two conditions
are satisfied:

• None of the known DataWriters publishing VGUIDn have announced
potential availability of (VGUIDn, VSNm-1).

• The DataWriters for all the endpoint groups specified in
required_matched_endpoint_groups have been discovered or
max_endpoint_availability_waiting_time has expired.

max_endpoint_availability_
waiting_time

Defines how much time to wait to discover DataWriters providing samples
for the same data source.

The set of endpoint groups that are required to provide samples for a data
source can be configured using required_matched_endpoint_groups.

A non-consecutive sample identified by (GUIDn, SNm) cannot be delivered
to the application unless the DataWriters for all the endpoint groups in
required_matched_endpoint_groups are discovered or this timeout
expires.

required_matched_
endpoint_groups

Specifies the set of endpoint groups that are expected to provide samples for
the same data source.

The quorum count in a group represents the number of DataWriters that
must be discovered for that group before the DataReader is allowed to pro-
vide non consecutive samples to the application.

A DataWriter becomes a member of an endpoint group by configuring the
role_name in the DataWriter’s ENTITY_NAME QosPolicy (DDS Extension)
(Section 6.5.9).

The DataWriters created by RTI Persistence Service have a predefined
role_name of ‘PERSISTENCE_SERVICE’. For other DataWriters, the
role_name is not set by default.

Table 6.33 Configuring Required Subscriptions with DDS_AvailabilityQosPolicy

Field Name Description for Required Subscriptions

enable_required_subscriptio
ns

Enables support for Required Subscriptions in a DataWriter.
6-76

DataWriter QosPolicies
6.5.1.3 Properties

For DataWriters, all the members in this QosPolicy can be changed after the DataWriter is created
except for the member enable_required_subscriptions.

For DataReaders, this QosPolicy cannot be changed after the DataReader is created.

There are no compatibility restrictions for how it is set on the publishing and subscribing sides.

6.5.1.4 Related QosPolicies

❏ ENTITY_NAME QosPolicy (DDS Extension) (Section 6.5.9)

❏ DOMAIN_PARTICIPANT_RESOURCE_LIMITS QosPolicy (DDS Extension) (Section
8.5.4)

❏ DURABILITY QosPolicy (Section 6.5.7)

6.5.1.5 Applicable Entities

❏ DataWriters (Section 6.3)

❏ DataReaders (Section 7.3)

6.5.1.6 System Resource Considerations

The resource limits for the endpoint groups in required_matched_endpoint_groups are deter-
mined by two values in the DOMAIN_PARTICIPANT_RESOURCE_LIMITS QosPolicy (DDS
Extension) (Section 8.5.4):

❏ max_endpoint_groups

❏ max_endpoint_group_cumulative_characters

The maximum number of virtual writers (identified by a virtual GUID) that can be managed by
a DataReader is determined by the max_remote_virtual_writers in
DATA_READER_RESOURCE_LIMITS QosPolicy (DDS Extension) (Section 7.6.2). When the
Subscriber’s access_scope is GROUP, max_remote_virtual_writers determines the maximum
number of DataWriter groups supported by the Subscriber. Since the Subscriber may contain more
than one DataReader, only the setting of the first applies.

max_data_availability_
waiting_time

Not applicable to Required Subscriptions.
max_endpoint_availability_
waiting_time

required_matched_
endpoint_groups

A sequence of endpoint groups that specify the Required Subscriptions on a
DataWriter.

Each Required Subscription is specified by a name and a quorum count.

The quorum count represents the number of DataReaders that have to
acknowledge the sample before it can be considered fully acknowledged
for that Required Subscription.

A DataReader is associated with a Required Subscription by configuring the
role_name in the DataReader’s ENTITY_NAME QosPolicy (DDS Extension)
(Section 6.5.9).

Table 6.33 Configuring Required Subscriptions with DDS_AvailabilityQosPolicy

Field Name Description for Required Subscriptions
6-77

DataWriter QosPolicies
6.5.2 BATCH QosPolicy (DDS Extension)

This QosPolicy can be used to decrease the amount of communication overhead associated with
the transmission and (in the case of reliable communication) acknowledgement of small sam-
ples, in order to increase throughput.

It specifies and configures the mechanism that allows Connext to collect multiple user data sam-
ples to be sent in a single network packet, to take advantage of the efficiency of sending larger
packets and thus increase effective throughput.

This QosPolicy can be used to increase effective throughput dramatically for small data samples.
Throughput for small samples (size < 2048 bytes) is typically limited by CPU capacity and not
by network bandwidth. Batching many smaller samples to be sent in a single large packet will
increase network utilization and thus throughput in terms of samples per second.

It contains the members listed in Table 6.34.

Table 6.34 DDS_BatchQosPolicy

Type Field Name Description

DDS_Boolean enable Enables/disables batching.

DDS_Long max_data_bytes

Sets the maximum cumulative length of all serialized sam-
ples in a batch.
Before or when this limit is reached, the batch is automati-
cally flushed.
The size does not include the meta-data associated with the
batch samples.

DDS_Long max_samples
Sets the maximum number of samples in a batch.
When this limit is reached, the batch is automatically
flushed.

struct DDS_Duration_t max_flush_delay

Sets the maximum flush delay.
When this duration is reached, the batch is automatically
flushed.
The delay is measured from the time the first sample in the
batch is written by the application.
6-78

DataWriter QosPolicies
If batching is enabled (not the default), samples are not immediately sent when they are written.
Instead, they get collected into a "batch." A batch always contains whole number of samples—a
sample will never be fragmented into multiple batches.

A batch is sent on the network ("flushed") when one of the following things happens:

❏ User-configurable flushing conditions

• A batch size limit (max_data_bytes) is reached.

• A number of samples are in the batch (max_samples).

• A time-limit (max_flush_delay) is reached, as measured from the time the first sam-
ple in the batch is written by the application.

• The application explicitly calls a DataWriter's flush() operation.

❏ Non-user configurable flushing conditions:

• A coherent set starts or ends.

• The number of samples in the batch is equal to max_samples in RESOURCE_LIMITS
for unkeyed topics or max_samples_per_instance in RESOURCE_LIMITS for keyed
topics.

Additional batching configuration takes place in the Publisher’s
ASYNCHRONOUS_PUBLISHER QosPolicy (DDS Extension) (Section 6.4.1).

The flush() operation is described in Flushing Batches of Data Samples (Section 6.3.9).

struct DDS_Duration_t
source_timestamp_
resolution

Sets the batch source timestamp resolution.
The value of this field determines how the source time-
stamp is associated with the samples in a batch.
A sample written with timestamp 't' inherits the source
timestamp 't2' associated with the previous sample, unless
('t' - 't2') is greater than source_timestamp_resolution.
If source_timestamp_resolution is DURATION_INFINITE,
every sample in the batch will share the source timestamp
associated with the first sample.
If source_timestamp_resolution is zero, every sample in
the batch will contain its own source timestamp corre-
sponding to the moment when the sample was written.
The performance of the batching process is better when
source_timestamp_resolution is set to
DURATION_INFINITE.

DDS_Boolean thread_safe_write

Determines whether or not the write operation is thread-
safe.
If TRUE, multiple threads can call write on the DataWriter
concurrently.
A setting of FALSE can be used to increase batching
throughput for batches with many small samples.

Table 6.34 DDS_BatchQosPolicy

Type Field Name Description
6-79

DataWriter QosPolicies
6.5.2.1 Synchronous and Asynchronous Flushing

Usually, a batch is flushed synchronously:

❏ When a batch reaches its application-defined size limit (max_data_bytes or
max_samples) because the application called write(), the batch is flushed immediately in
the context of the writing thread.

❏ When an application manually flushes a batch, the batch is flushed immediately in the
context of the calling thread.

❏ When the first sample in a coherent set is written, the batch in progress (without includ-
ing the sample in the coherent set) is immediately flushed in the context of the writing
thread.

❏ When a coherent set ends, the batch in progress is immediately flushed in the context of
the calling thread.

❏ When the number of samples in a batch is equal to max_samples in RESOURCE_LIMITS
for unkeyed topics or max_samples_per_instance in RESOURCE_LIMITS for keyed top-
ics, the batch is flushed immediately in the context of the writing thread.

However, some behavior is asynchronous:

❏ To flush batches based on a time limit (max_flush_delay), enable asynchronous batch
flushing in the ASYNCHRONOUS_PUBLISHER QosPolicy (DDS Extension) (Section
6.4.1) of the DataWriter's Publisher. This will cause the Publisher to create an additional
thread that will be used to flush batches of that Publisher's DataWriters. This behavior is
analogous to the way asynchronous publishing works.

❏ You may also use batching alongside asynchronous publication with FlowControllers
(DDS Extension) (Section 6.6). These features are independent of one another. Flushing a
batch on an asynchronous DataWriter makes it available for sending to the DataWriter's
FlowController. From the point of view of the FlowController, a batch is treated like one
large sample.

6.5.2.2 Batching vs. Coalescing

Even when batching is disabled, Connext will sometimes coalesce multiple samples into a single
network datagram. For example, samples buffered by a FlowController or sent in response to a
negative acknowledgement (NACK) may be coalesced. This behavior is distinct from sample
batching.

Samples that are sent individually (not part of a batch) are always treated as separate samples by
Connext. Each sample is accompanied by a complete RTPS header on the network (although
samples may share UDP and IP headers) and (in the case of reliable communication) a unique
physical sequence number that must be positively or negatively acknowledged.

In contrast, batched samples share an RTPS header and an entire batch is acknowledged —posi-
tively or negatively—as a unit, potentially reducing the amount of meta-traffic on the network
and the amount of processing per individual sample.

Batching can also improve latency relative to simply coalescing. Consider two use cases:

1. A DataWriter is configured to write asynchronously with a FlowController. Even if the
FlowController's rules would allow it to publish a new sample immediately, the send
will always happen in the context of the asynchronous publishing thread. This context
switch can add latency to the send path.
6-80

DataWriter QosPolicies
2. A DataWriter is configured to write synchronously but with batching turned on. When
the batch is full, it will be sent on the wire immediately, eliminating a thread context
switch from the send path.

6.5.2.3 Batching and ContentFilteredTopics

When batching is enabled, content filtering is always done on the reader side.

6.5.2.4 Turbo Mode: Automatically Adjusting the Number of Bytes in a Batch—Experimental Feature

Turbo Mode is an experimental feature that uses an intelligent algorithm that automatically
adjusts the number of bytes in a batch at run time according to current system conditions, such
as write speed (or write frequency) and sample size. This intelligence is what gives it the ability
to increase throughput at high message rates and avoid negatively impacting message latency at
low message rates.

To enable Turbo mode, set the DataWriter's property dds.data_writer.enable_turbo_mode to
true. Turbo mode is not enabled by default.

Note: If you explicitly enable batching by setting enable to TRUE in BatchQosPolicy, the value of
the turbo mode property is ignored and turbo mode is not used.

6.5.2.5 Performance Considerations

The purpose of batching is to increase throughput when writing small samples at a high rate. In
such cases, throughput can be increased several-fold, approaching much more closely the phys-
ical limitations of the underlying network transport.

However, collecting samples into a batch implies that they are not sent on the network immedi-
ately when the application writes them; this can potentially increase latency. However, if the
application sends data faster than the network can support, an increased proportion of the net-
work's available bandwidth will be spent on acknowledgements and sample resends. In this
case, reducing that overhead by turning on batching could decrease latency while increasing
throughput.

As a general rule, to improve batching throughput:

❏ Set thread_safe_write to FALSE when the batch contains a big number of small samples.
If you do not use a thread-safe write configuration, asynchronous batch flushing must be
disabled.

❏ Set source_timestamp_resolution to DURATION_INFINITE. Note that you set this
value, every sample in the batch will share the same source timestamp.

Batching affects how often piggyback heartbeats are sent; see heartbeats_per_max_samples in
Table 6.36, “DDS_RtpsReliableWriterProtocol_t,” on page 6-84.

6.5.2.6 Maximum Transport Datagram Size

Batches cannot be fragmented. As a result, the maximum batch size (max_data_bytes) must be
set no larger than the maximum transport datagram size. For example, a UDP datagram is lim-
ited to 64 KB, so any batches sent over UDP must be less than or equal to that size.

6.5.2.7 Properties

This QosPolicy cannot be modified after the DataWriter is enabled.

Since it is only for DataWriters, there are no compatibility restrictions for how it is set on the pub-
lishing and subscribing sides.
6-81

DataWriter QosPolicies
All batching configuration occurs on the publishing side. A subscribing application does not
configure anything specific to receive batched samples, and in many cases, it will be oblivious to
whether the samples it processes were received individually or as part of a batch.

Consistency rules:

❏ max_samples must be consistent with max_data_bytes: they cannot both be set to
LENGTH_UNLIMITED.

❏ If max_flush_delay is not DURATION_INFINITE, disable_asynchronous_batch in the
ASYNCHRONOUS_PUBLISHER QosPolicy (DDS Extension) (Section 6.4.1) must be
FALSE.

❏ If thread_safe_write is FALSE, source_timestamp_resolution must be
DURATION_INFINITE.

6.5.2.8 Related QosPolicies

❏ To flush batches based on a time limit, enable batching in the
ASYNCHRONOUS_PUBLISHER QosPolicy (DDS Extension) (Section 6.4.1) of the
DataWriter's Publisher.

❏ Be careful when configuring a DataWriter's LIFESPAN QoS Policy (Section 6.5.12) with a
duration shorter than the batch flush period (max_flush_delay). If the batch does not fill
up before the flush period elapses, the short duration will cause the samples to be lost
without being sent.

❏ Do not configure the DataReader’s or DataWriter’s HISTORY QosPolicy (Section 6.5.10) to
be shallower than the DataWriter's maximum batch size (max_samples). When the HIS-
TORY QosPolicy is shallower on the DataWriter, some samples may not be sent. When
the HISTORY QosPolicy is shallower on the DataReader, samples may be dropped before
being provided to the application.

❏ The initial and maximum numbers of batches that a DataWriter will manage is set in the
DATA_WRITER_RESOURCE_LIMITS QosPolicy (DDS Extension) (Section 6.5.4).

❏ The maximum number of samples that a DataWriter can store is determined by the value
max_samples in the RESOURCE_LIMITS QosPolicy (Section 6.5.20) and max_batches in
the DATA_WRITER_RESOURCE_LIMITS QosPolicy (DDS Extension) (Section 6.5.4).
The limit that is reached first is applied.

❏ The amount of resources required for batching depends on the configuration of the
RESOURCE_LIMITS QosPolicy (Section 6.5.20) and the
DATA_WRITER_RESOURCE_LIMITS QosPolicy (DDS Extension) (Section 6.5.4). See
Section 6.5.2.10.

6.5.2.9 Applicable Entities

❏ DataWriters (Section 6.3)

6.5.2.10 System Resource Considerations

❏ Batching requires additional resources to store the meta-data associated with the samples
in the batch.

• For unkeyed topics, the meta-data will be at least 8 bytes, with a maximum of 20
bytes.

• For keyed topics, the meta-data will be at least 8 bytes, with a maximum of 52 bytes.

❏ Other resource considerations are described in Section 6.5.2.8.
6-82

DataWriter QosPolicies
6.5.3 DATA_WRITER_PROTOCOL QosPolicy (DDS Extension)

Connext uses a standard protocol for packet (user and meta data) exchange between applica-
tions. The DataWriterProtocol QosPolicy gives you control over configurable portions of the
protocol, including the configuration of the reliable data delivery mechanism of the protocol on
a per DataWriter basis.

These configuration parameters control timing and timeouts, and give you the ability to trade
off between speed of data loss detection and repair, versus network and CPU bandwidth used to
maintain reliability.

It is important to tune the reliability protocol on a per DataWriter basis to meet the requirements
of the end-user application so that data can be sent between DataWriters and DataReaders in an
efficient and optimal manner in the presence of data loss. You can also use this QosPolicy to con-
trol how Connext responds to "slow" reliable DataReaders or ones that disconnect or are other-
wise lost.

This policy includes the members presented in Table 6.35, “DDS_DataWriterProtocolQosPolicy,”
on page 6-83 and Table 6.36, “DDS_RtpsReliableWriterProtocol_t,” on page 6-84. For defaults
and valid ranges, please refer to the API Reference HTML documentation.

For details on the reliability protocol used by Connext, see Chapter 10: Reliable Communica-
tions. See the RELIABILITY QosPolicy (Section 6.5.19) for more information on per-DataReader/
DataWriter reliability configuration. The HISTORY QosPolicy (Section 6.5.10) and
RESOURCE_LIMITS QosPolicy (Section 6.5.20) also play important roles in the DDS reliability
protocol.

Table 6.35 DDS_DataWriterProtocolQosPolicy

Type Field Name Description

DDS_GUID_t virtual_guid

The virtual GUID (Global Unique Identifier) is used to uniquely identify
the same DataWriter across multiple incarnations. In other words, this
value allows Connext to remember information about a DataWriter that
may be deleted and then recreated.
Connext uses the virtual GUID to associate a durable writer history to a
DataWriter.
Persistence Servicea uses the virtual GUID to send samples on behalf of the
original DataWriter.
A DataReader persists its state based on the virtual GUIDs of matching
remote DataWriters.
For more information, see Durability and Persistence Based on Virtual
GUIDs (Section 12.2).
By default, Connext will assign a virtual GUID automatically. If you want
to restore the state of the durable writer history after a restart, you can
retrieve the value of the writer's virtual GUID using the DataWriter’s
get_qos() operation, and set the virtual GUID of the restarted DataWriter to
the same value.

DDS_Unsigned-
Long

rtps_object_id

Determines the DataWriter’s RTPS object ID, according to the DDS-RTPS
Interoperability Wire Protocol.
Only the last 3 bytes are used; the most significant byte is ignored.
The rtps_host_id, rtps_app_id, rtps_instance_id in the
WIRE_PROTOCOL QosPolicy (DDS Extension) (Section 8.5.9), together
with the 3 least significant bytes in rtps_object_id, and another byte
assigned by Connext to identify the entity type, forms the BuiltinTopicKey
in PublicationBuiltinTopicData.
6-83

DataWriter QosPolicies
DDS_Boolean push_on_write
Controls when a sample is sent after write() is called on a DataWriter. If
TRUE, the sample is sent immediately; if FALSE, the sample is put in a
queue until an ACK/NACK is received from a reliable DataReader.

DDS_Boolean
disable_positive_
acks

Determines whether matching DataReaders send positive acknowledge-
ments (ACKs) to the DataWriter.
When TRUE, the DataWriter will keep samples in its queue for ACK-dis-
abled readers for a minimum keep duration (see Section 6.5.3.3).
When strict reliability is not required, setting this to TRUE reduces over-
head network traffic.

DDS_Boolean
disable_inline_
keyhash

Controls whether or not the key-hash is propagated on the wire with
samples.
This field only applies to keyed writers.
Connext associates a key-hash (an internal 16-byte representation) with
each key.
When FALSE, the key-hash is sent on the wire with every data instance.
When TRUE, the key-hash is not sent on the wire (so the readers must
compute the value using the received data).
If the reader is CPU bound, sending the key-hash on the wire may increase
performance, because the reader does not have to get the key-hash from
the data.
If the writer is CPU bound, sending the key-hash on the wire may
decrease performance, because it requires more bandwidth (16 more
bytes per sample).

DDS_Boolean
serialize_key_
with_dispose

Controls whether or not the serialized key is propagated on the wire with
dispose notifications.
This field only applies to keyed writers.
RTI recommends setting this field to TRUE if there are DataReaders with
propagate_dispose_of_unregistered_instances (in the
DATA_READER_PROTOCOL QosPolicy (DDS Extension) (Section 7.6.1))
also set to TRUE.
Important: When this field TRUE, batching will not be compatible with
RTI Data Distribution Service 4.3e, 4.4b, or 4.4c—the DataReaders will
receive incorrect data and/or encounter deserialization errors.

DDS_RtpsReliable
WriterProtocol_t

rtps_reliable_
writer

This structure includes the fields in Table 6.36.

a. Persistence Service is included with Connext Messaging. It saves data samples so they can be delivered to subscribing applica-
tions that join the system at a later time (see Chapter 26: Introduction to RTI Persistence Service).

Table 6.36 DDS_RtpsReliableWriterProtocol_t

Type Field Name Description

DDS_Long
low_watermark Queue levels that control when to switch between the regular

and fast heartbeat rates (heartbeat_period and
fast_heartbeat_period). See Section 6.5.3.1.high_watermark

Table 6.35 DDS_DataWriterProtocolQosPolicy

Type Field Name Description

Note: Setting disable_inline_keyhash to TRUE is not compatible
with using RTI Real-Time Connect or RTI Recording Service.
6-84

DataWriter QosPolicies
DDS_Duration_t

heartbeat_period

Rates at which to send heartbeats to DataReaders with unac-
knowledged samples. See Section 6.5.3.2 and Section 10.3.4.1.

fast_heartbeat_period

late_joiner_heartbeat_
period

DDS_Duration_t virtual_heartbeat_period

The rate at which a reliable DataWriter will send virtual heart-
beats. Virtual heartbeat informs the reliable DataReader about the
range of samples currently present for each virtual GUID in the
reliable writer's queue. See Section 6.5.3.6.

DDS_Long
samples_per_virtual_
heartbeat

The number of samples that a reliable DataWriter must publish
before sending a virtual heartbeat. See Section 6.5.3.6.

DDS_Long max_heartbeat_retries

Maximum number of periodic heartbeats sent without receiving
an ACK/NACK packet before marking a DataReader ‘inactive.’
When a DataReader has not acknowledged all the samples the
reliable DataWriter has sent to it, and max_heartbeat_retries
number of periodic heartbeats have been sent without receiving
any ACK/NACK packets in return, the DataReader will be
marked as inactive (not alive) and be ignored until it resumes
sending ACK/NACKs.
Note that piggyback heartbeats do not count towards this value.
See Section 10.3.4.4.

DDS_Boolean
inactivate_nonprogressing_
readers

Allows the DataWriter to treat DataReaders that send successive
non-progressing NACK packets as inactive.
See Section 10.3.4.5.

DDS_Long heartbeats_per_max_samples

A piggyback heartbeat is sent every [current send-window size/
heartbeats_per_max_samples] number of samples written.
If set to zero, no piggyback heartbeat will be sent.
If the current send-window size is LENGTH_UNLIMITED, 100
million is assumed as the value in the calculation.
See Configuring the Send Window Size (Section 6.5.3.4)

DDS_Duration_t min_nack_response_delay

Minimum delay to respond to an ACK/NACK.
When a reliable DataWriter receives an ACK/NACK from a
DataReader, the DataWriter can choose to delay a while before it
sends repair samples or a heartbeat. This set the value of the min-
imum delay.
See Section 10.3.4.6.

DDS_Duration_t max_nack_response_delay

Maximum delay to respond to a ACK/NACK.
This sets the value of maximum delay between receiving an
ACK/NACK and sending repair samples or a heartbeat.
A longer wait can help prevent storms of repair packets if many
DataReaders send NACKs at the same time. However, it delays
the repair, and hence increases the latency of the communication.
See Section 10.3.4.6.

DDS_Duration_t nack_suppression_duration

How long consecutive NACKs are suppressed.
When a reliable DataWriter receives consecutive NACKs within a
short duration, this may trigger the DataWriter to send redun-
dant repair messages. This value sets the duration during which
consecutive NACKs are ignored, thus preventing redundant
repairs from being sent.

Table 6.36 DDS_RtpsReliableWriterProtocol_t

Type Field Name Description
6-85

DataWriter QosPolicies
DDS_Long
max_bytes_per_nack_
response

Maximum bytes in a repair package.
When a reliable DataWriter resends samples, the total package
size is limited to this value.
See Section 10.3.4.3.

DDS_Duration_t

disable_positive_acks_
min_sample_keep_
duration

Minimum duration that a sample will be kept in the DataWriter’s
queue for ACK-disabled DataReaders.
See Section 6.5.3.3 and Section 10.3.4.7.

disable_positive_acks_
max_sample_keep_
duration

Maximum duration that a sample will be kept in the DataWriter’s
queue for ACK-disabled readers.

DDS_Boolean
disable_positive_acks_
enable_adaptive_
sample_keep_duration

Enables automatic dynamic adjustment of the ‘keep duration’ in
response to network congestion.

DDS_Long

disable_positive_acks_
increase_sample_
keep_duration_factor

When the ‘keep duration’ is dynamically controlled, the length-
ening of the ‘keep duration’ is controlled by this factor, which is
expressed as a percentage.
When the adaptive algorithm determines that the keep duration
should be increased, this factor is multiplied with the current
keep duration to get the new longer keep duration. For example,
if the current keep duration is 20 milliseconds, using the default
factor of 150% would result in a new keep duration of 30 milli-
seconds.

disable_positive_acks_
decrease_sample_
keep_duration_factor

When the ‘keep duration’ is dynamically controlled, the shorten-
ing of the ‘keep duration’ is controlled by this factor, which is
expressed as a percentage.
When the adaptive algorithm determines that the keep duration
should be decreased, this factor is multiplied with the current
keep duration to get the new shorter keep duration. For example,
if the current keep duration is 20 milliseconds, using the default
factor of 95% would result in a new keep duration of 19 millisec-
onds.

DDS_Long
min_send_window_size Minimum and maximum size for the window of outstanding

samples.
See Configuring the Send Window Size (Section 6.5.3.4). max_send_window_size

DDS_Long
send_window_decrease_
factor

Scales the current send-window size down by this percentage to
decrease the effective send-rate in response to received negative
acknowledgement.
See Configuring the Send Window Size (Section 6.5.3.4).

DDS_Boolean
enable_multicast_periodic_he
artbeat

Controls whether or not periodic heartbeat messages are sent
over multicast.
When enabled, if a reader has a multicast destination, the writer
will send its periodic HEARTBEAT messages to that destination.
Otherwise, if not enabled or the reader does not have a multicast
destination, the writer will send its periodic HEARTBEATs over
unicast.

DDS_Long multicast_resend_threshold
Sets the minimum number of requesting readers needed to trig-
ger a multicast resend.
See Resending Over Multicast (Section 6.5.3.7).

Table 6.36 DDS_RtpsReliableWriterProtocol_t

Type Field Name Description
6-86

DataWriter QosPolicies
6.5.3.1 High and Low Watermarks

When the number of unacknowledged samples in the current send-window of a reliable DataW-
riter meets or exceeds high_watermark, the RELIABLE_WRITER_CACHE_CHANGED Status
(DDS Extension) (Section 6.3.6.7) will be changed appropriately, a listener callback will be trig-
gered, and the DataWriter will start heartbeating its matched DataReaders at fast_heartbeat_rate.

When the number of samples meets or falls below low_watermark, the
RELIABLE_WRITER_CACHE_CHANGED Status (DDS Extension) (Section 6.3.6.7) will be
changed appropriately, a listener callback will be triggered, and the heartbeat rate will return to
the "normal" rate (heartbeat_rate).

Having both high and low watermarks (instead of one) helps prevent rapid flickering between
the rates, which could happen if the number of samples hovers near the cut-off point.

Increasing the high and low watermarks will make the DataWriters less aggressive about seeking
acknowledgments for sent data, decreasing the size of traffic spikes but slowing performance.

Decreasing the watermarks will make the DataWriters more aggressive, increasing both network
utilization and performance.

If batching is used, high_watermark and low_watermark refer to batches, not samples.

When min_send_window_size and max_send_window_size are not equal, the low and high
watermarks are scaled down linearly to stay within the current send-window size. The value
provided by configuration corresponds to the high and low watermarks for the
max_send_window_size.

6.5.3.2 Normal, Fast, and Late-Joiner Heartbeat Periods

The normal heartbeat_period is used until the number of samples in the reliable DataWriter’s
queue meets or exceeds high_watermark; then fast_heartbeat_period is used. Once the number
of samples meets or drops below low_watermark, heartbeat_period is used again.

❏ fast_heartbeat_period must be <= heartbeat_period

Increasing fast_heartbeat_period increases the speed of discovery, but results in a larger surge
of traffic when the DataWriter is waiting for acknowledgments.

Decreasing heartbeat_period decreases the steady state traffic on the wire, but may increase
latency by decreasing the speed of repairs for lost packets when the writer does not have very
many outstanding unacknowledged samples.

Having two periodic heartbeat rates, and switching between them based on watermarks:

❏ Ensures that all DataReaders receive all their data as quickly as possible (the sooner they
receive a heartbeat, the sooner they can send a NACK, and the sooner the DataWriter can
send repair samples);

DDS_Long
send_window_increase_
factor

Scales the current send-window size up by this percentage to
increase the effective send-rate when a duration has passed with-
out any received negative acknowledgements.
See Configuring the Send Window Size (Section 6.5.3.4)

DDS_Duration
send_window_update_
period

Period in which DataWriter checks for received negative
acknowledgements and conditionally increases the send-win-
dow size when none are received.
See Configuring the Send Window Size (Section 6.5.3.4)

Table 6.36 DDS_RtpsReliableWriterProtocol_t

Type Field Name Description
6-87

DataWriter QosPolicies
❏ Helps prevent the DataWriter from overflowing its resource limits (as its queue starts the
fill, the DataWriter sends heartbeats faster, prompting the DataReaders to acknowledge
sooner, allowing the DataWriter to purge these acknowledged samples from its queue);

❏ Tunes the amount of network traffic. (Heartbeats and NACKs use up network band-
width like any other traffic; decreasing the heartbeat rates, or increasing the threshold
before the fast rate starts, can smooth network traffic—at the expense of discovery per-
formance).

The late_joiner_heartbeat_period is used when a reliable DataReader joins after a reliable
DataWriter (with non-volatile Durability) has begun publishing samples. Once the late-joining
DataReader has received all cached samples, it will be serviced at the same rate as other reliable
DataReaders.

❏ late_joiner_heartbeat_period must be <= heartbeat_period

6.5.3.3 Disabling Positive Acknowledgements

When strict reliable communication is not required, you can configure Connext so that it does not
send positive acknowledgements (ACKs). In this case, reliability is maintained solely based on
negative acknowledgements (NACKs). The removal of ACK traffic may improve middleware
performance. For example, when sending samples over multicast, ACK-storms that previously
may have hindered DataWriters and consumed overhead network bandwidth are now pre-
cluded.

By default, DataWriters and DataReaders are configured with positive ACKS enabled. To disable
ACKs, either:

❏ Configure the DataWriter to disable positive ACKs for all matching DataReaders (by set-
ting disable_positive_acks to TRUE in the DATA_WRITER_PROTOCOL QosPolicy
(DDS Extension) (Section 6.5.3)).

❏ Disable ACKs for individual DataReaders (by setting disable_positive_acks to TRUE in
the DATA_READER_PROTOCOL QosPolicy (DDS Extension) (Section 7.6.1)).

If ACKs are disabled, instead of the DataWriter holding a sample in its send queue until all of its
DataReaders have ACKed it, the DataWriter will hold a sample for a configurable duration. This
“keep-duration" starts when a sample is written. When this time elapses, the sample is logically
considered as acknowledged by its ACK-disabled readers.

The length of the "keep-duration" can be static or dynamic, depending on how
rtps_reliable_writer.disable_positive_acks_enable_adaptive_sample_keep_duration is set.

❏ When the length is static, the "keep-duration" is set to the minimum
(rtps_reliable_writer.disable_positive_acks_min_sample_keep_duration).

❏ When the length is dynamic, the "keep-duration" is dynamically adjusted between the
minimum and maximum durations
(rtps_reliable_writer.disable_positive_acks_min_sample_keep_duration and
rtps_reliable_writer.disable_positive_acks_max_sample_keep_duration).

Dynamic adjustment maximizes throughput and reliability in response to current network con-
ditions: when the network is congested, durations are increased to decrease the effective send
rate and relieve the congestion; when the network is not congested, durations are decreased to
increase the send rate and maximize throughput.

You should configure the minimum "keep-duration" to allow at least enough time for a possible
NACK to be received and processed. When a DataWriter has both matching ACK-disabled and
ACK-enabled DataReaders, it holds a sample in its queue until all ACK-enabled DataReaders have
ACKed it and the "keep-duration" has elapsed.
6-88

DataWriter QosPolicies
See also: Disabling Positive Acknowledgements
(disable_postive_acks_min_sample_keep_duration) (Section 10.3.4.7).

6.5.3.4 Configuring the Send Window Size

When a reliable DataWriter writes a sample, it keeps the sample in its queue until it has received
acknowledgements from all of its subscribing DataReaders. The number of these outstanding
samples is referred to as the DataWriter's "send window." Once the number of outstanding sam-
ples has reached the send window size, subsequent writes will block until an outstanding sam-
ple is acknowledged.

Configuration of the send window sets a minimum and maximum size, which may be unlim-
ited. The min and max send windows can be the same. When set differently, the send window
will dynamically change in response to detected network congestion, as signaled by received
negative acknowledgements. When NACKs are received, the DataWriter responds to the slowed
reader by decreasing the send window by the send_window_decrease_factor to throttle down
its effective send rate. The send window will not be decreased to less than the
min_send_window_size. After a period (send_window_update_period) during which no
NACKs are received, indicating that the reader is catching up, the DataWriter will increase the
send window size to increase the effective send rate by the percentage specified by
send_window_increase_factor. The send window will increase to no greater than the
max_send_window_size.

When both min_send_window_size and max_send_window_size are unlimited, either the
resource limits max_samples in RESOURCE_LIMITS QosPolicy (Section 6.5.20) (for non-batch-
ing) or max_batches in DATA_WRITER_RESOURCE_LIMITS QosPolicy (DDS Extension) (Sec-
tion 6.5.4) (for batching) serves as the effective max_send_window_size.

When either max_samples (for non-batching) or max_batches (for batching) is less than
max_send_window_size, it serves as the effective max_send_window_size. If it is also less than
min_send_window_size, then effectively both min and max send-window sizes are equal to
max_samples or max_batches.

6.5.3.5 Propagating Serialized Keys with Disposed-Instance Notifications

This section describes the interaction between these two fields:

❏ serialize_key_with_dispose in DATA_WRITER_PROTOCOL QosPolicy (DDS Exten-
sion) (Section 6.5.3)

❏ propagate_dispose_of_unregistered_instances in DATA_READER_PROTOCOL
QosPolicy (DDS Extension) (Section 7.6.1)

RTI recommends setting serialize_key_with_dispose to TRUE if there are DataReaders with
propagate_dispose_of_unregistered_instances also set to TRUE. However, it is permissible to
set one to TRUE and the other to FALSE. The following examples will help you understand how
these fields work.

See also: Disposing of Data (Section 6.3.14.2).

Example 1

1. DataWriter’s serialize_key_with_dispose = FALSE

2. DataReader’s propagate_dispose_of_unregistered_instances = TRUE

3. DataWriter calls dispose() before writing any samples

4. DataReader calls take() and receives a disposed-instance notification (without a key)

5. DataReader calls get_key_value(), which returns an error because there is no key associ-
ated with the disposed-instance notification
6-89

DataWriter QosPolicies
Example 2

1. DataWriter’s serialize_key_with_dispose = TRUE

2. DataReader’s propagate_dispose_of_unregistered_instances = FALSE

3. DataWriter calls dispose() before writing any samples

4. DataReader calls take(), which does not return any samples because none were written,
and it does not receive any disposed-instance notifications because
propagate_dispose_of_unregistered_instances = FALSE

Example 3

1. DataWriter’s serialize_key_with_dispose = TRUE

2. DataReader’s propagate_dispose_of_unregistered_instances = TRUE

3. DataWriter calls dispose() before writing any samples

4. DataReader calls take() and receives the disposed-instance notification

5. DataReader calls get_key_value() and receives the key for the disposed-instance notifica-
tion

Example 4

1. DataWriter’s serialize_key_with_dispose = TRUE

2. DataReader’s propagate_dispose_of_unregistered_instances = TRUE

3. DataWriter calls write(), which writes a sample with a key

4. DataWriter calls dispose(), which writes a disposed-instance notification with a key

5. DataReader calls take() and receives a data sample and a disposed-instance notification;
both have keys

6. DataReader calls get_key_value() with no errors

6.5.3.6 Virtual Heartbeats

Virtual heartbeats announce the availability of samples with the Collaborative DataWriters fea-
ture described in Section 7.6.1, where multiple DataWriters publish samples from a common log-
ical data-source (identified by a virtual GUID).

When PRESENTATION QosPolicy (Section 6.4.6) access_scope is set to TOPIC or INSTANCE on
the Publisher, the virtual heartbeat contains information about the samples contained in the
DataWriter queue.

When presentation access_scope is set to GROUP on the Publisher, the virtual heartbeat contains
information about the samples in the queues of all DataWriters that belong to the Publisher.

6.5.3.7 Resending Over Multicast

Given DataReaders with multicast destinations, when a DataReader sends a NACK to request for
samples to be resent, the DataWriter can either resend them over unicast or multicast. Though
resending over multicast would save bandwidth and processing for the DataWriter, the potential
problem is that there could be DataReaders of the multicast group that did not request for any
resends, yet they would have to process, and drop, the resent samples.

Thus, to make each multicast resend more efficient, the multicast_resend_threshold is set as the
minimum number of DataReaders of the same multicast group that the DataWriter must receive
NACKs from within a single response-delay duration. This allows the DataWriter to coalesce
6-90

DataWriter QosPolicies
near-simultaneous unicast resends into a multicast resend, and it allows a "vote" from DataRead-
ers of a multicast group to exceed a threshold before resending over multicast.

The multicast_resend_threshold must be set to a positive value. Note that a threshold of 1
means that all resends will be sent over multicast. Also, note that a DataWriter with a zero
NACK response-delay (i.e., both min_nack_response_delay and min_nackresponse_delay are
zero) will resend over multicast only if the threshold is 1.

6.5.3.8 Example

For information on how to use the fields in Table 6.36, see Controlling Heartbeats and Retries
with DataWriterProtocol QosPolicy (Section 10.3.4).

The following describes a use case for when to change push_on_write to
DDS_BOOLEAN_FALSE. Suppose you have a system in which the data packets being sent is
very small. However, you want the data to be sent reliably, and the latency between the time that
data is sent to the time that data is received is not an issue. However, the total network band-
width between the DataWriter and DataReader applications is limited.

If the DataWriter sends a burst of data a a high rate, it is possible that it will overwhelm the lim-
ited bandwidth of the network. If you allocate enough space for the DataWriter to store the data
burst being sent (see RESOURCE_LIMITS QosPolicy (Section 6.5.20)), then you can use the
push_on_write parameter of the DATA_WRITER_PROTOCOL QosPolicy to delay sending the
data until the reliable DataReader asks for it.

By setting push_on_write to DDS_BOOLEAN_FALSE, when write() is called on the DataW-
riter, no data is actually sent. Instead data is stored in the DataWriter’s send queue. Periodically,
Connext will be sending heartbeats informing the DataReader about the data that is available. So
every heartbeat period, the DataReader will realize that the DataWriter has new data, and it will
send an ACK/NACK, asking for them.

When DataWriter receives the ACK/NACK packet, it will put together a package of data, up to
the size set by the parameter max_bytes_per_nack_response, to be sent to the DataReader. This
method not only self-throttles the send rate, but also uses network bandwidth more efficiently
by eliminating redundant packet headers when combining several small packets into one larger
one.

6.5.3.9 Properties

This QosPolicy cannot be modified after the DataWriter is created.

Since it is only for DataWriters, there are no compatibility restrictions for how it is set on the pub-
lishing and subscribing sides.

When setting the fields in this policy, the following rules apply. If any of these are false, Connext
returns DDS_RETCODE_INCONSISTENT_POLICY:

❏ min_nack_response_delay <= max_nack_response_delay

❏ fast_heartbeat_period <= heartbeat_period

❏ late_joiner_heartbeat_period <= heartbeat_period

❏ low_watermark < high_watermark

❏ If batching is disabled:

• heartbeats_per_max_samples <= writer_qos.resource_limits.max_samples

❏ If batching is enabled:

• heartbeats_per_max_samples <= writer_qos.resource_limits.max_batches
6-91

DataWriter QosPolicies
6.5.3.10 Related QosPolicies

❏ DATA_READER_PROTOCOL QosPolicy (DDS Extension) (Section 7.6.1)

❏ HISTORY QosPolicy (Section 6.5.10)

❏ RELIABILITY QosPolicy (Section 6.5.19)

6.5.3.11 Applicable Entities

❏ DataWriters (Section 6.3)

6.5.3.12 System Resource Considerations

A high max_bytes_per_nack_response may increase the instantaneous network bandwidth
required to send a single burst of traffic for resending dropped packets.

6.5.4 DATA_WRITER_RESOURCE_LIMITS QosPolicy (DDS Extension)

This QosPolicy defines various settings that configure how DataWriters allocate and use physical
memory for internal resources.

It includes the members in Table 6.37. For defaults and valid ranges, please refer to the API Ref-
erence HTML documentation.

Table 6.37 DDS_DataWriterResourceLimitsQosPolicy

Type Field Name Description

DDS_Long
initial_concurrent_
blocking_threads

Initial number of threads that are allowed to concurrently
block on the write() call on the same DataWriter.

DDS_Long
max_concurrent_
blocking_threads

Maximum number of threads that are allowed to concur-
rently block on write() call on the same DataWriter.

DDS_Long
max_remote_reader_
filters

Maximum number of remote DataReaders for which this
DataWriter will perform content-based filtering.

DDS_Long initial_batches
Initial number of batches that a DataWriter will manage if
batching is enabled.

DDS_Long max_batches

Maximum number of batches that a DataWriter will manage
if batching is enabled.
When batching is enabled, the maximum number of samples
that a DataWriter can store is limited by this value and
max_samples in RESOURCE_LIMITS QosPolicy (Section
6.5.20).

DDS_DataWriter
ResourceLimits
InstanceReplace-
mentKind

instance_replacement
Sets the kinds of instances allowed to be replaced when a
DataWriter reaches instance resource limits. (See Configur-
ing DataWriter Instance Replacement (Section 6.5.20.2)

DDS_Boolean
replace_empty_
instances

Whether to replace empty instances during instance replace-
ment. (See Configuring DataWriter Instance Replacement
(Section 6.5.20.2)

DDS_Boolean autoregister_instances

Whether to register automatically instances written with
non-NIL handle that are not yet registered, which will other-
wise return an error. This can be especially useful if the
instance has been replaced.

DDS_Long initial_virtual_writers Initial number of virtual writers supported by a DataWriter.
6-92

DataWriter QosPolicies
DataWriters must allocate internal structures to handle the simultaneous blocking of threads try-
ing to call write() on the same DataWriter, for the storage used to batch small samples, and for
content-based filters specified by DataReaders.

Most of these internal structures start at an initial size and by default, will grow as needed by
dynamically allocating additional memory. You may set fixed, maximum sizes for these internal
structures if you want to bound the amount of memory that a DataWriter can use. By setting the
initial size to the maximum size, you will prevent Connext from dynamically allocating any
memory after the creation of the DataWriter.

When setting the fields in this policy, the following rule applies. If this is false, Connext returns
DDS_RETCODE_INCONSISTENT_POLICY:

❏ max_concurrent_blocking_threads >= initial_concurrent_blocking_threads

The initial_concurrent_blocking_threads is used to allocate necessary initial system resources.
If necessary, it will be increased automatically up to the max_concurrent_blocking_threads
limit.

Every user thread calling write() on a DataWriter may use a semaphore that will block the thread
when the DataWriter’s send queue is full. Because user code may set a timeout, each thread must
use a different semaphore. See the max_blocking_time parameter of the RELIABILITY QosPol-
icy (Section 6.5.19). This QoS is offered so that the user application can control the dynamic allo-
cation of system resources by Connext.

If you do not mind if Connext dynamically allocates semaphores when needed, then you can set
the max_concurrent_blocking_threads parameter to some large value like MAX_INT. How-
ever, if you know exactly how many threads will be calling write() on the same DataWriter, and
you do not want Connext to allocate any system resources or memory after initialization, then
you should set:

max_concurrent_blocking_threads = initial_concurrent_blocking_threads = NUM

(where NUM is the number of threads that could possibly block concurrently).

Each DataWriter can perform content-based data filtering for up to max_remote_reader_filters
number of DataReaders.

Values for max_remote_reader_filters may be.

❏ 0: The DataWriter will not perform filtering for any DataReader, which means the
DataReader will have to filter the data itself.

DDS_Long max_virtual_writers

Maximum number of virtual writers supported by a DataW-
riter.
Sets the maximum number of unique virtual writers sup-
ported by a DataWriter, where virtual writers are added
when samples are written with the virtual writer GUID.
This field is especially relevant in the configuration of Persis-
tence Servicea DataWriters, since they publish information on
behalf of multiple virtual writers.

DDS_Long max_remote_readers
The maximum number of remote readers supported by a
DataWriter.

DDS_Long
max_app_ack_remote
_readers

The maximum number of application-level acknowledging
remote readers supported by a DataWriter.

a. Persistence Service is included with Connext Messaging. It saves data samples so they can be delivered to subscribing
applications that join the system at a later time (see Chapter 26: Introduction to RTI Persistence Service).

Table 6.37 DDS_DataWriterResourceLimitsQosPolicy

Type Field Name Description
6-93

DataWriter QosPolicies
❏ 1 to (231-2): The DataWriter will filter for up to the specified number of DataReaders. In
addition, the Datawriter will store the result of the filtering per sample per DataReader.

❏ DDS_LENGTH_UNLIMITED: The DataWriter will filter for up to (231)-2 DataReaders.
However, in this case, the DataWriter will not store the filtering result per sample per
DataReader. Thus, if a sample is resent (such as due to a loss of reliable communication),
the sample will be filtered again.

For more information, see ContentFilteredTopics (Section 5.4).

6.5.4.1 Example

If there are multiple threads that can write on the same DataWriter, and the write() operation
may block (based on reliability_qos.max_blocking_time and HISTORY settings), you may
want to set initial_concurrent_blocking_threads to the most likely number of threads that will
block on the same DataWriter at the same time, and set max_concurrent_blocking_threads to
the maximum number of threads that could potentially block in the worst case.

6.5.4.2 Properties

This QosPolicy cannot be modified after the DataWriter is created.

Since it is only for DataWriters, there are no compatibility restrictions for how it is set on the pub-
lishing and subscribing sides.

6.5.4.3 Related QosPolicies

❏ BATCH QosPolicy (DDS Extension) (Section 6.5.2)

❏ RELIABILITY QosPolicy (Section 6.5.19)

❏ HISTORY QosPolicy (Section 6.5.10)

6.5.4.4 Applicable Entities

❏ DataWriters (Section 6.3)

6.5.4.5 System Resource Considerations

Increasing the values in this QosPolicy will cause more memory usage and more system
resource usage.

6.5.5 DEADLINE QosPolicy

On a DataWriter, this QosPolicy states the maximum period in which the application expects to
call write() on the DataWriter, thus publishing a new sample. The application may call write()
faster than the rate set by this QosPolicy.

On a DataReader, this QosPolicy states the maximum period in which the application expects to
receive new values for the Topic. The application may receive data faster than the rate set by this
QosPolicy.

The DEADLINE QosPolicy has a single member, shown in Table 6.38. For the default and valid
range, please refer to the API Reference HTML documentation.

You can use this QosPolicy during system integration to ensure that applications have been
coded to meet design specifications. You can also use it during run time to detect when systems
are performing outside of design specifications. Receiving applications can take appropriate
6-94

DataWriter QosPolicies
actions to prevent total system failure when data is not received in time. For topics on which
data is not expected to be periodic, the deadline period should be set to an infinite value.

For keyed topics, the DEADLINE QoS applies on a per-instance basis. An application must call
write() for each known instance of the Topic within the period specified by the DEADLINE on
the DataWriter or receive a new value for each known instance within the period specified by
the DEADLINE on the DataReader. For a DataWriter, the deadline period begins when the
instance is first written or registered. For a DataReader, the deadline period begins when the first
sample is received.

Connext will modify the OFFERED_DEADLINE_MISSED_STATUS and call the associated
method in the DataWriterListener (see OFFERED_DEADLINE_MISSED Status (Section 6.3.6.4))
if the application fails to write() a value for an instance within the period set by the DEADLINE
QosPolicy of the DataWriter.

Similarly, Connext will modify the REQUESTED_DEADLINE_MISSED_STATUS and call the
associated method in the DataReaderListener (see REQUESTED_DEADLINE_MISSED Status
(Section 7.3.7.5)) if the application fails to receive a value for an instance within the period set by
the DEADLINE QosPolicy of the DataReader.

For DataReaders, the DEADLINE QosPolicy and the TIME_BASED_FILTER QosPolicy (Section
7.6.4) may interact such that even though the DataWriter writes samples fast enough to fulfill its
commitment to its own DEADLINE QosPolicy, the DataReader may see violations of its DEAD-
LINE QosPolicy. This happens because Connext will drop any packets received within the
minimum_separation set by the TIME_BASED_FILTER—packets that could satisfy the
DataReader’s deadline.

To avoid triggering the DataReader’s deadline even though the matched DataWriter is meeting its
own deadline, set your QoS parameters to meet the following relationship:

reader deadline period >= reader minimum_separation + writer deadline period

Although you can set the DEADLINE QosPolicy on Topics, its value can only be used to initialize
the DEADLINE QosPolicies of either a DataWriter or DataReader. It does not directly affect the
operation of Connext, see Section 5.1.3.

6.5.5.1 Example

Suppose you have a time-critical piece of data that should be updated at least once every sec-
ond. You can set the DEADLINE period to 1 second on both the DataWriter and DataReader. If
there is no update within that time, the DataWriter will get an on_offered_deadline_missed Lis-
tener callback, and the DataReader will get on_requested_deadline_missed, so that both sides
can handle the error situation properly.

Note that in practice, there will be latency and jitter in the time between when data is send and
when data is received. Thus even if the DataWriter is sending data at exactly 1 second intervals,
the DataReader may not receive the data at exactly 1 second intervals. More likely, it will
DataReader will receive the data at 1 second plus a small variable quantity of time. Thus you
should accommodate this practical reality in choosing the DEADLINE period as well as the
actual update period of the DataWriter or your application may receive false indications of fail-
ure.

Table 6.38 DDS_DeadlineQosPolicy

Type Field Name Description

DDS_Duration_t period

For DataWriters: maximum time between writing a new value of an
instance.
For DataReaders: maximum time between receiving new values for
an instance.
6-95

DataWriter QosPolicies
The DEADLINE QosPolicy also interacts with the OWNERSHIP QosPolicy when OWNERSHIP
is set to EXCLUSIVE. If a DataReader fails to receive data from the highest strength DataWriter
within its requested DEADLINE, then the DataReaders can fail-over to lower strength DataWrit-
ers, see the OWNERSHIP QosPolicy (Section 6.5.15).

6.5.5.2 Properties

This QosPolicy can be changed at any time.

The deadlines on the two sides must be compatible.

DataWriter’s DEADLINE period <= the DataReader’s DEADLINE period.

That is, the DataReader cannot expect to receive samples more often than the DataWriter commits
to sending them.

If the DataReader and DataWriter have compatible deadlines, Connext monitors this “contract”
and informs the application of any violations. If the deadlines are incompatible, both sides are
informed and communication does not occur. The ON_OFFERED_INCOMPATIBLE_QOS and
the ON_REQUESTED_INCOMPATIBLE_QOS statuses will be modified and the correspond-
ing Listeners called for the DataWriter and DataReader respectively.

6.5.5.3 Related QosPolicies

❏ LIVELINESS QosPolicy (Section 6.5.13)

❏ OWNERSHIP QosPolicy (Section 6.5.15)

❏ TIME_BASED_FILTER QosPolicy (Section 7.6.4)

6.5.5.4 Applicable Entities

❏ Topics (Section 5.1)

❏ DataWriters (Section 6.3)

❏ DataReaders (Section 7.3)

6.5.5.5 System Resource Considerations

A Connext-internal thread will wake up at least by the DEADLINE period to check to see if the
deadline was missed. It may wake up faster if the last sample that was published or sent was
close to the last time that the deadline was checked. Therefore a short period will use more CPU
to wake and execute the thread checking the deadline.

6.5.6 DESTINATION_ORDER QosPolicy

When multiple DataWriters send data for the same topic, the order in which data from different
DataWriters are received by the applications of different DataReaders may be different. Thus dif-
ferent DataReaders may not receive the same "last" value when DataWriters stop sending data.

This policy controls how each subscriber resolves the final value of a data instance that is writ-
ten by multiple DataWriters (which may be associated with different Publishers) running on dif-
ferent nodes.

This QosPolicy can be used to create systems that have the property of "eventual consistency."
Thus intermediate states across multiple applications may be inconsistent, but when DataWriters
stop sending changes to the same topic, all applications will end up having the same state.
6-96

DataWriter QosPolicies
Each data sample includes two timestamps: a source timestamp and a destination timestamp.
The source timestamp is recorded by the DataWriter application when the data was written. The
destination timestamp is recorded by the DataReader application when the data was received.

This QoS includes the member in Table 6.39.

Each DataReader can set this QoS to:

❏ DDS_BY_RECEPTION_TIMESTAMP_DESTINATIONORDER_QOS

Assuming the OWNERSHIP_STRENGTH allows it, the latest received value for the
instance should be the one whose value is kept. Data will be delivered by a DataReader in
the order in which it was received (which may lead to inconsistent final values).

❏ DDS_BY_SOURCE_TIMESTAMP_DESTINATIONORDER_QOS

Assuming the OWNERSHIP_STRENGTH allows it, within each instance, the
source_timestamp shall be used to determine the most recent information. This is the
only setting that, in the case of concurrent same-strength DataWriters updating the same
instance, ensures all subscribers will end up with the same final value for the instance.

Data will be delivered by a DataReader in the order in which it was sent. If data arrives on
the network with a source timestamp earlier than the source timestamp of the last data
delivered, the new data will be dropped. This ordering therefore works best when sys-
tem clocks are relatively synchronized among writing machines.

Not all data sent by multiple DataWriters may be delivered to a DataReader and not all
DataReaders will see the same data sent by DataWriters. However, all DataReaders will see
the same "final" data when DataWriters "stop" sending data.

• For a DataWriter with kind
DDS_BY_SOURCE_TIMESTAMP_DESTINATIONORDER_QOS:
When writing a sample, its timestamp must not be less than the timestamp of the pre-
viously written sample. However, if it is less than the timestamp of the previously
written sample but the difference is less than this tolerance, the sample will use the
previously written sample's timestamp as its timestamp. Otherwise, if the difference
is greater than this tolerance, the write will fail.

See also: Special instructions for deleting DataWriters if you are using the ‘Time-
stamp’ APIs and BY_SOURCE_TIMESTAMP Destination Order: on page 6-21.

Table 6.39 DDS_DestinationOrderQosPolicy

Type Field Name Description

DDS_Destination-
OrderQosPolicyKind

kind

Can be either:
• DDS_BY_RECEPTION_TIMESTAMP_

DESTINATIONORDER_QOS

• DDS_BY_SOURCE_TIMESTAMP_
DESTINATIONORDER_QOS

DDS_Duration_t source_timestamp_tolerance

Allowed tolerance between source timestamps of
consecutive samples.
Only applies when kind (above) is
DDS_BY_SOURCE_TIMESTAMP_
DESTINATIONORDER_QOS.
6-97

DataWriter QosPolicies
• A DataReader with kind
DDS_BY_SOURCE_TIMESTAMP_DESTINATIONORDER_QOS will accept a sample
only if the difference between the sample’s source timestamp and the reception time-
stamp is no greater than source_timestamp_tolerance. Otherwise, the sample is
rejected.

Although you can set the DESTINATION_ORDER QosPolicy on Topics, its value can only be
used to initialize the DESTINATION_ORDER QosPolicies of either a DataWriter or DataReader. It
does not directly affect the operation of Connext, see Section 5.1.3.

6.5.6.1 Properties

This QosPolicy cannot be modified after the Entity is enabled.

This QoS must be set compatibly between the DataWriter and the DataReader. The compatible
combinations are shown in Table 6.40.

If this QosPolicy is set incompatibly, the ON_OFFERED_INCOMPATIBLE_QOS and
ON_REQUESTED_INCOMPATIBLE_QOS statuses will be modified and the corresponding
Listeners called for the DataWriter and DataReader respectively.

6.5.6.2 Related QosPolicies

❏ OWNERSHIP QosPolicy (Section 6.5.15)

❏ HISTORY QosPolicy (Section 6.5.10)

6.5.6.3 Applicable Entities

❏ Topics (Section 5.1)

❏ DataWriters (Section 6.3)

❏ DataReaders (Section 7.3)

6.5.6.4 System Resource Considerations

The use of this policy does not significantly impact the use of resources.

6.5.7 DURABILITY QosPolicy

Because the publish-subscribe paradigm is connectionless, applications can create publications
and subscriptions in any way they choose. As soon as a matching pair of DataWriters and
DataReaders exist, then data published by the DataWriter will be delivered to the DataReader.
However, a DataWriter may publish data before a DataReader has been created. For example,
before you subscribe to a magazine, there have been past issues that were published.

The DURABILITY QosPolicy controls whether or not, and how, published samples are stored by
the DataWriter application for DataReaders that are found after the samples were initially written.
DataReaders use this QoS to request samples that were published before they were created. The
analogy is for a new subscriber to a magazine to ask for issues that were published in the past.

Table 6.40 Valid Reader/Writer Combinations of DestinationOrder

Destination Order
DataReader requests:

BY_SOURCE BY_RECEPTION

DataWriter offers:
BY_SOURCE ✔ ✔

BY_RECEPTION incompatible ✔
6-98

DataWriter QosPolicies
These are known as ‘historical’ data-samples. (Reliable DataReaders may wait for these historical
samples, see Section 7.3.5.)

This QosPolicy can be used to help ensure that DataReaders get all data that was sent by DataW-
riters, regardless of when it was sent. This QosPolicy can increase system tolerance to failure
conditions.

Exactly how many samples are stored by the DataWriter or requested by the DataReader is con-
trolled using the HISTORY QosPolicy (Section 6.5.10).

For more information, please see Chapter 12: Mechanisms for Achieving Information Durability
and Persistence.

The possible settings for this QoS are:

❏ DDS_VOLATILE_DURABILITY_QOS Connext is not required to send and will not deliver any
data samples to DataReaders that are discovered after the samples were initially pub-
lished.

❏ DDS_TRANSIENT_LOCAL_DURABILITY_QOS Connext will store and send previously pub-
lished samples for delivery to newly discovered DataReaders as long as the DataWriter
still exists. For this setting to be effective, you must also set the RELIABILITY QosPolicy
(Section 6.5.19) kind to Reliable (not Best Effort). Which particular samples are kept
depends on other QoS settings such as HISTORY QosPolicy (Section 6.5.10) and
RESOURCE_LIMITS QosPolicy (Section 6.5.20).

❏ DDS_TRANSIENT_DURABILITY_QOS Connext will store previously published samples in
memory using Persistence Service, which will send the stored data to newly discovered
DataReaders. Which particular samples are kept and sent by Persistence Service depends
on the HISTORY QosPolicy (Section 6.5.10) and RESOURCE_LIMITS QosPolicy (Section
6.5.20) of the Persistence Service DataWriters. These QosPolicies can be configured in the
Persistence Service configuration file or through the DURABILITY SERVICE QosPolicy
(Section 6.5.8) of the DataWriters configured with
DDS_TRANSIENT_DURABILITY_QOS.

❏ DDS_PERSISTENT_DURABILITY_QOS Connext will store previously published samples in per-
manent storage, like a disk, using Persistence Service, which will send the stored data to
newly discovered DataReaders. Which particular samples are kept and sent by Persistence
Service depends on the HISTORY QosPolicy (Section 6.5.10) and RESOURCE_LIMITS
QosPolicy (Section 6.5.20) in the Persistence Service DataWriters. These QosPolicies can be
configured in the Persistence Service configuration file or through the DURABILITY SER-
VICE QosPolicy (Section 6.5.8) of the DataWriters configured with
DDS_PERSISTENT_DURABILITY_QOS.

This QosPolicy includes the members in Table 6.41. For default settings, please refer to the API
Reference HTML documentation.

With this QoS policy alone, there is no way to specify or characterize the intended consumers of
the information. With TRANSIENT_LOCAL, TRANSIENT, or PERSISTENT durability a
DataWriter can be configured to keep samples around for late-joiners. However, there is no way
to know when the information has been consumed by all the intended recipients.

Information durability can be combined with required subscriptions in order to guarantee that
samples are delivered to a set of required subscriptions. For additional details on required sub-
scriptions see Section 6.3.13 and Section 6.5.1.

6.5.7.1 Example

Suppose you have a DataWriter that sends data sporadically and its DURABILITY kind is set to
VOLATILE. If a new DataReader joins the system, it won’t see any data until the next time that
write() is called on the DataWriter. If you want the DataReader to receive any data that is valid,
6-99

DataWriter QosPolicies
old or new, both sides should set their DURABILITY kind to TRANSIENT_LOCAL. This will
ensure that the DataReader gets some of the previous samples immediately after it is enabled.

6.5.7.2 Properties

This QosPolicy cannot be modified after the Entity has been created.

The DataWriter and DataReader must use compatible settings for this QosPolicy. To be compati-
ble, the DataWriter and DataReader must use one of the valid combinations shown in Table 6.42.

If this QosPolicy is found to be incompatible, the ON_OFFERED_INCOMPATIBLE_QOS and
ON_REQUESTED_INCOMPATIBLE_QOS statuses will be modified and the corresponding
Listeners called for the DataWriter and DataReader respectively.

Table 6.41 DDS_DurabilityQosPolicy

Type Field Name Description

DDS_Durability
QosPolicyKind

kind

DDS_VOLATILE_DURABILITY_QOS:
Do not save or deliver old samples.
DDS_TRANSIENT_LOCAL_DURABILITY_QOS:
Save and deliver old samples if the DataWriter still exists.
DDS_TRANSIENT_DURABILITY_QOS:
Save and deliver old samples using a memory-based service.
DDS_PERSISTENCE_DURABILITY_QOS:
Save and deliver old samples using disk-based service.

DDS_Boolean
direct_
communication

Whether or not a TRANSIENT or PERSISTENT DataReader should
receive samples directly from a TRANSIENT or PERSISTENT
DataWriter.
When TRUE, a TRANSIENT or PERSISTENT DataReader will receive
samples directly from the original DataWriter. The DataReader may
also receive samples from Persistence Servicea but the duplicates will
be filtered by the middleware.
When FALSE, a TRANSIENT or PERSISTENT DataReader will
receive samples only from the DataWriter created by Persistence Ser-
vice. This ‘relay communication’ pattern provides a way to guarantee
eventual consistency.
See RTI Persistence Service (Section 12.5.1).
This field only applies to DataReaders.

a. Persistence Service is included with Connext Messaging. See Chapter 26: Introduction to RTI Persistence Service.

Table 6.42 Valid Combinations of Durability ‘kind’

DataReader requests:

VOLATILE TRANSIENT
_LOCAL TRANSIENT PERSISTENT

DataWriter
offers:

VOLATILE ✔ incompatible incompatible incompatible

TRANSIENT_
LOCAL

✔ ✔ incompatible incompatible

TRANSIENT ✔ ✔ ✔ incompatible

PERSISTENT ✔ ✔ ✔ ✔
6-100

DataWriter QosPolicies
6.5.7.3 Related QosPolicies

❏ HISTORY QosPolicy (Section 6.5.10)

❏ RELIABILITY QosPolicy (Section 6.5.19)

❏ DURABILITY SERVICE QosPolicy (Section 6.5.8)

❏ AVAILABILITY QosPolicy (DDS Extension) (Section 6.5.1)

6.5.7.4 Applicable Entities

❏ Topics (Section 5.1)

❏ DataWriters (Section 6.3)

❏ DataReaders (Section 7.3)

6.5.7.5 System Resource Considerations

Using this policy with a setting other than VOLATILE will cause Connext to use CPU and net-
work bandwidth to send old samples to matching, newly discovered DataReaders. The actual
amount of resources depends on the total size of data that needs to be sent.

The maximum number of samples that will be kept on the DataWriter’s queue for late-joiners
and/or required subscriptions is determined by max_samples in RESOURCE_LIMITS Qos Pol-
icy.

System Resource Considerations With Required Subscriptions”

By default, when TRANSIENT_LOCAL durability is used in combination with required sub-
scriptions, a DataWriter configured with KEEP_ALL in the HISTORY QosPolicy (Section 6.5.10)
will keep the samples in its cache until they are acknowledged by all the required subscriptions.
After the samples are acknowledged by the required subscriptions they will be marked as
reclaimable, but they will not be purged from the DataWriter’s queue until the DataWriter needs
these resources for new samples. This may lead to a non efficient resource utilization, specially
when max_samples is high or even UNLIMITED.

The DataWriter’s behavior can be changed to purge samples after they have been acknowledged
by all the active/matching DataReaders and all the required subscriptions configured on the
DataWriter. To do so, set the dds.data_writer.history.purge_samples_after_acknowledgment
property to 1 (see PROPERTY QosPolicy (DDS Extension) (Section 6.5.17)).

6.5.8 DURABILITY SERVICE QosPolicy

This QosPolicy is only used if the DURABILITY QosPolicy (Section 6.5.7) is PERSISTENT or
TRANSIENT and you are using Persistence Service, which is included with Connext Messaging.
Persistence Service is used to store and possibly forward the data sent by the DataWriter to
DataReaders who are created after the data was initially sent.

This QosPolicy configures certain parameters of Persistence Service when it operates on the
behalf of the DataWriter, such as how much data to store. Specifically, this QosPolicy configures
the HISTORY and RESOURCE_LIMITS used by the fictitious DataReader and DataWriter used by
Persistence Service.

Note however, that by default, Persistence Service will ignore the values in the DURABILITY
SERVICE QosPolicy (Section 6.5.8) and must be configured to use those values.

For more information, please see:

❏ Chapter 12: Mechanisms for Achieving Information Durability and Persistence
6-101

DataWriter QosPolicies
❏ Chapter 26: Introduction to RTI Persistence Service

❏ Chapter 27: Configuring Persistence Service

This QosPolicy includes the members in Table 6.43. For default values, please refer to the API
Reference HTML documentation.

The service_cleanup_delay in this QosPolicy controls when Persistence Service may remove all
information regarding a data-instances. Information on a data-instance is maintained until all of
the following conditions are met:

1. The instance has been explicitly disposed
(instance_state = NOT_ALIVE_DISPOSED).

2. While in the NOT_ALIVE_DISPOSED state, Connext detects that there are no more 'live'
DataWriters writing the instance. That is, all existing writers either unregister the instance
(call unregister) or lose their liveliness.

3. A time interval longer that DurabilityService QosPolicy’s service_cleanup_delay has
elapsed since the time that Connext detected that the previous two conditions were met.

The service_cleanup_delay field is useful in the situation where your application disposes an
instance and it crashes before it has a chance to complete additional tasks related to the disposi-
tion. Upon restart, your application may ask for initial data to regain its state and the delay
introduced by service_cleanup_delay will allow your restarted application to receive the infor-
mation about the disposed instance and complete any interrupted tasks.

Although you can set the DURABILITY_SERVICE QosPolicy on a Topic, this is only useful as a
means to initialize the DURABILITY_SERVICE QosPolicy of a DataWriter. A Topic’s
DURABILITY_SERVICE setting does not directly affect the operation of Connext, see
Section 5.1.3.

6.5.8.1 Properties

This QosPolicy cannot be modified after the Entity has been enabled.

It does not apply to DataReaders, so there is no requirement for setting it compatibly on the send-
ing and receiving sides.

6.5.8.2 Related QosPolicies

❏ DURABILITY QosPolicy (Section 6.5.7)

❏ HISTORY QosPolicy (Section 6.5.10)

❏ RESOURCE_LIMITS QosPolicy (Section 6.5.20)

Table 6.43 DDS_DurabilityServiceQosPolicy

Type Field Name Description

DDS_Duration_t service_cleanup_delay
How long to keep all information regarding
an instance.

DDS_HistoryQosPolicyKind history_kind Settings to use for the HISTORY QosPolicy
(Section 6.5.10) when recouping durable
data.DDS_Long history_depth

DDS_Long

max_samples Settings to use for the RESOURCE_LIMITS
QosPolicy (Section 6.5.20) when feeding
data to a late joiner.

max_instances

max_samples_per_instance
6-102

DataWriter QosPolicies
6.5.8.3 Applicable Entities

❏ Topics (Section 5.1)

❏ DataWriters (Section 6.3)

6.5.8.4 System Resource Considerations

Since this QosPolicy configures the HISTORY and RESOURCE_LIMITS used by the fictitious
DataReader and DataWriter used by Persistence Service, it does have some impact on resource
usage.

6.5.9 ENTITY_NAME QosPolicy (DDS Extension)

The ENTITY_NAME QosPolicy assigns a name and role name to a DomainParticipant, Publisher,
Subscriber, DataReader, or DataWriter.

How the name is used is strictly application-dependent.

It is useful to attach names that are meaningful to the user. These names (except for Publihers and
Subscribers) are propagated during discovery so that applications can use these names to iden-
tify, in a user-context, the entities that it discovers. Also, Connext tools will print the names of
discovered entities (except for Publishers and Subscribers).

The role_name identifies the role of the entity. It is used by the Collaborative DataWriter feature
(see Availability QoS Policy and Collaborative DataWriters (Section 6.5.1.1)). With Durable Sub-
scriptions, role_name is used to specify to which Durable Subscription the DataReader belongs.
(see Availability QoS Policy and Required Subscriptions (Section 6.5.1.2).

This QosPolicy contains the members listed in Table 6.44.

These names will appear in the built-in topic for the entity (see the tables in Built-in DataReaders
(Section 16.2)).

Prior to get_qos(), if the name and/or role_name field in this QosPolicy is not null, Connext
assumes the memory to be valid and big enough and may write to it. If that is not desired, set
name and/or role_name to NULL before calling get_qos() and Connext will allocate adequate
memory for name.

When you call the destructor of entity’s QoS structure (DomainParticipantQos, DataReaderQos,
or DataWriterQos) (in C++, C++/CLI, and C#) or <entity>Qos_finalize() (in C), Connext will
attempt to free the memory used for name and role_name if it is not NULL. If this behavior is
not desired, set name and/or role_name to NULL before you call the destructor of entity’s QoS
structure or DomainParticipantQos_finalize().

Table 6.44 DDS_EntityNameQoSPolicy

Type Field Name Description

char * name
A null-terminated string up to 255 characters in length.
To set this in XML, see Entity Names (Section 17.8.8).

char * role_name

A null-terminated string up to 255 characters in length.
To set this in XML, see Entity Names (Section 17.8.8).
For Collaborative DataWriters, this name is used to specify to which
endpoint group the DataWriter belongs. See. Availability QoS Policy
and Collaborative DataWriters (Section 6.5.1.1).
For Required and Durable Subscriptions this name is used to specify
to which Subscription the DataReader belongs. See Required Subscrip-
tions (Section 6.3.13).
6-103

DataWriter QosPolicies
6.5.9.1 Properties

This QosPolicy cannot be modified after the entity is enabled.

6.5.9.2 Related QosPolicies

❏ None

6.5.9.3 Applicable Entities

❏ DomainParticipants (Section 8.3)

❏ Publishers (Section 6.2)

❏ Subscribers (Section 7.2)

❏ DataReaders (Section 7.3)

❏ DataWriters (Section 6.3)

6.5.9.4 System Resource Considerations

If the value of name in this QosPolicy is not NULL, some memory will be consumed in storing
the information in the database, but should not significantly impact the use of resource.

6.5.10 HISTORY QosPolicy

This QosPolicy configures the number of samples that Connext will store locally for DataWriters
and DataReaders. For keyed Topics, this QosPolicy applies on a per instance basis, so that Connext
will attempt to store the configured value of samples for every instance (see Samples, Instances,
and Keys (Section 2.2.2) for a discussion of keys and instances).

It includes the members seen in Table 6.45. For defaults and valid ranges, please refer to the API
Reference HTML documentation.

Table 6.45 DDS_HistoryQosPolicy

Type Field
Name Description

DDS_HistoryQos-
PolicyKind

kind
DDS_KEEP_LAST_HISTORY_QOS: keep the last depth number of sam-
ples per instance.
DDS_KEEP_ALL_HISTORY_QOS: keep all samples.a
6-104

DataWriter QosPolicies
The kind determines whether or not to save a configured number of samples or all samples. It
can be set to either of the following:

❏ DDS_KEEP_LAST_HISTORY_QOS Connext attempts to keep the latest values of the data-
instance and discard the oldest ones when the limit as set by the depth parameter is
reached; new data will overwrite the oldest data in the queue. Thus the queue acts like a
circular buffer of length depth.

• For a DataWriter: Connext attempts to keep the most recent depth samples of each
instance (identified by a unique key) managed by the DataWriter.

• For a DataReader: Connext attempts to keep the most recent depth samples received for
each instance (identified by a unique key) until the application takes them via the
DataReader's take() operation. See Section 7.4.3 for a discussion of the difference
between read() and take().

❏ DDS_KEEP_ALL_HISTORY_QOS Connext attempts to keep all of the samples of a Topic.

• For a DataWriter: Connext attempts to keep all samples published by the DataWriter.

• For a DataReader: Connext attempts to keep all samples received by the DataReader for
a Topic (both keyed and non-keyed) until the application takes them via the
DataReader's take() operation. See Section 7.4.3 for a discussion of the difference
between read() and take().

• The value of the depth parameter is ignored.

The above descriptions say “attempts to keep” because the actual number of samples kept is
subject to the limitations imposed by the RESOURCE_LIMITS QosPolicy (Section 6.5.20). All of
the samples of all instances of a Topic share a single physical queue that is allocated for a DataW-
riter or DataReader. The size of this queue is configured by the RESOURCE_LIMITS QosPolicy. If

DDS_Long depth
If kind = DDS_KEEP_LAST_HISTORY_QOS, this is how many samples to
keep per instance.b

if kind = DDS_KEEP_ALL_HISTORY_QOS, this value is ignored.

DDS_RefilterQos-
PolicyKind

refilter

Specifies how a DataWriter should handle previously written samples for a
new DataReader.
When a new DataReader matches a DataWriter, the DataWriter can be con-
figured to perform content-based filtering on previously written samples
stored in the DataWriter queue for the new DataReader.
May be:

❏ DDS_NONE_REFILTER_QOS Do not filter existing sam-
ples for a new DataReader. The DataReader will do the filter-
ing.

❏ DDS_ALL_REFILTER_QOS Filter all existing samples for a
newly matched DataReader.

❏ DDS_ON_DEMAND_REFILTER_QOS Filter existing sam-
ples only when they are requested by the DataReader.

(An extension to the DDS standard.)

a. Connext will store up to the value of the max_samples_per_instance parameter of the RESOURCE_LIMITS QosPol-
icy (Section 6.5.20).
b. depth must be <= max_samples_per_instance parameter of the RESOURCE_LIMITS QosPolicy (Section 6.5.20)

Table 6.45 DDS_HistoryQosPolicy

Type Field
Name Description
6-105

DataWriter QosPolicies
there are many difference instances for a Topic, it is possible that the physical queue may run out
of space before the number of samples reaches the depth for all instances.

In the KEEP_ALL case, Connext can only keep as many samples for a Topic (independent of
instances) as the size of the allocated queue. Connext may or may not allocate more memory
when the queue is filled, depending on the settings in the RESOURCE_LIMITS QoSPolicy of the
DataWriter or DataReader.

This QosPolicy interacts with the RELIABILITY QosPolicy (Section 6.5.19) by controlling
whether or not Connext guarantees that ALL of the data sent is received or if only the last N data
values sent are guaranteed to be received (a reduced level of reliability using the KEEP_LAST
setting). However, the physical sizes of the send and receive queues are not controlled by the
History QosPolicy. The memory allocation for the queues is controlled by the
RESOURCE_LIMITS QosPolicy (Section 6.5.20). Also, the amount of data that is sent to new
DataReaders who have configured their DURABILITY QosPolicy (Section 6.5.7) to receive previ-
ously published data is controlled by the History QosPolicy.

What happens when the physical queue is filled depends both on the setting for the HISTORY
QosPolicy as well as the RELIABILITY QosPolicy.

❏ DDS_KEEP_LAST_HISTORY_QOS

• If RELIABILITY is BEST_EFFORT: When the number of samples for an instance in
the queue reaches the value of depth, a new sample for the instance will replace the
oldest sample for the instance in the queue.

• If RELIABILITY is RELIABLE: When the number of samples for an instance in the
queue reaches the value of depth, a new sample for the instance will replace the old-
est sample for the instance in the queue—even if the sample being overwritten has not
been fully acknowledged as being received by all reliable DataReaders. This implies
that the discarded sample may be lost by some reliable DataReaders. Thus, when using
the KEEP_LAST setting, strict reliability is not guaranteed. See Chapter 10: Reliable
Communications for a complete discussion on Connext’s reliable protocol.

❏ DDS_KEEP_ALL_HISTORY_QOS

• If RELIABILITY is BEST_EFFORT: If the number of samples for an instance in the
queue reaches the value of the RESOURCE_LIMITS QosPolicy (Section 6.5.20)’s
max_samples_per_instance field, a new sample for the instance will replace the old-
est sample for the instance in the queue (regardless of instance).

• If RELIABILITY is RELIABLE: When the number of samples for an instance in the
queue reaches the value of the RESOURCE_LIMITS QosPolicy (Section 6.5.20)’s
max_samples_per_instance field, then:

a) for a DataWriter—a new sample for the instance will replace the oldest sample for
the instance in the sending queue—only if the sample being overwritten has been fully
acknowledged as being received by all reliable DataReaders. If the oldest sample for
the instance has not been fully acknowledged, the write() operation trying to enter a
new sample for the instance into the sending queue will block (for the
max_blocking_time specified in the RELIABLE QosPolicy).

b) for a DataReader—a new sample received by the DataReader will be discarded.
Because the DataReader will not acknowledge the discarded sample, the DataWriter is
forced to resend the sample. Hopefully, the next time the sample is received, there is
space for the instance in the DataReader’s queue to store (and accept, thus acknowl-
edge) the sample. A sample will remain in the DataReader’s queue for one of two rea-
sons. The more common reason is that the user application has not removed the
6-106

DataWriter QosPolicies
sample using the DataReader’s take() method. Another reason is that the sample has
been received out of order and is not available to be taken or read by the user applica-
tion until all older samples have been received.

Although you can set the HISTORY QosPolicy on Topics, its value can only be used to initialize
the HISTORY QosPolicies of either a DataWriter or DataReader. It does not directly affect the
operation of Connext, see Section 5.1.3.

6.5.10.1 Example

To achieve strict reliability, you must (1) set the DataWriter’s and DataReader’s HISTORY QosPol-
icy to KEEP_ALL, and (2) set the DataWriter’s and DataReader’s RELIABILITY QosPolicy to
RELIABLE.

See Chapter 10 for a complete discussion on Connext’s reliable protocol.

See Controlling Queue Depth with the History QosPolicy (Section 10.3.3).

6.5.10.2 Properties

This QosPolicy cannot be modified after the Entity has been enabled.

There is no requirement that the publishing and subscribing sides use compatible values.

6.5.10.3 Related QosPolicies

❏ BATCH QosPolicy (DDS Extension) (Section 6.5.2) Do not configure the DataReader’s
depth to be shallower than the DataWriter's maximum batch size (batch_max_data_size).
Because batches are acknowledged as a group, a DataReader that cannot process an entire
batch will lose the remaining samples in it.

❏ RELIABILITY QosPolicy (Section 6.5.19)

❏ RESOURCE_LIMITS QosPolicy (Section 6.5.20)

6.5.10.4 Applicable Entities

❏ Topics (Section 5.1)

❏ DataWriters (Section 6.3)

❏ DataReaders (Section 7.3)

6.5.10.5 System Resource Considerations

While this QosPolicy does not directly affect the system resources used by Connext, the
RESOURCE_LIMITS QosPolicy (Section 6.5.20) that must be used in conjunction with the HIS-
TORY QosPolicy (Section 6.5.10) will affect the amount of memory that Connext will allocate for
a DataWriter or DataReader.

6.5.11 LATENCYBUDGET QoS Policy

This QosPolicy can be used by a DDS implementation to change how it processes and sends
data that has low latency requirements. The DDS specification does not mandate whether or
how this parameter is used. Connext uses it to prioritize the sending of asynchronously pub-
lished data; see ASYNCHRONOUS_PUBLISHER QosPolicy (DDS Extension) (Section 6.4.1).

This QosPolicy also applies to Topics. The Topic’s setting for the policy is ignored unless you
explicitly make the DataWriter use it.

It contains the single member listed in Table 6.46.
6-107

DataWriter QosPolicies
6.5.11.1 Applicable Entities

❏ Topics (Section 5.1)

❏ DataWriters (Section 6.3)

❏ DataReaders (Section 7.3)

6.5.12 LIFESPAN QoS Policy

The purpose of this QoS is to avoid delivering stale data to the application. Each data sample
written by a DataWriter has an associated expiration time, beyond which the data should not be
delivered to any application. Once the sample expires, the data will be removed from the
DataReader caches, as well as from the transient and persistent information caches.

The middleware attaches timestamps to all data sent and received. The expiration time of each
sample is computed by adding the duration specified by this QoS to the destination timestamp.
To avoid inconsistencies, if you have multiple DataWriters of the same instance, they should all
use the same value for this QoS.

When you specify a finite Lifespan for your data, Connext will compare the current time with
those timestamps and drop data when your specified Lifespan expires.

The Lifespan QosPolicy can be used to control how much data is stored by Connext. Even if it is
configured to store "all" of the data sent or received for a topic (see the HISTORY QosPolicy (Sec-
tion 6.5.10)), the total amount of data it stores may be limited by the Lifespan QosPolicy.

You may also use the Lifespan QosPolicy to ensure that applications do not receive or act on
data, commands or messages that are too old and have "expired.”

It includes the single member listed in Table 6.47. For default and valid range, please refer to the
API Reference HTML documentation.

Although you can set the LIFESPAN QosPolicy on Topics, its value can only be used to initialize
the LIFESPAN QosPolicies of DataWriters. The Topic’s setting for this QosPolicy does not
directly affect the operation of Connext, see Setting Topic QosPolicies (Section 5.1.3).

6.5.12.1 Properties

This QoS policy can be modified after the entity is enabled.

It does not apply to DataReaders, so there is no requirement that the publishing and subscribing
sides use compatible values.

Table 6.46 DDS_LatencyBudgetQosPolicy

Type Field Name Description

DDS_Duration_t duration
Provides a hint as to the maximum acceptable delay from the time
the data is written to the time it is received by the subscribing appli-
cations.

Table 6.47 DDS_LifespanQosPolicy

Type Field Name Description

DDS_Duration_t duration Maximum duration for the data's validity.
6-108

DataWriter QosPolicies
6.5.12.2 Related QoS Policies

❏ BATCH QosPolicy (DDS Extension) (Section 6.5.2) Be careful when configuring a
DataWriter with a Lifespan duration shorter than the batch flush period
(batch_flush_delay). If the batch does not fill up before the flush period elapses, the
short duration will cause the samples to be lost without being sent.

❏ DURABILITY QosPolicy (Section 6.5.7)

6.5.12.3 Applicable Entities

❏ Topics (Section 5.1)

❏ DataWriters (Section 6.3)

6.5.12.4 System Resource Considerations

The use of this policy does not significantly impact the use of resources.

6.5.13 LIVELINESS QosPolicy

The LIVELINESS QosPolicy specifies how Connext determines whether a DataWriter is “alive.”
A DataWriter’s liveliness is used in combination with the OWNERSHIP QosPolicy (Section
6.5.15) to maintain ownership of an instance (note that the DEADLINE QosPolicy (Section 6.5.5)
is also used to change ownership when a DataWriter is still alive). That is, for a DataWriter to
own an instance, the DataWriter must still be alive as well as honoring its DEADLINE contract.

It includes the members in Table 6.48. For defaults and valid ranges, please refer to the API Ref-
erence HTML documentation.

Setting a DataWriter’s kind of LIVELINESS specifies the mechanism that will be used to assert
liveliness for the DataWriter. The DataWriter’s lease_duration then specifies the maximum
period at which packets that indicate that the DataWriter is still alive are sent to matching
DataReaders.

The various mechanisms are:

❏ DDS_AUTOMATIC_LIVELINESS_QOS — The DomainParticipant is responsible for automati-
cally sending packets to indicate that the DataWriter is alive; this will be done at least as
often as required by the lease_duration. This setting is appropriate when the primary

Table 6.48 DDS_LivelinessQosPolicy

Type Field Name Description

DDS_Liveliness
QosPolicyKind

kind

DDS_AUTOMATIC_LIVELINESS_QOS:
Connext will automatically assert liveliness for the DataWriter at least as
often as the lease_duration.
DDS_MANUAL_BY_PARTICIPANT_LIVELINESS_QOS:
The DataWriter is assumed to be alive if any Entity within the same
DomainParticipant has asserted its liveliness.
DDS_MANUAL_BY_TOPIC_LIVELINESS_QOS:
Your application must explicitly assert the liveliness of the DataWriter
within the lease_duration.

DDS_Duration_t lease_duration

The timeout by which liveliness must be asserted for the DataWriter or
the DataWriter will be considered “inactive or not alive.
Additionally, for DataReaders, the lease_duration also specifies the
maximum period at which Connext will check to see if the matching
DataWriter is still alive.
6-109

DataWriter QosPolicies
failure mode is that the publishing application itself dies. It does not cover the case in
which the application is still alive but in an erroneous state–allowing the DomainPartici-
pant to continue to assert liveliness for the DataWriter but preventing threads from calling
write() on the DataWriter.

As long as the internal threads spawned by Connext for a DomainParticipant are running,
then the liveliness of the DataWriter will be asserted regardless of the state of the rest of
the application.

This setting is certainly the most convenient, if the least accurate, method of asserting
liveliness for a DataWriter.

❏ DDS_MANUAL_BY_PARTICIPANT_LIVELINESS_QOS — Connext will assume that as long as the
user application has asserted the liveliness of at least one DataWriter belonging to the
same DomainParticipant or the liveliness of the DomainParticipant itself, then this DataW-
riter is also alive.

This setting allows the user code to control the assertion of liveliness for an entire group
of DataWriters with a single operation on any of the DataWriters or their DomainPartici-
pant. Its a good balance between control and convenience.

❏ DDS_MANUAL_BY_TOPIC_LIVELINESS_QOS — The DataWriter is considered alive only if the
user application has explicitly called operations that assert the liveliness for that particu-
lar DataWriter.

This setting forces the user application to assert the liveliness for a DataWriter which
gives the user application great control over when other applications can consider the
DataWriter to be inactive, but at the cost of convenience.

With the MANUAL_BY_[TOPIC,PARTICIPANT] settings, user application code can assert the
liveliness of DataWriters either explicitly by calling the assert_liveliness() operation on the
DataWriter (as well as the DomainParticipant for the MANUAL_BY_PARTICIPANT setting) or
implicitly by calling write() on the DataWriter. If the application does not use either of the meth-
ods mentioned at least once every lease_duration, then the subscribing application may assume
that the DataWriter is no longer alive. Sending data MANUAL_BY_TOPIC will cause an assert
message to be sent between the DataWriter and its matched DataReaders.

Publishing applications will monitor their DataWriters to make sure that they are honoring their
LIVELINESS QosPolicy by asserting their liveliness at least at the period set by the
lease_duration. If Connext finds that a DataWriter has failed to have its liveliness asserted by its
lease_duration, an internal thread will modify the DataWriter’s LIVELINESS_LOST_STATUS
and trigger its on_liveliness_lost() DataWriterListener callback if a listener exists, see Listeners
(Section 4.4).

Setting the DataReader’s kind of LIVELINESS requests a specific mechanism for the publishing
application to maintain the liveliness of DataWriters. The subscribing application may want to
know that the publishing application is explicitly asserting the liveliness of the matching DataW-
riter rather than inferring its liveliness through the liveliness of its DomainParticipant or its sib-
ling DataWriters.

The DataReader’s lease_duration specifies the maximum period at which matching DataWriters
must have their liveliness asserted. In addition, in the subscribing application Connext uses an
internal thread that wakes up at the period set by the DataReader’s lease_duration to see if the
DataWriter’s lease_duration has been violated.

When a matching DataWriter is determined to be dead (inactive), Connext will modify the
LIVELINESS_CHANGED_STATUS of each matching DataReader and trigger that DataReader’s
on_liveliness_changed() DataReaderListener callback (if a listener exists).
6-110

DataWriter QosPolicies
Although you can set the LIVELINESS QosPolicy on Topics, its value can only be used to initial-
ize the LIVELINESS QosPolicies of either a DataWriter or DataReader. It does not directly affect
the operation of Connext, see Section 5.1.3.

For more information on Liveliness, see Maintaining DataWriter Liveliness for kinds AUTO-
MATIC and MANUAL_BY_PARTICIPANT (Section 14.3.1.2).

6.5.13.1 Example

You can use LIVELINESS QosPolicy during system integration to ensure that applications have
been coded to meet design specifications. You can also use it during run time to detect when sys-
tems are performing outside of design specifications. Receiving applications can take appropri-
ate actions in response to disconnected DataWriters.

The LIVELINESS QosPolicy can be used to manage fail-over when the OWNERSHIP QosPolicy
(Section 6.5.15) is set to EXCLUSIVE. This implies that the DataReader will only receive data
from the highest strength DataWriter that is alive (active). When that DataWriter’s liveliness
expires, then Connext will start delivering data from the next highest strength DataWriter that is
still alive.

6.5.13.2 Properties

This QosPolicy cannot be modified after the Entity has been enabled.

The DataWriter and DataReader must use compatible settings for this QosPolicy. To be compati-
ble, both of the following conditions must be true:

1. The DataWriter and DataReader must use one of the valid combinations shown in
Table 6.49.

2. DataWriter’s lease_duration <= DataReader’s lease_duration.

If this QosPolicy is found to be incompatible, the ON_OFFERED_INCOMPATIBLE_QOS and
ON_REQUESTED_INCOMPATIBLE_QOS statuses will be modified and the corresponding
Listeners called for the DataWriter and DataReader respectively.

6.5.13.3 Related QosPolicies

❏ DEADLINE QosPolicy (Section 6.5.5)

❏ OWNERSHIP QosPolicy (Section 6.5.15)

❏ OWNERSHIP_STRENGTH QosPolicy (Section 6.5.16)

Table 6.49 Valid Combinations of Liveliness ‘kind’

DataReader requests:

MANUAL_
BY_TOPIC

MANUAL_BY_
PARTICIPANT

AUTO-
MATIC

DataWriter
offers:

MANUAL_BY_TOPIC ✔ ✔ ✔

MANUAL_BY_PARTICIPANT incompatible ✔ ✔

AUTOMATIC incompatible incompatible ✔
6-111

DataWriter QosPolicies
6.5.13.4 Applicable Entities

❏ Topics (Section 5.1)

❏ DataWriters (Section 6.3)

❏ DataReaders (Section 7.3)

6.5.13.5 System Resource Considerations

An internal thread in Connext will wake up periodically to check the liveliness of all the DataW-
riters. This happens both in the application that contains the DataWriters at the lease_duration
set on the DataWriters as well as the applications that contain the DataReaders at the
lease_duration set on the DataReaders. Therefore, as lease_duration becomes smaller, more CPU
will be used to wake up threads and perform checks. A short lease_duration set on DataWriters
may also use more network bandwidth because liveliness packets are being sent at a higher
rate—this is especially true when LIVELINESS kind is set to AUTOMATIC.

6.5.14 MULTI_CHANNEL QosPolicy (DDS Extension)

This QosPolicy is used to partition the data published by a DataWriter across multiple channels.
A channel is defined by a filter expression and a sequence of multicast locators.

By using this QosPolicy, a DataWriter can be configured to send data to different multicast
groups based on the content of the data. Using syntax similar to those used in Content-Based
Filters, you can associate different multicast addresses with filter expressions that operate on the
values of the fields within the data. When your application’s code calls write(), data is sent to
any multicast address for which the data passes the filter.

See Chapter 18 for complete documentation on multi-channel DataWriters.

Note: Durable writer history is not supported for multi-channel DataWriters (see Chapter 18);
an error is reported if a multi-channel DataWriter tries to configure Durable Writer History.

This QosPolicy includes the members presented in Table 6.50, Table 6.51, and Table 6.52. For
defaults and valid ranges, please refer to the API Reference HTML documentation.

The format of the filter_expression should correspond to one of the following filter classes:

❏ DDS_SQLFILTER_NAME (see SQL Filter Expression Notation (Section 5.4.6))

❏ DDS_STRINGMATCHFILTER_NAME (see STRINGMATCH Filter Expression Notation
(Section 5.4.7)

Table 6.50 DDS_MultiChannelQosPolicy

Type Field
Name Description

DDS_ChannelSettingsSeq channels
A sequence of channel settings used to configure the channels’
properties. If the length of the sequence is zero, the QosPolicy
will be ignored. See Table 6.51.

char * filter_name

Name of the filter class used to describe the filter expressions.
The following values are supported:

❏ DDS_SQLFILTER_NAMEa (see Section 5.4.6)

❏ DDS_STRINGMATCHFILTER_NAMEa (see
Section 5.4.7)

a. In Java and C#, you can access the names of the built-in filters by using
DomainParticipant.SQLFILTER_NAME and DomainParticipant.STRINGMATCHFILTER_NAME.
6-112

DataWriter QosPolicies
A DataReader can use the ContentFilteredTopic API (see Using a ContentFilteredTopic (Section
5.4.5)) to subscribe to a subset of the channels used by a DataWriter.

6.5.14.1 Example

See Chapter 18: Multi-channel DataWriters.

6.5.14.2 Properties

This QosPolicy cannot be modified after the DataWriter is created.

It does not apply to DataReaders, so there is no requirement that the publishing and subscribing
sides use compatible values.

Table 6.51 DDS_ChannelSettings_t

Type Field Name Description

DDS_MulticastSettingsSeq multicast_settings

A sequence of multicast settings used to configure the
multicast addresses associated with a channel. The
sequence cannot be empty.
The maximum number of multicast locators in a channel
is limited to four. (A locator is defined by a transport
alias, a multicast address and a port.) See Table 6.52.

char * filter_expression

A logical expression used to determine the data that will
be published in the channel.
This string cannot be NULL. An empty string always
evaluates to TRUE.
See SQL Filter Expression Notation (Section 5.4.6) and
STRINGMATCH Filter Expression Notation (Section
5.4.7) for expression syntax.

DDS_Long priority

A positive integer designating the relative priority of the
channel, used to determine the transmission order of
pending transmissions. Larger numbers have higher pri-
ority.
To use publication priorities, the DataWriter’s
PUBLISH_MODE QosPolicy (DDS Extension) (Section
6.5.18) must be set for asynchronous publishing and the
DataWriter must use a FlowController that is configured
for highest-priority-first (HPF) scheduling.
See Prioritized Samples (Section 6.6.4).
Note: Prioritized samples are not supported when using
the Java, Ada, or .NET APIs. Therefore the priority field
does not exist when using these APIs.

Table 6.52 DDS_MulticastSettings

Type Field Name Description

DDS_StringSeq transports
A sequence of transport aliases that specifies which
transport should be used to publish multicast messages
for this channel.

char * receive_address
A multicast group address on which DataReaders sub-
scribing to this channel will receive data.

DDS_Long receive_port
The multicast port on which DataReaders subscribing to
this channel will receive data.
6-113

DataWriter QosPolicies
6.5.14.3 Related Qos Policies

❏ DOMAIN_PARTICIPANT_RESOURCE_LIMITS QosPolicy (DDS Extension) (Section
8.5.4)

6.5.14.4 Applicable Entities

❏ DataWriters (Section 6.3)

6.5.14.5 System Resource Considerations

The following fields in the DOMAIN_PARTICIPANT_RESOURCE_LIMITS QosPolicy (DDS
Extension) (Section 8.5.4) configure the resources associated with the channels stored in the
MULTI_CHANNEL QosPolicy:

❏ channel_seq_max_length

❏ channel_filter_expression_max_length

For information about partitioning topic data across multiple channels, please refer to
Chapter 18: Multi-channel DataWriters.

6.5.15 OWNERSHIP QosPolicy

The OWNERSHIP QosPolicy specifies whether a DataReader receive data for an instance of a
Topic sent by multiple DataWriters.

For non-keyed Topics, there is only one instance of the Topic.

This policy includes the single member shown in Table 6.53.

The kind of OWNERSHIP can be set to one of two values:

❏ SHARED Ownership

When OWNERSHIP is SHARED, and multiple DataWriters for the Topic publishes the
value of the same instance, all the updates are delivered to subscribing DataReaders. So in
effect, there is no “owner;” no single DataWriter is responsible for updating the value of
an instance. The subscribing application will receive modifications from all DataWriters.

❏ EXCLUSIVE Ownership

When OWNERSHIP is EXCLUSIVE, each instance can only be owned by one DataWriter
at a time. This means that a single DataWriter is identified as the exclusive owner whose
updates are allowed to modify the value of the instance for matching DataWriters. Other
DataWriters may submit modifications for the instance, but only those made by the cur-
rent owner are passed on to the DataReaders. If a non-owner DataWriter modifies an
instance, no error or notification is made; the modification is simply ignored. The owner
of the instance can change dynamically.

Table 6.53 DDS_OwnershipQosPolicy

Type Field Name Description

DDS_OwnershipQosPolicyKind kind
DDS_SHARED_OWNERSHIP_QOS or
DDS_EXCLUSIVE_OWNERSHIP_QOS
6-114

DataWriter QosPolicies
Note for non-keyed Topics, EXCLUSIVE ownership implies that DataReaders will pay
attention to only one DataWriter at a time because there is only a single instance. For
keyed Topics, DataReaders may actually receive data from multiple DataWriters when dif-
ferent DataWriters own different instances of the Topic.

This QosPolicy is often used to help users build systems that have redundant elements to safe-
guard against component or application failures. When systems have active and hot standby
components, the Ownership QosPolicy can be used to ensure that data from standby applica-
tions are only delivered in the case of the failure of the primary.

The Ownership QosPolicy can also be used to create data channels or topics that are designed to
be taken over by external applications for testing or maintenance purposes.

Although you can set the OWNERSHIP QosPolicy on Topics, its value can only be used to initial-
ize the OWNERSHIP QosPolicies of either a DataWriter or DataReader. It does not directly affect
the operation of Connext, see Section 5.1.3.

6.5.15.1 How Connext Selects which DataWriter is the Exclusive Owner

When OWNERSHIP is EXCLUSIVE, the owner of an instance at any given time is the DataW-
riter with the highest OWNERSHIP_STRENGTH QosPolicy (Section 6.5.16) that is “alive” as
defined by the LIVELINESS QosPolicy (Section 6.5.13)) and has not violated the DEADLINE
QosPolicy (Section 6.5.5) of the DataReader. OWNERSHIP_STRENGTH is simply an integer set
by the DataWriter.

As mentioned before, if the Topic’s data type is keyed (see Section 2.2.2) then EXCLUSIVE own-
ership is determined on a per-instance basis. That is, the DataWriter owner of each instance is
considered separately. A DataReader can receive values written by a lower strength DataWriter as
long as those values are for instances that are not being written by a higher-strength DataWriter.

If there are multiple DataWriters with the same OWNERSHIP_STRENGTH writing to the same
instance, Connext resolves the tie by choosing the DataWriter with the smallest GUID (Globally
Unique Identifier, see Section 14.1.1.). This means that different DataReaders (in different applica-
tions) of the same Topic will all choose the same DataWriter as the owner when there are multiple
DataWriters with the same strength.

The owner of an instance can change when:

❏ A DataWriter with a higher OWNERSHIP_STRENGTH publishes a value for the
instance.

❏ The OWNERSHIP_STRENGTH of the owning DataWriter is dynamically changed to be
less than the strength of an existing DataWriter of the instance.

❏ The owning DataWriter stops asserting its LIVELINESS (the DataWriter dies).

❏ The owning DataWriter violates the DEADLINE QosPolicy by not updating the value of
the instance within the period set by the DEADLINE.

Note however, the change of ownership is not synchronous across different DataReaders in dif-
ferent participants. That is, DataReaders in different applications may not determine that the
ownership of an instance has changed at exactly the same time.

6.5.15.2 Example

OWNERSHIP is really a property that is shared between DataReaders and DataWriters of a Topic.
However, in a system, some Topics will be exclusively owned and others will be shared. System
requirements will determine which are which.

An example of a Topic that may be shared is one that is used by applications to publish alarm
messages. If the application detects an anomalous condition, it will use a DataWriter to write a
6-115

DataWriter QosPolicies
Topic “Alarm.” Another application that records alarms into a system log file will have a
DataReader that subscribes to “Alarm.” In this example, any number of applications can publish
the “Alarm” message. There is no concept that only one application at a time is allowed to pub-
lish the “Alarm” message, so in this case, the OWNERSHIP of the DataWriters and DataReaders
should be set to SHARED.

In a different part of the system, EXCLUSIVE OWNERSHIP may be used to implement redun-
dancy in support of fault tolerance. Say, the distributed system controls a traffic system. It moni-
tors traffic and changes the information posted on signs, the operation of metering lights, and
the timing of traffic lights. This system must be tolerant to failure of any part of the system
including the application that actually issues commands to change the lights at a particular
intersection.

One way to implement fault tolerance is to create the system redundantly both in hardware and
software. So if a piece of the running system fails, a backup can take over. In systems where
failover from the primary to backup system must be seamless and transparent, the actual
mechanics of failover must be fast, and the redundant component must immediately pickup
where the failed component left off. For the network connections of the component, Connext can
provided redundant DataWriter and DataReaders.

In this case, you would not want the DataReaders to receive redundant messages from the redun-
dant DataWriters. Instead you will want the DataReaders to only receive messages from the pri-
mary application and only from a backup application when a failure occurs. To continue our
example, if we have redundant applications that all try to control the lights at an intersection, we
would want the DataReaders on the light to receive messages only from the primary application.
To do so, we should configure the DataWriters and DataReaders to have EXCLUSIVE OWNER-
SHIP and set the OWNERSHIP_STRENGTH differently on different redundant applications to
distinguish between primary and backup systems.

6.5.15.3 Properties

This QosPolicy cannot be modified after the Entity is enabled.

It must be set to the same kind on both the publishing and subscribing sides. If a DataWriter and
DataReader of the same topic are found to have different kinds set for the OWNERSHIP QoS, the
ON_OFFERED_INCOMPATIBLE_QOS and ON_REQUESTED_INCOMPATIBLE_QOS sta-
tuses will be modified and the corresponding Listeners called for the DataWriter and DataReader
respectively.

6.5.15.4 Related QosPolicies

❏ DEADLINE QosPolicy (Section 6.5.5)

❏ LIVELINESS QosPolicy (Section 6.5.13)

❏ OWNERSHIP_STRENGTH QosPolicy (Section 6.5.16)

6.5.15.5 Applicable Entities

❏ Topics (Section 5.1)

❏ DataWriters (Section 6.3)

❏ DataReaders (Section 7.3)

6.5.15.6 System Resource Considerations

This QosPolicy does not significantly impact the use of system resources.
6-116

DataWriter QosPolicies
6.5.16 OWNERSHIP_STRENGTH QosPolicy

The OWNERSHIP_STRENGTH QosPolicy is used to rank DataWriters of the same instance of a
Topic, so that Connext can decide which DataWriter will have ownership of the instance when the
OWNERSHIP QosPolicy (Section 6.5.15) is set to EXCLUSIVE.

It includes the member in Table 6.54. For the default and valid range, please refer to the API Ref-
erence HTML documentation.

This QosPolicy only applies to DataWriters when EXCLUSIVE OWNERSHIP is used. The
strength is simply an integer value, and the DataWriter with the largest value is the owner. A
deterministic method is used to decide which DataWriter is the owner when there are multiple
DataWriters that have equal strengths. See Section 6.5.15.1 for more details.

6.5.16.1 Example

Suppose there are two DataWriters sending samples of the same Topic instance, one as the main
DataWriter, and the other as a backup. If you want to make sure the DataReader always receive
from the main one whenever possible, then set the main DataWriter to use a higher
ownership_strength value than the one used by the backup DataWriter.

6.5.16.2 Properties

This QosPolicy can be changed at any time.

It does not apply to DataReaders, so there is no requirement that the publishing and subscribing
sides use compatible values.

6.5.16.3 Related QosPolicies
❏ OWNERSHIP QosPolicy (Section 6.5.15)

6.5.16.4 Applicable Entities
❏ DataWriters (Section 6.3)

6.5.16.5 System Resource Considerations

The use of this policy does not significantly impact the use of resources.

6.5.17 PROPERTY QosPolicy (DDS Extension)

The PROPERTY QosPolicy stores name/value (string) pairs that can be used to configure certain
parameters of Connext that are not exposed through formal QoS policies.

It can also be used to store and propagate application-specific name/value pairs that can be
retrieved by user code during discovery. This is similar to the USER_DATA QosPolicy, except
this policy uses (name, value) pairs, and you can select whether or not a particular pair should
be propagated (included in the built-in topic).

It includes the member in Table 6.55.

The Property QoS stores name/value pairs for an Entity. Both the name and value are strings.
Certain configurable parameters for Entities that do not have a formal DDS QoS definition may
be configured via this QoS by using a pre-defined name and the desired setting in string form.

Table 6.54 DDS_OwnershipStrengthQosPolicy

Type Field Name Description

DDS_Long value The strength value used to arbitrate among multiple DataWriters.
6-117

DataWriter QosPolicies
You can manipulate the sequence of properties (name, value pairs) with the standard methods
available for sequences. You can also use the helper class, DDSPropertyQosPolicyHelper, which
provides another way to work with a PropertyQosPolicy object.

The PropertyQosPolicy may be used to configure:

❏ Durable writer history (see Section 12.3.2)

❏ Durable reader state (see Section 12.4.4)

❏ Built-in and extension Transport Plugins (see Section 15.6, Section 25.2, Section 36.2).

❏ Automatic registration of built-in types (see Registering Built-in Types (Section 3.2.1))

❏ Clock Selection (Section 8.6)

❏ Turbo Mode and Automatic Throttling for DataWriter Performance—Experimental Fea-
tures (Section 6.3.18)

In addition, you can add your own name/value pairs to the Property QoS of an Entity. You may
also use this QosPolicy to direct Connext to propagate these name/value pairs with the discov-
ery information for the Entity. Applications that discover the Entity can then access the user-spe-
cific name/value pairs in the discovery information of the remote Entity. This allows you to add
meta-information about an Entity for application-specific use, for example, authentication/
authorization certificates (which can also be done using the User or Group Data QoS).

Reasons for using the PropertyQosPolicy include:

❏ Some features can only be configured through the PropertyQosPolicy, not through other
QoS or API.s For example, Durable Reader State, Durable Writer History, Built-in Types,
Monotonic Clock.

❏ Alternative way to configure built-in transports settings. For example, to use non-default
values for the built-in transports without using the PropertyQosPolicy, you would have
to create a DomainParticipant disabled, change the built-in transport property settings,
then enable the DomainParticipant. Using the PropertyQosPolicy to configure built-in
transport settings will save you the work of enabling and disabling the DomainPartici-
pant. Also, transport settings are not a QoS and therefore cannot be configured through
an XML file. By configuring built-in transport settings through the PropertyQosPolicy
instead, XML files can be used.

• Note: When using the Java or .NET APIs, transport configuration must take place
through the PropertyQosPolicy (not through the transport property structures).

❏ Alternative way to support multiple instances of built-in transports (without using
Transport API).

❏ Alternative way to dynamically load extension transports (such as RTI Secure WAN
Transport1 or RTI TCP Transport2) or user-created transport plugins in C/C++ language
bindings. If the extension or user-created transport plugin is installed using the transport
API instead, the library that extra transport library/code will need to be linked into your
application and may require recompilation.

Table 6.55 DDS_PropertyQosPolicy

Type Field Name Description

DDS_PropertySeq value
A sequence of: (name, value) pairs and booleans that indicate
whether the pair should be propagated (included in the entity’s
built-in topic upon discovery).

1. RTI Secure WAN Transport is an optional packages available for separate purchase.
6-118

DataWriter QosPolicies
❏ Allows full pluggable transport configuration for non-C/C++ language bindings (Java,
C++/CLI, C#, etc.) The pluggable transport API is not available in those languages.
Without using PropertyQosPolicy, you cannot use extension transports (such as RTI
Secure WAN Transport) and you cannot create your own custom transport.

The PropertyQosPolicyHelper operations are described in Table 6.56. For more information, see
the API Reference HTML documentation.

6.5.17.1 Properties

This QosPolicy can be changed at any time.

There is no requirement that the publishing and subscribing sides use compatible values.

6.5.17.2 Related QosPolicies

❏ DOMAIN_PARTICIPANT_RESOURCE_LIMITS QosPolicy (DDS Extension) (Section
8.5.4)

6.5.17.3 Applicable Entities

❏ DataWriters (Section 6.3)

❏ DataReaders (Section 7.3)

❏ DomainParticipants (Section 8.3)

6.5.17.4 System Resource Considerations

The DOMAIN_PARTICIPANT_RESOURCE_LIMITS QosPolicy (DDS Extension) (Section 8.5.4)
contains several fields for configuring the resources associated with the properties stored in this
QosPolicy.

6.5.18 PUBLISH_MODE QosPolicy (DDS Extension)

This QosPolicy determines the DataWriter’s publishing mode, either asynchronous or synchro-
nous.

The publishing mode controls whether data is written synchronously—in the context of the user
thread when calling write(), or asynchronously—in the context of a separate thread internal to
Connext.

2. RTI TCP Transport is included with your Connext distribution but is not a built-in transport and therefore not
enabled by default.

Table 6.56 PropertyQoSPolicyHelper Operations

Operation Description

get_number_of_properties Gets the number of properties in the input policy.

assert_property
Asserts the property identified by name in the input policy. (Either adds it,
or replaces an existing one.)

add_property Adds a new property to the input policy.

lookup_property Searches for a property in the input policy given its name.

remove_property Removes a property from the input policy.

get_properties Retrieves a list of properties whose names match the input prefix.
6-119

DataWriter QosPolicies
Note: Asynchronous DataWriters do not perform sender-side filtering. Any filtering, such as
time-based or content-based filtering, takes place on the DataReader side.

Each Publisher spawns a single asynchronous publishing thread (set in its
ASYNCHRONOUS_PUBLISHER QosPolicy (DDS Extension) (Section 6.4.1)) to serve all its
asynchronous DataWriters.

When data is written asynchronously, a FlowController (Section 6.6), identified by
flow_controller_name, can be used to shape the network traffic. The FlowController's proper-
ties determine when the asynchronous publishing thread is allowed to send data and how
much.

The fastest way for Connext to send data is for the user thread to execute the middleware code
that actually sends the data itself. However, there are times when user applications may need or
want an internal middleware thread to send the data instead. For instance, for sending large
data reliably, an asynchronous thread must be used (see ASYNCHRONOUS_PUBLISHER
QosPolicy (DDS Extension) (Section 6.4.1)).

This QosPolicy can select a FlowController to prioritize or shape the data flow sent by a DataW-
riter to DataReaders. Shaping a data flow usually means limiting the maximum data rates with
which the middleware will send data for a DataWriter. The FlowController will buffer data sent
faster than the maximum rate by the DataWriter, and then only send the excess data when the
user send rate drops below the maximum rate.

If kind is set to DDS_ASYNCHRONOUS_PUBLISH_MODE_QOS, the flow controller referred
to by flow_controller_name must exist. Otherwise, the setting will be considered inconsistent.

This QosPolicy includes the members in Table 6.57. For the defaults, please refer to the API Ref-
erence HTML documentation.

The maximum number of samples that will be coalesced depends on
NDDS_Transport_Property_t::gather_send_buffer_count_max (each sample requires at least 2-

Table 6.57 DDS_PublishModeQosPolicy

Type Field Name Description

DDS_PublishMode
QosPolicyKind

kind
Either:
DDS_ASYNCHRONOUS_PUBLISH_MODE_QOS
DDS_SYNCHRONOUS_PUBLISH_MODE_QOS

char*
flow_controller_
name

Name of the associated flow controller.
There are three built-in FlowControllers:
DDS_DEFAULT_FLOW_CONTROLLER_NAME
DDS_FIXED_RATE_FLOW_CONTROLLER_NAME
DDS_ON_DEMAND_FLOW_CONTROLLER_NAME
You may also create your own FlowControllers.
See FlowControllers (DDS Extension) (Section 6.6).

DDS_Long priority

A positive integer designating the relative priority of the DataW-
riter, used to determine the transmission order of pending writes.
To use publication priorities, this QosPolicy’s kind must be
DDS_ASYNCHRONOUS_PUBLISH_MODE_QOS and the
DataWriter must use a FlowController with a highest-priority
first (HPF) scheduling_policy.
See Prioritized Samples (Section 6.6.4).
Note: Prioritized samples are not supported when using the Java,
Ada, or .NET APIs. Therefore the priority field does not exist
when using these APIs.
6-120

DataWriter QosPolicies
4 gather-send buffers). Performance can be improved by increasing
NDDS_Transport_Property_t::gather_send_buffer_count_max. Note that the maximum value
is operating system dependent.

Connext queues samples until they can be sent by the asynchronous publishing thread (as deter-
mined by the corresponding FlowController).

The number of samples that will be queued is determined by the HISTORY QosPolicy (Section
6.5.10): when using KEEP_LAST, the most recent depth samples are kept in the queue.

Once unsent samples are removed from the queue, they are no longer available to the asynchro-
nous publishing thread and will therefore never be sent.

Unless flow_controller_name points to one of the built-in FlowControllers, finalizing the
DataWriterQos will also free the string pointed to by flow_controller_name. Therefore, you
should use DDS_String_dup() before passing the string to flow_controller_name, or reset
flow_controller_name to NULL before the destructing /finalizing the QoS.

Advantages of Asynchronous Publishing:

Asynchronous publishing may increase latency, but offers the following advantages:

❏ The write() call does not make any network calls and is therefore faster and more deter-
ministic. This becomes important when the user thread is executing time-critical code.

❏ When data is written in bursts or when sending large data types as multiple fragments, a
flow controller can throttle the send rate of the asynchronous publishing thread to avoid
flooding the network.

❏ Asynchronously written samples for the same destination will be coalesced into a single
network packet which reduces bandwidth consumption.

6.5.18.1 Properties

This QosPolicy cannot be modified after the Publisher is created.

Since it is only for DataWriters, there are no compatibility restrictions for how it is set on the pub-
lishing and subscribing sides.

6.5.18.2 Related QosPolicies

❏ ASYNCHRONOUS_PUBLISHER QosPolicy (DDS Extension) (Section 6.4.1)

❏ HISTORY QosPolicy (Section 6.5.10)

6.5.18.3 Applicable Entities

❏ DataWriters (Section 6.3)

6.5.18.4 System Resource Considerations

See Configuring Resource Limits for Asynchronous DataWriters (Section 6.5.20.1).

System resource usage depends on the settings in the corresponding FlowController (see
Section 6.6).

6.5.19 RELIABILITY QosPolicy

This RELIABILITY QosPolicy determines whether or not data published by a DataWriter will be
reliably delivered by Connext to matching DataReaders. The reliability protocol used by Connext
is discussed in Chapter 10: Reliable Communications.
6-121

DataWriter QosPolicies
The reliability of a connection between a DataWriter and DataReader is entirely user configurable.
It can be done on a per DataWriter/DataReader connection. A connection may be configured to
be "best effort" which means that Connext will not use any resources to monitor or guarantee
that the data sent by a DataWriter is received by a DataReader.

For some use cases, such as the periodic update of sensor values to a GUI displaying the value to
a person, "best effort" delivery is often good enough. It is certainly the fastest, most efficient, and
least resource-intensive (CPU and network bandwidth) method of getting the newest/latest
value for a topic from DataWriters to DataReaders. But there is no guarantee that the data sent
will be received. It may be lost due to a variety of factors, including data loss by the physical
transport such as wireless RF or even Ethernet. Packets received out of order are dropped and a
SAMPLE_LOST Status (Section 7.3.7.7) is generated.

However, there are data streams (topics) in which you want an absolute guarantee that all data
sent by a DataWriter is received reliably by DataReaders. This means that Connext must check
whether or not data was received, and repair any data that was lost by resending a copy of the
data as many times as it takes for the DataReader to receive the data.

Connext uses a reliability protocol configured and tuned by these QoS policies:

❏ HISTORY QosPolicy (Section 6.5.10),

❏ DATA_WRITER_PROTOCOL QosPolicy (DDS Extension) (Section 6.5.3),

❏ DATA_READER_PROTOCOL QosPolicy (DDS Extension) (Section 7.6.1),

❏ RESOURCE_LIMITS QosPolicy (Section 6.5.20)

The Reliability QoS policy is simply a switch to turn on the reliability protocol for a DataWriter/
DataReader connection. The level of reliability provided by Connext is determined by the config-
uration of the aforementioned QoS policies.

You can configure Connext to deliver ALL data in the order they were sent (also known as abso-
lute or strict reliability). Or, as a trade-off for less memory, CPU, and network usage, you can
choose a reduced level of reliability where only the last N values are guaranteed to be delivered
reliably to DataReaders (where N is user-configurable). With the reduced level of reliability, there
are no guarantees that the data sent before the last N are received. Only the last N data packets
are monitored and repaired if necessary.

It includes the members in Table 6.58. For defaults and valid ranges, please refer to the API Ref-
erence HTML documentation.

Table 6.58 DDS_ReliabilityQosPolicy

Type Field Name Description

DDS_ReliabilityQosPolicyKind kind

Can be either:
• DDS_BEST_EFFORT_RELIABILITY_QOS:

Data samples are sent once and missed sam-
ples are acceptable.

• DDS_RELIABLE_RELIABILITY_QOS:

Connext will make sure that data sent is
received and missed samples are resent.
6-122

DataWriter QosPolicies
The kind of RELIABILITY can be either:

❏ BEST_EFFORT Connext will send data samples only once to DataReaders. No effort or
resources are spent to track whether or not sent samples are received. Minimal resources
are used. This is the most deterministic method of sending data since there is no indeter-
ministic delay that can be introduced by buffering or resending data. Data samples may
be lost. This setting is good for periodic data.

❏ RELIABLE Connext will send samples reliably to DataReaders–buffering sent data until
they have been acknowledged as being received by DataReaders and resending any sam-
ples that may have been lost during transport. Additional resources configured by the
HISTORY and RESOURCE_LIMITS QosPolicies may be used. Extra packets will be sent
on the network to query (heartbeat) and acknowledge the receipt of samples by the
DataReader. This setting is a good choice when guaranteed data delivery is required; for
example, sending events or commands.

To send large data reliably, you will also need to set the PUBLISH_MODE QosPolicy
(DDS Extension) (Section 6.5.18) kind to
DDS_ASYNCHRONOUS_PUBLISH_MODE_QOS. Large in this context means that the
data cannot be sent as a single packet by a transport (for example, data larger than 63K
when using UDP/IP).

While a DataWriter sends data reliably, the HISTORY QosPolicy (Section 6.5.10) and
RESOURCE_LIMITS QosPolicy (Section 6.5.20) determine how many samples can be stored
while waiting for acknowledgements from DataReaders. A sample that is sent reliably is entered
in the DataWriter’s send queue awaiting acknowledgement from DataReaders. How many sam-
ples that the DataWriter is allowed to store in the send queue for a data-instance depends on the
kind of the HISTORY QoS as well as the max_samples_per_instance and max_samples param-
eter of the RESOURCE_LIMITS QoS.

If the HISTORY kind is KEEP_LAST, then the DataWriter is allowed to have the HISTORY
depth number of samples per instance of the Topic in the send queue. Should the number of
unacknowledge samples in the send queue for a data-instance reach the HISTORY depth, then
the next sample written by the DataWriter for the instance will overwrite the oldest sample for
the instance in the queue. This implies that an unacknowledged sample may be overwritten and

DDS_Duration_t max_blocking_time

How long a DataWriter can block on a write()
when the send queue is full due to unacknowl-
edged messages. (Has no meaning for DataRead-
ers.)

DDS_ReliabilityQosPolicy-
AcknowledgmentModeKind

acknowledgment_
kind

Kind of reliable acknowledgment.

Only applies when kind is RELIABLE.

Sets the kind of acknowledgments supported by a
DataWriter and sent by DataReader.

Possible values:

• DDS_PROTOCOL_
ACKNOWLEDGMENT_MODE

• DDS_APPLICATION_AUTO_
ACKNOWLEDGMENT_MODE

• DDS_APPLICATION_EXPLICIT_
ACKNOWLEDGMENT_MODE

See Application Acknowledgment Kinds
(Section 6.3.12.1)

Table 6.58 DDS_ReliabilityQosPolicy

Type Field Name Description
6-123

DataWriter QosPolicies
thus lost. So even if the RELIABILITY kind is RELIABLE, if the HISTORY kind is KEEP_LAST,
it is possible that some data sent by the DataWriter will not be delivered to the DataReader. What
is guaranteed is that if the DataWriter stops writing, the last N samples that the DataWriter wrote
will be delivered reliably; where n is the value of the HISTORY depth.

However, if the HISTORY kind is KEEP_ALL, then when the send queue is filled with acknowl-
edged samples (either due to the number of unacknowledged samples for an instance reaching
the RESOURCE_LIMITS max_samples_per_instance value or the total number of unacknowl-
edged samples have reached the size of the send queue as specified by RESOURCE_LIMITS
max_samples), the next write() operation on the DataWriter will block until either a sample in
the queue has been fully acknowledged by DataReaders and thus can be overwritten or a timeout
of RELIABILITY max_blocking_period has been reached.

If there is still no space in the queue when max_blocking_time is reached, the write() call will
return a failure with the error code DDS_RETCODE_TIMEOUT.

Thus for strict reliability—a guarantee that all data samples sent by a DataWriter are received by
DataReaders—you must use a RELIABILITY kind of RELIABLE and a HISTORY kind of
KEEP_ALL for both the DataWriter and the DataReader.

Although you can set the RELIABILITY QosPolicy on Topics, its value can only be used to initial-
ize the RELIABILITY QosPolicies of either a DataWriter or DataReader. It does not directly affect
the operation of Connext, see Section 5.1.3.

6.5.19.1 Example

This QosPolicy is used to achieve reliable communications, which is discussed in Chapter 10:
Reliable Communications and Section 10.3.1.

6.5.19.2 Properties

This QosPolicy cannot be modified after the Entity has been enabled.

The DataWriter and DataReader must use compatible settings for this QosPolicy. To be compati-
ble, the DataWriter and DataReader must use one of the valid combinations for the Reliability
kind (see Table 6.59), and one of the valid combinations for the acknowledgment_kind (see
Table 6.60):

Table 6.59 Valid Combinations of Reliability ‘kind’

DataReader requests:

BEST_EFFORT RELIABLE

DataWriter offers:
BEST_EFFORT ✔ incompatible

RELIABLE ✔ ✔

Table 6.60 Valid Combinations of Reliability ‘acknowledgment_kind’

DataReader requests:

PROTOCOL APPLICATION_
AUTO

APPLICATION_
EXPLICIT

DataWriter
offers:

PROTOCOL ✔ incompatible incompatible

APPLICATION_AUTO ✔ ✔ ✔

APPLICATION_EXPLICIT ✔ ✔ ✔
6-124

DataWriter QosPolicies
If this QosPolicy is found to be incompatible, statuses ON_OFFERED_INCOMPATIBLE_QOS
and ON_REQUESTED_INCOMPATIBLE_QOS will be modified and the corresponding Listen-
ers called for the DataWriter and DataReader, respectively.

There are no compatibility issues regarding the value of max_blocking_wait, since it does not
apply to DataReaders.

6.5.19.3 Related QosPolicies

❏ HISTORY QosPolicy (Section 6.5.10)

❏ PUBLISH_MODE QosPolicy (DDS Extension) (Section 6.5.18)

❏ RESOURCE_LIMITS QosPolicy (Section 6.5.20)

6.5.19.4 Applicable Entities

❏ Topics (Section 5.1)

❏ DataWriters (Section 6.3)

❏ DataReaders (Section 7.3)

6.5.19.5 System Resource Considerations

Setting the kind to RELIABLE will cause Connext to use up more resources to monitor and
maintain a reliable connection between a DataWriter and all of its reliable DataReaders. This
includes the use of extra CPU and network bandwidth to send and process heartbeat, ACK/
NACK, and repair packets (see Chapter 10: Reliable Communications).

Setting max_blocking_time to a non-zero number may block the sending thread when the
RELIABILITY kind is RELIABLE.

6.5.20 RESOURCE_LIMITS QosPolicy

For the reliability protocol (and the DURABILITY QosPolicy (Section 6.5.7)), this QosPolicy
determines the actual maximum queue size when the HISTORY QosPolicy (Section 6.5.10) is set
to KEEP_ALL.

In general, this QosPolicy is used to limit the amount of system memory that Connext can allo-
cate. For embedded real-time systems and safety-critical systems, pre-determination of maxi-
mum memory usage is often required. In addition, dynamic memory allocation could introduce
non-deterministic latencies in time-critical paths.

This QosPolicy can be set such that an entity does not dynamically allocate any more memory
after its initialization phase.

It includes the members in Table 6.61. For defaults and valid ranges, please refer to the API Ref-
erence HTML documentation.

One of the most important fields is max_samples, which sets the size and causes memory to be
allocated for the send or receive queues. For information on how this policy affects reliability,
see Tuning Queue Sizes and Other Resource Limits (Section 10.3.2).

When a DataWriter or DataReader is created, the initial_instances and initial_samples parame-
ters determine the amount of memory first allocated for the those Entities. As the application
executes, if more space is needed in the send/receive queues to store samples or as more
instances are created, then Connext will automatically allocate memory until the limits of
max_instances and max_samples are reached.
6-125

DataWriter QosPolicies
You may set initial_instances = max_instances and initial_samples = max_samples if you do
not want Connext to dynamically allocate memory after initialization.

For keyed Topics, the max_samples_per_instance field in this policy represents maximum num-
ber of samples with the same key that are allowed to be stored by a DataWriter or DataReader.
This is a logical limit. The hard physical limit is determined by max_samples. However, because
the theoretical number of instances may be quite large (as set by max_instances), you may not
want Connext to allocate the total memory needed to hold the maximum number of samples per
instance for all possible instances (max_samples_per_instance * max_instances) because during
normal operations, the application will never have to hold that much data for the Entity.

So it is possible that an Entity will hit the physical limit max_samples before it hits the
max_samples_per_instance limit for a particular instance. However, Connext must be able to
store max_samples_per_instance for at least one instance. Therefore,
max_samples_per_instance must be <= max_samples.

Important: If a keyed data type is not used, then there is only a single instance of the Topic, so
max_samples_per_instance must equal max_samples.

Once a physical or logical limit is hit, then how Connext deals with new data samples being sent
or received for a DataWriter or DataReader is described in the HISTORY QosPolicy (Section
6.5.10) setting of DDS_KEEP_ALL_HISTORY_QOS. It is closely tied to whether or not a reli-
able connection is being maintained.

Although you can set the RESOURCE_LIMITS QosPolicy on Topics, its value can only be used to
initialize the RESOURCE_LIMITS QosPolicies of either a DataWriter or DataReader. It does not
directly affect the operation of Connext, see Section 5.1.3.

6.5.20.1 Configuring Resource Limits for Asynchronous DataWriters

When using an asynchronous Publisher, if a call to write() is blocked due to a resource limit, the
block will last until the timeout period expires, which will prevent others from freeing the

Table 6.61 DDS_ResourceLimitsQosPolicy

Type Field Name Description

DDS_Long max_samples
Maximum number of live samples that Connext can store for a DataW-
riter/DataReader. This is a physical limit.

DDS_Long max_instances

Maximum number of instances that can be managed by a DataWriter/
DataReader.
For DataReaders, max_instances must be <= max_total_instances in the
DATA_READER_RESOURCE_LIMITS QosPolicy (DDS Extension)
(Section 7.6.2).
See also: Example (Section 6.5.20.3).

DDS_Long
max_samples_
per_instance

Maximum number of samples of any one instance that Connext will
store for a DataWriter/DataReader.
For keyed types and DataReaders, this value only applies to samples
with an instance state of DDS_ALIVE_INSTANCE_STATE.
If a keyed Topic is not used, then max_samples_per_instance must
equal max_samples.

DDS_Long initial_samples
Initial number of samples that Connext will store for a DataWriter/
DataReader. (DDS extension)

DDS_Long initial_instances
Initial number of instances that can be managed by a DataWriter/
DataReader. (DDS extension)

DDS_Long
instance_hash_
buckets

Number of hash buckets, which are used by Connext to facilitate
instance lookup. (DDS extension).
6-126

DataWriter QosPolicies
resource. To avoid this situation, make sure that the DomainParticipant’s
outstanding_asynchronous_sample_allocation in the
DOMAIN_PARTICIPANT_RESOURCE_LIMITS QosPolicy (DDS Extension) (Section 8.5.4) is
always greater than the sum of all asynchronous DataWriters’ max_samples.

6.5.20.2 Configuring DataWriter Instance Replacement

When the max_instances limit is reached, a DataWriter will try to make space for a new instance
by replacing an existing instance according to the instance replacement kind set in
instance_replacement. For the sake of instance replacement, an instance is considered to be
unregistered, disposed, or alive. The oldest instance of the specified kind, if such an instance
exists, would be replaced with the new instance. Also, all samples of a replaced instance must
already have been acknowledged, such that removing the instance would not deprive any exist-
ing reader from receiving them.

Since an unregistered instance is one that a DataWriter will not update any further, unregistered
instances are replaced before any other instance kinds. This applies for all
instance_replacement kinds; for example, the ALIVE_THEN_DISPOSED kind would first
replace unregistered, then alive, and then disposed instances. The rest of the kinds specify one
or two kinds (e.g DISPOSED and ALIVE_OR_DISPOSED). For the single kind, if no unregis-
tered instances are replaceable, and no instances of the specified kind are replaceable, then the
instance replacement will fail. For the others specifying multiple kinds, it either specifies to look
for one kind first and then another kind (e.g. ALIVE_THEN_DISPOSED), meaning if the first
kind is found then that instance will be replaced, or it will replace either of the kinds specified
(e.g. ALIVE_OR_DISPOSED), whichever is older as determined by the time of instance register-
ing, writing, or disposing.

If an acknowledged instance of the specified kind is found, the DataWriter will reclaim its
resources for the new instance. It will also invoke the DataWriterListener’s
on_instance_replaced() callback (if installed) and notify the user with the handle of the replaced
instance, which can then be used to retrieve the instance key from within the callback. If no
replaceable instances are found, the new instance will fail to be registered; the DataWriter may
block, if the instance registration was done in the context of a write, or it may return with an out-
of-resources return code.

In addition, replace_empty_instances (in the DATA_WRITER_RESOURCE_LIMITS QosPolicy
(DDS Extension) (Section 6.5.4)) configures whether instances with no samples are eligible to be
replaced. If this is set, then a DataWriter will first try to replace empty instances, even before
replacing unregistered instances.

6.5.20.3 Example

If you want to be able to store max_samples_per_instance for every instance, then you should
set

max_samples >= max_instances * max_samples_per_instance

But if you want to save memory and you do not expect that the running application will ever
reach the case where it will see max_instances of instances, then you may use a smaller value for
max_samples to save memory.

In any case, there is a lower limit for max_samples:

max_samples >= max_samples_per_instance

If the HISTORY QosPolicy (Section 6.5.10)’s kind is set to KEEP_LAST, then you should set:

max_samples_per_instance = HISTORY.depth
6-127

DataWriter QosPolicies
6.5.20.4 Properties

This QosPolicy cannot be modified after the Entity is enabled.

There are no requirements that the publishing and subscribing sides use compatible values.

6.5.20.5 Related QosPolicies

❏ HISTORY QosPolicy (Section 6.5.10)

❏ RELIABILITY QosPolicy (Section 6.5.19)

❏ For DataReaders, max_instances must be <= max_total_instances in the
DATA_READER_RESOURCE_LIMITS QosPolicy (DDS Extension) (Section 7.6.2)

6.5.20.6 Applicable Entities

❏ Topics (Section 5.1)

❏ DataWriters (Section 6.3)

❏ DataReaders (Section 7.3)

6.5.20.7 System Resource Considerations

Larger initial_* numbers will increase the initial system memory usage. Larger max_* numbers
will increase the worst-case system memory usage.

Increasing instance_hash_buckets speeds up instance-lookup time but also increases memory
usage.

6.5.21 TRANSPORT_PRIORITY QosPolicy

The TRANSPORT_PRIORITY QosPolicy is optional and only partially supported on certain OSs
and transports by RTI. However, its intention is to allow you to specify on a per-DataWriter basis
that the data sent by a DataWriter is of a different priority.

DDS does not specify how a DDS implementation shall treat data of different priorities. It is
often difficult or impossible for DDS implementations to treat data of higher priority differently
than data of lower priority, especially when data is being sent (delivered to a physical transport)
directly by the thread that called DataWriter’s write() operation. Also, many physical network
transports themselves do not have an end-user controllable level of data packet priority.

In Connext, for the UDPv4 built-in transport, the value set in the TRANSPORT_PRIORITY
QosPolicy is used in a setsockopt call to set the TOS (type of service) bits of the IPv4 header for
datagrams sent by a DataWriter. It is platform dependent on how and whether or not the set-
sockopt has an effect. On some platforms such as Windows and Linux, external permissions
must be given to the user application in order to set the TOS bits.

It is incorrect to assume that using the TRANSPORT_PRIORITY QosPolicy will have any effect
at all on the end-to-end delivery of data from a DataWriter to a DataReader. All network elements
such as switches and routers must have the capability and be enabled to actually use the TOS
bits to treat higher-priority packets differently. Thus the ability to use the
TRANSPORT_PRIORITY QosPolicy must be designed and configured at a system level; just
turning it on in an application may have no effect at all.

It includes the member in Table 6.62. For the default and valid range, please refer to the API Ref-
erence HTML documentation.
6-128

DataWriter QosPolicies
Connext will propagate the value set on a per-DataWriter basis to the transport when the DataW-
riter publishes data. It is up to the implementation of the transport to do something with the
value, if anything.

Although you can set the TRANSPORT_PRIORITY QosPolicy on Topics, its value can only be
used to initialize the TRANSPORT_PRIORITY QosPolicies of a DataWriter. It does not directly
affect the operation of Connext, see Section 5.1.3.

6.5.21.1 Example

Should Connext be configured with a transport that can use and will honor the concept of a pri-
oritized message, then you would be able to create a DataWriter of a Topic whose data samples,
when published, will be sent at a higher priority than other DataWriters that use the same trans-
port.

6.5.21.2 Properties

This QosPolicy cannot be modified after the entity is created.

It does not apply to DataReaders, so there is no requirement that the publishing and subscribing
sides use compatible values.

6.5.21.3 Related QosPolicies

This QosPolicy does not interact with any other policies.

6.5.21.4 Applicable Entities

❏ Topics (Section 5.1)

❏ DataWriters (Section 6.3)

6.5.21.5 System Resource Considerations

The use of this policy does not significantly impact the use of resources. However, if a transport
is implemented to use the value set by this policy, then there may be transport-specific issues
regarding the resources that the transport implementation itself uses.

6.5.22 TRANSPORT_SELECTION QosPolicy (DDS Extension)

The TRANSPORT_SELECTION QosPolicy allows you to select the transports that have been
installed with the DomainParticipant to be used by the DataWriter or DataReader.

An application may be simultaneously connected to many different physical transports, e.g.,
Ethernet, Infiniband, shared memory, VME backplane, and wireless. By default, the middleware
will use up to 4 transports to deliver data from a DataWriter to a DataReader.

This QosPolicy can be used to both limit and control which of the application’s available trans-
ports may be used by a DataWriter to send data or by a DataReader to receive data.

It includes the member in Table 6.63. For more information, please refer to the API Reference
HTML documentation.

Connext allows you to configure the transports that it uses to send and receive messages. A num-
ber of built-in transports, such as UDPv4 and shared memory, are available as well as custom

Table 6.62 DDS_TransportPriorityQosPolicy

Type Field Name Description

DDS_Long value Hint as to how to set the priority.
6-129

DataWriter QosPolicies
ones that you may implement and install. Each transport will be installed in the DomainPartici-
pant with one or more aliases.

To enable a DataWriter or DataReader to use a particular transport, add the alias to the
enabled_transports sequence of this QosPolicy. An empty sequence is a special case, and indi-
cates that all transports installed in the DomainParticipant can be used by the DataWriter or
DataReader.

For more information on configuring and installing transports, please see the API Reference
HTML documentation (from the Modules page, select RTI Connext DDS API Reference, Plug-
gable Transports).

6.5.22.1 Example

Suppose a DomainParticipant has both UDPv4 and shared memory transports installed. If you
want a particular DataWriter to publish its data only over shared memory, then you should use
this QosPolicy to specify that restriction.

6.5.22.2 Properties

This QosPolicy cannot be modified after the Entity is created.

It can be set differently for the DataWriter and the DataReader.

6.5.22.3 Related QosPolicies

❏ TRANSPORT_UNICAST QosPolicy (DDS Extension) (Section 6.5.23)

❏ TRANSPORT_MULTICAST QosPolicy (DDS Extension) (Section 7.6.5)

❏ TRANSPORT_BUILTIN QosPolicy (DDS Extension) (Section 8.5.7)

6.5.22.4 Applicable Entities

❏ DataWriters (Section 6.3)

❏ DataReaders (Section 7.3)

6.5.22.5 System Resource Considerations

By restricting DataWriters from sending or DataReaders from receiving over certain transports,
you may decrease the load on those transports.

6.5.23 TRANSPORT_UNICAST QosPolicy (DDS Extension)

The TRANSPORT_UNICAST QosPolicy allows you to specify unicast network addresses to be
used by DomainParticipant, DataWriters and DataReaders for receiving messages.

Connext may send data to a variety of Entities, not just DataReaders. DomainParticipants receive
messages to support the discovery process discussed in Chapter 14. DataWriters may receive
ACK/NACK messages to support the reliable protocol discussed in Chapter 10: Reliable Com-
munications.

Table 6.63 DDS_TransportSelectionQosPolicy

Type Field Name Description

DDS_StringSeq enabled_transports
A sequence of aliases for the transports that may be used by the
DataWriter or DataReader.
6-130

DataWriter QosPolicies
During discovery, each Entity announces to remote applications a list of (up to 4) unicast
addresses to which the remote application should send data (either user-data packets or reliable
protocol meta-data such as ACK/NACK and Heartbeats).

By default, the list of addresses is populated automatically with values obtained from the
enabled transport plugins allowed to be used by the Entity (see the TRANSPORT_BUILTIN
QosPolicy (DDS Extension) (Section 8.5.7) and TRANSPORT_SELECTION QosPolicy (DDS
Extension) (Section 6.5.22)). Also, the associated ports are automatically determined (see
Inbound Ports for User Traffic (Section 14.5.2)).

Use TRANSPORT_UNICAST QosPolicy to manually set the receive address list for an Entity.
You may optionally set a port to use a non-default receive port as well. Only the first 4 addresses
will be used. Connext will create a receive thread for every unique port number that it encoun-
ters (on a per transport basis).

The QosPolicy structure includes the members in Table 6.64. For more information and default
values, please refer to the API Reference HTML documentation.

A message sent to a unicast address will be received by a single node on the network (as
opposed to a multicast address where a single message may be received by multiple nodes).
This policy sets the unicast addresses and ports that remote entities should use when sending
messages to the Entity on which the TRANSPORT_UNICAST QosPolicy is set.

Up to four “return” unicast addresses may be configured for an Entity. Instead of specifying
addresses directly, you use the transports field of the DDS_TransportUnicastSetting_t to select
the transports (using their aliases) on which remote entities should send messages destined for
this Entity. The addresses of the selected transports will be the “return” addresses. See the API
Reference HTML documentation about configuring transports and aliases (from the Modules
page, select RTI Connext DDS API Reference, Pluggable Transports).

Note, a single transport may have more than one unicast address. For example, if a node has
multiple network interface cards (NICs), then the UDPv4 transport will have an address for
each NIC. When using the TRANSPORT_UNICAST QosPolicy to set the return addresses, a sin-
gle value for the DDS_TransportUnicastSettingsSeq may provide more than the four return
addresses that Connext currently uses.

Whether or not you are able to configure the network interfaces that are allowed to be used by a
transport is up to the implementation of the transport. For the built-in UDPv4 transport, you
may restrict an instance of the transport to use a subset of the available network interfaces. See
the API Reference HTML documentation for the built-in UDPv4 transport for more information.

Table 6.64 DDS_TransportUnicastQosPolicy

Type Field Name Description

DDS_TransportUnicast
SettingsSeq
(see Table 6.65)

value
A sequence of up to 4 unicast settings that should be used by
remote entities to address messages to be sent to this Entity.

Table 6.65 DDS_TransportUnicastSettings_t

Type Field Name Description

DDS_StringSeq transports
A sequence of transport aliases that specifies which transports
should be used to receive unicast messages for this Entity.

DDS_Long receive_port

The port that should be used in the addressing of unicast mes-
sages destined for this Entity. A value of 0 will cause Connext to
use a default port number based on domain and participant ids.
See Ports Used for Discovery (Section 14.5).
6-131

DataWriter QosPolicies
For a DomainParticipant, this QoS policy sets the default list of addresses used by other applica-
tions to send user data for local DataReaders.

For a reliable DataWriter, if set, the other applications will use the specified list of addresses to
send reliable protocol packets (ACKS/NACKS) on the behalf of reliable DataReaders. Otherwise,
if not set, the other applications will use the addresses set by the DomainParticipant.

For a DataReader, if set, then other applications will use the specified list of addresses to send
user data (and reliable protocol packets for reliable DataReaders). Otherwise, if not set, the other
applications will use the addresses set by the DomainParticipant.

For a DataReader, if the port number specified by this QoS is the same as a port number specified
by a TRANSPORT_MULTICAST QoS, then the transport may choose to process data received
both via multicast and unicast with a single thread. Whether or not a transport must use differ-
ent threads to process data received via multicast or unicast for the same port number depends
on the implementation of the transport.

To use this QosPolicy, you also need to specify a port number. A port number of 0 will cause
Connext to automatically use a default value. As explained in Ports Used for Discovery (Section
14.5), the default port number for unicast addresses is based on the domain and participant IDs.
Should you choose to use a different port number, then for every unique port number used by
Entities in your application, depending on the transport, Connext may create a thread to process
messages received for that port on that transport. See Chapter 19: Connext Threading Model for
more about threads.

Threads are created on a per-transport basis, so if this QosPolicy specifies multiple transports
for a receive_port, then a thread may be created for each transport for that unique port. Some
transports may be able to share a single thread for different ports, others can not. Different Enti-
ties can share the same port number, and thus, the same thread will process all of the data for all
of the Entities sharing the same port number for a transport.

Note: If a DataWriter is using the MULTI_CHANNEL QosPolicy (DDS Extension) (Section
6.5.14), the unicast addresses specified in the TRANSPORT_UNICAST QosPolicy are ignored by
that DataWriter. The DataWriter will not publish samples on those locators.

6.5.23.1 Example

You may use this QosPolicy to restrict an Entity from receiving data through a particular trans-
port. For example, on a multi-NIC (network interface card) system, you may install different
transports for different NICs. Then you can balance the network load between network cards by
using different values for the TRANSPORT_UNICAST QosPolicy for different DataReaders.
Thus some DataReaders will receive their data from one NIC and other DataReaders will receive
their data from another.

6.5.23.2 Properties

This QosPolicy cannot be modified after the Entity is created.

It can be set differently for the DomainParticipant, the DataWriter and the DataReader.

6.5.23.3 Related QosPolicies

❏ MULTI_CHANNEL QosPolicy (DDS Extension) (Section 6.5.14)

❏ TRANSPORT_SELECTION QosPolicy (DDS Extension) (Section 6.5.22)

❏ TRANSPORT_MULTICAST QosPolicy (DDS Extension) (Section 7.6.5)

❏ TRANSPORT_BUILTIN QosPolicy (DDS Extension) (Section 8.5.7)
6-132

DataWriter QosPolicies
6.5.23.4 Applicable Entities

❏ DomainParticipants (Section 8.3)

❏ DataWriters (Section 6.3)

❏ DataReaders (Section 7.3)

6.5.23.5 System Resource Considerations

Because this QosPolicy changes the transports on which messages are received for different
Entities, the bandwidth used on the different transports may be affected.

Depending on the implementation of a transport, Connext may need to create threads to receive
and process data on a unique-port-number basis. Some transports can share the same thread to
process data received for different ports; others like UDPv4 must have different threads for
different ports. In addition, if the same port is used for both unicast and multicast, the transport
implementation will determine whether or not the same thread can be used to process both
unicast and multicast data. For UDPv4, only one thread is needed per port–independent of
whether the data was received via unicast or multicast data. See Receive Threads (Section 19.3)
for more information.

6.5.24 TYPESUPPORT QosPolicy (DDS Extension)

This policy can be used to modify the rtiddsgen-generated code so that the de/serialization rou-
tines act differently depending on the information passed in via the object pointer. This policy
also determines if padding bytes are set to zero during serialization.

It includes the members in Table 6.66.

Note RTI generally recommends that you treat generated source files as compiler outputs
(analogous to object files) and that you do not modify them. RTI cannot support user changes to
generated source files. Furthermore, such changes would make upgrading to newer versions of
Connext more difficult, as this generated code is considered to be a part of the middleware
implementation and consequently does change from version to version. The plugin_data field

Table 6.66 DDS_TypeSupportQosPolicy

Type Field Name Description

void * plugin_data
Value to pass into the type plug-in's serialization/deserialization function.
See Note.

DDS_Cdr
Padding-
Kind

cdr_padding_
kind

Determines whether or not the padding bytes will be set to zero during CDR
serialization.

For a DomainParticipant: Configures how padding bytes are set when serializ-
ing data for the builtin topic DataWriters and DataReaders.

For DataWriters and DataReaders: Configures how padding bytes are set when
serializing data for that entity.

May be:

• ZERO_CDR_PADDING (Padding bytes will be set to zero during CDR
serialization)

• NOT_SET_CDR_PADDING (Padding bytes will not be set to any value
during CDR serialization)

• AUTO_CDR_PADDING (For a DomainParticipant, the default behavior is
NOT_SET_CDR_PADDING. For a DataWriter or DataReader, the behavior
is to inherit the value from the DomainParticipant.)
6-133

DataWriter QosPolicies
in this QoS policy should be considered a back door, only to be used after careful design
consideration, testing, and consultation with your RTI representative.

6.5.24.1 Properties

This QoS policy may be modified after the DataWriter or DataReader is enabled.

It can be set differently for the DataWriter and DataReader.

6.5.24.2 Related QoS Policies

None.

6.5.24.3 Applicable Entities

❏ DataWriters (Section 6.3)

❏ DataReaders (Section 7.3)

❏ DomainParticipants (Section 8.3)

6.5.24.4 System Resource Considerations

None.

6.5.25 USER_DATA QosPolicy

This QosPolicy provides an area where your application can store additional information related
to a DomainParticipant, DataWriter, or DataReader. This information is passed between applica-
tions during discovery (see Chapter 14: Discovery) using built-in-topics (see Chapter 16: Built-In
Topics). How this information is used will be up to user code. Connext does not do anything
with the information stored as USER_DATA except to pass it to other applications.

Use cases are usually for application-to-application identification, authentication, authorization,
and encryption purposes. For example, applications can use Group or User Data to send secu-
rity certificates to each other for RSA-type security.

The value of the USER_DATA QosPolicy is sent to remote applications when they are first dis-
covered, as well as when the DomainParticipant, DataWriter or DataReader’s set_qos() methods
are called after changing the value of the USER_DATA. User code can set listeners on the built-in
DataReaders of the built-in Topics used by Connext to propagate discovery information. Methods
in the built-in topic listeners will be called whenever new DomainParticipants, DataReaders, and
DataWriters are found. Within the user callback, you will have access to the USER_DATA that
was set for the associated Entity.

Currently, USER_DATA of the associated Entity is only propagated with the information that
declares a DomainParticipant, DataWriter or DataReader. Thus, you will need to access the value of
USER_DATA through DDS_ParticipantBuiltinTopicData, DDS_PublicationBuiltinTopicData
or DDS_SubscriptionBuiltinTopicData (see Chapter 16: Built-In Topics).

The structure for the USER_DATA QosPolicy includes just one field, as seen in Table 6.67. The
field is a sequence of octets that translates to a contiguous buffer of bytes whose contents and
length is set by the user. The maximum size for the data are set in the
DOMAIN_PARTICIPANT_RESOURCE_LIMITS QosPolicy (DDS Extension) (Section 8.5.4).

Table 6.67 DDS_UserDataQosPolicy

Type Field Name Description

DDS_OctetSeq value Default: empty
6-134

DataWriter QosPolicies
This policy is similar to the GROUP_DATA QosPolicy (Section 6.4.4) and TOPIC_DATA QosPol-
icy (Section 5.2.1) that apply to other types of Entities.

6.5.25.1 Example

One possible use of USER_DATA is to pass some credential or certificate that your subscriber
application can use to accept or reject communication with the DataWriters (or vice versa, where
the publisher application can validate the permission of DataReaders to receive its data). Using
the same method, an application (DomainParticipant) can accept or reject all connections from
another application. The value of the USER_DATA of the DomainParticipant is propagated in the
‘user_data’ field of the DDS_ParticipantBuiltinTopicData that is sent with the declaration of
each DomainParticipant. Similarly, the value of the USER_DATA of the DataWriter is propagated
in the ‘user_data’ field of the DDS_PublicationBuiltinTopicData that is sent with the declara-
tion of each DataWriter, and the value of the USER_DATA of the DataReader is propagated in the
‘user_data’ field of the DDS_SubscriptionBuiltinTopicData that is sent with the declaration of
each DataReader.

When Connext discovers a DomainParticipant/DataWriter/DataReader, the application can be noti-
fied of the discovery of the new entity and retrieve information about the Entity’s QoS by read-
ing the DCPSParticipant, DCPSPublication or DCPSSubscription built-in topics (see
Chapter 16: Built-In Topics). The user application can then examine the USER_DATA field in the
built-in Topic and decide whether or not the remote Entity should be allowed to communicate
with the local Entity. If communication is not allowed, the application can use the DomainPartici-
pant’s ignore_participant(), ignore_publication() or ignore_subscription() operation to reject
the newly discovered remote entity as one with which the application allows Connext to commu-
nicate. See Figure 16.2 for an example of how to do this.

6.5.25.2 Properties

This QosPolicy can be modified at any time. A change in the QosPolicy will cause Connext to
send packets containing the new USER_DATA to all of the other applications in the domain.

It can be set differently on the publishing and subscribing sides.

