RTI Connext DDS

Core Libraries and Utilities

User's Manuadl

Version 5.1.0

r t ' Your systems. Working as one.

© 2012-2013 Real-Time Innovations, Inc.
All rights reserved.
Printed in U.S.A. First printing.
December 2013.
Trademarks

Real-Time Innovations, RTI, DataBus, and Connext are trademarks or registered trademarks of Real-Time
Innovations, Inc. All other trademarks used in this document are the property of their respective owners.

Copy and Use Restrictions

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
(including electronic, mechanical, photocopy, and facsimile) without the prior written permission of Real-
Time Innovations, Inc. The software described in this document is furnished under and subject to the RTI
software license agreement. The software may be used or copied only under the terms of the license
agreement.

Third-Party Copyright Notices

Note: In this section, "the Software" refers to third-party software, portions of which are used in Connext;
"the Software" does not refer to Connext.

This product implements the DCPS layer of the Data Distribution Service (DDS) specification version 1.2
and the DDS Interoperability Wire Protocol specification version 2.1, both of which are owned by the
Object Management, Inc. Copyright 1997-2007 Object Management Group, Inc. The publication of these
specifications can be found at the Catalog of OMG Data Distribution Service (DDS) Specifications. This

ocumentation uses material from the OMG specification for the Data Distribution Service, section 7.
Reprinted with permission. Object Management, Inc. © OMG. 2005.

Portions of this product were developed using ANTLR (www.ANTLR.org). This product includes software
developed by the University of California, Berkeley and its contributors.

Portions of this product were developed using Aspect], which is distributed per the CPL license. Aspect]
source code may be obtained from Eclipse. This product includes software developed by the University of
California, Berkeley and its contributors.

Portions of this product were developed using MD5 from Aladdin Enterprises.

Portions of this product include software derived from Fnmatch, (c) 1989, 1993, 1994 The Regents of the
University of California. All rights reserved. The Regents and contributors provide this software "as is"
without warranty.

Portions of this product were developed using EXPAT from Thai Open Source Software Center Ltd and
Clark Cooper Copyright (c) 1998, 1999, 2000 Thai Open Source Software Center Ltd and Clark Cooper
Copyright (c) 2001, 2002 Expat maintainers. Permission is hereby granted, free of charge, to any person
obtaining a copy of this software and associated documentation files (the "Software"), to deal in the
Software without restriction, including without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions: The above copyright notice and this permission
notice shall be included in all copies or su%stantial portions of the Software.

Copyright © 1994-2013 Lua.org, PUC-Rio.

Permission is hereby granted, free of charge, to any dperson obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software witKout restriction, including
without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following
conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial
portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS
OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE OFTWARE.

Technical Support

Real-Time Innovations, Inc.
232 E. Java Drive

Sunnyvale, CA 94089
Phone: (408) 990-7444
Email: support@rti.com

Website: https://support.rti.com/

http://www.ANTLR.org
http://www.eclipse.org/aspectj
http://www.eclipse.org/legal/cpl-v10.html
https://support.rti.com/

Available Documentation

To get you up and running as quickly as possible, we have divided the RTI® Connext™ (for-
merly, RTI Data Distribution Service) documentation into several parts.

[Getting Started Guide (RTI_CoreLibrariesAndUtilities_GettingStarted.pdf)—This doc-
ument describes how to install Connext. It also lays out the core value and concepts
behind the product and takes you step-by-step through the creation of a simple example
application. Developers should read this document first.

If you want to use the Connext Extensible Types feature, please read:

e Addendum for Extensible Types (RTI_CoreLibrariesAndUtilities_GettingStarted
_ExtensibleTypesAddendum.pdf) Extensible Types allow you to define data types in
a more flexible way. Your data types can evolve over time—without giving up porta-
bility, interoperability, or the expressiveness of the DDS type system.

If you are using Connext on an embedded platform or with a database, you will find
additional documents that specifically address these configurations:

® Addendum for Embedded Systems (RTI_CoreLibrariesAndUtilities_GettingStarted
_EmbeddedSystemsAddendum.pdf)

e Addendum for Database Setup (RTI_CoreLibrariesAndUtilities_GettingStarted
_DatabaseAddendum.pdf).

(d What's New (RTI_CoreLibrariesAndUtilities. WhatsNew.pdf)—This document
describes changes and enhancements in the current version of Connext. Those upgrading
from a previous version should read this document first.

[Release Notes and Platform Notes (RTI_CoreLibrariesAndUtilities_ReleaseNotes.pdf
and RTI_CoreLibrariesAndUtilities_PlatformNotes.pdf)—These documents provide
system requirements, compatibility, and other platform-specific information about the
product, including specific information required to build your applications using RTI,
such as compiler flags and libraries.

(1 Core Libraries and Utilities User’'s Manual (RTI_CoreLibrariesAndUtilities
_UsersManual.pdf)—This document describes the features of the product and how to
use them. It is organized around the structure of the Connext APls and certain common
high-level tasks.

(J API Reference HTML Documentation (ReadMe.html)—This extensively cross-refer-
enced documentation, available for all supported programming languages, is your in-
depth reference to every operation and configuration parameter in the middleware. Even
experienced Connext developers will often consult this information.

iii

The Programming How To's provide a good place to begin learning the APIs. These are
hyperlinked code snippets to the full API documentation. From the ReadMe.html file,
select one of the supported programming languages, then scroll down to the Program-
ming How To’s. Start by reviewing the Publication Example and Subscription Example,
which provide step-by step examples of how to send and receive data with Connext.

Many readers will also want to look at additional documentation available online. In particular,
RTI recommends the following:

[Use the RTI Customer Portal (http://support.rti.com) to download RTI software, access
documentation and contact RTI Support. The RTI Customer Portal requires a username
and password. You will receive this in the email confirming your purchase. If you do not
have this email, please contact license@rti.com. Resetting your login password can be
done directly at the RTI Customer Portal.

[The RTI Community website (http://community.rti.com) provides a wealth of knowl-
edge to help you use RTI Connext DDS, including:

® Best Practices

® Example code for specific features, as well as more complete use-case examples,
® Solutions to common questions,

® A glossary,

¢ Downloads of experimental software,

¢ And more.

(J Whitepapers and other articles are available from http://www.rti.com/resources.

iv

http://community.rti.com
http://support.rti.com
http://www.rti.com/resources

Contents

Available Documentation................ecceeeccseeeeeeene, iii
Welcome to RTT ConnexXt.......ccooeeoeeeereerrerrecrserseeceesseeeseesseeesesseeseeeaeens xix
CONVEINTIONS ..eevtieiieeiieeiteeeteetee st e et e steeesteesteeeste e seesseessseesssaassaesssaasseessseassaesssesssaenseenssessseesseenssesnsaensaennses Xix
Extensions to the DDS Standardcceeveiioieiiciecececeeeeee et Xix
ENvironment VAriablesccccviiieiirieieieicieieiecse ettt e st st b et s e s saeseesannas Xix
Names of Supported Platformsccccceiiiiininiicnrccerrrrrr s Xix
AddItioNal RESOUICES......vicvieiiietieiieteeieeteste ettt ettt e te e e e sbeeaesbeesaesseesseseessesseesseeseessessesssesseessessens XX

Part 1: Infroduction

LI @ 1Y 7= V7 = 1-1
1.1 WA IS CONNEXE? . ettt et ee et e e et e e s eae e e e eaaeesaaeesenaeesenseesanseeesseessnsaesssaesssseeesannes 1-1

1.2 WHhat iS MAAAIEWATE? ...ttt ettt e st e et e e s et e e sateeesanaeesnaeessneeesnnnes 1-2

1.3 Network Communications IMOAELSccuoviiiiiiiieiiieeieceeecee ettt et e eaeeeneeenes 1-2

T4 Featltres Of COMMEXt ...coouuiiieiiiieeieeeeeeeeeete ettt et e et e s et e e e eaaeeseaaeessatesssaeesasseesssseesessessstesssreeesannes 1-4

2 Data-Centric Publish-Subscribe Communications.............ccceeee... 2-1
2T WAL IS DICPS? .ottt e e et e e e e eae e et e s eaeeeaeesaeeseaeeeaeeseaeeeaeeseneeeneesneeaaeas 2-1
2.1.1 DCPS for Real-Time ReqUITEMENtS..........ccceeuiiiiiiiiiiiiiiiiiiiiiicrcieeeseseeeecas 2-2

2.2 Data Types, Topics, Keys, Instances, and Samples.............cccoouoiriiiiiiniiiiiccecceec 2-3
22.1 Data Topics — What is the Data Called?ccccccoiiiiiiiiiiiiinicccces 2-3

2.2.2 Samples, Instances, and Keysccccovurivviiiiniininiiiicccs 2-4

2.3 DataWriters/Publishers and DataReaders/Subscribers...........ccovevveeeieieeeceeeeeeceeeeeeee e 2-5

2.4 Domains and DomainPartiCipants ... 2-7

2.5 Quality of Service (QOS).....ccciimimiimiiiiiiiiiieiirii s 2-8
2.5.1 Controlling Behavior with Quality of Service (Q0S) POliciescccouvuverurerrercriniriccneee 2-8

2.6 ApPPLCation DISCOVETY......covimiiiiiiiiiiiciiiiiiii s 2-9

Part 2: Core Concepts

3 Data Types and Data Samples...........cciiiiiiireccce e, 3-1
3.1 Introduction to the Type SYStemM.......ccouviiiiiiiiiiiiiie e 3-3
311 SEQUEIICES.....oiiiiiiicii s 3-4

3.1.2 Strings and Wide StrNGScccccceuiuiiiiiriiiiiiccrce s 3-4

3.1.3 Introduction to TyPeCode ..o 3-4

3.2 Built-in Data TYPES ...c.ceueviveieieieieiceeceee s 3-5
3.2.1 Registering Built-in TYPesccoevviviiiiiiiiiiiiiccc s 3-6

3.2.2 Creating Topics for Built-in TyPes........cccoviiiiiiiiiiiiiciiiiicccccc 3-6

3.2.3 String Built-in TYPe ..cevviiiiiiiiiiiiiic 3-8

324 KeyedString Built-in TyPe......ccccoviviiiiiiiiiiiii s 3-12

3.25 Octets BUIt-IN TYPE...cciiiiiiiiiiciiiiiiiicici s 3-18

3.2.6 KeyedOctets Built-in TYPecccoovvviiiiiiiiiiiiiiicc s 3-24

3.2.7 Managing Memory for Built-in Types........ccccccovuiriiiiiiniiiiciccces 3-31

3.2.8 Type Codes for Built-in TYPescccecvvrieieiiiiiiiiiiiiicicicicicccccc s 3-34

3.3 Creating User Data Types With IDLccccccciiiiiiiiiiiiiccceccee s 3-35
3.3.1 Variable-Length TYPeScccooeuiiiiiiiiiiiiicccecccree e 3-37

3.3.2 ValUe TYPES...coiieiiiiiectt s 3-38

3.3.3 TypeCode and rtiddSgencouowruiiiiiciiii s 3-38

3.3.4 rtiddsgen Translations for IDL TyPes......cccccoooiieieiiiiiiicieiiceie s 3-39

3.3.5 Escaped Identifiers ..o 3-52

3.3.6 Referring to Other IDL Filesccccccooiiiiiiiiiiiiiiccccceeeeee s 3-53

3.3.7 Preprocessor DIreCtiVes ... 3-53

3.3.8 Using Custom DirectiVes........ccoeuiiieiiiiiciciec s 3-53

3.4 Creating User Data Types with Extensible Markup Language (XML)ccccccevvvvnnnnnncncnee 3-59
3.5 Creating User Data Types with XML Schemas (XSD)ccccoeueiiiimieiiiiiieeiccee i, 3-64
3.5.1 Primitive TYPES ..coovoviiiiiiciiiieicc s 3-77

3.6 UsINg rtiddSZeN.....cviiieii s 3-77
3.6.1 rtiddsgen Command-Line Arguments.............cccooeviiireiiiiiicieeccec e 3-79

3.7 Using Generated Types without Connext (Standalone)............cccooeruemiicieiiiiiciciiice, 3-83
3.7.1 Using Standalone Types in C........cccooouiiiiiriiiiiiciee s 3-84

3.7.2 Using Standalone Types in C+c.ccceuiiiiiiiiiiiiiiiiiceees 3-84

3.7.3 Standalone Types IN JaVa......cccccccuiuiiiiiiiiiiiiiiiiice s 3-85

3.8 Interacting Dynamically with User Data TyPesc.ccccouiiieieiiicicieiiiicieececc 3-85
3.8.1 Introduction to TyPeCodecccccciiiiiiiiiiiiiiiiiiiiiiiii s 3-85

3.8.2 Defining New TYPEScccviiiiiriiiiiiiiiiiiiciirccre s 3-86

3.8.3 Sending Only a FEW FIeldsccocoviiiiiiririiiiiiirccncrcecre s 3-87

3.8.4 Type Extension and Versioning ...t 3-89

3.85 Sending Type Codes on the NetWork ..o 3-89

3.9 Working with Data SAmpPles........cccccciiiiiiiiiicce s 3-91
3.9.1 Objects of Concrete TYPEScccvvvvviiiiiriiiiiiiiiiii s 3-91

3.9.2 Objects of Dynamically Defined Typescccccovuiueiiiiieiiiciiie e 3-92

3.9.3 Accessing the Discriminator Value in a Union..........cccoooimiiiiioiiniciiiiccicecceee 3-93

4 ENHHieS ... 4-1
41 Common Operations for All ENtIties ... 4-2

vi

41.1 Creating and Deleting Entitiescccocooiiiiiii e 4-2

412 Enabling ENtities. ..o 4-3

41.3 Getting an Entity’s Instance Handle...........cccoooiie 4-5

414 Getting Status and Status Changes...........cccccieiiiiiiiiiiiiis 4-5

415 Getting and Setting LISLENETSccccoueuiiiiiiriiiiiiiriecccrececrere s 4-5

41.6 Getting the StatusCONAItIONc.ceeiririiiiiciiiiccecc s 4-6

4.1.7 Getting, Setting, and Comparing QosPolicies..........c.cccooruiiiiiiiiiiiiiiii 4-6

4.2 QOSPOLICIES ...ttt ettt ettt e et et ettt e ete e be et e teeteeeseeaseeteesb e beeabeebeerb e teebeeae et eeteenteeteenseteentens 4-9
421 QoS Requested vs. Offered Compatibility—the RxO Property..........cccccceevvvverurnennee 4-12

4.2.2 Special QosPolicy Handling Considerations for C...........cccoooiiiiiiiiii, 4-13

4.3 SHALUSES ..ovvreeeeteitce e 4-14
43.1 Types of CommuNIication StAtUS.........ccceururireririririririrrre s 4-15

4.3.2 Special Status-Handling Considerations for C...........cccccooriiiiiiiiiiiiiecc, 4-17

44 LESTEIIETS oeeeeitee ettt 4-20
441 Types Of LISLENETScociuiiiiiiiiiciiccci s 4-20

4.4.2 Creating and Deleting LiSteners...........cccviiiiiiiiiiiiiiiiiiiccces 4-22

4.4.3 Special Considerations for Listeners in C ... 4-22

444 Hierarchical Processing of LiSteners..........cccccocevviiiiiiiiiiiiiics 4-22

445 Operations Allowed within Listener Callbacks...........ccccccceviniiinnnnnininiiiin 4-24

45 EXCIUSIVE ATEAS (EAS) .ueiiuiriiieiiieieieietct ettt ettt ettt ettt sttt sttt 4-24
45.1 Restricted Operations in Listener Callbacks.........ccccccovoiriiiiniiiiiiniiiec, 4-26

4.6 Conditions and WaitSets...........cuiiiiiiiiiiiiiiiic s 4-27
4.6.1 Creating and Deleting WaitSets............cccceuoiiiioiiiiii 4-28

4.6.2 WaitSet Operations.........cociiuiiiiiiiiiiiiciiiiic s 4-29

4.6.3 Waiting for CONAItIONSc.ccuimimimiiiiiiiiiiic s 4-29

4.64 Processing Triggered Conditions—What to do when Wait() Returns..........c.cccccueeeence. 4-31

4.6.5 Conditions and WaitSet EXample.........ccccccoeuiiiiiiiiiiiiiiiiicereeeeeeeeeeeeeeeeeeeeeeas 4-32

4.6.6 GUArdCONAItIONScviviveiiieiiicicieice s 4-33

4.6.7 ReadConditions and QueryConditions............ccooeueueiiiiiiiiiiiiiiicc 4-34

4.6.8 StatusCONdItiONScccoiiiiiiiiiiiiiiiiii 4-36

4.6.9 Using Both Listeners and WaitSets ... 4-37

Lo o) o= PN 5-1
5.1 TOPICS ottt n e 5-1
51.1 Creating TOPICS ...cuoviviiiiiiiiiiiiiicc s 5-3

5.1.2 Deleting TOPICS.....cccciviviriiiiiiiiiiiiiiiiicc s 5-4

5.1.3 Setting Topic QOSPOLICIESouevviiiiiiiiiictcic s 5-4

514 Copying QoS From a Topic to a DataWriter or DataReadercccooovreiiiriinnnna, 5-7

5.1.5 Setting Up TOPIiCLISLENETScvoviviviiiiiiciiciciice s 5-8

5.1.6 Navigating Relationships Among Entitiescccccocevvviinnnininnniinccccae 5-8

52 Topic QOSPOLICIESoovviiiiiiiiicicc s 5-8
521 TOPIC_DATA QOSPOLCYccooeuriiiiiiiiiiiiiiriineiscce s 5-8

5.3 Status Indicator fOr TOPICSccviiiriiiiiiiiiiciiicicicc 5-10
53.1 INCONSISTENT_TOPIC Status.......cccccevuviviviniiiniiiiiiiiicin s 5-10

54 ContentFilter@dTOPICSccceueueueiiiiiiiiirieieicicieieiecee et 5-11
541 OVEIVIEW wooviiiiiiicicccec e 5-11

5.4.2 Where Filtering is Applied—Publishing vs. Subscribing Sidecccooeeriiriinnne. 5-12

543 Creating ContentFilteredTOPiCs........oovueueieiiiriciiiiiccec s 5-13

vii

5.4.4 Deleting ContentFilteredTOpics........cccooiuruiiiiiiieiiiiiiiciece s 5-16

545 Using a ContentFilteredTOPic........cooceiiiiiiiiiiiiiicicec s 5-16

5.4.6 SQL Filter Expression NoOtation..........c.cocooriiiciiiiccc e 5-19

5.4.7 STRINGMATCH Filter Expression NOtation ... 5-26

5.4.8 Custom Content Filters...........cocoeoiiiiiiiiiiiiii s 5-27

6 Sending DAtQ........ . 6-1

6.1 Preview: Steps to Sending Data ..o 6-1

6.2 PUDBLSRETS.....oiiiiiiiiiiii s 6-2

6.2.1 Creating Publishers Explicitly vs. Implicitlyccccooeiiiiiiiii 6-3

6.2.2 Creating PUDLISNETSccoiiiiiiiiii e 6-5

6.2.3 Deleting PUDLISNETSccoiiiiiiiiiiiiiccccccccee e 6-7

6.24 Setting Publisher QOSPOLICIESocooiiuiiiiiiiccccccccece e 6-7

6.2.5 Setting Up PublisherLiStenersccooooiiiiiiiiiiiii 6-13

6.2.6 Finding a Publisher’s Related ENtitiesccccoooiiiiiiiiii 6-15

6.2.7 Waiting for Acknowledgments in a Publishercccoooiii 6-15

6.2.8 Statuses fOr PUDLISNErs.ccccoiiiiiiiniiciicec e 6-15

6.2.9 Suspending and Resuming Publicationsccooveiiiiiiiiininiiiiecceae 6-16

6.3 DataWIILETS ...c.oviiiiiiiiice e 6-16

6.3.1 Creating DataWTIiters ... 6-19

6.3.2 Getting All DataWTItETs.......cciuiiiiiiiiicicccceecece e 6-20

6.3.3 Deleting DataWIIters ..o 6-20

6.3.4 Setting Up DataWriterLiStenersccocooueveiiiieiiiiciciecce s 6-21

6.3.5 Checking DataWriter Status........cccooiiuiiiiiiiiii 6-22

6.3.6 Statuses for DataWIitersccooviiiiiiiiiii s 6-22

6.3.7 Using a Type-Specific DataWriter (FooDataWriter) ..o, 6-30

6.3.8 WIItING Data ...coovoviiiiiiiiic s 6-31

6.3.9 Flushing Batches of Data SAmples ..o 6-34

6.3.10 Writing Coherent Sets of Data SAmPILEScccoviviviimiiiiiiiiiis 6-34

6.3.11 Waiting for Acknowledgments in a DataWriter ... 6-35

6.3.12 Application Acknowledgmentccoooiiiiiii 6-35

6.3.13 Required SUDSCIIPHONS........ccooiuiiiiiiiiiiicc s 6-40

6.3.14 Managing Data Instances (Working with Keyed Data Types)........ccccccceueueueuvueueucrcucununns 6-41

6.3.15 Setting DataWriter QOSPOLCIEScoviviveiiiicieiicice 6-44

6.3.16 Navigating Relationships Among Entitiesccccccceeiiiiiiiiiiiiiiiicin, 6-53

6.3.17 Asserting LiVelINeSsc.cccuiiiiiriiiiiceiec 6-55
6.3.18 Turbo Mode and Automatic Throttling for DataWriter Performance