6.5.25.3 Related QosPolicies

❏ TOPIC_DATA QosPolicy (Section 5.2.1)

❏ GROUP_DATA QosPolicy (Section 6.4.4)

❏ DOMAIN_PARTICIPANT_RESOURCE_LIMITS QosPolicy (DDS Extension) (Section
8.5.4)

6.5.25.4 Applicable Entities

❏ DataWriters (Section 6.3)

❏ DataReaders (Section 7.3)

❏ DomainParticipants (Section 8.3)

6.5.25.5 System Resource Considerations

As mentioned earlier, the maximum size of the USER_DATA is set in the
participant_user_data_max_length, writer_user_data_max_length, and
reader_user_data_max_length fields of the DOMAIN_PARTICIPANT_RESOURCE_LIMITS
QosPolicy (DDS Extension) (Section 8.5.4). Because Connext will allocated memory based on this
value, you should only increase this value if you need to. If your system does not use
USER_DATA, then you can set this value to 0 to save memory. Setting the value of the
6-135

DataWriter QosPolicies
USER_DATA QosPolicy to hold data longer than the value set in the [partici-
pant,writer,reader]_user_data_max_length field will result in failure and an
INCONSISTENT_QOS_POLICY return code.

However, should you decide to change the maximum size of USER_DATA, you must make cer-
tain that all applications in the domain have changed the value of [partici-
pant,writer,reader]_user_data_max_length to be the same. If two applications have different
limits on the size of USER_DATA, and one application sets the USER_DATA QosPolicy to hold
data that is greater than the maximum size set by another application, then the DataWriters and
DataReaders between the two applications will not connect. The DomainParticipants may also
reject connections from each other entirely. This is also true for the GROUP_DATA
(Section 6.4.4) and TOPIC_DATA (Section 5.2.1) QosPolicies.

6.5.26 WRITER_DATA_LIFECYCLE QoS Policy

This QoS policy controls how a DataWriter handles the lifecycle of the instances (keys) that the
DataWriter is registered to manage. This QoS policy includes the members in Table 6.68.

You may use the DataWriter’s unregister() operation (Section 6.3.14.1) to indicate that the
DataWriter no longer wants to send data for a Topic. This QoS controls whether or not Connext
automatically also calls dispose() (Section 6.3.14.2) on the behalf of the DataWriter for the data.

Unregistering vs. Disposing:

❏ When an instance is unregistered, it means this particular DataWriter has no more infor-
mation/data on this instance.

❏ When an instance is disposed, it means the instance is "dead"—there will no more infor-
mation/data from any DataWriter on this instance.

The behavior controlled by this QoS applies on a per instance (key) basis for keyed Topics, so
when a DataWriter unregisters an instance, Connext also automatically disposes that instance.
This is the default behavior since autodispose_unregistered_instances defaults to TRUE.

Use Cases for Unregistering without Disposing:

There are situations in which you may want to set autodispose_unregistered_instances to
FALSE, so that unregistering will not automatically dispose the instance. For example:

Table 6.68 DDS_WriterDataLifecycleQosPolicy

Type Field Name Description

DDS_Boolean
autodispose_unregistered_
instances

RTI_TRUE (default): Instance is disposed when unregis-
tered.
RTI_FALSE: Instance is not disposed when unregistered.

struct
DDS_Duration_t

autopurge_unregistered_
instance_delay

Determines how long the DataWriter will maintain infor-
mation regarding an instance that has been unregistered.
By default, the DataWriter resources associated with an
instance (e.g., the space needed to remember the Instance
Key or KeyHash) are released lazily. This means the
resources are only reclaimed when the space is needed for
another instance because max_instances (see
Section 6.5.20) is exceeded. This behavior can be changed
by setting autopurge_unregistered_instance_delay to a
value other than INFINITE.
After this time elapses, the DataWriter will purge all inter-
nal information regarding the instance, including histori-
cal samples even if max_instances has not been reached.
6-136

DataWriter QosPolicies
❏ In many cases where the ownership of a Topic is EXCLUSIVE (see the OWNERSHIP
QosPolicy (Section 6.5.15)), DataWriters may want to relinquish ownership of a particular
instance of the Topic to allow other DataWriters to send updates for the value of that
instance. In this case, you may want a DataWriter to just unregister an instance—without
disposing it (since there are other writers). Disposing an instance implies that the DataW-
riter no longer owns that instance, but it is a stronger statement to say that instance no
longer exists.

❏ User applications may be coded to trigger on the disposal of instances, thus the ability to
unregister without disposing may be useful to properly maintain the semantic of dis-
posal.

When you delete a DataWriter (Section 6.3.1), all of the instances managed by the DataWriter are
automatically unregistered. Therefore, this QoS policy determines whether or not all of the
instances are disposed when the DataWriter is deleted when you call one of these operations:

❏ Publisher’s delete_datawriter() (see Section 6.3.1)

❏ Publisher’s delete_contained_entities() (see Section 6.2.3.1)

❏ DomainParticipant’s delete_contained_entities() (see Section 8.3.3)

When autodispose_unregistered_instances is TRUE, the middleware will clean up all the
resources associated with an unregistered instance (most notably, the sample history of non-vol-
atile DataWriters) when all the instance’s samples have been acknowledged by all its live
DataReaders, including the sample that indicates the unregistration. By default,
autopurge_unregistered_instances_delay is disabled (the delay is INFINITE). If the delay is set
to zero, the DataWriter will clean up as soon as all the samples are acknowledged after the call to
unregister(). A non-zero value for the delay can be useful in two ways:

1. To keep the historical samples for late-joiners for a period of time.

2. In the context of discovery, if the applications temporarily lose the connection before the
unregistration (which represents the remote entity destruction), to provide the samples
that indicate the dispose and unregister actions once the connection is reestablished.

This delay can also be set for discovery data through these fields in the DISCOVERY_CONFIG
QosPolicy (DDS Extension) (Section 8.5.3):

❏ publication_writer_data_lifecycle.autopurge_unregistered_instances_delay

❏ subscription_writer_data_lifecycle.autopurge_unregistered_instances_delay

6.5.26.1 Properties

It does not apply to DataReaders, so there is no requirement that the publishing and subscribing
sides use compatible values.

This QoS policy may be modified after the DataWriter is enabled.

6.5.26.2 Related QoS Policies

None.

6.5.26.3 Applicable Entities

❏ DataWriters (Section 6.3)

6.5.26.4 System Resource Considerations

None.
6-137

FlowControllers (DDS Extension)
6.6 FlowControllers (DDS Extension)
Note: This section does not apply when using the separate add-on product, Ada 2005 Language
Support, which does not support FlowControllers.

A FlowController is the object responsible for shaping the network traffic by determining when
attached asynchronous DataWriters are allowed to write data.

You can use one of the built-in FlowControllers (and optionally modify their properties), create a
custom FlowController by using the DomainParticipant’s create_flowcontroller() operation (see
Section 6.6.6), or create a custom FlowController by using the DomainParticipant's PROPERTY
QosPolicy (DDS Extension) (Section 6.5.17); see Creating and Configuring Custom FlowCon-
trollers with Property QoS (Section 6.6.5).

To use a FlowController, you provide its name in the DataWriter’s PUBLISH_MODE QosPolicy
(DDS Extension) (Section 6.5.18).

❏ DDS_DEFAULT_FLOW_CONTROLLER_NAME

By default, flow control is disabled. That is, the built-in
DDS_DEFAULT_FLOW_CONTROLLER_NAME flow controller does not apply any
flow control. Instead, it allows data to be sent asynchronously as soon as it is written by
the DataWriter.

❏ DDS_FIXED_RATE_FLOW_CONTROLLER_NAME

The FIXED_RATE flow controller shapes the network traffic by allowing data to be sent
only once every second. Any accumulated samples destined for the same destination are
coalesced into as few network packets as possible.

❏ DDS_ON_DEMAND_FLOW_CONTROLLER_NAME

The ON_DEMAND flow controller allows data to be sent only when you call the Flow-
Controller’s trigger_flow() operation. With each trigger, all accumulated data since the
previous trigger is sent (across all Publishers or DataWriters). In other words, the network
traffic shape is fully controlled by the user. Any accumulated samples destined for the
same destination are coalesced into as few network packets as possible.

This external trigger source is ideal for users who want to implement some form of
closed-loop flow control or who want to only put data on the wire every so many sam-
ples (e.g., with the number of samples based on NDDS_Transport_Property_t’s
gather_send_buffer_count_max).

The default property settings for the built-in FlowControllers are described in the API Reference
HTML documentation.

Samples written by an asynchronous DataWriter are not sent in the context of the write() call.
Instead, Connext puts the samples in a queue for future processing. The FlowController associ-
ated with each asynchronous DataWriter determines when the samples are actually sent.

Each FlowController maintains a separate FIFO queue for each unique destination (remote
application). Samples written by asynchronous DataWriters associated with the FlowController
are placed in the queues that correspond to the intended destinations of the sample.

When tokens become available, a FlowController must decide which queue(s) to grant tokens
first. This is determined by the FlowController's scheduling_policy property (see Table 6.69).
Once a queue has been granted tokens, it is serviced by the asynchronous publishing thread.
The queued up samples will be coalesced and sent to the corresponding destination. The num-
ber of samples sent depends on the data size and the number of tokens granted.

Table 6.69 lists the properties for a FlowController.
6-138

FlowControllers (DDS Extension)
Table 6.70 lists the operations available for a FlowController.

6.6.1 Flow Controller Scheduling Policies

❏ Round Robin (DDS_RR_FLOW_CONTROLLER_SCHED_POLICY) Perform flow con-
trol in a round-robin (RR) fashion.

Whenever tokens become available, the FlowController distributes the tokens uniformly
across all of its (non-empty) destination queues. No destinations are prioritized. Instead,
all destinations are treated equally and are serviced in a round-robin fashion.

❏ Earliest Deadline First (DDS_EDF_FLOW_CONTROLLER_SCHED_POLICY) Perform
flow control in an earliest-deadline-first (EDF) fashion.

A sample's deadline is determined by the time it was written plus the latency budget of
the DataWriter at the time of the write call (as specified in the
DDS_LatencyBudgetQosPolicy). The relative priority of a flow controller's destination
queue is determined by the earliest deadline across all samples it contains.

When tokens become available, the FlowController distributes tokens to the destination
queues in order of their priority. In other words, the queue containing the sample with
the earliest deadline is serviced first. The number of tokens granted equals the number of
tokens required to send the first sample in the queue. Note that the priority of a queue
may change as samples are sent (i.e., removed from the queue). If a sample must be sent
to multiple destinations or two samples have an equal deadline value, the corresponding
destination queues are serviced in a round-robin fashion.

With the default duration of 0 in the LatencyBudgetQosPolicy, using an
EDF_FLOW_CONTROLLER_SCHED_POLICY FlowController preserves the order in
which you call write() across the DataWriters associated with the FlowController.

Since the LatencyBudgetQosPolicy is mutable, a sample written second may contain an
earlier deadline than the sample written first if the DDS_LatencyBudgetQosPolicy’s
duration is sufficiently decreased in between writing the two samples. In that case, if the
first sample is not yet written (still in queue waiting for its turn), it inherits the priority
corresponding to the (earlier) deadline from the second sample.

Table 6.69 DDS_FlowControllerProperty_t

Type Field Name Description

DDS_FlowControllerSchedulingPolicy
 scheduling_
policy

Round robin, earliest deadline first, or
highest priority first. See Section 6.6.1.

DDS_FlowControllerTokenBucketProperty_t token_bucket See Section 6.6.3.

Table 6.70 FlowController Operations

Operation Description Reference

get_property
Get and Set the FlowController properties. Section 6.6.8

set_property

trigger_flow Provides an external trigger to the FlowController. Section 6.6.9

get_name Returns the name of the FlowController.
Section 6.6.10

get_participant Returns the DomainParticipant to which the FlowController belongs.
6-139

FlowControllers (DDS Extension)
In other words, the priority of a destination queue is always determined by the earliest
deadline among all samples contained in the queue. This priority inheritance approach is
required in order to both honor the updated duration and to adhere to the DataWriter in-
order data delivery guarantee.

❏ Highest Priority First (DDS_HPF_FLOW_CONTROLLER_SCHED_POLICY) Perform flow
control in an highest-priority-first (HPF) fashion.

Note: Prioritized samples are not supported when using the Java, Ada, or .NET APIs.
Therefore the Highest Priority First scheduling policy is not supported when using these
APIs.

The next destination queue to service is determined by the publication priority of the
DataWriter, the channel of a multi-channel DataWriter, or individual sample.

The relative priority of a flow controller's destination queue is determined by the highest
publication priority of all the samples it contains.

When tokens become available, the FlowController distributes tokens to the destination
queues in order of their publication priority. The queue containing the sample with the
highest publication priority is serviced first. The number of tokens granted equals the
number of tokens required to send the first sample in the queue. Note that a queue’s pri-
ority may change as samples are sent (i.e., as they are removed from the queue). If a sam-
ple must be sent to multiple destinations or two samples have the same publication
priority, the corresponding destination queues are serviced in a round-robin fashion.

This priority inheritance approach is required to both honor the designated publication
priority and adhere to the DataWriter’s in-order data delivery guarantee.

See also: Prioritized Samples (Section 6.6.4).

6.6.2 Managing Fast DataWriters When Using a FlowController

If a DataWriter is writing samples faster than its attached FlowController can throttle, Connext
may drop samples on the writer’s side. This happens because the samples may be removed from
the queue before the asynchronous publisher’s thread has a chance to send them. To work
around this problem, either:

❏ Use reliable communication to block the write() call and thereby throttle your applica-
tion.

❏ Do not allow the queue to fill up in the first place.

The queue should be sized large enough to handle expected write bursts, so that no sam-
ples are dropped. Then in steady state, the FlowController will smooth out these bursts
and the queue will ideally have only one entry.

6.6.3 Token Bucket Properties

FlowControllers use a token-bucket approach for open-loop network flow control. The flow con-
trol characteristics are determined by the token bucket properties. The properties are listed in
Table 6.71; see the API Reference HTML documentation for their defaults and valid ranges.

Asynchronously published samples are queued up and transmitted based on the token bucket
flow control scheme. The token bucket contains tokens, each of which represents a number of
bytes. Samples can be sent only when there are sufficient tokens in the bucket. As samples are
sent, tokens are consumed. The number of tokens consumed is proportional to the size of the
data being sent. Tokens are replenished on a periodic basis.
6-140

FlowControllers (DDS Extension)
The rate at which tokens become available and other token bucket properties determine the net-
work traffic flow.

Note that if the same sample must be sent to multiple destinations, separate tokens are required
for each destination. Only when multiple samples are destined to the same destination will they
be coalesced and sent using the same token(s). In other words, each token can only contribute to
a single network packet.

6.6.3.1 max_tokens

The maximum number of tokens in the bucket will never exceed this value. Any excess tokens
are discarded. This property value, combined with bytes_per_token, determines the maximum
allowable data burst.

Use DDS_LENGTH_UNLIMITED to allow accumulation of an unlimited amount of tokens (and
therefore potentially an unlimited burst size).

6.6.3.2 tokens_added_per_period

A FlowController transmits data only when tokens are available. Tokens are periodically replen-
ished. This field determines the number of tokens added to the token bucket with each periodic
replenishment.

Available tokens are distributed to associated DataWriters based on the scheduling_policy. Use
DDS_LENGTH_UNLIMITED to add the maximum number of tokens allowed by max_tokens.

6.6.3.3 tokens_leaked_per_period

When tokens are replenished and there are sufficient tokens to send all samples in the queue,
this property determines whether any or all of the leftover tokens remain in the bucket.

Use DDS_LENGTH_UNLIMITED to remove all excess tokens from the token bucket once all
samples have been sent. In other words, no token accumulation is allowed. When new samples
are written after tokens were purged, the earliest point in time at which they can be sent is at the
next periodic replenishment.

6.6.3.4 period

This field determines the period by which tokens are added or removed from the token bucket.

The special value DDS_DURATION_INFINITE can be used to create an on-demand FlowCon-
troller, for which tokens are no longer replenished periodically. Instead, tokens must be added
explicitly by calling the FlowController’s trigger_flow() operation. This external trigger adds
tokens_added_per_period tokens each time it is called (subject to the other property settings).

Table 6.71 DDS_FlowControllerTokenBucketProperty_t

Type Field Name Description

DDS_Long max_tokens
Maximum number of tokens than can accumulate in the
token bucket. See Section 6.6.3.1.

DDS_Long tokens_added_per_period
The number of tokens added to the token bucket per
specified period. See Section 6.6.3.2.

DDS_Long tokens_leaked_per_period
The number of tokens removed from the token bucket per
specified period. See Section 6.6.3.3.

DDS_Duration_t period
Period for adding tokens to and removing tokens from
the bucket. See Section 6.6.3.4.

DDS_Long bytes_per_token
Maximum number of bytes allowed to send for each
token available. See Section 6.6.3.5.
6-141

FlowControllers (DDS Extension)
Note: Once period is set to DDS_DURATION_INFINITE, it can no longer be reverted to a finite
period.

6.6.3.5 bytes_per_token

This field determines the number of bytes that can actually be transmitted based on the number
of tokens.

Tokens are always consumed in whole by each DataWriter. That is, in cases where
bytes_per_token is greater than the sample size, multiple samples may be sent to the same des-
tination using a single token (regardless of the scheduling_policy).

Where fragmentation is required, the fragment size will be either (a) bytes_per_token or (b) the
minimum of the largest message sizes across all transports installed with the DataWriter, which-
ever is less.

Use DDS_LENGTH_UNLIMITED to indicate that an unlimited number of bytes can be trans-
mitted per token. In other words, a single token allows the recipient DataWriter to transmit all its
queued samples to a single destination. A separate token is required to send to each additional
destination.

6.6.4 Prioritized Samples

Note: This feature is not supported when using the Ada API.

The Prioritized Samples feature allows you to prioritize traffic that is in competition for transmis-
sion resources. The granularity of this prioritization may be by DataWriter, by instance, or by
individual sample.

Prioritized Samples can improve latency in the following cases:

❏ Low-Availability Links

With low-availability communication, unsent samples may accumulate while the link is
unavailable. When the link is restored, a large number of samples may be waiting for
transmission. High priority samples will be sent first.

❏ Low-Bandwidth Links

With low-bandwidth communication, a temporary backlog may occur or the link may
become congested with large samples. High-priority samples will be sent at the first
available gap, between the fragments of a large low-priority sample.

❏ Prioritized Topics

With limited bandwidth communication, some topics may be deemed to be of higher pri-
ority than others on an ongoing basis, and samples written to some topics should be
given precedence over others on transmission.

❏ High Priority Events

Due to external rules or content analysis (e.g., perimeter violation or identification as a
threat), the priority of samples is dynamically determined, and the priority assigned a
given sample will reflect the urgency of its delivery.

To configure a DataWriter to use prioritized samples:

❏ Create a FlowController with the scheduling_policy property set to
DDS_HPF_FLOW_CONTROLLER_SCHED_POLICY.
6-142

FlowControllers (DDS Extension)
❏ Create a DataWriter with the PUBLISH_MODE QosPolicy (DDS Extension) (Section
6.5.18) kind set to ASYNCHRONOUS and flow_controller_name set to the name of the
FlowController.

A single FlowController may perform traffic shaping for multiple DataWriters and multiple
DataWriter channels. The FlowController’s configuration determines how often publication
resources are scheduled, how much data may be sent per period, and other transmission charac-
teristics that determine the ultimate performance of prioritized samples.

When working with prioritized samples, you should use these operations, which allow you to
specify priority:

❏ write_w_params() (see Writing Data (Section 6.3.8))

❏ unregister_instance_w_params() (see Registering and Unregistering Instances (Section
6.3.14.1))

❏ dispose_w_params() (see Disposing of Data (Section 6.3.14.2))

If you use write(), unregister(), or dispose() instead of the _w_params() versions, the affected
sample is assigned priority 0 (undefined priority). If you are using a multi-channel DataWriter
with a priority filter, and you have no channel for priority 0, the sample will be discarded.

6.6.4.1 Designating Priorities

For DataWriters and DataWriter channels, valid publication priority values are:

❏ DDS_PUBLICATION_PRIORITY_UNDEFINED

❏ DDS_PUBLICATION_PRIORITY_AUTOMATIC

❏ Positive integers excluding zero

For individual samples, valid publication priority values are 0 and positive integers.

There are three ways to set the publication priority of a DataWriter or DataWriter channel:

1. For a DataWriter, publication priority is set in the priority field of its PUBLISH_MODE
QosPolicy (DDS Extension) (Section 6.5.18). For a multi-channel DataWriter (see
MULTI_CHANNEL QosPolicy (DDS Extension) (Section 6.5.14)), this value will be the
default publication priority for any member channel that has not been assigned a specific
value.

2. For a channel of a Multi-channel DataWriter, publication priority can be set in the DataW-
riter’s MULTI_CHANNEL QosPolicy (DDS Extension) (Section 6.5.14) in channels[].pri-
ority.

3. If a DataWriter or a channel of a Multi-channel DataWriter is configured for publication
priority inheritance (DDS_PUBLICATION_PRIORITY_AUTOMATIC), its publication
priority is the highest priority among all the samples currently in the publication queue.
When using publication priority inheritance, the publication priorities of individual sam-
ples are set by calling the write_w_params() operation, which takes a priority parameter.

The effective publication priority is determined from the interaction of the DataWriter, channel,
and sample publication priorities, as shown in Table 6.72.

6.6.4.2 Priority-Based Filtering

The configuration methods explained above are sufficient to create multiple DataWriters, each
with its own assigned priority, all using the same FlowController configured for publication prior-
ity-based scheduling. Such a configuration is sufficient to assign different priorities to individual
topics, but it does not allow different publication priorities to be assigned to published data within
a Topic.
6-143

FlowControllers (DDS Extension)
To assign different priorities to data within a DataWriter, you will need to use a Multi-channel
DataWriter and configure the channels with different priorities. Configuring the publication pri-
orities of DataWriter channels is explained above. To associate different priorities of data with
different publication channels, configure the channel[].filter_expression in the DataWriter’s
MULTI_CHANNEL QosPolicy (DDS Extension) (Section 6.5.14). The filtering criteria that is
available for evaluation by each channel is determined by the filter type, which is configured
with the DataWriter’s filter_name (also in the MULTI_CHANNEL QosPolicy (DDS Extension)
(Section 6.5.14)).

For example, using the built-in SQL-based content filter allows channel membership to be deter-
mined based on the content of each sample.

If you do not want to embed priority criteria within each sample, you can use a built-in filter
named DDS_PRIFILTER_NAME that uses the publication priority that is provided when you
call write_w_params() (see Writing Data (Section 6.3.8)). The filter’s expression syntax is:

@priority OP VAL

where OP can be < , <= , > , >= , = , or <> (standard relational operators), and VAL is a positive
integer.

The filter supports multiple expressions, combined with the conjunctions AND and OR. You can
use parentheses to disambiguate combinations of AND and OR in the same expression. For
example:

@priority = 2 OR (@priority > 6 AND @priority < 10)

6.6.5 Creating and Configuring Custom FlowControllers with Property QoS

You can create and configure FlowControllers using the PROPERTY QosPolicy (DDS Extension)
(Section 6.5.17). The properties must have a prefix of “dds.flow_controller.token_bucket”, fol-
lowed by the name of the FlowController being created or configured. For example, if you want
to create/configure a FlowController named MyFC, all the properties for MyFC should have the
prefix “dds.flow_controller.token_bucket.MyFC“.

Table 6.73 lists the properties that can be set for FlowControllers in the DomainParticipant's
PROPERTY QosPolicy (DDS Extension) (Section 6.5.17). A FlowController with the name
"dds.flow_controller.token_bucket.<your flow controllername>" will be implicitly created when at
least one property using that prefix is specified. Then, to link a DataWriter to your FlowCon-
troller, use "dds.flow_controller.token_bucket.<your flow controllername>" in the DataWriter's
publish_mode.flow_controller_name.

Table 6.72 Effective Publication Priority

Priority Setting Combinations

Writer Priority Undefined Don’t care AUTOMATIC Don’t care
Designated
positive
integer > 0

Channel Priority Undefined AUTOMATIC Undefined
Designated
positive inte-
ger > 0

Undefined

Sample Priority Don’t care
Designated
positive
integer > 0

Designated
positive
integer > 0

Don’t care Don’t care

Effective Priority
Lowest
Priority

Sample
Prioritya

Sample
Prioritya

Channel
Priority

Writer
Priority

a. Highest sample priority among all samples currently in the publication queue.
6-144

FlowControllers (DDS Extension)
6.6.5.1 Example

The following example shows how to set FlowController properties.

Note: Some lines in this example, such as dds.flow_controller.token_bucket.MyFlowCon-
troller.scheduling_policy, are too long to fit on the page as one line; however in your XML file,
they each need to be on a single line.

<participant_qos>
<property>

 <value>
 <element>

<name>
dds.flow_controller.token_bucket.MyFlowController.
scheduling_policy

</name>
<value>DDS_RR_FLOW_CONTROLLER_SCHED_POLICY</value>

</element>
<element>

<name>
dds.flow_controller.token_bucket.MyFlowController.
token_bucket.period.sec

</name>
<value>100</value>

</element>
<element>

<name>
dds.flow_controller.token_bucket.MyFlowController.
token_bucket.period.nanosec

Table 6.73 FlowController Properties

Property Name
prefix with

‘dds.flow_controller.token_bucket.
<your flow controller name>

Property Value Description

scheduling_policy

Specifies the scheduling policy to be used. (See Flow Control-
ler Scheduling Policies (Section 6.6.1)) May be:
DDS_RR_FLOW_CONTROLLER_SCHED_POLICY
DDS_EDF_FLOW_CONTROLLER_SCHED_POLICY
DDS_HPF_FLOW_CONTROLLER_SCHED_POLICY

token_bucket.max_tokens
Maximum number of tokens than can accumulate in the token
bucket.
Use -1 for unlimited.

token_bucket.tokens_added_per_period
Number of tokens added to the token bucket per specified
period.
Use -1 for unlimited.

token_bucket.tokens_leaked_per_period
Number of tokens removed from the token bucket per speci-
fied period.
Use -1 for unlimited.

token_bucket.period.sec
Period for adding tokens to and removing tokens from the
bucket in seconds.

token_bucket.period.nanosec
Period for adding tokens to and removing tokens from the
bucket in nanoseconds.

token_bucket.bytes_per_token
Maximum number of bytes allowed to send for each token
available.
6-145

FlowControllers (DDS Extension)
</name>
<value>0</value>

</element>
<element>

<name>
dds.flow_controller.token_bucket.MyFlowController.
token_bucket.tokens_added_per_period

</name>
<value>2</value>

</element>
<element>

<name>
dds.flow_controller.token_bucket.MyFlowController.
token_bucket.tokens_leaked_per_period

</name>
<value>2</value>

</element>
<element>

<name>
dds.flow_controller.token_bucket.MyFlowController.
token_bucket.bytes_per_token

</name>
<value>1024</value>

</element>
</value>

</property>
</participant_qos>

<datawriter_qos>
<publish_mode>

<flow_controller_name>
dds.flow_controller.token_bucket.MyFlowController

</flow_controller_name>
<kind>ASYNCHRONOUS_PUBLISH_MODE_QOS</kind>

</publish_mode>
</datawriter_qos>

6.6.6 Creating and Deleting FlowControllers

If you do not want to use one of the three built-in FlowControllers described in FlowControllers
(DDS Extension) (Section 6.6), you can create your own with the DomainParticipant’s
create_flowcontroller() operation:

DDSFlowController* create_flowcontroller
(const char * name,
const DDS_FlowControllerProperty_t & property)

To associate a FlowController with a DataWriter, you set the FlowController’s name in the
PUBLISH_MODE QosPolicy (DDS Extension) (Section 6.5.18) (flow_controller_name).

A single FlowController may service multiple DataWriters, even if they belong to a different Pub-
lisher. The FlowController’s property structure determines how the FlowController shapes the
network traffic.

name name of the FlowController to create. A DataWriter is associated with a DDSFlowCon-
troller by name. Limited to 255 characters.
6-146

FlowControllers (DDS Extension)
property Properties to be used for creating the FlowController. The special value
DDS_FLOW_CONTROLLER_PROPERTY_DEFAULT can be used to indicate that the
FlowController should be created with the default DDS_FlowControllerProperty_t set in
the DomainParticipant.

Note: If you use DDS_FLOW_CONTROLLER_PROPERTY_DEFAULT, it is not safe to cre-
ate the flow controller while another thread may be simultaneously calling
set_default_flowcontroller_property() or looking for that flow controller with
lookup_flowcontroller().

To delete an existing FlowController, use the DomainParticipant’s delete_flowcontroller() opera-
tion:

DDS_ReturnCode_t delete_flowcontroller (DDSFlowController * fc)

The FlowController must belong this the DomainParticipant and not have any attached DataWrit-
ers or the delete call will return an error (PRECONDITION_NOT_MET).

6.6.7 Getting/Setting Default FlowController Properties

To get the default DDS_FlowControllerProperty_t values, use this operation on the DomainPar-
ticipant:

DDS_ReturnCode_t get_default_flowcontroller_property
(DDS_FlowControllerProperty_t & property)

The retrieved property will match the set of values specified on the last successful call to the
DomainParticipant’s set_default_flowcontroller_property(), or if the call was never made, the
default values listed in DDS_FlowControllerProperty_t.

To change the default DDS_FlowControllerProperty_t values used when a new FlowController
is created, use this operation on the DomainParticipant:

DDS_ReturnCode_t set_default_flowcontroller_property
(const DDS_FlowControllerProperty_t & property)

The special value DDS_FLOW_CONTROLLER_PROPERTY_DEFAULT may be passed for the
property to indicate that the default property should be reset to the default values the factory
would use if set_default_flowcontroller_property() had never been called.

Note: It is not safe to set the default FlowController properties while another thread may be
simultaneously calling get_default_flowcontroller_property(),
set_default_flowcontroller_property(), or create_flowcontroller() with
DDS_FLOW_CONTROLLER_PROPERTY_DEFAULT as the qos parameter. It is also not safe to
get the default FlowController properties while another thread may be simultaneously calling
get_default_flowcontroller_property().

6.6.8 Getting/Setting Properties for a Specific FlowController

To get the properties of a FlowController, use the FlowController’s get_property() operation:

DDS_ReturnCode_t DDSFlowController::get_property
(struct DDS_FlowControllerProperty_t & property)

To change the properties of a FlowController, use the FlowController’s set_property() operation:

DDS_ReturnCode_t DDSFlowController::set_property
 (const struct DDS_FlowControllerProperty_t & property)

Once a FlowController has been instantiated, only its token_bucket property can be changed.
The scheduling_policy is immutable. A new token.period only takes effect at the next sched-
uled token distribution time (as determined by its previous value).
6-147

FlowControllers (DDS Extension)
The special value DDS_FLOW_CONTROLLER_PROPERTY_DEFAULT can be used to match
the current default properties set in the DomainParticipant.

6.6.9 Adding an External Trigger

Typically, a FlowController uses an internal trigger to periodically replenish its tokens. The
period by which this trigger is called is determined by the period property setting.

The trigger_flow() function provides an additional, external trigger to the FlowController. This
trigger adds tokens_added_per_period tokens each time it is called (subject to the other prop-
erty settings of the FlowController).

DDS_ReturnCode_t trigger_flow ()

An on-demand FlowController can be created with a DDS_DURATION_INFINITE as period, in
which case the only trigger source is external (i.e. the FlowController is solely triggered by the
user on demand).

trigger_flow() can be called on both a strict on-demand FlowController and a hybrid FlowCon-
troller (internally and externally triggered).

6.6.10 Other FlowController Operations

If you have the FlowController object and need its name, call the FlowController’s get_name()
operation:

const char* DDSFlowController::get_name()

Conversely, if you have the name of the FlowController and need the FlowController object, call
the DomainPartipant’s lookup_flowcontroller() operation:

DDSFlowController* lookup_flowcontroller (const char * name)

To get a FlowController’s DomainParticipant, call the FlowController’s get_participant() opera-
tion:

DDSDomainParticipant* get_participant ()

Note: It is not safe to lookup a FlowController description while another thread is creating that
FlowController
6-148

Chapter 7 Receiving Data

This chapter discusses how to create, configure, and use Subscribers and DataReaders to receive
data. It describes how these objects interact, as well as the types of operations that are available
for them.

This chapter includes the following sections:

❏ Preview: Steps to Receiving Data (Section 7.1)

❏ Subscribers (Section 7.2)

❏ DataReaders (Section 7.3)

❏ Using DataReaders to Access Data (Read & Take) (Section 7.4)

❏ Subscriber QosPolicies (Section 7.5)

❏ DataReader QosPolicies (Section 7.6)

The goal of this chapter is to help you become familiar with the Entities you need for receiving
data. For up-to-date details such as formal parameters and return codes on any mentioned oper-
ations, please see the Connext API Reference HTML documentation.

7.1 Preview: Steps to Receiving Data
There are three ways to receive data:

❏ Your application can explicitly check for new data by calling a DataReader’s read() or
take() operation. This method is also known as polling for data.

❏ Your application can be notified asynchronously whenever new data samples arrive—
this is done with a Listener on either the Subscriber or the DataReader. Connext will invoke
the Listener’s callback routine when there is new data. Within the callback routine, user
code can access the data by calling read() or take() on the DataReader. This method is the
way for your application to receive data with the least amount of latency.

❏ Your application can wait for new data by using Conditions and a WaitSet, then calling
wait(). Connext will block your application’s thread until the criteria (such as the arrival
of samples, or a specific status) set in the Condition becomes true. Then your application
resumes and can access the data with read() or take().

The DataReader’s read() operation gives your application a copy of the data and leaves the data
in the DataReader’s receive queue. The DataReader’s take() operation removes data from the
receive queue before giving it to your application.
7-1

Preview: Steps to Receiving Data
See Section 7.4 for details on using DataReaders to access received data.

See Section 4.6 for details on using Conditions and WaitSets.

To prepare to receive data, create and configure the required Entities:

1. Create a DomainParticipant.

2. Register user data types1 with the DomainParticipant. For example, the ‘FooDataType’.

3. Use the DomainParticipant to create a Topic with the registered data type.

4. Optionally2, use the DomainParticipant to create a Subscriber.

5. Use the Subscriber or DomainParticipant to create a DataReader for the Topic.

6. Use a type-safe method to cast the generic DataReader created by the Subscriber to a type-
specific DataReader. For example, ‘FooDataReader’.

Now use one of the following mechanisms to receive data.

To receive data samples by polling for new data:

❏ Using a FooDataReader, use the read() or take() operations to access the data samples
that have been received and stored for the DataReader. These operations can be invoked
at any time, even if the receive queue is empty.

To receive data samples asynchronously:

❏ Install a Listener on the DataReader or Subscriber that will be called back by an internal
Connext thread when new data samples arrive for the DataReader.

1. Create a DDSDataReaderListener for the FooDataReader or a DDSSubscriberListener for
Subscriber. In C++, C++/CLI, C# and Java, you must derive your own Listener class
from those base classes. In C, you must create the individual functions and store them
in a structure.

If you created a DDSDataReaderListener with the on_data_available() callback
enabled: on_data_available() will be called when new data arrives for that
DataReader.

If you created a DDSSubscriberListener with the on_data_on_readers() callback
enabled: on_data_on_readers() will be called when data arrives for any DataReader
created by the Subscriber.

2. Install the Listener on either the FooDataReader or Subscriber.

For the DataReader, the Listener should be installed to handle changes in the
DATA_AVAILABLE status.

For the Subscriber, the Listener should be installed to handle changes in the
DATA_ON_READERS status.

3. Only 1 Listener will be called back when new data arrives for a DataReader.

Connext will call the Subscriber’s Listener if it is installed. Otherwise, the DataReader’s
Listener is called if it is installed. That is, the on_data_on_readers() operation takes
precedence over the on_data_available() operation.

1. Type registration is not required for built-in types (see Section 3.2.1).
2. You are not required to explicitly create a Subscriber; instead, you can use the 'implicit Subscriber' created from the

DomainParticipant. See Creating Subscribers Explicitly vs. Implicitly (Section 7.2.1).
7-2

Subscribers
If neither Listeners are installed or neither Listeners are enabled to handle their respec-
tive statuses, then Connext will not call any user functions when new data arrives for
the DataReader.

4. In the on_data_available() method of the DDSDataReaderListener, invoke read() or
take() on the FooDataReader to access the data.

If the on_data_on_readers() method of the DDSSubscriberListener is called, the code
can invoke read() or take() directly on the Subscriber’s DataReaders that have received
new data. Alternatively, the code can invoke the Subscriber’s notify_datareaders()
operation. This will in turn call the on_data_available() methods of the DataReaderLis-
teners (if installed and enabled) for each of the DataReaders that have received new
data samples.

To wait (block) until data samples arrive:

1. Use the DataReader to create a ReadCondition that describes the samples for which you
want to wait. For example, you can specify that you want to wait for never-before-seen
samples from DataReaders that are still considered to be ‘alive.’

Alternatively, you can create a StatusCondition that specifies you want to wait for the
ON_DATA_AVAILABLE status.

2. Create a WaitSet.

3. Attach the ReadCondition or StatusCondition to the WaitSet.

4. Call the WaitSet’s wait() operation, specifying how long you are willing to wait for the
desired samples. When wait() returns, it will indicate that it timed out, or that the
attached Condition become true (and therefore the desired samples are available).

5. Using a FooDataReader, use the read() or take() operations to access the data samples
that have been received and stored for the DataReader.

7.2 Subscribers
An application that intends to subscribe to information needs the following Entities: DomainPar-
ticipant, Topic, Subscriber, and DataReader. All Entities have a corresponding specialized Listener
and a set of QosPolicies. The Listener is how Connext notifies your application of status changes
relevant to the Entity. The QosPolicies allow your application to configure the behavior and
resources of the Entity.

❏ The DomainParticipant defines the domain on which the information will be available.

❏ The Topic defines the name of the data to be subscribed, as well as the type (format) of the
data itself.

❏ The DataReader is the Entity used by the application to subscribe to updated values of the
data. The DataReader is bound at creation time to a Topic, thus specifying the named and
typed data stream to which it is subscribed. The application uses the DataWriter’s read()
or take() operation to access data samples received for the Topic.

❏ The Subscriber manages the activities of several DataReader entities. The application
receives data using a DataReader that belongs to a Subscriber. However, the Subscriber will
determine when the data received from applications is actually available for access
through the DataReader. Depending on the settings of various QosPolicies of the Sub-
7-3

Subscribers
scriber and DataReader, data may be buffered until data samples for associated DataRead-
ers are also received. By default, the data is available to the application as soon as it is
received.

For more information, see Creating Subscribers Explicitly vs. Implicitly (Section 7.2.1).

The UML diagram in Figure 7.1 shows how these Entities are related as well as the methods
defined for each Entity.

Subscribers are used to perform the operations listed in Table 7.1. For details such as formal
parameters and return codes, please see the API Reference HTML documentation. Otherwise,
you can find more information about the operations by looking in the section listed under the
Reference column.

Figure 7.1 Subscription Module
7-4

Subscribers
Note: Some operations cannot be used within a listener callback, see Restricted Operations in
Listener Callbacks (Section 4.5.1).

Table 7.1 Subscriber Operations

Working
with ... Operation Description Reference

DataReaders

begin_access
Indicates that the application is about to access the
data samples in the DataReaders of the Subscriber.

Section 7.2.5

create_datareader Creates a DataReader.
Section 7.3.1create_datareader_

with_profile
Creates a DataReader with QoS from a specified QoS
profile.

copy_from_topic_qos
Copies relevant QosPolicies from a Topic into a
DataReaderQoS structure.

Section 7.2.4.6

delete_contained_
entities

Deletes all the DataReaders that were created by the
Subscriber. Also deletes the corresponding ReadCondi-
tions created by the contained DataReaders.

Section 7.2.3.1

delete_datareader Deletes a specific DataReader. Section 7.3.3

end_access
Indicates that the application is done accessing the
data samples in the DataReaders of the Subscriber.

Section 7.2.5

get_all_datareaders
Retrieves all the DataReaders created from this Sub-
scriber.

Section 7.3.2

get_datareaders
Returns a list of DataReaders that contain samples
with the specified sample_states, view_states and
instance_states.

Section 7.2.7

get_default_datareader
_qos

Copies the Subscriber’s default DataReaderQos val-
ues into a DataReaderQos structure.

Section 7.2.4

get_status_changes Gets all status changes. Section 4.1.4

lookup_datareader
Retrieves a DataReader previously created for a spe-
cific Topic.

Section 7.2.8

notify_datareaders
Invokes the on_data_available() operation for
attached Listeners of DataReaders that have new data
samples.

Section 7.2.6

set_default_datareader_
qos

Sets or changes the Subscriber’s default DataReader-
QoS values.

Section 7.2.4

Libraries
and Profiles

get_default_library Gets the Subscriber’s default QoS profile library.

Section 7.2.4.4

get_default_profile Gets the Subscriber’s default QoS profile.

get_default_profile_
library

Gets the library that contains the Subscriber’s default
QoS profile.

set_default_library Sets the default library for a Subscriber.

set_default_profile Sets the default profile for a Subscriber.

Participants get_participant Gets the Subscriber’s DomainParticipant. Section 7.2.8
7-5

Subscribers
7.2.1 Creating Subscribers Explicitly vs. Implicitly

To receive data, your application must have a Subscriber. However, you are not required to
explicitly create a Subscriber. If you do not create one, the middleware will implicitly create a
Subscriber the first time you create a DataReader using the DomainParticipant’s operations. It will
be created with default QoS (DDS_SUBCRIBER_QOS_DEFAULT) and no Listener. The 'implicit
Subscriber' can be accessed using the DomainParticipant’s get_implicit_subscriber() operation
(see Section 8.3.9).You can use this ‘implicit Subscriber’ just like any other Subscriber (it has the
same operations, QosPolicies, etc.). So you can change the mutable QoS and set a Listener if
desired.

A Subscriber (implicit or explicit) gets its own default QoS and the default QoS for its child
DataReaders from the DomainParticipant. These default QoS are set when the Subscriber is created.
(This is true for Publishers and DataWriters, too.)

DataReaders are created by calling create_datareader() or create_datareader_with_profile()—
these operations exist for DomainParticipants and Subscribers. If you use the DomainParticipant to
create a DataReader, it will belong to the implicit Subscriber. If you use a Subscriber to create a
DataReader, it will belong to that Subscriber.

The middleware will use the same implicit Subscriber for all DataReaders that are created using
the DomainParticipant’s operations.

Having the middleware implicitly create a Subscriber allows you to skip the step of creating a
Subscriber. However, having all your DataReaders belong to the same Subscriber can reduce the
concurrency of the system because all the read operations will be serialized.

7.2.2 Creating Subscribers

Before you can explicitly create a Subscriber, you need a DomainParticipant (Section 8.3). To create
a Subscriber, use the DomainParticipant’s create_subscriber() or
create_subscriber_with_profile() operation:

DDSSubscriber* create_subscriber(const DDS_SubscriberQos &qos,
 DDSSubscriberListener *listener,
 DDS_StatusMask mask)

DDSSubscriber* create_subscriber_with_profile (

Subscribers

enable Enables the Subscriber. Section 4.1.2

equals
Compares two Subscriber’s QoS structures for equal-
ity.

Section 7.2.4.2

get_listener Gets the currently installed Listener. Section 7.2.6

get_qos
Gets the Subscriber’s current QosPolicy settings. This
is most often used in preparation for calling set_qos.

Section 7.2.4.3

set_listener
Sets the Subscriber’s Listener. If you created the Sub-
scriber without a Listener, you can use this operation
to add one later.

Section 7.2.6

set_qos

Sets the Subscriber’s QoS. You can use this operation
to change the values for the Subscriber’s QosPolicies.
Note, however, that not all QosPolicies can be
changed after the Subscriber has been created.

Section 7.2.4.3

set_qos_with_profile Sets the Subscriber’s QoS based on a QoS profile. Section 7.2.4.3

Table 7.1 Subscriber Operations

Working
with ... Operation Description Reference
7-6

Subscribers
const char * library_name,
const char * profile_name,
DDSSubscriberListener * listener,
DDS_StatusMask mask)

A QoS profile is way to use QoS settings from an XML file or string. With this approach, you can
change QoS settings without recompiling the application. For details, see Chapter 17: Configuring
QoS with XML.

qos If you want the default QoS settings (described in the API Reference HTML documenta-
tion), use DDS_SUBSCRIBER_QOS_DEFAULT for this parameter (see Figure 7.2). If you
want to customize any of the QosPolicies, supply a QoS structure (see Figure 7.3). The
QoS structure for a Subscriber is described in Section 7.5.

Note: If you use DDS_SUBSCRIBER_QOS_DEFAULT, it is not safe to create the Sub-
scriber while another thread may be simultaneously calling
set_default_subscriber_qos().

listener Listeners are callback routines. Connext uses them to notify your application when spe-
cific events (new data samples arrive and status changes) occur with respect to the Sub-
scriber or the DataReaders created by the Subscriber. The listener parameter may be set to
NULL if you do not want to install a Listener. If you use NULL, the Listener of the Domain-
Participant to which the Subscriber belongs will be used instead (if it is set). For more infor-
mation on SubscriberListeners, see Section 7.2.6.

mask This bit-mask indicates which status changes will cause the Subscriber’s Listener to be
invoked. The bits set in the mask must have corresponding callbacks implemented in the
Listener. If you use NULL for the Listener, use DDS_STATUS_MASK_NONE for this
parameter. If the Listener implements all callbacks, use DDS_STATUS_MASK_ALL. For
information on Status, see Listeners (Section 4.4).

library_name A QoS Library is a named set of QoS profiles. See QoS Libraries (Section 17.10).

profile_name A QoS profile groups a set of related QoS, usually one per entity. See QoS Profiles
(Section 17.9).

For more examples, see Configuring QoS Settings when the Subscriber is Created (Section
7.2.4.1).

After you create a Subscriber, the next step is to use the Subscriber to create a DataReader for each
Topic, see Section 7.3.1. For a list of operations you can perform with a Subscriber, see Table 7.1.

7.2.3 Deleting Subscribers

This section applies to both implicitly and explicitly created Subscribers.

To delete a Subscriber:

Figure 7.2 Creating a Subscriber with Default QosPolicies

// create the subscriber
DDSSubscriber* subscriber =

participant->create_subscriber(DDS_SUBSCRIBER_QOS_DEFAULT,
 NULL, DDS_STATUS_MASK_NONE);

if (subscriber == NULL) {
 // handle error
}

7-7

Subscribers
1. You must first delete all DataReaders that were created with the Subscriber. Use the Sub-
scriber’s delete_datareader() operation (Section 7.3.1) to delete them one at a time, or use
the delete_contained_entities() operation (Section 7.2.3.1) to delete them all at the same
time.

 DDS_ReturnCode_t delete_datareader (DDSDataReader *a_datareader)

2. Delete the Subscriber by using the DomainParticipant’s delete_subscriber() operation ().

Note: A Subscriber cannot be deleted within a listener callback, see Restricted Operations in Lis-
tener Callbacks (Section 4.5.1).

7.2.3.1 Deleting Contained DataReaders

The Subscriber’s delete_contained_entities() operation deletes all the DataReaders that were cre-
ated by the Subscriber. It also deletes the ReadConditions created by each contained DataReader.

DDS_ReturnCode_t DDSSubscriber::delete_contained_entities ()

After this operation returns successfully, the application may delete the Subscriber (see
Section 7.2.3).

The operation will return PRECONDITION_NOT_MET if any of the contained entities cannot
be deleted. This will occur, for example, if a contained DataReader cannot be deleted because the
application has called read() but has not called the corresponding return_loan() operation to
return the loaned samples.

7.2.4 Setting Subscriber QosPolicies

A Subscriber’s QosPolicies control its behavior. Think of the policies as the configuration and
behavior ‘properties’ for the Subscriber. The DDS_SubscriberQos structure has the following
format:

struct DDS_SubscriberQos {
DDS_PresentationQosPolicy presentation;
DDS_PartitionQosPolicy partition;
DDS_GroupDataQosPolicy group_data;
DDS_EntityFactoryQosPolicy entity_factory;
DDS_ExclusiveAreaQosPolicy exclusive_area;
DDS_EntityNameQosPolicy subscriber_name;

};

Note: set_qos() cannot always be used by a Listener, see Restricted Operations in Listener Call-
backs (Section 4.5.1).

Table 7.2 summarizes the meaning of each policy. Subscribers have the same set of QosPolicies as
Publishers; they are described in detail in Publisher/Subscriber QosPolicies (Section 6.4). For
information on why you would want to change a particular QosPolicy, see the referenced sec-
tion. For defaults and valid ranges, please refer to the API Reference HTML documentation for
each policy.

Table 7.2 Subscriber QosPolicies

QosPolicy Description

ENTITYFACTORY QosPolicy
 (Section 6.4.2)

Whether or not new entities created from this entity
will start out as ‘enabled.’

ENTITY_NAME QosPolicy (DDS Extension)
(Section 6.5.9)

Assigns a name and role_name to a Subscriber.
7-8

Subscribers
7.2.4.1 Configuring QoS Settings when the Subscriber is Created

As described in Creating Subscribers (Section 7.2.2), there are different ways to create a Sub-
scriber, depending on how you want to specify its QoS (with or without a QoS Profile).

❏ In Figure 7.2 on page 7-7 we saw an example of how to explicitly create a Subscriber with
default QosPolicies. It used the special constant, DDS_SUBSCRIBER_QOS_DEFAULT,
which indicates that the default QoS values for a Subscriber should be used. The default
Subscriber QosPolicies are configured in the DomainParticipant; you can change them
with the DomainParticipant’s set_default_subscriber_qos() or
set_default_subscriber_qos_with_profile() operation (see Section 8.3.6.5).

❏ To create a Subscriber with non-default QoS settings, without using a QoS profile, see
Figure 7.3 on page 7-10. It uses the DomainParticipant’s get_default_subscriber_qos()
method to initialize a DDS_SubscriberQos structure. Then the policies are modified
from their default values before the QoS structure is passed to create_subscriber().

❏ You can also create a Subscriber and specify its QoS settings via a QoS Profile. To do so,
call create_subscriber_with_profile(), as seen in Figure 7.4 on page 7-9.

❏ If you want to use a QoS profile, but then make some changes to the QoS before creating
the Subscriber, call get_subscriber_qos_from_profile(), modify the QoS and use the mod-
ified QoS structure when calling create_subscriber(), as seen in Figure 7.5 on page 7-10.

For more information, see Creating Subscribers (Section 7.2.2) and Chapter 17: Configuring QoS
with XML.

7.2.4.2 Comparing QoS Values

The equals() operation compares two Subscriber’s DDS_SubscriberQoS structures for equality. It
takes two parameters for the two Subscriber’s QoS structures to be compared, then returns TRUE
is they are equal (all values are the same) or FALSE if they are not equal.

EXCLUSIVE_AREA QosPolicy (DDS Extension)
 (Section 6.4.3)

Whether or not the entity uses a multi-thread safe
region with deadlock protection.

GROUP_DATA QosPolicy
 (Section 6.4.4)

A place to pass group-level information among applica-
tions. Usage is application-dependent.

PARTITION QosPolicy
 (Section 6.4.5)

Set of strings that introduces a logical partition among
Topics visible by Publisher/Subscriber.

PRESENTATION QosPolicy
 (Section 6.4.6)

The order in which instance changes are presented to
the Subscriber. By default, no order is used.

Table 7.2 Subscriber QosPolicies

QosPolicy Description

// create the subscriber with QoS profile
DDSSubscriber * subscriber =

participant->create_subscriber_with_profile(
“MySubscriberLibary”,
“MySubscriberProfile”,
NULL, DDS_STATUS_MASK_NONE);

if (subscriber == NULL) {
// handle error

}

Figure 7.4 Creating a Subscriber with a QoS Profile
7-9

Subscribers
DDS_SubscriberQos subscriber_qos;1

// get defaults
if (participant->get_default_subscriber_qos(subscriber_qos) !=

DDS_RETCODE_OK){
// handle error

}
// make QoS changes here. for example, this changes the ENTITY_FACTORY QoS
subscriber_qos.entity_factory.autoenable_created_entities=DDS_BOOLEAN_FALSE;

// create the subscriber
DDSSubscriber * subscriber = participant->create_subscriber(subscriber_qos,

 NULL, DDS_STATUS_MASK_NONE);
if (subscriber == NULL) {

// handle error
}

1. For the C API, you need to use DDS_SubscriberQos_INITIALIZER or DDS_SubscriberQos_initialize(). See Spe-
cial QosPolicy Handling Considerations for C (Section 4.2.2)

Figure 7.3 Creating a Subscriber with Non-default QosPolicies (not from a profile)

DDS_SubscriberQos subscriber_qos;1

// Get subscriber QoS from profile
retcode = factory->get_subscriber_qos_from_profile(subscriber_qos,

“SubscriberLibrary”,
“SubscriberProfile”);

if (retcode != DDS_RETCODE_OK) {
// handle error

}
// Makes QoS changes here
// for example, this changes the ENTITY_FACTORY QoS
subscriber_qos.entity_factory.autoenable_created_entities =

DDS_BOOLEAN_TRUE;

// create the subscriber with modified QoS
DDSPublisher* subscriber = participant->create_subscriber(

“Example Foo”,
type_name,
subscriber_qos,
NULL, DDS_STATUS_MASK_NONE);

if (subscriber == NULL) {
// handle error

}

1. For the C API, you need to use DDS_SubscriberQos_INITIALIZER or
DDS_SubscriberQos_initialize(). See Special QosPolicy Handling Considerations for C (Section 4.2.2)

Figure 7.5 Getting QoS Values from a Profile, Changing QoS Values, Creating a Subscriber with
Modified QoS Values
7-10

Subscribers
7.2.4.3 Changing QoS Settings After Subscriber Has Been Created

There are 2 ways to change an existing Subscriber’s QoS after it is has been created—again
depending on whether or not you are using a QoS Profile.

❏ To change an existing Subscriber’s QoS programmatically (that is, without using a QoS
profile), get_qos() and set_qos(). See the example code in Figure 7.6 on page 7-11. It
retrieves the current values by calling the Subscriber’s get_qos() operation. Then it modify
the value and call set_qos() to apply the new value. Note, however, that some QosPoli-
cies cannot be changed after the Subscriber has been enabled—this restriction is noted in
the descriptions of the individual QosPolicies.

❏ You can also change a Subscriber’s (and all other Entities’) QoS by using a QoS Profile and
calling set_qos_with_profile(). For an example, see Figure 7.7 on page 7-11. For more
information, see Chapter 17: Configuring QoS with XML.

7.2.4.4 Getting and Settings the Subscriber’s Default QoS Profile and Library

You can retrieve the default QoS profile used to create Subscribers with the get_default_profile()
operation. You can also get the default library for Subscribers, as well as the library that contains
the Subscriber’s default profile (these are not necessarily the same library); these operations are
called get_default_library() and get_default_library_profile(), respectively. These operations
are for informational purposes only (that is, you do not need to use them as a precursor to set-
ting a library or profile.) For more information, see Chapter 17: Configuring QoS with XML.

virtual const char * get_default_library ()

const char * get_default_profile ()

const char * get_default_profile_library ()

There are also operations for setting the Subscriber’s default library and profile:

DDS_ReturnCode_t set_default_library (const char * library_name)

DDS_SubscriberQos subscriber_qos;1

// Get current QoS. subscriber points to an existing DDSSubscriber.
if (subscriber->get_qos(subscriber_qos) != DDS_RETCODE_OK) {

// handle error
}
// make changes
// New entity_factory autoenable_created_entities will be true
subscriber_qos.entity_factory.autoenable_created_entities =

DDS_BOOLEAN_TRUE;
// Set the new QoS
if (subscriber->set_qos(subscriber_qos) != DDS_RETCODE_OK) {
 // handle error
}

1. For the C API, you need to use DDS_SubscriberQos_INITIALIZER or DDS_SubscriberQos_Initialize().
See Special QosPolicy Handling Considerations for C (Section 4.2.2)

Figure 7.6 Changing the Qos of an Existing Subscriber

retcode = subscriber->set_qos_with_profile(
“SubscriberProfileLibrary”,”SubscriberProfile”);

if (retcode != DDS_RETCODE_OK) {
 // handle error
}

Figure 7.7 Changing the QoS of an Existing Subscriber with a QoS Profile
7-11

Subscribers
DDS_ReturnCode_t set_default_profile (const char * library_name,
 const char * profile_name)

These operations only affect which library/profile will be used as the default the next time a
default Subscriber library/profile is needed during a call to one of this Subscriber’s operations.

When calling a Subscriber operation that requires a profile_name parameter, you can use NULL
to refer to the default profile. (This same information applies to setting a default library.)

If the default library/profile is not set, the Subscriber inherits the default from the DomainPartici-
pant.

set_default_profile() does not set the default QoS for DataReaders created by the Subscriber; for
this functionality, use the Subscriber’s set_default_datareader_qos_with_profile(), see
Section 7.2.4.5 (you may pass in NULL after having called the Subscriber’s
set_default_profile()).

set_default_profile() does not set the default QoS for newly created Subscribers; for this func-
tionality, use the DomainParticipant’s set_default_subscriber_qos_with_profile() operation, see
Section 8.3.6.5.

7.2.4.5 Getting and Setting Default QoS for DataReaders

These operations set the default QoS that will be used for new DataReaders if create_datareader()
is called with DDS_DATAREADER_QOS_DEFAULT as the ‘qos’ parameter:

DDS_ReturnCode_t set_default_datareader_qos (
const DDS_DataReaderQos &qos)

DDS_ReturnCode_t set_default_datareader_qos_with_profile (
const char *library_name,
const char *profile_name)

The above operations may potentially allocate memory, depending on the sequences contained
in some QoS policies.

To get the default QoS that will be used for creating DataReaders if create_datareader() is called
with DDS_DATAREADER_QOS_DEFAULT as the ‘qos’ parameter:

DDS_ReturnCode_t get_default_datareader_qos (DDS_DataReaderQos & qos)

The above operation gets the QoS settings that were specified on the last successful call to
set_default_datareader_qos() or set_default_datareader_qos_with_profile(), or if the call was
never made, the default values listed in DDS_DataReaderQos.

Note: It is not safe to set the default DataReader QoS values while another thread may be simul-
taneously calling get_default_datareader_qos(), set_default_datareader_qos() or
create_datareader() with DDS_DATAREADER_QOS_DEFAULT as the qos parameter. It is also
not safe to get the default DataReader QoS values while another thread may be simultaneously
calling set_default_datareader_qos(),

7.2.4.6 Subscriber QoS-Related Operations

❏ Copying a Topic’s QoS into a DataReader’s QoS This method is provided as a conve-
nience for setting the values in a DataReaderQos structure before using that structure to
create a DataReader. As explained in Section 5.1.3, most of the policies in a TopicQos struc-
ture do not apply directly to the Topic itself, but to the associated DataWriters and
DataReaders of that Topic. The TopicQos serves as a single container where the values of
QosPolicies that must be set compatibly across matching DataWriters and DataReaders
can be stored.
7-12

Subscribers
Thus instead of setting the values of the individual QosPolicies that make up a DataRead-
erQos structure every time you need to create a DataReader for a Topic, you can use the
Subscriber’s copy_from_topic_qos() operation to “import” the Topic’s QosPolicies into a
DataReaderQos structure. This operation copies the relevant policies in the TopicQos to the
corresponding policies in the DataReaderQos.

This copy operation will often be used in combination with the Subscriber’s
get_default_datareader_qos() and the Topic’s get_qos() operations. The Topic’s QoS val-
ues are merged on top of the Subscriber’s default DataReader QosPolicies with the result
used to create a new DataReader, or to set the QoS of an existing one (see Section 7.3.8).

❏ Copying a Subscriber’s QoS In the C API users should use the
DDS_SubscriberQos_copy() operation rather than using structure assignment when
copying between two QoS structures. The copy() operation will perform a deep copy so
that policies that allocate heap memory such as sequences are copied correctly. In C++,
C++/CLI, C# and Java, a copy constructor is provided to take care of sequences automat-
ically.

❏ Clearing QoS-Related Memory Some QosPolicies contain sequences that allocate mem-
ory dynamically as they grow or shrink. The C API’s DDS_SubscriberQos_finalize()
operation frees the memory used by sequences but otherwise leaves the QoS unchanged.
C users should call finalize() on all DDS_SubscriberQos objects before they are freed, or
for QoS structures allocated on the stack, before they go out of scope. In C++, C++/CLI,
C# and Java, the memory used by sequences is freed in the destructor.

7.2.5 Beginning and Ending Group-Ordered Access

The Subscriber’s begin_access() operation indicates that the application is about to access the
data samples in any of the DataReaders attached to the Subscriber.

If the Subscriber’s access_scope (in the PRESENTATION QosPolicy (Section 6.4.6)) is GROUP or
HIGHEST_OFFERED and ordered_access (also in the PRESENTATION QosPolicy (Section
6.4.6)) is TRUE, the application is required to use this operation to access the samples in order
across DataWriters of the same group (Publisher with access_scope GROUP).

In the above case, begin_access() must be called prior to calling any of the sample-accessing
operations: get_datareaders() on the Subscriber, and read(), take(), read_w_condition(), and
take_w_condition() on any DataReader.

Once the application has finished accessing the data samples, it must call end_access().

The application is not required to call begin_access() and end_access() to access the samples in
order if the Publisher’s access_scope is something other than GROUP. In this case, calling
begin_access() and end_access() is not considered an error and has no effect.

Calls to begin_access() and end_access() may be nested and must be balanced. That is,
end_access() close a previous call to begin_access().

7.2.6 Setting Up SubscriberListeners

Like all Entities, Subscribers may optionally have Listeners. Listeners are user-defined objects that
implement a DDS-defined interface (i.e. a pre-defined set of callback functions). Listeners pro-
vide the means for Connext to notify applications of any changes in Statuses (events) that may be
relevant to it. By writing the callback functions in the Listener and installing the Listener into the
Subscriber, applications can be notified to handle the events of interest. For more general infor-
mation on Listeners and Statuses, see Section 4.4.

Note: Some operations cannot be used within a listener callback, see Restricted Operations in
Listener Callbacks (Section 4.5.1).
7-13

Subscribers
As illustrated in Figure 7.1, the SubscriberListener interface extends the DataReaderListener inter-
face. In other words, the SubscriberListener interface contains all the functions in the DataReaderL-
istener interface. In addition, a SubscriberListener has an additional function:
on_data_on_readers(), corresponding to the Subscriber’s DATA_ON_READERS status. This is
the only status that is specific to a Subscriber. This status is closely tied to the
DATA_AVAILABLE status (Section 7.3.7.1) of DataReaders.

The Subscriber’s DATA_ON_READERS status is set whenever the DATA_AVAILABLE status is
set for any of the DataReaders created by the Subscriber. This implies that one of its DataReaders
has received new data samples. When the DATA_ON_READERS status is set, the SubscriberLis-
tener’s on_data_on_readers() method will be invoked.

The DATA_ON_READERS status of a Subscriber takes precedence over the
DATA_AVAILABLE status of any of its DataReaders. Thus, when data arrives for a DataReader,
the on_data_on_readers() operation of the SubscriberListener will be called instead of the
on_data_available() operation of the DataReaderListener—assuming that the Subscriber has a Lis-
tener installed that is enabled to handle changes in the DATA_ON_READERS status. (Note
however, that in the SubscriberListener’s on_data_on_readers() operation, you may choose to call
notify_datareaders(), which in turn may cause the DataReaderListener’s on_data_available()
operation to be called.)

All of the other methods of a SubscriberListener will be called back for changes in the Statuses of
Subscriber’s DataReaders only if the DataReader is not set up to handle the statuses itself.

If you want a Subscriber to handle status events for its DataReaders, you can set up a SubscriberL-
istener during the Subscriber’s creation or use the set_listener() method after the Subscriber is cre-
ated. The last parameter is a bit-mask with which you should set which Status events that the
SubscriberListener will handle. For example,

DDS_StatusMask mask = DDS_REQUESTED_DEADLINE_MISSED_STATUS |
 DDS_REQUESTED_INCOMPATIBLE_QOS_STATUS;

subscriber =
participant->create_subscriber(DDS_SUBSCRIBER_QOS_DEFAULT,

 listener, mask);
or

DDS_StatusMask mask = DDS_REQUESTED_DEADLINE_MISSED_STATUS |
 DDS_REQUESTED_INCOMPATIBLE_QOS_STATUS;

subscriber->set_listener(listener, mask);

As previously mentioned, the callbacks in the SubscriberListener act as ‘default’ callbacks for all
the DataReaders contained within. When Connext wants to notify a DataReader of a relevant Sta-
tus change (for example, SUBSCRIPTION_MATCHED), it first checks to see if the DataReader
has the corresponding DataReaderListener callback enabled (such as the
on_subscription_matched() operation). If so, Connext dispatches the event to the DataReaderLis-
tener callback. Otherwise, Connext dispatches the event to the corresponding SubscriberListener
callback.

NOTE, the reverse is true for the DATA_ON_READERS/DATA_AVAILABLE status. When
DATA_AVAILABLE changes for any DataReaders of a Subscriber, Connext first checks to see if the
SubscriberListener has DATA_ON_READERS enabled. If so, Connext will invoke the
on_data_on_readers() callback. Otherwise, Connext dispatches the event to the Listener
(on_data_available()) of the DataReader whose DATA_AVAILABLE status actually changed.

A particular callback in a DataReader is not enabled if either:

❏ The application installed a NULL DataReaderListener (meaning there are no callbacks for
the DataReader at all).
7-14

Subscribers
❏ The application has disabled the callback for a DataReaderListener. This is done by turning
off the associated status bit in the mask parameter passed to the set_listener() or
create_datareader() call when installing the DataReaderListener on the DataReader. For
more information on DataReaderListener, see Section 7.3.4.

Similarly, the callbacks in the DomainParticipantListener act as ‘default’ callbacks for all the Sub-
scribers that belong to it. For more information on DomainParticipantListeners, see Section 8.3.5.

The Subscriber also provides an operation called notify_datareaders() that can be used to invoke
the on_data_available() callbacks of DataReaders who have new data samples in their receive
queues. Often notify_datareaders() will be used in the on_data_on_readers() callback to pass off
the real processing of data from the SubscriberListener to the individual DataReaderListeners.

Calling notify_datareaders() causes the DATA_ON_READERS status to be reset.

Figure 7.8 shows a SubscriberListener that simply notifies its DataReaders when new data
arrives.

7.2.7 Getting DataReaders with Specific Samples

The Subscriber’s get_datareaders() operation retrieves a list of DataReaders that have samples
with specific sample_states, view_states, and instance_states.

If the application is outside a begin_access()/end_access() block, or if the Subscriber’s
access_scope (in the PRESENTATION QosPolicy (Section 6.4.6)) is INSTANCE or TOPIC, or
ordered_access (also in the PRESENTATION QosPolicy (Section 6.4.6)) is FALSE, the returned
collection is a 'set' containing each DataReader at most once, in no specified order.

If the application is within a begin_access()/end_access() block, and the Subscriber’s
access_scope is GROUP or HIGHEST_OFFERED, and ordered_access is TRUE, the returned
collection is a 'list' of DataReaders, where a DataReader may appear more than one time.

To retrieve the samples in the order in which they were published across DataWriters of the same
group (a Publisher configured with GROUP access_scope), the application should read()/take()
from each DataReader in the same order as appears in the output sequence. The application will
move to the next DataReader when the read()/take() operation fails with NO_DATA.

DDS_ReturnCode_t get_datareaders (DDSDataReaderSeq & readers,
 DDS_SampleStateMask sample_states,
 DDS_ViewStateMask view_states,
 DDS_InstanceStateMask instance_states)

class MySubscriberListener : public DDSSubscriberListener {
 public:
 void on_data_on_readers(DDSSubscriber *);

 /* For this example we take no action other operations */
};

void MySubscriberListener::on_data_on_readers
(DDSSubscriber *subscriber)

{
... // do global processing

// now dispatch data arrival event to specific DataReaders
subscriber->notify_datareaders();

}

Figure 7.8 Simple SubscriberListener
7-15

Subscribers
For more information, see The SampleInfo Structure (Section 7.4.6).

7.2.8 Finding a Subscriber’s Related Entities

These Subscriber operations are useful for obtaining a handle to related entities:

❏ get_participant(): Gets the DomainParticipant with which a Subscriber was created.

❏ lookup_datareader(): Finds a DataReader created by the Subscriber with a Topic of a partic-
ular name. Note that if multiple DataReaders were created by the same Subscriber with the
same Topic, any one of them may be returned by this method.

You can use this operation on a built-in Subscriber to access the built-in DataReaders for
the built-in topics. The built-in DataReader is created when this operation is called on a
built-in topic for the first time.

If you are going to modify the transport properties for the built-in DataReaders, do so
before using this operation. Built-in transports are implicitly registered when the Domain-
Participant is enabled or the first DataWriter/DataReader is created. To ensure that built-in
DataReaders receive all the discovery traffic, you should lookup the DataReader before the
DomainParticipant is enabled. Therefore the suggested sequence when looking up built-in
DataReaders is:

1. Create a disabled DomainParticipant (see Section 6.4.2).

2. If you want to use non-default values, modify the built-in transport properties (see
Section 15.5).

3. Call get_builtin_subscriber() (see Section 16.2).

4. Call lookup_datareader().

5. Call enable() on the DomainParticipant (see Section 4.1.2).

❏ DDS_Subscriber_as_Entity(): This method is provided for C applications and is neces-
sary when invoking the parent class Entity methods on Subscribers. For example, to call
the Entity method get_status_changes() on a Subscriber, my_sub, do the following:

DDS_Entity_get_status_changes(DDS_Subscriber_as_Entity(my_sub))

DDS_Subscriber_as_Entity() is not provided in the C++, C++/CLI, C# and Java APIs
because the object-oriented features of those languages make it unnecessary.

7.2.9 Statuses for Subscribers

The status indicators for a Subscriber are the same as those available for its DataReaders, with one
additional status: DATA_ON_READERS (Section 7.2.9.1). The following statuses can be moni-
tored by the SubscriberListener.

❏ DATA_ON_READERS Status (Section 7.2.9.1)

❏ DATA_AVAILABLE Status (Section 7.3.7.1)

❏ LIVELINESS_CHANGED Status (Section 7.3.7.4)

❏ REQUESTED_DEADLINE_MISSED Status (Section 7.3.7.5)

❏ REQUESTED_INCOMPATIBLE_QOS Status (Section 7.3.7.6)

❏ SAMPLE_LOST Status (Section 7.3.7.7)

❏ SAMPLE_REJECTED Status (Section 7.3.7.8)

❏ SUBSCRIPTION_MATCHED Status (Section 7.3.7.9)
7-16

DataReaders
You can access Subscriber status by using a SubscriberListener or its inherited
get_status_changes() operation (see Section 4.1.4), which can be used to explicitly poll for the
DATA_ON_READERS status of the Subscriber.

7.2.9.1 DATA_ON_READERS Status

The DATA_ON_READERS status, like the DATA_AVAILABLE status for DataReaders, is a read
communication status, which makes it somewhat different from other plain communication sta-
tuses. (See Types of Communication Status (Section 4.3.1) for more information on statuses and
the difference between read and plain statuses.) In particular, there is no status-specific data
structure; the status is either changed or not, there is no additional associated information.

The DATA_ON_READERS status indicates that there is new data available for one or more
DataReaders that belong to this Subscriber. The DATA_AVAILABLE status for each such
DataReader will also be updated.

The DATA_ON_READERS status is reset (the corresponding bit in the bitmask is turned off)
when you call read(), take(), or one of their variations on any of the DataReaders that belong to
the Subscriber. This is true even if the DataReader on which you call read/take is not the same
DataReader that caused the DATA_ON_READERS status to be set in the first place. This status is
also reset when you call notify_datareaders() on the Subscriber, or after on_data_on_readers() is
invoked.

If a SubscriberListener has both on_data_on_readers() and on_data_available() callbacks enabled
(by turning on both status bits), only on_data_on_readers() is called.

7.3 DataReaders
To create a DataReader, you need a DomainParticipant, a Topic, and optionally, a Subscriber. You
need at least one DataReader for each Topic whose data samples you want to receive.

After you create a DataReader, you will be able to use the operations listed in Table 7.3. You are
likely to use many of these operations from within your DataReader’s Listener, which is invoked
when there are status changes or new data samples. For more details on all operations, see the
API reference HTML documentation. The DataReaderListener is described in Section 7.3.4.
DataReaders are created by using operations on a DomainParticipant or a Subscriber, as described
in Section 7.2.1. If you use the DomainParticipant’s operations, the DataReader will belong to an
implicit Subscriber that is automatically created by the middleware. If you use a Subscriber’s
operations, the DataReader will belong to that Subscriber. So either way, the DataReader belongs to
a Subscriber.

Note: Some operations cannot be used within a listener callback, see Restricted Operations in
Listener Callbacks (Section 4.5.1).
7-17

DataReaders
Table 7.3 DataReader Operations

Purpose Operation Description Reference

Configuring
the
DataReader

enable Enables the DataReader. Section 4.1.2

equals
Compares two DataReader’s QoS structures for
equality.

Section 7.3.8.2

get_qos Gets the QoS.

Section 7.3.8set_qos Modifies the QoS.

set_qos_with_profile Modifies the QoS based on a QoS profile.

get_listener Gets the currently installed Listener.
Section 7.3.4

set_listener Replaces the Listener.

Accessing
Data
Samples
with “Read”
(Use
FooData-
Reader, see
Section 7.4.3)

read
Reads (copies) a collection of data samples
from the DataReader.

Section 7.4.3

read_instance
Identical to read, but all samples returned
belong to a single instance, which you specify
as a parameter.

Section 7.4.3.4

read_instance_w_condition
Identical to read_instance, but all samples
returned belong to a single instance and satisfy
a specific ReadCondition.

Section 7.4.3.7

read_next_instance

Similar to read_instance, but the actual
instance is not directly specified as a parame-
ter. Instead, the samples will all belong to
instance ordered after the one previously read.

Section 7.4.3.5

read_next_instance_w_
condition

Accesses a collection of data samples of the
next instance that match a specific set of Read-
Conditions, from the DataReader.

Section 7.4.3.8

read_next_sample
Reads the next not-previously-accessed data
value from the DataReader.

Section 7.4.3.3

read_w_condition
Accesses a collection of data samples from the
DataReader that match specific ReadCondition
criteria.

Section 7.4.3.6

Accessing
Data
Samples
with “Take”
(Use
FooData-
Reader, see
Section 7.4.3)

take
Like read, but the samples are removed from
the DataReader’s receive queue.

Section 7.4.3

take_instance
Identical to take, but all samples returned
belong to a single instance, which you specify
as a parameter.

Section 7.4.3.4

take_instance_w_condition
Identical to take_instance, but all samples
returned belong to a single instance and satisfy
a specific ReadCondition.

Section 7.4.3.7

take_next_instance
Like read_next_instance, but the samples are
removed from the DataReader’s receive queue.

Section 7.4.3.5

take_next_instance_w_
condition

Accesses (and removes) a collection of data
samples of the next instance that match a spe-
cific set of ReadConditions, from the DataReader.

Section 7.4.3.8

take_next_sample
Like read_next_sample, but the samples are
removed from the DataReader’s receive queue.

Section 7.4.3.3

take_w_condition
Accesses (and removes) a collection of data
samples from the DataReader that match spe-
cific ReadCondition criteria.

Section 7.4.3.6
7-18

DataReaders
Working
with Data
Samples and
FooData-
Reader
(Use
FooData-
Reader, see
Section 7.4.3)

narrow

A type-safe way to cast a pointer. This takes a
DDSDataReader pointer and ‘narrows’ it to a
‘FooDataReader’ where ‘Foo’ is the related
data type.

Section 7.4.1

return_loan
Returns buffers loaned in a previous read or
take call.

Section 7.4.2

get_key_value Gets the key for an instance handle. Section 7.3.9.5

lookup_instance
Gets the instance handle that corresponds to
an instance key.

Section 7.3.9.4

Acknowl-
edging Sam-
ples

acknowledge_all Acknowledge all previously accessed samples.
Section 7.4.4

acknowledge_sample Acknowledge a single sample.

Checking
Status

get_liveliness_changed_
status

Gets LIVELINESS_CHANGED_STATUS
 status.

Section 7.3.7

get_requested_deadline_
missed_status

Gets REQUESTED_DEADLINE_
MISSED_STATUS status.

get_requested_
incompatible_qos_status

Gets REQUESTED_INCOMPATIBLE_
QOS_STATUS status.

get_sample_lost_status Gets SAMPLE_LOST_STATUS status.

get_sample_rejected_
status

Gets SAMPLE_REJECTED_STATUS status.

get_subscription_matched_
status

Gets SUBSCRIPTION_MATCHED_STATUS
status.

get_status_changes
Gets a list of statuses that changed since last
time the application read the status or the lis-
teners were called.

Section 4.1.4

get_datareader_cache_
status

Gets DATA_READER_CACHE_STATUS sta-
tus.

Section 7.3.5
Section 7.3.7

get_datareader_protocol_
status

Gets DATA_READER_PROTOCOL_
STATUS status.

get_matched_publication_
datareader_protocol_
status

Get the protocol status for this DataReader, per
matched publication identified by the
publication_handle.

Navigating
Relation-
ships

get_instance_handle
Returns the DDS_InstanceHandle_t associated
with the Entity.

Section 4.1.3

get_matched_publication_
data

Gets information on a publication with a
matching Topic and compatible QoS.

Section 7.3.9.1
get_matched_publications

Gets a list of publications that have a matching
Topic and compatible QoS. These are the publi-
cations currently associated with the
DataReader.

get_matched_publication_
participant_data

Gets information on a DomainParticipant of a
matching publication.

Section 7.3.9.2

get_subscriber Gets the Subscriber that created the DataReader.
Section 7.3.9.3

get_topicdescription Gets the Topic associated with the DataReader.

Table 7.3 DataReader Operations

Purpose Operation Description Reference
7-19

DataReaders
7.3.1 Creating DataReaders

Before you can create a DataReader, you need a DomainParticipant and a Topic.

DataReaders are created by calling create_datareader() or create_datareader_with_profile()—
these operations exist for DomainParticipants and Subscribers. If you use the DomainParticipant to
create a DataReader, it will belong to the implicit Subscriber described in Section 7.2.1. If you use a
Subscriber’s operations to create a DataReader, it will belong to that Subscriber.

DDSDataReader* create_datareader(DDSTopicDescription *topic,
 const DDS_DataReaderQos &qos,
 DDSDataReaderListener *listener,
 DDS_StatusMask mask);

DDSDataReader * create_datareader_with_profile (
 DDSTopicDescription * topic,
 const char * library_name,
 const char * profile_name,
 DDSDataReaderListener * listener,
 DDS_StatusMask mask)

A QoS profile is way to use QoS settings from an XML file or string. With this approach, you can
change QoS settings without recompiling the application. For details, see Chapter 17: Configuring
QoS with XML.

topic The Topic to which the DataReader is subscribing. This must have been previously created
by the same DomainParticipant.

qos If you want the default QoS settings (described in the API Reference HTML documenta-
tion), use DDS_DATAREADER_QOS_DEFAULT for this parameter (see Figure 7.9 on
page 7-21). If you want to customize any of the QosPolicies, supply a QoS structure (see
Section 7.3.8).

Note: If you use DDS_DATAREADER_QOS_DEFAULT for the qos parameter, it is not
safe to create the DataReader while another thread may be simultaneously calling the Sub-
scriber’s set_default_datareader_qos() operation.

listener A DataReader’s Listener is where you define the callback routine that will be notified
when new data samples arrive. Connext also uses this Listener to notify your application of
specific events (status changes) that may occur with respect to the DataReader. For more

Working
with
Conditions

create_querycondition Creates a QueryCondition.

Section 4.6.7
create_readcondition Creates a ReadCondition.

delete_readcondition
Deletes a ReadCondition/QueryCondition
attached to the DataReader.

delete_contained_entities
Deletes all the ReadConditions/QueryConditions
that were created by means of the "create"
operations on the DataReader.

Section 7.3.3.1

get_statuscondition
Gets the StatusCondition associated with the
Entity.

Section 4.6.8

Waiting for
Historical
Data

wait_for_historical_data

Waits until all "historical" (previously sent)
data is received. Only valid for Reliable
DataReaders with non-VOLATILE DURABIL-
ITY.

Section 7.3.6

Table 7.3 DataReader Operations

Purpose Operation Description Reference
7-20

DataReaders
information, see Section 7.3.4 and Section 7.3.7.

The listener parameter is optional; you may use NULL instead. In that case, the Subscriber’s
Listener (or if that is NULL, the DomainParticipant’s Listener) will receive the notifications
instead. See Section 7.3.4 for more on DataReaderListeners.

mask This bit mask indicates which status changes will cause the Listener to be invoked. The
bits set in the mask must have corresponding callbacks implemented in the Listener. If you
use NULL for the Listener, use DDS_STATUS_MASK_NONE for this parameter. If the
Listener implements all callbacks, use DDS_STATUS_MASK_ALL. For information on sta-
tuses, see Listeners (Section 4.4).

library_name A QoS Library is a named set of QoS profiles. See QoS Libraries (Section 17.10).

profile_name A QoS profile groups a set of related QoS, usually one per entity. See QoS Profiles
(Section 17.9).

After you create a DataReader, you can use it to retrieve received data. See Section 7.4.

Note: When a DataReader is created, only those transports already registered are available to the
DataReader. The built-in transports are implicitly registered when (a) the DomainParticipant is
enabled, (b) the first DataReader is created, or (c) you lookup a built-in DataReader, whichever
happens first.

Figure 7.9 shows an example of how to create a DataReader with default QosPolicies.

For more examples on how to create a DataWriter, see Configuring QoS Settings when the
DataReader is Created (Section 7.3.8.1)

7.3.2 Getting All DataReaders

To retrieve all the DataReaders created by the Subscriber, use the Subscriber’s get_all_datareaders()
operation:

DDS_ReturnCode_t get_all_datareaders(
DDS_Subscriber* self,
struct DDS_DataReaderSeq* readers);

Figure 7.9 Creating a DataReader with Default QosPolicies

// MyReaderListener is user defined, extends DDSDataReaderListener
DDSDataReaderListener *reader_listener = new MyReaderListener();

DataReader* reader = subscriber->create_datareader(topic,
DDS_DATAREADER_QOS_DEFAULT,
reader_listener,
DDS_STATUS_MASK_ALL);

if (reader == NULL) {
 // ... error
}
// narrow it into your specific data type
FooDataReader* foo_reader = FooDataReader::narrow(reader);
7-21

DataReaders
7.3.3 Deleting DataReaders

To delete a DataReader:

1. Delete any ReadConditions and QueryConditions that were created with the DataReader.
Use the DataReader’s delete_readcondition() operation to delete them one at a time, or
use the delete_contained_entities() operation (Section 7.3.3.1) to delete them all at the
same time.

 DDS_ReturnCode_t delete_readcondition (DDSReadCondition *condition)

2. Delete the DataReader by using the Subscriber’s delete_datareader() operation
(Section 7.2.3).

Note: A DataReader cannot be deleted within its own reader listener callback, see Restricted
Operations in Listener Callbacks (Section 4.5.1).

To delete all of a Subscriber’s DataReaders, use the Subscriber’s delete_contained_entities() opera-
tion (see Section 7.2.3.1).

7.3.3.1 Deleting Contained ReadConditions

The DataReader’s delete_contained_entities() operation deletes all the ReadConditions and Que-
ryConditions (Section 4.6.7) that were created by the DataReader.

DDS_ReturnCode_t delete_contained_entities ()

After this operation returns successfully, the application may delete the DataReader (see
Section 7.3.3).

7.3.4 Setting Up DataReaderListeners

DataReaders may optionally have Listeners. A DataReaderListener is a collection of callback meth-
ods; these methods are invoked by Connext when data samples are received or when there are
status changes for the DataReader.

Note: Some operations cannot be used within a listener callback, see Restricted Operations in
Listener Callbacks (Section 4.5.1).

If you do not implement a DataReaderListener, the associated Subscriber’s Listener is used instead.
If that Subscriber does not have a Listener either, then the DomainParticipant’s Listener is used if
one exists (see Section 7.2.6 and Section 8.3.5).

If you do not require asynchronous notification of data availability or status changes, you do not
need to set a Listener for the DataReader. In that case, you will need to periodically call one of the
read() or take() operations described in Section 7.4 to access the data that has been received.

Listeners are typically set up when the DataReader is created (see Section 7.3.1). You can also set
one up after creation by using the DataReader’s get_listener() and set_listener() operations. Con-
next will invoke a DataReader’s Listener to report the status changes listed in Table 7.4 (if the Lis-
tener is set up to handle the particular status, see Section 7.3.4).

Table 7.4 DataReaderListener Callbacks

This DataReaderListener callback... ...is triggered by a change in this status:

on_data_available() DATA_AVAILABLE Status (Section 7.3.7.1)

on_liveliness_changed() LIVELINESS_CHANGED Status (Section 7.3.7.4)

on_requested_deadline_missed() REQUESTED_DEADLINE_MISSED Status (Section 7.3.7.5)

on_requested_incompatible_qos() REQUESTED_INCOMPATIBLE_QOS Status (Section 7.3.7.6)
7-22

DataReaders
Note that the same callbacks can be implemented in the SubscriberListener or DomainPartici-
pantListener instead. There is only one SubscriberListener callback that takes precedence over a
DataReaderListener’s. An on_data_on_readers() callback in the SubscriberListener (or DomainPar-
ticipantListener) takes precedence over the on_data_available() callback of a DataReaderListener.

If the SubscriberListener implements an on_data_on_readers() callback, it will be invoked instead
of the DataReaderListener’s on_data_available() callback when new data arrives. The
on_data_on_readers() operation can in turn cause the on_data_available() method of the appro-
priate DataReaderListener to be invoked by calling the Subscriber’s notify_datareaders() opera-
tion. For more information on status and Listeners, see Listeners (Section 4.4).

Figure 7.10 shows a DataReaderListener that simply prints the data it receives.

7.3.5 Checking DataReader Status and StatusConditions

You can access individual communication status for a DataReader with the operations shown in
Table 7.5.

These methods are useful in the event that no Listener callback is set to receive notifications of
status changes. If a Listener is used, the callback will contain the new status information, in
which case calling these methods is unlikely to be necessary.

The get_status_changes() operation provides a list of statuses that have changed since the last
time the status changes were ‘reset.’ A status change is reset each time the application calls the
corresponding get_*_status(), as well as each time Connext returns from calling the Listener call-
back associated with that status.

For more on status, see Setting Up DataReaderListeners (Section 7.3.4), Statuses for DataReaders
(Section 7.3.7), and Listeners (Section 4.4).

on_sample_lost() SAMPLE_LOST Status (Section 7.3.7.7)

on_sample_rejected() SAMPLE_REJECTED Status (Section 7.3.7.8)

on_subscription_matched() SUBSCRIPTION_MATCHED Status (Section 7.3.7.9)

Table 7.4 DataReaderListener Callbacks

This DataReaderListener callback... ...is triggered by a change in this status:

Table 7.5 DataReader Status Operations

Use this operation... ...to retrieve this status:

get_datareader_cache_status DATA_READER_CACHE_STATUS (Section 7.3.7.2)

get_datareader_protocol_status
DATA_READER_PROTOCOL_STATUS (Section 7.3.7.3)get_matched_publication_

datareader_protocol_status

get_liveliness_changed_status LIVELINESS_CHANGED Status (Section 7.3.7.4)

get_sample_lost_status SAMPLE_LOST Status (Section 7.3.7.7)

get_sample_rejected_status SAMPLE_REJECTED Status (Section 7.3.7.8)

get_requested_deadline_missed_status REQUESTED_DEADLINE_MISSED Status (Section 7.3.7.5)

get_requested_incompatible_qos_status REQUESTED_INCOMPATIBLE_QOS Status (Section 7.3.7.6)

get_subscription_match_status SUBSCRIPTION_MATCHED Status (Section 7.3.7.9)

get_status_changes All of the above

get_statuscondition See StatusConditions (Section 4.6.8)
7-23

DataReaders
7.3.6 Waiting for Historical Data

The wait_for_historical_data() operation waits (blocks) until all "historical" data is received
from matched DataWriters. "Historical" data means samples that were written before the
DataReader joined the domain.

This operation is intended only for DataReaders that have:

❏ DURABILITY QosPolicy (Section 6.5.7) kind set to TRANSIENT_LOCAL (not VOLATILE)

❏ RELIABILITY QosPolicy (Section 6.5.19) kind set to RELIABLE.

Calling wait_for_historical_data() on a non-reliable DataReader will always return imme-
diately, since Connext will never deliver historical data to non-reliable DataReaders.

As soon as an application enables a non-VOLATILE DataReader, it will start receiving both "his-
torical" data as well as any new data written by matching DataWriters. If you want the subscrib-
ing application to wait until all "historical" data is received, use this operation:

class MyReaderListener : public DDSDataReaderListener {
 public:
 virtual void on_data_available(DDSDataReader* reader);

 // don’t do anything for the other callbacks
};
void MyReaderListener::on_data_available(DDSDataReader* reader)
{
 FooDataReader *Foo_reader = NULL;
 FooSeq data_seq; // In C, sequences have to be initialized
 DDS_SampleInfoSeq info_seq; // before use, see Section 7.4.5.
 DDS_ReturnCode_t retcode;
 int i;
 // Must cast generic reader into reader of specific type
 Foo_reader = FooDataReader::narrow(reader);
 if (Foo_reader == NULL) {
 printf("DataReader narrow error\n");
 return;
 }
 retcode = Foo_reader->take(data_seq, info_seq,

 DDS_LENGTH_UNLIMITED, DDS_ANY_SAMPLE_STATE,
 DDS_ANY_VIEW_STATE, DDS_ANY_INSTANCE_STATE);

 if (retcode == DDS_RETCODE_NO_DATA) {
 return;
 } else if (retcode != DDS_RETCODE_OK) {
 printf("take error %d\n", retcode);
 return;
 }
 for (i = 0; i < data_seq.length(); ++i) {
 // the data may not be valid if the sample is meta information
 // about the creation or deletion of an instance
 if (info_seq[i].valid_data) {
 FooTypeSupport::print_data(&data_seq[i]);
 }
 }
 // Connext gave a pointer to internal memory via
 // take(), must return the memory when finished processing the data
 retcode = Foo_reader->return_loan(data_seq, info_seq);
 if (retcode != DDS_RETCODE_OK) {
 printf("return loan error %d\n", retcode);
 }
}

Figure 7.10 Simple DataReaderListener
7-24

DataReaders
DDS_ReturnCode_t wait_for_historical_data
 (const DDS_Duration_t & max_wait)

The wait_for_historical_data() operation blocks the calling thread until either all "historical"
data is received or the duration specified by the max_wait parameter elapses, whichever hap-
pens first. A return value of OK indicates that all the "historical" data was received; a return
value of TIMEOUT indicates that max_wait elapsed before all the data was received.

wait_for_historical_data() will return immediately if no DataWriters have been discovered at
the time the operation is called. Therefore it is advisable to make sure at least one DataWriter has
been discovered before calling this operation; one way to do this is to use
get_subscription_matched_status(), like this:

while (1) {
DDS_SubscriptionMatchedStatus status;
MyType_reader->get_subscription_matched_status(status);
if (status.current_count > 0) { break; }
NDDSUtility::sleep(sleep_period);

}

7.3.7 Statuses for DataReaders

There are several types of statuses available for a DataReader. You can use the get_*_status()
operations (Section 7.3.5) to access and reset them, use a DataReaderListener (Section 7.3.4) to lis-
ten for changes in their values (for those statuses that have Listeners), or use a StatusCondition
and a WaitSet (Section 4.6.8) to wait for changes. Each status has an associated data structure and
is described in more detail in the following sections.

❏ DATA_AVAILABLE Status (Section 7.3.7.1)

❏ DATA_READER_CACHE_STATUS (Section 7.3.7.2)

❏ DATA_READER_PROTOCOL_STATUS (Section 7.3.7.3)

❏ LIVELINESS_CHANGED Status (Section 7.3.7.4)

❏ REQUESTED_DEADLINE_MISSED Status (Section 7.3.7.5)

❏ REQUESTED_INCOMPATIBLE_QOS Status (Section 7.3.7.6)

❏ SAMPLE_LOST Status (Section 7.3.7.7)

❏ SAMPLE_REJECTED Status (Section 7.3.7.8)

❏ SUBSCRIPTION_MATCHED Status (Section 7.3.7.9)

7.3.7.1 DATA_AVAILABLE Status

This status indicates that new data is available for the DataReader. In most cases, this means that
one new sample has been received. However, there are situations in which more than one sam-
ples for the DataReader may be received before the DATA_AVAILABLE status changes. For
example, if the DataReader has the DURABILITY QosPolicy (Section 6.5.7) set to be non-VOLA-
TILE, then the DataReader may receive a batch of old data samples all at once. Or if data is being
received reliably from DataWriters, Connext may present several samples of data simultaneously
to the DataReader if they have been originally received out of order.

A change to this status also means that the DATA_ON_READERS status is changed for the
DataReader’s Subscriber. This status is reset when you call read(), take(), or one of their variations.

Unlike most other statuses, this status (as well as DATA_ON_READERS for Subscribers) is a read
communication status. See Section 7.2.9 and Section 4.3.1 for more information on read communi-
cation statuses.
7-25

DataReaders
The DataReaderListener’s on_data_available() callback is invoked when this status changes,
unless the SubscriberListener (Section 7.2.6) or DomainParticipantListener (Section 8.3.5) has imple-
mented an on_data_on_readers() callback. In that case, on_data_on_readers() will be invoked
instead.

7.3.7.2 DATA_READER_CACHE_STATUS

This status keeps track of the number of samples in the reader's cache.

This status does not have an associated Listener. You can access this status by calling the
DataReader’s get_datareader_cache_status() operation, which will return the status structure
described in Table 7.6; this operation will also reset the status so it is no longer considered
“changed.”

7.3.7.3 DATA_READER_PROTOCOL_STATUS

The status of a DataReader’s internal protocol related metrics (such as the number of samples
received, filtered, rejected) and the status of wire protocol traffic. The structure for this status
appears in Table 7.7 on page 7-27.

This status does not have an associated Listener. You can access this status by calling the follow-
ing operations on the DataReader (which return the status structure described in Table 7.7):

❏ get_datareader_protocol_status() returns the sum of the protocol status for all the
matched publications for the DataReader.

❏ get_matched_publication_datareader_protocol_status() returns the protocol status of a
particular matched publication, identified by a publication_handle.

The get_*_status() operations also reset the related status so it is no longer considered
“changed.”

Note: Status for a remote entity is only kept while the entity is alive. Once a remote entity is no
longer alive, its status is deleted. If you try to get the matched subscription status for a remote
entity that is no longer alive, the ‘get status’ call will return an error.

7.3.7.4 LIVELINESS_CHANGED Status

This status indicates that the liveliness of one or more matched DataWriters has changed (i.e.,
one or more DataWriters has become alive or not alive). The mechanics of determining liveliness
between a DataWriter and a DataReader is specified in their LIVELINESS QosPolicy (Section
6.5.13).

The structure for this status appears in Table 7.8.

The DataReaderListener’s on_liveliness_changed() callback may be called for the following rea-
sons:

❏ Liveliness is truly lost—a sample has not been received within the time-frame specified
in the LIVELINESS QosPolicy (Section 6.5.13) lease_duration.

Table 7.6 DDS_DataReaderCacheStatus

Type Field Name Description

DDS_Long sample_count_peak
Highest number of samples in the DataReader’s queue over the life-
time of the DataReader.

DDS_Long sample_count

Current number of samples in the DataReader’s queue.
Includes samples that may not yet be available to be read or taken by
the user due to samples being received out of order or settings in the
PRESENTATION QosPolicy (Section 6.4.6).
7-26

DataReaders
Table 7.7 DDS_DataReaderProtocolStatus

Type Field Name Description

DDS_LongLong

received_sample_count
The number of user samples from a remote DataW-
riter received for the first time by a local DataReader.

received_sample_count_
change

The incremental change in the number of user sam-
ples from a remote DataWriter received for the first
time by a local DataReader since the last time the sta-
tus was read.

received_sample_bytes
The number of bytes of user samples from a remote
DataWriter received for the first time by a local
DataReader.

received_sample_bytes_
change

The incremental change in the number of bytes of
user samples from a remote DataWriter received for
the first time by a local DataReader since the last time
the status was read.

DDS_LongLong

duplicate_sample_count
The number of samples from a remote DataWriter
received, not for the first time, by a local DataReader.

duplicate_sample_count_
change

The incremental change in the number of samples
from a remote DataWriter received, not for the first
time, by a local DataReader since the last time the sta-
tus was read.

duplicate_sample_bytes
The number of bytes of samples from a remote
DataWriter received, not for the first time, by a local
DataReader.

duplicate_sample_bytes_
change

The incremental change in the number of bytes of
samples from a remote DataWriter received, not for
the first time, by a local DataReader since the last time
the status was read.

DDS_LongLong

filtered_sample_count
The number of user samples filtered by the local
DataReader due to ContentFilteredTopics or Time-
Based Filter.

filtered_sample_count_
change

The incremental change in the number of user sam-
ples filtered by the local DataReader due to Content-
FilteredTopics or Time-Based Filter since the last time
the status was read.

filtered_sample_bytes
The number of bytes of user samples filtered by the
local DataReader due to ContentFilteredTopics or
Time-Based Filter.

filtered_sample_bytes_
change

The incremental change in the number of bytes of
user samples filtered by the local DataReader due to
ContentFilteredTopics or Time-Based Filter since the
last time the status was read.
7-27

DataReaders
DDS_LongLong

received_heartbeat_count
The number of Heartbeats from a remote DataWriter
received by a local DataReader.

received_heartbeat_count_
change

The incremental change in the number of Heartbeats
from a remote DataWriter received by a local
DataReader since the last time the status was read.

received_heartbeat_bytes
The number of bytes of Heartbeats from a remote
DataWriter received by a local DataReader.

received_heartbeat_bytes_
change

The incremental change in the number of bytes of
Heartbeats from a remote DataWriter received by a
local DataReader since the last time the status was
read.

DDS_LongLong

sent_ack_count
The number of ACKs sent from a local DataReader to a
matching remote DataWriter.

sent_ack_count_change
The incremental change in the number of ACKs sent
from a local DataReader to a matching remote DataW-
riter since the last time the status was read.

sent_ack_bytes
The number of bytes of ACKs sent from a local
DataReader to a matching remote DataWriter.

sent_ack_bytes_change

The incremental change in the number of bytes of
ACKs sent from a local DataReader to a matching
remote DataWriter since the last time the status was
read.

DDS_LongLong

sent_nack_count
The number of NACKs sent from a local DataReader
to a matching remote DataWriter.

sent_nack_count_change
The incremental change in the number of NACKs
sent from a local DataReader to a matching remote
DataWriter since the last time the status was read.

sent_nack_bytes
The number of bytes of NACKs sent from a local
DataReader to a matching remote DataWriter.

sent_nack_bytes_change

The incremental change in the number of bytes of
NACKs sent from a local DataReader to a matching
remote DataWriter since the last time the status was
read.

DDS_LongLong

received_gap_count
The number of GAPs received from remote DataW-
riter to this DataReader.

received_gap_count_change
The incremental change in the number of GAPs
received from remote DataWriter to this DataReader
since the last time the status was read.

received_gap_bytes
The number of bytes of GAPs received from remote
DataWriter to this DataReader.

received_gap_bytes_change
The incremental change in the number of bytes of
GAPs received from remote DataWriter to this
DataReader since the last time the status was read.

DDS_LongLong

rejected_sample_count
The number of times a sample is rejected for unantici-
pated reasons in the receive path.

rejected_sample_
count_change

The incremental change in the number of times a
sample is rejected for unanticipated reasons in the
receive path since the last time the status was read.

Table 7.7 DDS_DataReaderProtocolStatus

Type Field Name Description
7-28

DataReaders
❏ Liveliness is recovered after being lost.

❏ A new matching entity has been discovered.

❏ A QoS has changed such that a pair of matching entities are no longer matching (such as
a change to the PartitionQosPolicy). In this case, the middleware will no longer keep
track of the entities’ liveliness. Furthermore:

• If liveliness was maintained: alive_count will decrease and not_alive_count will
remain the same.

• If liveliness had been lost: alive_count will remain the same and not_alive_count will
decrease.

You can also retrieve the value by calling the DataReader’s get_liveliness_changed_status()
operation; this will also reset the status so it is no longer considered “changed.”

This status is reciprocal to the RELIABLE_READER_ACTIVITY_CHANGED Status (DDS
Extension) (Section 6.3.6.8) for a DataWriter.

DDS_
SequenceNumber_t

first_available_sample_
sequence_number

Sequence number of the first available sample in a
matched DataWriter's reliability queue. Applicable
only when retrieving matched DataWriter statuses.

last_available_sample_
sequence_number

Sequence number of the last available sample in a
matched DataWriter's reliability queue. Applicable
only when retrieving matched DataWriter statuses.

last_committed_sample_
sequence_number

Sequence number of the last committed sample (i.e.
available to be read or taken) in a matched DataW-
riter's reliability queue. Applicable only when retriev-
ing matched DataWriter statuses.
For best-effort DataReaders, this is the sequence num-
ber of the latest sample received.
For reliable DataReaders, this is the sequence number
of the latest sample that is available to be read or
taken from the DataReader's queue.

DDS_Long uncommitted_sample_count

Number of received samples that are not yet available
to be read or taken due to being received out of
order. Applicable only when retrieving matched
DataWriter statuses.

Table 7.8 DDS_LivelinessChangedStatus

Type Field Name Description

DDS_Long

alive_count Number of matched DataWriters that are currently alive.

not_alive_count Number of matched DataWriters that are not currently alive.

alive_count_change
The change in the alive_count since the last time the Listener
was called or the status was read.

not_alive_count_change
The change in the not_alive_count since the last time the Lis-
tener was called or the status was read.

DDS_Instance
Handle_t

last_publication_handle A handle to the last DataWriter to change its liveliness.

Table 7.7 DDS_DataReaderProtocolStatus

Type Field Name Description
7-29

DataReaders
7.3.7.5 REQUESTED_DEADLINE_MISSED Status

This status indicates that the DataReader did not receive a new sample for an data-instance
within the time period set in the DataReader’s DEADLINE QosPolicy (Section 6.5.5). For non-
keyed Topics, this simply means that the DataReader did not receive data within the DEADLINE
period. For keyed Topics, this means that for one of the data-instances that the DataReader was
receiving, it has not received a new sample within the DEADLINE period. For more information
about keys and instances, see Section 2.2.2.

The structure for this status appears in Table 7.9.

The DataReaderListener’s on_requested_deadline_missed() callback is invoked when this status
changes. You can also retrieve the value by calling the DataReader’s
get_requested_deadline_missed_status() operation; this will also reset the status so it is no lon-
ger considered “changed.”

7.3.7.6 REQUESTED_INCOMPATIBLE_QOS Status

A change to this status indicates that the DataReader discovered a DataWriter for the same Topic,
but that DataReader had requested QoS settings incompatible with this DataWriter’s offered QoS.

The structure for this status appears in Table 7.10.

The DataReaderListener’s on_requested_incompatible_qos() callback is invoked when this status
changes. You can also retrieve the value by calling the DataReader’s
get_requested_incompatible_qos_status() operation; this will also reset the status so it is no
longer considered “changed.”

Table 7.9 DDS_RequestedDeadlineMissedStatus

Type Field Name Description

DDS_Long
total_count

Cumulative number of times that the deadline was violated for any
instance read by the DataReader.

total_count_change
The change in total_count since the last time the Listener was called
or the status was read.

DDS_Instance
Handle_t

last_instance_handle
Handle to the last data-instance in the DataReader for which a
requested deadline was missed.

Table 7.10 DDS_RequestedIncompatibleQosStatus

Type Field Name Description

DDS_Long total_count

Cumulative number of times the DataReader discovered
a DataWriter for the same Topic with an offered QoS
that is incompatible with that requested by the
DataReader.

DDS_Long total_count_change
The change in total_count since the last time the Lis-
tener was called or the status was read.

DDS_QosPolicyId_t last_policy_id

The ID of the QosPolicy that was found to be incompat-
ible the last time an incompatibility was detected.
(Note: if there are multiple incompatible policies, only
one of them is reported here.)

DDS_QosPolicyCountSeq policies

A list containing—for each policy—the total number of
times that the DataReader discovered a DataWriter for
the same Topic with a offered QoS that is incompatible
with that requested by the DataReader.
7-30

DataReaders
7.3.7.7 SAMPLE_LOST Status

This status indicates that one or more samples written by a matched DataWriter have failed to be
received.

For a DataReader, when there are insufficient resources to accept incoming samples of data, sam-
ples may be dropped by the receiving application. Those samples are considered to be
REJECTED (see Section 7.3.7.8). But DataWriters are limited in the number of published data
samples that they can store, so that if a DataWriter continues to publish data samples, new data
may overwrite old data that have not yet been received by the DataReader. The samples that are
overwritten can never be resent to the DataReader and thus are considered to be lost.

This status applies to reliable and best-effort DataReaders, see the RELIABILITY QosPolicy (Sec-
tion 6.5.19).

The structure for this status appears in Table 7.11.

The reason the sample was lost appears in the last_reason field. The possible values are listed in
Table 7.12.

Table 7.11 DDS_SampleLostStatus

Type Field Name Description

DDS_Long

total_count
 Cumulative count of all the samples that have been
lost, across all instances of data written for the Topic.

total_count_change
The incremental number of samples lost since the
last time the Listener was called or the status was
read.

DDS_SampleLostStatusKind last_reason The reason the last sample was lost. See Table 7.12.

Table 7.12 DDS_SampleLostStatusKind

Reason Kind Description

NOT_LOST The sample was not lost.

LOST_BY_AVAILABILITY_WAITING_TIME
AvailabilityQosPolicy’s
max_data_availability_waiting_time expired.

LOST_BY_INCOMPLETE_COHERENT_SET
A sample is lost because it is part of an incomplete
coherent set.

LOST_BY_INSTANCES_LIMIT A resource limit on the number of instances was reached.

LOST_BY_LARGE_COHERENT_SET A sample is lost because it is part of a large coherent set.

LOST_BY_REMOTE_WRITER_SAMPLES_
PER_VIRTUAL_QUEUE_LIMIT"

A resource limit on the number of samples published by a
remote writer on behalf of a virtual writer that
a DataReader may store was reached.

LOST_BY_REMOTE_WRITERS_PER_
INSTANCE_LIMIT

A resource limit on the number of remote writers for a
single instance from which a DataReader may read was
reached.

LOST_BY_REMOTE_WRITERS_PER_
SAMPLE_LIMIT

A resource limit on the number of remote writers per
sample was reached.

LOST_BY_SAMPLES_PER_REMOTE_
WRITER_LIMIT

A resource limit on the number of samples from a given
remote writer that a DataReader may store was reached.

LOST_BY_VIRTUAL_WRITERS_LIMIT
A resource limit on the number of virtual writers from
which a DataReader may read was reached.

LOST_BY_WRITER
A DataWriter removed the sample before being received
by the DataReader.
7-31

DataReaders
The DataReaderListener’s on_sample_lost() callback is invoked when this status changes. You
can also retrieve the value by calling the DataReader’s get_sample_lost_status() operation; this
will also reset the status so it is no longer considered “changed.”

7.3.7.8 SAMPLE_REJECTED Status

This status indicates that one or more samples received from a matched DataWriter have been
dropped by the DataReader because a resource limit would have been exceeded. For example, if
the receive queue is full, the number of samples in the queue is equal to the max_samples
parameter of the RESOURCE_LIMITS QosPolicy (Section 6.5.20).

The structure for this status appears in Table 7.13. The reason the sample was rejected appears in
the last_reason field. The possible values are listed in Table 7.14.

Table 7.13 DDS_SampleRejectedStatus

Type Field Name Description

DDS_Long

total_count
Cumulative count of all the samples that have
been rejected by the DataReader.

total_count_change
The incremental number of samples rejected
since the last time the Listener was called or
the status was read.

current_count
The current number of writers with which the
DataReader is matched.

current_count_change
The change in current_count since the last
time the Listener was called or the status was
read.

DDS_SampleRejectedStatusKind last_reason
Reason for rejecting the last sample. See
Table 7.14.

DDS_InstanceHandle_t last_instance_handle
Handle to the data-instance for which the last
sample was rejected.

Table 7.14 DDS_SampleRejectedStatusKind

Reason Kind Description Related QosPolicy

DDS_NOT_REJECTED Sample was accepted.

DDS_REJECTED_BY_
INSTANCES_LIMIT

A resource limit on the number of
instances that can be handled at the
same time by the DataReader was
reached.

RESOURCE_LIMITS QosPolicy
(Section 6.5.20)

DDS_REJECTED_BY_
REMOTE_WRITERS_LIMIT

A resource limit on the number of
DataWriters from which a DataReader
may read was reached. DATA_READER_RESOURCE_

LIMITS QosPolicy (DDS Exten-
sion) (Section 7.6.2) DDS_REJECTED_BY_

REMOTE_WRITERS_
PER_INSTANCE_LIMIT

A resource limit on the number of
DataWriters for a single instance from
which a DataReader may read was
reached.

DDS_REJECTED_BY_
SAMPLES_LIMIT

A resource limit on the total number
of samples was reached.

RESOURCE_LIMITS QosPolicy
(Section 6.5.20)DDS_REJECTED_BY_

SAMPLES_PER_
INSTANCE_LIMIT

A resource limit on the number of
samples per instance was reached.
7-32

DataReaders
The DataReaderListener’s on_sample_rejected() callback is invoked when this status changes.
You can also retrieve the value by calling the DataReader’s get_sample_rejected_status() opera-
tion; this will also reset the status so it is no longer considered “changed.”

7.3.7.9 SUBSCRIPTION_MATCHED Status

A change to this status indicates that the DataReader discovered a matching DataWriter. A
‘match’ occurs only if the DataReader and DataWriter have the same Topic, same data type
(implied by having the same Topic), and compatible QosPolicies. In addition, if user code has
directed Connext to ignore certain DataWriters, then those DataWriters will never be matched. See
Section 16.4.2 for more on setting up a DomainParticipant to ignore specific DataWriters.

The structure for this status appears in Table 7.15.

The DataReaderListener’s on_subscription_matched() callback is invoked when this status
changes. You can also retrieve the value by calling the DataReader’s
get_subscription_match_status() operation; this will also reset the status so it is no longer con-
sidered “changed.”

DDS_REJECTED_BY_
SAMPLES_PER_
REMOTE_WRITER_LIMIT

A resource limit on the number of
samples that a DataReader may store
from a specific DataWriter was
reached.

DATA_READER_RESOURCE_
LIMITS QosPolicy (DDS Exten-
sion) (Section 7.6.2)

DDS_REJECTED_BY_
VIRTUAL_WRITERS_LIMIT

A resource limit on the number of vir-
tual writers from which a DataReader
may read was reached.

DDS_REJECTED_BY_
REMOTE_WRITERS_
PER_SAMPLE_LIMIT

A resource limit on the number of
remote writers per sample was
reached.

DDS_REJECTED_BY_
REMOTE_WRITER_SAMPLES_
PER_VIRTUAL_QUEUE_LIMIT

A resource limit on the number of
samples published by a remote writer
on behalf of a virtual writer that a
DataReader may store was reached.

Table 7.14 DDS_SampleRejectedStatusKind

Reason Kind Description Related QosPolicy

Table 7.15 DDS_SubscriptionMatchedStatus

Type Field Name Description

DDS_Long

total_count
Cumulative number of times the DataReader discovered a
"match" with a DataWriter.

total_count_change
The change in total_count since the last time the Listener was
called or the status was read.

current_count
The number of DataWriters currently matched to the concerned
DataReader.

current_count_change
The change in current_count since the last time the listener was
called or the status was read.

current_count_peak The highest value that current_count has reached until now.

DDS_Instance
Handle_t

last_publication_
handle

Handle to the last DataWriter that matched the DataReader caus-
ing the status to change.
7-33

DataReaders
7.3.8 Setting DataReader QosPolicies

A DataReader’s QosPolicies control its behavior. Think of QosPolicies as the ‘properties’ for the
DataReader. The DDS_DataReaderQos structure has the following format:

struct DDS_DataReaderQos {
DDS_DurabilityQosPolicy durability;
DDS_DeadlineQosPolicy deadline;
DDS_LatencyBudgetQosPolicy latency_budget;
DDS_LivelinessQosPolicy liveliness;
DDS_ReliabilityQosPolicy reliability;
DDS_DestinationOrderQosPolicy destination_order;
DDS_HistoryQosPolicy history;
DDS_ResourceLimitsQosPolicy resource_limits;
DDS_UserDataQosPolicy user_data;
DDS_TimeBasedFilterQosPolicy time_based_filter;
DDS_ReaderDataLifecycleQosPolicy reader_data_lifecycle;
DDS_TypeConsistencyEnforcementQosPolicy type_consistency;

// Extensions to the DDS standard:
DDS_DataReaderResourceLimitsQosPolicy reader_resource_limits;
DDS_DataReaderProtocolQosPolicy protocol;
DDS_TransportSelectionQosPolicy transport_selection;
DDS_TransportUnicastQosPolicy unicast;
DDS_TransportMulticastQosPolicy multicast;
DDS_PropertyQosPolicy property;
DDS_AvailabilityQosPolicy availability;
DDS_EntityNameQosPolicy subscription_name;
DDS_TypeSupportQosPolicy type_support;

};

Note: set_qos() cannot always be used within a listener callback, see Restricted Operations in
Listener Callbacks (Section 4.5.1).

Table 7.16 summarizes the meaning of each policy. (They appear alphabetically in the table.) For
information on why you would want to change a particular QosPolicy, see the referenced sec-
tion. For defaults and valid ranges, please refer to the API Reference HTML documentation.

Table 7.16 DataReader QosPolicies

QosPolicy Description

Availability

This QoS policy is used in the context of two features:

For a Collaborative DataWriter, specifies the group of DataWriters
expected to collaboratively provide data and the timeouts that con-
trol when to allow data to be available that may skip samples.

For a Durable Subscription, configures a set of Durable Subscriptions
on a DataWriter.

See Section 6.5.1

DataReaderProtocol
This QosPolicy configures the DDS on-the-network protocol, RTPS.
See Section 7.6.1.

DataReaderResourceLimits
Various settings that configure how DataReaders allocate and use
physical memory for internal resources. See Section 7.6.2.

Deadline

For a DataReader, specifies the maximum expected elapsed time
between arriving data samples.
For a DataWriter, specifies a commitment to publish samples with no
greater elapsed time between them.
See Section 6.5.5.
7-34

DataReaders
DestinationOrder
Controls how Connext will deal with data sent by multiple DataWrit-
ers for the same topic. Can be set to "by reception timestamp" or to
"by source timestamp". See Section 6.5.6.

Durability
Specifies whether or not Connext will store and deliver data that were
previously published to new DataReaders. See Section 6.5.7.

EntityName Assigns a name to a DataReader. See Section 6.5.9.

History

Specifies how much data must to stored by Connextfor the DataWriter
or DataReader. This QosPolicy affects the RELIABILITY QosPolicy
(Section 6.5.19) as well as the DURABILITY QosPolicy (Section 6.5.7).
See Section 6.5.10.

LatencyBudget
Suggestion to Connext on how much time is allowed to deliver data.
See Section 6.5.11.

Liveliness
Specifies and configures the mechanism that allows DataReaders to
detect when DataWriters become disconnected or "dead." See
Section 6.5.13.

Property

Stores name/value (string) pairs that can be used to configure certain
parameters of Connext that are not exposed through formal QoS poli-
cies. It can also be used to store and propagate application-specific
name/value pairs, which can be retrieved by user code during dis-
covery. See Section 6.5.17.

ReaderDataLifeCycle
Controls how a DataReader manages the lifecycle of the data that it
has received. See Section 7.6.3.

Reliability
Specifies whether or not Connext will deliver data reliably. See
Section 6.5.19.

ResourceLimits

Controls the amount of physical memory allocated for entities, if
dynamic allocations are allowed, and how they occur. Also controls
memory usage among different instance values for keyed topics. See
Section 6.5.20.

TimeBasedFilter
Set by a DataReader to limit the number of new data values received
over a period of time. See Section 7.6.4.

TransportMulticast

Specifies the multicast address on which a DataReader wants to
receive its data. Can specify a port number as well as a subset of the
available transports with which to receive the multicast data. See
Section 7.6.5.

TransportSelection
Allows you to select which physical transports a DataWriter or
DataReader may use to send or receive its data. See Section 6.5.22.

TransportUnicast
Specifies a subset of transports and port number that can be used by
an Entity to receive data. See Section 6.5.23.

TypeSupport
Used to attach application-specific value(s) to a DataWriter or
DataReader. These values are passed to the serialization or deserializa-
tion routine of the associated data type. See Section 6.5.24.

TypeConsistencyEnforcement
Defines rules that determine whether the type used to publish a
given data stream is consistent with that used to subscribe to it. See
Section 7.6.6.

UserData
Along with Topic Data QosPolicy and Group Data QosPolicy, used to
attach a buffer of bytes to Connext's discovery meta-data. See
Section 6.5.25.

Table 7.16 DataReader QosPolicies

QosPolicy Description
7-35

DataReaders
For a DataReader to communicate with a DataWriter, their corresponding QosPolicies must be
compatible. For QosPolicies that apply both to the DataWriter and the DataReader, the setting in
the DataWriter is considered what the DataWriter “offers” and the setting in the DataReader is
what the DataReader “requests.” Compatibility means that what is offered by the DataWriter
equals or surpasses what is requested by the DataReader. See QoS Requested vs. Offered Com-
patibility—the RxO Property (Section 4.2.1).

Some of the policies may be changed after the DataReader has been created. This allows the
application to modify the behavior of the DataReader while it is in use. To modify the QoS of an
existing DataReader, use the get_qos() and set_qos() operations on the DataReader. This is a gen-
eral pattern for all Entities, described in more detail in Section 4.1.7.3.

7.3.8.1 Configuring QoS Settings when the DataReader is Created

As described in Creating DataReaders (Section 7.3.1), there are different ways to create a
DataReader, depending on how you want to specify its QoS (with or without a QoS Profile).

❏ In Figure 7.9 on page 7-21, we saw an example of how to create a DataReader with default
QosPolicies by using the special constant, DDS_DATAREADER_QOS_DEFAULT,
which indicates that the default QoS values for a DataReader should be used. The default
DataReader QoS values are configured in the Publisher or DomainParticipant; you can
change them with set_default_datareader_qos() or
set_default_datareader_qos_with_profile(). Then any DataReaders created with the Sub-
scriber will use the new default values. As described in Section 4.1.7, this is a general pat-
tern that applies to the construction of all Entities.

❏ To create a DataReader with non-default QoS without using a QoS Profile, see the example
code in Figure 7.11 on page 7-37. It uses the Publisher’s get_default_reader_qos() method
to initialize a DDS_DataReaderQos structure. Then, the policies are modified from their
default values before the structure is used in the create_datareader() method.

❏ You can also create a DataReader and specify its QoS settings via a QoS Profile. To do so,
you will call create_datareader_with_profile(), as seen in Figure 7.12 on page 7-36.

❏ If you want to use a QoS profile, but then make some changes to the QoS before creating
the DataReader, call get_datareader_qos_from_profile() and create_datareader() as seen
in Figure 7.13 on page 7-37.

For more information, see Creating DataReaders (Section 7.3.1) and Chapter 17: Configuring
QoS with XML.

// Create the datareader
DDSDataReader * reader = subscriber->create_datareader_with_profile(

 topic,
 “MyReaderLibrary”,
 “MyReaderProfile”,
 NULL, DDS_STATUS_MASK_NONE);

if (reader == NULL) {
 // ... error
};

// narrow it for your specific data type
FooDataReader* foo_reader = FooDataReader::narrow(reader);

Figure 7.12 Creating a DataReader with a QoS Profile
7-36

DataReaders
7.3.8.2 Comparing QoS Values

The equals() operation compares two DataReader’s DDS_DataWriterQoS structures for equality.
It takes two parameters for the two DataReader’s QoS structures to be compared, then returns
TRUE is they are equal (all values are the same) or FALSE if they are not equal.

Figure 7.11 Creating a DataReader with Modified QosPolicies (not from a profile)

DDS_DataReaderQos reader_qos;1

// initialize reader_qos with default values
subscriber->get_default_datareader_qos(reader_qos);

// make QoS changes here
reader_qos.history.depth = 5;

// Create the reader with modified qos
DDSDataReader * reader = subscriber->create_datareader(

topic, reader_qos,
NULL, DDS_STATUS_MASK_NONE);

if (reader == NULL) {
// ... error

}
// narrow it for your specific data type
FooDataReader* foo_reader = FooDataReader::narrow(reader);

1. Note: In C, you must initialize the QoS structures before they are used, see Section 4.2.2.

DDS_DataReaderQos reader_qos;1

// Get reader QoS from profile
retcode = factory->get_datareader_qos_from_profile(

reader_qos,
“ReaderProfileLibrary”,
“ReaderProfile”);

if (retcode != DDS_RETCODE_OK) {
// handle error

}

// Makes QoS changes here
reader_qos.history.depth = 5;

DDSDataReader * reader = subscriber->create_datareader(
topic,reader_qos,
NULL, DDS_STATUS_MASK_NONE);

if (reader == NULL) {
// handle error

}

1. Note: In C, you must initialize the QoS structures before they are used, see Section 4.2.2.

Figure 7.13 Getting QoS Values from a Profile, Changing QoS Values, Creating a DataReader with
Modified QoS Values
7-37

DataReaders
7.3.8.3 Changing QoS Settings After DataReader Has Been Created

There are 2 ways to change an existing DataReader’s QoS after it is has been created—again
depending on whether or not you are using a QoS Profile.

❏ To change QoS programmatically (that is, without using a QoS Profile), use get_qos()
and set_qos(). See the example code in Figure 7.14. It retrieves the current values by call-
ing the DataReader’s get_qos() operation. Then it modifies the value and calls set_qos() to
apply the new value. Note, however, that some QosPolicies cannot be changed after the
DataReader has been enabled—this restriction is noted in the descriptions of the individ-
ual QosPolicies.

❏ You can also change a DataReader’s (and all other Entities’) QoS by using a QoS Profile
and calling set_qos_with_profile(). For an example, see Figure 7.15. For more informa-
tion, see Chapter 17: Configuring QoS with XML.

7.3.8.4 Using a Topic’s QoS to Initialize a DataWriter’s QoS

Several DataReader QosPolicies can also be found in the QosPolicies for Topics (see Section 5.1.3).
The QosPolicies set in the Topic do not directly affect the DataReaders (or DataWriters) that use
that Topic. In many ways, some QosPolicies are a Topic-level concept, even though the DDS stan-
dard allows you to set different values for those policies for different DataReaders and DataWrit-
ers of the same Topic. Thus, the policies in the DDS_TopicQos structure exist as a way to help
centralize and annotate the intended or suggested values of those QoSs. Connext does not check
to see if the actual policies set for a DataReader is aligned with those set in the Topic to which it is
bound.

There are many ways to use the QosPolicies’ values set in the Topic when setting the QosPolicies’
values in a DataReader. The most straight forward way is to get the values of policies directly
from the Topic and use them in the policies for the DataReader. Figure 6.21 on page 6-51 shows an

DDS_DataReaderQos reader_qos;1

// Get current QoS.
if (datareader->get_qos(reader_qos) != DDS_RETCODE_OK) {

// handle error
}
// Makes QoS changes here
reader_qos.history.depth = 5;

// Set the new QoS
if (datareader->set_qos(reader_qos) != DDS_RETCODE_OK) {

// handle error
}

1. For the C API, you need to use DDS_ParticipantQos_INITIALIZER or DDS_ParticipantQos_initialize(). See Spe-
cial QosPolicy Handling Considerations for C (Section 4.2.2)

Figure 7.14 Changing the QoS of an Existing DataReader (without a QoS Profile)

retcode = datareader->set_qos_with_profile(
“ReaderProfileLibrary”,”ReaderProfile”);

if (retcode != DDS_RETCODE_OK) {
 // handle error
}

Figure 7.15 Changing the QoS of an Existing DataReader with a QoS Profile
7-38

DataReaders
example of how to this for a DataWriter; the pattern applies to DataReaders as well.

The Subscriber’s copy_from_topic_qos() operation can be used to copy all the common policies
from the Topic QoS to a DataReaderQoS, as illustrated in Figure 6.22 on page 6-52 for DataWrit-
ers.

The special macro, DDS_DATAREADER_QOS_USE_TOPIC_QOS, can be used to indicate
that the DataReader should be created with the QoS that results from modifying the default
DataReader QoS with the values specified by the Topic. See Figure 6.23 on page 6-53 and
Figure 6.24 on page 6-53 for examples involving DataWriters. The same pattern applies to
DataReaders. For more information on the use and manipulation of QoS, see Section 4.1.7.

7.3.9 Navigating Relationships Among Entities

7.3.9.1 Finding Matching Publications

The following DataReader operations can be used to get information about the DataWriters that
will send data to this DataReader.

❏ get_matched_publications()

❏ get_matched_publication_data()

The get_matched_publications() operation will return a sequence of handles to matched
DataWriters. You can use these handles in the get_matched_publication_data() method to get
information about the DataWriter such as the values of its QosPolicies.

Note that DataWriter that have been ignored using the DomainParticipant’s ignore_publication()
operation are not considered to be matched even if the DataWriter has the same Topic and com-
patible QosPolicies. Thus, they will not be included in the list of DataWriters returned by
get_matched_publications(). See Section 16.4.2 for more on ignore_publication().

You can also get the DATA_READER PROTOCOL_STATUS for matching publications with
get_matched_publication_datareader_protocol_status() (see Section 7.3.7.3).

Notes:

❏ Status/data for a matched publication is only kept while the matched publication is
alive. Once a matched publication is no longer alive, its status is deleted. If you try to get
the status/data for a matched publication that is no longer alive, the 'get data' or 'get sta-
tus' call will return an error.

❏ The get_matched_publication_data() operation does not retrieve the type_code or prop-
erty fields from built-in-topic data structures. This information is available through the
on_data_available() callback (if a DataReaderListener is installed on the PublicationBuil-
tinTopicDataDataReader).

❏ See also: Finding the Matching Publication’s ParticipantBuiltinTopicData (Section 7.3.9.2)

7.3.9.2 Finding the Matching Publication’s ParticipantBuiltinTopicData

get_matched_publication_participant_data() allows you to get the
DDS_ParticipantBuiltinTopicData (see Table 16.1) of a matched publication using a publication
handle.

This operation retrieves the information on a discovered DomainParticipant associated with the
publication that is currently matching with the DataReader.

The publication handle passed into this operation must correspond to a publication currently
associated with the DataReader. Otherwise, the operation will fail with
RETCODE_BAD_PARAMETER. The operation may also fail with
7-39

Using DataReaders to Access Data (Read & Take)
RETCODE_PRECONDITION_NOT_MET if the publication handle corresponds to the same
DomainParticipant to which the DataReader belongs.

Use get_matched_publications() (see Finding Matching Publications (Section 7.3.9.1)) to find
the publications that are currently matched with the DataReader.

Note: This operation does not retrieve the ParticipantBuiltinTopicData_property. This informa-
tion is available through the on_data_available() callback (if a DataReaderListener is installed
on the PublicationBuiltinTopicDataDataReader.

7.3.9.3 Finding a DataReader’s Related Entities

These DataReader operations are useful for obtaining a handle to various related entities:

❏ get_subscriber()

❏ get_topicdescription()

The get_subscriber() operation returns the Subscriber that created the DataReader.
get_topicdescription() returns the Topic with which the DataReader is associated.

7.3.9.4 Looking Up an Instance Handle

Some operations, such as read_instance() and take_instance(), take an instance_handle param-
eter. If you need to get such as handle, you can call the lookup_instance() operation, which
takes an instance as a parameter and returns a handle to that instance.

7.3.9.5 Getting the Key Value for an Instance

If you have a handle to a data-instance, you can use the FooDataReader’s get_key_value() oper-
ation to retrieve the key for that instance. The value of the key is decomposed into its constituent
fields and returned in a Foo structure. For information on keys and keyed data types, please see
Section 2.2.2.

7.4 Using DataReaders to Access Data (Read & Take)
For user applications to access the data received for a DataReader, they must use the type-specific
derived class or set of functions in the C API. Thus for a user data type ‘Foo’, you must use
methods of the FooDataReader class. The type-specific class or functions are automatically gen-
erated if you use rtiddsgen. Else, you will have to create them yourself, see Section 3.8.5.1 for
more details.

7.4.1 Using a Type-Specific DataReader (FooDataReader)

Using a Subscriber you will create a DataReader associating it with a specific data type, for exam-
ple ‘Foo’. Note that the Subscriber’s create_datareader() method returns a generic DataReader.
When your code is ready to access data samples received for the DataReader, you must use type-
specific operations associated with the FooDataReader, such as read() and take().

To cast the generic DataReader returned by create_datareader() into an object of type FooData-
Reader, you should use the type-safe narrow() method of the FooDataReader class. narrow()
will make sure that the generic DataReader passed to it is indeed an object of the FooDataReader
class before it makes the cast. Else, it will return NULL. Figure 7.8 on page 7-15 shows an exam-
ple:

Foo_reader = FooDataReader::narrow(reader);
7-40

Using DataReaders to Access Data (Read & Take)
Table 7.3, “DataReader Operations,” on page 7-18 lists type-specific operations using a FooData-
Reader. Also listed are generic, non-type specific operations that can be performed using the
base class object DDSDataReader (or DDS_DataReader in C). In C, you must pass a pointer to
a DDS_DataReader to those generic functions.

7.4.2 Loaning and Returning Data and SampleInfo Sequences

The read() and take() operations (and their variations) return information to your application in
two sequences:

❏ received data samples in a sequence of the data type

❏ corresponding information about each sample in a SampleInfo sequence

These sequences are parameters that are passed by your code into the read() and take() opera-
tions. If you use empty sequences (sequences that are initialized but have a maximum length of
0), Connext will fill those sequences with memory directly loaned from the receive queue itself.
There is no copying of the data or of SampleInfo when the contents of the sequences are loaned.
This is certainly the most efficient way for your code to retrieve the data.

However when you do so, your code must return the loaned sequences back to Connext so that
they can be reused by the receive queue. If your code does not return the loan by calling the Foo-
DataReader’s return_loan() method, then Connext will eventually run out of memory to store
data samples received from the network for that DataReader. See Figure 7.16 for an example of
borrowing and returning loaned sequences.

DDS_ReturnCode_t return_loan(FooSeq &received_data,
 DDS_SampleInfoSeq &info_seq);

If your code provides its own sequences to the read/take operations, then Connext will copy the
data from the receive queue. In that case, you do not have to call return_loan() when you are fin-

Figure 7.16 Using Loaned Sequences in read() and take()

// In C++ and Java, sequences are automatically initialized
// to be empty
FooSeq data_seq;1

DDS_SampleInfoSeq info_seq;
DDS_ReturnCode_t retcode;
...
// with empty sequences, a take() or read() will return loaned
// sequence elements
retcode = Foo_reader->take(data_seq, info_seq,

 DDS_LENGTH_UNLIMITED, DDS_ANY_SAMPLE_STATE,
 DDS_ANY_VIEW_STATE, DDS_ANY_INSTANCE_STATE);

... // process the returned data

// must return the loaned sequences when done processing
Foo_reader->return_loan(data_seq, info_seq);
...

1. In the C API, you must use the FooSeq_initialize() and DDS_SampleInfoSeq_initialize() operations
or the macro DDS_SEQUENCE_INITIALIZER to initialize the FooSeq and DDS_SampleInfoSeq to
be empty. For example,
DDS_SampleInfoSeq infoSeq;
DDS_SampleInfoSeq_initialize(&infoSeq);
or
FooSeq fooSeq = DDS_SEQUENCE_INITIALIZER;
7-41

Using DataReaders to Access Data (Read & Take)
ished with the data. However, you must make sure the following is true, or the read/take oper-
ation will fail with a return code of DDS_RETCODE_PRECONDITION_NOT_MET:

❏ The received_data of type FooSeq and info_seq of type DDS_SampleInfoSeq passed in
as parameters have the same maximum size (length).

❏ The maximum size (length) of the sequences are less than or equal to the passed in
parameter, max_samples.

7.4.3 Accessing Data Samples with Read or Take

To access the data samples that Connext has received for a DataReader, you must invoke the
read() or take() methods. These methods return a list (sequence) of data samples and additional
information about the samples in a corresponding list (sequence) of SampleInfo structures. The
contents of SampleInfo are described in Section 7.4.6.

Calling read(), take(), or one of their variations resets the DATA_AVAILABLE status.

The way Connext builds the collection of samples depends on QoS policies set on the
DataReader and Subscriber, the source_timestamp of the samples, and the sample_states,
view_states, and instance_states parameters passed to the read/take operation.

In read() and take(), you may enter parameters so that Connext selectively returns data samples
currently stored in the DataReader’s receive queue. You may want Connext to return all of the
data in a single list or only a subset of the available samples as configured using the
sample_states, view_states, and instance_states masks. Section 7.4.6 describes how these masks
are used to determine which data samples should be returned.

7.4.3.1 Read vs. Take

The difference between read() and take() is how Connext treats the data that is returned. With
take(), Connext will remove the data from the DataReader’s receive queue. The data returned by
Connext is no longer stored by Connext. With read(), Connext will continue to store the data in the
DataReader’s receive queue. The same data may be read again until it is taken in subsequent
take() calls. Note that the data stored in the DataReader’s receive queue may be overwritten,
even if it has not been read, depending on the setting of the HISTORY QosPolicy (Section 6.5.10).

The read() and take() operations are non-blocking calls, so that they may return no data
(DDS_RETCODE_NO_DATA) if the receive queue is empty or has no data that matches the cri-
teria specified by the StateMasks.

The read_w_condition() and take_w_condition() operations take a ReadCondition as a parame-
ter instead of sample, view or instance states. The only samples returned will be those for which
the ReadCondition is TRUE. These operations, in conjunction with ReadConditions and a Wait-
Set, allow you to perform ‘waiting reads.’ For more information, see ReadConditions and Que-
ryConditions (Section 4.6.7).

As you will see, read and take have the same parameters:

DDS_ReturnCode_t read(
FooSeq &received_data_seq,
DDS_SampleInfoSeq &info_seq,
DDS_Long max_samples,
DDS_SampleStateMask sample_states,
DDS_ViewStateMask view_states,
DDS_InstanceStateMask instance_states);

DDS_ReturnCode_t take(
FooSeq &received_data_seq,
DDS_SampleInfoSeq &info_seq,
DDS_Long max_samples,
7-42

Using DataReaders to Access Data (Read & Take)
DDS_SampleStateMask sample_states,
DDS_ViewStateMask view_states,
DDS_InstanceStateMask instance_states);

Note: These operations may loan internal Connext memory, which must be returned with
return_loan(). See Loaning and Returning Data and SampleInfo Sequences (Section 7.4.2).

Both operations return an ordered collection of data samples (in the received_data_seq parame-
ter) and information about each sample (in the info_seq parameter). Exactly how they are
ordered depends on the setting of the PRESENTATION QosPolicy (Section 6.4.6) and the
DESTINATION_ORDER QosPolicy (Section 6.5.6). For more details please see the API Refer-
ence HTML documentation for read() and take().

In read() and take(), you can use the sample_states, view_states, and instance_states parame-
ters to specify properties that are used to select the actual samples that are returned by those
methods. With different combinations of these three parameters, you can direct Connext to
return all data samples, data samples that you have not accessed before, the data samples of
instances that you have not seen before, data samples of instances that have been disposed, etc.
The possible values for the different states are described both in the API Reference HTML docu-
mentation and in Section 7.4.6.

Table 7.17 lists the variations of the read() and take() operations.

Table 7.17 Read and Take Operations

Read Operations Take Operations Description Reference

read take

Reads/takes a collection of data samples
from the DataReader.
Can be used for both keyed and non-
keyed data types.

Section 7.4.3

read_instance take_instance

Identical to read() and take(), but all
returned samples belong to a single
instance, which you specify as a parame-
ter.
Can only be used with keyed data types.

Section 7.4.3.4

read_instance_
w_condition

take_instance_
w_condition

Identical to read_instance() and
take_instance(), but all returned sam-
ples belong to the single specified
instance and satisfy the specified Read-
Condition.

Section 7.4.3.7

read_next_instance take_next_instance

Similar to read_instance() and
take_instance(), but the actual instance is
not directly specified as a parameter.
Instead, the samples will all belong to
instance ordered after the instance that is
specified by the previous_handle param-
eter.

Section 7.4.3.5

read_next_instance_
w_condition

take_next_instance_
w_condition

Accesses a collection of data samples of
the next instance that match a specific set
of ReadConditions, from the DataReader.

Section 7.4.3.8
7-43

Using DataReaders to Access Data (Read & Take)
7.4.3.2 General Patterns for Accessing Data

Once the data samples are available to the data readers, the samples can be read or taken by the
application. The basic rule is that the application may do this in any order it wishes. This
approach is very flexible and allows the application ultimate control.

To access data coherently, or in order, the PRESENTATION QosPolicy (Section 6.4.6) must be
set properly.

❏ Accessing Samples If No Order or Coherence Is Required

Simply access the data by calling read/take on each DataReader in any order you want.

You do not have to call begin_access() and end_access(). However, doing so is not an
error and it will have no effect.

You can call the Subscriber’s get_datareaders() operation to see which DataReaders have
data to be read, but you do not need to read all of them or read them in a particular order.
The get_datareaders() operation will return a logical 'set' in the sense that the same
DataReader will not appear twice. The order of the DataReaders returned is not specified.

❏ Accessing Samples within a SubscriberListener

This case describes how to access the data inside the listener's on_data_on_readers()
operation (regardless of the PRESENTATION QoS policy settings).

To do so, you can call read/take on each DataReader in any order. You can also delegate
accessing of the data to the DataReaderListeners by calling the Subscriber’s
notify_datareaders() operation.

Similar to the previous case, you can still call the Subscriber’s get_datareaders() opera-
tion to determine which DataReaders have data to be read, but you do not have to read all
of them, or read them in a particular order. get_datareaders() will return a logical 'set.'

You do not have to call begin_access() and end_access(). However, doing so is not an
error and it will have no effect.

7.4.3.3 read_next_sample and take_next_sample

The read_next_sample() or take_next_sample() operation is used to retrieve the next sample
that hasn’t already been accessed. It is a simple way to 'read' samples and frees your application
from managing sequences and specifying sample, instance or view states. It behaves the same as
calling read() or take() with max_samples = 1, sample_states = NOT_READ, view_states =
ANY_VIEW_STATE, and instance_states = ANY_INSTANCE_STATE.

DDS_ReturnCode_t read_next_sample(Foo & received_data,
 DDS_SampleInfo & sample_info);

DDS_ReturnCode_t take_next_sample(Foo & received_data,
 DDS_SampleInfo & sample_info);

read_next_sample take_next_sample

Provide a convenient way to access
the next data sample in the receive
queue that has not been accessed
before.

Section 7.4.3.3

read_w_condition take_w_condition
Accesses a collection of data samples from
the DataReader that match specific Read-
Condition criteria.

Section 7.4.3.6

Table 7.17 Read and Take Operations

Read Operations Take Operations Description Reference
7-44

Using DataReaders to Access Data (Read & Take)
It copies the next, not-previously-accessed data value from the DataReader. It also copies the
sample’s corresponding DDS_SampleInfo structure.

If there is no unread data in the DataReader, the operation will return
DDS_RETCODE_NO_DATA and nothing is copied.

Since this operation copies both the data sample and the SampleInfo into user-provided stor-
age, it does not allocate nor loan memory. You do not have to call return_loan() after this opera-
tion.

Note: If the received_data parameter references a structure that contains a sequence and that
sequence has not been initialized, the operation will return DDS_RETCODE_ERROR.

7.4.3.4 read_instance and take_instance

The read_instance() and take_instance() operations are identical to read() and take(), but they
are used to access samples for just a specific instance (key value). The parameters are the same,
except you must also supply an instance handle. These functions can only be used when the
DataReader is tied to a keyed type, see Section 2.2.2 for more about keyed data types.

These operations may return BAD_PARAMETER if the instance handle does not correspond to
an existing data-object known to the DataReader.

The handle to a particular data instance could have been cached from a previous read() opera-
tion (value taken from the SampleInfo struct) or created by using the DataReader’s
lookup_instance() operation.

DDS_ReturnCode_t read_instance(
FooSeq &received_data,
DDS_SampleInfoSeq &info_seq,
DDS_Long max_samples,
const DDS_InstanceHandle_t &a_handle,
DDS_SampleStateMask sample_states,
DDS_ViewStateMask view_states,
DDS_InstanceStateMask instance_states);

Note: This operation may loan internal Connext memory, which must be returned with
return_loan(). See Loaning and Returning Data and SampleInfo Sequences (Section 7.4.2).

7.4.3.5 read_next_instance and take_next_instance

The read_next_instance() and take_next_instance() operations are similar to read_instance()
and take_instance() in that they return samples for a specific data instance (key value). The dif-
ference is that instead of passing the handle of the data instance for which you want data sam-
ples, instead you pass the handle to a ‘previous’ instance. The returned samples will all belong
to the 'next' instance, where the ordering of instances is explained below.

DDS_ReturnCode_t read_next_instance(
FooSeq &received_data,
DDS_SampleInfoSeq &info_seq,
DDS_Long max_samples,
const DDS_InstanceHandle_t &previous_handle,
DDS_SampleStateMask sample_states,
DDS_ViewStateMask view_states,
DDS_InstanceStateMask instance_states)

Connext orders all instances relative to each other.1 This ordering depends on the value of the
key as defined for the data type associated with the Topic. For the purposes of this discussion, it
is 'as if' each instance handle is represented by a unique integer and thus different instance han-
dles can be ordered by their value.
7-45

Using DataReaders to Access Data (Read & Take)
This operation will return values for the next instance handle that has data samples stored in the
receive queue (that meet the criteria specified by the StateMasks). The next instance handle will
be ordered after the previous_handle that is passed in as a parameter.

The special value DDS_HANDLE_NIL can be passed in as the previous_handle. Doing so, you
will receive values for the “smallest” instance handle that has data samples stored in the receive
queue that you have not yet accessed.

You can call the read_next_instance() operation with a previous_handle that does not corre-
spond to an instance currently managed by the DataReader. For example, you could use this
approach to iterate though all the instances, take all the samples with a
NOT_ALIVE_NO_WRITERS instance_state, return the loans (at which point the instance infor-
mation may be removed, and thus the handle becomes invalid), and then try to read the next
instance.

The example in Figure 7.17 shows how to use take_next_instance() iteratively to process all the
data received for an instance, one instance at a time. We always pass in DDS_HANDLE_NIL as
the value of previous_handle. Each time through the loop, we will receive samples for a differ-
ent instance, since the previous time through the loop, all of the samples of the previous instance
were returned (and thus accessed).

Note: This operation may loan internal Connext memory, which must be returned with
return_loan(). See Loaning and Returning Data and SampleInfo Sequences (Section 7.4.2).

7.4.3.6 read_w_condition and take_w_condition

The read_w_condition() and take_w_condition() operations are identical to read() and take(),
but instead of passing in the sample_states, view_states, and instance_states mask parameters
directly, you pass in a ReadCondition (which specifies these masks).

 DDS_ReturnCode_t read_w_condition
(FooSeq &received_data,
 DDS_SampleInfoSeq &info_seq,
 DDS_Long max_samples,
 DDSReadCondition *condition)

Note: This operation may loan internal Connext memory, which must be returned with
return_loan(). See Loaning and Returning Data and SampleInfo Sequences (Section 7.4.2).

7.4.3.7 read_instance_w_condition and take_instance_w_condition

The read_instance_w_condition() and take_instance_w_condition() operations are similar to
read_instance() and take_instance(), respectively, except that the returned samples must also
satisfy a specified ReadCondition.

DDS_ReturnCode_t read_instance_w_condition(
FooSeq & received_data,
DDS_SampleInfoSeq & info_seq,
DDS_Long max_samples,
const DDS_InstanceHandle_t & a_handle,
DDSReadCondition * condition);

The behavior of read_instance_w_condition() and take_instance_w_condition() follows the
same rules as read() and take() regarding pre-conditions and post-conditions for the
received_data and sample_info parameters.

1. The ordering of the instances is specific to each implementation of the DDS standard; to maximize the portability
of your code, do not assume any particular order. In the case of Connext (and likely other DDS implementations as well),
the order is not likely to be meaningful to you as a developer; it is simply important that some ordering exists.
7-46

Using DataReaders to Access Data (Read & Take)
These functions can only be used when the DataReader is tied to a keyed type, see Section 2.2.2
for more about keyed data types.

Similar to read(), these operations must be provided on the specialized class that is generated for
the particular application data-type that is being accessed.

Note: These operations may loan internal Connext memory, which must be returned with
return_loan(). See Loaning and Returning Data and SampleInfo Sequences (Section 7.4.2).

7.4.3.8 read_next_instance_w_condition and take_next_instance_w_condition

The read_next_instance_w_condition() and take_next_instance_w_condition() operations are
identical to read_next_instance() and take_next_instance(), but instead of passing in the
sample_states, view_states, and instance_states mask parameters directly, you pass in a Read-
Condition (which specifies these masks).

DDS_ReturnCode_t read_next_instance_w_condition
(FooSeq &received_data,
 DDS_SampleInfoSeq &info_seq,
 DDS_Long max_samples,
 const DDS_InstanceHandle_t &previous_handle,
 DDSReadCondition *condition)

Figure 7.17 Using take_next_instance() to process received data

FooSeq received_data;1

DDS_SampleInfoSeq info_seq;

while (retcode = reader->take_next_instance(
received_data, info_seq,
DDS_LENGTH_UNLIMITED,
DDS_HANDLE_NIL,
DDS_ANY_SAMPLE_STATE,
DDS_ANY_VIEW_STATE,
DDS_ANY_INSTANCE_STATE)

 != DDS_RETCODE_NO_DATA) {

// the data samples returned in received_data will all
// be for a single instance

... // process the data

// now return the loaned sequences
if (reader->return_loan(received_data, info_seq) != DDS_RETCODE_OK) {

... // handle error
}

}

1. In the C API, you must use the FooSeq_initialize() and DDS_SampleInfoSeq_initialize() operations or
the macro DDS_SEQUENCE_INITIALIZER to initialize the FooSeq and DDS_SampleInfoSeq to be
empty. For example,
DDS_SampleInfoSeq infoSeq;
DDS_SampleInfoSeq_initialize(&infoSeq);
or
FooSeq fooSeq = DDS_SEQUENCE_INITIALIZER;
7-47

Using DataReaders to Access Data (Read & Take)
Note: This operation may loan internal Connext memory, which must be returned with
return_loan(). See Loaning and Returning Data and SampleInfo Sequences (Section 7.4.2).

7.4.4 Acknowledging Samples

Samples can be acknowledged one at a time, or as a group.

To explicitly acknowledge a single sample:

DDS_ReturnCode_t acknowledge_sample (const DDS_SampleInfo & sample_info)

Or you may acknowledge all previously accessed samples by calling:

DDS_ReturnCode_t DDSDataReader::acknowledge_all ()

Where:

❏ sample_info DDS_SampleInfo identifying the sample being acknowledged.

Both of these operations can only be used when the DataReader’s RELIABILITY QosPolicy (Sec-
tion 6.5.19) has an acknowledgment_kind set to
DDS_APPLICATION_EXPLICIT_.ACKNOWLEDGMENT_MODE.

See also: Application Acknowledgment (Section 6.3.12) and Chapter 13: Guaranteed Delivery of
Data.

7.4.5 The Sequence Data Structure

The DDS specification uses sequences whenever a variable-length array of elements must be
passed through the API. This includes passing QosPolicies into Connext, as well as retrieving
data samples from Connext. A sequence is an ordered collection of elements of the same type.
The type of a sequence containing elements of type “Foo” (whether “Foo” is one of your types
or a built-in Connext type) is typically called “FooSeq.”

In all APIs except Java, FooSeq contains deep copies of Foo elements; in Java, which does not
provide direct support for deep copy semantics, FooSeq contains references to Foo objects. In
Java, sequences implement the java.util.List interface, and thus support all of the collection
APIs and idioms familiar to Java programmers.

A sequence is logically composed of three things: an array of elements, a maximum number of
elements that the array may contain (i.e. its allocated size), and a logical length indicating how
many of the allocated elements are valid. The length may vary dynamically between 0 and the
maximum (inclusive); it is not permissible to access an element at an index greater than or equal
to the length.

A sequence may either “own” the memory associated with it, or it may “borrow” that memory.
If a sequence owns its own memory, then the sequence itself will allocate the its memory and is
permitted to grow and shrink that memory (i.e. change its maximum) dynamically.

You can also loan a sequence of memory using the sequence-specific operations
loan_contiguous() or loan_discontiguous(). This is useful if you want Connext to copy the
received data samples directly into data structures allocated in user space.

Please do not confuse (a) the user loaning memory to a sequence with (b) Connext loaning inter-
nal memory from the receive queue to the user code via the read() or take() operations. For
sequences of user data, these are complementary operations. read() and take() loan memory to
the user, passing in a sequence that has been loaned memory with loan_contiguous() or
loan_discontinguous().

A sequence with loaned of memory may not change its maximum size.
7-48

Using DataReaders to Access Data (Read & Take)
For C developers: In C, because there is no concept of a constructor, sequences must be initialized
before they are used. You can either set a sequence equal to the macro
DDS_SEQUENCE_INITIALIZER or use a sequence-specific method,
<type>Seq_initialize(), to initialize sequences.

For C++, C++/CLI, and C# developers: C++ sequence classes overload the [] operators to allow
you to access their elements as if the sequence were a simple array. However, for code por-
tability reasons, Connext’s implementation of sequences does not use the Standard Tem-
plate Library (STL).

For Java developers: In Java, sequences implement the List interface, and typically, a List must
contain Objects; it cannot contain primitive types directly. This restriction makes Lists of
primitives types less efficient because each type must be wrapped and unwrapped into
and from an Object as it is added to and removed from the List.

Connext provides a more efficient implementation for sequences of primitive types. In Connext,
primitive sequence types (e.g., IntSeq, FloatSeq, etc.) are implemented as wrappers around
arrays of primitive types. The wrapper also provides the usual List APIs; however, these APIs
manipulate Objects that store the primitive type.

More efficient APIs are also provided that manipulate the primitive types directly and thus
avoid unnecessary memory allocations and type casts. These additional methods are named
according to the pattern <standard method><primitive type>; for example, the IntSeq class defines
methods addInt() and getInt() that correspond to the List APIs add() and get(). addInt() and
getInt() directly manipulate int values while add() and get() manipulate Objects that contain a
single int.

For more information on sequence APIs in all languages, please consult the API Reference
HTML documentation (from the main page, select Modules, RTI Connext DDS API Reference,
Infrastructure Module, Sequence Support).

7.4.6 The SampleInfo Structure

When you invoke the read/take operations, for every data sample that is returned, a corre-
sponding SampleInfo is also returned. SampleInfo structures provide you with additional
information about the data samples received by Connext.

Table 7.18 shows the format of the SampleInfo structure.

Table 7.18 DDS_SampleInfo Structure

Type Field Name Description

DDS_SampleStateKind sample_state See Section 7.4.6.2

DDS_ViewStateKind view_state See Section 7.4.6.3

DDS_InstanceStateKind instance_state See Section 7.4.6.4

DDS_Time_t source_timestamp
Time stored by the DataWriter when the sam-
ple was written.

DDS_InstanceHandle_t instance_handle
Handle to the data-instance corresponding to
the sample.

DDS_InstanceHandle_t publication_handle

Local handle to the DataWriter that modified
the instance. This is the same instance handle
returned by get_matched_publications(). You
can use this handle when calling
get_matched_publication_data().
7-49

Using DataReaders to Access Data (Read & Take)
7.4.6.1 Reception Timestamp

In reliable communication, if data samples are received out received of order, Connext will not
deliver them until all the previous data samples have been received. For example, if Sample 2
arrives before Sample 1, Sample 2 cannot be delivered until Sample 1 is received. The
reception_timestamp is the time when all previous samples has been received—the time at
which the sample is committed. If samples are all received in order, the committed time will be
same as reception time. However, if samples are lost on the wire, then the committed time will
be later than the initial reception time.

7.4.6.2 Sample States

For each sample received, Connext keeps a sample_state relative to each DataReader. The
sample_state can be either:

❏ READ The DataReader has already accessed that sample by means of read().

❏ NOT_READ The DataReader has never accessed that sample before.

The samples retrieved by a read() or take() need not all have the same sample_state.

7.4.6.3 View States

For each instance (identified by a unique key value), Connext keeps a view_state relative to each
DataReader. The view_state can be either:

DDS_Long

disposed_generation_count

See Section 7.4.6.5.

no_writers_generation_count

sample_rank

generation_rank

absolute_generation_rank

DDS_Boolean valid_data
Indicates whether the data sample includes
valid data. See Section 7.4.6.6.

DDS_Time_t reception_timestamp
Time stored when the sample was committed
by the DataReader. See Section 7.4.6.1.

DDS_SequenceNumber_t publication_sequence_number
Publication sequence number assigned when
the sample was written by the DataWriter.

DDS_SequenceNumber_t reception_sequence_number
Reception sequence number assigned when
the sample was committed by the
DataReader. See Section 7.4.6.1.

struct DDS_GUID_t
original_publication_
virtual_guid

Original publication virtual GUID.
If the Publisher’s access_scope is GROUP, this
field contains the Publisher virtual GUID that
uniquely identifies the DataWriter group.

struct
DDS_SequenceNumber_t

original_publication_
virtual_sequence_number

Original publication virtual sequence num-
ber.
If the Publisher’s access_scope is GROUP, this
field contains the Publisher virtual sequence
number that uniquely identifies a sample
within the DataWriter group.

Table 7.18 DDS_SampleInfo Structure

Type Field Name Description
7-50

Using DataReaders to Access Data (Read & Take)
❏ NEW Either this is the first time the DataReader has ever accessed samples of the
instance, or the DataReader has accessed previous samples of the instance, but the
instance has since been reborn (i.e. become not-alive and then alive again). These two
cases are distinguished by examining the disposed_generation_count and the
no_writers_generation_count (see Section 7.4.6.5).

❏ NOT_NEW The DataReader has already accessed samples of the same instance and the
instance has not been reborn since.

The view_state in the SampleInfo structure is really a per-instance concept (as opposed to the
sample_state which is per data sample). Thus all data samples related to the same instance that
are returned by read() or take() will have the same value for view_state.

7.4.6.4 Instance States

As seen in Figure 7.18, Connext keeps an instance_state for each instance; it can be:

❏ ALIVE The following are all true: (a) samples have been received for the instance, (b)
there are live DataWriters writing the instance, and (c) the instance has not been explicitly
disposed (or more samples have been received after it was disposed).

❏ NOT_ALIVE_DISPOSED The instance was explicitly disposed by a DataWriter by means of
the dispose() operation.

❏ NOT_ALIVE_NO_WRITERS The instance has been declared as not-alive by the DataReader
because it has determined that there are no live DataWriter entities writing that instance.

The events that cause the instance_state to change can depend on the setting of the OWNER-
SHIP QosPolicy (Section 6.5.15):

❏ If OWNERSHIP QoS is set to EXCLUSIVE, the instance_state becomes
NOT_ALIVE_DISPOSED only if the DataWriter that currently “owns” the instance
explicitly disposes it. The instance_state will become ALIVE again only if the DataWriter
that owns the instance writes it. Note that ownership of the instance is determined by a
combination of the OWNERSHIP and OWNERSHIP_STRENGTH QosPolicies. Owner-
ship of an instance can dynamically change.

❏ If OWNERSHIP QoS is set to SHARED, the instance_state becomes
NOT_ALIVE_DISPOSED if any DataWriter explicitly disposes the instance. The
instance_state becomes ALIVE as soon as any DataWriter writes the instance again.

Since the instance_state in the SampleInfo structure is a per-instance concept, all data samples
related to the same instance that are returned by read() or take() will have the same value for
instance_state.

7.4.6.5 Generation Counts and Ranks

Generation counts and ranks allow your application to distinguish samples belonging to differ-
ent ‘generations’ of the instance. It is possible for an instance to become alive, be disposed and
become not-alive, and then to cycle again from alive to not-alive states during the operation of
an application. Each time an instance becomes alive defines a new generation for the instance.

It is possible that an instance may cycle through alive and not-alive states multiple times before
the application accesses the data samples for the instance. This means that the data samples
returned by read() and take() may cross generations. That is, some samples were published
when the instance was alive in one generation and other samples were published when the
instance transitioned through the non-alive state into the alive state again. It may be important
to your application to distinguish the data samples by the generation in which they were pub-
lished.
7-51

Using DataReaders to Access Data (Read & Take)
Each DataReader keeps two counters for each new instance it detects (recall that instances are dis-
tinguished by their key values):

❏ disposed_generation_count Counts how many times the instance_state of the corre-
sponding instance changes from NOT_ALIVE_DISPOSED to ALIVE. The counter is
reset when the instance resource is reclaimed.

❏ no_writers_generation_count Counts how many times the instance_state of the corre-
sponding instance changes from NOT_ALIVE_NO_WRITERS to ALIVE. The counter is
reset when the instance resource is reclaimed.

The disposed_generation_count and no_writers_generation_count fields in the SampleInfo
structure capture a snapshot of the corresponding counters at the time the corresponding sam-
ple was received.

The sample_rank and generation_rank in the SampleInfo structure are computed relative to
the sequence of samples returned by read() or take():

❏ sample_rank Indicates how many samples of the same instance follow the current one in
the sequence. The samples are always time-ordered, thus the newest sample of an
instance will have a sample_rank of 0. Depending on what you have configured read()
and take() to return, a sample_rank of 0 may or may not be the newest sample that was
ever received. It is just the newest sample in the sequence that was returned.

❏ generation_rank Indicates the difference in ‘generations’ between the sample and the
newest sample of the same instance as returned in the sequence. If a sample belongs to
the same generation as the newest sample in the sequence returned by read() and take(),
then generation_rank will be 0.

Figure 7.18 Instance States
7-52

Subscriber QosPolicies
❏ absolute_generation_rank Indicates the difference in ‘generations’ between the sample
and the newest sample of the same instance ever received by the DataReader. Recall that
the data sequence returned by read() and take() may not contain all of the data in the
DataReader’s receive queue. Thus, a sample that belongs to the newest generation of the
instance will have an absolute_generation_rank of 0.

Like the ‘generation count’ values, the ‘rank’ values are also reset to 0 if the instance resource is
reclaimed.

By using the sample_rank, generation_rank and absolute_generation_rank information in the
SampleInfo structure, your application can determine exactly what happened to the instance
and thus make appropriate decisions of what to do with the data samples received for the
instance. For example:

❏ A sample with sample_rank = 0 is the newest sample of the instance in the returned
sequence.

❏ Samples that belong to the same generation will have the same generation_rank (as well
as absolute_generation_rank).

❏ Samples with absolute_generation_rank = 0 belong to the newest generation for the
instance received by the DataReader.

7.4.6.6 Valid Data Flag

The SampleInfo structure’s valid_data flag indicates whether the sample contains data or is
only used to communicate a change in the instance_state of the instance.

Normally, each sample contains both a SampleInfo structure and some data. However, there are
situations in which the sample only contains the SampleInfo and does not have any associated
data. This occurs when Connext notifies the application of a change of state for an instance that
was caused by some internal mechanism (such as a timeout) for which there is no associated
data. An example is whenConnext detects that an instance has no writers and changes the corre-
sponding instance_state to NOT_ALIVE_NO_WRITERS.

If this flag is TRUE, then the sample contains valid Data. If the flag is FALSE, the Sample con-
tains no data.

To ensure correctness and portability, your application must check the valid_data flag prior to
accessing the data associated with the sample, and only access the data if it is TRUE.

7.5 Subscriber QosPolicies
Subscribers have the same set of QosPolicies as Publishers; see Publisher/Subscriber QosPolicies
(Section 6.4).

❏ ENTITYFACTORY QosPolicy (Section 6.4.2)

❏ EXCLUSIVE_AREA QosPolicy (DDS Extension) (Section 6.4.3)

❏ GROUP_DATA QosPolicy (Section 6.4.4)

❏ PARTITION QosPolicy (Section 6.4.5)

❏ PRESENTATION QosPolicy (Section 6.4.6)
7-53

DataReader QosPolicies
7.6 DataReader QosPolicies
This section describes the QosPolicies that are strictly for DataReaders (not for DataWriters). For a
complete list of QosPolicies that apply to DataReaders, see Table 7.16 on page 7-34.

❏ DATA_READER_PROTOCOL QosPolicy (DDS Extension) (Section 7.6.1)

❏ DATA_READER_RESOURCE_LIMITS QosPolicy (DDS Extension) (Section 7.6.2)

❏ READER_DATA_LIFECYCLE QoS Policy (Section 7.6.3)

❏ TIME_BASED_FILTER QosPolicy (Section 7.6.4)

❏ TRANSPORT_MULTICAST QosPolicy (DDS Extension) (Section 7.6.5)

❏ TYPE_CONSISTENCY_ENFORCEMENT QosPolicy (Section 7.6.6)

7.6.1 DATA_READER_PROTOCOL QosPolicy (DDS Extension)

The DATA_READER_PROTOCOL QosPolicy applies only to DataReaders that are set up for reli-
able operation (see RELIABILITY QosPolicy (Section 6.5.19)). This policy allows the application
to fine-tune the reliability protocol separately for each DataReader. For details of the reliable pro-
tocol used by Connext, see Chapter 10.

Connext uses a standard protocol for packet (user and meta data) exchange between applica-
tions. The DataReaderProtocol QosPolicy gives you control over configurable portions of the
protocol, including the configuration of the reliable data delivery mechanism of the protocol on
a per DataReader basis.

These configuration parameters control timing and timeouts, and give you the ability to trade
off between speed of data loss detection and repair, versus network and CPU bandwidth used to
maintain reliability.

It is important to tune the reliability protocol on a per DataReader basis to meet the requirements
of the end-user application so that data can be sent between DataWriters and DataReaders in an
efficient and optimal manner in the presence of data loss.

You can also use this QosPolicy to control how DDS responds to "slow" reliable DataReaders or
ones that disconnect or are otherwise lost.

See the RELIABILITY QosPolicy (Section 6.5.19) for more information on the per-DataReader/
DataWriter reliability configuration. The HISTORY QosPolicy (Section 6.5.10) and
RESOURCE_LIMITS QosPolicy (Section 6.5.20) also play an important role in the DDS reliability
protocol.

This policy includes the members presented in Table 7.19 and Table 7.20. For defaults and valid
ranges, please refer to the API Reference HTML documentation.

When setting the fields in this policy, the following rule applies. If this is false, Connext returns
DDS_RETCODE_INCONSISTENT_POLICY when setting the QoS:

❏ max_heartbeat_response_delay >= min_heartbeat_response_delay

7.6.1.1 Receive Window Size

A reliable DataReader presents samples it receives to the user in-order. If it receives samples out-
of-order, it stores them internally until the other missing samples are received. For example, if
the DataWriter sends samples 1 and 2, if the DataReader receives 2 first, it will wait until it
receives 1 before passing the samples to the user.
7-54

DataReader QosPolicies
Table 7.19 DDS_DataReaderProtocolQosPolicy

Type Field Name Description

DDS_GUID_t virtual_guid

The virtual GUID (Global Unique Identifier) is used to uniquely
identify the same DataReader across multiple incarnations. In
other words, this value allows Connext to remember information
about a DataReader that may be deleted and then recreated.
This value is used to provide durable reader state.
For more information, see Durability and Persistence Based on
Virtual GUIDs (Section 12.2).
By default, Connext will assign a virtual GUID automatically. If
you want to restore the DataReader’s state after a restart, you can
get the DataReader's virtual GUID using its get_qos() operation,
then set the virtual GUID of the restarted DataReader to the same
value.

DDS_
UnsignedLong

rtps_object_id

Determines the DataReader’s RTPS object ID, according to the
DDS-RTPS Interoperability Wire Protocol.
Only the last 3 bytes are used; the most significant byte is ignored.
The rtps_host_id, rtps_app_id, rtps_instance_id in the
WIRE_PROTOCOL QosPolicy (DDS Extension) (Section 8.5.9),
together with the 3 least significant bytes in rtps_object_id, and
another byte assigned by Connext to identify the entity type,
forms the BuiltinTopicKey in SubscriptionBuiltinTopicData.

DDS_
Boolean

expects_inline_qos

Specifies whether this DataReader expects inline QoS with every
sample.
DataReaders usually rely on the discovery process to propagate
QoS changes for matched DataWriters. Another way to get QoS
information is to have it sent inline with a sample.
With Connext, DataWriters and DataReaders cache discovery infor-
mation, so sending inline QoS is typically unnecessary. The use of
inline QoS is only needed for stateless implementations of DDS in
which DataReaders do not cache Discovery information.
The complete set of QoS that a DataWriter may send inline is spec-
ified by the Real-Time Publish-Subscribe (RTPS) Wire Interopera-
bility Protocol.
Note: The use of inline QoS creates an additional wire-payload,
consuming extra bandwidth and serialization/deserialization
time.

DDS_
Boolean

disable_positive_acks

Determines whether the DataReader sends positive acknowledge-
ments (ACKs) to matching DataWriters.
When TRUE. the matching DataWriter will keep samples in its
queue for this DataReader for a minimum keep duration (see Dis-
abling Positive Acknowledgements (Section 6.5.3.3)).
When strict-reliability is not required and NACK-based reliability
is sufficient, setting this field reduces overhead network traffic.
7-55

DataReader QosPolicies
DDS_Boolean
propagate_dispose_
of_unregistered_
instances

Indicates whether or not an instance can move to the
DDS_NOT_ALIVE_DISPOSED_INSTANCE_STATE state with-
out being in the DDS_ALIVE_INSTANCE_STATE state.
When set to TRUE, the DataReader will receive dispose notifica-
tions even if the instance is not alive.
This field only applies to keyed DataReaders.
To make sure the key is available to the FooDataReader’s
get_key_value() operation, use this option in combination with
setting the DataWriter’s serialize_key_with_dispose field (in the
DATA_WRITER_PROTOCOL QosPolicy (DDS Extension) (Sec-
tion 6.5.3)) to TRUE.
See Propagating Serialized Keys with Disposed-Instance Notifica-
tions (Section 6.5.3.5).

DDS_Rtps-
ReliableReader-
Protocol_t

rtps_reliable_reader See Table 7.20

Table 7.20 DDS_RtpsReliableReaderProtocol_t

Type Field Name Description

DDS_
Duration_t

heartbeat_suppression_
duration

How long additionally received heartbeats are suppressed.
When a reliable DataReader receives consecutive heartbeats
within a short duration, this may trigger redundant NACKs. To
prevent the DataReader from sending redundant NACKs, the
DataReader may ignore the latter heartbeat(s) for this amount of
time.
See Section 10.3.4.1.

min_heartbeat_response_
delay

Minimum delay between when the DataReader receives a heart-
beat and when it sends an ACK/NACK.

max_heartbeat_response_
delay

Maximum delay between when the DataReader receives a heart-
beat and when it sends an ACK/NACK. Increasing this value
helps prevent NACK storms, but increases latency.

nack_period
Rate at which to send negative acknowledgements to new
DataWriters. See Section 7.6.1.3.

DDS_Long receive_window_size
The number of received out-of-order samples a reader can keep
at a time. See Receive Window Size (Section 7.6.1.1)

DDS_
Duration_t

round_trip_time
The duration from sending a NACK to receiving a repair of a
sample. See Round-Trip Time For Filtering Redundant NACKs
(Section 7.6.1.2)

Table 7.19 DDS_DataReaderProtocolQosPolicy

Type Field Name Description
7-56

DataReader QosPolicies
The number of out-of-order samples that a DataReader can keep is set by the
receive_window_size. A larger window allows more out-of-order samples to be kept. When the
window is full, any subsequent out-of-samples received will be dropped, and such drops would
necessitate NACK repairs that would degrade throughput. So, in network environments where
out-of-order samples are more probable or where NACK repairs are costly, this window likely
should be increased.

By default, the window is set to 256, which is the maximum number of samples a single NACK
submessage can request.

7.6.1.2 Round-Trip Time For Filtering Redundant NACKs

When a DataReader requests for a sample to be resent, there is a delay from when the NACK is
sent, to when it receives the resent sample. During that delay, the DataReader may receive
HEARTBEATs that normally would trigger another NACK for the same sample. Such redun-
dant repairs waste bandwidth and degrade throughput.

The round_trip_time is a user-configured estimate of the delay between sending a NACK to
receiving a repair. A DataReader keeps track of when a sample has been NACK'd, and will pre-
vent subsequent NACKs from redundantly requesting for the same sample, until the round trip
time has passed.

Note that the default value of 0 seconds means that the DataReader does not filter for redundant
NACKs.

DDS_
Duration_t

app_ack_period

The period at which application-level acknowledgment mes-
sages are sent.

A DataReader sends application-level acknowledgment mes-
sages to a DataWriter at this periodic rate, and will continue
sending until it receives a message from the DataWriter that it
has received and processed the acknowledgment.

DDS_
Boolean

samples_per_app_ack

The minimum number of samples acknowledged by one appli-
cation-level acknowledgment message.

This setting applies only when the RELIABILITY QosPolicy
(Section 6.5.19) acknowledgment_kind is set to
APPLICATION_EXPLICIT or APPLICATION_AUTO.

A DataReader will immediately send an application-level
acknowledgment message when it has at least this many sam-
ples that have been acknowledged. It will not send an acknowl-
edgment message until it has at least this many samples
pending acknowledgment.

For example, calling the DataReader’s acknowledge_sample()
this many times consecutively will trigger the sending of an
acknowledgment message. Calling the DataReader’s
acknowledge_all() may trigger the sending of an acknowledg-
ment message, if at least this many samples are being acknowl-
edged at once. See Acknowledging Samples (Section 7.4.4).

This is independent of the DDS_RtpsReliableReaderProtocol_t’s
app_ack_period, where a DataReader will send acknowledg-
ment messages at the periodic rate regardless.

When this is set to DDS_LENGTH_UNLIMITED, acknowledg-
ment messages are sent only periodically, at the rate set by
DDS_RtpsReliableReaderProtocol_t’s app_ack_period.

Table 7.20 DDS_RtpsReliableReaderProtocol_t

Type Field Name Description
7-57

DataReader QosPolicies
7.6.1.3 Example

For many applications, changing these values will not be necessary. However, the more nodes
that your distributed application uses, and the greater the amount of network traffic it gener-
ates, the more likely it is that you will want to consider experimenting with these values.

When a reliable DataReader receives a heartbeat from a DataWriter, it will send an ACK/NACK
packet back to the DataWriter. Instead of sending the packet out immediately, the DataReader can
choose to send it after a delay. This policy sets the minimum and maximum time to delay; the
actual delay will be a random value in between. (For more on heartbeats and ACK/NACK mes-
sages, see Chapter 14: Discovery.)

Why is a delay useful? For DataWriters that have multiple reliable DataReaders, an efficient way
of heartbeating all of the DataReaders is to send a single heartbeat via multicast. In that case, all
of the DataReaders will receive the heartbeat (approximately) simultaneously. If all DataReaders
immediately respond with a ACK/NACK packet, the network may be flooded. While the size of
a ACK/NACK packet is relatively small, as the number of DataReaders increases, the chance of
packet collision also increases. All of these conditions may lead to dropped packets which forces
the DataWriter to send out additional heartbeats that cause more simultaneous heartbeats to be
sent, ultimately resulting a network packet storm.

By forcing each DataReader to wait for a random amount of time, bounded by the minimum and maximum
values in this policy, before sending an ACK/NACK response to a heartbeat, the use of the network is
spread out over a period of time, decreasing the peak bandwidth required as well as the likelihood of
dropped packets due to collisions. This can increase the overall performance of the reliable connection
while avoiding a network storm.

When a reliable DataReader first matches a reliable DataWriter, the DataReader sends periodic
NACK messages at the specified period to pull historical data from the DataWriter. The
DataReader will stop sending periodic NACKs when it has received all historical data available
at the time that it matched the DataWriter. The DataReader ensures that at least one NACK is sent
per period; for example, if, within a NACK period, the DataReader responds to a HEARTBEAT
message with a NACK, then the DataReader will not send another periodic NACK.

7.6.1.4 Properties

This QosPolicy cannot be modified after the DataReader is created.

It only applies to DataReaders, so there are no restrictions for setting it compatibly with respect to
DataWriters.

7.6.1.5 Related QosPolicies

❏ DATA_WRITER_PROTOCOL QosPolicy (DDS Extension) (Section 6.5.3)

❏ RELIABILITY QosPolicy (Section 6.5.19)

7.6.1.6 Applicable Entities

❏ DataReaders (Section 7.3)

7.6.1.7 System Resource Considerations

Changing the values in this policy requires making tradeoffs between minimizing latency
(decreasing min_heartbeat_response_delay), maximizing determinism (decreasing the differ-
ence between min_heartbeat_response_delay and max_heartbeat_response_delay), and mini-
mizing network collisions/spreading out the ACK/NACK packets across a time interval
(increasing the difference between min_heartbeat_response_delay and
max_heartbeat_response_delay and/or shifting their values between different DataReaders).
7-58

DataReader QosPolicies
If the values are poorly chosen with respect to the characteristics and requirements of a given
application, the latency and/or throughput of the application may suffer.

7.6.2 DATA_READER_RESOURCE_LIMITS QosPolicy (DDS Extension)

The DATA_READER_RESOURCE_LIMITS QosPolicy extends your control over the memory
allocated by Connext for DataReaders beyond what is offered by the RESOURCE_LIMITS
QosPolicy (Section 6.5.20). RESOURCE_LIMITS controls memory allocation with respect to the
DataReader itself: the number of samples that it can store in the receive queue and the number of
instances that it can manage simultaneously. DATA_READER_RESOURCE_LIMITS controls
memory allocation on a per matched-DataWriter basis. The two are orthogonal.

This policy includes the members in Table 7.21, “DDS_DataReaderResourceLimitsQosPolicy,”
on page 7-59. For defaults and valid ranges, please refer to the API Reference HTML documen-
tation.

Table 7.21 DDS_DataReaderResourceLimitsQosPolicy

Type Field Name Description

DDS_
Long

max_remote_writers

Maximum number of DataWriters from which a DataReader may receive
data samples, among all instances.
For unkeyed Topics: max_remote_writers must =
max_remote_writers_per_instance

max_remote_writers_
per_instance

Maximum number of DataWriters from which a DataReader may receive
data samples for a single instance.
For unkeyed Topics: max_remote_writers must =
max_remote_writers_per_instance

max_samples_
per_remote_writer

Maximum number of samples received out-of-order that a DataReader can
store from a single reliable DataWriter.
max_samples_per_remote_writer must be <=
RESOURCE_LIMITS::max_samples

max_infos
Maximum number of DDS_SampleInfo structures that a DataReader can
allocate.
max_infos must be >= RESOURCE_LIMITS::max_samples

initial_remote_writers

Initial number of DataWriters from which a DataReader may receive data
samples, including all instances.
For unkeyed Topics: initial_remote_writers must =
initial_remote_writers_per_instance

initial_remote_
writers_per_instance

Initial number of DataWriters from which a DataReader may receive data
samples for a single instance.
For unkeyed Topics: initial_remote_writers must =
initial_remote_writers_per_instance

initial_infos
Initial number of DDS_SampleInfo structures that a DataReader will allo-
cate.

initial_outstanding_
reads

Initial number of times in which memory can be concurrently loaned via
read/take calls without being returned with return_loan().

max_outstanding_
reads

Maximum number of times in which memory can be concurrently loaned
via read/take calls without being returned with return_loan().

max_samples_per_
read

Maximum number of samples that can be read/taken on a DataReader.

DDS_
Boolean

disable_fragmentation_
support

Determines whether the DataReader can receive fragmented samples.
When fragmentation support is not needed, disabling fragmentation sup-
port will save some memory resources.
7-59

DataReader QosPolicies
DDS_
Long

max_fragmented_
samples

The maximum number of samples for which the DataReader may store
fragments at a given point in time.
At any given time, a DataReader may store fragments for up to
max_fragmented_samples samples while waiting for the remaining frag-
ments. These samples need not have consecutive sequence numbers and
may have been sent by different DataWriters. Once all fragments of a sam-
ple have been received, the sample is treated as a regular sample and
becomes subject to standard QoS settings, such as max_samples. Connext
will drop fragments if the max_fragmented_samples limit has been
reached.
For best-effort communication, Connext will accept a fragment for a new
sample, but drop the oldest fragmented sample from the same remote
writer.
For reliable communication, Connext will drop fragments for any new
samples until all fragments for at least one older sample from that writer
have been received.
Only applies if disable_fragmentation_support is FALSE.

initial_fragmented_
samples

The initial number of samples for which a DataReader may store fragments.
Only applies if disable_fragmentation_support is FALSE.

max_fragmented_
samples_per_remote_
writer

The maximum number of samples per remote writer for which a
DataReader may store fragments. This is a logical limit, so a single remote
writer cannot consume all available resources.
Only applies if disable_fragmentation_support is FALSE.

max_fragments_per_
sample

Maximum number of fragments for a single sample.
Only applies if disable_fragmentation_support is FALSE.

DDS_
Boolean

dynamically_allocate_
fragmented_samples

Determines whether the DataReader pre-allocates storage for storing frag-
mented samples.
By default, Connext will allocate memory up front for storing fragments for
up to initial_fragmented_samples samples. This memory may grow up to
max_fragmented_samples if needed.
If dynamically_allocate_fragmented_samples is TRUE, Connext does not
allocate memory up front, but instead allocates memory from the heap
upon receiving the first fragment of a new sample. The amount of memory
allocated equals the amount of memory needed to store all fragments in
the sample. Once all fragments of a sample have been received, the sample
is deserialized and stored in the regular receive queue. At that time, the
dynamically allocated memory is freed again.
This QoS setting may be useful for large, but variable-sized data types
where up front memory allocation for multiple samples based on the max-
imum possible sample size may be expensive. The main disadvantage of
not pre-allocating memory is that one can no longer guarantee Connext
will have sufficient resources at run-time. Also, dynamic memory alloca-
tion and memory freeing at run time may not give you good performance.
Only applies if disable_fragmentation_support is FALSE.

DDS_
Long

max_total_instances
Maximum number of instances for which a DataReader will keep state.
See max_total_instances and max_instances (Section 7.6.2.1)

Table 7.21 DDS_DataReaderResourceLimitsQosPolicy

Type Field Name Description
7-60

DataReader QosPolicies
DataReaders must allocate internal structures to handle: the maximum number of DataWriters
that may connect to it; whether or not a DataReader handles data fragmentation and how many
data fragments that it may handle (for data samples larger than the MTU of the underlying net-
work transport); how many simultaneous outstanding loans of internal memory holding data
samples can be provided to user code; as well as others.

Most of these internal structures start at an initial size and, by default, will grow as needed by
dynamically allocating additional memory. You may set fixed, maximum sizes for these internal

DDS_
Long

max_remote_virtual_
writers

The maximum number of virtual writers (identified by a virtual GUID)
from which a DataReader may read, including all instances.
When the Subscriber’s access_scope is GROUP, this value determines the
maximum number of DataWriter groups supported by the Subscriber. Since
the Subscriber may contain more than one DataReader, only the setting of
the first applies.

DDS_
Long

initial_remote_virtual_
writers

The initial number of virtual writers from which a DataReader may read,
including all instances.

DDS_
Long

max_remote_virtual_
writers_per_instance

Maximum number of virtual remote writers that can be associated with an
instance.
For unkeyed types, this value is ignored.
The features of Durable Reader State and MultiChannel DataWriters, as
well as Persistence Servicea, require Connext to keep some internal state per
virtual writer and instance that is used to filter duplicate samples. These
duplicate samples could be coming from different DataWriter channels or
from multiple executions of Persistence Service.
Once an association between a remote virtual writer and an instance is
established, it is permanent—it will not disappear even if the physical
writer incarnating the virtual writer is destroyed.
If max_remote_virtual_writers_per_instance is exceeded for an instance,
Connext will not associate this instance with new virtual writers. Dupli-
cates samples coming from these virtual writers will not be filtered on the
reader.
If you are not using Durable Reader State, MultiChannel DataWriters or
Persistence Service, you can set this property to 1 to optimize resources.
For additional information about the virtual writers see Chapter 12.

DDS_
Long

initial_remote_virtual_
writers_per_instance

Initial number of virtual remote writers per instance.
For unkeyed types, this value is ignored.

DDS_
Long

max_remote_writers_
per_sample

Maximum number of remote writers that are allowed to write the same
sample.
One scenario in which two DataWriters may write the same sample is
when using Persistence Service. The DataReader may receive the same sam-
ple from the original DataWriter and from an Persistence Service DataWriter.

DDS_
Long

max_query_condition_
filters

This value determines the maximum number of unique query condition
content filters that a reader may create.
Each query condition content filter is comprised of both its
query_expression and query_parameters. Two query conditions that have
the same query_expression will require unique query condition filters if
their query_parameters differ. Query conditions that differ only in their
state masks will share the same query condition filter.

a. Persistence Service is included with Connext Messaging. It saves data samples so they can be delivered to subscribing
applications that join the system at a later time (see Chapter 26: Introduction to RTI Persistence Service).

Table 7.21 DDS_DataReaderResourceLimitsQosPolicy

Type Field Name Description
7-61

DataReader QosPolicies
structures if you want to bound the amount of memory that can be used by a DataReader. Setting
the initial size to the maximum size will prevent Connext from dynamically allocating any mem-
ory after the DataReader is created.

This policy also controls how the allocated internal data structure may be used. For example,
DataReaders need data structures to keep track of all of the DataWriters that may be sending it
data samples. The total number of DataWriters that it can keep track of is set by the
initial_remote_writers and max_remote_writers values. For keyed Topics,
initial_remote_writers_per_instance and max_remote_writers_per_instance control the num-
ber of DataWriters allowed by the DataReader to modify the value of a single instance.

By setting the max value to be less than max_remote_writers, you can prevent instances with
many DataWriters from using up the resources and starving other instances. Once the resources
for keeping track of DataWriters are used up, the DataReader will not be able to accept “connec-
tions” from new DataWriters. The DataReader will not be able to receive data from new matching
DataWriters which would be ignored.

In the reliable protocol used by Connext to support a RELIABLE setting for the RELIABILITY
QosPolicy (Section 6.5.19), the DataReader must temporarily store data samples that have been
received out-of-order from a reliable DataWriter. The storage of out-of-order samples is allocated
from the DataReader’s receive queue and shared among all reliable DataWriters. The parameter
max_samples_per_remote_writer controls the maximum number of out-of-order data samples
that the DataReader is allowed to store for a single DataWriter. This value must be less than the
max_samples value set in the RESOURCE_LIMITS QosPolicy (Section 6.5.20).

max_samples_per_remote_writer allows Connext to share the limited resources of the
DataReader equitably so that a single DataWriter is unable to use up all of the storage of the
DataReader while missing data samples are being resent.

When setting the values of the members, the following rules apply:

❏ max_remote_writers >= initial_remote_writers

❏ max_remote_writers_per_instance >= initial_remote_writers_per_instance
max_remote_writers_per_instance <= max_remote_writers

❏ max_infos >= initial_infos
max_infos >= RESOURCE_LIMITS::max_samples

❏ max_outstanding_reads >= initial_outstanding_reads

❏ max_remote_writers >= max_remote_writers_per_instance

❏ max_samples_per_remote_writer <= RESOURCE_LIMITS::max_samples

If any of the above are false, Connext returns the error code
DDS_RETCODE_INCONSISTENT_POLICY when setting the DataReader’s QoS.

7.6.2.1 max_total_instances and max_instances

The maximum number of instances actively managed by a DataReader is determined by
max_instances in the RESOURCE_LIMITS QosPolicy (Section 6.5.20). These instances have
associated DataWriters or samples in the DataReader’s queue and are visible to the user through
operations such as take(), read(), and get_key().

The features Durable Reader State (Section 12.4), multi-channel DataWriters (Chapter 18), and
Persistence Service1 require Connext to keep some internal state even for instances without
DataWriters or samples in the DataReader’s queue. The additional state is used to filter duplicate
samples that could be coming from different DataWriter channels or from multiple executions of

1. Persistence Service is included with Connext Messaging. It saves data samples so they can be delivered to sub-
scribing applications that join the system at a later time (see Chapter 26: Introduction to RTI Persistence Service).
7-62

DataReader QosPolicies
Persistence Service. The total maximum number of instances that will be managed by the middle-
ware, including instances without associated DataWriters or samples, is determined by
max_total_instances.

max_total_instances must be greater than max_instances or equal to
DDS_AUTO_MAX_TOTAL_INSTANCES, which treats max_total_instances as being equal to
max_instances in the RESOURCE_LIMITS QosPolicy (Section 6.5.20).

When a new instance is received, Connext will check the resource limit max_instances in the
RESOURCE_LIMITS QosPolicy (Section 6.5.20). If the limit is exceeded, Connext will drop the
sample and report it as lost and rejected. If the limit is not exceeded, Connext will check
max_total_instances. If max_total_instances is exceeded, Connext will replace an existing
instance without DataWriters and samples with the new one. The application could receive
duplicate samples for the replaced instance if it becomes alive again.

7.6.2.2 Example

The max_samples_per_remote_writer value affects sharing and starvation.
max_samples_per_remote_writer can be set to less than the RESOURCE_LIMITS QosPolicy’s
max_samples to prevent a single DataWriter from starving others. This control is especially
important for Topics that have their OWNERSHIP QosPolicy (Section 6.5.15) set to SHARED.

In the case of EXCLUSIVE ownership, a lower-strength remote DataWriter can "starve" a higher-
strength remote DataWriter by making use of more of the DataReader's resources, an undesirable
condition. In the case of SHARED ownership, a remote DataWriter may starve another remote
DataWriter, making the sharing not really equal.

7.6.2.3 Properties

This QosPolicy cannot be modified after the DataReader is created.

It only applies to DataReaders, so there are no restrictions for setting it compatibly on the DataW-
riter.

7.6.2.4 Related QosPolicies

❏ RESOURCE_LIMITS QosPolicy (Section 6.5.20)

❏ OWNERSHIP QosPolicy (Section 6.5.15)

7.6.2.5 Applicable Entities

❏ DataReaders (Section 7.3)

7.6.2.6 System Resource Considerations

Increasing any of the “initial” values in this policy will increase the amount of memory allocated
by Connext when a new DataReader is created. Increasing any of the “max” values will not affect
the initial memory allocated for a new DataReader, but will affect how much additional memory
may be allocated as needed over the DataReader’s lifetime.

Setting a max value greater than an initial value thus allows your application to use memory
more dynamically and efficiently in the event that the size of the application is not well-known
ahead of time. However, Connext may dynamically allocate memory in response to network
communications.
7-63

DataReader QosPolicies
7.6.3 READER_DATA_LIFECYCLE QoS Policy

This policy controls the behavior of the DataReader with regards to the lifecycle of the data
instances it manages, that is, the data instances that have been received and for which the
DataReader maintains some internal resources.

When a DataReader receives data, it is stored in a receive queue for the DataReader. The user
application may either take the data from the queue or leave it there. This QoS controls whether
or not Connext will automatically remove data from the receive queue (so that user applications
cannot access it afterwards) when Connext detects that there are no more DataWriters alive for
that data.

DataWriters may also call dispose() on its data, informing DataReaders that the data no longer
exists. This QosPolicy also controls whether or not Connext automatically removes disposed
data from the receive queue.

For keyed Topics, the consideration of removing data samples from the receive queue is done on
a per instance (key) basis. Thus when Connext detects that there are no longer DataWriters alive
for a certain key value for a Topic (an instance of the Topic), it can be configured to remove all
data samples for a certain instance (key). DataWriters also can dispose its data on a per instance
basis. Only the data samples of disposed instances would be removed by Connext if so config-
ured.

This policy helps purge untaken samples from not-alive-instances and thus may prevent a
DataReader from reclaiming resources. With this policy, the untaken samples from not-alive-
instances are purged and treated as if the samples were taken after the specified amount of time.

The DataReader internally maintains the samples that have not been taken by the application,
subject to the constraints imposed by other QoS policies such as HISTORY QosPolicy (Section
6.5.10) and RESOURCE_LIMITS QosPolicy (Section 6.5.20).

The DataReader also maintains information regarding the identity, view-state, and instance-state
of data instances, even after all samples have been ‘taken’ (see Section 7.4.3). This is needed to
properly compute the states when future samples arrive.

Under normal circumstances, a DataReader can only reclaim all resources for instances for which
there are no DataWriters and for which all samples have been ‘taken.’ The last sample taken by
the DataReader for that instance will have an instance state of NOT_ALIVE_NO_WRITERS or
NOT_ALIVE_DISPOSED_INSTANCE (depending on whether or not the instance was disposed
by the last DataWriter that owned it.) If you are using the default (infinite) values for this
QosPolicy, this behavior can cause problems if the application does not ‘take’ those samples for
some reason. The ‘untaken’ samples will prevent the DataReader from reclaiming the resources
and they would remain in the DataReader indefinitely.

It includes the members in Table 7.22.

Table 7.22 DDS_ReaderDataLifecycleQosPolicy

Type Field Name Description

DDS_Duration_t
autopurge_nowriter_
samples_delay

How long the DataReader maintains information about an
instance once its instance_state becomes
NOT_ALIVE_NO_WRITERS.

DDS_Duration_t
autopurge_disposed_
samples_delay

How long the DataReader maintains information about an
instance once its instance_state becomes
NOT_ALIVE_DISPOSED.
7-64

DataReader QosPolicies
❏ autopurge_nowriter_samples_delay This defines the maximum duration for which
the DataReader will maintain information regarding an instance once its instance_state
becomes NOT_ALIVE_NO_WRITERS. After this time elapses, the DataReader will
purge all internal information regarding the instance, any untaken samples will also be
lost.

❏ autopurge_disposed_samples_delay This defines the maximum duration for which
the DataReader will maintain samples of an instance once its instance_state becomes
NOT_ALIVE_DISPOSED. After this time elapses, the DataReader will purge all internal
information regarding the instance; any untaken samples will also be lost.

7.6.3.1 Properties

This QoS policy can be modified after the DataReader is enabled.

It only applies to DataReaders, so there are no RxO restrictions for setting it compatibly on the
DataWriter.

7.6.3.2 Related QoS Policies

❏ HISTORY QosPolicy (Section 6.5.10)

❏ LIVELINESS QosPolicy (Section 6.5.13)

❏ OWNERSHIP QosPolicy (Section 6.5.15)

❏ RESOURCE_LIMITS QosPolicy (Section 6.5.20)

❏ WRITER_DATA_LIFECYCLE QoS Policy (Section 6.5.26)

7.6.3.3 Applicable Entities

❏ DataReaders (Section 7.3)

7.6.3.4 System Resource Considerations

None.

7.6.4 TIME_BASED_FILTER QosPolicy

The TIME_BASED_FILTER QosPolicy allows you to specify that data should not be delivered
more than once per specified period for data-instances of a DataReader—regardless of how fast
DataWriters are publishing new samples of the data-instance.

This QoS policy allows you to optimize resource usage (CPU and possibly network bandwidth)
by only delivering the required amount of data to different DataReaders.

DataWriters may send data faster than needed by a DataReader. For example, a DataReader of sen-
sor data that is displayed to a human operator in a GUI application does not need to receive data
updates faster than a user can reasonably perceive changes in data values. This is often measure
in tenths (0.1) of a second up to several seconds. However, a DataWriter of sensor information
may have DataReaders that are processing the sensor information to control parts of the system
and thus need new data updates in measures of hundredths (0.01) or thousandths (0.001) of a
second.

With this QoS policy, different DataReaders can set their own time-based filters, so that data pub-
lished faster than the period set by a DataReader will be dropped by the middleware and not
delivered to the DataReader. Note that all filtering takes place on the reader side.
7-65

DataReader QosPolicies
It includes the member in Table 7.23. For the default and valid range, please refer to the API Ref-
erence HTML documentation.

As seen in Figure 7.19, it is inconsistent to set a DataReader’s minimum_separation longer than
its DEADLINE QosPolicy (Section 6.5.5) period.

This QosPolicy allows a DataReader to subsample the data being published for a data instance by
DataWriters. If a user application only needs new samples for a data instance to be received at a
specified period, then there is no need for Connext to deliver data faster than that period. How-
ever, whether or not data being published by a DataWriter at a faster rate than set by the
TIME_BASED_FILTER QoS is sent on the wire depends on several factors, including whether
the DataReader is receiving the data reliably and if the data is being sent via multicast for multi-
ple DataReaders.

For best effort data delivery, if the data type is unkeyed and the DataWriter has an infinite liveli-
ness lease_duration (LIVELINESS QosPolicy (Section 6.5.13)), Connext will only send as many
packets to a DataReader as required by the TIME_BASED_FILTER, no matter how fast the
DataWriter’s write() function is called.

For multicast data delivery to multiple DataReaders, the DataReader with the lowest
TIME_BASED_FILTER minimum_separation determines the DataWriter's send rate. For exam-
ple, if a DataWriter sends multicast to two DataReaders, one with minimum_separation of 2 sec-
onds and one with minimum_separation of 1 second, the DataWriter will send every 1 second.

Other configurations (for example, when the DataWriter is reliable, or the data type is keyed, or
the DataWriter has a finite liveliness lease_duration) must send all data published by the DataW-
riter. On reception, only the data that passes the TIME_BASED_FILTER will be stored in the
DataReader’s receive queue. Extra data will be accepted but dropped. Note that filtering is only
applied on ‘alive’ samples (that is, samples that have not been disposed/unregistered).

Table 7.23 DDS_TimeBasedFilterQosPolicy

Type Field Name Description

DDS_Duration_t minimum_separation
Minimum separation time between samples of the same
instance.
Must be <= DEADLINE::period

Data samples for a DataReader can be filtered out using the TIME_BASED_FILTER QoS
(minimum_separation). Once a data sample for an instance has been received, Connext
will accept but drop any new data samples for the same instance that arrives within the
time specified by minimum_separation. After the minimum_separation, a new sample
that arrives is accepted and stored in the receive queue, and the timer starts again. If no
samples arrive by the DEADLINE, the REQUESTED_DEADLINE_MISSED status
will be changed and Listeners called back if installed.

Figure 7.19 Accepting Data for DataReaders

Minimum_
Separation

REQUESTED_DEADLINE_
MISSED status changes if
no sample received for
instance

New sample for instance will
be accepted

Data received for same
instance is dropped

Deadline

Time

Last data sample is
received
7-66

DataReader QosPolicies
7.6.4.1 Example

The purpose of this QosPolicy is to prevent fast DataWriters from overwhelming a DataReader
that cannot process the data at the rate the data is being published. In certain configurations, the
number of packets sent by Connext can also be reduced thus minimizing the consumption of net-
work bandwidth.

You may want to change the minimum_separation between data samples for one or more of the
following reasons:

❏ The DataReader is connected to the network via a low-bandwidth connection that is
unable to sustain the amount of traffic generated by the matched DataWriter(s).

❏ The rate at which the matched DataWriter(s) can generate samples is faster than the rate
at which the DataReader can process them. Or faster than needed by the DataReader. For
example, a graphical user interface seldom needs to be updated faster than 30 times a
second, even if new data values are available much faster.

❏ The resource limits of the DataReader are constrained relative to the number of samples
that could be generated by the matched DataWriter(s). Too many packets coming at once
will cause them to be exhausted before the DataReader has time to process them.

7.6.4.2 Properties

This QosPolicy can be modified at any time.

It only applies to DataReaders, so there are no restrictions for setting it compatibly on the DataW-
riter.

7.6.4.3 Related QosPolicies

❏ RELIABILITY QosPolicy (Section 6.5.19)

❏ DEADLINE QosPolicy (Section 6.5.5)

❏ TRANSPORT_MULTICAST QosPolicy (DDS Extension) (Section 7.6.5)

7.6.4.4 Applicable Entities

❏ DataReaders (Section 7.3)

7.6.4.5 System Resource Considerations

Depending on the values of other QosPolicies such as RELIABILITY and
TRANSPORT_MULTICAST, this policy may be able to decrease the usage of network band-
width and CPU by preventing unneeded packets from being sent and processed.

7.6.5 TRANSPORT_MULTICAST QosPolicy (DDS Extension)

This QosPolicy specifies the multicast address on which a DataReader wants to receive its data. It
can also specify a port number as well as a subset of the available transports with which to
receive the multicast data.

By default, DataWriters will send individually addressed packets for each DataReader that sub-
scribes to the topic of the DataWriter—this is known as unicast delivery. Thus, as many copies of
the data will be sent over the network as there are DataReaders for the data. The network band-
width used by a DataWriter will thus increase linearly with the number of DataReaders.

Multicast is a concept supported by some transports, most notably UDP/IP, so that a single
packet on the network can be addressed such that it is received by multiple nodes. This is more
7-67

DataReader QosPolicies
efficient when the same data needs to be sent to multiple nodes. By using multicast, the network
bandwidth usage will be constant, independent of the number of DataReaders.

Coordinating the multicast address specified by DataReaders can help optimize network band-
width usage in systems where there are multiple DataReaders for the same Topic.

The QosPolicy structure includes the members in Table 7.24.

To take advantage of multicast, the value of this QosPolicy must be coordinated among all of the
applications on a network for DataReaders of the same Topic. For a DataWriter to send a single
packet that will be received by all DataReaders simultaneously, the same multicast address must
be used.

To use this QosPolicy, you will also need to specify a port number. A port number of 0 will cause
Connext to automatically use a default value. As explained in Ports Used for Discovery (Section
14.5), the default port number for multicast addresses is based on the domain ID. Should you
choose to use a different port number, then for every unique port number used by Entities in
your application, depending on the transport, Connext may create a thread to process messages
received for that port on that transport. See Chapter 19: Connext Threading Model for more
about threads.

Threads are created on a per-transport basis, so if this QosPolicy specifies multiple transports
for a receive_port, then a thread may be created for each transport for that unique port. Some
transports may be able to share a single thread for different ports, others can not. Note that dif-
ferent Entities can share the same port number, and thus, the same thread will process all of the
data for all of the Entities sharing the same port number for a transport.

Also note that if the port number specified by this QoS is the same as a port number specified by
a TRANSPORT_UNICAST QoS, then the transport may choose to process data received both via
multicast and unicast with a single thread. Whether or not a transport must use different threads

Table 7.24 DDS_TransportMulticastQosPolicy

Type Field
Name Description

DDS_TransportMulticastSettingSeq
(A sequence of the type shown in Table 7.25)

value
A sequence of multicast locators. (See Locator
Format (Section 14.2.1.1).)

DDS_TransportMulticastKind kind

Can be either:
AUTOMATIC_TRANSPORT_MULTICAST_QOS
(a multicast address is selected automatically);
this setting is required when using
TRANSPORT_MULTICAST_MAPPING QosPol-
icy (DDS Extension) (Section 8.5.8).
UNICAST_ONLY_TRANSPORT_MULTICAST_Q
OS (unicast-only mode)

Table 7.25 DDS_TransportMulticastSetting_t

Type Field Name Description

DDS_StringSeq transports
A sequence of transport aliases that specifies which transports
should be used to receive multicast messages for this DataReader.

char * receive_address
A multicast group address to which the DataWriter should send
data for this DataReader.

DDS_Long receive_port

The port that should be used in the addressing of multicast mes-
sages destined for this DataReader. A value of 0 will cause Connext to
use a default port number based on domain ID. See Ports Used for
Discovery (Section 14.5).
7-68

DataReader QosPolicies
to process data received via multicast or unicast for the same port number depends on the
implementation of the transport.

Notes:

❏ The same multicast address can be used by DataReaders of different Topics.

❏ Even though the TRANSPORT_MULTICAST QoS allows you to specify multiple multi-
cast addresses for a DataReader, Connext currently only uses one multicast address (the
first in the sequence) per DataReader.

❏ If a DataWriter is using the MULTI_CHANNEL QosPolicy (DDS Extension) (Section
6.5.14), the multicast addresses specified in the TRANSPORT_MULTICAST QosPolicy
are ignored by that DataWriter. The DataWriter will not publish samples on those locators.

7.6.5.1 Example

In an airport, there may be many different monitors that display current flight information.
Assuming each monitor is controlled by a networked application, network bandwidth would be
greatly reduced if flight information was published using multicast.

Figure 7.20 shows an example of how to set this QosPolicy.

7.6.5.2 Properties

This QosPolicy cannot be modified after the Entity is created.

For compatibility between DataWriters and DataReaders, the DataWriter must be able to send to
the multicast address that the DataReader has specified.

7.6.5.3 Related QosPolicies

❏ MULTI_CHANNEL QosPolicy (DDS Extension) (Section 6.5.14)

❏ TRANSPORT_UNICAST QosPolicy (DDS Extension) (Section 6.5.23)

❏ TRANSPORT_BUILTIN QosPolicy (DDS Extension) (Section 8.5.7)

Figure 7.20 Setting Up a Multicast DataReader

...

DDS_DataReaderQos reader_qos;

reader_listener = new HelloWorldListener();
if (reader_listener == NULL) {

// handle error
}
// Get default data reader QoS to customize
retcode = subscriber->get_default_datareader_qos(reader_qos);
if (retcode != DDS_RETCODE_OK) {

// handle error
}
// Set up multicast reader
reader_qos.multicast.value.ensure_length(1,1);
reader_qos.multicast.value[0].receive_address =

DDS_String_dup("239.192.0.1");

reader = subscriber->create_datareader(topic,reader_qos,
 reader_listener, DDS_STATUS_MASK_ALL);
7-69

DataReader QosPolicies
7.6.5.4 Applicable Entities

❏ DomainParticipants (Section 8.3)

❏ DataReaders (Section 7.3)

7.6.5.5 System Resource Considerations

On Ethernet-based systems, the number of multicast addresses that can be “listened” to by the
network interface card is usually limited. The exact number of multicast addresses that can be
monitored simultaneously by a NIC depends on its manufacturer. Setting a multicast address
for a DataReader will use up one of the multicast-address slots of the NIC.

What happens if the number of different multicast addresses used by different DataReaders
across different applications on the same node exceeds the total number supported by a NIC
depends on the specific operating system. Some will prevent you from configuring too many
multicast addresses to be monitored.

Many operating systems will accommodate the extra multicast addresses by putting the NIC in
promiscuous mode. This means that the NIC will pass every Ethernet packet to the operating
system, and the operating system will pass the packets with the specified multicast addresses to
the application(s). This results in extra CPU usage. We recommend that your applications do not
use more multicast addresses on a single node than the NICs on that node can listen to simulta-
neously in hardware.

Depending on the implementation of a transport, Connext may need to create threads to receive
and process data on a unique-port-number basis. Some transports can share the same thread to
process data received for different ports; others like UDPv4 must have different threads for dif-
ferent ports. In addition, if the same port is used for both unicast and multicast, the transport
implementation will determine whether or not the same thread can be used to process both uni-
cast and multicast data. For UDPv4, only one thread is needed per port–independent of whether
the data was received via unicast or multicast data. See Receive Threads (Section 19.3) for more
information.

7.6.6 TYPE_CONSISTENCY_ENFORCEMENT QosPolicy

The TypeConsistencyEnforcementQosPolicy defines the rules that determine whether the type
used to publish a given topic is consistent with the type used to subscribe to it.

The QosPolicy structure includes the member in Table 7.26.

The type-consistency enforcement rules consist of two steps:

Step 1. If both the DataWriter and DataReader specify a TypeObject, it is considered first. If the
DataReader allows type coercion, then its type must be assignable from the DataWriter’s
type. If the DataReader does not allow type coercion, then its type must be structurally
identical to the type of the DataWriter.

Table 7.26 DDS_TypeConsistencyEnforcementQosPolicy

Type Field
Name Description

DDS_TypeConsistencyKind kind

Can be either:
• DISALLOW_TYPE_COERCION

• ALLOW_TYPE_COERCION (default)

See Values for TypeConsistencyKind for details.
7-70

DataReader QosPolicies
Step 2. If either the DataWriter or the DataReader does not provide a TypeObject definition, then
the registered type names are examined. The DataReader’s and DataWriter’s registered
type names must match exactly.

If either Step 1 or Step 2 fails, the Topics associated with the DataReader and DataWriter are con-
sidered to be inconsistent and the INCONSISTENT_TOPIC Status (Section 5.3.1) is updated.

The default enforcement kind is DDS_ALLOW_TYPE_COERCION. However, when the mid-
dleware is introspecting the built-in topic data declaration of a remote DataReader in order to
determine whether it can match with a local DataWriter, if it observes that no TypeConsistency-
EnforcementQosPolicy value is provided (as would be the case when communicating with a
Service implementation not in conformance with this specification), it assumes a kind of
DDS_DISALLOW_TYPE_COERCION.

Values for TypeConsistencyKind

❏ DISALLOW_TYPE_COERCION

With this setting, the DataWriter and DataReader must support the same data type in
order for them to communicate. (This is the degree of enforcement required by the OMG
DDS Specification prior to the OMG Extensible and Dynamic Topic Types for DDS Speci-
fication1.)

When Connext is introspecting the built-in topic data declaration of a remote DataWriter
or DataReader, if no TypeConsistencyEnforcementQosPolicy value is provided (as would
be the case when communicating with an implementation not in conformance with the
Extensible and Dynamic Topic Types for DDS" (DDS-XTypes) specification), Connext
shall assume a kind of DISALLOW_TYPE_COERCION.

❏ ALLOW_TYPE_COERCION (default)

With this setting, the DataWriter and the DataReader need not support the same data type
in order for them to communicate, as long as the DataReader’s type is assignable from the
DataWriter’s type.

For example, the following two extensible types will be assignable to each other since
MyDerivedType contains all the members of MyBaseType (member_1) plus an addi-
tional element (member_2).

struct MyBaseType {
long member_1;

};
struct MyDerivedType: MyBaseType {

long member_2;
};

Even if MyDerivedType was not explicitly inherited from MyBaseType, the types would
still be assignable. For example:

struct MyBaseType {
long member_1;

};
struct MyDerivedType {

long member_1;
long member_2;

};

For more information, see the Core Libraries and Utilities Getting Started Guide Addendum for
Extensible Types and the OMG ‘Extensible and Dynamic Topic Types for DDS’ Specification2.

1. http://www.omg.org/spec/DDS-XTypes/
7-71

http://www.omg.org/spec/DDS-XTypes/

DataReader QosPolicies
7.6.6.1 Properties

This QosPolicy cannot be modified after the DataReader is enabled.

It only applies to DataReaders, so there is no requirement that the publishing and subscribing
sides use compatible values.

7.6.6.2 Related QoS Policies

None.

7.6.6.3 Applicable Entities

❏ DataReaders (Section 7.3)

7.6.6.4 System Resource Considerations

None.

2. http://www.omg.org/spec/DDS-XTypes/
7-72

http://www.omg.org/spec/DDS-XTypes/

Chapter 8 Working with Domains

This chapter discusses how to use DomainParticipants. It describes the types of operations that
are available for them and their QosPolicies.

This chapter includes the following sections:

❏ Fundamentals of Domains and DomainParticipants (Section 8.1)

❏ DomainParticipantFactory (Section 8.2)

❏ DomainParticipants (Section 8.3)

❏ DomainParticipantFactory QosPolicies (Section 8.4)

❏ DomainParticipant QosPolicies (Section 8.5)

❏ Clock Selection (Section 8.6)

❏ System Properties (Section 8.7)

The goal of this chapter is to help you become familiar with the objects you need for setting up
your Connext application. For specific details on any mentioned operations, see the API Refer-
ence HTML documentation.

8.1 Fundamentals of Domains and DomainParticipants
DomainParticipants are the focal point for creating, destroying, and managing other Connext
objects. A domain is a logical network of applications: only applications that belong to the same
domain may communicate using Connext. A domain is identified by a unique integer value
known as a domain ID. An application participates in a domain by creating a DomainParticipant
for that domain ID.

As seen in Figure 8.1, a single application can participate in multiple domains by creating multi-
ple DomainParticipants with different domain IDs. DomainParticipants in the same domain form a
logical network; they are isolated from DomainParticipants of other domains, even those running
on the same set of physical computers sharing the same physical network. DomainParticipants in
different domains will never exchange messages with each other. Thus, a domain establishes a
“virtual network” linking all DomainParticipants that share the same domain ID.

An application that wants to participate in a certain domain will need to create a "Domain Par-
ticipant." As seen in Figure 8.2, a DomainParticipant object is a container for all other Entities that
belong to the same domain. It acts as factory for the Publisher, Subscriber, and Topic entities. (As
seen in Chapters 6 and 7, in turn, Publishers are factories for DataWriters and Subscribers are fac-
tories for DataReaders.) DomainParticipants cannot contain other DomainParticipants.
8-1

Fundamentals of Domains and DomainParticipants
Like all Entities, DomainParticipants have QosPolicies and Listeners. The DomainParticipant entity
also allows you to set ‘default’ values for the QosPolicies for all the entities created from it or
from the entities that it creates (Publishers, Subscribers, Topics, DataWriters, and DataReaders).

Figure 8.1 Relationship between Applications and Domains

Application A

Application B

Application C

Domain-1

Domain-2

Applications can belong to multiple domains—A belongs to domains 1 and 2. Applications in the
same domain can communicate with each other, such as A and B, or A and C. Applications in
different domains, such as B and C, are not even aware of each other and will not exchange messages.

Figure 8.2 Domain Module

Note: MultiTopics are not currently
supported.
8-2

DomainParticipantFactory
8.2 DomainParticipantFactory
The main purpose of a DomainParticipantFactory is to create and destroy DomainParticipants.

In C++ terms, this is a singleton class; that is, you will only have a single DomainParticipantFac-
tory in an application—no matter how many DomainParticipants the application may create.
Figure 8.3 shows how to instantiate a DomainParticipantFactory. Notice that there are no parame-
ters to specify. Alternatively, in C++, C++/CLI, and C#, the predefined macro, DDSThePartici-
pantFactory,1 can also be used to retrieve the singleton factory.

Unlike the other Entities that you create, the DomainParticipantFactory does not have an associ-
ated Listener. However, it does have associated QosPolicies, see Section 8.2.1. You can change
them using the factory’s get_qos() and set_qos() operations. The DomainParticipantFactory also
stores the default QoS settings that can be used when a DomainParticipant is created. These
default settings can be changed as well, see Section 8.3.6.5.

Once you have a DomainParticipantFactory, you can use it to perform the operations listed in
Table 8.1. The most important one is create_participant(), described in Section 8.3.1. For more
details on all operations, see the API Reference HTML documentation as well as the section of
the manual listed in the Reference column.

1. In C, the macro is DDS_TheParticipantFactory. In Java, use the static class method DomainParticipantFac-
tory.TheParticipantFactory.

Figure 8.3 Instantiating a DomainParticipantFactory

DDSDomainParticipantFactory* factory = NULL;

factory = DDSDomainParticipantFactory::get_instance();

if (factory == NULL) {
 // ... error
}

Table 8.1 DomainParticipantFactory Operations

Working
with ... Operation Description Reference

Domain-
Participants

create_participant Creates a DomainParticipant.
Section 8.3.1create_participant_with_

profile
Creates a DomainParticipant based on a QoS
profile.

delete_participant Deletes a DomainParticipant. Section 8.3.2

get_default_participant_qos Gets the default QoS for DomainParticipants. Section 8.2.2

lookup_participant
Finds a specific DomainParticipant, based on
a domain ID.

Section 8.2.4

set_default_participant_qos Sets the default QoS for DomainParticipants.
Section 8.2.2set_default_participant_

qos_with_profile
Sets the default QoS for DomainParticipants
based on a QoS profile.

The
Factory’s
Instance

get_instance Gets the singleton instance of this class.
Section 8.2.3

finalize_instance Destroys the singleton instance of this class.
8-3

DomainParticipantFactory
The
Factory’s

Own QoS

get_qos Gets/sets the DomainParticipantFactory’s
QoS.

Section 4.1.7
set_qos

equals
Compares two DomainParticipantFactory’s
QoS structures for equality.

Threads unregister_thread

Frees all resources related to a thread.
This function is intended to be used at the
end of any user-created threads that invoke
Connext APIs (not all users will have this sit-
uation). The best approach is to call it imme-
diately before exiting such a thread, after all
Connext APIs have been called.

Profiles &
Libraries

get_default_library
Gets the default library for a DomainPartici-
pantFactory.

Section 8.2.1.1get_default_profile
Gets the default QoS profile for a Domain-
ParticipantFactory.

get_default_profile_library
Gets the library that contains the default
QoS profile for a DomainParticipantFactory.

get_<entity>_qos_from_
profile

Gets the <entity> QoS values associated
with a specified QoS profile. <entity> may
be topic, datareader, datawriter, subscriber, pub-
lisher, or participant.

Section 8.2.5

get_<entity>_qos_from_
profile_w_topic_name

Like get_<entity>_qos_from_profile(), but
this operation allows you to specify a topic
name associated with the entity. The topic
filter expressions in the profile will be evalu-
ated on the topic name.
<entity> may be topic, datareader, or dataw-
riter.

get_qos_profiles
Gets the names of all XML QoS profiles
associated with a specified XML QoS profile
library.

Section 17.9.6

get_qos_profile_libraries
Gets the names of all XML QoS profile
libraries associated with the DomainPartici-
pantFactory.

Section 17.10.1

load_profiles
Explicitly loads or reloads the QoS profiles. Section 17.2.1

reload_profiles

set_default_profile
Sets the default QoS profile for a Domain-
ParticipantFactory.

Section 8.2.1.1
set_default_library

Sets the default library for a DomainPartici-
pantFactory.

unload_profiles
Frees the resources associated with loading
QoS profiles.

Section 17.2.1

Table 8.1 DomainParticipantFactory Operations

Working
with ... Operation Description Reference
8-4

DomainParticipantFactory
8.2.1 Setting DomainParticipantFactory QosPolicies

The DDS_DomainParticipantFactoryQos structure has the following format:

struct DDS_DomainParticipantFactoryQos {
DDS_EntityFactoryQosPolicy entity_factory;
DDS_SystemResourceLimitsQosPolicy resource_limits;
DDS_ProfileQosPolicy profile;
DDS_LoggingQosPolicy logging;

};

For information on why you would want to change a particular QosPolicy, see the section refer-
enced in Table 8.2.

8.2.1.1 Getting and Setting the DomainParticipantFactory’s Default QoS Profile and Library

You can retrieve the default QoS profile for the DomainParticipantFactory with the
get_default_profile() operation. You can also get the default library for the DomainParticipant-
Factory, as well as the library that contains the DomainParticipantFactory’s default profile (these
are not necessarily the same library); these operations are called get_default_library() and
get_default_library_profile(), respectively. These operations are for informational purposes
only (that is, you do not need to use them as a precursor to setting a library or profile.) For more
information, see Chapter 17: Configuring QoS with XML.

virtual const char * get_default_library ()
const char * get_default_profile ()
const char * get_default_profile_library ()

There are also operations for setting the DomainParticipantFactory’s default library and profile:

DDS_ReturnCode_t set_default_library (const char * library_name)

DDS_ReturnCode_t set_default_profile (const char * library_name,
 const char * profile_name)

set_default_profile() specifies the profile that will be used as the default the next time a default
DomainParticipantFactory profile is needed during a call to a DomainParticipantFactory opera-
tion.

When calling a DomainParticipantFactory operation that requires a profile_name parameter,
you can use NULL to refer to the default profile. (This same information applies to setting a
default library.)

set_default_profile() does not set the default QoS for the DomainParticipant that can be created
by the DomainParticipantFactory. To set the default QoS using a profile, use the DomainPartici-
pantFactory’s set_default_participant_qos_with_profile() operation (see Section 8.2.2).

Table 8.2 DomainParticipantFactory QoS

QosPolicy Description

EntityFactory
Controls whether or not child entities are created in the enabled state. See
Section 6.4.2.

Logging Configures the properties associated with Connext logging. See Section 8.4.1.

Profile
Configures the way that XML documents containing QoS profiles are loaded by RTI.
See Section 8.4.2.

SystemResource-
Limits

Configures DomainParticipant-independent resources used by Connext. Mainly used
to change the maximum number of DomainParticipants that can be created within a
single process (address space). See Section 8.4.3.
8-5

DomainParticipantFactory
8.2.2 Getting and Setting Default QoS for DomainParticipants

To get the default QoS that will be used for creating DomainParticipants if create_participant() is
called with DDS_PARTICIPANT_QOS_DEFAULT as the qos parameter, use this DomainPartici-
pantFactory operation:

DDS_ReturnCode_t get_default_participant_qos (
 DDS_DomainParticipantQos & qos)

This operation gets the QoS settings that were specified on the last successful call to
set_default_participant_qos() or set_default_participant_qos_with_profile(), or if the call was
never made, the default values listed in DDS_DomainParticipantQos.

To set the default QoS that will be used for new DomainParticipants, use the following operations.
Then these default QoS will be used if create_participant() is called with
DDS_PARTICIPANT_QOS_DEFAULT as the ‘qos’ parameter.

DDS_ReturnCode_t set_default_participant_qos (
const DDS_DomainParticipantQos &qos)

or

DDS_ReturnCode_t set_default_participant_qos_with_profile (
const char *library_name,
const char *profile_name)

Notes:

❏ These operations may potentially allocate memory, depending on the sequences con-
tained in some QoS policies.

❏ It is not safe to set the default DomainParticipant QoS values while another thread may be
simultaneously calling get_default_participant_qos(), set_default_participant_qos(), or
create_participant() with DDS_PARTICIPANT_QOS_DEFAULT as the qos parameter. It
is also not safe to get the default DomainParticipant QoS values while another thread may
be simultaneously calling set_default_participant_qos().

8.2.3 Freeing Resources Used by the DomainParticipantFactory

The finalize_instance() operation explicitly reclaims resources used by the participant factory
singleton (including resources use for QoS profiles).

On many operating systems, these resources are automatically reclaimed by the OS when the
program terminates. However, some memory-check tools will flag those resources as unre-
claimed. This method provides a way to clean up all the memory used by the participant factory.

Before calling finalize_instance() on a DomainParticipantFactory, all of the participants created
by the factory must have been deleted. For a DomainParticipant to be successfully deleted, all
Entities created by the participant or by the Entities that the participant created must have been
deleted. In essence, the DomainParticipantFactory cannot be deleted until all other Entities have
been deleted in an application.

Except for Linux systems: get_instance() and finalize_instance() are UNSAFE on the FIRST call.
It is not safe for two threads to simultaneously make the first call to get or finalize the factory
instance. Subsequent calls are thread safe.

8.2.4 Looking Up a DomainParticipant

The DomainParticipantFactory has a useful operation for retrieving the handle to a particular
DomainParticipant:

DDSDomainParticipant* lookup_participant (DDS_DomainId_t domainId)
8-6

DomainParticipants
8.2.5 Getting QoS Values from a QoS Profile

A QoS Profile may include configuration settings for all types of Entities. If you just want the
settings for a specific type of Entity, call get_<entity>_qos_from_profile() (where <entity> may
be participant, publisher, subscriber, datawriter, datareader, or topic). This is useful if you
want to get the QoS values from the profile in a structure, make some changes, and then use that
structure to create an entity.

DDS_ReturnCode_t get_<entity>_qos_from_profile (
DDS_<Entity>Qos &qos,
const char *library_name,
const char *profile_name)

For an example, see Figure 6.5 on page 6-10.

The get_<entity>_qos_from_profile() operations do not take into account the topic_filter attri-
butes that may be set for DataWriter, DataReader, or Topic QoSs in profiles (see Section 17.9.3). If
there is a topic name associated with an entity, you can call
get_<entity>_qos_from_profile_w_topic_name() (where <entity> can be datawriter,
datareader, or topic) and the topic filter expressions in the profile will be evaluated on the topic
name.

DDS_ReturnCode_t get_<entity>_qos_from_profile_w_topic_name(
DDS_<entity>Qos &qos,
const char *library_name,
const char *profile_name,
const char *topic_name)

get_<entity>_qos_from_profile() and get_<entity>_qos_from_profile_w_topic_name() may
allocate memory, depending on the sequences contained in some QoS policies.

8.3 DomainParticipants
A DomainParticipant is a container for Entity objects that all belong to the same domain. Each
DomainParticipant has its own set of internal threads and internal data structures that maintain
information about the Entities created by itself and other DomainParticipants in the same domain.
A DomainParticipant is used to create and destroy Publishers, Subscribers and Topics.

Once you have a DomainParticipant, you can use it to perform the operations listed in Table 8.3.
For more details on all operations, see the API Reference HTML documentation. Some of the
first operations you’ll be interested in are create_topic(), create_subscriber(), and
create_publisher().

Note: Some operations cannot be used within a listener callback, see Restricted Operations in
Listener Callbacks (Section 4.5.1).

Table 8.3 DomainParticipant Operations

Working
with ... Operation Description Reference

Builtin
Subscriber

get_builtin_subscriber Returns the builtin Subscriber. Section 16.2
8-7

DomainParticipants
Domain-
Participants

add_peer Adds an entry to the peer list. Section 8.5.2.3

enable Enables the DomainParticipant. Section 4.1.2

equals
Compares two DomainParticipant’s QoS
structures for equality.

Section 8.3.6.2

get_discovered_participant_
data

Provides the ParticipantBuiltinTopicData
for a discovered DomainParticipant.

Section 8.3.11
get_discovered_participants

Provides a list of DomainParticipants that
have been discovered.

get_domain_id
Gets the domain ID of the DomainPartici-
pant.

Section 8.3.4

get_listener
Gets the currently installed DomainPartici-
pantListener.

Section 8.3.5

get_qos Gets the DomainParticipant QoS. Section 8.3.6

ignore_participant
Rejects the connection to a remote Domain-
Participant.

Section 16.4

remove_peer Removes an entry from the peer list. Section 8.5.2.3

set_listener Replaces the DomainParticipantListener. Section 8.3.5

set_qos Sets the DomainParticipant QoS.
Section 8.3.6

set_qos_with_profile
Sets the DomainParticipant QoS based on a
QoS profile.

Content-
Filtered-
Topics

create_contentfilteredtopic Creates a ContentFilteredTopic that can be
used to process content-based subscrip-
tions.

Section 5.4.3create_contentfilteredtopic_
with_filter

delete_contentfilteredtopic Deletes a ContentFilteredTopic. Section 5.4.4

register_contentfilter Registers a new content filter. Section 5.4.8.2

unregister_contentfilter Unregisters a new content filter. Section 5.4.8.3

lookup_contentfilter Gets a previously registered content filter. Section 5.4.8.4

DataReaders

create_datareader
Creates a DataReader with a given
DataReaderListener, and an implicit Sub-
scriber.

Section 7.3.1
create_datareader_with_
profile

Creates a DataReader based on a QoS pro-
file, with a given DataReaderListener, and
an implicit Subscriber.

delete_datareader
Deletes a DataReader that belongs to the
‘implicit Subscriber.’

Section 7.3.3

get_default_datareader_qos
Copies the default DataReaderQoS values
into the provided structure.

Section 8.3.6.5
ignore_subscription Rejects the connection to a DataReader

set_default_datareader_qos Sets the default DataReaderQos values.

set_default_datareader_
qos_with_profile

Sets the default DataReaderQos using val-
ues from a QoS profile.

Table 8.3 DomainParticipant Operations

Working
with ... Operation Description Reference
8-8

DomainParticipants
DataWriters

create_datawriter
Creates a DataWriter with a given
DataWriterListener, and an implicit Pub-
lisher.

Section 6.2.2
create_datawriter_with_
profile

Creates a DataWriter based on a QoS pro-
file, with a given DataWriterListener, and
an implicit Publisher.

delete_datawriter
Deletes a DataWriter that belongs to the
‘implicit Publisher.’

Section 6.2.3

ignore_publication Rejects the connection to a DataWriter. Section 16.4

get_default_datawriter_qos
Copies the default DataWriterQos values
into the provided DataWriterQos struc-
ture.

Section 8.3.6.5
set_default_datawriter_qos Sets the default DataWriterQoS values.

set_default_datawriter_
qos _with_profile

Sets the default DataWriterQos using val-
ues from a profile.

Publishers

create_publisher
Creates a Publisher and a PublisherLis-
tener.

Section 6.2.2
create_publisher_with_
profile

Creates a Publisher based on a QoS profile,
and a PublisherListener.

delete_publisher Deletes a Publisher. Section 6.2.3

get_default_publisher_qos
Copies the default PublisherQos values
into the provided PublisherQos structure.

Section 8.3.6.5

get_implicit_publisher
Gets the Publisher that is implicitly created
by the DomainParticipant.

Section 8.3.9

get_publishers
Provides a list of all Publishers owned by
the DomainParticipant.

Section 8.3.13.3

set_default_publisher_qos Sets the default PublisherQos values.
Section 8.3.6.5set_default_publisher_qos_

with_profile
Sets the default PublisherQos using values
from a QoS profile.

Subscribers

create_subscriber
Creates a Subscriber and a SubscriberLis-
tener.

Section 7.2.2
create_subscriber_with_
profile

Creates a Subscriber based on a QoS pro-
file, and a SubscriberListener.

delete_subscriber Deletes a Subscriber. Section 7.2.3

get_default_subscriber_qos
Copies the default SubscriberQos values
into the provided SubscriberQos structure.

Section 8.3.6.5

get_implicit_subscriber
Gets the Subscriber that is implicitly cre-
ated by the DomainParticipant.

Section 8.3.9

get_subscribers
Provides a list of all Subscribers owned by
the DomainParticipant.

Section 8.3.13.3

set_default_subscriber_qos Sets the default SubscriberQos values.
Section 8.3.6.5set_default_subscriber_qos_

with_profile
Sets the default SubscriberQos values
using values from a QoS profile.

Table 8.3 DomainParticipant Operations

Working
with ... Operation Description Reference
8-9

DomainParticipants
Durable
Subscriptions

delete_durable_subscription
Deletes an existing Durable Subscription.
The quorum of the existing samples will
be considered satisfied.

Section 27.9
register_durable_
subscription

Creates a Durable Subscription that will
receive all samples published on a Topic,
including those published while a
DataReader is inactive or before it may be
created.

RTI Persistence Service will ensure that all
the samples on that Topic are retained until
they are acknowledged by at least N
DataReaders belonging to the Durable Sub-
scription, where N is the quorum count.

If the same Durable Subscription is cre-
ated on a different Topic, RTI Persistence
Service will implicitly delete the previous
Durable Subscription and create a new
one on the new Topic.

Topics

create_topic Creates a Topic and a TopicListener.

Section 5.1.1create_topic _with_profile
Creates a Topic based on a QoS profile,
and a TopicListener.

delete_topic Deletes a Topic.

get_default_topic_qos
Copies the default TopicQos values into
the provided TopicQos structure.

Section 8.3.6.5

get_discovered_topic_data
Retrieves the BuiltinTopicData for a dis-
covered Topic.

Section 8.3.12
get_discovered_topics

Returns a list of all (non-ignored) discov-
ered Topics.

ignore_topic Rejects a remote topic. Section 16.4

lookup_topicdescription
Gets an existing locally-created TopicDe-
scription (Topic).

Section 8.3.7

set_default_topic_qos Sets the default TopicQos values.
Section 8.3.6.5set_default_topic_qos_with

_profile
Sets the default TopicQos values using
values from a profile.

find_topic Finds an existing Topic, based on its name. Section 8.3.8

Flow-
Controllers

create_flowcontroller Creates a custom FlowController object.
Section 6.6.6

delete_flowcontroller Deletes a custom FlowController object.

get_default_flowcontroller_
property

Gets the default properties used when a
new FlowController is created.

Section 6.6.7
set_default_flowcontroller_
property

Sets the default properties used when a
new FlowController is created.

lookup_flowcontroller Finds a FlowController, based on its name. Section 6.6.10

Table 8.3 DomainParticipant Operations

Working
with ... Operation Description Reference
8-10

DomainParticipants
8.3.1 Creating a DomainParticipant

Typically, you will only need to create one DomainParticipant per domain per application.
(Although unusual, you can create multiple DomainParticipants for the same domain in an appli-
cation.)

To create a DomainParticipant, use the DomainParticipantFactory’s create_participant() or
create_participant_with_profile() operation:

DDSDomainParticipant * create_participant(
 DDS_DomainId_t domainId,
 const DDS_DomainParticipantQos &qos,
 DDSDomainParticipantListener *listener,
 DDS_StatusMask mask)

DDSDomainParticipant * create_participant_with_profile (
DDS_DomainId_t domainId,
const char * library_name,
const char *profile_name,
DDSDomainParticipantListener *listener,
DDS_StatusMask mask)

A QoS profile is way to use QoS settings from an XML file or string. With this approach, you can
change QoS settings without recompiling the application. For details, see Chapter 17: Configuring
QoS with XML.

Libraries
and Profiles

get_default_library Gets the default library.

Section 8.3.6.4

get_default_profile Gets the default profile.

get_default_profile_library
Gets the library that contains the default
profile.

set_default_profile Sets the default QoS profile.

set_default_library Sets the default library.

MultiTopics
create_multitopic

Creates a MultiTopic that can be used to
subscribe to multiple topics and combine/
filter the received data into a resulting
type.

Currently not
supported.

delete_multitopic Deletes a MultiTopic.

Other

assert_liveliness
Manually asserts the liveliness of this
DomainParticipant.

Section 8.3.9

delete_contained_entities
Recursively deletes all the entities that
were created using the "create" operations
on the DomainParticipant and its children.

Section 8.3.3

contains_entity
Confirms if an entity belongs to the
DomainParticipant or not.

Section 8.3.13.1

get_current_time Gets the current time used by Connext. Section 8.3.13.2

get_status_changes
Gets a list of statuses that have changed
since the last time the application read the
status or the Listeners were called.

Section 4.1.4

Table 8.3 DomainParticipant Operations

Working
with ... Operation Description Reference
8-11

DomainParticipants
domainId The domain ID uniquely identifies the domain that the DomainParticipant is in. It
controls with which other DomainParticipants it will communicate. See Section 8.3.4 for
more information on domain IDs.

qos If you want the default QoS settings (described in the API Reference HTML documenta-
tion), use DDS_PARTICIPANT_QOS_DEFAULT for this parameter (see Figure 8.4 on
page 8-12). If you want to customize any of the QosPolicies, supply a DomainPartici-
pantQos structure that is described in Section 8.3.6.

Note: If you use DDS_PARTICIPANT_QOS_DEFAULT, it is not safe to create the
DomainParticipant while another thread may simultaneously be calling the DomainPartici-
pantFactory’s set_default_participant_qos() operation.

listener Listeners are callback routines. Connext uses them to notify your application of specific
events (status changes) that may occur. The listener parameter may be set to NULL if you
do not want to install a Listener. The DomainParticipant’s Listener is a catchall for all of the
events of all of its Entities. If an event is not handled by an Entity’s Listener, then the
DomainParticipantListener may be called in response to the event. For more information,
see Setting Up DomainParticipantListeners (Section 8.3.5).

mask This bit mask indicates which status changes will cause the Listener to be invoked. The
bits set in the mask must have corresponding callbacks implemented in the Listener. If you
use NULL for the Listener, use DDS_STATUS_MASK_NONE for this parameter. If the
Listener implements all callbacks, use DDS_STATUS_MASK_ALL. For information on
statuses, see Listeners (Section 4.4).

library_name A QoS Library is a named set of QoS profiles. See QoS Libraries (Section 17.10).

profile_name A QoS profile groups a set of related QoS, usually one per entity. See QoS Profiles
(Section 17.9).

After you create a DomainParticipant, the next step is to register the data types that will be used
by the application, see Using rtiddsgen (Section 3.6). Then you will need to create the Topics that
the application will publish and/or subscribe, see Creating Topics (Section 5.1.1). Finally, you
will use the DomainParticipant to create Publishers and/or Subscribers, see Creating Publishers
(Section 6.2.2) and Creating Subscribers (Section 7.2.2).

Note: It is not safe to create one DomainParticipant while another thread may simultaneously be
looking up (Section 8.2.4) or deleting (Section 8.3.2) the same DomainParticipant.

For more examples, see Configuring QoS Settings when the DomainParticipant is Created (Sec-
tion 8.3.6.1).

Figure 8.4 Creating a DomainParticipant with Default QosPolicies

DDS_DomainId_t domain_id = 10;
// MyDomainParticipantListener is user defined and
// extends DDSDomainParticipantListener

MyDomainParticipantListener* participant_listener
 = new MyDomainParticipantListener(); // or = NULL
// Create the participant
DDSDomainParticipant* participant =

factory->create_participant(domain_id,
DDS_PARTICIPANT_QOS_DEFAULT,
participant_listener,
DDS_STATUS_MASK_ALL);

if (participant == NULL) {
 // ... error
};
8-12

DomainParticipants
8.3.2 Deleting DomainParticipants

If the application is no longer interested in communicating in a certain domain, the DomainPar-
ticipant can be deleted. A DomainParticipant can be deleted only after all the entities that were
created by the DomainParticipant have been deleted (see Deleting Contained Entities (Section
8.3.3)).

To delete a DomainParticipant:

1. You must first delete all Entities (Publishers, Subscribers, ContentFilteredTopics, and Topics)
that were created with the DomainParticipant. Use the DomainParticipant’s
delete_<entity>() operations to delete them one at a time, or use the
delete_contained_entities() operation (Section 8.3.3) to delete them all at the same time.

DDS_ReturnCode_t delete_publisher (DDSPublisher *p)
DDS_ReturnCode_t delete_subscriber (DDSSubscriber *s)
DDS_ReturnCode_t delete_contentfilteredtopic

 (DDSContentFilteredTopic *a_contentfilteredtopic)
DDS_ReturnCode_t delete_topic (DDSTopic *topic)

2. Delete the DomainParticipant by using the DomainParticipantFactory’s delete_participant()
operation.

DDS_ReturnCode_t delete_participant
 (DDSDomainParticipant *a_participant)

Note: A DomainParticipant cannot be deleted within its Listener callback, see Restricted Opera-
tions in Listener Callbacks (Section 4.5.1).

After a DomainParticipant has been deleted, all of the participant’s internal Connext threads and
allocated memory will have been deleted. You should delete the DomainParticipantListener only
after the DomainParticipant itself has been deleted.

8.3.3 Deleting Contained Entities

The DomainParticipant’s delete_contained_entities() operation deletes all the Publishers (includ-
ing an implicitly created one, if it exists), Subscribers (including an implicitly created one, if it
exists), ContentFilteredTopics, and Topics that have been created by the DomainParticipant.

DDS_ReturnCode_t delete_contained_entities()

Prior to deleting each contained entity, this operation recursively calls the corresponding
delete_contained_entities() operation on each contained entity (if applicable). This pattern is
applied recursively. Therefore, delete_contained_entities() on the DomainParticipant will end up
deleting all the entities recursively contained in the DomainParticipant, that is also the DataWriter,
DataReader, as well as the QueryCondition and ReadCondition objects belonging to the contained
DataReader.

If delete_contained_entities() returns successfully, the application may delete the DomainPar-
ticipant knowing that it has no contained entities (see Deleting DomainParticipants (Section
8.3.2)).

8.3.4 Choosing a Domain ID and Creating Multiple Domains

A domain ID identifies the domain in which the DomainParticipant is communicating. Domain-
Participants with the same domain ID are on the same communication “channel”. DomainPartici-
pants with different domain IDs are completely isolated from each other.
8-13

DomainParticipants
The domain ID is a purely arbitrary value; you can use any integer 0 or higher, provided it does
not violate the guidelines for the DDS_RtpsWellKnownPorts_t structure (Section 8.5.9.3). Domain
IDs are typically between 0 and 232. Please see the API Reference HTML documentation for the
DDS_RtpsWellKnownPorts_t structure and in particular,
DDS_INTEROPERABLE_RTPS_WELL_KNOWN_PORTS.

Most distributed systems can use a single domain for all of its applications. Thus a single
domain ID is sufficient. Some systems may need to logically partition nodes to prevent them
from communicating with each other directly, and thus will need to use multiple domains.
However, even in systems that only use a single domain, during the testing and development
phases, one may want to assign different users/testers different domain IDs for running their
applications so that their tests do not interfere with each other.

To run multiple applications on the same node with the same domain ID, Connext uses a partici-
pant ID to distinguish between the different DomainParticipants in the different applications. The
participant ID is simply an integer value that must be unique across all DomainParticipants cre-
ated on the same node that use the same domain ID. The participant_id is part of the
WIRE_PROTOCOL QosPolicy (DDS Extension) (Section 8.5.9).

Although usually those DomainParticipants have been created in different applications, the same
application can also create multiple DomainParticipants with the same domain ID. For optimal
results, the participant_id should be assigned sequentially to the different DomainParticipants,
starting from the default value of 0.

Once you have a DomainParticipant, you can retrieve its domain ID with the get_domain_id()
operation.

The domain ID and participant ID are mapped to port numbers that are used by transports for
discovery traffic. For information on how port numbers are calculated, see Ports Used for Dis-
covery (Section 14.5). How DomainParticipants discover each other is discussed in Chapter 14.

8.3.5 Setting Up DomainParticipantListeners

DomainParticipants may optionally have Listeners. Listeners are essentially callback routines and
are how Connext will notify your application of specific events (changes in status) for entities
Topics, Publishers, Subscribers, DataWriters, and DataReaders. Each Entity may have a Listener
installed and enabled to process the events for itself and all of the sub-Entities created from it. If
an Entity does not have a Listener installed or is not enabled to listen for a particular event, then
Connext will propagate the event to the Entity’s parent. If the parent Entity does not process the
event, Connext will continue to propagate the event up the object hierarchy until either a Listener
is invoked or the event is dropped.

The DomainParticipantListener is the last chance that an event can be processed for the Entities
descended from a DomainParticipant. The DomainParticipantListener is used only if an event is not
handled by any of the Entities contained by the participant.

A Listener is typically set up when the DomainParticipant is created (see Section 8.3.1). You can
also set one up after creation time by using the set_listener() operation, as illustrated in
Figure 8.5 on page 8-15. The get_listener() operation can be used to retrieve the current Domain-
ParticipantListener.

If a Listener is set for a DomainParticipant, the Listener needs to exist as long as the DomainPartici-
pant exists. It is unsafe to destroy the Listener while it is attached to a participant. However, you
may remove the DomainParticipantListener from a DomainParticipant by calling set_listener()
with a NULL value. Once the Listener has been removed from the participant, you may safely
destroy it (see Types of Listeners (Section 4.4.1)).
8-14

DomainParticipants
Note: Due to a thread-safety issue, the destruction of a DomainParticipantListener from an
enabled DomainParticipant should be avoided—even if the DomainParticipantListener has been
removed from the DomainParticipant. (This limitation does not affect the Java API.)

Note: It is possible for multiple internal Connext threads to call the same method of a DomainPar-
ticipantListener simultaneously. You must write the methods of a DomainParticipantListener to be
multithread safe and reentrant. The methods of the Listener of other Entities do not have this
constraint and are guaranteed to have single threaded access.

See also:

❏ Setting Up TopicListeners (Section 5.1.5)

❏ Setting Up PublisherListeners (Section 6.2.5)

Figure 8.5 Setting up DomainParticipantListener

// MyDomainParticipantListener only handles PUBLICATION_MATCHED and
// SUBSCRIPTION_MATCHED status for DomainParticipant Entities
class MyDomainParticipantListener :

public DDSDomainParticipantListener {
 public:
 virtual void on_publication_matched(DDSDataWriter *writer,
 const DDS_PublicationMatchedStatus &status);
 virtual void on_subscription_matched(DDSDataReader *reader,
 const DDS_SubscriptionMatchedStatus &status);
};
void MyDomainParticipantListener::on_publication_matched(

DDSDataWriter *writer, const DDS_PublicationMatchedStatus &status)
{
 const char *name = writer->get_topic()->get_name();
 printf(“Number of matching DataReaders for Topic %s is %d\n”,
 name, status.current_count);
};
void MyDomainParticipantListener::on_subscription_matched(

DDSDataReader *reader,
const DDS_SubscriptionMatchedStatus &status)

{
 const char *name = reader->get_topicdescription()->get_name();
 printf(“Number of matching DataWriters for Topic %s is %d\n”,

name, status.current_count);
};
// Set up participant listener
MyDomainParticipantListener* participant_listener =
 new MyDomainParticipantListener();
if (participant_listener == NULL) {
 // ... handle error
}
// Create the participant with a listener
DDSDomainParticipant* participant = factory->create_participant(

domain_id,
 participant_qos,
 participant_listener,

DDS_PUBLICATION_MATCHED_STATUS |
DDS_SUBSCRIPTION_MATCHED_STATUS);

if (participant == NULL) {
 // ... handle error
}

8-15

DomainParticipants
❏ Setting Up DataWriterListeners (Section 6.3.4)

❏ Setting Up SubscriberListeners (Section 7.2.6)

❏ Setting Up DataReaderListeners (Section 7.3.4)

8.3.6 Setting DomainParticipant QosPolicies

A DomainParticipant’s QosPolicies are used to configure discovery, database sizing, threads,
information sent to other DomainParticipants, and the behavior of the DomainParticipant when
acting as a factory for other Entities.

Note: set_qos() cannot always be used in a listener callback; see Restricted Operations in Lis-
tener Callbacks (Section 4.5.1).

The DDS_DomainParticipantQos structure has the following format:

struct DDS_DomainParticipantQos {
DDS_UserDataQosPolicy user_data;
DDS_EntityFactoryQosPolicy entity_factory;
DDS_WireProtocolQosPolicy wire_protocol;
DDS_TransportBuiltinQosPolicy transport_builtin;
DDS_TransportUnicastQosPolicy default_unicast;
DDS_DiscoveryQosPolicy discovery;
DDS_DomainParticipantResourceLimitsQosPolicy resource_limits;
DDS_EventQosPolicy event;
DDS_ReceiverPoolQosPolicy receiver_pool;
DDS_DatabaseQosPolicy database;
DDS_DiscoveryConfigQosPolicy discovery_config;

 DDS_PropertyQosPolicy property;
DDS_EntityNameQosPolicy participant_name;
DDS_TransportMulticastMappingQosPolicy multicast_mapping;
DDS_TypeSupportQosPolicy type_support;

};

Table 8.4 summarizes the meaning of each policy (listed alphabetically). For information on why
you would want to change a particular QosPolicy, see the section referenced in the table.

Table 8.4 DomainParticipant QosPolicies

QosPolicy Description

Database
Various settings and resource limits used by Connext to control its
internal database. See Section 8.5.1.

Discovery
Configures the mechanism used by Connext to automatically dis-
cover and connect with new remote applications. See Section 8.5.2.

DiscoveryConfig
Controls the amount of delay in discovering entities in the system
and the amount of discovery traffic in the network. See
Section 8.5.3.

DomainParticipantResourceLimits
Various settings that configure how DomainParticipants allocate and
use physical memory for internal resources, including the maxi-
mum sizes of various properties. See Section 8.5.4.

EntityFactory
Controls whether or not child entities are created in the enabled
state. See Section 6.4.2.

EntityName Assigns a name to a DomainParticipant. See Section 6.5.9.

Event
Configures the DomainParticipant’s internal thread that handles
timed events. See Section 8.5.5.
8-16

DomainParticipants
8.3.6.1 Configuring QoS Settings when the DomainParticipant is Created

As described in Creating a DomainParticipant (Section 8.3.1), there are different ways to create a
DomainParticipant, depending on how you want to specify its QoS (with or without a QoS Pro-
file).

❏ In Figure 8.4 on page 8-12, we saw an example of how to create a DomainParticipant with
default QosPolicies by using the special constant,
DDS_PARTICIPANT_QOS_DEFAULT, which indicates that the default QoS values for
a DomainParticipant should be used. The default DomainParticipant QoS values are config-
ured in the DomainParticipantFactory; you can change them with
set_default_participant_qos() or set_default_participant_qos_with_profile() (see
Section 8.2.2). Then any DomainParticipants created with the DomainParticipantFactory will
use the new default values. As described in Section 4.1.7, this is a general pattern that
applies to the construction of all Entities.

❏ To create a DomainParticipant with non-default QoS without using a QoS Profile, see the
example code in Figure 8.6 on page 8-18. It uses the DomainParticipantFactory’s
get_default_participant_qos() method to initialize a DDS_ParticipantQos structure.
Then, the policies are modified from their default values before the structure is used in
the create_participant() method.

❏ You can also create a DomainParticipant and specify its QoS settings via a QoS Profile. To
do so, you will call create_participant_with_profile(), as seen in Figure 8.7 on page 8-18.

❏ If you want to use a QoS profile, but then make some changes to the QoS before creating
the DomainParticipant, call get_participant_qos_from_profile() and create_participant()
as seen in Figure 8.8 on page 8-19.

Property

Stores name/value(string) pairs that can be used to configure cer-
tain parameters of Connext that are not exposed through formal QoS
policies. It can also be used to store and propagate application-spe-
cific name/value pairs, which can be retrieved by user code during
discovery. See Section 6.5.17.

ReceiverPool
Configures threads used by Connext to receive and process data
from transports (for example, UDP sockets). See Section 8.5.6.

TransportBuiltin
Specifies which built-in transport plugins are used. See
Section 8.5.7.

TransportMulticastMapping
Specifies the automatic mapping between a list of topic expressions
and multicast address that can be used by a DataReader to receive
data for a specific topic. See Section 8.5.8.

TransportUnicast
Specifies a subset of transports and port number that can be used by
an Entity to receive data. See Section 6.5.23.

TypeSupport
Used to attach application-specific value(s) to a DataWriter or
DataReader. These values are passed to the serialization or deserial-
ization routine of the associated data type. See Section 6.5.24.

UserData
Along with Topic Data QosPolicy and Group Data QosPolicy, used
to attach a buffer of bytes to Connext's discovery meta-data. See
Section 6.5.25.

WireProtocol
Specifies IDs used by the RTPS wire protocol to create globally
unique identifiers. See Section 8.5.9.

Table 8.4 DomainParticipant QosPolicies

QosPolicy Description
8-17

DomainParticipants
For more information, see Creating a DomainParticipant (Section 8.3.1) and Chapter 17: Config-
uring QoS with XML.

8.3.6.2 Comparing QoS Values

The equals() operation compares two DomainParticipant’s DDS_DomainParticipantQoS struc-
tures for equality. It takes two parameters for the two DomainParticipant’s QoS structures to be
compared, then returns TRUE is they are equal (all values are the same) or FALSE if they are not
equal.

Figure 8.6 Creating a DomainParticipant with Modified QosPolicies (not from a profile)

DDS_DomainId_t domain_id = 10;
DDS_DomainParticipantQos participant_qos;1

// initialize participant_qos with default values
factory->get_default_participant_qos(participant_qos);

// make QoS changes here
participant_qos.wire_protocol.participant_id = 2;

// Create the participant with modified qos
DDSDomainParticipant* participant = factory->create_participant(

domain_id, participant_qos,
NULL, DDS_STATUS_MASK_NONE);

if (participant == NULL) {
// ... error

}

1. Note: In C, you must initialize the QoS structures before they are used, see Section 4.2.2.

DDS_DomainId_t domain_id = 10;
// MyDomainParticipantListener is user defined and
// extends DDSDomainParticipantListener

MyDomainParticipantListener* participant_listener
 = new MyDomainParticipantListener(); // or = NULL
// Create the participant
DDSDomainParticipant* participant =

factory->create_participant_with_profile(domain_id,
“MyDomainLibrary”, “MyDomainProfile”,
participant_listener, DDS_STATUS_MASK_ALL);

if (participant == NULL) {
 // ... error
};

Figure 8.7 Creating a DomainParticipant with a QoS Profile
8-18

DomainParticipants
8.3.6.3 Changing QoS Settings After the DomainParticipant Has Been Created

There are two ways to change an existing DomainParticipant’s QoS after it is has been created—
again depending on whether or not you are using a QoS Profile.

❏ To change QoS programmatically (that is, without using a QoS Profile), use get_qos()
and set_qos(). See the example code in Figure 8.9. It retrieves the current values by call-
ing the DomainParticipant’s get_qos() operation. Then it modifies the value and calls
set_qos() to apply the new value. Note, however, that some QosPolicies cannot be
changed after the DomainParticipant has been enabled—this restriction is noted in the
descriptions of the individual QosPolicies.

DDS_DomainParticipantQos participant_qos;
// Get domain participant QoS from profile
retcode = factory->get_participant_qos_from_profile(participant_qos1,

“DomainParticipantProfileLibrary”,
“DomainParticipantProfile”);

if (retcode != DDS_RETCODE_OK) {
// handle error

}

// Makes QoS changes here
participant_qos.entity_factory.autoenable_created_entities =
DDS_BOOLEAN_FALSE;

// create participant with modified QoS
DDSDomainParticipant* participant = factory->create_participant(domain_id,

participant_qos, NULL, DDS_STATUS_MASK_NONE);
if (participant == NULL) {

// handle error
}

Figure 8.8 Getting QoS Values from a Profile, Changing QoS Values, Creating a
DomainParticipant with Modified QoS Values

DDS_DomainParticipantQos participant_qos;1

// Get current QoS.
//participant points to an existing DDSDomainParticipant.
if (participant->get_qos(participant_qos) != DDS_RETCODE_OK) {

// handle error
}
// Make QoS changes
participant_qos.entity_factory.autoenable_created_entities =

DDS_BOOLEAN_FALSE;

// Set the new QoS
if (participant->set_qos(participant_qos) != DDS_RETCODE_OK) {

// handle error
}

1. For the C API, you need to use DDS_ParticipantQos_INITIALIZER or DDS_ParticipantQos_initialize(). See Spe-
cial QosPolicy Handling Considerations for C (Section 4.2.2)

Figure 8.9 Changing the QoS of an Existing Participant (without a QoS Profile)
8-19

DomainParticipants
❏ You can also change a DomainParticipant’s (and all other Entities’) QoS by using a QoS
Profile and calling set_qos_with_profile(). For an example, see Figure 8.10. For more
information, see Chapter 17: Configuring QoS with XML.

8.3.6.4 Getting and Setting the DomainParticipant’s Default QoS Profile and Library

You can get the default QoS profile for the DomainParticipant with the get_default_profile()
operation. You can also get the default library for the DomainParticipant, as well as the library
that contains the DomainParticipant’s default profile (these are not necessarily the same library);
these operations are called get_default_library() and get_default_library_profile(), respec-
tively. These operations are for informational purposes only (that is, you do not need to use
them as a precursor to setting a library or profile.) For more information, see Chapter 17: Config-
uring QoS with XML.

virtual const char * get_default_library ()

const char * get_default_profile ()

const char * get_default_profile_library ()

There are also operations for setting the DomainParticipant’s default library and profile:

DDS_ReturnCode_t set_default_library (const char * library_name)

DDS_ReturnCode_t set_default_profile (const char * library_name,
 const char * profile_name)

If the default profile/library is not set, the DomainParticipant inherits the default from the
DomainParticipantFactory.

set_default_profile() specifies the profile that will be used as the default the next time a default
DomainParticipant profile is needed during a call to one of this DomainParticipant’s operations.
When calling a DomainParticipant operation that requires a profile_name parameter, you can
use NULL to refer to the default profile. (This same information applies to setting a default
library.)

set_default_profile() does not set the default QoS for entities created by the DomainParticipant;
for this functionality, use the DomainParticipant’s set_default_<entity>_qos_with_profile()
operation (you may pass in NULL after having called set_default_profile(), see Section 8.3.6.5).

set_default_profile() does not set the default QoS for newly created DomainParticipants; for this
functionality, use the DomainParticipantFactory’s set_default_participant_qos_with_profile(),
see Section 8.2.2).

8.3.6.5 Getting and Setting Default QoS for Child Entities

The set_default_<entity>_qos() and set_default_<entity>_qos_with_profile() operations set
the default QoS that will be used for newly created entities (where <entity> may be publisher,
subscriber, datawriter, datareader, or topic). The new QoS settings will only be used if

retcode = participant->set_qos_with_profile(
“ParticipantProfileLibrary”,”ParticipantProfile”);

if (retcode != DDS_RETCODE_OK) {
 // handle error
}

Figure 8.10 Changing the QoS of an Existing Participant with a QoS Profile
8-20

DomainParticipants
DDS_<entity>_QOS_DEFAULT is specified as the qos parameter when create_<entity>() is
called. For example, for a Publisher, you can use either:

DDS_ReturnCode_t set_default_publisher_qos (
const DDS_PublisherQos &qos)

DDS_ReturnCode_t set_default_publisher_qos_with_profile (
const char *library_name,
const char *profile_name)

The following operation gets the default QoS that will be used for creating Publishers if
DDS_PUBLISHER_QOS_DEFAULT is specified as the ‘qos’ parameter when create_publisher()
is called:

DDS_ReturnCode_t get_default_publisher_qos (DDS_PublisherQos & qos)

There are similar operations for Subscribers, DataWriters, DataReaders and Topics. These opera-
tions, get_default_<entity>_qos(), get the QoS settings that were specified on the last success-
ful call to set_default_<entity>_qos() or set_default_<entity>_qos_with_profile(), or if the call
was never made, the default values listed in DDS_<entity>Qos. They may potentially allocate
memory depending on the sequences contained in some QoS policies.

Note: It is not safe to set default QoS values for an entity while another thread may be simulta-
neously getting or setting them, or using the QOS_DEFAULT constant to create the entity.

8.3.7 Looking up Topic Descriptions

The lookup_topicdescription() operation allows you to access a locally created DDSTopicDe-
scription based on the Topic’s name.

DDSTopicDescription* lookup_topicdescription
(const char *topic_name)

DDSTopicDescription is the base class for Topics, MultiTopics1 and ContentFilteredTopics. You can
narrow the DDSTopicDescription returned from lookup_topicdescription() to a Topic or Con-
tentFilteredTopic as appropriate.

Unlike find_topic() (see Section 8.3.8), which logically returns a new Topic that must be indepen-
dently deleted, this operation returns a reference to the original local object.

If no TopicDescription has been created yet with the given Topic name, this method will return a
NULL value.

The DomainParticipant does not have to be enabled when you call lookup_topicdescription().

Note: It is not safe to create or delete a topic while another thread is calling
lookup_topicdescription() for that same topic.

8.3.8 Finding a Topic

The find_topic() operation finds an existing (or ready to exist) Topic, based on its name. This call
can be used to block for a specified duration to wait for the Topic to be created.

DDSTopic* DDSDomainParticipant::find_topic (const char * topic_name,
 const DDS_Duration_t & timeout)

If the requested Topic already exists, it is returned. Otherwise, find_topic() waits until either
another thread creates it, or returns when the specified timeout occurs.

1. Multitopics are not supported.
8-21

DomainParticipants
find_topic() is useful when multiple threads are concurrently creating and looking up topics. In
that case, one thread can call find_topic() and, if another thread has not yet created the topic
being looked up, it can wait for some period of time for it to do so. In almost all other cases, it is
more straightforward to call lookup_topicdescription() (see Section 8.3.7).

The DomainParticipant must be enabled when you call find_topic().

Note: Each DDSTopic obtained by find_topic() must also be deleted by calling the DomainPartic-
ipant’s delete_topic() operation (see Section 5.1.2).

8.3.9 Getting the Implicit Publisher or Subscriber

The get_implicit_publisher() operation allows you to access the DomainParticipant’s implicit
Publisher. If one does not already exist, this operation creates an implicit Publisher.

There is a similar operation for implicit Subscribers:

DDSPublisher * get_implicit_publisher ()
DDSSubscriber * get_implicit_subscriber()

There can only be one implicit Publisher and one implicit Subscriber per DomainParticipant. They
are created with default QoS values (DDS_PUBLISHER_QOS_DEFAULT) and no Listener. For
more information, see Creating Publishers Explicitly vs. Implicitly (Section 6.2.1). You can use an
implicit Publisher or implicit Subscriber just like an explicitly created one.

An implicit Publisher/Subscriber is deleted automatically when delete_contained_entities() is
called. It can also be deleted by calling delete_publisher/subscriber() with the implicit Pub-
lisher/Subscriber as a parameter.

When a DomainParticipant is deleted, if there are no attached DataReaders that belong to the
implicit Subscriber or no attached DataWriters that belong to the implicit Publisher, any implicit
Publisher/Subscriber will be deleted by the middleware implicitly.

Note: It is not safe to create an implicit Publisher/Subscriber while another thread may be simul-
taneously calling set_default_[publisher/subscriber]_qos().

The following example code shows how to get the implicit Publisher/Subscriber. (For simplicity,
error handling is not shown.)

using namespace DDS;
...

Publisher * publisher = NULL;
Subscriber * subscriber = NULL;
PublisherQos publisher_qos;
SubscriberQos subscriber_qos;
...

publisher = participant->get_implicit_publisher();

/* Change implicit publisher QoS */
publisher->get_qos(publisher_qos);

publisher_qos.partition.name.maximum(3);
publisher_qos.partition.name.length(3);
publisher_qos.partition.name[0] = DDS_String_dup("partition_A");
publisher_qos.partition.name[1] = DDS_String_dup("partition_B");
publisher_qos.partition.name[2] = DDS_String_dup("partition_C");

publisher->set_qos(publisher_qos);
8-22

DomainParticipants
/* Get implicit subscriber */
subscriber = participant->get_implicit_subscriber();

/* Change implicit subscriber QoS */
subscriber_qos.partition.name.maximum(3);
subscriber _qos.partition.name.length(3);
subscriber _qos.partition.name[0] = DDS_String_dup("partition_A");
subscriber _qos.partition.name[1] = DDS_String_dup("partition_B");
subscriber _qos.partition.name[2] = DDS_String_dup("partition_C");

subscriber->set_qos(subscriber_qos);

8.3.10 Asserting Liveliness

The assert_liveliness() operation manually asserts the liveliness of all the DataWriters created by
this DomainParticipant that has LIVELINESS QosPolicy (Section 6.5.13) kind set to
MANUAL_BY_PARTICIPANT. When assert_liveliness() is called, then for those DataWriters
who have their LIVELINESS set to MANUAL_BY_PARTICIPANT, Connext will send a packet
to all matched DataReaders that indicates that the DataWriter is still alive.

However, the LIVELINESS contract of periodically sending liveliness packets to DataReaders is
also fulfilled when the write(), assert_liveliness(), unregister_instance() and dispose() opera-
tions on a DataWriter itself is called. Those calls will also cause Connext to send packets that indi-
cate the liveliness of the DataWriter. Therefore, it is necessary for the application to call
assert_liveliness() on the DomainParticipant only if those operations on a DataWriter are not
being invoked within the period specified by the LIVELINESS QosPolicy (Section 6.5.13)

8.3.11 Learning about Discovered DomainParticipants

The get_discovered_participants() operation provides you with a list of DomainParticipants that
have been discovered in the domain (except any that you have said to ignore via the
ignore_participant() operation (see Section 16.4)).

Once you have a list of discovered DomainParticipants, you can get more information about them
by calling the get_discovered_participant_data() operation. This operation can only be used on
DomainParticipants that are in the same domain and have not been marked as ‘ignored.’ Other-
wise, the operation will fail and return DDS_RETCODE_PRECONDITION_NOT_MET. The
returned information is of type DDS_ParticipantBuiltinTopicData, described in Table 16.1 on
page 16-2.

Note: The get_discovered_participant_data() operation does not retrieve the property informa-
tion from the builtin-topic data structure. This information is available through the DataReader-
Listener’s on_data_available() callback (if a reader listener is installed on the
ParticipantBuiltinTopicDataDataReader).

8.3.12 Learning about Discovered Topics

The get_discovered_topics() operation provides you with a list of Topics that have been discov-
ered in the domain (except any that you have said to ignore via the ignore_topic() operation (see
Section 16.4)).

Once you have a list of discovered Topics, you can get more information about them by calling
the get_discovered_topic_data() operation. This operation can only be used on Topics that have
been created by a DomainParticipant in the same domain as the participant on which this opera-
tion is invoked and must not have been "ignored" by means of the DomainParticipant
ignore_topic() operation. Otherwise, the operation will fail and return
8-23

DomainParticipantFactory QosPolicies
DDS_RETCODE_PRECONDITION_NOT_MET. The returned information is of type
DDS_TopicBuiltinTopicData, described in Table 16.4 on page 16-6.

8.3.13 Other DomainParticipant Operations

8.3.13.1 Verifying Entity Containment

If you have a handle to an Entity, and want to see if that Entity was created from your Domain-
Participant (or any of its Publishers or Subscribers), use the contains_entity() operation, which
returns a boolean.

An Entity’s instance handle may be obtained from built-in topic data (see Chapter 16: Built-In
Topics), various statuses, or from the get_instance_handle() operation (see Section 4.1.3).

8.3.13.2 Getting the Current Time

The get_current_time() operation returns the current time value from the same time-source
(clock) that Connext uses to timestamp the data published by DataWriters (source_timestamp of
the SampleInfo structure, see Section 7.4.6). The time-sources used by Connext do not have to be
synchronized nor are they synchronized by Connext.

See also: Clock Selection (Section 8.6).

8.3.13.3 Getting All Publishers and Subscribers

The get_publishers() and get_subscribers() operations will provide you with a list of the
DomainParticipant’s Publishers and Subscribers, respectively.

8.4 DomainParticipantFactory QosPolicies
This section describes QosPolicies that are strictly for the DomainParticipantFactory (not the
DomainParticipant). For a complete list of QosPolicies that apply to DomainParticipantFactory, see
Table 8.2 on page 8-5.

❏ LOGGING QosPolicy (DDS Extension) (Section 8.4.1)

❏ PROFILE QosPolicy (DDS Extension) (Section 8.4.2)

❏ SYSTEM_RESOURCE_LIMITS QoS Policy (DDS Extension) (Section 8.4.3)

8.4.1 LOGGING QosPolicy (DDS Extension)

This QosPolicy configures the properties associated with the Connext logging facility.

This QosPolicy includes the members in Table 8.5. For defaults and valid ranges, please refer to
the API Reference HTML documentation.

See also: Controlling Messages from Connext (Section 21.2) and Configuring Logging via XML
(Section 21.2.2).

8.4.1.1 Example

DSDomainParticipantFactory *factory =
DDSDomainParticipantFactory::get_instance();

DDS_DomainParticipantFactoryQos factoryQos;
8-24

DomainParticipantFactory QosPolicies
DDS_ReturnCode_t retcode = factory->get_qos(factoryQos);
if (retcode != DDS_RETCODE_OK) {

// error
}
factoryQos.logging.output_file = DDS_String_dup(“myOutput.txt”);
factoryQos.logging.verbosity = NDDS_CONFIG_LOG_VERBOSITY_STATUS_LOCAL;
factory->set_qos(factoryQos);

8.4.1.2 Properties

This QosPolicy can be changed at any time.

Since it is only configuring logging, there are no compatibility restrictions for how it is set on the
publishing and subscribing sides.

8.4.1.3 Related QosPolicies

❏ None

8.4.1.4 Applicable Entities

❏ DomainParticipantFactory (Section 8.2)

8.4.1.5 System Resource Considerations

Because the output_file will be freed by Connext, you should use DDS_String_dup() to allocate
the string.when providing an output_file.

8.4.2 PROFILE QosPolicy (DDS Extension)

This QosPolicy determines the way that XML documents containing QoS profiles are loaded.

All QoS values for Entities can be configured with QoS profiles defined in XML documents.
XML documents can be passed to Connext in string form, or more likely, through files found on a
file system. This QoS configures how a DomainParticipantFactory loads the QoS profiles defined
in XML. QoS profiles may be stored in this QoS as XML documents as a string. The location of
XML files defining QoS profiles may be configured via this QoS. There are also default locations
where the DomainParticipantFactory will look for files to load QoS profiles. You may disable any
or all of these default locations using the Profile QoS. For more information about QoS profiles
and libraries, please see Chapter 17: Configuring QoS with XML.

This QosPolicy includes the members in Table 8.6 on page 8-26. For the defaults and valid
ranges, please refer to the API Reference HTML documentation.

Table 8.5 DDS_LoggingQosPolicy

Type Field Name Description

NDDS_Config_LogVerbosity verbosity
Specifies the verbosity at which Connext diagnostic
information will be logged.

NDDS_Config_LogCategory category
Specifies the category for which logging needs to be
enabled.

NDDS_Config_LogPrintFormat print_format
Specifies the format to be used to output the Connext
diagnostic information.

char * output_file
Specifies the file to which the logged output is redi-
rected.
8-25

DomainParticipantFactory QosPolicies
8.4.2.1 Example

DDSDomainParticipantFactory *factory =
DDSDomainParticipantFactory::get_instance();

DDS_DomainParticipantFactoryQos factoryQos;

DDS_ReturnCode_t retcode = factory->get_qos(factoryQos);
if (retcode != DDS_RETCODE_OK) {
 // error
}
const char *url_profiles[2] = {

"file://usr/local/default_dds.xml",
"file://usr/local/alternative_default_dds.xml" };

factoryQos.profile.url_profile.from_array(url_profiles, 2);
factoryQos.profile.ignore_resource_profile = DDS_BOOLEAN_TRUE;
factory->set_qos(factoryQos);

8.4.2.2 Properties

This QosPolicy can be changed at any time.

Since it is only for the DomainParticipantFactory, there are no compatibility restrictions for how
it is set on the publishing and subscribing sides.

8.4.2.3 Related QosPolicies

❏ None

8.4.2.4 Applicable Entities

❏ DomainParticipantFactory (Section 8.2)

Table 8.6 DDS_ProfileQosPolicy

Type Field Name Description

DDS_StringSeq

string_profile

Sequence of strings (empty by default) containing a XML doc-
ument to load.
The concatenation of the strings in this sequence must be a
valid XML document according to the XML QoS profile
schema.

url_profile
A sequence of URL groups (empty by default) containing a set
of XML documents to load.
See URL Groups (Section 17.11).

DDS_Boolean

ignore_user_profile
When TRUE, the QoS profiles contained in the file
USER_QOS_PROFILES.xml in the current working directory
will be ignored.

ignore_environment_
profile

When TRUE, the value of the environment variable
NDDS_QOS_PROFILES will be ignored.

ignore_resource_
profile

When TRUE, the QoS profiles in the file $NDDSHOME/
resource/qos_profiles_5.x.ya/xml/QOS_PROFILES.xml will
be ignored.

a. Replace the x and y in 5.x.y with the version numbers for the current release.
8-26

DomainParticipantFactory QosPolicies
8.4.2.5 System Resource Considerations

Once the QoS profiles are loaded, the DomainParticipantFactory will keep one copy of each QoS
in the QoS profiles in memory.

You can free the memory associated with the XML QoS profiles by calling the DomainPartici-
pantFactory’s unload_profiles() operation.

8.4.3 SYSTEM_RESOURCE_LIMITS QoS Policy (DDS Extension)

The SYSTEM_RESOURCE_LIMITS QosPolicy configures DomainParticipant-independent
resources used by Connext. Its main use is to change the maximum number of DomainPartici-
pants that can be created within a single process (address space).

It contains the single member as shown in Table 8.7. For the default and valid range, please refer
to the API Reference HTML documentation.

The only parameter that you can set, max_objects_per_thread, controls the size of thread-spe-
cific storage that is allocated by Connext for every thread that invokes a Connext API. This stor-
age is used to cache objects that have to be created on a per-thread basis when a thread traverses
different portions of Connext internal code.

Thus instead of dynamically creating and destroying the objects as a thread enters and leaves
different parts of the code, Connext caches the objects by storing them in thread-specific storage.
We assume that a thread will repeatedly call Connext APIs so that the objects cached will be
needed again and again.

The number of objects that will be stored in the cache depends the number of APIs (sections of
Connext code) that a thread invokes. It also depends on the number of different DomainPartici-
pants with which the thread interacts. For a single DomainParticipant, the maximum number of
objects that could be stored is a constant–independent of the number of Entities created in or by
the participant. A safe number to use is 200 objects per DomainParticipant.

A user thread that only interacts with a single DomainParticipant or the Entities thereof, would
never have more than 200 objects stored in its cache. However, if the same thread invokes Con-
next APIs on other Entities of other DomainParticipants, the maximum number of objects that
may be stored will increase with the number of participants involved.

The default setting of this resource should work for most user applications. However, if your
application uses more than 4 DomainParticipants, you may need to increase the value of
max_objects_per_thread.

8.4.3.1 Example

Say an application uses 10 DomainParticipants. If a single thread was used to create all 10
DomainParticipants, or a single thread is used to call write() on DataWriters belonging to all 10
participants, it is possible to run out of thread-specific storage. Either the creation of the partici-
pant or the write() will fail.

In that case, you will need to increase the value of max_objects_per_thread.

Table 8.7 DDS_SystemResourceLimitsQosPolicy

Type Field Name Description

DDS_Long max_objects_per_thread
Sizes the thread storage that is allocated on a per-thread basis
when the thread calls Connext APIs.
8-27

DomainParticipant QosPolicies
8.4.3.2 Properties

This QoS policy cannot be modified after the DomainParticipantFactory is used to create the first
DomainParticipant in an application.

This QoS can be set differently in different applications.

8.4.3.3 Related QoS Policies

There are no interactions with other QosPolicies.

8.4.3.4 Applicable Entities

❏ DomainParticipantFactory (Section 8.2)

8.4.3.5 System Resource Considerations

Increasing the value of max_objects_per_thread will increase the amount of memory allocated
by Connext for every thread that access Connext code. This includes internal Connext threads as
well as user threads. Each object uses about 32 bytes of memory.

8.5 DomainParticipant QosPolicies
This section describes the QosPolicies that are strictly for DomainParticipants (and no other types
of Entities). For a complete list of QosPolicies that apply to DomainParticipant, see Table 8.4 on
page 8-16.

❏ DATABASE QosPolicy (DDS Extension) (Section 8.5.1)

❏ DISCOVERY QosPolicy (DDS Extension) (Section 8.5.2)

❏ DISCOVERY_CONFIG QosPolicy (DDS Extension) (Section 8.5.3)

❏ DOMAIN_PARTICIPANT_RESOURCE_LIMITS QosPolicy (DDS Extension) (Section
8.5.4)

❏ EVENT QosPolicy (DDS Extension) (Section 8.5.5)

❏ RECEIVER_POOL QosPolicy (DDS Extension) (Section 8.5.6)

❏ TRANSPORT_BUILTIN QosPolicy (DDS Extension) (Section 8.5.7)

❏ TRANSPORT_MULTICAST_MAPPING QosPolicy (DDS Extension) (Section 8.5.8)

❏ WIRE_PROTOCOL QosPolicy (DDS Extension) (Section 8.5.9)

8.5.1 DATABASE QosPolicy (DDS Extension)

The Database QosPolicy configures how Connext manages its internal database, including how
often it cleans up, the priority of the database thread, and limits on resources that may be allo-
cated by the database. RTI uses an internal in-memory database to store information about enti-
ties created locally as well as remote entities found during the discovery process. This database
uses a background thread to garbage-collect records related to deleted entities. When the
DomainParticipant that maintains this database is deleted, it shuts down this thread..

It includes the members in Table 8.8. For defaults and valid ranges, please refer to the API Refer-
ence HTML documentation.
8-28

DomainParticipant QosPolicies
You may be interested in modifying the shutdown_timeout and shutdown_cleanup_period
parameters to decrease the time it takes to delete a DomainParticipant when your application is
shutting down.

The DOMAIN_PARTICIPANT_RESOURCE_LIMITS QosPolicy (DDS Extension) (Section 8.5.4)
controls the memory allocation for elements stored in the database.

Table 8.8 DDS_DatabaseQosPolicy

Type Field Name Description

DDS_
ThreadSettings_t

thread.mask
thread.priority
thread.stack_size

Thread settings for the database thread used by Connext to peri-
odically remove deleted records from the database. The values
used for these settings are OS-dependent; see the Platform Notes
for details.
Note: thread.cpu_list and thread.cpu_rotation are not relevant in
this QoS policy.

DDS_Duration_t shutdown_timeout
The maximum time that the DomainParticipant will wait for the
database thread to terminate when the participant is destroyed.

DDS_Duration_t cleanup_period
The period at which the database thread wakes up to removed
deleted records.

DDS_Duration_t
shutdown_cleanup
_period

The period at which the database thread wakes up to removed
deleted records when the DomainParticipant is being destroyed.

DDS_Long initial_records
The number of records that is initially created for the database.
These records hold information for both local and remote entities
that are dynamically created or discovered.

DDS_Long max_skiplist_level

This is a performance tuning parameter that optimizes the time it
takes to search the database for a record. A ‘Skip List’ is an algo-
rithm for maintaining a list that is faster to search than a binary
tree.
This value should be set to log2(N), where N is the maximum
number of elements that will be stored in a single list. The list that
stores the records for remote DataReaders or the one for remote
DataWriters tend to have the most entries. So, the number of
DataWriters or DataReaders in a system across all DomainPartici-
pants in a single domain, which ever is greater, can be used to set
this parameter.

DDS_Long
max_weak_
references

This parameter sets the maximum number of entries in the weak
reference table. Weak references are used as a technique for
ensuring that unreferenced objects are deleted.
The actual number of weak references is permitted to grow from
the value set by initial_weak_references to this maximum.
To prevent Connext from allocating memory for weak references
after initialization, you should set the initial and maximum weak
references to the same value.
However, it is difficult to calculate how many weak references an
application will use. To allow Connext to grow the weak reference
table as needed, and thus dynamically allocate memory, you
should set the value of this field to DDS_LENGTH_UNLIMITED,
the default setting.

DDS_Long
initial_weak_
references

The initial number of entries in the weak reference table.
See max_weak_references.
Connext may decide to use a larger initial value if
initial_weak_references is set too small. If you access this parame-
ter after a DomainParticipant has been created, you will see the
actual value used.
8-29

DomainParticipant QosPolicies
Real-time programmers will probably want to adjust the priorities of all of the threads created
by Connext relative to each other as well as relative to non-Connext threads in their applications.
Chapter 19: Connext Threading Model, EVENT QosPolicy (DDS Extension) (Section 8.5.5), and
RECEIVER_POOL QosPolicy (DDS Extension) (Section 8.5.6) discuss the other threads that are
created by Connext.

A record in the database can be deleted only when no threads are using it. Connext uses a thread
that periodically checks the database if records that have been marked for deletion can be
removed. This period is set by cleanup_period. When a DomainParticipant is being destroyed,
the thread will wake up faster at the shutdown_cleanup_period as other threads delete and
release records in preparation for shutting down.

On Windows and VxWorks systems, the thread that is destroying the DomainParticipant may
block up to shutdown_timeout seconds while waiting for the database thread to finish remov-
ing all records and terminating. On other operating systems, the thread destroying the Domain-
Participant will block as long as required for the database thread to terminate.

The default values for those and the rest of the parameters in this QosPolicy should be sufficient
for most applications.

8.5.1.1 Example

The priority of the database thread should be set to the lowest priority among all threads in a
real-time system. Although, the database thread should not be permitted to starve, the work that
it performs is non-time-critical.

8.5.1.2 Properties

This QosPolicy cannot be modified after the DomainParticipant is created.

It can be set differently on the publishing and subscribing sides.

8.5.1.3 Related QosPolicies

❏ DOMAIN_PARTICIPANT_RESOURCE_LIMITS QosPolicy (DDS Extension) (Section
8.5.4)

❏ EVENT QosPolicy (DDS Extension) (Section 8.5.5)

❏ RECEIVER_POOL QosPolicy (DDS Extension) (Section 8.5.6)

8.5.1.4 Applicable Entities

❏ DomainParticipants (Section 8.3)

8.5.1.5 System Resource Considerations

Setting the thread parameters correctly on a real-time operating system is usually critical to the
proper overall functionality of the applications on that system. Larger values for the
thread.stack_size parameter will use up more memory.

Smaller values for the cleanup_period and shutdown_cleanup_period will cause the database
thread to wake up more frequently using more CPU.

Connext is permitted to use up more memory for larger values of max_skiplist_level and
max_weak_references. Whether or not more memory is actually used depends on actual operat-
ing conditions.
8-30

DomainParticipant QosPolicies
8.5.2 DISCOVERY QosPolicy (DDS Extension)

The DISCOVERY QoS configures how DomainParticipants discover each other on the network. It
identifies where on the network this application can potentially discover other applications with
which to communicate. The middleware will periodically send network packets to these loca-
tions, announcing itself to any remote applications that may be present, and will listen for
announcements from those applications. The discovery process is described in detail in
Chapter 14: Discovery.

This QosPolicy includes the members in Table 8.9. For defaults and valid ranges, please refer to
the API Reference HTML documentation.

8.5.2.1 Transports Used for Discovery

The enabled_transports field allows you to specify the set of installed and enabled transports
that can be used to discover other DomainParticipants. This field is a sequence of strings where
each string specifies an alias of a registered (and thus installed and enabled) transport. Please
see the API Reference HTML documentation (select Modules, RTI Connext DDS API Refer-
ence, Pluggable Transports) for more information.

8.5.2.2 Setting the ‘Initial Peers’ List

When a DomainParticipant is created, it needs to find other participants in the same domain—
this is known as the ‘discovery process’ which is discussed in Chapter 14: Discovery. One way
to do so is to use this QosPolicy to specify a list of potential participants. This is the role of the
parameter initial_peers. The strings containing peer descriptors are stored in the initial_peers
string sequence. The format of a string discussed in Peer Descriptor Format (Section 14.2.1).

The peers stored in initial_peers are merely potential peers—there is no requirement that the
peer DomainParticipants are actually up and running or even will eventually exist. The Connext
discovery process will try to contact all potential peer participants in the list periodically using
unicast transports (as configured by the DISCOVERY_CONFIG QosPolicy (DDS Extension)
(Section 8.5.3)).

The initial_peers parameter can be modified in source code or it can be initialized from an envi-
ronment variable, NDDS_DISCOVERY_PEERS or from a text file, see Configuring the Peers
List Used in Discovery (Section 14.2).

Table 8.9 DDS_DiscoveryQosPolicy

Type Field Name Description

DDS_StringSeq enabled_transports
Transports available for use by the discovery process.
See Section 8.5.2.1.

DDS_StringSeq initial_peers
Unicast locators (address/indices) of potential partici-
pants with which this DomainParticipant will attempt to
establish communications. See Section 8.5.2.2.

DDS_StringSeq multicast_receive_addresses
List of multicast addresses on which Discovery-related
messages can be received by the DomainParticipant. See
Section 8.5.2.4.

DDS_Long metatraffic_transport_priority
Transport priority to be used for sending Discovery
messages. See Section 8.5.2.5.

DDS_Boolean accept_unknown_peers
Whether to accept a participant discovered via unicast
that is not in the initial_peers list. See Section 8.5.2.6.
8-31

DomainParticipant QosPolicies
Note: IPv4 multicast addresses must have a prefix

When using the UDPv6 transport: if there are any IPv4 multicast addresses in the peers
list, make sure they have "udpv4://" in front of them.

For example:

setenv NDDS_DISCOVERY_PEERS
"udpv4://localhost,udpv4://239.255.0.1,shmem://"

or, to add IPv6 loopback and an IPv6 multicast address:

setenv NDDS_DISCOVERY_PEERS
"udpv4://localhost,udpv4://239.255.0.1,
shmem://,udpv6://::1,udpv6://ff05::239.255.0.1"

8.5.2.3 Adding and Removing Peers List Entries

The DomainParticipant’s add_peer() operation adds a peer description to the internal peer list
that was initialized by the initial_peer field of the DISCOVERY QosPolicy.

DDS_ReturnCode_t DDSDomainParticipant::add_peer (const char* peer_desc)

The peer_desc string must be formatted as specified in Peer Descriptor Format (Section 14.2.1).

You can call this operation any time after the DomainParticipant has been enabled. An attempt
will be made to contact the new peer immediately.

Adding peers with this operation has no effect on the initial_peers list. After a DomainPartici-
pant has been created, the contents of the initial_peers field merely shows what the internal peer
list was initialized to be. Therefore, initial_peers may not reflect the actual potential peer list
used by a DomainParticipant. Furthermore, if you call get_qos(), the returned list of peers will
not include the added peer—get_qos() will only show you what is set in the initial_peers list.

A peer added with add_peer() is not considered to be “unknown.” (That is, you may have
accept_unknown_peers (Section 8.5.2.6) set to FALSE and still use add_peer().)

You can remove an entry from the list with remove_peer().

You can ignore data from a participant by using the ignore_participant() operation described in
Section 16.4.

8.5.2.4 Configuring Multicast Receive Addresses

The multicast_receive_addresses field in the DISCOVERY QosPolicy is a sequence of strings
that specifies a set of multicast group addresses on which the DomainParticipant will listen for
discovery meta-traffic. Each string must have a valid multicast address in either IPv4 dot nota-
tion or IPv6 presentation format. Please look at publicly available documentation of the IPv4
and IPv6 standards for the definition and valid address ranges for multicast.

The multicast_receive_addresses field can be initialized from multicast addresses that appear in
the NDDS_DISCOVERY_PEERS environment variable or text file, see Configuring the Peers
List Used in Discovery (Section 14.2). A multicast address found in the environment variable or
text file will be added both to the initial_peers and multicast_receive_addresses fields. Note
that the addresses in initial_peers are ones in which the DomainParticipant will send discovery
meta-traffic, and the ones in multicast_receive_addresses are used for receiving discovery meta-
traffic.

If NDDS_DISCOVERY_PEERS does not contain a multicast address, then
multicast_receive_addresses is cleared and the RTI discovery process will not listen for discov-
ery messages via multicast.
8-32

DomainParticipant QosPolicies
If NDDS_DISCOVERY_PEERS contains one or more multicast addresses, the addresses are
stored in multicast_receive_addresses, starting at element 0. They will be stored in the order in
which they appear in NDDS_DISCOVERY_PEERS.

Note: Currently, Connext will only listen for discovery traffic on the first multicast address (ele-
ment 0) in multicast_receive_addresses.

If you want to send discovery meta-traffic on a different set of multicast addresses than you
want to receive discovery meta-traffic, set initial_peers and multicast_receive_addresses via
the QosPolicy API.

8.5.2.5 Meta-Traffic Transport Priority

The metatraffic_transport_priority field is used to specify the transport priority to be used for
sending all discovery meta-traffic. See the TRANSPORT_PRIORITY QosPolicy (Section 6.5.21)
for details on how transport priorities may be used.

Currently, the builtin transports provided by Connext will ignore the value set in this field.

8.5.2.6 Controlling Acceptance of Unknown Peers

The accept_unknown_peers field controls whether or not a DomainParticipant is allowed to
communicate with other DomainParticipants found via unicast transport that are not in its peers
list (which is the combination of the initial_peers list and any peers added with the add_peer()
operation described in Section 8.5.2.3).

Suppose Participant A is included in Participant B’s initial peers list, but Participant B is not in
Participant A’s list. When Participant B contacts Participant A by sending it a unicast discovery
packet, then Participant A has a choice:

❏ If accept_unknown_peers is DDS_BOOLEAN_TRUE, then Participant A will reply to
Participant B, and communications will be established.

❏ If accept_unknown_peers is DDS_BOOLEAN_FALSE, then Participant A will ignore
Participant B, and A and B will never talk.

Note that Participants do not exchange peer lists. So if Participant A knows about Participant B,
and Participant B knows about Participant C, Participant A will not discover Participant C.

Note: If accept_unknown_peers is false and shared memory is disabled, applications on the
same node will not communicate if only ‘localhost’ is specified in the peer list. If shared memory
is disabled or ‘shmem://’ is not specified in the peer list, if you want to communicate with other
applications on the same node through the loopback interface, you must put the actual node
address or hostname in NDDS_DISCOVERY_PEERS.

8.5.2.7 Example

You will always use this policy to set the participant_id when you want to run more than one
DomainParticipant in the same domain on the same host.

The easiest way to set the initial peers list is to use the NDDS_DISCOVERY_PEERS environ-
ment variable. However, should you want asymmetric multicast addresses for sending or
receiving meta-traffic, you will need to use this QosPolicy directly.

A reason to use asymmetric multicast addresses is to take advantage of the efficiency provided
by using multicast, while at the same time preventing all participants from discovering each
other. For example, suppose you have a system in which you have a single server node and a
hundred client nodes. The client nodes do not publish or subscribe to each other’s data and thus
never need to know about each others existence.
8-33

DomainParticipant QosPolicies
If we did not use multicast, we would have to populate the server application’s peer list with
100 peer descriptors for each of the client nodes. Each client application would only need to
have the server application in its peer list. The maintenance of the list is unwieldy, especially if
nodes are constantly reconfigured and addresses changed. In addition, the server will send out
discovery packets on a per client basis since the peer list essentially holds 100 unicast addresses.

Instead, if we used a single multicast address in the NDDS_DISCOVERY_PEERS environment
variable, the server and all of the clients would discover each other. Certainly, the list is easier to
maintain, but the total amount of traffic has actually increased since the clients are now exchang-
ing packets with each other uselessly.

To keep the list maintainable, as well as to minimize discovery traffic, we can have the server
send out packets on a multicast address by modifying its initial_peer field. The clients would
have their multicast_receive_addresses field set to the same address used by the server. The
initial_peers of the clients would only need the single unicast peer descriptor of the server as
before.

Now, the server can send a single packet that will be received by all of the clients, but the clients
will not discover each other because they never send out a multicast packet themselves.

8.5.2.8 Properties

This QosPolicy cannot be modified after the DomainParticipant is created.

It can be set differently on the publishing and subscribing sides.

8.5.2.9 Related QosPolicies

❏ DISCOVERY_CONFIG QosPolicy (DDS Extension) (Section 8.5.3)

❏ TRANSPORT_BUILTIN QosPolicy (DDS Extension) (Section 8.5.7)

8.5.2.10 Applicable Entities

❏ DomainParticipants (Section 8.3)

8.5.2.11 System Resource Considerations

For every entry in the initial_peers list, Connext will periodically send a discovery packet to see
if that participant exists. If the list has many potential participants that are never started, then
CPU and network bandwidth may be wasted in sending out packets that will never be received.

8.5.3 DISCOVERY_CONFIG QosPolicy (DDS Extension)

The DISCOVERY_CONFIG QosPolicy is used to tune the discovery process. It controls how
often to send discovery packets, how to determine when participants are alive or dead, and
resources used by the discovery mechanism.

The amount of network traffic required by the discovery process can vary widely based on how
your application has chosen to configure the middleware's network addressing (e.g. unicast vs.
multicast, multicast TTL, etc.), the size of the system, whether all applications are started at the
same time or whether start times are staggered, and other factors. Your application can use this
policy to make trade-offs between discovery completion time and network bandwidth utiliza-
tion. In addition, you can introduce random back-off periods into the discovery process to
decrease the probability of network contention when many applications start simultaneously.
8-34

DomainParticipant QosPolicies
This QosPolicy includes the members in Table 8.10. Many of these members are described in
Chapter 14: Discovery. For defaults and valid ranges, please refer to the API Reference HTML
documentation.

Table 8.10 DDS_DiscoveryConfigQosPolicy

Type Field Name Description

DDS_Duration_t
participant_liveliness_
lease_duration

The time period after which other Domain-
Participants can consider this one dead if they
do not receive a liveliness packet from this
DomainParticipant.

DDS_Duration_t
participant_liveliness_
assert_period

The period of time at which this DomainPar-
ticipant will send out packets asserting that it
is alive.

DDS_RemoteParticipantPurgeKind
remote_participant_
purge_kind

Controls the DomainParticipant's behavior for
purging records of remote participants (and
their contained entities) with which discov-
ery communication has been lost. See
Section 8.5.3.2.

DDS_Duration_t
max_liveliness_loss_
detection_period

The maximum amount of time between
when a remote entity stops maintaining its
liveliness and when the matched local entity
realizes that fact.

DDS_Long
initial_participant_
announcements

Sets how many initial liveliness announce-
ments the DomainParticipant will send when
it is first enabled, or after discovering a new
remote participant.

DDS_Duration_t
min_initial_participant_
announcement_period

Sets the minimum and maximum times
between liveliness announcements.
When a participant is first enabled, or after
discovering a new remote participant, Con-
next sends initial_paricipant_annoucements
number of discovery messages. These mes-
sages are sent with a sleep period between
them that is a random duration between
min_initial_participant_announcement_peri
od and
max_initial_participant_announcement_peri
od.

DDS_Duration_t
max_initial_participant_
announcement_period

DDS_BuiltinTopicReaderResourceLimits_t
(see Table 8.11 on page 8-38)

participant_reader_
resource_limits

Configures the resource for the built-in
DataReaders used to access discovery infor-
mation; see Section 8.5.3.1 and Chapter 16:
Built-In Topics.

DDS_RtpsReliableReaderProtocol_t
(see Table 7.20 on page 7-56)

publication_reader
Configures the RTPS reliable protocol
parameters for a built-in publication reader.

DDS_BuiltinTopicReaderResourceLimits_t
(see Table 8.11 on page 8-38)

publication_reader_
resource_limits

Configures the resource for the built-in
DataReaders used to access discovery infor-
mation; see Section 8.5.3.1 and Chapter 16:
Built-In Topics.

DDS_RtpsReliableReaderProtocol_t
(see Table 7.20 on page 7-56)

subscription_reader

Configures the RTPS reliable protocol
parameters for a built-in subscription reader.
Built-in subscription readers receive discov-
ery information reliably from DomainPartici-
pants that were dynamically discovered (see
Chapter 14: Discovery).
8-35

DomainParticipant QosPolicies
DDS_BuiltinTopicReaderResourceLimits_t
(see Table 8.11 on page 8-38)

subscription_reader_
resource_limits

Configures the resource for the built-in
DataReaders used to access discovery infor-
mation; see Section 8.5.3.1 and Chapter 16:
Built-In Topics.

DDS_RtpsReliableWriterProtocol_t
(see Table 6.36 on page 6-84)

publication_writer

Configures the RTPS reliable protocol
parameters for the writer side of a reliable
connection.
Built-in DataWriters send reliable discovery
information to DomainParticipants that were
dynamically discovered (see Chapter 14: Dis-
covery).

DDS_WriterDataLifecycleQosPolicy
(see Table 6.68 on page 6-136)

publication_writer_data_
lifecycle

Configures writer data-lifecycle settings for a
built-in publication writer.
(DDS_WriterDataLifecycleQosPolicy::
autodispose_unregistered_instances will
always be TRUE.)

DDS_RtpsReliableWriterProtocol_t
(see Table 6.36 on page 6-84)

subscription_writer

Configures the RTPS reliable protocol
parameters for the writer side of a reliable
connection.
Built-in DataWriters send reliable discovery
information to DomainParticipants that were
dynamically discovered (see Chapter 14: Dis-
covery).

DDS_WriterDataLifecycleQosPolicy
(see Table 6.68 on page 6-136)

subscription_writer_data
_lifecycle

Configures writer data-lifecycle settings for a
built-in subscription writer.
(DDS_WriterDataLifecycleQosPolicy::autodi
spose_unregistered_instances will always
be TRUE.)

DDS_DiscoveryConfigBuiltinPluginKind
Mask

builtin_discovery_
plugins

The kind mask for selecting built-in discov-
ery plugins:
• Simple Discovery Protocol:

DDS_DISCOVERYCONFIG_BUILTIN_S
DP

• Enterprise Discovery Service:
DDS_DISCOVERYCONFIG_
BUILTIN_EDS
(Requires a separate component, RTI
Enterprise Discovery Service.)

Table 8.10 DDS_DiscoveryConfigQosPolicy

Type Field Name Description
8-36

DomainParticipant QosPolicies
DDS_Duration_t
default_domain_
announcement_period

The period at which a participant will
announce itself to the default domain 0 using
the default UDPv4 multicast group address
for discovery traffic on that domain.
For domain 0, the default discovery multi-
cast address is 239.255.0.1:7400.
To disable announcement to the default
domain, set this to DURATION_INFINITE.
When this period is set to a value other than
DURATION_INFINITE and
ignore_default_domain_announcements
(see below) is FALSE, you can get informa-
tion about participants running in different
domains by creating a participant in domain
0 and implementing the on_data_available
callback (see Section 7.3.7.1) in the Partici-
pantBuiltinTopicData built-in DataReader's
listener (see Built-in DataReaders (Section
16.2)).
You can learn the domain ID associated with
a participant by looking at the domain_id in
the ParticipantBuiltinTopicData.

DDS_Boolean
ignore_default_domain_
announcements

When TRUE, ignores the announcements
received by a participant on the default
domain 0 corresponding to participants run-
ning on domains IDs other than 0.
This setting only applies to participants run-
ning on the default domain 0 and using the
default port mapping.
When TRUE, a participant running on the
default domain 0 will ignore announcements
from participants running on different
domain IDs.
When FALSE, a participant running on the
default domain 0 will provide announce-
ments from participants running on different
domain IDs to the application via the Partici-
pantBuiltinTopicData built-in DataReader
(see Built-in DataReaders (Section 16.2)).

DDS_RtpsReliableReaderProtocol_t
(see Table 7.20 on page 7-56)

participant_message_
reader

RTPS protocol-related configuration settings
for a built-in participant message reader.

DDS_RtpsReliableWriterProtocol_t
(see Table 6.36 on page 6-84)

participant_message_
writer

RTPS protocol-related configuration settings
for a built-in participant message writer.

DDS_PublishModeQosPolicy
(see Table 6.57 on page 6-120)

publication_writer_
publish_mode

Determines whether the Discovery built-in
publication DataWriter publishes data syn-
chronously or asynchronously and how.

DDS_PublishModeQosPolicy
(see Table 6.57 on page 6-120)

subscription_writer_
publish_mode

Determines whether the Discovery built-in
subscription DataWriter publishes data syn-
chronously or asynchronously and how.

DDS_AsynchronousPublisherQosPolicy
(see Table 6.17 on page 6-57)

asynchronous_publisher
Asynchronous publishing settings for the
Discovery Publisher and all entities that are
created by it.

Table 8.10 DDS_DiscoveryConfigQosPolicy

Type Field Name Description
8-37

DomainParticipant QosPolicies
A DomainParticipant needs to send a message periodically to other DomainParticipants to let the
other participants know that it is still alive. These liveliness messages are sent to all peers in the
peer list that was initialized by the initial_peers parameter of the DISCOVERY QosPolicy (DDS
Extension) (Section 8.5.2). Peer participants on the peer list may or may not be alive themselves.
The peer DomainParticipants that already know about this DomainParticipant will use the
participant_liveliness_lease_duration provided by this participant to declare the participant
dead, if they have not received a liveliness message for the specified time.

The participant_liveliness_assert_period is the periodic rate at which this DomainParticipant
will be sending liveliness messages. Since these liveliness messages are not sent reliably and can
get dropped by the transport, it is important to set:

participant_liveliness_assert_period < participant_liveliness_lease_duration/N

where N is the number of liveliness messages that other DomainParticipants must miss before
they decide that this DomainParticipant is dead.

DomainParticipants that receive a liveliness message from a participant that they did not know
about previously will have “discovered” the participant. When one DomainParticipant discovers
another, the discoverer will immediately send its own liveliness packets back.
initial_participant_announcements controls how many of these initial liveliness messages are
sent, and max_initial_participant_announcement_period controls the time period in between
each message.

After the initial set of liveliness messages are sent, the DomainParticipant will return to sending
liveliness packets to all peers in its peer list at the rate governed by
participant_liveliness_assert_period.

For more information on the discovery process, see Chapter 14: Discovery.

8.5.3.1 Resource Limits for Builtin-Topic DataReaders

The DDS_BuiltinTopicReaderResourceLimits_t structure is shown in Table 8.11. This structure
contains several fields that are used to configure the resource limits of the builtin-topic
DataReaders used to receive discovery meta-traffic from other DomainParticipants.

Table 8.11 DDS_BuiltinTopicReaderResourceLimits_t

Type Field Name Description

DDS_Long

initial_samples
Initial number of meta-traffic data samples that can be stored by
a builtin-topic DataReader.

max_samples
Maximum number of meta-traffic data samples that can be
stored by a builtin-topic DataReader.

initial_infos
Initial number of DDS_SampleInfo structures allocated for the
builtin-topic DataReader.

max_infos
Maximum number of DDS_SampleInfo structures that can be
allocated for the built-in topic DataReader.
max_infos must be >= max_samples

initial_outstanding_reads
Initial number of times in which memory can be concurrently
loaned via read/take calls on the builtin-topic DataReader with-
out being returned with return_loan().

max_outstanding_reads
Maximum number of times in which memory can be concur-
rently loaned via read/take calls on the builtin-topic DataReader
without being returned with return_loan().

max_samples_per_read
Maximum number of samples that can be read/taken on a same
built-in topic DataReader.
8-38

DomainParticipant QosPolicies
DDS_Boolean disable_fragmentation_support

Determines whether the builtin-topic DataReader can receive
fragmented samples.
When fragmentation support is not needed, disabling fragmen-
tation support will save some memory resources.

DDS_Long max_fragmented_samples

The maximum number of samples for which the builtin-topic
DataReader may store fragments at a given point in time.
At any given time, a builtin-topic DataReader may store frag-
ments for up to max_fragmented_samples samples while wait-
ing for the remaining fragments. These samples need not have
consecutive sequence numbers and may have been sent by dif-
ferent builtin-topic DataWriters. Once all fragments of a sample
have been received, the sample is treated as a regular sample
and becomes subject to standard QoS settings, such as Resource-
LimitsQosPolicy’s max_samples.
Connext will drop fragments if the max_fragmented_samples
limit has been reached.
For best-effort communication, Connext will accept a fragment
for a new sample, but drop the oldest fragmented sample from
the same remote DataWriter.
For reliable communication, Connext will drop fragments for
any new samples until all fragments for at least one older sam-
ple from that writer have been received.
Only applies if disable_fragmentation_support is FALSE.

DDS_Long initial_fragmented_samples
The initial number of samples for which a builtin-topic
DataReader may store fragments.
Only applies if disable_fragmentation_support is FALSE.

DDS_Long
max_fragmented_samples_per

_remote_writer

The maximum number of samples per remote writer for which a
builtin-topic DataReader may store fragments.
Logical limit so a single remote writer cannot consume all avail-
able resources.
Only applies if disable_fragmentation_support is FALSE.

DDS_Long max_fragments_per_sample
Maximum number of fragments for a single sample.
Only applies if disable_fragmentation_support is FALSE.

Table 8.11 DDS_BuiltinTopicReaderResourceLimits_t

Type Field Name Description
8-39

DomainParticipant QosPolicies
There are builtin-topics for exchanging data about DomainParticipants, for publications (Pub-
lisher/DataWriter combination) and for subscriptions (Subscriber/DataReader combination). The
DataReaders for the publication and subscription builtin-topics are reliable. The DataReader for
the participant builtin-topic is best effort.

You can set listeners on these DataReaders that are created automatically when a DomainPartici-
pant is created. With these listeners, your code can be notified when remote DomainParticipants,
Publishers/DataWriters, and Subscriber/DataReaders are discovered. You can always check the
receive queues of those DataReaders for the same information about discovered entities at any
time. Please see Chapter 16: Built-In Topics for more details.

The initial_samples and max_samples, and related initial_infos and max_infos, fields size the
amount of declaration messages can be stored in each builtin-topic DataReader.

8.5.3.2 Controlling Purging of Remote Participants

When discovery communication with a remote participant has been lost, the local participant
must make a decision about whether to continue attempting to communicate with that partici-
pant and its contained entities. The remote_participant_purge_kind is used to select the desired
behavior.

This does not pertain to the situation in which a remote participant has been gracefully deleted
and notification of that deletion has been successfully received by its peers. In that case, the local
participant will immediately stop attempting to communicate with those entities and will
remove the associated remote entity records from its internal database.

The remote_participant_purge_kind can be set to the following values:

DDS_Boolean
dynamically_allocate_

fragmented_samples

Determines whether or not the builtin-topic DataReader will pre-
allocate storage for storing fragmented samples.
By default, Connext allocates memory up-front for storing frag-
ments for up to DataReaderResourceLimitsQosPolicy’s
initial_fragmented_samples samples. This memory may grow
up to the DataReaderResourceLimitsQosPolicy’s
max_fragmented_samples if needed.
If dynamically_allocate_fragmented_samples is TRUE, Con-
next will not allocate memory up-front; instead, it will allocate
memory from the heap upon receiving the first fragment of a
new sample. The amount of memory allocated equals the
amount of memory needed to store all fragments in the sample.
Once all fragments of a sample have been received, the sample
is deserialized and stored in the regular receive queue. Then the
dynamically allocated memory is freed.
This QoS setting may be useful for large, but variable-sized data
types where up-front memory allocation for multiple samples
based on the maximum possible sample size may be expensive.
The main disadvantage of not pre-allocating memory is that one
can no longer guarantee that Connext will have sufficient
resources at run time.
Only applies if disable_fragmentation_support is FALSE.

Table 8.11 DDS_BuiltinTopicReaderResourceLimits_t

Type Field Name Description
8-40

DomainParticipant QosPolicies
❏ DDS_LIVELINESS_BASED_REMOTE_PARTICIPANT_PURGE

This value causes Connext to keep the state of a remote participant and its contained enti-
ties for as long as the participant maintains its liveliness contract (as specified by its
participant_liveliness_lease_duration in the DISCOVERY_CONFIG QosPolicy (DDS
Extension) (Section 8.5.3)).