—Experimental Featuresccccoociiiiiiiiiiiiiiiiiiicc s 6-55

6.4 Publisher/Subscriber QOSPOLICIEScccueiiiiieeieeciee ettt ettt ettt e veeete e e e eeteesveebeeseneeseenaeas 6-56

641 ASYNCHRONOUS_PUBLISHER QosPolicy (DDS Extension)ccccocovviiiiuiinnnnns 6-56

6.42 ENTITYFACTORY QOSPOLCYc.cuevriuiuiiiriiicieiriicieieiriiiee e 6-58

6.4.3 EXCLUSIVE_AREA QosPolicy (DDS EXtension).........cccccccceueririniiivinininininicininiciiieieeniens 6-60

644 GROUP_DATA QOSPOLCYccovvvrimriiiiiiiiiiiiiiiciiicc s 6-62

6.4.5 PARTITION QOSPOLCYcvvvviiimiiiiiiiniiiiiiiiisiiiniss s 6-64

6.4.6 PRESENTATION QOSPOLCY ...ccccvviviiiiiiiiiiiiiiiiiiiiiisisscscsssss s 6-69

6.5 DataWriter QOSPOLICIEScveevieveerierecteeeeeteeteete et ettt ete et e ete et eebeeseeteeaseeteerseeseesseeseersesseesseseenseseas 6-73

6.5.1 AVAILABILITY QosPolicy (DDS EXteNSion)..........cccceveeuiimimiiiieiiiiniieieieieieeeeseenenenennes 6-74

6.5.2 BATCH QosPolicy (DDS EXtENSION)........cccvirimimimiriiiriiiiiiieiiiiieseieieieeie e 6-78

6.5.3 DATA_WRITER_PROTOCOL QosPolicy (DDS Extension)..........c.cccccevueviveneiiiiinniennnns 6-83

viii

6.54 DATA_WRITER_RESOURCE_LIMITS QosPolicy (DDS Extension)...........c.cccocvuvuinnes 6-92

6.5.5 DEADLINE QOSPOLCYccceuiiimiiiiiiiiiiniiiiceicnie s 6-94

6.5.6 DESTINATION_ORDER QOSPOLCYcccvuiuiiiiiiiiiiriiiiiiciiisiicisiiisie e 6-96

6.5.7 DURABILITY QOSPOLICY ...t 6-98

6.5.8 DURABILITY SERVICE QOSPOLCYcevevirimiiiiiiirieiciiiieiciic s 6-101

6.5.9 ENTITY_NAME QosPolicy (DDS EXteNsion)cccccceueueueueueueiiieieieieieicieieneeeeienenennes 6-103
6.5.10 HISTORY QOSPOLCY ...ccoviviiiiiiiiiiiiiiiiiniiii s 6-104
6.5.11 LATENCYBUDGET QO0S POLCYccoveuririiiiiiiiiiiciriicsinicesisse e 6-107
6.5.12 LIFESPAN QOS POLCYcciuiiiiiiiiiiiiici i 6-108
6.5.13 LIVELINESS QOSPOLICYcucveuiiuiieiriiicieiririiicieiricieie st 6-109
6.5.14 MULTI_CHANNEL QosPolicy (DDS EXtENSION)ccccoeueueuimimemeuememcrereieiciererieeeeeeeeeerenes 6-112
6.5.15 OWNERSHIP QOSPOIICYcvvviiimiiiiiiiiiiiiiiciii e 6-114
6.5.16 OWNERSHIP_STRENGTH QOSPOLCYccevvviimiiiiiiiiiiiiiiniiicccnes 6-117
6.5.17 PROPERTY QosPolicy (DDS EXteNnsion) ... 6-117
6.5.18 PUBLISH_MODE QosPolicy (DDS EXtension).........c.cccccvuriieuriniieiiiniccsiniieseseseenens 6-119
6.5.19 RELIABILITY QOSPOLCY ...c.cvvviuiuiiiiiicieiriicicieiiicieie sttt 6-121
6.5.20 RESOURCE_LIMITS QOSPOLCYc.cvvurviriiiniiniiniieiiciiciectcscn s 6-125
6.5.21 TRANSPORT_PRIORITY QOSPOLCYcoovruriiiiiiiiiiiiiiieiiicicccicce e 6-128
6.5.22 TRANSPORT_SELECTION QosPolicy (DDS EXtension)..........c.cccoeovviviiiviniiniiniiiinns 6-129
6.5.23 TRANSPORT_UNICAST QosPolicy (DDS EXtension)c.ccccceceuvininicieininicieisinenans 6-130
6.5.24 TYPESUPPORT QosPolicy (DDS EXteNSION)cccccoviviuiueiriiiniiieiiinieeisisinieisiseceneinenns 6-133
6.5.25 USER_DATA QOSPOLICYccovimiimiiiiiiiiiiiiiiiiciciiccises e 6-134
6.5.26 WRITER_DATA_LIFECYCLE QOS POLCYc.ovvuiiiiiniiiiiiiciiciiceccneececanns 6-136

6.6 FlowControllers (DDS EXtENSION)couecerueerieuirieirieinieineinieenietstese sttt ereseeresesbesesseseesenenne 6-138
6.6.1 Flow Controller Scheduling POLCIes............cccccoeuiiiiiiiiiiiiiiiiiiiiiiccccceeeas 6-139

6.6.2 Managing Fast DataWriters When Using a FlowControllerc.ccccccveeiciicnnnes 6-140

6.6.3 Token Bucket PrOPEItiesccoiiiiiiiiiiiiiicccccccecccceeeee e 6-140

6.6.4 Prioritized SAMPIES ... 6-142

6.6.5 Creating and Configuring Custom FlowControllers with Property QoS 6-144

6.6.6 Creating and Deleting FlowControllers...............cooeuoiiiiiioiiiiiiiecee 6-146

6.6.7 Getting/Setting Default FlowController Properties ..o 6-147

6.6.8 Getting/Setting Properties for a Specific FlowController............c.ccccccecueicenciccnnnnns 6-147

6.6.9 Adding an External Trig@erccocooiiiiiiiiiiii 6-148
6.6.10 Other FlowController Operations........c.cocoouviiviiiniiiniiiiiicccccccecvsennnes 6-148

7 Receiving Data.........ooo o 7-1
7.1 Preview: Steps to Receiving Datacccoooiiiiiiiiii s 7-1
7.2 SUDSCIIDETS ...ttt sttt st st sttt ettt st sttt sttt eene 7-3
7.2.1 Creating Subscribers Explicitly vs. IMPLCItLYc.ccccceuemriiiiiiiiiiiiiicrceeececceeee 7-6

7.2.2 Creating SUbSCIIDETSc.oouiii 7-6

7.2.3 Deleting SUDSCIIDETScoouiviiiiiiciicici s 7-7

7.2.4 Setting Subscriber QOSPOLICIESc.cviiuiieiiiicieicc e 7-8

7.2.5 Beginning and Ending Group-Ordered AcCessccccoeueuiuiiririiiiiiiiiciniiiiicicicicicieins 7-13

7.2.6 Setting Up SubscriberLiSteners ..o 7-13

7.2.7 Getting DataReaders with Specific SAmPples ..o 7-15

7.2.8 Finding a Subscriber’s Related Entities..........cccccoooiiiiiiiiiiiii 7-16

7.2.9 Statuses for SUDSCIIDErS ... 7-16

7.3 DataReaders.......cccccoiiiiiiiiiiiiiiiii s 7-17
731 Creating DataReaders.........c.cccoouiuiiiiiiiiiiiicic 7-20

ix

732 Getting All DataReaders..........ccoooueuiiiiiiiiiiicic 7-21

7.3.3 Deleting DataReadersccoooruiiiiiiiiiiiiicie 7-22

7.3.4 Setting Up DataReaderLiStenerscccoouiiueiiiciiiiiiceccic e 7-22

7.3.5 Checking DataReader Status and StatusConditionsccccceeuviiiieviiiiinnciiicnns 7-23

7.3.6 Waiting for Historical Dataccccccieiueiiiiiiiiiiiiicecccceieeeec e 7-24

7.3.7 Statuses for DataReaders..........cccoovviiiiiiiiiiiiiiii e 7-25

7.3.8 Setting DataReader QOSPOLCIEScccueueiiiiiieiiccie 7-34

7.3.9 Navigating Relationships Among Entitiesc.cccccooviiiiiiiiiiiiccns 7-39

74 Using DataReaders to Access Data (Read & Take)ccccceiuiiiiiiiiiciicicccceeceeeenenenes 7-40
741 Using a Type-Specific DataReader (FooDataReader)............ccooeveiiiieiiiiiiniciiiicicae 7-40

742 Loaning and Returning Data and SampleInfo Sequences............cccccevviiriiiiiiicicinincnaes 7-41

743 Accessing Data Samples with Read or Take.........ccoouoiiiiiiiiiiiiii 7-42

744 Acknowledging Samples..........ccciiiiiiiiiiiiiii e 7-48

745 The Sequence Data StrUCTUTE..........cccoiiimiiuiiiiiiiccieceeeeeeee e 7-48

746 The Samplelnfo SEIUCTUTE.cccooiiiiiiiii e 7-49

7.5 SubSCriber QOSPOLICIESccveeveevieuieteeieeteeteeteete e et e et e v e e teeaeereesesaeeseessebesssebeessenseeseesesseersesseensens 7-53
7.6 DataReader QOSPOLICIEScceeuieviiiiieieieeteiieiee ettt et st esaeeteete s e esbestaesbesseesseeseesseessessesssessesssensens 7-54
7.6.1 DATA_READER_PROTOCOL QosPolicy (DDS Extension)...........ccccccoeueviuieiiiiiuinenennnns 7-54

7.6.2 DATA_READER_RESOURCE_LIMITS QosPolicy (DDS Extension)..........ccccccceucueueunnee 7-59

7.6.3 READER_DATA_LIFECYCLE QOS POLCYcevvimiiiviiininiiiiiiciciniccccniene 7-64

7.6.4 TIME_BASED_FILTER QOSPOLCYcovvviiinriiiiiiiiiiiiiieiicicceenecscn s 7-65

7.6.5 TRANSPORT_MULTICAST QosPolicy (DDS EXtension)cccceceeueueuevereieriveierenenennns 7-67

7.6.6 TYPE_CONSISTENCY_ENFORCEMENT QOSPOLICYccovuimiiiiiiiiiniiiiiiiiiiieiciciciiiins 7-70

8 Working with DOMAINS ... 8-1
8.1 Fundamentals of Domains and DomainParticipants ..o 8-1
8.2 DomainParticipantFactory ... 8-3
8.2.1 Setting DomainParticipantFactory QOSPOLICIES ..o 8-5

8.2.2 Getting and Setting Default QoS for DomainParticipantscccoceeiicieiicciennna 8-6

8.2.3 Freeing Resources Used by the DomainParticipantFactory...........ccccooooriiiiiiciinna. 8-6

8.2.4 Looking Up a DomainParticipant...........cccceeiriioiiiiiciecccece s 8-6

8.2.5 Getting QoS Values from a QoS Profile.........ccccouviviviniiiiiinininiiiiinncinccaes 8-7

8.3 DomainPartiCiPantscccoiiiiiiiiiiii e 8-7
8.3.1 Creating a DomainParticipant...........ccccoviiiiniiiiiiiiicc e 8-11

8.3.2 Deleting DomainPartiCipants ... 8-13

8.3.3 Deleting Contained ENtitiescccccoeiuiiiiiiiiiiiiiiiiiiiicicerecceeceee s 8-13

8.3.4 Choosing a Domain ID and Creating Multiple Domains...........cccccoeeiiiiiiincninne, 8-13

8.3.5 Setting Up DomainParticipantLiStenersccccceviieniiiiiniiiiieeiccccccs 8-14

8.3.6 Setting DomainParticipant QOSPOLCIESccoueviiiiriiiiiiiec 8-16

8.3.7 Looking up Topic DeSCriptionscccccceueiviviiiiiiiiiniiiiiciiiiiinriss s 8-21

8.3.8 FINAING @ TOPIC .vcvviiiiiiiiciicicicc s 8-21

8.3.9 Getting the Implicit Publisher or Subscriberc.cccoovviiniiinnincee 8-22
8.3.10 Asserting Livelinesscccoeruiiiiiiiiieiiicic s 8-23
8.3.11 Learning about Discovered DomainParticipantsc.cccococeieiiicieiiiiceiiccce 8-23
8.3.12 Learning about Discovered TOPiCs.........cccoerueiiiicieieieiicieieiiccie s 8-23
8.3.13 Other DomainParticipant Operationsccccccoeueueiiiiiiiniiiniiiiiiniinsrsrees 8-24

8.4 DomainParticipantFactory QOSPOLCIES..........c.coeueiieiiiiiic 8-24
8.4.1 LOGGING QosPolicy (DDS EXteNSION)cccceuvuviiiiiiiiiiiiiiiiniiiiieiccieicseecs 8-24

8.4.2 PROFILE QosPolicy (DDS EXteNnsion)ccccccceeeiiiiiiiiiiiiiiiiiiieiiincneeseseens 8-25

8.4.3 SYSTEM_RESOURCE_LIMITS QoS Policy (DDS Extension)..........ccccecvvivevinininiiininennes 8-27

8.5 DomainParticipant QOSPOLICIEScccuruririririiririi e 8-28
8.5.1 DATABASE QosPolicy (DDS EXteNSsion)ccccoevvvviiiiiiinininiiininiiiiniesnens 8-28

8.5.2 DISCOVERY QosPolicy (DDS EXteNnsion).........ccccevvuiiriniiiniiiiininiiiinininsnesissssees 8-31

8.5.3 DISCOVERY_CONFIG QosPolicy (DDS EXtension)...........cccccevvvvinivinivinininniiiiiinenns 8-34

8.54 DOMAIN_PARTICIPANT_RESOURCE_LIMITS QosPolicy (DDS Extension) 8-42

8.5.5 EVENT QosPolicy (DDS EXtENSION)c.cucueuiuiiiiiiririiiiicieirieieeceeieereceeeeerieee s 8-48

8.5.6 RECEIVER_POOL QosPolicy (DDS EXtENSION)........cccceveveirerereniiriiriiiesieeeeees s 8-50

8.5.7 TRANSPORT_BUILTIN QosPolicy (DDS EXtension)ccceceevvveieveriiiiiniiniininnnnnn 8-51

8.5.8 TRANSPORT_MULTICAST_MAPPING QosPolicy (DDS Extension).........c.cccccecvuueuine 8-52

8.5.9 WIRE_PROTOCOL QosPolicy (DDS EXtension)cccccoeevirivirininiiinininniniininiiiciiicens 8-54

8.6 CLOCK SELECHION ...ttt ettt st et s bbb e et eb e eb bbb e b et et e e eas 8-60
8.6.1 AVAIlADIE CIOCKS ...ttt ettt ettt ettt beebesbesbestenaens 8-60

8.6.2 Clock Selection STrategyccccciviiiiiiiiiiiiiiiiiii s 8-60

8.7 SyStem PrOPerties.......ccooiuiiiiiiiiiiiiici s 8-61
9 Building Applications............ccccoeeiiiiiiiiiiiie . 9-1
9.1 Running on a Computer Not Connected to a NetWorkccccoeoiiiiiiiciiiiiiieeccceeene 9-1
9.2 Connext Header Files — All ArChiteCtUIEScoeiverierierieieieieeteteeie ettt ettt saesaens 9-2
9.3 UNIX-Based PLatfOrmmScoucerueuirieirieiiriiinietnieirtetetetetest ettt ettt et eb et st s st s et se s sesensenennes 9-2
9.3.1 Required LiDIaries ..ot s 9-3

9.3.2 Compiler FIags.......cccceuvuiiiiiiiiiiiiiiiiiiicicicc s 9-3

9.4 WINAOWS PLAtfOTINS ..ottt ettt ettt sttt ettt ebe st e bt ebeebesbe st et et etenteneentene 9-3
9.4.1 Using Visual Studio .NET or Visual Studio 2005ccccevirrieiiiiiieiiecceceeee 9-4

0.5 JAVA PLAtfOTINS ..c..etiteieiete ettt ettt sttt ettt b et b e bbbttt et et et et ene 9-5
9.5.1 JAVA LIDTATIES. ..cueeteieieete ettt b ettt ettt s ettt be s be b ettt n 9-5

9.5.2 INAHIVE LIDTATIES ...ttt ettt ettt ettt ettt et aeebesbesbense st et enean 9-5

Part 3: Advanced Concepts

10 Reliable Communications.............ccoinnn 10-1
10.1 Sending Data ReHiablyccccciiiiiiiiiiiiiiiiiiiiiciieeee e 10-1
10.1.1 Best-effort Delivery Model..........ccocooiiiiiiiiiicrre e 10-1
10.1.2 Reliable Delivery Model..........cccooiiiiiiiiii s 10-2

10.2 Overview of the Reliable ProtoCOL. ..o 10-3
10.3 Using QosPolicies to Tune the Reliable Protocol.............cooeuiiiiiiiiiii 10-6
10.3.1 Enabling Reliabilityccccocoiiiiiiiiiiiiiiiiiiiiiii s 10-7
10.3.2 Tuning Queue Sizes and Other Resource Limitscccocoeviiviineiniiicieiccecee, 10-7
10.3.3 Controlling Queue Depth with the History QosPoliCy........ccccoviriiiiiininccicircnne 10-13
10.3.4 Controlling Heartbeats and Retries with DataWriterProtocol QosPolicy 10-13
10.3.5 Avoiding Message Storms with DataReaderProtocol QosPolicyccccceuviiirieiinnne. 10-19
10.3.6 Resending Samples to Late-Joiners with the Durability QosPolicy.........ccccccooorueunnnne. 10-19
10.3.7 USE CASEScuvvvriiiiictiiiict st 10-20

10.4 Auto Throttling for DataWriter Performance—Experimental Feature.........c.c.cccooooeveiinnnnnn. 10-30

Xi

11T Collaborative DOTAWHTELS........c.veieieieiecrc e eeeessensensenssnssnssnnee 11-1

11.1
11.2
11.3

11.4

Collaborative DataWriters Use Casescccovuviviiiiiiiiiiiiiiiniiiiiicis s 11-2
Sample Combination (Synchronization) Process in a DataReader ..o, 11-3
Configuring Collaborative DataWTItersccccccciiiiiiiiiiiiiiirccrecereeeeeeeeeee e 11-3
11.3.1 Assocating Virtual GUIDs with Data Samples...........cccooiiiiiiiiiinccccciccccccenenes 11-3
11.3.2 Assocating Virtual Sequence Numbers with Data Samples...........cccooovriiiiiiiinnnnnns 11-3
11.3.3 Specifying which DataWriters will Deliver Samples to the DataReader from a

Logical Data SOUICE.........cccoriiiiiiiieicec e 11-3
11.3.4 Specifying How Long to Wait for a Missing Samplecccccoooiiiininiiiiiiccee 11-4
Collaborative DataWriters and Persistence Service..........coouiiieiiiiiiniiiiiiiiiciiieccceeeens 11-4

12 Mechanisms for Achieving Information Durability and
PerSISTENCEuooiiiirrtitninentcccsenssssesenssssssesnennns 1271

121 INEPOAUCHON ..o 12-1
12.1.1 Scenario 1. DataReader Joins after DataWriter Restarts (Durable Writer History)....... 12-2
12.1.2 Scenario 2: DataReader Restarts While DataWriter Stays Up (Durable Reader

SEALE) 1uveureeieieietee et ettt ettt ettt ettt ettt et et e b et et en b e st en e e st e st e Rt e st et e R e seesesesenteneenseneeneeseas 12-2
12.1.3 Scenario 3. DataReader Joins after DataWriter Leaves Domain (Durable Data) 12-3

12.2 Durability and Persistence Based on Virtual GUIDS............cccoooeueiiiiniiiiiiicceec e 12-4

12.3 Durable Writer HiSTOIYcoiiiiiiiiiiiiiciciiic e 12-5
12.3.1 Durable Writer History Use Case..........ccccceviriiininiiiiinininiiiiiiinnsesenns 12-5
12.3.2 How To Configure Durable Writer HiStorycccocovviviiiinne, 12-6

12.4 Durable Reader State..........cccoiuiiiiiiiiiiiiiiiiiii s 12-9
12.4.1 Durable Reader State With Protocol Acknowledgmentcooeviiiiiiiiiiiinnnn, 12-9
12.4.2 Durable Reader State with Application Acknowledgmentccccoooviiiiiiiiiinis, 12-10
12.4.3 Durable Reader State Use Casecccoceueirirueieuiirnieiciiirieeiceerieereet sttt 12-11
12.4.4 How To Configure a DataReader for Durable Reader Statecccccoceiciiciiccnnes 12-11

12,5 Data DUrability....c.c.ooioii s 12-13
12.5.1 RTI PersiStence SETVICEcocciriiiriiiriiiiiiinicirieieieeetetetee i 12-13

13 Guaranteed Delivery of Data ..., 13-1

13,1 INEPOAUCHION 1.ttt sttt ee 13-1
13.1.1 Identifying the Required Consumers of Informationcccceevevveeniiciniiicciiccnnnne. 13-2
13.1.2 Ensuring Consumer Applications Process the Data Successfully............ccceeviircnnnee. 13-3
13.1.3 Ensuring Information is Available to Late-Joining Applications.........c.cccceeoeueviirurnnnne. 13-4

13,2 SCOMNATIOS. ..ttt sttt ettt ettt b et be s h ettt et e e st et e st e bt be s bt sb e be bt sa et e s en et eneenteneeneas 13-5
13.2.1 Scenario 1: Guaranteed Delivery to a-priori known subscribersc.cccoeeeeiircnnee. 13-5
13.2.2 Scenario 2: Surviving a Writer Restart when Delivering Samples to a priori

KNOWN SUDSCIIDETS. ...t 13-7
13.2.3 Scenario 3: Delivery Guaranteed by Persistence Service (Store and Forward) to a
priori KNown SUbSCribers ... 13-7
14 DISCOVEIY ...t 14-1

14.1 What iS DISCOVEIY? ...ouiuiiiiiiiieiictcte ettt 14-1
14.1.1 Simple Participant DiSCOVETIYccccoviiiiiiiiiiiiiiiiiiiii s 14-2
14.1.2 Simple Endpoint DiSCOVETIYcooiiiiiiiiiiicieiiccc e 14-2