A participant will maintain its own liveliness to any remote participant via inter-partici-
pant liveliness traffic (see LIVELINESS QosPolicy (Section 6.5.13)).

The default Simple Discovery Protocol described in Chapter 14: Discovery automatically
maintains this liveliness, whereas other discovery mechanisms may or may not.

❏ DDS_NO_REMOTE_PARTICIPANT_PURGE

With this value, Connext will never purge the records of a remote participant with which
discovery communication has been lost.

• If the remote participant is later rediscovered, the records that remain in the database
will be re-used.

• If the remote participant is not rediscovered, the records will continue to take up
space in the database for as long as the local participant remains in existence.

In most cases, you will not need to change this value from its default,
DDS_LIVELINESS_BASED_REMOTE_PARTICIPANT_PURGE.

However, DDS_NO_REMOTE_PARTICIPANT_PURGE may be a good choice if the following
conditions apply:

❏ Discovery communication with a remote participant may be lost while data communica-
tion remains intact. This will not be the typical case if discovery takes place over the Sim-
ple Discovery Protocol, but may occur if you are using RTI Enterprise Discovery Service. 1

❏ Extensive and prolonged lack of discovery communication between participants is not
expected to be common, either because loss of the participant will be rare, or because
participants may be lost sporadically but will typically return again.

❏ Maintaining inter-participant liveliness is problematic, perhaps because a participant has
no writers with the appropriate LIVELINESS QosPolicy (Section 6.5.13) kind.

8.5.3.3 Controlling the Reliable Protocol Used by Builtin-Topic DataWriters/DataReaders

The connection between the DataWriters and DataReaders for the publication and subscription
builtin-topics are reliable. The publication_writer, subscription_writer, publication_reader,
and subscription_reader parameters of the DISCOVERY_CONFIG QosPolicy (DDS Extension)
(Section 8.5.3) configure the reliable messaging protocol used by Connext for those topics. Con-
next’s reliable messaging protocol is discussed in Chapter 10: Reliable Communications.

See also:

❏ DATA_WRITER_PROTOCOL QosPolicy (DDS Extension) (Section 6.5.3)

❏ DATA_READER_PROTOCOL QosPolicy (DDS Extension) (Section 7.6.1).

8.5.3.4 Example

Users will be most interested in setting the participant_liveliness_lease_duration and
participant_liveliness_assert_period values for their DomainParticipants. Basically, the lease
duration governs how fast an application realizes another application dies unexpectedly. The
shorter the periods, the quicker a DomainParticipant can determine that a remote participant is

1. RTI Enterprise Discovery Service is an optional package that provides participant-matching services for Connext
applications.
8-41

DomainParticipant QosPolicies
dead and act accordingly by declaring all of the remote DataWriters and DataReaders of that par-
ticipant dead as well.

However, you should realize that the shorter the period the more liveliness packets will sent by
the DomainParticipant. How many packets is also determined by the number of peers in the peer
list of the participant–whether or not the peers on the list are actually alive.

8.5.3.5 Properties

This QosPolicy cannot be modified after the DomainParticipant is created.

It can be set differently on the publishing and subscribing sides.

8.5.3.6 Related QosPolicies

❏ DISCOVERY QosPolicy (DDS Extension) (Section 8.5.2)

❏ DOMAIN_PARTICIPANT_RESOURCE_LIMITS QosPolicy (DDS Extension) (Section
8.5.4)

❏ WIRE_PROTOCOL QosPolicy (DDS Extension) (Section 8.5.9)

❏ DATA_WRITER_PROTOCOL QosPolicy (DDS Extension) (Section 6.5.3)

❏ DATA_READER_PROTOCOL QosPolicy (DDS Extension) (Section 7.6.1)

❏ DATA_READER_RESOURCE_LIMITS QosPolicy (DDS Extension) (Section 7.6.2)

8.5.3.7 Applicable Entities

❏ DomainParticipants (Section 8.3)

8.5.3.8 System Resource Considerations

Setting smaller values for time periods can increase the CPU and network bandwidth usage. Set-
ting larger values for maximum limits can increase the maximum memory that Connext may
allocate for a DomainParticipant while increasing the initial values will increase the initial mem-
ory allocated for a DomainParticipant.

8.5.4 DOMAIN_PARTICIPANT_RESOURCE_LIMITS QosPolicy (DDS Extension)

The DOMAIN_PARTICIPANT_RESOURCE_LIMITS QosPolicy includes various settings that
configure how DomainParticipants allocate and use physical memory for internal resources,
including the maximum sizes of various properties.

This QosPolicy sets maximum size limits on variable-length parameters used by the participant
and its contained Entities. It also controls the initial and maximum sizes of data structures used
by the participant to store information about locally-created and remotely-discovered entities
(such as DataWriters/DataReaders), as well as parameters used by the internal database to size
the hash tables used by the data structures.

By default, a DomainParticipant is allowed to dynamically allocate memory as needed as users
create local Entities such as DataWriters and DataReaders or as the participant discovers new
applications to store their information. By setting fixed values for the maximum parameters in
this QosPolicy, you can bound the memory that can be allocated by a DomainParticipant. In addi-
tion, by setting the initial values to the maximum values, you can prevent DomainParticipants
from allocating memory after the initialization period.

The maximum sizes of several variable-length parameters—such as the number of partitions
that can be stored in the PARTITION QosPolicy (Section 6.4.5), the maximum length of data
8-42

DomainParticipant QosPolicies
store in the USER_DATA QosPolicy (Section 6.5.25) and GROUP_DATA QosPolicy (Section
6.4.4), and many others—can be changed from their defaults using this QoS. However, it is
important that all DomainParticipants that need to communicate with each other use the same set
of maximum values. Otherwise, when these parameters are propagated from one DomainPartici-
pant to another, a DomainParticipant with a smaller maximum length may reject the parameter
resulting in an error.

This QosPolicy includes the members in Table 8.12. For defaults and valid ranges, please refer to
the API Reference HTML documentation.

Table 8.12 DDS_DomainParticipantResourceLimitsQosPolicy

Type Field Name Description

DDS_Allocation-
Settings_t
(see description
column)

local_writer_allocation

Each allocation structure configures how many
objects of each type, <object>_allocation, will be allo-
cated by the DomainParticipant.
See Configuring Resource Limits for Asynchronous
DataWriters (Section 8.5.4.1).
DDS_AllocationSettings_t
{
 DDS_Long initial_count;
 DDS_Long max_count;
 DDS_Long
 incremental_count;
};

local_reader_allocation

local_publisher_allocation

local_subscriber_allocation

local_topic_allocation

remote_writer_allocation

remote_reader_allocation

remote_participant_allocation

matching_writer_reader_pair_allocation

matching_reader_writer_pair_allocation

ignored_entity_allocation

content_filtered_topic_allocation

content_filter_allocation

read_condition_allocation

query_condition_allocation

outstanding_asynchronous_sample_
allocation

flow_controller_allocation

DDS_Long

local_writer_hash_buckets

Used to configure the hash tables used for database
searches. If these numbers are too large then memory
is wasted. If these number are too small, searching for
an object will be less efficient.

local_reader_hash_buckets

local_publisher_hash_buckets

local_subscriber_hash_buckets

local_topic_hash_buckets

remote_writer_hash_buckets

remote_reader_hash_buckets

remote_participant_hash_buckets

matching_writer_reader_pair_
hash_buckets

matching_reader_writer_pair_
hash_buckets

ignored_entity_hash_buckets

content_filtered_topic_hash_buckets

content_filter_hash_buckets

flow_controller_hash_buckets
8-43

DomainParticipant QosPolicies
DDS_Long max_gather_destinations

Configures the maximum number of destinations
that a message can be addressed in a single network
send operation. Can improve efficiency if the under-
lying transport support can send to multiple destina-
tions.

DDS_Long

participant_user_data_max_length
Controls the maximum lengths of USER_DATA
QosPolicy (Section 6.5.25), TOPIC_DATA QosPolicy
(Section 5.2.1) and GROUP_DATA QosPolicy (Sec-
tion 6.4.4) for different entities.
Must be configured to be the same values on all
DomainParticipants in the same domain.

topic_data_max_length

publisher_group_data_max_length

subscriber_group_data_max_length

writer_user_data_max_length

reader_user_data_max_length

DDS_Long max_partitions

Controls the maximum number of partitions that can
be assigned to a Publisher or Subscriber with the
PARTITION QosPolicy (Section 6.4.5).
Must be configured to be the same value on all
DomainParticipants in the same domain.

DDS_Long max_partition_cumulative_characters

Controls the maximum number of combined charac-
ters among all partition names in the PARTITION
QosPolicy (Section 6.4.5).
Must be configured to be the same value on all
DomainParticipants in the same domain.

DDS_Long type_code_max_serialized_length

Maximum size of serialized string for type code.
If your data type has an especially complex type
code, you may need to increase this value. See Using
Generated Types without Connext (Standalone) (Sec-
tion 3.7).

DDS_Long type_object_max_serialized_length

Maximum length, in bytes, that the buffer to serialize
TypeObject can consume.
This parameter limits the size of the TypeObject that a
DomainParticipant is able to propagate. Since TypeOb-
jects contain all of the information of a data structure,
including the strings that define the names of the
members of a structure, complex data-structures can
result in TypeObjects larger than the default maxi-
mum. This field allows you to specify a larger value.
Cannot be unlimited.

DDS_Long type_object_max_deserialized_length

Maximum number of bytes that a deserialized
TypeObject can consume.
This parameter limits the size of the TypeObject that a
DomainParticipant is able to store.

DDS_Long
deserialized_type_object_dynamic_
allocation_threshold

Threshold, in bytes, for dynamic memory allocation
for the deserialized TypeObject. Above it, the mem-
ory for a TypeObject is allocated dynamically. Below
it, the memory is obtained from a pool of fixed-size
buffers. The size of the buffers is equal to this thresh-
old.

DDS_Long contentfilter_property_max_length
Maximum length of all data related to ContentFil-
teredTopics (Section 5.4).

Table 8.12 DDS_DomainParticipantResourceLimitsQosPolicy

Type Field Name Description
8-44

DomainParticipant QosPolicies
DDS_Long channel_seq_max_length
Maximum number of channels that can be specified
in a DataWriter’s MULTI_CHANNEL QosPolicy
(DDS Extension) (Section 6.5.14).

DDS_Long channel_filter_expression_max_length
Maximum length of a channel filter_expression in a
DataWriter’s MULTI_CHANNEL QosPolicy (DDS
Extension) (Section 6.5.14).

DDS_Long

participant_property_list_max_length
Maximum number of properties ((name, value) pairs)
that can be stored in the DomainParticipant’s PROP-
ERTY QosPolicy (DDS Extension) (Section 6.5.17).

participant_property_string_max_length
Maximum cumulative length (in bytes, including the
null terminating characters) of all the (name, value)
pairs in a DomainParticipant’s Property QosPolicy.

writer_property_list_max_length
Maximum number of properties ((name, value) pairs)
that can be stored in a DataWriter’s Property QosPol-
icy.

writer_property_string_max_length
Maximum cumulative length (in bytes, including the
null terminating characters) of all the (name, value)
pairs in a DataWriter’s Property QosPolicy.

reader_property_list_max_length
Maximum number of properties ((name, value) pairs)
that can be stored in a DataReader’s Property QosPol-
icy.

reader_property_string_max_length
Maximum cumulative length (in bytes, including the
null terminating characters) of all the (name, value)
pairs in a DataReader’s Property QosPolicy.

DDS_Long

max_endpoint_groups
Maximum number of endpoint groups allowed in an
DATA_READER_PROTOCOL QosPolicy (DDS
Extension) (Section 7.6.1) .

max_endpoint_group_cumulative_
characters

Maximum number of combined role_name charac-
ters allowed in all endpoint groups in an Availability-
QosPolicy. The maximum number of combined
characters should account for a terminating NULL ('')
character for each role_name string.

Table 8.12 DDS_DomainParticipantResourceLimitsQosPolicy

Type Field Name Description
8-45

DomainParticipant QosPolicies
Most of the parameters for this QosPolicy are described in the Description column of the table.
However, you may need to refer to the sections listed in the column to fully understand the con-
text in which the parameter is used.

An important parameter in this QosPolicy that is often changed by users is the
type_code_max_serialized_length. This parameter limits the size of the type code that a
DomainParticipant is able to store and propagate for user data types. Type codes can be used by
external applications to understand user data types without having the data type predefined in
compiled form. However, since type codes contain all of the information of a data structure
including the strings that define the names of the members of a structure, complex data struc-
tures can result in type codes larger than the default maximum of 2048 bytes. Thus it is common
for users to set this parameter to a larger value. However, as with all parameters in this QosPol-
icy defining maximum sizes for variable-length elements, all DomainParticipants should set the
same value for type_code_max_serialized_length.

The <object type>_hash_buckets configure the hash-table data structure that is used to effi-
ciently search the database. The optimal number of buckets depend on the actual number of
objects that will be stored in the hash table. So if you know how many DataWriters will be cre-
ated in a DomainParticipant, you may change the value of local_writer_hash_buckets to balance
memory usage against search efficiency. A smaller value will use up less memory, but a larger
value will make database lookups for the object more efficient.

If you modify any of the <entity type>_data_max_length, max_partitions, or
max_partition_cummulative_characters parameters, then you must make sure that they are
modified to be the same value for all DomainParticipants in the same domain for all applications.
If they are different and an application sends data that is larger than another application is con-
figure to hold, then the two Entities, whether a matching DataWriter/DataReader pair or even
two DomainParticipants will fail to connect.

DDS_Long transport_info_list_max_length

When sending DomainParticipant discovery informa-
tion, this value defines the maximum number of
transports whose properties will be announced to
other DomainParticipants.
If a DomainParticipant has three transports installed
and this value is two, the DomainParticipant will only
announce information about the first two transports.
When receiving DomainParticipant information, this
value defines the maximum size of the list containing
information about the transports installed in a remote
DomainParticipant.
The information about the transports installed in a
DomainParticipant is made available to remote
DomainParticipants through the sequence field
transport_info in the Participant Built-in Topic’s Data
(see Table 16.1
Setting this value to 0 disables the capability of Con-
next to detect and report transport misconfigurations.
However, it does not affect the capability of reaching
a given DomainParticipant in all transports available
on that DomainParticipant.

Table 8.12 DDS_DomainParticipantResourceLimitsQosPolicy

Type Field Name Description
8-46

DomainParticipant QosPolicies
8.5.4.1 Configuring Resource Limits for Asynchronous DataWriters

When using an asynchronous Publisher, if a call to write() is blocked due to a resource limit, the
block will last until the timeout period expires, which will prevent others from freeing the
resource. To avoid this situation, make sure that the DomainParticipant’s
resource_limits.outstanding_asynchronous_sample_allocation is always greater than the sum
of all asynchronous DataWriters’ resource_limits.max_samples (see RESOURCE_LIMITS
QosPolicy (Section 6.5.20)).

8.5.4.2 Configuring Memory Allocation

The <object type>_allocation configures the number of <object type>’s that can be stored in the
internal Connext database. For example, local_writer_allocation configures how many local
DataWriters can be created for the DomainParticipant.

The DDS_AllocationSettings_t structure sets the initial and maximum number of each object
type that can be stored. Memory is allocated for the storage of the objects, thus initial_count will
determine how much memory is initially allocated, and max_count will determine the maxi-
mum amount of memory that Connext is allowed to allocate. The incremental_count is used to
allocate more memory in chunks when the number of objects created exceed the initial_count.

You should modify these parameters only if you want to decrease the initial memory used by
Connext when a DomainParticipant is created or increase the maximum number of local and
remote Entities that can be stored in a DomainParticipant.

How Connext is allowed to allocate memory for a DomainParticipant after initialization depends
on how you set these parameters.

1. Static memory allocation

No memory is allocated by Connext after creation. Set initial_count = max_count. The
incremental_count should be set to 0.

Advantage: All memory allocation is done when creating the DomainParticipant; no
dynamic allocation during run-time. You know immediately if you have enough mem-
ory to run in that configuration.

Disadvantage: Requires a fairly static system and/or good estimates on the number of
Entities in the distributed system. Connext will fail to execute properly once the number
of Entities exceed the configure bounds.

2. Dynamic, bounded allocation

Set initial_count to configure the initial amount of memory to be allocated. Set
max_count to the maximum allowable upper bound (see the API Reference HTML docu-
mentation).

Advantage: Initial memory usage may be lower and memory is allocated as needed and
only if needed.

Disadvantage: Connext may allocate memory dynamically which may have an impact on
performance.

If you allow Connext to allocate memory dynamically, you can either:

• Use fixed-size increments (set incremental_count to the desired fixed size).

Advantage: well known amount of memory allocated each time.

Disadvantage: may require more frequent allocations.

• Double the amount of extra memory allocated each time memory is needed (set
incremental_count to -1).
8-47

DomainParticipant QosPolicies
Advantage: requires fewer allocations.

Disadvantage: may allocate considerably more memory than is really needed.

8.5.4.3 Example

For most applications, the default values for this QosPolicy may be sufficient. However, if an
application uses the PARTITION, USER_DATA, TOPIC_DATA, or GROUP_DATA QosPolicies,
the default maximum sizes of the data associated with those policies may need to be adjusted as
required by the application. As noted previously, you must make sure that all DomainPartici-
pants in the same domain use the same sets of values or it is possible that Connext will not suc-
cessfully connect two Entities.

8.5.4.4 Properties

This QosPolicy cannot be modified after the DomainParticipant is created.

It can be set differently on the publishing and subscribing sides.

8.5.4.5 Related QosPolicies

❏ DATABASE QosPolicy (DDS Extension) (Section 8.5.1)

❏ DISCOVERY_CONFIG QosPolicy (DDS Extension) (Section 8.5.3)

❏ MULTI_CHANNEL QosPolicy (DDS Extension) (Section 6.5.14)

❏ USER_DATA QosPolicy (Section 6.5.25)

❏ TOPIC_DATA QosPolicy (Section 5.2.1)

❏ GROUP_DATA QosPolicy (Section 6.4.4)

❏ PARTITION QosPolicy (Section 6.4.5)

❏ PROPERTY QosPolicy (DDS Extension) (Section 6.5.17)

8.5.4.6 Applicable Entities

❏ DomainParticipants (Section 8.3)

8.5.4.7 System Resource Considerations

Memory and CPU usage are directly affected by the values set for parameters of this QosPolicy.
See the detailed descriptions above for specifics.

8.5.5 EVENT QosPolicy (DDS Extension)

The EVENT QosPolicy configures the internal Connext Event thread.

This QoS allows the you to configure thread properties such as priority level and stack size. You
can also configure the maximum number of events that can be posted to the event thread. It con-
tains the members in Table 8.13. For defaults and valid ranges, please refer to the API Reference
HTML documentation.
The Event thread is used to wake up and execute timed events posted to the event queue. In a
DomainParticipant, different Entities may have constraints that have to be checked at periodic
intervals or at specific times. If the constraint is violated, a callback function may need to be exe-
cuted. Timed events include checking for timeouts and deadlines, and executing internal and
user timeout or exception handling routines/callbacks. A combination of a time, constraint, and
8-48

DomainParticipant QosPolicies
callback can be considered to be an event. For more information, see Event Thread (Section
19.2).

For example, a DataReader may have a constraint that requires data to be received within a
period of time specified by the DEADLINE QosPolicy (Section 6.5.5). For that DataReader, an
event is stored by the Event thread so that it will wake up periodically to check to see if data has
arrived in time. If not, the Event thread will execute the on_requested_deadline_missed() Lis-
tener callback of the DataReader (if it was installed and enabled).

A reliable connection between a DataWriter and DataReader will also post events for sending
heartbeats used in the reliable protocol discussed in Chapter 10: Reliable Communications.

This QoS configures the parameters associated with thread creation as well as the number of
events that can be simultaneously stored by the Event thread.

8.5.5.1 Example

In a real-time operating system, the priority of the Event thread should be set relative to the pri-
ority of the events that it must handle. For example, you may want the Event thread to have a
high priority if the deadlines and callbacks that it handles are time or safety critical. It may be
critical that the data of a particular DataReader arrives on time or if not, alternative action is
taken with minimal latency.

If you create many Entities in a DomainParticipant with QosPolicies that will post events that
check deadlines, liveliness or send heartbeats, then you may need to increase the maximum
number of events that can be stored by the Event thread.

If your application is sending a lot of reliable data, you should increase the event thread priority
to be higher than the sending thread priority.

8.5.5.2 Properties

This QosPolicy cannot be modified after the DomainParticipant is created.

It can be set differently on the publishing and subscribing sides.

8.5.5.3 Related QosPolicies

❏ DATABASE QosPolicy (DDS Extension) (Section 8.5.1)

❏ RECEIVER_POOL QosPolicy (DDS Extension) (Section 8.5.6)

8.5.5.4 Applicable Entities

❏ DomainParticipants (Section 8.3)

Table 8.13 DDS_EventQoSPolicy

Type Field Name Description

DDS_Thread
Settings_t

thread.mask
thread.priority
thread.stack_size

Thread settings for the event thread used by Connext to wake up for a
timed event and possibly execute listener callbacks. The values used
for these settings are OS-dependent; see the Platform Notes for details.
Note: thread.cpu_list and thread.cpu_rotation are not relevant in this
QoS policy.

DDS_Long initial_count Initial number of events that can be stored simultaneously.

DDS_Long max_count Maximum number of events that can be stored simultaneously.
8-49

DomainParticipant QosPolicies
8.5.5.5 System Resource Considerations

Increasing initial_count and max_count will increase initial and maximum memory used for
storing events.

Setting the thread parameters correctly on a real-time operating system is usually critical to the
proper overall functionality of the applications on that system. Larger values for the
thread.stack_size parameter will use up more memory.

By default, a DomainParticipant will dynamically allocate memory as needed for events posted to
the event thread. However, by setting an maximum value or setting the initial and maximum
value to be the same, you can either bound the amount of memory allocated for the event thread
or prevent a DomainParticipant from dynamically allocating memory for the event thread after
initialization.

8.5.6 RECEIVER_POOL QosPolicy (DDS Extension)

The RECEIVER_POOL QosPolicy configures the internal Connext thread used to process the
data received from a transport. The Receive thread is described in detail in Section 19.3.

This QosPolicy contains the members in Table 8.14.

This QosPolicy sets the thread properties, like priority level and stack size, for the threads used
to receive and process data from transports. Connext uses a separate receive thread per port per
transport plugin. To force Connext to use a separate thread to process the data for a DataReader,
you should set a unique port for the TRANSPORT_UNICAST QosPolicy (DDS Extension) (Sec-

Table 8.14 DDS_ReceiverPoolQoSPolicy

Type Field Name Description

struct
DDS_ThreadSettings_t

thread.mask
thread.priority
thread.stack_size
hread.cpu_list
thread.cpu_rotation

Thread settings for the receive thread(s) used by Con-
next to process data received from a transport. The val-
ues used for these settings are OS-dependent; see the
Platform Notes for details.
See also: Controlling CPU Core Affinity for RTI Threads
(Section 19.5).

DDS_Long buffer_size

Size of the receive buffer in bytes. For the default and
valid range, see the API Reference HTML documenta-
tion.
buffer_size must always be at least as large as the max-
imum message_size_max of any installed non-zero-
copy transport.a
The buffer_size can be adjusted automatically by the
middleware by configuring its value to
DDS_LENGTH_AUTO (in C/C++) or ReceiverPoolQo-
sPolicy.LENGTH_AUTO (in .NET and Java). When set
to this AUTO default value, the effective value will
automatically be set to the largest message_size_max of
all installed transports, without needing any other con-
figuration. Therefore you should not need to change
this value.

DDS_Long buffer_alignment
Byte-alignment of the receive buffer. For the default and
valid range, see the API Reference HTML documenta-
tion.

a. A “zero-copy transport” does not use the receive buffer. A transport is zero-copy if the properties_bitmap property
in the DDS_Transport_Property_t is NDDS_TRANSPORT_PROPERTY_BIT_BUFFER_ALWAYS_LOANED. The
only built-in transport that supports zero-copy is the UDPv4 transport on VxWorks platforms.
8-50

DomainParticipant QosPolicies
tion 6.5.23) or TRANSPORT_MULTICAST QosPolicy (DDS Extension) (Section 7.6.5) for the
DataReader.

Connext creates at least one thread for every transport that is installed and enabled for use by the
DomainParticipant for receiving data. These threads are used to process data samples received
for the participant’s DataReaders, as well as messages used by Connext itself in support of the
application discovery process discussed in Chapter 14: Discovery.

The user application may configure Connext to create many more threads for receiving data sent
via multicast or even to dedicate a thread to process the data samples of a single DataReader
received on a particular transport. This QosPolicy is used in the creation of all receive threads.

8.5.6.1 Example

When new data arrives on a transport, the receive thread may invoke the on_data_available() of
the Listener callback of a DataReader. Thus, you may want to adjust the priority of the receive
threads with respect to the other threads in the application as appropriate for the proper opera-
tion of the system.

8.5.6.2 Properties

This QosPolicy cannot be modified after the DomainParticipant is created.

It can be set differently on the publishing and subscribing sides.

8.5.6.3 Related QosPolicies

❏ DATABASE QosPolicy (DDS Extension) (Section 8.5.1)

❏ EVENT QosPolicy (DDS Extension) (Section 8.5.5)

8.5.6.4 Applicable Entities

❏ DomainParticipants (Section 8.3)

8.5.6.5 System Resource Considerations

Increasing the buffer_size will increase memory used by a receive thread.

Setting the thread parameters correctly on a real-time operating system is usually critical to the
proper overall functionality of the applications on that system. Larger values for the
thread.stack_size parameter will use up more memory.

8.5.7 TRANSPORT_BUILTIN QosPolicy (DDS Extension)

Connext comes with three different transport plugins built into the core libraries (for most sup-
ported target platforms). These are plugins for UDPv4, shared memory, and UDPv6.

This QosPolicy allows you to control which built-in transport plugins are used by a DomainPar-
ticipant. By default, only the UDPv4 and shared memory plugins are enabled (for most plat-
forms; on some platforms, the shared memory plugin is not available). You can disable one or all
of the builtin transports.

In some cases, users will disable the shared memory transport when they do not want applica-
tions to use shared memory to communicate when running on the same node.

It contains the member in Table 8.15. For the default and valid values, please refer to the API
Reference HTML documentation.
8-51

DomainParticipant QosPolicies
Please see the API Reference HTML documentation (select Modules, RTI Connext DDS API
Reference, Pluggable Transports, Using Transport Plugins and Built-in Transport Plugins) for
more information.

See also: “Note:” on page 8-32.

8.5.7.1 Example

See Section 8.5.7.5 for an example of why you may want to use this QosPolicy.

In addition, customers may wish to install and use their own custom transport plugins instead
of any of the builtin transports. In that case, this QosPolicy may be used to disable all builtin
transports.

8.5.7.2 Properties

This QosPolicy cannot be modified after the DomainParticipant is created.

It can be set differently on the publishing and subscribing sides.

8.5.7.3 Related QosPolicies

❏ TRANSPORT_SELECTION QosPolicy (DDS Extension) (Section 6.5.22)

❏ TRANSPORT_UNICAST QosPolicy (DDS Extension) (Section 6.5.23)

❏ TRANSPORT_MULTICAST QosPolicy (DDS Extension) (Section 7.6.5)

8.5.7.4 Applicable Entities

❏ DomainParticipants (Section 8.3)

8.5.7.5 System Resource Considerations

You can save memory and other system resources if you disable the built-in transports that your
application will not use. For example, if you only run a single application with a single Domain-
Participant on each machine in your network, then you can disable the shared memory transport
since your applications will never use it to send or receive messages.

8.5.8 TRANSPORT_MULTICAST_MAPPING QosPolicy (DDS Extension)

The multicast address on which a DataReader wants to receive its data can be explicitly config-
ured using the TRANSPORT_MULTICAST QosPolicy (DDS Extension) (Section 7.6.5). However
in systems with many multicast addresses, managing the multicast configuration can become
cumbersome. The TransportMulticastMapping QosPolicy is designed to make configuration
and assignment of the DataReader's multicast addresses more manageable. When using this
QosPolicy, the middleware will automatically assign a multicast receive address for a DataReader
from a range by using configurable mapping rules.

DataReaders can be assigned a single multicast receive address using the rules defined in this
QosPolicy on the DomainParticipant. This multicast receive address is exchanged during simple
discovery in the same manner used when the multicast receive address is defined explicitly. No
additional configuration on the writer side is needed.

Table 8.15 DDS_TransportBuiltinQosPolicy

Type Field Name Description

DDS_TransportBuiltinKindMask mask
A mask with bits that indicate which built-in trans-
ports will be installed.
8-52

DomainParticipant QosPolicies
Mapping within a range is done through a mapping function. The middleware provides a
default hash (md5) mapping function. This interface is also pluggable, so you can specify a cus-
tom mapping function to minimize collisions.

Notes:

❏ This QosPolicy is only available when using the C or C++ API on a platform that sup-
ports multicast on a UDPv4 or UDPv6 transport.

❏ To use this QosPolicy, you must set the kind in the TRANSPORT_MULTICAST QosPol-
icy (DDS Extension) (Section 7.6.5) to AUTOMATIC.

This QosPolicy contains the member in Table 8.16.

8.5.8.1 Formatting Rules for Addresses

❏ The string must contain IPv4 or IPv6 addresses separated by commas. For example:
"239.255.100.1,239.255.100.2,239.255.100.3"

❏ You may specify ranges of addresses by enclosing the start and end addresses in square
brackets. For example: "[239.255.100.1,239.255.100.3]".

Table 8.16 DDS_TransportMulticastMappingQosPolicy

Type Field Name Description

DDS_TransportMapping
SettingsSeq

value
A sequence of multicast communication settings, each of
which has the format shown in Table 8.17.

Table 8.17 DDS_TransportMulticastSettings_t

Type Field Name Description

char * addresses

A string containing a comma-separated list of IP
addresses or IP address ranges to be used to receive mul-
ticast traffic for the entity with a topic that matches the
topic_expression.
See Formatting Rules for Addresses (Section 8.5.8.1).

char * topic_expression
A regular expression used to map topic names to corre-
sponding addresses.

DDS_TransportMulticast
MappingFunction_t

mapping_function
Optional. Defines a user-provided pluggable mapping
function. See Table 8.18.

Table 8.18 DDS_TransportMulticastMappingFunction_t

Type Field Name Description

char * dll

Specifies a dynamic library that contains a mapping function.
You may specify a relative or absolute path.
If the name is specified as "foo", the library name on Linux systems will be lib-
foo.so; on Windows systems it will be foo.dll.

char * function_name

Specifies the name of a mapping function in the library specified in the above
dll.
The function must implement the following interface:

int function(const char* topic_name,
int numberOfAddresses);

The function must return an integer that indicates the index of the address to
use for the given topic_name. For example, if the first address in the list should
be used, it must return 0; if the second address in the list should be used, it
must return 1, etc.
8-53

DomainParticipant QosPolicies
❏ You may combine the two approaches. For example:
"239.255.200.1,[239.255.100.1,239.255.100.3], 239.255.200.3"

❏ IPv4 addresses must be specified in Dot-decimal notation.

❏ IPv6 addresses must be specified using 8 groups of 16-bit hexadecimal values separated
by colons. For example: FF00:0000:0000:0000:0202:B3FF:FE1E:8329.

❏ Leading zeroes can be skipped. For example: FF00:0:0:0:202:B3FF:FE1E:8329.

❏ You may replace a consecutive number of zeroes with a double colon, but only once
within an address. For example: FF00::202:B3FF:FE1E:8329.

8.5.8.2 Example

This QoS policy configures the multicast ranges and mapping rules at the DomainParticipant
level. You can configure a large set of multicast addresses on the DomainParticipant.

In addition, you can configure a mapping between topic names and multicast addresses. For
example, topic "A" can be assigned to address 239.255.1.1 and topic "B" can be assigned to
address 239.255.1.2.

This configuration is quite flexible. For example, you can specify mappings between a subset of
topics to a range of multicast addresses. For example, topics "X", "Y" and Z" can be mapped to
[239.255.1.1, 239.255.1.255], or using regular expressions, "X*" and "B-Z" can be mapped to a sub-
range of addresses.

8.5.8.3 Properties

This QosPolicy cannot be modified after the DomainParticipant is created.

8.5.8.4 Related QosPolicies

TRANSPORT_MULTICAST QosPolicy (DDS Extension) (Section 7.6.5)

8.5.8.5 Applicable Entities
❏ DomainParticipants (Section 8.3)

8.5.8.6 System Resource Considerations

See Section 7.6.5.5.

8.5.9 WIRE_PROTOCOL QosPolicy (DDS Extension)

The WIRE_PROTOCOL QosPolicy configures some global Real-Time Publish Subscribe (RTPS)
protocol-related properties for the DomainParticipant. The RTPS OMG-standard, interoperability
protocol is used by Connext to format and interpret messages between DomainParticipants.

It includes the members in Table 8.19. For defaults and valid ranges, please refer to the API Ref-
erence HTML documentation. (The default values contain the correctly initialized wire protocol
attributes. They should not be modified without an understanding of the underlying Real-Time
Publish Subscribe (RTPS) wire protocol.)

Note that DATA_WRITER_PROTOCOL QosPolicy (DDS Extension) (Section 6.5.3) and
DATA_READER_PROTOCOL QosPolicy (DDS Extension) (Section 7.6.1) configure RTPS and
reliability properties on a per DataWriter and DataReader basis.
8-54

DomainParticipant QosPolicies
8.5.9.1 Choosing Participant IDs

When you create a DomainParticipant, you must specify a domain ID, which identifies the com-
munication channel across the whole system. Each DomainParticipant in the same domain on the
same host also needs a unique integer, known as the participant_id.

The participant_id uniquely identifies a DomainParticipant from other DomainParticipants in the
same domain on the same host. You can use the same participant_id value for DomainPartici-
pants in the same domain but running on different hosts.

The participant_id is also used to calculate the default unicast user-traffic and the unicast meta-
traffic port numbers, as described in Ports Used for Discovery (Section 14.5). If you only have
one DomainParticipant in the same domain on the same host, you will not need to modify this
value.

You can either allow Connext to select a participant ID automatically (by setting participant_id
to -1), or choose a specific participant ID (by setting participant_id to the desired value).

❏ Automatic Participant ID Selection

The default value of participant_id is -1, which means Connext will select a participant
ID for you.

Connext will pick the smallest participant ID, based on the unicast ports available on the
transports enabled for discovery, based on the unicast and/or multicast ports available
on the transports enabled for discovery and/or user traffic.

The rtps_reserved_ports_mask field determines which ports to check when picking the
next available participant ID. The reserved ports are calculated based on the formula
specified in Inbound Ports for Meta-Traffic (Section 14.5.1) an Inbound Ports for User
Traffic (Section 14.5.2). By default, Connext will reserve the meta-traffic unicast port, the
meta-traffic multicast port, and the user traffic unicast port.

Table 8.19 DDS_WireProtocolQosPolicy

Type Field Name Description

DDS_Long participant_id
Unique identifier for participants that belong
to the same domain on the same host. See
Section 8.5.9.1.

DDS_UnsignedLong

rtps_host_id
A machine/OS-specific host ID, unique in the
domain. See Section 8.5.9.2.

rtps_app_id
A participant-specific ID, unique within the
scope of the rtps_host_id. See Section 8.5.9.2.

rtps_instance_id

An instance-specific ID of the DomainPartici-
pant that, together with the rtps_app_id, is
unique within the scope of the rtps_host_id.
See Section 8.5.9.2.

DDS_RtpsWellKnownPorts_t
rtps_well_known
_ports

Determines the well-known multicast and uni-
cast ports for discovery and user traffic. See
Section 8.5.9.3.

DDS_RtpsReservedPortKindMask
rtps_reserved_ports
_mask

Specifies which well-known multicast and uni-
cast ports to reserve when enabling the
DomainParticipant.

DDS_WireProtocolQosPolicyAuto
Kind

rtps_auto_id_kind
Kind of auto mechanism used to calculate the
GUID prefix.
8-55

DomainParticipant QosPolicies
Connext will attempt to resolve an automatic port ID either when a DomainParticipant is
enabled, or when a DataReader or a DataWriter is created. Therefore, all the transports
enabled for discovery must have been registered by this time. Otherwise, the discovery
transports registered after resolving the automatic port index may produce port conflicts
when the DomainParticipant is enabled.

To see what value Connext has selected, either:

• Change the verbosity level of the NDDS_CONFIG_LOG_CATEGORY_API category
to NDDS_CONFIG_LOG_VERBOSITY_STATUS_LOCAL (see Controlling Messages
from Connext (Section 21.2)).

• Call get_qos() and look at the participant_id value in the WIRE_PROTOCOL QosPol-
icy (DDS Extension) (Section 8.5.9) after the DomainParticipant is enabled.

❏ Manual Participant ID Selection

If you do have multiple DomainParticipants on the same host, you should use consecu-
tively numbered participant indices start from 0. This will make it easier to specify the
discovery peers using the initial_peers parameter of this QosPolicy or the
NDDS_DISCOVERY_PEERS environment variable. See Configuring the Peers List
Used in Discovery (Section 14.2) for more information.

Do not use random participant indices since this would make DISCOVERY incredibly
difficult to configure. In addition, the participant_id has a maximum value of 120 (and
will be less for domain IDs other than 0) when using an IP-based transport since the
participant_id is used to create the port number (see Ports Used for Discovery (Section
14.5)), and for IP, a port number cannot be larger than 65536.

For details, see Ports Used for Discovery (Section 14.5).

8.5.9.2 Host, App, and Instance IDs

The rtps_host_id, rtps_app_id, and rtps_instance_id values are used by the RTPS protocol to
allow Connext to distinguish messages received from different DomainParticipants. Their com-
bined values must be globally unique across all existing DomainParticipants in the same domain.
In addition, if an application dies unexpectedly and is restarted, the IDs used by the new
instance of DomainParticipants should be different than the ones used by the previous instances.
A change in these values allows other DomainParticipants to know that they are communicating
with a new instance of an application, and not the previous instance.

If the value of rtps_host_id is set to DDS_RTPS_AUTO_ID, the IPv4 address of the host is used
as the host ID. If the host does not have an IPv4 address, then you should set this value to
uniquely distinguish the host from other nodes in the system.

If the value of rtps_app_id is set to DDS_RTPS_AUTO_ID, the process (or task) ID is used.
There can be at most 256 distinct participants in a shared address space (process) with a unique
rtps_app_id.

If the value of rtps_instance_id is set to DDS_RTPS_AUTO_ID, a counter is assigned that is
incremented per new participant. Thus, together with rtps_app_id, there can be at most 2^64
distinct participants in a shared address space with a unique RTPS Globally Unique Identifier
(GUID).

8.5.9.3 Ports Used for Discovery

The rtps_well_known_ports structure allows you to configure the ports that are used for dis-
covery of inbound meta-traffic (discovery data internal to Connext) and user traffic (from your
application).
8-56

DomainParticipant QosPolicies
It includes the members in Table 8.20. For defaults and valid ranges, please refer to the API Ref-
erence HTML documentation.

8.5.9.4 Controlling How the GUID is Set (rtps_auto_id_kind)

In order for the discovery process to work correctly, each DomainParticipant must have a unique
identifier. This QoS policy specifies how that identifier should be generated.

RTPS defines a 96-bit prefix to this identifier; each DomainParticipant must have a unique value
of this prefix relative to all other participants in its domain. In order to make it easier to control
how this 96-bit value is generated, Connext divides it into three integers: a host ID, the value of
which is based on the identity of the machine on which the participant is executing, an applica-
tion ID (whose value is based on the process or task in which the participant is contained), and
an instance ID which identifies the participant itself.

This QoS policy provides you with a choice of algorithms for generating these values automati-
cally. In case none of these algorithms suit your needs, you may also choose to specify some or
all of them yourself.

The following three fields compose the GUID prefix and by default are set to
DDS_RTPS_AUTO_ID. The meaning of this flag depends on the value assigned to
rtps_auto_id_kind.

❏ rtps_host_id

❏ rtps_app_id

❏ rtps_instance_id

Depending on the rtps_auto_id_kind value, there are two different scenarios:

Scenario 1:

In the default and most common scenario, rtps_auto_id_kind is set to
DDS_RTPS_AUTO_ID_FROM_IP. Doing so, each field is interpreted as follows:

❏ rtps_host_id: the 32 bit value of the IPv4 of the first up and running interface of the host
machine is assigned

❏ rtps_app_id: the process (or task) ID is assigned

❏ rtps_instance_id: A counter is assigned that is incremented per new participant

Note: If the IP address assigned to the interface is not unique within the network (for instance, if
it is not configured), then is it possible that the GUID (specifically, the rtps_host_id portion) may
also not be unique.

Table 8.20 DDS_RtpsWellKnownPorts_t

Type Field Name Description

DDS_Long

port_base
The base port offset. All mapped well-known ports are
offset by this value. Resulting ports must be within the
range imposed by the underlying transport.

domain_id_gain Tunable gain parameters. See Ports Used for Discovery
(Section 14.5).participant_id_gain

builtin_multicast_port_offset Additional offset for meta-traffic port. See Inbound Ports
for Meta-Traffic (Section 14.5.1).builtin_unicast_port_offset

user_multicast_port_offset Additional offset for user traffic port. See Inbound Ports
for User Traffic (Section 14.5.2).user_unicast_port_offset
8-57

DomainParticipant QosPolicies
Scenario 2:

In this situation, Connext provides a different value for rtps_auto_id_kind:
DDS_RTPS_AUTO_ID_FROM_MAC. As the name suggests, this alternative mechanism uses
the MAC address instead of the IPv4 address. Since the MAC address size is up to 64 bits, the
logical mapping of the host information, the application ID, and the instance identifiers has to
change.

Note to Solaris Users: To use DDS_RTPS_AUTO_ID_FROM_MAC, you must run the Connext
application while logged in as ‘root.’

Using DDS_RTPS_AUTO_ID_FROM_MAC, the default value of each field is interpreted as fol-
lows:

❏ rtps_host_id: the first 32 bits of the MAC address of the first up and running interface of
the host machine are assigned

❏ rtps_app_id: the last 32 bits of the MAC address of the first up and running interface of
the host machine are assigned

❏ rtps_instance_id: this field is split into two different parts. The process (or task) ID is
assigned to the first 24 bits. A counter is assigned to the last 8 bits. This counter is incre-
mented per new participant. In both scenarios, you can change the value of each field
independently.

If DDS_RTPS_AUTO_ID_FROM_MAC is used, the rtps_instance_id has been logically split into
two parts: 24 bits for the process/task ID and 8 bits for the per new participant counter. To give
to users the ability to manually set the two parts independently, a bit field mechanism has been
introduced for the rtps_instance_id field when it is used in combination with
DDS_RTPS_AUTO_ID_FROM_MAC. If one of the two parts is set to 0, only this part will be
handled by Connext and you will be able to handle the other one manually.

Some examples are provided to better explain the behavior of this QoSPolicy in case you want to
change the default behavior with DDS_RTPS_AUTO_ID_FROM_MAC.

The first step is to get the DomainParticipant QoS from the DomainParticipantFactory:

DDS_DomainParticipantFactory_get_default_participant_qos(
DDS_DomainParticipantFactory_get_instance(),
&participant_qos);

Next, change the WireProtocolQosPolicy using one of the following options.

Then create the DomainParticipant as usual using the modified QoS structure instead of the
default one.

Option 1. Use DDS_RTPS_AUTO_ID_FROM_MAC to explicitly set just the application/task
identifier portion of the rtps_instance_id field:

participant_qos.wire_protocol.rtps_auto_id_kind =
DDS_RTPS_AUTO_ID_FROM_MAC;
participant_qos.wire_protocol.rtps_host_id = DDS_RTPS_AUTO_ID;
participant_qos.wire_protocol.rtps_app_id = DDS_RTPS_AUTO_ID;
participant_qos.wire_protocol.rtps_instance_id =
(/* App ID */ (12 << 8) |
 /* Instance ID*/ (DDS_RTPS_AUTO_ID));

Option 2. Only set the per participant counter and let Connext handle the application/task
identifier:

participant_qos.wire_protocol.rtps_auto_id_kind =
DDS_RTPS_AUTO_ID_FROM_MAC;
participant_qos.wire_protocol.rtps_host_id = DDS_RTPS_AUTO_ID;
8-58

DomainParticipant QosPolicies
participant_qos.wire_protocol.rtps_app_id = DDS_RTPS_AUTO_ID;
participant_qos.wire_protocol.rtps_instance_id =
(/* App ID */ (DDS_RTPS_AUTO_ID) |
 /* Instance ID*/ (12));

Option 3. Set the entire rtps_instance_id field yourself:

participant_qos.wire_protocol.rtps_auto_id_kind =
DDS_RTPS_AUTO_ID_FROM_MAC;
participant_qos.wire_protocol.rtps_host_id = DDS_RTPS_AUTO_ID;
participant_qos.wire_protocol.rtps_app_id = DDS_RTPS_AUTO_ID;
participant_qos.wire_protocol.rtps_instance_id =
(/* App ID */ (12 << 8)) |
 /* Instance ID */ (9))

Note: If you are using DDS_RTPS_AUTO_ID_FROM_MAC as rtps_auto_id_kind and you
decide to manually handle the rtps_instance_id field, you must ensure that both parts are non-
zero (otherwise Connext will take responsibility for them).

RTI recommends that you always specify the two parts separately in order to avoid errors.

Option 4. Let Connext handle the entire rtps_instance_id field:

participant_qos.wire_protocol.rtps_auto_id_kind =
DDS_RTPS_AUTO_ID_FROM_MAC;
participant_qos.wire_protocol.rtps_host_id = DDS_RTPS_AUTO_ID;
participant_qos.wire_protocol.rtps_app_id = DDS_RTPS_AUTO_ID;
participant_qos.wire_protocol.rtps_instance_id = DDS_RTPS_AUTO_ID;

Note: If you are using DDS_RTPS_AUTO_ID_FROM_MAC as rtps_auto_id_kind and you
decide to manually set the rtps_instance_id field, you must ensure that both parts are non-zero
(otherwise Connext will take responsibility for them).

RTI recommends that you always specify the two parts separately in order to clearly show the
difference.

8.5.9.5 Example

On many real-time operating systems, and even on some non-real-time operating systems,
when a node is rebooted, and applications are automatically started, process ids are determinis-
tically assigned. That is, when the system restarts or if an application dies and is restarted, the
application will be reassigned the same process or task ID.

This means that Connext’s automatic algorithm for creating unique rtps_app_id’s will produce
the same value between sequential instances of the same application. This will confuse the other
DomainParticipants on the network into thinking that they are communicating with the previous
instance of the application instead of a new instance. Errors usually resulting in a failure to com-
municate will ensue.

Thus for applications running on nodes that may be rebooted without letting the application
shutdown appropriately (destroying the DomainParticipant), especially on nodes running real-
time operating systems like VxWorks or LynxOS, you will want to set the rtps_app_id manually.
We suggest that a strictly incrementing counter is stored either on a file system or in non-volatile
RAM is used for the rtps_app_id.

Whatever method you use, you should make sure that the rtps_app_id is unique across all
DomainParticipants running on a host as well as DomainParticipants that were recently running
on the host. After a period configured through the DISCOVERY_CONFIG QosPolicy existing
applications will eventually flush old DomainParticipants that did not properly shutdown from
their databases. When that is done, then rtps_app_id may be reused.
8-59

Clock Selection
8.5.9.6 Properties

This QosPolicy cannot be modified after the DomainParticipant is created.

If manually set, it must be set differently for every DomainParticipant in the same domain across
all applications. The value of rtps_app_id should also change between different invocations of
the same application (for example, when an application is restarted).

8.5.9.7 Related QosPolicies

❏ DISCOVERY_CONFIG QosPolicy (DDS Extension) (Section 8.5.3)

8.5.9.8 Applicable Entities

❏ DomainParticipants (Section 8.3)

8.5.9.9 System Resource Considerations

The use of this policy does not significantly impact the use of resources.

8.6 Clock Selection
Connext uses clocks to measure time and generate timestamps.

The middleware uses two clocks: an internal clock and an external clock.

❏ The internal clock measures time and handles all timing in the middleware.

❏ The external clock is used solely to generate timestamps (such as the source timestamp
and the reception timestamp), in addition to providing the time given by the DomainPar-
ticipant’s get_current_time() operation (see Section 8.3.13.2).

8.6.1 Available Clocks

Two clock implementations are generally available: the real-time clock and the monotonic clock.

The real-time clock provides the real time of the system. This clock may generally be monotonic,
but may not be guaranteed to be so. It is adjustable and may be subject to small and large
changes in time. The time obtained from this clock is generally a meaningful time, in that it is the
amount of time from a known epoch. For the purposes of clock selection, this clock can be refer-
enced by the names "realtime" or "system"—both names map to the same real-time clock.

The monotonic clock provides times that are monotonic from a clock that is not adjustable. This
clock is not subject to changes in the system or realtime clock, which may be adjusted by the
user or via time synchronization protocols. However, this clock’s time generally starts from an
arbitrary point in time, such as system start-up. Note that the monotonic clock is not available
for all architectures. Please see the Platform Notes for the architectures on which it is supported.
For the purposes of clock selection, this clock can be referenced by the name "monotonic".

8.6.2 Clock Selection Strategy

To configure the clock selection, use the DomainParticipant’s PROPERTY QosPolicy (DDS Exten-
sion) (Section 6.5.17). Table 8.21 lists the supported properties.

By default, both the internal and external clocks use the realtime clock.
8-60

System Properties
If you want your application to be robust to changes in the system time, you may use the mono-
tonic clock as the internal clock, and leave the system clock as the external clock. However, note
that this may slightly diminish performance, in that both the send and receive paths may need
to get times from both clocks.

Since the monotonic clock is not available on all architectures, you may want to specify "mono-
tonic, realtime" for the internal_clock property (see Table 8.21). By doing so, the middleware
will attempt to use the monotonic clock if it is available, and will fall back to the realtime clock if
the monotonic clock is not available.

If you want the application to be robust to changes in the system time, you are not relying on
source timestamps, and you want to avoid obtaining times from both clocks, you may use the
monotonic clock for both the internal and external clocks.

8.7 System Properties
Connext uses the DomainParticipant’s PropertyQosPolicy to maintain a set of properties that pro-
vide system information, such as the hostname.

Unless the default the DDS_DomainParticipantQos structure (see Setting DomainParticipant
QosPolicies (Section 8.3.6)) is overwritten, the system properties are automatically set in the
DDS_DomainParticipantQos structure that is obtained by calling the DomainParticipantFac-
tory’s get_default_participant_qos() operation or by using the constant
DDS_PARTICIPANT_QOS_DEFAULT.

System properties are also automatically set in the DDS_DomainParticipantQos structure
loaded from an XML QoS profile unless you disable property inheritance using the attribute
inherit in the XML tag <property>.

By default, the system properties are propagated to other DomainParticipants in the system and
can be accessed through the property field in the Participant Built-in Topic’s Data Type
(DDS_ParticipantBuiltinTopicData) (see Table 16.1 on page 16-2).

You can disable propagation of individual properties by setting the property’s propagate flag to
FALSE or by removing the property using the PropertyQosPolicyHelper operation,
remove_property() (see Table 6.56, "PropertyQoSPolicyHelper Operations" on page 6-119).

The number of system properties that are initialized for a DomainParticipant is platform specific:
only process_id and os_arch are supported on all platforms.

These properties will only be created if Connext can obtain the information for them; see
Table 8.22.

System properties are affected by the DomainParticipantResourceLimitsQosPolicy’s
participant_property_list_max_length and participant_property_string_max_length.

Table 8.21 Clock Selection Properties

Property Description

dds.clock.external_clock
Comma-delimited list of clocks to use for the external clock, in the order of
preference.
Valid clock names are “realtime”, “system”, or “monotonic”.

dds.clock.internal_clock
Comma-delimited list of clocks to use for the internal clock, in the order of
preference.
Valid clock names are “realtime”, “system”, or “monotonic”.
8-61

System Properties
Table 8.22 System Properties

Property Name Description

dds.sys_info.creation_timestamp Time when the executable was created.a

dds.sys_info.executable_filepath Name and full path of the executable.a

dds.sys_info.execution_timestamp Time when the execution started.a

dds.sys_info.hostname Hostnamea

dds.sys_info.target
Architecture for which the library was compiled (for
example, x64Darwin10gcc4.2.1).

dds.sys_info.process_id Process ID

dds.sys_info.username Username that is running the process.a

a. Only supported on Windows and Linux architectures.
8-62

Chapter 9 Building Applications

This chapter provides instructions on how to build Connext applications for the following plat-
forms:

❏ UNIX-Based Platforms (Section 9.3) (including Solaris™, Red Hat® and Yellow Dog™
Linux, QNX®, and LynxOS® systems)

❏ Windows Platforms (Section 9.4)

❏ Java Platforms (Section 9.5)

While you can create applications for other operating systems, the platforms presented in this
chapter are a good starting point. We recommend that you first build and test your application
on one of these systems.

Instructions for other supported target platforms are provided in the Platform Notes.

To build a non-Java application using Connext, you must specify the following items:

❏ NDDSHOME environment variable

❏ Connext header files

❏ Connext libraries to link

❏ Compatible system libraries

❏ Compiler options

To build Java applications using Connext, you must specify the following items:

❏ NDDSHOME environment variable

❏ Connext JAR file

❏ Compatible Java virtual machine (JVM)

❏ Compiler options

This chapter describes the basic steps you will take to build an application on the above-men-
tioned platforms. Specific details, such as exactly which libraries to link, compiler flags, etc. are
in the Platform Notes.

9.1 Running on a Computer Not Connected to a Network
If you want to run Connext applications on the same computer, and that computer is not con-
nected to a network, you must set NDDS_DISCOVERY_PEERS so that it will only use shared
memory. For example:
9-1

Connext Header Files — All Architectures
set NDDS_DISCOVERY_PEERS=4@shmem://

(The number 4 is only an example. This is the maximum participant ID.)

9.2 Connext Header Files — All Architectures
You must include the appropriate Connext header files, which are listed in Table 9.1. The header
files that need to be included depend on the API being used.

For the compiler to find the included files, the path to the appropriate include directories must
be provided. Table 9.2 lists the appropriate include path for use with the compiler. The exact
path depends on where you installed Connext. For example, it may be C:\Program
Files\RTI\ndds.5.x.y\include or /opt/rti/ndds.5.x.y/include (where x and y stand for the ver-
sion numbers of the current release).

$(NDDSHOME) should be set to the installation directory of Connext 5.x.y, where x and y stand
for the version numbers of the current release.

The header files that define the data types you want to use within the application also need to be
included. For example, Table 9.3 lists the files to be include for type “Foo” (these are the file-
names generated by rtiddsgen, described in Chapter 3).

9.3 UNIX-Based Platforms
Before building a Connext application for a UNIX-based platform (including Solaris, Red Hat
and Yellow Dog Linux, QNX, and LynxOS systems), make sure that:

Table 9.1 Header Files to Include for Connext (All Architectures)

Connext API Header Files

C #include “ndds/ndds_c.h”

C++ #include “ndds/ndds_cpp.h”

C++/CLI, C#, Java none

Table 9.2 Include Paths for Compilation (All Architectures)

Connext API Include Path Directories

C and C++
<your Connext installation directory>/include
<your Connext installation directory>/include/ndds

C++/CLI, C#, Java none

Table 9.3 Header Files to Include for Data Types (All Architectures)

Connext API User Data Type Header Files

C and C++
#include “Foo.h”
#include “FooSupport.h”

C++/CLI, C#, Java none
9-2

Windows Platforms
❏ A supported version of your architecture is installed. See the Platform Notes for sup-
ported architectures.

❏ Connext 5.x.y is installed (where x and y stand for the version numbers of the current
release). For installation instructions, refer to Section 2.1.1 in the Getting Started Guide.

❏ A “make” tool is installed. RTI recommends GNU Make. If you do not have it, you may
be able to download it from your operating system vendor. Learn more at
www.gnu.org/software/make/ or download from ftpmirror.gnu.org/make as source
code.

❏ The NDDSHOME environment variable is set to the root directory of the Connext instal-
lation (such as /opt/rti/ndds5.x.y, where x and y stand for the version numbers of the cur-
rent release). To confirm, type this at a command prompt:

echo $NDDSHOME
env | grep NDDSHOME

If it is not set or is set incorrectly, type:

setenv NDDSHOME <correct directory>

To compile a Connext application of any complexity, either modify the auto-generated makefile
created by running rtiddsgen or write your own makefile.

9.3.1 Required Libraries

All required system and Connext libraries are listed in the Platform Notes.

You must choose between dynamic (shared) and static libraries. Do not mix the different types
of libraries during linking. The benefit of linking against the dynamic libraries is that your final
executables’ sizes will be significantly smaller. You will also use less memory when you are run-
ning several Connext applications on the same node. However, shared libraries require more set-
up and maintenance during upgrades and installations.

To see if dynamic libraries are supported for your target architecture, see the Platform Notes1.

9.3.2 Compiler Flags

See the Platform Notes for information on compiler flags.

9.4 Windows Platforms
Before building an application for a Microsoft Windows® platform, make sure that:

❏ Supported versions of Windows and Visual C++ or Visual Studio .NET are installed. See
Section 10 in the Platform Notes.

❏ Connext 5.x.y is installed (where x and y stand for the version numbers of the current
release). For installation instructions, refer to the Section 2.1.2 in the Getting Started
Guide.

❏ The NDDSHOME environment variable is set to the root directory of the Connext instal-
lation (such as C:\Program Files\RTI\ndds5.x.y, where x and y stand for the version
numbers of the current release). To confirm, type this at a command prompt:

1. In the Platform Notes, see the “Building Instructions...” table for your target architecture.
9-3

www.gnu.org/software/make/
ftpmirror.gnu.org/make

Windows Platforms
echo %NDDSHOME%

❏ Use the dynamic MFC Library (not static).

To avoid communication problems in your Connext application, use the dynamic MFC
library, not the static version. (If you use the static version, your Connext application may
stop receiving samples once the Windows sockets are initialized.)

To compile a Connext application of any complexity, use a project file in Microsoft Visual Studio.
The project settings are described below. Section 10 in the Getting Started Guide contains addi-
tional information.

9.4.1 Using Visual Studio .NET or Visual Studio 2005

1. Select the multi-threaded project setting:

a. From the Project menu, select Properties.

b. Select the C/C++ folder.

c. Select Code Generation.

d. Set the Runtime Library field to one of the options from Table 9.4.

2. Link against the Connext libraries:

a. Select the Linker folder on the Project, Properties dialog box.

b. Select the Input properties.

c. See Section 10 in the Platform Notes for a list of required libraries. You have a choice
of whether to link with Connext’s static or dynamic libraries. Decide whether or not
you want debugging symbols on. In either case, be sure to use a space as a delimiter
between libraries, not a comma. Add the libraries to the beginning of the Additional
Dependencies field.

d. Select the General properties.

e. Add the following to the Additional library path field (replace <architecture> to
match your installed system):

 $(NDDSHOME)\lib\<architecture>

3. Specify the path to Connext’s header file:

a. Select the C/C++ folder.

b. Select the General properties.

c. In the Additional include directories: field, add paths to the “include” and
“include\ndds” directories. For example:

 c:\rti\ndds.5.x.y\include\
 c:\rti\ndds.5.x.y\include\ndds

Your paths may differ, depending on where you installed Connext.

Table 9.4 Runtime Library Settings for Visual Studio .NET or Visual Studio 2005

If You are using this Library Format... Set the Runtime Library field to...

Release version of static libraries Multi-threaded (/MT)

Debug version of static libraries Multi-threaded Debug (/MTd)

Release version of dynamic libraries Multi-threaded DLL (/MD)

Debug version of dynamic libraries Multi-threaded Debug DLL (/MDd)
9-4

Java Platforms
9.5 Java Platforms
Before building an application for a Windows or UNIX Java platform, make sure that:

❏ Connext 5.x.y is installed (where x and y stand for the version numbers of the current
release). For installation instructions, refer to Chapter 2 in the Getting Started Guide.

❏ A supported version of the Java 2 software development kit (J2SDK) is installed. See the
Platform Notes.

9.5.1 Java Libraries

Connext requires that certain Java archive (JAR) files be on your classpath when running Connext
applications. See the Platform Notes for more details.

9.5.2 Native Libraries

Connext for Java is implemented using Java Native Interface (JNI), so it is necessary to provide
your Connext distributed applications access to certain native shared libraries. See the Platform
Notes for more details.
9-5

Part 3: Advanced Concepts

This part of the manual will guide you through some of the more advanced concepts:

❏ Chapter 10: Reliable Communications

❏ Chapter 11: Collaborative DataWriters

❏ Chapter 12: Mechanisms for Achieving Information Durability and Persistence

❏ Chapter 13: Guaranteed Delivery of Data

❏ Chapter 14: Discovery

❏ Chapter 15: Transport Plugins

❏ Chapter 16: Built-In Topics

❏ Chapter 17: Configuring QoS with XML

❏ Chapter 18: Multi-channel DataWriters

❏ Chapter 19: Connext Threading Model

❏ Chapter 20: Sample-Data Memory Management

❏ Chapter 21: Troubleshooting

Chapter 10 Reliable Communications

Connext uses best-effort delivery by default. The other type of delivery that Connext supports is
called reliable. This chapter provides instructions on how to set up and use reliable communica-
tion.

This chapter includes the following sections:

❏ Sending Data Reliably (Section 10.1)

❏ Overview of the Reliable Protocol (Section 10.2)

❏ Using QosPolicies to Tune the Reliable Protocol (Section 10.3)

10.1 Sending Data Reliably
The DCPS reliability model recognizes that the optimal balance between time-determinism and
data-delivery reliability varies widely among applications and can vary among different publi-
cations within the same application. For example, individual samples of signal data can often be
dropped because their value disappears when the next sample is sent. However, each sample of
command data must be received and it must be received in the order sent.

The QosPolicies provide a way to customize the determinism/reliability trade-off on a per Topic
basis, or even on a per DataWriter/DataReader basis.

There are two delivery models:

❏ Best-effort delivery mode “I’m not concerned about missed or unordered samples.”

❏ Reliable delivery model “Make sure all samples get there, in order.”

10.1.1 Best-effort Delivery Model

By default, Connext uses the best-effort delivery model: there is no effort spent ensuring in-order
delivery or resending lost samples. Best-effort DataReaders ignore lost samples in favor of the lat-
est sample. Your application is only notified if it does not receive a new sample within a certain
time period (set in the DEADLINE QosPolicy (Section 6.5.5)).

The best-effort delivery model is best for time-critical information that is sent continuously. For
instance, consider a DataWriter for the value of a sensor device (such as a the pressure inside a
tank), and assume the DataWriter sends samples continuously. In this situation, a DataReader for
this Topic is only interested in having the latest pressure reading available—older samples are
obsolete.
10-1

Sending Data Reliably
10.1.2 Reliable Delivery Model

Reliable delivery means the samples are guaranteed to arrive, in the order published.

The DataWriter maintains a send queue with space to hold the last X number of samples sent.
Similarly, a DataReader maintains a receive queue with space for consecutive X expected samples.

The send and receive queues are used to temporarily cache samples until Connext is sure the sam-
ples have been delivered and are not needed anymore. Connext removes samples from a publica-
tion’s send queue after the sample has been acknowledged by all reliable subscriptions. When
positive acknowledgements are disabled (see DATA_WRITER_PROTOCOL QosPolicy (DDS
Extension) (Section 6.5.3) and DATA_READER_PROTOCOL QosPolicy (DDS Extension) (Sec-
tion 7.6.1)), samples are removed from the send queue after the corresponding keep-duration
has elapsed (see Table 6.36, “DDS_RtpsReliableWriterProtocol_t,” on page 6-84).

If an out-of-order sample arrives, Connext speculatively caches it in the DataReader’s receive queue
(provided there is space in the queue). Only consecutive samples are passed on to the
DataReader.

DataWriters can be set up to wait for available queue space when sending samples. This will
cause the sending thread to block until there is space in the send queue. (Or, you can decide to
sacrifice sending samples reliably so that the sending rate is not compromised.) If the DataWriter
is set up to ignore the full queue and sends anyway, then older cached samples will be pushed
out of the queue before all DataReaders have received them. In this case, the DataReader (or its
Subscriber) is notified of the missing samples through its Listener and/or Conditions.

Connext automatically sends acknowledgments (ACKNACKs) as necessary to maintain reliable
communications. The DataWriter may choose to block for a specified duration to wait for these
acknowledgments (see Waiting for Acknowledgments in a DataWriter (Section 6.3.11)).

Connext establishes a virtual reliable channel between the matching DataWriter and all DataRead-
ers. This mechanism isolates DataReaders from each other, allows the application to control mem-
ory usage, and provides mechanisms for the DataWriter to balance reliability and determinism.
Moreover, the use of send and receive queues allows Connext to be implemented efficiently with-
out introducing unnecessary delays in the stream.

Note that a successful return code (DDS_RETCODE_OK) from write() does not necessarily
mean that all DataReaders have received the data. It only means that the sample has been added
to the DataWriter’s queue. To see if all DataReaders have received the data, look at the
RELIABLE_WRITER_CACHE_CHANGED Status (DDS Extension) (Section 6.3.6.7) to see if any
samples are unacknowledged.

Suppose DataWriter A reliably publishes a Topic to which DataReaders B and C reliably subscribe.
B has space in its queue, but C does not. Will DataWriter A be notified? Will DataReader C receive
any error messages or callbacks? The exact behavior depends on the QoS settings:

❏ If HISTORY_KEEP_ALL is specified for C, C will reject samples that cannot be put into
the queue and request A to resend missing samples. The Listener is notified with the
on_sample_rejected() callback (see SAMPLE_REJECTED Status (Section 7.3.7.8)). If A
has a queue large enough, or A is no longer writing new samples, A won’t notice unless
it checks the RELIABLE_WRITER_CACHE_CHANGED Status (DDS Extension) (Section
6.3.6.7).

❏ If HISTORY_KEEP_LAST is specified for C, C will drop old samples and accept new
ones. To A, it is as if all samples have been received by C (that is, they have all been
acknowledged).
10-2

Overview of the Reliable Protocol
10.2 Overview of the Reliable Protocol
An important advantage of Connext is that it can offer the reliability and other QoS guarantees
mandated by DDS on top of a very wide variety of transports, including packet-based trans-
ports, unreliable networks, multicast-capable transports, bursty or high-latency transports, etc.
Connext is also capable of maintaining liveliness and application-level QoS even in the presence
of sporadic connectivity loss at the transport level, an important benefit in mobile networks.
Connext accomplishes this by implementing a reliable protocol that sequences and acknowl-
edges application-level messages and monitors the liveliness of the link. This is called the Real-
Time Publish-Subscribe (RTPS) protocol; it is an open, international standard.1

In order to work in this wide range of environments, the reliable protocol defined by RTPS is
highly configurable with a set of parameters that let the application fine-tune its behavior to
trade-off latency, responsiveness, liveliness, throughput, and resource utilization. This section
describes the most important features to the extent needed to understand how the configuration
parameters affect its operation.

The most important features of the RTPS protocol are:

❏ Support for both push and pull operating modes

❏ Support for both positive and negative acknowledgments

❏ Support for high data-rate DataWriters

❏ Support for multicast DataReaders

❏ Support for high-latency environments

In order to support these features, RTPS uses several types of messages: Data messages (DATA),
acknowledgments (ACKNACKs), and heartbeats (HBs).

❏ DATA messages contain snapshots of the value of data-objects and associate the snap-
shot with a sequence number that Connext uses to identify them within the DataWriter’s
history. These snapshots are stored in the history as a direct result of the application call-
ing write() on the DataWriter. Incremental sequence numbers are automatically assigned
by the DataWriter each time write() is called. In Figure 10.1 through Figure 10.7, these
messages are represented using the notation DATA(<value>, <sequenceNum>). For
example, DATA(A,1) represents a message that communicates the value ‘A’ and associ-
ates the sequence number ‘1’ with this message. A DATA is used for both keyed and non-
keyed data types.

❏ HB messages announce to the DataReader that it should have received all snapshots up to
the one tagged with a range of sequence numbers and can also request the DataReader to
send an acknowledgement back. For example, HB(1-3) indicates to the DataReader that it
should have received snapshots tagged with sequence numbers 1, 2, and 3 and asks the
DataReader to confirm this.

❏ ACKNACK messages communicate to the DataWriter that particular snapshots have
been successfully stored in the DataReader’s history. ACKNACKs also tell the DataWriter
which snapshots are missing on the DataReader side. The ACKNACK message includes a
set of sequence numbers represented as a bit map. The sequence numbers indicate which
ones the DataReader is missing. (The bit map contains the base sequence number that has
not been received, followed by the number of bits in bit map and the optional bit map.
The maximum size of the bit map is 256.) All numbers up to (not including) those in the
set are considered positively acknowledged. They are represented in Figure 10.1 through

1. For a link to the RTPS specification, see the RTI website, www.rti.com.
10-3

http://www.rti.com

Overview of the Reliable Protocol
Figure 10.7 as ACKNACK(<first-missing>) or ACKNACK(<first-missing>-<last-miss-
ing>). For example, ACKNACK(4) indicates that the snapshots with sequence numbers
1, 2, and 3 have been successfully stored in the DataReader history, and that 4 has not been
received.

It is important to note that Connext can bundle multiple of the above messages within a single
network packet. This ‘submessage bundling’ provides for higher performance
communications.

Figure 10.1 illustrates the basic behavior of the protocol when an application calls the write()
operation on a DataWriter that is associated with a DataReader. As mentioned, the RTPS protocol
can bundle multiple submessages into a single network packet. In Figure 10.1 this feature is
used to piggyback a HB message to the DATA message. Note that before the message is sent, the
data is given a sequence number (1 in this case) which is stored in the DataWriter’s send queue.
As soon as the message is received by the DataReader, it places it into the DataReader’s receive
queue. From the sequence number the DataReader can tell that it has not missed any messages
and therefore it can make the data available immediately to the user (and call the DataReaderLis-
tener). This is indicated by the “✔” symbol. The reception of the HB(1) causes the DataReader to
check that it has indeed received all updates up to and including the one with sequenceNum-
ber=1. Since this is true, it replies with an ACKNACK(2) to positively acknowledge all messages
up to (but not including) sequence number 2. The DataWriter notes that the update has been

Figure 10.1 Basic RTPS Reliable Protocol

DataWriter DataReader

write(A)

1 A X

1 A 4

cache (A, 1)

Assigned sequence number

History of send data values

Whether or not the sample
has been delivered to the
reader history

acked (1)

1 A 4cache (A, 1)

check (1)

tim
e

DataReader
history

Assigned sequence
number

Whether or not the
sample is available
for the application
to read/take

tim
e

ACKNACK (2)

DATA (A,1); HB (1)
10-4

Overview of the Reliable Protocol
acknowledged, so it no longer needs to be retained in its send queue. This is indicated by the
“✔” symbol.

Figure 10.2 illustrates the behavior of the protocol in the presence of lost messages. Assume that
the message containing DATA(A,1) is dropped by the network. When the DataReader receives
the next message (DATA(B,2); HB(1-2)) the DataReader will notice that the data associated with
sequence number 1 was never received. It realizes this because the heartbeat HB(1-2) tells the

Figure 10.2 RTPS Reliable Protocol in the Presence of Message Loss

DataWriter DataReader

cache (A, 1)

cache(B,2)

cache (B,2)

tim
e

DATA (A,1); HB (1)

1 A X

write(S01)

r

write(S02)

1 A X

2 B X

get(1)

DATA (B,2); HB (1-2)

tim
e

ACKNACK(1)
1 X

2 B X

1 A 4

2 B 4

DATA (A,1)

cache (A,1)

cache(C,3)

write(S03)

1 A X

2 B X

3 C X

DATA (C,3); HB (1-3)

1 A 4

2 B 4

3 C 4

cache (C,3)

check(1-3)

ACKNACK(4)

acked(1-3)

1 A 4

2 B 4

3 C 4
See Figure 10.1 for
meaning of table columns.
10-5

Using QosPolicies to Tune the Reliable Protocol
DataReader that it should have received all messages up to and including the one with sequence
number 2. This realization has two consequences:

1. The data associated with sequence number 2 (B) is tagged with ‘X’ to indicate that it is
not deliverable to the application (that is, it should not be made available to the applica-
tion, because the application needs to receive the data associated with sample 1 (A) first).

2. An ACKNACK(1) is sent to the DataWriter to request that the data tagged with sequence
number 1 be resent.

Reception of the ACKNACK(1) causes the DataWriter to resend DATA(A,1). Once the DataReader
receives it, it can ‘commit’ both A and B such that the application can now access both (indicated
by the “✔”) and call the DataReaderListener. From there on, the protocol proceeds as before for
the next data message (C) and so forth.

A subtle but important feature of the RTPS protocol is that ACKNACK messages are only sent
as a direct response to HB messages. This allows the DataWriter to better control the overhead of
these ‘administrative’ messages. For example, if the DataWriter knows that it is about to send a
chain of DATA messages, it can bundle them all and include a single HB at the end, which mini-
mizes ACKNACK traffic.

10.3 Using QosPolicies to Tune the Reliable Protocol
Reliability is controlled by the QosPolicies in Table 10.1. To enable reliable delivery, read the fol-
lowing sections to learn how to change the QoS for the DataWriter and DataReader:

❏ Enabling Reliability (Section 10.3.1)

❏ Tuning Queue Sizes and Other Resource Limits (Section 10.3.2)

❏ Controlling Heartbeats and Retries with DataWriterProtocol QosPolicy (Section 10.3.4)

❏ Avoiding Message Storms with DataReaderProtocol QosPolicy (Section 10.3.5)

❏ Resending Samples to Late-Joiners with the Durability QosPolicy (Section 10.3.6)

Then see this section to explore example use cases:

❏ Use Cases (Section 10.3.7)

Table 10.1 QosPolicies for Reliable Communications

QosPolicy Description Related
Entitiesa Reference

Reliability
To establish reliable communication, this QoS must be
set to DDS_RELIABLE_RELIABILITY_QOS for the
DataWriter and its DataReaders.

DW, DR
Section 10.3.1,
Section 6.5.19

ResourceLimits

This QoS determines the amount of resources each side
can use to manage instances and samples of instances.
Therefore it controls the size of the DataWriter’s send
queue and the DataReader’s receive queue. The send
queue stores samples until they have been ACKed by
all DataReaders. The DataReader’s receive queue stores
samples for the user’s application to access.

DW, DR
Section 10.3.2,
Section 6.5.20

History
This QoS affects how a DataWriter/DataReader behaves
when its send/receive queue fills up.

DW, DR
Section 10.3.3,
Section 6.5.10
10-6

Using QosPolicies to Tune the Reliable Protocol
10.3.1 Enabling Reliability

You must modify the RELIABILITY QosPolicy (Section 6.5.19) of the DataWriter and each of its
reliable DataReaders. Set the kind field to DDS_RELIABLE_RELIABILITY_QOS:

❏ DataWriter

writer_qos.reliability.kind = DDS_RELIABLE_RELIABILITY_QOS;

❏ DataReader

reader_qos.reliability.kind = DDS_RELIABLE_RELIABILITY_QOS;

10.3.1.1 Blocking until the Send Queue Has Space Available

The max_blocking_time property in the RELIABILITY QosPolicy (Section 6.5.19) indicates how
long a DataWriter can be blocked during a write().

If max_blocking_time is non-zero and the reliability send queue is full, the write is blocked (the
sample is not sent). If max_blocking_time has passed and the sample is still not sent, write()
returns DDS_RETCODE_TIMEOUT and the sample is not sent.

If the number of unacknowledged samples in the reliability send queue drops below
max_samples (set in the RESOURCE_LIMITS QosPolicy (Section 6.5.20)) before
max_blocking_time, the sample is sent and write() returns DDS_RETCODE_OK.

If max_blocking_time is zero and the reliability send queue is full, write() returns
DDS_RETCODE_TIMEOUT and the sample is not sent.

10.3.2 Tuning Queue Sizes and Other Resource Limits

Set the HISTORY QosPolicy (Section 6.5.10) appropriately to accommodate however many sam-
ples should be saved in the DataWriter’s send queue or the DataReader’s receive queue. The
defaults may suit your needs; if so, you do not have to modify this QosPolicy.

DataWriterProtocol
This QoS configures DataWriter-specific protocol. The
QoS can disable positive ACKs for its DataReaders.

DW
Section 10.3.4,
Section 6.5.3

DataReaderProtocol

When a reliable DataReader receives a heartbeat from a
DataWriter and needs to return an ACKNACK, the
DataReader can choose to delay a while. This QoS sets
the minimum and maximum delay. It can also disable
positive ACKs for the DataReader.

DR
Section 10.3.5,
Section 7.6.1

DataReaderResource-
Limits

This QoS determines additional amounts of resources
that the DataReader can use to manage samples
(namely, the size of the DataReader’s internal queues,
which cache samples until they are ordered for reliabil-
ity and can be moved to the DataReader’s receive queue
for access by the user’s application).

DR
Section 10.3.2,
Section 7.6.2

Durability
This QoS affects whether late-joining DataReaders will
receive all previously-sent data or not.

DW, DR
Section 10.3.6,
Section 6.5.7

a. DW = DataWriter, DR = DataReader

Table 10.1 QosPolicies for Reliable Communications

QosPolicy Description Related
Entitiesa Reference
10-7

Using QosPolicies to Tune the Reliable Protocol
Set the DDS_RtpsReliableWriterProtocol_t in the DATA_WRITER_PROTOCOL QosPolicy (DDS
Extension) (Section 6.5.3) appropriately to accommodate the number of unacknowledged sam-
ples that can be in-flight at a time from a DataWriter.

For more information, see the following sections:

❏ Understanding the Send Queue and Setting its Size (Section 10.3.2.1)

❏ Understanding the Receive Queue and Setting Its Size (Section 10.3.2.2)

Note: The HistoryQosPolicy’s depth must be less than or equal to the ResourceLimitsQosPol-
icy’s max_samples_per_instance; max_samples_per_instance must be less than or equal to the
ResourceLimitsQosPolicy’s max_samples (see RESOURCE_LIMITS QosPolicy (Section 6.5.20)),
and max_samples_per_remote_writer (see DATA_READER_RESOURCE_LIMITS QosPolicy
(DDS Extension) (Section 7.6.2)) must be less than or equal to max_samples.

❏ depth <= max_samples_per_instance <= max_samples

❏ max_samples_per_remote_writer <= max_samples

Examples:

❏ DataWriter

writer_qos.resource_limits.initial_instances = 10;
writer_qos.resource_limits.initial_samples = 200;
writer_qos.resource_limits.max_instances = 100;
writer_qos.resource_limits.max_samples = 2000;
writer_qos.resource_limits.max_samples_per_instance = 20;
writer_qos.history.depth = 20;

❏ DataReader

reader_qos.resource_limits.initial_instances = 10;
reader_qos.resource_limits.initial_samples = 200;
reader_qos.resource_limits.max_instances = 100;
reader_qos.resource_limits.max_samples = 2000;
reader_qos.resource_limits.max_samples_per_instance = 20;
reader_qos.history.depth = 20;
reader_qos.reader_resource_limits.max_samples_per_remote_writer = 20;

10.3.2.1 Understanding the Send Queue and Setting its Size

A DataWriter’s send queue is used to store each sample it writes. A sample will be removed
from the send queue after it has been acknowledged (through an ACKNACK) by all the reliable
DataReaders. A DataReader can request that the DataWriter resend a missing sample (through an
ACKNACK). If that sample is still available in the send queue, it will be resent. To elicit timely
ACKNACKs, the DataWriter will regularly send heartbeats to its reliable DataReaders.

A DataWriter’s send queue size is determined by its RESOURCE_LIMITS QosPolicy (Section
6.5.20), specifically the max_samples field. The appropriate value depends on application
parameters such as how fast the publication calls write().

A DataWriter has a "send window" that is the maximum number of unacknowledged samples
allowed in the send queue at a time. The send window enables configuration of the number of
samples queued for reliability to be done independently from the number of samples queued for
history. This is of great benefit when the size of the history queue is much different than the size
of the reliability queue. For example, you may want to resend a large history to late-joining
DataReaders, so the send queue size is large. However, you do not want performance to suffer
due to a large send queue; this can happen when the send rate is greater than the read rate, and
the DataWriter has to resend many samples from its large historical send queue. If the send
queue size was both the historical and reliability queue size, then both these goals could not be
10-8

Using QosPolicies to Tune the Reliable Protocol
met. Now, with the send window, having a large history with good live reliability performance
is possible.

The send window is determined by the DataWriterProtocolQosPolicy, specifically the fields
min_send_window_size and max_send_window_size within the rtps_reliable_writer field of
type DDS_RtpsReliableWriterProtocol_t. Other fields control a dynamic send window, where
the send window size changes in response to network congestion to maximize the effective send
rate. Like for max_samples, the appropriate values depend on application parameters.

Strict reliability: If a DataWriter does not receive ACKNACKs from one or more reliable
DataReaders, it is possible for the reliability send queue—either its finite send window, or
max_samples if its send window is infinite—to fill up. If you want to achieve strict reliability,
the kind field in the HISTORY QosPolicy (Section 6.5.10) for both the DataReader and DataWriter
must be set to KEEP_ALL, positive acknowledgments must be enabled for both the DataReader
and DataWriter, and your publishing application should wait until space is available in the reli-
ability queue before writing any more samples. Connext provides two mechanisms to do this:

❏ Allow the write() operation to block until there is space in the reliability queue again to
store the sample. The maximum time this call blocks is determined by the
max_blocking_time field in the RELIABILITY QosPolicy (Section 6.5.19) (also discussed
in Section 10.3.1.1).

❏ Use the DataWriter’s Listener to be notified when the reliability queue fills up or empties
again.

When the HISTORY QosPolicy (Section 6.5.10) on the DataWriter is set to KEEP_LAST, strict reli-
ability is not guaranteed. When there are depth number of samples in the queue (set in the HIS-
TORY QosPolicy (Section 6.5.10), see Section 10.3.3) the oldest sample will be dropped from the
queue when a new sample is written. Note that in such a reliable mode, when the send window is
larger than max_samples, the DataWriter will never block, but strict reliability is no longer guaranteed.
If there is a request for the purged sample from any DataReaders, the DataWriter will send a
heartbeat that no longer contains the sequence number of the dropped sample (it will not be able
to send the sample).

Alternatively, a DataWriter with KEEP_LAST may block on write() when its send window is
smaller than its send queue. The DataWriter will block when its send window is full. Only after
the blocking time has elapsed, the DataWriter will purge a sample, and then strict reliability is no
longer guaranteed.

The send queue size is set in the max_samples field of the RESOURCE_LIMITS QosPolicy (Sec-
tion 6.5.20). The appropriate size for the send queue depends on application parameters (such as
the send rate), channel parameters (such as end-to-end delay and probability of packet loss), and
quality of service requirements (such as maximum acceptable probability of sample loss).

The DataReader’s receive queue size should generally be larger than the DataWriter’s send queue
size. Receive queue size is discussed in Section 10.3.2.2.

A good rule of thumb, based on a simple model that assumes individual packet drops are not
correlated and time-independent, is that the size of the reliability send queue, N, is as shown in
Figure 10.3.

Figure 10.3 Calculating Minimum Send Queue Size for a Desired Level of Reliability

Simple formula for determining the minimum size of the send queue required for strict
reliability.

N 2RT 1 Q–()log
p()log

--------------------------=
10-9

Using QosPolicies to Tune the Reliable Protocol
In the above equation, R is the rate of sending samples, T is the round-trip transmission time, p
is the probability of a packet loss in a round trip, and Q is the required probability that a sample
is eventually successfully delivered. Of course, network-transport dropouts must also be taken
into account and may influence or dominate this calculation.

Table 10.2 gives the required size of the send queue for several common scenarios.

Note: Packet loss on a network frequently happens in bursts, and the packet loss events are cor-
related. This means that the probability of a packet being lost is much higher if the previous
packet was lost because it indicates a congested network or busy receiver. For this situation, it
may be better to use a queue size that can accommodate the longest period of network conges-
tion, as illustrated in Figure 10.4.

In the above equation R is the rate of sending samples, D(Q) is a time such that Q percent of the
dropouts are of equal or lesser length, and Q is the required probability that a sample is eventu-
ally successfully delivered. The problem with the above formula is that it is hard to determine
the value of D(Q) for different values of Q.

For example, if we want to ensure that 99.9% of the samples are eventually delivered success-
fully, and we know that the 99.9% of the network dropouts are shorter than 0.1 seconds, then we
would use N = 0.1*R. So for a rate of 100Hz, we would use a send queue of N = 10; for a rate of
2000Hz, we would use N = 200.

Table 10.2 Required Size of the Send Queue for Different Network Parameters

Qa pb Tc Rd Ne

99% 1% 0.001f sec 100 Hz 1

99% 1% 0.001 sec 2000 Hz 2

99% 5% 0.001 sec 100 Hz 1

99% 5% 0.001 sec 2000 Hz 4

99.99% 1% 0.001 sec 100 Hz 1

99.99% 1% 0.001 sec 2000 Hz 6

99.99% 5% 0.001 sec 100 Hz 1

99.99% 5% 0.001 sec 2000 Hz 8

a. "Q" is the desired level of reliability measured as the probability that any data update will eventually be delivered
successfully. In other words, percentage of samples that will be successfully delivered.
b. "p" is the probability that any single packet gets lost in the network.
c. "T" is the round-trip transport delay in the network
d. "R" is the rate at which the publisher is sending updates.
e. "N" is the minimum required size of the send queue to accomplish the desired level of reliability "Q".
f. The typical round-trip delay for a dedicated 100 Mbit/second ethernet is about 0.001 seconds.

Figure 10.4 Calculating Minimum Send Queue Size for Networks with Dropouts

Send queue size as a function of send rate "R" and maximum dropout time D.

N RD Q()=
10-10

Using QosPolicies to Tune the Reliable Protocol
10.3.2.2 Understanding the Receive Queue and Setting Its Size

Samples are stored in the DataReader’s receive queue, which is accessible to the user’s applica-
tion.

A sample is removed from the receive queue after it has been accessed by take(), as described in
Accessing Data Samples with Read or Take (Section 7.4.3). Note that read() does not remove
samples from the queue.

A DataReader's receive queue size is limited by its RESOURCE_LIMITS QosPolicy (Section
6.5.20), specifically the max_samples field. The storage of out-of-order samples for each DataW-
riter is also allocated from the DataReader’s receive queue; this sample resource is shared among
all reliable DataWriters. That is, max_samples includes both ordered and out-of-order samples.

A DataReader can maintain reliable communications with multiple DataWriters (e.g., in the case
of the OWNERSHIP_STRENGTH QosPolicy (Section 6.5.16) setting of SHARED). The maxi-
mum number of out-of-order samples from any one DataWriter that can occupy in the receive
queue is set in the max_samples_per_remote_writer field of the
DATA_READER_RESOURCE_LIMITS QosPolicy (DDS Extension) (Section 7.6.2); this value can
be used to prevent a single DataWriter from using all the space in the receive queue.
max_samples_per_remote_writer must be set to be <= max_samples.

The DataReader will cache samples that arrive out of order while waiting for missing samples to
be resent. (Up to 256 samples can be resent; this limitation is imposed by the wire protocol.) If
there is no room, the DataReader has to reject out-of-order samples and request them again later
after the missing samples have arrived.

The appropriate size of the receive queue depends on application parameters, such as the
DataWriter’s sending rate and the probability of a dropped sample. However, the receive queue
size should generally be larger than the send queue size. Send queue size is discussed in
Section 10.3.2.1.

Figure 10.5 and Figure 10.6 compare two hypothetical DataReaders, both interacting with the
same DataWriter. The queue on the left represents an ordering cache, allocated from receive
queue—samples are held here if they arrive out of order. The DataReader in Figure 10.5 on
page 10-12 has a sufficiently large receive queue (max_samples) for the given send rate of the
DataWriter and other operational parameters. In both cases, we assume that all samples are taken
from the DataReader in the Listener callback. (See Accessing Data Samples with Read or Take
(Section 7.4.3) for information on take() and related operations.)

In Figure 10.6 on page 10-12, max_samples is too small to cache out-of-order samples for the
same operational parameters. In both cases, the DataReaders eventually receive all the samples in
order. However, the DataReader with the larger max_samples will get the samples earlier and
with fewer transactions. In particular, sample “4” is never resent for the DataReader with the
larger queue size.
10-11

Using QosPolicies to Tune the Reliable Protocol
Figure 10.5 Effect of Receive-Queue Size on Performance: Large Queue Size

Sample 1 is taken

Send Sample “1”

ACKNACK “2”
3

1

5

Note: no unordered samples cached

Send Sample “2”

Send Sample “3”

Send Sample “4”

Re-send Sample “2”
Send Sample “5”

2

3 4

3 4

Space reserved for missing sample “2”.

Samples “3” and “4” are cached
while waiting for missing sample “2”.

Samples 2-4 are taken

Sample 5 is taken

max_samples is 4. This also limits the
number of unordered samples that
can be cached.

Sample
“2” lost.

DataWriter DataReader

HB (1-3)

Send HeartBeat

Figure 10.6 Effect of Receive Queue Size on Performance: Small Queue Size

Move sample 1 to receive queue.

Send Sample “1”

ACKNACK(2)
3

1

Note: no unordered samples cached

Send Sample “2”

Send Heartbeat

Send Sample “4”

Re-send Sample “2”
Send Sample “5”

2

Space reserved for missing sample “2”.

Sample “4” must be dropped
because it does not fit in the queue.

Move samples 2 and 3 to receive queue.

Move samples 4 and 5 to receive queue.

max_samples is 2. This also limits the
number of unordered samples that
can be cached.

Sample
“2” lost

3

3

5

Space reserved for missing sample “4”.Re-send Sample “4”

54

DataWriter DataReader

ACKNACK(4)

Send Sample “3”

HB (1-3)

Send Heartbeat
HB (1-5)
10-12

Using QosPolicies to Tune the Reliable Protocol
10.3.3 Controlling Queue Depth with the History QosPolicy

If you want to achieve strict reliability, set the kind field in the HISTORY QosPolicy (Section
6.5.10) for both the DataReader and DataWriter to KEEP_ALL; in this case, the depth does not mat-
ter.

Or, for non-strict reliability, you can leave the kind set to KEEP_LAST (the default). This will
provide non-strict reliability; some samples may not be delivered if the resource limit is reached.

The depth field in the HISTORY QosPolicy (Section 6.5.10) controls how many samples Connext
will attempt to keep on the DataWriter’s send queue or the DataReader’s receive queue. For reli-
able communications, depth should be >= 1. The depth can be set to 1, but cannot be more than
the max_samples_per_instance in RESOURCE_LIMITS QosPolicy (Section 6.5.20).

Example:

❏ DataWriter

 writer_qos.history.depth = <number of samples to keep in send queue>;

❏ DataReader

 reader_qos.history.depth = <number of samples to keep in receive queue>;

10.3.4 Controlling Heartbeats and Retries with DataWriterProtocol QosPolicy

In the Connext reliability model, the DataWriter sends data samples and heartbeats to reliable
DataReaders. A DataReader responds to a heartbeat by sending an ACKNACK, which tells the
DataWriter what the DataReader has received so far.

In addition, the DataReader can request missing samples (by sending an ACKNACK) and the
DataWriter will respond by resending the missing samples. This section describes some
advanced timing parameters that control the behavior of this mechanism. Many applications do
not need to change these settings. These parameters are contained in the
DATA_WRITER_PROTOCOL QosPolicy (DDS Extension) (Section 6.5.3).

The protocol described in Overview of the Reliable Protocol (Section 10.2) uses very simple rules
such as piggybacking HB messages to each DATA message and responding immediately to
ACKNACKs with the requested repair messages. While correct, this protocol would not be
capable of accommodating optimum performance in more advanced use cases.

This section describes some of the parameters configurable by means of the rtps_reliable_writer
structure in the DATA_WRITER_PROTOCOL QosPolicy (DDS Extension) (Section 6.5.3) and
how they affect the behavior of the RTPS protocol.

10.3.4.1 How Often Heartbeats are Resent (heartbeat_period)

If a DataReader does not acknowledge a sample that has been sent, the DataWriter resends the
heartbeat. These heartbeats are resent at the rate set in the DATA_WRITER_PROTOCOL
QosPolicy (DDS Extension) (Section 6.5.3), specifically its heartbeat_period field.

For example, a heartbeat_period of 3 seconds means that if a DataReader does not receive the lat-
est sample (for example, it gets dropped by the network), it might take up to 3 seconds before
the DataReader realizes it is missing data. The application can lower this value when it is impor-
tant that recovery from packet loss is very fast.

The basic approach of sending HB messages as a piggyback to DATA messages has the advan-
tage of minimizing network traffic. However, there is a situation where this approach, by itself,
may result in large latencies. Suppose there is a DataWriter that writes bursts of data, separated
by relatively long periods of silence. Furthermore assume that the last message in one of the
bursts is lost by the network. This is the case shown for message DATA(B, 2) in Figure 10.7. If
10-13

Using QosPolicies to Tune the Reliable Protocol
HBs were only sent piggybacked to DATA messages, the DataReader would not realize it missed
the ‘B’ DATA message with sequence number ‘2’ until the DataWriter wrote the next message.
This may be a long time if data is written sporadically. To avoid this situation, Connext can be
configured so that HBs are sent periodically as long as there are samples that have not been
acknowledged even if no data is being sent. The period at which these HBs are sent is configu-
rable by setting the rtps_reliable_writer.heartbeat_period field in the
DATA_WRITER_PROTOCOL QosPolicy (DDS Extension) (Section 6.5.3).

Note that a small value for the heartbeat_period will result in a small worst-case latency if the
last message in a burst is lost. This comes at the expense of the higher overhead introduced by
more frequent HB messages.

Also note that the heartbeat_period should not be less than the
rtps_reliable_reader.heartbeat_suppression_duration in the DATA_READER_PROTOCOL
QosPolicy (DDS Extension) (Section 7.6.1); otherwise those HBs will be lost.

10.3.4.2 How Often Piggyback Heartbeats are Sent (heartbeats_per_max_samples)

A DataWriter will automatically send heartbeats with new samples to request regular ACK-
NACKs from the DataReader. These are called “piggyback” heartbeats.

A piggyback heartbeat is sent every [(current send-window size/heartbeats_per_max_samples)]
number of samples written.

The heartbeats_per_max_samples field is part of the rtps_reliable_writer structure in the
DATA_WRITER_PROTOCOL QosPolicy (DDS Extension) (Section 6.5.3). If
heartbeats_per_max_samples is set equal to max_send_window_size, this means that a heart-
beat will be sent with each sample. A value of 8 means that a heartbeat will be sent with every
'current send-window size/8' samples. Say current send window is 1024, then a heartbeat will be
sent once every 128 samples. If you set this to zero, samples are sent without any piggyback
heartbeat. The max_send_window_size field is part of the DATA_WRITER_PROTOCOL
QosPolicy (DDS Extension) (Section 6.5.3).

Figure 10.1 on page 10-4 and Figure 10.2 on page 10-5 seem to imply that a heartbeat (HB) is sent
as a piggyback to each DATA message. However, in situations where data is sent continuously
at high rates, piggybacking a HB to each message may result in too much overhead; not so much
on the HB itself, but on the ACKNACKs that would be sent back as replies by the DataReader.

There are two reasons to send a HB:

❏ To request that a DataReader confirm the receipt of data via an ACKNACK, so that the
DataWriter can remove it from its send queue and therefore prevent the DataWriter’s his-
tory from filling up (which could cause the write() operation to temporarily block1).

❏ To inform the DataReader of what data it should have received, so that the DataReader can
send a request for missing data via an ACKNACK.

The DataWriter’s send queue can buffer many data-samples while it waits for ACKNACKs, and
the DataReader’s receive queue can store out-of-order samples while it waits for missing ones. So
it is possible to send HB messages much less frequently than DATA messages. The ratio of pig-
gyback HB messages to DATA messages is controlled by the
rtps_reliable_writer.heartbeats_per_max_samples field in the DATA_WRITER_PROTOCOL
QosPolicy (DDS Extension) (Section 6.5.3).

1. Note that data could also be removed from the DataWriter’s send queue if it is no longer relevant due to some
other QoS such a HISTORY KEEP_LAST (Section 6.5.10) or LIFESPAN (Section 6.5.12).
10-14

Using QosPolicies to Tune the Reliable Protocol
A HB is used to get confirmation from DataReaders so that the DataWriter can remove acknowl-
edged samples from the queue to make space for new samples. Therefore, if the queue size is
large, or new samples are added slowly, HBs can be sent less frequently.

In Figure 10.8 on page 10-16, the DataWriter sets the heartbeats_per_max_samples to certain
value so that a piggyback HB will be sent for every three samples. The DataWriter first writes
sample A and B. The DataReader receives both. However, since no HB has been received, the
DataReader won’t send back an ACKNACK. The DataWriter will still keep all the samples in its
queue. When the DataWriter sends sample C, it will send a piggyback HB along with the sample.
Once the DataReader receives the HB, it will send back an ACKNACK for samples up to
sequence number 3, such that the DataWriter can remove all three samples from its queue. ,

Figure 10.7 Use of heartbeat_period

DataWriter DataReader

cache (A, 1)

cache(B,2)

cache (A,1)

tim
e

DATA (A,1)

1 A X

write(A)

r

write(B)

1 A X

2 B X
DATA (B,2)
tim

e

ACKNACK(2)

1 A 4

HB(1-2)

1 A 4

2 B 4
cache (B,2)

check(1-2)

ACKNACK(3)

acked(1-2)

1 A 4

2 B 4

h
e

a
rt

b
e

a
t_

p
e

ri

check(1-2)

HB(1-2)

DATA(B,2)

acked(1)
get(2)

See Figure 10.1 for
meaning of table
columns.
10-15

Using QosPolicies to Tune the Reliable Protocol
10.3.4.3 Controlling Packet Size for Resent Samples (max_bytes_per_nack_response)

A repair packet is the maximum amount of data that a DataWriter will resend at a time. For
example, if the DataReader requests 20 samples, each 10K, and the
max_bytes_per_nack_response is set to 100K, the DataWriter will only send the first 10 samples.
The DataReader will have to ACKNACK again to receive the next 10 samples.

A DataWriter may resend multiple missed samples in the same packet. The
max_bytes_per_nack_response field in the DATA_WRITER_PROTOCOL QosPolicy (DDS
Extension) (Section 6.5.3) limits the size of this ‘repair’ packet.

10.3.4.4 Controlling How Many Times Heartbeats are Resent (max_heartbeat_retries)

If a DataReader does not respond within max_heartbeat_retries number of heartbeats, it will be
dropped by the DataWriter and the reliable DataWriter’s Listener will be called with a

Figure 10.8 Use of heartbeats_per_max_samples

DataWriter DataReader

cache (A, 1)

cache(B,2)

cache (A,1)

tim
e

DATA (A,1)

1 A X

write(A)

write(B)

1 A X

2 B X
tim

e

1 A 4

1 A 4

2 B 4

3 C 4

cache (C,3)

check(1-3)

DATA(B,2)

cache (B,2) 1 A 4

2 B 4

cache(C,3)

write(C)

1 A X

2 B X

3 C X

DATA(C,3);HB(1-3)

ACKNACK(4)

acked(1-3)1 A 4

2 B 4

3 C 4

See Figure 10.1 for
meaning of table
columns.
10-16

Using QosPolicies to Tune the Reliable Protocol
RELIABLE_READER_ACTIVITY_CHANGED Status (DDS Extension) (Section 6.3.6.8).

If the dropped DataReader becomes available again (perhaps its network connection was down
temporarily), it will be added back to the DataWriter the next time the DataWriter receives some
message (ACKNACK) from the DataReader.

When a DataReader is ‘dropped’ by a DataWriter, the DataWriter will not wait for the DataReader
to send an ACKNACK before any samples are removed. However, the DataWriter will still send
data and HBs to this DataReader as normal.

The max_heartbeat_retries field is part of the DATA_WRITER_PROTOCOL QosPolicy (DDS
Extension) (Section 6.5.3).

10.3.4.5 Treating Non-Progressing Readers as Inactive Readers (inactivate_nonprogressing_readers)

In addition to max_heartbeat_retries, if inactivate_nonprogressing_readers is set, then not only
are non-responsive DataReaders considered inactive, but DataReaders sending non-progressing
NACKs can also be considered inactive. A non-progressing NACK is one which requests the same
oldest sample as the previously received NACK. In this case, the DataWriter will not consider a
non-progressing NACK as coming from an active reader, and hence will inactivate the
DataReader if no new NACKs are received before max_heartbeat_retries number of heartbeat
periods has passed.

One example for which it could be useful to turn on inactivate_nonprogressing_readers is
when a DataReader’s (keep-all) queue is full of untaken historical samples. Each subsequent
heartbeat would trigger the same NACK, and nominally the DataReader would not be inacti-
vated. A user not requiring strict-reliability could consider setting
inactivate_nonprogressing_readers to allow the DataWriter to progress rather than being held
up by this non-progressing DataReader.

10.3.4.6 Coping with Redundant Requests for Missing Samples (max_nack_response_delay)

When a DataWriter receives a request for missing samples from a DataReader and responds by
resending the requested samples, it will ignore additional requests for the same samples during
the time period max_nack_response_delay.

The rtps_reliable_writer.max_nack_response_delay field is part of the
DATA_WRITER_PROTOCOL QosPolicy (DDS Extension) (Section 6.5.3).

If your send period is smaller than the round-trip delay of a message, this can cause unnecessary
sample retransmissions due to redundant ACKNACKs. In this situation, an ACKNACK trig-
gered by an out-of-order sample is not received before the next sample is sent. When a
DataReader receives the next message, it will send another ACKNACK for the missing sample.
As illustrated in Figure 10.9 on page 10-18, duplicate ACKNACK messages cause another
resending of missing sample “2” and lead to wasted CPU usage on both the publication and the
subscription sides.

While these redundant messages provide an extra cushion for the level of reliability desired, you
can conserve the CPU and network bandwidth usage by limiting how often the same ACK-
NACK messages are sent; this is controlled by min_nack_response_delay.

Reliable subscriptions are prevented from resending an ACKNACK within
min_nack_response_delay seconds from the last time an ACKNACK was sent for the same
sample. Our testing shows that the default min_nack_response_delay of 0 seconds achieves an
optimal balance for most applications on typical Ethernet LANs.

However, if your system has very slow computers and/or a slow network, you may want to
consider increasing min_nack_response_delay. Sending an ACKNACK and resending a miss-
ing sample inherently takes a long time in this system. So you should allow a longer time for
10-17

Using QosPolicies to Tune the Reliable Protocol
recovery of the lost sample before sending another ACKNACK. In this situation, you should
increase min_nack_response_delay.

If your system consists of a fast network or computers, and the receive queue size is very small,
then you should keep min_nack_response_delay very small (such as the default value of 0). If
the queue size is small, recovering a missing sample is more important than conserving CPU
and network bandwidth (new samples that are too far ahead of the missing sample are thrown
away). A fast system can cope with a smaller min_nack_response_delay value, and the reliable
sample stream can normalize more quickly.

10.3.4.7 Disabling Positive Acknowledgements (disable_postive_acks_min_sample_keep_duration)

When ACKNACK storms are a primary concern in a system, an alternative to tuning heartbeat
and ACKNACK response delays is to disable positive acknowledgments (ACKs) and rely just
on NACKs to maintain reliability. Systems with non-strict reliability requirements can disable
ACKs to reduce network traffic and directly solve the problem of ACK storms. ACKs can be dis-
abled for the DataWriter and the DataReader; when disabled for the DataWriter, none of its
DataReaders will send ACKs, whereas disabling it at the DataReader allows per-DataReader con-
figuration.

Normally when ACKs are enabled, strict reliability is maintained by the DataWriter, guarantee-
ing that a sample stays in its send queue until all DataReaders have positively acknowledged it
(aside from relevant DURABILITY, HISTORY, and LIFESPAN QoS policies). When ACKs are
disabled, strict reliability is no longer guaranteed, but the DataWriter should still keep the sam-
ple for a sufficient duration for ACK-disabled DataReaders to have a chance to NACK it. Thus, a
configurable “keep-duration” (disable_postive_acks_min_sample_keep_duration) applies for
samples written for ACK-disabled DataReaders, where samples are kept in the queue for at least
that keep-duration. After the keep-duration has elapsed for a sample, the sample is considered
to be “acknowledged” by its ACK-disabled DataReaders.

Figure 10.9 Resending Missing Samples due to Duplicate ACKNACKs

3

1

5

2

3 4

3 4

DataWriter DataReader

Send Sample “1”

Send Sample “2”

Send Sample “3”

Send Sample “4”

Resend Sample “2”
Send Sample “5”

Resend Sample “2”

ACKNACK(2)

ACKNACK(2)

Space must be
reserved for missing
sample “2”.

Samples “3” and
“4” are cached
while waiting for
missing sample “2”.

Sample “2” is dropped since
it is older than the last
sample that has been
handed to the application.
10-18

Using QosPolicies to Tune the Reliable Protocol
The keep duration should be configured for the expected worst-case from when the sample is
written to when a NACK for the sample could be received. If set too short, the sample may no
longer be queued when a NACK requests it, which is the cost of not enforcing strict reliability.

If the peak send rate is known and writer resources are available, the writer queue can be sized
so that writes will not block. For this case, the queue size must be greater than the send rate mul-
tiplied by the keep duration.

10.3.5 Avoiding Message Storms with DataReaderProtocol QosPolicy

DataWriters send data samples and heartbeats to DataReaders. A DataReader responds to a heart-
beat by sending an acknowledgement that tells the DataWriter what the DataReader has received
so far and what it is missing. If there are many DataReaders, all sending ACKNACKs to the same
DataWriter at the same time, a message storm can result. To prevent this, you can set a delay for
each DataReader, so they don’t all send ACKNACKs at the same time. This delay is set in the
DATA_READER_PROTOCOL QosPolicy (DDS Extension) (Section 7.6.1).

If you have several DataReaders per DataWriter, varying this delay for each one can avoid ACK-
NACK message storms to the DataWriter. If you are not concerned about message storms, you
do not need to change this QosPolicy.

Example:

reader_qos.protocol.rtps_reliable_reader.min_heartbeat_response_delay.sec = 0;
reader_qos.protocol.rtps_reliable_reader.min_heartbeat_response_delay.nanosec = 0;
reader_qos.protocol.rtps_reliable_reader.max_heartbeat_response_delay.sec = 0;
reader_qos.protocol.rtps_reliable_reader.max_heartbeat_response_delay.nanosec =

0.5 * 1000000000UL; // 0.5 sec

As the name suggests, the minimum and maximum response delay bounds the random wait
time before the response. Setting both to zero will force immediate response, which may be nec-
essary for the fastest recovery in case of lost samples.

10.3.6 Resending Samples to Late-Joiners with the Durability QosPolicy

The DURABILITY QosPolicy (Section 6.5.7) is also somewhat related to Reliability. Connext
requires a finite time to "discover" or match DataReaders to DataWriters. If an application
attempts to send data before the DataReader and DataWriter "discover" one another, then the
sample will not actually get sent. Whether or not samples are resent when the DataReader and
DataWriter eventually "discover" one another depends on how the DURABILITY and HISTORY
QoS are set. The default setting for the Durability QosPolicy is VOLATILE, which means that the
DataWriter will not store samples for redelivery to late-joining DataReaders.

Connext also supports the TRANSIENT_LOCAL setting for the Durability, which means that the
samples will be kept stored for redelivery to late-joining DataReaders, as long as the DataWriter is
around and the RESOURCE_LIMITS QosPolicy (Section 6.5.20) allows. The samples are not
stored beyond the lifecycle of the DataWriter.

See also: Waiting for Historical Data (Section 7.3.6).
10-19

Using QosPolicies to Tune the Reliable Protocol
10.3.7 Use Cases

This section contains advanced material that discusses practical applications of the reliability
related QoS.

10.3.7.1 Importance of Relative Thread Priorities

For high throughput, the Connext Event thread’s priority must be sufficiently high on the send-
ing application. Unlike an unreliable writer, a reliable writer relies on internal Connext threads:
the Receive thread processes ACKNACKs from the DataReaders, and the Event thread schedules
the events necessary to maintain reliable data flow.

❏ When samples are sent to the same or another application on the same host, the Receive
thread priority should be higher than the writing thread priority (priority of the thread
calling write() on the DataWriter). This will allow the Receive thread to process the mes-
sages as they are sent by the writing thread. A sustained reliable flow requires the reader
to be able to process the samples from the writer at a speed equal to or faster than the
writer emits.

❏ The default Event thread priority is low. This is adequate if your reliable transfer is not
sustained; queued up events will eventually be processed when the writing thread yields
the CPU. The Connext can automatically grow the event queue to store all pending
events. But if the reliable communication is sustained, reliable events will continue to be
scheduled, and the event queue will eventually reach its limit. The default Event thread
priority is unsuitable for maintaining a fast and sustained reliable communication and
should be increased through the participant_qos.event.thread.priority. This value maps
directly to the OS thread priority, see EVENT QosPolicy (DDS Extension) (Section 8.5.5)).

The Event thread should also be increased to minimize the reliable latency. If events are
processed at a higher priority, dropped packets will be resent sooner.

Now we consider some practical applications of the reliability related QoS:

❏ Aperiodic Use Case: One-at-a-Time (Section 10.3.7.2)

❏ Aperiodic, Bursty (Section 10.3.7.3)

❏ Periodic (Section 10.3.7.4)

10.3.7.2 Aperiodic Use Case: One-at-a-Time

Suppose you have aperiodically generated data that needs to be delivered reliably, with mini-
mum latency, such as a series of commands (“Ready,” “Aim,” “Fire”). If a writing thread may
block between each sample to guarantee reception of the just sent sample on the reader’s mid-
dleware end, a smaller queue will provide a smaller upper bound on the sample delivery time.
Adequate writer QoS for this use case are presented in Figure 10.10.

Line 1 (Figure 10.10): This is the default setting for a writer, shown here strictly for clarity.

Line 2 (Figure 10.10): Setting the History kind to KEEP_ALL guarantees that no sample is ever
lost.

Line 3 (Figure 10.10): This is the default setting for a writer, shown here strictly for clarity. ‘Push’
mode reliability will yield lower latency than ‘pull’ mode reliability in normal situations where
there is no sample loss. (See DATA_WRITER_PROTOCOL QosPolicy (DDS Extension) (Section
6.5.3).) Furthermore, it does not matter that each packet sent in response to a command will be
small, because our data sent with each command is likely to be small, so that maximizing
throughput for this data is not a concern.

Line 5 - Line 10 (Figure 10.10): For this example, we assume a single writer is writing samples
one at a time. If we are not using keys (see Section 2.2.2), there is no reason to use a queue with
10-20

Using QosPolicies to Tune the Reliable Protocol
room for more than one sample, because we want to resolve a sample completely before moving
on to the next. While this negatively impacts throughput, it minimizes memory usage. In this
example, a written sample will remain in the queue until it is acknowledged by all active readers
(only 1 for this example).

Line 12 - Line 14 (Figure 10.10): The fastest way for a writer to ensure that a reader is up-to-date
is to force an acknowledgement with every sample. We do this by appending a Heartbeat with
every sample. This is akin to a certified mail; the writer learns—as soon as the system will
allow—whether a reader has received the letter, and can take corrective action if the reader has
not. As with certified mail, this model has significant overhead compared to the unreliable case,
trading off lower packet efficiency in favor of latency and fast recovery.

Line 16-Line 17 (Figure 10.10): Since the writer takes responsibility for pushing the samples out
to the reader, a writer will go into a “heightened alert” mode as soon as the high water mark is
reached (which is when any sample is written for this writer) and only come out of this mode
when the low water mark is reached (when all samples have been acknowledged for this
writer). Note that the selected high and low watermarks are actually the default values.

Line 18-Line 22 (Figure 10.10): When a reader requests a lost sample, we respond to the reader
immediately in the interest of faster recovery. If the readers receive packets on unicast, there is
no reason to wait, since the writer will eventually have to feed individual readers separately
anyway. In case of multicast readers, it makes sense to consider further. If the writer delayed its
response enough so that all or most of the readers have had a chance to NACK a sample, the
writer may coalesce the requests and send just one packet to all the multicast readers. Suppose

Figure 10.10 QoS for an Aperiodic, One-at-a-time Reliable Writer

1 qos->reliability.kind = DDS_RELIABLE_RELIABILITY_QOS;
2 qos->history.kind = DDS_KEEP_ALL_HISTORY_QOS;
3 qos->protocol.push_on_write = DDS_BOOLEAN_TRUE;
4
5 //use these hard coded value unless you use a key
6 qos->resource_limits.initial_samples = qos->resource_limits.max_samples = 1;
7 qos->resource_limits.max_samples_per_instance =
8 qos->resource_limits.max_samples;
9 qos->resource_limits.initial_instances =
10 qos->resource_limits.max_instances = 1;
11
12 // want to piggyback HB w/ every sample.
13 qos->protocol.rtps_reliable_writer.heartbeats_per_max_samples =
14 qos->resource_limits.max_samples;
15
16 qos->protocol.rtps_reliable_writer.high_watermark = 1;
17 qos->protocol.rtps_reliable_writer.low_watermark = 0;
18 qos->protocol.rtps_reliable_writer.min_nack_response_delay.sec = 0;
19 qos->protocol.rtps_reliable_writer.min_nack_response_delay.nanosec = 0;
20 //consider making non-zero for reliable multicast
21 qos->protocol.rtps_reliable_writer.max_nack_response_delay.sec = 0;
22 qos->protocol.rtps_reliable_writer.max_nack_response_delay.nanosec = 0;
23
24 // should be faster than the send rate, but be mindful of OS resolution
25 qos->protocol.rtps_reliable_writer.fast_heartbeat_period.sec = 0;
26 qos->protocol.rtps_reliable_writer.fast_heartbeat_period.nanosec =
27 alertReaderWithinThisMs * 1000000;
28
29 qos->reliability.max_blocking_time = blockingTime;
30 qos->protocol.rtps_reliable_writer.max_heartbeat_retries = 7;
31
32 // essentially turn off slow HB period
33 qos->protocol.rtps_reliable_writer.heartbeat_period.sec = 3600 * 24 * 7;
10-21

Using QosPolicies to Tune the Reliable Protocol
that all multicast readers do indeed NACK within approximately 100 μsec. Setting the minimum
and maximum delays at 100 μsec will allow the writer to collect all these NACKs and send a sin-
gle response over multicast. (See DATA_WRITER_PROTOCOL QosPolicy (DDS Extension)
(Section 6.5.3) for information on setting min_nack_response_delay and
max_nack_response_delay.) Note that Connext relies on the OS to wait for this 100 μsec. Unfor-
tunately, not all operating systems can sleep for such a fine duration. On Windows systems, for
example, the minimum achievable sleep time is somewhere between 1 to 20 milliseconds,
depending on the version. On VxWorks systems, the minimum resolution of the wait time is
based on the tick resolution, which is 1/system clock rate (thus, if the system clock rate is 100
Hz, the tick resolution is 10 millisecond). On such systems, the achievable minimum wait is
actually far larger than the desired wait time. This could have an unintended consequence due
to the delay caused by the OS; at a minimum, the time to repair a packet may be longer than you
specified.

Line 24-Line 27 (Figure 10.10): If a reader drops a sample, the writer recovers by notifying the
reader of what it has sent, so that the reader may request resending of the lost sample. Therefore,
the recovery time depends primarily on how quickly the writer pings the reader that has fallen
behind. If commands will not be generated faster than one every few seconds, it may be accept-
able for the writer to ping the reader several hundred milliseconds after the sample is sent.

❏ Suppose that the round-trip time of fairly small packets between the writer and the
reader application is 50 microseconds, and that the reader does not delay response to a
Heartbeat from the writer (see DATA_READER_PROTOCOL QosPolicy (DDS Exten-
sion) (Section 7.6.1) for how to change this). If a sample is dropped, the writer will ping
the reader after a maximum of the OS delay resolution discussed above and alertReader-
WithinThisMs (let’s say 10 ms for this example). The reader will request the missing
sample immediately, and with the code set as above, the writer will feed the missing
sample immediately. Neglecting the processing time on the writer or the reader end, and
assuming that this retry succeeds, the time to recover the sample from the original publi-
cation time is: alertReaderWithinThisMs + 50 μsec + 25 μsec.

If the OS is capable of micro-sleep, the recovery time can be within 100 μsec, barely
noticeable to a human operator. If the OS minimum wait resolution is much larger, the
recovery time is dominated by the wait resolution of the OS. Since ergonomic studies
suggest that delays in excess of a 0.25 seconds start hampering operations that require
low latency data, even a 10 ms limitation seems to be acceptable.

❏ What if two packets are dropped in a row? Then the recovery time would be
2 * alertReaderWithinThisMs + 2 * 50 μsec + 25 μsec. If alertReaderWithinThisMs is 100
ms, the recovery time now exceeds 200 ms, and can perhaps degrade user experience.

Line 29-Line 30 (Figure 10.10): What if another command (like another button press) is issued
before the recovery? Since we must not drop this new sample, we block the writer until the
recovery completes. If alertReaderWithinThisMs is 10 ms, and we assume no more than 7 con-
secutive drops, the longest time for recovery will be just above (alertReaderWithinThisMs *
max_heartbeat_retries), or 70 ms.

So if we set blockingTime to about 80 ms, we will have given enough chance for recovery. Of
course, in a dynamic system, a reader may drop out at any time, in which case
max_heartbeat_retries will be exceeded, and the unresponsive reader will be dropped by the
writer. In either case, the writer can continue writing. Inappropriate values will cause a writer to
prematurely drop a temporarily unresponsive (but otherwise healthy) reader, or be stuck trying
unsuccessfully to feed a crashed reader. In the unfortunate case where a reader becomes tempo-
rarily unresponsive for a duration exceeding (alertReaderWithinThisMs *
max_heartbeat_retries), the writer may issue gaps to that reader when it becomes active again;
the dropped samples are irrecoverable. So estimating the worst case unresponsive time of all
potential readers is critical if sample drop is unacceptable.
10-22

Using QosPolicies to Tune the Reliable Protocol
Line 32-Line 33 (Figure 10.10): Since the command may not be issued for hours or even days on
end, there is no reason to keep announcing the writer’s state to the readers.

Figure 10.11 shows how to set the QoS for the reader side, followed by a line-by-line explana-
tion.

Line 1-Line 2 (Figure 10.11): Unlike a writer, the reader’s default reliability setting is best-effort,
so reliability must be turned on. Since we don’t want to drop anything, we choose KEEP_ALL
history.

Line 4-Line 6 (Figure 10.11): Since we enforce reliability on each sample, it would be sufficient to
keep the queue size at 1, except in the following case: suppose that the reader takes some action
in response to the command received, which in turn causes the writer to issue another command
right away. Because Connext passes the user data up to the application even before acknowledg-
ing the sample to the writer (for minimum latency), the first sample is still pending for acknowl-
edgement in the writer’s queue when the writer attempts to write the second sample, and will
cause the writing thread to block until the reader completes processing the first sample and
acknowledges it to the writer; all are as they should be. But if you want to run this infinite loop
at full throttle, the reader should buffer one more sample. Let’s follow the packets flow under a
normal circumstance:

1. The sender application writes sample 1 to the reader. The receiver application processes
it and sends a user-level response 1 to the sender application, but has not yet ACK’d
sample 1.

2. The sender application writes sample 2 to the receiving application in response to
response 1. Because the reader’s queue is 2, it can accept sample 2 even though it may not
yet have acknowledged sample 1. Otherwise, the reader may drop sample 2, and would
have to recover it later.

3. At the same time, the receiver application acknowledges sample 1, and frees up one slot
in the queue, so that it can accept sample 3, which it on its way.

The above steps can be repeated ad-infinitum in a continuous traffic.

Line 7 (Figure 10.11): Since we are not using keys, there is just one instance.

Line 9-Line 12 (Figure 10.11): We choose immediate response in the interest of fastest recovery.
In high throughput, multicast scenario, delaying the response (with event thread priority set
high of course) may decrease the likelihood of NACK storm causing a writer to drop some
NACKs. This random delay reduces this chance by staggering the NACK response. But the min-
imum delay achievable once again depends on the OS.

Figure 10.11 QoS for an Aperiodic, One-at-a-time Reliable Reader

1 qos->reliability.kind = DDS_RELIABLE_RELIABILITY_QOS;
2 qos->history.kind = DDS_KEEP_ALL_HISTORY_QOS;
3
4 // 1 is ok for normal use. 2 allows fast infinite loop
5 qos->reader_resource_limits.max_samples_per_remote_writer = 2;
6 qos->resource_limits.initial_samples = 2;
7 qos->resource_limits.initial_instances = 1;
8
9 qos->protocol.rtps_reliable_reader.max_heartbeat_response_delay.sec = 0;
10 qos->protocol.rtps_reliable_reader.max_heartbeat_response_delay.nanosec = 0;
11 qos->protocol.rtps_reliable_reader.min_heartbeat_response_delay.sec = 0;
12 qos->protocol.rtps_reliable_reader.min_heartbeat_response_delay.nanosec = 0;
10-23

Using QosPolicies to Tune the Reliable Protocol
10.3.7.3 Aperiodic, Bursty

Suppose you have aperiodically generated bursts of data, as in the case of a new aircraft
approaching an airport. The data may be the same or different, but if they are written by a single
writer, the challenge to this writer is to feed all readers as quickly and efficiently as possible
when this burst of hundreds or thousands of samples hits the system.

❏ If you use an unreliable writer to push this burst of data, some of them may be dropped
over an unreliable transport such as UDP.

❏ If you try to shape the burst according to however much the slowest reader can process,
the system throughput may suffer, and places an additional burden of queueing the sam-
ples on the sender application.

❏ If you push the data reliably as fast they are generated, this may cost dearly in repair
packets, especially to the slowest reader, which is already burdened with application
chores.

Connext pull mode reliability offers an alternative in this case by letting each reader pace its own
data stream. It works by notifying the reader what it is missing, then waiting for it to request
only as much as it can handle. As in the aperiodic one-at-a-time case (Section 10.3.7.2), multicast
is supported, but its performance depends on the resolution of the minimum delay supported
by the OS. At the cost of greater latency, this model can deliver reliability while using far fewer
packets than in the push mode. The writer QoS is given in Figure 10.12, with a line-by-line
explanation below.

Figure 10.12 QoS for an Aperiodic, Bursty Writer

1 qos->reliability.kind = DDS_RELIABLE_RELIABILITY_QOS;
2 qos->history.kind = DDS_KEEP_ALL_HISTORY_QOS;
3 qos->protocol.push_on_write = DDS_BOOLEAN_FALSE;
4
5 //use these hard coded value until you use key
6 qos->resource_limits.initial_instances =
7 qos->resource_limits.max_instances = 1;
8 qos->resource_limits.initial_samples = qos->resource_limits.max_samples
9 = worstBurstInSample;
10 qos->resource_limits.max_samples_per_instance =
11 qos->resource_limits.max_samples;
12
13 // piggyback HB not used
14 qos->protocol.rtps_reliable_writer.heartbeats_per_max_samples = 0;
15
16 qos->protocol.rtps_reliable_writer.high_watermark = 1;
17 qos->protocol.rtps_reliable_writer.low_watermark = 0;
18
19 qos->protocol.rtps_reliable_writer.min_nack_response_delay.sec = 0;
20 qos->protocol.rtps_reliable_writer.min_nack_response_delay.nanosec = 0;
21 qos->protocol.rtps_reliable_writer.max_nack_response_delay.sec = 0;
22 qos->protocol.rtps_reliable_writer.max_nack_response_delay.nanosec = 0;
23 qos->reliability.max_blocking_time = blockingTime;
24
25 // should be faster than the send rate, but be mindful of OS resolution
26 qos->protocol.rtps_reliable_writer.fast_heartbeat_period.sec = 0;
27 qos->protocol.rtps_reliable_writer.fast_heartbeat_period.nanosec =
28 alertReaderWithinThisMs * 1000000;
29 qos->protocol.rtps_reliable_writer.max_heartbeat_retries = 5;
30
31 // essentially turn off slow HB period
32 qos->protocol.rtps_reliable_writer.heartbeat_period.sec = 3600 * 24 * 7;
10-24

Using QosPolicies to Tune the Reliable Protocol
Line 1 (Figure 10.12): This is the default setting for a writer, shown here strictly for clarity.

Line 2 (Figure 10.12): Since we do not want any data lost, we want the History kind set to
KEEP_ALL.

Line 3 (Figure 10.12): The default Connext reliable writer will push, but we want the reader to
pull instead.

Line 5-Line 11 (Figure 10.12): We assume a single instance, in which case the maximum sample
count will be the same as the maximum sample count per writer. In contrast to the one-at-a-time
case discussed in Section 10.3.7.2, the writer’s queue is large; as big as the burst size in fact, but
no more because this model tries to resolve a burst within a reasonable period, to be computed
shortly. Of course, we could block the writing thread in the middle of the burst, but that might
complicate the design of the sending application.

Line 13-Line 14 (Figure 10.12): By a ‘piggyback’ Heartbeat, we mean only a Heartbeat that is
appended to data being pushed from the writer. Strictly speaking, the writer will also append a
Heartbeat with each reply to a reader’s lost sample request, but we call that a ‘framing’ Heart-
beat. Since data is pulled, heartbeats_per_max_samples is ignored.

Line 16-Line 17 (Figure 10.12): Similar to the previous aperiodic writer, this writer spends most
of its time idle. But as the name suggests, even a single new sample implies more sample to fol-
low in a burst. Putting the writer into a fast mode quickly will allow readers to be notified soon.
Only when all samples have been delivered, the writer can rest.

Line 19- Line 23 (Figure 10.12): Similar to the one-at-a-time case, there is no reason to delay
response with only one reader. In this case, we can estimate the time to resolve a burst with only
a few parameters. Let’s say that the reader figures it can safely receive and process 20 samples at
a time without being overwhelmed, and that the time it takes a writer to fetch these 20 samples
and send a single packet containing these 20 samples, plus the time it takes a reader to receive
and process these sample samples, and send another request back to the writer for the next 20
samples is 11 ms. Even on the same hardware, if the reader’s processing time can be reduced,
this time will decrease; other factors such as the traversal time through Connext and the trans-
port are typically in microseconds range (depending on machines of course).

For example, let’s also say that the worst case burst is 1000 samples. The writing thread will of
course not block because it is merely copying each of the 1000 samples to the Connext queue on
the writer side; on a typical modern machine, the act of writing these 1000 samples will probably
take no more than a few ms. But it would take at least 1000/20 = 50 resend packets for the reader
to catch up to the writer, or 50 times 11 ms = 550 ms. Since the burst model deals with one burst
at a time, we would expect that another burst would not come within this time, and that we are
allowed to block for at least this period. Including a safety margin, it would appear that we can
comfortably handle a burst of 1000 every second or so.

But what if there are multiple readers? The writer would then take more time to feed multiple
readers, but with a fast transport, a few more readers may only increase the 11 ms to only 12 ms
or so. Eventually, however, the number of readers will justify the use of multicast. Even in pull
mode, Connext supports multicast by measuring how many multicast readers have requested
sample repair. If the writer does not delay response to NACK, then repairs will be sent in uni-
cast. But a suitable NACK delay allows the writer to collect potentially NACKs from multiple
readers, and feed a single multicast packet. But as discussed in Section 10.3.7.2, by delaying
reply to coalesce response, we may end up waiting much longer than desired. On a Windows
system with 10 ms minimum sleep achievable, the delay would add at least 10 ms to the 11 ms
delay, so that the time to push 1000 samples now increases to 50 times 21 ms = 1.05 seconds. It
would appear that we will not be able to keep up with incoming burst if it came at roughly 1 sec-
ond, although we put fewer packets on the wire by taking advantage of multicast.

Line 25-Line 28 (Figure 10.12): We now understand how the writer feeds the reader in response
to the NACKs. But how does the reader realize that it is behind? The writer notifies the reader
10-25

Using QosPolicies to Tune the Reliable Protocol
with a Heartbeat to kick-start the exchange. Therefore, the latency will be lower bound by the
writer’s fast heartbeat period. If the application is not particularly sensitive to latency, the mini-
mum wait time supported by the OS (10 ms on Windows systems, for example) might be a rea-
sonable value.

Line 29 (Figure 10.12): With a fast heartbeat period of 50 ms, a writer will take 500 ms (50 ms
times the default max_heartbeat_retries of 10) to write-off an unresponsive reader. If a reader
crashes while we are writing a lot of samples per second, the writer queue may completely fill
up before the writer has a chance to drop the crashed reader. Lowering max_heartbeat_retries
will prevent that scenario.

Line 31-Line 32 (Figure 10.12): For an aperiodic writer, turning off slow periodic Heartbeats will
remove unwanted traffic from the network.

Figure 10.13 shows example code for a corresponding aperiodic, bursty reader.

Line 1-Line 2 (Figure 10.13): Unlike a writer, the reader’s default reliability setting is best-effort,
so reliability must be turned on. Since we don’t want to drop anything, we choose KEEP_ALL
for the History QoS kind.

Line 3-Line 5 (Figure 10.13): Unlike the writer, the reader’s queue can be kept small, since the
reader is free to send ACKs for as much as it wants anyway. In general, the larger the queue, the
larger the packet needs to be, and the higher the throughput will be. When the reader NACKs
for lost sample, it will only ask for this much.

Line 7-Line 11 (Figure 10.13): We do not use keys in this example.

Line 13-Line 17 (Figure 10.13): We respond immediately to catch up as soon as possible. When
there are many readers, this may cause a NACK storm, as discussed in the reader code for one-
at-a-time reliable reader.

10.3.7.4 Periodic

In a periodic reliable model, we can use the writer and the reader queue to keep the data flowing
at a smooth rate. The data flows from the sending application to the writer queue, then to the
transport, then to the reader queue, and finally to the receiving application. Unless the sending
application or any one of the receiving applications becomes unresponsive (including a crash)
for a noticeable duration, this flow should continue uninterrupted.

The latency will be low in most cases, but will be several times higher for the recovered and
many subsequent samples. In the event of a disruption (e.g., loss in transport, or one of the read-

Figure 10.13 QoS for an Aperiodic, Bursty Reader

1 qos->reliability.kind = DDS_RELIABLE_RELIABILITY_QOS;
2 qos->history.kind = DDS_KEEP_ALL_HISTORY_QOS;
3 qos->resource_limits.initial_samples =
4 qos->resource_limits.max_samples =
5 qos->reader_resource_limits.max_samples_per_remote_writer = 32;
6
7 //use these hard coded value until you use key
8 qos->resource_limits.max_samples_per_instance =
9 qos->resource_limits.max_samples;
10 qos->resource_limits.initial_instances =
11 qos->resource_limits.max_instances = 1;
12
13 // the writer probably has more for the reader; ask right away
14 qos->protocol.rtps_reliable_reader.min_heartbeat_response_delay.sec = 0;
15 qos->protocol.rtps_reliable_reader.min_heartbeat_response_delay.nanosec = 0;
16 qos->protocol.rtps_reliable_reader.max_heartbeat_response_delay.sec = 0;
17 qos->protocol.rtps_reliable_reader.max_heartbeat_response_delay.nanosec = 0;
10-26

Using QosPolicies to Tune the Reliable Protocol
ers becoming temporarily unresponsive), the writer’s queue level will rise, and may even block
in the worst case. If the writing thread must not block, the writer’s queue must be sized suffi-
ciently large to deal with any fluctuation in the system. Figure 10.14 shows an example, with
line-by-line analysis below.

Line 1 (Figure 10.14): This is the default setting for a writer, shown here strictly for clarity.

Line 2 (Figure 10.14): Since we do not want any data lost, we set the History kind to KEEP_ALL.

Line 3 (Figure 10.14): This is the default setting for a writer, shown here strictly for clarity. Push-
ing will yield lower latency than pulling.

Line 5-Line 7 (Figure 10.14): We do not use keys in this example, so there is only one instance.

Line 9-Line 11 (Figure 10.14): Though a simplistic model of queue, this is consistent with the
idea that the queue size should be proportional to the data rate and the wort case jitter in com-
munication.

Line 12 (Figure 10.14): Even though we have sized the queue according to the worst case, there is
a possibility for saving some memory in the normal case. Here, we initially size the queue to be
only half of the worst case, hoping that the worst case will not occur. When it does, Connext will
keep increasing the queue size as necessary to accommodate new samples, until the maximum
is reached. So when our optimistic initial queue size is breached, we will incur the penalty of

Figure 10.14 QoS for a Periodic Reliable Writer

1 qos->reliability.kind = DDS_RELIABLE_RELIABILITY_QOS;
2 qos->history.kind = DDS_KEEP_ALL_HISTORY_QOS;
3 qos->protocol.push_on_write = DDS_BOOLEAN_TRUE;
4
5 //use these hard coded value until you use key
6 qos->resource_limits.initial_instances =
7 qos->resource_limits.max_instances = 1;
8
9 int unresolvedSamplePerRemoteWriterMax =
10 worstCaseApplicationDelayTimeInMs * dataRateInHz / 1000;
11 qos->resource_limits.max_samples = unresolvedSamplePerRemoteWriterMax;
12 qos->resource_limits.initial_samples = qos->resource_limits.max_samples/2;
13 qos->resource_limits.max_samples_per_instance =
14 qos->resource_limits.max_samples;
15
16 int piggybackEvery = 8;
17 qos->protocol.rtps_reliable_writer.heartbeats_per_max_samples =
18 qos->resource_limits.max_samples / piggybackEvery;
19
20 qos->protocol.rtps_reliable_writer.high_watermark = piggybackEvery * 4;
21 qos->protocol.rtps_reliable_writer.low_watermark = piggybackEvery * 2;
22 qos->reliability.max_blocking_time = blockingTime;
23
24 qos->protocol.rtps_reliable_writer.min_nack_response_delay.sec = 0;
25 qos->protocol.rtps_reliable_writer.min_nack_response_delay.nanosec = 0;
26
27 qos->protocol.rtps_reliable_writer.max_nack_response_delay.sec = 0;
28 qos->protocol.rtps_reliable_writer.max_nack_response_delay.nanosec = 0;
29
30 qos->protocol.rtps_reliable_writer.fast_heartbeat_period.sec = 0;
31 qos->protocol.rtps_reliable_writer.fast_heartbeat_period.nanosec =
32 alertReaderWithinThisMs * 1000000;
33 qos->protocol.rtps_reliable_writer.max_heartbeat_retries = 7;
34
35 // essentially turn off slow HB period
36 qos->protocol.rtps_reliable_writer.heartbeat_period.sec = 3600 * 24 * 7;
10-27

Using QosPolicies to Tune the Reliable Protocol
dynamic memory allocation. Furthermore, you will wind up using more memory, as the initially
allocated memory will be orphaned (note: does not mean a memory leak or dangling pointer); if
the initial queue size is M_i and the maximal queue size is M_m, where M_m = M_i * 2^n, the
memory wasted in the worst case will be (M_m - 1) * sizeof(sample) bytes. Note that the mem-
ory allocation can be avoided by setting the initial queue size equal to its max value.

Line 13-Line 14 (Figure 10.14): If there is only one instance, maximum samples per instance is
the same as maximum samples allowed.

Line 16-Line 18 (Figure 10.14): Since we are pushing out the data at a potentially rapid rate, the
piggyback heartbeat will be useful in letting the reader know about any missing samples. The
piggybackEvery can be increased if the writer is writing at a fast rate, with the cost that more
samples will need to queue up for possible resend. That is, you can consider the piggyback
heartbeat to be taking over one of the roles of the periodic heartbeat in the case of a push. So
sending fewer samples between piggyback heartbeats is akin to decreasing the fast heartbeat
period seen in previous sections. Please note that we cannot express piggybackEvery directly as
its own QoS, but indirectly through the maximum samples.

Line 20-Line 22 (Figure 10.14): If piggybackEvery was exactly identical to the fast heartbeat,
there would be no need for fast heartbeat or the high watermark. But one of the important roles
for the fast heartbeat period is to allow a writer to abandon inactive readers before the queue
fills. If the high watermark is set equal to the queue size, the writer would not doubt the status
of an unresponsive reader until the queue completely fills—blocking on the next write (up to
blockingTime). By lowering the high watermark, you can control how vigilant a writer is about
checking the status of unresponsive readers. By scaling the high watermark to piggybackEvery,
the writer is expressing confidence that an alive reader will respond promptly within the time it
would take a writer to send 4 times piggybackEvery samples. If the reader does not delay the
response too long, this would be a good assumption. Even if the writer estimated on the low
side and does go into fast mode (suspecting that the reader has crashed) when a reader is tem-
porarily unresponsive (e.g., when it is performing heavy computation for a few milliseconds), a
response from the reader in question will resolve any doubt, and data delivery can continue
uninterrupted. As the reader catches up to the writer and the queue level falls below the low
watermark, the writer will pop out to the normal, relaxed mode.

Line 24-Line 28 (Figure 10.14): When a reader is behind (including a reader whose Durability
QoS is non-VOLATILE and therefore needs to catch up to the writer as soon as it is created), how
quickly the writer responds to the reader’s request will determine the catch-up rate. While a
multicast writer (that is, a writer with multicast readers) may consider delaying for some time to
take advantage of coalesced multicast packets. Keep in mind the OS delay resolution issue dis-
cussed in the previous section.

Line 30-Line 33 (Figure 10.14): The fast heartbeat mechanism allows a writer to detect a crashed
reader and move along with the remaining readers when a reader does not respond to any of the
max_heartbeat_retries number of heartbeats sent at the fast_heartbeat_period rate. So if you
want a more cautious writer, decrease either numbers; conversely, increasing either number will
result in a writer that is more reluctant to write-off an unresponsive reader.

Line 35-Line 36 (Figure 10.14): Since this a periodic model, a separate periodic heartbeat to
notify the writer’s status would seem unwarranted; the piggyback heartbeat sent with samples
takes over that role.
10-28

Using QosPolicies to Tune the Reliable Protocol
Figure 10.15 shows how to set the QoS for a matching reader, followed by a line-by-line
explanation.

Line 1-Line 2 (Figure 10.15): Unlike a writer, the reader’s default reliability setting is best-effort,
so reliability must be turned on. Since we don’t want to drop anything, we choose KEEP_ALL
for the History QoS.

Line 3-Line 6 (Figure 10.15) Unlike the writer, the reader queue is sized not according to the jitter
of the reader, but rather how many samples you want to cache speculatively in case of a gap in
sequence of samples that the reader must recover. Remember that a reader will stop giving a
sequence of samples as soon as an unintended gap appears, because the definition of strict reli-
ability includes in-order delivery. If the queue size were 1, the reader would have no choice but
to drop all subsequent samples received until the one being sought is recovered. Connext uses
speculative caching, which minimizes the disruption caused by a few dropped samples. Even
for the same duration of disruption, the demand on reader queue size is greater if the writer will
send more rapidly. In sizing the reader queue, we consider 2 factors that comprise the lost sam-
ple recovery time:

❏ How long it takes a reader to request a resend to the writer.

The piggyback heartbeat tells a reader about the writer’s state. If only samples between
two piggybacked samples are dropped, the reader must cache piggybackEvery samples
before asking the writer for resend. But if a piggybacked sample is also lost, the reader
will not get around to asking the writer until the next piggybacked sample is received.
Note that in this worst case calculation, we are ignoring stand-alone heartbeats (i.e., not
piggybacked heartbeat from the writer). Of course, the reader may drop any number of
heartbeats, including the stand-alone heartbeat; in this sense, there is no such thing as the
absolute worst case—just reasonable worst case, where the probability of consecutive
drops is acceptably low. For the majority of applications, even two consecutive drops is
unlikely, in which case we need to cache at most (2*piggybackEvery - 1) samples before
the reader will ask the writer to resend, assuming no delay (Line 14-Line 17).

❏ How long it takes for the writer to respond to the request.

Even ignoring the flight time of the resend request through the transport, the writer takes
a finite time to respond to the repair request--mostly if the writer delays reply for multi-
cast readers. In case of immediate response, the processing time on the writer end, as
well as the flight time of the messages to and from the writer do not matter unless very

Figure 10.15 QoS for a Periodic Reliable Reader

1 qos->reliability.kind = DDS_RELIABLE_RELIABILITY_QOS;
2 qos->history.kind = DDS_KEEP_ALL_HISTORY_QOS;
3 qos->resource_limits.initial_samples =
4 qos->resource_limits.max_samples =
5 qos->reader_resource_limits.max_samples_per_remote_writer =
6 ((2*piggybackEvery - 1) + dataRateInHz * delayInMs / 1000);
7
8 //use these hard coded value until you use key
9 qos->resource_limits.max_samples_per_instance =
10 qos->resource_limits.max_samples;
11 qos->resource_limits.initial_instances =
12 qos->resource_limits.max_instances = 1;
13
14 qos->protocol.rtps_reliable_reader.min_heartbeat_response_delay.sec = 0;
15 qos->protocol.rtps_reliable_reader.min_heartbeat_response_delay.nanosec = 0;
16 qos->protocol.rtps_reliable_reader.max_heartbeat_response_delay.sec = 0;
17 qos->protocol.rtps_reliable_reader.max_heartbeat_response_delay.nanosec = 0;
10-29

Auto Throttling for DataWriter Performance—Experimental Feature
larger data rate; that is, it is the product term that matters. In case the delay for multicast
is random (that is, the minimum and the maximum delay are not equal), one would have
to use the maximum delay to be conservative.

Line 8-Line 12 (Figure 10.15): Since we are not using keys, there is just one instance.

Line 14-Line 17 (Figure 10.15): If we are not using multicast, or the number of readers being fed
by the writer, there is no reason to delay.

10.4 Auto Throttling for DataWriter Performance—Experimental
Feature
Auto Throttling is an experimental feature that allows you to configure a DataWriter to automati-
cally adjust its writing rate and send window size to provide the best latency/throughput trad-
eoff as system conditions change.

When DataWriters and DataReaders are configured to be reliable, lost samples are repaired auto-
matically by Connext. However, the repair path consumes bandwidth and increases latency. A
high number of lost samples can reduce the throughput and increase the communication
latency. With Auto Throttling, the number of repair (lost) samples is reduced by using feedback
provided by DataReaders in terms of ACK and NACK messages to adjust the DataWriter's write
rate and send window size.

To configure Auto Throttling, use the following properties:

❏ dds.domain_participant.auto_throttle.enable: Configures the DomainParticipant to
gather internal measurements (during DomainParticipant creation) that are required for
the Auto Throttle feature. This allows DataWriters belonging to this DomainParticipant to
use the Auto Throttle feature. Default: false.

❏ dds.data_writer.auto_throttle.enable: Enables automatic throttling in the DataWriter so
it can automatically adjust the writing rate and the send window size; this minimizes the
need for repair samples and improves latency. Default: false.

Note: This property takes effect only in DataWriters that belong to a DomainParticipant that has
set the property dds.domain_participant.auto_throttle.enable (described above) to true.

When Auto throttling is enabled, the size of the send window size is adjusted within the interval
[min_send_window_size, max_send_window_size] configured in
DATA_WRITER_PROTOCOL QosPolicy (DDS Extension) (Section 6.5.3)
10-30

Chapter 11 Collaborative DataWriters

The Collaborative DataWriters feature allows you to have multiple DataWriters publishing sam-
ples from a common logical data source. The DataReaders will combine the samples coming from
these DataWriters in order to reconstruct the correct order in which they were produced at the
source. This combination process for the DataReaders can be configured using the AVAILABIL-
ITY QosPolicy (DDS Extension) (Section 6.5.1). It requires the middleware to provide a way to
uniquely identify every sample published in a domain independently of the actual DataWriter
that published the sample.

In Connext, every modification (sample) to the global dataspace made by a DataWriter within a
domain is identified by a pair (virtual GUID, sequence number).

❏ The virtual GUID (Global Unique Identifier) is a 16-byte character identifier associated
with the logical data source. DataWriters can be assigned a virtual GUID using
virtual_guid in the DATA_WRITER_PROTOCOL QosPolicy (DDS Extension) (Section
6.5.3).

❏ The virtual sequence number is a 64-bit integer that identifies changes within the logical
data source.

Several DataWriters can be configured with the same virtual GUID. If each of these DataWriters
publishes a sample with sequence number '0', the sample will only be received once by the
DataReaders subscribing to the content published by the DataWriters (see Figure 11.1).

Figure 11.1 Global Dataspace Changes

DataWriter

(vg: 1)

DataReader

(vg: 1)
DataWriter

(vg: 1)

DataWriter

(vg: 2)

(vg: 1, sn: 0)

(vg: 2, sn: 0)

(vg: 1, sn: 0)

(vg: 2, sn: 0)

(vg: 2, sn: 0)

(vg: 1, sn: 0)

(vg: 1, sn: 0)
11-1

Collaborative DataWriters Use Cases
11.1 Collaborative DataWriters Use Cases

❏ Ordered delivery of samples in high availability scenarios

One example of this is RTI Persistence Service1. When a late-joining DataReader configured
with DURABILITY QosPolicy (Section 6.5.7) set to PERSISTENT or TRANSIENT joins a
DDS domain, it will start receiving samples from multiple DataWriters. For example, if
the original DataWriter is still alive, the newly created DataReader will receive samples
from the original DataWriter and one or more RTI Persistence Service DataWriters (PRST-
DataWriters).

❏ Ordered delivery of samples in load-balanced scenarios

Multiple instances of the same application can work together to process and deliver sam-
ples. When the samples arrive through different data-paths out of order, the DataReader
will be able to reconstruct the order at the source. An example of this is when multiple
instances of RTI Persistence Service are used to persist the data. Persisting data to a data-
base on disk can impact performance. By dividing the workload (e.g., samples larger
than 10 are persisted by Persistence Service 1, samples smaller or equal to 10 are per-
sisted by Persistence Service 2) across different instances of RTI Persistence Service using
different databases the user can improve scalability and performance.

❏ Ordered delivery of samples with Group Ordered Access

The Collaborative DataWriters feature can also be used to configure the sample ordering
process when the Subscriber is configured with PRESENTATION QosPolicy (Section
6.4.6) access_scope set to GROUP. In this case, the Subscriber must deliver in order the
samples published by a group of DataWriters that belong to the same Publisher and have
access_scope set to GROUP.

1. For more information on Persistence Service, see Part 6: RTI Persistence Service.

Figure 11.2 Load-Balancing with Persistence Service
11-2

Sample Combination (Synchronization) Process in a DataReader
11.2 Sample Combination (Synchronization) Process in a
DataReader
A DataReader will deliver a sample (VGUIDn, VSNm) to the application only when if one of the
following conditions is satisfied:

❏ (GUIDn, SNm-1) has already been delivered to the application.

❏ All the known DataWriters publishing VGUIDn have announced that they do not have
(VGUIDn, VSNm-1).

❏ None of the known DataWriters publishing VGUIDn have announced potential availabil-
ity of (VGUIDn, VSNm-1) and a configurable timeout
(max_data_availability_waiting_time) expires.

For additional details on how the reconstruction process works see the AVAILABILITY QosPol-
icy (DDS Extension) (Section 6.5.1).

11.3 Configuring Collaborative DataWriters

11.3.1 Assocating Virtual GUIDs with Data Samples

There are two ways to associate a virtual GUID with the samples published by a DataWriter.

❏ Per DataWriter: Using virtual_guid in DATA_WRITER_PROTOCOL QosPolicy (DDS
Extension) (Section 6.5.3).

❏ Per Sample: By setting the writer_guid in the identity field of the WriteParams_t struc-
ture provided to the write_w_params operation (see Writing Data (Section 6.3.8)). Since
the writer_guid can be set per sample, the same DataWriter can potentially write samples
from independent logical data sources. One example of this is RTI Persistence Service
where a single persistence service DataWriter can write samples on behalf of multiple
original DataWriters.

11.3.2 Assocating Virtual Sequence Numbers with Data Samples

You can associate a virtual sequence number with a sample published by a DataWriter by setting
the sequence_number in the identity field of the WriteParams_t structure provided to the
write_w_params operation (see Writing Data (Section 6.3.8)). Virtual sequence numbers for a
given virtual GUID must be strictly monotonically increasing. If you try to write a sample with a
sequence number less than or equal to the last sequence number, the write operation will fail.

11.3.3 Specifying which DataWriters will Deliver Samples to the DataReader from a
Logical Data Source

The required_matched_endpoint_groups field in the AVAILABILITY QosPolicy (DDS Exten-
sion) (Section 6.5.1) can be used to specify the set of DataWriter groups that are expected to pro-
vide samples for the same data source (virtual GUID). The quorum count in a group represents
the number of DataWriters that must be discovered for that group before the DataReader is
allowed to provide non-consecutive samples to the application.
11-3

Collaborative DataWriters and Persistence Service
A DataWriter becomes a member of an endpoint group by configuring the role_name in
ENTITY_NAME QosPolicy (DDS Extension) (Section 6.5.9).

11.3.4 Specifying How Long to Wait for a Missing Sample

A DataReader’s AVAILABILITY QosPolicy (DDS Extension) (Section 6.5.1) specifies how long
to wait for a missing sample. For example, this is important when the first sample is received:
how long do you wait to determine the lowest sequence number available in the system?

❏ The max_data_availability_waiting_time defines how much time to wait before deliver-
ing a sample to the application without having received some of the previous samples.

❏ The max_endpoint_availability_waiting_time defines how much time to wait to dis-
cover DataWriters providing samples for the same data source (virtual GUID).

11.4 Collaborative DataWriters and Persistence Service
The DataWriters created by persistence service are automatically configured to do collaboration:

❏ Every sample published by the Persistence Service DataWriter keeps its original identity.

❏ Persistence Service associates the role name PERSISTENCE_SERVICE with all the DataW-
riters that it creates. You can overwrite that setting by changing the DataWriter QoS con-
figuration in persistence service.

For more information, see Part 6: RTI Persistence Service.
11-4

Chapter 12 Mechanisms for Achieving Information
Durability and Persistence

12.1 Introduction
Connext offers the following mechanisms for achieving durability and persistence:

❏ Durable Writer History This feature allows a DataWriter to persist its historical cache, per-
haps locally, so that it can survive shutdowns, crashes and restarts. When an application
restarts, each DataWriter that has been configured to have durable writer history auto-
matically load all of the data in this cache from disk and can carry on sending data as if it
had never stopped executing. To the rest of the system, it will appear as if the DataWriter
had been temporarily disconnected from the network and then reappeared.

❏ Durable Reader State This feature allows a DataReader to persist its state and remember
which data it has already received. When an application restarts, each DataReader that
has been configured to have durable reader state automatically loads its state from disk
and can carry on receiving data as if it had never stopped executing. Data that had
already been received by the DataReader before the restart will be suppressed so that it is
not even sent over the network.

❏ Data Durability This feature is a full implementation of the OMG DDS Persistence Pro-
file. The DURABILITY QosPolicy (Section 6.5.7) allows an application to configure a
DataWriter so that the information written by the DataWriter survives beyond the lifetime
of the DataWriter. In this manner, a late-joining DataReader can subscribe to and receive
the information even after the DataWriter application is no longer executing. To use this
feature, you need Persistence Service, a separate application described in Chapter 26:
Introduction to RTI Persistence Service.

These features can be configured separately or in combination. To use Durable Writer State and
Durable Reader State, you need a relational database, which is not included with Connext. Sup-
ported databases are listed in the Release Notes. Persistence Service does not require a database
when used in TRANSIENT mode (see Section 12.5.1) or in PERSISTENT mode with file-system
storage (see Section 12.5.1 and Section 27.5).

To understand how these features interact we will examine the behavior of the system using the
following scenarios:

❏ Scenario 1. DataReader Joins after DataWriter Restarts (Durable Writer History) (Section
12.1.1)

❏ Scenario 2: DataReader Restarts While DataWriter Stays Up (Durable Reader State) (Sec-
tion 12.1.2)
12-1

Introduction
❏ Scenario 3. DataReader Joins after DataWriter Leaves Domain (Durable Data) (Section
12.1.3)

12.1.1 Scenario 1. DataReader Joins after DataWriter Restarts (Durable Writer History)

In this scenario, a DomainParticipant joins the domain, creates a DataWriter and writes some data,
then the DataWriter shuts down (gracefully or due to a fault). The DataWriter restarts and a
DataReader joins the domain. Depending on whether the DataWriter is configured with durable
history, the late-joining DataReader may or may not receive the data published already by the
DataWriter before it restarted. This is illustrated in Figure 12.1. For more information, see Dura-
ble Writer History (Section 12.3)

12.1.2 Scenario 2: DataReader Restarts While DataWriter Stays Up (Durable Reader
State)

In this scenario, two DomainParticipants join a domain; one creates a DataWriter and the other a
DataReader on the same Topic. The DataWriter publishes some data ("a" and "b") that is received
by the DataReader. After this, the DataReader shuts down (gracefully or due to a fault) and then
restarts—all while the DataWriter remains present in the domain.

Depending on whether the DataReader is configured with Durable Reader State, the DataReader
may or may not receive a duplicate copy of the data it received before it restarted. This is illus-
trated in Figure 12.2. For more information, see Durable Reader State (Section 12.4).

Figure 12.1 Durable Writer History

Without Durable Writer History:
the late-joining DataReader will not receive
data (a and b) that was published before the
DataWriter’s restart.

DataWriter

DataReader

a

b

With Durable Writer History:
the restarted DataWriter will recover its
history and deliver its data to the late-
joining DataReader

DataWriter

a

b

a

b

DataReader
12-2

Introduction
12.1.3 Scenario 3. DataReader Joins after DataWriter Leaves Domain (Durable Data)

In this scenario, a DomainParticipant joins a domain, creates a DataWriter, publishes some data on
a Topic and then shuts down (gracefully or due to a fault). Later, a DataReader joins the domain
and subscribes to the data. Persistence Service is running.

Depending on whether Durable Data is enabled for the Topic, the DataReader may or may not
receive the data previous published by the DataWriter. This is illustrated in Figure 12.3. For more
information, see Data Durability (Section 12.5)

This third scenario is similar to Scenario 1. DataReader Joins after DataWriter Restarts (Durable
Writer History) (Section 12.1.1) except that in this case the DataWriter does not need to restart for
the DataReader to get the data previously written by the DataWriter. This is because Persistence
Service acts as an intermediary that stores the data so it can be given to late-joining DataReaders.

Figure 12.2 Durable Reader State

Without Durable Reader State:
the DataReader will receive the data that
was already received before the restart.

DataWriter DataReader

a

b

a

b

a

b

With Durable Reader State:
the DataReader remembers that it already
received the data and does not request it again.

DataWriter DataReader

a

b

a

b

Figure 12.3 Durable Data

Without Durable Data:
the late-joining DataReader will not
receive data (a and b) that was published
before the DataWriter quit.

DataWriter

DataReader

a

b

With Durable Data:
Persistence Service remembers what data was
published and delivers it to the late-joining
DataReader.

DataWriter

a

b

a

b

DataReader

Persistence
Service

a

b

12-3

Durability and Persistence Based on Virtual GUIDs
12.2 Durability and Persistence Based on Virtual GUIDs
Every modification to the global dataspace made by a DataWriter is identified by a pair (virtual
GUID, sequence number).

❏ The virtual GUID (Global Unique Identifier) is a 16-byte character identifier associated
with a DataWriter or DataReader; it is used to uniquely identify this entity in the global
data space.

❏ The sequence number is a 64-bit identifier that identifies changes published by a specific
DataWriter.

Several DataWriters can be configured with the same virtual GUID. If each of these DataWriters
publishes a sample with sequence number '0', the sample will only be received once by the
DataReaders subscribing to the content published by the DataWriters (see Figure 12.4).

Additionally, Connext uses the virtual GUID to associate a persisted state (state in permanent
storage) to the corresponding Entity.

For example, the history of a DataWriter will be persisted in a database table with a name gener-
ated from the virtual GUID of the DataWriter. If the DataWriter is restarted, it must have associ-
ated the same virtual GUID to restore its previous history.

Likewise, the state of a DataReader will be persisted in a database table whose name is generated
from the DataReader virtual GUID (see Figure 12.5).

Figure 12.4 Global Dataspace Changes

DataWriter

(vg: 1)

DataReader

(vg: 1)
DataWriter

(vg: 1)

DataWriter

(vg: 2)

(vg: 1, sn: 0)

(vg: 2, sn: 0)

(vg: 1, sn: 0)

(vg: 2, sn: 0)

(vg: 2, sn: 0)

(vg: 1, sn: 0)

(vg: 1, sn: 0)

Figure 12.5 History/State Persistence Based on the Virtual GUID

DataWriter DataReader

vg: 1

vg: 1
12-4

Durable Writer History
A DataWriter’s virtual GUID can be configured using the member virtual_guid in the
DATA_WRITER_PROTOCOL QosPolicy (DDS Extension) (Section 6.5.3).

A DataReader’s virtual GUID can be configured using the member virtual_guid in the
DATA_READER_PROTOCOL QosPolicy (DDS Extension) (Section 7.6.1).

The DDS_PublicationBuiltinTopicData and DDS_SubscriptionBuiltinTopicData structures
include the virtual GUID associated with the discovered publication or subscription (see Built-in
DataReaders (Section 16.2)).

12.3 Durable Writer History
The DURABILITY QosPolicy (Section 6.5.7) controls whether or not, and how, published sam-
ples are stored by the DataWriter application for DataReaders that are found after the samples
were initially written. The samples stored by the DataWriter constitute the DataWriter’s history.

Connext provides the capability to make the DataWriter history durable, by persisting its content
in a relational database. This makes it possible for the history to be restored when the DataWriter
restarts. See the Release Notes for the list of supported relational databases.

The association between the history stored in the database and the DataWriter is done using the
virtual GUID.

12.3.1 Durable Writer History Use Case

The following use case describes the durable writer history functionality:

1. A DataReader receives two samples with sequence number 1 and 2 published by a DataW-
riter with virtual GUID 1.

2. The process running the DataWriter is stopped and a new late-joining DataReader is cre-
ated.

The new DataReader with virtual GUID 2 does not receive samples 1 and 2 because the
original DataWriter has been destroyed. If the samples must be available to late-joining
DataReaders after the DataWriter deletion, you can use Persistence Service, described in
Chapter 26: Introduction to RTI Persistence Service.

DataWriter

(vg: 1)

DataReader

(vg: 1)

1, 2 1, 2 1, 2

DataReader

(vg: 1)

DataReader

(vg: 2)
12-5

Durable Writer History
3. The DataWriter is restarted using the same virtual GUID.

After being restarted, the DataWriter restores its history. The late-joining DataReader will
receive samples 1 and 2 because they were not received previously. The DataReader with
virtual GUID 1 will not receive samples 1 and 2 because it already received them

4. The DataWriter publishes two new samples.

The two new samples with sequence numbers 3 and 4 will be received by both DataRead-
ers.

12.3.2 How To Configure Durable Writer History

Connext allows a DataWriter’s history to be stored in a relational database that provides an
ODBC driver.

For each DataWriter history that is configured to be durable, Connext will create a maximum of
two tables:

❏ The first table is used to store the samples associated with the writer history. The name of
that table is WS<32 uuencoding of the writer virtual GUID>.

❏ The second table is only created for keyed-topic and it is used to store the instances asso-
ciated with the writer history. The name of the second table is WI<32 uuencoding of the
writer virtual GUID>.

To configure durable writer history, use the PROPERTY QosPolicy (DDS Extension) (Section
6.5.17) associated with DataWriters and DomainParticipants.

A ‘durable writer history’ property defined in the DomainParticipant will be applicable to all the
DataWriters belonging to the DomainParticipant unless it is overwritten by the DataWriter.
Table 12.1 lists the supported ‘durable writer history’ properties.

Note: Durable Writer History is not supported for Multi-channel DataWriters (see Chapter 18) or
when Batching is enabled (see Section 6.5.2); an error is reported if this type of DataWriter tries to
configure Durable Writer History.

See also: Durable Reader State (Section 12.4).

DataWriter

(vg: 1)

DataReader

(vg: 1)
1, 2

1, 2DataReader

(vg: 2)

DataWriter

(vg: 1)

DataReader

(vg: 1)

3, 4
3, 4DataReader

(vg: 2)

3, 4
3, 4
12-6

Durable Writer History
Table 12.1 Durable Writer History Properties

Property Description

dds.data_writer.history.plugin_name
Required.
Must be set to "dds.data_writer.history.odbc_plugin.builtin" to enable
durable writer history in the DataWriter.

dds.data_writer.history.odbc_plugin.
dsn

Required.
The ODBC DSN (Data Source Name) associated with the database where
the writer history must be persisted.

dds.data_writer.history.odbc_plugin.
driver

Tells Connext which ODBC driver to load. If the property is not speci-
fied, Connext will try to use the standard ODBC driver manager library
(UnixOdbc on UNIX/Linux systems, the Windows ODBC driver man-
ager on Windows systems).

dds.data_writer.history.odbc_plugin.
username Configures the username/password used to connect to the database.

Default: No password or usernamedds.data_writer.history.odbc_plugin.
password

dds.data_writer.history.odbc_plugin.
shared

When set to 1, Connext will create a single connection per DSN that will
be shared across DataWriters within the same Publisher.
A DataWriter can be configured to create its own database connection by
setting this property to 0 (the default).

dds.data_writer.history.odbc_plugin.
instance_cache_max_size

These properties configure the resource limits associated with the ODBC
writer history caches.
To minimize the number of accesses to the database, Connext uses two
caches, one for samples and one for instances. The initial size and the
maximum size of these caches are configured using these properties.
The resource limits, initial_instances, max_instances, initial_samples,
max_samples, and max_samples_per_instance defined in
RESOURCE_LIMITS QosPolicy (Section 6.5.20) are used to configure the
maximum number of samples and instances that can be stored in the
relational database.
Defaults:

❏ instance_cache_max_size: max_instances in
RESOURCE_LIMITS QosPolicy (Section 6.5.20)

❏ instance_cache_init_size: initial_instances in
RESOURCE_LIMITS QosPolicy (Section 6.5.20)

❏ sample_cache_max_size: 32
❏ sample_cache_init_size: 32
Note: If the property in_memory_state (see below in this table) is 1,

then instance_cache_max_size is always equal to max_instances in
RESOURCE_LIMITS QosPolicy (Section 6.5.20)—it cannot be
changed.

dds.data_writer.history.odbc_plugin.
instance_cache_init_size

dds.data_writer.history.odbc_plugin.
sample_cache_max_size

dds.data_writer.history.odbc_plugin.
sample_cache_init_size
12-7

Durable Writer History
Example C++ Code

/* Get default QoS */
...
retcode = DDSPropertyQosPolicyHelper::add_property (writerQos.property,

 "dds.data_writer.history.plugin_name",
"dds.data_writer.history.odbc_plugin.builtin",
DDS_BOOLEAN_FALSE);

if (retcode != DDS_RETCODE_OK) {
/* Report error */

}
retcode = DDSPropertyQosPolicyHelper::add_property (writerQos.property,
 "dds.data_writer.history.odbc_plugin.dsn",

"<user DSN>",
DDS_BOOLEAN_FALSE);

if (retcode != DDS_RETCODE_OK) {
/* Report error */

}
retcode = DDSPropertyQosPolicyHelper::add_property (writerQos.property,

 "dds.data_writer.history.odbc_plugin.driver",
"<ODBC library>",
DDS_BOOLEAN_FALSE);

if (retcode != DDS_RETCODE_OK) {
/* Report error */

}
retcode = DDSPropertyQosPolicyHelper::add_property (writerQos.property,

"dds.data_writer.history.odbc_plugin.shared",
"<0|1>",
DDS_BOOLEAN_FALSE);

if (retcode != DDS_RETCODE_OK) {
/* Report error */

}

dds.data_writer.history.odbc_plugin.
restore

This property indicates whether or not the persisted writer history must
be restored once the DataWriter is restarted.
If this property is 0, the content of the database associated with the
DataWriter being restarted will be deleted.
If it is 1, the DataWriter will restore its previous state from the database
content.
Default: 1

dds.data_writer.history.odbc_plugin.
in_memory_state

This property determines how much state will be kept in memory by the
ODBC writer history in order to avoid accessing the database.
If this property is 1, then the property instance_cache_max_size (see
above in this table) is always equal to max_instances in
RESOURCE_LIMITS QosPolicy (Section 6.5.20)—it cannot be changed.
In addition, the ODBC writer history will keep in memory a fixed state
overhead of 24 bytes per sample. This mode provides the best ODBC
writer history performance. However, the restore operation will be
slower and the maximum number of samples that the writer history can
manage is limited by the available physical memory.
If it is 0, all the state will be kept in the underlying database. In this
mode, the maximum number of samples in the writer history is not lim-
ited by the physical memory available.
Default: 1

Table 12.1 Durable Writer History Properties

Property Description
12-8

Durable Reader State
/* Create Data Writer */
...

12.4 Durable Reader State
Durable reader state allows a DataReader to locally store its state in disk and remember the data
that has already been processed by the application1. When an application restarts, each
DataReader configured to have durable reader state automatically reads its state from disk. Data
that has already been processed by the application before the restart will not be provided to the
application again.

Important: The DataReader does not persist the full contents of the data in its historical cache; it
only persists an identification (e.g. sequence numbers) of the data the application has processed.
This distinction is not meaningful if your application always uses the ‘take’ methods to access
your data, since these methods remove the data from the cache at the same time they deliver it
to your application. (See Read vs. Take (Section 7.4.3.1)) However, if your application uses the
‘read’ methods, leaving the data in the DataReader's cache after you've accessed it for the first
time, those previously viewed samples will not be restored to the DataReader's cache in the event
of a restart.

Connext requires a relational database to persist the state of a DataReader. This database is
accessed using ODBC. See the Release Notes for the list of supported relational databases.

12.4.1 Durable Reader State With Protocol Acknowledgment

For each DataReader configured to have durable state, Connext will create one database table
with the following naming convention: RS<32 uuencoding of the reader virtual GUID>. This
table will store the last sequence number processed from each virtual GUID. For DataReaders on
keyed topics requesting instance-ordering (see PRESENTATION QosPolicy (Section 6.4.6)), this
state will be stored per instance per virtual GUID..

Criteria to consider a sample “processed by the application”

❏ For the read/take methods that require calling return_loan(), a sample 's1' with sequence
number 's1_seq_num' and virtual GUID ‘vg1’ is considered processed by the application
when the DataReader’s return_loan() operation is called for sample 's1' or any other sam-
ple with the same virtual GUID and a sequence number greater than 's1_seq_num'. For
example:

retcode = Foo_reader->take(data_seq, info_seq,
DDS_LENGTH_UNLIMITED, DDS_ANY_SAMPLE_STATE,
DDS_ANY_VIEW_STATE, DDS_ANY_INSTANCE_STATE);

if (retcode == DDS_RETCODE_NO_DATA) {
return;

} else if (retcode != DDS_RETCODE_OK) {
 /* report error */

return;
}
for (i = 0; i < data_seq.length(); ++i) {
 /* Operate with the data */
}
/* Return the loan */
retcode = Foo_reader->return_loan(data_seq, info_seq);

1. The circumstances under which a data sample is considered “processed by the application” are described in the
sections that follow.
12-9

Durable Reader State
if (retcode != DDS_RETCODE_OK) {
 /* Report and error */
}
/* At this point the samples contained in data_seq will be considered as
received. If the DataReader restarts, the samples will not be received again */

❏ For the read/take methods that do not require calling return_loan(), a sample 's1' with
sequence number 's1_seq_num' and virtual GUID ‘vg1’ will be considered processed
after the application reads or takes the sample 's1' or any other sample with the same vir-
tual GUID and with a sequence number greater than 's1_seq_num'. For example:

retcode = Foo_reader->take_next_sample(data,info);

/* At this point the sample contained in data will be considered as received. All
the samples with a sequence number smaller than the sequence number associated
with data will also be considered as received. If the DataReader restarts these
sample will not be received again */

Important: If you access the samples in the DataReader cache out of order—for example via Que-
ryCondition, specifying an instance state, or reading by instance when the PRESENTATION
QoS is not set to INSTANCE_PRESENTATION_QOS—then the samples that have not yet been
taken or read by the application may still be considered as ”processed by the application”.

12.4.1.1 Bandwidth Utilization

To optimize network usage, if a DataReader configured with durable reader state is restarted and
it discovers a DataWriter with a virtual GUID ‘vg’, the DataReader will ACK all the samples with
a sequence number smaller than ‘sn’, where ‘sn’ is the first sequence number that has not been
being processed by the application for ‘vg’.

Notice that the previous algorithm can significantly reduce the number of duplicates on the
wire. However, it does not suppress them completely in the case of keyed DataReaders where the
durable state is kept per (instance, virtual GUID). In this case, and assuming that the application
has read samples out of order (e.g., by reading different instances), the ACK is sent for the low-
est sequence number processed across all instances and may cause samples already processed to
flow on the network again. These redundant samples waste bandwidth, but they will be
dropped by the DataReader and not be delivered to the application.

12.4.2 Durable Reader State with Application Acknowledgment

This section assumes you are familiar with the concept of Application Acknowledgment as
described in Section 6.3.12.

For each DataReader configured to be durable and that uses application acknowledgement (see
Section 6.3.12), Connext will create one database table with the following naming convention:
RS<32 uuencoding of the reader virtual GUID>. This table will store the list of sequence num-
ber intervals that have been acknowledged for each virtual GUID. The size of the column that
stores the sequence number intervals is limited to 32767 bytes. If this size is exceeded for a
given virtual GUID, the operation that persists the DataReader state into the database will fail.

12.4.2.1 Bandwidth Utilization

To optimize network usage, if a DataReader configured with durable reader state is restarted and
it discovers a DataWriter with a virtual GUID ‘vg’, the DataReader will send an APP_ACK mes-
sage with all the samples that were auto-acknowledged or explicitly acknowledged in previous
executions.
12-10

Durable Reader State
Notice that this algorithm can significantly reduce the number of duplicates on the wire. How-
ever, it does not suppress them completely since the DataReader may send a NACK and receive
some samples from the DataWriter before the DataWriter receives the APP_ACK message.

12.4.3 Durable Reader State Use Case

The following use case describes the durable reader state functionality:

1. A DataReader receives two samples with sequence number 1 and 2 published by a DataW-
riter with virtual GUID 1. The application takes those samples.

2. After the application returns the loan on samples 1 and 2, the DataReader considers them
as processed and it persists the state change.

3. The process running the DataReader is stopped.

4. The DataReader is restarted.

Because all the samples with sequence number smaller or equal than 2 were considered
as received, the reader will not ask for these samples to the DataWriter.

12.4.4 How To Configure a DataReader for Durable Reader State

To configure a DataReader with durable reader state, use the PROPERTY QosPolicy (DDS Exten-
sion) (Section 6.5.17) associated with DataReaders and DomainParticipants.

A property defined in the DomainParticipant will be applicable to all the DataReaders contained
in the participant unless it is overwritten by the DataReaders. Table 12.2 lists the supported prop-
erties.

Example (C++ code):

/* Get default QoS */
...
retcode = DDSPropertyQosPolicyHelper::add_property(
 readerQos.property,

DataWriter

(vg: 1)

DataReader

(vg: 1)

1, 2 1, 2 take 1, 2

DataWriter

(vg: 1)
DataReader

(vg: 1)

return loan 1, 2

(dw vg: 1,last sn: 2)

DataWriter

(vg: 1)

DataReader

(vg: 1)

(dw vg: 1,last sn: 2)
12-11

Durable Reader State
 "dds.data_reader.state.odbc.dsn",
"<user DSN>",
DDS_BOOLEAN_FALSE);

if (retcode != DDS_RETCODE_OK) {
/* Report error */

}
 retcode = DDSPropertyQosPolicyHelper::add_property(readerQos.property,

 "dds.data_reader.state.odbc.driver", "<ODBC library>",
DDS_BOOLEAN_FALSE);

 if (retcode != DDS_RETCODE_OK) {
/* Report error */

 }
retcode = DDSPropertyQosPolicyHelper::add_property(readerQos.property,

 "dds.data_reader.state.restore", "<0|1>",
DDS_BOOLEAN_FALSE);

if (retcode != DDS_RETCODE_OK) {
/* Report error */

}
/* Create Data Reader */

 ...

Table 12.2 Durable Reader State Properties

Property Description

dds.data_reader.state.odbc.dsn
Required.
The ODBC DSN (Data Source Name) associated with the database where
the DataReader state must be persisted.

dds.data_reader.state.
filter_redundant_samples

To enable durable reader state, this property must be set to 1.
When set to 0, the reader state is not maintained and Connext does not
filter duplicate samples that may be coming from the same virtual writer.
Default: 1

dds.data_reader.state.odbc.driver

This property indicates which ODBC driver to load. If the property is not
specified, Connext will try to use the standard ODBC driver manager
library (UnixOdbc on UNIX/Linux systems, the Windows ODBC driver
manager on Windows systems).

dds.data_reader.state.odbc.username These two properties configure the username and password used to con-
nect to the database.
Default: No password or usernamedds.data_reader.state.odbc.password

dds.data_reader.state.restore

This property indicates if the persisted DataReader state must be restored
or not once the DataReader is restarted.
If this property is 0, the previous state will be deleted from the database.
If it is 1, the DataReader will restore its previous state from the database
content.
Default: 1

dds.data_reader.state.
checkpoint_frequency

This property controls how often the reader state is stored into the data-
base. A value of N means store the state once every N samples.
A high frequency will provide better performance. However, if the
reader is restarted it may receive some duplicate samples. These samples
will be filtered by Connext and they will not be propagated to the appli-
cation.
Default: 1

dds.data_reader.state.persistence_
service.request_depth

This property indicates how many of the most recent historical samples
the persisted DataReader wants to receive upon start-up.
Default: 0
12-12

Data Durability
12.5 Data Durability
The data durability feature is an implementation of the OMG DDS Persistence Profile. The
DURABILITY QosPolicy (Section 6.5.7) allows an application to configure a DataWriter so that
the information written by the DataWriter survives beyond the lifetime of the DataWriter.

Connext implements TRANSIENT and PERSISTENT durability using an external service called
Persistence Service, available for purchase as a separate RTI product.

Persistence Service receives information from DataWriters configured with TRANSIENT or PER-
SISTENT durability and makes that information available to late-joining DataReaders—even if
the original DataWriter is not running.

The samples published by a DataWriter can be made durable by setting the kind field of the
DURABILITY QosPolicy (Section 6.5.7) to one of the following values:

❏ DDS_TRANSIENT_DURABILITY_QOS: Connext will store previously published sam-
ples in memory using Persistence Service, which will send the stored data to newly discov-
ered DataReaders.

❏ DDS_PERSISTENT_DURABILITY_QOS: Connext will store previously published sam-
ples in permanent storage, like a disk, using Persistence Service, which will send the
stored data to newly discovered DataReaders.

A DataReader can request TRANSIENT or PERSISTENT data by setting the kind field of the cor-
responding DURABILITY QosPolicy (Section 6.5.7). A DataReader requesting PERSISTENT data
will not receive data from DataWriters or Persistence Service applications that are configured with
TRANSIENT durability.

12.5.1 RTI Persistence Service

Persistence Service is a Connext application that is configured to persist topic data. Persistence Ser-
vice is included with Connext Messaging. For each one of the topics that must be persisted for a
specific domain, the service will create a DataWriter (known as PRSTDataWriter) and a
DataReader (known as PRSTDataReader). The samples received by the PRSTDataReaders will be
published by the corresponding PRSTDataWriters to be available for late-joiners DataReaders.

For more information on Persistence Service, please see:

❏ Chapter 26: Introduction to RTI Persistence Service

❏ Chapter 27: Configuring Persistence Service

❏ Chapter 28: Running RTI Persistence Service

Persistence Service can be configured to operate in PERSISTENT or TRANSIENT mode:

❏ TRANSIENT mode The PRSTDataReaders and PRSTDataWriters will be created with
TRANSIENT durability and Persistence Service will keep the received samples in memory.
Samples published by a TRANSIENT DataWriter will survive the DataWriter lifecycle but
will not survive the lifecycle of Persistence Service (unless you are running multiple cop-
ies).

❏ PERSISTENT mode The PRSTDataWriters and PRSTDataReaders will be created with
PERSISTENT durability and Persistence Service will store the received samples in files or
in an external relational database. Samples published by a PERSISTENT DataWriter will
survive the DataWriter lifecycle as well as any restarts of Persistence Service.

Peer-to-Peer Communication:
12-13

Data Durability
By default, a PERSISTENT/TRANSIENT DataReader will receive samples directly from the orig-
inal DataWriter if it is still alive. In this scenario, the DataReader may also receive the same sam-
ples from Persistence Service. Duplicates will be discarded at the middleware level. This Peer-To-
Peer communication pattern is illustrated inFigure 12.6. To use this peer-to-peer communication
pattern, set the direct_communication field in the DURABILITY QosPolicy (Section 6.5.7) to
TRUE. A PERSISTENT/TRANSIENT DataReader will receive information directly from PERSIS-
TENT/TRANSIENT DataWriters.

Relay Communication:

A PERSISTENT/TRANSIENT DataReader may also be configured to not receive samples from
the original DataWriter. In this case the traffic is relayed by Persistence Service. This ‘relay com-
munication’ pattern is illustrated in Figure 12.7. To use relay communication, set the
direct_communication field in the DURABILITY QosPolicy (Section 6.5.7) to FALSE. A PERSIS-
TENT/TRANSIENT DataReader will receive all the information from Persistence Service.

DataWriter

(vg: 1)
DataReader

(vg: 1)

(vg: 1, sn: 0)

(vg: 1, sn: 0)(vg: 1, sn: 0)

(vg: 1, sn: 0)(vg: 1, sn: 0) (vg: 1, sn: 0)

The application only
receives one sample.

Figure 12.6 Peer-to-Peer Communication

RTI Persistence
Service

Figure 12.7 Relay Communication

DataWriter

(vg: 1)

DataReader

(vg: 1)

(vg: 1, sn: 0)

(vg: 1, sn: 0)

(vg: 1, sn: 0)

RTI Persistence
Service
12-14

Chapter 13 Guaranteed Delivery of Data

13.1 Introduction
Some application scenarios need to ensure that the information produced by certain producers
is delivered to all the intended consumers. This chapter describes the mechanisms available in
Connext to guarantee the delivery of information from producers to consumers such that the
delivery is robust to many kinds of failures in the infrastructure, deployment, and even the pro-
ducing/consuming applications themselves.

Guaranteed information delivery is not the same as protocol-level reliability (described in
Chapter 10: Reliable Communications) or information durability (described in Chapter 12:
Mechanisms for Achieving Information Durability and Persistence). Guaranteed information
delivery is an end-to-end application-level QoS, whereas the others are middleware-level QoS.
There are significant differences between these two:

❏ With protocol-level reliability alone, the producing application knows that the informa-
tion is received by the protocol layer on the consuming side. However the producing
application cannot be certain that the consuming application read that information or
was able to successfully understand and process it. The information could arrive in the
consumer’s protocol stack and be placed in the DataReader cache but the consuming
application could either crash before it reads it from the cache, not read its cache, or read
the cache using queries or conditions that prevent that particular data sample from being
accessed. Furthermore, the consuming application could access the sample, but not be
able to interpret its meaning or process it in the intended way.

❏ With information durability alone, there is no way to specify or characterize the intended
consumers of the information. Therefore the infrastructure has no way to know when the
information has been consumed by all the intended recipients. The information may be
persisted such that it is not lost and is available to future applications, but the infrastruc-
ture and producing applications have no way to know that all the intended consumers
have joined the system, received the information, and processed it successfully.

The guaranteed data-delivery mechanism provided in Connext overcomes the limitations
described above by providing the following features:

❏ Required subscriptions. This feature provides a way to configure, identify and detect
the applications that are intended to consume the information. See Required Subscrip-
tions (Section 6.3.13).

❏ Application-level acknowledgments. This feature provides the means ensure that the
information was successfully processed by the application-layer in a consumer applica-
tion. See Application Acknowledgment (Section 6.3.12).
13-1

13.1 Introduction
❏ Durable subscriptions. This feature leverages the RTI Persistence Service to persist sam-
ples intended for the required subscriptions such that they are delivered even if the orig-
inating application is not available. See Configuring Durable Subscriptions in Persistence
Service (Section 27.9).

These features used in combination with the mechanisms provided for Information Durability
and Persistence (see Chapter 12: Mechanisms for Achieving Information Durability and Persis-
tence) enable the creation of applications where the information delivery is guaranteed despite
application and infrastructure failures. Scenarios (Section 13.2) describes various guaranteed-
delivery scenarios and how to configure the applications to achieve them.

When implementing an application that needs guaranteed data delivery, we have to consider
three key aspects:

13.1.1 Identifying the Required Consumers of Information

The first step towards ensuring that information is processed by the intended consumers is the
ability to specify and recognize those intended consumers. This is done using the required sub-
scriptions feature (Required Subscriptions (Section 6.3.13)) configured via the ENTITY_NAME
QosPolicy (DDS Extension) (Section 6.5.9) and AVAILABILITY QosPolicy (DDS Extension) (Sec-
tion 6.5.1)).

Connext DDS DataReader entities (as well as DataWriter and DomainParticipant entities) can have
a name and a role_name. These names are configured using the ENTITY_NAME QosPolicy
(DDS Extension) (Section 6.5.9), which is propagated via DDS discovery and is available as part
of the builtin-topic data for the Entity (see Chapter 16: Built-In Topics).

The DDS DomainParticipant, DataReader and DataWriter entities created by RTI-provided appli-
cations and services, specifically services such as RTI Persistence Service, automatically configure
the ENTITY_NAME QoS policy according to their function. For example the DataReaders created
by RTI Persistence Service have their role_name set to “PERSISTENCE_SERVICE”.

Unless explicitly set by the user, the DomainParticipant, DataReader and DataWriter entities cre-
ated by end-user applications have their name and role_name set to NULL. However applica-
tions may modify this using the ENTITY_NAME QosPolicy (DDS Extension) (Section 6.5.9).

Connext uses the role_name of DataReaders to identify the consumer’s logical function. For this
reason Connext’s required subscriptions feature relies on the role_name to identify intended con-
sumers of information. The use of the DataReader’s role_name instead of the name is intentional.

Key Aspects to Consider Related Features and QoS

Identifying the required consumers of information

• Required subscriptions

• Durable subscriptions

• EntityName QoS policy

• Availability QoS policy

Ensuring the intended consumer applications pro-
cess the data successfully

• Application-level acknowledgment

• Acknowledgment by a quorum of required and
durable subscriptions

• Reliability QoS policy (acknowledgment mode)

• Availability QoS policy

Ensuring information is available to late joining
applications

• Persistence Service

• Durable Subscriptions

• Durability QoS

• Durable Writer History
13-2

13.1 Introduction
From the point of view of the information producer, the important thing is not the concrete
DataReader (identified by its name, for example, “Logger123”) but rather its logical function in
the system (identified by its role_name, for example “LoggingService”).

A DataWriter that needs to ensure its information is delivered to all the intended consumers uses
the AVAILABILITY QosPolicy (DDS Extension) (Section 6.5.1) to configure the role names of the
consumers that must receive the information.

The AVAILABILITY QoS Policy set on a DataWriter lets an application configure the required
consumers of the data produced by the DataWriter. The required consumers are specified in the
required_matched_endpoint_groups attribute within the AVAILABILITY QoS Policy. This
attribute is a sequence of DDS EndpointGroup structures. Each EndpointGroup represents a
required information consumer characterized by the consumer’s role_name and quorum. The
role_name identifies a logical consumer; the quorum specifies the minimum number of con-
sumers with that role_name that must acknowledge the sample before the DataWriter can con-
sider it delivered to that required consumer.

For example, an application that wants to ensure data written by a DataWriter is delivered to at
least two Logging Services and one Display Service would configure the DataWriter’s AVAIL-
ABILITY QoS Policy with a required_matched_endpoint_groups consisting of two elements.
The first element would specify a required consumer with the role_name “LoggingService” and
a quorum of 2. The second element would specify a required consumer with the role_name
“DisplayService” and a quorum of 1. Furthermore, the application would set the logging service
DataReader ENTITY_NAME policy to have a role_name of “LoggingService” and similarly the
display service DataReader ENTITY_NAME policy to have the role_name of “DisplayService.”

A DataWriter that has been configured with an AVAILABILITY QoS policy will not remove sam-
ples from the DataWriter cache until they have been “delivered” to both the already-discovered
DataReaders and the minimum number (quorum) of DataReaders specified for each role. In par-
ticular, samples will be retained by the DataWriter if the quorum of matched DataReaders with a
particular role_name have not been discovered yet.

We used the word “delivered” in quotes above because the level of assurance a DataWriter has
that a particular sample has been delivered depends on the setting of the RELIABILITY QosPol-
icy (Section 6.5.19). We discuss this next in Section 13.1.2.

13.1.2 Ensuring Consumer Applications Process the Data Successfully

Section 13.1.1 described mechanisms by which an application could configure who the required
consumers of information are. This section is about the criteria, mechanisms, and assurance pro-
vided by Connext to ensure consumers have the information delivered to them and process it in
a successful manner.

RTI provides four levels of information delivery guarantee. You can set your desired level using
the RELIABILITY QosPolicy (Section 6.5.19). The levels are:

❏ Best-effort, relying only on the underlying transport The DataWriter considers the
sample delivered/acknowledged as soon as it is given to the transport to send to the
DataReader’s destination. Therefore, the only guarantee is the one provided by the under-
lying transport itself. Note that even if the underlying transport is reliable (e.g., shared
memory or TCP) the reliability is limited to the transport-level buffers. There is no guar-
antee that the sample will arrive to the DataReader cache because after the transport
delivers to the DataReader’s transport buffers, it is possible for the sample to be dropped
because it exceeds a resource limit, fails to deserialize properly, the receiving application
crashes, etc.
13-3

13.1 Introduction
❏ Reliable with protocol acknowledgment The DDS-RTPS reliability protocol used by
Connext provides acknowledgment at the RTPS protocol level: a DataReader will
acknowledge it has deserialized the sample correctly and stored it in the DataReader’s
cache. However, there is no guarantee the application actually processed the sample. The
application might crash before processing the sample, or it might simply fail to read it
from the cache.

❏ Reliable with Application Acknowledgment (Auto) Application Acknowledgment in
Auto mode causes Connext to send an additional application-level acknowledgment
(above and beyond the RTPS protocol level acknowledgment) after the consuming appli-
cation has read the sample from the DataReader cache and the application has subse-
quently called the DataReader’s return_loan() operation (see Section 7.4.2) for that
sample. This mode guarantees that the application has fully read the sample all the way
until it indicates it is done with it. However it does not provide a guarantee that the
application was able to successfully interpret or process the sample. For example, the
sample could be a command to execute a certain action and the application may read the
sample and not understand the command or may not be able to execute the action.

❏ Reliable with Application Acknowledgment (Explicit) Application Acknowledgment
in Explicit mode causes Connext to send an application-level acknowledgment only after
the consuming application has read the sample from the DataReader cache and subse-
quently called the DataReader’s acknowledge_sample() operation (see Section 7.4.4) for
that sample. This mode guarantees that the application has fully read the sample and
completed operating on it as indicated by explicitly calling acknowledge_sample(). In
contrast with the Auto mode described above, the application can delay the acknowledg-
ment of the sample beyond the time it holds onto the data buffers, allowing it to be pro-
cess in a more flexible manner. Similar to the Auto mode, it does not provide a guarantee
that the application was able to successfully interpret or process the sample. For exam-
ple, the sample could be a command to execute a certain action and the application may
read the sample and not understand the command or may not be able to execute the
action. Applications that need guarantees that the data was successfully processed and
interpreted should use a request-reply interaction, which is available as part of RTI Con-
next Messaging (see Part 4: Request-Reply Communication Pattern).

13.1.3 Ensuring Information is Available to Late-Joining Applications

The third aspect of guaranteed data delivery addresses situations where the application needs to
ensure that the information produced by a particular DataWriter is available to DataReaders that
join the system after the data was produced. The need for data delivery may even extend
beyond the lifetime of the producing application; that is, it may be required that the information
is delivered to applications that join the system after the producing application has left the sys-
tem.

Connext provides four mechanisms to handle these scenarios:

❏ The DDS Durability QoS Policy. The DURABILITY QosPolicy (Section 6.5.7) specifies
whether samples should be available to late joiners. The policy is set on the DataWriter
and the DataReader and supports four kinds: VOLATILE, TRANSIENT_LOCAL, TRAN-
SIENT, or PERSISTENT. If the DataWriter’s Durability QoS policy is set to VOLATILE
kind, the DataWriter’s samples will not be made available to any late joiners. If the
DataWriter’s policy kind is set to TRANSIENT_LOCAL, TRANSIENT, or PERSISTENT,
the samples will be made available for late-joining DataReaders who also set their DURA-
BILITY QoS policy kind to something other than VOLATILE.
13-4

13.2 Scenarios
❏ Durable Writer History. A DataWriter configured with a DURABILITY QoS policy kind
other than VOLATILE keeps its data in a local cache so that it is available when the late-
joining application appears. The data is maintained in the DataWriter’s cache until it is
considered to be no longer needed. The precise criteria depends on the configuration of
additional QoS policies such as LIFESPAN QoS Policy (Section 6.5.12), HISTORY QosPol-
icy (Section 6.5.10), RESOURCE_LIMITS QosPolicy (Section 6.5.20), etc. For the purposes
of guaranteeing information delivery it is important to note that the DataWriter’s cache
can be configured to be a memory cache or a durable (disk-based) cache. A memory
cache will not survive an application restart. However, a durable (disk-based) cache can
survive the restart of the producing application. The use a durable writer history, includ-
ing the use of an external ODBC database as a cache is described in Durable Writer His-
tory (Section 12.3).

❏ RTI Persistence Service. This service allows the information produced by a DataWriter to
survive beyond the lifetime of the producing application. Persistence Service is an stand-
alone application that runs on many supported platforms. This service complies with the
Persistent Profile of the OMG DDS specification. The service uses DDS to subscribe to the
DataWriters that specify a DURABILITY QosPolicy (Section 6.5.7) kind of TRANSIENT or
PERSISTENT. Persistence Service receives the data from those DataWriters, stores the data
in its internal caches, and makes the data available via DataWriters (which are automati-
cally created by Persistence Service) to late-joining DataReaders that specify a Durability
kind of TRANSIENT or PERSISTENT. Persistence Service can operate as a relay for the
information from the original writer, preserving the source_timestamp of the data, as
well as the original sample virtual writer GUID (see RTI Persistence Service (Section
12.5.1)). In addition, you can configure Persistence Service itself to use a memory-based
cache or a durable (disk-based or database-based) cache. See Configuring Persistent Stor-
age (Section 27.6). Configuration of redundant and load-balanced persistence services is
also supported.

❏ Durable Subscriptions. This is a Persistence Service configuration setting that allows con-
figuration of the required subscriptions (Identifying the Required Consumers of Infor-
mation (Section 13.1.1)) for the data stored by Persistence Service (Managing Data
Instances (Working with Keyed Data Types) (Section 6.3.14)). Configuring required sub-
scriptions for Persistence Service ensures that the service will store the samples until they
have been delivered to the configured number (quorum) of DataReaders that have each of
the specified roles.

13.2 Scenarios
In each of the scenarios below, we assume both the DataWriter and DataReader are configured for
strict reliability (RELIABLE ReliabilityQosPolicyKind and KEEP_ALL HistoryQosPolicyKind,
see Section 10.3.3). As a result, when the DataWriter’s cache is full of unacknowledged samples,
the write() operation will block until samples are acknowledged by all the intended consumers.

13.2.1 Scenario 1: Guaranteed Delivery to a-priori known subscribers

A common use case is to guarantee delivery to a set of known subscribers. These subscribers
may be already running and have been discovered, they may be temporarily non-responsive, or
it could be that some of those subscribers are still not present in the system. See Figure 13.1 on
page 13-6.
13-5

13.2 Scenarios
To guarantee delivery, the list of required subscribers should be configured using the AVAIL-
ABILITY QosPolicy (DDS Extension) (Section 6.5.1) on the DataWriters to specify the role_name
and quorum for each required subscription. Similarly the ENTITY_NAME QosPolicy (DDS
Extension) (Section 6.5.9) should be used on the DataReaders to specify their role_name. In addi-
tion we use Application Acknowledgment (Section 6.3.12) to guarantee the sample was deliv-
ered and processed by the DataReader.

The DataWriter and DataReader RELIABILITY QoS Policy can be configured for either AUTO or
EXPLICIT application acknowledgment kind. As the DataWriter publishes the sample, it will
await acknowledgment from the DataReader (through the protocol-level acknowledgment) and
from the subscriber application (though the additional application-level acknowledgment). The
DataWriter will only consider the sample acknowledged when it has been acknowledged by all
discovered active DataReaders and also by the quorum of each required subscription.

In this specific scenario, DataReader #1 is configured for EXPLICIT application acknowledg-
ment. After reading and processing the sample, the subscribing application calls
acknowledge_sample() or acknowledge_all() (see Section 7.4.4). As a result, Connext will send
an application-level acknowledgment to the DataWriter, which will in its turn confirm the
acknowledgment.

If the sample was lost in transit, the reliability protocol will repair the sample. Since it has not
been acknowledged, it remains available in the writer’s queue to be automatically resent by Con-
next. The sample will remain available until acknowledged by the application. If the subscribing
application crashes while processing the sample and restarts, Connext will repair the unac-

Figure 13.1 Guaranteed Delivery Scenario 1
13-6

13.2 Scenarios
knowledged sample. Samples which already been processed and acknowledged will not be
resent.

In this scenario, DataReader #2 may be a late joiner. When it starts up, because it is configured
with TRANSIENT_LOCAL Durability, the reliability protocol will re-send the samples previ-
ously sent by the writer. These samples were considered unacknowledged by the DataWriter
because they had not been confirmed yet by the required subscription (identified by its
role_name: ‘logger’).

DataReader #2 does not explicitly acknowledge the samples it reads. It is configured to use
AUTO application acknowledgment, which will automatically acknowledge samples that have
been read or taken after the application calls the DataReader return_loan operation.

This configuration works well for situations where the DataReader may not be immediately
available or may restart. However, this configuration does not provide any guarantee if the
DataWriter restarts. When the DataWriter restarts, samples previously unacknowledged are lost
and will no longer be available to any late joining DataReaders.

13.2.2 Scenario 2: Surviving a Writer Restart when Delivering Samples to a priori Known
Subscribers

Scenario 1 describes a use case where samples are delivered to a list of a priori known subscrib-
ers. In that scenario, Connext will deliver samples to the late-joining or restarting subscriber.
However, if the producer is re-started the samples it had written will no longer be available to
future subscribers.

To handle a situation where the producing application is restarted, we will use the Durable
Writer History (Section 12.3) feature. See Figure 13.2 on page 13-8.

A DataWriter can be configured to maintain its data and state in durable storage. This configura-
tion is done using the PROPERTY QoS policy as described in Section 12.3.2.. With this configura-
tion the data samples written by the DataWriter and any necessary internal state is persisted by
the DataWriter into durable storage As a result, when the DataWriter restarts, samples which
had not been acknowledged by the set of required subscriptions will be resent and late-joining
DataReaders specifying DURABILITY kind different from VOLATILE will receive the previ-
ously-written samples.

13.2.3 Scenario 3: Delivery Guaranteed by Persistence Service (Store and Forward) to
a priori Known Subscribers

Previous scenarios illustrated that using the DURABILITY, RELIABILITY, and AVAILABILITY
QoS policies we can ensure that as long as the DataWriter is present in the system, samples writ-
ten by a DataWriter will be delivered to the intended consumers. The use of the durable writer
history in the previous scenario extended this guarantee even in the presence of a restart of the
application writing the data.

This scenario addresses the situation where the originating application that produced the data is
no longer available. For example, the network could have become partitioned, the application
could have been terminated, it could have crashed and not have been restarted, etc.

In order to deliver data to applications that appear after the producing application is no longer
available on the network it is necessary to have another service that stores those samples and
delivers them. This is the purpose of the RTI Persistence Service.

The RTI Persistence Service can be configured to automatically discover DataWriters that specify a
DURABILITY QoS with kind TRANSIENT or PERSISTENT and automatically create pairs
(DataReader, DataWriter) that receive and store that information (see Chapter 26: Introduction
to RTI Persistence Service). All the DataReaders created by the RTI Persistence Service have the
13-7

13.2 Scenarios
ENTITY_QOS policy set with the role_name of “PERSISTENCE_SERVICE”. This allows an
application to specify Persistence Service as one of the required subscriptions for its DataWriters.

In this third scenario, we take advantage of this capability to configure the DataWriter to have
the RTI Persistence Service as a required subscription. See Figure 13.3 on page 13-9.

The RTI Persistence Service can also have its DataWriters configured with required subscriptions.
This feature is known as Persistence Service “durable subscriptions”. DataReader #1 is pre config-
ured in Persistence Service as a Durable Subscription. (Alternatively, DataReader #1 could have
registered itself dynamically as Durable Subscription using the DomainParticipant
register_durable_subscription() operation).

We also configure the RELIBILITY QoS policy setting of the AcknowledgmentKind to
APPLICATION_AUTO_ACKNOWLEDGMENT_MODE in order to ensure samples are stored
in the Persistence Service and properly processed on the consuming application prior to them
being removed from the DataWriter cache.

With this configuration in place the DataWriter will deliver samples to the DataReader and to the
Persistence Service reliably and wait for the Application Acknowledgment from both. Delivery of
samples to DataReader #1 and the Persistence Service occurs concurrently. The Persistence Service
in turn takes responsibility to deliver the samples to the configured “logger” durable subscrip-
tion. If the original publisher is no longer available, samples can still be delivered by the Persis-
tence Service. to DataReader #1 and any other late-joining DataReaders.

When DataReader #1 acknowledges the sample through an application-acknowledgment mes-
sage, both the original DataWriter and Persistence Service will receive the application-acknowl-
edgment. RTI Connext takes advantage of this to reduce or eliminate delivery if duplicate

Figure 13.2 Guaranteed Delivery Scenario 2
13-8

13.2 Scenarios
samples, that is, the Persistence Service can notice that DataReader #1 has acknowledged a sam-
ple and refrain from separately sending the same sample to DataReader #1.

13.2.3.1 Variation: Using Redundant Persistence Services

Using a single Persistence Service to guarantee delivery can still raise concerns about having the
Persistence Service as a single point of failure. To provide a level of added redundancy, the pub-
lisher may be configured to await acknowledgment from a quorum of multiple persistence ser-
vices (role_name remains PERSISTENCE). Using this configuration we can achieve higher
levels of redundancy

The RTI Persistence Services will automatically share information to keep each other synchro-
nized. This includes both the data and also the information on the durable subscriptions. That is,
when a Persistence Service discovers a durable subscription, information about durable sub-
scriptions is automatically replicated and synchronized among persistence services (CITE: New
section to be written in Persistence Service Chapter).

13.2.3.2 Variation: Using Load-Balanced Persistent Services

The Persistence Service will store samples on behalf of many DataWriters and, depending on the
configuration, it might write those samples to a database or to disk. For this reason the Persis-
tence Service may become a bottleneck in systems with high durable sample throughput.

It is possible to run multiple instances of the Persistence Service in a manner where each is only
responsible for the guaranteed delivery of certain subset of the durable data being published.
These Persistence Service can also be run different computers and in this manner achieve much
higher throughput. For example, depending on the hardware, using typical hard-drives a single
a Persistence Service may be able to store only 30000 samples per second. By running 10 persis-

Figure 13.3 Guaranteed Delivery Scenario 3
13-9

13.2 Scenarios
tence services in 10 different computers we would be able to handle storing 10 times that sys-
tem-wide, that is, 300000 samples per second.

The data to be persisted can be partitioned among the persistence services by specifying differ-
ent Topics to be persisted by each Persistence Service. If a single Topic has more data that can be
handled y a single Persistence Service it is also possible to specify a content-filter so that only the
data within that Topic that matches the filter will be stored by the Persistence Service. For exam-
ple assume the Topic being persisted has an member named “x” of type float. It is possible to
configure two Persistence Services one with the filter “x>10”, and the other “x <=10”, such that
each only stores a subject of the data published on the Topic. See also: Configuring Durable Sub-
scriptions in Persistence Service (Section 27.9).

Figure 13.4 Guaranteed Delivery Scenario 3 with Redundant Persistence Service
13-10

Chapter 14 Discovery

This chapter discusses how Connext objects on different nodes find out about each other using
the default Simple Discovery Protocol (SDP). It describes the sequence of messages that are
passed between Connext on the sending and receiving sides.

This chapter includes the following sections:

❏ What is Discovery? (Section 14.1)

❏ Configuring the Peers List Used in Discovery (Section 14.2)

❏ Discovery Implementation (Section 14.3)

❏ Debugging Discovery (Section 14.4)

❏ Ports Used for Discovery (Section 14.5)

The discovery process occurs automatically, so you do not have to implement any special code.
We recommend that all users read What is Discovery? (Section 14.1) and Configuring the Peers
List Used in Discovery (Section 14.2). The remaining sections contain advanced material for
those who have a particular need to understand what is happening ‘under the hood.’ This infor-
mation can help you debug a system in which objects are not communicating.

You may also be interested in reading Chapter 15: Transport Plugins , as well as learning about
these QosPolicies:

❏ TRANSPORT_SELECTION QosPolicy (DDS Extension) (Section 6.5.22)

❏ TRANSPORT_BUILTIN QosPolicy (DDS Extension) (Section 8.5.7)

❏ TRANSPORT_UNICAST QosPolicy (DDS Extension) (Section 6.5.23)

❏ TRANSPORT_MULTICAST QosPolicy (DDS Extension) (Section 7.6.5)

14.1 What is Discovery?
Discovery is the behind-the-scenes way in which Connext objects (DomainParticipants, DataWrit-
ers, and DataReaders) on different nodes find out about each other. Each DomainParticipant main-
tains a database of information about all the active DataReaders and DataWriters that are in the
same domain. This database is what makes it possible for DataWriters and DataReaders to com-
municate. To create and refresh the database, each application follows a common discovery pro-
cess.

This chapter describes the default discovery mechanism known as the Simple Discovery Proto-
col, which includes two phases: Simple Participant Discovery (Section 14.1.1) and Simple End-
14-1

14.1 What is Discovery?
point Discovery (Section 14.1.2). (Discovery can also be performed using the Enterprise
Discovery Protocol—this requires a separately purchased package, RTI Enterprise Discovery Ser-
vice.)

The goal of these two phases is to build, for each DomainParticipant, a complete picture of all the
entities that belong to the remote participants that are in its peers list. The peers list is the list of
nodes with which a participant may communicate. It starts out the same as the initial_peers list
that you configure in the DISCOVERY QosPolicy (DDS Extension) (Section 8.5.2). If the
accept_unknown_peers flag in that same QosPolicy is TRUE, then other nodes may also be
added as they are discovered; if it is FALSE, then the peers list will match the initial_peers list,
plus any peers added using the DomainParticipant’s add_peer() operation.

14.1.1 Simple Participant Discovery

This phase of the Simple Discovery Protocol is performed by the Simple Participant Discovery
Protocol (SPDP).

During the Participant Discovery phase, DomainParticipants learn about each other. The Domain-
Participant’s details are communicated to all other DomainParticipants in the same domain by
sending participant declaration messages, also known as participant DATA submessages. The
details include the DomainParticipant’s unique identifying key (GUID or Globally Unique ID
described below), transport locators (addresses and port numbers), and QoS. These messages
are sent on a periodic basis using best-effort communication.

Participant DATAs are sent periodically to maintain the liveliness of the DomainParticipant. They
are also used to communicate changes in the DomainParticipant’s QoS. Only changes to QosPoli-
cies that are part of the DomainParticipant’s built-in data (namely, the USER_DATA QosPolicy
(Section 6.5.25)) need to be propagated.

When a DomainParticipant is deleted, a participant DATA (delete) submessage with the Domain-
Participant's identifying GUID is sent.

The GUID is a unique reference to an entity. It is composed of a GUID prefix and an Entity ID.
By default, the GUID prefix is calculated from the IP address and the process ID. (For more on
how the GUID is calculated, see Controlling How the GUID is Set (rtps_auto_id_kind) (Section
8.5.9.4).) The IP address and process ID are stored in the DomainParticipant’s WIRE_PROTOCOL
QosPolicy (DDS Extension) (Section 8.5.9). The entityID is set by Connext (you may be able to
change it in a future version).

Once a pair of remote participants have discovered each other, they can move on to the End-
point Discovery phase, which is how DataWriters and DataReaders find each other.

14.1.2 Simple Endpoint Discovery

This phase of the Simple Discovery Protocol is performed by the Simple Endpoint Discovery
Protocol (SEDP).

During the Endpoint Discovery phase, Connext matches DataWriters and DataReaders. Informa-
tion (GUID, QoS, etc.) about your application’s DataReaders and DataWriters is exchanged by
sending publication/subscription declarations in DATA messages that we will refer to as publi-
cation DATAs and subscription DATAs. The Endpoint Discovery phase uses reliable communica-
tion.

As described in Section 14.3, these declaration or DATA messages are exchanged until each
DomainParticipant has a complete database of information about the participants in its peers list
and their entities. Then the discovery process is complete and the system switches to a steady
state. During steady state, participant DATAs are still sent periodically to maintain the liveliness
14-2

14.2 Configuring the Peers List Used in Discovery
status of participants. They may also be sent to communicate QoS changes or the deletion of a
DomainParticipant.

When a remote DataWriter/DataReader is discovered, Connext determines if the local application
has a matching DataReader/DataWriter. A ‘match’ between the local and remote entities occurs
only if the DataReader and DataWriter have the same Topic, same data type, and compatible
QosPolicies (which includes having the same partition name string, see Section 6.4.5). Further-
more, if the DomainParticipant has been set up to ignore certain DataWriters/DataReaders, those
entities will not be considered during the matching process. See Section 16.4.2 for more on
ignoring specific publications and subscriptions.

This ‘matching’ process occurs as soon as a remote entity is discovered, even if the entire data-
base is not yet complete: that is, the application may still be discovering other remote entities.

A DataReader and DataWriter can only communicate with each other if each one’s application
has hooked up its local entity with the matching remote entity. That is, both sides must agree to
the connection.

Section 14.3 describes the details about the discovery process.

14.2 Configuring the Peers List Used in Discovery
As part of the participant phase of the discovery process, Connext will announce itself within the
domain. Connext will try to contact all possible participants in the ‘initial peers list,’ specified in
the DomainParticipant’s DISCOVERY QosPolicy (DDS Extension) (Section 8.5.2). Note, however,
it is not known if there are actually Connext applications running on the hosts in the inital peers
list. The initial peers list may include both unicast and multicast peer locators.

After startup, you can add to the ‘peers list’ with the add_peer() operation (see Adding and
Removing Peers List Entries (Section 8.5.2.3)). The ‘peers list’ may also grow as peers are auto-
matically discovered (if accept_unknown_peers is TRUE, see Controlling Acceptance of
Unknown Peers (Section 8.5.2.6)).

When you call get_default_participant_qos() for a DomainParticipantFactory, the values used for
the DiscoveryQosPolicy’s initial_peers and multicast_receive_addresses may come from the
following:

❏ A file named NDDS_DISCOVERY_PEERS, which is formatted as described in
NDDS_DISCOVERY_PEERS File Format (Section 14.2.3). The file must be in the same
directory as your application’s executable.

❏ An environment variable named NDDS_DISCOVERY_PEERS, defined as a comma-
separated list of peer descriptors (see NDDS_DISCOVERY_PEERS Environment Variable
Format (Section 14.2.2)).

❏ The value specified in the default XML QoS profile (see Overwriting Default QoS Values
(Section 17.9.4)).

If NDDS_DISCOVERY_PEERS (file or environment variable) does not contain a multicast
address, then multicast_receive_addresses is cleared and the RTI discovery process will not lis-
ten for discovery messages via multicast.

If NDDS_DISCOVERY_PEERS (file or environment variable) contains one or more multicast
addresses, the addresses are stored in multicast_receive_addresses, starting at element 0. They
will be stored in the order in which they appear in NDDS_DISCOVERY_PEERS.

Note: Setting initial_peers in the default XML QoS Profile does not modify the value of
multicast_receive_address.
14-3

14.2 Configuring the Peers List Used in Discovery
If both the file and environment variable are found, the file takes precedence and the environ-
ment variable will be ignored.1 The settings in the default XML QoS Profile take precedence
over the file and environment variable. In the absence of a file, environment variable, or default
XML QoS profile values, Connext will use a default value. See the API Reference HTML docu-
mentation for details (in the section on the DISCOVERY QosPolicy).

If initial peers are specified in both the currently loaded QoS XML profile and in the
NDDS_DISCOVERY_PEERS file, the values in the profile take precedence.

The file, environment variable, and default XML QoS Profile make it easy to reconfigure which
nodes will take part in the discovery process—without recompiling your application.

The file, environment variable, and default XML QoS Profile are the possible sources for the
default initial peers list. You can, of course, explicitly set the initial list by changing the values in
the QoS provided to the DomainParticipantFactory's create_participant() operation, or by add-
ing to the list after startup with the DomainParticipant’s add_peer() operation (see
Section 8.5.2.3).

If you set NDDS_DISCOVERY_PEERS and You Want to Communicate over Shared Memory:

Suppose you want to communicate with other Connext applications on the same host and you
are explicitly setting NDDS_DISCOVERY_PEERS (generally in order to use unicast discovery
with applications on other hosts).

If the local host platform does not support the shared memory transport, then you can include
the name of the local host in the NDDS_DISCOVERY_PEERS list. (To check if your platform
supports shared memory, see the Platform Notes document.)

If the local host platform supports the shared memory transport, then you must do one of the
following:

❏ Include "shmem://" in the NDDS_DISCOVERY_PEERS list. This will cause shared
memory to be used for discovery and data traffic for applications on the same host.

or:

❏ Include the name of the local host in the NDDS_DISCOVERY_PEERS list, and disable
the shared memory transport in the TRANSPORT_BUILTIN QosPolicy (DDS Extension)
(Section 8.5.7) of the DomainParticipant. This will cause UDP loopback to be used for dis-
covery and data traffic for applications on the same host.

14.2.1 Peer Descriptor Format

A peer descriptor string specifies a range of participants at a given locator. Peer descriptor
strings are used in the DISCOVERY QosPolicy (DDS Extension) (Section 8.5.2) initial_peers field
(see Section 8.5.2.2) and the DomainParticipant’s add_peer() and remove_peer() operations (see
Section 8.5.2.3).

The anatomy of a peer descriptor is illustrated in Figure 14.1 using a special "StarFabric" trans-
port example.

1. This is true even if the file is empty.
14-4

14.2 Configuring the Peers List Used in Discovery
A peer descriptor consists of:

❏ [optional] A participant ID limit. If a simple integer is specified, it indicates the maximum
participant ID to be contacted by the Connext discovery mechanism at the given locator.
If that integer is enclosed in square brackets (e.g., [2]), then only that Participant ID will
be used. You can also specify a range in the form of [a-b]: in this case only the Participant
IDs in that specific range are contacted. If omitted, a default value of 4 is implied and
participant IDs 0, 1, 2, 3, and 4 will be contacted.

❏ A locator, as described in Section 14.2.1.1.

These are separated by the '@' character. The separator may be omitted if a participant ID limit is
not explicitly specified.

The "participant ID limit" only applies to unicast locators; it is ignored for multicast locators
(and therefore should be omitted for multicast peer descriptors).

14.2.1.1 Locator Format

A locator string specifies a transport and an address in string format. Locators are used to form
peer descriptors. A locator is equivalent to a peer descriptor with the default participant ID limit
(4).

A locator consists of:

❏ [optional] Transport name (alias or class). This identifies the set of transport plug-ins
(transport aliases) that may be used to parse the address portion of the locator. Note that
a transport class name is an implicit alias used to refer to all the transport plug-in
instances of that class.

❏ [optional] An address, as described in Section 14.2.1.2.

These are separated by the "://" string. The separator is specified if and only if a transport name
is specified.

Figure 14.1 Example Peer Descriptor Address Strings
14-5

14.2 Configuring the Peers List Used in Discovery
If a transport name is specified, the address may be omitted; in that case all the unicast
addresses (across all transport plug-in instances) associated with the transport class are implied.
Thus, a locator string may specify several addresses.

If an address is specified, the transport name and the separator string may be omitted; in that
case all the available transport plug-ins for the Entity may be used to parse the address string.

The transport names for the built-in transport plug-ins are:

❏ shmem - Shared Memory Transport

❏ udpv4 - UDPv4 Transport

❏ udpv6 - UDPv6 Transport

14.2.1.2 Address Format

An address string specifies a transport-independent network address that qualifies a transport-
dependent address string. Addresses are used to form locators. Addresses are also used in the
DISCOVERY QosPolicy (DDS Extension) (Section 8.5.2) multicast_receive_addresses and the
DDS_TransportMulticastSettings_t::receive_address fields. An address is equivalent to a loca-
tor in which the transport name and separator are omitted.

An address consists of:

❏ [optional] A network address in IPv4 or IPv6 string notation. If omitted, the network
address of the transport is implied.

❏ [optional] A transport address, which is a string that is passed to the transport for process-
ing. The transport maps this string into
NDDS_Transport_Property_t::address_bit_count bits. If omitted, the network address
is used as the fully qualified address.

The network and transport addressed are separated by the '#' character. If a separator is speci-
fied, it must be followed by a non-empty string that is passed to the transport plug-in. If the sep-
arator is omitted, it is treated as a transport address with an implicit network address (of the
transport plugin). The implicit network address is the address used when registering the trans-
port: e.g., the UDPv4 implicit network address is 0.0.0.0.0.0.0.0.0.0.0.0.

The bits resulting from the transport address string are prepended with the network address.
The least significant NDDS_Transport_Property_t::address_bit_count bits of the network
address are ignored.

14.2.2 NDDS_DISCOVERY_PEERS Environment Variable Format

You can set the default value for the initial peers list in an environment variable named
NDDS_DISCOVERY_PEERS. Multiple peer descriptor entries must be separated by commas.
Table 14.1 shows some examples. The examples use an implied maximum participant ID of 4
unless otherwise noted. (If you need instructions on how to set environment variables, see the
Getting Started Guide).

Table 14.1 NDDS_DISCOVERY_PEERS Environment Variable Examples

NDDS_DISCOVERY_PEERS Description of Host(s)

239.255.0.1 multicast

localhost localhost

192.168.1.1 10.10.30.232 (IPv4)

FAA0::1 FAA0::0 (IPv6)
14-6

14.2 Configuring the Peers List Used in Discovery
14.2.3 NDDS_DISCOVERY_PEERS File Format

You can set the default value for the initial peers list in a file named
NDDS_DISCOVERY_PEERS. The file must be in the your application’s current working direc-
tory.

The file is optional. If it is found, it supersedes the values in any environment variable of the
same name.

Entries in the file must contain a sequence of peer descriptors separated by whitespace or the
comma (',') character. The file may also contain comments starting with a semicolon (';') charac-
ter until the end of the line.

Example file contents:

;; NDDS_DISCOVERY_PEERS - Discovery Configuration File

;; Multicast builtin.udpv4://239.255.0.1 ; default discovery multicast addr

;; Unicast
localhost,192.168.1.1 ; A comma can be used a separator
FAA0::1 FAA0::0#localhost ; Whitespace can be used as a separator
1@himalaya ; Max participant ID of 1 on 'himalaya'
1@gangotri

;; UDPv4
udpv4://himalaya ; 'himalaya' via 'udpv4' transport plugin(s)
udpv4://FAA0::0#localhost ; 'localhost' via 'updv4' transport plugin

 ; registered at network address FAA0::0

;; Shared Memory
shmem:// ; All 'shmem' transport plugin(s)
builtin.shmem:// ; The builtin builtin 'shmem' transport plugin

himalaya,gangotri himalaya and gangotri

1@himalaya,1@gangotri
himalaya and gangotri (with a maximum participant ID of 1 on each
host)

FAA0::0#localhost
FAA0::0#localhost (could be a UDPv4 transport plug-in registered at
network address of FAA0::0) (IPv6)

udpv4://himalaya himalaya accessed using the "udpv4" transport plug-in (IPv4)

udpv4://FAA0::0#localhost
localhost using the "udpv4" transport plug-in registered at network
address FAA0::0

0/0/R

#0/0/R
0/0/R (StarFabric)

starfabric://0/0/R

starfabric://#0/0/R

0/0/R (StarFabric) using the "starfabric" (StarFabric) transport plug-
ins

starfabric://FBB0::0#0/0/R
0/0/R (StarFabric) using the "starfabric" (StarFabric) transport plug-
ins registered at network address FAA0::0

starfabric://
all unicast addresses accessed via the "starfabric" (StarFabric) trans-
port plug-ins

shmem://FCC0::0
all unicast addresses accessed via the "shmem" (shared memory)
transport plug-ins registered at network address FCC0::0

Table 14.1 NDDS_DISCOVERY_PEERS Environment Variable Examples

NDDS_DISCOVERY_PEERS Description of Host(s)
14-7

14.3 Discovery Implementation
shmem://FCC0::0 ; Shared memory transport plugin registered
 ; at network address FCC0::0

;; StarFabric
0/0/R ; StarFabric node 0/0/R
starfabric://0/0/R ; 0/0/R accessed via 'starfabric'

; transport plugin(s)
starfabric://FBB0::0#0/0/R ; StarFabric transport plugin registered

; at network address FBB0::0
starfabric:// ; All 'starfabric' transport plugin(s)

14.3 Discovery Implementation
Note: this section contains advanced material not required by most users.

Discovery is implemented using built-in DataWriters and DataReaders. These are the same class
of entities your application uses to send/receive data. That is, they are also of type DDSDataW-
riter/DDSDataReader. For each DomainParticipant, three built-in DataWriters and three built-in
DataReaders are automatically created for discovery purposes. Figure 14.2 shows how these
objects are used. (For more on built-in DataReaders and DataWriters, see Chapter 16: Built-In Top-
ics).

The implementation is split into two separate protocols:

Simple Participant Discovery Protocol (SPDP)
+ Simple Endpoint Discovery Protocol (SEDP)

= Simple Discovery Protocol (SDP)

14.3.1 Participant Discovery

When a DomainParticipant is created, a DataWriter and a DataReader are automatically created to
exchange participant DATA messages in the network. These DataWriters and DataReaders are
"special" because the DataWriter can send to a given list of destinations, regardless of whether
there is a Connext application at the destination, and the DataReader can receive data from any
source, whether the source is previously known or not. In other words, these special readers and
writers do not need to discover the remote entity and perform a match before they can commu-
nicate with each other.

When a DomainParticipant joins or leaves the network, it needs to notify its peer participants.
The list of remote participants to use during discovery comes from the peer list described in the
DISCOVERY QosPolicy (DDS Extension) (Section 8.5.2). The remote participants are notified via
participant DATA messages. In addition, if a participant’s QoS is modified in such a way that
other participants need to know about the change (that is, changes to the USER_DATA QosPol-
icy (Section 6.5.25)), a new participant DATA will be sent immediately.

Participant DATAs are also used to maintain a participant’s liveliness status. These are sent at the
rate set in the participant_liveliness_assert_period in the DISCOVERY_CONFIG QosPolicy
(DDS Extension) (Section 8.5.3).

Let’s examine what happens when a new remote participant is discovered. If the new remote
participant is in the local participant's peer list, the local participant will add that remote partici-
pant into its database. If the new remote participant is not in the local application's peer list, it
may still be added, if the accept_unknown_peers field in the DISCOVERY QosPolicy (DDS
Extension) (Section 8.5.2) is set to TRUE.
14-8

14.3 Discovery Implementation
Once a remote participant has been added to the Connext database, Connext keeps track of that
remote participant’s participant_liveliness_lease_duration. If a participant DATA for that partic-
ipant (identified by the GUID) is not received at least once within the
participant_liveliness_lease_duration, the remote participant is considered stale, and the
remote participant, together with all its entities, will be removed from the database of the local
participant.

To keep from being purged by other participants, each participant needs to periodically send a
participant DATA to refresh its liveliness. The rate at which the participant DATA is sent is con-
trolled by the participant_liveliness_assert_period in the participant’s DISCOVERY_CONFIG
QosPolicy (DDS Extension) (Section 8.5.3). This exchange, which keeps Participant A from
appearing ‘stale,’ is illustrated in Figure 14.3. Figure 14.4 shows what happens when Participant
A terminates ungracefully and therefore needs to be seen as ‘stale.’

Figure 14.2 Built-in Writers and Readers for Discovery

For each DomainParticipant, there are six objects automatically created for discovery purposes. The top two
objects are used to send/receive participant DATA messages, which are used in the Participant Discovery
phase to find remote DomainParticipants. This phase uses best-effort communications. Once the
participants are aware of each other, they move on to the Endpoint Discovery Phase to learn about each
other’s DataWriters and DataReaders. This phase uses reliable communications.

Builtin
DataWriter

Builtin
DataReader

Advertises this
participant’s

DataWriters and
DataReaders

Discovers other
participants’

DataWriters and
DataReaders

Advertises this
participant

Discovers other
participants

participant DATA

participant DATA

publication DATA

subscription DATA

publication DATA

subscription DATA

DomainParticipant

Participant
Discovery
Phase

Endpoint
(Writer/
Reader)
Discovery
Phase

NetworkBuiltin
DataWriter

Builtin
DataWriter

Builtin
DataReader

Builtin
DataReader

“DCPSParticipant” builtin topic

“DCPSParticipant” builtin topic

“DCPSPublication” builtin topic

“DCPSSubscription” builtin topic

“DCPSPublication” builtin topic

“DCPSSubscription” builtin topic
14-9

14.3 Discovery Implementation
14.3.1.1 Refresh Mechanism

To ensure that a late-joining participant does not need to wait until the next refresh of the remote
participant DATA to discover the remote participant, there is a resend mechanism. If the received
participant DATA is from a never-before-seen remote participant, and it is in the local partici-
pant's peers list, the application will resend its own participant DATA to all its peers. This resend
can potentially be done multiple times, with a random sleep time in between. Figure 14.5 illus-
trates this scenario.

The number of retries and the random amount of sleep between them are controlled by each
participant’s DISCOVERY_CONFIG QosPolicy (DDS Extension) (Section 8.5.3) (see ① and ✍ in
Figure 14.5).

Figure 14.6 provides a summary of the messages sent during the participant discovery phase.

Figure 14.3 Periodic ‘participant DATAs’

The DomainParticipant on Node A sends a ‘participant DATA’ to Node B, which is in Node A’s peers list. This
occurs regardless of whether or not there is a Connext application on Node B.

① The green short dashed lines are periodic participant DATAs. The time between these messages is controlled
by the participant_liveliness_assert_period in the DiscoveryConfig QosPolicy.

➁ In addition to the periodic participant DATAs, ‘initial repeat messages’ (shown in blue, with longer dashes)
are sent from A to B. These messages are sent at a random time between
min_initial_participant_announcement_period and max_initial_participant_announcement_period (in A’s
DiscoveryConfig QosPolicy). The number of these initial repeat messages is set in
initial_participant_announcements.

participant A DATA

Participant created

Participant’s UserDataQosPolicy
modified

Participant destroyed
participant A DATA
(delete)

Node A Node B

① Participant A’s
DDS_DomainParticipantQos.discovery_config.
participant_liveliness_assert_period

①

①

①

①

①

①

➁

➁

➁ Random time between
min_initial_participant_announcement_period
and
max_initial_participant_announcement_period
(in A’s
DDS_DomainParticipantQos.discovery_config)
14-10

14.3 Discovery Implementation
Figure 14.4 Ungraceful Termination of a Participant

Participant A is removed from participant B’s database if it is not refreshed within the liveliness lease
duration. Dashed lines are periodic participant DATA messages.

(Periodic resends of ‘participant B DATA’ from B to A are omitted from this diagram for simplicity. Initial
repeat messages from A to B are also omitted from this diagram—these messages are sent at a random time
between min_initial_participant_announcement_period and max_initial_participant_announcement_period,
see Figure 14.3.)

participant A DATA

Participant created

Participant ungracefully
terminated

Node A Node B

Remote participant A
considered ‘stale,’
removed from database

Participant created

New remote participant A
added to database➀

➀

➁ Participant A’s
DDS_DomainParticipantQos.discovery_config.
participant_liveliness_lease_duration

➁

➁

➀ Participant A’s
DDS_DomainParticipantQos.discovery_config.
participant_liveliness_assert_period
14-11

14.3 Discovery Implementation
Figure 14.5 Resending ‘participant DATA’ to a Late-Joiner

Participant A has Participant B in its peers list. Participant B does not have Participant A in its peers list,
but [DiscoveryQosPolicy.accept_unknown_peers] is set to DDS_BOOLEAN_TRUE. Participant A joins
the system after B has sent its initial announcement. After B discovers A, it waits for time ➁, then resends
its participant DATA.

(Initial repeat messages are omitted from this diagram for simplicity, see Figure 14.3.)

participant A DATA

Participant created

participant B DATA

Node A Node B

Participant created

New remote participant A
added to database

➁

➁

participant A already in database,
no action taken

➀

New remote participant B
added to database

➀

 ➀wait random time (between
min_initial_participant_announcement_period
and
max_initial_participant_announcement_period)
for [initial_participant_announcements] = 2
(using values from A’s DiscoveryQosPolicy)

participant A DATA
participant A DATA

participant B DATA

participant B already in
database, no action taken

Resend participant DATA to
all peers

 ➁ same as ➀, but using participant B’s
QoS
14-12

14.3 Discovery Implementation
periodic

participant B DATA

Figure 14.6 Participant Discovery Summary

Participants A and B both have each other in their peers lists. Participant A is created first.

participant A DATA

Participant created

Newly discovered participant B
added to database

Node A Node B

Participant created
participant B DATA

participant A DATA Newly discovered
participant A added
to database

Participants have discovered
each other

participant B DATA

periodic participant B DATA

periodic participant A DATA

Participant B already in database,
no action required

 ➀ wait random time (between
min_initial_participant_announcement_period
and
max_initial_participant_announcement_period)
for [initial_participant_announcements] = 1
(using values from A’s DiscoveryQosPolicy)

➀

➁ same as ①, but using Participant B’s QoS

➁

periodic participant A DATA

initial repeat of
participant A DATA

initial repeat of

participant B DATA

➀

➁

14-13

14.3 Discovery Implementation
14.3.1.2 Maintaining DataWriter Liveliness for kinds AUTOMATIC and MANUAL_BY_PARTICIPANT

To maintain the liveliness of DataWriters that have a LIVELINESS QosPolicy (Section 6.5.13)
kind field set to AUTOMATIC or MANUAL_BY_PARTICIPANT, Connext uses a built-in
DataWriter and DataReader pair, referred to as the inter-participant reader and inter-participant
writer.

If the DomainParticipant has any DataWriters with Liveliness QosPolicy kind set to AUTO-
MATIC, the inter-participant writer will reliably broadcast an AUTOMATIC liveliness message
at a period equal to the shortest lease_duration of these DataWriters. (The lease_duration is a
field in the LIVELINESS QosPolicy (Section 6.5.13).) Figure 14.7 illustrates this scenario.

If the DomainParticipant has any DataWriters with Liveliness QosPolicy kind set to
MANUAL_BY_PARTICIPANT, Connext will periodically check to see if any of them have
called write(), assert_liveliness(), dispose() or unregister(). The rate of this check is every X sec-
onds, where X is the smallest lease_duration among all the DomainParticipant's
MANUAL_BY_PARTICIPANT DataWriters. (The lease_duration is a field in the LIVELINESS
QosPolicy (Section 6.5.13).) If any of the MANUAL_BY_PARTICIPANT DataWriters have called
any of those operations, the inter-participant writer will reliably broadcast a MANUAL liveli-
ness message.

If a DomainParticipant's assert_liveliness() operation is called, and that DomainParticipant has
any MANUAL_BY_PARTICIPANT DataWriters, the inter-participant writer will reliably broad-
cast a MANUAL liveliness message within the above-defined X time period. These MANUAL
liveliness messages are used to update the liveliness of all the DomainParticipant's
MANUAL_BY_PARTICIPANT DataWriters, as well as the liveliness of the DomainParticipant
itself. Figure 14.8 shows an example sequence.

The inter-participant reader receives data from remote inter-participant writers and asserts the
liveliness of remote DomainParticipants endpoints accordingly.

If the DomainParticipant has no DataWriters with LIVELINESS QosPolicy (Section 6.5.13) kind
set to AUTOMATIC or MANUAL_BY_PARTICIPANT, then no liveliness messages are ever
sent from the inter-participant writer.

Figure 14.7 DataWriter with AUTOMATIC Liveliness

A liveliness message is sent automatically when a DataWriter with AUTOMATIC Liveliness kind is created, and
then periodically, every DDS_DataWriterQos.liveliness.lease_duration.

AUTOMATIC liveliness message

Participant created

DataWriter C created
with liveliness kind = AUTOMATIC

Node A Node B

 ➀ DataWriter C’s

DDS_DataWriterQos.liveliness.lease_duration

➀

➀

➀

➀

14-14

14.3 Discovery Implementation
14.3.2 Endpoint Discovery

As we saw in Figure 14.2 on page 14-9, reliable DataReaders and Datawriters are automatically
created to exchange publication/subscription information for each DomainParticipant. We will
refer to these as ‘discovery endpoint readers and writers.’ However, nothing is sent through the
network using these entities until they have been ‘matched’ with their remote counterparts. This
‘matching’ is triggered by the Participant Discovery phase. The goal of the Endpoint Discovery
phase is to add the remote endpoint to the local database, so that user-created endpoints (your
application’s DataWriters/DataReaders) can communicate with each other.

When a new remote DomainParticipant is discovered and added to a participant’s database, Con-
next assumes that the remote DomainParticipant is implemented in the same way and therefore is
creating the appropriate counterpart entities. Therefore, Connext will automatically add two
remote discovery endpoint readers and two remote discovery endpoint writers for that remote
DomainParticipant into the local database. Once that is done, there is now a match with the local
discovery endpoint writers and readers, and publication DATAs and subscription DATAs can then
be sent between the discovery endpoint readers/writers of the two DomainParticipant.

When you create a DataWriter/DataReader for your user data, a publication/subscription DATA
describing the newly created object is sent from the local discovery endpoint writer to the
remote discovery endpoint readers of the remote DomainParticipants that are currently in the
local database.

Figure 14.8 DataWriter with MANUAL_BY_PARTICIPANT Liveliness

Participant created

Node A Node B

➀ DataWriter C’s
DDS_DataWriterQos.liveliness.lease_duration

DomainParticipant::assert_liveliness()
(no liveliness message is sent)

DataWriter C created
with liveliness kind = MANUAL_BY_PARTICIPANT

DomainParticipant::assert_liveliness()
(causes Liveliness message to be sent later)

Calling assert_liveliness(), write(), dispose(), or
unregister_instance() on DataWriter C

(causes Liveliness message to be sent later)

MANUAL Liveliness message

MANUAL Liveliness message

➀

➀

Once a MANUAL_BY_PARTICIPANT DataWriter is created, subsequent calls to assert_liveliness, write,
dispose, or unregister_instance will trigger Liveliness messages, which update the liveliness status of all the
participant’s DataWriters, and the participant itself.
14-15

14.3 Discovery Implementation
If your application changes any of the following QosPolicies for a local user-data DataWriter/
DataReader, a modified subscription/publication DATA is sent to propagate the QoS change to
other DomainParticipants:

❏ TOPIC_DATA QosPolicy (Section 5.2.1)

❏ GROUP_DATA QosPolicy (Section 6.4.4)

❏ USER_DATA QosPolicy (Section 6.5.25)

❏ USER_DATA QosPolicy (Section 6.5.25)

❏ OWNERSHIP_STRENGTH QosPolicy (Section 6.5.16)

❏ PARTITION QosPolicy (Section 6.4.5)

❏ TIME_BASED_FILTER QosPolicy (Section 7.6.4)

❏ LIFESPAN QoS Policy (Section 6.5.12)

What the above QosPolicies have in common is that they are all changeable and part of the built-
in data (see Chapter 16: Built-In Topics).

Similarly, if the application deletes any user-data writers/readers, the discovery endpoint
writer/readers send delete publication/subscription DATAs. In addition to sending publication/
subscription DATAs, the discovery endpoint writer will check periodically to see if the remote
discovery endpoint reader is up-to-date. (The rate for this check is the
publication_writer.heartbeat_period or subscription_writer.heartbeat_period in the
DISCOVERY_CONFIG QosPolicy (DDS Extension) (Section 8.5.3). If the discovery endpoint
writer has not been acknowledged by the remote discovery endpoint reader regarding receipt of
the latest DATA, the discovery endpoint writer will send a special Heartbeat (HB) message with
the Final bit set to 0 (F=0) to request acknowledgement from the remote discovery endpoint
reader, as seen in Figure 14.9.

Discovery endpoint writers and readers have their HISTORY QosPolicy (Section 6.5.10) set to
KEEP_LAST, and their DURABILITY QosPolicy (Section 6.5.7) set to TRANSIENT_LOCAL.
Therefore, even if the remote DomainParticipant has not yet been discovered at the time the local
user’s DataWriter/DataReader is created, the remote DomainParticipant will still be informed
about the previously created DataWriter/DataReader. This is achieved by the HB and ACK/
NACK that are immediately sent by the built-in endpoint writer and built-in endpoint reader
respectively when a new remote participant is discovered. Figure 14.10 and Figure 14.11 illus-
trate this sequence for HB and ACK/NACK triggers, respectively.

Endpoint discovery latency is determined by the following members of the DomainParticipant’s
DISCOVERY_CONFIG QosPolicy (DDS Extension) (Section 8.5.3):

❏ publication_writer

❏ subscription_writer

❏ publication_reader

❏ subscription_reader

When a remote entity record is added, removed, or changed in the database, matching is per-
formed with all the local entities. Only after there is a successful match on both ends can an
application’s user-created DataReaders and DataWriters communicate with each other.

For more information about reliable communication, see Chapter 10: Reliable Communications.
14-16

14.3 Discovery Implementation
Figure 14.9 Endpoint Discovery Summary

Assume participants A and B have been discovered on both sides. A’s
DiscoveryConfigQosPolicy.publication_writer.heartbeats_per_max_samples = 0, so no HB is piggybacked with
the publication DATA. A HB with F=0 is a request for an ACK/NACK. The periodic and initial repeat
participant DATAs are omitted from the diagram.

publication C DATA

DataWriter C created

Modify DataWriter C’s
UserData QoS

Node A Node B

Remote DataWriter C discovered,
added to database

DataWriter C’s QoS modified,
record in database modified

periodic HB (F=0)

ACKNACK

DataWriter C deleted

➁wait random time between B’s
[DDS_DomainParticipantQos.
discovery_config.
publication_reader.min_heartbeat_
response_delay] and
[...max_heartbeat_response_delay]

modified publication C DATA

periodic HB (F=0)

ACKNACK

delete publication C DATAperiodic HB (F=0)

ACKNACK

DataWriter C removed
from database

➀ A’s DDS_DomainParticipantQos.discovery_config.
publication_writer.heartbeat_period

➀

➀

➁

➁

➁

Periodic HB not sent since A
knows that B is up-to-date

➀

➀

14-17

14.3 Discovery Implementation
Figure 14.10 DataWriter Discovered by Late-Joiner, Triggered by HB

Writer C is created on Participant A before Participant A discovers Participant B. Assuming
DiscoveryConfigQosPolicy.publication_writer.heartbeats_per_max_samples = 0, no HB is piggybacked with the
publication DATA. Participant B has A in its peer list, but not vice versa. Accept_unknown_locators is true. On
A, in response to receiving the new participant B DATA message, a participant A DATA message is sent to B. The
discovery endpoint reader on A will also send an ACK/NACK to the discovery endpoint writer on B. (Initial repeat
participant messages and periodic participant messages are omitted from this diagram for simplicity, see
Figure 14.3.)

Publication C DATA sent to discovery

endpoint readers of discovered remote

participants in database
Create DataWriter C

Node A Node B

HB (F=1)

ACKNACK

periodic HB (F=0)

ACK

Remote DataWriter C finally
discovered, added to database

➁ wait random time between B’s
[DDS_DomainParticipantQos.discovery_config.
publication_reader.min_heartbeat_response_delay]
and (...max_heartbeat_response_delay]

➁

➁

 ➂ wait random time between A’s
[DDS_DomainParticipantQos.discovery_config.
publication_writer.min_nack_response_delay]
and (...max_nack_response_delay]

 ➀ Participant A’s
[DDS_DomainParticipant
Qos.discovery_config.
publication_writer.
heartbeat_period)

➀

➂

➀

Node B hasn’t been discovered by
Node A yet, so it doesn’t receive
the publication DATA for C

Publication C DATA sent to
 discovery endpoint reader
of remote participant B

Send HB to see if the
discovery publication
reader on Node B is
up-to-date.

Latest DATA from C has
not been received

participant B DATA
Participant B created
14-18

14.3 Discovery Implementation
Figure 14.11 DataWriter Discovered by Late-Joiner, Triggered by ACKNACK

Writer C is created on Participant A before Participant A discovers Participant B. Assuming
DiscoveryConfigQosPolicy.publication_writer.heartbeats_per_max_samples = 0, no HB is piggybacked with
the publication DATA message. Participant A has B in its peer list, but not vice versa.
Accept_unknown_locators is true. In response to receiving the new Participant A DATA message on node B,
a participant B DATA message will be sent to A. The discovery endpoint writer on Node B will also send a
HB to the discovery endpoint reader on Node A. These are omitted in the diagram for simplicity. (Initial
repeat participant messages and periodic participant messages are omitted from this diagram, see
Figure 14.3.)

Publication C DATA sent to discovery

endpoint readers of discovered remote

participantsCreate DataWriter C

Node A Node B

C DATA + HB (F=0)

ACKNACK

ACKNACK

Remote DataWriter C discovered,
added to database

➁ wait random time between B’s
[DDS_DomainParticipantQos.discovery_config.
publication_reader.min_heartbeat_response_delay]
and (...max_heartbeat_response_delay]

➁

 ➂ wait random time between A’s
[DDS_DomainParticipantQos.discovery_config.
publication_writer.min_nack_response_delay]
and (...max_nack_response_delay]

 ➀ Participant A’s
[DDS_DomainParticipant
Qos.discovery_config.
publication_writer.
heartbeat_period)

➀

➂

➀

Participant B created

A is discovered. ACKNACK sent
immediately to discovery endpoint writer
of the newly discovered remote
participant

periodic A DATA
14-19

14.3 Discovery Implementation
14.3.3 Discovery Traffic Summary

14.3.4 Discovery-Related QoS

Each DomainParticipant needs to be uniquely identified in the domain and specify which other
DomainParticipants it is interested in communicating with. The WIRE_PROTOCOL QosPolicy
(DDS Extension) (Section 8.5.9) uniquely identifies a DomainParticipant in the domain. The DIS-
COVERY QosPolicy (DDS Extension) (Section 8.5.2) specified the peer participants it is inter-
ested in communicating with.

There is a trade-off between the amount of traffic on the network for the purposes of discovery
and the delay in reaching steady state when the DomainParticipant is first created.

For example, if the DISCOVERY QosPolicy (DDS Extension) (Section 8.5.2)’s
participant_liveliness_assert_period and participant_liveliness_lease_duration fields are set
to small values, the discovery of stale remote DomainParticipants will occur faster, but more dis-

This diagram shows both phases of the discovery process. Participant A is created first, followed by Participant
B. Each has the other in its peers list. After they have discovered each other, a DataWriter is created on
Participant A. Periodic participant DATAs, HBs and ACK/NACKs are omitted from this diagram.

participant A DATA

Participant A created
Node A Node B

participant B DATA

publication C DATA

participant A DATA

Remote DataWriter C
discovered, added to database

Newly discovered Participant
B added to database

participant B DATA

publication C DATA (delete)

participant A DATA (delete)

participant B DATA (delete)

Newly discovered Participant A
added to database

Participant B created

DataWriter C created

DataWriter C deleted

Remote DataWriter C deleted,
removed from database

Participant A destroyed

Remote Participant A
removed from database

 ➀ wait random time (between
min_initial_participant_announcement_period
and
max_initial_participant_announcement_period)
for [initial_participant_announcements] = 1
(using values from A’s DiscoveryConfigQosPolicy)

➁ same as ➀, but using participant
B’s QoS

➀

➁

Participant B destroyed

initial repeat of
participant A DATA

initial repeat of

participant B DATA

➁

➀

14-20

14.4 Debugging Discovery
covery traffic will be sent over the network. Setting the participant’s heartbeat_period1 to a
small value can cause late-joining DomainParticipants to discover remote user-data DataWriters
and DataReaders at a faster rate, but Connext might send HBs to other nodes more often. This
timing can be controlled by the following DomainParticipant QosPolicies:

DISCOVERY QosPolicy (DDS Extension) (Section 8.5.2) — specifies how other DomainPartici-
pants in the network can communicate with this DomainParticipant, and which other
DomainParticipants in the network this DomainParticipant is interested in communicating
with. See also: Ports Used for Discovery (Section 14.5).

DISCOVERY_CONFIG QosPolicy (DDS Extension) (Section 8.5.3) — specifies the QoS of the dis-
covery readers and writers (parameters that control the HB and ACK rates of discovery
endpoint readers/writers, and periodic refreshing of participant DATA from discovery
participant readers/writers). It also allow you to configure asynchronous writers in order
to send data with a larger size than the transport message size.

DOMAIN_PARTICIPANT_RESOURCE_LIMITS QosPolicy (DDS Extension) (Section 8.5.4) —
specifies the number of local and remote entities expected in the system.

WIRE_PROTOCOL QosPolicy (DDS Extension) (Section 8.5.9) — specifies the rtps_app_id and
rtps_host_id that uniquely identify the participant in the domain.

The other important parameter is the domain ID: DomainParticipants can only discover each
other if they belong to the same domain. The domain ID is a parameter passed to the
create_participant() operation (see Section 8.3.1).

14.4 Debugging Discovery
To understand the flow of messages during discovery, you can increase the verbosity of the mes-
sages logged by Connext so that you will see whenever a new entity is discovered, and whenever
there is a match between a local entity and a remote entity.

This can be achieved with the logging API:

NDDSConfigLogger::get_instance()->set_verbosity_by_category
(NDDS_CONFIG_LOG_CATEGORY_ENTITIES, NDDS_CONFIG_LOG_VERBOSITY_STATUS_REMOTE);

Using the scenario in the summary diagram in Section 14.3.3, these are the messages as seen on
DomainParticipant A:

[D0049|ENABLE]DISCPluginManager_onAfterLocalParticipantEnabled:announcing new
local participant: 0XA0A01A1,0X5522,0X1,0X1C1
[D0049|ENABLE]DISCPluginManager_onAfterLocalParticipantEnabled:at
{46c614d9,0C43B2DC}

• (The above messages mean: First participant A DATA sent out when participant A is
enabled.)

DISCSimpleParticipantDiscoveryPluginReaderListener_onDataAvailable:discovered new
participant: host=0x0A0A01A1, app=0x0000552B, instance=0x00000001
DISCSimpleParticipantDiscoveryPluginReaderListener_onDataAvailable:at
{46c614dd,8FA13C1F}
DISCParticipantDiscoveryPlugin_assertRemoteParticipant:plugin discovered/updated
remote participant: 0XA0A01A1,0X552B,0X1,0X1C1
DISCParticipantDiscoveryPlugin_assertRemoteParticipant:at {46c614dd,8FACE677}

1. heartbeat_period is part of the DDS_RtpsReliableWriterProtocol_t structure used in the DISCOVERY QosPolicy
(DDS Extension) (Section 8.5.2)’s publication_writer and subscription_writer fields.
14-21

14.4 Debugging Discovery
DISCParticipantDiscoveryPlugin_assertRemoteParticipant:plugin accepted new remote
participant: 0XA0A01A1,0X552B,0X1,0X1C1
DISCParticipantDiscoveryPlugin_assertRemoteParticipant:at {46c614dd,8FACE677}

• (The above messages mean: Received participant B DATA.)

DISCSimpleParticipantDiscoveryPlugin_remoteParticipantDiscovered:re-announcing
participant self: 0XA0A01A1,0X5522,0X1,0X1C1
DISCSimpleParticipantDiscoveryPlugin_remoteParticipantDiscovered:at
{46c614dd,8FC02AF7}

• (The above messages mean: Resending participant A DATA to the newly discovered
remote participant.)

PRESPsService_linkToLocalReader:assert remote 0XA0A01A1,0X552B,0X1,0X200C2, local
0x000200C7 in reliable reader service
PRESPsService_linkToLocalWriter:assert remote 0XA0A01A1,0X552B,0X1,0X200C7, local
0x000200C2 in reliable writer service
PRESPsService_linkToLocalWriter:assert remote 0XA0A01A1,0X552B,0X1,0X4C7, local
0x000004C2 in reliable writer service
PRESPsService_linkToLocalWriter:assert remote 0XA0A01A1,0X552B,0X1,0X3C7, local
0x000003C2 in reliable writer service
PRESPsService_linkToLocalReader:assert remote 0XA0A01A1,0X552B,0X1,0X4C2, local
0x000004C7 in reliable reader service
PRESPsService_linkToLocalReader:assert remote 0XA0A01A1,0X552B,0X1,0X3C2, local
0x000003C7 in reliable reader service
PRESPsService_linkToLocalReader:assert remote 0XA0A01A1,0X552B,0X1,0X100C2, local
0x000100C7 in best effort reader service

• (The above messages mean: Automatic matching of the discovery readers and writers.
A built-in remote endpoint's object ID always ends with Cx.)

DISCSimpleParticipantDiscoveryPluginReaderListener_onDataAvailable:discovered mod-
ified participant: host=0x0A0A01A1, app=0x0000552B, instance=0x00000001
DISCParticipantDiscoveryPlugin_assertRemoteParticipant:plugin discovered/updated
remote participant: 0XA0A01A1,0X552B,0X1,0X1C1
DISCParticipantDiscoveryPlugin_assertRemoteParticipant:at {46c614dd,904D876C}

• (The above messages mean: Received participant B DATA.)

DISCPluginManager_onAfterLocalEndpointEnabled:announcing new local publication:
0XA0A01A1,0X5522,0X1,0X80000003
DISCPluginManager_onAfterLocalEndpointEnabled:at {46c614d9,1013B9F0}
DISCSimpleEndpointDiscoveryPluginPDFListener_onAfterLocalWriterEnabled:announcing
new publication: 0XA0A01A1,0X5522,0X1,0X80000003
DISCSimpleEndpointDiscoveryPluginPDFListener_onAfterLocalWriterEnabled:at
{46c614d9,101615EB}

• (The above messages mean: Publication C DATA has been sent.)

DISCSimpleEndpointDiscoveryPlugin_subscriptionReaderListenerOnDataAvailable:dis-
covered subscription: 0XA0A01A1,0X552B,0X1,0X80000004
DISCSimpleEndpointDiscoveryPlugin_subscriptionReaderListenerOnDataAvailable:at
{46c614dd,94FAEFEF}
DISCEndpointDiscoveryPlugin_assertRemoteEndpoint:plugin discovered/updated remote
endpoint: 0XA0A01A1,0X552B,0X1,0X80000004
DISCEndpointDiscoveryPlugin_assertRemoteEndpoint:at {46c614dd,950203DF}
14-22

14.5 Ports Used for Discovery
• (The above messages mean: Receiving subscription D DATA from Node B.)

PRESPsService_linkToLocalWriter:assert remote 0XA0A01A1,0X552B,0X1,0X80000004,
local 0x80000003 in best effort writer service

• (The above message means: User-created DataWriter C and DataReader D are
matched.)

[D0049|DELETE_CONTAINED]DISCPluginManager_onAfterLocalEndpointDeleted:announcing
disposed local publication: 0XA0A01A1,0X5522,0X1,0X80000003
[D0049|DELETE_CONTAINED]DISCPluginManager_onAfterLocalEndpointDeleted:at
{46c61501,288051C8}
[D0049|DELETE_CONTAINED]DISCSimpleEndpointDiscoveryPluginPDFListener_onAfterLocalW
riterDeleted:announcing disposed publication: 0XA0A01A1,0X5522,0X1,0X80000003
[D0049|DELETE_CONTAINED]DISCSimpleEndpointDiscoveryPluginPDFListener_onAfterLocalW
riterDeleted:at {46c61501,28840E15}

• (The above messages mean: Publication C DATA(delete) has been sent.)

DISCPluginManager_onBeforeLocalParticipantDeleted:announcing before disposed local
participant: 0XA0A01A1,0X5522,0X1,0X1C1
DISCPluginManager_onBeforeLocalParticipantDeleted:at {46c61501,28A11663}

• (The above messages mean: Participant A DATA(delete) has been sent.)

DISCParticipantDiscoveryPlugin_removeRemoteParticipantsByCookie:plugin removing 3
remote entities by cookie
DISCParticipantDiscoveryPlugin_removeRemoteParticipantsByCookie:at
{46c61501,28E38A7C}
DISCParticipantDiscoveryPlugin_removeRemoteParticipantI:plugin discovered dis-
posed remote participant: 0XA0A01A1,0X552B,0X1,0X1C1
DISCParticipantDiscoveryPlugin_removeRemoteParticipantI:at {46c61501,28E68E3D}
DISCParticipantDiscoveryPlugin_removeRemoteParticipantI:remote entity removed from
database: 0XA0A01A1,0X552B,0X1,0X1C1
DISCParticipantDiscoveryPlugin_removeRemoteParticipantI:at {46c61501,28E68E3D}

• (The above messages mean: Removing discovered entities from local database, before
shutting down.)

As you can see, the messages are encoded, since they are primarily used by RTI support person-
nel.

For more information on the message logging API, see Controlling Messages from Connext (Sec-
tion 21.2).

If you notice that a remote entity is not being discovered, check the QoS related to discovery (see
Section 14.3.4).

If a remote entity is discovered, but does not match with a local entity as expected, check the
QoS of both the remote and local entity.

14.5 Ports Used for Discovery
There are two kinds of traffic in a Connext application: discovery (meta) traffic, and user traffic.
Meta-traffic is for data (declarations) that is sent between the automatically-created discovery
writers and readers; user traffic is for data that is sent between user-created DataWriters and
DataReaders. To keep the two kinds of traffic separate, Connext uses different ports, as described
below.
14-23

14.5 Ports Used for Discovery
Note: The ports described in this section are used for incoming data. Connext uses ephemeral
ports for outbound data.

Connext uses the RTPS wire protocol. The discovery protocols defined by RTPS rely on well-
known ports to initiate discovery. These well-known ports define the multicast and unicast
ports on which a Participant will listen for meta-traffic from other Participants. The meta-traffic
contains the information required by Connext to establish the presence of remote Entities in the
network.

The well-known incoming ports are defined by RTPS in terms of port mapping expressions with
several tunable parameters. This allows you to customize what network ports are used for
receiving data by Connext. These parameters are shown in Table 14.2. (For defaults and valid
ranges, please see the API Reference HTML documentation.)

In order for all Participants in a system to correctly discover each other, it is important that they
all use the same port mapping expressions.

In addition to the parameters listed in Table 14.2, the port formulas described below depend on:

❏ The domain ID specified when the DomainParticipant is created (see Section 8.3.1). The
domain ID ensures no port conflicts exist between Participants belonging to different
domains. This also means that discovery traffic in one domain is not visible to Domain-
Participants in other domains.

❏ The participant_id is a field in the WIRE_PROTOCOL QosPolicy (DDS Extension) (Sec-
tion 8.5.9), see Section 8.5.9.1. The participant_id ensures that unique unicast port num-
bers are assigned to DomainParticipants belonging to the same domain on a given host.

Backwards Compatibility: Connext supports the standard DDS Interoperability Wire Protocol
based on the Real-time Publish-Subscribe (RTPS) protocol. This protocol is not compatible with
the one used by earlier releases (4.2c or lower). Therefore, applications built with 4.2d or higher
will not interoperate with applications built with 4.2c or lower. The default port mapping from
domainID and participant index has also been changed according to the new interoperability
specification. The message types and formats used by RTPS have also changed.

Port Aliasing: When modifying the port mapping parameters, avoid port aliasing. This would
result in undefined discovery behavior. The chosen parameter values will also determine the
maximum possible number of domains in the system and the maximum number of participants
per domain. Additionally, any resulting mapped port number must be within the range
imposed by the underlying transport. For example, for UDPv4, this range typically equals [1024
- 65535].

Table 14.2 WireProtocol QosPolicy’s rtps_well_known_ports (DDS_RtpsWellKnownPorts_t)

Type Field Name Description

DDS_Long

port_base
The base port offset. All mapped well-known ports are off-
set by this value. Resulting ports must be within the range
imposed by the underlying transport.

domain_id_gain
Tunable gain parameters. See Section 14.5.4.

participant_id_gain

builtin_multicast_port_offset Additional offset for meta-traffic port. See Inbound Ports
for Meta-Traffic (Section 14.5.1).builtin_unicast_port_offset

user_multicast_port_offset Additional offset for user traffic port. See Inbound Ports for
User Traffic (Section 14.5.2).user_unicast_port_offset
14-24

14.5 Ports Used for Discovery
14.5.1 Inbound Ports for Meta-Traffic

The Wire Protocol QosPolicy’s rtps_well_known_ports.metatraffic_unicast_port determines
the port used for receiving meta-traffic using unicast:

metatraffic_unicast_port = port_base +
(domain_id_gain * Domain ID) +
(participant_id_gain * participant_id) +
 builtin_unicast_port_offset

Similarly, rtps_well_known_ports.metatraffic_multicast_port determines the port used for
receiving meta-traffic using multicast. The corresponding multicast group addresses are speci-
fied via multicast_receive_addresses (see Section 8.5.2.4).

metatraffic_multicast_port = port_base +
 (domain_id_gain * Domain ID) +
 builtin_multicast_port_offset

Note: Multicast is only used for meta-traffic if a multicast address is specified in the
NDDS_DISCOVERY_PEERS environment variable or file or if the multicast_receive_addresses
field of the DISCOVERY_CONFIG QosPolicy (DDS Extension) (Section 8.5.3) is set.

14.5.2 Inbound Ports for User Traffic

RTPS also defines the default multicast and unicast ports on which DataReaders and DataWriters
receive user traffic. These default ports can be overridden using the DataReader’s
TRANSPORT_MULTICAST QosPolicy (DDS Extension) (Section 7.6.5) and
TRANSPORT_UNICAST QosPolicy (DDS Extension) (Section 6.5.23), or the DataWriter’s
TRANSPORT_UNICAST QosPolicy (DDS Extension) (Section 6.5.23).

The WireProtocol QosPolicy’s rtps_well_known_ports.usertraffic_unicast_port determines the
port used for receiving user data using unicast:

usertraffic_unicast_port = port_base +
 (domain_id_gain * Domain ID) +
 (participant_id_gain * participant_id)+
 user_unicast_port_offset

Similarly, rtps_well_known_ports.usertraffic_multicast_port determines the port used for
receiving user data using multicast. The corresponding multicast group addresses can be config-
ured using the TRANSPORT_UNICAST QosPolicy (DDS Extension) (Section 6.5.23).

usertraffic_multicast_port = port_base +
 (domain_id_gain * Domain ID) +

user_multicast_port_offset

14.5.3 Automatic Selection of participant_id and Port Reservation

The WIRE_PROTOCOL QosPolicy (DDS Extension) (Section 8.5.9) rtps_reserved_ports_mask
field determines what type of ports are reserved when the DomainParticipant is enabled. See
Choosing Participant IDs (Section 8.5.9.1).

14.5.4 Tuning domain_id_gain and participant_id_gain

The domain_id_gain is used as a multiplier of the domain ID. Together with
participant_id_gain (Section 14.5.4), these values determine the highest domain ID and
participant_id allowed on this network.
14-25

14.5 Ports Used for Discovery
In general, there are two ways to set up the domain_id_gain and participant_id_gain parame-
ters.

❏ If domain_id_gain > participant_id_gain, it results in a port mapping layout where all
DomainParticipants in a domain occupy a consecutive range of domain_id_gain ports.
Precisely, all ports occupied by the domain fall within:

(port_base + (domain_id_gain * Domain ID))

and:

 (port_base + (domain_id_gain * (Domain ID + 1)) - 1)

In this case, the highest domain ID is limited only by the underlying transport's maxi-
mum port. The highest participant_id, however, must satisfy:

max_participant_id < (domain_id_gain / participant_id_gain)

❏ On the contrary, if domain_id_gain <= participant_id_gain, it results in a port mapping
layout where a given domain's DomainParticipant instances occupy ports spanned across
the entire valid port range allowed by the underlying transport. For instance, it results in
the following potential mapping:

In this case, the highest participant_id is limited only by the underlying transport's max-
imum port. The highest domain_id, however, must satisfy:

max_domain_id < (participant_id_gain / domain_id_gain)

The domain_id_gain also determines the range of the port-specific offsets:

domain_id_gain >
abs(builtin_multicast_port_offset - user_multicast_port_offset)

and

 domain_id_gain >
abs(builtin_unicast_port_offset - user_unicast_port_offset)

Violating this may result in port aliasing and undefined discovery behavior.

The participant_id_gain also determines the range of builtin_unicast_port_offset and
user_unicast_port_offset.

participant_id_gain >
abs(builtin_unicast_port_offset - user_unicast_port_offset)

In all cases, the resulting ports must be within the range imposed by the underlying transport.

Mapped Port Domain ID Participant ID

higher port number

1
2

0

1
1

0

1
0

lower port number 0
14-26

Chapter 15 Transport Plugins

Connext has a pluggable-transports architecture. The core of Connext is transport agnostic—it
does not make any assumptions about the actual transports used to send and receive messages.
Instead, Connext uses an abstract "transport API" to interact with the transport plugins that
implement that API. A transport plugin implements the abstract transport API, and performs
the actual work of sending and receiving messages over a physical transport.

There are essentially three categories of transport plugins:

❏ Builtin Transport Plugins Connext comes with a set of commonly used transport plugins.
These ‘builtin’ plugins include UDPv4, UDPv6, and shared memory. So that Connext
applications can work out-of-the-box, some of these are enabled by default (see
TRANSPORT_BUILTIN QosPolicy (DDS Extension) (Section 8.5.7)).

❏ Extension Transport Plugins RTI offers extension transports, including RTI Secure WAN
Transport (see Chapter 24 and Chapter 25) and RTI TCP Transport (see Chapter 36).

❏ Custom-developed Transport Plugins RTI supports the use of custom transport plugins.
This is a powerful capability that distinguishes Connext from competing middleware
approaches. If you are interested in developing a custom transport plugin for Connext,
please contact your local RTI representative or email sales@rti.com.

This chapter describes the following:

❏ Builtin Transport Plugins (Section 15.1)

❏ Extension Transport Plugins (Section 15.2)

❏ The NDDSTransportSupport Class (Section 15.3)

❏ Explicitly Creating Builtin Transport Plugin Instances (Section 15.4)

❏ Setting Builtin Transport Properties of the Default Transport Instance—get/
set_builtin_transport_properties() (Section 15.5)

❏ Setting Builtin Transport Properties with the PropertyQosPolicy (Section 15.6)

❏ Installing Additional Builtin Transport Plugins with register_transport() (Section 15.7)

❏ Installing Additional Builtin Transport Plugins with PropertyQosPolicy (Section 15.8)

❏ Other Transport Support Operations (Section 15.9)
15-1

Builtin Transport Plugins
15.1 Builtin Transport Plugins
There are two ways in which the builtin transport plugins may be registered:

❏ Default builtin Transport Instances: Builtin transports that are turned "on" in the
TRANSPORT_BUILTIN QosPolicy (DDS Extension) (Section 8.5.7) are implicitly regis-
tered when (a) the DomainParticipant is enabled, (b) the first DataWriter/DataReader is cre-
ated, or (c) you look up a builtin DataReader (by calling lookup_datareader() on a
Subscriber), whichever happens first. The builtin transport plugins have default proper-
ties. If you want to change these properties, do so before1 the transports are registered.

❏ Other Transport Instances: There are two ways to install non-default builtin transport
instances:

• Transport plugins may be explicitly registered by first creating an instance of the
transport plugin (by calling NDDS_Transport_UDPv4_new(),
NDDS_Transport_UDPv6_new() or NDDS_Transport_Shmem_new(), see
Section 15.4), then calling register_transport() (Section 15.7). (For example, suppose
you want an extra instance of a transport.) (Not available for the Java or .NET API.)

• Additional builtin transport instances can also be installed through the PROPERTY
QosPolicy (DDS Extension) (Section 6.5.17).

To configure the properties of the builtin transports:

❏ Set properties by calling set_builtin_transport_property() (see Section 15.5)

or

❏ Specify predefined property strings in the DomainParticipant’s PropertyQosPolicy, as
described in Section 15.6.

❏ For other builtin transport instances:

• If the builtin transport plugin is created with NDDS_Transport_UDPv4_new(),
NDDS_Transport_UDPv6_new() or NDDS_Transport_Shmem_new(), properties
can be specified during creation time. See Explicitly Creating Builtin Transport Plugin
Instances (Section 15.4).

• If the additional builtin transport instances are installed through the PROPERTY
QosPolicy (DDS Extension) (Section 6.5.17), the properties of the builtin transport
plugins can also be specified through that same QosPolicy.

15.2 Extension Transport Plugins
If you want to change the properties for an extension transport plugin, do so before1 the plugin is
registered.

There are two ways to install an extension transport plugin:

❏ Implicit Registration: Transports can be installed through the predefined strings in the
DomainParticipant’s PropertyQosPolicy. Once the transport’s properties are specified in
the PropertyQosPolicy, the transport will be implicitly registered when (a) the Domain-

1. Any transport property changes made after the plugin is registered will have no effect.
15-2

The NDDSTransportSupport Class
Participant is enabled, (b) the first DataWriter/DataReader is created, or (c) you look up a
builtin DataReader (by calling lookup_datareader() on a Subscriber), whichever happens
first.

QosPolicies can also be configured from XML resources (files, strings)—with this
approach, you can change the QoS without recompiling the application. The QoS settings
are automatically loaded by the DomainParticipantFactory when the first DomainPartici-
pant is created. For more information, see Chapter 17: Configuring QoS with XML.

❏ Explicit Registration: Transports may be explicitly registered by first creating an instance
of the transport plugin (see Section 15.4) and then calling register_transport() (see
Section 15.7).

15.3 The NDDSTransportSupport Class
The register_transport() and set_builtin_transport_property() operations are part of the
NDDSTransportSupport class, which includes the operations listed in Table 15.1.

15.4 Explicitly Creating Builtin Transport Plugin Instances
The builtin transports (UDPv4, UDPv6, and Shared Memory) are implicitly created by default (if
they are enabled via the TRANSPORT_BUILTIN QosPolicy (DDS Extension) (Section 8.5.7)).
Therefore, you only need to explicitly create a new instance if you want an extra instance (sup-
pose you want two UDPv4 transports, one with special settings).

Transport plugins may be explicitly registered by first creating an instance of the transport plu-
gin and then calling register_transport() (Section 15.7). (For example, suppose you want an extra
instance of a transport.) (Not available for the Java API.)

To create an instance of a builtin transport plugin, use one of the following functions:

NDDS_Transport_Plugin* NDDS_Transport_UDPv4_new (
const struct NDDS_Transport_UDPv4_Property_t * property_in)

NDDS_Transport_Plugin* NDDS_Transport_UDPv4_new (
const struct NDDS_Transport_UDPv4_Property_t * property_in)

Table 15.1 Transport Support Operations

Operation Description Reference

get_transport_plugin Retrieves a previously registered transport plugin.
Section 15.7

register_transport
Registers a transport plugin for use with a DomainPartici-
pant.

get_builtin_transport_property
Gets the properties used to create a builtin transport plu-
gin.

Section 15.5
set_builtin_transport_property

Sets the properties used to create a builtin transport plu-
gin.

add_send_route Adds a route for outgoing messages. Section 15.9.1

add_receive_route Adds a route for incoming messages. Section 15.9.2

lookup_transport Looks up a transport plugin within a DomainParticipant. Section 15.9.3
15-3

Setting Builtin Transport Properties of the Default Transport Instance—get/set_builtin_transport_properties()
NDDS_Transport_Plugin* NDDS_Transport_Shmem_new (
const struct NDDS_Transport_Shmem_Property_t * property_in)

property_in Desired behavior of this transport. May be NULL for default properties.

For details on using these functions, please see the API Reference HTML documentation.

Your application may create and register multiple instances of these transport plugins with Con-
next. This may be done to partition the network interfaces across multiple domains. However,
note that the underlying transport, the operating system's IP layer, is still a "singleton." For
example, if a unicast transport has already bound to a port, and another unicast transport tries
to bind to the same port, the second attempt will fail.

15.5 Setting Builtin Transport Properties of the Default Transport
Instance—get/set_builtin_transport_properties()
Perhaps you want to use one of the builtin transports, but need to modify the properties. (For
default values, please see the API Reference HTML documentation.) Used together, the two
operations below allow you to customize properties of the builtin transport when it is implicitly
registered (see Section 15.1).

Note: Another way to change the properties is with the Property QosPolicy, see Section 15.6.
Changing properties with the Property QosPolicy will overwrite the properties set by calling
set_builtin_transport_property().

DDS_ReturnCode_t NDDSTransportSupport::get_builtin_transport_property
(DDSDomainParticipant * participant_in,
 DDS_TransportBuiltinKind builtin_transport_kind_in,
 struct NDDS_Transport_Property_t &builtin_transport_property_inout)

DDS_ReturnCode_t NDDSTransportSupport::set_builtin_transport_property
(DDSDomainParticipant * participant_in,
 DDS_TransportBuiltinKind builtin_transport_kind_in,
 const struct NDDS_Transport_Property_t
 &builtin_transport_property_in)

participant_in A valid non-NULL DomainParticipant that has not been enabled. If the Domain-
Participant if already enabled when this operation is called, your transport property
changes will not be reflected in the transport used by the DomainParticipant's DataWriters
and DataReaders.

builtin_transport_kind_in The builtin transport kind for which to specify the properties.

builtin_transport_property_inout (Used by the “get” operation only.) The storage area where the
retrieved property will be output. The specific type required by the
builtin_transport_kind_in must be used.

builtin_transport_property_in (Used by the “set” operation only.) The new transport property
that will be used to the create the builtin transport plugin. The specific type required by
the builtin_transport_kind_in must be used.

In this example, we want to use the builtin UDPv4 transport, but with modified properties.

/* Before reaching this point, create a disabled DomainParticipant */
struct NDDS_Transport_UDPv4_Property_t property =
 NDDS_TRANSPORT_UDPV4_PROPERTY_DEFAULT;

if (NDDSTransportSupport::get_builtin_transport_property(
15-4

Setting Builtin Transport Properties with the PropertyQosPolicy
participant, DDS_TRANSPORTBUILTIN_UDPv4,
(struct NDDS_Transport_Property_t&)property) !=
 DDS_RETCODE_OK) {

 printf("**Error: get builtin transport property\n");
}
/* Make your desired changes here */
/* For example, to increase the UDPv4 max msg size to 64K: */
property.parent.message_size_max = 65535;
property.recv_socket_buffer_size = 65535;
property.send_socket_buffer_size = 65535;

if (NDDSTransportSupport::set_builtin_transport_property(
 participant, DDS_TRANSPORTBUILTIN_UDPv4,
 (struct NDDS_Transport_Property_t&)property)
 != DDS_RETCODE_OK) {
 printf("***Error: set builtin transport property\n");
}

/* Enable the participant to turn on communications with other
 participants in the domain using the new properties for the
 automatically registered builtin transport plugins.*/

if (entity->enable() != DDS_RETCODE_OK) {
 printf("***Error: failed to enable entity\n");
}

Note: Builtin transport property changes will have no effect after the builtin transport has been
registered. The builtin transports are implicitly registered when (a) the DomainParticipant is
enabled, (b) the first DataWriter/DataReader is created, or (c) you lookup a builtin DataReader,
whichever happens first.

15.6 Setting Builtin Transport Properties with the PropertyQosPolicy
The PROPERTY QosPolicy (DDS Extension) (Section 6.5.17) allows you to set name/value pairs
of data and attach them to an entity, such as a DomainParticipant.

To assign properties, use the add_property() operation:

DDS_ReturnCode_t DDSPropertyQosPolicyHelper::add_property
(DDS_PropertyQosPolicy policy,

 const char * name,
 const char * value,
 DDS_Boolean propagate)

For more information on add_property() and the other operations in the DDSPropertyQosPoli-
cyHelper class, please see Table 6.56, “PropertyQoSPolicyHelper Operations,” on page 6-119, as
well as the API Reference HTML documentation.

The ‘name’ part of the name/value pairs is a predefined string. The property names for the buil-
tin transports are described in these tables:

❏ Table 15.2, “Properties for the Builtin UDPv4 Transport,” on page 15-6

❏ Table 15.3, “Properties for Builtin UDPv6 Transport,” on page 15-12

❏ Table 15.4, “Properties for Builtin Shared-Memory Transport,” on page 15-17

See also:
15-5

Setting Builtin Transport Properties with the PropertyQosPolicy
❏ “Notes Regarding Loopback and Shared Memory” (Section 15.6.1 on page 15-19)

❏ “Setting the Maximum Gather-Send Buffer Count for UDPv4 and UDPv6” (Section 15.6.2
on page 15-19)

❏ “Formatting Rules for IPv6 ‘Allow’ and ‘Deny’ Address Lists” (Section 15.6.3 on page 15-
20)

Note: Changing properties with the PROPERTY QosPolicy (DDS Extension) (Section 6.5.17)
will overwrite any properties set by calling set_builtin_transport_property().

Table 15.2 Properties for the Builtin UDPv4 Transport

Property Name
(prefix with

‘dds.transport.UDPv4.builtin.’)
Property Value Description

parent.address_bit_count

Number of bits in a 16-byte address that are used by the transport. Should
be between 0 and 128.
For example, for an address range of 0-255, the address_bit_count should
be set to 8. For the range of addresses used by IPv4 (4 bytes), it should be
set to 32.

parent.properties_bitmap

A bitmap that defines various properties of the transport to the Connext
core.
Currently, the only property supported is whether or not the transport plu-
gin will always loan a buffer when Connext tries to receive a message using
the plugin. This is in support of a zero-copy interface.

parent.
gather_send_buffer_count_max

Specifies the maximum number of buffers that Connext can pass to the
send() method of a transport plugin.
The transport plugin send() API supports a gather-send concept, where
the send() call can take several discontiguous buffers, assemble and send
them in a single message. This enables Connext to send a message from
parts obtained from different sources without first having to copy the parts
into a single contiguous buffer.
However, most transports that support a gather-send concept have an
upper limit on the number of buffers that can be gathered and sent. Setting
this value will prevent Connext from trying to gather too many buffers into
a send call for the transport plugin.
Connext requires all transport-plugin implementations to support a gather-
send of least a minimum number of buffers. This minimum number is
NDDS_TRANSPORT_PROPERTY_GATHER_SEND_BUFFER_COUNT_MIN.
See Setting the Maximum Gather-Send Buffer Count for UDPv4 and
UDPv6 (Section 15.6.2).

parent.message_size_max

The maximum size of a message in bytes that can be sent or received by
the transport plugin.
This value must be set before the transport plugin is registered, so that
Connext can properly use the plugin.
15-6

Setting Builtin Transport Properties with the PropertyQosPolicy
parent.allow_interfaces_list

A list of strings, each identifying a range of interface addresses or an inter-
face name. Interfaces must be specified as comma-separated strings, with
each comma delimiting an interface.
For example, the following are acceptable strings:
192.168.1.1
192.168.1.*
192.168.*
192.*
ether0
If the list is non-empty, this "white" list is applied before the par-
ent.deny_interfaces_list list. The DomainParticipant will use the resulting
list of interfaces to inform its remote participant(s) about which unicast
addresses may be used to contact the DomainParticipant.
The resulting list restricts reception to a particular set of interfaces for uni-
cast UDP. Multicast output will still be sent and may be received over the
interfaces in the list (if multicast is supported on the platform).
You must manage the memory of the list. The memory may be freed after
the DomainParticipant is deleted.

parent.deny_interfaces_list

A list of strings, each identifying a range of interface addresses or an inter-
face name. If the list is non-empty, deny the use of these interfaces.
Interfaces must be specified as comma-separated strings, with each
comma delimiting an interface.
For example, the following are acceptable strings:
192.168.1.1
192.168.1.*
192.168.*
192.*
ether0
This "black" list is applied after the parent.allow_interfaces_list list and fil-
ters out the interfaces that should not be used for receiving data.
The resulting list restricts reception to a particular set of interfaces for uni-
cast UDP. Multicast output will still be sent and may be received over the
interfaces in the list (if multicast is supported on the platform).
You must manage the memory of the list. The memory may be freed after
the DomainParticipant is deleted.

Table 15.2 Properties for the Builtin UDPv4 Transport

Property Name
(prefix with

‘dds.transport.UDPv4.builtin.’)
Property Value Description
15-7

Setting Builtin Transport Properties with the PropertyQosPolicy
parent.
allow_multicast_interfaces_list

A list of strings, each identifying a range of interface addresses or an inter-
face name. If the list is non-empty, allow the use of multicast only on these
interfaces. If the list is empty, allow the use of all the allowed interfaces.
Interfaces must be specified as comma-separated strings, with each
comma delimiting an interface.
This list sub-selects from the allowed interfaces that are obtained after
applying the parent.allow_interfaces_list "white" list and the par-
ent.deny_interfaces_list "black" list. From that resulting list, parent.
deny_multicast_interfaces_list is applied. Multicast output will be sent
and may be received over the interfaces in the resulting list (if multicast is
supported on the platform).
If this list is empty, all the allowed interfaces may potentially be used for
multicast.
You must manage the memory of the list. The memory may be freed after
the DomainParticipant is deleted.

parent.
deny_multicast_interfaces_list

A list of strings, each identifying a range of interface addresses or an inter-
face name. If the list is non-empty, deny the use of those interfaces for mul-
ticast.
Interfaces should be specified as comma-separated strings, with each
comma delimiting an interface.
This "black" list is applied after the parent. allow_multicast_interfaces_list
list and filters out the interfaces that should not be used for multicast. The
final resulting list will be those interfaces that—if multicast is available—
will be used for multicast sends.
You must manage the memory of the list. The memory may be freed after
the DomainParticipant is deleted.

send_socket_buffer_size

Size in bytes of the send buffer of a socket used for sending. On most oper-
ating systems, setsockopt() will be called to set the SENDBUF to the value
of this parameter.
This value must be greater than or equal to the property,
parent.message_size_max.
The maximum value is operating system-dependent.
If NDDS_TRANSPORT_UDPV4_SOCKET_BUFFER_SIZE_OS_DEFAULT,
then setsockopt() (or equivalent) will not be called to size the send buffer
of the socket.

recv_socket_buffer_size

Size in bytes of the receive buffer of a socket used for receiving.
On most operating systems, setsockopt() will be called to set the
RECVBUF to the value of this parameter.
This value must be greater than or equal to the property, par-
ent.message_size_max. The maximum value is operating system-depen-
dent.
Default: NDDS_TRANSPORT_UDPV4_MESSAGE_SIZE_MAX_DEFAULT.
If NDDS_TRANSPORT_UDPV4_SOCKET_BUFFER_SIZE_OS_DEFAULT, then
setsockopt() (or equivalent) will not be called to size the receive buffer of
the socket.

Table 15.2 Properties for the Builtin UDPv4 Transport

Property Name
(prefix with

‘dds.transport.UDPv4.builtin.’)
Property Value Description
15-8

Setting Builtin Transport Properties with the PropertyQosPolicy
unicast_enabled

Allows the transport plugin to use unicast UDP for sending and receiving.
By default, it will be turned on. Also by default, it will use all the allowed
network interfaces that it finds up and running when the plugin is
instanced.
Can be 1 (enabled) or 0 (disabled).

multicast_enabled

Allows the transport plugin to use multicast for sending and receiving.
You can turn multicast on or off for this plugin. The default is that multi-
cast is on and the plugin will use the all network interfaces allowed for
multicast that it finds up and running when the plugin is instanced.
Can be 1 (enabled) or 0 (disabled).

multicast_ttl
Value for the time-to-live parameter for all multicast sends using this plu-
gin. This is used to set the TTL of multicast packets sent by this transport
plugin.

multicast_loopback_disabled

Prevents the transport plugin from putting multicast packets onto the
loopback interface.
If disabled, then when sending multicast packets, do not put a copy on the
loopback interface. This will prevent other applications on the same node
(including itself) from receiving those packets.
This is set to 0 by default. So multicast loopback is enabled. Turning off
multicast loopback (set to 1) may result in minor performance gains when
using multicast.
Note: Windows CE does not support multicast loopback. This field is
ignored for Windows CE targets.

ignore_loopback_interface

Prevents the transport plugin from using the IP loopback interface. Three
values are allowed:
0: Forces local traffic to be sent over loopback, even if a more efficient
transport (such as shared memory) is installed (in which case traffic will be
sent over both transports).
1: Disables local traffic via this plugin. The IP loopback interface will not
be used, even if no NICs are discovered. This is useful when you want
applications running on the same node to use a more efficient transport
(such as shared memory) instead of the IP loopback.
-1: Automatic. Lets Connext decide among the above two choices. If a
shared memory transport plugin is available for local traffic and one of the
locators on the initial peers list is for shared memory, the effective value is
1 (i.e., disable UDPv4 local traffic). Otherwise, the effective value is 0 (i.e.,
use UDPv4 for local traffic also).

Table 15.2 Properties for the Builtin UDPv4 Transport

Property Name
(prefix with

‘dds.transport.UDPv4.builtin.’)
Property Value Description
15-9

Setting Builtin Transport Properties with the PropertyQosPolicy
ignore_nonup_interfaces

This property is only supported on Windows platforms with statically con-
figused IP addresses.
It allows/disallows the use of interfaces that are not reported as UP (by the
operating system) in the UDPv4 transport. Two values are allowed:
0: Allow interfaces that are reported as DOWN.
Setting this value to 0 supports communication scenarios in which inter-
faces are enabled after the participant is created. Once the interfaces are
enabled, discovery will not occur until the participant sends the next peri-
odic announcement (controlled by the parameter
participant_qos.discovery_config.participant_liveliness_
assert_period).
To reduce discovery time, you may want to decrease the value of
participant_liveliness_assert_period.
For the above scenario, there is one caveat: non-UP interfaces must have a
static IP assigned.
1 (default): Do not allow interfaces that are reported as DOWN.

interface_poll_period

If ignore_nonup_interfaces is 0, the UDPv4 transport creates a new thread
to query the status of the interfaces. The interface_poll_period specifies
the polling period in milliseconds for performing this query.
This property’s value is ignored if ignore_nonup_interfaces is 1.

ignore_nonrunning_interfaces

Prevents the transport plugin from using a network interface that is not
reported as RUNNING by the operating system.
The transport checks the flags reported by the operating system for each
network interface upon initialization. An interface which is not reported as
UP will not be used. This property allows the same check to be extended to
the IFF_RUNNING flag implemented by some operating systems. The
RUNNING flag is defined to mean that "all resources are allocated", and
may be off if there is no link detected, e.g., the network cable is unplugged.
Two values are allowed:
0: Do not check the RUNNING flag when enumerating interfaces, just
make sure the interface is UP.
1: Check the flag when enumerating interfaces, and ignore those that are
not reported as RUNNING. This can be used on some operating systems
to cause the transport to ignore interfaces that are enabled but not con-
nected to the network.

no_zero_copy

Prevents the transport plugin from doing a zero copy.
By default, this plugin will use the zero copy on OSs that offer it. While
this is good for performance, it may sometime tax the OS resources in a
manner that cannot be overcome by the application.
The best example is if the hardware/device driver lends the buffer to the
application itself. If the application does not return the loaned buffers soon
enough, the node may error or malfunction. In case you cannot reconfig-
ure the hardware, device driver, or the OS to allow the zero-copy feature to
work for your application, you may have no choice but to turn off zero-
copy.
By default this is set to 0, so Connext will use the zero-copy API if offered
by the OS.

Table 15.2 Properties for the Builtin UDPv4 Transport

Property Name
(prefix with

‘dds.transport.UDPv4.builtin.’)
Property Value Description
15-10

Setting Builtin Transport Properties with the PropertyQosPolicy
send_blocking

Controls the blocking behavior of send sockets. CHANGING THIS
FROM THE DEFAULT CAN CAUSE SIGNIFICANT PERFORMANCE
PROBLEMS. Currently two values are defined:
NDDS_TRANSPORT_UDPV4_BLOCKING_ALWAYS: Sockets are block-
ing (default socket options for Operating System).
NDDS_TRANSPORT_UDPV4_BLOCKING_NEVER: Sockets are modified
to make them non-blocking. This is not a supported configuration and
may cause significant performance problems.

transport_priority_mask

Mask for the transport priority field. This is used in conjunction with
transport_priority_mapping_low and transport_priority_mapping_high
to define the mapping from the TRANSPORT_PRIORITY QosPolicy (Sec-
tion 6.5.21) to the IPv4 TOS field. Defines a contiguous region of bits in the
32-bit transport priority value that is used to generate values for the IPv4
TOS field on an outgoing socket.
For example, the value 0x0000ff00 causes bits 9-16 (8 bits) to be used in the
mapping. The value will be scaled from the mask range (0x0000 - 0xff00 in
this case) to the range specified by low and high.
If the mask is set to zero, then the transport will not set IPv4 TOS for send
sockets.

transport_priority_mapping_low Sets the low and high values of the output range to IPv4 TOS.
These values are used in conjunction with transport_priority_mask to
define the mapping from the TRANSPORT_PRIORITY QosPolicy (Section
6.5.21) to the IPv4 TOS field. Defines the low and high values of the output
range for scaling.
Note that IPv4 TOS is generally an 8-bit value.

transport_priority_mapping_high

reuse_multicast_receive_resource

Controls whether or not to reuse receive resources. Setting this to 0
(FALSE) prevents multicast crosstalk by uniquely configuring a port and
creating a receive thread for each multicast group address.
Affects Linux systems only; ignored for non-Linux systems.

protocol_overhead_max

Maximum size in bytes of protocol overhead, including headers.
This value is the maximum size, in bytes, of protocol-related overhead.
Normally, the overhead accounts for UDP and IP headers. The default
value is set to accommodate the most common UDP/IP header size.
Note that when parent.message_size_max plus this overhead is larger than
the UDPv4 maximum message size (65535 bytes), the middleware will
automatically reduce the effective message_size_max to 65535 minus this
overhead.

Table 15.2 Properties for the Builtin UDPv4 Transport

Property Name
(prefix with

‘dds.transport.UDPv4.builtin.’)
Property Value Description
15-11

Setting Builtin Transport Properties with the PropertyQosPolicy
public_address

Public IP address associated with the transport instantiation.
Setting the public IP address is only necessary to support communication
over WAN that involves Network Address Translation (NAT).
Typically, the address is the public address of the IP NAT router
that provides access to the WAN.
By default, the DomainParticipant creating the transport will
announce the IP addresses obtained from the NICs to other
DomainParticipants in the system.
When this property is set, the DomainParticipant will announce the IP
address corresponding to the property value instead of the LAN IP
addresses associated with the NICs.
Notes:
• Setting this property is necessary, but is not a sufficient condition for

sending and receiving data over the WAN. You must also configure the
IP NAT router to allow UDP traffic and to map the public IP address
specified by this property to the DomainParticipant's private LAN IP
address. This is typically done with one of these mechanisms:

• Port Forwarding: You must map the private ports used to receive
discovery and user data traffic to the corresponding public ports
(see Table 8.20, “DDS_RtpsWellKnownPorts_t”). Public and pri-
vate ports must be the same since the transport does not allow
you to change the mapping.

• 1:1 NAT: You must add a 1:1 NAT entry that maps the public IP
address specified in this property to the private LAN IP address
of the DomainParticipant.

• By setting this property, the DomainParticipant only announces its pub-
lic IP address to other DomainParticipants. Therefore, communication
with DomainParticipants within the LAN that are running on different
nodes will not work unless the NAT router is configured to enable
NAT reflection (hairpin NAT).

There is another way to achieve simultaneous communication with
DomainParticipants running in the LAN and WAN, that does not require
hairpin NAT. This way uses a gateway application such as RTI Routing Ser-
vice to provide access to the WAN.

Table 15.3 Properties for Builtin UDPv6 Transport

Property Name (prefix with
‘dds.transport.UDPv6.builtin.’) Description

parent.address_bit_count

Number of bits in a 16-byte address that are used by the transport. Should
be between 0 and 128.
For example, for an address range of 0-255, this address_bit_count should
be set to 8. For the range of addresses used by IPv4 (4 bytes), it should be set
to 32.

parent.properties_bitmap

A bitmap that defines various properties of the transport to the Connext
core.
Currently, the only property supported is whether or not the transport plu-
gin will always loan a buffer when Connext tries to receive a message using
the plugin. This is in support of a zero-copy interface.

Table 15.2 Properties for the Builtin UDPv4 Transport

Property Name
(prefix with

‘dds.transport.UDPv4.builtin.’)
Property Value Description
15-12

Setting Builtin Transport Properties with the PropertyQosPolicy
parent.gather_send_buffer_
count_max

Specifies the maximum number of buffers that Connext can pass to the
send() method of a transport plugin.
The transport plugin send() API supports a gather-send concept, where the
send() call can take several discontiguous buffers, assemble and send them
in a single message. This enables Connext to send a message from parts
obtained from different sources without first having to copy the parts into a
single contiguous buffer.
However, most transports that support a gather-send concept have an
upper limit on the number of buffers that can be gathered and sent. Setting
this value will prevent Connext from trying to gather too many buffers into a
send call for the transport plugin.
Connext requires all transport-plugin implementations to support a gather-
send of least a minimum number of buffers. This minimum number is
NDDS_TRANSPORT_PROPERTY_GATHER_SEND_BUFFER_COUNT_MIN.

parent.message_size_max

The maximum size of a message in bytes that can be sent or received by the
transport plugin.
This value must be set before the transport plugin is registered, so that Con-
next can properly use the plugin.

parent.allow_interfaces_list

A list of strings, each identifying a range of interface addresses or an inter-
face name.
Interfaces must be specified as comma-separated strings, with each comma
delimiting an interface. See “Formatting Rules for IPv6 ‘Allow’ and ‘Deny’
Address Lists” (Section 15.6.3 on page 15-20).
If the list is non-empty, this "white" list is applied before the par-
ent.deny_interfaces_list list. The DomainParticipant will use the resulting list
of interfaces to inform its remote participant(s) about which unicast
addresses may be used to contact the DomainParticipant.
The resulting list restricts reception to a particular set of interfaces for unicast
UDP. Multicast output will still be sent and may be received over the inter-
faces in the list (if multicast is supported on the platform).
You must manage the memory of the list. The memory may be freed after
the DomainParticipant is deleted.

parent.deny_interfaces_list

A list of strings, each identifying a range of interface addresses or an inter-
face name. If the list is non-empty, deny the use of these interfaces.
Interfaces must be specified as comma-separated strings, with each comma
delimiting an interface. See “Formatting Rules for IPv6 ‘Allow’ and ‘Deny’
Address Lists” (Section 15.6.3 on page 15-20).
This "black" list is applied after the parent.allow_interfaces_list list and fil-
ters out the interfaces that should not be used.
The resulting list restricts reception to a particular set of interfaces for unicast
UDP. Multicast output will still be sent and may be received over the inter-
faces in the list (if multicast is supported on the platform).
You must manage the memory of the list. The memory may be freed after
the DomainParticipant is deleted.

Table 15.3 Properties for Builtin UDPv6 Transport

Property Name (prefix with
‘dds.transport.UDPv6.builtin.’) Description
15-13

Setting Builtin Transport Properties with the PropertyQosPolicy
parent.
allow_multicast_interfaces_list

A list of strings, each identifying a range of interface addresses or an inter-
face name. If the list is non-empty, allow the use of multicast only these
interfaces; otherwise allow the use of all the allowed interfaces.
Interfaces must be specified as comma-separated strings, with each comma
delimiting an interface. See “Formatting Rules for IPv6 ‘Allow’ and ‘Deny’
Address Lists” (Section 15.6.3 on page 15-20).
This list sub-selects from the allowed interfaces that are obtained after
applying the parent.allow_interfaces_list "white" list and the par-
ent.deny_interfaces_list "black" list. Finally, the parent.
deny_multicast_interfaces_list is applied. Multicast output will be sent and
may be received over the interfaces in the resulting list (if multicast is sup-
ported on the platform).
If this list is empty, all the allowed interfaces may potentially be used for
multicast.
You must manage the memory of the list. The memory may be freed after
the DomainParticipant is deleted.

parent.
deny_multicast_interfaces_list

A list of strings, each identifying a range of interface addresses or an inter-
face name. If the list is non-empty, deny the use of those interfaces for multi-
cast.
Interfaces must be specified as comma-separated strings, with each comma
delimiting an interface. See “Formatting Rules for IPv6 ‘Allow’ and ‘Deny’
Address Lists” (Section 15.6.3 on page 15-20).
This "black" list is applied after the parent. allow_multicast_interfaces_list
list and filters out the interfaces that should not be used for multicast. Multi-
cast output will be sent and may be received over the interfaces in the
resulting list (if multicast is supported on the platform).
You must manage the memory of the list. The memory may be freed after
the DomainParticipant is deleted.

send_socket_buffer_size

Size in bytes of the send buffer of a socket used for sending.
On most operating systems, setsockopt() will be called to set the SENDBUF
to the value of this parameter.
This value must be greater than or equal to parent.message_size_max. The
maximum value is operating system-dependent.
If NDDS_TRANSPORT_UDPV6_SOCKET_BUFFER_SIZE_OS_DEFAULT,
then setsockopt() (or equivalent) will not be called to size the send buffer of
the socket.

recv_socket_buffer_size

Size in bytes of the receive buffer of a socket used for receiving.
On most operating systems, setsockopt() will be called to set the RECVBUF
to the value of this parameter.
This value must be greater than or equal to parent.message_size_max. The
maximum value is operating system-dependent.
If NDDS_TRANSPORT_UDPV6_SOCKET_BUFFER_SIZE_OS_DEFAULT,
then setsockopt() (or equivalent) will not be called to size the receive buffer
of the socket.

unicast_enabled

Allows the transport plugin to use unicast UDP for sending and receiving.
By default, it will be turned on (1). Also by default, it will use all the
allowed network interfaces that it finds up and running when the plugin is
instanced.
Can be 1 (enabled) or 0 (disabled).

Table 15.3 Properties for Builtin UDPv6 Transport

Property Name (prefix with
‘dds.transport.UDPv6.builtin.’) Description
15-14

Setting Builtin Transport Properties with the PropertyQosPolicy
multicast_enabled

Allows the transport plugin to use multicast for sending and receiving.
You can turn multicast UDP on or off for this plugin. By default, it will be
turned on (1). Also by default, it will use the all network interfaces allowed
for multicast that it finds up and running when the plugin is instanced.
Can be 1 (enabled) or 0 (disabled).

multicast_ttl
Value for the time-to-live parameter for all multicast sends using this plu-
gin.
This is used to set the TTL of multicast packets sent by this transport plugin

multicast_loopback_disabled

Prevents the transport plugin from putting multicast packets onto the loop-
back interface.
If disabled, then when sending multicast packets, Connext will not put a
copy on the loopback interface. This will prevent applications on the same
node (including itself) from receiving those packets.
This is set to 0 by default, meaning multicast loopback is enabled. Disabling
multicast loopback off (setting this value to 1) may result in minor perfor-
mance gains when using multicast.
Note: Windows CE does not support multicast loopback. This field is
ignored for Windows CE targets.

ignore_loopback_interface

Prevents the transport plugin from using the IP loopback interface. Three
values are allowed:
0: Enable local traffic via this plugin. This plugin will only use and report
the IP loopback interface if there are no other network interfaces (NICs) up
on the system.
1: Disable local traffic via this plugin. Do not use the IP loopback interface
even if no NICs are discovered. This is useful when you want applications
running on the same node to use a more efficient plugin like Shared Mem-
ory instead of the IP loopback.
-1: Automatic. Lets Connext decide among the above two choices. If a shared
memory transport plugin is available for local traffic and one of the locators
on the initial peers list is for shared memory, the effective value is 1 (i.e.dis-
able UDPv6 local traffic). Otherwise, the effective value is 0 (i.e., use UDPv6
for local traffic also).

ignore_nonrunning_interfaces

Prevents the transport plugin from using a network interface that is not
reported as RUNNING by the operating system.
The transport checks the flags reported by the operating system for each
network interface upon initialization. An interface which is not reported as
UP will not be used. This property allows the same check to be extended to
the IFF_RUNNING flag implemented by some operating systems. The
RUNNING flag is defined to mean that "all resources are allocated", and
may be off if there is no link detected, e.g., the network cable is unplugged.
Two values are allowed:
0: Do not check the RUNNING flag when enumerating interfaces, just make
sure the interface is UP.
1: Check the flag when enumerating interfaces, and ignore those that are not
reported as RUNNING. This can be used on some operating systems to
cause the transport to ignore interfaces that are enabled but not connected
to the network.

Table 15.3 Properties for Builtin UDPv6 Transport

Property Name (prefix with
‘dds.transport.UDPv6.builtin.’) Description
15-15

Setting Builtin Transport Properties with the PropertyQosPolicy
no_zero_copy

Prevents the transport plugin from doing a zero copy.
By default, this plugin will use the zero copy on OSs that offer it. While this
is good for performance, it may sometime tax the OS resources in a manner
that cannot be overcome by the application.
The best example is if the hardware/device driver lends the buffer to the
application itself. If the application does not return the loaned buffers soon
enough, the node may error or malfunction. In case you cannot reconfigure
the H/W, device driver, or the OS to allow the zero-copy feature to work for
your application, you may have no choice but to turn off zero-copy.
By default this is set to 0, so Connext will use the zero-copy API if offered by
the OS.

send_blocking

Controls the blocking behavior of send sockets. CHANGING THIS FROM
THE DEFAULT CAN CAUSE SIGNIFICANT PERFORMANCE PROB-
LEMS. Currently two values are defined:
NDDS_TRANSPORT_UDPV4_BLOCKING_ALWAYS: Sockets are blocking
(default socket options for Operating System).
NDDS_TRANSPORT_UDPV4_BLOCKING_NEVER: Sockets are modified
to make them non-blocking. This is not a supported configuration and
may cause significant performance problems.

enable_v4mapped

Specifies whether the UDPv6 transport will process IPv4 addresses.
Set this to 1 to turn on processing of IPv4 addresses. Note that this may
make it incompatible with use of the UDPv4 transport within the same
domain participant.

transport_priority_mask

Sets a mask for use of transport priority field.
If transport priority mapping is supported on the platforma, this mask is
used in conjunction with transport_priority_mapping_low and
transport_priority_mapping_high to define the mapping from the DDS
transport priority TRANSPORT_PRIORITY QosPolicy (Section 6.5.21) to the
IPv6 TCLASS field.
Defines a contiguous region of bits in the 32-bit transport priority value that
is used to generate values for the IPv6 TCLASS field on an outgoing socket.
For example, the value 0x0000ff00 causes bits 9-16 (8 bits) to be used in the
mapping. The value will be scaled from the mask range (0x0000 - 0xff00 in
this case) to the range specified by low and high.
If the mask is set to zero, then the transport will not set IPv6 TCLASS for
send sockets.

transport_priority_mapping_low Sets the low and high values of the output range to IPv6 TCLASS.
These values are used in conjunction with transport_priority_mask to
define the mapping from DDS transport priority to the IPv6 TCLASS field.
Defines the low and high values of the output range for scaling.
Note that IPv6 TCLASS is generally an 8-bit value.

transport_priority_mapping_high

a. Please refer to the Platform Notes to find out if the transport priority is supported on a specific platform.

Table 15.3 Properties for Builtin UDPv6 Transport

Property Name (prefix with
‘dds.transport.UDPv6.builtin.’) Description
15-16

Setting Builtin Transport Properties with the PropertyQosPolicy
Table 15.4 Properties for Builtin Shared-Memory Transport

Property Name
(prefix with

‘dds.transport.shmem.builtin.’)
Property Value Description

parent.address_bit_count

Number of bits in a 16-byte address that are used by the transport. Should
be between 0 and 128.
For example, for an address range of 0-255, this address_bit_count should
be set to 8. For the range of addresses used by IPv4 (4 bytes), it should be set
to 32.

parent.properties_bitmap

A bitmap that defines various properties of the transport to the Connext
core.
Currently, the only property supported is whether or not the transport plu-
gin will always loan a buffer when Connext tries to receive a message using
the plugin. This is in support of a zero-copy interface.

parent.gather_send_buffer_
count_max

Specifies the maximum number of buffers that Connext can pass to the
send() method of a transport plugin.
The transport plugin send() API supports a gather-send concept, where the
send() call can take several discontiguous buffers, assemble and send them
in a single message. This enables Connext to send a message from parts
obtained from different sources without first having to copy the parts into a
single contiguous buffer.
However, most transports that support a gather-send concept have an
upper limit on the number of buffers that can be gathered and sent. Setting
this value will prevent Connext from trying to gather too many buffers into
a send call for the transport plugin.
Connext requires all transport-plugin implementations to support a gather-
send of least a minimum number of buffers. This minimum is
NDDS_TRANSPORT_PROPERTY_GATHER_SEND_BUFFER_COUNT_MIN.

parent.message_size_max

The maximum size of a message in bytes that can be sent or received by the
transport plugin.
This value must be set before the transport plugin is registered, so that Con-
next can properly use the plugin.

parent.allow_interfaces_list

Not applicable to the Shared-Memory Transport

parent.deny_interfaces_list

parent.
allow_multicast_interfaces_list

parent.
deny_multicast_interfaces_list
15-17

Setting Builtin Transport Properties with the PropertyQosPolicy
received_message_count_max

Number of messages that can be buffered in the receive queue. This is the
maximum number of messages that can be buffered in a RecvResource of
the Transport Plugin. This does not guarantee that the Transport-Plugin will
actually be able to buffer received_message_count_max messages of the
maximum size set in parent.message_size_max.
The total number of bytes that can be buffered for a RecvResource is actu-
ally controlled by receive_buffer_size.

receive_buffer_size

The total number of bytes that can be buffered in the receive queue.
This number controls how much memory is allocated by the plugin for the
receive queue (on a per RecvResource basis). The actual number of bytes
allocated is:
size = receive_buffer_size + message_size_max +
 received_message_count_max * fixedOverhead
where fixedOverhead is some small number of bytes used by the queue data
structure.
If receive_buffer_size <
(message_size_max * received_message_count_max), the transport plugin
will not be able to store received_message_count_max messages of size
message_size_max.
If receive_buffer_size >
(message_size_max * received_message_count_max), then there will be
memory allocated that cannot be used by the plugin and thus wasted.
To optimize memory usage, specify a receive queue size less than that
required to hold the maximum number of messages which are all of the
maximum size.
In most situations, the average message size may be far less than the maxi-
mum message size. So for example, if the maximum message size is 64K
bytes, and you configure the plugin to buffer at least 10 messages, then
640K bytes of memory would be needed if all messages were 64K bytes.
Should this be desired, then receive_buffer_size should be set to 640K
bytes.
However, if the average message size is only 10K bytes, then you could set
the receive_buffer_size to 100K bytes. This allows you to optimize the
memory usage of the plugin for the average case and yet allow the plugin to
handle the extreme case.
The queue will always be able to hold 1 message of message_size_max
bytes, regardless of the value of receive_buffer_size.

Table 15.4 Properties for Builtin Shared-Memory Transport

Property Name
(prefix with

‘dds.transport.shmem.builtin.’)
Property Value Description
15-18

Setting Builtin Transport Properties with the PropertyQosPolicy
15.6.1 Notes Regarding Loopback and Shared Memory

By default, Connext uses shared memory to communicate with other DomainParticipants on the
same node, and disables local traffic over the UDPv4 or UPDv6 loopback interface. Thus, by
default, a Connext application with shared memory enabled will not communicate with other
applications on the same node that don’t have shared memory enabled.

For example, suppose you have three Connext applications on the same node. Shared memory is
enabled on Applications A and B, but disabled on Application C. In this scenario, A and B will
communicate with each other, but they will not communicate with C.

You can change this behavior by setting the "ignore_loopback_interface" field of the UDPv4
transport properties to 0 on Applications A and B. This will force DomainParticipants with shared
memory enabled to also communicate over UDPv4 or UDPv6 loopback (and thus find Applica-
tion C without using shared memory). Alternatively, you can disable shared memory on A and
B via the TransportBuiltinQosPolicy.

15.6.2 Setting the Maximum Gather-Send Buffer Count for UDPv4 and UDPv6

To minimize memory copies, Connext uses the "gather send" API that may be available on the
transport.

Some operating systems limit the number of gather buffers that can be given to the gather-send
function. This limits Connext's ability to concatenate multiple samples into a single network
message. An example is the UDP transport's sendmsg() call, which on some OSs (such as
Solaris) can only take 16 gather buffers, limiting the number of samples that can be concatenated
to five or six.