14.2 Configuring the Peers List Used in DiSCOVETYcocooiiiiiriiiiiiiiiiicie s 14-3

Xii

14.2.1 Peer Descriptor FOImMat.......ccoiviiiiiiiiiiiiec e 14-4

14.2.2 NDDS_DISCOVERY_PEERS Environment Variable Format.........cccccoeveveeiecvierieeennne. 14-6
14.2.3 NDDS_DISCOVERY_PEERS File FOrmat........cccoeivevuieiiiieeieeeeeeeeeteeeeeveeeeeveeveeve v ens 14-7
14.3 Discovery Implementation ... e 14-8
14.3.1 Participant DiSCOVETY ...t 14-8
14.3.2 Endpoint DISCOVETYcccovuiiiiiiiiiiiiiiiiiiiiiiciccc s 14-15
14.3.3 Discovery Traffic SUMMATY ccccccoiiiiiiiiiiiiiic e 14-20
14.3.4 Discovery-Related QOS........c.ccccccuiiiiiiiiiiiiceecrrrree e 14-20
14.4 Debugging DISCOVEIYcccciiiiiiiiiiiiiiiiiiiiiiiiiiieii et 14-21
14.5 Ports Used fOr DiSCOVETYceuiiimiiiiiiiiiiiitci s 14-23
14.5.1 Inbound Ports fOr Meta-TraffiC.......coooviiiiiiie ettt et ereere e 14-25
14.5.2 Inbound Ports fOr USer TraffiC.....ccccoiiiiuiiiieeie ettt ettt et eveeeneere e 14-25
14.5.3 Automatic Selection of participant_id and Port Reservationccccccceevviiiiinnane. 14-25
14.5.4 Tuning domain_id_gain and participant_id_gain..........cccccccocoeveeiiecccicnnniicnnne 14-25
ST [(o1 0T 0T 0T o il od [V T [o - 15-1
15.1 Builtin Transport PIUGINSccccoiiiiiiiiiiiiicicicee s 15-2
15.2 Extension Transport PIUGINS ... 15-2
15.3 The NDDSTransportSupport ClLasscccoccccuiueuiiiiiiiieiieieieiceeeieereeieieieneeene et eseaeseneneneaenes 15-3
15.4 Explicitly Creating Builtin Transport Plugin Instances............c.cccocovvvvvnnnnnnnnnnnnninne, 15-3
15.5 Setting Builtin Transport Properties of the Default Transport Instance
—get/set_builtin_transport_properties() ... 15-4
15.6 Setting Builtin Transport Properties with the PropertyQosPolicy..........cccccccvceiciininiicnnnns 15-5
15.6.1 Notes Regarding Loopback and Shared Memoryc.cccoooeueieiirrieiiincieiccieeee, 15-19
15.6.2 Setting the Maximum Gather-Send Buffer Count for UDPv4 and UDPv6.................. 15-19
15.6.3 Formatting Rules for IPv6 ‘Allow” and ‘Deny” Address Listscccccoovriiiiiirnines 15-20
15.7 Installing Additional Builtin Transport Plugins with register_transport()ccccecevueueuennes 15-20
15.7.1 Transport Lifecycles ... 15-21
15.7.2 Transport ALASEScccccviiiviiiiiiiiiiiiii s 15-22
15.7.3 Transport Network AddIesses ..o 15-22
15.8 Installing Additional Builtin Transport Plugins with PropertyQosPolicycccceueirurnnnne. 15-23
15.9 Other Transport SUPPOrt Operations..........cccccviiuiiiiiiiiiiiiniiii s 15-24
15.9.1 Adding a Send ROULE........c.oviiiiiiiiiiiii s 15-24
15.9.2 Adding a Receive ROULEc.coouiiiiii s 15-24
15.9.3 Looking Up a Transport PIUGIN..........ccccevviiiiiiiiiiiiiiinsccccs 15-25
16 BUIilt-IN TOPICS....ccenieeeece e e e 16-1
16.1 Listeners for BUuilt-in ENBties.coovioiiiiiiciccee ettt ettt eve et eesetveeeaeeeaeeenren 16-1
16.2 Built-in DataREadETsScevueuirieirieiricinicietc ettt st 16-2
16.2.1 LOCATOR_FILTER QoS Policy (DDS EXtension)ccccoevvviiiiiniinninniiiiinininennnn. 16-8
16.3 Accessing the Built-In SUDSCIIDETccoiiiiiiiiiiiiccceecceeee e 16-9
16.4 Restricting Communication—Ignoring Entities..........c.ccccoviiiiiniiiiniic 16-10
16.4.1 Ignoring Specific Remote DomainParticipants...........cccccccccceviiinnninnniiinne 16-11
16.4.2 Ignoring Publications and SUbSCIIPHONS ..ot 16-12
16.4.3 IgNOTING TOPICS ..voveveviieieiiiiet s 16-12

xiii

17 Configuring Q0S With XML..........eeeeeeeeee e 17-1

17.1 Example XML FIle......cccoiiiiiiiiiiniicii s 17-2
17.2 How to Load XML-Specified Q0S Settingscceuovuruiiiiiiiriiiiiicieec s 17-2
17.2.1 Loading, Reloading and Unloading Profiles...........ccccoooioiiiiiiiiiiiic 17-3

17.3 How to Use XML-Specified QOS SELHNGScoeimimimimimimieiiiiiciccieecieiereeere e nenenenenes 17-4
17.4 XML File SYNEAXciiiiiiiiiiiiiiiiiiiiic s 17-6
17.5 Using Environment Variables in XMLccccoooiiii e 17-6
17.6 XML StrNg SYNEAXcoiiiiiiiiiiiiiiiiicic s 17-7
17.7 How the XML is Validatedcoceiviriiriiiirieiiieirieirie ettt sttt 17-7
17.7.1 Validation at RUN-TIME......c.cceeueirmiireiinirieiciieeectneereect ettt sse e sene 17-7
17.7.2 XML File Validation During Editingc.cccooeveiriniiriiniiiiiiccccccccccccceenes 17-8

17.8 Configuring QoS With XIML ... 17-9
17.8.1 QOSPOLICIES ...veevveveeeeeeteeteete ettt ettt ettt ettt et ete v et eaeebeeabeeseeaeersensesssenseessensenseensenseersensas 17-9
17.8.2 SEQUENCES.......oiviiiiiiiiiiicc s 17-10
17.8.3 ATTAYS oottt 17-12
17.8.4 ENumeration ValUeScccouciveiriiinieinicinicincirtctetceetct sttt 17-13
17.8.5 Time Values (DUIrations)coceereuerererieenieinieinietneeenietsteststestssestreesessetsseseseseeseseeseneenes 17-13
17.8.6 Transport Properties.......ciiiiiiiiiiicc s 17-13
17.8.7 Thread SEttNGSc.ccovuiuiiriririiiiiciieeceeeee e 17-14
17.8.8 Entity NameS......ccociiiiiiiiiiiite s 17-14

17.9 QOS PIOILES.....cueeeuiiiiieieieieiet ettt ettt ettt ettt sttt sttt st 17-15
17.9.1 QoS Profiles with a Single QOS.........ccccoiuiiiiiiiirirr e 17-16
17.9.2 QOS Profile INNeIritance.........cc.couieueeeiieieeiecteeciecteeteee ettt et e e ettt eeeere e eae b e erenrean 17-16
17.9.3 TOPIC FIHETS ..ottt 17-18
17.9.4 Overwriting Default QoS Values.............ooooeiiiiiiiiic e, 17-21
17.9.5 Built-in QOS PrOfileS.....ccuecoviiuieiiiieiecieciecteeteete ettt ettt s e s reeaesaaesaeneens 17-21
17.9.6 Getting Q0S Profilescccccciiiiiiiiiiiiiiniiiiiiiiii e 17-23

17.10 QOS LIDTATIES . .cueuviteieiieiete ettt ettt ettt bbbttt bbbkttt e st nea 17-23
17.10.1 Get Q0S Profile LIDTATIEScc.cccveivieieiiieeiectieieeteeeteete et ete e et sve s et esse e esesseeaesrsessennans 17-24

1711 URL GIOUPS ..ttt bbbt 17-24
17.12 Configuring Logging Via XMLcccccccociiiiiiiiiiiiceeeiceieceeeeeeeeeeeeeesee e 17-24
18 Multi-channel DataWritersccccvcici e 18-1
18.1 What is a Multi-channel DataWTiter?..........oeivieireinieinieineieereenete ettt 18-2
18.2 How to Configure a Multi-channel DataWIiter...........ccccooviiiiiiiiiiiiiiiiin, 18-4
18.2.1 LIMIEAtIONS. ..euiiiiiiiiiiiicii ettt ettt et s 18-5

18.3 Multi-channel Configuration on the Reader Side.............coooouiiiiiiiiiiii 18-6
18.4 Where Does the Filtering OCCUI?.........cccooiiuiiiiiiiiiciceeeeeetee e 18-7
18.4.1 Filtering at the DataWIitercooooiiiiiiii 18-7
18.4.2 Filtering at the DataReaderccoooiiiiiiiii 18-8
18.4.3 Filtering on the Network Hardware..........cccccoooviiiiiiiiiiiniicc 18-8

18.5 Fault Tolerance and Redundancy ... 18-8
18.6 Reliability with Multi-Channel DataWIiters............cccccoeiiiiiiiiiiiiiiiiiiiicccccens 18-9
18.6.1 Reliable DELIVETYc.c.ccuiiiiiiiiiiiiiiiirrer e 18-9
18.6.2 Reliable Protocol Considerationsc..c.coeeerueeeererieuinieinierinieereetneeeneeneeeeseeeereseeseneenes 18-10

Xiv

18.7 Performance COonSIAErationsc.ceeereereirieinrentrentrieinieteresteseseesessesessesessesesse e et ssesesnesessenenne 18-10
18.7.1 Network-Switch FIItering..........ccccocvviviiiiiniiiiiiic s 18-10

18.7.2 DataWriter and DataReader Filtering............cccooooiiiiiiiiiiicc 18-11

19 Connext Threading Model ..., 19-1
19.1 Database TRread.......ccccveirieinieinieinicire ettt sttt 19-1
19.2 EVENE TRIEAM. .. .civiiieiiiiieieiiiririeccttre ettt ettt st st ee 19-2
19.3 RECEIVE TRICAUSooveuiiiuiiiiiiietete ettt ettt ettt 19-3
19.4 Exclusive Areas, Connext Threads and User Listeners.......c..c.coceverinernenneneenncneenccnenenene 19-4
19.5 Controlling CPU Core Affinity for RTI Threads..........ccccocoiiiiiiiiiiiiiicceeceeeeeeeenenenes 19-5
19.6 Configuring Thread Settings with XIML.........ccccocioiiiiiiiiiiiiiiiicccc s 19-5

20 Sample-Data Memory Management...........cccccovviviiiineeeeveeeeeeeen, 20-1
20.1 Sample-Data Memory Management for DataWriters............coooeiiiiiiiiiii 20-1
20.1.1 Memory Management without Batching...........cccccccceiiiiiiiiininice 20-2

20.1.2 Memory Management with BatChing ... 20-2

20.1.3 Writer-Side Memory Management when Using Javaccccccccevvurvvrvernnnnenrneenes 20-3

20.1.4 Writer-Side Memory Management when Working with Large Datacccccccoeeece. 20-4

20.2 Sample-Data Memory Management for DataReadersccccociiiiiiicceciieeecccenennes 20-6
20.2.1 Memory Management for DataReaders Using Generated Type-Plugins 20-6

20.2.2 Reader-Side Memory Management when Using Java........c.cccocovvviiiiniciinnnns 20-7

20.2.3 Memory Management for DynamicData DataReaders.............cccccevvviviinniniinnnnnn 20-8

20.2.6 Memory Management for Fragmented Samples ..o 20-10

20.2.7 Reader-Side Memory Management when Working with Large Data.........ccccc.cccc...... 20-10

21 Troubleshooting.........cccciiiieiiniir 21-1
21.1 What Version am I RUNNING?ccoiiiiiiiiiiieci s 21-1
21.1.1 Finding Version Information in Revision Filescccccoiiiiiiiiiiiiiiiicne, 21-1

21.1.2 Finding Version Information Programmatically...........cccccccccciiiniinnnininncirenes 211

21.2 Controlling Messages from CONNEXt.........cccocouviiiiiiiiiiiiiiiiiiiiiii s 21-2
21.2.1 Format of Logged MeSSagesSccccovuriririririiiiiiiiiniiiiiciiisresc s 21-3

21.2.2 Configuring Logging via XMLcccccccoiriiirrinrrrr s 21-6

21.2.3 Customizing the Handling of Generated Log Messages............cccccceuvirrueiniiinrieriininnnnen, 21-7

Part 4. Request-Reply Communication Pattern

22 Introduction to the Request-Reply Communication Pattern 22-1
22.1 The Request-Reply Pattern ... 22-2
22.1.1 Request-Reply Correlation.........cccoiiiiiiiiiiiiiiiiccecc s 22-3

22.2 Single-Request, Multiple-Repliescccccocoviiiiiiiiiiiiiniiiiiiii s 22-3
22.3 Multiple REPLETS.c.ciiiiiiiiiiiiiiiicicicc s 22-4
22.4 Combining Request-Reply and Publish-Subscribe ..o, 22-5

23 Using the Request-Reply Communication Pattern 23-1
23.1 REQUESEETSoviviiiiictcii ettt ettt ettt 23-2

XV

23.2

23.3

23.4

23.1.1 Creating a ReqQUESLTcooviiiii s 23-2

23.1.2 Destroying a ReqQUESLET.........cccoeieiiiiiiiiiii 23-3
23.1.3 Setting Requester Parameters ...t 23-3
23.1.4 Summary of Requester Operations...........cccccciiuiiiiiiiiiiiiiiiiiiiiccceeeceseeeees 23-4
23.1.5 Sending REQUESES.........ccoeviiimiiiiiiiiiiiic s 23-5
23.1.6 Processing Incoming Replies with a Requesterccccoovviiiiniiiiinincciccnens 23-5
REPIIETS ..o 23-8
2321 Creating a Replier.....ccocoiiiiiiiiiiiiiiiiiiiccc s 23-9
23.2.2 Destroying a REPLET ... 23-9
23.2.3 Setting Replier Parameters.........c.cccooirueiiiiieiiiicicie e 23-10
23.2.4 Summary of Replier Operations.........c.c.cooccueiiieieieiiiciccccece s 23-10
23.2.5 Processing Incoming Requests with a Repliercccooooiiiiiii 23-11
23.2.6 Sending REPLEScccouviviiiiiiiiiiiiiii e 23-13
SIMPIEREPIIETS.......ooeieitiit e 23-13
23.3.1 Creating a SIMpleRePLer........ccciiiiiiiiicie s 23-14
23.3.2 Destroying a SIMpPleREPLETccccvuriririiiiiiiiiiiiiiirc e 23-14
23.3.3 Setting SimpleReplier Parameters..........ccccoeuvrvriniiinniinireeeccc e 23-14
23.3.4 Getting Requests and Sending Replies with a SimpleReplierListener-......................... 23-14
Accessing Underlying DataWriters and DataReaders.............cccoooeueieiinniniiicncnicecce 23-15

Part 5: RTI Secure WAN Transport

24 Secure WAN TranspOr ...t s e e s e e e e e eenes 24-1
241 WAN Traversal via UDP HoOle-PUNCHINGoooviiiiiiiiiiicccccccciccccnee e 24-2
24.1.1 Protocol Details........ccccoiiiiiiiiiiriiiiiciiicieere s 24-2

242 WAIN LOCALOTS ...cviiiiiiiiciinc ettt s s st s 24-5
24.3 Datagram Transport-Layer Security (DTLS).......cccoooiiiiiiiiiiiiie i 24-6
24.3.1 Security Model.......ccccooiiiiiiiiiiiniiiiiiiiiii 24-6

24.3.2 Liveliness MeChamniSIm.........cocovueuiviiriiiiiinieiciciirccte ettt e 24-7

24.4 Certificate SUPPOTt.....cciviiiieii e 24-7
24.5 LICENSE ISSUES ..c.ooviiiiiiiiiiiiiiii s 24-8

25 Configuring RTI Secure WAN Transportccvvvivieccccccnnnnneennnn. 25-1
25.1 Example APPLCAtIONScoeuiiiiiiiiiiiiiciic e 25-1
25.2 Setting Up a Transport with the Property QOS..........ccocooiiiiiiiiiiiiiiiiccc 25-2
25.3 WAN Transport PIOPEIties ..ottt 25-3
25.4 Secure Transport PrOPErties........cooiiiiiiiiiiiiiiiicc e 25-8
25.5 Explicitly Instantiating a WAN or Secure Transport PIugin...........cccccccceeviiiniiinnnnnnne. 25-11
25.5.1 Additional Header Files and Include Directories...........cccccccuvvueueicnieieccinnieccnneeneneae. 25-12

25.5.2 Additional Libraries.........ccccoiiiiiirnii e 25-12

25.5.3 Compiler FIags.......couoiiuiiiiiiieieic s 25-12

xvi

Part 6: RTI Persistence Service

26 Introduction to RTI Persistence Service...........ccccevirinciininnnenn, 26-1
27 Configuring Persistence Service.........cccmiiiiiiiiiccccccceeeee 27-1
27.1 How to Load the XML Configuration..........cccccooeuiiiiiiiiiiiiiiiiiiiiiiinisnss 27-1
27.2 XML Configuration Filecooiiiiiiiiii 27-2
27.2.1 Configuration File SYyNtax ... 27-4

27.22 XML ValidatioN.....c.couiiiiiiiiiiiiiiiiiicei i 27-4

27.3 QO0S CONFIGUIATION ..o.vviiiiiicicicccc e 27-5
274 Configuring the Persistence Service Application...........cccocvvviiiiiiiiiiinine, 27-6
27.5 Configuring Remote Administration..........ccccccciiiiiiiiiiiiiiis 27-7
27.6 Configuring Persistent StOrage ..o 27-8
27.7 Configuring PartiCipants...........cccocviiiiiiininiiic e 27-11
27.8 Creating Persistence GIOUPScccoviiiiiiiiiiiiiiiecccc e 27-12
27.8. 1 Q0SS eceeeeeeeeeeeeeeeeeeeeseeeee e 27-16

27.8.2 DurabilityService Q0S POLICYcceuiiririririiiriiriiirec e 27-16

27.8.3 Sharing a Publisher/Subscribercccccooiiiiicccc e 27-17

27.8.4 Sharing a Database CONNECtiON...........ccovvviiiiininiiiinii e 27-17

27.8.5 Memory Managementcccocoeiiiiiiiiiiiiiiiiiiie st 27-17

279 Configuring Durable Subscriptions in Persistence SErviceccocoeveeiececciceeecceenenas 27-18
27.9.1 Sample Memory Management With Durable Subscriptionscccccoovviiiiinnnnnns 27-19

27.10 Synchronizing of Persistence Service INStANCESccoceuvvveririrerninirnininiieeceeccccccecnenes 27-20
27.11 Enabling RTI Distributed Logger in Persistence Servicec.cocoorueueiiicieiiiinccieccieice, 27-20
27.12 Enabling RTT Monitoring Library in Persistence Service..........cooeeuviicieiniicieiniiciccccicien 27-21
27.13 Support for EXtensible TYPESccovuiiiriiiiiiiiececccecse e 27-21
27.13.1 Type Version Discrimination..........ccoooiviiiiiiiiiiiiniiicceeee s 27-22

28 Running RTI Persistence Service.........ccccmieeiieiiiiiiccccccccseneeeen 28-1
28.1 Starting Persistence SEIrVICe.........coviiiiiiiiiiiiii e 28-1
28.2 Stopping Persistence SEIVICe ... 28-2

29 Administering Persistence Service from a Remote Location......29-1
29.1 Enabling Remote Administration..........cccooriiiiiiii e, 29-1
29.2 Remote COMMANSccceviviiiiiiiiiiiiiiic s e 29-1
29.2.1 SEATT oot 29-2

20.2.2 SEOP ottt 29-2

29.2.3 SNULAOWI ...cuitiiiiiiei ettt sttt bbbttt sttt 29-2

2924 SEATUS...ocveictiieiiec e 29-2

29.3 Accessing Persistence Service from a Connext Application..........cccoeeoeeieiiiiciiiniiiiiicce, 29-2

30 Advanced Persistence Service Scenarios ... 30-1
30.1 Scenario: Load-balanced Persistence SEIvices ..o 30-1
30.2 Scenario: Delegated Reliabilitycccccocoiiiiiiiiiiiiiiiccrrrcrre e 30-2
30.3 Scenario: SIOW CONSUITIETc.cccouriiieriiririeieiitrieiereteesere ettt sttt n et s 30-3

xvii

Part 7: RTI CORBA Compatibility Kit

31 Introduction to RTI CORBA Compatibility Kitcc...ccccerrrre..e. 31-1
32 Generating CORBA-Compatible Code with rtiddsgen................ 32-1
32.1 Generating C+ Code.....ccuiiiiiiiiiiiiiiiiiiii s 32-2
32.2 Generating Java Code......oooiimiiiiiiicie e 32-2
IO T0 o] oToT 4 {=To I | D I AV o = R 33-1

Part 8: RTI RTSJ Extension Kit

34 Introduction to RTI RTSJ Extension Kif..........ccoeeeviieiiiiiieiiecrencennnes 34-1
35 Using RTI RTSJ Extension Kitcccoeiiiciiiiiiiiiciciirie e 35-1

Part 9. RTI TCP Transport

36 Configuring the RTI TCP Transport.........ccoo e 36-1
36.1 TCP Communication SCENATIOScccevvviviiiiiiiiiiiiiiiciicccc e 36-1
36.1.1 Communication Within a Single LANcccocooiiiiiic e 36-1
36.1.2 Symmetric Communication Across NATS ... 36-2
36.1.3 Asymmetric Communication Across NATSccccovviiiiniiiincees 36-3

36.2 Configuring the TCP Transportc.coooiiiieiiicicic e 36-4
36.2.1 Choosing a Transport MOde ..o 36-4
36.2.2 Explicitly Instantiating the TCP Transport PIUginccccoovviiinininiiiiiiiciicans 36-5
36.2.3 Configuring the TCP Transport with the Property QosPolicy.........c.cccoceuvvvnnnrnncncnee 36-6
36.2.4 Setting the Initial Peersccccccciiiiiiiiiiiiiccrr e 36-8
36.2.5 TCP/TLS Transport PIOPerties........coiiiiiiiiiiiiieiiiiiiieiiccicieeeceee s 36-8

Xviii

Welcome to RTI Connext

RTI Connext solutions provide a flexible data distribution infrastructure for integrating data
sources of all types. At its core is the world's leading ultra-high performance, distributed net-
working DataBus™. It connects data within applications as well as across devices, systems and
networks. Connext also delivers large data sets with microsecond performance and granular
quality-of-service control. Connext is a standards-based, open architecture that connects devices
from deeply embedded real-time platforms to enterprise servers across a variety of networks.