To match this limitation, Connext sets the UDPv4 and UDPv6 transport plug-ins'
gather_send_buffer_count_max to 16 by default for all operating systems. This field is part of
the NDDS_Transport_Property_t structure.

❏ On VxWorks 5.5 operating systems, gather_send_buffer_count_max can be set as high
as 63.

❏ On Windows and INTEGRITY operating systems, gather_send_buffer_count_max can
be set as high as 128.

❏ On most other operating systems, gather_send_buffer_count_max can be set as high as
16.

If you are using an OS that allows more than 16 gather buffers for a sendmsg() call, you may
increase the UDPv4 or UDPv6 transport plug-in's gather_send_buffer_count_max from the
default up to your OS's limit (but no higher than 128).

For example, if your OS imposes a limit of 64 gather buffers, you may increase the
gather_send_buffer_count_max up to 64. However, if your OS's gather-buffer limit is 1024, you
may only increase the gather_send_buffer_count_max up to 128.

By changing gather_send_buffer_count_max, you can increase performance in the following
situations:

❏ When a DataWriter is sending multiple packets to a DataReader either because the
DataReader is a late-joiner and needs to catch up, or because several packets were
dropped and need to be resent. Changing the setting will help when the DataWriter
needs to send or resend more than five or six packets at a time.

❏ If your application has more than five or six DataWriters or DataReaders in a participant.
(In this case, the change will make the discovery process more efficient.)
15-19

Installing Additional Builtin Transport Plugins with register_transport()
❏ When using an asynchronous DataWriter, samples are sent asynchronously by a separate
thread. Samples may not be sent immediately, but may be queued instead, depending on
the settings of the associated FlowController. If multiple samples in the queue must be
sent to the same destination, they will be coalesced into as few network packets as possi-
ble. The number of samples that can be put in a single message is directly proportional to
gather_send_buffer_count_max. Therefore, by maximizing
gather_send_buffer_count_max, you can minimize the number of packets on the wire.

15.6.3 Formatting Rules for IPv6 ‘Allow’ and ‘Deny’ Address Lists

This section describes how to format the strings in the properties that create “allow” and “deny”
lists:

❏ dds.transport.UDPv6.builtin.parent.allow_interfaces_list

❏ dds.transport.UDPv6.builtin.parent.deny_interfaces_list

❏ dds.transport.UDPv6.builtin.parent. allow_multicast_interfaces_list

❏ dds.transport.UDPv6.builtin.parent. deny_multicast_interfaces_list

These properties may contain a list of strings, each identifying a range of interface addresses or
an interface name. Interfaces should be specified as comma-separated strings, with each comma
delimiting an interface.

The strings can be addresses and patterns in IPv6 notation. They are case-insensitive.

They may contain a wildcard '*' and can expand up to 4 digits in a block. The wildcard must be
either leading or trailing (cannot be in the middle of the string). Multiple wildcards can be spec-
ified in a single filter, but only one wildcard can be specified per block (between colons).
Table 15.5 shows some examples.

15.7 Installing Additional Builtin Transport Plugins with
register_transport()
After you create an instance of a transport plugin (see Section 15.4) , you have to register it.

The builtin transports (UDPv4, UDPv6, and Shared Memory) are implicitly registered by default
(if they are enabled via the TRANSPORT_BUILTIN QosPolicy (DDS Extension) (Section 8.5.7)).
Therefore, you only need to explicitly register a builtin transport if you want an extra instance of
it (suppose you want two UDPv4 transports, one with special settings).

The register_transport() operation registers a transport plugin for use with a DomainParticipant
and assigns it a network address. (Note: this operation is only available in the APIs other than
Java or .NET. If you are using Java or .NET, use the Property QosPolicy to install additional
transport plugins.)

Table 15.5 Examples of IPv6 Address Filters

Example Filter Equivalent Filters Matches

::*:*:*:*:*:* Any IPv6 interface

FE80::*:* fe80::*:*,

Fe80:0:0::*:*

Fe80:0:0:0:0:0:*:* FE80:0000:0000:0000:0000:0000:xxxx:xxxx

FE80:aBC::202:2*:*:*2 FE80:0ABC:0000:0000:0202:2xxx:xxxx:xxx2
15-20

Installing Additional Builtin Transport Plugins with register_transport()
NDDS_Transport_Handle_t NDDSTransportSupport::register_transport
(DDSDomainParticipant * participant_in,
 NDDS_Transport_Plugin * transport_in,
 const DDS_StringSeq & aliases_in,
 const NDDS_Transport_Address_t & network_address_in)

participant_in A non-NULL, disabled DomainParticipant.

transport_in A non-NULL transport plugin that is currently not registered with another
DomainParticipant.

aliases_in A non-NULL sequence of strings used as aliases to refer to the transport plugin
symbolically. The transport plugin will be "available for use" to an Entity contained in the
DomainParticipant, if the transport alias list associated with the Entity contains one of these
transport aliases. An empty alias list represents a WILDCARD and matches ALL aliases.
See Transport Aliases (Section 15.7.2).

network_address_in The network address at which to register this transport plugin. The least
significant transport_in.property.address_bit_count will be truncated. The remaining bits
are the network address of the transport plugin. See Transport Network Addresses (Sec-
tion 15.7.3).

Note: You must ensure that the transport plugin instance is only used by one DomainParticipant
at a time. See Section 15.7.1.

Upon success, a valid non-NIL transport handle is returned, representing the association
between the DomainParticipant and the transport plugin. If the transport cannot be registered,
NDDS_TRANSPORT_HANDLE_NIL is returned.

Note that a transport plugin's class name is automatically registered as an implicit alias for the
plugin. Thus, a class name can be used to refer to all the transport plugin instances of that class.

The C and C++ APIs also have a operation to retrieve a registered transport plugin,
get_transport_plugin().

NDDS_Transport_Plugin* get_transport_plugin(
DDSDomainParticipant* participant_in, const char* alias_in);

15.7.1 Transport Lifecycles

If you create and register a transport plugin with a DomainParticipant, you are responsible for
deleting it by calling its destructor. Builtin transport plugins are automatically managed by Con-
next if they are implicitly registered through the TransportBuiltinQosPolicy.

User-created transport plugins must not be deleted while they are is still in use by a DomainPar-
ticipant. This generally means that a user-created transport plugin instance can only be deleted
after the DomainParticipant with which it was registered is deleted. Note that a transport plugin
cannot be "unregistered" from a DomainParticipant.

A transport plugin instance cannot be registered with more than one DomainParticipant at a time.
This requirement is necessary to guarantee the multi-threaded safety of the transport API.

Thus, if the same physical transport resources are to be used with multiple DomainParticipants in
the same address space, the transport plugin should be written in such a way so that it can be
instantiated multiple times—once for each DomainParticipant in the address space. Note that it is
always possible to write the transport plugin so that multiple transport plugin instances share
the same underlying resources; however the burden (if any) of guaranteeing multi-threaded
safety to access shared resource shifts to the transport plugin developer.
15-21

Installing Additional Builtin Transport Plugins with register_transport()
15.7.2 Transport Aliases

In order to use a transport plugin instance in a Connext application, it must be registered with a
DomainParticipant using the register_transport() operation (Section 15.7). register_transport()
takes a pointer to the transport plugin instance, and in addition allows you to specify a sequence
of "alias" strings to symbolically refer to the transport plugin. The same alias strings can be used
to register more than one transport plugin.

Multiple transport plugins can be registered with a DomainParticipant. An alias symbolically
refers to one or more transport plugins registered with the DomainParticipant. Pre-configured
builtin transport plugin instances can be referred to using preconfigured aliases.

A transport plugin's class name is automatically used as an implicit alias. It can be used to refer
to all the transport plugin instance of that class.

You can use aliases to refer to transport plugins in order to specify:

❏ Transport plugins to use for discovery (see enabled_transports in DISCOVERY QosPol-
icy (DDS Extension) (Section 8.5.2)), and for DataWriters and DataReaders (see
TRANSPORT_SELECTION QosPolicy (DDS Extension) (Section 6.5.22)).

❏ Multicast addresses on which to receive discovery messages (see
multicast_receive_addresses in DISCOVERY QosPolicy (DDS Extension) (Section 8.5.2)),
and the multicast addresses and ports on which to receive user data
(DDS_DataReaderQos::multicast).

❏ Unicast ports used for user data (see TRANSPORT_UNICAST QosPolicy (DDS Exten-
sion) (Section 6.5.23)) on both DataWriters and DataReaders.

❏ Transport plugins used to parse an address string in a locator.

A DomainParticipant (and its contained entities) will start using a transport plugin after the
DomainParticipant is enabled (see Enabling Entities (Section 4.1.2)). An entity will use all the
transport plugins that match the specified transport QoS policy. All transport plugins are treated
uniformly, regardless of how they were created or registered; there is no notion of some trans-
ports being more "special" that others.

15.7.3 Transport Network Addresses

The address bits not used by the transport plugin for its internal addressing constitute its net-
work address bits.

In order for Connext to properly route the messages, each unicast interface in the domain must
have a unique address.

You specify the network address when installing a transport plugin via the register_transport()
operation (Section 15.7). Choose the network address for a transport plugin so that the resulting
fully qualified 128-bit address will be unique in the domain.

If two instances of a transport plugin are registered with a DomainParticipant, they need different
network addresses so that their unicast interfaces will have unique, fully qualified 128-bit
addresses.

While it is possible to create multiple transports with the same network address (this can be use-
ful for certain situations), this requires special entity configuration for most transports to avoid
clashes in resource use (e.g., sockets for UDPv4 transport).
15-22

Installing Additional Builtin Transport Plugins with PropertyQosPolicy
15.8 Installing Additional Builtin Transport Plugins with
PropertyQosPolicy
Similar to default builtin transport instances, additional builtin transport instances can also be
configured through PROPERTY QosPolicy (DDS Extension) (Section 6.5.17).

To install additional instances of builtin transport, the Properties listed in Table 15.6 are
required.

Table 15.6 Properties for Dynamically Loading and Registering Additional Builtin Transport Plugins

Property Name Description

dds.transport.load_plugins
Comma-separated list of <TRANSPORT_PREFIX>. Up to 8 entries may be
specified.

<TRANSPORT_PREFIX>

Indicates the additional builtin transport instances to be installed, and must
be in one of the following form, where <STRING> can be any string other
than “builtin”:
dds.transport.shmem.<STRING>
dds.transport.UDPv4.<STRING>
dds.transport.UDPv6.<STRING>
In the following examples in this table, <TRANSPORT_PREFIX> is used to
indicate one element of this string that is used as a prefix in the property
names for all the settings that are related to the plugin.

<TRANSPORT_PREFIX>.
aliases

Optional.
Aliases used to register the transport to the DomainParticipant. Refer to the
aliases_in parameter in register_transport() (see Installing Additional Buil-
tin Transport Plugins with register_transport() (Section 15.7)). Aliases
should be specified as a comma separated string, with each comma delimit-
ing an alias. If it is not specified, <TRANSPORT_PREFIX> is used as the
default alias for the plugin.

<TRANSPORT_PREFIX>.
network_address

Optional.
Network address used to register the transport to the DomainParticipant.
Refer to network_address_in parameter in register_transport() (see Install-
ing Additional Builtin Transport Plugins with register_transport() (Section
15.7)). If it is not specified, the network_address_out output parameter from
NDDS_Transport_create_plugin is used. The default value is a zeroed out
network address.

<TRANSPORT_PREFIX>.
<property_name>

Optional.
Property for creating the transport plugin. More than one
<TRANSPORT_PREFIX>.<property_name> can be specified. See Table 15.2
on page 15-6 through Table 15.4 on page 15-17 for the property names that
can be used to configure the additional builtin transport instances. The only
difference is that the property name will be prefixed by dds.trans-
port.<builitn_transport_name>.<instance_name>, where
<instance_name> is configured through the dds.transport.load_plugins
property instead of dds.transport.<builtin_transport_name>.builtin.
15-23

Other Transport Support Operations
15.9 Other Transport Support Operations

15.9.1 Adding a Send Route

By default, a transport plugin will send outgoing messages using the network address range at
which the plugin was registered.

The add_send_route() operation allows you to control the routing of outgoing messages, so that
a transport plugin will only send messages to certain ranges of destination addresses.

Before using this operation, the DomainParticipant to which the transport is registered must be
disabled.

DDS_ReturnCode_t NDDSTransportSupport::add_send_route
 (const NDDS_Transport_Handle_t & transport_handle_in,

 const NDDS_Transport_Address_t & address_range_in,
 DDS_Long address_range_bit_count_in)

transport_handle_in A valid non-NIL transport handle as a result of a call to register_transport()
(Section 15.7).

address_range_in The outgoing address range for which to use this transport plugin.

address_range_bit_count_in The number of most significant bits used to specify the address
range.

It returns one of the standard return codes or DDS_RETCODE_PRECONDITION_NOT_MET.

The method can be called multiple times for a transport plugin, with different address ranges.
You can set up a routing table to restrict the use of a transport plugin to send messages to
selected addresses ranges.

+--+
| Outgoing Address Range 1 -> Transport Plugin |
+--+
| : -> : |
+--+
| Outgoing Address Range K -> Transport Plugin |
+--+

15.9.2 Adding a Receive Route

By default, a transport plugin will receive incoming messages using the network address range
at which the plugin was registered.

The add_receive_route() operation allows you to configure a transport plugin so that it will only
receive messages on certain ranges of addresses.

Before using this operation, the DomainParticipant to which the transport is registered must be
disabled.

DDS_ReturnCode_t NDDSTransportSupport::add_receive_route
 (const NDDS_Transport_Handle_t & transport_handle_in,
 const NDDS_Transport_Address_t & address_range_in,
 DDS_Long address_range_bit_count_in)

transport_handle_in A valid non-NIL transport handle as a result of a call to
register_transport() (Section 15.7).

address_range_in The incoming address range for which to use this transport plugin.
15-24

Other Transport Support Operations
address_range_bit_count_in The number of most significant bits used to specify the address
range.

It returns one of the standard return codes or DDS_RETCODE_PRECONDITION_NOT_MET.

The method can be called multiple times for a transport plugin, with different address ranges.

+--+
| Transport Plugin <- Incoming Address Range 1 |
+--+
| : <- : |
+--+
| Transport Plugin <- Incoming Address Range M |
+--+
You can set up a routing table to restrict the use of a transport plugin to receive messages from
selected ranges. For example, you may restrict a transport plugin to:

❏ Receive messages from a certain multicast address range.

❏ Receive messages only on certain unicast interfaces (when multiple unicast interfaces are
available on the transport plugin).

15.9.3 Looking Up a Transport Plugin

If you need to get the handle associated with a transport plugin that is registered with a Domain-
Participant, use the lookup_transport() operation.

NDDS_Transport_Handle_t NDDSTransportSupport::lookup_transport
(DDSDomainParticipant * participant_in,

 DDS_StringSeq & aliases_out,
 NDDS_Transport_Address_t & network_address_out,
 NDDS_Transport_Plugin * transport_in)

participant_in A non-NULL DomainParticipant.

aliases_out A sequence of strings where the aliases used to refer to the transport plugin sym-
bolically will be returned. NULL if not interested.

network_address_out The network address at which to register the transport plugin will be
returned here. NULL if not interested.

transport_in A non-NULL transport plugin that is already registered with the DomainPartici-
pant.

If successful, this operation returns a valid non-NIL transport handle, representing the associa-
tion between the DomainParticipant and the transport plugin; otherwise it returns a
NDDS_TRANSPORT_HANDLE_NIL upon failure.
15-25

Chapter 16 Built-In Topics

This chapter discusses how to use Built-in Topics.

Connext must discover and keep track of remote entities, such as new participants in the
domain. This information may also be important to the application itself, which may want to
react to this discovery or access it on demand. To support these needs, Connext provides built-in
Topics (“DCPSParticipant”, “DCPSPublication”, “DCPSSubscription” in Figure 14.2 on page 14-
9) and the corresponding built-in DataReaders that you can use to access this discovery informa-
tion.

The discovery information is accessed just as if it is normal application data. This allows the
application to know (either via listeners or by polling) when there are any changes in those val-
ues. Note that only entities that belong to a different DomainParticipant are being discovered and
can be accessed through the built-in readers. Entities that are created within the local DomainPar-
ticipant are not included as part of the data that can be accessed by the built-in readers.

Built-in topics contain information about the remote entities, including their QoS policies. These
QoS policies appear as normal fields inside the topic’s data, which can be read by means of the
built-in Topic. Additional information is provided to identify the entity and facilitate the appli-
cation logic.

16.1 Listeners for Built-in Entities
Built-in entities have default listener settings:

❏ The built-in Subscriber and its built-in topics have 'nil' listeners—all status bits are set in
the listener masks, but the listener is NULL. This effectively creates a NO-OP listener that
does not reset communication status.

❏ Built-in DataReaders have null listeners with no status bits set in their masks.

This approach prevents callbacks to the built-in DataReader listeners from invoking your
DomainParticipant’s listeners, and at the same time ensures that the status changed flag is not
reset. For more information, see Table 4.4, “Effect of Different Combinations of Listeners and
Status Bit Masks,” on page 4-21 and “Hierarchical Processing of Listeners” on page 4-22.
16-1

Built-in DataReaders
16.2 Built-in DataReaders
Built-in DataReaders belong to a built-in Subscriber, which can be retrieved by using the Domain-
Participant’s get_builtin_subscriber() operation. You can retrieve the built-in DataReaders by
using the Subscriber’s lookup_datareader() operation, which takes the Topic name as a parame-
ter. The built-in DataReader is created when lookup_datareader() is called on a built-in topic for
the first time.

To conserve memory, built-in Subscribers and DataReaders are created only if and when you look
them up. Therefore, if you do not want to miss any built-in data, you should look up the built-in
readers before the DomainParticipant is enabled.

Table 16.1 through Table 16.4 describe the built-in topics and their data types. The USER_DATA
QosPolicy (Section 6.5.25), TOPIC_DATA QosPolicy (Section 5.2.1) and GROUP_DATA QosPol-
icy (Section 6.4.4) are included as part of the built-in data type and are not used by Connext.
Therefore, you can use them to send application-specific information.

Built-in topics can be used in conjunction with the ignore_*() operations to ignore certain enti-
ties (see Section 16.4).

Table 16.1 Participant Built-in Topic’s Data Type (DDS_ParticipantBuiltinTopicData)

Type Field Description

DDS_BuiltinTopicKey key Key to distinguish the discovered DomainParticipant

DDS_UserDataQosPolicy user_data

Data that can be set when the related DomainParticipant is
created (via the USER_DATA QosPolicy (Section 6.5.25))
and that the application may use as it wishes (e.g., to per-
form some security checking).

DDS_PropertyQosPolicy property
Pairs of names/values to be stored with the DomainPartici-
pant. See PROPERTY QosPolicy (DDS Extension) (Section
6.5.17). The usage is strictly application-dependent.

DDS_ProtocolVersion_t
rtps_protocol_
version

Version number of the RTPS wire protocol used.

DDS_VendorId_t rtps_vendor_id ID of vendor implementing the RTPS wire protocol.

DDS_UnsignedLong
dds_builtin_
endpoints

Bitmap set by the discovery plugins.
Each bit in this field indicates a built-in endpoint present
for discovery.

DDS_LocatorSeq
default_unicast_
locators

If the TransportUnicastQosPolicy is not specified when a
DataWriter/DataReader is created, the unicast_locators in
the corresponding Publication/Subscription built-in topic
data will be empty. When the unicast_locators in the Publi-
cation/SubscriptionBuiltinTopicData is empty, the
default_unicast_locators in the corresponding Participant
Builtin Topic Data is assumed.
If default_unicast_locators is empty, it defaults to Domain-
ParticipantQos.default_unicast.

DDS_ProductVersion_t product_version
Vendor-specific parameter. The current version of Con-
next.

DDS_EntityNameQosPolicy participant_name
Name and role_name assigned to the DomainParticipant.
See ENTITY_NAME QosPolicy (DDS Extension) (Section
6.5.9).
16-2

Built-in DataReaders
DDS_DomainId_t domain_id Domain ID associated with the discovered participant.

DDS_TransportInfoSeq transport_info

A sequence of DDS_TransportInfo_t containing informa-
tion about each of the installed transports of the discov-
ered DomainParticipant.
A DDS_TransportInfo_t structure contains the class_id
and message_size_max for a single transport.
The maximum length of this sequence is controlled by the
DOMAIN_PARTICIPANT_RESOURCE_LIMITS QosPol-
icy (DDS Extension) (Section 8.5.4)
transport_info_list_max_length (see Table 8.12).
Connext uses the transport information propagated via
discovery to detect potential misconfigurations in a Con-
next distributed system. If two DomainParticipants that dis-
cover each other have one common transport with
different values for message_size_max, Connext prints a
warning message about that condition.

Table 16.2 Publication Built-in Topic’s Data Type (DDS_PublicationBuiltinTopicData)

Type Field Description

DDS_BuiltinTopicKey_t key Key to distinguish the discovered DataWriter

DDS_BuiltinTopicKey_t participant_key
Key to distinguish the participant to which the discov-
ered DataWriter belongs

DDS_String topic_name Topic name of the discovered DataWriter

DDS_String type_name
Type name attached to the topic of the discovered
DataWriter

DDS_DurabilityQosPolicy durability

QosPolicies of the discovered DataWriter

DDS_DurabilityService-
QosPolicy

durability_service

DDS_DeadlineQosPolicy deadline

DDS_DestinationOrder-
QosPolicy

destination_order

DDS_LatencyBudget-
QosPolicy

latency_budget

DDS_LivelinessQosPolicy liveliness

DDS_ReliabilityQosPolicy reliability

DDS_LifespanQosPolicy lifespan

DDS_UserDataQosPolicy user_data
Data that can be set when the DataWriter is created (via
the USER_DATA QosPolicy (Section 6.5.25)) and that
the application may use as it wishes.

DDS_OwnershipQosPolicy ownership

QosPolicies of the discovered DataWriter

DDS_OwnershipStrength-
QosPolicy

ownership_strength

DDS_DestinationOrder-
QosPolicy

destination_order

DDS_PresentationQosPolicy presentation

Table 16.1 Participant Built-in Topic’s Data Type (DDS_ParticipantBuiltinTopicData)

Type Field Description
16-3

Built-in DataReaders
DDS_PartitionQosPolicy partition
Name of the partition, set in the PARTITION QosPol-
icy (Section 6.4.5) for the publisher to which the dis-
covered DataWriter belongs

DDS_TopicDataQosPolicy topic_data

Data that can be set when the Topic (with which the dis-
covered DataWriter is associated) is created (via the
TOPIC_DATA QosPolicy (Section 5.2.1)) and that the
application may use as it wishes.

DDS_GroupDataQosPolicy group_data

Data that can be set when the Publisher to which the
discovered DataWriter belongs is created (via the
GROUP_DATA QosPolicy (Section 6.4.4)) and that the
application may use as it wishes.

DDS_TypeObject * type
Describes the type of the remote DataReader.

See the API Reference HTML documentation.

DDS_TypeCode * type_code
Type code information about this Topic. See Using Gen-
erated Types without Connext (Standalone) (Section
3.7).

DDS_BuiltinTopicKey_t publisher_key
The key of the Publisher to which the DataWriter
belongs.

DDS_PropertyQosPolicy property

Properties (pairs of names/values) assigned to the cor-
responding DataWriter. Usage is strictly application-
dependent. See PROPERTY QosPolicy (DDS Exten-
sion) (Section 6.5.17).

DDS_LocatorSeq unicast_locators

If the TransportUnicastQosPolicy is not specified when
a DataWriter/DataReader is created, the unicast_locators
in the corresponding Publication/Subscription built-in
topic data will be empty. When the unicast_locators in
the Publication/SubscriptionBuiltinTopicData is
empty, the default_unicast_locators in the correspond-
ing Participant Builtin Topic Data is assumed.

DDS_GUID_t virtual_guid
Virtual GUID for the corresponding DataWriter. For
more information, see Durability and Persistence
Based on Virtual GUIDs (Section 12.2).

DDS_ProtocolVersion_t
rtps_protocol_
version

Version number of the RTPS wire protocol in use.

DDS_VendorId_t rtps_vendor_id
ID of the vendor implementing the RTPS wire proto-
col.

DDS_Product_Version_t product_version
Vendor-specific value. For RTI, this is the current ver-
sion of Connext.

DDS_LocatorFilterQosPolicy locator_filter

When the MULTI_CHANNEL QosPolicy (DDS Exten-
sion) (Section 6.5.14) is used on the discovered DataW-
riter, the locator_filter contains the sequence of
LocatorFilters in that policy.
There is one LocatorFilter per DataWriter channel. A
channel is defined by a filter expression and a
sequence of multicast locators.
See LOCATOR_FILTER QoS Policy (DDS Extension)
(Section 16.2.1).

Table 16.2 Publication Built-in Topic’s Data Type (DDS_PublicationBuiltinTopicData)

Type Field Description
16-4

Built-in DataReaders
DDS_Boolean
disable_positive_
acks

Vendor specific parameter. Determines whether
matching DataReaders send positive acknowledge-
ments for reliability.

DDS_EntityNameQosPolicy publication_name
Name and role_name assigned to the DataWriter. See
ENTITY_NAME QosPolicy (DDS Extension) (Section
6.5.9).

Table 16.3 Subscription Built-in Topic’s Data Type (DDS_SubscriptionBuiltinTopicData)

Type Field Description

DDS_BuiltinTopicKey_t key Key to distinguish the discovered DataReader.

DDS_BuiltinTopicKey_t participant_key
Key to distinguish the participant to which the discov-
ered DataReader belongs.

char * topic_name Topic name of the discovered DataReader.

char * type_name
Type name attached to the Topic of the discovered
DataReader.

DDS_DurabilityQosPolicy durability

QosPolicies of the discovered DataReader

DDS_DeadlineQosPolicy deadline

DDS_LatencyBudget-
QosPolicy

latency_budget

DDS_LivelinessQosPolicy liveliness

DDS_ReliabilityQosPolicy reliability

DDS_OwnershipQosPolicy ownership

DDS_
DestinationOrderQosPolicy

destination_order

DDS_UserDataQosPolicy user_data
Data that can be set when the DataReader is created (via
the USER_DATA QosPolicy (Section 6.5.25)) and that
the application may use as it wishes.

DDS_
TimeBasedFilterQosPolicy

time_based_filter
QosPolicies of the discovered DataReader

DDS_PresentationQosPolicy presentation

DDS_PartitionQosPolicy partition
Name of the partition, set in the PARTITION QosPolicy
(Section 6.4.5) for the Subscriber to which the discovered
DataReader belongs.

DDS_TopicDataQosPolicy topic_data

Data that can be set when the Topic to which the discov-
ered DataReader belongs is created (via the
TOPIC_DATA QosPolicy (Section 5.2.1)) and that the
application may use as it wishes.

DDS_GroupDataQosPolicy group_data

Data that can be set when the Publisher to which the dis-
covered DataReader belongs is created (via the
GROUP_DATA QosPolicy (Section 6.4.4)) and that the
application may use as it wishes.

DDS_TypeObject * type
Describes the type of the remote DataReader.

See the API Reference HTML documentation.

Table 16.2 Publication Built-in Topic’s Data Type (DDS_PublicationBuiltinTopicData)

Type Field Description
16-5

Built-in DataReaders
DDS_TypeConsistencyEnforc
ementQosPolicy

type_consistency

Indicates the type-consistency requirements of the
remote DataReader.

See TYPE_CONSISTENCY_ENFORCEMENT
QosPolicy (Section 7.6.6) and the Core Libraries and
Utilities Getting Started Guide Addendum for Extensible
Types

DDS_TypeCode * type_code
Type code information about this Topic. See Using Gen-
erated Types without Connext (Standalone) (Section
3.7).

DDS_BuiltinTopicKey_t subscriber_key Key of the Subscriber to which the DataReader belongs.

DDS_PropertyQosPolicy property

Properties (pairs of names/values) assigned to the cor-
responding DataReader. Usage is strictly application-
dependent. See PROPERTY QosPolicy (DDS Extension)
(Section 6.5.17).

DDS_LocatorSeq unicast_locators

If the TransportUnicastQosPolicy is not specified when
a DataWriter/DataReader is created, the unicast_locators
in the corresponding Publication/Subscription builtin
topic data will be empty. When the unicast_locators in
the Publication/SubscriptionBuiltinTopicData is empty,
the default_unicast_locators in the corresponding Par-
ticipant Builtin Topic Data is assumed.

 DDS_LocatorSeq multicast_locators Custom multicast locators that the endpoint can specify.

DDS_ContentFilter-
Property_t

content_filter_
property

Provides all the required information to enable content
filtering on the writer side.

DDS_GUID_t virtual_guid
Virtual GUID for the corresponding DataReader. For
more information, see Durability and Persistence Based
on Virtual GUIDs (Section 12.2).

DDS_ProtocolVersion_t
rtps_protocol_
version

Version number of the RTPS wire protocol in use.

DDS_VendorId_t rtps_vendor_id ID of the vendor implementing the RTPS wire protocol.

DDS_Product_Version_t product_version
Vendor-specific value. For RTI, this is the current ver-
sion of Connext.

DDS_Boolean
disable_positive_
acks

Vendor specific parameter. Determines whether match-
ing DataReaders send positive acknowledgements for
reliability.

DDS_EntityNameQosPolicy subscription_name
Name and role_name assigned to the DataReader. See
ENTITY_NAME QosPolicy (DDS Extension) (Section
6.5.9).

Table 16.4 Topic Built-in Topic’s Data Type (DDS_TopicBuiltinTopicData) (See “Note:” on page 16-8)

Type Field Description

DDS_BuiltinTopicKey_t key Key to distinguish the discovered Topic

DDS_String name Topic name

DDS_String type_name type name attached to the Topic

Table 16.3 Subscription Built-in Topic’s Data Type (DDS_SubscriptionBuiltinTopicData)

Type Field Description
16-6

Built-in DataReaders
DDS_DurabilityQosPolicy durability

QosPolicy of the discovered Topic

DDS_DurabilityServiceQosPolicy durability_service

DDS_DeadlineQosPolicy deadline

DDS_LatencyBudgetQosPolicy latency_budget

DDS_LivelinessQosPolicy liveliness

DDS_ReliabilityQosPolicy reliability

DDS_TransportPriorityQosPolicy transport_priority

DDS_LifespanQosPolicy lifespan

DDS_DestinationOrderQosPolicy
destination_
order

DDS_HistoryQosPolicy history

DDS_ResourceLimitsQosPolicy resource_limits

DDS_OwnershipQosPolicy ownership

DDS_TopicDataQosPolicy topic_data

Data that can be set when the Topic to which the dis-
covered DataReader belongs is created (via the
TOPIC_DATA QosPolicy (Section 5.2.1)) and that
the application may use as it wishes.

Table 16.4 Topic Built-in Topic’s Data Type (DDS_TopicBuiltinTopicData) (See “Note:” on page 16-8)

Type Field Description
16-7

Built-in DataReaders
Table 16.5 lists the QoS of the built-in Subscriber and DataReader created for accessing discovery
data. These are provided for your reference only; they cannot be changed.

Note: The DDS_TopicBuiltinTopicData built-in topic (described in Table 16.4) is meant to con-
vey information about discovered Topics. However, this topic's data is not sent separately and
therefore a DataReader for DDS_TopicBuiltinTopicData will not receive any data. Instead,
DDS_TopicBuiltinTopicData data is included in the information carried by the built-in topics for
Publications and Subscriptions (DDS_PublicationBuiltinTopicData and
DDS_SubscriptionBuiltinTopicData) and can be accessed with their built-in DataReaders.

16.2.1 LOCATOR_FILTER QoS Policy (DDS Extension)

The LocatorFilter QoS Policy is only applicable to the built-in topic for a Publication (see
Table 16.2, “Publication Built-in Topic’s Data Type (DDS_PublicationBuiltinTopicData),” on
page 16-3).

Table 16.5 QoS of Built-in Subscriber and DataReader

QosPolicy Value

Deadline period = infinite

DestinationOrder kind = BY_RECEPTION_TIMESTAMP_DESTINATIONORDER_QOS

Durability kind = TRANSIENT_LOCAL_DURABILITY_QOS

EntityFactory autoenable_created_entities = TRUE

GroupData value = empty sequence

History
kind = KEEP_LAST_HISTORY_QOS
depth = 1

LatencyBudget duration = 0

Liveliness
kind = AUTOMATIC_LIVELINESS_QOS
lease_duration = infinite

Ownership kind = SHARED_OWNERSHIP_QOS

Ownership Strength value = 0

Presentation
access_scope = TOPIC_PRESENTATION_QOS
coherent_access = FALSE
ordered_access = FALSE

Partition name = empty sequence

ReaderDataLifecycle autopurge_nowriter_samples_delay = infinite

Reliability
kind = RELIABLE_RELIABILITY_QOS
max_blocking_time is irrelevant for the DataReader

ResourceLimits

Depends on setting of DomainParticipantResourceLimitsQosPolicy and Discovery-
ConfigQosPolicy in DomainParticipantQos:
max_samples = domainParticipantQos.discovery_config.
[participant/publication/subscription]_reader_resource_limits.max_samples
max_instances = domainParticipantQos.resource_limits.
[remote_writer/reader/participant]_allocation.max_count
max_samples_per_instance = 1

TimeBasedFilter minimum_separation = 0

TopicData value = empty sequence

UserData value = empty sequence
16-8

Accessing the Built-in Subscriber
16.3 Accessing the Built-in Subscriber
Getting the built-in subscriber allows you to retrieve the built-in readers of the built-in topics
through the Subscriber’s lookup_datareader() operation. By accessing the built-in reader, you
can access discovery information about remote entities.

// Lookup built-in reader
DDSDataReader *builtin_reader =

builtin_subscriber->lookup_datareader(DDS_PUBLICATION_TOPIC_NAME);
if (builtin_reader == NULL) {
 // ... error
}
// Register listener to built-in reader
MyPublicationBuiltinTopicDataListener builtin_reader_listener =

new MyPublicationBuiltinTopicDataListener();

Table 16.6 DDS_LocatorFilterQosPolicy

Type Field Name Description

DDS_LocatorFilterSeq locator_filters
A sequence of locator filters, described in Table 16.7 on page 16-9.
There is one locator filter per DataWriter channel. If the length of the
sequence is zero, the DataWriter is not using multi-channel.

char * filter_name

Name of the filter class used to describe the locator filter expressions.
The following two values are supported:
DDS_SQLFILTER_NAME
DDS_STRINGMATCHFILTER_NAME

Table 16.7 DDS_LocatorFilter_t

Type Field Name Description

DDS_LocatorSeq locators
A sequence of multicast address locators for the locator filter. See
Table 16.8 on page 16-9.

char *
filter_express
ion

A logical expression used to determine if the data will be published
in the channel associated with this locator filter. See “SQL Filter
Expression Notation” on page 5-19 and “STRINGMATCH Filter
Expression Notation” on page 5-26 for information about the expres-
sion syntax.

Table 16.8 DDS_Locator_t

Type Field Name Description

DDS_Long kind

If the locator kind is DDS_LOCATOR_KIND_UDPv4a, the address
contains an IPv4 address. The leading 12 octets of the address must
be zero. The last 4 octets store the IPv4 address.
If the locator kind is DDS_LOCATOR_KIND_UDPv6a, the address
contains an IPv6 address. IPv6 addresses typically use a shorthand
hexadecimal notation that maps one-to-one to the 16 octets of the
address.

DDS_Octet[16] address The locator address.

DDS_UnsignedLong port The locator port number.

a. In C#, the locator kinds for UDPv4 and UDPv6 addresses are Locator_t.LOCATOR_KIND_UDPv4 and
Locator_t.LOCATOR_KIND_UDPv6.
16-9

Restricting Communication—Ignoring Entities
if (builtin_reader->set_listener(builtin_reader_listener,
DDS_DATA_AVAILABLE_STATUS) != DDS_RETCODE_OK) {

 // ... error
}
// enable domain participant
if (participant->enable() != DDS_RETCODE_OK) {
 // ... error
}

For example, you can call the DomainParticipant’s get_builtin_subscriber() operation, which
will provide you with a built-in Subscriber. Then you can use that built-in Subscriber to call the
Subscriber’s lookup_datareader() operation; this will retrieve the built-in reader. Another option
is to register a Listener on the built-in subscriber instead, or poll for the status of the built-in sub-
scriber to see if any of the built-in data readers have received data.

16.4 Restricting Communication—Ignoring Entities
The ignore_participant() operation allows an application to ignore all communication from a
specific DomainParticipant. Or for even finer control you can use the ignore_publication(),
ignore_subscription(), and ignore_topic() operations. These operations are described below.

DDS_ReturnCode_t ignore_participant (const DDS_InstanceHandle_t &handle)
DDS_ReturnCode_t ignore_publication (const DDS_InstanceHandle_t &handle)
DDS_ReturnCode_t ignore_subscription (const DDS_InstanceHandle_t &handle)
DDS_ReturnCode_t ignore_topic (const DDS_InstanceHandle_t &handle)

The entity to ignore is identified by the handle argument. It may be a local or remote entity. For
ignore_publication(), the handle will be that of a local DataWriter or a discovered remote
DataWriter. For ignore_subscription(), that handle will be that of a local DataReader or a discov-
ered remote DataReader.

The safest approach for ignoring an entity is to call the ignore operation within the Listener call-
back of the built-in reader, or before any local entities are enabled. This will guarantee that the
local entities (entities that are created by the local DomainParticipant) will never have a chance to
establish communication with the remote entities (entities that are created by another DomainPar-
ticipant) that are going to be ignored.

If the above is not possible and a remote entity is to be ignored after the communication channel
has been established, the remote entity will still be removed from the database of the local appli-
cation as if it never existed. However, since the remote application is not aware that the entity is
being ignored, it may potentially be expecting to receive messages or continuing to send mes-
sages. Depending on the QoS of the remote entity, this may affect the behavior of the remote
application and may potentially stop the remote application from communicating with other
entities.

You can use this operation in conjunction with the ParticipantBuiltinTopicData to implement
access control. You can pass application data associated with a DomainParticipant in the
USER_DATA QosPolicy (Section 6.5.25). This application data is propagated as a field in the
built-in topic. Your application can use the data to implement an access control policy.

Ignore operations, in conjunction with the Built-in Topic Data, can be used to implement access
control. You can pass data associated with an entity in the USER_DATA QosPolicy (Section
6.5.25), GROUP_DATA QosPolicy (Section 6.4.4) or TOPIC_DATA QosPolicy (Section 5.2.1).
This data is propagated as a field in the built-in topic. When data for a built-in topic is received,
the application can check the user_data, group_data or topic_data field of the remote entity,
determine if it meets the security requirement, and ignore the remote entity if necessary.
16-10

Restricting Communication—Ignoring Entities
See also: Chapter 14: Discovery.

16.4.1 Ignoring Specific Remote DomainParticipants
The ignore_participant() operation is used to instruct Connext to locally ignore a remote
DomainParticipant. It causes Connext to locally behave as if the remote DomainParticipant does
not exist.

DDS_ReturnCode_t ignore_participant (const DDS_InstanceHandle_t & handle)

After invoking this operation, Connext will locally ignore any Topic, publication, or subscription
that originates on that DomainParticipant. (If you only want to ignore specific publications or
subscriptions, see Section 16.4.2 instead.) Figure 16.1, “Ignoring Participants,” on page 16-11
provides an example.

Caution: There is no way to reverse this operation. You can add to the peer list, however—see
Section 8.5.2.3.

Figure 16.1 Ignoring Participants

class MyParticipantBuiltinTopicDataListener :
public DDSDataReaderListener {
 public:
 virtual void on_data_available(DDSDataReader *reader);
 //
};
void MyParticipantBuiltinTopicdataListener::on_data_available(

DDSDataReader *reader) {

DDSParticipantBuiltinTopicDataDataReader *builtinTopicDataReader =
DDSParticipantBuiltinTopicDataDataReader *) reader;

DDS_ParticipantBuiltinTopicDataSeq data_seq;
DDS_SampleInfoSeq info_seq;
int = 0;
if (builtinTopicDataReader->take(data_seq, info_seq,

DDS_LENGTH_UNLIMITED, DDS_ANY_SAMPLE_STATE,
DDS_ANY_VIEW_STATE, DDS_ANY_INSTANCE_STATE) != DDS_RETCODE_OK){
// ... error

}
for (i = 0; i < data_seq.length(); ++i) {
 if (info_seq[i].valid_data) {

// check user_data for access control
if (data_seq[i].user_data[0] != 0x9) {
 if (
 builtinTopicDataReader->get_subscriber()->get_participant()

->ignore_participant(info_seq[i].instance_handle)
!= DDS_RETCODE_OK) {
 // ... error

 }
 }
 }
}
if (builtinTopicDataReader->return_loan(data_seq, info_seq)

!= DDS_RETCODE_OK) {
 // ... error
}

}

16-11

Restricting Communication—Ignoring Entities
16.4.2 Ignoring Publications and Subscriptions

You can instruct Connext to locally ignore a publication or subscription. A publication/subscrip-
tion is defined by the association of a Topic name, user data and partition set on the Publisher/
Subscriber. After this call, any data written related to associated DataWriter/DataReader will be
ignored.

The entity to ignore is identified by the handle argument. For ignore_publication(), the handle
will be that of a DataWriter. For ignore_subscription(), that handle will be that of a DataReader.

This operation can be used to ignore local and remote entities:

❏ For local entities, you can obtain the handle argument by calling the
get_instance_handle() operation for that particular entity.

❏ For remote entities, you can obtain the handle argument from the DDS_SampleInfo
structure retrieved when reading data samples available for the entity’s built-in
DataReader.

 DDS_ReturnCode_t ignore_publication (const DDS_InstanceHandle_t & handle)
 DDS_ReturnCode_t ignore_subscription (const DDS_InstanceHandle_t & handle)

Caution: There is no way to reverse these operations.

Figure 16.2, “Ignoring Publications,” on page 16-13 provides an example.

16.4.3 Ignoring Topics

The ignore_topic() operation instructs Connext to locally ignore a Topic. This means it will locally
ignore any publication or subscription to the Topic.

DDS_ReturnCode_t ignore_topic (const DDS_InstanceHandle_t & handle)

Caution: There is no way to reverse this operation.

If you know that your application will never publish or subscribe to data under certain topics,
you can use this operation to save local resources.

The Topic to ignore is identified by the handle argument. This handle is the one that appears in
the DDS_SampleInfo retrieved when reading the data samples from the built-in DataReader to
the Topic.
16-12

Restricting Communication—Ignoring Entities
Figure 16.2 Ignoring Publications

class MyPublicationBuiltinTopicDataListener : public DDSDataReaderL-
istener {
 public:
 virtual void on_data_available(DDSDataReader *reader);
 //
};
void MyPublicationBuiltinTopicdataListener::on_data_available(

DDSDataReader *reader) {
DDSPublicationBuiltinTopicDataReader *builtinTopicDataReader =

(DDS_PublicationBuiltinTopicDataReader *)reader;
 DDS_PublicationBuiltinTopicDataSeq data_seq;
 DDS_SampleInfoSeq info_seq;
 int = 0;
 if (builtinTopicDataReader->take(data_seq, info_seq,
 DDS_LENGTH_UNLIMITED, DDS_ANY_SAMPLE_STATE,

DDS_ANY_VIEW_STATE, DDS_ANY_INSTANCE_STATE)
!= DDS_RETCODE_OK) {

// ... error
 }

for (i = 0; i < data_seq.length(); ++i) {
 if (info_seq[i].valid_data) {
 // check user_data for access control
 if (data_seq[i].user_data[0] != 0x9) {

 if (builtinTopicDataReader->get_subscriber()
->get_participant()
->ignore_publication(info_seq[i].instance_handle)
!= DDS_RETCODE_OK) {

// ... error
 }
 }

 }
 }
 if (builtinTopicDataReader->return_loan(data_seq, info_seq) !=

DDS_RETCODE_OK) {
 // ... error
 }
}

16-13

Chapter 17 Configuring QoS with XML

Connext entities are configured by means of QosPolicies. The QoS may be set programmatically
in one of the following ways:

❏ Directly when the entity is created as an additional argument to the create_<entity>()
operation.

❏ Directly via the set_qos() operation on the entity.

❏ Indirectly as a default QoS on the factory for the entity (set_default_<entity>_qos()
operations on Publisher, Subscriber, DomainParticipant, DomainParticipantFactory)

Entities can also be configured from an XML file or XML string. With this feature, you can
change QoS configurations simply by changing the XML file or string—you do not have to
recompile the application. This chapter describes how to configure Connext entities using XML:

❏ Example XML File (Section 17.1)

❏ How to Load XML-Specified QoS Settings (Section 17.2)

❏ How to Use XML-Specified QoS Settings (Section 17.3)

❏ XML File Syntax (Section 17.4)

❏ Using Environment Variables in XML (Section 17.5)

❏ XML String Syntax (Section 17.6)

❏ How the XML is Validated (Section 17.7)

❏ Configuring QoS with XML (Section 17.8)

❏ QoS Profiles (Section 17.9)

❏ QoS Libraries (Section 17.10)

❏ URL Groups (Section 17.11)

❏ Configuring Logging Via XML (Section 17.12)
17-1

Example XML File
17.1 Example XML File
The QoS configuration of a Entity can be loaded from an XML file or string. Let's look at a very
basic configuration file, just to get an idea of its contents. You will learn the meaning of each line
as you read the rest of this chapter:

<?xml version="1.0" encoding="ISO-8859-1"?>
<!-- A XML configuration file -->
<dds version = 5.0.0>
 <qos_library name="RTILibrary">
 <!--Individual QoS are shortcuts for QoS Profiles with 1 QoS->
 <datawriter_qos name="KeepAllWriter">
 <history>
 <kind>KEEP_ALL_HISTORY_QOS</kind>
 </history>
 </datawriter_qos>
 <!-- A Qos Profile is a set of related QoS -->
 <qos_profile name="StrictReliableCommunicationProfile">
 <datawriter_qos>
 <history>
 <kind>KEEP_ALL_HISTORY_QOS</kind>
 </history>
 <reliability>
 <kind>RELIABLE_RELIABILITY_QOS</kind>
 </reliability>
 </datawriter_qos>
 <datareader_qos>
 <history>
 <kind>KEEP_ALL_HISTORY_QOS</kind>
 </history>
 <reliability>
 <kind>RELIABLE_RELIABILITY_QOS</kind>
 </reliability>
 </datareader_qos>
 </qos_profile>
 </qos_library>
</dds>

See $NDDSHOME/resource/qos_profiles_5.x.y1/xml/NDDS_QOS_PROFILES.example.xml
for another example; this file contains the default QoS values for all entity kinds.

17.2 How to Load XML-Specified QoS Settings
If specified, XML-specified QoS settings are automatically loaded by the DomainParticipantFac-
tory. There are several ways to load XML QoS profiles into your application.

The following list presents the various approaches, listed by load order:

• $NDDSHOME/resource/qos_profiles_5.x.y/xml/NDDS_QOS_PROFILES.xml
This file is loaded automatically if it exists (not the default) and
ignore_resource_profile in the PROFILE QosPolicy (DDS Extension) (Section 8.4.2) is
FALSE (the default). NDDS_QOS_PROFILES.xml does not exist by default. How-
ever, NDDS_QOS_PROFILES.example.xml is shipped with the host bundle of the

1. x and y stand for the version numbers of the current release.
17-2

How to Load XML-Specified QoS Settings
product; you can copy it to NDDS_QOS_PROFILES.xml and modify it for your own
use. The file contains the default QoS values that will be used for all entity kinds.
(First to be loaded)

• URL Groups in NDDS_QOS_PROFILES
URL groups (see URL Groups (Section 17.11)) separated by semicolons referenced by
the environment variable NDDS_QOS_PROFILES are loaded automatically if they
exist and ignore_environment_profile in PROFILE QosPolicy (DDS Extension) (Sec-
tion 8.4.2) is FALSE (the default).

• <working directory>/USER_QOS_PROFILES.xml
This file is loaded automatically if it exists and ignore_user_profile in PROFILE
QosPolicy (DDS Extension) (Section 8.4.2) is FALSE (the default).

• URL groups in url_profile
URL groups (see URL Groups (Section 17.11)) referenced by url_profile (in PROFILE
QosPolicy (DDS Extension) (Section 8.4.2)) will be loaded automatically if specified.

• XML strings in string_profile
The sequence of XML strings referenced by string_profile (in PROFILE QosPolicy
(DDS Extension) (Section 8.4.2)) will be loaded automatically if specified. (Last to be
loaded)

You may use a combination of the above approaches.

The location of the XML documents (only files and strings are supported) is specified using URL
(Uniform Resource Locator) format. For example:

❏ File Specification: file:///usr/local/default_dds.xml

❏ String Specification: str://"<dds><qos_library>…</qos_library></dds>"

If you omit the URL schema name, Connext will assume a file name. For example:

❏ File Specification: /usr/local/default_dds.xml

Duplicate QoS profiles are not allowed. Connext will report an error message in these scenarios.
To overwrite a QoS profile, use QoS Profile Inheritance (Section 17.9.2).

Several QoS profiles are built into the Connext core libraries and can be used as starting points
when configuring QoS for your Connext applications. For details, see Built-in QoS Profiles (Sec-
tion 17.9.5).

17.2.1 Loading, Reloading and Unloading Profiles

You do not have to explicitly call load_profiles(). QoS profiles are loaded when any of these
DomainParticipantFactory operations are called:

❏ create_participant() (see Section 8.3.1)

❏ create_participant_with_profile() (see Section 8.3.1)

❏ get_<entity>_qos_from_profile() (where <entity> is participant, topic, publisher, sub-
scriber, datawriter, or datareader) (see Section 8.2.5)

❏ get_<entity>_qos_from_profile_w_topic_name() (where <entity> is topic, datawriter, or
datareader) (see Section 8.2.5)

❏ get_default_participant_qos() (see Section 8.2.2)

❏ get_qos_profile_libraries() (See Section 17.10.1)

❏ get_qos_profiles() (See Section 17.9.6)
17-3

How to Use XML-Specified QoS Settings
❏ load_profiles()

❏ set_default_participant_qos_with_profile() (see Section 8.2.2)

❏ set_default_library() (see Section 6.2.4.4)

❏ set_default_profile() (see Section 6.2.4.4)

QoS profiles are reloaded when either of these DomainParticipantFactory operations are called:

❏ reload_profiles()

❏ set_qos() (see Section 4.1.7)

It is important to distinguish between loading and reloading:

❏ Loading only happens when there are no previously loaded profiles. This could be when
the profiles are loaded the first time or after a call to unload_profiles().

❏ Reloading replaces all previously loaded profiles. Reloading a profile does not change the
QoS of entities that have already been created with previously loaded profiles.

The DomainParticipantFactory also has an unload_profiles() operation that frees the resources
associated with the XML QoS profiles.

DDS_ReturnCode_t unload_profiles()

17.3 How to Use XML-Specified QoS Settings
You can use the operations listed in Table 17.1 to refer and use QoS profiles (see Section 17.9)
described in XML files and XML strings.

Table 17.1 Operations for Working with QoS Profiles

Working With ... Profile-Related Operations Reference

DataReaders set_qos_with_profile Section 7.3.8.3

DataWriters set_qos_with_profile Section 6.3.15.3

DomainParticipants

create_datareader_with_profile Section 7.3.1

create_datawriter_with_profile Section 6.3.1

create_publisher_with_profile Section 6.2.2

create_subscriber_with_profile Section 7.2.2

create_topic_with_profile Section 5.1.1

get_default_library

Section 8.3.6.4get_default_profile

get_default_profile_library

set_default_datareader_qos_with_profile
Section 8.3.6.5

set_default_datawriter_qos_with_profile

set_default_library
Section 8.3.6.4

set_default_profile

set_default_publisher_qos_with_profile

Section 8.3.6.5set_default_subscriber_qos_with_profile

set_default_topic_qos_with_profile

set_qos_with_profile Section 8.3.6.3
17-4

How to Use XML-Specified QoS Settings
DomainParticipantFactory

create_participant_with_profile Section 8.3.1

get_datareader_qos_from_profile

Section 8.2.5
get_datawriter_qos_from_profile

get_datawriter_qos_from_profile_w_topic_name

get_datareader_qos_from_profile_w_topic_name

get_default_library

Section 8.2.1.1get_default_profile

get_default_profile_library

get_participant_qos_from_profile

Section 8.2.5

get_publisher_qos_from_profile

get_subscriber_qos_from_profile

get_topic_qos_from_profile

get_topic_qos_from_profile_w_topic_name

get_qos_profiles Section 17.9.6

get_qos_profile_libraries Section 17.10.1

load_profiles
Section 17.2.1

reload_profiles

set_default_participant_qos_with_profile Section 8.2.2

set_default_library
Section 8.2.1.1

set_default_profile

unload_profiles Section 17.2.1

Publishers

create_datawriter_with_profile Section 6.2.2

get_default_library

Section 6.2.4.4get_default_profile

get_default_profile_library

set_default_datawriter_qos_with_profile Section 6.2.4.5

set_default_library
Section 6.2.4.4

set_default_profile

set_qos_with_profile Section 6.2.4.3

Subscribers

create_datareader_with_profile Section 7.3.1

get_default_library

Section 7.2.4.4get_default_profile

get_default_profile_library

set_default_datawriter_qos_with_profile Section 7.2.4.5

set_default_library
Section 7.2.4.4

set_default_profile

set_qos_with_profile Section 7.2.4.3

Topics set_qos_with_profile Section 5.1.3

Table 17.1 Operations for Working with QoS Profiles

Working With ... Profile-Related Operations Reference
17-5

XML File Syntax
17.4 XML File Syntax
The XML configuration file must follow these syntax rules:

❏ The syntax is XML and the character encoding is UTF-8.

❏ Opening tags are enclosed in <>; closing tags are enclosed in </>.

❏ A tag value is a UTF-8 encoded string. Legal values are alphanumeric characters. The
middleware’s parser will remove all leading and trailing spaces1 from the string before it
is processed.

For example, " <tag> value </tag>" is the same as "<tag>value</tag>".

❏ All values are case-sensitive unless otherwise stated.

❏ Comments are enclosed as follows: <!-- comment -->.

❏ The root tag of the configuration file must be <dds> and end with </dds>.

❏ The primitive types for tag values are specified in Table 17.2.

17.5 Using Environment Variables in XML
The text within an XML tag and attribute can refer to environment variable. To do so, use the fol-
lowing notation:

$(MY_VARIABLE)

1. Leading and trailing spaces in enumeration fields will not be considered valid if you use the distributed XSD doc-
ument to do validation at run-time with a code editor (see Section 17.7).

Table 17.2 Supported Tag Values

Type Format Notes

DDS_Boolean

yesa, 1, true, BOOLEAN_TRUEa or
DDS_BOOLEAN_TRUEa: these all mean TRUE

Not case-sensitive
noa, 0, false, BOOLEAN_FALSEa or
DDS_BOOLEAN_FALSEa: these all mean FALSE

DDS_Enum
A string. Legal values are those listed in the API
Reference HTML documentation for the Ca or
Java API.

Must be specified as a string.
(Do not use numeric values.)

DDS_Long

 -2147483648 to 2147483647
or 0x80000000 to 0x7fffffffa

or LENGTH_UNLIMITED
or DDS_LENGTH_UNLIMITEDa

A 32-bit signed integer

DDS_UnsignedLong
 0 to 4294967296
or
 0 to 0xffffffffa

A 32-bit unsigned integer

String UTF-8 character string
All leading and trailing spaces
are ignored between two tags

a. These values will not be considered valid if you use the distributed XSD document to do validation at run-time with
a code editor (see Section 17.7).
17-6

XML String Syntax
For example:

<element attr="The attribute is $(MY_ATTRIBUTE)">
 <name>The name is $(MY_NAME)</name>
 <value>The value is $(MY_VALUE)</value>
</element>

When the Connext XML parser parses the above tags, it will replace the references to environ-
ment variables with their actual values.

17.6 XML String Syntax
XML profiles can be described using strings. This configuration is useful for architectures with-
out a file system.

There are two different ways to configure Entities via XML strings:

❏ String URLs are prefixed by the URI schema str:// and enclosed in double quotes. For
example:

 str://"<dds><qos_library>...</qos_library></dds>"

The string URLs can be specified in the environment variable NDDS_QOS_PROFILES
as well as in the field url_profile in PROFILE QosPolicy (DDS Extension) (Section 8.4.2).
Each string URL must contain a whole XML document.

❏ The string_profile field in the PROFILE QosPolicy (DDS Extension) (Section 8.4.2)
allows you to split an XML document into multiple strings. For example:

const char * MyXML[4] =
{
 "<dds>",

"<qos_library name=\"MyLibrary\">",
"</qos_library>",

 "</dds>"
};
factoryQos.profile.string_profile.from_array(MyXML,4);

Only one XML document can be specified with the string_profile field.

17.7 How the XML is Validated

17.7.1 Validation at Run-Time

Connext validates the input XML files using a builtin Document Type Definition (DTD).

You can find a copy of the builtin DTD in $(NDDSHOME)/resource/qos_profiles_5.x.y1/
schema/rti_dds_qos_profiles.dtd. (This is only a copy of what the Connext core uses. Changing
this file has no effect unless you specify its path with the <!DOCTYPE> tag, described below.)

You can overwrite the builtin DTD by using the XML tag, <!DOCTYPE>. For example, the fol-
lowing indicates that Connext must use a DTD file from a user’s directory to perform validation:

<!DOCTYPE dds SYSTEM "/local/joe/rti/dds/mydds.dtd">

1. x and y stand for the version numbers of the current release
17-7

How the XML is Validated
❏ The DTD path can be absolute, or relative to the application's current working directory.

❏ If the specified file does not exist, you will see the following error:

RTIXMLDtdParser_parse:!open DTD file

❏ If you do not specify the DOCTYPE tag in the XML file, the builtin DTD is used.

❏ The XML files used by Connext can be versioned using the attribute version in the <dds>
tag. For example:

<dds version="5.x.y">
 ...
</dds>

Although the attribute version is not required during the validation process, it helps to
detect DTD incompatibility scenarios by providing better error messages.

For example, if an application using Connext 5.x.y tries to load an XML file from Connext
4.5z and there is some incompatibility in the XML content, the following parsing error
will be printed:

ATTENTION: The version declared in this file (4.5z) is different from
the version of Connext (5.x.y). If these versions are not compatible,
that incompatibility could be the cause of this error.

17.7.2 XML File Validation During Editing

Connext provides DTD and XSD files that describe the format of the XML content. We recom-
mend including a reference to one of these documents in the XML file that contains the QoS pro-
files—this provides helpful features in code editors such as Visual Studio and Eclipse, including
validation and auto-completion while you are editing the XML file.

The DTD and XSD definitions of the XML elements are in
$(NDDSHOME)/resource/qos_profiles_5.x.y/schema/rti_dds_qos_profiles.dtd and
$(NDDSHOME)/resource/qos_profiles_5.x.y/schema/rti_dds_qos_profiles.xsd, respectively
(in ‘5.x.y’, x and y stand for the version numbers of the current release).

To include a reference to the XSD document in your XML file, use the attribute
xsi:noNamespaceSchemaLocation in the <dds> tag. For example:

<?xml version="1.0" encoding="UTF-8"?>
<dds xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation=
"<NDDSHOME1>/resource/qos_profiles_5.x.y/schema/rti_dds_qos_profiles.xsd">
 ...
</dds>

To include a reference to the DTD document in your XML file use the <!DOCTYPE> tag. For
example:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE dds SYSTEM
"<NDDSHOME1>/resource/qos_profiles_5.x.y/schema/rti_dds_qos_profiles.dtd">
<dds>
 ...
</dds>

1. Replace <NDDSHOME> with the installation directory of Connext.
17-8

Configuring QoS with XML
We recommend including a reference to the XSD file in the XML documents because it provides
stricter validation and better auto-completion than the corresponding DTD file.

17.8 Configuring QoS with XML
To configure the QoS for an Entity using XML, use the following tags:

❏ <participant_factory_qos>

Note: The only QoS policies that can be configured for the DomainParticipantFactory are
<entity_factory> and <logging>.

❏ <participant_qos>

❏ <publisher_qos>

❏ <subscriber_qos>

❏ <topic_qos>

❏ <datawriter_qos> or <writer_qos> (writer_qos is valid only with DTD validation)

❏ <datareader_qos> or <reader_qos> (reader_qos is valid only with DTD validation)

Each QoS can be identified by a name. The QoS can inherit its values from other QoSs described
in the XML file. For example:

<datawriter_qos name="DerivedWriterQos" base_name="Lib::BaseWriterQos">
 <history>
 <kind>KEEP_ALL_HISTORY_QOS</kind>
 </history>
</datawriter_qos>

In the above example, the datawriter_qos named 'DerivedWriterQos' inherits the values from
'BaseWriterQos' in the library 'Lib'. The HistoryQosPolicy kind is set to
KEEP_ALL_HISTORY_QOS.

Each XML tag with an associated name can be uniquely identified by its fully qualified name in
C++ style.

The writer, reader and topic QoSs can also contain an attribute called topic_filter that will be
used to associate a set of topics to a specific QoS when that QoS is part of a QoS profile. See Topic
Filters (Section 17.9.3) and QoS Profiles (Section 17.9).

17.8.1 QosPolicies

The fields in a QosPolicy are described in XML using a 1-to-1 mapping with the equivalent C
representation. For example, the Reliability QosPolicy is represented with the following C struc-
tures:

struct DDS_Duration_t {
 DDS_Long sec;
 DDS_UnsignedLong nanosec;
}
struct DDS_ReliabilityQosPolicy {
 DDS_ReliabilityQosPolicyKind kind;
 DDS_Duration_t max_blocking_time;
}

17-9

Configuring QoS with XML
The equivalent representation in XML is as follows:

<reliability>
 <kind></kind>
 <max_blocking_time>

<sec></sec>
<nanosec></nanosec>

 </max_blocking_time>
</reliability>

17.8.2 Sequences

In general, sequences in QosPolicies are described with the following XML format:

<a_sequence_member_name>
 <element>...</element>
 <element>...</element>
 ...
</a_sequence_member_name>

Each element of the sequence is enclosed in an <element> tag. For example:

<property>
 <value>
 <element>
 <name>my name</name>
 <value>my value</value>
 </element>
 <element>
 <name>my name2</name>
 <value>my value2</value>
 </element>
 </value>
</property>

A sequence without elements represents a sequence of length 0. For example:

<discovery>
 <!-- initial_peers sequence contains zero elements -->
 <initial_peers/>
</discovery>

For sequences that may have a default initialization that is not empty (such as the initial_peers
field in the DISCOVERY QosPolicy (DDS Extension) (Section 8.5.2)), using the above construct
would result in an empty list and not the default value. So to simply show a sequence for the
sake of completeness, but not change its default value, comment it out, as follows:

<discovery>
 <!-- initial_peers sequence contains the default value -->
 <!-- <initial_peers/> -->
</discovery>

As a general rule, sequences defined in a derived1 QoS will replace the corresponding sequences
in the base QoS. For example, consider the following:

<qos_profile name="MyBaseProfile">
 <participant_qos>
 <discovery>
 <initial_peers>
 <element>192.168.1.1</element>

1. The concepts of derived and base QoS are described in QoS Profile Inheritance (Section 17.9.2).
17-10

Configuring QoS with XML
 <element>192.168.1.2</element>
 </initial_peers>
 </discovery>
 </participant>
</qos_profile>

<qos_profile name="MyDerivedProfile" base_name="MyBaseProfile">
 <participant_qos>
 <discovery>
 <initial_peers>
 <element>192.168.1.3</element>
 </initial_peers>
 </discovery>
 </participant>
</qos_profile>

The initial peers sequence defined above in the participant QoS of MyDerivedProfile will con-
tain a single element with a value 192.168.1.3. The elements 192.168.1.1 and 192.168.1.2 will not
be inherited. However, there is one exception to this behavior. The <property> tag provides an
attribute called inherit that allows you to choose the inheritance behavior for the sequence
defined within the tag.

The <property> tag provides an attribute called inherit that allows you to choose the inheri-
tance behavior for the sequence defined within the tag.

By default, the value of the attribute inherit is true. Therefore, the <property> tag defined
within a derived QoS profile will inherit its elements from the <property> tag defined within a
base QoS profile.

In the following example, the property sequence defined in the participant QoS of MyDerived-
Profile will contain two properties:

❏ dds.transport.UDPv4.builtin.send_socket_buffer_size will be inherited from the base
profile and have the value 524288.

❏ dds.transport.UDPv4.builtin.recv_socket_buffer_size will overwrite the value defined
in the base QoS profile with 1048576.

<qos_profile name="MyBaseProfile">
 <participant_qos>
 <property>
 <value>
 <element>
 <name>dds.transport.UDPv4.builtin.send_socket_buffer_size</name>
 <value>524288</value>
 </element>
 <element>
 <name>dds.transport.UDPv4.builtin.recv_socket_buffer_size</name>
 <value>2097152</value>
 </element>
 </value>
 </discovery>
 </property>
</qos_profile>

<qos_profile name="MyDerivedProfile" base_name="MyBaseProfile">
 <participant_qos>
 <property>
 <value>
 <element>
 <name>dds.transport.UDPv4.builtin.recv_socket_buffer_size</name>
17-11

Configuring QoS with XML
 <value>1048576</value>
 </element>
 </value>
 </discovery>
 </property>
</qos_profile>

To discard all the properties defined in the base QoS profile, set inherit to false.

In the following example, the property sequence defined in the participant QoS of MyDerived-
Profile will contain a single property named dds.transport.UDPv4.buil-
tin.recv_socket_buffer_size, with a value of 1048576. The property
dds.transport.UDPv4.builtin.send_socket_buffer_size will not be inherited.

<qos_profile name="MyBaseProfile">
 <participant_qos>
 <property>
 <value>
 <element>
 <name>dds.transport.UDPv4.builtin.send_socket_buffer_size</name>
 <value>524288</value>
 </element>
 <element>
 <name>dds.transport.UDPv4.builtin.recv_socket_buffer_size</name>
 <value>2097152</value>
 </element>
 </value>
 </discovery>
 </property>
</qos_profile>

<qos_profile name="MyDerivedProfile" base_name="MyBaseProfile">
 <participant_qos>
 <property inherit="false">
 <value>
 <element>
 <name>dds.transport.UDPv4.builtin.recv_socket_buffer_size</name>
 <value>1048576</value>
 </element>
 </value>
 </discovery>
 </property>
</qos_profile>

17.8.3 Arrays

In general, the arrays contained in the QosPolicies are described with the following XML format:

<an_array_member_name>
 <element>...</element>
 <element>...</element>
 ...
</an_array_member_name>

Each element of the array is enclosed in an <element> tag.

As a special case, arrays of octets are represented with a single XML tag enclosing an array of
decimal/hexadecimal values between 0..255 separated with commas.
17-12

Configuring QoS with XML
For example:

<reader_qos>
 ...
 <protocol>
 <virtual_guid>
 <value>1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16</value>
 </virtual_guid>
 </protocol>
</reader_qos>

17.8.4 Enumeration Values

Enumeration values are represented using their C or Java string representation. For example:

<history>
 <kind>DDS_KEEP_ALL_HISTORY_QOS</kind>
</history>

or

<history>
 <kind>KEEP_ALL_HISTORY_QOS</kind>
</history>

When the XSD document is used for validation during editing (see Section 17.7.2), only the Java
representation is valid.

17.8.5 Time Values (Durations)

You can use the following special values for fields that require seconds or nanoseconds:

❏ DURATION_INFINITE_SEC or DDS_DURATION_INFINITE_SEC,

❏ DURATION_ZERO_SEC or DDS_DURATION_ZERO_SEC,

❏ DURATION_INFINITE_NSEC or DDS_DURATION_INFINITE_NSEC

❏ DURATION_ZERO_NSEC or DDS_DURATION_ZERO_NSEC

For example:

<deadline>
 <period>

 <sec>DURATION_INFINITE_SEC</sec>
 <nanosec>DURATION_INFINITE_NSEC</nanosec>
 </period>
</deadline>

When the XSD document is used for validation during editing (see Section 17.7.2), only the val-
ues without the DDS prefix are considered valid.

17.8.6 Transport Properties

You can configure transport plugins using the DomainParticipant’s PROPERTY QosPolicy (DDS
Extension) (Section 6.5.17).

❏ Properties for the builtin transports are described in Setting Builtin Transport Properties
with the PropertyQosPolicy (Section 15.6).

❏ Properties for other transport plugins such as RTI TCP Transport1are described in their
respective chapters in this manual.
17-13

Configuring QoS with XML
For example:

<participant_qos>
<property>
 <value>
 <element>

<name>dds.transport.UDPv4.builtin.parent.message_size_max
</name>
<value>65536</value>

 </element>
 <element>

<name>dds.transport.UDPv4.builtin.send_socket_buffer_size
</name>

 <value>131072</value>
 </element>
 <element>

<name>dds.transport.UDPv4.builtin.recv_socket_buffer_size
</name>
<value>262144</value>

 </element>
</value>
</property>

</participant_qos>

17.8.7 Thread Settings

See Table 19.1, “XML Tags for ThreadSettings_t,” on page 19-6.

17.8.8 Entity Names

The name and role_name fields in the ENTITY_NAME QosPolicy (DDS Extension) (Section
6.5.9) have three distinct possible values: NULL, an empty string, and a non-empty string. Each
of these three states are specified in XML in a different way.

To specify that the name or role_name of an entity is NULL, use the xsi:nil attribute. The xsi:nil
attribute can be set to either "true" or "false". For example, to set the participant name to NULL:

<participant_name>
 <name xsi:nil="true">
</participant_name>

To specify the empty string, leave the XML element empty:

<participant_name>
 <name/>
</participant_name>

To specify a non-empty string:

<participant_name>
 <name>"My Participant's Name"</name>
</participant_name>

1. RTI TCP Transport is included with Connext, but is not enabled by default.
17-14

QoS Profiles
17.9 QoS Profiles
A QoS profile groups a set of related QoS, usually one per entity, identified by a name. For exam-
ple:

<qos_profile name="StrictReliableCommunicationProfile">
<datawriter_qos>

<history>
<kind>KEEP_ALL_HISTORY_QOS</kind>

 </history>
 <reliability>

<kind>RELIABLE_RELIABILITY_QOS</kind>
</reliability>

</datawriter_qos>

<datareader_qos>
<history>

<kind>KEEP_ALL_HISTORY_QOS</kind>
</history>
<reliability>

<kind>RELIABLE_RELIABILITY_QOS</kind>
</reliability>

</datareader_qos>
</qos_profile>

Duplicate QoS profiles are not allowed. To overwrite a QoS profile, use QoS Profile Inheritance
(Section 17.9.2).

There are functions that allow you to create Entities using profiles, such as
create_participant_with_profile() (Section 8.3.1), create_topic_with_profile() (Section 5.1.1),
etc.

If you create an entity using a profile without a QoS definition or an inherited QoS definition
(see QoS Profile Inheritance (Section 17.9.2)) for that class of entity, Connext uses the default QoS.

Example 1:

<qos_profile name="BatchStrictReliableCommunicationProfile"
base_name="StrictReliableCommunicationProfile">

 <datawriter_qos>
 <batch>
 <enable>true</enable>
 </batch>
 </datawriter_qos>
</qos_profile>

The DataReader QoS value in the profile BatchStrictReliableCommunicationProfile is inherited
from the profile StrictReliableCommunicationProfile.

Example 2:

<qos_profile name="BatchProfile">
 <datawriter_qos>
 <batch>
 <enable>true</enable>
 </batch>
 </datawriter_qos>
</qos_profile>

The DataReader QoS value in the profile BatchProfile is the default Connext QoS.
17-15

QoS Profiles
17.9.1 QoS Profiles with a Single QoS

The definition of an individual QoS outside a profile is a shortcut for defining a QoS profile with
a single QoS. For example:

<datawriter_qos name="KeepAllWriter">
<history>

<kind>KEEP_ALL_HISTORY_QOS</kind>
</history>

</datawriter_qos>

is equivalent to:

<qos_profile name="KeepAllWriter">
<datawriter_qos>

<history>
<kind>KEEP_ALL_HISTORY_QOS</kind>

</history>
</datawriter_qos>

</qos_profile>

17.9.2 QoS Profile Inheritance

An individual QoS or profile can inherit values from other QoSs or profiles described in the
XML file by using the attribute, base_name.

Inheriting from other XML Files: A QoS or QoS Profile may inherit values from other QoSs or QoS
Profiles described in different XML files. A QoS or profile can only inherit from other QoS poli-
cies or profiles that have already been loaded. The order in which XML resources are loaded is
described in Section 17.2.

The following examples show how to inherit from other profiles:

Example 1:

<qos_library name=”Library”>
 <qos_profile name="BaseProfile">
 <datawriter_qos>
 ...
 </datawriter_qos>
 <datareader_qos>
 ...
 </datareader_qos>
 </qos_profile>

 <qos_profile name="DerivedProfile" base_name="BaseProfile">
 <datawriter_qos>
 ...
 </datawriter_qos>
 <datareader_qos>
 ...
 </datareader_qos>
 </qos_profile>
</qos_library>

The writer_qos and reader_qos in DerivedProfile inherit their values from the corresponding
QoS in BaseProfile.

Example 2:

<qos_library name=”Library”>
17-16

QoS Profiles
 <datareader_qos name="BaseProfile">
 ...
 </datareader_qos>
 <datareader_qos name="DerivedProfile" base_name="BaseProfile">
 ...
 </datareader_qos>
</qos_library>

The datareader_qos in DerivedProfile inherits its values from the datareader_qos of BaseProfile.
In this example, the datareader_qos definition is a shortcut for a profile definition with a single
QoS (see Section 17.9.1).

Example 3:

<qos_library name=”Library”>
 <qos_profile name="Profile1">
 <datawriter_qos name="BaseWriterQoS">
 ...
 </datawriter_qos>
 <datareader_qos>
 ...
 </datareader_qos>
 </qos_profile>

 <qos_profile name="Profile2">
 <datawriter_qos name="DerivedWriterQos"

base_name="Profile1::BaseWriterQos">
 ...
 </datawriter_qos>
 <datareader_qos>
 ...
 </datareader_qos>
 </qos_profile>
</qos_library>

The datawriter_qos in Profile2 inherits its values from the datawriter_qos in Profile1. The
datareader_qos in Profile2 will not inherit the values from the corresponding QoS in Profile1.

Example 4:

<qos_library name=”Library”>
 <qos_profile name="Profile1">
 <datawriter_qos>
 ...
 </datawriter_qos>
 <datareader_qos>
 ...
 </datareader_qos>
 </qos_profile>

 <qos_profile name="Profile2">
 <datawriter_qos name="BaseWriterQoS">
 ...
 </datawriter_qos>
 <datareader_qos>
 ...
 </datareader_qos>
 </qos_profile>

 <qos_profile name="Profile3" base_name="Profile1">
 <datawriter_qos name="DerivedWriterQos"
17-17

QoS Profiles
 base_name="Profile2::BaseWriterQos">
 ...
 </datawriter_qos>
 <datareader_qos>
 ...
 </datareader_qos>
 </qos_profile>
</qos_library></qos_library>

The datawriter_qos in Profile3 inherits its values from the datawriter_qos in Profile2. The
datareader_qos in Profile3 inherits its values from the datareader_qos in Profile1.

Example 5:

<qos_library name=”Library”>
 <datareader_qos name="BaseProfile">
 ...
 </datareader_qos>

 <profile name="DerivedProfile" base_name="BaseProfile">
 <datareader_qos>
 ...
 </datareader_qos>

 </profile>
</qos_library>

The datareader_qos in DerivedProfile inherits its values from the datareader_qos in BaseProfile.

17.9.3 Topic Filters

A QoS profile may contain several writer, reader and topic QoSs. Connext will select a QoS based
on the evaluation of a filter expression on the topic name. The filter expression is specified as an
attribute in the XML QoS definition. For example:

<qos_profile name="StrictReliableCommunicationProfile">
<datawriter_qos topic_filter="A*">

<history>
<kind>KEEP_ALL_HISTORY_QOS</kind>

</history>
<reliability>

<kind>RELIABLE_RELIABILITY_QOS</kind>
</reliability>

</datawriter_qos>

<datawriter_qos topic_filter="B*">
<history>

<kind>KEEP_ALL_HISTORY_QOS</kind>
</history>
<reliability>

<kind>RELIABLE_RELIABILITY_QOS</kind>
</reliability>
<resource_limits>

<max_samples>128</max_samples>
<max_samples_per_instance>128
</max_samples_per_instance>
<initial_samples>128</initial_samples>
<max_instances>1</max_instances>
<initial_instances>1</initial_instances>

</resource_limits>
17-18

QoS Profiles
</datawriter_qos>
…

</qos_profile>

If topic_filter is not specified in a QoS, Connext will assume the filter '*'. The QoSs with an
explicit topic_filter attribute definition will be evaluated in order; they have precedence over a
QoS without a topic_filter expression.

The topic_filter attribute is only used with the following APIs:

DomainParticipantFactory:

❏ get_<entity>_qos_from_profile_w_topic_name() (where <entity> may be topic,
datareader, or datareader; see Section 8.2.5)

DomainParticipant:

❏ create_datawriter_with_profile() (see Creating DataWriters (Section 6.3.1))

❏ create_datareader_with_profile() (see Creating DataReaders (Section 7.3.1)

❏ create_topic_with_profile() (see Creating Topics (Section 5.1.1))

Publisher:

❏ create_datawriter_with_profile() (see Creating DataWriters (Section 6.3.1))

Subscriber:

❏ create_datareader_with_profile() (see Creating DataReaders (Section 7.3.1))

Topic:

❏ set_qos_with_profile() (see Setting Topic QosPolicies (Section 5.1.3))

DataWriter:

❏ set_qos_with_profile() (see Changing QoS Settings After the Publisher Has Been Cre-
ated (Section 6.2.4.3))

DataReader:

❏ set_qos_with_profile() (see Setting DataReader QosPolicies (Section 7.3.8))

Other APIs will ignore QoSs with a topic_filter value different than "*". A QoS Profile with QoSs
using topic_filter can also inherits from other QoS Profiles. In this case, inheritance will consider
the value of the topic_filter expression.

Example 1:

<qos_library name=”Library”>
 <qos_profile name="BaseProfile">
 <datawriter_qos>
 ...
 </datawriter_qos>
 <datawriter_qos topic_filter="T1*">
 ...
 </datawriter_qos>
 <datawriter_qos topic_filter="T2*">
 ...
 </datawriter_qos>
 </qos_profile>

 <qos_profile name="DerivedProfile" base_name="BaseProfile">
 <datawriter_qos topic_filter="T11">
 ...
 </datawriter_qos>
17-19

QoS Profiles
 <datawriter_qos topic_filter="T21">
 ...
 </datawriter_qos>
 <datawriter_qos topic_filter="T31">
 ...
 </datawriter_qos>
 </qos_profile>
</qos_library>

The datawriter_qos with topic_filter T11 in DerivedProfile will inherit its values from the
datawriter_qos with topic_filter T1* in BaseProfile. The datawriter_qos with topic_filter T21 in
DerivedProfile will inherit its values from the datawriter_qos with topic_filter T2* in BasePro-
file. The datawriter_qos with topic_filter T31 in DerivedProfile will inherit its values from the
datawriter_qos without topic_filter in BaseProfile.

Example 2:

<qos_library name=”Library”>
 <qos_profile name="BaseProfile">
 <datawriter_qos topic_filter="T1*">
 ...
 </datawriter_qos>
 <datawriter_qos name="T2DataWriterQoS" topic_filter="T2*">
 ...
 </datawriter_qos>
 </qos_profile>

 <qos_profile name="DerivedProfile" base_name="BaseProfile">
 <datawriter_qos topic_filter="T11"
 base_name="BaseProfile::T2DataWriterQoS">
 ...
 </datawriter_qos>
 <datawriter_qos topic_filter="T21">
 ...
 </datawriter_qos>
 </qos_profile>
</qos_library>

Although the topic_filter expressions do not match, the datawriter_qos with topic_filter T11 in
DerivedProfile will inherit its values from the datawriter_qos with topic_filter T2* in BasePro-
file. topic_filter is not used with inheritance from QoS to QoS. The datawriter_qos with
topic_filter T21 in DerivedProfile will inherit its values from the datawriter_qos with
topic_filter T2* in BaseProfile.

Example 3:

<qos_library name=”Library”>
 <datawriter_qos name="BaseQos" topic_filter="T1">
 ...
 </datawriter_qos>
 <datawriter_qos name="DerivedQos" base_name="BaseQos" topic_filter="T2">
 ...
 </datawriter_qos>
</qos_library>

In the case of a single QoS profile, although the topic_filter expressions do not match, the
datawriter_qos named DerivedQos with topic_filter T2 will inherit its values from the
datawriter_qos named BaseQos with topic_filter T1.
17-20

QoS Profiles
17.9.4 Overwriting Default QoS Values

There are two ways to overwrite the default QoS used for new entities with values from a pro-
file: programmatically and with an XML attribute.

❏ You can overwrite the default QoS programmatically with
set_default_<entity>_qos_with_profile() (where <entity> is participant, topic, publisher,
subscriber, datawriter, or datareader)

❏ You can overwrite the default QoS using the XML attribute is_default_qos with the
<qos_profile> tag

❏ Only for the DomainParticipantFactory: You can overwrite the default QoS using the
XML attribute is_default_participant_factory_profile. This attribute has precedence
over is_default_qos if both are set.

In the following example, the DataWriter and DataReader default QoS will be overwritten with
the values specified in a profile named ‘StrictReliableCommunicationProfile’:

<qos_profile name="StrictReliableCommunicationProfile"
 is_default_qos="true">
 <datawriter_qos>
 <history>
 <kind>KEEP_ALL_HISTORY_QOS</kind>
 </history>
 <reliability>
 <kind>RELIABLE_RELIABILITY_QOS</kind>
 </reliability>
 </datawriter_qos>
 <datareader_qos>
 <history>
 <kind>KEEP_ALL_HISTORY_QOS</kind>
 </history>
 <reliability>
 <kind>RELIABLE_RELIABILITY_QOS</kind>
 </reliability>
 </datareader_qos>
</qos_profile>

If multiple profiles are configured to overwrite the default QoS, only the last one parsed applies.

Example:

In this example, the profile used to configure the default QoSs will be StrictReliableCommuni-
cationProfile.

<qos_profile name="BestEffortCommunicationProfile" is_default_qos="true">
 ...
</qos_profile>

<qos_profile name="StrictReliableCommunicationProfile" is_default_qos="true">
 ...
</qos_profile>

17.9.5 Built-in QoS Profiles

Several QoS profiles are built into the Connext core libraries and can be used as starting points
when configuring QoS for your Connext applications. There are two provided libraries, Builtin-
QosLib and BuiltinQosLibExp, and 34 different profiles. You can use any of these profiles as
17-21

QoS Profiles
base profiles when creating your own XML configurations or simply use these profiles directly
in the DDS_*_create_*_with_profile() APIs.

There are three types of profiles:

❏ Baseline.X.X.X profiles represent the QoS defaults for Connext version X.X.X. The
defaults for the latest Connext version can be accessed using the BuiltinQosLib::Base-
line profile.

❏ Generic.X profiles allow you to easily configure different features and communication
use-cases with Connext. For example, there is a Generic.StrictReliable profile for use
when your application has a requirement for no data loss, regardless of the application
domain.

❏ Pattern.X profiles inherit from Generic.X profiles and allow you to configure various
domain-specific communication use cases. For example, there is a Pattern.Alarm profile
that can be used to manage the generation and consumption of alarm events.

The USER_QOS_PROFILES.xml file generated by rtiddsgen now contains a profile that inherits
from the BuiltinQosLibExp::Generic.StrictReliable profile as an example of how to use these
profiles in your own application.

Example use-cases for these profiles:

❏ To quickly enable RTI Monitoring Library by inheriting from the
BuiltinQosLib::Generic.Monitoring.Common profile. (See note below.)

❏ To easily revert to the default QoS values from a previous Connext version by inheriting
from the correct BuiltinQosLib::Baseline.X.X.X profile.

❏ To set up common use-case configurations and patterns such as strict reliability or large
data communication by inheriting from one of the BuiltinQosLibExp::Generic.X or Pat-
tern.X profiles.

To see the contents of the built-in QoS profiles:

 In <Connext installation directory>/resource/qos_profiles_5.1.0/xml, you will find:

❏ BaselineRoot.documentationONLY.xml—This file contains the root baseline QoS profile
corresponding to the default values of Connext 5.0.0.

❏ BuiltinProfiles.documentationONLY.xml—This file contains the rest of the built-in QoS
profiles.

Notes:

❏ The built-in QoS profiles that enable RTI Monitoring Library set the property rti.moni-
tor.create_function. Consequently, they only work in Connext applications in which the
monitoring library can be loaded dynamically. Specifically, the built-in monitoring pro-
files will not work in these situations:

• When the Connext application links the monitoring libraries statically

• When using a VxWorks 6.7 or 6.8 platform with Java1.

For more information, see the RTI Monitoring Library Getting Started Guide
(RTI_Monitoring_Library_GettingStarted.pdf).

❏ Some of the built-in profiles are experimental. All the experimental profiles are contained
within the library BuiltinQosLibExp.

1. VxWorks 6.7 and 6.8 Java platforms require custom supported libraries.
17-22

QoS Libraries
17.9.6 Getting Qos Profiles

To get a list of loaded QoS profiles, call the DomainParticipantFactory’s get_qos_profiles()
operation, which returns the names of all profiles within a specified QoS library. Either the
input QoS library name must be specified or the default profile library must have been set prior
to calling this function.

DDS_ReturnCode_t get_qos_profiles (struct DDS_StringSeq *profile_names,
 const char *library_name)

17.10 QoS Libraries
A QoS Library is a named set of QoS profiles.

One configuration file may have several QoS libraries, each one defining its own QoS profiles.

All QoS libraries must be declared within <dds> and </dds> tags. For example:

<dds>
<qos_library name="RTILibrary">

 <!-- Individual QoSs are shortcuts for QoS Profiles with 1 QoS -->
<datawriter_qos name="KeepAllWriter">

<history>
 <kind>KEEP_ALL_HISTORY_QOS</kind>
</history>

</datawriter_qos>

<!-- Qos Profile -->
<qos_profile name="StrictReliableCommunicationProfile">

<datawriter_qos>
<history>
 <kind>KEEP_ALL_HISTORY_QOS</kind>
</history>
<reliability>
 <kind>RELIABLE_RELIABILITY_QOS</kind>
</reliability>

</datawriter_qos>
<datareader_qos>

<history>
 <kind>KEEP_ALL_HISTORY_QOS</kind>
</history>
<reliability>
 <kind>RELIABLE_RELIABILITY_QOS</kind>
</reliability>

</datareader_qos>
</qos_profile>

</qos_library>
</dds>

A QoS library can be reopened within the same configuration file or across different configura-
tion files. For example:

<dds>
<qos_library name="RTILibrary">

 ...
 </qos_library>
17-23

URL Groups
 ...
<qos_library name="RTILibrary">

 ...
 </qos_library>
</dds>

17.10.1 Get Qos Profile Libraries

To get a list of available QoS libraries, call the DomainParticipantFactory’s
get_qos_profile_libraries() operation, which returns the names of all QoS libraries that have
been loaded by Connext.

DDS_ReturnCode_t get_qos_profile_libraries (struct DDS_StringSeq *profile_names)

17.11 URL Groups
To provide redundancy and fault tolerance, you can specify multiple locations for a single XML
document via URL groups. The syntax of a URL group is:

[URL1 | URL2 | URL2 | ... | URLn]

For example:

[file:///usr/local/default_dds.xml | file:///usr/local/alternative_default_dds.xml]

Only one of the elements in the group will be loaded by Connext, starting from the left.

Brackets are not required for groups with a single URL.

The NDDS_QOS_PROFILES environment variable contains a set of URL groups separated by
semicolons. For example, on Linux and Solaris systems:

setenv NDDS_QOS_PROFILES [file:///usr/local/default_dds.xml|file:///usr/local/
alternative_default_dds.xml];[str://"<dds><qos_library name="MyQosLibrary"></
qos_library></dds>"]

The url_profile field in the PROFILE QosPolicy (DDS Extension) (Section 8.4.2) will contain a
sequence of URL groups.

17.12 Configuring Logging Via XML
Logging can be configured via XML using the DomainParticipantFactory’s LoggingQosPolicy.
See Section 21.2.2 for additional details.
17-24

Chapter 18 Multi-channel DataWriters

In Connext, producers publish data to a Topic, identified by a topic name; consumers subscribe to
a Topic and optionally to specific content by means of a content-filter expression.

The middleware’s efficient implementation of content-filtering is critical for scenarios such as
the above "Market Data" example, where there are large numbers of consumers, large volumes
of data, or Topics that transmit information about many data-objects or subjects (e.g., individual
stocks).

Traditionally, middleware products use four approaches to implement content filtering: Pro-
ducer-based, Consumer-based, Server-based, and Network Switch-based.

❏ Producer-based approaches push the burden of filtering to the producer side. The pro-
ducer knows what each consumer wants and delivers to the consumer only the data that
matches the consumer's filter. This approach is suitable when using point-to-point proto-
cols such as TCP—it saves bandwidth and lowers the load on the consumer—but it does
not work if data is distributed via multicast. Also, this approach does not scale to large
numbers of consumers, because the producer would be overburdened by the need to fil-
ter for each individual consumer.

❏ Consumer-based approaches push the burden of filtering to the consumer side. The pro-
ducer sends all the data to every consumer and the middleware on the consumer side
decides whether the application wants it or not, automatically filtering the unwanted
data. This approach is simple and fits well in systems that use multicast protocols as a
transport. But the approach is not efficient for consumers that want small subsets of the
data, since the consumers have to spend a lot of time filtering unwanted data. This
approach is also unsuitable for systems with large volumes of data, such as the above
Market Data system.

A Market Data Example:

A producer can publish data on the Topic "MarketData" which can be defined
as a structured record containing fields that identify the exchange (e.g.,
"NYSE" or "NASDAQ"), the stock symbol (e.g., "APPL" or "JPM"), volume,
bid and ask prices, etc.

Similarly, a consumer may want to subscribe to data on the "MarketData"
Topic, but only if the exchange is "NYSE" or the symbol starts with the letter
"M." Or the consumer may want all the data from the "NYSE" whose volume
exceeds a certain threshold, or may want MarketData for a specific stock
symbol, regardless of the exchange, and so on.
18-1

What is a Multi-channel DataWriter?
❏ Server-based approaches push the burden of filtering to a third component: a server or
broker. This approach has some scalability advantages—the server can be run on a more
powerful computer and can be federated to handle a large number of consumers. Some
providers also provide hardware-assisted filtering in the server. However, the server-
based approach significantly increases latency and jitter. It is also far more expensive to
deploy and manage.

❏ Network Switch-based approaches leverage the network hardware, specifically advanced
(IGMP snooping) network switches, to offload most of the burden of filtering from the
producers and consumers without introducing additional hardware, servers or proxies.
This approach preserves the low latency and ease of deployment of the brokerless
approaches while still providing most of the off-loading and scalability benefits of the
broker.

RTI supports the producer-based, consumer-based and network-switch approaches to content
filtering:

❏ RTI automatically uses the producer-based and consumer-based approaches as soon as it
detects a consumer that specifies a content filter. The producer-based approach is used if
the consumer is receiving data over a point-to-point protocol (i.e., not multicast) and the
number of consumers that specify filters is reasonably low (below 32). Otherwise, RTI
uses a subscriber-based approach.

❏ To use the more scalable network-switched based approach, an application must config-
ure the DataWriter as a Multi-channel DataWriter. This concept is described in the follow-
ing section.

18.1 What is a Multi-channel DataWriter?
A Multi-channel DataWriter is a DataWriter that is configured to send data over multiple multi-
cast addresses, according to some filtering criteria applied to the data.

To determine which multicast addresses will be used to send the data, the middleware evaluates
a set of filters that are configured for the DataWriter. Each filter "guards" a channel—a set of mul-
ticast addresses. Each time a multi-channel DataWriter writes data, the filters are applied. If a fil-
18-2

What is a Multi-channel DataWriter?
ter evaluates to true, the data is sent over that filter’s associated channel (set of multicast
addresses). We refer to this type of filter as a Channel Guard filter.

Figure 18.1 Multi-channel Data Flow

Figure 18.2 Multi-channel Evaluation
18-3

How to Configure a Multi-channel DataWriter
Multi-channel DataWriters can be used to trade off network bandwidth with the unnecessary
processing of unwanted data for situations where there are multiple DataReaders who are inter-
ested in different subsets of data that come from the same data stream (Topic). For example, in
Financial applications, the data stream may be quotes for different stocks at an exchange. Appli-
cations usually only want to receive data (quotes) for only a subset of the stocks being traded. In
tracking applications, a data stream may carry information on hundreds or thousands of objects
being tracked, but again, applications may only be interested in a subset.

The problem is that the most efficient way to deliver data to multiple applications is to use mul-
ticast so that a data value is only sent once on the network for any number of subscribers to the
data. However, using multicast, an application will receive all of the data sent and not just the
data in which it is interested, thus extra CPU time is wasted to throw away unwanted data. With
this QoS, you can analyze the data-usage patterns of your applications and optimize network vs.
CPU usage by partitioning the data into multiple multicast streams. While network bandwidth
is still being conserved by sending data only once using multicast, most applications will only
need to listen to a subset of the multicast addresses and receive a reduced amount of unwanted
data.

Note: Your system can gain more of the benefits of using multiple multicast groups if your net-
work uses Layer 2 Ethernet switches. Layer 2 switches can be configured to only route multicast
packets to those ports that have added membership to specific multicast groups. Using those
switches will ensure that only the multicast packets used by applications on a node are routed to
the node; all others are filtered-out by the switch.

18.2 How to Configure a Multi-channel DataWriter
To configure a multi-channel DataWriter, simply define a list of all its channels in the DataWriter’s
MULTI_CHANNEL QosPolicy (DDS Extension) (Section 6.5.14).

Each channel consists of filter criterion to apply to the data and a set of multicast destinations
(transport, address, port) that will be used for sending data that matches the filter. You can think
of this sequence of channels as a table like the one shown below:

The example C++ code in Figure 18.3 on page 5 shows how to configure the channels.

The MULTI_CHANNEL QosPolicy is propagated along with discovery traffic. The value of this
policy is available in the builtin topic for the publication (see the locator_filter field in
Table 16.2, “Publication Built-in Topic’s Data Type (DDS_PublicationBuiltinTopicData),” on
page 16-3).

If the Data Matches this Filter... Send the Data to these Multicast Destinations

Symbol MATCH '[A-K]* UDPv4:225.0.0.1:9000

Symbol MATCH '[L-Q]* UDPv4:225.0.0.2:9001

Symbol MATCH '[P-Z]* UDPv4:225.0.0.3:9002; 225.0.0.4:9003;
18-4

How to Configure a Multi-channel DataWriter
18.2.1 Limitations

When considering use of a multi-channel DataWriter, please be aware of the following limita-
tions:

❏ A DataWriter that uses the MULTI_CHANNEL QosPolicy will ignore multicast and uni-
cast addresses specified on the reader side through the TRANSPORT_MULTICAST
QosPolicy (DDS Extension) (Section 7.6.5) and TRANSPORT_UNICAST QosPolicy (DDS
Extension) (Section 6.5.23). The DataWriter will not publish samples on these locators.

❏ Multi-channel DataWriters cannot be configured to use the Durable Writer History fea-
ture (described in Section 12.3).

❏ Multi-channel DataWriters do not support fragmentation of large data.

❏ Multi-channel DataWriters cannot be configured for asynchronous publishing (described
in Section 6.4.1).

❏ Multi-channel DataWriters rely on the rtps_object_id in the
DATA_WRITER_PROTOCOL QosPolicy (DDS Extension) (Section 6.5.3) to be
DDS_RTPS_AUTO_ID (which causes automatic assignment of object IDs to channels).

❏ To guarantee reliable delivery, a DataReader's PRESENTATION QosPolicy (Section 6.4.6)
must be set to per-instance ordering (DDS_INSTANCE_PRESENTATION_QOS, the
default value), instead of per-topic ordering (DDS_TOPIC_PRESENTATION_QOS), and
the matching DataWriter's MULTI_CHANNEL QosPolicy (DDS Extension) (Section

Figure 18.3 Using the MULTI_CHANNEL QosPolicy

// initialize writer_qos with default values
publisher->get_default_datawriter_qos(writer_qos);

// Initialize MULTI_CHANNEL Qos Policy

// Assign the filter name
// Possible options: DDS_STRINGMATCHFILTER_NAME, DDS_SQLFILTER_NAME
writer_qos.multi_channel.filter_name = (char*) DDS_STRINGMATCHFILTER_NAME;

// Create two channels
writer_qos.multi_channel.channels.ensure_length(2,2);

// First channel
writer_qos.multi_channel.channels[0].filter_expression =

DDS_String_dup("Symbol MATCH '[A-M]*'");
writer_qos.multi_channel.channels[0].multicast_settings.ensure_length(1,1);
writer_qos.multi_channel.channels[0].multicast_settings[0].receive_port = 8700;
writer_qos.multi_channel.channels[0].multicast_settings[0].receive_address =

DDS_String_dup("239.255.1.1");

// Second channel
writer_qos.multi_channel.channels[1].multicast_settings.ensure_length(1,1);
writer_qos.multi_channel.channels[1].multicast_settings[0].receive_port = 8800;
writer_qos.multi_channel.channels[1].multicast_settings[0].receive_address =

DDS_String_dup("239.255.1.2");
writer_qos.multi_channel.channels[1].filter_expression =

DDS_String_dup("Symbol MATCH '[N-Z]*'");

// Create writer
writer = publisher->create_datawriter(

topic, writer_qos, NULL, DDS_STATUS_MASK_NONE);
18-5

Multi-channel Configuration on the Reader Side
6.5.14) must use expressions that only refer to key fields.

18.3 Multi-channel Configuration on the Reader Side
No special changes are required in a subscribing application to get data from a multi-channel
DataWriter.

If you want the DataReader to subscribe to only a subset of the channels, use a ContentFiltered-
Topic, as described in Section 5.4. For example:

// Create a content filtered topic
contentFilter = participant->create_contentfilteredtopic_with_filter(

"FilteredTopic",
topic,
"symbol MATCH 'NYE/BAC,NASDAQ/MSFT,NASDAQ/GOOG",
parameters,
DDS_STRINGMATCHFILTER_NAME);

// Create a DataReader that uses the content filtered topic
reader = subscriber->create_datareader(

contentFilter,
DDS_DATAREADER_QOS_DEFAULT,
NULL,0);

From there, Connext takes care of all the necessary steps:

❏ The DataReader automatically discovers all the DataWriters—including multi-channel
DataWriters—for the Topic it subscribes to.

❏ When the DataReader discovers a multi-channel DataWriter, it also discovers the list of
channels used by that DataWriter.

❏ When the multi-channel DataWriter discovers a DataReader, it also discovers the content
filters specified by that DataReader, if any.

With all this information, Connext automatically determines which channels are of "interest" to
the DataReader.

A DataReader is interested in a channel if and only if the set of data values for which the channel
guard filter evaluates to TRUE intersects the set of data values for which the DataReader's con-
tent filter evaluates to TRUE. If a DataReader does not use a content filter, then it is interested in
all the channels.
18-6

Where Does the Filtering Occur?
18.4 Where Does the Filtering Occur?
If multi-channel DataWriters are used, the filtering can occur in three places:

❏ Filtering at the DataWriter (Section 18.4.1)

❏ Filtering at the DataReader (Section 18.4.2)

❏ Filtering on the Network Hardware (Section 18.4.3)

18.4.1 Filtering at the DataWriter

Each time data is written, the DataWriter evaluates each of the channel guard filters to determine
which channels will transmit the data. This filtering occurs on the DataWriter.

Figure 18.4 Filter Intersection

In this scenario, the DataReader is interested in Channel1 and Channel2, but not Channel3.

Market Data Example, continued:

If the channel guard filter for Channel 1 is 'Symbol MATCH '[A-K]*' then the channel will
only transfer data for stocks whose symbol starts with a letter in the A to K range.
That is, it will transfer data on 'APPL', "GOOG', and 'IBM', but not on 'MSFT', 'ORCL', or
'YHOO'. Channel 1 will be of interest to DataReaders whose content filter includes at least
one stock whose symbol starts with a letter in the A to K range.
A DataReader that specifies a content filter such as "Symbol MATCH 'IBM, YHOO' " will be
interested in Channel1.
A DataReader that specifies a content filter such as "Symbol MATCH '[G-M]*'" will also be
interested in Channel1.
A DataReader that specifies a content filter such as "Symbol MATCH '[M-T]*' " will not be
interested in Channel1.
18-7

Fault Tolerance and Redundancy
Filtering on the DataWriter side is scalable because the number of filter evaluations depends
only on the number of channels, not on the number of DataReaders. Usually, the number of chan-
nels is smaller than the number of possible DataReaders.

As explained in Section 18.7, if the channel guard filters are configured to only look at the "key"
fields in the data, the channel filtering becomes a very efficient lookup operation.

18.4.2 Filtering at the DataReader

The DataReader will listen on the multicast addresses that correspond to the channels of interest
(see Section 18.3). When a channel is 'of interest', it means that it is possible for the channel to
transmit data that meets the content filter of the DataReader, however the channel may also
transmit data that does not pass the DataReader's content filter. Therefore, the DataReader has to
filter all incoming data on that channel to determine if it passes its content filter.

As explained in Section 18.7, if the DataReader’s content filters are configured to only look at the
"key" fields in the data, the DataReader filtering becomes a very efficient lookup operation.

18.4.3 Filtering on the Network Hardware

DataReaders will only listen to multicast addresses that correspond to the channels of interest.
The multicast traffic generated in other channels will be filtered out by the network hardware
(routers, switches).

Layer 3 routers will only forward multicast traffic to the actual destination ports. However, by
default, layer 2 switches treat multicast traffic as broadcast traffic. To take advantage of network
filtering with layer 2 devices, they must be configured with IGMP snooping enabled (see
Section 18.7.1).

18.5 Fault Tolerance and Redundancy
To achieve fault tolerance and redundancy, configure the DataWriter’s MULTI_CHANNEL
QosPolicy (DDS Extension) (Section 6.5.14) to publish a sample over multiple channels or over
different multicast addresses within a single channel. Figure 18.5 shows how to use overlapping
channels.

If a sample is published to multiple multicast addresses, a DataReader may receive multiple cop-
ies of the sample. By default, duplicates are discarded by the DataReader and not provided to the
application. To change this default behavior, use the Durable Reader State property,
dds.data_reader.state.filter_redundant_samples (see Section 12.4.4).

Market Data Example, continued:

Channel 1, identified by guard filter "Symbol MATCH '[A-M]*'", will be of interest to
DataReaders whose content filter includes at least one stock whose symbol starts with a
letter in the A to K range.

A DataReader with content filter "Symbol MATCH 'GOOG'" will listen on Channel1.

In addition to 'GOOG', the DataReader will also receive samples corresponding to stock
symbols such as 'MSFT' and 'APPL'. The DataReader must filter these samples out.
18-8

Reliability with Multi-Channel DataWriters
18.6 Reliability with Multi-Channel DataWriters

18.6.1 Reliable Delivery

Reliable delivery is only guaranteed when the access_scope in the Subscriber's PRESENTATION
QosPolicy (Section 6.4.6) is set to DDS_INSTANCE_PRESENTATION_QOS (default value) and
the filters in the DataWriter's MULTI_CHANNEL QosPolicy (DDS Extension) (Section 6.5.14))
are keyed-only based.

If any of the guard filters are based on non-key fields, Connext only guarantees reception of the
most recent data from the multi-channel DataWriter.

Figure 18.5 Using the MULTI_CHANNEL QosPolicy with Overlapping Channels

// initialize writer_qos with default values
publisher->get_default_datawriter_qos(writer_qos);

// Initialize MULTI_CHANNEL Qos Policy

// Assign the filter name
// Possible options: DDS_STRINGMATCHFILTER_NAME and DDS_SQLFILTER_NAME
writer_qos.multi_channel.filter_name = (char*) DDS_STRINGMATCHFILTER_NAME;

// Create two channels
writer_qos.multi_channel.channels.ensure_length(2,2);

// First channel
writer_qos.multi_channel.channels[0].filter_expression =

DDS_String_dup("Symbol MATCH '[A-M]*'");
writer_qos.multi_channel.channels[0].multicast_settings.ensure_length(2,2);
writer_qos.multi_channel.channels[0].multicast_settings[0].receive_port = 8700;
writer_qos.multi_channel.channels[0].multicast_settings[0].receive_address =

DDS_String_dup("239.255.1.1");
// Second channel
writer_qos.multi_channel.channels[1].multicast_settings.ensure_length(1,1);
writer_qos.multi_channel.channels[1].multicast_settings[0].receive_port = 8800;
writer_qos.multi_channel.channels[1].multicast_settings[0].receive_address =

DDS_String_dup("239.255.1.2");
writer_qos.multi_channel.channels[1].filter_expression =

DDS_String_dup("Symbol MATCH '[C-Z]*'");

// Symbols starting with [C-M] will be published in two different channels

// Create writer
writer = publisher->create_datawriter(

topic, writer_qos, NULL, DDS_STATUS_MASK_NONE);
18-9

Performance Considerations
18.6.2 Reliable Protocol Considerations

Reliability is maintained on a per-channel basis. Each channel has its own reliability channel
send window:

❏ low_watermark and high_watermark: The low and high watermarks control the send-
window levels (when not using batching, this is a number of samples; when using batch-
ing, this is a number of batches) that determine when to switch between regular and fast
heartbeat rates (see Section 6.5.3.1). With multi-channel DataWriters, high_watermark
and low_watermark are computed from the channel with the smaller send-window size
and they apply to all the channels. Therefore, because the watermark is determined by
the channel with the smallest send-window, periodic heartbeating cannot be controlled
on a per-channel basis.

❏ heartbeats_per_max_samples: This field defines the number of piggyback heartbeats per
current send-window. For multi-channel DataWriters, piggyback heartbeats are sent per
channel. The send-window size that is used to calculate the piggyback heartbeat rate is
the smallest across all channels..

18.7 Performance Considerations

18.7.1 Network-Switch Filtering

By default, multicast traffic is treated as broadcast traffic by layer 2 switches. To avoid flooding
the network with broadcast traffic and take full advantage of network filtering, the layer 2
switches should be configured to use IGMP snooping. Refer to your switch’s manual for specific
instructions.

Market Data Example, continued:

Given the following IDL description for our MarketData topic type:

Struct MarketData {
 string<255> Symbol; //@key
 double Price;
}

A guard filter "Symbol MATCH 'APPL'" is keyed-only based.

A guard filter "Symbol MATCH 'APPL' and Price < 100" is not keyed-only based.
18-10

Performance Considerations
When IGMP snooping is enabled, a switch can route a multicast packet to just those ports that
subscribe to it, as seen in Figure 18.6.

18.7.2 DataWriter and DataReader Filtering

Where Does the Filtering Occur? (Section 18.4) describes the three places where filtering can
occur with Multi-channel DataWriters. To improve performance when filtering occurs on the
reader and/or writer sides, use filter expressions that are only based on keys (see Section 2.2.2).
Then the results of the filter are cached in a hash table on a per-key basis.

You can also improve performance by increasing the number of buckets associated with the
hash table. To do so, use the instance_hash_buckets field in the RESOURCE_LIMITS QosPolicy
(Section 6.5.20) on both the writer and reader sides. A higher number of buckets will provide
better performance, but requires more resources.

Figure 18.6 IGMP Snooping

Market Data Example, continued:

The filter expressions in the Market Data example are based on the value of the
field, Symbol. To make filter operations on this field more efficient, declare Sym-
bol as a key. For example:

struct {
 string<MAX_SYMBOL_SIZE> Symbol; //@key
}

18-11

Chapter 19 Connext Threading Model

This chapter describes the internal threads that Connext uses for sending and receiving data,
maintaining internal state, and calling user code when events occur such as the arrival of new
data samples. It may be important for you to understand how these threads may interact with
your application.

A DomainParticipant uses three types of threads. The actual number of threads depends on the
configuration of various QosPolicies as well as the implementation of the transports used by the
DomainParticipant to send and receive data.

Through various QosPolicies, the user application can configure the priorities and other proper-
ties of the threads created by Connext. In real-time systems, the user often needs to set the priori-
ties of all threads in an application relative to each other for the proper operation of the system.

This chapter includes:

❏ Database Thread (Section 19.1)

❏ Event Thread (Section 19.2)

❏ Receive Threads (Section 19.3)

❏ Exclusive Areas, Connext Threads and User Listeners (Section 19.4)

❏ Controlling CPU Core Affinity for RTI Threads (Section 19.5)

❏ Configuring Thread Settings with XML (Section 19.6)

19.1 Database Thread
Connext uses internal data structures to store information about locally-created and remotely-
discovered Entities. In addition, it will store various objects and data used by Connext for main-
taining proper communications between applications. This “database” is created for each
DomainParticipant.

As Entities and objects are created and deleted during the normal operation of the user applica-
tion, different entries in the database may be created and deleted as well. Because multiple
threads may access objects stored in the database simultaneously, the deletion and removal of an
object from the database happens in two phases to support thread safety.

When an entry/object in the database is deleted either through the actions of user code or as a
result of a change in system state, it is only marked for deletion. It cannot be actually deleted
and removed from the database until Connext can be sure that no threads are still accessing the
object. Instead, the actual removal of the object is delegated to an internal thread that Connext
spawns to periodically wake up and purge the database of deleted objects.
19-1

Event Thread
This thread is known as the Database thread (also referred to as the database cleanup thread).

❏ Only one Database thread is created for each DomainParticipant.

The DATABASE QosPolicy (DDS Extension) (Section 8.5.1) of the DomainParticipant configures
both the resources used by the database as well as the properties of the cleanup thread. Specifi-
cally, the user may want to use this QosPolicy to set the priority, stack size and thread options of
the cleanup thread. You must set these options before the DomainParticipant is created, because
once the cleanup thread is started as a part of participant creation, these properties cannot be
changed.

The period at which the database-cleanup thread wakes up to purge deleted objects is also set in
the DATABASE QosPolicy. Typically, this period is set to a long time (on the order of a minute)
since there is no need to waste CPU cycles to wake up a thread only to find nothing to do.

However, when a DomainParticipant is destroyed, all of the objects created by the DomainPartici-
pant will be destroyed as well. Many of these objects are stored in the database, and thus must be
destroyed by the cleanup thread. The DomainParticipant cannot be destroyed until the database
is empty and is destroyed itself. Thus, there is a different parameter in the DATABASE QosPol-
icy, shutdown_cleanup_period, that is used by the database cleanup thread when the Domain-
Participant is being destroyed. Typically set to be on the order of a second, this parameter
reduces the additional time needed to destroy a DomainParticipant simply due to waiting for the
cleanup thread to wake up and purge the database.

19.2 Event Thread
During operation, Connext must wake up at different intervals to check the condition of many
different time-triggered or periodic events. These events are usually to determine if something
happened or did not happen within a specified time. Often the condition must be checked peri-
odically as long as the Entity for which the condition applies still exists. Also, the DomainPartici-
pant may need to do something periodically to maintain connections with remote Entities.

For example, the DEADLINE QosPolicy (Section 6.5.5) is used to ensure that DataWriters have
published data or DataReaders have received data within a specified time period. Similarly, the
LIVELINESS QosPolicy (Section 6.5.13) configures Connext both to check periodically to see if a
DataWriter has sent a liveliness message and to send liveliness messages periodically on the
behalf of a DataWriter. As a last example, for reliable connections, heartbeats must be sent peri-
odically from the DataWriter to the DataReader so that the DataReader can acknowledge the data
that it has received, see Chapter 10: Reliable Communications.

Connext uses an internal thread, known as the Event thread, to do the following:

❏ Check whether or not deadlines have been missed

❏ Invoke user-installed Listener callbacks to notify the application of missed deadlines

❏ Send heartbeats to maintain reliable connections

Note: Only one Event thread is created per DomainParticipant.

The EVENT QosPolicy (DDS Extension) (Section 8.5.5) of the DomainParticipant configures both
the properties and resources of the Event thread. Specifically, the user may want to use this
QosPolicy to set the priority, stack size and thread options of the Event thread. You must set
these options before the DomainParticipant is created, because once the Event thread is started as
a part of participant creation, these properties cannot be changed.

The EVENT QosPolicy also configures the maximum number of events that can be handled by
the Event thread. While the Event thread can only service a single event at a time, it must main-
19-2

Receive Threads
tain a queue to hold events that are pending. The initial_count and max_count parameters of
the QosPolicy set the initial and maximum size of the queue.

The priority of the Event thread should be carefully set with respect to the priorities of the other
threads in a system. While many events can tolerate some amount of latency between the time
that the event expires and the time that the Event thread services the event, there may be appli-
cation-specific events that must be handled as soon as possible.

For example, if an application uses the liveliness of a remote DataWriter to infer the correct oper-
ation of a remote application, it may be critical for the user code in the DataReader Listener call-
back, on_liveliness_changed(), to be called by the Event thread as soon as it can be determined
that the remote application has died. The operating system uses the priority of the Event thread
to schedule this action.

19.3 Receive Threads
Connext uses internal threads, known as Receive threads, to process the data packets received
via underlying network transports. These data packets may contain meta-traffic exchanged by
DomainParticipants for discovery, or user data (and meta-data to support reliable connections)
destined for local DataReaders.

As a result of processing packets received by a transport, a Receive thread may respond by send-
ing packets on the network. Discovery packets may be sent to other DomainParticipants in
response to ones received. ACK/NACK packets are sent in response to heartbeats to support a
reliable connection.

When a data-sample arrives, the Receive thread is responsible for deserializing and storing the
data in the receive queue of a DataReader as well as invoking the on_data_available() DataRead-
erListener callback (see Section 7.3.4).

The number of Receive threads that Connext will create for a DomainParticipant depends on how
you have configured the QosPolicies of DomainParticipants, DataWriters and DataReaders as well
as on the implementation of a particular transport. The behavior of the builtin transports is well
specified. However, if a custom transport is installed for a DomainParticipant, you will have to
understand how the custom transport works to predict how many Receive threads will be cre-
ated.

The following discussion applies on a per-transport basis. A single Receive thread will only ser-
vice a single transport.

Connext will try to create receive resources1 for every port of every transport on which it is con-
figured to receive messages. The TRANSPORT_UNICAST QosPolicy (DDS Extension) (Section
6.5.23) for DomainParticipant, DataWriters, and DataReaders, the TRANSPORT_MULTICAST
QosPolicy (DDS Extension) (Section 7.6.5) for DataReaders and the DISCOVERY QosPolicy (DDS
Extension) (Section 8.5.2) for DomainParticipants all configure the number of ports and the num-
ber of transports that Connext will try to use for receiving messages.

Generally, transports will require Connext to create a new receive resource for every unique port
number. However, this is both dependent on how the underlying physical transport works and
the implementation of the transport plug-in used by Connext. Sometimes Connext only needs to
create a single receive resource for any number of ports.

When Connext finds that it is configured to receive data on a port for a transport for which it has
not already created a receive resource, it will ask the transport if any of the existing receive

1. If UDPv4 was the only transport that Connext supports, we would call these receive resources ‘sockets.’
19-3

Exclusive Areas, Connext Threads and User Listeners
resources created for the transport can be shared. If so, then Connext will not have to create a
new receive resource. If not, then Connext will.

The TRANSPORT_UNICAST, TRANSPORT_MULTICAST, and DISCOVERY QosPolicies allow
you customize ports for receiving user data (on a per-DataReader basis) and meta-traffic (DataW-
riters and DomainParticipants); ports can be also set differently for unicast and multicast.

How do receive resources relate to Receive threads? Connext will create a Receive thread to ser-
vice every receive resource that is created. If you use a socket analogy, then for every socket cre-
ated, Connext will use a separate thread to process the data received on that socket.

So how many thread will Connext create by default–using only the builtin UDPv4 and shared
memory transports and without modifying any QosPolicies?

Three Receive threads are created for meta-traffic1:

❏ 2 for unicast (one for UDPv4, one for shared memory)

❏ 1 for multicast (for UDPv4)2

Two Receive threads created for user data:

❏ 2 for unicast (UDPv4, shared memory)

❏ 0 for multicast (because user data is not sent via multicast by default)

Therefore, by default, you will have a total of five Receive threads per DomainParticipant. By
using only a single transport and disabling multicast, a DomainParticipant can have as few as 2
Receive threads.

Similar to the Database and Event threads, a Receive thread is configured by the
RECEIVER_POOL QosPolicy (DDS Extension) (Section 8.5.6). However, note that the thread
properties in the RECEIVER_POOL QosPolicy apply to all Receive threads created for the
DomainParticipant.

19.4 Exclusive Areas, Connext Threads and User Listeners
Connext Event and Receive threads may invoke user code through the Listener callbacks installed
on different Entities while executing internal Connext code. In turn, user code inside the call-
backs may invoke Connext APIs that reenter the internal code space of Connext. For thread safety,
Connext allocates and uses mutual exclusion semaphores (mutexes).

As discussed in Section 4.5, when multiple threads and multiple mutexes are mixed together,
deadlock may result. To prevent deadlock from occurring, Connext is designed using careful
analysis and following rules that force mutexes to be taken in a certain order when a thread
must take multiple mutexes simultaneously.

However, because the Event and Receive threads already hold mutexes when invoking user call-
backs, and because the Connext APIs that the user code can invoke may try to take other
mutexes, deadlock may still result. Thus, to prevent user code to cause internal Connext threads
to deadlock, we have created a concept called Exclusive Areas (EA) that follow rules that pre-
vent deadlock. The more EAs that exist in a system, the more concurrency is allowed through
Connext code. However, the more EAs that exist, the more restrictions on the Connext APIs that
are allowed to be invoked in Entity Listener callbacks.

1. Meta-traffic refers to traffic internal to Connext related to dynamic discovery (see Chapter 14: Discovery).
2. Multicast is not supported by shared memory transports.
19-4

Controlling CPU Core Affinity for RTI Threads
The EXCLUSIVE_AREA QosPolicy (DDS Extension) (Section 6.4.3) control how many EAs will
be created by Connext. For a more detailed discussion on EAs and the restrictions on the use of
Connext APIs within Entity Listener methods, please see Exclusive Areas (EAs) (Section 4.5).

19.5 Controlling CPU Core Affinity for RTI Threads
Two fields in the DDS_ThreadSettings_t structure (see Section 17.8.7) are related to CPU core
affinity: cpu_list and cpu_rotation.

Note: Although DDS_ThreadSettings_t is used in the Event, Database, ReceiverPool, and Asyn-
chronousPublisher QoS policies, cpu_list and cpu_rotation are only relevant in the
RECEIVER_POOL QosPolicy (DDS Extension) (Section 8.5.6).

While most thread-related QoS settings apply to a single thread, the ReceiverPool QoS policy’s
thread-settings control every receive thread created. In this case, there are several schemes to
map M threads to N processors; cpu_rotation controls which scheme is used.

The cpu_rotation determines how cpu_list affects processor affinity for thread-related QoS poli-
cies that apply to multiple threads. If cpu_list is empty, cpu_rotation is irrelevant since no affin-
ity adjustment will occur. Suppose instead that cpu_list ={0,1} and that the middleware creates
three receive threads: {A, B, C}. If cpu_rotation is set to CPU_NO_ROTATION, threads A, B and
C will have the same processor affinities (0-1), and the OS will control thread scheduling within
this bound.

CPU affinities are commonly denoted with a bitmask, where set bits represent allowed proces-
sors to run on. This mask is printed in hex, so a CPU affinity of 0-1 can be represented by the
mask 0x3.

If cpu_rotation is CPU_RR_ROTATION, each thread will be assigned in round-robin fashion to
one of the processors in cpu_list; perhaps thread A to 0, B to 1, and C to 0. Note that the order in
which internal middleware threads spawn is unspecified.

The Platform Notes describe which architectures support this feature.

19.6 Configuring Thread Settings with XML
Table 19.1 describes the XML tags that you can use to configure thread settings. For more infor-
mation on thread settings, see:

❏ Thread Settings (Section 17.8.7)

❏ The Platform Notes

❏ The API Reference HTML documentation (select Modules, RTI Connext DDS API Ref-
erence,Infrastructure Module, QoS Policies, Extended QoS Support, Thread Settings)
19-5

Configuring Thread Settings with XML
Table 19.1 XML Tags for ThreadSettings_t

Tags within
<thread> Description

Number
of Tags

Allowed

<cpu_list>

Each <element> specifies a processor on which the thread may run.
<cpu_list>

 <element>value</element>

</cpu_list>

Only applies to platforms that support controlling CPU core affinity (see
Section 19.5 and the Platform Notes).

0 or 1

 <cpu_rotation>

Determines how the CPUs in <cpu_list> will be used by the thread. The
value can be either:

• THREAD_SETTINGS_CPU_NO_ROTATION

The thread can run on any listed processor, as determined by OS
scheduling.

• THREAD_SETTINGS_CPU_RR_ROTATION

The thread will be assigned a CPU from the list in round-robin
order.

Only applies to platforms that support controlling CPU core affinity (see
the Platform Notes).

0 or 1

 <mask>

A collection of flags used to configure threads of execution. Not all of these
options may be relevant for all operating systems. May include these bits:

• STDIO

• FLOATING_POINT

• REALTIME_PRIORITY

• PRIORITY_ENFORCE

It can also be set to a combination of the above bits by using the “or” sym-
bol (|), such as STDIO|FLOATING_POINT.

Default: MASK_DEFAULT

0 or 1

<priority>

Thread priority. The value can be specified as an unsigned integer or one of
the following strings.

• THREAD_PRIORITY_DEFAULT

• THREAD_PRIORITY_HIGH

• THREAD_PRIORITY_ABOVE_NORMAL

• THREAD_PRIORITY_NORMAL

• THREAD_PRIORITY_BELOW_NORMAL

• THREAD_PRIORITY_LOW

When using an unsigned integer, the allowed range is platform-dependent.

When thread priorities are configured using XML, the values are consid-
ered native priorities.

Example:

<thread>

<mask>STDIO|FLOATING_POINT</mask>

<priority>10</priority>
<stack_size>THREAD_STACK_SIZE_DEFAULT</stack_size>

</thread>

When the XML file is loaded using the Java API, the priority is a native pri-
ority, not a Java thread priority.

0 or 1
19-6

Configuring Thread Settings with XML
<stack_size>
Thread stack size, specified as an unsigned integer or set to the string
THREAD_STACK_SIZE_DEFAULT. The allowed range is platform-depen-
dent.

0 or 1

Table 19.1 XML Tags for ThreadSettings_t

Tags within
<thread> Description

Number
of Tags

Allowed
19-7

Chapter 20 Sample-Data Memory Management

This chapter describes how Connext manages the memory for the data samples that are sent by
DataWriters and received by DataReaders.

20.1 Sample-Data Memory Management for DataWriters
To configure sample-data memory management on the writer side, use the PROPERTY QosPol-
icy (DDS Extension) (Section 6.5.17). Table 20.1 lists the supported memory-management prop-
erties for DataWriters.

Table 20.1 Sample-Data Memory Management Properties for DataWriters

Property Description

dds.data_writer.
history.memory_manager.
fast_pool.pool_buffer_max_size

If the serialized size of the sample is <= pool_buffer_max_size:
The buffer is obtained from a pre-allocated pool and released when the
DataWriter is deleted.
If the serialized size of the sample is > pool_buffer_max_size:
The buffer is dynamically allocated from the heap and returned to the
heap when the sample is removed from the DataWriter’s queue.
Default: -1 (UNLIMITED). All sample buffers are obtained from the pre-
allocated pool; the buffer size is the maximum serialized size of the sam-
ples, as returned by the type plugin get_serialized_sample_max_size()
operation.

See Memory Management without Batching (Section 20.1.1).

dds.data_writer.
history.memory_manager.
java_stream.min_size

Only supported when using the Java API.
Defines the minimum size of the buffer that will be used to serialize sam-
ples.
When a DataWriter is created, the Java layer will allocate a buffer of this
size and associate it with the DataWriter.
Default: -1 (UNLIMITED). This is a sentinel that refers to the maximum
serialized size of a sample, as returned by the type plugin
get_serialized_sample_max_size() operation
See Writer-Side Memory Management when Using Java (Section 20.1.3).
20-1

Sample-Data Memory Management for DataWriters
20.1.1 Memory Management without Batching

When the write() operation is called on a DataWriter that does not have batching enabled, the
DataWriter serializes (marshals) the input sample and stores it in the DataWriter’s queue (see
Figure 20.1). The size of this queue is limited by initial_samples/max_samples in the
RESOURCE_LIMITS QosPolicy (Section 6.5.20).

Each sample in the queue has an associated serialization buffer in which the DataWriter will seri-
alize the sample. This buffer is either obtained from a pre-allocated pool (if the serialized size of
the sample is <= dds.data_writer.history.memory_manager.fast_pool.pool_buffer_max_size)
or the buffer is dynamically allocated from the heap (if the serialized size of the sample is >
dds.data_writer.history.memory_manager.fast_pool.pool_buffer_max_size). See Table 20.1,

The default value of pool_buffer_max_size is -1 (UNLIMITED). In this case, all the samples
come from the pre-allocated pool and the size of the buffers is the maximum serialized size of
the samples as returned by the type plugin get_serialized_sample_max_size() operation. The
default value is optimum for real-time applications where determinism and predictability is a
must. The trade-off is higher memory usage, especially in cases where the maximum serialized
size of a sample is large.

20.1.2 Memory Management with Batching

When the write() operation is called on a DataWriter for which batching is enabled (see BATCH
QosPolicy (DDS Extension) (Section 6.5.2)), the DataWriter serializes (marshals) the input sample
into the current batch buffer (see Figure 20.2). When the batch is flushed, it is stored in the
DataWriter’s queue along with its samples. The DataWriter queue can be sized based on:

❏ The number of samples, using initial_samples/max_samples (both set in the
RESOURCE_LIMITS QosPolicy (Section 6.5.20))

❏ The number of batches, using initial_batches/max_batches (both set in the
DATA_WRITER_RESOURCE_LIMITS QosPolicy (DDS Extension) (Section 6.5.4))

❏ Or a combination of max_samples and max_batches

When batching is enabled, the memory associated with the batch buffers always comes from a
pre-allocated pool. The size of the buffers is determined by the QoS values max_samples and
max_data_bytes (both set in the BATCH QosPolicy (DDS Extension) (Section 6.5.2)) as follows:

❏ If max_data_bytes is a finite value, the size of the buffer is the minimum of this value
and the maximum serialized size of a sample (max_sample_serialized_size) as returned
by the type-plugin get_serialized_sample_max_size(), since that batch must contain at least
one sample).

❏ Otherwise, the size of the buffer is calculated by
(batch.max_samples * max_sample_serialized_size).

dds.data_writer.
history.memory_manager.
java_stream.trim_to_size

Only supported when using the Java API.
A boolean value that controls the growth of the serialization buffer.

If set to 0 (default): The buffer will not be reallocated unless the serialized
size of a new sample is greater than the current buffer size.
If set to 1: The buffer will be reallocated with each new sample to a
smaller size in order to just fit the sample serialized size. The new size
cannot be smaller than min_size.
See Writer-Side Memory Management when Using Java (Section 20.1.3).

Table 20.1 Sample-Data Memory Management Properties for DataWriters

Property Description
20-2

Sample-Data Memory Management for DataWriters
Notice that for variable-size samples (for example, samples containing sequences) it is good
practice to size the buffer based on max_data_bytes, since this leads to more efficient memory
usage.

Note: The value of the property dds.data_writer.his-
tory.memory_manager.fast_pool.pool_buffer_max_size is ignored by DataWriters with batch-
ing enabled.

20.1.3 Writer-Side Memory Management when Using Java

When the Java API is used, Connext allocates a Java buffer per DataWriter; this buffer is used to
serialize the Java samples published by the DataWriters. After a sample is serialized into a Java

sample serialized size <=
pool_buffer_max_size

serialize_sample

WRITE

pool_buffer_max_size >=

max_sample_serialized_size
or

pool_buffer_max_size == -1

get sample serialized size

get serialization buffer from
pool

get serialization buffer from
heap

add sample to
queue

YES

NO

YES

NO

Sample
2

Sample
1

Sample
3

Sample
4

Sample
5

DataWriter's Queue

Initial samples:
resource_limits.initial_samples
Maximum samples:
resource_limits.max_samples

Figure 20.1 DataWriter Actions when Batching is Disabled
20-3

Sample-Data Memory Management for DataWriters
buffer, the result is copied into the underlying native buffer described in Memory Management
without Batching (Section 20.1.1) and Memory Management with Batching (Section 20.1.2).

You can use the following two DataWriter properties to control memory allocation for the Java
buffers that are used for serialization (see Table 20.1):

❏ dds.data_writer.history.memory_manager.java_stream.min_size

❏ dds.data_writer.history.memory_manager.java_stream.trim_to_size

20.1.4 Writer-Side Memory Management when Working with Large Data

Large samples are samples with a large maximum size relative to the memory available to the
application. Notice the use of the word maximum, as opposed to actual size.

WRITE

Is batch.max_samples

exceeded

YES

serialize sample in batch
buffer

Is batch.max_data_bytes

exceeded

get new batch serialization
buffer from pool

NO

flush batch

END

Batch 1

DataWriter's Queue

Initial samples:
resource_limits.initial_samples
Maximum samples:
resource_limits.max_samples
Initial batches:
writer_resource_limits.initial_batches
Maximum batches:
writer_resource_limits.max_batches

Sample
1

Sample
2

Batch 2

Sample
3

Sample
4

NO

add batch to queue

Figure 20.2 DataWriter Actions when Batching is Enabled
20-4

Sample-Data Memory Management for DataWriters
As described in Memory Management without Batching (Section 20.1.1), by default, the middle-
ware preallocates the samples in the DataWriter queue to their maximum serialized size. This
may lead to high memory-usage in DataWriters where the maximum serialized size of a sample
is large.

For example, let’s consider a video conferencing application:

struct VideoFrame {
boolean keyFrame;
sequence<octet,1024000> data;

};

The above IDL definition can be used to work with video streams.

Each frame is transmitted as a sequence of octets with a maximum size of 1 MB. In this example,
the video stream has two types of frames: I-Frames (also called key frames) and P-Frames (also
called delta frames). I-Frames represent full images and do not require information about the
preceding frames in order to be decoded. P-frames require information about the preceding
frames in order to be decoded.

A video stream consists of a sequence of frames in which I-Frames are followed by multiple P-
frames. The number of P-frames between I-Frames affects the video quality since, in a non-reli-
able configuration, losing a P-frame will degrade the image quality until the next I-frame is
received.

For our use case, let’s assume that I-frames may require 1 MB, while P-Frames require less than
32 KB. Also, there are 20 times more P-Frames than I-Frames.

Although the actual size of the frames sent by the Connext application is usually significantly
smaller than 1 MB since they are P-Frames, the default memory management will use 1 MB per
frame in the DataWriter queue. If resource_limits.max_samples is 256, the DataWriter may end
up allocating 256 MB.

Using some domain-specific knowledge, such as the fact that most of the P-Frames have a size
smaller than 32 KB, we can optimize memory usage in the DataWriter’s queue while still main-
taining determinism and predictability for the majority of the frames sent on the wire.

The following XML file shows how to optimize the memory usage for the previous example
(rather than focusing on efficient usage of the available network bandwidth).

<?xml version="1.0"?>
<!-- XML QoS Profile for large data -->
<dds xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<!-- QoS Library containing the QoS profile used for large data -->
<qos_library name="ReliableLargeDataLibrary">

<!-- QoS profile to optimize memory usage in DataWriters sending
 large images
-->
<qos_profile name="ReliableLargeDataProfile" is_default_qos="true">
<!-- QoS used to configure the DataWriter -->

<datawriter_qos>
<resource_limits>

<max_samples>32</max_samples>
<!— No need to pre-allocate 32 images unless needed -->
<initial_samples>1</initial_samples>

</resource_limits>
<property>

<value>
<!-- For frames with size smaller or equal to 33 KB the

 serialization buffer is obtained from a
 pre-allocated pool. For sizes greater than 33 KB,
 the DataWriter will use dynamic memory allocation.
20-5

Sample-Data Memory Management for DataReaders
-->
<element>

<name>
 dds.data_writer.history.memory_manager.fast_pool.pool_buffer_max_size

</name>
<value>33792</value>

</element>
<!-- Java will use a 33 KB buffer to serialize all

 frames with a size smaller than or equal to 33 KB.
 When an I-frame is published, Java will reallocate
 the serialization buffer to match the serialized
 size of the new frame.

-->
<element>

<name>
dds.data_writer.history.memory_manager.java_stream.min_size

</name>
<value>33792</value>

</element>
<element>

<name>
dds.data_writer.history.memory_manager.java_stream.trim_to_size

</name>
<value>1</value>

</element>
</value>

</property>
</datawriter_qos>

</qos_profile>
</qos_library>

</dds>

Working with large data samples will likely require throttling the network traffic generated by
single samples. For additional information on shaping network traffic, see FlowControllers
(DDS Extension) (Section 6.6).

20.2 Sample-Data Memory Management for DataReaders
The data samples received by a DataReader are deserialized (demarshaled) and stored in the
DataReader’s queue (see Figure 20.3). The size of this queue is limited by initial_samples/
max_samples in the RESOURCE_LIMITS QosPolicy (Section 6.5.20).

20.2.1 Memory Management for DataReaders Using Generated Type-Plugins

Figure 20.3 shows how samples are processed and added to the DataReader’s queue.

The RTPS DATA samples received by a DataReader can be either batch samples or individual
samples. The DataReader queue does not store batches. Therefore, each one of the samples within
a batch will be deserialized and processed individually.

When the DataReader processes a new sample, it will deserialize it into a sample obtained from a
pre-allocated pool. To provide predictability and determinism, the sample obtained from the
pool is allocated to its maximum size. For example, with the following IDL type, each sample in
the DataReader queue will consume 1 MB, even if the actual size is smaller.
20-6

Sample-Data Memory Management for DataReaders
struct VideoFrame {
boolean keyFrame;
sequence<octet,1024000> data;

};

Currently, there are no configuration settings to change the default memory allocation policy for
DataReaders using type plugin code generated by rtiddsgen.

20.2.2 Reader-Side Memory Management when Using Java

When the Java API is used with DataReaders using generated type-plugins, Connext allocates a
Java buffer per DataReader; this buffer is used to copy the native serialized data, so that the
received samples can be deserialized into the Java objects obtained from the sample pool in
Figure 20.3.

RECEIVE
RTPS

SAMPLE

 Are there more samples?

add sample to queue

Sample
1

Sample
2

Sample
3

DataReader's Queue

Initial samples:
resource_limits.initial_samples
Maximum samples:
resource_limits.max_samples

get sample from sample pool

get first data
sample in RTPS

sample

END

deserialize_sample

get next sample in RTPS
sample

Sample
4

NO

NO

Figure 20.3 Adding Samples to DataReader’s Queue
20-7

Sample-Data Memory Management for DataReaders
You can use the DataReader properties in Table 20.2 to control memory allocation for the Java
buffer used for deserialization:

20.2.3 Memory Management for DynamicData DataReaders

Unlike DataReaders that use generated type-plugin code, DynamicData DataReaders provide con-
figuration mechanisms to optimize the memory usage for use cases involving large data sam-
ples.

A DynamicData sample stored in the DataReader’s queue has an associated underlying buffer
that contains the serialized representation of the sample. The buffer is allocated according to the
configuration provided in the serialization member of the DynamicDataProperty_t used to cre-
ate the DynamicDataTypeSupport (see Interacting Dynamically with User Data Types (Section
3.8)).

struct DDS_DynamicDataProperty_t {
...
DDS_DynamicDataTypeSerializationProperty_t serialization;

}

struct DDS_DynamicDataTypeSerializationProperty_t {
...
DDS_UnsignedLong max_size_serialized;
DDS_UnsignedLong min_size_serialized;
DDS_Boolean trim_to_size;

}

Table 20.4 describes the members of DDS_DynamicDataTypeSerializationProperty_t.

Table 20.2 Sample-Data Memory Management Properties for DataReaders when Using Java API

Property Description

dds.data_reader.
history.memory_manager.
java_stream.min_size

Only supported when using the Java API.
Defines the minimum size of the buffer used for the serialized data.
When a DataReader is created, the Java layer will allocate a buffer of this size
and associate it with the DataReader.
Default: -1 (UNLIMITED) This is a sentinel to refer to the maximum serialized
size of a sample, as returned by the type plugin method
get_serialized_sample_max_size().

dds.data_reader.
history.memory_manager.
java_stream.trim_to_size

Only supported when using the Java API.
A Boolean value that controls the growth of the deserialization buffer.
If set to 0 (the default), the buffer will not be re-allocated unless the serialized
size of a new sample is greater than the current buffer size.
If set to 1, the buffer will be re-allocated with each new sample in order to just
fit the sample serialized size. The new size cannot be smaller than min_size.

Table 20.4 struct DDS_DynamicDataTypeSerializationProperty_t

Name Description

max_size_serialized

Defines the maximum size of the buffer that will contain the serialized sample.
Default: 0xFFFFFFFF, indicates that Connext must use the maximum serialized size
of a sample according to the type information. Except in very specific scenarios, the
value max_size_serialized should always be the default.
20-8

Sample-Data Memory Management for DataReaders
Figure 20.5 shows how samples are allocated in the DataReader queue for DynamicData
DataReaders.

min_size_serialized

Defines the minimum size of the buffer used to hold the serialized data in a Dynam-
icData object.
Default: 0xFFFFFFFF, a sentinel that indicates that this value must be equal to the
value specified in max_size_serialized.

trim_to_size

Controls the growth of the serialization buffer in a DynamicData object.
If set to 0 (default): The buffer will not be reallocated unless the serialized size of the
incoming sample is greater than the current buffer size.
If set to 1: The buffer of a DynamicData object obtained from the sample pool will be
re-allocated to just fit the size of the serialized data of the incoming sample. The new
size cannot be smaller than min_size_serialized.

Table 20.4 struct DDS_DynamicDataTypeSerializationProperty_t

Name Description

Get new
DynamicData

sample from pool

get DynamicData sample
from sample pool

dynamicdata_buffer_size >=
serialized_sample_size

dynamicdata_buffer_size ==
serialized_sample_sizeDONE

If serialized_sample_size <
min_size_serialized

reallocate DynamicData
buffer to min_size_serialized

otherwise
reallocate DynamicData

buffer to
serialized_sample_size

DONE

YES

YES

NO

trim_to_size == TRUEDONE

NO

NO

Figure 20.5 How samples are Allocated in DataReader Queue for DynamicData DataReaders
20-9

Sample-Data Memory Management for DataReaders
20.2.6 Memory Management for Fragmented Samples

When a DataWriter writes samples with a serialized size greater than the minimum of the largest
transport message sizes across all transports installed with the DataWriter, the samples are frag-
mented into multiple RTPS fragment messages.

The different fragments associated with a sample are assembled in the DataReader side into a sin-
gle buffer that will contain the sample serialized data after the last fragment is received.

By default, the DataReader keeps a pool of pre-allocated serialization buffers that will be used to
reconstruct the serialized data of a sample from the different fragments. Each buffer hold one
individual sample and it has a size equal to the maximum serialized size of a sample. The pool
size can be configured using the QoS values initial_fragmented_samples and
max_fragmented_samples in DATA_READER_RESOURCE_LIMITS QosPolicy (DDS Exten-
sion) (Section 7.6.2).

The main disadvantage in pre-allocating the serialization buffers is an increase in memory
usage, especially when the maximum serialized of a sample is quite large. Connext offers a set-
ting that allows memory for a sample to be allocated from the heap the first time a fragment is
received. The amount of memory allocated equals the amount of memory needed to store all
fragments in the sample.

20.2.7 Reader-Side Memory Management when Working with Large Data

This section describes how to configure the DataReader side of the videoconferencing application
introduced in Writer-Side Memory Management when Working with Large Data (Section 20.1.4)
to optimize memory usage.

The following XML file can be used to optimize the memory usage in the previous example:

<?xml version="1.0"?>
<!-- XML QoS Profile for large data -->
<dds xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<!-- QoS Library containing the QoS profile used for large data -->
<qos_library name="ReliableLargeDataLibrary">

<!-- QoS profile used to optimize the memory usage in a DataWriter
sending large data images

-->
<qos_profile name="ReliableLargeDataProfile" is_default_qos="true">

<!-- QoS used to configure the DataWriter -->

<datareader_qos>
<history>

<kind>KEEP_ALL_HISTORY_QOS</kind>
</history>

<resource_limits>
<max_samples>32</max_samples>
<!— No need to pre-allocate 32 frames unless needed -->
<initial_samples>1</initial_samples>

</resource_limits>

<reader_resource_limits>
<!-- Since the video frame samples have a large maximum

 serialized size we can configure the fragmented samples
 pool to use dynamic memory allocation. As an alternative,
 reduce max_fragmented_samples. However, that may cause
 fragment retransmission.
20-10

http://www.w3.org/2001/XMLSchema-instance

Sample-Data Memory Management for DataReaders
-->
<dynamically_allocate_fragmented_samples>

1
</dynamically_allocate_fragmented_samples>

</reader_resource_limits>
<property>

<value>
<!-- Java will use a buffer of 33KB to deserialize all

 frames with a serialized size smaller or equal than
 33KB. When an I-frame is received, Java will
 re-allocate the deserialization buffer to match the
 serialized size of the new frame.

-->
<element>

<name>
dds.data_writer.history.memory_manager.java_stream.min_size

</name>
<value>33792</value>

</element>
<element>

<name>
dds.data_writer.history.memory_manager.java_stream.trim_to_size

</name>
<value>1</value>

</element>
</value>

</property>
</qos_profile>

</qos_library>
</dds>
20-11

Chapter 21 Troubleshooting

This chapter contains tips on troubleshooting Connext applications. For an up-to-date list of fre-
quently asked questions, see the RTI Support Portal, accessible from https://support.rti.com—
select the Find Solution link to see sample code, general information on Connext, performance
information, troubleshooting tips, and technical details.

This chapter contains the following sections:

❏ What Version am I Running? (Section 21.1)

❏ Controlling Messages from Connext (Section 21.2)

21.1 What Version am I Running?
There are two ways to obtain version information:

❏ By looking at the revision files, as described in Section 21.1.1.

❏ Programmatically at run time, as described in Section 21.1.2.

21.1.1 Finding Version Information in Revision Files

In the top-level directory of your Connext installation (${NDDSHOME}), you will find text files
that include revision information. The files are named rev_<product>_rtidds.<version>. For
example, you might see files called rev_host_rtidds.5.x.y and rev_persistence_rtidds5.x.y
(where x and y stand for the version numbers of the current release). Each file contains more
details, such as a patch level and if the product is license managed.

For example:

Host Build 5.x.y rev 04 (0x04050200)

The revision files for Connext target libraries are in the same directory as the libraries
(${NDDSHOME}/lib/<architecture>).

21.1.2 Finding Version Information Programmatically

The methods in the NDDSConfigVersion class can be used to retrieve version information for
the Connext product, the core library, and the C, C++ or Java libraries.

The version information includes four fields:

❏ A major version number

❏ A minor version number
21-1

https://support.rti.com

Controlling Messages from Connext
❏ A release number

❏ A build number

Table 21.4 lists the available operations (they will vary somewhat depending on the program-
ming language you are using; consult the API Reference HTML documentation for more infor-
mation).

The get_product_version() operation returns a reference to a structure of type
DDS_ProductVersion_t:

struct NDDS_Config_ProductVersion_t {
DDS_Char major;
DDS_Char minor;
DDS_Char release;
DDS_Char revision;

};

The other get_*_version() operations return a reference to a structure of type
NDDS_Config_LibraryVersion_t:

struct NDDS_Config_LibraryVersion_t {
DDS_Long major;
DDS_Long minor;
char release;
DDS_Long build;

};

The to_string() operation returns version information for the Connext core, followed by the C
and C++ API libraries, separated by hyphens. For example:

21.2 Controlling Messages from Connext
Connext provides several types of messages to help you debug your system and alert you to
errors during run time. You can control how much information is reported and where it is
logged.

Table 21.1 NDDSConfigVersion Operations

Purpose Operation Description

To retrieve version
information in a struc-
tured format

get_product_version Gets version information for the Connext product.

get_core_version Gets version information for the Connext core library.

get_c_api_version Gets version information for the Connext C library.

get_cpp_api_version Gets version information for the Connext C++ library.

To retrieve version
information in string
format

to_string
Converts the version information for each library into a
string. The strings for each library are put in a single
hyphen-delimited list.

nddscore1.0g.rev0-nddsc1.0g.rev1-nddscpp1.0g.rev0

Core
major: 1
minor: 0
release: g
build: 0

C API:
major: 1
minor: 0
release: g
build: 1

C++ API:
major: 1
minor: 0
release:g
build: 0
21-2

Controlling Messages from Connext
How much information is logged is known as the verbosity setting. Table 21.2 describes the
increasing verbosity levels.

Note that the verbosities are cumulative: logging at a high verbosity means also logging all
lower verbosity messages. If you change nothing, the default verbosity will be set to
NDDS_CONFIG_LOG_VERBOSITY_ERROR.

Caution: Logging at high verbosities can be detrimental to your application's performance. You
should generally not set the verbosity above NDDS_CONFIG_LOG_VERBOSITY_WARNING,
unless you are debugging a specific problem.

You will typically change the verbosity of all of Connext at once. However, in the event that such
a strategy produces too much output, you can further discriminate among the messages you
would like to see. The types of messages logged by Connext fall into the categories listed in
Table 21.3; each category can be set to a different verbosity level.

The methods in the NDDSConfigLogger class can be used to change verbosity settings, as well
as the destination for logged messages. Table 21.4 lists the available operations; consult the API
Reference HTML documentation for more information.

21.2.1 Format of Logged Messages

You can control the amount of information in each message with the set_print_format() opera-
tion. The format options are listed in Table 21.5.

Table 21.2 Message Logging Verbosity Levels

Verbosity
(NDDS_CONFIG_

LOG_VERBOSITY_*)
Description

SILENT No messages will be logged. (lowest verbosity)

ERROR (default level
for all categories)

Log only high-priority error messages. An error indicates something is wrong
with how Connext is functioning. The most common cause of this type of error
is an incorrect configuration.

WARNING
Additionally log warning messages. A warning indicates that Connext is tak-
ing an action that may or may not be what you intended. Some configuration
information is also logged at this verbosity to aid in debugging.

STATUS_LOCAL
Additionally log verbose information about the lifecycles of local Connext
objects.

STATUS_REMOTE
Additionally log verbose information about the lifecycles of remote Connext
objects.

STATUS_ALL
Additionally log verbose information about periodic activities and Connext
threads. (highest verbosity)

Table 21.3 Message Logging Categories

Category
(NDDS_CONFIG_

LOG_CATEGORY_*)
Description

PLATFORM Messages about the underlying platform (hardware and OS).

COMMUNICATION Messages about data serialization and deserialization and network traffic.

DATABASE Messages about the internal database of Connext objects.

ENTITIES Messages about local and remote entities and the discovery process.

API Messages about Connext’s API layer (such as method argument validation).
21-3

Controlling Messages from Connext
Of course, you are not likely to recognize all of the method names; many of the operations that
perform logging are deep within the implementation of Connext. However, in case of errors, log-
ging will typically take place at several points within the call stack; the output thus implies the
stack trace at the time the error occurred. You may only recognize the name of the operation that
was the last to log its message (i.e., the function that called all the others); however, the entire
stack trace is extremely useful to RTI support personnel in the event that you require assistance.

You may notice that many of the logged messages begin with an exclamation point character.
This convention indicates an error and is intended to be reminiscent of the negation operator in
many programming languages. For example, the message “!create socket”in the second line of
the above stack trace means “cannot create socket.”

Table 21.4 NDDSConfigLogger Operations

Purpose Operation Description

Change Verbosity for all
Categories

get_verbosity
Gets the current verbosity.
If per-category verbosities are used, returns the
highest verbosity of any category.

set_verbosity Sets the verbosity of all categories.

Change Verbosity for a
Specific Category

get_verbosity_by_category
Gets/Sets the verbosity for a specific category.

set_verbosity_by_category

Change Destination of
Logged Messages

get_output_file
Returns the file to which messages are being
logged, or NULL for the default destination
(standard output on most platforms).

set_output_file
Redirects future logged messages to the specified
file (or NULL to return to the default).

get_output_device
Returns the logging device installed with the log-
ger.

set_output_device
Registers a specified logging device with the log-
ger. See Customizing the Handling of Generated
Log Messages (Section 21.2.3)

Change Message Format
get_print_format Gets/Sets the current message format that Con-

next is using to log diagnostic information. See
Format of Logged Messages (Section 21.2.1).set_print_format

Table 21.5 Message Formats

Message Format
(NDDS_CONFIG_LOG_

PRINT_FORMAT_*)
Description

DEFAULT Message, method name, and activity context.

TIMESTAMPED Message, method name, activity context, and timestamp.

VERBOSE
Message with all available context information (includes thread
identifier, activity context).

VERBOSE_TIMESTAMPED Message with all available context information and timestamp.

DEBUG Information for internal debugging by RTI personnel.

MINIMAL Message number, method name.

MAXIMAL All available fields.
21-4

Controlling Messages from Connext
21.2.1.1 Timestamps

Reported times are in seconds from a system-dependent starting time; these are equivalent to
the output format from Connext. The timestamp is in the form "ssssss.mmmmmm" where
<ssssss> is a number of seconds, and <mmmmm> is a fraction of a second expressed in micro-
seconds. Enabling timestamps will result in some additional overhead for clock access for every
message that is logged.

Logging of timestamps is not enabled by default. To enable it, use NDDS_Config_Logger
method set_print_format().

21.2.1.2 Thread identification

Thread identification strings uniquely identify for active thread when a message is output to the
console. A thread may be a user (application) thread or one of several types of internal threads.
The possible thread types are:

❏ user thread: U<threadID>

❏ receive thread: rR<thread index><domain ID><app ID>, where thread index is an inte-
ger identifying this receive thread

❏ event thread: revt<domain ID><app ID>

❏ asynchronous publisher thread: rDsp

Logging of thread IDs are not enabled by default. To enable it, use NDDS_Config_Logger
method set_print_format().

21.2.1.3 Hierarchical Context

Many middleware APIs now store information in thread-specific storage about the current oper-
ation, as well as information about which domain (and participant ID) was active, and which
entities were being operated on. In the case of objects that are associated with topics, the topic
name is also stored.

The context field is output by default.

21.2.1.4 Explanation of Context Strings

❏ Domain context

Dxxyy

In this case, xx = participant ID, yy = domain #. For example, D0149 means “domain 49,
participant 01.”

❏ Entity context

Operation on an entity will specify the object and a numeric ID, such as Writer(001A1).
The name will be one of the following:

❏ Topic Context

String Object type

Participant DDS_DomainParticipant

Pub DDS_Publisher

Sub DDS_Subscriber

Topic DDS_Topic

Writer DDS_<*>DataWriter

Reader DDS_<*>DataReader
21-5

Controlling Messages from Connext
T=Hello refers to topic "Hello."

The operations which report context include:

21.2.2 Configuring Logging via XML

Logging can also be configured using the DomainParticipantFactory’s LOGGING QosPolicy
(DDS Extension) (Section 8.4.1) with the tags, <participant_factory_qos><logging>. The fields in
the LoggingQosPolicy are described in XML using a 1-to-1 mapping with the equivalent C rep-
resentation shown below:

struct DDS_LoggingQosPolicy {
NDDS_Config_LogVerbosity verbosity;
NDDS_Config_LogCategory category;
NDDS_Config_LogPrintFormat print_format;
char * output_file;

};

The equivalent representation in XML:

<participant_factory_qos>
<logging>

<verbosity></verbosity>
<category></category>
<print_format></print_format>
<output_file></output_file>

</logging>
</participant_factory_qos>

The attribute <is_default_participant_factory_profile> can be set to true for the <qos_profile>
tag to indicate from which profile to use <participant_factory_qos>. If multiple QoS profiles
have <is_default_participant_factory_profile> set to true, the last profile with
<is_default_participant_factory_profile> set to true will be used.

String Operation

Entity operations

ENABLE Entity::enable

GET_QOS Entity::get_qos

SET_QOS Entity::set_qos

GET_LISTENER Entity::get_listener

SET_LISTENER Entity::set_listener

Factory operations (DP Factory, Participant, Pub/Sub)

CREATE <Entity> Factory::create_<entity>

DELETE <Entity> Factory::delete_<entity>

GET_DEFAULT_QOS <Entity> Factory::get_default_<entity>_qos

SET_DEFAULT_QOS <Entity> Factory::set_default_<entity>_qos

Participant-specific operations

GET_PUBS Participant::get_publishers

GET_SUBS Participant::get_subscribers

LOOKUP Topic(<name>) Participant::lookup_topicdescription

LOOKUP FlowController(<name>) Participant::lookup_flowcontroller

IGNORE <Entity>(<host ID>) Participant::ignore_<entity>
21-6

Controlling Messages from Connext
If none of the profiles have set <is_default_participant_factory_profile> to true, the profile with
<is_default_qos> set to true will be used.

In the following example, DefaultProfile2 will be used:

<dds xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="../xsd/rti_dds_qos_profiles.xsd">
 <!-- Qos Library -->
 <qos_library name="DefaultLibrary">
 <qos_profile name="DefaultProfile1"
 is_default_participant_factory_profile ="true">
 <participant_factory_qos>
 <logging>
 <verbosity>ALL</verbosity>
 <category>ENTITIES</category>
 <print_format>MAXIMAL</print_format>
 <output_file>LoggerOutput1.txt</output_file>
 </logging>
 </participant_factory_qos>
 </qos_profile>

 <qos_profile name="DefaultProfile2"
 is_default_participant_factory_profile ="true">

 <participant_factory_qos>
 <logging>
 <verbosity>WARNING</verbosity>
 <category>API</category>
 <print_format>VERBOSE_TIMESTAMPED</print_format>
 <output_file>LoggerOutput2.txt</output_file>
 </logging>
 </participant_factory_qos>
 </qos_profile>

 <qos_profile name="DefaultProfile3" is_default_qos="true">
 <participant_factory_qos>
 <logging>
 <verbosity>ERROR</verbosity>
 <category>DATABASE</category>
 <print_format>VERBOSE</print_format>
 <output_file>LoggerOutput3.txt</output_file>
 </logging>
 </participant_factory_qos>
 </qos_profile>
 </qos_library>
</dds>

Note: The LoggingQosPolicy is currently the only QoS policy that can be configured using the
<participant_factory_qos> tag.

21.2.3 Customizing the Handling of Generated Log Messages

By default, the log messages generated by Connext are sent to the standard output. You can redi-
rect the log messages to a file by using the set_output_file() operation,

To further customize the management of the generated log messages, you can use the Logger’s
set_output_device() operation to install a user-defined logging device. The logging device must
implement an interface with two operations: write() and close().

Connext will call the write() operation to write a new log message to the input device. The log
message provides the text and the verbosity corresponding to the message.
21-7

Controlling Messages from Connext
Connext will call the close() operation when the logging device is uninstalled.

Note: It is not safe to make any calls to the Connext core library including calls to
DDS_DomainParticipant_get_current_time() from any of the logging device operations.

For additional details on user-defined logging devices, see the API Reference HTML documen-
tation (under Modules, RTI Connext DDS API Reference, Configuration Utilities).
21-8

Part 4: Request-Reply Communication Pattern

Important! The Request/Reply communication pattern is only available with RTI Connext Mes-
saging.

As real-time and embedded applications become more complex, and require integration with
enterprise applications, you may need additional communication patterns besides publish-sub-
scribe. Perhaps your application needs certain information only occasionally—such as changes
in temperature over the past hour, or even just once, such as application configuration data that
is required only at startup. To get information only when needed, Connext supports a request-
reply communication pattern, which is described in the following chapters:

❏ Chapter 22: Introduction to the Request-Reply Communication Pattern

❏ Chapter 23: Using the Request-Reply Communication Pattern

Chapter 22 Introduction to the Request-Reply
Communication Pattern

Important! This chapter describes the Request-Reply communication pattern, which is only
available with RTI Connext Messaging.

The fundamental communication pattern provided by Connext is known as DDS data-centric
publish-subscribe. The data-centric publish-subscribe pattern is particularly well-suited in situa-
tions where the same data must flow from one producer to many consumers, or when data is
streaming continuously from producers to consumers. For example, the values produced by a
temperature sensor may be observed by multiple applications, such as control applications, UI
applications, supervisory applications, historians, etc.

The publish-subscribe pattern supports multicast, which allows efficient distribution from a sin-
gle source to multiple applications, devices, or subscribers simultaneously. But even with a sin-
gle subscriber, the publish-subscribe pattern is still advantageous, because the publisher can
push new updates to a subscriber as soon as they happen. That way the subscriber always has

Figure 22.1 Publish-Subscribe Overview

Sending temperature updates using the publish-subscribe pattern
22-1

The Request-Reply Pattern
access to the latest data, with minimum delays, and without incurring the overhead of periodi-
cally polling what may be stale data. This efficient, low-latency access to the most current infor-
mation is important for real-time applications.

22.1 The Request-Reply Pattern
As applications become more complex, it often becomes necessary to use other communication
patterns in addition to publish-subscribe. Sometimes an application needs to get a one-time
snapshot of information; for example, to make a query into a database or retrieve configuration
parameters that never change. Other times an application needs to ask a remote application to
perform an action on its behalf; for example, to invoke a remote procedure call or a service.

To support these scenarios, Connext Messaging includes support for the request-reply communi-
cation pattern.

The request-reply pattern has two roles: The requester (service consumer or client) sends a
request message and waits for a reply message. The replier (service provider) receives the
request message and responds with a reply message.

Using the request-reply pattern with a Replier is straightforward. Connext Messaging provides
two Entities: the Requester and the Replier manage all the interactions on behalf of the applica-
tion. The Requester and Replier automatically discover each other based on an application-speci-
fied service name. When the application invokes a request, the Requester sends a message (on an
automatically-created request Topic) to the Replier, which notifies the receiving application. The
application, in turn, uses the Replier to receive the request and send the reply message. The reply
message is sent by Connext Messaging back to the original Requester (using a different automati-
cally created reply Topic).

Connext Messaging supports both blocking and non-blocking request-reply interactions:

❏ In a blocking (a.k.a. synchronous) interaction, the requesting application blocks while
waiting for the reply. This is typical of applications desiring remote-procedure-call or
remote-method-invocation interactions.

❏ In a non-blocking (a.k.a. asynchronous) interaction, the requesting application can pro-
ceed with other work and gets notified when a reply is available.

Repliers (Section 23.2) explains how an application can use the methods provided by the
Requester and the Replier to perform both blocking and non-blocking request-reply interactions.

Figure 22.2 Request-Reply Overview

Request-Reply communication pattern using a Requester and a Replier
22-2

Single-Request, Multiple-Replies
The implementation of request-reply in Connext Messaging is highly scalable. A Replier can
receive requests from thousands of Requesters at the same time. Connext Messaging will effi-
ciently deliver each reply only to the original Requester, allowing the number of Requesters to
grow without significantly impacting each other.

22.1.1 Request-Reply Correlation

An application might have multiple outstanding requests, all originating from the same
Requester. This can be as a result of using a non-blocking request-reply interaction, or as a result
of having multiple application threads using the same Requester. Because of this, Connext Messag-
ing provides a way for the application to correlate a reply with the request it is associated with.
This meta-data is provided as part of a SampleInfo structure that accompanies the reply.

When using a blocking request operation, Connext Messaging provides an easy-to-use API that
automatically does the correlation for you.

22.2 Single-Request, Multiple-Replies
Connext Messaging also supports the single-request multiple-reply pattern. This pattern is an
extension of the basic request-reply pattern in which multiple reply messages can flow back as a
result of a single request.

The single-request multiple-reply pattern is very useful when getting large amounts of data as a
reply, such as when querying a system for all data that matches a certain criteria. Another com-
mon use-case is invoking a service that goes through multiple stages and provides updates on
each: service commencement, progress reports, and final completion.

For example, a mobile asset management system may need to locate a particular asset (truck,
locomotive, etc.). The system sends out the request. The first reply that comes back will read
“locating.” The service has not yet determined the position, but it notifies the requester that the
search operation has started. The second reply might provide a status update on the search, per-
haps including a rough area of location. The third and final reply will have the exact location of
the asset.

Figure 22.3 Single Request, Multiple Replies

Request/Reply communication pattern with multiple replies resulting from a single request
22-3

Multiple Repliers
22.3 Multiple Repliers
Connext Messaging directly supports applications that obtain results from multiple providers in
parallel instead of in sequence, basically implementing functional parallelism.

To illustrate, consider a system managing a fleet of drones, like unmanned aerial vehicles
(UAVs). Using the single request-multiple reply pattern, the application can use a Requester to
send a single ‘DroneInfo’ request to all the drones to query for their current mission and status.
Each drone replies with the information on its own status and the Requester aggregates all the
responses for the application.

As another example, consider a system that would like to locate the best printer to perform a
particular job. The application can use a Requester to query all the printers that are on-line for
their characteristics and load. The Requester receives the replies and accumulates them until an
application-specified number of replies is received (or a timeout elapses). The application can
then use the Requester to access all the replies, examine their contents, and select the best printer
for the job.

Figure 22.4 Multiple Repliers

Request/Reply communication pattern with a single Requester and multiple Repliers
22-4

Combining Request-Reply and Publish-Subscribe
22.4 Combining Request-Reply and Publish-Subscribe
Under the hood, Connext Messaging implements request-reply using the DDS data-centric pub-
lish-subscribe pattern. This has a key benefit in that the two patterns can be combined, and
mapped without interference.

For example, a pair of applications may be involved in a two-way conversation using request-
reply. For debugging purposes or regulatory compliance, you want to inspect those request-
reply messages, but without disrupting the conversation.

Since Connext Messaging implements requests and replies using DDS data-centric publish sub-
scribe, others can simply subscribe to the request and reply messages. You can introduce a sub-
scriber to the reply Topic, without interfering with the two-way conversation between the
Requester and the Replier. This pattern is also known as a Wire Tap. For example, you can use RTI
Recording Service to non-intrusively capture request-reply traffic.

Figure 22.5 Combining Patterns

 Combining Request-Reply and Publish-Subscribe patterns
22-5

Chapter 23 Using the Request-Reply Communication
Pattern

Important! This chapter explains how to use and configure the Request-Reply communication
pattern, which is only available with RTI Connext Messaging.

There are two basic Connext entities used by the Request-Reply communication pattern:
Requester and Replier.

❏ A Requester publishes a request Topic and subscribes to a reply Topic. See Requesters (Sec-
tion 23.1).

❏ A Replier subscribes to the request Topic and publishes the reply Topic. See Repliers (Sec-
tion 23.2).

There is an alternate type of replier known as a SimpleReplier:

• A SimpleReplier is useful for cases where there is a single reply to each request and the
reply can be generated quickly, such as looking up some data from memory.

• A SimpleReplier is used in combination with a user-provided SimpleReplierListener.
Requests are passed to a callback in the SimpleReplierListener, which returns the reply.

• The SimpleReplier is not suitable if the replier needs to generate more than one reply
for a single request or if generating the reply can take significant time or needs to
occur asynchronously. For more information, see SimpleRepliers (Section 23.3).

Additional resources. In addition to the information in this chapter, you can find more informa-
tion and example code at the following locations:

❏ The Connext API Reference HTML documentation1 contains example code that will show
you how to use API: From the Modules tab, navigate to Programming How-To’s,
Request-Reply Examples.

❏ The Connext API Reference HTML documentation also contains the full API documenta-
tion for the Requester, Replier, and SimpleReplier. Under the Modules tab, navigate to RTI
Connext DDS API Reference, RTI Connext Request-Reply API Reference.

1. The API Reference documentation is available for all supported programming languages. Open <installation direc-
tory>/ReadMe.html.
23-1

Requesters
23.1 Requesters
A Requester is an entity with two associated DDS Entities: a DDS DataWriter bound to a request
Topic and a DDS DataReader bound to a reply Topic. A Requester sends requests by publishing
samples of the request Topic, and receives replies for those requests by subscribing to the reply
Topic.

Valid types for request and reply Topics can be:

❏ For the C API:

• DDS types generated by rtiddsgen

❏ For all other APIs:

• DDS types generated by rtiddsgen

• Built-in types, such as, String, KeyedString, Octets, and KeyedOctets

• DDS DynamicData Types

To communicate, a Requester and Replier must use the same request Topic name, the same reply
Topic name, and be associated with the same DDS domain_id.

A Requester has an associated DomainParticipant, which can be shared with other requesters or
Connext entities. All the other entities required for request-reply interaction, including the
request and reply Topics, the DataWriter for writing requests, and a DataReader for reading
replies, are automatically created when the Requester is constructed.

Connext Messaging guarantees that a Requester will only receive replies associated with the
requests it sends.

The Requester uses the underlying DataReader not only to receive the replies, but also as a cache
that can hold replies to multiple outstanding requests or even multiple replies to a single
request. Depending on the HistoryQoSPolicy configuration of the DataReader, the Requester may
allow replies to replace previous replies based on the reply data having the same value for the
Key fields (see Samples, Instances, and Keys (Section 2.2.2)). The default configuration of the
Requester does not allow replacing.

You can configure the QoS for the underlying DataWriter and DataReader in a QoS profile. By
default, the DataWriter and DataReader are created with default values
(DDS_DATAWRITER_QOS_DEFAULT and DDS_DATAREADER_QOS_DEFAULT, respec-
tively) except for the following:

❏ RELIABILITY QosPolicy (Section 6.5.19): kind is set to RELIABLE.

❏ HISTORY QosPolicy (Section 6.5.10): kind is set to KEEP_ALL.

❏ Several other protocol-related settings for Requesters (see the API Reference HTML docu-
mentation: select Modules, Programming How-To’s, Request-Reply Examples; then
scroll down to the section on Configuring Request-Reply QoS profiles).

23.1.1 Creating a Requester

Before you can create a Requester, you need a DomainParticipant and a service name.

Note: The example code snippets in this section use the C++ API. You can find more complete
examples in all the supported programming languages (C, C++, Java, C#) in the Connext Messag-
ing API Reference HTML documentation and in the “example” directory found in your Connext
Messaging installation.
23-2

Requesters
To create a Requester with the minimum set of parameters, you can use the basic constructor
that receives only an existing DDS DomainParticipant and the name of the service:

Requester <MyRequestType, MyReplyType> *requester =
new Requester <MyRequestType,MyReplyType> (participant, “ServiceName”);

To create a Requester with specific parameters, you may use a different constructor that receives
a RequesterParams structure (described in Section 23.1.3):

Requester (const RequesterParams ¶ms)

The ServiceName parameter is used to generate the names of the request and reply Topics that
the Requester and Replier will use to communicate. For example, if the service name is “MySer-
vice”, the topic names for the Requester and Replier will be “MyServiceRequest” and “MyService-
Reply”, respectively. Therefore, for communication to occur, you must use the same service
name when creating the Requester and the Replier entities.

If you want to use topic names different from the ones that would be derived from the Service-
Name, you can override the default names by setting the actual request and reply Topic names
using the request_topic_name() and reply_topic_name() accessors to the RequesterParams struc-
ture prior to creating the Requester.

Example: To create a Requester with default QoS and topic names derived from the service name,
you may use the following code:

Requester<Foo, Bar> * requester =
 new Requester<Foo, Bar>(participant,"MyService");

Example: To create a Requester with a specific QoS profile with library name “MyLibrary” and
profile “MyProfile” defined inside USER_QOS_PROFILES.xml in the current working direc-
tory, you may use the following code:

Requester<Foo, Bar> * requester = new Requester<Foo, Bar>(
RequesterParams(participant).service_name("MyService")
.qos_profile("MyLibrary", "MyProfile"));

Once you have created a Requester, you can use it to perform the operations in Table 23.2,
“Requester Operations”.

23.1.2 Destroying a Requester

To destroy a Requester and free its underlying entities you may use the destructor:

virtual ~Requester ()

23.1.3 Setting Requester Parameters

To change the RequesterParams that can be used when creating a Requester, you can use the
operations listed in Table 23.1, “Operations to Set Requester Parameters”.

Table 23.1 Operations to Set Requester Parameters

Operation Description

datareader_qos Sets the QoS of the reply DataReader.

datawriter_qos Sets the QoS of the request DataWriter.

publisher Sets a specific Publisher.

qos_profile Sets a QoS profile for the DDS entities in this requester.
23-3

Requesters
23.1.4 Summary of Requester Operations

There are several kinds of operations an application can perform using the Requester:

❏ Sending requests (i.e., publishing request samples on the request Topic)

❏ Waiting for replies to be received back.

❏ Taking the reply data. This gets the reply data from the Requester and removes from the
Requester cache.

❏ Reading the reply data. This gets the reply data from the Requester but leaves it in the
Requester cache so it remain accessible to future operations on the Requester.

❏ Receiving replies (a convenience operation that is a combination of ‘waiting’ and ‘taking’
the data in a single operation)

These operations are summarized in Requester Operations (Table 23.2)

request_topic_name
Sets the name of the Topic used for the request. If this parameter is set, then you
must also set the reply_topic_name parameter and you should not set the
service_name parameter.

reply_topic_name
Sets the name of the Topic used for the reply. If this parameter is set, then you
must also set the request_topic_name parameter and you should not set the
service_name parameter.

reply_type_support Sets the type support for the reply type.

request_type_support Sets the type support for the request type.

service_name
Sets the service name. This will automatically set the name of the request Topic
and the reply Topic. If this parameter is set you should not set the
request_topic_name or the reply_topic_name.

subscriber Sets a specific Subscriber.

Table 23.1 Operations to Set Requester Parameters

Operation Description

Table 23.2 Requester Operations

Operation Description Reference

Sending
Requests

send_request Sends a request. Section 23.1.5

Waiting for
Replies

wait_for_replies
Waits for replies to any request or to a specific
request.

Section 23.1.6.1

Taking
Reply Data

take_reply

Copies a single reply into a Sample container.
There are variants that allow getting the next reply
available or the next reply to a specific request.

This operation removes the reply from the
Requester cache. So subsequent calls to take or read
replies will not get the same reply again.

Section 23.2

take_replies

Returns a LoanedSamples container with the collec-
tion of replies received by the Requester. There are
variants that allow accessing all the replies avail-
able or only the replies to a specific request.

This operation removes the returned replies from
the Requester cache. So subsequent calls to take or
read replies will not get the same replies again.
23-4

Requesters
23.1.5 Sending Requests

To send a request, use the send_request() operation on the Requester. There are three variants of
this operation, depending on the parameters that are passed in:

1. send_request (const TRequest &request)

2. send_request (WriteSample<TRequest> &request)

3. send_request (WriteSampleRef<TRequest> &request)

The first way simply sends a request.

The second way sends a request and gets back information about the request in a WriteSample
container. This information can be used to correlate the request with future replies.

The third way is just like the second, but puts the information in a WriteSampleRef, which holds
references to the data and parameters. Both WriteSample and WriteSampleRef provide informa-
tion about the request that can be used to correlate the request with future replies.

23.1.6 Processing Incoming Replies with a Requester

The Requester provides several operations that can be used to wait for and access replies:

❏ wait_for_replies(), see Waiting for Replies (Section 23.1.6.1)

❏ take_reply(), take_replies(), read_reply() and read_replies(), see Getting Replies (Sec-
tion 23.1.6.2)

❏ receive_reply() and receive_replies(), see Receiving Replies (Section 23.1.6.3)

The wait_for_replies operations are used to wait until the replies arrive.

Reading
Reply Data

read_reply

Copies a single reply into a Sample container.
There are variants that allow getting the next reply
available or the next reply to a specific request.

This operation leaves the reply on the Requester
cache. So subsequent calls to take or read replies
can get the same reply again.

Section 23.2

read_replies

Returns a LoanedSamples container with the collec-
tion of replies received by the Requester. There are
variants that allow accessing all the replies avail-
able or only the replies to a specific request.

This operation leaves the returned replies in the
Requester cache. So subsequent calls to take or read
replies can get the same replies again.

Receiving
Replies

receive_reply
Convenience function that combines a call to
wait_for_replies with a call to take_reply.

Section 23.1.6.3
receive_replies

Convenience function that combines a call to
wait_for_replies with a call to take_replies.

Getting
Underlying
Entities

get_request_datawriter
Retrieves the underlying DataWriter that writes
requests.

Section 23.4
get_reply_datareader

Retrieves the underlying DataReader that reads
replies.

Table 23.2 Requester Operations

Operation Description Reference
23-5

Requesters
The take_reply, take_replies, read_reply, and read_replies() operations access the replies once
they have arrived.

The receive_reply and receive_replies are convenience functions that combine waiting and
accessing the replies and are equivalent to calling the ‘wait’ operation followed by the corre-
sponding take_reply or take_replies operations.

Each of these operations has several variants, depending on the parameters that are passed in.

23.1.6.1 Waiting for Replies

Use the wait_for_replies() operation on the Requester to wait for the replies to previously sent
requests. There are three variants of this operation, depending on the parameters that are passed
in. All these variants block the calling thread until either there are replies or a timeout occurs.

1. wait_for_replies (const DDS_Duration_t &max_wait)

2. wait_for_replies (int min_count,
 const DDS_Duration_t &max_wait)

3. wait_for_replies (int min_count,
 const DDS_Duration_t &max_wait,
 const SampleIdentity_t &related_request_id)

The first variant (only passing in max_wait) blocks until a reply is available or until max_wait
time has elapsed, whichever comes first. The reply can be to any of the requests made by the
Requester.

The second variant (passing in min_count and max_wait) blocks until at least min_count replies
are available or until max_wait time has elapsed, whichever comes first. These replies may all be
to the same request or to different requests made by the Requester.

The third variant (passing in min_count, max_wait, and related_request_id) blocks until at
least min_count replies to the request identified by the related_request_id are available, or until
max_wait time has passed, whichever comes first. Note that unlike the previous variants, the
replies must all be to the same single request (identified by the related_request_id) made by the
Requester.

Typically after waiting for replies, you will call take_reply, take_replies, read_reply, or
read_replies(), see Repliers (Section 23.2).

If you call wait_for_replies() several times without ‘taking’ the replies (using the take_reply or
take_replies operation), future calls to wait_for_replies() will return immediately and will not
wait for new replies.

23.1.6.2 Getting Replies

You can use the following operations to access replies: take_reply, take_replies, read_reply, and
read_replies().

As mentioned in Summary of Requester Operations (Section 23.1.4), the difference between the
‘take’ operations (take_reply, take_replies) and the ‘read’ operations (read_reply, read_replies)
is that ‘take’ operations remove the replies from the Requester cache. This means that future calls
to take_reply, read_reply, read_reply, and read_reply will not get the same reply again.

The take_reply and read_reply operations access a single reply, whereas the take_replies and
read_replies can access a collection of replies.
23-6

Requesters
There are four variants of the take_reply and read_reply operations, depending on the parame-
ters that are passed in:

1. take_reply (Sample<TReply> &reply)
 read_reply (Sample<TReply> &reply)

2. take_reply (SampleRef<TReply> reply)
 read_reply (SampleRef<TReply> reply)

3. take_reply (Sample<TReply> &reply,
 const SampleIdentity_t &related_request_id)

 read_reply (Sample<TReply> &reply,
 const SampleIdentity_t &related_request_id)

4. take_reply (SampleRef<TReply> reply,
 const SampleIdentity_t &related_request_id)

 read_reply (SampleRef<TReply> reply,
 const SampleIdentity_t &related_request_id)

The first two variants provide access to the next reply in the Requester cache. This is the earliest
reply to any previous requests sent by the Requester that has not been ‘taken’ from the Requester
cache. The remaining two variants provide access to the earliest non-previously ‘taken’ reply to
the request specified by the related_request_id.

Notice that some of these variants use a Sample, while other use a SampleRef. A SampleRef can be
used much like a Sample, but it holds references to the reply data and DDS SampleInfo, so there is
no additional copy. In contrast using the Sample obtains a copy of both the data and DDS Sam-
pleInfo.

The take_replies and read_replies operations access a collection of (one or more) replies to pre-
viously sent requests. These operations are convenient when you expect multiple replies to a
single request, or when issuing multiple requests concurrently without waiting for intervening
replies.

The take_replies and read_replies operations return a LoanedSamples container that holds the
replies. To increase performance, the LoanedSamples does not copy the reply data. Instead it
‘loans’ the necessary resources from the Requester. The resources loaned by the LoanedSamples
container must be eventually returned, either explicitly calling the return_loan() operation on
the LoanedSamples or through the destructor of the LoanedSamples.

There are three variants of the take_replies and read_replies operations, depending on the
parameters that are passed in:

1. take_replies (int max_count=DDS_LENGTH_UNLIMITED)
 read_replies (int max_count=DDS_LENGTH_UNLIMITED)

2. take_replies (int max_count,
 const SampleIdentity_t &related_request_id)

 read_replies (int max_count,
 const SampleIdentity_t &related_request_id)

3. take_replies (const SampleIdentity_t &related_request_id)
 read_replies (const SampleIdentity_t &related_request_id)

The first variant (only passing in max_count) returns a container holding up to max_count
replies.

The second variant (passing in max_count and related_request_id) returns a LoanedSamples con-
tainer holding up to max_count replies that correspond to the request identified by the
related_request_id.
23-7

Repliers
The third variant (only passing in related_request_id) returns a LoanedSamples container hold-
ing an unbounded number of replies that correspond to the request identified by the
related_request_id. This is equivalent to the second variant with max_count =
DDS_LENGTH_UNLIMITED.

The resources for the LoanedSamples container must be eventually be returned, either by calling
the return_loan() operation on the LoanedSamples or through the LoanedSamples destructor.

23.1.6.3 Receiving Replies

The receive_reply() operation is a shortcut that combines calls to wait_for_replies() and to
take_reply(). Similarly the receive_replies() operation combines wait_for_replies() and
take_replies().

There is only one variant of the receive_reply() operation:

1. receive_reply (Sample<TReply> &reply, const DDS_Duration_t &timeout)

This operation blocks until either a reply is received or a timeout occurs. The contents of the
reply are copied into the provided sample (reply).

There are two variants of the receive_replies() operation, depending on the parameters that are
passed in:

1. receive_replies (const DDS_Duration_t &max_wait)

2. receive_replies (int min_count, int max_count,
const DDS_Duration_t &max_wait)

These two variants block until multiple replies are available or a timeout occurs.

The first variant (only passing in max_wait) blocks until at least one reply is available or until
max_wait time has passed, whichever comes first. The operation returns a LoanedSamples con-
tainer holding the replies. Note that there could be more than one reply. This can occur if, for
example, there were already replies available in the Requester from previous requests that were
not processed. This operation does not limit the number of replies that can be returned on the
LoanedSamples container.

The second variant (passing in min_count, max_count, and max_wait) will block until
min_count replies are available or until max_wait time has passed, whichever comes first. Up to
max_count replies will be stored into the LoanedSamples container which is returned to the caller.

The resources held in the LoanedSamples container must eventually be returned, either with an
explicit call to return_loan() on the LoanedSamples or through the LoanedSamples destructor.

23.2 Repliers
A Replier is an entity with two associated DDS Entities: a DDS DataReader bound to a request
Topic and a DDS DataWriter bound to a reply Topic. The Replier receives requests by subscribing
to the request Topic and sends replies to those requests by publishing on the reply Topic.

Valid data types for these topics are the same as specified for the Requester, see Requesters (Sec-
tion 23.1).

Much like a Requester, a Replier has an associated DDS DomainParticipant which can be shared
with other Connext entities. All the other entities required for the request-reply interaction,
including a DataWriter for writing replies and a DataReader for reading requests, are automati-
cally created when the Replier is constructed.
23-8

Repliers
You can configure the QoS for the underlying DataWriter and DataReader in a QoS profile. By
default, the DataWriter and DataReader are created with default QoS values (using
DDS_DATAWRITER_QOS_DEFAULT and DDS_DATAREADER_QOS_DEFAULT, respectively)
except for the following:

❏ RELIABILITY QosPolicy (Section 6.5.19): kind is set to RELIABLE

❏ HISTORY QosPolicy (Section 6.5.10): kind is set to KEEP_ALL

The Replier API supports several ways in which the application can be notified of, and process,
requests:

❏ Blocking: The application thread blocks waiting for requests, processes them, and dis-
patches the reply. In this situation, if the computation necessary to process the request
and produce the reply is small, you may consider using the SimpleReplier, which offers a
simplified API.

❏ Polling: The application thread checks (polls) for requests periodically but does not
block to wait for them. To check for data without blocking, call take_requests() or
read_requests().

❏ Asynchronous notification: The application installs a ReplierListener to receive notifica-
tions whenever a request is received.

23.2.1 Creating a Replier

To create a Replier with the minimum set of parameters you can use the basic constructor that
receives only an existing DDS DomainParticipant and the name of the service:

Replier (DDSDomainParticipant * participant,
const std::string & service_name)

Example:

Replier<Foo, Bar> * replier =
new Replier<Foo, Bar>(participant, "MyService");

To create a Replier with specific parameters you may use a different constructor that receives a
ReplierParams structure:

Replier (const ReplierParams<TRequest, TReply> ¶ms)

Example:

Replier<Foo, Bar> * replier = new Replier<Foo, Bar>(
ReplierParams(participant).service_name("MyService")
.qos_profile("MyLibrary", "MyProfile"));

The service_name is used to generate the names of the request and reply Topics that the Requester
and Replier will use to communicate. For example, if the service name is “MyService”, the topic
names for the Requester and Replier will be “MyServiceRequest” and “MyServiceReply”, respec-
tively. Therefore it is important to use the same service_name when creating the Requester and
the Replier.

If you need to specify different Topic names, you can override the default names by setting the
actual request and reply Topic names using request_topic_name() and reply_topic_name()
accessors to the ReplierParams structure prior to creating the Replier.

23.2.2 Destroying a Replier

To destroy a Replier and free its underlying entities:

virtual ~Replier ()
23-9

Repliers
23.2.3 Setting Replier Parameters

To change the ReplierParams that are used to create a Replier, use the operations listed in
Table 23.3, “Operations to Set Replier Parameters”.

23.2.4 Summary of Replier Operations

There are four kinds of operations an application can perform using the Replier:

❏ Waiting for requests to be received

❏ Reading/taking the request data and associated information

❏ Receiving requests (a convenience operation that combines waiting and getting the data
into a single operation)

❏ Sending a reply for received request (i.e., publishing a reply sample on the reply Topic
with special meta-data so that the original Requester can identify it).

The Replier operations are summarized in Table 23.4, “Replier Operations”.

Table 23.3 Operations to Set Replier Parameters

Operation Description

datareader_qos Sets the quality of service of the request DataReader.

datawriter_qos Sets the quality of service of the reply DataWriter.

publisher Sets a specific Publisher.

qos_profile Sets a QoS profile for the entities in this replier.

replier_listener Sets a listener that is called when requests are available.

reply_topic_name Sets a specific reply topic name.

reply_type_support Sets the type support for the reply type.

request_topic_name Sets a specific request topic name.

request_type_support Sets the type support for the request type.

service_name Sets the service name the Replier offers and Requesters use to match.

subscriber Sets a specific Subscriber.

Table 23.4 Replier Operations

Operation Description Reference

Waiting for
Requests

wait_for_requests Waits for requests. Section 23.2.5.1

Taking
Requests

take_request
Copies the contents of a single request into a
Sample and removes it from the Replier cache.

Section 23.2.5.2
take_requests

Returns a LoanedSamples to access multiple
requests and removes the requests from the
Replier cache.

Reading
Requests

read_request
Copies the contents of a single request into a
Sample, leaving it in the Replier cache

read_requests
Returns a LoanedSamples to access multiple
requests, leaving them in the Replier cache.
23-10

Repliers
23.2.5 Processing Incoming Requests with a Replier

The Replier provides several operations that can be used to wait for and access the requests:

❏ wait_for_requests(), see Waiting for Requests (Section 23.2.5.1)

❏ take_request(), take_requests(), read_request(), and read_requests(), see Reading and
Taking Requests (Section 23.2.5.2)

❏ receive_request() and receive_requests(), see Receiving Requests (Section 23.2.5.3)

The wait_for_requests() operations are used to wait until requests arrive.

The take_request(), take_requests(), read_request(), and read_requests() operations access the
requests, once they have arrived.

The receive_request() and receive_requests() operations are convenience functions that com-
bine waiting for and accessing requests and are equivalent to calling the ‘wait’ operation fol-
lowed by the corresponding take_request() or take_requests() operations.

Each of these operations has several variants, depending on the parameters that are passed in.

23.2.5.1 Waiting for Requests

Use the wait_for_requests() operation on the Replier to wait for requests. There are two variants
of this operation, depending on the parameters that are passed in. All these variants block the
calling thread until either there are replies or a timeout occurs.:

1. wait_for_requests (const DDS_Duration_t &max_wait)

2. wait_for_requests (int min_count, const DDS_Duration_t &max_wait)

The first variant (only passing in max_wait) blocks until one request is available or until
max_wait time has passed, whichever comes first.

The second variant blocks until min_count number of requests are available or until max_wait
time has passed.

Typically after waiting for requests, you will call take_request, take_requests, read_request, or
read_requests, see Sending Replies (Section 23.2.6).

23.2.5.2 Reading and Taking Requests

You can use the following four operations to access requests: take_request, take_requests,
read_request, or read_requests.

As mentioned in Summary of Replier Operations (Section 23.2.4), the difference between the
‘take’ operations (take_request, take_requests) and the ‘read’ operations (read_request,

Receiving
Requests

receive_request
Waits for a single request and copies its contents
into a Sample container.

Section 23.2.5.3
receive_requests

Waits for multiple requests and provides a
LoanedSamples container to access them.

Sending
Replies

send_reply Sends a reply for a previous request. Section 23.2.6

Getting
Underlying
Entities

get_request_datareader Retrieves the underlying DataReader.
Section 23.4get_reply_datawriter Retrieves the underlying DataWriter.

Table 23.4 Replier Operations

Operation Description Reference
23-11

Repliers
read_requests) is that ‘take’ operations remove the requests from the Replier cache. This means
that future calls to take_request, take_requests, read_request, or read_requests will not get the
same request again.

The take_request and read_request operations access a single reply, whereas the take_requests
and read_requests can access a collection of replies.

There are two variants of the take_request and read_request operations, depending on the
parameters that are passed in:

1. take_request (connext::Sample<TRequest> & request)
 read_request (connext::Sample<TRequest> & request)

2. take_request (connext::SampleRef<TRequest request)
 read_request (connext::SampleRef<TRequest request)

The first variant returns the request using a Sample container. The second variant uses a Sam-
pleRef container instead. A SampleRef can be used much like a Sample, but it holds references to the
request data and DDS SampleInfo, so there is no additional copy. In contrast, using the Sample
makes a copy of both the data and DDS SampleInfo.

The take_requests and read_requests operations access a collection of (one or more) requests in
the Replier cache. These operations are convenient when you want to batch-process a set of
requests.

The take_requests and read_requests operations return a LoanedSamples container that holds
the requests. To increase performance, the LoanedSamples does not copy the request data. Instead
it ‘loans’ the necessary resources from the Replier. The resources loaned by the LoanedSamples
container must be eventually returned, either explicitly by calling the return_loan() operation
on the LoanedSamples or through the destructor of the LoanedSamples.

There is only one variant of these operations:

1. take_requests (int max_samples = DDS_LENGTH_UNLIMITED)
 read_requests (int max_samples = DDS_LENGTH_UNLIMITED)

The returned container may contain up to max_samples number of requests.

23.2.5.3 Receiving Requests

The receive_request() operation is a shortcut that combines calls to wait_for_requests() and
take_request(). Similarly, the receive_requests() operation combines wait_for_requests() and
take_requests().

There are two variants of the receive_request() operation:

1. receive_request (connext::Sample<TRequest> & request,
 const DDS_Duration_t & max_wait)

2. receive_request (connext::SampleRef<TRequest> request,
 const DDS_Duration_t & max_wait)

The receive_request operation blocks until either a request is received or a timeout occurs. The
contents of the request are copied into the provided container (request). The first variant uses a
Sample container, whereas the second variant uses a SamepleRef container. A SampleRef can be
used much like a Sample, but it holds references to the request data and DDS SampleInfo, so there
is no additional copy. In contrast, using the Sample obtains a copy of both the data and the DDS
SampleInfo.

There are two variants of the receive_requests() operation, depending on the parameters that
are passed in:

1. receive_requests (const DDS_Duration_t & max_wait)
23-12

SimpleRepliers

2. receive_requests (int min_request_count,

 int max_request_count,
 const DDS_Duration_t & max_wait)

The receive_requests operation blocks until one or more requests are available, or a timeout
occurs.

The first variant (only passing in max_wait) blocks until one request is available or until
max_wait time has passed, whichever comes first. The contents of the request are copied into a
LoanedSamples container which is returned to the caller. An unlimited number of replies can be
copied into the container.

The second variant blocks until min_request_count number of requests are available or until
max_wait time has passed, whichever comes first. Up to max_request_count number of
requests will be copied into a LoanedSamples container which is returned to the caller.

The resources for the LoanedSamples container must eventually be returned, either with
return_loan() or through the LoanedSamples destructor.

23.2.6 Sending Replies

There are three variants for send_reply(), depending on the parameters that are passed in:

1. send_reply (const TReply & reply,
 const SampleIdentity_t & related_request_id)

2. send_reply (WriteSample<TReply> & reply,
 const SampleIdentity_t & related_request_id)

3. send_reply (WriteSampleRef<TReply> & reply,
 const SampleIdentity_t & related_request_id)

This operation sends a reply for a previous request. The related request ID can be retrieved from
an existing request Sample.

The first variant is recommended if you do not need to change any of the default write parame-
ters.

The other two variants allow you to set custom parameters for writing a reply. Unlike the
Requester, where retrieving the sample ID for correlation is common, on the Replier side using a
WriteSample or WriteSampleRef is only necessary when you need to overwrite the default write
parameters. If that’s not the case, use the first variant.

23.3 SimpleRepliers
The SimpleReplier offers a simplified API to receive and process requests. The API is based on a
user-provided object that implements the SimpleReplierListener interface. Requests are passed to
the listener operation implemented by the user-provided object, which processes the request
and returns a reply.

The SimpleReplier is recommended if each request generates a single reply and computing the
reply can be done quickly with very little CPU resources and without calling any operations that
may block the processing thread. For example, looking something up in an internal memory-
based data structure would be a good use case for using a SimpleReplier.
23-13

SimpleRepliers
23.3.1 Creating a SimpleReplier

To create a SimpleReplier with the minimum set of parameters, you can use the basic constructor:

SimpleReplier (DDSDomainParticipant *participant,
 const std::string &service_name,
 SimpleReplierListener<TRequest, TReply> &listener)

To create a SimpleReplier with specific parameters, you may use a different constructor that
receives a SimpleReplierParams structure:

SimpleReplier (const SimpleReplierParams<TRequest, TReply> ¶ms)

23.3.2 Destroying a SimpleReplier

To destroy a SimpleReplier and free its resources use the destructor:

virtual ~SimpleReplier ()

23.3.3 Setting SimpleReplier Parameters

To change the SimpleReplierParams used to create a SimpleReplier, use the operations in Table 23.5,
“Operations to Set SimpleReplier Parameters”.

23.3.4 Getting Requests and Sending Replies with a SimpleReplierListener

The on_request_available() operation on the SimpleReplierListener receives a request and returns
a reply.

on_request_available(TRequest &request)

This operation gets called when a request is available. It should immediately return a reply.
After calling on_request_available(), Connext Messaging will call the operation return_loan() on
the SimpleReplierListener; this gives the application-defined listener an opportunity to release
any resources related to computing the previous reply.

retun_loan(TReply &reply)

Table 23.5 Operations to Set SimpleReplier Parameters

Operation Description

datareader_qos Sets the quality of service of the reply DataReader.

datawriter_qos Sets the quality of service of the reply DataWriter.

publisher Sets a specific Publisher.

qos_profile Sets a QoS profile for the entities in this replier.

reply_topic_name Sets a specific reply topic name.

reply_type_support Sets the type support for the reply type.

request_topic_name Sets a specific request topic name.

request_type_support Sets the type support for the request type.

service_name Sets the service name the Replier offers and Requesters use to match.

subscriber Sets a specific Subscriber.
23-14

Accessing Underlying DataWriters and DataReaders
23.4 Accessing Underlying DataWriters and DataReaders
Both Requester and Replier entities have underlying DDS DataWriter and DataReader entities.
These are created automatically when the Requester and Replier are constructed.

Accessing the DataWriter used by a Requester may be useful for a number of advanced use cases,
such as:

❏ Finding matching subscriptions (e.g., Replier entities), see Finding Matching Subscriptions
(Section 6.3.16.1)

❏ Setting a DataWriterListener, see Setting Up DataWriterListeners (Section 6.3.4)

❏ Getting DataWriter protocol or cache statuses, see Statuses for DataWriters (Section 6.3.6)

❏ Flushing a data batch after sending a number of request samples, see Flushing Batches of
Data Samples (Section 6.3.9)

❏ Modifying the QoS.

Accessing the reply DataReader may be useful for a number of advanced use cases, such as:

❏ Finding matching publications (e.g., Requester entities), see Navigating Relationships
Among Entities (Section 7.3.9)

❏ Getting DataReader protocol or cache statuses, see Checking DataReader Status and Sta-
tusConditions (Section 7.3.5) and Statuses for DataReaders (Section 7.3.7).

❏ Modifying the QoS.

To access these underlying objects:

RequestDataWriter * get_request_datawriter()
RequestDataReader * get_request_datareader()

ReplyDataWriter * get_reply_datawriter()
ReplyDataReader * get_reply_datareader()
23-15

Part 5: RTI Secure WAN Transport

The material in this part of the manual is only relevant if you have installed Secure WAN Trans-
port.

This feature is not part of the standard Connext package; it must be downloaded and installed
separately. It is only available on specific architectures. See the Secure WAN Transport Release
Notes and Installation Guide for details.

Secure WAN Transport is an optional package that enables participant discovery and data
exchange in a secure manner over the public WAN. Secure WAN Transport enables Connext to
address the challenges in NAT traversal and authentication of all participants. By implementing
UDP hole punching using the STUN protocol and providing security to channels by leveraging
DTLS (Datagram TLS), you can securely exchange information between different sites separated
by firewalls.

❏ Chapter 24: Secure WAN Transport

❏ Chapter 25: Configuring RTI Secure WAN Transport

Chapter 24 Secure WAN Transport

Secure WAN Transport provides transport plugins that can be used by developers of Connext
applications. These transport plugins allow Connext applications running on private networks
to communicate securely over a Wide-Area Network (WAN), such the internet. There are two
primary components in the package which may be used independently or together: communica-
tion over Wide-Area Networks that involve Network Address Translators (NATs), and secure
communication with support for peer authentication and encrypted data transport.

The Connext core is transport-agnostic. Connext offers three built-in transports: UDP/IPv4,
UDP/IPv6, and inter-process shared memory. The implementation of NAT traversal and secure
communication is done at the transport level so that the Connext core is not affected and does
not need to be changed, although there is additional on-the-wire traffic.

The basic problem to overcome in a WAN environment is that messages sent from an applica-
tion on a private local-area network (LAN) appear to come from the LAN's router address, not
from the internal IP address of the host running the application. This is due to the existence of a
Network Address Translator (NAT) at the gateway. This does not cause problems for client/
server systems because only the server needs to be globally addressable; it is only a problem for
systems with peer-to-peer communication models, such as Connext. Secure WAN Transport solves
this problem, allowing communication between peers that are in separate LAN networks, using
a UDP hole-punching mechanism based on the STUN protocol (IETF RFC 3489bis) for NAT tra-
versal. This requires the use of an additional rendezvous server application, the RTI WAN
Server.

Once the transport has enabled traffic to cross the NAT gateway to the WAN, it is flowing on
network hardware that is shared (in some cases, over the public internet). In this context, it is
important to consider the security of data transmission. There are three primary issues involved:

❏ Authenticating the communication peer (source or destination) as a trusted partner;

❏ Encrypting the data to hide it from other parties that may have access to the network;

❏ Validating the received data to ensure that it was not modified in transmission.

Secure WAN Transport addresses these problems by wrapping all RTPS-encoded data using the
DTLS protocol (IETF RFC 4347), which is a variant of SSL/TLS that can be used over a datagram
network-layer transport such as UDP. The security features of the WAN Transport may also be
used on an untrusted local-area network with the Secure Transport.

In summary, the package includes two transports:

❏ The WAN Transport is for use on a WAN and includes security. It must be used with the
WAN Server, a rendezvous server that provides the ability to discover public addresses
and to register and look up peer addresses based on a unique WAN ID. The WAN Server
is based on the STUN (Session Traversal Utilities for NAT) protocol [draft-ietfbehave-
rfc3489bis], with some extensions. Once information about public addresses for the
24-1

WAN Traversal via UDP Hole-Punching
application and its peers has been obtained and connections have been initiated, the
server is no longer required to maintain communication with a peer. (Note: security is
disabled by default.)

❏ The Secure Transport is an alternate transport that provides security on an untrusted
LAN. Use of the RTI WAN Server is not required.

Multicast communication is not supported by either of these transports.

This chapter provides a technical overview of:

❏ WAN Traversal via UDP Hole-Punching (Section 24.1)

❏ WAN Locators (Section 24.2)

❏ Datagram Transport-Layer Security (DTLS) (Section 24.3)

❏ Certificate Support (Section 24.4)

For information on how to use Secure WAN Transport with your Connext application, see
Chapter 25: Configuring RTI Secure WAN Transport.

24.1 WAN Traversal via UDP Hole-Punching
In order to resolve the problem of communication across NAT boundaries, the WAN Transport
implements a UDP hole-punching solution for NAT traversal [draft-ietf-behave-p2p-state]. This
solution uses a rendezvous server, which provides the ability to discover public addresses, and
to register and lookup peer addresses based on a unique WAN ID. This server is based on the
STUN (Session Traversal Utilities for NAT) protocol [draft-ietf-behave-rfc3489bis], with some
extensions. This protocol is a part of the solution used for standards-based voice over IP applica-
tions; similar technology has be used by systems such as Skype and has proven to be highly reli-
able. A key advantage of STUN is that it is based on UDP and therefore is able to preserve the
real-time characteristics of the DDS Interoperability Wire Protocol.

Once information about public addresses for the application and its peers has been obtained,
and connections have been initiated, the server is no longer required to maintain communica-
tion with a peer. However, if communication fails, possibly due to changes in dynamically-allo-
cated addresses, the server will be needed to reopen new public channels.

Figure 24.1 shows the RTI WAN transport architecture.

24.1.1 Protocol Details

The UDP hole-punching algorithm implemented by the WAN transport has two different
phases: registration and connection. This algorithm only works with cone or asymmetric NATs
where the same public address/port is assigned to all the sessions with the same private
address/port address.

❏ Registration Phase

The RTI WAN Server application runs on a machine that resides on the WAN network
(i.e., not in a private LAN). It has to be globally accessible to LAN applications. It is
started by a script and acts as a rendezvous point for LAN applications. During the regis-
tration phase, each transport locator is registered with the RTI WAN Server using a
STUN binding request message.

The RTI WAN Server associates RTPS locators with their corresponding public IPv4
transport addresses (a combination of IP address and port) and stores that information in
an internal table. Figure 24.2 illustrates the registration phase.
24-2

WAN Traversal via UDP Hole-Punching
Figure 24.1 RTI WAN Transport Architecture

Connext

DTLS

RTPS Discovery Traffic
RTPS User Traffic

NAT

STUN

Application 1

Connext

DTLS

STUN

Application 2

DTLS handshaking
Encrypted RTPS

STUN traffic
DTLS traffic

STUN traffic

NAT

RTI WAN Rendezvous Server

Server

Register

DomainParticipant 1

Connect to DP 2

Register

DP 2 public address DP 1 public address

Connect

DTLS handshaking

RTPS discovery

RTPS user traffic

DomainParticipant 2

Figure 24.2 Registration Phase

Connext

NAT
Transport

Plugin

Connext

NAT
Transport

Plugin
RTPS

Locator A
other.com#192.168.15.100:8000

Locator B
rti.com#192.168.1.100:700

0

RTI WAN Server
(18.181.0.31)

NAT
(155.99.25.11)

(1) From locator A to server
BIND REQUEST

Src Locator Attribute:
other.com#192.168.15.100:8000

Liveliness Period:
60000

NAT
(138.76.29.7)

(1) From locator B to server
BIND REQUEST

Src Locator Attribute:
rti.com#192.168.1.100:7000

Liveliness Period:
60000

(2) From server to locator A
BIND RESPONSE

Mapped Address Attribute:
155.99.25.11:8001

(2) From server to locator B
BIND RESPONSE

Mapped Address Attribute:
138.76.29.7:7001
24-3

WAN Traversal via UDP Hole-Punching
❏ Connection Phase

The connection phase starts when locator A wants to establish a connection with locator
B. Locator A obtains information about locator B via Connext discovery traffic or the ini-
tial NDDS_DISCOVERY_PEERS list. To establish a connection with locator B, locator A
sends a STUN connect request to the RTI WAN server. The server sends a STUN connect
response to locator A, including information about the public IP transport address (IP
address and port) of locator B. In parallel, the RTI WAN server contacts locator B using
another STUN connect request to let it know that locator A wants to establish a connec-
tion with it.

When locator A receives the public IP address of locator B, it will try to contact B using
two STUN binding request messages. The first message is sent to the public address of B
and the second message is sent to the private address of B. The private address was
obtained using the last 32 bits of the locator address of B. The STUN binding request
message directed to the public transport address of B sent by locator A will open a hole
in A's NAT to receive messages from B.

When locator B receives the public address of locator A, it will try to contact A sending a
STUN binding request message to that public address. This message will open a hole in
B's NAT to receive messages from A. When locator A receives the first STUN binding
response from locator B, it starts sending RTPS traffic.

The connection phase includes two processes: the connect process (Figure 24.3 on
page 24-4) and the NAT hole punching process (Figure 24.4 on page 24-5).

❏ STUN Liveliness

Finally, since bindings allocated by NAT expire unless refreshed, the clients (locators)
must generate binding request messages for the server and other clients to refresh the
bindings. The RTI STUN protocol implementation uses the attribute LIVELINESS-

Figure 24.3 Connect Process

Connext

WAN
Transport

Plugin

Connext

WAN
Transport

Plugin
RTPS

Locator A
other.com#192.168.15.100:8000

Locator B
rti.com#192.168.1.100:7000

RTI WAN Server
(18.181.0.31)

NAT
(155.99.25.11)

(1) From locator A to server
CONNECT REQUEST
Src Locator Attribute:

other.com#192.168.15.100:8000
Dst Locator Attribute

rti.com#192.168.1.100:7000

NAT
(138.76.29.7)

(2) From server to locator A
CONNECT RESPONSE

Mapped Address Attribute:
138.76.29.7:7001

(3) From server to locator B
CONNECT REQUEST
Src Locator Attribute:

rti.com#192.168.1.100:7000
Dst Locator Attribute

other.com#192.168.15.100:8000
Mapped Address Attribute:

155.99.25.11:8001

(4) From locator B to server
CONNECT RESPONSE
24-4

WAN Locators
PERIOD in the STUN binding request to indicate the period in milliseconds at which a
client will assert its liveliness. The WAN Server will remove a locator from its mapping
table when the liveliness contract is not met. Likewise, a transport instance will remove a
STUN connection with a locator when this locator does not assert its liveliness as indi-
cated in the last binding request.

24.2 WAN Locators
The WAN transport does not use simple IP addresses to locate peers. A WAN transport locator
consists of a WAN ID, which is an arbitrary 12-byte value, and a bottom 4-byte value that speci-
fies a fallback local IPv4 address. Your peers list (NDDS_DISCOVERY_PEERS) must be config-
ured to look for peers with locators of the form:

❏ The address is a 128-bit address in IPv6 notation.

❏ The "wan://" part specifies that the address is for the WAN transport.

❏ The next part, "::1", specifies the top 12 bytes of the address to be 11 zero bytes, followed
by a byte with value 1 (this corresponds to the peer's WAN ID).

❏ The last part, "10.10.1.150" refers to the peers local IPv4 address, which will be used if the
peers are on the same local network.

A DomainParticipant using the WAN transport will have to initialize the
DDS_DiscoveryQosPolicy’s initial_peers field with the WAN locator addresses corresponding
to the peers to which it wants to connect to. The value of initial_peers can be set using the envi-

Figure 24.4 NAT Hole Punching Process

Connext

WAN
Transport

Plugin

Connext

WAN
Transport

Plugin
RTPS

Locator A
other.com#192.168.15.100:8000

Locator B
rti.com#192.168.1.100:7000

RTI WAN Server
(18.181.0.31)

NAT
(155.99.25.11)

(1) From locator A to public address
of locator B

BIND REQUEST
Src Locator Attribute:

other.com#192.168.15.100:8000
Liveliness Period:

60000

NAT
(138.76.29.7)

(1) From locator B to public address
of locator A

BIND REQUEST
Src Locator Attribute:

rti.com#192.168.1.100:7000
Liveliness Period:

60000

(2) From locator A to public address of
locator B

BIND RESPONSE
Mapped Address Attribute:

138.76.29.7:7001

(2) From locator B to public address of
locator A

BIND RESPONSE
Mapped Address Attribute:

155.99.25.11:8001

(1) From locator A to private address
of locator B

BIND REQUEST
Src Locator Attribute:

other.com#192.168.15.100:8000
Liveliness Period:

60000
24-5

Datagram Transport-Layer Security (DTLS)
ronment variable NDDS_DISCOVERY_PEERS or the NDDS_DISCOVERY_PEERS configura-
tion file. (See Configuring the Peers List Used in Discovery (Section 14.2).)

24.3 Datagram Transport-Layer Security (DTLS)
Data security is provided by wrapping all Connext network traffic with the Datagram Transport
Layer Security (DTLS) protocol (IETF RFC 4347). DTLS is a relatively recent variant of the
mature SSL/TLS family of protocols which adds the capability to secure communication over a
connectionless network-layer transport such as UDP. UDP is the preferred network layer trans-
port for the DDS wire protocol RTPS, as well as for NAT traversal. Like SSL/TLS, the DTLS pro-
tocol provides capabilities for certificate-based authentication, data encryption, and message
integrity. The protocol specifies a number of standard cryptographic algorithms that must be
available; the base set is listed in the TLS 1.1 specification (IETF RFC 4346).

Secure protocol support is provided by the open source OpenSSL library, which has supported
the DTLS protocol since the release of OpenSSL 0.9.8. Note however that many critical issues in
DTLS were resolved by the OpenSSL 0.9.8f release. For more detailed information about avail-
able ciphers, certificate support, etc. please refer to the OpenSSL documentation. The DTLS pro-
tocol securely authenticates with each individual peer; as such, multicast communication is not
supported by the Secure Transport. There is also a FIPS security-certified version of OpenSSL
(OpenSSL-FIPS 1.1.1), but this does not yet support DTLS.

The Secure Transport protocol stack is similar to the Secure WAN transport stack, but without
the STUN layer and server. See Figure 24.1 on page 24-3.

24.3.1 Security Model

In order to communicate securely, an instance of the secure plugin requires: 1) a certificate
authority (shared with all peers), 2) an identifying certificate which has been signed by the
authority, 3) the private key associated with the public key contained in the certificate.

The Certificate Authority (CA) is specified by using a PEM format file containing its public key
or by using a directory of PEM files following standard OpenSSL naming conventions. If a sin-
gle CA file is used, it may contain multiple CA keys. In order to successfully communicate with
24-6

Certificate Support
a peer, the CA keys that are supplied must include the CA that has signed that peer's identifying
certificate.

The identifying certificate is specified by using a PEM format file containing the chain of CAs
used to authenticate the certificate. The identifying certificate must be signed by a CA. It will
either be directly signed by a root CA (one of the CAs supplied above), by an authority whose
certificate has been signed by the root CA, or by a longer chain of certificate authorities. The file
must be sorted starting with the certificate to the highest level (root CA). If the certificate is
directly signed by a root CA, then this file will only contain the root CA certificate followed by
the identity certificate.

Finally, a private key is required. In order to avoid impersonation of an identity, this should be
kept private. It can be stored in its own PEM file specified in one of the private key properties, or
it can be appended to the certificate chain file.

One complication in the use of DTLS for communication by Connext is that even though DTLS is
a connectionless protocol, it still has client/server semantics. The RTI Secure Transport maps a
bidirectional communication channel between two peer applications into a pair of unidirec-
tional encrypted channels. Both peers are playing the part of a client (when sending data) and a
server (when receiving).

24.3.2 Liveliness Mechanism

When a peer shuts down cleanly, the DTLS protocol ensures that resources are released. If a
peer crashes or otherwise stops responding, a liveliness mechanism in the DTLS transport
cleans up resources. You can configure the DTLS handshake retransmission interval and the
connection liveliness interval.

24.4 Certificate Support
Cryptographic certificates are required to use the security features of the WAN transport. This
section describes a mechanism to use the OpenSSL command line tool to generate a simple pri-
vate certificate authority. For more information, see the manual page for the openssl tool (http:/
/www.openssl.org/docs/apps/openssl.html) or the book, "Network Security with OpenSSL" by
Viega, Messier, & Chandra (O'Reilly 2002), or other references on Public Key Infrastructure.

1. Initialize the Certificate Authority:

a. Create a copy of the openssl.cnf file and edit fields to specify the proper default names
and paths.

b. Create the required CA directory structure:

 mkdir myCA
 mkdir myCA/certs
 mkdir myCA/private
 mkdir myCA/newcerts
 mkdir myCA/crl
 touch myCA/index.txt

c. Create a self-signed certificate and CA private key:

 openssl req -nodes -x509 -days 1095 -newkey rsa:2048 \
 -keyout myCA/private/cakey.pem -out myCA/cacert.pem \
 -config openssl.cnf

24-7

http://www.openssl.org/docs/apps/openssl.html
http://www.openssl.org/docs/apps/openssl.html

License Issues
2. For each identifying certificate:

a. You may want to create a copy of your customized openssl.cnf file with default identi-
fying information to be used as a template for certificate request creation; the com-
mands below refer to this file as template.cnf.

b. Generate a certificate request and private key:

 openssl req -nodes -new -newkey rsa:2048 -config template.cnf \
 -keyout peer1key.pem -out peer1req.pem

c. Use the CA to sign the certificate request to generate certificate:

 openssl ca -create_serial -config openssl.cnf -days 365 \
 -in peer1req.pem -out myCA/newcerts/peer1cert.pem

d. Optionally, append the private key to the peer certificate:

 cat myCA/newcerts/peer1cert.pem peer1key.pem \
 $>${private location}/ peer1.pem

24.5 License Issues
The OpenSSL toolkit stays under a dual license, i.e., both the conditions of the OpenSSL License
and the original SSLeay license apply to the toolkit. See below for the actual license texts. Actu-
ally both licenses are BSD-style Open Source licenses. In case of any license issues related to
OpenSSL please contact openssl-core@openssl.org.

/* ==
 * Copyright (c) 1998-2007 The OpenSSL Project. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in
 * the documentation and/or other materials provided with the
 * distribution.
 *
 * 3. All advertising materials mentioning features or use of this
 * software must display the following acknowledgment:
 * "This product includes software developed by the OpenSSL Project
 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
 *
 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
 * endorse or promote products derived from this software without
 * prior written permission. For written permission, please contact
 * openssl-core@openssl.org.
 *
 * 5. Products derived from this software may not be called "OpenSSL"
 * nor may "OpenSSL" appear in their names without prior written
 * permission of the OpenSSL Project.
 *
 * 6. Redistributions of any form whatsoever must retain the following
 * acknowledgment:
 * "This product includes software developed by the OpenSSL Project
 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
24-8

License Issues
 *
 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
 * OF THE POSSIBILITY OF SUCH DAMAGE.
 * ==
 *
 * This product includes cryptographic software written by Eric Young
 * (eay@cryptsoft.com). This product includes software written by Tim
 * Hudson (tjh@cryptsoft.com).
 *
 */

 Original SSLeay License

/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
 * All rights reserved.
 *
 * This package is an SSL implementation written
 * by Eric Young (eay@cryptsoft.com).
 * The implementation was written so as to conform with Netscapes SSL.
 *
 * This library is free for commercial and non-commercial use as long as
 * the following conditions are aheared to. The following conditions
 * apply to all code found in this distribution, be it the RC4, RSA,
 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
 * included with this distribution is covered by the same copyright terms
 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
 *
 * Copyright remains Eric Young's, and as such any Copyright notices in
 * the code are not to be removed.
 * If this package is used in a product, Eric Young should be given
 * attribution
 * as the author of the parts of the library used.
 * This can be in the form of a textual message at program startup or
 * in documentation (online or textual) provided with the package.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the copyright
 * notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in the
 * documentation and/or other materials provided with the distribution.
 * 3. All advertising materials mentioning features or use of this software
 * must display the following acknowledgement:
 * "This product includes cryptographic software written by
 * Eric Young (eay@cryptsoft.com)"
 * The word 'cryptographic' can be left out if the routines from the
 * library
 * being used are not cryptographic related :-).
 * 4. If you include any Windows specific code (or a derivative thereof)
 * from
 * the apps directory (application code) you must include an
 * acknowledgement:
24-9

License Issues
 * "This product includes software written by Tim Hudson
 * (tjh@cryptsoft.com)"
 *
 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
 * STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 *
 * The licence and distribution terms for any publicly available
 * version or
 * derivative of this code cannot be changed. i.e. this code cannot
 * simply be
 * copied and put under another distribution licence
 * [including the GNU Public Licence.]
 */
24-10

Chapter 25 Configuring RTI Secure WAN Transport

The Secure WAN Transport package includes two transports:

❏ The WAN Transport is for use on a WAN and includes security.1 It must be used with the
WAN Server, a separate application that provides additional services needed for Connext
applications to communicate with each other over a WAN.

❏ The Secure Transport is an alternate transport that provides security on an untrusted
LAN. Use of the RTI WAN Server is not required.

There are two ways in which these transports can be configured:

❏ By setting up predefined strings in the Property QoS Policy of the DomainParticipant (on
UNIX, Solaris and Windows systems only). This process is described in Setting Up a
Transport with the Property QoS (Section 25.2).

❏ By instantiating a new transport (Section 25.5) and then registering it with the Domain-
Participant, see Section 15.7 (not available in Java API).

Refer to the API Reference HTML documentation for details on these two approaches.

25.1 Example Applications
A simple example is available to show how to configure the WAN transport. It includes example
settings to enable communication over WAN, and optional settings to enable security (along
with example certificate files to use for secure communication). The example is located in <Con-
next installation directory>/example/<language>/HelloWorldWAN.

As seen in the example, you can configure the properties of either transport by setting the
appropriate name/value pairs in the DomainParticipant’s PropertyQoS, as described in
Section 25.2. This will cause Connext to dynamically load the WAN or Secure Transport libraries
at run time and then implicitly create and register the transport plugin.

Another way to use the WAN or Secure transports is to explicitly create the plugin and use
register_transport() to register the transport with Connext (see Section 15.7). This way is not
shown in the example. See Explicitly Instantiating a WAN or Secure Transport Plugin (Section
25.5).

1. Security is disabled by default.
25-1

Setting Up a Transport with the Property QoS
25.2 Setting Up a Transport with the Property QoS
The PROPERTY QosPolicy (DDS Extension) (Section 6.5.17) allows you to set up name/value
pairs of data and attach them to an entity, such as a DomainParticipant. This will cause Connext to
dynamically load the WAN or Secure Transport libraries at run time and then implicitly create
and register the transport plugin.

Please refer to Setting Builtin Transport Properties with the PropertyQosPolicy (Section 15.6).

To assign properties, use the add_property() operation:

DDS_ReturnCode_t DDSPropertyQosPolicyHelper::add_property
(DDS_PropertyQosPolicy policy,

 const char * name,
 const char * value,
 DDS_Boolean propagate)

For more information on add_property() and the other operations in the DDSPropertyQosPoli-
cyHelper class, please see Table 6.56, “PropertyQoSPolicyHelper Operations,” on page 6-119, as
well as the API Reference HTML documentation.

The ‘name’ part of the name/value pairs is a predefined string, described in WAN Transport
Properties (Section 25.3) and Secure Transport Properties (Section 25.4).

Here are the basic steps, taken from the example Hello World application (for details, please see
the example application.)

1. Get the default DomainParticipant QoS from the DomainParticipantFactory.

DDSDomainParticipantFactory::get_instance()->get_default_participant_qos(
 participant_qos);

2. Disable the builtin transports.

participant_qos.transport_builtin.mask = DDS_TRANSPORTBUILTIN_MASK_NONE;

3. Set up the DomainParticipant’s Property QoS.

a. Load the plugin.

DDSPropertyQosPolicyHelper::add_property (participant_qos.property,
"dds.transport.load_plugins", "dds.transport.wan_plugin.wan",
DDS_BOOLEAN_FALSE);

b. Specify the transport plugin library.

DDSPropertyQosPolicyHelper::add_property (participant_qos.property,
 "dds.transport.wan_plugin.wan.library", "libnddstransportwan.so",
 DDS_BOOLEAN_FALSE);

c. Specify the transport’s ‘create’ function.

DDSPropertyQosPolicyHelper::add_property (participant_qos.property,
"dds.transport.wan_plugin.wan.create_function",
"NDDS_Transport_WAN_create",
DDS_BOOLEAN_FALSE);

d. Specify the WAN Server and instance ID.

DDSPropertyQosPolicyHelper::add_property (participant_qos.property,
"dds.transport.wan_plugin.wan.server", "192.168.1.1",
DDS_BOOLEAN_FALSE);
25-2

WAN Transport Properties
DDSPropertyQosPolicyHelper::add_property (participant_qos.property,
"dds.transport.wan_plugin.wan.transport_instance_id", 1,
DDS_BOOLEAN_FALSE);

e. Specify any other properties, as needed.

4. Create the DomainParticipant, using the modified QoS.

participant = DDSTheParticipantFactory->create_participant (domainId,
participant_qos, NULL /* listener */, DDS_STATUS_MASK_NONE);

Important! Property changes should be made before the transport is loaded: either before the
DomainParticipant is enabled, before the first DataWriter/DataReader is created, or before the buil-
tin topic reader is looked up, whichever one happens first.

25.3 WAN Transport Properties
Table 25.1 lists the properties that you can set for the WAN Transport.

Table 25.1 Properties for NDDS_Transport_WAN_Property_t

Property Name
(prefix with

‘dds.transport.WAN.wan1.’)a
Property Value Description

dds.transport.load_plugins
(note: this does not take a prefix)

Required Comma-separated strings indicating the prefix names of all
plugins that will be loaded by Connext. For example: “dds.trans-
port.WAN.wan1". You will use this string as the prefix to the property
names. See a. Note: You can load up to 8 plugins.

library

Required Must set to "libnddstransportwan.so" (for UNIX/Solaris sys-
tems) or "nddstransportwan.dll" (for Windows system).
This library and the dependent OpenSSL libraries need to be in your
library search path (pointed to by the environment variable
LD_LIBRARY_PATH on UNIX/Solaris systems, Path on Windows
systems, LIBPATH on AIX systems, DYLD_LIBRARY_PATH on Mac
OS systems).

create_function Required Must be "NDDS_Transport_WAN_create"

aliases

Used to register the transport plugin returned by
NDDS_Transport_WAN_create() (as specified by
<WAN_prefix>.create_function) to the DomainParticipant. Aliases should be
specified as a comma-separated string, with each comma delimiting an
alias. If it is not specified, the prefixa is used as the default alias for the plu-
gin.

verbosity

Specifies the verbosity of log messages from the transport.
Possible values:
-1: silent
0 (default): errors only
1: errors and warnings
2: local status
5 or higher: all messages

parent.parent.address_bit_count
Number of bits in a 16-byte address that are used by the transport. Should
be between 0 and 128. For example, for an address range of 0-255, the
address_bit_count should be set to 8.
25-3

WAN Transport Properties
parent.parent.properties_bitmap

A bitmap that defines various properties of the transport to the Connext
core. Currently, the only property supported is whether or not the transport
plugin will always loan a buffer when Connext tries to receive a message
using the plugin. This is in support of a zero-copy interface.

parent.parent.gather_send_
buffer_count_max

Specifies the maximum number of buffers that Connext can pass to the
send() function of the transport plugin.
The transport plugin send() API supports a gather-send concept, where the
send() call can take several discontiguous buffers, assemble and send them
in a single message. This enables Connext to send a message from parts
obtained from different sources without first having to copy the parts into a
single contiguous buffer.
However, most transports that support a gather-send concept have an
upper limit on the number of buffers that can be gathered and sent. Setting
this value will prevent Connext from trying to gather too many buffers into a
send call for the transport plugin.
Connext requires all transport-plugin implementations to support a gather-
send of least a minimum number of buffers. This minimum number is
defined as NDDS_TRANSPORT_-
PROPERTY_GATHER_SEND_BUFFER_COUNT_MIN.

parent.parent.message_size_max

The maximum size of a message in bytes that can be sent or received by the
transport plugin.
This value must be set before the transport plugin is registered, so that Con-
next can properly use the plugin.

parent.parent.allow_interfaces

A list of strings, each identifying a range of interface addresses.
Interfaces must be specified as comma-separated strings, with each comma
delimiting an interface.
If the list is non-empty, this "white" list is applied before the parent.par-
ent.deny_interfaces list.
It is up to the transport plugin to interpret the list of strings passed in. Usu-
ally this interpretation will be consistent with
NDDS_Transport_String_To_Address_Fcn_cEA().
This property is not interpreted by the Connext core; it is provided merely as
a convenient and standardized way to specify the interfaces for the benefit
of the transport plugin developer and user.
You must manage the memory of the list. The memory may be freed after
the DomainParticipant is enabled.

Table 25.1 Properties for NDDS_Transport_WAN_Property_t

Property Name
(prefix with

‘dds.transport.WAN.wan1.’)a
Property Value Description
25-4

WAN Transport Properties
parent.parent.deny_interfaces

A list of strings, each identifying a range of interface addresses. If the list is
non-empty, deny the use of these interfaces.
Interfaces must be specified as comma-separated strings, with each comma
delimiting an interface.
This "black" list is applied after the parent.parent.allow_interfaces list and
filters out the interfaces that should not be used.
It is up to the transport plugin to interpret the list of strings passed in. Usu-
ally this interpretation will be consistent with
NDDS_Transport_String_To_Address_Fcn_cEA().
This property is not interpreted by the Connext core; it is provided merely as
a convenient and standardized way to specify the interfaces for the benefit
of the transport plugin developer and user.
You must manage the memory of the list. The memory may be freed after
the DomainParticipant is enabled.

parent.send_socket_buffer_size

Size in bytes of the send buffer of a socket used for sending. On most oper-
ating systems, setsockopt() will be called to set the SENDBUF to the value
of this parameter.
This value must be greater than or equal to
parent.parent.message_size_max.
The maximum value is operating system-dependent.
If NDDS_TRANSPORT_UDPV4_SOCKET_BUFFER_SIZE_OS_DEFAULT,
then setsockopt() (or equivalent) will not be called to size the send buffer of
the socket.

parent.recv_socket_buffer_size

Size in bytes of the receive buffer of a socket used for receiving.
On most operating systems, setsockopt() will be called to set the RECVBUF
to the value of this parameter.
This value must be greater than or equal to parent.par-
ent.message_size_max. The maximum value is operating system-depen-
dent.
If NDDS_TRANSPORT_UDPV4_SOCKET_BUFFER_SIZE_OS_DEFAULT,
then setsockopt() (or equivalent) will not be called to size the receive buffer
of the socket.

parent.unicast_enabled

Allows the transport plugin to use unicast UDP for sending and receiving.
By default, it will be turned on. Also by default, it will use all the allowed
network interfaces that it finds up and running when the plugin is
instanced.

parent.ignore_loopback_interface

Prevents the transport plugin from using the IP loopback interface. Three
values are allowed:
0: Enable local traffic via this plugin. This plugin will only use and report

the IP loopback interface only if there are no other network interfaces
(NICs) up on the system.

1: Disable local traffic via this plugin. Do not use the IP loopback interface
even if no NICs are discovered. This is useful when you want applica-
tions running on the same node to use a more efficient plugin like Shared
Memory instead of the IP loopback.

-1:Automatic. Lets Connext decide among the above two choices. If a shared
memory transport plugin is available for local traffic, the effective value
is 1 (i.e., disable UDPv4 local traffic). Otherwise, the effective value is 0,
i.e., use UDPv4 for local traffic also.

Table 25.1 Properties for NDDS_Transport_WAN_Property_t

Property Name
(prefix with

‘dds.transport.WAN.wan1.’)a
Property Value Description
25-5

WAN Transport Properties
parent.ignore_nonrunning_
interfaces

Prevents the transport plugin from using a network interface that is not
reported as RUNNING by the operating system.
The transport checks the flags reported by the operating system for each
network interface upon initialization. An interface which is not reported as
UP will not be used. This property allows the same check to be extended to
the IFF_RUNNING flag implemented by some operating systems. The
RUNNING flag is defined to mean that "all resources are allocated", and
may be off if there is no link detected, e.g., the network cable is unplugged.
Two values are allowed:
0: Do not check the RUNNING flag when enumerating interfaces, just

make sure the interface is UP.
1: Check the flag when enumerating interfaces, and ignore those that are

not reported as RUNNING. This can be used on some operating systems
to cause the transport to ignore interfaces that are enabled but not con-
nected to the network.

parent.no_zero_copy

Prevents the transport plugin from doing a zero copy.
By default, this plugin will use the zero copy on OSs that offer it. While this
is good for performance, it may sometime tax the OS resources in a manner
that cannot be overcome by the application.
The best example is if the hardware/device driver lends the buffer to the
application itself. If the application does not return the loaned buffers soon
enough, the node may error or malfunction. In case you cannot reconfigure
the H/W, device driver, or the OS to allow the zero copy feature to work for
your application, you may have no choice but to turn off zero copy use.
By default this is set to 0, so Connext will use the zero-copy API if offered by
the OS.

parent.send_blocking

Controls the blocking behavior of send sockets. CHANGING THIS FROM
THE DEFAULT CAN CAUSE SIGNIFICANT PERFORMANCE PROB-
LEMS.
Two values are defined:
NDDS_TRANSPORT_UDPV4_BLOCKING_ALWAYS: Sockets are blocking

(default socket options for Operating System).
NDDS_TRANSPORT_UDPV4_BLOCKING_NEVER: Sockets are modified

to make them non-blocking. THIS IS NOT A SUPPORTED CONFIGU-
RATION AND MAY CAUSE SIGNIFICANT PERFORMANCE PROB-
LEMS.

parent.transport_priority_mask

Mask for the transport priority field. This is used in conjunction with
transport_priority_mapping_low/high to define the mapping from DDS
transport priority to the IPv4 TOS field. Defines a contiguous region of bits
in the 32-bit transport priority value that is used to generate values for the
IPv4 TOS field on an outgoing socket.
For example, the value 0x0000ff00 causes bits 9-16 (8 bits) to be used in the
mapping. The value will be scaled from the mask range (0x0000 - 0xff00 in
this case) to the range specified by low and high.
If the mask is set to zero, then the transport will not set IPv4 TOS for send
sockets.

Table 25.1 Properties for NDDS_Transport_WAN_Property_t

Property Name
(prefix with

‘dds.transport.WAN.wan1.’)a
Property Value Description
25-6

WAN Transport Properties
parent.transport_priority_
mapping_low

Sets the low and high values of the output range to IPv4 TOS.
These values are used in conjunction with transport_priority_mask to
define the mapping from DDS transport priority to the IPv4 TOS field.
Defines the low and high values of the output range for scaling.
Note that IPv4 TOS is generally an 8-bit value.

parent.transport_priority_
mapping_high

enable_security Required if you want to use security.

recv_decode_buffer_size
Size of buffer for decoding packets from wire. An extra buffer is required for
storage of encrypted data. The minimum value for this property is par-
ent.parent.message_size_max.

port_offset Port offset to allow coexistence with non-secure UDP transport.

dtls_handshake_resend_interval DTLS handshake retransmission interval in milliseconds

tls.verify.ca_file

A string that specifies the name of file containing Certificate Authority cer-
tificates. File should be in PEM format. See the OpenSSL manual page for
SSL_load_verify_locations for more information.
If you want to use security, tls.verify.ca_file or tls.verify.ca_path must be
specified; both may be specified.

tls.verify.ca_path

A string that specifies paths to directories containing Certificate Authority
certificates. Files should be in PEM format, and follow the OpenSSL-
required naming conventions. See the OpenSSL manual page for
SSL_CTX_load_verify_locations for more information.
If you want to use security, tls.verify.ca_file or tls.verify.ca_path must be
specified; both may be specified.

tls.verify.verify_depth Maximum certificate chain length for verification.

tls.verify.verify_peer
If non-zero, use mutual authentication when performing TLS hand- shake
(default). If zero, only the reader side will present a certificate, which will be
verified by the writer side.

tls.verify.verify_callback

This can be set to one of three values:
"default" selects the default callback

NDDS_Transport_TLS_default_verify_callback()
"verbose" selects the verbose callback

NDDS_Transport_TLS_verbose_verify_callback()
"none" requests no callback be registered

tls.cipher.cipher_list
List of available (D)TLS ciphers. See the OpenSSL manual page for
SSL_set_cipher_list for more information on the format of this string.

tls.cipher.dh_param_files

List of available Diffie-Hellman (DH) key files. For example:
"foo.h:512,bar.h:256" means:
dh_param_files[0].file = foo.pem,
dh_param_files[0].bits = 512,
dh_param_files[1].file = bar.pem,
dh_param_files[1].bits = 256

tls.cipher.engine_id String ID of OpenSSL cipher engine to request.

tls.identity.certificate_chain_file

Required if you want to use security. A string that specifies the name of a
file containing an identifying certificate chain (in PEM format). An identify-
ing certificate is required for secure communication. The file must be sorted
starting with the certificate to the highest level (root CA). If no private key is
specified, this file will be used to load a non-RSA private key.

tls.identity.private_key_password A string that specifies the password for private key.

Table 25.1 Properties for NDDS_Transport_WAN_Property_t

Property Name
(prefix with

‘dds.transport.WAN.wan1.’)a
Property Value Description
25-7

Secure Transport Properties
25.4 Secure Transport Properties
Table 25.2 lists the properties that you can set for the Secure Transport.

tls.identity.private_key_file
A string that specifies that name of a file containing private key (in PEM for-
mat). If no private key is specified (all values are NULL), this value will
default to the same file as the specified certificate chain file.

tls.identity.rsa_private_key_file
A string that specifies that name of a file containing an RSA private key (in
PEM format).

transport_instance_id[0] to
[NDDS_TRANSPORT_
WAN_TRANSPORT_
INSTANCE_ID_LENGTHb]

Required A set of comma-separated values to specify the elements of the
array. This value must be unique for all transport instances communicating
with the same WAN Rendezvous Server.
If less than the full array is specified, it will be right-aligned. For example,
the string "01,02" results in the array being set to:
 {0,0,0,0,0,0,0,0,0,0,1,2}

interface_address Locator, as a string

server Required Server locator, as a string.

server_port Server port number.

stun_retransmission_interval
STUN request messages requiring a response are resent with this interval.
The interval is doubled after each retransmission. Specified in msec.

stun_number_of_retransmissions
Maximum number of times STUN messages are resent unless a response is
received.

stun_liveliness_period
Period at which messages are sent to peers to keep NAT holes open; and to
the WAN server to refresh bound ports. Specified in msec.

a. Assuming you used ‘dds.transport.WAN.wan1’ as the alias to load the plugin. If not, change the prefix to match the string
used with dds.transport.load_plugins. This prefix must begin with 'dds.transport.'
b. NDDS_TRANSPORT_WAN_TRANSPORT_INSTANCE_ID_LENGTH = 12

Table 25.1 Properties for NDDS_Transport_WAN_Property_t

Property Name
(prefix with

‘dds.transport.WAN.wan1.’)a
Property Value Description

Table 25.2 Properties for NDDS_Transport_DTLS_Property_t

Property Name
(prefix with

‘dds.transport.DTLS.dtls1’)a
Property Value Description

dds.transport.load_plugins
(note: this does not take a prefix)

Required Comma-separated strings indicating the prefix names of all
plugins that will be loaded by Connext. For example: “dds.trans-
port.DTLS.dtls1". You will use this string as the prefix to the property
names. See a.
Note: you can load up to 8 plugins.

library

Required Must set to "libnddstransporttls.so" (for UNIX/Solaris) or
"nddstransporttls.dll" (for Windows).
This library and the dependent Openssl libraries must be in your
library search path (pointed to by the environment variable
LD_LIBRARY_PATH on UNIX/Solaris systems, Path on Windows
systems, LIBPATH on AIX systems, DYLD_LIBRARY_PATH on
Mac OS systems).
25-8

Secure Transport Properties
create_function Required Must be "NDDS_Transport_DTLS_create"

aliases

Used to register the transport plugin returned by
NDDS_Transport_DTLS_create() (as specified by
<DTLS_prefix>.create_function) to the DomainParticipant. Aliases should
be specified as comma separated string, with each comma delimiting an
alias. If it is not specified, the prefix (see a) is used as the default alias for
the plugin.

network_address

The network address at which to register this transport plugin.
The least significant transport_in.property.address_bit_count will be trun-
cated. The remaining bits are the network address of the transport plugin.
This value overwrites the value returned by the output parameter in
NDDS_Transport_create_plugin function as specified in
"<DTLS_prefix>.create_function".

verbosity

Specifies the verbosity of log messages from the transport.
Possible values:
-1: silent
0 (default): errors only
1: errors and warnings
2: local status
5 or higher: all messages

parent.address_bit_count
Number of bits in a 16-byte address that are used by the transport. Should
be between 0 and 128. For example, for an address range of 0-255, the
address_bit_count should be set to 8.

parent.properties_bitmap

A bitmap that defines various properties of the transport to the Connext
core. Currently, the only property supported is whether or not the trans-
port plugin will always loan a buffer when Connext tries to receive a mes-
sage using the plugin. This is in support of a zero-copy interface.

parent.gather_send_buffer_
count_max

Specifies the maximum number of buffers that Connext can pass to the
transport plugin’s send() function.

parent.message_size_max
The maximum size of a message in bytes that can be sent or received by
the transport plugin. Maximum value: 16384.

parent.allow_interfaces

A list of strings, each identifying a range of interface addresses.
Interfaces must be specified as comma-separated strings, with each
comma delimiting an interface.
If the list is non-empty, this "white" list is applied before the par-
ent.deny_interfaces list.
You must manage the memory of the list. The memory may be freed after
the DomainParticipant is enabled.

parent.deny_interfaces

A list of strings, each identifying a range of interface addresses.
Interfaces should be specified as comma-separated strings, with each
comma delimiting an interface.
This "black" list is applied after the parent.allow_interfaces list and filters
out the interfaces that should not be used.
You must manage the memory of the list. The memory may be freed after
the DomainParticipant is enabled.

send_socket_buffer_size Size in bytes of the send buffer of a socket used for sending.

recv_socket_buffer_size Size in bytes of the receive buffer of a socket used for sending.

Table 25.2 Properties for NDDS_Transport_DTLS_Property_t

Property Name
(prefix with

‘dds.transport.DTLS.dtls1’)a
Property Value Description
25-9

Secure Transport Properties
ignore_loopback_interface Prevents the Transport Plugin from using the IP loopback interface.

ignore_nonrunning_interfaces

Prevents the transport plugin from using a network interface that is not
reported as RUNNING by the operating system.
The transport checks the flags reported by the operating system for each
network interface upon initialization. An interface which is not reported
as UP will not be used. This property allows the same check to be
extended to the IFF_RUNNING flag implemented by some operating sys-
tems. The RUNNING flag is defined to mean that "all resources are allo-
cated", and may be off if there is no link detected, e.g., the network cable is
unplugged.
Two values are allowed:
0: Do not check the RUNNING flag when enumerating interfaces, just

make sure the interface is UP.
1: Check the flag when enumerating interfaces, and ignore those that are

not reported as RUNNING. This can be used on some operating sys-
tems to cause the transport to ignore interfaces that are enabled but not
connected to the network.

transport_priority_mask Mask for use of transport priority field.

transport_priority_mapping_low
Low and high values of output range to IPv4 TOS.

transport_priority_mapping_high

recv_decode_buffer_size
Size of buffer for decoding packets from wire. An extra buffer is required
for storage of encrypted data. The minimum value for this property is par-
ent.message_size_max.

port_offset Port offset to allow coexistence with non-secure UDP transport.

dtls_handshake_resend_interval DTLS handshake retransmission interval in milliseconds

dtls_connection_liveliness_
interval

Liveliness interval (multiple of resend interval)
The connection will be dropped if no message from the peer is received in
this amount of time. This enables cleaning up state for peers that are no
longer responding. A secure keep-alive message will be sent every half-
interval if no other sends have occurred for a given DTLS connection dur-
ing that time.

tls.verify.ca_file

A string that specifies the name of file containing Certificate Authority
certificates. File should be in PEM format. See the OpenSSL manual page
for SSL_load_verify_locations for more information.
tls.verify.ca_file or tls.verify.ca_path must be specified; both may be speci-
fied.

tls.verify.ca_path

A string that specifies paths to directories containing Certificate Authority
certificates. Files should be in PEM format, and follow the OpenSSL-
required naming conventions. See the OpenSSL manual page for
SSL_CTX_load_verify_locations for more information.
tls.verify.ca_file or tls.verify.ca_path must be specified; both may be speci-
fied.

tls.verify.verify_depth Maximum certificate chain length for verification.

tls.verify.verify_peer
If non-zero, use mutual authentication when performing TLS hand- shake
(default). If zero, only the reader side will present a certificate, which will
be verified by the writer side.

Table 25.2 Properties for NDDS_Transport_DTLS_Property_t

Property Name
(prefix with

‘dds.transport.DTLS.dtls1’)a
Property Value Description
25-10

Explicitly Instantiating a WAN or Secure Transport Plugin
25.5 Explicitly Instantiating a WAN or Secure Transport Plugin
As described on page 25-1, there are two ways to instantiate a transport plugin. This section
describes the mechanism that includes calling NDDSTransportSupport::register_transport().
(The other way is to use the Property QoS mechanism, described in Section 25.2).

Notes:

❏ This way of instantiating a transport is not supported in the Java API. If you are using
Java, use the Property QoS mechanism, described in Section 25.2.

❏ To use this mechanism, there are extra libraries that you must link into your program
and an additional header file that you must include. Please see the Section 25.5.1 and
Section 25.5.2 for details.

To instantiate a WAN or Secure Transport prior to explicitly registering it with NDDSTransport-
Support::register_transport(), use one of the following functions:

NDDS_Transport_Plugin* NDDS_Transport_WAN_new (
const struct NDDS_Transport_WAN_Property_t * property_in)

tls.verify.verify_callback

This can be set to one of three values:
"default" selects the default callback

NDDS_Transport_TLS_default_verify_callback()
"verbose" selects the verbose callback

NDDS_Transport_TLS_verbose_verify_callback()
"none" requests no callback be registered

tls.cipher.cipher_list
List of available (D)TLS ciphers. See the OpenSSL manual page for
SSL_set_cipher_list for more information on the format of this string.

tls.cipher.dh_param_files

List of available Diffie-Hellman (DH) key files. For example:
"foo.h:512,bar.h:256" means:
dh_param_files[0].file = foo.pem,
dh_param_files[0].bits = 512,
dh_param_files[1].file = bar.pem,
dh_param_files[1].bits = 256

tls.cipher.engine_id String ID of OpenSSL cipher engine to request.

tls.identity.certificate_chain_file

Required A string that specifies the name of a file containing an identify-
ing certificate chain (in PEM format). An identifying certificate is required
for secure communication. The file must be sorted starting with the certif-
icate to the highest level (root CA). If no private key is specified, this file
will be used to load a non-RSA private key.

tls.identity.private_key_password A string that specifies the password for private key.

tls.identity.private_key_file
A string that specifies that name of a file containing private key (in PEM
format). If no private key is specified (all values are NULL), this value will
default to the same file as the specified certificate chain file.

tls.identity.rsa_private_key_file
A string that specifies that name of a file containing an RSA private key
(in PEM format).

a. Assuming you used ‘dds.transport.DTLS.dtls1’ as the alias to load the plugin. If not, change the prefix to match the
string used with dds.transport.load_plugins. This prefix must begin with 'dds.transport.'

Table 25.2 Properties for NDDS_Transport_DTLS_Property_t

Property Name
(prefix with

‘dds.transport.DTLS.dtls1’)a
Property Value Description
25-11

Explicitly Instantiating a WAN or Secure Transport Plugin
NDDS_Transport_Plugin* NDDS_Transport_DTLS_new (
const struct NDDS_Transport_DTLS_Property_t * property_in)

See the API Reference HTML documentation for details on these functions.

25.5.1 Additional Header Files and Include Directories
❏ To use the Secure WAN Transport API, you must include an extra header file (in addition

to those in Table 9.1, “Header Files to Include for Connext (All Architectures),” on
page 9-2).

#include "ndds/ndds_transport_secure_wan.h"
Assuming that Secure WAN Transport is installed in the same directory as Connext (see
Table 9.2, “Include Paths for Compilation (All Architectures),” on page 9-2), no addi-
tional include paths need to be added for the Secure WAN Transport API. If this is not
the case, you will need to specify the appropriate include path.

❏ If you want to access OpenSSL data structures, add the OpenSSL include directory,
<openssl install dir>/<arch>/include, and include the OpenSSL headers before
ndds_transport_secure_wan.h:

#include <openssl/ssl.h>
#include <openssl/x509.h> (if accessing certificate functions)
etc.

On Windows systems, if you are loading statically: you should also include the
OpenSSL file, applink.c, in your application. It can be found in the OpenSSL include
directory, or included as <openssl/applink.c>.

25.5.2 Additional Libraries
To use the Secure WAN Transport API, you must link in additional libraries, which are listed in
the Platform Notes (in the appropriate section for your architecture). Refer to Section 9.3.1 for dif-
ferences between shared and static libraries.

25.5.3 Compiler Flags
No additional compiler flags are required.
25-12

Part 6: RTI Persistence Service

The material in this part of the manual describes Persistence Service, which is included with Con-
next Messaging. It saves data samples so they can be delivered to subscribing applications that
join the system at a later time—even if the publishing application has already terminated.

❏ Chapter 26: Introduction to RTI Persistence Service

❏ Chapter 27: Configuring Persistence Service

❏ Chapter 28: Running RTI Persistence Service

❏ Chapter 29: Administering Persistence Service from a Remote Location

❏ Chapter 30: Advanced Persistence Service Scenarios

Chapter 26 Introduction to RTI Persistence Service

Persistence Service is a Connext application that saves data samples to transient or permanent
storage, so they can be delivered to subscribing applications that join the system at a later time—
even if the publishing application has already terminated.

Persistence Service runs as a separate application; you can run it on the same node as the publish-
ing application, the subscribing application, or some other node in the network.

When configured to run in PERSISTENT mode, Persistence Service can use the filesystem or a
relational database that provides an ODBC driver. For each persistent topic, it collects all the
data written by the corresponding persistent DataWriters and stores them into persistent storage.
See the Persistence Service Release Notes for the list of platforms and relational databases that have
been tested.

When configured to run in TRANSIENT mode, Persistence Service stores the data in memory.

The following chapters assume you have a basic understanding of DDS terms such as Domain-
Participants, Publishers, DataWriters, Topics, and Quality of Service (QoS) policies. For an over-
view of DDS terms, please see Chapter 2: Data-Centric Publish-Subscribe Communications. You
should also have already read Chapter 12: Mechanisms for Achieving Information Durability
and Persistence.
26-1

26-2

Chapter 27 Configuring Persistence Service

To use Persistence Service:

1. Modify your Connext applications.

• The DURABILITY QosPolicy (Section 6.5.7) controls whether or not, and how, pub-
lished samples are stored by Persistence Service for delivery to late-joining DataReaders.
See Data Durability (Section 12.5).

• For each DataWriter whose data must be stored, set the Durability QosPolicy’s
kind to DDS_PERSISTENT_DURABILITY_QOS or
DDS_TRANSIENT_DURABILITY_QOS.

• For each DataReader that needs to receive stored data, set the Durability QosPol-
icy’s kind to DDS_PERSISTENT_DURABILITY_QOS or
DDS_TRANSIENT_DURABILITY_QOS.

• Optionally, modify the DURABILITY SERVICE QosPolicy (Section 6.5.8), which can
be used to configure Persistence Service.

By default, the History and ResourceLimits QosPolicies for a Persistence Service
DataReader (PRSTDataReader) and Persistence Service DataWriter (PRSTDataWriter)
with topic 'A' will be configured using the values specified in the XML file (unless you
use the tag <use_durability_service> in the persistence group definition, see Creating
Persistence Groups (Section 27.8)). Setting the <use_durability_service> tag to true will
cause the History and ResourceLimits QosPolicies for a PRSTDataReader and PRSTDa-
taWriter to be configured using the DURABILITY SERVICE QosPolicy (Section 6.5.8) of
the first-discovered DataWriter publishing 'A'. (For more information on the PRSTDa-
taReader and PRSTDataWriter, see RTI Persistence Service (Section 12.5.1).)

2. Create a configuration file or edit an existing file, as described in XML Configuration File
(Section 27.2).

3. Start Persistence Service with your configuration file, as described in Starting Persistence
Service (Section 28.1). You can start it on either application’s node, or even an entirely
different node (provided that node is included in one of the applications’
NDDS_DISCOVERY_PEERS lists).

27.1 How to Load the XML Configuration
Persistence Service loads its XML configuration from multiple locations. This section presents the
various approaches, listed in load order.
27-1

XML Configuration File
The first three locations only contain QoS Profiles and are inherited from Connext (see
Chapter 17: Configuring QoS with XML).

❏ $NDDSHOME/resource/qos_profiles_5.x.y1/xml/NDDS_QOS_PROFILES.xml

This file contains the DDS default QoS values; it is loaded automatically if it exists. (First
to be loaded.)

❏ File specified in NDDS_QOS_PROFILES Environment Variable

The files (or XML strings) separated by semicolons referenced in this environment vari-
able are loaded automatically.

❏ <working directory>/USER_QOS_PROFILES.xml

This file is loaded automatically if it exists.

The next locations are specific to Persistence Service.

❏ <Persistence Service executable location>/../../resource/xml/
RTI_PERSISTENCE_SERVICE.xml

This file contains the default Persistence Service configurations; it is loaded if it exists.
There are two default configurations: default and defaultDisk. The default configura-
tion persists all the topics into memory. The defaultDisk configuration persists all the
topics into files located in the current working directory.

❏ <working directory>/USER_PERSISTENCE_SERVICE.xml

This file is loaded automatically if it exists.

❏ File specified using the command line option, -cfgFile

The command-line option -cfgFile (see Table 28.1 in the Getting Started Guide) can be
used to specify a configuration file.

27.2 XML Configuration File
The configuration file uses XML format. Let's look at a very basic configuration file, just to get
an idea of its contents. You will learn the meaning of each line as you read the rest of this chap-
ter:

❏ QoS Configuration (Section 27.3)

❏ Configuring the Persistence Service Application (Section 27.4)

❏ Configuring Remote Administration (Section 27.5)

❏ Configuring Persistent Storage (Section 27.6)

❏ Configuring Participants (Section 27.7)

❏ Creating Persistence Groups (Section 27.8)

❏ Enabling RTI Distributed Logger in Persistence Service (Section 27.11)

❏ Enabling RTI Monitoring Library in Persistence Service (Section 27.12)

Example Configuration File

<?xml version="1.0" encoding="ISO-8859-1"?>
<!-- A Configuration file may be used by several
 persistence services specifying multiple

1. x and y stand for the version numbers of the current release
27-2

XML Configuration File
 <persistence_service> entries
-->
<dds>
 <!-- QoS LIBRARY SECTION -->
 <qos_library name="QosLib1">
 <qos_profile name="QosProfile1">
 <datawriter_qos name="WriterQos1">
 <history>
 <kind>DDS_KEEP_ALL_HISTORY_QOS</kind>
 </history>
 </datawriter_qos>
 <datareader_qos name="ReaderQos1">
 <reliability>
 <kind>DDS_RELIABLE_RELIABILITY_QOS</kind>
 </reliability>
 <history>
 <kind>DDS_KEEP_ALL_HISTORY_QOS</kind>
 </history>
 </datareader_qos>
 </qos_profile>
 </qos_library>

 <!-- PERSISTENCE SERVICE SECTION -->
 <persistence_service name="Srv1">
 <!-- REMOTE ADMINISTRATION SECTION -->
 <administration>
 <domain_id>72</domain_id>
 <distributed_logger>
 <enabled>true</enabled>
 </distributed_logger>

 </administration>

 <!-- PERSISTENT STORAGE SECTION -->
 <persistent_storage>
 <filesystem>
 <directory>/tmp</directory>
 <file_prefix>PS</file_prefix>
 </filesystem>
 </persistent_storage>

 <!-- DOMAIN PARTICIPANT SECTION -->
 <participant name="Part1">
 <domain_id>71</domain_id>

 <!-- PERSISTENCE GROUP SECTION -->
 <persistence_group name="PerGroup1" filter="*">
 <single_publisher>true</single_publisher>
 <single_subscriber>true</single_subscriber>
 <datawriter_qos base_name="QosLib1::QosProfile1"/>
 <datareader_qos base_name="QosLib1::QosProfile1"/>
 </persistence_group>

 </participant>
 </persistence_service>
</dds>
27-3

XML Configuration File
27.2.1 Configuration File Syntax

The configuration file must follow these syntax rules:

❏ The syntax is XML and the character encoding is UTF-8.

❏ Opening tags are enclosed in <>; closing tags are enclosed in </>.

❏ A value is a UTF-8 encoded string. Legal values are alphanumeric characters. All leading
and trailing spaces are removed from the string before it is processed.

For example, " <tag> value </tag>" is the same as "<tag>value</tag>".

❏ All values are case-sensitive unless otherwise stated.

❏ Comments are enclosed as follows: <!-- comment -->.

❏ The root tag of the configuration file must be <dds> and end with </dds>.

❏ The primitive types for tag values are specified in Table 27.1.

27.2.2 XML Validation

27.2.2.1 Validation at Run Time

Persistence Service validates the input XML files using a builtin Document Type Definition
(DTD). You can find a copy of the builtin DTD in $(NDDSHOME)/resource/rtipersistenceser-
vice/schema/rti_persistence_service.dtd. (This is only a copy of what the Persistence Service core
uses. Changing this file has no effect unless you specify its path with the DOCTYPE tag,
described below.)

You can overwrite the builtin DTD by using the XML tag, <!DOCTYPE>. For example, the fol-
lowing indicates that Persistence Service must use a different DTD file to perform validation:

<!DOCTYPE dds SYSTEM
 "/local/usr/rti/dds/modified_rtipersistenceservice.dtd">

If you do not specify the DOCTYPE tag in the XML file, the builtin DTD is used.

The DTD path can be absolute, or relative to the application's current working directory.

Table 27.1 Supported Tag Values

Type Format Notes

DDS_Boolean

yes, 1, true, BOOLEAN_TRUE or
DDS_BOOLEAN_TRUE: these all mean TRUE

Not case-sensitive
no, 0, false, BOOLEAN_FALSE or
DDS_BOOLEAN_FALSE: these all mean FALSE

DDS_Enum
A string. Legal values are those listed in the C or Java
API Reference HTML documentation.

Must be specified as a string.
(Do not use numeric values.)

DDS_Long

 -2147483648 to 2147483647
or 0x80000000 to 0x7fffffff
or LENGTH_UNLIMITED
or DDS_LENGTH_UNLIMITED

A 32-bit signed integer

DDS_
UnsignedLong

 0 to 4294967296
or
 0 to 0xffffffff

A 32-bit unsigned integer

String UTF-8 character string
All leading and trailing spaces
are ignored between two tags
27-4

QoS Configuration
27.2.2.2 Validation During Editing

Persistence Service provides DTD and XSD files that describe the format of the XML content. We
recommend including a reference to one of these documents in the XML file that contains the
persistence service’s configuration—this provides helpful features in code editors such as Visual
Studio and Eclipse, including validation and auto-completion while you are editing the XML
file. Including a reference to the XSD file in the XML documents provides stricter validation and
better auto-completion than the corresponding DTD file.

The DTD and XSD definitions of the XML elements are in
$(NDDSHOME)/resource/rtipersistenceservice/schema/rti_persistence_service.dtd and
$(NDDSHOME)/resource/rtipersistenceservice/schema/rti_persistence_service.xsd, respec-
tively.

To include a reference to the XSD document in your XML file, use the attribute xsi:noN-
amespaceSchemaLocation in the <dds> tag. For example (in the following, replace
<NDDSHOME> with the Connext installation directory):

<?xml version="1.0" encoding="UTF-8"?>
<dds xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=
"<NDDSHOME>/resource/rtipersistenceservice/schema/
rti_persistence_service.xsd">
 ...
</dds>

To include a reference to the DTD document in your XML file, use the <!DOCTYPE> tag. For
example (in the following, replace <NDDSHOME> with the Connext installation directory):

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE dds SYSTEM
"<NDDSHOME>/resource/rtipersistenceservice/schema/
rti_persistence_service.dtd">
<dds>
 ...
</dds>

27.3 QoS Configuration
Each persistence group and participant has a set of DDS QoSs. There are six tags:

❏ <participant_qos>

❏ <publisher_qos>

❏ <subscriber_qos>

❏ <topic_qos>

❏ <datawriter_qos>

❏ <datareader_qos>

Each QoS is identified by a name. The QoS can inherit its values from other QoSs described in
the XML file. For example:

<datawriter_qos name="DerivedWriterQos" base_name="Lib::BaseWriterQos">
 <history>
 <kind>DDS_KEEP_ALL_HISTORY_QOS</kind>
 </history>
</datawriter_qos>
27-5

Configuring the Persistence Service Application
In the above example, the writer QoS named 'DerivedWriterQos' inherits the values from the
writer QoS 'BaseWriterQos' contained in the library 'Lib'. The HistoryQosPolicy kind is set to
DDS_KEEP_ALL_HISTORY_QOS.

Each XML tag with an associated name can be uniquely identified by its fully qualified name in
C++ style. For more information on tags, see Chapter 17: Configuring QoS with XML

The persistence groups and participants can use QoS libraries and profiles to configure their
QoS values. For example:

<dds>
 <!- QoS LIBRARY SECTION -->
 <qos_library name="QosLib1">
 <qos_profile name="QosProfile1">
 <datawriter_qos name="WriterQos1">
 <history>
 <kind>DDS_KEEP_ALL_HISTORY_QOS</kind>
 </history>
 </datawriter_qos>
 </qos_profile>
 </qos_library>

 <!-PERSISTENCE SERVICE SECTION -->
 <persistence_service name="Srv1">
 ...
 <!-PERSISTENCE GROUP SECTION -->
 <persistence_group name="PerGroup1" filter="*">
 <single_publisher>true</single_publisher>
 <single_subscriber>true</single_subscriber>
 <datawriter_qos base_name="QosLib1::QosProfile1"/>
 </persistence_group>
 </persistence_service>
</dds >

For more information about QoS libraries and profiles see Chapter 17: Configuring QoS with
XML.

27.4 Configuring the Persistence Service Application
Each execution of the Persistence Service application is configured using the content of a tag:
<persistence_service>. When you start Persistence Service (described in Section 28.1), you must
specify which <persistence_service> tag to use to configure the service.

For example:

<dds>
 <persistence_service name="Srv1">

...
 </persistence_service>
</dds>

If you do not specify a service name when you start Persistence Service, the service will print the
list of available configurations and then exit.

Because a configuration file may contain multiple <persistence_service> tags, one file can be
used to configure multiple Persistence Service executions.
27-6

Configuring Remote Administration
Table 27.2 lists the tags you can specify for a persistence service. Notice that <participant> is
required. For default values, please see the API Reference HTML documentation.

27.5 Configuring Remote Administration
You can create a Connext application that can remotely control Persistence Service. The <adminis-
tration> tag is used to enable remote administration and configure its behavior.

By default, remote administration is turned off in Persistence Service.

When remote administration is enabled, Persistence Service will create a DomainParticipant, Pub-
lisher, Subscriber, DataWriter, and DataReader. These Entities are used to receive commands and
send responses. You can configure these entities with QoS tags within the <administration> tag.

Table 27.3 lists the tags allowed within <administration> tag. Notice that the <domain_id> tag
is required.

Table 27.2 Persistence Service Application Tags

Tags within
<persistence_service> Description

Number
of Tags

Allowed

<administration>
Enables and configures remote administration. See Configuring
Remote Administration (Section 27.5).

0 or 1

<annotation>

Provides a description for the persistence service configuration.
Example:
<annotation>
 <documentation>

 Persists in the file system all topics
 published with PERSISTENT durability

 </documentation>
</annotation>

0 or 1

<purge_samples_after
_acknowledgment>

A DDS_Boolean that indicates whether or not a PRSTDataWriter will
purge a sample from its cache once it is acknowledged by all the
matching/active DataReaders and all the Durable Subscriptions.
Default: 0
See Configuring Durable Subscriptions in Persistence Service (Section
27.9).

0 or 1

<participant>

For each <participant> tag, Persistence Service creates two DomainPar-
ticipants on the same domain ID: one to subscribe to changes and one
to publish changes.
The QoS values used to configure both DomainParticipants are the
same, except for the participant_id in the WIRE_PROTOCOL
QosPolicy (DDS Extension) (Section 8.5.9).
If participant_id is not -1 (the default value, which means automatic
selection), Persistence Service uses participant_id for the first Domain-
Participant and participant_id+1 for the second DomainParticipant.

1 or more
(required)

<persistent_storage>
When this tag is present, the topic data will be persisted to disk. You
can select between file storage and relational database storage. See
Section 27.6.

0 or 1

<synchronization>
Enables synchronization in redundant persistence service instances.
See Synchronizing of Persistence Service Instances (Section 27.10).
Default: Synchronization is not enabled

0 or 1
27-7

Configuring Persistent Storage
For more details, please see Chapter 29: Administering Persistence Service from a Remote Loca-
tion.

Note: The command-line options used to configure remote administration take precedence over
the XML configuration (see Table 28.1).

27.6 Configuring Persistent Storage
The <persistent_storage> tag is used to persist samples into permanent storage. If the
<persistence_storage> tag is not specified, the service will operate in TRANSIENT mode and all
the data will be kept in memory. Otherwise, the persistence service will operate in PERSISTENT
mode and all the topic data will be stored into the filesystem or into a relational database that
provides an ODBC driver.

Table 27.4 lists the tags that you can specify in <persistent_storage>.

Relational Database Limitations: The ODBC storage does not support BLOBs. The maximum size
for a serialized sample is 65535 bytes in MySQL.

Table 27.3 Remote Administration Tags

Tags within
<administration> Description

Number
of Tags

Allowed

<datareader_qos>

Configures the DataReader QoS for remote administration.
If the tag is not defined, Persistence Service will use the DDS defaults
with the following changes:
reliability.kind = DDS_RELIABLE_RELIABILITY_QOS (this value can-
not be changed)
history.kind = DDS_KEEP_ALL_HISTORY_QOS
resource_limits.max_samples = 32

0 or 1

<datawriter_qos>

Configures the DataWriter QoS for remote administration.
If the tag is not defined, Persistence Servicewill use the DDS defaults
with the following changes:

history.kind = DDS_KEEP_ALL_HISTORY_QOS
resource_limits.max_samples = 32

0 or 1

<distributed_logger>
Configures RTI Distributed Logger.
See Enabling RTI Distributed Logger in Persistence Service (Section
27.11)

0 or 1

<domain_id>
Specifies which domain ID Persistence Service will use to enable remote
administration.

1
(required)

<participant_qos>
Configures the DomainParticipant QoS for remote administration.
If the tag is not defined, Persistence Service will use the DDS defaults.

0 or 1

<publisher_qos>
Configures the Publisher QoS for remote administration.
If the tag is not defined, Persistence Service will use the DDS defaults.

0 or 1

<subscriber_qos>
Configures the Subscriber QoS for remote administration.
If the tag is not defined, Persistence Service will use the DDS defaults.

0 or 1
27-8

Configuring Persistent Storage
Table 27.4 Persistent Storage tags

Tags within
<persistent_storage> Description

Number
of Tags

Allowed

<external_database>

When this tag is present, the topic data will be persisted in a relational
database.
This tag is required if <filesystem> is not specified.
See Table 27.5, “External Database Tags”.

0 or 1

<filesystem>
When this tag is present, the topic data will be persisted into files.
This tag is required if <external_database> is not specified.
See Table 27.6, “Filesystem tags”.

0 or 1

<restore>

This DDS_Boolean (see Table 27.1) indicates if the topic data associated
with a previous execution of the persistence service must be restored or
not. If the topic data is not restored, it will be deleted from the persistent
storage.
Default: 1

0 or 1

<type_object_max_
serialized_length>

Defines the length in bytes of the database column used to store the
TypeObjects associated with PRSTDataWriters and PRSTDataReader.
For additional information on TypeObjects, see the Core Libraries and Util-
ities Getting Started Guide Addendum for Extensible Types.
Default: 10488576

0 or 1

Table 27.5 External Database Tags

Tags within
<external_database> Description

Number
of Tags

Allowed

<dsn>

DSN used to connect to the database using ODBC. You should create
this DSN through the ODBC settings on Windows systems, or in your
.odbc.ini file on UNIX/Linux systems.
This tag is required.

1
(required)

<odbc_library>

Specifies the ODBC driver to load. By default, Connext will try to use
the standard ODBC driver manager library (UnixOdbc on UNIX/
Linux systems, the Windows ODBC driver manager on Windows sys-
tems).

0 or 1

<password>
Password to connect to the database.
Default: no username is used

0 or 1

<username>
Username to connect to the database.
Default: no username is used

0 or 1

Table 27.6 Filesystem tags

Tags within
<filesystem> Description

Number
of Tags

Allowed

<directory>

Specifies the directory of the files in which topic data will be persisted.
There will be one file per PRSTDataWriter/PRSTDataReader pair.
The directory must exist; otherwise the service will report an error upon
start up.
Default: current working directory

0 or 1

<file_prefix>
A name prefix associated with all the files created by Persistence Service.
Default: PS

0 or 1
27-9

Configuring Persistent Storage
<journal_mode>

Sets the journal mode of the persistent storage. This tag can take these val-
ues:
• DELETE: Deletes the rollback journal at the conclusion of each trans-

action.
• TRUNCATE: Commits transactions by truncating the rollback jour-

nal to zero-length instead of deleting it.
• PERSIST: Prevents the rollback journal from being deleted at the end

of each transaction. Instead, the header of the journal is overwritten
with zeros.

• MEMORY: Stores the rollback journal in volatile RAM. This saves
disk I/O.

• WAL: Uses a write-ahead log instead of a rollback journal to imple-
ment transactions.

• OFF: Completely disables the rollback journal. If the application
crashes in the middle of a transaction when the OFF journaling mode
is set, the files containing the samples will very likely be corrupted.

Default: DELETE

0 or 1

<synchronization>

Determines the level of synchronization with the physical disk.
This tag can take three values:
• FULL: Every sample is written into physical disk as Persistence Ser-

vice receives it.
• NORMAL: Samples are written into disk at critical moments.
• OFF: No synchronization is enforced. Data will be written to physi-

cal disk when the OS flushes its buffers.
Default: OFF

0 or 1

<trace_file>

Specifies the name of the trace file for debugging purposes. The trace file
contains information about all SQL statements executed by the persistence
service.
Default: No trace file is generated

0 or 1

<vacuum>

Sets the auto-vacuum status of the storage. This tag can take these values:
• NONE: When data is deleted from the storage files, the files remain

the same size.
• FULL: The storage files are compacted every transaction.

Default: FULL

0 or 1

Table 27.6 Filesystem tags

Tags within
<filesystem> Description

Number
of Tags

Allowed
27-10

Configuring Participants
27.7 Configuring Participants
An XML <persistence_service> tag will contain a set of domain participants. The persistence
service will persist topics published in the domainIDs associated with these participants. For
example:

<persistence_service name="Srv1">
 <participant name="Part1">
 <domain_id>71</domain_id>
 ...
 </participant>
 <participant name="Part2">
 <domain_id>72</domain_id>
 ...
 </participant>
</persistence_service>

Using the above example, the persistence service will create two domain participants on
domains 71 and 72. After the domain participants are created, the persistence service will moni-
tor the discovery traffic looking for topics to persist.

The <domain_id> tag can be specified alternatively as an attribute of <participant>. For exam-
ple:

<persistence_service name="Srv1">
 <participant name="Part1" domain_id="71">
 ...
 </participant>
</persistence_service>

Table 27.7 further describes the participant tags. Notice that <persistence_group> is required.

Table 27.7 Participant Tags

Tags within
<participant> Description

Number
of Tags

Allowed

<domain_id>
Domain ID associated with the Participant. The domain ID can be spec-
ified as an attribute of the participant tag.
Default: 0

0 or 1

<durable_
subscriptions>

Configures a set of Durable Subscriptions for a given topic. This is a
sequence of <element> tags, each of which has a <name>, a
<topic_name>, and a <quorum>. For example:
<durable_subscriptions>
 <element>
 <name>DurSub1</name>
 <topic_name>Example MyType</topic_name>
 <quorum>2</quorum>
 </element>
 <element>
 <name>DurSub2</name>
 <topic_name>Example MyType</topic_name>
 </element>
</durable_subscriptions>

Default: Empty list
See Section 27.9 for additional information

0 or 1
27-11

Creating Persistence Groups
27.8 Creating Persistence Groups
The topics that must be persisted in a specific domain ID are specified using
<persistence_group> tags. A <persistence_group> tag defines a set of topics identified by a
POSIX expression.

For example:

<participant name="Part1">
 <domain_id>71</domain_id>
 <persistence_group name="PerGroup1" filter="H*">
 ...
 </persistence_group>
</participant>

In the previous example, the persistence group 'PerGroup1' is associated with all the topics pub-
lished in domain 71 whose name starts with 'H'.

When a participant discovers a topic that matches a persistence group, it will create a PRSTDa-
taReader and a PRSTDataWriter. The PRSTDataReader and PRSTDataWriter will be configured
using the QoS policies associated with the persistence group. The samples received by the PRST-
DataReader will be persisted in the queue of the corresponding PRSTDataWriter.

A <participant> tag can contain multiple persistence groups; the set of topics that each one rep-
resents can intersect.

Table 27.8 further describes the persistence group tags. For default values, please see the API Ref-
erence HTML documentation.

<participant_qos>
Participant QoS.
Default: DDS defaults

0 or 1

<persistence_group>
A persistence group describes a set of topics whose data that must be
persisted by the persistence service.

1 or more
(required)

Table 27.7 Participant Tags

Tags within
<participant> Description

Number
of Tags

Allowed

Table 27.8 Persistence Group Tags

Tags within
<persistence_

group>
Description

Number
of Tags

Allowed

<allow_durable_
subscriptions>

A DDS_Boolean (see Table 27.1) that enables support for durable subscrip-
tions in the PRSTDataWriters created in a persistence group.
When Durable Subscriptions are not required, setting this property to 0 will
increase performance.
Default: 1

0 or 1

<content_filter>

Content filter topic expression. A persistence group can subscribe to a spe-
cific set of data based on the value of this expression.
A filter expression is similar to the WHERE clause in SQL. For more infor-
mation on the syntax, please see the API Reference Documentation (from
the Modules page, select RTI Connext DDS API Reference, Queries and
Filters Syntax).
Default: no expression

0 or 1
27-12

Creating Persistence Groups
<datareader_qos>
PRSTDataReader QoSa. See QoSs (Section 27.8.1).
Default: DDS defaults

0 or 1

<datawriter_qos>
PRSTDataWriter QoSa. See QoSs (Section 27.8.1).
Default: DDS defaults

0 or 1

<deny_filter>

Specifies a list of POSIX expressions separated by commas that describe the
set of topics to be denied in the persistence group.
This "black" list is applied to the topics that pass the filter specified with the
<filter> tag
Default: *

0 or 1

<filter>

Specifies a list of POSIX expressions separated by commas that describe the
set of topics associated with the persistence group.
The filter can be specified as an attribute of <persistence_group> as well.
Default: *

0 or 1

<memory_
management>

This flag configures the memory allocation policy for samples in PRSTDa-
taReaders and PRSTDataWriters.
See Memory Management (Section 27.8.5).

0 or 1

<propagate_
dispose>

A DDS_Boolean (see Table 27.1) that controls whether or not the persistence
service propagates dispose messages from DataWriters to DataReaders.
Default: 1

0 or 1

<propagate_
source_
 timestamp>

A DDS_Boolean (see Table 27.1). When this tag is 1, the data samples sent
by the PRSTDataWriters preserve the source timestamp that was associated
with them when they were published by the original DataWriter.
Default: 0

0 or 1

<propagate_
unregister>

A DDS_Boolean (see Table 27.1) that controls whether or not the persistence
service propagates unregister messages from DataWriters to DataReaders.
Default: 0

0 or 1

<publisher_qos>
Publisher QoS. See QoSs (Section 27.8.1).
Default: DDS defaults

0 or 1

<reader_
checkpoint_
frequency>

This property controls how often (expressed as a number of samples) the
PRSTDataReader state is stored in the database. The PRSTDataReaders are
the DataReaders created by the persistence service.
A high frequency will provide better performance. However, if the persis-
tence service is restarted, it may receive some duplicate samples. The per-
sistence service will send these duplicates samples on the wire but they will
be filtered by the DataReaders and they will not be propagated to the appli-
cation.
This property is only applicable when the persistence service operates in
persistent mode (the <persistent_storage> tag is present).
Default: 1

0 or 1

Table 27.8 Persistence Group Tags

Tags within
<persistence_

group>
Description

Number
of Tags

Allowed
27-13

Creating Persistence Groups
<share_database_
connection>

A DDS_Boolean (see Table 27.1) that indicates if the persistence service will
create an independent database connection per PRSTDataWriter in the
group (0) or per Publisher (1) in the group.
When <single_publisher> is 0 and <share_database_connection> is 1, there
is a single database connection per group. All the PRSTDataWriters will
share the same connection.
When <single_publisher> is 1 or <share_database_connection> is 0, there is
a database connection per PRSTDataWriter.
This parameter is only applicable to configurations persisting the data into
a relational database using the tag <external_database> in
<persistent_storage>.
See Sharing a Database Connection (Section 27.8.4)
Default: 0

0 or 1

<single_
publisher>

A DDS_Boolean (see Table 27.1) that indicates if the persistence service
should create one Publisher per persistence group or one Publisher per
PRSTDataWriter inside the persistence group. See Sharing a Publisher/
Subscriber (Section 27.8.3).
Default: 1

0 or 1

<single_
subscriber>

A DDS_Boolean (see Table 27.1) that indicates if the persistence service
should create one Subscriber per persistence group or one Subscriber per
PRSTDataReader in the persistence group.
See Sharing a Publisher/Subscriber (Section 27.8.3).
Default: 1

0 or 1

<subscriber_qos>
Subscriber QoS. See QoSs (Section 27.8.1).
Default: DDS defaults

0 or 1

<topic_qos>
Topic QoS. See QoSs (Section 27.8.1).
Default: DDS defaults

0 or 1

<use_durability_
service>

A DDS_Boolean (see Table 27.1) that indicates if the HISTORY and
RESOURCE_LIMITS QoS policy of the PRSTDataWriters and PRSTDa-
taReaders should be configured based on the DURABILITY SERVICE value
of the discovered DataWriters.
See DurabilityService QoS Policy (Section 27.8.2)
Default: 0

0 or 1

<writer_ack_
period>

Controls how often (expressed in milliseconds) samples are marked as
ACK'd in the database by the PRSTDataWriter.
Default: 0

0 or 1

<writer_
checkpoint_
period>

Controls how often (expressed in milliseconds) transactions are committed
for a PRSTDataWriter.
A value of 0 indicates that transactions will be committed immediately. This
is the recommended setting to avoid losing data in the case of an unex-
pected error in Persistence Service and/or the underlying hardware/soft-
ware infrastructure.
For applications that can tolerate some data losses, setting this tag to a
value greater than 0 will increase performance.
Default: 0

0 or 1

Table 27.8 Persistence Group Tags

Tags within
<persistence_

group>
Description

Number
of Tags

Allowed
27-14

Creating Persistence Groups
<writer_
checkpoint_
volume>

Controls how often (expressed as a number of samples) transactions are
committed for a PRSTDataWriter.
A value of 1 indicates that samples will be persisted by the PRSTDataWrit-
ers immediately. This is the recommended setting to avoid losing data in
the case of an unexpected error in persistence service and/or the underly-
ing hardware/software infrastructure.
For application that can tolerate some data losses, setting this tag to a value
greater than 1 will increase performance.
Default: 1

0 or 1

<late_joiner_read_
batch>

Defines how many samples will be pre-fetched by a PRSTDataWriter to sat-
isfy requests from late-joiners.
When a DataReader requests samples from a PRSTDataWriter by sending a
NACK message, the PRSTDataWriter may retrieve additional samples from
the database to minimize disk access.
This paramater determines that amount of samples that will be retrieved
preemptively from the database by the PRSTDataWriter.
Default: 20000

0 or 1

<sample_logging>

This tag can be used to enable and configure a sample log for the PRSTDa-
taWriters in a persistence group. A sample log is a buffer of samples on disk
that, when used in combination with delegate reliability, allow decoupling
the original DataWriters from slow DataReaders.
For additional information on the sample log, see Scenario: Slow Consumer
(Section 30.3).
Default: Sample log is disabled

0 or 1

<writer_in_
memory_state>

A DDS_Boolean (see Table 27.1) that determines how much state will be
kept in memory by the PRSTDataWriters in order to avoid accessing the
persistent storage.
The property is only applicable when the persistence service operates in
persistent mode (the <persistent_storage> tag is present).
If this property is 1, the PRSTDataWriters will keep a copy of all the
instances in memory. They will also keep a fixed state overhead of 24 bytes
per sample. This mode provides the best performance. However, the restore
operation will be slower and the maximum number of samples that a PRST-
DataWriter can manage will be limited by the available physical memory.
If this property is 0, all the state will be kept in the underlying persistent
storage. In this mode, the maximum number of samples that a PRSTDataW-
riter can manage will not be limited by the available physical memory.
Default: If the HistoryQosPolicy‘s kind is KEEP_LAST or the ResourceLim-
itsQosPolicy’s max_samples != DDS_UNLIMITED_LENGTH, the default is
1. Otherwise, the default is 0.

0 or 1

Table 27.8 Persistence Group Tags

Tags within
<persistence_

group>
Description

Number
of Tags

Allowed
27-15

Creating Persistence Groups
27.8.1 QoSs

When a persistence service discovers a topic 'A' that matches a specific persistence group, it cre-
ates a reader (known as ‘PRSTDataReader’) and writer (‘PRSTDataWriter’) to persist that topic.
The QoSs associated with these readers and writers, as well as the corresponding publishers and
subscribers, can be configured inside the persistence group using QoS tags.

For example:

<participant name="Part1">
 <domain_id>71</domain_id>
 <persistence_group name="PerGroup1" filter="*">
 ...
 <publisher_qos base_name="QosLib1::PubQos1"/>
 <subscriber_qos base_name="QosLib1::SubQos1"/>
 <datawriter_qos base_name="QosLib1::WriterQos1"/>
 <datareader_qos base_name="QosLib1::ReaderQos1"/>

 ...
 </persistence_group>
</participant>

For instance, the number of samples saved by Persistence Service is configurable through the HIS-
TORY QosPolicy (Section 6.5.10) of the PRSTDataWriters.

If a QoS tag is not specified the persistence service will use the corresponding DDS default val-
ues (Section 27.8.2 describes an exception to this rule).

27.8.2 DurabilityService QoS Policy

The DURABILITY SERVICE QosPolicy (Section 6.5.8) associated with a DataWriter is used to
configure the HISTORY and the RESOURCE_LIMITS associated with the PRSTDataReaders and
PRSTDataWriters.

<use_wait_set>

A DDS_Boolean (see Table 27.1) that indicates if Persistence Service will use
Waitsets or Listeners to read data from the PRSTDataReaders of the group.
By default, the usage of Waitsets is disabled. With this configuration, Persis-
tence Service uses the on_data_available() listener callback to take the data
from the PRSTDataReaders within the persistence group. The write opera-
tion in a PRSTDataWriter is called within the listener callback.
When Waitsets are enabled, Persistence Service will use them to read the
data:

❏ If <single_subscriber> is set to 1, there will be a single Wait-
set and a read thread shared across all the PRSTDataReaders
in the group.

❏ If <single_subscriber> is set to 0, there will be a Waitset and
a read thread per PRSTDataReader in the group.

The write operation in a PRSTDataWriter is called by the read thread asso-
ciated with the PRSTDataReader.
Default: 0

0 or 1

a. These fields cannot be set and are assigned automatically: protocol.virtual_guid, protocol.rtps_object_id, durabil-
ity.kind.

Table 27.8 Persistence Group Tags

Tags within
<persistence_

group>
Description

Number
of Tags

Allowed
27-16

Creating Persistence Groups
By default, the HISTORY and RESOURCE_LIMITS of a PRSTDataReader and PRSTDataWriter
with topic 'A' will be configured using the values specified in the XML file used to configure Per-
sistence Service. To overwrite those values and use the values in the DURABILITY SERVICE
QosPolicy (Section 6.5.8) of the first discovered DataWriter publishing 'A', you can use the tag
<use_durability_service> in the persistence group definition:

<participant name="Part1">
 <domain_id>71</domain_id>
 <persistence_group name="PerGroup1" filter="*">
 ...
 <use_durability_service/>1</ use_durability_service>

 ...
 </persistence_group>
</participant>

27.8.3 Sharing a Publisher/Subscriber

By default, the PRSTDataWriters and PRSTDataReaders associated with a persistence group will
share the same Publisher and Subscriber.

To associate a different Publisher and Subscriber with each PRSTDataWriter and PRSTDa-
taReader, use the tags <single_publisher> and <single_subscriber>, as follows:

<participant name="Part1">
 <domain_id>71</domain_id>
 <persistence_group name="PerGroup1" filter="*">
 ...
 <single_publisher/>0</single_publisher>
 <single_subscriber/>0</single_subscriber>
 ...
 </persistence_group>
</participant>

27.8.4 Sharing a Database Connection

By default, the persistence service will share a single ODBC database connection to persist the
topic data received by each PRSTDataReader.

To associate an independent database connection to the PRSTDataReaders created by the persis-
tence service, use the tag <share_database_connection>, as follows:

<participant name="Part1">
 <domain_id>71</domain_id>
 <persistence_group name="PerGroup1" filter="*">
 ...
 <share_database_connection>0</share_database_connection>
 ...
 </persistence_group>
</participant>

Sharing a database connection optimizes the resource usage. However, the concurrency of the
system decreases because the access to the database connection must be protected.

27.8.5 Memory Management

The samples received and stored by the PRSTDataReaders and PRSTDataWriters are in serial-
ized form.
27-17

Configuring Durable Subscriptions in Persistence Service
The serialized size of a sample is the number of bytes required to send the sample on the wire.
The maximum serialized size of a sample is the number of bytes that the largest sample for a
given type requires on the wire.

By default, the PRSTDataReaders and PRSTDataWriters created by the persistence service try to
allocate multiple samples to their maximum serialized size. This may cause memory allocation
issues when the maximum serialized size is significantly large.

For PRSTDataReaders, the number of samples in the DataReader’s queues can be controlled
using the QoS values resource_qos.resource_limits.max_samples and
resource_qos.resource_limits.initial_samples.

The PRSTDataWriters keep a cache of samples so that they do not have to access the database
every time. The minimum size of this cache is 32 samples.

In addition, each PRSTDataWriter keeps an additional sample called DB sample that is used to
move information from the DataWriter cache to the database and vice versa

The <memory_management> tag in a persistence group can be used to control the memory allo-
cation policy for the samples created by PRSTDataReaders and PRSTDataWriters in the persis-
tence group.

Table 27.9 describes the memory management tags.

27.9 Configuring Durable Subscriptions in Persistence Service
This section assumes you are familiar with the concept of Required Subscriptions (Section
6.3.13).

A Durable Subscription is a Required Subscription where samples are stored and forwarded by
Persistence Service.

Table 27.9 Memory Management Tags

Tags within
<memory_

management>
Description

Number
of Tags

Allowed

<persistent_sample_
buffer_max_size>

This tag is used to control the memory associated with the DB sample in
a PRSTDataWriter. The persistence service will not be able to store a
sample into persistent storage if the serialized size is greater than this
value. Therefore, this parameter must be used carefully.
Default: LENGTH_UNLIMITED (DB sample is allocated to the maxi-
mum size).

0 or 1

<pool_sample_
buffer_max_size>

This tag applies to both PRSTDataReaders and PRSTDataWriters. Its
value determines the maximum size (in bytes) of the buffers that will be
pre-allocated to store the samples. If the space required for a new sample
is greater than this size, the persistence service will allocate the memory
dynamically to the exact size required by the sample.
This parameter is used to control the memory allocated for the samples
in the PRSTDataReaders queues and the PRSTDataWriters caches.
The size of the DB sample in the PRSTDataWriters is controlled by the
value of the tag <persistent_sample_buffer_max_size>.
Default: LENGTH_UNLIMITED (samples are allocated to the maximum
size).

0 or 1
27-18

Configuring Durable Subscriptions in Persistence Service
There are two ways to create a Durable Subscriptions:

1. Programmatically using a DomainParticipant API:

A subscribing application can register a Durable Subscription by providing the topic
name and the endpoint group information, consisting of the Durable Subscription
role_name and the quorum. To register or delete a Durable Subscription, use the Domain-
Participant’s register_durable_subscription() and delete_durable_subscription() opera-
tions, respectively (see Table 8.3 on page 8-7). The Durable Subscription information is
propagated via a built-in topic to Persistence Service.

2. Preconfigure Persistence Service with a set of Durable Subscriptions:

Persistence Service can be (pre-)configured with a list of Durable Subscriptions using the
<durable_subscriptions> XML tag under <participant>.

<participant name="Participant">
 ...
 <durable_subscriptions>
 <element>
 <role_name>Logger</role_name>
 <topic_name>Track</topic_name>
 <quorum>2</quorum>
 </element>
 <element>
 <role_name>Processor</role_name>
 <topic_name>Track</topic_name>
 <quorum>1</quorum>
 </element>
 </durable_subscriptions>
</participant>

After registering or configuring the persistence service with specific Durable Subscriptions, the
persistence service will keep samples until they are acknowledged by all the required Durable
Subscriptions. In the above example, the samples must be acknowledged by two DataReaders
that belong to the “Logger” Durable Subscription and one DataReader belonging to the “Proces-
sor” Durable Subscription.

27.9.1 Sample Memory Management With Durable Subscriptions

The maximum number of samples that will be kept in a PRSTDataWriter queue is determined
by the value of <resource_limits><max_samples> in the <writer_qos> used to configure the
PRSTDataWriter.

By default, a PRSTDataWriter configured with KEEP_ALL <history><kind> will keep the sam-
ples in its cache until they are acknowledged by all the Durable Subscriptions associated with
the PRSTDataWriter. After the samples are acknowledged by the Durable Subscriptions, they
will be marked as reclaimable but they will not be purged from the PRSTDataWriter’s queue
until the DataWriter needs these resources for new samples. This may lead to inefficient resource
utilization, especially when <max_samples> is high or UNLIMITED.

The PRSTDataWriter behavior can be changed to purge samples after they have been acknowl-
edged by all the active/matching DataReaders and all the Durable Subscriptions configured for
the <persistence_service>. To do so, set the tag <purge_samples_after_acknowledgment>
under <persistence_service> to TRUE. Notice that this setting is global to the service and applies
to all the PRSTDataWriters created by each <persistence_group>.
27-19

Synchronizing of Persistence Service Instances
27.10 Synchronizing of Persistence Service Instances
By default, different Persistence Service instances do not synchronize with each other. For exam-
ple, in a scenario with two Persistence Service instances, the first persistence service could receive
a sample ‘S1’ from the original DataWriter that is not received by the second persistence service.
If the disk where the first persistence service stores its samples fails, ‘S1’ will be lost.

To enable synchronization between Persistence Servic instances, use the tag <synchronization>
under <persistence_service>. When it comes to synchronization, there are two different kinds
of information that can be synchronized independently:

❏ Information about Durable Subscriptions and their states (see Section 27.9)

❏ Data samples

27.11 Enabling RTI Distributed Logger in Persistence Service
Persistence Service provides integrated support for RTI Distributed Logger.

When you enable Distributed Logger, Persistence Service will publish its log messages to Connext.
Then you can use RTI Monitor1 to visualize the log message data. Since the data is provided in a
Connext topic, you can also use rtiddsspy or even write your own visualization tool.

Table 27.10 Synchronization Tags

Tags within
<synchronization> Description

Number
of Tags

Allowed

<synchronize_data>

Enables synchronization of data samples in redundant Persistence Service
instances.
When set to 1, samples lost on the way to one service instance can be
repaired by another without impacting the original publisher of that
message.
To synchronize the instances, the tag <synchronize_data> must be set to
1 in every instance involved in the synchronization.
Note: This sample synchronization mechanism is not equivalent to data-
base replication. The extent to which database instances have identical
contents depends on the destination ordering and other QoS settings for
the Persistence Service instances.
Default: 0

0 or 1

<synchronize_
durable_
subscriptions>

Enables synchronization of Durable Subscriptions in redundant Persis-
tence Service instances.
When set to 1, the different Persistence Service instances will synchronize
their Durable Subscription information. This information includes the
set of Durable Subscriptions as well as information about the Durable
Subscription’s state, such as the samples that have already been received
by the Durable Subscriptions.
Default: 0

0 or 1

<durable_
subscription_
synchronization_
period>

The period (in milliseconds) at which the information about Durable
Subscriptions is synchronized.
Default: 5000 milliseconds

0 or 1

1. RTI Monitor is a separate GUI application that can run on the same host as your application or on a different host.
27-20

Enabling RTI Monitoring Library in Persistence Service
To enable Distributed Logger, modify the Persistence Service XML configuration file. In the
<administration> section, add the <distributed_logger> tag as shown in the example below.

<persistence_service name="default">
 ...
 <administration>
 ...
 <distributed_logger>
 <enabled>true</enabled>
 </distributed_logger>

 ...
 </administration>
 ...
</persistence_service>

There are more configuration tags that you can use to control Distributed Logger’s behavior. For
example, you can specify a filter so that only certain types of log messages are published. For
details, see the RTI Distributed Logger Getting Started Guide.

27.12 Enabling RTI Monitoring Library in Persistence Service
To enable monitoring in Persistence Service, you must specify the property rti.monitor.library for
the participants that you want to monitor. For example:

<persistence_service name="monitoring_test">
<participant name="monitoring_enabled_participant">

<domain_id>54</domain_id>
<participant_qos>

<property>
<value>

<element>
<name>rti.monitor.library</name>
<value>rtimonitoring</value>
<propagate>false</propagate>

</element>
</value>

</property>
</participant_qos>

<persistence_group name="persistAll">
...

</persistence_group>
</participant> </persistence_service>

Notice that since Persistence Service is statically linked with RTI Monitoring Library, you do not
need to have it in your library search path.

For details on how to configure the monitoring process, see the RTI Monitoring Library Getting
Started Guide.

27.13 Support for Extensible Types
Persistence Service includes partial support for the "Extensible and Dynamic Topic Types for
DDS" specification from the Object Management Group (OMG)1. This section assumes that you
27-21

Support for Extensible Types
are familiar with Extensible Types and you have read the Core Libraries and Utilities Getting
Started Guide Addendum for Extensible Types.

Persistence groups can publish and subscribe to topics associated with final and extensible
types.

The service will automatically create different pairs (PRSTDataReader, PRSTDataWriter) for
each version of a type discovered for a topic in a persistence group. In Connext 5.0, it is not pos-
sible to associate more than one type with a topic within a single DomainParticipant, therefore
each version of a type requires its own DomainParticipant.

The TYPE_CONSISTENCY_ENFORCEMENT QosPolicy (Section 7.6.6) kind for each PRSTDa-
taReader is set to DISALLOW_TYPE_COERCION. This value cannot be overwritten by the user.

For example:

struct A {
 long x;
};
struct B {
 long x;
 long y;
};

Let’s assume that Persistence Service is configured as follows and we have two DataWriters on
Topic “T” publishing type “A” and type “B” and sending TypeObject information.

<persistence_service name="XTypes">
 <participant name="XTypesParticipant">
 <persistence_group name="XTypesPersistenceGroup">
 <filter>T</filter>
 </persistence_group>
 </participant>
</persistence_service>

When Persistence Service discovers the first DataWriter with type “A”, it will create a DataReader
(PRSTDataReader) to read samples from that DataWriter, and a DataWriter (PRSTDataWriter) to
publish and store the received samples so they can be available to late-joiners.

When Persistence Service discovers the second DataWriter with type “B”, it will see that type “B”
is not equal to type “A”; then it will create a new pair (PRSTDataReader, PRSTDataWriter) to
receive and store samples from the second DataWriter.

Since the PRSTDataReaders are created with the TypeConsistencyEnforcementQosPolicy’s kind
set to DISALLOW_TYPE_COERCION, the PRSTDataReader with type “A” will not match the
DataWriter with type “B”. Likewise, the PRSTDataReader with type “B” will not match the
DataWriter with type “A”.

27.13.1 Type Version Discrimination

Persistence Service uses the rules described in the Core Libraries and Utilities Getting Started Guide
Addendum for Extensible Types to decide whether or not to create a new pair (PRSTDataReader,
PRSTDataWriter) when it discovers a DataWriter for a topic “T”.

For DataWriters created with previous Connext releases, Persistence Service will select the first pair
(PRSTDataReader, PRSTDataWriter) with a registered type name equal to the discovered regis-
tered type name since DataWriters created with previous Connext releases (before 5.0) do not
send TypeObject information.

1. http://www.omg.org/spec/DDS-XTypes/
27-22

http://www.omg.org/spec/DDS-XTypes/

Support for Extensible Types
27-23

Chapter 28 Running RTI Persistence Service

This chapter describes how to start and stop Persistence Service.

You can run Persistence Service on any node in the network. It does not have to be run on the
same node as the publishing or subscribing applications for which it is saving/delivering data.
If you run it on a separate node, make sure that the other applications can find it during the dis-
covery process—that is, it must be in one of the NDDS_DISCOVERY_PEERS lists.

28.1 Starting Persistence Service
The script to run Persistence Service’s executable is located in $NDDSHOME/scripts.

RTI Persistence Service v4.5f
Usage: rtipersistenceservice [options]
Options:
 -cfgFile <file> Configuration file. This parameter is

optional since the configuration can be
loaded from other locations

Required —> -cfgName <name> Configuration name. This parameter is
required and it is used to find a
<persistence_service>
matching tag in the configuration files

 -appName <name> Application name
Used to identify this execution for remote
administration and to name the domain
participants
Default: -cfgName

 -identifyExecution Appends the host name and process ID to the
appName to help ensure unique names

 -domainId <int> domain ID for the domain participants
created by the service
Default: Use XML value

 -remoteAdministrationDomainId <int> Enables remote administration and sets the
domain ID for the communication
Default: Use XML value

 -restore <0|1> Indicates whether or not persistence
service must restore its state from the
persistent storage
Default: Use XML value

 -noAutoStart Use this option if you plan to start RTI
Persistence Service remotely

 -infoDir <dir> The info directory of the running
persistence service. The service writes a
28-1

Stopping Persistence Service
ps.pid file into this directory when is
started. When the service finalizes the
file is deleted
Default: None

 -maxObjectsPerThread <int> Sets the maximum number of objects that can
be stored per thread for a
DomainParticipantFactory
Default: Connext default

 -serviceStackSize <int> Service thread stack size
Default: OS default

 -verbosity [0-6] RTI Persistence Service verbosity
* 0 - silent
* 1 - exceptions (Core Libraries and Ser-
vice)
* 2 - warnings (Service)
* 3 - information (Service)
* 4 - warnings (Core Libraries and Service)
* 5 - tracing (Service)
* 6 - tracing (Core Libraries and Service)
Default: 1 (exceptions)

 -version Prints RTI Persistence Service version
 -help Displays this information

The command-line options are described with more detail in Table 28.1.

28.2 Stopping Persistence Service
To stop Persistence Service: press Ctrl-C. Persistence Service will close all files and perform a
clean shutdown. Persistence Service can also be stopped and shutdown remotely (see
Chapter 29).

Table 28.1 Command-Line Options

Command-line Option Description

-appName <string>

Assigns a name to the execution of Persistence Service.
Remote commands will refer to the persistence service using this name.
In addition, the name of the DomainParticipants created by Persistence Ser-
vice will be based on this name as follows:
RTI Persistence Service: <appName>: <participantName>(<pub|sub>)
Default: The name given with -cfgName if present, otherwise it is
“RTI_Persistence_Service”

-cfgFile <string>
Specifies an XML configuration file for the Persistence Service.
The parameter is optional since the Persistence Service configuration can be
loaded from other locations. See Section 27.1 for further details.

-cfgName <string>

Required.
Selects a Persistence Service configuration.
The same configuration files can be used to configure multiple persistence
services. Each Persistence Service instance will load its configuration from a
different <persistence_service> tag based on the name specified with this
option.
If not specified, Persistence Service will print the list of available configura-
tions and then exit.
28-2

Stopping Persistence Service
-identifyExecution
Appends the host name and process ID to the service name provided with
the -appName option. This helps ensure unique names for remote admin-
istration.

-domainId <ID>

Sets the domain ID for the DomainParticipants created by Persistence Ser-
vice.
If not specified, the value in the <participant> XML tag (see Table 27.7 on
page 27-11) is used.

-remoteAdministrationDomainId
<ID>

Enables remote administration and sets the domain ID for remote commu-
nication.
When remote administration is enabled, Persistence Service will create a
DomainParticipant, Publisher, Subscriber, DataWriter, and DataReader in the
designated domain.
This option overwrites the value of the tag <domain_id> within <admin-
istration>.
Default: Use the value <domain_id> under <administration>.

-help Prints the Persistence Service version and list of command-line options.

-licenseFile <file>

Specifies the license file (path and filename). Only applicable to licensed
versions of Persistence Service.
If not specified, Persistence Service looks for the license as described in the
Persistence Service Installation Guide.

-restore <0|1>

Indicates whether or not Persistence Service must restore its state from the
persistent storage. 0 = do not restore; 1 = do restore.
If this option is not specified, the corresponding XML value in the
<persistent_storage> tag (see Table 27.4 on page 27-9) is used.

-noAutoStart

Indicates that Persistence Service will not be started when the process is
executed.
Use this option if you plan to start Persistence Service remotely, as
described in Chapter 29..

-infoDir <dir>

The info directory of the running Persistence Service.
Using this command line option, Persistence Service can be configured to
create a file used to monitor the status of the last shutdown.
At startup, the Persistence Service instance will create a file called ps.pid
into the directory specified by -infoDir.
If Persistence Service is shutdown gracefully, the file will be deleted before
the process exists.
If Persistence Service is not shutdown gracefully, the file will not be deleted.
You can detect the shutdown state of Persistence Service by checking for the
presence of the ps.pid file.
If the file is present and Persistence Service is no longer running, the previ-
ous shutdown was not graceful.
If Persistence Service is started and a ps.pid file exists, Persistence Service
will immediately shutdown. In this case, you must remove the file before
Persistence Service can be restarted again.
Default: The file ps.pid will not be generated.

-maxObjectsPerThread <int>
Parameter used to configure the maximum objects per thread in the
DomainParticipantFactory created by Persistence Service.
Default: DDS default

-serviceStackSize <int>
Service thread stack size.
Default: DDS default

Table 28.1 Command-Line Options

Command-line Option Description
28-3

Stopping Persistence Service
-verbosity

Persistence Service verbosity:
0 - No verbosity
1 - Exceptions (Core Libraries and Persistence Service) (default)
2 - Warning (Persistence Service)
3 - Information (Persistence Service)
4 - Warning (Core Libraries and Persistence Service)
5 - Tracing (Persistence Service)
6 - Tracing (Core Libraries and Persistence Service)
Each verbosity level, n, includes all the verbosity levels smaller than n.

-version Prints the Persistence Service version.

Table 28.1 Command-Line Options

Command-line Option Description
28-4

Chapter 29 Administering Persistence Service from a
Remote Location

Persistence Service can be controlled remotely by sending commands through a special Topic.
Any Connext application can be implemented to send these commands and receive the corre-
sponding responses. A shell application that sends/receives these commands is provided with
Persistence Service.

The script for the shell application is in $NDDSHOME/scripts/rtipssh.

Entering rtipssh -help will show you the command-line options:

RTI Persistence Service Shell v5.x.y
Usage: rtipssh [options]...
Options:
 -domainId <integer> Domain ID for the remote configuration
 -timeout <seconds> Max time to wait a remote response
 -cmdFile <file> Run commands in this file
 -help Displays this information

29.1 Enabling Remote Administration
By default, remote administration is disabled in Persistence Service.

To enable remote administration you can use the <administration> tag (see Section 27.5) or the -
remoteAdministrationDomainId command-line parameter (see Table 28.1), which enables
remote administration and sets the domain ID for remote communication.

When remote administration is enabled, Persistence Service will create a DomainParticipant, Pub-
lisher, Subscriber, DataWriter, and DataReader in the designated domain. (The QoS values for these
entities are described in Section 27.5.)

29.2 Remote Commands
This section describes the remote commands using the shell interface; Section 29.3 explains how
to use remote administration from a Connext application.
29-1

Accessing Persistence Service from a Connext Application
Remote commands:

start <target_persistence_service>
stop <target_persistence_service>
shutdown <target_persistence_service>
status <target_persistence_service>

Parameters:

❏ <target_persistence_service> can be:

• The application name of a persistence service, such as “MyPersistenceService1”, as
specified at start-up with the command-line option -appName

• A wildcard expression1 for a persistence service name, such as
“MyPersistenceService*”

29.2.1 start

start <target_persistence_service>

The start command starts the persistence service instance. Samples will not be persisted until
the persistence service is started.

By default, the persistence service is started automatically when the process is executed. To start
the service remotely use the command line option -noAutoStart (see Table 28.1).

29.2.2 stop

stop <target_persistence_service>

The stop command stops the persistence service instance.

An instance that has been stopped can be started again using the command start.

29.2.3 shutdown

shutdown <target_persistence_service>

The command shutdown stops the persistence service instance and finalizes the process

29.2.4 status

status <target_persistence_service>

The status command gets the status of a running persistence service instance. Possible values
are STARTED and STOPPED.

29.3 Accessing Persistence Service from a Connext Application
You can send commands to control an Persistence Service instance from your own Connext appli-
cation. You will need to create a DataWriter for a specific topic and type. Then, you can send a
sample that contains a command and its parameters. Optionally, you can create a DataReader for
a specific topic to receive the results of the execution of your commands.

1. As defined by the POSIX fnmatch API (1003.2-1992 section B.6)
29-2

Accessing Persistence Service from a Connext Application
The topics are:

❏ rti/persistence_service/administration/command_request

❏ rti/persistence_service/administration/command_response

The types are:

❏ RTI::PersistenceService::Administration::CommandRequest

❏ RTI::PersistenceService::Administration::CommandResponse

You can find the IDL definitions for these types in $(NDDSHOME)/resource/rtipersistenceser-
vice/idl/PersistenceServiceAdministration.idl.

The QoS configuration of your DataWriter and DataReader must be compatible with the one used
by the persistence service (see how this QoS is configured in Section 27.5).