Conventions
The terminology and example code in this manual assume you are using C++ without
namespace support.

C, C++/CLIL C#, and Java APIs are also available; they are fully described in the API Reference
HTML documentation.

Namespace support in C++, C++/CLI, and C# is also available; see the API Reference HTML
documentation (from the Modules page, select Using DDS:: Namespace) for details.

Extensions to the DDS Standard

Connext implements the DDS Standard published by the OMG. It also includes features that are
extensions to DDS. These include additional Quality of Service parameters, function calls, struc-
ture fields, etc.

Extensions also include product-specific APIs that complement the DDS API. These include
APIs to create and use transport plug-ins, and APIs to control the verbosity and logging capabil-
ities. These APIs are prefixed with NDDS, such as NDDSTransportSup-
port:register_transport().

Environment Variables

Connext documentation refers to pathnames that have been customized during installation.
NDDSHOME refers to the installation directory of Connext.

Names of Supported Platforms

Connext runs on several different target platforms. To support this vast array of platforms, Con-
next separates the executable, library, and object files for each platform into individual directo-
ries.

Xix

Each platform name has four parts: hardware architecture, operating system, operating system
version and compiler. For example, i86Linux2.4gcc3.2 is the directory that contains files specific
to Linux® version 2.4 for the Intel processor, compiled with gcc version 3.2.

For a full list of supported platforms, see the Platform Notes.

Additional Resources

The details of each API (such as function parameters, return values, etc.) and examples are in the
API Reference HTML documentation. In case of discrepancies between the information in this
document and the API Reference HTML documentation, the latter should be considered more
up-to-date.

XX

Part 1: Intfroduction

This introduces the general concepts behind data-centric publish-subscribe communications
and provides a brief tour of Connext.

d Chapter 1: Overview
| Chapter 2: Data-Centric Publish-Subscribe Communications

Chapter 1 Overview

1.1

RTI Connext (formerly, RTI Data Distribution Service) is network middleware for distributed real-
time applications. Connext simplifies application development, deployment and maintenance
and provides fast, predictable distribution of time-critical data over a variety of transport net-
works.

With Connext, you can:

(d Perform complex one-to-many and many-to-many network communications.

(J Customize application operation to meet various real-time, reliability, and quality-of-ser-
vice goals.

(J Provide application-transparent fault tolerance and application robustness.
[Use a variety of transports.

This chapter introduces basic concepts of middleware and common communication models,
and describes how Connext’s feature-set addresses the needs of real-time systems.

What is Connext?

Connext is network middleware for real-time distributed applications. It provides the communi-
cations service programmers need to distribute time-critical data between embedded and/or
enterprise devices or nodes. Connext uses the publish-subscribe communications model to make
data distribution efficient and robust.

Connext implements the Data-Centric Publish-Subscribe (DCPS) API within the OMG’s Data
Distribution Service (DDS) for Real-Time Systems. DDS is the first standard developed for the
needs of real-time systems. DCPS provides an efficient way to transfer data in a distributed sys-
tem.

With Connext, systems designers and programmers start with a fault-tolerant and flexible com-
munications infrastructure that will work over a wide variety of computer hardware, operating
systems, languages, and networking transport protocols. Connext is highly configurable so pro-
grammers can adapt it to meet the application’s specific communication requirements.

1-1

What is Middleware?

1.2

Figure 1.1

1.3

What is Middleware?

Middleware is a software layer between an application and the operating system. Network middle-
ware isolates the application from the details of the underlying computer architecture, operating
system and network stack (see Figure 1.1). Network middleware simplifies the development of
distributed systems by allowing applications to send and receive information without having to
program using lower-level protocols such as sockets and TCP or UDP/IP.

Network Middleware

Application

Middleware

Network Stack (IP)

Hardware (Ethernet)

Connext is middleware that insulates applications from the raw operating-system
network stack.

Publish-subscribe middleware Connext is based on a publish-subscribe communications model.
Publish-subscribe (PS) middleware provides a simple and intuitive way to distribute data. It
decouples the software that creates and sends data—the data publishers—from the software that
receives and uses the data—the data subscribers. Publishers simply declare their intent to send
and then publish the data. Subscribers declare their intent to receive, then the data is automati-
cally delivered by the middleware.

Despite the simplicity of the model, PS middleware can handle complex patterns of information
flow. The use of PS middleware results in simpler, more modular distributed applications. Per-
haps most importantly, PS middleware can automatically handle all network chores, including
connections, failures, and network changes, eliminating the need for user applications to pro-
gram of all those special cases. What experienced network middleware developers know is that
handling special cases accounts for over 80% of the effort and code.

Network Communications Models

The communications model underlying the network middleware is the most important factor in
how applications communicate. The communications model impacts the performance, the ease
to accomplish different communication transactions, the nature of detecting errors, and the
robustness to different error conditions. Unfortunately, there is no “one size fits all” approach to
distributed applications. Different communications models are better suited to handle different
classes of application domains.

This section describes three main types of network communications models:

J Point-to-point

[Client-server

1-2

Network Communications Models

[Publish-subscribe

Point-to-point model Point-to-point is the simplest form of communication, as illustrated in
Figure 1.2. The telephone is an example of an everyday point-to-point communications device.
To use a telephone, you must know the address (phone number) of the other party. Once a con-
nection is established, you can have a reasonably high-bandwidth conversation. However, the
telephone does not work as well if you have to talk to many people at the same time. The tele-
phone is essentially one-to-one communication.

TCP is a point-to-point network protocol designed in the 1970s. While it provides reliable, high-
bandwidth communication, TCP is cumbersome for systems with many communicating nodes.

Figure 1.2 Point-to-Point

Figure 1.3

A
o— @
Point-to-point is one-to-one communications.

Client-server model To address the scalability issues of the Point-to-Point model, developers
turned to the Client-Server model. Client-server networks designate one special server node
that connects simultaneously to many client nodes, as illustrated in Figure 1.3. Client-server is a
"many-to-one" architecture. Ordering pizza over the phone is an example of client-server com-
munication. Clients must know the phone number of the pizza parlor to place an order. The par-
lor can handle many orders without knowing ahead of time where people (clients) are located.
After the order (request), the parlor asks the client where the response (pizza) should be sent. In
the client-server model, each response is tied to a prior request. As a result, the response can be
tailored to each request. In other words, each client makes a request (order) and each reply
(pizza) is made for one specific client in mind.

The client-server network architecture works best when information is centralized, such as in
databases, transaction processing systems, and file servers. However, if information is being
generated at multiple nodes, a client-server architecture requires that all information are sent to
the server for later redistribution to the clients. This approach is inefficient and precludes deter-
ministic communications, since the client does not know when new information is available.
The time between when the information is available on the server, and when the client asks and
receives it adds a variable latency to the system.

Client-Server

Client Client
Server

Client

Client-server is many-to-one communications.

Publish-subscribe model In the publish-subscribe communications model, computer applica-
tions (nodes) “subscribe” to data they need and “publish” data they want to share. Messages
pass directly between the publisher and the subscribers, rather than moving into and out of a
centralized server. Most time-sensitive information intended to reach many people is sent by a
publish-subscribe system. Examples of publish-subscribe systems in everyday life include tele-
vision, magazines, and newspapers.

1-3

Features of Connext

Publish-subscribe communication architectures are good for distributing large quantities of
time-sensitive information efficiently, even in the presence of unreliable delivery mechanisms.
This direct and simultaneous communication among a variety of nodes makes publish-sub-
scribe network architecture the best choice for systems with complex time-critical data flows.

While the publish-subscribe model provides system architects with many advantages, it may
not be the best choice for all types of communications, including:

[File-based transfers (alternate solution: FTP)
[d Remote Method Invocation (alternate solutions: CORBA, COM, SOAP)

[Connection-based architectures (alternate solution: TCP/IP)

(d Synchronous transfers (alternate solution: CORBA)

Figure 1.4 Publish-Subscribe

1.4

Subscriber Subscriber
Publisher

Subscriber

Publisher ()

Publish-subscribe is many-to-many communications.

Features of Connext

Connext supports mechanisms that go beyond the basic publish-subscribe model. The key bene-
fit is that applications that use Connext for their communications are entirely decoupled. Very lit-
tle of their design time has to be spent on how to handle their mutual interactions. In particular,
the applications never need information about the other participating applications, including
their existence or locations. Connext automatically handles all aspects of message delivery, with-
out requiring any intervention from the user applications, including:

(d determining who should receive the messages,
(J where recipients are located,
(J what happens if messages cannot be delivered.

This is made possible by how Connext allows the user to specify Quality of Service (QoS) param-
eters as a way to configure automatic-discovery mechanisms and specify the behavior used
when sending and receiving messages. The mechanisms are configured up-front and require no
further effort on the user's part. By exchanging messages in a completely anonymous manner,
Connext greatly simplifies distributed application design and encourages modular, well-struc-
tured programs.

Furthermore, Connext includes the following features, which are designed to meet the needs of
distributed real-time applications:

(] Data-centric publish-subscribe communications Simplifies distributed application pro-
gramming and provides time-critical data flow with minimal latency.

® (lear semantics for managing multiple sources of the same data.

1-4

Features of Connext

® Efficient data transfer, customizable Quality of Service, and error notification.
¢ Guaranteed periodic samples, with maximum rate set by subscriptions.

® Notification by a callback routine on data arrival to minimize latency.

® Notification when data does not arrive by an expected deadline.

® Ability to send the same message to multiple computers efficiently.

[User-definable data types Enables you to tailor the format of the information being sent
to each application.

(J Reliable messaging Enables subscribing applications to specify reliable delivery of
samples.

[Multiple Communication Networks Multiple independent communication networks
(domains) each using Connext can be used over the same physical network. Applications
are only able to participate in the domains to which they belong. Individual applications
can be configured to participate in multiple domains.

[Symmetric architecture Makes your application robust:
® No central server or privileged nodes, so the system is robust to node failures.

® Subscriptions and publications can be dynamically added and removed from the sys-
tem at any time.

(J Pluggable Transports Framework Includes the ability to define new transport plug-ins
and run over them. Connext comes with a standard UDP/IP pluggable transport and a
shared memory transport. It can be configured to operate over a variety of transport
mechanisms, including backplanes, switched fabrics, and new networking technologies.

(] Multiple Built-in Transports Includes UDP/IP and shared memory transports.

[Multi-language support Includes APIs for the C, C++, C++/CLI, C#, and Java™ pro-
gramming languages.

[Multi-platform support Includes support for flavors of UNIX®, real-time operating sys-
tems, and Windows®. (Consult the Platform Notes to see which platforms are supported
in this release.)

[Compliance with Standards
® API complies with the DCPS layer of the OMG’s DDS specification.
® Data types comply with OMG Interface Definition Language™ (IDL).

® Data packet format complies with the International Engineering Consortium’s (IEC’s)
publicly available specification for the RTPS wire protocol.

1-5

Chapter 2 Data-Centric Publish-Subscribe

2.1

Communications

This chapter describes the formal communications model used by Connext: the Data-Centric
Publish-Subscribe (DCPS) standard. DCPS is a formalization (through a standardized API) and
extension of the publish-subscribe communications model presented in Section 1.3.

This chapter includes the following sections:
[What is DCPS? (Section 2.1)
(d Data Types, Topics, Keys, Instances, and Samples (Section 2.2)
(1 DataWriters/Publishers and DataReaders/Subscribers (Section 2.3)
(d Domains and DomainParticipants (Section 2.4)
(J Quality of Service (QoS) (Section 2.5)
(d Application Discovery (Section 2.6)

What is DCPS?

DCPS is the portion of the OMG DDS (Data Distribution Service) Standard that addresses data-
centric publish-subscribe communications. The DDS standard defines a language-independent
model of publish-subscribe communications that has standardized mappings into various
implementation languages. Connext offers C, C++, C++/CLI, C#, and Java versions of the DCPS
APL

The publish-subscribe approach to distributed communications is a generic mechanism that can
be employed by many different types of applications. The DCPS model described in this chapter
extends the publish-subscribe model to address the specific needs of real-time, data-critical
applications. As you'll see, it provides several mechanisms that allow application developers to
control how communications works and how the middleware handles resource limitations and
error conditions.

The “data-centric” portion of the term DCPS describes the fundamental concept supported by
the design of the APL In data-centric communications, the focus is on the distribution of data
between communicating applications. A data-centric system is comprised of data publishers
and data subscribers. The communications are based on passing data of known types in named
streams from publishers to subscribers.

In contrast, in object-centric communications the fundamental concept is the interface between
the applications. An interface is comprised of a set of methods of known types (number and

2-1

What is DCPS?

2.1.1

types of method arguments). An object-centric system is comprised of interface servers and
interface clients, and communications are based on clients invoking methods on named inter-
faces that are serviced by the corresponding server.

Data and object-centric communications are complementary paradigms in a distributed system.
Applications may require both. However, real-time communications often fit a data-centric
model more naturally.

DCPS for Real-Time Requirements

DCPS, and specifically the Connext implementation, is well suited for real-time applications. For
instance, real-time applications often require the following features:

Efficiency Real-time systems require efficient data collection and delivery. Only minimal
delays should be introduced into the critical data-transfer path. Publish-subscribe is more
efficient than client-server in both latency and bandwidth for periodic data exchange.
Publish-subscribe greatly reduces the overhead required to send data over the network
compared to a client-server architecture. Occasional subscription requests, at low band-
width, replace numerous high-bandwidth client requests. Latency is also reduced, since
the outgoing request message time is eliminated. As soon as a new publication data sam-
ple becomes available, it is sent to the corresponding subscriptions.

Determinism Real-time applications often care about the determinism of delivering periodic
data as well as the latency of delivering event data. Once buffers are introduced into a
data stream to support reliable connections, new data may be held undelivered for a
unpredictable amount of time while waiting for confirmation that old data was received.
Since publish-subscribe does not inherently require reliable connections, implementa-
tions, like Connext, can provide configurable trade-offs between the deterministic delivery
of new data and the reliable delivery of all data.

Flexible delivery bandwidth Typical real-time systems include both real-time and non-real-time
nodes. The bandwidth requirements for these nodes—even for the same data—are quite
different. For example, an application may be sending data samples faster than a non-real-
time application is capable of handling. However, a real-time application may want the
same data as fast as it is produced.

DCPS allows subscribers to the same data to set individual limits on how fast data should
be delivered to each subscriber. This is similar to how some people get a newspaper every
day while others can subscribe to only the Sunday paper.

Thread awareness Real-time communications must work without slowing the thread that
sends data samples. On the receiving side, some data streams should have higher priority
so that new data for those streams are processed before lower priority streams.

Connext provides user-level configuration of its internal threads that process incoming
data. Users may configure Connext so that different threads are created with different pri-
orities to process received data of different data streams.

Fault-tolerant operation Real-time applications are often in control of systems that are required

to run in the presence of component failures. Often, those systems are safety critical or
carry financial penalties for loss of service. The applications running those systems are
usually designed to be fault-tolerant using redundant hardware and software. Backup
applications are often “hot” and interconnected to primary systems so that they can take
over as soon as a failure is detected.
Publish-subscribe is capable of supporting many-to-many connectivity with redundant
DataWriters and DataReaders. This feature is ideal for constructing fault-tolerant or high-
availability applications with redundant nodes and robust fault detection and handling
services.

2-2

Data Types, Topics, Keys, Instances, and Samples

2.2

2.2.1

DCPS, and thus Connext, was designed and implemented specifically to address the require-
ments above through configuration parameters known as QosPolicies defined by the DCPS
standard (see QosPolicies (Section 4.2)). The following section introduces basic DCPS terminol-
ogy and concepts.

Data Types, Topics, Keys, Instances, and Samples

In data-centric communications, the applications participating in the communication need to
share a common view of the types of data being passed around.

Within different programming languages there are several ‘primitive’ data types that all users of
that language naturally share (integers, floating point numbers, characters, booleans, etc.). How-
ever, in any non-trivial software system, specialized data types are constructed out of the lan-
guage primitives. So the data to be shared between applications in the communication system
could be structurally simple, using the primitive language types mentioned above, or it could be
more complicated, using, for example, C and C++ structs, like this:

struct Time
long year;
short day;
short hour;
short minute;
short second;

}i

struct StockPrice {
float price;
Time timeStamp;

}i

Within a set of applications using DCPS, the different applications do not automatically know
the structure of the data being sent, nor do they necessarily interpret it in the same way (if, for
instance, they use different operating systems, were written with different languages, or were
compiled with different compilers). There must be a way to share not only the data, but also
information about how the data is structured.

In DCPS, data definitions are shared among applications using OMG IDL, a language-indepen-
dent means of describing data. For more information on data types and IDL, see Chapter 3.

Data Topics — What is the Data Called?

Shared knowledge of the data types is a requirement for different applications to communicate
with DCPS. The applications must also share a way to identify which data is to be shared. Data
(of any data type) is uniquely distinguished by using a name called a Topic. By definition, a Topic
corresponds to a single data type. However, several Topics may refer to the same data type.

Topics interconnect DataWriters and DataReaders. A DataWriter is an object in an application that
tells Connext (and indirectly, other applications) that it has some values of a certain Topic. A cor-
responding DataReader is an object in an application that tells Connext that it wants to receive
values for the same Topic. And the data that is passed from the DataWriter to the DataReader is of
the data type associated with the Topic. DataWriters and DataReaders are described more in
Section 2.3.

2-3

Data Types, Topics, Keys, Instances, and Samples

22.2

For a concrete example, consider a system that distributes stock quotes between applications.
The applications could use a data type called StockPrice. There could be multiple Topics of the
StockPrice data type, one for each company’s stock, such as IBM, MSFT, GE, etc. Each Topic uses
the same data type.

Data Type: StockPrice

struct StockPrice {
float price;
Time timeStamp;

}i
Topic: “IBM”
Topic: “MSFT”
Topic: “GE”

Now, an application that keeps track of the current value of a client’s portfolio would subscribe
to all of the topics of the stocks owned by the client. As the value of each stock changes, the new
price for the corresponding topic is published and sent to the application.

Samples, Instances, and Keys

The value of data associated with a Topic can change over time. The different values of the Topic
passed between applications are called samples. In our stock-price example, samples show the
price of a stock at a certain point in time. So each sample may show a different price.

For a data type, you can select one or more fields within the data type to form a key. A key is
something that can be used to uniquely identify one instance of a Topic from another instance of
the same Topic. Think of a key as a way to sub-categorize or group related data values for the
same Topic. Note that not all data types are defined to have keys, and thus, not all topics have
keys. For topics without keys, there is only a single instance of that topic.

However, for topics with keys, a unique value for the key identifies a unique instance of the
topic. Samples are then updates to particular instances of a topic. Applications can subscribe to a
topic and receive samples for many different instances. Applications can publish samples of one,
all, or any number of instances of a topic. Many quality of service parameters actually apply on
a per instance basis. Keys are also useful for subscribing to a group of related data streams
(instances) without pre-knowledge of which data streams (instances) exist at runtime.

For example, let’s change the StockPrice data type to include the symbol of the stock. Then
instead of having a Topic for every stock, which would result in hundreds or thousands of topics
and related DataWriters and DataReaders, each application would only have to publish or sub-
scribe to a single Topic, say “StockPrices.” Successive values of a stock would be presented as
successive samples of an instance of “StockPrices”, with each instance corresponding to a single
stock symbol.

Data Type: StockPrice

struct StockPrice {
float price;
Time timeStamp;
char *gymbol ; //@key

}i

Instance 1 = (Topic: “StockPrices”) + (Key: “MSFT”)
sample a, price = $28.00
sample b, price = $27.88

2-4

DataWriters/Publishers and DataReaders/Subscribers

Figure 2.1

2.3

Instance 2 = (Topic: “StockPrices”) + (Key: “IBM”)
sample a, price = $74.02
sample b, price = $73.50

Etc.

Just by subscribing to “StockPrices,” an application can get values for all of the stocks through a
single topic. In addition, the application does not have to subscribe explicitly to any particular
stock, so that if a new stock is added, the application will immediately start receiving values for
that stock as well.

To summarize, the unique values of data being passed using DCPS are called samples. A sample is
a combination of a Topic (distinguished by a Topic name), an instance (distinguished by a key), and the
actual user data of a certain data type. As seen in Figure 2.1 on page 2-5, a Topic identifies data of a
single type, ranging from one single instance to a whole collection of instances of that given
topic for keyed data types. For more information, see Chapter 3: Data Types and Data Samples
and Chapter 5: Topics.

Relationship of Topics, Keys, and Instances

a type:instancel

Type:a_ type ‘ Key = keyl
Key = ...

Topic:a topic a_ type:instance2

Key = key2

a_ type:instance3

Key = key3

By using keys, a Topic can identify a collection of data-object instances.

DataWriters/Publishers and DataReaders/Subscribers

In DCPS, applications must use APIs to create entities (objects) in order to establish publish-sub-
scribe communications between each other. The entities and terminology associated with the
data itself have been discussed already—Topics, keys, instances, samples. This section will intro-
duce the DCPS entities that user code must create to send and receive the data. Note that Entity
is actually a basic DCPS concept. In object-oriented terms, Entity is the base class from which
other DCPS classes—Topic, DataWriter, DataReader, Publisher, Subscriber, DomainParticipants—
derive. For general information on Entities, see Chapter 4: Entities.

The sending side uses objects called Publishers and DataWriters. The receiving side uses objects
called Subscribers and DataReaders. Figure 2.2 illustrates the relationship of these objects.

[An application uses DataWriters to send data. A DataWriter is associated with a single
Topic. You can have multiple DataWriters and Topics in a single application. In addition,
you can have more than one DataWriter for a particular Topic in a single application.

2-5

DataWriters/Publishers and DataReaders/Subscribers

Figure 2.2 Overview

/—,\ Identified by means of the Topic
Topic . Y >

\-// Subscription
Identified by means of -—-- Subscriber
the Topic 1
|
1
Publication ! data values
1
1
Publisher |f-----------! DafaReader ||
dissemination |
1
|
data values | o
! Subscription
DataWriter !
~---» Subscriber
data \R
DafaReader |-

(A Publisher is the DCPS object responsible for the actual sending of data. Publishers own
and manage DataWriters. A DataWriter can only be owned by a single Publisher while a
Publisher can own many DataWriters. Thus the same Publisher may be sending data for
many different Topics of different data types. When user code calls the write() method on
a DataWriter, the data sample is passed to the Publisher object which does the actual dis-
semination of data on the network. For more information, see Chapter 6: Sending Data.

(J The association between a DataWriter and a Publisher is often referred to as a publication
although you never create a DCPS object known as a publication.

(d An application uses DataReaders to access data received over DCPS. A DataReader is asso-
ciated with a single Topic. You can have multiple DataReaders and Topics in a single appli-
cation. In addition, you can have more than one DataReader for a particular Topic in a
single application.

[A Subscriber is the DCPS object responsible for the actual receipt of published data. Sub-
scribers own and manage DataReaders. A DataReader can only be owned by a single Sub-
scriber while a Subscriber can own many DataReaders. Thus the same Subscriber may
receive data for many different Topics of different data types. When data is sent to an
application, it is first processed by a Subscriber; the data sample is then stored in the
appropriate DataReader. User code can either register a listener to be called when new
data arrives or actively poll the DataReader for new data using its read() and take() meth-
ods. For more information, see Chapter 7: Receiving Data.

[The association between a DataReader and a Subscriber is often referred to as a subscription
although you never create a DCPS object known as a subscription.

Example: The publish-subscribe communications model is analogous to that of magazine publi-
cations and subscriptions. Think of a publication as a weekly periodical such as Newsweek®. The
Topic is the name of the periodical (in this case the string "Newsweek"). The type specifies the for-

2-6

Domains and DomainParticipants

Figure 2.3

2.4

mat of the information, e.g., a printed magazine. The user data is the contents (text and graphics)
of each sample (weekly issue). The middleware is the distribution service (usually the US Postal
service) that delivers the magazine from where it is created (a printing house) to the individual
subscribers (people’s homes). This analogy is illustrated in Figure 2.3. Note that by subscribing
to a publication, subscribers are requesting current and future samples of that publication (such
as once a week in the case of Newsweek), so that as new samples are published, they are delivered
without having to submit another request for data.

An Example of Publish-Subscribe

<Topic = "Newsweek" (Topic = "Newsweek")

‘ Sample

Publisher ‘ Issue for Feb. 15 ‘ Subscriber

Send Receive

T DeliverJ Service 7

The publish-subscribe model is analogous to publishing magazines. The Publisher sends
samples of a particular Topic to all Subscribers of that Topic. With Newsweek® magazine,
the Topic would be "Newsweek.” The sample consists of the data (articles and pictures) sent
to all Subscribers every week. The middleware (Connext) is the distribution channel: all of
the planes, trucks, and people who distribute the weekly issues to the Subscribers.

By default, each data sample is propagated individually, independently, and uncorrelated with
other samples. However, an application may request that several samples be sent as a coherent
set, so that they may be interpreted as such on the receiving side.

Domains and DomainParticipants

You may have several independent DCPS applications all running on the same set of computers.
You may want to isolate one (or more) of those applications so that it isn’t affected by the others.
To address this issue, DCPS has a concept called Domains.

Domains represent logical, isolated, communication networks. Multiple applications running on
the same set of hosts on different Domains are completely isolated from each other (even if they
are on the same machine). DataWriters and DataReaders belonging to different domains will
never exchange data.

Applications that want to exchange data using DCPS must belong to the same Domain. To
belong to a Domain, DCPS APlIs are used to configure and create a DomainParticipant with a spe-
cific Domain Index. Domains are differentiated by the Domain Index (an integer value). Applica-
tions that have created DomainParticipants with the same Domain Index belong to the same
Domain. DomainParticipants own Topics, Publishers and Subscribers which in turn owns DataWrit-
ers and DataReaders. Thus all DCPS Entities belong to a specific domain.

An application may belong to multiple domains simultaneously by creating multiple Domain-
Participants with different domain indices. However, Publishers/DataWriters and Subscribers/
DataReaders only belong to the domain in which they were created.

As mentioned before, multiple domains may be used for application isolation which is useful
when users are testing their applications using computers on the same network or even the
same computers. By assigning each user different domains, one can guarantee that the data pro-
duced by one user’s application won’t accidentally be received by another. In addition, domains

2-7

Quality of Service (QoS)

2.5

2.5.1

may be a way to scale and construct larger systems that are composed of multi-node subsys-
tems. Each subsystem would use an internal domain for intra-system communications and an
external domain to connect to other subsystems.

For more information, see Chapter 8: Working with Domains.

Quality of Service (Qo0S)

The publish-subscribe approach to distributed communications is a generic mechanism that can
be employed by many different types of systems. The DCPS model described here extends the
publish-subscribe model to address the needs of real-time, data-critical applications. It provides
standardized mechanisms, known as Quality of Service Policies, that allow application develop-
ers to configure how communications occur, to limit resources used by the middleware, to detect
system incompatibilities and setup error handling routines.

Controlling Behavior with Quality of Service (QoS) Policies

QosPolicies control many aspects of how and when data is distributed between applications.
The overall QoS of the DCPS system is made up of the individual QosPolicies for each DCPS
Entity. There are QosPolicies for Topics, DataWriters, Publishers, DataReaders, Subscribers, and
DomainParticipants.

On the publishing side, the QoS of each Topic, the Topic’s DataWriter, and the DataWriter’s Pub-
lisher all play a part in controlling how and when data samples are sent to the middleware. Sim-
ilarly, the QoS of the Topic, the Topic’s DataReader, and the DataReader’s Subscriber control
behavior on the subscribing side.

Users will employ QosPolicies to control a variety of behaviors. For example, the DEADLINE
policy sets up expectations of how often a DataReader expects to see samples. The OWNERSHIP
and OWNERSHIP_STRENGTH policy are used together to configure and arbitrate whose data
is passed to the DataReader when there are multiple DataWriters for the same instance of a Topic.
The HISTORY policy specifies whether a DataWriter should save old data to send to new sub-
scriptions that join the network later. Many other policies exist and they are presented in
QosPolicies (Section 4.2).

Some QosPolicies represent “contracts” between publications and subscriptions. For communi-
cations to take place properly, the QosPolicies set on the DataWriter side must be compatible
with corresponding policies set on the DataReader side.

For example, the RELIABILITY policy is set by the DataWriter to state whether it is configured to
send data reliably to DataReaders. Because it takes additional resources to send data reliably,
some DataWriters may only support a best-effort level of reliability. This implies that for those
DataWriters, Connext will not spend additional effort to make sure that the data sent is received
by DataReaders or resend any lost data. However, for certain applications, it could be imperative
that their DataReaders receive every piece of data with total reliability. Running a system where
the DataWriters have not been configured to support the DataReaders could lead to erratic fail-
ures.

To address this issue, and yet keep the publications and subscriptions as decoupled as possible,
DCPS provides a way to detect and notify when QosPolicies set by DataWriters and DataReaders
are incompatible. DCPS employs a pattern known as RxO (Requested versus Offered). The
DataReader sets a “requested” value for a particular QosPolicy. The DataWriter sets an “offered”
value for that QosPolicy. When Connext matches a DataReader to a DataWriter, QosPolicies are
checked to make sure that all requested values can be supported by the offered values.

2-8

Application Discovery

2.6

Note that not all QosPolicies are constrained by the RxO pattern. For example, it does not make
sense to compare policies that affect only the DataWriter but not the DataReader or vice versa.

If the DataWriter can not satisfy the requested QosPolicies of a DataReader, Connext will not con-
nect the two entities and will notify the applications on each side of the incompatibility if so con-
figured.

For example, a DataReader sets its DEADLINE QoS to 4 seconds—that is, the DataReader is
requesting that it receive new data at least every 4 seconds.

In one application, the DataWriter sets its DEADLINE QoS to 2 seconds—that is, the DataWriter
is committing to sending data at least every 2 seconds. This writer can satisfy the request of the
reader, and thus, Connext will pass the data sent from the writer to the reader.

In another application, the DataWriter sets its DEADLINE QoS to 5 seconds. It only commits to
sending data at 5 second intervals. This will not satisfy the request of the DataReader. Connext
will flag this incompatibility by calling user-installed listeners in both DataWriter and DataReader
applications and not pass data from the writer to the reader.

For a summary of the QosPolicies supported by Connext, see QosPolicies (Section 4.2).

Application Discovery

The DCPS model provides anonymous, transparent, many-to-many communications. Each time
an application sends a sample of a particular Topic, the middleware distributes the sample to all
the applications that want that Topic. The publishing application does not need to specify how
many applications receive the Topic, nor where those applications are located. Similarly, subscrib-
ing applications do not specify the location of the publications. In addition, new publications and
subscriptions of the Topic can appear at any time, and the middleware will automatically inter-
connect them.

So how is this all done? Ultimately, in each application for each publication, Connext must keep a
list of applications that have subscribed to the same Topic, nodes on which they are located, and
some additional QoS parameters that control how the data is sent. Also, Connext must keep a list
of applications and publications for each of the Topics to which the application has subscribed.

This propagation of this information (the existence of publications and subscriptions and associ-
ated QoS) between applications by Connext is known as the discovery process. While the DDS
(DCPS) standard does not specify how discovery occurs, Connext uses a standard protocol RTPS
for both discovery and formatting on-the-wire packets.

When a DomainParticipant is created, Connext sends out packets on the network to announce its
existence. When an application finds out that another application belongs to the same domain,
then it will exchange information about its existing publications and subscriptions and associ-
ated QoS with the other application. As new DataWriters and DataReaders are created, this infor-
mation is sent to known applications.

The Discovery process is entirely configurable by the user and is discussed extensively in
Chapter 14: Discovery.

29

Part 2: Core Concepts

This section includes the following chapters:
(d Chapter 3: Data Types and Data Samples
(d Chapter 4: Entities
(d Chapter 5: Topics
d Chapter 6: Sending Data
(d Chapter 7: Receiving Data
[Chapter 8: Working with Domains
(d Chapter 9: Building Applications

Chapter 3 Data Types and Data Samples

How data is stored or laid out in memory can vary from language to language, compiler to com-
piler, operating system to operating system, and processor to processor. This combination of lan-
guage/compiler/operating system/processor is called a platform. Any modern middleware
must be able to take data from one specific platform (say C/gcc.3.2.2/Solaris/Sparc) and trans-
parently deliver it to another (for example, Java/JDK 1.6/Windows XP/Pentium). This process
is commonly called serialization/deserialization, or marshalling /demarshalling.

Messaging products have typically taken one of two approaches to this problem:

1. Do nothing. Messages consist only of opaque streams of bytes. The J]MS BytesMessage is
an example of this approach.

2. Send everything, every time. Self-describing messages are at the opposite extreme,
embedding full reflective information, including data types and field names, with each
message. The J]MS MapMessage and the messages in TIBCO Rendezvous are examples of
this approach.

The “do nothing” approach is lightweight on its surface but forces you, the user of the middle-
ware API, to consider all data encoding, alignment, and padding issues. The “send everything”
alternative results in large amounts of redundant information being sent with every packet,
impacting performance.

Connext takes an intermediate approach. Just as objects in your application program belong to
some data type, data samples sent on the same Connext topic share a data type. This type defines
the fields that exist in the data samples and what their constituent types are. The middleware
stores and propagates this meta-information separately from the individual data samples,
allowing it to propagate samples efficiently while handling byte ordering and alignment issues
for you.

To publish and/or subscribe to data with Connext, you will carry out the following steps:

1. Select a type to describe your data.

You have a number of choices. You can choose one of these options, or you can mix and
match them.

® Use a built-in type provided by the middleware.

This option may be sufficient if your data typing needs are very simple. If your data is
highly structured, or you need to be able to examine fields within that data for filter-
ing or other purposes, this option may not be appropriate. The built-in types are
described in Built-in Data Types (Section 3.2).

® Use the RTI code generator, rtiddsgen, to define a type at compile-time using a lan-
guage-independent description language.

3-1

Code generation offers two strong benefits not available with dynamic type defini-
tion: (1) it allows you to share type definitions across programming languages, and (2)
because the structure of the type is known at compile time, it provides rigorous static
type safety.

The code generator accepts input in a number of formats to make it easy to integrate
Connext with your development processes and IT infrastructure:

® OMG IDL. This format is a standard component of both the DDS and CORBA
specifications. It describes data types with a C++-like syntax. This format is
described in Creating User Data Types with IDL (Section 3.3).

® XML schema (XSD), either independent or embedded in a WSDL file. XSD should
be the format of choice for those using Connext alongside or connected to a web-
services infrastructure. This format is described in Creating User Data Types with
XML Schemas (XSD) (Section 3.5).

¢ XML in a DDS-specific format. This XML format is terser, and therefore easier to
read and write by hand, than an XSD file. It offers the general benefits of XML-
extensibility and ease of integration, while fully supporting DDS-specific data
types and concepts. This format is described in Creating User Data Types with
Extensible Markup Language (XML) (Section 3.4).

® Define a type programmatically at run time.

This method may be appropriate for applications with dynamic data description
needs: applications for which types change frequently or cannot be known ahead of
time. It is described in Defining New Types (Section 3.8.2).

2. Register your type with a logical name.

If you've chosen to use a built-in type instead of defining your own, you can omit this
step; the middleware pre-registers the built-in types for you.

This step is described in the Defining New Types (Section 3.8.2).
3. Create a Topic using the type name you previously registered.

If you've chosen to use a built-in type instead of defining your own, you will use the API
constant corresponding to that type's name.

Creating and working with Topics is discussed in Chapter 5: Topics.

4. Create one or more DataWriters to publish your data and one or more DataReaders to sub-
scribe to it.

The concrete types of these objects depend on the concrete data type you've selected, in
order to provide you with a measure of type safety.

Creating and working with DataWriters and DataReaders are described in Chapter 6:
Sending Data and Chapter 7: Receiving Data, respectively.

Whether publishing or subscribing to data, you will need to know how to create and delete data
samples and how to get and set their fields. These tasks are described in Working with Data
Samples (Section 3.9).

This chapter describes:
(d Introduction to the Type System (Section 3.1 on Page 3-3)
(J Built-in Data Types (Section 3.2 on Page 3-5)
[J Creating User Data Types with IDL (Section 3.3 on Page 3-35)

[Creating User Data Types with Extensible Markup Language (XML) (Section 3.4 on Page
3-59)

3-2

Introduction to the Type System

3.1

(J Creating User Data Types with XML Schemas (XSD) (Section 3.5 on Page 3-64)
(d Using rtiddsgen (Section 3.6 on Page 3-77)

(d Using Generated Types without Connext (Standalone) (Section 3.7 on Page 3-83)
(d Interacting Dynamically with User Data Types (Section 3.8 on Page 3-85)

(d Working with Data Samples (Section 3.9 on Page 3-91)

Infroduction to the Type System

A user data type is any custom type that your application defines for use with Connext. It may be
a structure, a union, a value type, an enumeration, or a typedef (or language equivalents).

Your application can have any number of user data types. They can be composed of any of the
primitive data types listed below or of other user data types.

Only structures, unions, and value types may be read and written directly by Connext; enums,
typedefs, and primitive types must be contained within a structure, union, or value type. In
order for a DataReader and DataWriter to communicate with each other, the data types associated
with their respective Topic definitions must be identical.

[octet, char, wchar

[short, unsigned short

[long, unsigned long

[long long, unsigned long long

1 float

(d double, long double

1 boolean

(d enum (with or without explicit values)

(d bounded and unbounded string and wstring
The following type-building constructs are also supported:

[module (also called a package or namespace)

(1 pointer

[array of primitive or user type elements

[bounded/unbounded sequence of elements'—a sequence is a variable-length ordered col-
lection, such as a vector or list

[typedef
1 bitfield?
[union
[struct

(J value type, a complex type that supports inheritance and other object-oriented features

1. Sequences of sequences are not supported directly. To work around this constraint, typedef the inner sequence
and form a sequence of that new type.

2. Data types containing bitfield members are not supported by DynamicData.

3-3

Introduction to the Type System

3.1.1

To use a data type with Connext, you must define that type in a way the middleware under-
stands and then register the type with the middleware. These steps allow Connext to serialize,
deserialize, and otherwise operate on specific types. They will be described in detail in the fol-
lowing sections.

Sequences

A sequence contains an ordered collection of elements that are all of the same type. The opera-
tions supported in the sequence are documented in the API Reference HTML documentation,
which is available for all supported programming languages (select Modules, RTI Connext
DDS API Reference, Infrastructure Module, Sequence Support).

Java sequences implement the java.util.List interface from the standard Collections framework.

C++ users will find sequences conceptually similar to the deque class in the Standard Template
Library (STL).

Elements in a sequence are accessed with their index, just like elements in an array. Indices start
from zero. Unlike arrays, however, sequences can grow in size. A sequence has two sizes associ-
ated with it: a physical size (the "maximum") and a logical size (the "length"). The physical size
indicates how many elements are currently allocated by the sequence to hold; the logical size
indicates how many valid elements the sequence actually holds. The length can vary from zero
up to the maximum. Elements cannot be accessed at indices beyond the current length.

A sequence may be declared as bounded or unbounded. A sequence's "bound" is the maximum
number of elements that the sequence can contain at any one time. The bound is very important
because it allows Connext to preallocate buffers to hold serialized and deserialized samples of
your types; these buffers are used when communicating with other nodes in your distributed
system. If a sequence had no bound, Connext would not know how large to allocate its buffers
and would therefore have to allocate them on the fly as individual samples were read and writ-
ten—severely impacting the latency and determinism of your application. Therefore, Connext
supports only bounded sequences; any unbounded sequences found in an IDL file will be given
a default bound of 100 elements (see rtiddsgen Command-Line Arguments (Section 3.6.1)).

Strings and Wide Strings

Connext supports both strings consisting of single-byte characters (the IDL string type) and
strings consisting of wide characters (IDL wstring). The wide characters supported by Connext
are four bytes long, large enough to store not only two-byte Unicode/UTF16 characters but also
UTE32 characters.

Like sequences, strings may be bounded or unbounded. A string's "bound" is its maximum
length (not counting the trailing NULL character in C and C++).

Introduction to TypeCode

Type schemas—the names and definitions of a type and its fields—are represented by TypeCode
objects. A type code value consists of a type code kind (see the TCKind enumeration below) and
a list of members. For compound types like structs and arrays, this list will recursively include
one or more type code values.

enum TCKind {
TK_NULL,
TK_SHORT,
TK_LONG,
TK _USHORT,
TK _ULONG,

3-4

Built-in Data Types

3.1.3.1

3.2

TK_FLOAT,
TK_DOUBLE,
TK_BOOLEAN,
TK_CHAR,
TK_OCTET,
TK_STRUCT,
TK_UNION,
TK_ENUM,
TK_STRING,
TK_SEQUENCE,
TK_ARRAY,
TK_ALIAS,
TK_LONGLONG,
TK_ULONGLONG,
TK_LONGDOUBLE,
TK_WCHAR,
TK_WSTRING,
TK_VALUE,
TK_SPARSE

}

Type codes unambiguously match type representations and provide a more reliable test than
comparing the string type names.

The TypeCode class, modeled after the corresponding CORBA API, provides access to type-
code information. For details on the available operations for the TypeCode class, see the API
Reference HTML documentation, which is available for all supported programming languages
(select Modules, RTI Connext DDS API Reference, Topic Module, Type Code Support).

Sending TypeCodes on the Network

In addition to being used locally, serialized type codes are typically published automatically
during discovery as part of the built-in topics for publications and subscriptions. See Built-in
DataReaders (Section 16.2). This allows applications to publish or subscribe to topics of arbitrary
types. This functionality is useful for generic system monitoring tools like the rtiddsspy debug
tool (see the API Reference HTML documentation).

Note: Type codes are not cached by Connext upon receipt and are therefore not available from
the built-in data returned by the DataWriter’s get_matched_subscription_data() operation or the
DataReader’s get_matched_publication_data() operation.

If your data type has an especially complex type code, you may need to increase the value of the
type_code_max_serialized_length field in the DomainParticipant’s
DOMAIN_PARTICIPANT_RESOURCE_LIMITS QosPolicy (DDS Extension) (Section 8.5.4). Or,
to prevent the propagation of type codes altogether, you can set this value to zero (0). Be aware
that some features of monitoring tools, as well as some features of the middleware itself (such as
ContentFilteredTopics) will not work correctly if you disable TypeCode propagation.

Built-in Data Types

Connext provides a set of standard types that are built into the middleware. These types can be
used immediately; they do not require writing IDL, invoking the rtiddsgen utility (see
Section 3.6), or using the dynamic type API (see Section 3.2.7).