The following example in C shows how to send a command to shutdown a persistence service
instance:

/***/
/*** Create the Entities needed to send the command request ****/
/***/
participant = DDS_DomainParticipantFactory_create_participant(DDS_TheParticipantFactory,

domainId, &DDS_PARTICIPANT_QOS_DEFAULT, NULL, DDS_STATUS_MASK_NONE);
if (participant == NULL) { /* Error */ }

publisher = DDS_DomainParticipant_create_publisher(participant,
&DDS_PUBLISHER_QOS_DEFAULT, NULL, DDS_STATUS_MASK_NONE);

if (publisher == NULL) { /* Error */ }

subscriber = DDS_DomainParticipant_create_subscriber(participant,
&DDS_SUBSCRIBER_QOS_DEFAULT, NULL, DDS_STATUS_MASK_NONE);

if (publisher == NULL) {
 /* Error */
}

typeName =
RTI_PersistenceService_Administration_CommandRequestTypeSupport_get_type_name();

retcode = RTI_PersistenceService_Administration_CommandRequestTypeSupport_register_type
(participant, typeName);

if (retcode != DDS_RETCODE_OK) {
 /* Error */
}

topicCmd = DDS_DomainParticipant_create_topic(participant,
"rti/persistence_service/administration/command_request", typeName,
&DDS_TOPIC_QOS_DEFAULT, NULL, DDS_STATUS_MASK_NONE);

if (topicCmd == NULL) { /* Error */ }

typeName =

RTI_PersistenceService_Administration_CommandResponseTypeSupport_get_type_name();
retcode =
 RTI_PersistenceService_Administration_CommandResponseTypeSupport_register_type(

participant, typeName);

if (retcode != DDS_RETCODE_OK) { /* Error */ }

topicResponse = DDS_DomainParticipant_create_topic(
 participant, "rti/persistence_service/administration/command_response",
 typeName, &DDS_TOPIC_QOS_DEFAULT, NULL, DDS_STATUS_MASK_NONE);
if (topicResponse == NULL) { /* Error */ }
29-3

Accessing Persistence Service from a Connext Application
writerQos.reliability.kind = DDS_RELIABLE_RELIABILITY_QOS;
writerQos.history.kind = DDS_KEEP_ALL_HISTORY_QOS;

writer = DDS_Publisher_create_datawriter(publisher, topicCmd, &writerQos,
 NULL /* listener */, DDS_STATUS_MASK_NONE);

if (writer == NULL) { /* Error */ }

readerQos.reliability.kind = DDS_RELIABLE_RELIABILITY_QOS;
readerQos.history.kind = DDS_KEEP_ALL_HISTORY_QOS;

reader = DDS_Subscriber_create_datareader(subscriber,
DDS_Topic_as_topicdescription(topicResponse),

 &readerQos, NULL, DDS_STATUS_MASK_NONE);
if (reader == NULL) { /* Error */ }

/***/
/*** Wait for discovery **/
/***/

/* Wait until we discover one reader and one writer matching
 * with the command request DataWriter and the command response
 * DataReader */

while (count < maxPollPeriods) {
 retcode = DDS_DataWriter_get_publication_matched_status(writer, &pubMatchStatus);
 if (retcode != DDS_RETCODE_OK) { /* Error */ }

 retcode = DDS_DataReader_get_subscription_matched_status(reader, &subMatchStatus);
 if (retcode != DDS_RETCODE_OK) { /* Error */ }

 if (pubMatchStatus.total_count == 1 && subMatchStatus.total_count == 1) {
break;

 }
 count++;
 NDDS_Utility_sleep(&pollPeriod);
}

if (count == maxPollPeriods) { /* Error */ }

/***/
/*** Send the command request **************************************/
/***/
request = RTI_PersistenceService_Administration_CommandRequestTypeSupport_create_data();
if (request == NULL) { /* Error */ }

/* request->id provides an unique way to identify a request so that
 * it can be correlated with a response. Although one of the fields is
 * called host it does not necessarily has to contain the IP address of
 * the host. Same applies to app */

request->id.host = 0;
request->id.app = 0;
request->id.invocation = 0;

strcpy(request->target_ps, "MyPersistenceService");
request->command._d = RTI_PERSISTENCE_SERVICE_COMMAND_SHUTDOWN;

retcode = RTI_PersistenceService_Administration_CommandRequestDataWriter_write(
 (RTI_PersistenceService_Administration_CommandRequestDataWriter *)
 writer, request, &instance_handle);
if (retcode != DDS_RETCODE_OK) { /* Error */ }

/***/
/*** Wait for response **/
/***/
29-4

Accessing Persistence Service from a Connext Application
response =
RTI_PersistenceService_Administration_CommandResponseTypeSupport_create_data();

if (response == NULL) { /* Error */ }

count = 0;
while (count < maxPollPeriods) {
 retcode =
 RTI_PersistenceService_Administration_CommandResponseDataReader_take_next_sample(
 (RTI_PersistenceService_Administration_CommandResponseDataReader*)

reader, response, &sampleInfo);
 if (retcode == DDS_RETCODE_OK) {
 break;
 } else if (retcode != DDS_RETCODE_NO_DATA) {

/* Error */
 }
 NDDS_Utility_sleep(&pollPeriod);
 count++;
}
if (count == maxPollPeriods) {
 printf("No response received\n");
} else {
 printf("Response received: %s\n",response->message);
}

29-5

Chapter 30 Advanced Persistence Service Scenarios

This section covers several advanced scenarios for using Persistence Service.

30.1 Scenario: Load-balanced Persistence Services
Each running instance of the Persistence Service executes as a single process in a single computer.
In high-throughput scenarios the Persistence Service may become a bottleneck. The main reasons
are:

❏ If the Persistence Service is configured to persist its samples to durable storage (a disk or a
database) this will further limit the throughput of samples that can be persisted to what
the database and/or disk can handle. Depending on computer hardware, the disk or
database this limit may be in the order of tens of thousands of samples per second which
is far less than what could be communicated system-wide.

❏ Depending on the CPU there will be limits on the throughput of samples that can be
received by a single process.

❏ The computer running the Persistence Service is typically connected to the network via a
single network interface so the data that can be persisted will be limited to the through-
put that flows though a single interface which is typically far less that the aggregated
throughput that can flow on the complete network.

To overcome these limits multiple instances of the RTI Persistence Service can be run in parallel.
These instances may run in multiple machines and be configured in a “load balancing” fashion
such that each Persistence Service process is only responsible for persisting a subset of the data
published on the DDS domain.

Multiple strategies for partitioning the data stored by each Persistence Service instance are possi-
ble:

❏ Balance Persistence Services by Topic name. This strategy configures each persistence
service to persist different Topic names. This is accomplished by associating a filter
expression with the declaration of the persistent groups used to configure each Persis-
tence Service (see Creating Persistence Groups (Section 27.8)). The filter expression is
applied to the Topic names, so for example one Persistence Service could be configured
with the filter “[A-Z]*” filter in the name of the Topics that it will persist and the second
with the filter “[a-z]*”. With this configuration the first Persistence Service will persist data
produced by DataWriters that specify durability TRANSIENT or PERSISTENT and have
a Topic name that starts with a capital letter and the second Persistence Service will do the
same for Topics that start with a lower-case letter.
30-1

Scenario: Delegated Reliability
❏ Balance Persistence Services by data content. In some scenarios the data published on a
single Topic is too much for a single Persistence Service to handle. In this case the Persis-
tence Services can also be configured with filter expressions based on the content of the
data. This is accomplished by associating a content filter with the declaration of the per-
sistent groups used to configure each Persistence Service (see Creating Persistence Groups
(Section 27.8)).

When multiple instances of Persistence Service are used to store data on the same Topic, it
becomes possible for samples from the same original DataWriter to be stored in separate
instances of Persistence Service. In this situation, Connext DataReaders automatically merge the
data from the multiple Persistence Services such that the relative order of the samples from the
original DataWriter is preserved. This Connext capability is called Collaborative Datawriters
because multiple DataWriters, in this case the ones for different Persistence Services, collaborate to
reconstruct the original stream. (See Chapter 11: Collaborative DataWriters).

30.2 Scenario: Delegated Reliability
The DDS-RTPS reliability protocol requires the DataWriter to periodically send HeartBeat mes-
sages to the DataReaders, process their ACKs and NACK messages, keep track of the DataReader
state, and send the necessary repairs. The additional load caused by the reliability protocol
increases with the number of reliable DataReaders matched with the DataWriter. Even if the data
is sent via multicast the number of ACKs and NACKs will increase with the number of
DataReaders.

In situations where there many DataReaders are subscribing to the same Topic, the reliability and
repair traffic may become too much for the DataWriter to handle and negatively impact its per-
formance. To address this situation, Connext provides the ability to configure the DataWriter so
that it delegates the reliability task to a separate service. This approach is known as delegated reli-
ability.

Figure 30.1 Load-Balanced Persistence Services Scenario
30-2

Scenario: Slow Consumer
To take advantage of delegated reliability, both the original DataWriter and DataReader must be
configured to enable an external service to ensure the reliability on their behalf. This is done by
setting both the dds.data_writer.reliability.delegate_reliability property on the DataWriter and
the dds.data_reader.reliability.delegate_reliability property on the DataReader to 1.

With this configuration, the DataWriter creates a reliable channel to Persistence Service, yet sends
data using ‘best-effort’ reliability to the DataReaders directly. If a sample is dropped, Persistence
Service will repair the sample. Persistence Service is configured with push_on_write (in the
DATA_WRITER_PROTOCOL QosPolicy (DDS Extension) (Section 6.5.3)) set to false. This way,
samples will only be sent from Persistence Service to the DataReaders when they are explicitly
NACKed by the DataReader.

30.3 Scenario: Slow Consumer
Unless special measures are taken, the presence of slow consumers can impact the overall
behavior of the system. If a DataReader is not keeping up with the samples being sent by the
DataWriter, it will apply back-pressure to the DataWriter to slow the rate at which the DataWriter
can write samples. With delegated reliability (see Section 30.2), the original DataWriter can offload
the processing of the ACK/NACK messages generated by the DataReaders to a PRSTDataWriter.
However, the original DataWriter still has a reliable channel with the PRSTDataReader that can
slow it down.

By default, Persistence Service uses the Connext receive thread to read samples from the PRStDa-
taReaders, write the samples to the PRSTDataWriters history, and send ACKs to the original
DataWriter. With this configuration, a PRSTDataReader does not ACK samples to the original
DataWriter until they are written into the corresponding PRSTDataWriter’s history. Since multi-
ple DataReaders may be accessing the PRSTDataWriter history at the same time that the persis-

Figure 30.2 Delegated Reliability Scenario
30-3

Scenario: Slow Consumer
tence service is trying to write new samples, the PRSTDataWriter history becomes a contention
point that can indirectly slow down the original DataWriter (see Figure 30.3).

To remove this contention point and decouple the slow consumer from the original DataWriter,
Persistence Service supports a mode where samples can be buffered prior to being added to the
PRSTDataWriter’s queue (see Figure 30.4).

Figure 30.3 Slow-Consumer Scenario With Delegated Reliability

Figure 30.4 Slow Consumer Scenario With Delegated Reliability and Sample Log
30-4

Scenario: Slow Consumer
If the PRSTDataWriter slows down due to the presence of slow consumers, the buffer will hold
samples such that the original DataWriter and the rest of the system are not impacted. This buf-
fer is called the Persistence Service sample log. The persistence service creates a separate sample
log per PRSTDataWriter in the group. In addition to the sample log, the persistence service cre-
ates a thread (write thread) whose main function is to read samples from the log and write them
to the associated PRSTDataWriter. There is one thread per PRSTDataWriter.

Important: Persistence Service currently does not allow multiple sample logs to share the same
write thread.

Persistence Service can be configured to enable sample logging per persistence group using the
<sample_logging> XML tag to specify the log’s configuration parameters—see Table 30.1,
“Sample Logging Tags”. .

Important: Enabling sample logging in a persistence group is expensive. For every PRSTDataW-
riter, Persistence Service will create a write thread and an event thread that will be in charge of
flushing the log files and storing the read bookmark. Therefore, sample logging should be
enabled only for the persistence groups where it is needed based on the potential presence of
slow consumers and/or the expected data rate in the persistence group. Small data rates will
likely not require a sample log.

Table 30.1 Sample Logging Tags

Tags within
<sample_logging> Description

Number
of Tags

Allowed

<enable>
A DDS_Boolean (see Table 27.1) that indicates whether or not sample
logging is enabled in the container persistence group.
Default: 0

0 or 1

<log_file_size>
Specifies the maximum size of a sample log file in Mbytes. When a
log file becomes full, Persistence Service creates a new log file.
Default: 60 MB

0 or 1

<log_flush_period>

The period (in milliseconds) at which Persistence Service removes
sample log files whose full content have been written into the PRST-
DataWriter by the sample log write thread.
Default: 10000 milliseconds

0 or 1

<log_read_batch>
Determines how many samples should be read and processed at
once by the sample log write thread.
Default: 100 samples

0 or 1

<log_bookmark_period>

Samples in the sample log are identified by two attributes:
❏ The file ID

❏ The row ID (position within the file)

The read bookmark indicates the most recently processed sample.
This tag indicates how often (in milliseconds) the read bookmark is
persisted into disk.
Default: 1000 milliseconds

0 or 1
30-5

Part 7: RTI CORBA Compatibility Kit

The material in this part of the manual is only relevant if you have purchased the CORBA Com-
patibility Kit, an optional package that allows Connext’s code generator, rtiddsgen, to output type-
specific code that is compatible with OCI’s distribution of TAO and the JacORB distribution.

❏ Chapter 31: Introduction to RTI CORBA Compatibility Kit

❏ Chapter 32: Generating CORBA-Compatible Code with rtiddsgen

❏ Chapter 33: Supported IDL Types

Chapter 31 Introduction to RTI CORBA Compatibility Kit

RTI CORBA Compatibility Kit is an optional package that allows the RTI Connext (formerly, RTI
Data Distribution Service) code generator, rtiddsgen, to output type-specific code that is compati-
ble with OCI’s or DOC’s distribution of TAO and the JacORB distribution.

By having compatible data types, your applications can use CORBA and Connext APIs, with no
type conversions required.

For more information about OCI's or DOC’s distribution of TAO and JacORB, please refer to the
documentation included with those distributions. Additional information can be found on
OCI’s TAO website (www.theaceorb.com), DOC’s TAO website (www.dre.vanderbilt.edu), and
JacORB’s website (www.jacorb.org). TAO and JacOrb distributions that are compatible with this
version of Connext are available from the RTI Support Portal, accessible from https://sup-
port.rti.com.

In addition to this document, a simple example is available.

❏ C++ using TAO:

• See the example in <RTI Connext installation directory>/example/CPP/corba. Please
read Instructions.pdf.

❏ Java using JacORB:

• See the example in <RTI Connext installation directory>/example/JAVA/corba. Please
read Instructions.pdf.

The following figure shows the process of using IDL files and types that are shared with
CORBA.

RTI IDL
Compiler

(rtiddsgen)

IDL File

RTI Connext
plugins

and
support code

CORBA
Compiler

CORBA Types

CORBA
Stubs and
Skeletons

generates

uses

generates
uses
31-1

http://www.theaceorb.com
http://www.dre.vanderbilt.edu
http://www.jacorb.org
http://www.jacorb.org
https://support.rti.com
https://support.rti.com
../../example/CPP/corba/
../../example/CPP/corba/Instructions.pdf
../../example/JAVA/corba
../../example/JAVA/corba/Instructions.pdf

CORBA Compatibility Kit is designed to be installed on top of Connext; this kit replaces the
default version of Connext’s code generation tool, rtiddsgen. The replacement rtiddsgen includes
support for the command-line option, -corba.

On the wire, the serialized version of the code for types generated using the -corba option is
identical to the serialized version of the code for types generated without the option. As result,
endpoints (DataReaders or DataWriters) using type support code generated with -corba can fully
communicate with endpoints using type support code generated without -corba.
31-2

Chapter 32 Generating CORBA-Compatible Code with
rtiddsgen

The CORBA Compatibility Kit enables Connext’s IDL compiler, rtiddsgen, to produce type-specific
code that is compatible with OCI’s distribution of TAO for C++ and with JacORB for Java.

When using rtiddsgen, specify the -corba option on the command line to generate compatible
code. The -corba option enables the use of data structures for both CORBA and Connext API
calls without requiring any translation: the IDL-to-language mapping is the same for both.

There are some trade-offs to consider:

❏ While the -corba option provides the benefit of CORBA-compatible type-specific code, it
does not provide support for bit fields, pointers and ValueTypes.

❏ For complex types such as sequences and strings, the memory management is different
when the -corba option is used. When code is generated without the option, the memory
needed for the type is pre-allocated at system initialization. When code is generated with
the option, the memory is allocated when it is needed, so memory allocation system calls
may occur while the system is in steady state.

❏ Without the -corba option, access to data fields within types may be faster under some
circumstances. CORBA-compatible types require the use of accessor methods. When
-corba is not used, while the accessor methods are provided for convenience, they can be
bypassed and the data can be accessed directly. This direct access is available to the user
as well as to the Connext internal implementation code. As a result, depending on the
complexity of the types used, overall system latency could be lower when using non-
compatible types (that is, when -corba is not used).

The following sections describe how to use the CORBA Compatibility Kit. In addition to these
instructions, a simple example is available.

❏ C++ using TAO:

• Generating C++ Code (Section 32.1)

• See the example in <RTI Connext installation directory>/example/CPP/corba and
read Instructions.pdf.

❏ Java using JacORB:

• Generating Java Code (Section 32.2)

• See the example in <RTI Connext installation directory>/example/JAVA/corba and
read Instructions.pdf.
32-1

Generating C++ Code
32.1 Generating C++ Code
To generate CORBA-compatible type-specific code, first run TAO’s code generator, tao_idl, on
the IDL file containing your data types. If you followed the TAO distribution compilation
instructions contained in this document, the tao_idl compiler executable will be in the TAO
install directory under <ACE_ROOT>/bin.

<ACE_ROOT>/bin/tao_idl <IDL file name>.idl

This will generate CORBA support files for your data types. The generated file will have a name
matching the pattern <IDL file name>C.h and will contain the type definitions. Pass this header
file as a parameter to rtiddsgen to generate the Connext support code for the data types.

rtiddsgen -language C++ -corba <IDL file name>C.h -example \
<architecture> <IDL file name>.idl

The optional -example <architecture> flag will generate code for a publisher and a subscriber. It
will also generate an .mpc file (and an .mwc file for Windows) that can be used with TAO's
Makefile, Project and Workspace Creator (MPC) to generate a makefile or a Visual Studio project
file for your DDS-CORBA application. The .mpc file is meant to work out-of-the-box with the
DDS-CORBA C++ Message example only, so you will have to modify it to compile your custom
application. Please refer to the DDS-CORBA C++ example for more information about using
MPC (see Instructions.pdf).

32.2 Generating Java Code
To generate Java CORBA-compatible type specific code, first run the JacORB code generator on
the IDL file containing your data types.

<JacORB install dir>/bin/idl <IDL file name>.idl

After generating the CORBA code for the IDL types run rtiddsgen as follows:

rtiddsgen -language Java -corba -example <architecture> \
<IDL file name>.idl

The optional -example <architecture> flag will generate code for a DDS publisher and a DDS
subscriber. It will also generate a makefile specific to your architecture that can be used to com-
pile the example using the publisher and subscriber code generated.

To form a complete code set, use the type class generated by the CORBA IDL compiler and the
files generated by rtiddsgen.
32-2

../../example/CPP/corba/Instructions.pdf

Chapter 33 Supported IDL Types

Table 33.1 lists the IDL types supported when using the –corba option.

❏ Note 1

Inline nested structures, such as the following example, are not supported.

struct Outer {
 short outer_short;

 struct Inner {
 char inner_char;

Table 33.1 Supported IDL Types when Using rtiddsgen -corba

IDL Construct Support

Modules Supported

Interfaces Ignored

Constants Supported

Basic Data Types Supported

Enums Supported

String Types Supported

Wide String Types Supported

Struct Types
Supported
Note: In-line nested structures are not supported (whether using -corba or not). See
Note 1.

Fixed Types Ignored

Union Types Supported

Sequence Types
Supported
Note: Sequences of anonymous sequences are not supported. See Note 2.

Array Types Supported

Typedefs Supported

Any
Not Supported.
Note that rtiddsgen does not ignore them. This construct cannot be in the IDL file.

Value Types Ignored

Exception Types Ignored

Type Code
Supported
rtiddsgen generates Connext TypeCodes
CORBA TypeCodes are generated by the CORBA IDL compiler
33-1

 short inner_short;
 } outer_nested_inner;

};

❏ Note 2

Sequences of anonymous Sequences are not supported. This kind of type will be banned
in future revisions of CORBA. For example, the following is not supported:

sequence<sequence<short,4>,4> MySequence;

Instead, sequences of sequences can be supported using typedef definitions. For exam-
ple, this is supported:

typedef sequence<short,4> MyShortSequence;
sequence<MyShortSequence,4> MySequence;
33-2

Part 8: RTI RTSJ Extension Kit

The material in this part of the manual is only relevant if you have purchased RTI RTSJ Extension
Kit, an optional package that allows you to configure Connext applications to use Real-Time
Specification for Java (RTSJ)-specific thread types and memory areas.

❏ Chapter 34: Introduction to RTI RTSJ Extension Kit

❏ Chapter 35: Using RTI RTSJ Extension Kit

34-1

Chapter 34 Introduction to RTI RTSJ Extension Kit

The RTI RTSJ Extension Kit is an optional package that allows you to configure Connext applica-
tions to use Real-Time Specification for Java (RTSJ)-specific thread types and memory areas. In
particular, the threads used by Connext can be configured so that they are never interrupted by a
Java virtual machine’s garbage collector—greatly improving the application’s determinism.

For more information on RTSJ, please refer to the documentation available on the official web
site: www.rtsj.org.

Additional documentation for the RTSJ Extension Kit is available in the API Reference HTML
documentation: <RTI Connext installation directory>/ReadMe.html.

A simple example is also available: <RTI Connext installation directory>/example/JAVA/rtsj.
Please read Instructions.pdf.

../../example/JAVA/corba
../../example/JAVA/rtsj/Instructions.pdf
http://www.rtsj.org

35-1

Chapter 35 Using RTI RTSJ Extension Kit

The kit includes a JAR file and associated electronic documentation, including API documenta-
tion in HTML and PDF formats and example code. The JAR file is provided in two versions,
release and debug, named nddsrtsj.jar and nddsrtsjd.jar, respectively. These must be used in
addition to the libraries provided with Connext itself. If you are using the Connext release JAR, we
recommend that you also use the RTSJ release JAR, and likewise for the debug JAR, although this
is not a requirement.

Detailed API documentation is available in HTML format, accessible here:
<RTI_Connext_INSTALL_ROOT>/ReadMe.html.

A simple example is also available here:
<RTI_Connext_INSTALL_ROOT>/example/JAVA/rtsj. Please read Instructions.pdf.

../../ReadMe.html
../../example/JAVA/corba
../../example/JAVA/rtsj/Instructions.pdf

Part 9: RTI TCP Transport

RTI TCP Transport is only available on specific architectures. See the Platform Notes for details.

Out of the box, Connext uses the UDPv4 and Shared Memory transport to communicate with
other DDS applications. This configuration is appropriate for systems running within a single
LAN. However, using UDPv4 introduces some problems when Connext applications in different
LANs need to communicate:

❏ UDPv4 traffic is usually filtered out by the LAN firewalls for security reasons.

❏ Forwarded ports are usually TCP ports.

❏ Each LAN may run in its own private IP address space and use NAT (Network Address
Translation) to communicate with other networks.

TCP Transport enables participant discovery and data exchange using the TCP protocol (either
on a local LAN, or over the public WAN). TCP Transport allows Connext to address the chal-
lenges of using TCP as a low-level communication mechanism between peers and limits the
number of ports exposed to one. (When using the default UDP transport, a Connext application
uses multiple UDP ports for communication, which may make it unsuitable for deployment
across firewalled networks).

This part of the User’s Manual contains the following chapter:

❏ Chapter 36: Configuring the RTI TCP Transport

Chapter 36 Configuring the RTI TCP Transport

This chapter explains how to use and configure the TCP Transport:

❏ TCP Communication Scenarios (Section 36.1)

❏ Configuring the TCP Transport (Section 36.2)

36.1 TCP Communication Scenarios
TCP Transport can be used to address multiple communication scenarios—from simple commu-
nication within a single LAN, to complex communication scenarios across LANs where NATs
and firewalls may be involved. This section describes these scenarios:

❏ Communication Within a Single LAN (Section 36.1.1)

❏ Symmetric Communication Across NATs (Section 36.1.2)

❏ Asymmetric Communication Across NATs (Section 36.1.3)

36.1.1 Communication Within a Single LAN

TCP Transport can be used as an alternative to UDPv4 to communicate Connext applications
running inside the same LAN. Figure 36.1 shows how to configure the TCP transport in this
scenario.

Figure 36.1 Communication within a Single LAN

TCPv4
Transport

IP address:
192.168.1.55

RTI Connext
Participant 1 parent.classid:

NDDS_TRANSPORT_
CLASSID_TCPV4_LAN

server_bind_port: 7400
Initial peers:

192.168.1.44:7400

parent.classid:
NDDS_TRANSPORT_
CLASSID_TCPV4_LAN

server_bind_port: 7400
Initial peers:

192.168.1.55:7400

TCPv4
Transport

IP address:
192.168.1.44

RTI Connext
Participant 2
36-1

TCP Communication Scenarios
parent.classid and server_bind_port are transport properties configured using the PropertyQo-
sPolicy of the participant. (Note: When the TCP transport is instantiated, by default it is
configured to work in a LAN environment using symmetric communication and binding
to port 7400 for incoming connections.) For additional information about these properties,
see Table 36.1 on page 36-8.

Initial Peers represents the peers to which the participant will be announced to. Usually, these
peers are configured using the DiscoveryQosPolicy of the participant or the environment
variable NDDS_DISCOVERY_PEERS. For information on the format of initial peers, see
Section 36.2.1.

Note: Unlike the UDPv4 transport, you must specify the initial peers, because multicast cannot
be used with TCP.

36.1.2 Symmetric Communication Across NATs

In NAT communication scenarios, each one of the LANs has a private IP address space. The
communication with other LANs is done through NAT routers that translate private IP
addresses and ports into public IP addresses and ports.

In symmetric communication scenarios, any Connext application can initiate TCP connections
with other applications. Figure 36.2 shows how to configure the TCP transport in this scenario.

Notice that initial peers refer to the public address of the remote LAN where the Connext appli-
cation is deployed and not the private address of the node where the application is running. In
addition, the transport associated with a Connext instance will have to be configured with its
public address (public_address) so that this information can be propagated as part of the dis-
covery process.

Because the public address and port of the Connext instances must be known before the commu-
nication is established, the NAT Routers will have to be configured statically to translate (for-
ward) the private server_bind_port into a public port. This process is known as static NAT or
port forwarding; it allows traffic originating in outer networks to reach designated peers in the

Figure 36.2 Symmetric Communication Across NATs

TCPv4
Transport

IP address:
192.168.1.55

RTI Connext
Participant 1 parent.classid:

NDDS_TRANSPORT_
CLASSID_TCPV4_WAN

server_bind_port: 7400
public_address: 155.99.25.11
Initial peers: 155.99.25.12:8500

parent.classid:
NDDS_TRANSPORT_
CLASSID_TCPV4_WAN

server_bind_port: 7400
public_address: 155.99.25.12
Initial peers: 155.99.25.11:8400

TCPv4
Transport

IP address:
192.168.1.44

RTI Connext
Participant 2

Connection

DataNAT Router

WAN: 155.99.25.11
LAN: 192.168.1.0
Port forward settings:

WAN port 8400 TO 192.168.1.55:7400

NAT Router

WAN: 155.99.25.12
LAN: 192.168.1.0
Port forward settings:

WAN port 8500 TO 192.168.1.44:7400
36-2

TCP Communication Scenarios
LAN behind the NAT router. You will need to refer to your router’s configuration manual to
understand how to correctly set up port forwarding.

36.1.3 Asymmetric Communication Across NATs

This scenario is similar to the previous one, except in this case the TCP connections can be initi-
ated only by the Connext instance in LAN1. For security reasons, incoming connections to LAN1
are not allowed. In this case, the peer in LAN1 is considered ‘unreachable.’ Unreachable peers
can publish and subscribe just like any other peer, but communication can occur only to a
‘reachable’ peer.

Figure 36.3 shows how to configure the TCP transport in this scenario. Notice that the transport
property server_bind_port is set to 0 to configure the node as unreachable.

In an asymmetric configuration, an unreachable peer (that is behind a firewall or NAT without
port forwarding) can still publish and subscribe like a reachable peer, but with some important
limitations:

❏ An unreachable peer can only communicate with reachable peers: two unreachable peers
cannot establish a direct communication since they are both behind a firewall and/or
NAT.

Note that since Connext always relies on a direct connection between peers (even if there
is a third node that can be reachable by both unreachable peers), communication can
never occur between unreachable peers. For example, suppose Peers A and B are
unreachable and Peer C is reachable. Communication can take place between A and C,
and between B and C, but not between A and B. For this configuration, you should con-
sider using RTI Federation Service (available for purchase as a separate product).

Figure 36.3 Asymmetric Communication Across NATs

TCPv4
Transport

IP address:
192.168.1.55

RTI Connext
Participant 1 parent.classid:

NDDS_TRANSPORT_
CLASSID_TCPV4_WAN

server_bind_port: 0
public_address: invalid
Initial peers:

155.99.25.12:8500

parent.classid:
NDDS_TRANSPORT_
CLASSID_TCPV4_WAN

server_bind_port: 7400
public_address:

155.99.25.12:8500

TCPv4
Transport

IP address:
192.168.1.44

RTI Connext
Participant 2

Connection

Data
NAT Router
WAN: 155.99.25.11
LAN: 192.168.1.0

NAT Router
WAN: 155.99.25.12
LAN: 192.168.1.0
Port forward settings:
WAN port 8500 TO 192.168.1.44:7400
36-3

Configuring the TCP Transport
❏ It can take longer to discover unreachable peers than reachable ones. This is because a
reachable peer has to wait for the unreachable peer to establish the communication first.

For example, suppose Peer A (unreachable) starts before Peer B (reachable). The discov-
ery mechanism of A attempts to connect to the (not-yet existing) Peer B. Since it fails, it
will retry after n seconds. Right after that, B starts. If A would be reachable (and in B’s
peer list), the discovery mechanism will immediately contact A. In this case, since A can-
not be reached, B needs to wait until the discovery process of A decides to retry.

This effect can be minimized by modifying the QoS that controls the discovery mecha-
nism used by A. In particular, you should set the DomainParticipant’s
DiscoveryConfig QoS policy’s min_initial_participant_announcement_period to a
small value.

Note that the concept of symmetric/asymmetric configuration is a local concept that only
describes the communication mechanism between two peers. A reachable peer can be involved
in symmetric communication with another reachable peer, and at the same time have asymmet-
ric communication with a unreachable peer. When a peer attempts to communicate with a
remote peer, it knows if the remote peer is reachable or not by looking at the transport address
provided.

36.2 Configuring the TCP Transport
TCP Transport is distributed as a both shared and static library in “<Connext installation direc-
tory>/lib/<architecture>.” The library is called nddstransporttcp.

Mechanisms for Configuring the Transport:

❏ By explicitly instantiating a new transport (see Section 36.2.2) and then registering it
with the DomainParticipant (see Section 15.7). (Not available in the Java and .NET APIs.)

❏ Through the Property QoS policy of the DomainParticipant (on UNIX, Solaris and Win-
dows systems only). This process is described in Section 36.2.3.

This section describes:

❏ Choosing a Transport Mode (Section 36.2.1)

❏ Explicitly Instantiating the TCP Transport Plugin (Section 36.2.2)

❏ Configuring the TCP Transport with the Property QosPolicy (Section 36.2.3)

❏ Setting the Initial Peers (Section 36.2.4)

❏ TCP/TLS Transport Properties (Section 36.2.5)

36.2.1 Choosing a Transport Mode

When you configure the TCP transport, you must choose one of the following types of commu-
nication:

❏ TCP over LAN — Communication between the two peers is not encrypted (data is writ-
ten directly to a TCP socket). Each node can use all the possible interfaces available on
that machine to receive connections. The node can only receive connections from
machines that are on a local LAN.

❏ TCP over WAN — Communication is not encrypted (data is written directly to a TCP
socket). The node can only receive connections from a specific port, which must be con-
figured in the public router of the local network (WAN mode).
36-4

Configuring the TCP Transport
❏ TLS over LAN — This is similar to the TCP over LAN, where the node can use all the
available network interfaces to TX/RX data (LAN nodes only), but in this mode, the data
being written on the physical socket is encrypted first (through the openssl library). Per-
formance (throughput and latency) may be less than TCP over LAN since the data needs
to be encrypted before going on the wire. Discovery time may be longer with this mode
because when the first connection is established, the two peers exchange handshake
information to ensure line protection. For more general information on TLS, see
Section 24.3.

❏ TLS over WAN — The data is encrypted just like TLS over LAN, but it can be sent and
received only from a specific port of the router.

Note: To use either TLS mode, you also need RTI TLS Support, which is available for purchase as
a separate package.

An instance of the transport can only communicate with other nodes that use the same transport
mode.

You can specify the transport mode in either the NDDS_Transport_TCPv4_Property_t structure
(see Section 36.2.1) or in the parent.classid field of the Properties QoS (see Section 36.2.3). Your
choice of transport mode will also be reflected in the prefix you use for setting the initial peers
(see Section 36.2.4).

36.2.2 Explicitly Instantiating the TCP Transport Plugin

As described on page 36-4, there are two ways to configure a transport plugin. This section
describes the way that includes explicitly instantiating and registering a new transport. (The
other way is to use the Property QoS mechanism, described in Section 36.2.3).

Notes:

❏ This way of instantiating a transport is not supported in the Java and .NET APIs. If you
are using Java or .NET, use the Property QoS mechanism described in Section 36.2.3.

❏ To use this mechanism, there are extra libraries that you must link into your program
and an additional header file that you must include. Please see Section 36.2.2.1 and
Section 36.2.2.2 for details.

To instantiate a TCP transport:

1. Include the extra header file described in Section 36.2.2.1.

2. Instantiate a new transport by calling NDDS_Transport_TCPv4_new():

NDDS_Transport_Plugin* NDDS_Transport_TCPv4_new (
 const struct NDDS_Transport_TCPv4_Property_t * property_in)

3. Register the transport by calling NDDSTransportSupport::register_transport().

See the API Reference HTML documentation for details on these functions and the contents of
the NDDS_Transport_TCPv4_Property_t structure.

36.2.2.1 Additional Header Files and Include Directories

To use the TCP Transport API, you must include an extra header file (in addition to those in
Table 9.1, “Header Files to Include for Connext (All Architectures),” on page 9-2):

#include "ndds/transport_tcp/transport_tcp_tcpv4.h"

Since TCP Transport is in the same directory as Connext (see Table 9.2, “Include Paths for Compi-
lation (All Architectures),” on page 9-2), no additional include paths need to be added for the
TCP Transport API. If this is not the case, you will need to specify the appropriate include path.
36-5

Configuring the TCP Transport
36.2.2.2 Additional Libraries and Compiler Flags

To use the TCP Transport, you must add the nddstransporttcp library to the link phase of your
application. There are four different kind of libraries, depending on if you want a debug or
release version, and static or dynamic linking with Connext.

For UNIX- based systems, the libraries are:

libnddstransporttcp.a — Release version, dynamic libraries
libnddstransporttcpd.a — Debug version, dynamic libraries
libnddstransporttcpz.a — Release version, static libraries
libnddstransporttcpzd.a — Debug version, static libraries

For Windows-based systems, the libraries are:

NDDSTRANSPORTTCP.LIB — Release version, dynamic libraries
NDDSTRANSPORTTCPD.LIB — Debug version, dynamic libraries
NDDSTRANSPORTTCPZ.LIB — Release version, static libraries
NDDSTRANSPORTTCPZD.LIB — Debug version, static libraries

Notes for using TLS:

To use either TLS mode (see Section 36.2.1), you also need RTI TLS Support, which is avail-
able for purchase as a separate package. The TLS library (libnddstls.so or NDDSTLS.LIB,
depending on your platform) must be in your library search path (pointed to by the envi-
ronment variable LD_LIBRARY_PATH on UNIX/Solaris systems, Path on Windows sys-
tems, LIBPATH on AIX systems, DYLD_LIBRARY_PATH on Mac OS systems).

If you already have $NDDSHOME/lib/<architecture> in your library search path, no extra
steps are needed to use TLS once TLS Support is installed.

Even if you link everything statically, you must make sure that the location for
$NDDSHOME/lib/<architecture> (or wherever the TLS library is located) is in your search
path. The TLS library is loaded dynamically, even if you use static linking for everything
else.

Your search path must also include the location for the Openssl library, which is used by the
TLS library.

36.2.3 Configuring the TCP Transport with the Property QosPolicy
The PROPERTY QosPolicy (DDS Extension) (Section 6.5.17) allows you to set up name/value
pairs of data and attach them to an entity, such as a DomainParticipant.

Like all QoS policies, there are two ways to specify the Property QoS policy:

❏ Programmatically, as described in this section and Section 4.1.7. This includes using the
add_property() operation to attach name/value pairs to the Property QosPolicy and then
configuring the DomainParticipant to use that QosPolicy (by calling set_qos() or specify-
ing QoS values when the DomainParticipant is created).

❏ With an XML QoS Profile, as described in Chapter 17: Configuring QoS with XML. This
causes Connext to dynamically load the TCP transport library at run time and then
implicitly create and register the transport plugin.

To add name/value pairs to the Property QoS policy, use the add_property() operation:

DDS_ReturnCode_t DDSPropertyQosPolicyHelper::add_property
(DDS_PropertyQosPolicy policy, const char * name,

 const char * value, DDS_Boolean propagate)
36-6

Configuring the TCP Transport
For more information on add_property() and the other operations in the DDSPropertyQosPoli-
cyHelper class, see Table 6.56, “PropertyQoSPolicyHelper Operations,” on page 6-119, as well as
the API Reference HTML documentation.

The ‘name’ part of the name/value pairs is a predefined string. The property names for the TCP
Transport are described in Table 36.1, “Properties for NDDS_Transport_TCPv4_Property_t,” on
page 36-8.

Here are the basic steps, taken from the example Hello World application (for details, please see
the example application.)

1. Get the default DomainParticipant QoS from the DomainParticipantFactory.
DDSDomainParticipantFactory::get_instance()->

get_default_participant_qos(participant_qos);

2. Disable the builtin transports.
participant_qos.transport_builtin.mask = DDS_TRANSPORTBUILTIN_MASK_NONE;

3. Set up the DomainParticipant’s Property QoS.
a. Load the plugin.

 DDSPropertyQosPolicyHelper::add_property (participant_qos.property,
"dds.transport.load_plugins", "dds.transport.TCPv4.tcp1",
DDS_BOOLEAN_FALSE);

b. Specify the transport plugin library.

 DDSPropertyQosPolicyHelper::add_property (participant_qos.property,
 "dds.transport.TCPv4.tcp1.library", "nddstransporttcp",
 DDS_BOOLEAN_FALSE);

c. Specify the transport’s ‘create’ function.

 DDSPropertyQosPolicyHelper::add_property (participant_qos.property,
"dds.transport.TCPv4.tcp1.create_function",
"NDDS_Transport_TCPv4_create", DDS_BOOLEAN_FALSE);

d. Set the transport to work in a WAN configuration with a public address:

 DDSPropertyQosPolicyHelper::add_property (participant_qos.property,
"dds.transport.TCPv4.tcp1.parent.classid",
”NDDS_TRANSPORT_CLASSID_TCPV4_WAN”, DDS_BOOLEAN_FALSE);

 DDSPropertyQosPolicyHelper::add_property (participant_qos.property,
"dds.transport.TCPv4.public_address", "182.181.2.31",
DDS_BOOLEAN_FALSE);

e. Specify any other properties, as needed.

4. Create the DomainParticipant using the modified QoS.

participant = DDSTheParticipantFactory->create_participant (domainId,
participant_qos, NULL /* listener */, DDS_STATUS_MASK_NONE);

Important! Property changes should be made before the transport is loaded—either before the
DomainParticipant is enabled, before the first DataWriter/DataReader is created, or
before the builtin topic reader is looked up, whichever one happens first.
36-7

Configuring the TCP Transport
36.2.4 Setting the Initial Peers

Note: You must specify the initial peers (you cannot use the defaults because multicast cannot be
used with TCP).

For TCP Transport, the addresses of the initial peers (NDDS_DISCOVERY_PEERS) that will be
contacted during the discovery process have the following format:

For WAN communication using TCP: tcpv4_wan://<IP address or hostname>:<port>
For WAN communication using TLS: tlsv4_wan://<IP address or hostname>:<port>

For LAN communication using TCP: tcpv4_lan://<IP address or hostname>:<port>
For LAN communication using TLS: tlsv4_lan://<IP address or hostname>:<port>

For example:

setenv NDDS_DISCOVERY_PEERS tcpv4_wan://10.10.1.165:7400,
tcpv4_wan://10.10.1.111:7400,tcpv4_lan://192.168.1.1:7500

When the TCP transport is configured for LAN communication (with the parent.classid prop-
erty), the IP address is the LAN address of the peer and the port is the server port used by the
transport (the server_bind_port property).

When the TCP transport is configured for WAN communication (with the parent.classid prop-
erty), the IP address is the WAN or public address of the peer and the port is the public port that
is used to forward traffic to the server port in the TCP transport.

36.2.5 TCP/TLS Transport Properties

Table 36.1 on page 36-8 describes the TCP and TLS transport properties.

Note: To use TLS, you also need RTI TLS Support, which is a separate component.

Table 36.1 Properties for NDDS_Transport_TCPv4_Property_t

Property Name
(prefix with

‘dds.transport.TCPv4.tcp1.’)1
Description

dds.transport.load_plugins
(Note: this does not take a prefix)

Required

Comma-separated strings indicating the prefix names of all plugins that will
be loaded by Connext. For example: “dds.transport.TCPv4.tcp1". You will use
this string as the prefix to the property names. See Footnote 1.

Note: you can load up to 8 plugins.

library

Required Must be "nddstransporttcp".

This library must be in your library search path (pointed to by the
environment variable LD_LIBRARY_PATH on UNIX/Solaris systems, Path on
Windows systems, LIBPATH on AIX systems, DYLD_LIBRARY_PATH on Mac
OS systems).

create_function Required Must be “NDDS_Transport_TCPv4_create”.

aliases

Used to register the transport plugin returned by
NDDS_Transport_TCPv4_create() (as specified by
<TCP_prefix>.create_function) to the DomainParticipant. Aliases should be
specified as a comma-separated string, with each comma delimiting an alias.

Default: the transport prefix (see Footnote 1)
36-8

Configuring the TCP Transport
parent.classid

Must be set to one of the following values:

NDDS_TRANSPORT_CLASSID_TCPV4_LAN
for TCP communication within a LAN

NDDS_TRANSPORT_CLASSID_TLSV4_LAN
for TLS communication within a LAN

NDDS_TRANSPORT_CLASSID_TCPV4_WAN
for TCP communication across LANs and firewalls

NDDS_TRANSPORT_CLASSID_TLSV4_WAN
for TLS communication across LAN and firewalls

Default: NDDS_TRANSPORT_CLASSID_TCPV4_LAN

Note: To use either TLS mode, you also need RTI TLS Support which is
available for purchase as a separate package.

parent.gather_send_
buffer_count_max

Specifies the maximum number of buffers that Connext can pass to the send()
function of the transport plugin.

The transport plugin send() API supports a gather-send concept, where the
send() call can take several discontiguous buffers, assemble and send them in
a single message. This enables Connext to send a message from parts obtained
from different sources without first having to copy the parts into a single con-
tiguous buffer.

However, most transports that support a gather-send concept have an upper
limit on the number of buffers that can be gathered and sent. Setting this value
will prevent Connext from trying to gather too many buffers into a send call for
the transport plugin.

Connext requires all transport-plugin implementations to support a gather-
send of least a minimum number of buffers. This minimum number is defined
as NDDS_TRANSPORT_PROPERTY_GATHER_SEND_BUFFER_COUNT_MIN.

Default: 128

parent.message_size_max
The maximum size of a message in bytes that can be sent or received by the
transport plugin.

Default: 9216

parent.allow_interfaces_list

A list of strings, each identifying a range of interface addresses that can be
used by the transport.

Interfaces must be specified as comma-separated strings, with each comma
delimiting an interface.

For example: 10.10.*, 10.15.*

If the list is non-empty, this "white" list is applied before par-
ent.deny_interfaces_list.

Default: All available interfaces are used.

Table 36.1 Properties for NDDS_Transport_TCPv4_Property_t

Property Name
(prefix with

‘dds.transport.TCPv4.tcp1.’)1
Description
36-9

Configuring the TCP Transport
parent.deny_interfaces_list

A list of strings, each identifying a range of interface addresses that will not be
used by the transport.

If the list is non-empty, deny the use of these interfaces.

Interfaces must be specified as comma-separated strings, with each comma
delimiting an interface.

For example: 10.10.*

This "black" list is applied after parent.allow_interfaces_list and filters out the
interfaces that should not be used.

Default: No interfaces are denied

send_socket_buffer_size

Size in bytes of the send buffer of a socket used for sending. On most operating
systems, setsockopt() will be called to set the SENDBUF to the value of this
parameter.

This value must be greater than or equal to parent.message_size_max or -1.

The maximum value is operating system-dependent.

Default: -1 (means that setsockopt() (or equivalent) will not be called to size
the send buffer of the socket)

recv_socket_buffer_size

Size, in bytes, of the receive buffer of a socket used for receiving.

On most operating systems, setsockopt() will be called to set the RECVBUF to
the value of this parameter.

This value must be greater than or equal to parent.message_size_max or -1.
The maximum value is operating-system dependent.

Default: -1 (setsockopt() (or equivalent) will not be called to size the receive
buffer of the socket)

ignore_loopback_interface

Prevents the transport plugin from using the IP loopback interface.

This property is ignored when parent.classid is
NDDS_TRANSPORT_CLASSID_TCPV4_WAN or
NDDS_TRANSPORT_CLASSID_TLSV4_WAN.

Two values are allowed:
0: Enable local traffic via this plugin. The plugin will only use and report the

IP loopback interface only if there are no other network interfaces (NICs)
up on the system.

1: Disable local traffic via this plugin. This means “do not use the IP loopback
interface, even if no NICs are discovered.” This setting is useful when you
want applications running on the same node to use a more efficient plugin
like shared memory instead of the IP loopback.

Default: 1

Table 36.1 Properties for NDDS_Transport_TCPv4_Property_t

Property Name
(prefix with

‘dds.transport.TCPv4.tcp1.’)1
Description
36-10

Configuring the TCP Transport
ignore_nonrunning_interfaces

Prevents the transport plugin from using a network interface that is not
reported as RUNNING by the operating system.

The transport checks the flags reported by the operating system for each net-
work interface upon initialization. An interface which is not reported as UP
will not be used. This property allows the same check to be extended to the
IFF_RUNNING flag implemented by some operating systems. The RUNNING
flag is defined to mean that "all resources are allocated" and may be off if no
link is detected (e.g., the network cable is unplugged).

Two values are allowed:

0: Do not check the RUNNING flag when enumerating interfaces, just make
sure the interface is UP.

1: Check the flag when enumerating interfaces, and ignore those that are not
reported as RUNNING. This can be used on some operating systems to
cause the transport to ignore interfaces that are enabled but not connected
to the network.

Default: 1

transport_priority_mask

Mask for the transport priority field. This is used in conjunction with
transport_priority_mapping_low/transport_priority_mapping_high to
define the mapping from DDS transport priority to the IPv4 TOS field. Defines
a contiguous region of bits in the 32-bit transport priority value that is used to
generate values for the IPv4 TOS field on an outgoing socket.

For example, the value 0x0000ff00 causes bits 9-16 (8 bits) to be used in the
mapping. The value will be scaled from the mask range (0x0000 -0xff00 in this
case) to the range specified by low and high.

If the mask is set to zero, then the transport will not set IPv4 TOS for send
sockets.

Default: 0

transport_priority_mapping_low Sets the low and high values of the output range to IPv4 TOS.

These values are used in conjunction with transport_priority_mask to define
the mapping from DDS transport priority to the IPv4 TOS field. Defines the
low and high values of the output range for scaling.

Note that IPv4 TOS is generally an 8-bit value.

Default transport_priority_mapping_low: 0

Default transport_priority_mapping_high: 0xFF

transport_priority_mapping_high

server_socket_backlog
The backlog parameter determines what is the maximum length of the queue
of pending connections.

Default: 5

Table 36.1 Properties for NDDS_Transport_TCPv4_Property_t

Property Name
(prefix with

‘dds.transport.TCPv4.tcp1.’)1
Description
36-11

Configuring the TCP Transport
public_address

Required for WAN communication (see note below)

Public IP address and port (WAN address and port) (separated with ‘:’) associ-
ated with the transport instantiation.

For example: 10.10.9.10:4567

This field is used only when parent.classid is
NDDS_TRANSPORT_CLASSID_TCPV4_WAN or
NDDS_TRANSPORT_CLASSID_TLSV4_WAN.

The public address and port are necessary to support communication over
WAN that involves Network Address Translators (NATs). Typically, the
address is the public address of the IP router that provides access to the WAN.
The port is the IP router port that is used to reach the private server_bind_port
inside the LAN from the outside. This value is expressed as a string in the
form: ip[:port], where ip represents the IPv4 address and port is the external
port number of the router.

Host names are not allowed in the public_address because they may resolve
to an internet address that is not what you want (i.e., ‘localhost’ may map to
your local IP or to 127.0.0.1).

Note: If you are using an asymmetric configuration, public_address does not
have to be set for the non-public peer.

server_bind_port

Private IP port (inside the LAN) used by the transport to accept TCP connec-
tions.

If this property is set to zero, the transport will disable the internal server
socket, making it impossible for external peers to connect to this node. In this
case, the node is considered unreachable and will communicate only using the
asymmetric mode with other (reachable) peers.

For WAN communication, this port must be forwarded to a public port in the
NAT-enabled router that connects to the outer network.

The server_bind_port cannot be shared among multiple participants on a com-
mon host. On most operating systems, attempting to reuse the same
server_bind_port for multiple participants on a common host will result in a
"port already in use" error. However, Windows systems will not recognize if
the server_bind_port is already in use; therefore care must be taken to properly
configure Windows systems.

Default: 7400

read_buffer_allocation

Allocation settings applied to read buffers.

These settings configure the initial number of buffers, the maximum number
of buffers and the buffers to be allocated when more buffers are needed.

Default:
❏ read_buffer_allocation.initial_count = 2

❏ read_buffer_allocation.max_count = -1 (unlimited)

❏ read_buffer_allocation.incremental_count = -1 (number of buffers will
keep doubling on each allocation until it reaches max_count)

Table 36.1 Properties for NDDS_Transport_TCPv4_Property_t

Property Name
(prefix with

‘dds.transport.TCPv4.tcp1.’)1
Description
36-12

Configuring the TCP Transport
write_buffer_allocation

Allocation settings applied to buffers used for asynchronous (non-blocking)
write.

These settings configure the initial number of buffers, the maximum number
of buffers and the buffers to be allocated when more buffers are needed.

Default:
❏ write_buffer_allocation.initial_count = 4

❏ write_buffer_allocation.max_count = 1000

❏ write_buffer_allocation.incremental_count = 10

Note that for the write buffer pool, the max_count is not set to unlimited. This
is to avoid having a fast writer quickly exhaust all the available system mem-
ory, in case of a temporary network slowdown. When this write buffer pool
reaches the maximum, the low-level send command of the transport will fail;
at that point Connext will take the appropriate action (retry to send or drop it),
according to the application’s QoS (if the transport is used for reliable commu-
nication, the data will still be sent eventually).

control_buffer_allocation

Allocation settings applied to buffers used to serialize and send control mes-
sages.

These settings configure the initial number of buffers, the maximum number
of buffers and the buffers to be allocated when more buffers are needed.

Default:
❏ control_buffer_allocation.initial_count = 2

❏ control_buffer_allocation.max_count = -1 (unlimited)

❏ control_buffer_allocation.incremental_count = -1 (number of buffers
will keep doubling on each allocation until it reaches max_count)

control_message_allocation

Allocation settings applied to control messages.

These settings configure the initial number of messages, the maximum num-
ber of messages and the messages to be allocated when more messages are
needed.

Default:
❏ control_message_allocation.initial_count = 2

❏ control_message_allocation.max_count = -1 (unlimited)

❏ control_message_allocation.incremental_count = -1 (number of mes-
sages will keep doubling on each allocation until it reaches max_count)

control_attribute_allocation

Allocation settings applied to control messages attributes.

These settings configure the initial number of attributes, the maximum num-
ber of attributes and the attributes to be allocated when more attributes are
needed.

Default:
❏ control_attribute_allocation.initial_count = 2

❏ control_attribute_allocation.max_count = -1 (unlimited)

❏ control_attribute_allocation.incremental_count = -1 (number of attri-
butes will keep doubling on each allocation until it reaches max_count)

Table 36.1 Properties for NDDS_Transport_TCPv4_Property_t

Property Name
(prefix with

‘dds.transport.TCPv4.tcp1.’)1
Description
36-13

Configuring the TCP Transport
force_asynchronous_send

Forces asynchronous send. When this parameter is set to 0, the TCP transport
will attempt to send data as soon as the internal send() function is called.
When it is set to 1, the transport will make a copy of the data to send and
enqueue it in an internal send buffer. Data will be sent as soon as the low-level
socket buffer has space.

Normally setting it to 1 delivers better throughput in a fast network, but will
result in a longer time to recover from various TCP error conditions. Setting it
to 0 may cause the low-level send() function to block until the data is physi-
cally delivered to the lower socket buffer. For an application writing data at a
very fast rate, it may cause the caller thread to block if the send socket buffer is
full. This could produce lower throughput in those conditions (the caller
thread could prepare the next packet while waiting for the send socket buffer
to become available).

Default: 0

max_packet_size

The maximum size of a TCP segment.

This parameter is only supported on Linux architectures.

By default, the maximum size of a TCP segment is based on the network MTU
for destinations on a local network, or on a default 576 for destinations on non-
local networks. This behavior can be changed by setting this parameter to a
value between 1 and 65535.

Default: -1 (default behavior)

enable_keep_alive

Configures the sending of KEEP_ALIVE messages in TCP.

Setting this value to 1, causes a KEEP_ALIVE packet to be sent to the remote
peer if a long time passes with no other data sent or received.

This feature is implemented only on architectures that provide a low-level
implementation of the TCP keep-alive feature.

On Windows systems, the TCP keep-alive feature can be globally enabled
through the system’s registry: \HKEY_LOCAL_MACHINE\SYSTEM\
CurrentControlSet\Tcpip\Parameters.

Refer to MSDN documentation for more details.

On Solaris systems, most of the TCP keep-alive parameters can be changed
though the kernel properties.

Default: 0

keep_alive_time

Specifies the interval of inactivity in seconds that causes TCP to generate a
KEEP_ALIVE message.

This parameter is only supported on Linux architectures.

Default: -1 (OS default value)

keep_alive_interval

Specifies the interval in seconds between KEEP_ALIVE retries.

This parameter is only supported on Linux architectures.

Default: -1 (OS default value)

keep_alive_retry_count

The maximum number of KEEP_ALIVE retries before dropping the connec-
tion.

This parameter is only supported on Linux architectures.

Default: -1 (OS default value)

Table 36.1 Properties for NDDS_Transport_TCPv4_Property_t

Property Name
(prefix with

‘dds.transport.TCPv4.tcp1.’)1
Description
36-14

Configuring the TCP Transport
disable_nagle

Disables the TCP nagle algorithm.

When this property is set to 1, TCP segments are always sent as soon as possi-
ble, which may result in poor network utilization.

Default: 0

logging_verbosity_bitmap

Bitmap that specifies the verbosity of log messages from the transport.

Logging values:
❏ -1 (0xffffffff): do not change the current verbosity
❏ 0x00: silence
❏ 0x01: errors
❏ 0x02: warnings
❏ 0x04: local
❏ 0x08: remote
❏ 0x10: period
❏ 0x80: other (used for control protocol tracing)
❏ 0x9F: all (errors, warnings, local, remote, period, and other)

You can combine these values by logically ORing them together.

Default: -1

Note: the logging verbosity is a global property shared across multiple
instances of the TCP transport. If you create a new TCP Transport instance with
logging_verbosity_bitmap different than -1, the change will affect all the other
instances as well.

The default TCP transport verbosity is errors and warnings.

Note: The option of 0x80 (other) is used only for tracing the internal control
protocol. Since the output is very verbose, this feature is enabled only in the
debug version of the TCP Transport library
(libnddstransporttcpd.so / LIBNDDSTRANSPORTD.LIB).

outstanding_connection_cookies

Maximum number of outstanding connection cookies allowed by the transport
when acting as server.

A connection cookie is a token provided by a server to a client; it is used to
establish a data connection. Until the data connection is established, the cookie
cannot be reused by the server.

To avoid wasting memory, it is good practice to set a cap to the maximum
number of connection cookies (pending connections).

When the maximum value is reached, a client will not be able to connect to the
server until new cookies become available.

Range: 1 or higher, or -1 (which means an unlimited number).

Default: 100

outstanding_connection_
cookies_life_span

Maximum lifespan (in seconds) of the cookies associated with pending con-
nections.

If a client does not connect to the server before the lifespan of its cookie
expires, it will have to request a new cookie.

Range: 1 second or higher, or -1

Default: -1, which means an unlimited amount of time (effectively disabling
the feature).

Table 36.1 Properties for NDDS_Transport_TCPv4_Property_t

Property Name
(prefix with

‘dds.transport.TCPv4.tcp1.’)1
Description
36-15

Configuring the TCP Transport
send_max_wait_sec

Controls the maximum time (in seconds) the low-level sendto() function is
allowed to block the caller thread when the TCP send buffer becomes full.

If the bandwidth used by the transport is limited, and the sender thread tries
to push data faster than the OS can handle, the low-level sendto() function will
block the caller until there is some room available in the queue. Limiting this
delay eliminates the possibility of deadlock and increases the response time of
the internal DDS thread.

This property affects both CONTROL and DATA streams. It only affects SYN-
CHRONOUS send operations. Asynchronous sends never block a send opera-
tion.

For synchronous send() calls, this property limits the time the DDS sender
thread can block for a full send buffer. If it is set too large, Connext not only
won't be able to send more data, it also won't be able to receive any more data
because of an internal resource mutex.

Setting this property to 0 causes the low-level function to report an immediate
failure if the TCP send buffer is full.

Setting this property to -1 causes the low-level function to block forever until
space becomes available in the TCP buffer.

Default: 3 seconds.

socket_monitoring_kind

Configures the socket monitoring API used by the transport. This property can
have the following values:
• SELECT: The transport uses the POSIX select API to monitor sockets.

• WINDOWS_IOCP: The transport uses Windows I/O completion ports to
monitor sockets. This value only applies to Windows systems.

• WINDOWS_WAITFORMULTIPLEOBJECTS: The transport uses the API
WaitForMultipleObjects to monitor sockets. This value only applies to
Windows systems.

Default: SELECT

Note: The value selected for this property may affect transport performance
and scalability. On Windows systems, using WINDOWS_IOCP provides the
best performance and scalability.

windows_iocp

Configures I/O completion ports when socket_monitoring_kind is set to
WINDOWS_IOCP.

This setting configures the number of threads the plugin creates to process I/O
completion packets (thread_pool_size) and the number of those threads that
the operating system can allow to concurrently run (concurrency_value).

Defaults:
• windows_iocp.thread_pool_size: 2

• windows_iocp.concurrency_value: 1

tls.verify.ca_file

A string that specifies the name of file containing Certificate Authority certifi-
cates. File should be in PEM format. See the OpenSSL manual page for
SSL_load_verify_locations for more information.

To enable TLS, ca_file or ca_path is required; both may be specified (at least
one is required).

Table 36.1 Properties for NDDS_Transport_TCPv4_Property_t

Property Name
(prefix with

‘dds.transport.TCPv4.tcp1.’)1
Description
36-16

Configuring the TCP Transport
tls.verify.ca_path

A string that specifies paths to directories containing Certificate Authority cer-
tificates. Files should be in PEM format and follow the OpenSSL-required
naming conventions. See the OpenSSL manual page for
SSL_CTX_load_verify_locations for more information.

To enable TLS, ca_file or ca_path is required; both may be specified (at least
one is required).

tls.verify.verify_depth Maximum certificate chain length for verification.

tls.verify.crl_file
Name of the file containing the Certificate Revocation List.

File should be in PEM format.

tls.identity.certificate_chain

String containing an identifying certificate (in PEM format) or certificate chain
(appending intermediate CA certs in order).

An identifying certificate is required for secure communication. The string
must be sorted starting with the certificate to the highest level (root CA). If this
is specified, certificate_chain_file must be empty.

tls.identity.certificate_chain_file

File containing identifying certificate (in PEM format) or certificate chain
(appending intermediate CA certs in order).

An identifying certificate is required for secure communication. The file
must be sorted starting with the certificate to the highest level (root CA). If this
is specified, certificate_chain must be empty.

Optionally, a private key may be appended to this file. If no private key option
is specified, this file will be used to load a private key.

tls.identity.private_key_password A string that specifies the password for private key.

tls.identity.private_key

String containing private key (in PEM format).

At most one of private_key and private_key_file may be specified. If no pri-
vate key is specified (all values are NULL), the private key will be read from
the certificate chain file.

tls.identity.private_key_file

File containing private key (in PEM format).

At most one of private_key and private_key_file may be specified. If no pri-
vate key is specified (all values are NULL), the private key will be read from
the certificate chain file.

tls.identity.rsa_private_key

String containing additional RSA private key (in PEM format).
For use if both an RSA and non-RSA key are required for the selected cipher.
At most one of rsa_private_key and rsa_private_key_file may be specified.
At most one of rsa_private_key and rsa_private_key_file may be specified.

tls.identity.rsa_private_key_file

File containing additional RSA private key (in PEM format).
For use if both an RSA and non-RSA key are required for the selected cipher.
At most one of rsa_private_key and rsa_private_key_file may be specified.
At most one of rsa_private_key and rsa_private_key_file may be specified.

tls.cipher.cipher_list
List of available (D)TLS ciphers. See the OpenSSL manual page for
SSL_set_cipher_list for more information on the format of this string.

tls.cipher.dh_param_files List of available Diffie-Hellman (DH) key files.

tls.cipher.engine_id ID of OpenSSL cipher engine to request.

1. Assuming you used ‘dds.transport.TCPv4.tcp1’ as the alias to load the plugin. If not, change the prefix to match the string
used with dds.transport.load_plugins. This prefix must begin with 'dds.transport.'

Table 36.1 Properties for NDDS_Transport_TCPv4_Property_t

Property Name
(prefix with

‘dds.transport.TCPv4.tcp1.’)1
Description
36-17

Index

Symbols
@copy rtiddsgen directive 3-55
@key rtiddsgen directive 3-54
@resolve-name rtiddsgen directive 3-56
@top-level rtiddsgen directive 3-58
$NDDSHOME 3-77

A
absolute_generation_rank (DDS_SampleInfo) 7-50, 7-53
accept_unknown_peers 8-31, 8-33, 14-8
access control 16-10
access_scope (Presentation QoS) 6-70 to 6-71
ACKNACK messages 6-15, 6-35, 10-2 to 10-3, 10-19
acknowledgment_kind (Reliability QoS) 6-123
acknowledgments 6-15, 6-35
ALIVE instance state 7-51
allocation of memory 7-59

DataReaders 7-63
API message category 21-3
app ID 8-56
app_ack_period (DDS_RtpsReliableReaderProtocol_t) 7-57
application acknowledgment 6-35
architectures supported i-xix
as_Entity() 6-15, 7-16
assert_liveliness() 6-55, 6-110, 8-23
asynchronous data 7-2
autodispose_unregistered_instances (WriterDataLifeCycle

QoS) 6-136
automatic participant ID 8-55
autoregister_instances (DataWriterResouceLimits QoS) 6-

92

B
batching small samples 6-56, 6-78
begin_coherent_changes() 6-34, 6-70
BEST_EFFORT (Reliable QoS) 6-123
best-effort delivery 10-1
blocking threads 6-92
blocking time 10-7
building applications 9-1 to 9-3
builtin data types

definition 3-5
See also data types.
See also user data types.

built-in Subscriber 16-2, 16-9
QoS 16-8

built-in topics 16-1
built-in transports 8-51
builtin_discovery_plugins (DiscoveryConfig QoS) 8-36
BuiltinTopicReaderResourceLimits 8-38
bundling messages 10-4

C
categories of messages 21-3
channel guard filter 18-3
cleanup_period 8-29
clear() 6-13, 7-13
client-server model 1-3
clock selection 8-60
coalescing samples 6-80
coherent sets 6-34
coherent_access (Presentation QoS) 6-69 to 6-70
collaborative DataWriters 6-75, 11-1
Collaborative DatawWiters

defined 30-2
command-line options for rtiddsgen 3-79

COMMUNICATION message category 21-3
communications models 1-2

client-server 1-3
data-centric 2-1
DCPS 2-1, 2-8
object-centric 2-2
point-to-point 1-3
publish-subscribe 1-3, 2-5

compatibility between QoS 6-47, 7-36
compile (ContentFilteredTopic function) 5-30
compiling applications 9-1
concurrent threads 6-92
Conditions 4-27

example code 4-32
conserving CPU and bandwidth 10-17
contains_entity() 8-24
content filter 5-28

syntax for 5-19
ContentFilteredTopics 6-92

compile function 5-30
creating 5-13
custom filters 5-19, 5-27
deleting 5-16
evaluate function 5-31
filter syntax 5-19
finalize function 5-32
introduction 5-11
setting filter expressions 5-17
writer_attach function 5-32
writer_detach 5-32

controlling queue depth 10-13
copy_from_topic_qos() 6-12, 6-52, 7-13, 7-39
copy() 6-13, 7-13
CPU core affinity 19-5
CPU usage 10-17
create_datawriter() 6-30
create_publisher() 6-5
create_topic() 5-3

D
data samples. See samples.
data types 2-3

supported 3-3, 3-5
DATA_AVAILABLE status 4-15, 7-17, 7-25
DATA_ON_READERS status 4-15, 7-16 to 7-17
DATA_READER_CACHE status 7-26
DATA_READER_PROTOCOL status 7-26
DATA_WRITER_CACHE status 6-23
DATA_WRITER_PROTOCOL status 6-23
database cleanup thread 19-1
DATABASE message category 21-3
Database QoS 8-28
data-centric communications 2-1
DataReaderProtocol QoS 7-54
DataReaderResouceLimits QoS 10-11
DataReaderResourceLimits QoS 7-59
DataReaders

checking status for 7-23
copying QoS for 7-39
copying Topic QoS 7-12
creating/deleting 7-20
finding matching writers 7-39
Listeners for 7-22
memory allocation 7-63
operations on 7-18
QoS for 7-34
status for 7-25

DataWriterProtocol QoS 6-83, 10-13
DataWriterResourceLimits QoS 6-92
DataWriters

copying Topic QoS 6-12, 6-52, 7-12
creating/deleting 6-19
definition 6-2, 7-3
finding matching readers 6-53
Listener’s relationship to Publishers’ 6-13
1

Listeners for 6-21
operations on 6-16
ordering samples from multiple 6-96
preventing starvation 7-63
QoS for 6-44, 6-73
resource limits for 6-92
samples per 7-62
saving samples for later use 6-98
status for 6-15, 6-22
writing data 6-31

DCPS 2-1, 2-8
DCPSParticipant 16-1
DCPSPublication 16-1
DCPSSubscription 16-1
DDS_BuiltinTopicReaderResourceLimits_t 8-38
DDS_DATAREADER_QOS_DEFAULT 7-20
DDS_DATAREADER_QOS_USE_TOPIC 7-39
DDS_DataReaderQos structure 7-34
DDS_DATAWRITER_QOS_USE_TOPIC_QOS 6-52
DDS_ParticipantBuiltinTopicData 16-2
DDS_ReliableWriterCacheEventCount 6-29
DDS_RtpsReliableReaderProtocol_t 7-56
DDS_RtpsReliableWriterProtocol_t 6-84
DDS_SubscriberQos structure 7-8
DDS_TransportMulticastSetting_t 7-68
deadline

status for missing 6-27, 7-30
Deadline QoS 6-94

interaction with TimeBasedFilter QoS 7-66
debugging error messages 14-21, 21-2 to 21-3
default_domain_announcement_period (DiscoveryConfig

QoS) 8-37
delegated reliability 30-2
delete_contained_entities() 6-7, 7-8, 7-22, 8-13
depth (History QoS) 6-105
depth of queues 10-13
destination timestamp 6-97
DestinationOrder QoS 6-96
direct_communication 12-14
direct_communication (Durability QoS) 6-100
disable_fragmentation_support(DataReaderResourceLimits

QoS) 7-59
disable_positive_acks (DataReaderProtocol QoS) 7-55
disable_positive_acks (DataWriterProtocol QoS) 6-84
disable_positive_acks_decrease_sample_keep_duration_fac

tor (RtpsReliableWriterProtocol_t) 6-86
disable_positive_acks_enable_adaptive_sample_keep_dura

tion (RtpsReliableWriterProtocol_t) 6-86
disable_positive_acks_increase_sample_keep_duration_fact

or (RtpsReliableWriterProtocol_t) 6-86
disable_positive_acks_max_sample_keep_duration

(RtpsReliableWriterProtocol_t) 6-86
disable_positive_acks_min_sample_keep_duration

(RtpsReliableWriterProtocol_t) 6-86
Discovery

accessing Topics 8-23
finding remote DomainParticipants 8-23

discovery
debugging 14-21
definition 14-1
endpoint phase 14-2
endpoint readers/writers 14-15
entities used 14-8
late-joiners 10-19
participant phase 14-2
ports used 8-56
refresh mechanism 14-10
related QoS 14-20
summary diagram 14-20

Discovery QoS 8-31
DiscoveryConfig QoS 8-34
dispose vs. unregister 6-136
dispose() 6-44, 6-136

vs. unregister_instance() 6-43
disposed_generation_count (DDS_SampleInfo) 7-50, 7-52
domain ID 8-13, 8-55

domain_id_gain 14-25
DomainParticipantFactory

example code 8-3
operations on 8-3, 15-3
purpose of 8-3
QoS for 8-5 to 8-6

DomainParticipantResourceLimits QoS 8-42
DomainParticipants

accessing discovered 8-23
creating 8-11
definition 8-1, 8-7
deleting 8-13
discovery of 8-38
domain IDs 8-13, 8-55
example code 6-6, 6-48, 7-37, 8-12, 8-15, 8-18
Listener of last resort 6-14, 7-15
Listeners for 8-14
operations on 8-7
QoS for 8-16

domains
definition 2-7, 8-1
multiple 2-8, 8-1
vs. partitions 6-64

dropped samples status 7-31
Durability QoS 6-98, 6-101, 10-19, 13-4
durable subscriptions 6-40 to 6-41, 6-76

in Persistence Service 27-11, 27-18
durable writer history 12-5, 13-5
dynamic memory 8-47
dynamically_allocate_fragmented_samples(DataReaderRes

ourceLimits QoS) 7-60

E
enable() 4-3
enabled_transports 6-130, 8-31
enabling entities 6-58

recursiveness 4-3
end_coherent_changes() 6-34, 6-70
endpoint discovery 14-2
ENTITIES message category 21-3
EntityFactory QoS 4-3, 6-58
entityID 14-2
environment variables

NDDS_DISCOVERY_PEERS 14-3
NDDSHOME i-xix

error messages 14-21, 21-2
format of 21-3

ERROR verbosity 21-3
evaluate 5-31
Event QoS 8-48
event thread 19-1 to 19-2
ExclusiveArea QoS 6-56, 6-60, 6-119

when to change 6-60
expects_inline_qos (DataReaderProtocol QoS) 7-55
expression parameters 5-17
external clock 8-60

F
factory class 4-2
fast_heartbeat_period (RtpsReliableWriterProtocol_t) 6-85
filter expression syntax 5-19
filter expressions 5-11, 5-17
finalize 5-32
finalize_instance() 8-6
finalizeX() 3-37
find_topic() 8-21
FlowControllers

creating and deleting 6-146
external trigger 6-148

flushing batched samples 6-34, 6-56, 6-79 to 6-80
FooDataReader

definition 7-41
operations on 7-18 to 7-19

FooDataWriter
2

definition 6-31
operations on 6-16

FooSeq 7-48
framing Heartbeat 10-25

G
generating code

See rtiddsgen.
generation_rank (DDS_SampleInfo) 7-50, 7-52 to 7-53
get_builtin_subscriber() 16-2
get_c_version() 21-2
get_core_api_version() 21-2
get_cpp_api_version() 21-2
get_datareader_cache_status() 7-23
get_datareader_protocol_status() 7-23
get_datareaders() 7-15
get_datawriter_cache_status() 6-22
get_datawriter_protocol_status() 6-22
get_deadline_missed_status() 6-27
get_default_datawriter_qos() 6-12, 7-13
get_discovered_participant_data() 8-23
get_discovered_participants() 8-23
get_discovered_topic_data() 8-23
get_discovered_topics() 8-23
get_domain_id() 8-14
get_instance_handle() 4-5, 8-24
get_key_value() 6-44, 7-40
get_listener() 4-5
get_liveliness_changed_status() 7-23, 7-29
get_liveliness_lost_status() 6-22, 6-27
get_matched_publication_data() 7-39
get_matched_publication_datareader_protocol_status() 7-

23
get_matched_publications() 7-39
get_matched_subscription_data() 6-53
get_matched_subscription_datawriter_protocol_status_by_

locator() 6-22
get_matched_subscription_datawriter_protocol_status() 6-

22
get_matched_subscription_locators() 6-53
get_matched_subscriptions() 6-53
get_offered_deadline_missed_status() 6-22
get_offered_incompatible_qos_status() 6-22, 6-28
get_output_device() 21-4
get_output_file() 21-4
get_participant() 6-15, 7-16
get_publication_match_status() 6-22
get_qos() 4-6, 6-47
get_reliable_reader_activity_changed_status() 6-22
get_reliable_writer_cache_changed_status() 6-22
get_requested_deadline_missed_status() 7-23, 7-30
get_requested_incompatible_qos_status() 7-23, 7-30
get_sample_lost_status() 7-23, 7-32
get_sample_rejected_status() 7-23, 7-33
get_status_changes() 4-5, 4-14 to 4-15, 6-22, 7-23
get_statuscondition() 4-36, 7-23
get_subscription_match_status() 7-23, 7-33
get_trigger_value() 4-27
get_verbosity() 21-4
getting data 7-2 to 7-3, 7-22, 7-25, 7-42, 7-48
GroupData QoS 6-62
GUID (Globally Unique ID) 6-115, 8-56, 14-2

H
hash table 3-54, 6-84, 6-126, 8-43, 8-46
HB messages. See heartbeats.
heartbeat_period 10-13

diagram 10-15
heartbeat_period (RtpsReliableWriterProtocol_t) 6-85, 6-87
heartbeat_suppression_duration

(DDS_RtpsReliableReaderProtocol_t) 7-56
heartbeats 10-3

controlling 10-13
how many resent 10-16

how often 10-13
response delays 7-56
types of 10-25

heartbeats_per_max_samples 10-14
diagram 10-16

heartbeats_per_max_samples
(RtpsReliableWriterProtocol_t) 6-85

high_watermark (RtpsReliableWriterProtocol_t) 6-84
historical data 6-99, 7-24, 10-19
HISTORY QoS 10-13
History QoS 6-104

depth 10-13
effect of ResourceLimits QoS 6-105

history_depth (DurabilityService QoS) 6-102
history_kind (DurabilityService QoS) 6-102
host ID 8-56

I
IDL 2-3, 3-35

including other files 3-53
supported types 3-39, 3-43, 3-46
unsupported types 3-36

ignore_default_domain_ announcements (DiscoveryConfig
QoS) 8-37

ignore_participant() 16-10
ignore_publication() 7-39, 16-10
ignore_publisher() 6-63, 6-135
ignore_subscription() 6-54, 16-10
ignore_topic() 8-23, 16-10
implicit Publishers 6-5, 7-6
inactivate_nonprogressing_readers

(RtpsReliableWriterProtocol_t) 6-85
incompatible QoS

status for 6-27
info units 7-59
inheriting QoS profiles 17-16
initial and maximum values in QoS 7-62 to 7-63
initial peers list 14-3
initial_batches (DataWriterResouceLimits QoS) 6-92
initial_concurrent_blocking_threads

(DataWriterResourceLimits QoS) 6-92
initial_fragmented_samples(DataReaderResourceLimits

QoS) 7-60
initial_infos (DataReaderResourceLimits QoS) 7-59
initial_instances (ResourceLimits QoS) 6-126
initial_outstanding_reads (DataReaderResourceLimits

QoS) 7-59
initial_participant_announcements (DiscoveryConfig

QoS) 8-35
initial_peers 8-31

adding to 8-32
initial_records 8-29
initial_remote_virtual_writers (DataReaderResourceLimits

QoS) 7-61
initial_remote_virtual_writers_per_instance(DataReaderRe

sourceLimits QoS) 7-61
initial_remote_writers (DataReaderResourceLimits QoS) 7-

59
initial_remote_writers_per_instance

(DataReaderResourceLimits QoS) 7-59
initial_samples (ResourceLimits QoS) 6-126
initial_virtual_writers (DataWriterResouceLimits QoS) 6-

92
initial_weak_references 8-29
instance handle 4-5
instance ID 8-56
instance state 7-51

interaction with Ownership QoS 7-51
instance states 6-44
instance_handle (DDS_SampleInfo) 7-49
instance_hash_buckets (ResourceLimits QoS) 6-126
instance_replacement (DataWriterResouceLimits QoS) 6-92
instance_state (DDS_SampleInfo) 7-49
instances

registration 6-42
3

registration example 6-43
Interface Description Language. See IDL
internal clock 8-60
inter-participant reader/writer 14-14

K
keep duration 6-88, 10-19
key hash 3-54, 6-84, 6-126, 8-43, 8-46
keys

definition 6-42
getting value of 6-44
in IDL file 3-54
managing data instances 6-41
registering instances 6-42
rtiddsgen 3-54

L
last_reason (SAMPLE_REJECTED status) 7-32
late_joiner_heartbeat_period

(RtpsReliableWriterProtocol_t) 6-85
late-joiners 10-19, 13-4

discovery of 14-19
latency 7-58
layer 2 switches 18-4
lease_duration (Liveliness QoS) 6-109
LENGTH_UNLIMITED 8-29
Listeners

basic steps 7-2
creating and deleting 4-22
definition 6-13
example code 6-14, 7-15, 7-24, 8-15
for DataReaders 7-22
for DataWriters 6-21
for DomainParticipants 8-14
for Publishers 6-13
for Topics 5-8
last resort 6-14, 7-15, 8-14
operations allowed in 4-24
precedence of 6-14, 6-21, 7-15
purpose of 4-14
relationship of PublisherListener and

DataWriterListener 6-13
removing 8-14

listening for data 7-2
liveliness assertion during write() 6-33
LIVELINESS_CHANGED status 6-30, 7-26
LIVELINESS_LOST status 6-27
locators (TransportUnicast QoS) 6-131
logged error messages 21-3
logging devices 21-7
long double 3-51 to 3-52
lookup_datareader() 6-15, 7-16, 16-2, 16-9
lookup_instance() 6-44, 7-40
lookup_participant() 8-6
lookup_topicdescription() 8-21 to 8-22
lost samples 7-31
low_watermark (RtpsReliableWriterProtocol_t) 6-84
low-bandwidth connections 7-67

M
matching writers and readers 6-28, 6-53, 7-29, 7-39, 14-2 to

14-3
status for 7-33

max_batches (DataWriterResouceLimits QoS) 6-92
max_blocking_time (Reliability QoS) 6-94, 6-123, 10-7
max_bytes_per_nack_response

(RtpsReliableWriterProtocol_t) 6-86, 10-16
max_concurrent_blocking_threads

(DataWriterResourceLimits QoS) 6-92
max_data_bytes (Batch QoS) 6-78
max_flush_delay (Batch QoS) 6-78
max_fragmented_samples_per_remote_writer(DataReader

ResourceLimits QoS) 7-60

max_fragmented_samples(DataReaderResourceLimits
QoS) 7-60

max_fragments_per_sample(DataReaderResourceLimits
QoS) 7-60

max_heartbeat_response_delay
(RtpsReliableReaderProtocol_t) 7-56

max_heartbeat_response_delay(DDS_RtpsReliableReaderP
rotocol_t) 7-56

max_heartbeat_retries (RtpsReliableWriterProtocol_t) 6-85,
10-16

max_infos (DataReaderResourceLimits QoS) 7-59
max_instances (DurabilityService QoS) 6-102
max_instances (ResourceLimits QoS) 6-126, 7-63
max_liveliness_loss_detection_period (DiscoveryConfig

QoS) 8-35
max_nack_response_delay (DataWriterProtocol QoS) 10-17
max_nack_response_delay

(RtpsReliableWriterProtocol_t) 6-85
max_outstanding_reads (DataReaderResourceLimits

QoS) 7-59
max_query_condition_filters (DataReaderResourceLimits

QoS) 7-61
max_remote_reader_filters (DataWriterResouceLimits

QoS) 6-92
max_remote_virtual_writers DataReaderResourceLimits

QoS) 7-61
max_remote_virtual_writers_per_instance(DataReaderReso

urceLimits QoS) 7-61
max_remote_writers (DataReaderResourceLimits QoS) 7-

59
max_remote_writers_ per_sample

(DataReaderResourceLimits QoS) 7-61
max_remote_writers_per_instance

(DataReaderResourceLimits QoS) 7-59, 7-62
max_samples (Batch QoS) 6-78
max_samples (DurabilityService QoS) 6-102
max_samples (ResourceLimits QoS) 6-29, 6-126
max_samples_per_instance (DurabilityService QoS) 6-102
max_samples_per_instance (ResourceLimits QoS) 6-126,

10-13
max_samples_per_read(DataReaderResourceLimits

QoS) 7-59
max_samples_per_remote_writer 10-11
max_samples_per_remote_writer

(DataReaderResourceLimits QoS) 7-59, 7-62 to 7-63
max_send_window_size (RtpsReliableWriterProtocol_t) 6-

86
max_skiplist_level 8-29
max_total_instances (DataReaderResourceLimits QoS) 7-

60, 7-62 to 7-63
max_virtual_writers (DataWriterResouceLimits QoS) 6-93
max_weak_references 8-29
maximizing throughput 7-58
memory

allocation 3-37, 7-59, 7-63, 8-47
clearing 6-13, 7-13
copying 7-13
returning 8-6

message bundling 10-4
message storms 10-19
meta data

ports for 14-25
meta-traffic 8-31

definition 19-4
metatraffic_transport_priority 8-31, 8-33
min_heartbeat_response_delay

(RtpsReliableReaderProtocol_t) 7-56
min_nack_response_delay

(RtpsReliableWriterProtocol_t) 6-85
min_send_window_size (RtpsReliableWriterProtocol_t) 6-

86
minimizing latency 7-58
minimum_separation

reasons for changing 7-67
minimum_separation (TimeBasedFilter QoS) 7-66 to 7-67
missed deadline status 6-27, 7-30
4

missing samples status 7-31
module (IDL type) 3-42, 3-45, 3-51
monotonic clock 8-60
multicast

addresses 7-68, 8-32
example code 7-69
locators 7-68
ports 7-68
ports used 14-25
TransportMulticast QoS 7-67

multicast_receive_addresses 8-31 to 8-32

N
nack_period (DDS_RtpsReliableReaderProtocol_t) 7-56
nack_suppression_duration

(RtpsReliableWriterProtocol_t) 6-85
NACKs

non-progressing 10-17
namespace (rtiddsgen option) 3-81
NDDS_Config_LibraryVersion_t structure 21-2
NDDS_DISCOVERY_PEERS 14-3
NDDSConfigLogger class 21-3

operations on 21-3
NDDSConfigVersion class 21-1
NDDSHOME i-xix
NEW view state 7-51
new_remote_participant_announcement_period

(DiscoveryConfig QoS) 8-35
no_writers_generation_count (DDS_SampleInfo) 7-50, 7-52
non-progressing NACK 10-17
NOT_ALIVE_DISPOSED instance state 7-51
NOT_ALIVE_NO_WRITERS instance state 6-44, 7-51
NOT_NEW view state 7-51
NOT_READ sample state 7-50
notification of new data 7-22

O
object-centric communications 2-2
offered QoS 6-47
OFFERED_DEADLINE_MISSED status 6-27
OFFERED_INCOMPATIBLE_QOS status 6-27
on_data_available() 7-22, 7-26
on_data_on_readers() 7-17
on_instance_replaced() 6-21
on_liveliness_changed() 7-22, 7-26
on_liveliness_lost() 6-21, 6-27
on_offered_deadline_missed() 6-21, 6-27

example 6-14
on_offered_incompatible_qos() 6-21, 6-28
on_publication_matched() 6-22
on_reliable_reader_activity_changed() 6-22
on_reliable_writer_cache_changed() 6-22
on_requested_deadline_missed() 7-22, 7-30
on_requested_incompatible_qos() 7-22, 7-30
on_sample_lost() 7-23, 7-32
on_sample_rejected() 7-23, 7-33
on_subscription_matched() 7-23, 7-33
order of samples 6-97
ordered_access (Presentation QoS) 6-70

effect of 6-71
original_publication_virtual_guid (DDS_SampleInfo) 7-50
original_publication_virtual_sequence_number

(DDS_SampleInfo) 7-50
ownership of data 7-42

effect of unregistering 6-43
Ownership QoS

effect of sharing 7-63
effect on instance state 7-51
preventing starvation 7-63

OwnershipStrength QoS 6-117

P
packet loss 10-10
participant DATA messages 14-2, 14-8, 14-10

participant ID 8-55
participant_assert_liveliness_period 14-9
participant_id (WireProtocol QoS) 8-55
participant_id_gain 14-25
participant_liveliness_assert_period 14-8
participant_liveliness_assert_period (DiscoveryConfig

QoS) 8-35
participant_liveliness_assert_period (DisocveryConfig

QoS) 8-38, 8-41
participant_liveliness_lease_duration (DiscoveryConfig

QoS) 8-35
participant_liveliness_lease_duration_period

(DiscoveryConfig QoS) 14-8
participant_message_reader (DiscoveryConfig QoS) 8-37
participant_message_writer (DiscoveryConfig QoS) 8-37
ParticipantBuiltinTopicData 16-10
Partition QoS 6-64

example 6-67
example of changing 6-67
impact on memory 6-69

partitions
definition 6-64
rules for matching names 6-66
vs. domains 6-64
wildcards 6-66

peers list 14-2 to 14-3
adding to 8-32

peer-to-peer communication 12-14
performance

improving with registration 6-42
period (Deadline QoS) 6-95
Persistence Service sample log 30-5
piggyback heartbeats 10-14
plain communication status 4-15, 7-17
PLATFORM message category 21-3
platforms supported i-xix
plugin_data 6-133
pointer (IDL type) 3-40, 3-47
point-to-point communication 1-3
polling for data 7-2 to 7-3
port numbers 8-55
ports 8-56, 14-25
preprocessor directives 3-53, 3-82
Presentation QoS 6-69
preventing starvation 7-63
prioritized samples 6-142
promiscuous mode 7-70
propagate_dispose_of_unregistered_instances

(DataReaderProtocol QoS) 7-56
Property QoS 6-117, 8-25
PRSTDataReader 12-13, 27-1, 27-12
PRSTDataWriter 12-13, 27-1, 27-12
publication DATA messages 14-2
publication_handle (DDS_SampleInfo) 7-49
PUBLICATION_MATCHED status 6-28
publication_reader_ resource_limits 8-35
publication_squence_number (DDS_SampleInfo) 7-50
publication_writer (DiscoveryConfig QoS) 8-36
publication_writer_data_lifecycle (DiscoveryConfig

QoS) 8-36
publication_writer_publish_mode (DiscoveryConfig

QoS) 8-37
publications 2-6

definition 2-6
Publishers

creating 6-5
definition 2-6, 6-2
deleting 6-7, 8-13
example Listener 6-14
implicit 6-5, 7-6
Listener’s relationship to DataWriters’ Listener 6-13
Listeners for 6-13
operations on 5-16, 6-4, 6-139
QoS for 6-8, 6-56
setting QoS for 6-7

publish-subscribe communications 1-3, 2-5
5

pulled samples 6-23
push_on_write (DataWriterProtocol QoS) 6-84

when to change 6-91
pushed samples 6-23

Q
QoS

compatibility 6-27, 6-47, 7-36
Database 8-28
DataReaderProtocol 7-54
DataReaderResourceLimits 7-59
DataReaders 7-34
DataWriterProtocol 6-83, 10-13
DataWriterResourceLimits 6-92
Deadline 6-94
DestinationOrder 6-96
Discovery 8-31
DiscoveryConfig 8-34
DomainParticipantResourceLimits 8-42
Durability 6-98, 6-101, 10-19
EntityFactory 6-58
Event 8-48
ExclusiveArea 6-56, 6-60, 6-119
for built-in Subscribers and DataReaders 16-8
for DataWriters 6-44, 6-73
for DomainParticipantFactory 8-5 to 8-6
for DomainParticipants 8-16
for Publishers 6-56
for Topics 5-8
GroupData 6-62
History 6-104, 10-13
how to set 4-6
offered 6-47
OwnershipStrength 6-117
Partition 6-64
Property 6-117, 8-25
Publishers 6-7
ReceiverPool 8-50
Reliability 6-121
requested 6-47
ResourceLimits 6-125
rules for setting 4-7
Subscribers 7-8, 7-53
summary table 4-10
TimeBasedFilter 7-65
TransportBuiltin 8-51
TransportMulticast 7-67
TransportPriority 6-128
TransportSelection 6-129
TransportUnicast 6-130
UserData 6-134
using defaults 7-20
using Topic’s 7-39
WireProtocol 8-54

QoS. See Also individual QoS policy names.
Quality of Service. See QoS
queue depths 10-13

R
read communication status 4-15, 7-17, 7-25
READ sample state 7-50
read_instance() 7-40, 7-45 to 7-47
read_next_instance() 7-45
read_next_sample() 7-44
read() vs. take() 7-42
reading data 7-42
real-time applications

features of 2-2
realtime clock 8-60
receive queue 10-2

example 10-12
size 6-126, 10-7, 10-9, 10-11, 10-13

receive thread 8-50, 19-1, 19-3
receive_address (DDS_TransportMulticastSetting_t) 7-68

receive_port (DDS_TransportMulticastSetting_t) 7-68
receive_port (TransportUnicast QoS) 6-131
receive_window_size

(DDS_RtpsReliableReaderProtocol_t) 7-56
ReceiverPool QoS 8-50
receiving data 7-22, 7-25, 7-42, 7-48

basic steps 7-2 to 7-3
reception_timestamp (DDS_SampleInfo) 7-50
refilter (History QoS) 6-105
register_instance() 6-42, 6-44
rejected samples 7-31 to 7-32
relay communication 12-14
Reliability QoS 6-121

effect on bandwidth 6-125
reliable delivery 6-121, 10-1 to 10-2

blocking time 10-7
definition 10-2
diagram 10-5
strict 10-13
tuning 10-6

RELIABLE_READER_ACTIVITY_CHANGED status 6-30
RELIABLE_WRITER_CACHE_CHANGED status 6-29
remote_participant_purge_kind (DiscoveryConfig QoS) 8-

35
repair packages 10-16
replace_empty_instances (DataWriterResouceLimits

QoS) 6-92
requested QoS 6-47
REQUESTED_DEADLINE_MISSED status 7-30
REQUESTED_INCOMPATIBLE_QOS status 7-30
required subscriptions 6-40 to 6-41
resource configuration 7-59
resource limits 7-59
ResourceLimits QoS 6-125

effect on History QoS 6-105
response delays 7-56
restricting communication 16-10
retries

controlling 10-13
round_trip_time (DDS_RtpsReliableReaderProtocol_t) 7-56
rtiddsgen

@copy directive 3-55
@key directive 3-54
@resolve-name directive 3-56
@top-level directive 3-58
command-line options 3-79
directives 3-53
generated files 3-78
IDL conversions 3-39, 3-43, 3-46
including IDL files 3-53
support types 3-39, 3-43, 3-46
syntax 3-79

RTPS protocol 8-54, 10-3
basic behavior diagram 10-4
bundling messages 10-4
reliable behavior diagram 10-5

rtps_app_id 14-21
rtps_app_id (WireProtocol QoS) 8-55
rtps_auto_id_kind (WireProtocol QoS) 8-55
rtps_host_id 14-21
rtps_host_id (WireProtocol QoS) 8-55
rtps_instance_id (WireProtocol QoS) 8-55
rtps_object_id (DataReaderProtocol QoS) 7-55
rtps_object_id (DataWriterProtocol QoS) 6-83
rtps_reliable_reader (DataReaderProtocol QoS) 7-56
rtps_reliable_writer (DataWriterProtocol QoS) 6-84
rtps_reserved_ports_mask (WireProtocol QoS) 8-55
rtps_well_known_ports (WireProtocol QoS) 8-55
RxO 6-47

S
sample state 7-50
SAMPLE_LOST status 7-31
sample_rank (DDS_SampleInfo) 7-52 to 7-53
sample_rank (SampleInfo) 7-50
6

SAMPLE_REJECTED status
reason codes 7-31 to 7-32

sample_state (DDS_SampleInfo) 7-49
SampleInfo structure 7-49
samples

coherent sets 6-34
count of lost 7-31
definition 2-4 to 2-5
how many per DataWriter 7-62
lost 7-31
notification of arrival 7-25
order of delivery 6-96 to 6-97
ownership of data 7-42
reasons for rejection 7-31 to 7-32
resending 10-16 to 10-17
saving for later use 6-98
structure of 7-49
unacknowledged 6-29
writing 6-31

samples_per_app_ack
(DDS_RtpsReliableReaderProtocol_t) 7-57

samples_per_virtual_heartbeat
RtpsReliableWriterProtocol_t) 6-85

send queue
blocking time 10-7
max_samples 10-9
purpose of 10-2
size 6-105, 6-126, 10-7 to 10-8, 10-10 to 10-11, 10-13
size (formula) 10-9 to 10-10
unblocking when full 6-93

send window 10-8
send_window_decrease_factor

(RtpsReliableWriterProtocol_t) 6-86
send_window_increase_factor

(RtpsReliableWriterProtocol_t) 6-87
send_window_update_period

(RtpsReliableWriterProtocol_t) 6-87
sending data. See writing data.
sequence data type 3-37, 7-48
sequence number 7-50
sequences (defined) 7-48
service_cleanup_delay (DurabilityService QoS) 6-102
set_default_datawriter_qos() 4-7
set_enabled_statuses() 4-36
set_listener() 4-5
set_output_device() 21-4
set_output_file() 21-4
set_qos() 4-6, 6-47
set_verbosity() 21-4
shared ownership

effect of max_samples_per_remote_writer 7-63
shutdown_cleanup_period 8-29
shutdown_timeout 8-29
SILENT verbosity 21-3
skip list 8-29
source timestamp 6-97
source_timestamp (DDS_SampleInfo) 7-49
source_timestamp_resolution (Batch QoS) 6-79
speculative caching 10-29
SQL syntax 5-19
starvation 7-63
static memory allocation 8-47
status changes 7-23
STATUS_ALL verbosity 21-3
STATUS_LOCAL verbosity 21-3
STATUS_REMOTE verbosity 21-3
statuses

changes in 4-15
DATA_AVAILABLE 4-15, 7-17, 7-25
DATA_ON_READERS 4-15, 7-16 to 7-17
DATA_READER_CACHE 7-26
DATA_READER_PROTOCOL 7-26
DATA_WRITER_CACHE 6-23
DATA_WRITER_PROTOCOL 6-23
for DataReaders 7-23, 7-25
for DataWriters 6-15, 6-22

for Subscribers 7-16
LIVELINESS_CHANGED 7-26
LIVELINESS_LOST 6-27
OFFERED_DEADLINE_MISSED 6-27
OFFERED_INCOMPATIBLE_QOS 6-27
plain communication status 4-15
PUBLICATION_MATCHED 6-28
read communication status 4-15
RELIABLE_READER_ACTIVITY_CHANGED 6-30
RELIABLE_WRITER_CACHE_CHANGED 6-29
REQUESTED_DEADLINE_MISSED 7-30
REQUESTED_INCOMPATIBLE_QOS 7-30
SAMPLE_LOST 7-31
SUBSCRIPTION_MATCHED 7-33

stock quote example 2-4
string data type 3-4
submessage bundling 10-4
Subscribers

creating 7-6
definition 2-6, 7-3
operations on 7-5
QoS for 7-8, 7-53
statuses for 7-16

SUBSCRIPTION_MATCHED status 7-33
subscription_reader (DiscoveryConfig QoS) 8-35
subscription_reader_resource_limits (DiscoveryConfig

QoS) 8-35 to 8-36
subscription_writer (DiscoveryConfig QoS) 8-36
subscription_writer_data_lifecycle (DiscoveryConfig

QoS) 8-36
subscriptions

notification timing 7-66
supported data types 3-3, 3-5

T
take_instance() 7-40
take() vs. read() 7-42
taking data 7-42
thread_safe_write (Batch QoS) 6-79
thread-pinning 19-5
threads 6-92

receive 8-50
shared/exclusive areas for 6-56, 6-60, 6-119
unblocking 6-93

throughput 7-58
TimeBasedFilter QoS 7-65

interaction with Deadline QoS 7-66
timestamp 6-31, 6-97
timestamp resolution 6-79, 6-81
timestamp tolerance 6-97
timestamps 8-60
to_string() 21-2
topic_name

definition 5-3
Topics 2-6

accessing discovered 8-23
copying QoS 6-12, 7-12
creating 5-3
definition 2-3, 2-5
example code 6-9, 6-48 to 6-49, 7-9, 7-36 to 7-37, 8-18 to

8-19
Listeners for 5-8
operations on 5-2
purpose of 5-1
purpose of QoS 5-8
QoS for 5-5, 5-8
waiting for creation 8-21

TRANSIENT_LOCAL (Durability QoS) 6-99 to 6-100
transport plug-ins

for meta-traffic 8-31
TransportBuiltin QoS 8-51
TransportMulticast QoS 7-67
TransportPriority QoS 6-128
transports (TransportMulticast QoS) 7-68
transports (TransportUnicast QoS) 6-131
7

TransportSelection QoS 6-129
TransportUnicast QoS 6-130
trigger_value 4-27, 4-36
type_code_max_serialized_length

(DomainParticipantsResourceLimits QoS) 8-46
type_name

definition 5-3
typedef construct 3-52
typographical conventions i-xix

U
unacknowledged samples 6-29
unicast 6-130

ports used 14-25
unregister vs. dispose 6-136
unregister_instance() 6-42 to 6-43

vs. dispose() 6-43
unregister() 6-136
unregistering instances

instance ownership after 6-43
use_shared_exclusive_area (ExclusiveArea QoS) 6-60
user data

ports for 14-25
user data types

definition 3-3
See also data types.

UserData QoS 6-134

V
valid_data (DDS_SampleInfo) 7-50
verbosity 21-3
version query 21-1
view state 7-50
view_state (DDS_SampleInfo) 7-49
virtual GUID 7-50, 11-1, 12-4
virtual heartbeats 6-85, 6-90
virtual sequence number 7-50
virtual writers 6-92 to 6-93, 7-33, 7-61
virtual_guid (DataReaderProtocol QoS) 7-55
virtual_guid (DataWriterProtocol QoS) 6-83
virtual_heartbeat_period (RtpsReliableWriterProtocol_t) 6-

85
VOLATILE (Durability QoS) 6-99 to 6-100

W
wait_for_acknowledgments() 6-15, 6-35
wait_for_historical_data() 7-24
waiting for data 7-2
WaitSets 4-27

creating and deleting 4-28
example code 4-32
operations on 4-29
properties for 4-28
purpose of 4-27

WARNING verbosity 21-3
wchar 3-52
weak references 8-29
well_known_ports 8-56
wildcard partition names 6-66
WireProtocol QoS 8-54
write_w_timestamp() 6-31
writer_attach 5-32
writer_detach 5-32
writing data 6-31

basic steps 6-1
blocked send queue 10-7
example with registration 6-43
liveliness assertion 6-33
registration of instance 6-42
8

	Available Documentation
	Contents
	Welcome to RTI Connext
	Conventions
	Extensions to the DDS Standard
	Environment Variables
	Names of Supported Platforms

	Additional Resources

	Part 1: Introduction
	Chapter 1 Overview
	1.1 What is Connext?
	1.2 What is Middleware?
	1.3 Network Communications Models
	1.4 Features of Connext

	Chapter 2 Data-Centric Publish-Subscribe Communications
	2.1 What is DCPS?
	2.1.1 DCPS for Real-Time Requirements

	2.2 Data Types, Topics, Keys, Instances, and Samples
	2.2.1 Data Topics — What is the Data Called?
	2.2.2 Samples, Instances, and Keys

	2.3 DataWriters/Publishers and DataReaders/Subscribers
	2.4 Domains and DomainParticipants
	2.5 Quality of Service (QoS)
	2.5.1 Controlling Behavior with Quality of Service (QoS) Policies

	2.6 Application Discovery

	Part 2: Core Concepts
	Chapter 3 Data Types and Data Samples
	3.1 Introduction to the Type System
	3.1.1 Sequences
	3.1.2 Strings and Wide Strings
	3.1.3 Introduction to TypeCode
	3.1.3.1 Sending TypeCodes on the Network

	3.2 Built-in Data Types
	3.2.1 Registering Built-in Types
	3.2.2 Creating Topics for Built-in Types
	3.2.2.1 Topic Creation Examples

	3.2.3 String Built-in Type
	3.2.3.1 Creating and Deleting Strings
	3.2.3.2 String DataWriter
	3.2.3.3 String DataReader

	3.2.4 KeyedString Built-in Type
	3.2.4.1 Creating and Deleting Keyed Strings
	3.2.4.2 Keyed String DataWriter
	3.2.4.3 Keyed String DataReader

	3.2.5 Octets Built-in Type
	3.2.5.1 Creating and Deleting Octets
	3.2.5.2 Octets DataWriter
	3.2.5.3 Octets DataReader

	3.2.6 KeyedOctets Built-in Type
	3.2.6.1 Creating and Deleting KeyedOctets
	3.2.6.2 Keyed Octets DataWriter
	3.2.6.3 Keyed Octets DataReader

	3.2.7 Managing Memory for Built-in Types
	3.2.7.1 Examples—Setting the Maximum Size for a String Programmatically

	3.2.8 Type Codes for Built-in Types

	3.3 Creating User Data Types with IDL
	3.3.1 Variable-Length Types
	3.3.1.1 Sequences
	3.3.1.2 Strings and Wide Strings

	3.3.2 Value Types
	3.3.3 TypeCode and rtiddsgen
	3.3.4 rtiddsgen Translations for IDL Types
	3.3.5 Escaped Identifiers
	3.3.6 Referring to Other IDL Files
	3.3.7 Preprocessor Directives
	3.3.8 Using Custom Directives
	3.3.8.1 The @key Directive
	3.3.8.2 The @copy and Related Directives
	3.3.8.3 The @resolve-name Directive
	3.3.8.4 The @top-level Directive

	3.4 Creating User Data Types with Extensible Markup Language (XML)
	3.5 Creating User Data Types with XML Schemas (XSD)
	3.5.1 Primitive Types

	3.6 Using rtiddsgen
	3.6.1 rtiddsgen Command-Line Arguments
	3.6.1.1 Return Values for rtiddsgen
	3.6.1.2 Optimizing Typedefs (-optimization)

	3.7 Using Generated Types without Connext (Standalone)
	3.7.1 Using Standalone Types in C
	3.7.2 Using Standalone Types in C++
	3.7.3 Standalone Types in Java

	3.8 Interacting Dynamically with User Data Types
	3.8.1 Introduction to TypeCode
	3.8.2 Defining New Types
	3.8.3 Sending Only a Few Fields
	3.8.4 Type Extension and Versioning
	3.8.5 Sending Type Codes on the Network
	3.8.5.1 Type Codes for Built-in Types

	3.9 Working with Data Samples
	3.9.1 Objects of Concrete Types
	3.9.2 Objects of Dynamically Defined Types
	3.9.3 Accessing the Discriminator Value in a Union

	Chapter 4 Entities
	4.1 Common Operations for All Entities
	4.1.1 Creating and Deleting Entities
	4.1.2 Enabling Entities
	4.1.2.1 Rules for Calling enable()

	4.1.3 Getting an Entity’s Instance Handle
	4.1.4 Getting Status and Status Changes
	4.1.5 Getting and Setting Listeners
	4.1.6 Getting the StatusCondition
	4.1.7 Getting, Setting, and Comparing QosPolicies
	4.1.7.1 Changing the QoS Defaults Used to Create Entities: set_default_*_qos()
	4.1.7.2 Setting QoS During Entity Creation
	4.1.7.3 Changing the QoS for an Existing Entity
	4.1.7.4 Comparing QoS Values
	4.1.7.5 Default QoS Values

	4.2 QosPolicies
	4.2.1 QoS Requested vs. Offered Compatibility—the RxO Property
	4.2.2 Special QosPolicy Handling Considerations for C

	4.3 Statuses
	4.3.1 Types of Communication Status
	4.3.1.1 Changes in Plain Communication Status
	4.3.1.2 Changes in Read Communication Status

	4.3.2 Special Status-Handling Considerations for C

	4.4 Listeners
	4.4.1 Types of Listeners
	4.4.2 Creating and Deleting Listeners
	4.4.3 Special Considerations for Listeners in C
	4.4.4 Hierarchical Processing of Listeners
	4.4.4.1 Processing Read Communication Statuses

	4.4.5 Operations Allowed within Listener Callbacks

	4.5 Exclusive Areas (EAs)
	4.5.1 Restricted Operations in Listener Callbacks

	4.6 Conditions and WaitSets
	4.6.1 Creating and Deleting WaitSets
	4.6.2 WaitSet Operations
	4.6.3 Waiting for Conditions
	4.6.3.1 How WaitSets Block

	4.6.4 Processing Triggered Conditions—What to do when Wait() Returns
	4.6.5 Conditions and WaitSet Example
	4.6.6 GuardConditions
	4.6.7 ReadConditions and QueryConditions
	4.6.7.1 How ReadConditions are Triggered
	4.6.7.2 QueryConditions

	4.6.8 StatusConditions
	4.6.8.1 How StatusConditions are Triggered

	4.6.9 Using Both Listeners and WaitSets

	Chapter 5 Topics
	5.1 Topics
	5.1.1 Creating Topics
	5.1.2 Deleting Topics
	5.1.3 Setting Topic QosPolicies
	5.1.3.1 Configuring QoS Settings when the Topic is Created
	5.1.3.2 Comparing QoS Values
	5.1.3.3 Changing QoS Settings After the Topic Has Been Created

	5.1.4 Copying QoS From a Topic to a DataWriter or DataReader
	5.1.5 Setting Up TopicListeners
	5.1.6 Navigating Relationships Among Entities
	5.1.6.1 Finding a Topic’s DomainParticipant
	5.1.6.2 Retrieving a Topic’s Name or Type Name

	5.2 Topic QosPolicies
	5.2.1 TOPIC_DATA QosPolicy
	5.2.1.1 Example
	5.2.1.2 Properties
	5.2.1.3 Related QosPolicies
	5.2.1.4 Applicable Entities
	5.2.1.5 System Resource Considerations

	5.3 Status Indicator for Topics
	5.3.1 INCONSISTENT_TOPIC Status

	5.4 ContentFilteredTopics
	5.4.1 Overview
	5.4.2 Where Filtering is Applied—Publishing vs. Subscribing Side
	5.4.3 Creating ContentFilteredTopics
	5.4.3.1 Creating ContentFilteredTopics for Built-in Types

	5.4.4 Deleting ContentFilteredTopics
	5.4.5 Using a ContentFilteredTopic
	5.4.5.1 Getting the Current Expression Parameters
	5.4.5.2 Setting Expression Parameters
	5.4.5.3 Setting an Expression
	5.4.5.4 Appending a String to an Expression Parameter
	5.4.5.5 Removing a String from an Expression Parameter
	5.4.5.6 Getting the Filter Expression
	5.4.5.7 Getting the Related Topic
	5.4.5.8 ‘Narrowing’ a ContentFilteredTopic to a TopicDescription

	5.4.6 SQL Filter Expression Notation
	5.4.6.1 SQL Grammar
	5.4.6.2 Token Expressions
	5.4.6.3 Type Compatibility in the Predicate
	5.4.6.4 SQL Extension: Regular Expression Matching
	5.4.6.5 Composite Members
	5.4.6.6 Strings
	5.4.6.7 Enumerations
	5.4.6.8 Pointers
	5.4.6.9 Arrays
	5.4.6.10 Sequences
	5.4.6.11 Example SQL Filter Expressions

	5.4.7 STRINGMATCH Filter Expression Notation
	5.4.7.1 Example STRINGMATCH Filter Expressions
	5.4.7.2 STRINGMATCH Filter Expression Parameters

	5.4.8 Custom Content Filters
	5.4.8.1 Filtering on the Writer Side with Custom Filters
	5.4.8.2 Registering a Custom Filter
	5.4.8.3 Unregistering a Custom Filter
	5.4.8.4 Retrieving a ContentFilter
	5.4.8.5 Compile Function
	5.4.8.6 Evaluate Function
	5.4.8.7 Finalize Function
	5.4.8.8 Writer Attach Function
	5.4.8.9 Writer Detach Function
	5.4.8.10 Writer Compile Function
	5.4.8.11 Writer Evaluate Function
	5.4.8.12 Writer Return Loan Function
	5.4.8.13 Writer Finalize Function

	Chapter 6 Sending Data
	6.1 Preview: Steps to Sending Data
	6.2 Publishers
	6.2.1 Creating Publishers Explicitly vs. Implicitly
	6.2.2 Creating Publishers
	6.2.3 Deleting Publishers
	6.2.3.1 Deleting Contained DataWriters

	6.2.4 Setting Publisher QosPolicies
	6.2.4.1 Configuring QoS Settings when the Publisher is Created
	6.2.4.2 Comparing QoS Values
	6.2.4.3 Changing QoS Settings After the Publisher Has Been Created
	6.2.4.4 Getting and Setting the Publisher’s Default QoS Profile and Library
	6.2.4.5 Getting and Setting Default QoS for DataWriters
	6.2.4.6 Other Publisher QoS-Related Operations

	6.2.5 Setting Up PublisherListeners
	6.2.6 Finding a Publisher’s Related Entities
	6.2.7 Waiting for Acknowledgments in a Publisher
	6.2.8 Statuses for Publishers
	6.2.9 Suspending and Resuming Publications

	6.3 DataWriters
	6.3.1 Creating DataWriters
	6.3.2 Getting All DataWriters
	6.3.3 Deleting DataWriters
	6.3.4 Setting Up DataWriterListeners
	6.3.5 Checking DataWriter Status
	6.3.6 Statuses for DataWriters
	6.3.6.1 DATA_WRITER_CACHE_STATUS
	6.3.6.2 DATA_WRITER_PROTOCOL_STATUS
	6.3.6.3 LIVELINESS_LOST Status
	6.3.6.4 OFFERED_DEADLINE_MISSED Status
	6.3.6.5 OFFERED_INCOMPATIBLE_QOS Status
	6.3.6.6 PUBLICATION_MATCHED Status
	6.3.6.7 RELIABLE_WRITER_CACHE_CHANGED Status (DDS Extension)
	6.3.6.8 RELIABLE_READER_ACTIVITY_CHANGED Status (DDS Extension)

	6.3.7 Using a Type-Specific DataWriter (FooDataWriter)
	6.3.8 Writing Data
	6.3.8.1 Blocking During a write()

	6.3.9 Flushing Batches of Data Samples
	6.3.10 Writing Coherent Sets of Data Samples
	6.3.11 Waiting for Acknowledgments in a DataWriter
	6.3.12 Application Acknowledgment
	6.3.12.1 Application Acknowledgment Kinds
	6.3.12.2 Explicitly Acknowledging a Single Sample (C++)
	6.3.12.3 Explicitly Acknowledging All Samples (C++)
	6.3.12.4 Notification of Delivery with Application Acknowledgment
	6.3.12.5 Application-Level Acknowledgment Protocol
	6.3.12.6 Periodic and Non-Periodic AppAck Messages
	6.3.12.7 Application Acknowledgment and Persistence Service
	6.3.12.8 Application Acknowledgment and Routing Service

	6.3.13 Required Subscriptions
	6.3.13.1 Named, Required and Durable Subscriptions
	6.3.13.2 Durability QoS and Required Subscriptions
	6.3.13.3 Required Subscriptions Configuration

	6.3.14 Managing Data Instances (Working with Keyed Data Types)
	6.3.14.1 Registering and Unregistering Instances
	6.3.14.2 Disposing of Data
	6.3.14.3 Looking Up an Instance Handle
	6.3.14.4 Getting the Key Value for an Instance

	6.3.15 Setting DataWriter QosPolicies
	6.3.15.1 Configuring QoS Settings when the DataWriter is Created
	6.3.15.2 Comparing QoS Values
	6.3.15.3 Changing QoS Settings After the DataWriter Has Been Created
	6.3.15.4 Using a Topic’s QoS to Initialize a DataWriter’s QoS

	6.3.16 Navigating Relationships Among Entities
	6.3.16.1 Finding Matching Subscriptions
	6.3.16.2 Finding the Matching Subscription’s ParticipantBuiltinTopicData
	6.3.16.3 Finding Related Entities

	6.3.17 Asserting Liveliness
	6.3.18 Turbo Mode and Automatic Throttling for DataWriter Performance—Experimental Features

	6.4 Publisher/Subscriber QosPolicies
	6.4.1 ASYNCHRONOUS_PUBLISHER QosPolicy (DDS Extension)
	6.4.1.1 Properties
	6.4.1.2 Related QosPolicies
	6.4.1.3 Applicable Entities
	6.4.1.4 System Resource Considerations

	6.4.2 ENTITYFACTORY QosPolicy
	6.4.2.1 Example
	6.4.2.2 Properties
	6.4.2.3 Related QosPolicies
	6.4.2.4 Applicable Entities
	6.4.2.5 System Resource Considerations

	6.4.3 EXCLUSIVE_AREA QosPolicy (DDS Extension)
	6.4.3.1 Example
	6.4.3.2 Properties
	6.4.3.3 Related QosPolicies
	6.4.3.4 Applicable Entities
	6.4.3.5 System Resource Considerations

	6.4.4 GROUP_DATA QosPolicy
	6.4.4.1 Example
	6.4.4.2 Properties
	6.4.4.3 Related QosPolicies
	6.4.4.4 Applicable Entities
	6.4.4.5 System Resource Considerations

	6.4.5 PARTITION QosPolicy
	6.4.5.1 Rules for PARTITION Matching
	6.4.5.2 Pattern Matching for PARTITION Names
	6.4.5.3 Example
	6.4.5.4 Properties
	6.4.5.5 Related QosPolicies
	6.4.5.6 Applicable Entities
	6.4.5.7 System Resource Considerations

	6.4.6 PRESENTATION QosPolicy
	6.4.6.1 Coherent Access
	6.4.6.2 Ordered Access
	6.4.6.3 Example
	6.4.6.4 Properties
	6.4.6.5 Related QosPolicies
	6.4.6.6 Applicable Entities
	6.4.6.7 System Resource Considerations

	6.5 DataWriter QosPolicies
	6.5.1 AVAILABILITY QosPolicy (DDS Extension)
	6.5.1.1 Availability QoS Policy and Collaborative DataWriters
	6.5.1.2 Availability QoS Policy and Required Subscriptions
	6.5.1.3 Properties
	6.5.1.4 Related QosPolicies
	6.5.1.5 Applicable Entities
	6.5.1.6 System Resource Considerations

	6.5.2 BATCH QosPolicy (DDS Extension)
	6.5.2.1 Synchronous and Asynchronous Flushing
	6.5.2.2 Batching vs. Coalescing
	6.5.2.3 Batching and ContentFilteredTopics
	6.5.2.4 Turbo Mode: Automatically Adjusting the Number of Bytes in a Batch—Experimental Feature
	6.5.2.5 Performance Considerations
	6.5.2.6 Maximum Transport Datagram Size
	6.5.2.7 Properties
	6.5.2.8 Related QosPolicies
	6.5.2.9 Applicable Entities
	6.5.2.10 System Resource Considerations

	6.5.3 DATA_WRITER_PROTOCOL QosPolicy (DDS Extension)
	6.5.3.1 High and Low Watermarks
	6.5.3.2 Normal, Fast, and Late-Joiner Heartbeat Periods
	6.5.3.3 Disabling Positive Acknowledgements
	6.5.3.4 Configuring the Send Window Size
	6.5.3.5 Propagating Serialized Keys with Disposed-Instance Notifications
	6.5.3.6 Virtual Heartbeats
	6.5.3.7 Resending Over Multicast
	6.5.3.8 Example
	6.5.3.9 Properties
	6.5.3.10 Related QosPolicies
	6.5.3.11 Applicable Entities
	6.5.3.12 System Resource Considerations

	6.5.4 DATA_WRITER_RESOURCE_LIMITS QosPolicy (DDS Extension)
	6.5.4.1 Example
	6.5.4.2 Properties
	6.5.4.3 Related QosPolicies
	6.5.4.4 Applicable Entities
	6.5.4.5 System Resource Considerations

	6.5.5 DEADLINE QosPolicy
	6.5.5.1 Example
	6.5.5.2 Properties
	6.5.5.3 Related QosPolicies
	6.5.5.4 Applicable Entities
	6.5.5.5 System Resource Considerations

	6.5.6 DESTINATION_ORDER QosPolicy
	6.5.6.1 Properties
	6.5.6.2 Related QosPolicies
	6.5.6.3 Applicable Entities
	6.5.6.4 System Resource Considerations

	6.5.7 DURABILITY QosPolicy
	6.5.7.1 Example
	6.5.7.2 Properties
	6.5.7.3 Related QosPolicies
	6.5.7.4 Applicable Entities
	6.5.7.5 System Resource Considerations

	6.5.8 DURABILITY SERVICE QosPolicy
	6.5.8.1 Properties
	6.5.8.2 Related QosPolicies
	6.5.8.3 Applicable Entities
	6.5.8.4 System Resource Considerations

	6.5.9 ENTITY_NAME QosPolicy (DDS Extension)
	6.5.9.1 Properties
	6.5.9.2 Related QosPolicies
	6.5.9.3 Applicable Entities
	6.5.9.4 System Resource Considerations

	6.5.10 HISTORY QosPolicy
	6.5.10.1 Example
	6.5.10.2 Properties
	6.5.10.3 Related QosPolicies
	6.5.10.4 Applicable Entities
	6.5.10.5 System Resource Considerations

	6.5.11 LATENCYBUDGET QoS Policy
	6.5.11.1 Applicable Entities

	6.5.12 LIFESPAN QoS Policy
	6.5.12.1 Properties
	6.5.12.2 Related QoS Policies
	6.5.12.3 Applicable Entities
	6.5.12.4 System Resource Considerations

	6.5.13 LIVELINESS QosPolicy
	6.5.13.1 Example
	6.5.13.2 Properties
	6.5.13.3 Related QosPolicies
	6.5.13.4 Applicable Entities
	6.5.13.5 System Resource Considerations

	6.5.14 MULTI_CHANNEL QosPolicy (DDS Extension)
	6.5.14.1 Example
	6.5.14.2 Properties
	6.5.14.3 Related Qos Policies
	6.5.14.4 Applicable Entities
	6.5.14.5 System Resource Considerations

	6.5.15 OWNERSHIP QosPolicy
	6.5.15.1 How Connext Selects which DataWriter is the Exclusive Owner
	6.5.15.2 Example
	6.5.15.3 Properties
	6.5.15.4 Related QosPolicies
	6.5.15.5 Applicable Entities
	6.5.15.6 System Resource Considerations

	6.5.16 OWNERSHIP_STRENGTH QosPolicy
	6.5.16.1 Example
	6.5.16.2 Properties
	6.5.16.3 Related QosPolicies
	6.5.16.4 Applicable Entities
	6.5.16.5 System Resource Considerations

	6.5.17 PROPERTY QosPolicy (DDS Extension)
	6.5.17.1 Properties
	6.5.17.2 Related QosPolicies
	6.5.17.3 Applicable Entities
	6.5.17.4 System Resource Considerations

	6.5.18 PUBLISH_MODE QosPolicy (DDS Extension)
	6.5.18.1 Properties
	6.5.18.2 Related QosPolicies
	6.5.18.3 Applicable Entities
	6.5.18.4 System Resource Considerations

	6.5.19 RELIABILITY QosPolicy
	6.5.19.1 Example
	6.5.19.2 Properties
	6.5.19.3 Related QosPolicies
	6.5.19.4 Applicable Entities
	6.5.19.5 System Resource Considerations

	6.5.20 RESOURCE_LIMITS QosPolicy
	6.5.20.1 Configuring Resource Limits for Asynchronous DataWriters
	6.5.20.2 Configuring DataWriter Instance Replacement
	6.5.20.3 Example
	6.5.20.4 Properties
	6.5.20.5 Related QosPolicies
	6.5.20.6 Applicable Entities
	6.5.20.7 System Resource Considerations

	6.5.21 TRANSPORT_PRIORITY QosPolicy
	6.5.21.1 Example
	6.5.21.2 Properties
	6.5.21.3 Related QosPolicies
	6.5.21.4 Applicable Entities
	6.5.21.5 System Resource Considerations

	6.5.22 TRANSPORT_SELECTION QosPolicy (DDS Extension)
	6.5.22.1 Example
	6.5.22.2 Properties
	6.5.22.3 Related QosPolicies
	6.5.22.4 Applicable Entities
	6.5.22.5 System Resource Considerations

	6.5.23 TRANSPORT_UNICAST QosPolicy (DDS Extension)
	6.5.23.1 Example
	6.5.23.2 Properties
	6.5.23.3 Related QosPolicies
	6.5.23.4 Applicable Entities
	6.5.23.5 System Resource Considerations

	6.5.24 TYPESUPPORT QosPolicy (DDS Extension)
	6.5.24.1 Properties
	6.5.24.2 Related QoS Policies
	6.5.24.3 Applicable Entities
	6.5.24.4 System Resource Considerations

	6.5.25 USER_DATA QosPolicy
	6.5.25.1 Example
	6.5.25.2 Properties
	6.5.25.3 Related QosPolicies
	6.5.25.4 Applicable Entities
	6.5.25.5 System Resource Considerations

	6.5.26 WRITER_DATA_LIFECYCLE QoS Policy
	6.5.26.1 Properties
	6.5.26.2 Related QoS Policies
	6.5.26.3 Applicable Entities
	6.5.26.4 System Resource Considerations

	6.6 FlowControllers (DDS Extension)
	6.6.1 Flow Controller Scheduling Policies
	6.6.2 Managing Fast DataWriters When Using a FlowController
	6.6.3 Token Bucket Properties
	6.6.3.1 max_tokens
	6.6.3.2 tokens_added_per_period
	6.6.3.3 tokens_leaked_per_period
	6.6.3.4 period
	6.6.3.5 bytes_per_token

	6.6.4 Prioritized Samples
	6.6.4.1 Designating Priorities
	6.6.4.2 Priority-Based Filtering

	6.6.5 Creating and Configuring Custom FlowControllers with Property QoS
	6.6.5.1 Example

	6.6.6 Creating and Deleting FlowControllers
	6.6.7 Getting/Setting Default FlowController Properties
	6.6.8 Getting/Setting Properties for a Specific FlowController
	6.6.9 Adding an External Trigger
	6.6.10 Other FlowController Operations

	Chapter 7 Receiving Data
	7.1 Preview: Steps to Receiving Data
	7.2 Subscribers
	7.2.1 Creating Subscribers Explicitly vs. Implicitly
	7.2.2 Creating Subscribers
	7.2.3 Deleting Subscribers
	7.2.3.1 Deleting Contained DataReaders

	7.2.4 Setting Subscriber QosPolicies
	7.2.4.1 Configuring QoS Settings when the Subscriber is Created
	7.2.4.2 Comparing QoS Values
	7.2.4.3 Changing QoS Settings After Subscriber Has Been Created
	7.2.4.4 Getting and Settings the Subscriber’s Default QoS Profile and Library
	7.2.4.5 Getting and Setting Default QoS for DataReaders
	7.2.4.6 Subscriber QoS-Related Operations

	7.2.5 Beginning and Ending Group-Ordered Access
	7.2.6 Setting Up SubscriberListeners
	7.2.7 Getting DataReaders with Specific Samples
	7.2.8 Finding a Subscriber’s Related Entities
	7.2.9 Statuses for Subscribers
	7.2.9.1 DATA_ON_READERS Status

	7.3 DataReaders
	7.3.1 Creating DataReaders
	7.3.2 Getting All DataReaders
	7.3.3 Deleting DataReaders
	7.3.3.1 Deleting Contained ReadConditions

	7.3.4 Setting Up DataReaderListeners
	7.3.5 Checking DataReader Status and StatusConditions
	7.3.6 Waiting for Historical Data
	7.3.7 Statuses for DataReaders
	7.3.7.1 DATA_AVAILABLE Status
	7.3.7.2 DATA_READER_CACHE_STATUS
	7.3.7.3 DATA_READER_PROTOCOL_STATUS
	7.3.7.4 LIVELINESS_CHANGED Status
	7.3.7.5 REQUESTED_DEADLINE_MISSED Status
	7.3.7.6 REQUESTED_INCOMPATIBLE_QOS Status
	7.3.7.7 SAMPLE_LOST Status
	7.3.7.8 SAMPLE_REJECTED Status
	7.3.7.9 SUBSCRIPTION_MATCHED Status

	7.3.8 Setting DataReader QosPolicies
	7.3.8.1 Configuring QoS Settings when the DataReader is Created
	7.3.8.2 Comparing QoS Values
	7.3.8.3 Changing QoS Settings After DataReader Has Been Created
	7.3.8.4 Using a Topic’s QoS to Initialize a DataWriter’s QoS

	7.3.9 Navigating Relationships Among Entities
	7.3.9.1 Finding Matching Publications
	7.3.9.2 Finding the Matching Publication’s ParticipantBuiltinTopicData
	7.3.9.3 Finding a DataReader’s Related Entities
	7.3.9.4 Looking Up an Instance Handle
	7.3.9.5 Getting the Key Value for an Instance

	7.4 Using DataReaders to Access Data (Read & Take)
	7.4.1 Using a Type-Specific DataReader (FooDataReader)
	7.4.2 Loaning and Returning Data and SampleInfo Sequences
	7.4.3 Accessing Data Samples with Read or Take
	7.4.3.1 Read vs. Take
	7.4.3.2 General Patterns for Accessing Data
	7.4.3.3 read_next_sample and take_next_sample
	7.4.3.4 read_instance and take_instance
	7.4.3.5 read_next_instance and take_next_instance
	7.4.3.6 read_w_condition and take_w_condition
	7.4.3.7 read_instance_w_condition and take_instance_w_condition
	7.4.3.8 read_next_instance_w_condition and take_next_instance_w_condition

	7.4.4 Acknowledging Samples
	7.4.5 The Sequence Data Structure
	7.4.6 The SampleInfo Structure
	7.4.6.1 Reception Timestamp
	7.4.6.2 Sample States
	7.4.6.3 View States
	7.4.6.4 Instance States
	7.4.6.5 Generation Counts and Ranks
	7.4.6.6 Valid Data Flag

	7.5 Subscriber QosPolicies
	7.6 DataReader QosPolicies
	7.6.1 DATA_READER_PROTOCOL QosPolicy (DDS Extension)
	7.6.1.1 Receive Window Size
	7.6.1.2 Round-Trip Time For Filtering Redundant NACKs
	7.6.1.3 Example
	7.6.1.4 Properties
	7.6.1.5 Related QosPolicies
	7.6.1.6 Applicable Entities
	7.6.1.7 System Resource Considerations

	7.6.2 DATA_READER_RESOURCE_LIMITS QosPolicy (DDS Extension)
	7.6.2.1 max_total_instances and max_instances
	7.6.2.2 Example
	7.6.2.3 Properties
	7.6.2.4 Related QosPolicies
	7.6.2.5 Applicable Entities
	7.6.2.6 System Resource Considerations

	7.6.3 READER_DATA_LIFECYCLE QoS Policy
	7.6.3.1 Properties
	7.6.3.2 Related QoS Policies
	7.6.3.3 Applicable Entities
	7.6.3.4 System Resource Considerations

	7.6.4 TIME_BASED_FILTER QosPolicy
	7.6.4.1 Example
	7.6.4.2 Properties
	7.6.4.3 Related QosPolicies
	7.6.4.4 Applicable Entities
	7.6.4.5 System Resource Considerations

	7.6.5 TRANSPORT_MULTICAST QosPolicy (DDS Extension)
	7.6.5.1 Example
	7.6.5.2 Properties
	7.6.5.3 Related QosPolicies
	7.6.5.4 Applicable Entities
	7.6.5.5 System Resource Considerations

	7.6.6 TYPE_CONSISTENCY_ENFORCEMENT QosPolicy
	7.6.6.1 Properties
	7.6.6.2 Related QoS Policies
	7.6.6.3 Applicable Entities
	7.6.6.4 System Resource Considerations

	Chapter 8 Working with Domains
	8.1 Fundamentals of Domains and DomainParticipants
	8.2 DomainParticipantFactory
	8.2.1 Setting DomainParticipantFactory QosPolicies
	8.2.1.1 Getting and Setting the DomainParticipantFactory’s Default QoS Profile and Library

	8.2.2 Getting and Setting Default QoS for DomainParticipants
	8.2.3 Freeing Resources Used by the DomainParticipantFactory
	8.2.4 Looking Up a DomainParticipant
	8.2.5 Getting QoS Values from a QoS Profile

	8.3 DomainParticipants
	8.3.1 Creating a DomainParticipant
	8.3.2 Deleting DomainParticipants
	8.3.3 Deleting Contained Entities
	8.3.4 Choosing a Domain ID and Creating Multiple Domains
	8.3.5 Setting Up DomainParticipantListeners
	8.3.6 Setting DomainParticipant QosPolicies
	8.3.6.1 Configuring QoS Settings when the DomainParticipant is Created
	8.3.6.2 Comparing QoS Values
	8.3.6.3 Changing QoS Settings After the DomainParticipant Has Been Created
	8.3.6.4 Getting and Setting the DomainParticipant’s Default QoS Profile and Library
	8.3.6.5 Getting and Setting Default QoS for Child Entities

	8.3.7 Looking up Topic Descriptions
	8.3.8 Finding a Topic
	8.3.9 Getting the Implicit Publisher or Subscriber
	8.3.10 Asserting Liveliness
	8.3.11 Learning about Discovered DomainParticipants
	8.3.12 Learning about Discovered Topics
	8.3.13 Other DomainParticipant Operations
	8.3.13.1 Verifying Entity Containment
	8.3.13.2 Getting the Current Time
	8.3.13.3 Getting All Publishers and Subscribers

	8.4 DomainParticipantFactory QosPolicies
	8.4.1 LOGGING QosPolicy (DDS Extension)
	8.4.1.1 Example
	8.4.1.2 Properties
	8.4.1.3 Related QosPolicies
	8.4.1.4 Applicable Entities
	8.4.1.5 System Resource Considerations

	8.4.2 PROFILE QosPolicy (DDS Extension)
	8.4.2.1 Example
	8.4.2.2 Properties
	8.4.2.3 Related QosPolicies
	8.4.2.4 Applicable Entities
	8.4.2.5 System Resource Considerations

	8.4.3 SYSTEM_RESOURCE_LIMITS QoS Policy (DDS Extension)
	8.4.3.1 Example
	8.4.3.2 Properties
	8.4.3.3 Related QoS Policies
	8.4.3.4 Applicable Entities
	8.4.3.5 System Resource Considerations

	8.5 DomainParticipant QosPolicies
	8.5.1 DATABASE QosPolicy (DDS Extension)
	8.5.1.1 Example
	8.5.1.2 Properties
	8.5.1.3 Related QosPolicies
	8.5.1.4 Applicable Entities
	8.5.1.5 System Resource Considerations

	8.5.2 DISCOVERY QosPolicy (DDS Extension)
	8.5.2.1 Transports Used for Discovery
	8.5.2.2 Setting the ‘Initial Peers’ List
	8.5.2.3 Adding and Removing Peers List Entries
	8.5.2.4 Configuring Multicast Receive Addresses
	8.5.2.5 Meta-Traffic Transport Priority
	8.5.2.6 Controlling Acceptance of Unknown Peers
	8.5.2.7 Example
	8.5.2.8 Properties
	8.5.2.9 Related QosPolicies
	8.5.2.10 Applicable Entities
	8.5.2.11 System Resource Considerations

	8.5.3 DISCOVERY_CONFIG QosPolicy (DDS Extension)
	8.5.3.1 Resource Limits for Builtin-Topic DataReaders
	8.5.3.2 Controlling Purging of Remote Participants
	8.5.3.3 Controlling the Reliable Protocol Used by Builtin-Topic DataWriters/DataReaders
	8.5.3.4 Example
	8.5.3.5 Properties
	8.5.3.6 Related QosPolicies
	8.5.3.7 Applicable Entities
	8.5.3.8 System Resource Considerations

	8.5.4 DOMAIN_PARTICIPANT_RESOURCE_LIMITS QosPolicy (DDS Extension)
	8.5.4.1 Configuring Resource Limits for Asynchronous DataWriters
	8.5.4.2 Configuring Memory Allocation
	8.5.4.3 Example
	8.5.4.4 Properties
	8.5.4.5 Related QosPolicies
	8.5.4.6 Applicable Entities
	8.5.4.7 System Resource Considerations

	8.5.5 EVENT QosPolicy (DDS Extension)
	8.5.5.1 Example
	8.5.5.2 Properties
	8.5.5.3 Related QosPolicies
	8.5.5.4 Applicable Entities
	8.5.5.5 System Resource Considerations

	8.5.6 RECEIVER_POOL QosPolicy (DDS Extension)
	8.5.6.1 Example
	8.5.6.2 Properties
	8.5.6.3 Related QosPolicies
	8.5.6.4 Applicable Entities
	8.5.6.5 System Resource Considerations

	8.5.7 TRANSPORT_BUILTIN QosPolicy (DDS Extension)
	8.5.7.1 Example
	8.5.7.2 Properties
	8.5.7.3 Related QosPolicies
	8.5.7.4 Applicable Entities
	8.5.7.5 System Resource Considerations

	8.5.8 TRANSPORT_MULTICAST_MAPPING QosPolicy (DDS Extension)
	8.5.8.1 Formatting Rules for Addresses
	8.5.8.2 Example
	8.5.8.3 Properties
	8.5.8.4 Related QosPolicies
	8.5.8.5 Applicable Entities
	8.5.8.6 System Resource Considerations

	8.5.9 WIRE_PROTOCOL QosPolicy (DDS Extension)
	8.5.9.1 Choosing Participant IDs
	8.5.9.2 Host, App, and Instance IDs
	8.5.9.3 Ports Used for Discovery
	8.5.9.4 Controlling How the GUID is Set (rtps_auto_id_kind)
	8.5.9.5 Example
	8.5.9.6 Properties
	8.5.9.7 Related QosPolicies
	8.5.9.8 Applicable Entities
	8.5.9.9 System Resource Considerations

	8.6 Clock Selection
	8.6.1 Available Clocks
	8.6.2 Clock Selection Strategy

	8.7 System Properties

	Chapter 9 Building Applications
	9.1 Running on a Computer Not Connected to a Network
	9.2 Connext Header Files — All Architectures
	9.3 UNIX-Based Platforms
	9.3.1 Required Libraries
	9.3.2 Compiler Flags

	9.4 Windows Platforms
	9.4.1 Using Visual Studio .NET or Visual Studio 2005

	9.5 Java Platforms
	9.5.1 Java Libraries
	9.5.2 Native Libraries

	Part 3: Advanced Concepts
	Chapter 10 Reliable Communications
	10.1 Sending Data Reliably
	10.1.1 Best-effort Delivery Model
	10.1.2 Reliable Delivery Model

	10.2 Overview of the Reliable Protocol
	10.3 Using QosPolicies to Tune the Reliable Protocol
	10.3.1 Enabling Reliability
	10.3.1.1 Blocking until the Send Queue Has Space Available

	10.3.2 Tuning Queue Sizes and Other Resource Limits
	10.3.2.1 Understanding the Send Queue and Setting its Size
	10.3.2.2 Understanding the Receive Queue and Setting Its Size

	10.3.3 Controlling Queue Depth with the History QosPolicy
	10.3.4 Controlling Heartbeats and Retries with DataWriterProtocol QosPolicy
	10.3.4.1 How Often Heartbeats are Resent (heartbeat_period)
	10.3.4.2 How Often Piggyback Heartbeats are Sent (heartbeats_per_max_samples)
	10.3.4.3 Controlling Packet Size for Resent Samples (max_bytes_per_nack_response)
	10.3.4.4 Controlling How Many Times Heartbeats are Resent (max_heartbeat_retries)
	10.3.4.5 Treating Non-Progressing Readers as Inactive Readers (inactivate_nonprogressing_readers)
	10.3.4.6 Coping with Redundant Requests for Missing Samples (max_nack_response_delay)
	10.3.4.7 Disabling Positive Acknowledgements (disable_postive_acks_min_sample_keep_duration)

	10.3.5 Avoiding Message Storms with DataReaderProtocol QosPolicy
	10.3.6 Resending Samples to Late-Joiners with the Durability QosPolicy
	10.3.7 Use Cases
	10.3.7.1 Importance of Relative Thread Priorities
	10.3.7.2 Aperiodic Use Case: One-at-a-Time
	10.3.7.3 Aperiodic, Bursty
	10.3.7.4 Periodic

	10.4 Auto Throttling for DataWriter Performance—Experimental Feature

	Chapter 11 Collaborative DataWriters
	11.1 Collaborative DataWriters Use Cases
	11.2 Sample Combination (Synchronization) Process in a DataReader
	11.3 Configuring Collaborative DataWriters
	11.3.1 Assocating Virtual GUIDs with Data Samples
	11.3.2 Assocating Virtual Sequence Numbers with Data Samples
	11.3.3 Specifying which DataWriters will Deliver Samples to the DataReader from a Logical Data Source
	11.3.4 Specifying How Long to Wait for a Missing Sample

	11.4 Collaborative DataWriters and Persistence Service

	Chapter 12 Mechanisms for Achieving Information Durability and Persistence
	12.1 Introduction
	12.1.1 Scenario 1. DataReader Joins after DataWriter Restarts (Durable Writer History)
	12.1.2 Scenario 2: DataReader Restarts While DataWriter Stays Up (Durable Reader State)
	12.1.3 Scenario 3. DataReader Joins after DataWriter Leaves Domain (Durable Data)

	12.2 Durability and Persistence Based on Virtual GUIDs
	12.3 Durable Writer History
	12.3.1 Durable Writer History Use Case
	12.3.2 How To Configure Durable Writer History

	12.4 Durable Reader State
	12.4.1 Durable Reader State With Protocol Acknowledgment
	12.4.1.1 Bandwidth Utilization

	12.4.2 Durable Reader State with Application Acknowledgment
	12.4.2.1 Bandwidth Utilization

	12.4.3 Durable Reader State Use Case
	12.4.4 How To Configure a DataReader for Durable Reader State

	12.5 Data Durability
	12.5.1 RTI Persistence Service

	Chapter 13 Guaranteed Delivery of Data
	13.1 Introduction
	13.1.1 Identifying the Required Consumers of Information
	13.1.2 Ensuring Consumer Applications Process the Data Successfully
	13.1.3 Ensuring Information is Available to Late-Joining Applications

	13.2 Scenarios
	13.2.1 Scenario 1: Guaranteed Delivery to a-priori known subscribers
	13.2.2 Scenario 2: Surviving a Writer Restart when Delivering Samples to a priori Known Subscribers
	13.2.3 Scenario 3: Delivery Guaranteed by Persistence Service (Store and Forward) to a priori Known Subscribers
	13.2.3.1 Variation: Using Redundant Persistence Services
	13.2.3.2 Variation: Using Load-Balanced Persistent Services

	Chapter 14 Discovery
	14.1 What is Discovery?
	14.1.1 Simple Participant Discovery
	14.1.2 Simple Endpoint Discovery

	14.2 Configuring the Peers List Used in Discovery
	14.2.1 Peer Descriptor Format
	14.2.1.1 Locator Format
	14.2.1.2 Address Format

	14.2.2 NDDS_DISCOVERY_PEERS Environment Variable Format
	14.2.3 NDDS_DISCOVERY_PEERS File Format

	14.3 Discovery Implementation
	14.3.1 Participant Discovery
	14.3.1.1 Refresh Mechanism
	14.3.1.2 Maintaining DataWriter Liveliness for kinds AUTOMATIC and MANUAL_BY_PARTICIPANT

	14.3.2 Endpoint Discovery
	14.3.3 Discovery Traffic Summary
	14.3.4 Discovery-Related QoS

	14.4 Debugging Discovery
	14.5 Ports Used for Discovery
	14.5.1 Inbound Ports for Meta-Traffic
	14.5.2 Inbound Ports for User Traffic
	14.5.3 Automatic Selection of participant_id and Port Reservation
	14.5.4 Tuning domain_id_gain and participant_id_gain

	Chapter 15 Transport Plugins
	15.1 Builtin Transport Plugins
	15.2 Extension Transport Plugins
	15.3 The NDDSTransportSupport Class
	15.4 Explicitly Creating Builtin Transport Plugin Instances
	15.5 Setting Builtin Transport Properties of the Default Transport Instance—get/set_builtin_transport_properties()
	15.6 Setting Builtin Transport Properties with the PropertyQosPolicy
	15.6.1 Notes Regarding Loopback and Shared Memory
	15.6.2 Setting the Maximum Gather-Send Buffer Count for UDPv4 and UDPv6
	15.6.3 Formatting Rules for IPv6 ‘Allow’ and ‘Deny’ Address Lists

	15.7 Installing Additional Builtin Transport Plugins with register_transport()
	15.7.1 Transport Lifecycles
	15.7.2 Transport Aliases
	15.7.3 Transport Network Addresses

	15.8 Installing Additional Builtin Transport Plugins with PropertyQosPolicy
	15.9 Other Transport Support Operations
	15.9.1 Adding a Send Route
	15.9.2 Adding a Receive Route
	15.9.3 Looking Up a Transport Plugin

	Chapter 16 Built-In Topics
	16.1 Listeners for Built-in Entities
	16.2 Built-in DataReaders
	16.2.1 LOCATOR_FILTER QoS Policy (DDS Extension)

	16.3 Accessing the Built-in Subscriber
	16.4 Restricting Communication—Ignoring Entities
	16.4.1 Ignoring Specific Remote DomainParticipants
	16.4.2 Ignoring Publications and Subscriptions
	16.4.3 Ignoring Topics

	Chapter 17 Configuring QoS with XML
	17.1 Example XML File
	17.2 How to Load XML-Specified QoS Settings
	17.2.1 Loading, Reloading and Unloading Profiles

	17.3 How to Use XML-Specified QoS Settings
	17.4 XML File Syntax
	17.5 Using Environment Variables in XML
	17.6 XML String Syntax
	17.7 How the XML is Validated
	17.7.1 Validation at Run-Time
	17.7.2 XML File Validation During Editing

	17.8 Configuring QoS with XML
	17.8.1 QosPolicies
	17.8.2 Sequences
	17.8.3 Arrays
	17.8.4 Enumeration Values
	17.8.5 Time Values (Durations)
	17.8.6 Transport Properties
	17.8.7 Thread Settings
	17.8.8 Entity Names

	17.9 QoS Profiles
	17.9.1 QoS Profiles with a Single QoS
	17.9.2 QoS Profile Inheritance
	17.9.3 Topic Filters
	17.9.4 Overwriting Default QoS Values
	17.9.5 Built-in QoS Profiles
	17.9.6 Getting Qos Profiles

	17.10 QoS Libraries
	17.10.1 Get Qos Profile Libraries

	17.11 URL Groups
	17.12 Configuring Logging Via XML

	Chapter 18 Multi-channel DataWriters
	18.1 What is a Multi-channel DataWriter?
	18.2 How to Configure a Multi-channel DataWriter
	18.2.1 Limitations

	18.3 Multi-channel Configuration on the Reader Side
	18.4 Where Does the Filtering Occur?
	18.4.1 Filtering at the DataWriter
	18.4.2 Filtering at the DataReader
	18.4.3 Filtering on the Network Hardware

	18.5 Fault Tolerance and Redundancy
	18.6 Reliability with Multi-Channel DataWriters
	18.6.1 Reliable Delivery
	18.6.2 Reliable Protocol Considerations

	18.7 Performance Considerations
	18.7.1 Network-Switch Filtering
	18.7.2 DataWriter and DataReader Filtering

	Chapter 19 Connext Threading Model
	19.1 Database Thread
	19.2 Event Thread
	19.3 Receive Threads
	19.4 Exclusive Areas, Connext Threads and User Listeners
	19.5 Controlling CPU Core Affinity for RTI Threads
	19.6 Configuring Thread Settings with XML

	Chapter 20 Sample-Data Memory Management
	20.1 Sample-Data Memory Management for DataWriters
	20.1.1 Memory Management without Batching
	20.1.2 Memory Management with Batching
	20.1.3 Writer-Side Memory Management when Using Java
	20.1.4 Writer-Side Memory Management when Working with Large Data

	20.2 Sample-Data Memory Management for DataReaders
	20.2.1 Memory Management for DataReaders Using Generated Type-Plugins
	20.2.2 Reader-Side Memory Management when Using Java
	20.2.3 Memory Management for DynamicData DataReaders
	20.2.6 Memory Management for Fragmented Samples
	20.2.7 Reader-Side Memory Management when Working with Large Data

	Chapter 21 Troubleshooting
	21.1 What Version am I Running?
	21.1.1 Finding Version Information in Revision Files
	21.1.2 Finding Version Information Programmatically

	21.2 Controlling Messages from Connext
	21.2.1 Format of Logged Messages
	21.2.1.1 Timestamps
	21.2.1.2 Thread identification
	21.2.1.3 Hierarchical Context
	21.2.1.4 Explanation of Context Strings

	21.2.2 Configuring Logging via XML
	21.2.3 Customizing the Handling of Generated Log Messages

	Part 4: Request-Reply Communication Pattern
	Chapter 22 Introduction to the Request-Reply Communication Pattern
	22.1 The Request-Reply Pattern
	22.1.1 Request-Reply Correlation

	22.2 Single-Request, Multiple-Replies
	22.3 Multiple Repliers
	22.4 Combining Request-Reply and Publish-Subscribe

	Chapter 23 Using the Request-Reply Communication Pattern
	23.1 Requesters
	23.1.1 Creating a Requester
	23.1.2 Destroying a Requester
	23.1.3 Setting Requester Parameters
	23.1.4 Summary of Requester Operations
	23.1.5 Sending Requests
	23.1.6 Processing Incoming Replies with a Requester
	23.1.6.1 Waiting for Replies
	23.1.6.2 Getting Replies
	23.1.6.3 Receiving Replies

	23.2 Repliers
	23.2.1 Creating a Replier
	23.2.2 Destroying a Replier
	23.2.3 Setting Replier Parameters
	23.2.4 Summary of Replier Operations
	23.2.5 Processing Incoming Requests with a Replier
	23.2.5.1 Waiting for Requests
	23.2.5.2 Reading and Taking Requests
	23.2.5.3 Receiving Requests

	23.2.6 Sending Replies

	23.3 SimpleRepliers
	23.3.1 Creating a SimpleReplier
	23.3.2 Destroying a SimpleReplier
	23.3.3 Setting SimpleReplier Parameters
	23.3.4 Getting Requests and Sending Replies with a SimpleReplierListener

	23.4 Accessing Underlying DataWriters and DataReaders

	Part 5: RTI Secure WAN Transport
	Chapter 24 Secure WAN Transport
	24.1 WAN Traversal via UDP Hole-Punching
	24.1.1 Protocol Details

	24.2 WAN Locators
	24.3 Datagram Transport-Layer Security (DTLS)
	24.3.1 Security Model
	24.3.2 Liveliness Mechanism

	24.4 Certificate Support
	24.5 License Issues

	Chapter 25 Configuring RTI Secure WAN Transport
	25.1 Example Applications
	25.2 Setting Up a Transport with the Property QoS
	25.3 WAN Transport Properties
	25.4 Secure Transport Properties
	25.5 Explicitly Instantiating a WAN or Secure Transport Plugin
	25.5.1 Additional Header Files and Include Directories
	25.5.2 Additional Libraries
	25.5.3 Compiler Flags

	Part 6: RTI Persistence Service
	Chapter 26 Introduction to RTI Persistence Service
	Chapter 27 Configuring Persistence Service
	27.1 How to Load the XML Configuration
	27.2 XML Configuration File
	27.2.1 Configuration File Syntax
	27.2.2 XML Validation
	27.2.2.1 Validation at Run Time
	27.2.2.2 Validation During Editing

	27.3 QoS Configuration
	27.4 Configuring the Persistence Service Application
	27.5 Configuring Remote Administration
	27.6 Configuring Persistent Storage
	27.7 Configuring Participants
	27.8 Creating Persistence Groups
	27.8.1 QoSs
	27.8.2 DurabilityService QoS Policy
	27.8.3 Sharing a Publisher/Subscriber
	27.8.4 Sharing a Database Connection
	27.8.5 Memory Management

	27.9 Configuring Durable Subscriptions in Persistence Service
	27.9.1 Sample Memory Management With Durable Subscriptions

	27.10 Synchronizing of Persistence Service Instances
	27.11 Enabling RTI Distributed Logger in Persistence Service
	27.12 Enabling RTI Monitoring Library in Persistence Service
	27.13 Support for Extensible Types
	27.13.1 Type Version Discrimination

	Chapter 28 Running RTI Persistence Service
	28.1 Starting Persistence Service
	28.2 Stopping Persistence Service

	Chapter 29 Administering Persistence Service from a Remote Location
	29.1 Enabling Remote Administration
	29.2 Remote Commands
	29.2.1 start
	29.2.2 stop
	29.2.3 shutdown
	29.2.4 status

	29.3 Accessing Persistence Service from a Connext Application

	Chapter 30 Advanced Persistence Service Scenarios
	30.1 Scenario: Load-balanced Persistence Services
	30.2 Scenario: Delegated Reliability
	30.3 Scenario: Slow Consumer

	Part 7: RTI CORBA Compatibility Kit
	Chapter 31 Introduction to RTI CORBA Compatibility Kit
	Chapter 32 Generating CORBA-Compatible Code with rtiddsgen
	32.1 Generating C++ Code
	32.2 Generating Java Code

	Chapter 33 Supported IDL Types

	Part 8: RTI RTSJ Extension Kit
	Chapter 34 Introduction to RTI RTSJ Extension Kit
	Chapter 35 Using RTI RTSJ Extension Kit

	Part 9: RTI TCP Transport
	Chapter 36 Configuring the RTI TCP Transport
	36.1 TCP Communication Scenarios
	36.1.1 Communication Within a Single LAN
	36.1.2 Symmetric Communication Across NATs
	36.1.3 Asymmetric Communication Across NATs

	36.2 Configuring the TCP Transport
	36.2.1 Choosing a Transport Mode
	36.2.2 Explicitly Instantiating the TCP Transport Plugin
	36.2.2.1 Additional Header Files and Include Directories
	36.2.2.2 Additional Libraries and Compiler Flags

	36.2.3 Configuring the TCP Transport with the Property QosPolicy
	36.2.4 Setting the Initial Peers
	36.2.5 TCP/TLS Transport Properties

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