The supported built-in types are String, KeyedString, Octets, and KeyedOctets. (The latter two
types are called Bytes and KeyedBytes, respectively, on Java and .NET platforms.)

3-5

Built-in Data Types

3.2.1

3.2.2

The built-in type APl is located under the DDS namespace in C++ and .NET. For Java, the APl is
contained inside the package com.rti.dds.type.builtin.

Built-in data types are discussed in the following sections:

[Registering Built-in Types (Section 3.2.1)

d Creating Topics for Built-in Types (Section 3.2.2)
[String Built-in Type (Section 3.2.3)

J String Built-in Type (Section 3.2.3)

(J KeyedString Built-in Type (Section 3.2.4)

(d Octets Built-in Type (Section 3.2.5)

d KeyedOctets Built-in Type (Section 3.2.6)

(d Type Codes for Built-in Types (Section 3.2.8)

Registering Built-in Types

By default, the built-in types are automatically registered when a DomainParticipant is created.
You can change this behavior by setting the DomainParticipant’s dds.builtin_type.auto_register
property to 0 (false) using the PROPERTY QosPolicy (DDS Extension) (Section 6.5.17).

Creating Topics for Built-in Types

To create a topic for a built-in type, just use the standard DomainParticipant operations,
create_topic() or create_topic_with_profile() (see Creating Topics (Section 5.1.1)); for the
type_name parameter, use the value returned by the get_type_name() operation, listed below
for each APL

Note: In the following examples, you will see the sentinel "<BuiltinType>."
For C and C++: <BuiltinType> = String, KeyedString, Octets or KeyedOctets
For Java and .NET': <BuiltinType> = String, KeyedString, Bytes or KeyedBytes

C API:

const char* DDS_<BuiltinType>TypeSupport get type name () ;

C++ API with namespace:

const char* DDS::<BuiltinType>TypeSupport::get_ type name() ;

C++ API without namespace:

const char* DDS<BuiltinType>TypeSupport::get_type name () ;

C++/CLI API:

System: :String”™ DDS:<BuiltinType>TypeSupport::get type name () ;

Ci# APL:

System.String DDS.<BuiltinType>TypeSupport.get_ type name() ;

1. RTI Connext NET language binding is currently supported for C# and C++/CLIL

3-6

Built-in Data Types

Java API:

String
com.rti.dds.type.builtin.<BuiltinType>TypeSupport.get type name () ;

3.2.2.1 Topic Creation Examples
For simplicity, error handling is not shown in the following examples.

C Example:

DDS Topic * topic = NULL;

/* Create a builtin type Topic */

topic = DDS_DomainParticipant create topic(
participant, "StringTopic",
DDS_StringTypeSupport get type name(),
&DDS_TOPIC QOS DEFAULT, NULL, DDS_ STATUS MASK NONE) ;

C++ Example with Ncumespcuces‘:

using namespace DDS;

/* Create a String builtin type Topic */

Topic * topic = participant->create topic(
"StringTopic", StringTypeSupport::get type name (),
DDS_TOPIC QOS DEFAULT, NULL, DDS STATUS MASK NONE) ;

C++/CLI Example:

using namespace DDS;

/* Create a builtin type Topic */

Topic” topic = participant-screate topic(
"StringTopic", StringTypeSupport::get type name (),
DomainParticipant::TOPIC_QOS DEFAULT,
nullptr, StatusMask::STATUS MASK NONE) ;

C# Example:

using namespace DDS;

/* Create a builtin type Topic */

Topic topic = participant.create topic(
"StringTopic", StringTypeSupport.get type name (),
DomainParticipant.TOPIC_QOS_DEFAULT,
null, StatusMask.STATUS MASK NONE) ;

Java Example:

import com.rti.dds.type.builtin.*;

/* Create a builtin type Topic */

Topic topic = participant.create topic(
"StringTopic", StringTypeSupport.get type name(),
DomainParticipant.TOPIC_QOS_DEFAULT,
null, StatusKind.STATUS MASK NONE) ;

1. This example uses C++ namespaces. If you're not using namespaces in your own code, prefix the name of each
DDS class with 'DDS.' For example, DDS::StringDataWriter becomes DDSStringDataWriter.

Built-in Data Types

3.2.3

3.23.1

3.23.2

String Built-in Type

The String built-in type is represented by a NULL-terminated character array (char *) in C and
C++ and an immutable String object in Java and .NET". This type can be used to publish and
subscribe to a single string.

Creating and Deleting Strings

In C and C++, Connext provides a set of operations to create (DDS::String_alloc()), destroy
(DDS::String_free()), and clone strings (DDS:String_dup()). Select Modules, RTI Connext
DDS API Reference, Infrastructure Module, String support in the API Reference HTML docu-
mentation, which is available for all supported programming languages.

Memory Considerations in Copy Operations:

When the read/take operations that take a sequence of strings as a parameter are used in
copy mode, Connext allocates the memory for the string elements in the sequence if they
are initialized to NULL.

If the elements are not initialized to NULL, the behavior depends on the language:

® In Java and .NET, the memory associated with the elements is reallocated with every
sample, because strings are immutable objects.

® In Cand C++, the memory associated with the elements must be large enough to hold
the received data. Insufficient memory may result in crashes.

When take_next_sample() and read_next_sample() are called in C and C++, you must
make sure that the input string has enough memory to hold the received data. Insuffi-
cient memory may result in crashes.

String DataWriter

The string DataWriter API matches the standard DataWriter API (see Using a Type-Specific
DataWriter (FooDataWriter) (Section 6.3.7)). There are no extensions.

The following examples show how to write simple strings with a string built-in type DataWriter.
For simplicity, error handling is not shown.

C Example:

DDS_StringDataWriter * stringWriter = ... ;
DDS_ReturnCode_ t retCode;
char * str = NULL;

/* Write some data */
retCode = DDS_StringDataWriter write(
stringWriter, "Hello World!", &DDS HANDLE NIL) ;

str = DDS_String dup("Hello World!");
retCode = DDS_StringDataWriter write(stringWriter, str, &DDS HANDLE NIL) ;
DDS_String free(str);

C++ Example with Namespacesz:

#include "ndds/ndds_namespace cpp.h"
using namespace DDS;

1. RTI Connext .NET language binding is currently supported for C# and C++/CLL

2. This example uses C++ namespaces. If you're not using namespaces in your own code, prefix the name of each
DDS class with 'DDS.' For example, DDS::StringDataWriter becomes DDSStringDataWriter.

3-8

Built-in Data Types

3.233

StringDataWriter * stringWriter = ... ;

/* Write some data */

ReturnCode t retCode = stringWriter->write("Hello World!", HANDLE NIL);
char * str = DDS::String dup("Hello World!");

retCode = stringWriter-swrite(str, HANDLE NIL) ;

DDS::String free(str);

C++/CLI Example:

using namespace System;
using namespace DDS;

StringDataWriter” stringWriter = ... ;

/* Write some data */

stringWriter->write("Hello World!", InstanceHandle t::HANDLE NIL);
String”® str = "Hello World!";

stringWriter->write(str, InstanceHandle t::HANDLE NIL) ;

C# Example:

using System;
using DDS;

StringDataWriter stringWriter = ... ;

/* Write some data */

stringWriter.write("Hello World!", InstanceHandle t.HANDLE NIL) ;
String str = "Hello World!";

stringWriter.write(str, InstanceHandle t.HANDLE NIL) ;

Java Example:

import com.rti.dds.publication.*;
import com.rti.dds.type.builtin.*;
import com.rti.dds.infrastructure.*;

StringDataWriter stringWriter = ... ;

/* Write some data */

stringWriter.write("Hello World!", InstanceHandle t.HANDLE NIL) ;
String str = "Hello World!";

stringWriter.write(str, InstanceHandle t.HANDLE NIL) ;

String DataReader

The string DataReader APl matches the standard DafaReader API (see Using a Type-Specific
DataReader (FooDataReader) (Section 7.4.1)). There are no extensions.

The following examples show how to read simple strings with a string built-in type DataReader.
For simplicity, error handling is not shown.

C Example:

struct DDS_StringSeq dataSeq = DDS_SEQUENCE_INITIALIZER;
struct DDS_SampleInfoSeq infoSeq = DDS_SEQUENCE INITIALIZER;
DDS_StringDataReader * stringReader = ... ;

DDS_ReturnCode t retCode;

int 1i;

39

Built-in Data Types

/* Take and print the data */

retCode = DDS StringDataReader_ take (stringReader, &dataSeq,
&infoSeq, DDS LENGTH UNLIMITED,
DDS_ANY SAMPLE STATE,
DDS_ANY VIEW STATE,
DDS_ANY INSTANCE STATE) ;

for (i = 0; i < DDS_StringSeq get length(&data seq); ++1i) {
if (DDS_SamplelInfoSeq get reference (&info seq, 1i)->valid data) {
DDS_StringTypeSupport print data(
DDS_StringSeqg get (&data_seq, 1i));
}
}
/* Return loan */
retCode = DDS_StringDataReader return loan (stringReader,
&data_seq, &info_seq) ;
C++ Example with Namespaces':
#include "ndds/ndds_namespace_ cpp.h"
using namespace DDS;

StringSeq dataSeq;
SampleInfoSeq infoSeq;
StringDataReader * stringReader = ... ;

/* Take a print the data */
ReturnCode_t retCode = stringReader->take(dataSeq, infoSeq,
LENGTH_UNLIMITED,
ANY SAMPLE STATE,
ANY VIEW STATE,
ANY INSTANCE STATE) ;

for (int i = 0; i < data_seq.length(); ++1i) ({
if (infoSeqg[i] .valid data) {
StringTypeSupport: :print data(dataSeql[i]) ;
}
}

/* Return loan */
retCode = stringReader->return_ loan(dataSeq, infoSeq);

C++/CLI Example:

using namespace System;
using namespace DDS;

StringSeq” dataSeq = gcnew StringSeq() ;
SampleInfoSeq” infoSeqg = gcnew SampleInfoSeq() ;
StringDataReader” stringReader = ... ;

/* Take and print the data */

stringReader->take (dataSeq, infoSeq,
ResourceLimitsQosPolicy: : LENGTH_UNLIMITED,
SampleStateKind::ANY_SAMPLE_STATE,

1. This example uses C++ namespaces. If you're not using namespaces in your own code, prefix the name of each
DDS class with 'DDS.' For example, DDS::StringDataWriter becomes DDSStringDataWriter.

3-10

Built-in Data Types

ViewStateKind: :ANY VIEW STATE,
InstanceStateKind: :ANY INSTANCE STATE) ;

for (int i = 0; i < data_seq.length(); ++1i) ({
if (infoSeg->get at (i)->valid data) ({
StringTypeSupport: :print data(dataSeqg->get at(i));
}
}

/* Return loan */
stringReader->return loan(dataSeq, infoSeq) ;

C# Example:

using System;
using DDS;

StringSeq dataSeq = new StringSeq() ;

SampleInfoSeq infoSeq = new SampleInfoSeq() ;

StringDataReader stringReader = ;

/* Take and print the data */

stringReader.take (dataSeq, infoSeq,
ResourceLimitsQosPolicy.LENGTH UNLIMITED,
SampleStateKind.ANY SAMPLE_STATE,
ViewStateKind.ANY VIEW STATE,
InstanceStateKind.ANY INSTANCE STATE) ;

for (int i = 0; i < data_seq.length(); ++1i) ({
if (infoSeg.get_at(i)).valid data) {
StringTypeSupport.print_ data(dataSeg.get_at(i));

}
Java Example:

import com.rti.dds.infrastructure.*;
import com.rti.dds.subscription.*;
import com.rti.dds.type.builtin.*;

StringSeq dataSeq = new StringSeq() ;

SampleInfoSeq infoSeq = new SampleInfoSeq() ;

StringDataReader stringReader = ;

/* Take and print the data */

stringReader.take (dataSeq, infoSeq,
ResourceLimitsQosPolicy.LENGTH UNLIMITED,
SampleStateKind.ANY SAMPLE_STATE,
ViewStateKind.ANY VIEW STATE,
InstanceStateKind.ANY INSTANCE_ STATE) ;

for (int i = 0; i < data_seqg.length(); ++1i) {

if (((SamplelInfo)infoSeqg.get(i)).valid data) {
System.out.println((String)dataSeq.get(i));
}
}

/* Return loan */
stringReader.return loan(dataSeq, infoSeq);

3-11

Built-in Data Types

3.24

3.24.1

3.24.2

KeyedString Built-in Type

The Keyed String built-in type is represented by a (key, value) pair, where key and value are
strings. This type can be used to publish and subscribe to keyed strings. The language specific
representations of the type are as follows:

C/C++ Representation (without namespaces):

struct DDS KeyedString {
char * key;
char * wvalue;

}i
C++/CLI Representation:

namespace DDS
public ref struct KeyedString: {
public:
System: :String”® key;
System: :String”™ value;

}i
}i

C# Representation:

namespace DDS
public class KeyedString {
public System.String key;
public System.String value;
}i
}i

Java Representation:

namespace DDS
public class KeyedString {
public System.String key;
public System.String value;
Vi
}i

Creating and Deleting Keyed Strings

Connext provides a set of constructors/destructors to create/destroy Keyed Strings. For details,
see the API Reference HTML documentation, which is available for all supported programming
languages (select Modules, RTI Connext DDS API Reference, Topic Module, Built-in Types).

If you want to manipulate the memory of the fields 'value' and 'key' in the KeyedString struct in
C/C++, use the operations DDS::String_alloc(), DDS::String_dup(), and DDS::String_free(),
as described in the API Reference HTML documentation (select Modules, RTI Connext DDS
API Reference, Infrastructure Module, String Support).

Keyed String DataWriter

The keyed string DataWriter API is extended with the following methods (in addition to the
standard methods described in Using a Type-Specific DataWriter (FooDataWriter) (Section
6.3.7)):

DDS: :ReturnCode_t DDS::KeyedStringDataWriter::dispose(
const char* key,
const DDS::InstanceHandle t* instance handle) ;

3-12

Built-in Data Types

DDS: :ReturnCode_t DDS::KeyedStringDataWriter::dispose w_timestamp (
const char* key,
const DDS::InstanceHandle t* instance handle,
const struct DDS::Time t* source timestamp) ;

DDS: :ReturnCode_ t DDS::KeyedStringDataWriter::get key value (
char * key,
const DDS::InstanceHandle t* handle) ;

DDS: :InstanceHandle t DDS::KeyedStringDataWriter: :lookup instance(
const char * key);

DDS: :InstanceHandle t DDS::KeyedStringDataWriter::register instance(
const char* key) ;

DDS: :InstanceHandle t
DDS_KeyedStringDataWriter::register instance w_timestamp (
const char * key,
const struct DDS_Time_t* source timestamp) ;

DDS: :ReturnCode_t DDS::KeyedStringDataWriter::unregister instance(
const char * key,
const DDS::InstanceHandle_t* handle) ;

DDS: :ReturnCode t

DDS: :KeyedStringDataWriter: :unregister instance w_ timestamp (
const char* key,
const DDS::InstanceHandle t* handle,
const struct DDS::Time_t* source_timestamp) ;

DDS: :ReturnCode_t DDS::KeyedStringDataWriter::write (
const char * key,
const char * str,
const DDS::InstanceHandle t* handle) ;

DDS: :ReturnCode_t DDS::KeyedStringDataWriter::write w timestamp (
const char * key,
const char * str,
const DDS::InstanceHandle t* handle,
const struct DDS::Time t* source timestamp) ;

These operations are introduced to provide maximum flexibility in the format of the input
parameters for the write and instance management operations. For additional information and a
complete description of the operations, see the API Reference HTML documentation, which is
available for all supported programming languages.

The following examples show how to write keyed strings using a keyed string built-in type
DataWriter and some of the extended APIs. For simplicity, error handling is not shown.

C Example:

DDS_KeyedStringDataWriter * stringWriter = ... ;
DDS_ReturnCode_t retCode;

struct DDS KeyedString * keyedStr = NULL;

char * str = NULL;

/* Write some data using the KeyedString structure */
keyedStr = DDS KeyedString new (255, 255);

strcpy (keyedStr-s>key, "Key 1");

strcpy (keyedStr->value, "Value 1");

3-13

Built-in Data Types

retCode = DDS_KeyedStringDataWriter write_string w_key(
stringWriter, keyedStr,
&DDS_HANDLE NIL) ;

DDS KeyedString delete (keyedStr) ;

/* Write some data using individual strings */
retCode = DDS_KeyedStringDataWriter write_string w_key(
stringWriter, "Key 1",
"Value 1", &DDS HANDLE NIL) ;
str = DDS_String dup("Value 2");

retCode = DDS KeyedStringDataWriter write string w key(
stringWriter, "Key 1",
str, &DDS_HANDLE NIL) ;
DDS_String free(str);

C++ Example with Ncumespcuces‘:

#include "ndds/ndds namespace cpp.h"
using namespace DDS;

KeyedStringDataWriter * stringWriter = ... ;

/* Write some data using the KeyedString */
KeyedString * keyedStr = new KeyedString (255, 255);
strcpy (keyedStr-s>key, "Key 1");

strcpy (keyedStr->value, "Value 1");

ReturnCode t retCode = stringWriter->write(keyedStr, HANDLE NIL) ;

delete keyedStr;
#include "ndds/ndds_ namespace cpp.h"
using namespace DDS;

KeyedStringDataWriter * stringWriter = ... ;

/* Write some data using the KeyedString */
KeyedString * keyedStr = new KeyedString (255, 255);
strcpy (keyedStr-skey, "Key 1");

strcpy (keyedStr->value, "Value 1");

ReturnCode t retCode = stringWriter->write(keyedStr, HANDLE NIL) ;

delete keyedStr;
C++/CLI Example:

using namespace System;
using namespace DDS;

KeyedStringDataWriter” stringWriter = ... ;

/* Write some data using the KeyedString */
KeyedString” keyedStr = gcnew KeyedString() ;
keyedStr->key = "Key 1";

keyedStr->value = "Value 1";

1. This example uses C++ namespaces. If you're not using namespaces in your own code, prefix the name of each
DDS class with 'DDS.' For example, DDS::StringDataWriter becomes DDSStringDataWriter.

3-14

Built-in Data Types

3.24.3

stringWriter->write (keyedStr, InstanceHandle t::HANDLE NIL) ;

/* Write some data using individual strings */
stringWriter->write ("Key 1", "Value 1", InstanceHandle t::HANDLE NIL) ;

String”® str = "Value 2";
stringWriter->write("Key 1", str, InstanceHandle t::HANDLE NIL) ;

C# Example

using System;
using DDS;

KeyedStringDataWriter stringWriter = ... ;

/* Write some data using the KeyedString */
KeyedString keyedStr = new KeyedString() ;
keyedStr.key = "Key 1";

keyedStr.value = "Value 1";

stringWriter.write (keyedStr, InstanceHandle t.HANDLE NIL) ;

/* Write some data using individual strings */
stringWriter.write("Key 1", "Value 1", InstanceHandle t.HANDLE NIL) ;

String str = "Value 2";
stringWriter.write("Key 1", str, InstanceHandle t.HANDLE NIL);

Java Example :

import com.rti.dds.publication.*;
import com.rti.dds.type.builtin.*;
import com.rti.dds.infrastructure.*;

KeyedStringDataWriter stringWriter = ... ;
/* Write some data using the KeyedString */
KeyedString keyedStr = new KeyedString() ;
keyedStr.key = "Key 1";

keyedStr.value = "Value 1";

stringWriter.write (keyedStr, InstanceHandle t.HANDLE NIL) ;

/* Write some data using individual strings */
stringWriter.write("Key 1", "Value 1", InstanceHandle t.HANDLE NIL) ;

String str = "Value 2";
stringWriter.write("Key 1", str, InstanceHandle t.HANDLE NIL);

Keyed String DataReader

The KeyedString DataReader API is extended with the following operations (in addition to the
standard methods described in Using a Type-Specific DataReader (FooDataReader) (Section
7.4.1)):

DDS: :ReturnCode_t DDS::KeyedStringDataReader::get key value(
char * key, const DDS::InstanceHandle t* handle) ;

DDS: :InstanceHandle t DDS::KeyedStringDataReader: :lookup instance (

3-15

Built-in Data Types

const char * key);

For additional information and a complete description of these operations in all supported lan-
guages, see the API Reference HTML documentation, which is available for all supported pro-

gramming languages.

Memory considerations in copy operations:

For read/take operations with copy semantics, such as read_next sample() and
take_next_sample(), Connext allocates memory for the fields 'value' and 'key' if they are

initialized to NULL.

If the fields are not initialized to NULL, the behavior depends on the language:

® In Java and .NET, the memory associated to the fields 'value' and 'key' will be reallo-

cated with every sample.

® In C and C++, the memory associated with the fields 'value' and 'key' must be large

enough to hold the received data. Insufficient memory may result in crashes.

The following examples show how to read keyed strings with a keyed string built-in type

DataReader. For simplicity, error handling is not shown.

C Example:

struct DDS_KeyedStringSeq dataSeq = DDS_SEQUENCE INITIALIZER;
struct DDS_SampleInfoSeqg infoSeq = DDS SEQUENCE INITIALIZER;
DDS_KeyedKeyedStringDataReader * stringReader = ... ;
DDS_ReturnCode_t retCode;

int 1i;

/* Take and print the data */

retCode = DDS_ KeyedStringDataReader take (stringReader, &dataSeq,
&infoSeq,
DDS_ LENGTH UNLIMITED,
DDS_ANY SAMPLE STATE,
DDS_ANY VIEW STATE,

DDS_ANY INSTANCE STATE) ;

for (i = 0; i < DDS_KeyedStringSeq get length(&data_seq); ++i) {

if (DDS_SamplelInfoSeq get reference(&info_seq, 1i)->valid_data)

DDS_KeyedStringTypeSupport print data(
DDS_KeyedStringSeq get reference (&data_ seq,
}
}
/* Return loan */

retCode = DDS_KeyedStringDataReader return_ loan/(
stringReader, &data seq, &info seq);

C++ Example with Ncumespcuces‘:

#include "ndds/ndds_ namespace cpp.h"
using namespace DDS;

KeyedStringSeq dataSeq;
SampleInfoSeqg infoSeq;
KeyedStringDataReader * stringReader = ... ;

/* Take a print the data */

1. This example uses C++ namespaces. If you're not using namespaces in your own code, prefix the name of each

DDS class with 'DDS.' For example, DDS::StringDataWriter becomes DDSStringDataWriter.

3-16

Built-in Data Types

ReturnCode t retCode = stringReader->take(dataSeq, infoSeq,
LENGTH_UNLIMITED,
ANY SAMPLE STATE,
ANY VIEW STATE,
ANY INSTANCE STATE) ;

for (int 1 = 0; 1 < data seq.length(); ++1i) {
if (infoSeql[i] .valid data) ({
KeyedStringTypeSupport: :print data(&dataSeq[i]) ;

/* Return loan */
retCode = stringReader->return loan(dataSeq, infoSeq);

C++/CLI Example:

using namespace System;
using namespace DDS;

KeyedStringSeq” dataSeq = gcnew KeyedStringSeq() ;

SampleInfoSeq” infoSeq = gcnew SampleInfoSeq() ;

KeyedStringDataReader” stringReader = ... ;

/* Take and print the data */

stringReader->take (dataSeq, infoSeq,
ResourceLimitsQosPolicy: : LENGTH UNLIMITED,
SampleStateKind: :ANY SAMPLE STATE,
ViewStateKind: :ANY VIEW STATE,
InstanceStateKind: :ANY INSTANCE STATE) ;

for (int i = 0; i < data_seqg.length(); ++i) {
if (infoSeg->get at (i)->valid data) {
KeyedStringTypeSupport: :print data(dataSeg->get at(i));

}

/* Return loan */
stringReader->return loan(dataSeq, infoSeq) ;

C# Example:

using System;
using DDS;

KeyedStringSeq dataSeq = new KeyedStringSeq() ;

SampleInfoSeqg infoSeq = new SampleInfoSeq() ;

KeyedStringDataReader stringReader = ;

/* Take and print the data */

stringReader. take (dataSeq, infoSeq,
ResourceLimitsQosPolicy.LENGTH UNLIMITED,
SampleStateKind.ANY SAMPLE STATE,
ViewStateKind.ANY VIEW STATE,
InstanceStateKind.ANY INSTANCE STATE) ;

for (int 1 = 0; 1 < data seq.length(); ++1i) {
if (infoSeqg.get at(i)).valid_data) ({
KeyedStringTypeSupport.print data(dataSeqg.get_at(i));

7

}

/* Return loan */

3-17

Built-in Data Types

stringReader.return loan(dataSeq, infoSeq) ;
Java Example:

import com.rti.dds.infrastructure.*;
import com.rti.dds.subscription.*;
import com.rti.dds.type.builtin.*;

KeyedStringSeq dataSeq = new KeyedStringSeq() ;
SampleInfoSeqg infoSeq = new SampleInfoSeq() ;
KeyedStringDataReader stringReader = ... ;

/* Take and print the data */

stringReader.take (dataSeq, infoSeq,
ResourcelLimitsQosPolicy.LENGTH UNLIMITED,
SampleStateKind.ANY SAMPLE STATE,
ViewStateKind.ANY VIEW STATE,
InstanceStateKind.ANY INSTANCE STATE) ;

for (int i = 0; i < data_seq.length(); ++1i) {

if (((SampleInfo)infoSeqg.get(i)).valid data) {
System.out.println((
(KeyedString)dataSeqg.get (1)) .toString()) ;

}

}

/* Return loan */

stringReader.return loan(dataSeq, infoSeq);

3.2.5 Octets Built-in Type

The octets built-in type is used to send sequences of octets. The language-specific representa-
tions are as follows:

C/C++ Representation (without Namespaces):

struct DDS Octets {
int length;
unsigned char * value;
i
C++/CLI Representation:

namespace DDS {
public ref struct Bytes: {
public:
System: :Int32 length;
System: : Int32 offset;
array<System: :Byte>" value;

}i
}i
Ci Representation:
namespace DDS {
public class Bytes {
public System.Int32 length;

public System.Int32 offset;
public System.Bytel[] value;

3-18

Built-in Data Types

3.2.5.1

3.25.2

Java Representation:

package com.rti.dds.type.builtin;

public class Bytes implements Copyable {
public int length;
public int offset;
public bytel[] value;

}i

Creating and Deleting Octets

Connext provides a set of constructors/destructors to create and destroy Octet objects. For
details, see the API Reference HTML documentation, which is available for all supported pro-
gramming languages (select Modules, RTT Connext DDS API Reference, Topic Module, Built-
in Types).

If you want to manipulate the memory of the value field inside the Octets struct in C/C++, use
the operations DDS::OctetBuffer_alloc(), DDS::OctetBuffer dup(), and
DDS::OctetBuffer_free(), described in the API Reference HTML documentation (select Mod-
ules, RTI Connext DDS API Reference, Infrastructure Module, Octet Buffer Support).

Octets DataWriter

In addition to the standard methods (see Using a Type-Specific DataWriter (FooDataWriter)
(Section 6.3.7)), the octets DataWriter AP1 is extended with the following methods:

DDS: :ReturnCode_t DDS::OctetsDataWriter::write(
const DDS::OctetSeq & octets,
const DDS::InstanceHandle t & handle) ;

DDS: :ReturnCode t DDS::OctetsDataWriter::write(
const unsigned char * octets,
int length,
const DDS::InstanceHandle t& handle) ;

DDS: :ReturnCode_t DDS::OctetsDataWriter::write w_timestamp (
const DDS::OctetSeq & octets,
const DDS::InstanceHandle t & handle,
const DDS::Time t & source_ timestamp) ;

DDS: :ReturnCode_t DDS::OctetsDataWriter::write w_timestamp (
const unsigned char * octets,
int length,
const DDS::InstanceHandle t& handle,
const DDS::Time t& source timestamp) ;

These methods are introduced to provide maximum flexibility in the format of the input param-
eters for the write operations. For additional information and a complete description of these
operations in all supported languages, see the API Reference HTML documentation.

The following examples show how to write an array of octets using an octets built-in type
DataWriter and some of the extended APIs. For simplicity, error handling is not shown.

C Example:

DDS OctetsDataWriter * octetsWriter = ... ;
DDS_ReturnCode_t retCode;

struct DDS_Octets * octets = NULL;

char * octetArray = NULL;

/* Write some data using the Octets structure */

3-19

Built-in Data Types

octets = DDS Octets new w_size(1024);
octets->length = 2;

octets->value [0]
octets->value [1]

46;
47 ;

retCode = DDS OctetsDataWriter write(octetsWriter, octets, &DDS HANDLE NIL) ;
DDS Octets_delete (octets) ;

/* Write some data using an octets array */
octetArray = (unsigned char *)malloc(1024) ;
octetArray[0] = 46;
octetArray[1l] = 47;

retCode = DDS_OctetsDataWriter write_ octets (octetsWriter, octetArray, 2,
&DDS_HANDLE NIL) ;
free (octetArray) ;

C++ Example with Ncumespcuces‘:

#include "ndds/ndds namespace cpp.h"
using namespace DDS;

OctetsDataWriter * octetsWriter = ... ;

/* Write some data using the Octets structure */
Octets * octets = new Octets(1024) ;
octets->length = 2;

octets->value [0]
octets->value[1]

46 ;
47 ;

ReturnCode_t retCode = octetsWriter->write(octets, HANDLE NIL) ;
delete octets;

/* Write some data using an octet array */

unsigned char * octetArray = new unsigned char[1024];
octetArray[0] = 46;

octetArray[l] = 47;

retCode = octetsWriter->write (octetArray, 2, HANDLE NIL) ;

delete []JoctetArray;

C++/CLI Example:

using namespace System;
using namespace DDS;

BytesDataWriter”® octetsWriter = ...;

/* Write some data using Bytes */
Bytes” octets = gcnew Bytes(1024);
octets->value[0] =46;
octets->value[1l] =47;
octets.length = 2;

octets.offset = 0;

octetWriter->write(octets, InstanceHandle t::HANDLE NIL) ;

1. This example uses C++ namespaces. If you're not using namespaces in your own code, prefix the name of each
DDS class with 'DDS.' For example, DDS::StringDataWriter becomes DDSStringDataWriter.

3-20

Built-in Data Types

/* Write some data using individual strings */

array<Byte>" octetAray = gcnew array<Bytes>(1024) ;

octetArray[0] = 46;

octetArray[l] = 47;

octetsWriter->write (octetArray, 0, 2, InstanceHandle t::HANDLE NIL) ;

C# Example:

using System;
using DDS;

BytesDataWriter stringWriter = ...;

/* Write some data using the Bytes */
Bytes octets = new Bytes(1024);
octets.value[0] = 46;

octets.value[l] = 47;

octets.length = 2;

octets.offset 0

octetWriter.write (octets, InstanceHandle t.HANDLE NIL) ;

/* Write some data using individual strings */

byte[] octetArray = new byte[1024];

octetArray[0] = 46;

octetArray[l] = 47;

octetsWriter.write(octetArray, 0, 2, InstanceHandle t.HANDLE NIL) ;

Java Example:

import com.rti.dds.publication.*;
import com.rti.dds.type.builtin.*;
import com.rti.dds.infrastructure.*;

BytesDataWriter octetsWriter = ... ;

/* Write some data using the Bytes class*/
Bytes octets = new Bytes(1024) ;
octets.length = 2;

octets.offset = 0;

octets.value[0] = 46;

octets.valuel[l] = 47;

octetsWriter.write(octets, InstanceHandle_ t.HANDLE NIL) ;

/* Write some data using a byte array */

byte[] octetArray = new byte[1024];

octetArray[0] = 46;

octetArray[1l] = 47;

octetsWriter.write(octetArray, 0, 2, InstanceHandle t.HANDLE NIL) ;
3.253 Octets DataReader

The octets DataReader API matches the standard DataReader API (see Using a Type-Specific
DataReader (FooDataReader) (Section 7.4.1)). There are no extensions.

3-21

Built-in Data Types

Memory considerations in copy operations:

For read/take operations with copy semantics, such as read_next sample() and
take_next_sample(), Connext allocates memory for the field 'value' if it is initialized to

NULL.
If the field 'value' is not initialized to NULL, the behavior depends on th

e language:

® InJava and .NET, the memory for the field 'value' will be reallocated if the current size

is not large enough to hold the received data.

® In C and C++, the memory associated with the field 'value' must be big enough to

hold the received data. Insufficient memory may result in crashes.

The following examples show how to read octets with an octets built-in type DataReader. For

simplicity, error handling is not shown.
C Example:

struct DDS_OctetsSeq dataSeq = DDS_SEQUENCE_ INITIALIZER;
struct DDS_SampleInfoSeg infoSeq = DDS SEQUENCE INITIALIZER;
DDS_OctetsDataReader * octetsReader = ... ;

DDS_ReturnCode_t retCode;

int 1i;

/* Take and print the data */

retCode = DDS_OctetsDataReader_ take (octetsReader, &dataSeq,
&infoSeq, DDS_ LENGTH_UNLIMI
DDS_ANY SAMPLE_STATE,
DDS_ANY VIEW STATE,
DDS_ANY INSTANCE STATE) ;

for (i = 0; i1 < DDS _OctetsSeq get length(&dataSeq); ++i) ({
if (DDS_SampleInfoSeqg get reference(&infoSeq, i)->valid data)
DDS_OctetsTypeSupport print data(
DDS OctetsSeq get reference (&dataSeq, i
}
}

/* Return loan */

TED,

{

))

retCode = DDS_OctetsDataReader_return_loan(octetsReader, &dataSeq, &infoSeq);

C++ Example with Namespaces':
#include "ndds/ndds namespace cpp.h"
using namespace DDS;

OctetsSeq dataSeq;
SampleInfoSeqg infoSeq;
OctetsDataReader * octetsReader = ... ;

/* Take a print the data */
ReturnCode t retCode = octetsReader->take(dataSeq, infoSeq,
LENGTH UNLIMITED, ANY SAMPLE ST.

ATE,

ANY VIEW STATE,ANY INSTANCE STATE) ;

for (int i = 0; i < data_seqg.length(); ++1i) {
if (infoSeq[i].valid data) {
OctetsTypeSupport: :print data(&dataSeql[i]) ;
}
}

/* Return loan */
retCode = octetsReader->return loan(dataSeq, infoSeq) ;

1. This example uses C++ namespaces. If you're not using namespaces in your own code, prefix the name of each

DDS class with 'DDS.' For example, DDS::StringDataWriter becomes DDSStringDataWriter.

3-22

Built-in Data Types

C++/CLI Example:

using namespace System;
using namespace DDS;

BytesSeq” dataSeq = gcnew BytesSeq() ;

SampleInfoSeq”™ infoSeqg = gcnew SampleInfoSeq() ;

BytesDataReaderA octetsReader = ;

/* Take and print the data */

octetsReader->take (dataSeq, infoSeq,
ResourceLimitsQosPolicy: : LENGTH UNLIMITED,
SampleStateKind: :ANY SAMPLE_STATE,
ViewStateKind: :ANY VIEW STATE,
InstanceStateKind: :ANY INSTANCE STATE) ;

for (int i = 0; i < data_seq.length(); ++1i) {
if (infoSeg->get_at (i)->valid data) {
BytesTypeSupport: :print data (dataSeqg->get at (i));

}

/* Return loan */
octetsReader->return loan(dataSeq, infoSeq);

C# Example:

using System;
using DDS;

BytesSeq dataSeqg = new BytesSeq() ;

SampleInfoSeqg infoSeq = new SampleInfoSeq() ;

BytesDataReader octetsReader = ;

/* Take and print the data */

octetsReader.take (dataSeq, infoSeq,
ResourcelLimitsQosPolicy.LENGTH UNLIMITED,
SampleStateKind.ANY SAMPLE STATE,
ViewStateKind.ANY_VIEW_STATE,
InstanceStateKind.ANY INSTANCE STATE) ;

for (int i = 0; i < data_seq.length(); ++1i) {
if (infoSeqg.get at(i)).valid data)
BytesTypeSupport.print data(dataSeqg.get at (i));

}

/* Return loan */
octetsReader.return loan(dataSeq, infoSeq) ;

Java Example:

import com.rti.dds.infrastructure.*;
import com.rti.dds.subscription.*;
import com.rti.dds.type.builtin.*;

BytesSeq dataSeqg = new BytesSeq() ;

SampleInfoSeqg infoSeq = new SampleInfoSeq() ;

BytesDataReader octetsReader = ;

/* Take and print the data */

octetsReader.take (dataSeq, infoSeq,
ResourceLimitsQosPolicy.LENGTH UNLIMITED,
SampleStateKind.ANY SAMPLE STATE,

3-23

Built-in Data Types

ViewStateKind.ANY VIEW STATE,
InstanceStateKind.ANY INSTANCE STATE) ;

for (int i = 0; i < data_seq.length(); ++1i) {
if (((SampleInfo)infoSeg.get(i)).valid data) {
System.out.println(((Bytes)dataSeq.get (i)) .toString()) ;
}
}

/* Return loan */
octetsReader.return loan(dataSeq, infoSeq) ;

3.2.6 KeyedOctets Built-in Type

The keyed octets built-in type is used to send sequences of octets with a key. The language-spe-
cific representations of the type are as follows:

C/C++ Representation (without Namespaces):

struct DDS KeyedOctets ({
char * key;
int length;
unsigned char * value;
Vi

C++/CLI Representation:

namespace DDS
public ref struct KeyedBytes
public:
System: :String”® key;
System: :Int32 length;
System::Int32 offset;
array<System: :Byte>" value;

Vi
Vi

Ci Representation:

namespace DDS {
public class KeyedBytes ({
public System.String key;
public System.Int32 length;
public System.Int32 offset;
public System.Bytel[] value;

Vi
Vi
Java Representation:

package com.rti.dds.type.builtin;
public class KeyedBytes ({

public String key;

public int length;

public int offset;

public bytel[] value;

}i

3.2.6.1 Creating and Deleting KeyedOctets

Connext provides a set of constructors/destructors to create/destroy KeyedOctets objects. For
details, see the API Reference HTML documentation, which is available for all supported pro-

3-24

Built-in Data Types

3.2.6.2

gramming languages (select Modules, RTI Connext DDS API Reference, Topic Module, Built-
in Types).

To manipulate the memory of the value field in the KeyedOctets struct in C/C++: use
DDS::OctetBuffer alloc(), DDS::OctetBuffer dup(), and DDS::OctetBuffer_free(). See the API
Reference HTML documentation (select Modules, RTI Connext DDS API Reference, Infra-
structure Module, Octet Buffer Support).

To manipulate the memory of the key field in the KeyedOctets struct in C/C++: use
DDS::String_alloc(), DDS::String dup(), and DDS::String_free(). See the API Reference
HTML documentation (select Modules, RTI Connext DDS API Reference, Infrastructure Mod-
ule, String Support).

Keyed Octets DataWriter

In addition to the standard methods (see Using a Type-Specific DataWriter (FooDataWriter)
(Section 6.3.7)), the keyed octets DataWriter API is extended with the following methods:

DDS: :ReturnCode_t DDS::KeyedOctetsDataWriter::dispose (
const char* key,
const DDS::InstanceHandle t & instance_handle) ;

DDS: :ReturnCode_t DDS::KeyedOctetsDataWriter::dispose_ w_timestamp (
const char* key,
const DDS::InstanceHandle t & instance handle,
const DDS::Time_t & source_timestamp) ;

DDS: :ReturnCode t DDS::KeyedOctetsDataWriter::get key value(
char * key,
const DDS::InstanceHandle t& handle) ;

DDS::InstanceHandle_t DDS::KeyedOctetsDataWriter::lookup_ instance (
const char * key);

DDS: : InstanceHandle t DDS::KeyedOctetsDataWriter::register instance (
const char* key);

DDS: :InstanceHandle_t
DDS: :KeyedOctetsDataWriter::register_ instance w_timestamp (
const char * key,
const DDS::Time_t & source_ timestamp) ;

DDS: :ReturnCode_t DDS::KeyedOctetsDataWriter::unregister instance(
const char * key,
const DDS::InstanceHandle t & handle) ;

DDS: :ReturnCode_t
DDS: :KeyedOctetsDataWriter: :unregister instance w timestamp (
const char* key,
const DDS::InstanceHandle t & handle,
const DDS::Time_t & source_timestamp) ;

DDS: :ReturnCode_t DDS::KeyedOctetsDataWriter::write(
const char * key,
const unsigned char * octets,
int length,
const DDS::InstanceHandle t& handle);

DDS: :ReturnCode_t DDS::KeyedOctetsDataWriter: :write(

const char * key,
const DDS::0OctetSeqg & octets,

3-25

Built-in Data Types

const DDS::InstanceHandle t & handle) ;

DDS: :ReturnCode_t DDS::KeyedOctetsDataWriter::write_ w_timestamp (
const char * key,
const unsigned char * octets,
int length,
const DDS::InstanceHandle té& handle,
const DDS::Time_t& source_timestamp) ;

DDS: :ReturnCode_t DDS::KeyedOctetsDataWriter::write_w_timestamp (
const char * key,
const DDS::0OctetSeqg & octets,
const DDS::InstanceHandle t & handle,
const DDS::Time_t & source_ timestamp) ;

These methods are introduced to provide maximum flexibility in the format of the input param-
eters for the write and instance management operations. For more information and a complete
description of these operations in all supported languages, see the API Reference HTML docu-
mentation.

The following examples show how to write keyed octets using a keyed octets built-in type
DataWriter and some of the extended APIs. For simplicity, error handling is not shown.

C Example:

DDS_KeyedOctetsDataWriter * octetsWriter = ... ;
DDS_ReturnCode_t retCode;

struct DDS KeyedOctets * octets = NULL;

char * octetArray = NULL;

/* Write some data using the KeyedOctets structure */
octets = DDS_KeyedOctets _new w_size(128,1024);

strcpy (octets->key, "Key 1");

octets->length = 2;

octets->value[0] = 46;

octets->value[1l] 47 ;

retCode = DDS_KeyedOctetsDataWriter write (
octetsWriter, octets, &DDS_HANDLE NIL) ;

DDS KeyedOctets delete(octets) ;

/* Write some data using an octets array */
octetArray = (unsigned char *)malloc(1024) ;
octetArray[0] = 46;
octetArray[l] = 47;

retCode = DDS_KeyedOctetsDataWriter write octets w key (
octetsWriter, "Key 1", octetArray, 2, &DDS_HANDLE_NIL);

free (octetArray) ;
C++ Example with Ncumespcuces‘:

#include "ndds/ndds_ namespace cpp.h"
using namespace DDS;

KeyedOctetsDataWriter * octetsWriter = ... ;

1. This example uses C++ namespaces. If you're not using namespaces in your own code, prefix the name of each
DDS class with 'DDS.' For example, DDS::StringDataWriter becomes DDSStringDataWriter.

3-26

Built-in Data Types

/* Write some data using the KeyedOctets structure */
KeyedOctets * octets = new KeyedOctets(128,1024) ;
strcpy (octets->key, "Key 1");

octets->length = 2;

octets->value [0]
octets->value[1]

46 ;
47 ;

ReturnCode_t retCode = octetsWriter->write(octets, HANDLE NIL) ;
delete octets;

/* Write some data using an octet array */

unsigned char * octetArray = new unsigned char[1024];
octetArray[0] = 46;

octetArray[l] = 47;

retCode = octetsWriter->write("Key 1", octetArray, 2, HANDLE NIL);

delete []JoctetArray;
C++/CLI Example:

using namespace System;
using namespace DDS;

KeyedOctetsDataWriter” octetsWriter = ... ;

/* Write some data using KeyedBytes */
KeyedBytes” octets = gcnew KeyedBytes (1024) ;
octets->key = "Key 1";

octets->value[0] =46;

octets->valuel[l] =47;

octets.length = 2;

octets.offset = 0;

octetWriter->write(octets, InstanceHandle t::HANDLE NIL) ;

/* Write some data using individual strings */
array<Byte>" octetAray = gcnew array<Byte>(1024) ;
octetArray[0] = 46;

octetArray([1l] = 47;

octetsWriter->write (
"Key 1", octetArray, 0, 2, InstanceHandle t::HANDLE NIL) ;

C# Example:

using System;
using DDS;

KeyedBytesDataWriter stringWriter = ... ;

/* Write some data using the KeyedBytes */
KeyedBytes octets = new KeyedBytes (1024) ;
octets.key = "Key 1";

octets.value[0] = 46;

octets.value[1l] 47 ;

octets.length
octets.offset =

]
o N

3-27

Built-in Data Types

3.2.6.3

octetWriter.write (octets, InstanceHandle t.HANDLE NIL) ;

/* Write some data using individual strings */
byte[] octetArray = new byte[1024];
octetArray([0] = 46;

octetArray([1l] = 47;

octetsWriter.write(
"Key 1", octetArray, 0, 2, InstanceHandle t.HANDLE NIL);

Java Example:

import com.rti.dds.publication.*;
import com.rti.dds.type.builtin.*;
import com.rti.dds.infrastructure.*;

KeyedBytesDataWriter octetsWriter = ... ;

/* Write some data using the KeyedBytes class*/
KeyedBytes octets = new KeyedBytes (1024) ;

octets.key = "Key 1";

octets.length = 2;

octets.offset = 0;

octets.value[0] 46 ;

octets.value[l] = 47;

octetsWriter.write(octets, InstanceHandle t.HANDLE NIL) ;

/* Write some data using a byte array */
byte[] octetArray = new byte[1024];
octetArray[0] = 46;
octetArray[l] = 47;
octetsWriter.write (
"Key 1", octetArray, 0, 2, InstanceHandle t.HANDLE NIL) ;

Keyed Octets DataReader

The KeyedOctets DataReader API is extended with the following methods (in addition to the
standard methods described in Using a Type-Specific DataReader (FooDataReader) (Section
7.4.1)):

DDS: :ReturnCode t DDS::KeyedOctetsDataReader::get key value(
char * key,
const DDS::InstanceHandle t* handle);

DDS: :InstanceHandle t DDS::KeyedOctetsDataReader: :lookup instance (
const char * key);

For more information and a complete description of these operations in all supported lan-
guages, see the API Reference HTML documentation.

Memory considerations in copy operations:

For read/take operations with copy semantics, such as read_next_sample() and
take_next_sample(), Connext allocates memory for the fields 'value' and 'key' if they are
initialized to NULL.

If the fields are not initialized to NULL, the behavior depends on the language:

® InJava and .NET, the memory of the field 'value' will be reallocated if the current size
is not large enough to hold the received data. The memory associated with the field
'key' will be reallocated with every sample (the key is an immutable object).

3-28

Built-in Data Types

® In C and C++, the memory associated with the fields 'value' and 'key' must be large
enough to hold the received data. Insufficient memory may result in crashes.

The following examples show how to read keyed octets with a keyed octets built-in type
DataReader. For simplicity, error handling is not shown.

C Example:

struct DDS_KeyedOctetsSeq dataSeq = DDS_SEQUENCE_INITIALIZER;
struct DDS_SampleInfoSeq infoSeq = DDS_ SEQUENCE INITIALIZER;
DDS_KeyedOctetsDataReader * octetsReader = ... ;
DDS_ReturnCode_t retCode;

int i;

/* Take and print the data */

retCode = DDS_KeyedOctetsDataReader take (
octetsReader,
&dataSeq, &infoSeq, DDS LENGTH UNLIMITED,
DDS_ANY SAMPLE STATE, DDS_ANY VIEW STATE,
DDS_ANY INSTANCE STATE) ;

for (i = 0; i < DDS_KeyedOctetsSeq get length(&data seq); ++1i)
if (DDS_SamplelInfoSeq get reference(&info_seq, i)->valid data)
DDS_KeyedOctetsTypeSupport print data(
DDS_KeyedOctetsSeq_get_reference (&data_seq, 1i));
}
}
/* Return loan */
retCode = DDS_KeyedOctetsDataReader_ return_ loan(
octetsReader, &data_ seq, &info_seq) ;
C++ Example with Namespaces':
#include "ndds/ndds namespace cpp.h"
using namespace DDS;

KeyedOctetsSeq dataSeq;
SampleInfoSeqg infoSeq;
KeyedOctetsDataReader * octetsReader = ... ;

/* Take a print the data */
ReturnCode t retCode = octetsReader->take(
dataSeq, infoSeq, LENGTH_ UNLIMITED,
ANY SAMPLE STATE, ANY VIEW STATE, ANY INSTANCE STATE) ;
for (int i = 0; i < data_seqg.length(); ++1i) {
if (infoSeq[i].valid data) {
KeyedOctetsTypeSupport: :print data(&dataSeq[i]) ;
}
}

/* Return loan */
retCode = octetsReader->return loan(dataSeq, infoSeq) ;

C++/CLI Example:

using namespace System;
using namespace DDS;

KeyedBytesSeq” dataSeqg = gcnew KeyedBytesSeq() ;
SampleInfoSeq”™ infoSeqg = gcnew SampleInfoSeq() ;

1. This example uses C++ namespaces. If you're not using namespaces in your own code, prefix the name of each
DDS class with 'DDS.' For example, DDS::StringDataWriter becomes DDSStringDataWriter.

3-29

Built-in Data Types

KeyedBytesDataReader”™ octetsReader = ... ;

/* Take and print the data */

octetsReader->take (dataSeq, infoSeq,
ResourceLimitsQosPolicy: : LENGTH UNLIMITED,
SampleStateKind: :ANY SAMPLE STATE,
ViewStateKind::ANY_VIEW_STATE,
InstanceStateKind: :ANY INSTANCE STATE) ;

for (int i = 0; i < data_seq.length(); ++1i) {
if (infoSeg->get at (i)->valid data) {
KeyedBytesTypeSupport: :print data(dataSeg->get at(i));

}

/* Return loan */
octetsReader->return loan(dataSeq, infoSeq) ;

C# Example:

using System;
using DDS;

KeyedBytesSeqg dataSeqg = new KeyedButesSeq() ;

SampleInfoSeqg infoSeq = new SampleInfoSeq() ;

KeyedBytesDataReader octetsReader = ;

/* Take and print the data */

octetsReader.take (dataSeq, infoSeq,
ResourceLimitsQosPolicy.LENGTH UNLIMITED,
SampleStateKind.ANY SAMPLE STATE,
ViewStateKind.ANY VIEW STATE,
InstanceStateKind.ANY INSTANCE STATE) ;

for (int i = 0; i < data_seqg.length(); ++1i) {
if (infoSeq.get at(i)).valid data) {
KeyedBytesTypeSupport.print data(dataSeqg.get at (i));

}

/* Return loan */
octetsReader.return loan(dataSeq, infoSeq) ;

Java Example:

import com.rti.dds.infrastructure.*;
import com.rti.dds.subscription.*;
import com.rti.dds.type.builtin.*;

KeyedBytesSeqg dataSeq = new KeyedBytesSeq() ;
SampleInfoSeq infoSeq = new SampleInfoSeq() ;
KeyedBytesDataReader octetsReader = ... ;

/* Take and print the data */

octetsReader.take (dataSeq, infoSeq,
ResourceLimitsQosPolicy.LENGTH UNLIMITED,
SampleStateKind.ANY SAMPLE_ STATE,
ViewStateKind.ANY VIEW STATE,
InstanceStateKind.ANY INSTANCE STATE) ;

for (int i = 0; i < data_seq.length(); ++1i) {

if (((SampleInfo)infoSeg.get(i)).valid data)
System.out.println(((KeyedBytes)dataSeqg.get (i)) .toString()) ;

3-30

Built-in Data Types

3.2.7

/* Return loan */
octetsReader.return loan(dataSeq, infoSeq) ;

Managing Memory for Built-in Types

When a sample is written, the DataWriter serializes it and stores the result in a buffer obtained
from a pool of preallocated buffers. In the same way, when a sample is received, the DataReader
deserializes it and stores the result in a sample coming from a pool of preallocated samples.

For data types generated by rtiddsgen, the size of the buffers and samples in both pools is known
based on the IDL or XML description of the type.

For example:

struct MyString {
string<128> value;

This IDL-defined type has a maximum serialized size of 133 bytes (4 bytes for length + 128 char-
acters + 1 NULL terminating character). So the serialization buffers will have a size of 133 bytes.
It can hold samples with 128 characters strings. Consequently, the preallocated samples will be
sized to keep this length.

However, for built-in types, the maximum size of the buffers/samples is unknown and depends
on the nature of the application using the built-in type.

For example, a video surveillance application that is using the keyed octets built-in type to pub-
lish a stream of images will require bigger buffers than a market-data application that uses the
same built-in type to publish market-data values.

To accommodate both kinds of applications and optimize memory usage, you can configure the
maximum size of the built-in types on a per-DataWriter or per-Datareader basis using the PROP-
ERTY QosPolicy (DDS Extension) (Section 6.5.17). Table 3.1 on page 3-32 lists the supported
built-in type properties. When the properties are defined in the DomainParticipant, they are
applicable to all DataWriters and DataReaders belonging to the DomainParticipant, unless they are
overwritten in the DataWriters and DataReaders.

Note: These properties must be set consistently with respect to the corresponding *.max_size
properties in the DomainParticipant (see Table 3.16 on page 3-90). The value of the alloc_size
property must be less than or equal to the max_size property with the same name prefix in the
DomainParticipant.

Section 3.2.7.1 includes examples of how to set the maximum size of a string built-in type for a
DataWriter programmatically, for each API. You can also set the maximum size of the built-in
types using XML QoS Profiles. For example, the following XML shows how to set the maximum
size of a string built-in type for a DataWriter.

<dds>
<gos_library name="BuiltinExampleLibrary"s>
<gos_profile name="BuiltinExampleProfile">
<datawriter gos>
<propertys>
<value>
<element>
<name>dds.builtin type.string.alloc size</name>
<value>2048</value>
</element>
</value>
</propertys>
</datawriter gos>
<datareader_gos>

3-31

Built-in Data Types

<propertys
<value>

<element>

<name>dds.builtin type.string.alloc_size</names>
<value>2048</value>
</element>

</value>
</property>
</datareader_ gos>
</qgos_profiles>
</gos_librarys>

</dds>
Table 3.1 Properties for Allocating Size of Built-in Types, per DataWriter and DataReader
Built-in s
Type Property Description

Maximum size of the strings published by the DataWriter

or received by the DataReader (includes the NULL-termi-

string dds.builtin_type.string.alloc_size |nated character).

Default: dds.builtin_type.string.max_size if defined (see

Table 3.16 on page 3-90). Otherwise, 1024.

Maximum size of the keys used by the DataWriter or
dds.builtin_type keyed_string. DataReader (includes the NULL-terminated character).
alloc_key_size Default: dds.builtin_type.keyed_string.max_key_size if

Keved defined (see Table 3.16 on page 3-90). Otherwise, 1024.
eyed-
str}i/ng Maximum size of the strings published by the DataWriter
. . or received by the DataReader (includes the NULL-termi-
dds.builtin_type keyed_string. nated character)
11 i :
aflocstze Default: dds.builtin_type keyed_string.max_size if
defined (see Table 3.16 on page 3-90). Otherwise, 1024.
Maximum size of the octet sequences published by the
tot dds.builtin t tets.all . DataWriter or DataReader.
Jbuiltin . .a iz
octers s —Ype-ocels.atocSIZe | Default: dds.builtin_type.octets.max_size if defined (see

Table 3.16 on page 3-90). Otherwise, 2048.

Maximum size of the key published by the DataWriter or
dds builti Keved received by the DataReader (includes the NULL-termi-

, S. 1111 tm_.type. eyed_octets. nated character).
alloc_key_size
—<eY- Default: dds.builtin_type. keyed_octets.max_key_size if
kezietd- defined (see Table 3.16 on page 3-90). Otherwise, 1024.
octets

Maximum size of the octet sequences published by the
dds.builtin_type.keyed_octets. DataWriter or DataReader.
alloc_size Default: dds.builtin_type.keyed_octets.max_size if

defined (see Table 3.16 on page 3-90). Otherwise, 2048.

3.2.7.1

Examples—Setting the Maximum Size for a String Programmatically

For simplicity, error handling is not shown in the following examples.

C Example:

DDS DataWriter * writer = NULL;

DDS_StringDataWriter * stringWriter =

DDS Publisher * publisher = ...
DDS Topic * stringTopic = ... ;

struct DDS DataWriterQos writerQos =

DDS_ReturnCode_ t retCode;

NULL;

DDS_DataWriterQos INITIALIZER;

3-32

Built-in Data Types

retCode = DDS_DomainParticipant_get default datawriter_gos (
participant, &writerQos);

retCode = DDS_PropertyQosPolicyHelper add property (
&writerQos.property,
"dds.builtin type.string.alloc_size", "1000",
DDS_BOOLEAN_ FALSE) ;

writer = DDS_Publisher create datawriter(
publisher, stringTopic, &writerQos,
NULL, DDS_STATUS MASK NONE) ;

stringWriter = DDS_StringDataWriter narrow(writer) ;
DDS_DataWriterQos_finalize (&writerQos) ;

C++ Example with Namespaces‘:

#include "ndds/ndds namespace cpp.h"
using namespace DDS;

Publisher * publisher = ... ;
Topic * stringTopic = ... ;
DataWriterQos writerQos;

ReturnCode_t retCode = participant->get default datawriter gos (writerQos) ;

retCode = PropertyQosPolicyHelper: :add property (
&writerQos.property, dds.builtin type.string.alloc_size", "1000",
BOOLEAN_ FALSE) ;

DataWriter * writer = publisher->create datawriter(
stringTopic, writerQos, NULL, STATUS MASK NONE) ;

StringDataWriter * stringWriter = StringDataWriter::narrow(writer);

C++/CLI Example:

using namespace DDS;

Topic”® stringTopic = ... ;
Publisher” publisher = ... ;
DataWriterQos”® writerQos = gcnew DataWriterQos() ;

participant->get default datawriter gos (writerQos) ;

PropertyQosPolicyHelper: :add property(writerQos->property gos,
"dds.builtin type.string.alloc_size","1000", false);

DataWriter” writer = publisher->create datawriter (stringTopic, writerQos,
nullptr, StatusMask::STATUS MASK NONE) ;

StringDataWriter” stringWriter = safe cast<StringDataWriter”s (writer);

C# Example:

using DDS;

1. This example uses C++ namespaces. If you're not using namespaces in your own code, prefix the name of each
DDS class with 'DDS.' For example, DDS::StringDataWriter becomes DDSStringDataWriter.

3-33

Built-in Data Types

Topic stringTopic = ... ;
Publisher publisher = ... ;
DataWriterQos writerQos = new DataWriterQos() ;

participant.get default datawriter gos(writerQos) ;

PropertyQosPolicyHelper.add property (writerQos.property gos,
"dds.builtin type.string.alloc_size", "1000", false);

StringDataWriter stringWriter =
(StringDataWriter) publisher.create datawriter (stringTopic,
writerQos, null, StatusMask.STATUS MASK NONE) ;

Java Example:

import com.rti.dds.publication.*;
import com.rti.dds.type.builtin.*;
import com.rti.dds.infrastructure.*;

Topic stringTopic = ... ;
Publisher publisher = ... ;
DataWriterQos writerQos = new DataWriterQos() ;

participant.get default datawriter gos(writerQos) ;

PropertyQosPolicyHelper.add property (writerQos.property,
"dds.builtin type.string.alloc_size", "1000", false);

StringDataWriter stringWriter =
(StringDataWriter) publisher.create datawriter (stringTopic, writerQos,
null, StatusKind.STATUS MASK NONE) ;

3.2.8 Type Codes for Built-in Types

The type codes associated with the built-in types are generated from the following IDL type def-
initions:
module DDS {

/* String */

struct String {
string<max size> value;

}i

/* KeyedString */

struct KeyedString {
string<max_size> key; //e@key
string<max size> value;

}i

/* Octets */

struct Octets {
sequence<octet, max _sizes> value;

}i

/* KeyedOctets */

struct KeyedOctets ({
string<max size> key; //e@key
sequence<octet, max_sizes> value;

}i

3-34

Creating User Data Types with IDL

Table 3.2

3.3

The maximum size (max_size) of the strings and sequences that will be included in the type
code definitions can be configured on a per-DomainParticipant-basis by using the properties in
Table 3.2.

Properties for Allocating Size of Built-in Types, per DomainParticipant

Built-in

Type Property Description

Maximum size of the strings published by the DataWriters
and received by the DataReaders belonging to a DomainPar-
ticipant (includes the NULL-terminated character).

Default: 1024

String dds.builtin_type.string.max_size

Maximum size of the keys used by the DataWriters and
dds.builtin_type.keyed_string. DataReaders belonging to a DomainParticipant (includes the
max_key_size NULL-terminated character).

Default: 1024

gti?rfg Maximum size of the strings published by the DataWriters
and received by the DataReaders belonging to a DomainPar-
ticipant using the built-in type (includes the NULL-termi-
nated character).

Default: 1024

dds.builtin_type keyed_string.

max_size

Maximum size of the octet sequences published by the
DataWriters and DataReaders belonging to a DomainPartici-
pant.

Default: 2048

Octets dds.builtin_type.octets.max_size

Maximum size of the key published by the DataWriter and
received by the DataReaders belonging to the
DomainParticipant (includes the NULL-terminated charac-
ter).

Keyed- Default:1024.
Octets

dds.builtin_type. keyed_octets.
max_key_size

Maximum size of the octet sequences published by the
dds.builtin_type.keyed_octets. DataWriters and DataReaders belonging to a DomainPartici-
max_size pant.

Default: 2048

Creating User Data Types with IDL

You can create user data types in a text file using IDL (Interface Description Language). IDL is
programming-language independent, so the same file can be used to generate code in C, C++,
C++/CLI and Java (the languages supported by rtiddsgen). The rtiddsgen utility parses the IDL
file and automatically generates all the necessary routines and wrapper functions to bind the
types for use by Connext at run time. You will end up with a set of required routines and struc-
tures that your application and Connext will use to manipulate the data.

Connext only uses a subset of the IDL syntax. IDL was originally defined by the OMG for the use
of CORBA client/server applications in an enterprise setting. Not all of the constructs that can
be described by the language are as useful in the context of high-performance data-centric
embedded applications. These include the constructs that define method and function proto-
types like “interface.”

3-35

Creating User Data Types with IDL

Table 3.3

The rtiddsgen utility will parse any file that follows version 3.0.3 of the IDL specification. It will
quietly ignore all syntax that is not recognized by Connext. In addition, even though “anony-
mous sequences” (sequences of sequences with no intervening typedef) are currently legal in
IDL, they have been deprecated by the specification, and thus rtiddsgen does not support them.

Certain keywords are considered reserved by the IDL specification; see Table 3.3.

Reserved IDL Keywords

abstract emits local pseudo typeid
alias enum long public typename
any eventtype mirrorport publishes typeprefix
attribute exception module raises union
boolean factory multiple readonly unsigned
case FALSE native sequence uses

char finder object setraises valuebase
component fixed octet short valuetype
connector float oneway string void
const getraises out struct wchar
consumes home port supports wstring
context import porttype switch

custom in primarykey TRUE

default inout private truncatable

double interface provides typedef

The IDL constructs supported by rtiddsgen are described in Table 3.5, “Specifying Data Types in
IDL for C and C++,” on page 3-39 and Table 3.7, “Specifying Data Types in IDL for Java,” on
page 3-46. Use these tables to map primitive types to their equivalent IDL syntax, and vice
versa.

For C and C++, rtiddsgen uses typedefs instead of the language keywords for primitive types.
For example, DDS_Long instead of long or DDS_Double instead of double. This ensures that
the types are of the same size regardless of the platform.!

The remainder of this section includes:

[Variable-Length Types (Section 3.3.1)

[Value Types (Section 3.3.2)

d TypeCode and rtiddsgen (Section 3.3.3)

1 rtiddsgen Translations for IDL Types (Section 3.3.4)
(d Escaped Identifiers (Section 3.3.5)

[Referring to Other IDL Files (Section 3.3.6)

[Preprocessor Directives (Section 3.3.7)

(d Using Custom Directives (Section 3.3.8)

1. The number of bytes sent on the wire for each data type is determined by the Common Data Representation
(CDR) standard. For details on CDR, please see the Common Object Request Broker Architecture (CORBA) Specifica-
tion, Version 3.1, Part 2: CORBA Interoperability, Section 9.3, CDR Transfer Syntax (http://www.omg.org/technology /
documents/corba_spec_catalog.htm).

3-36

http://www.omg.org/technology/documents/corba_spec_catalog.htm
http://www.omg.org/technology/documents/corba_spec_catalog.htm

Creating User Data Types with IDL

3.3.1

3.3.1.1

3.3.1.2

Variable-Length Types

When rtiddsgen generates code for data structures with variable-length types—strings and
sequences—it includes functions that create, initialize and finalize (destroy) those objects. These
support functions will properly initialize pointers and allocate and deallocate the memory used
for variable-length types. All Connext APIs assume that the data structures passed to them are
properly initialized.

For variable-length types, the actual length (instead of the maximum length) of data is transmit-
ted on the wire when the sample is written (regardless of whether the type has hard-coded
bounds).

Sequences

C, C++, C++/CLI, and C# users can allocate memory from a number of sources: from the heap,
the stack, or from a custom allocator of some kind. In those languages, sequences provide the
concept of memory "ownership." A sequence may own the memory allocated to it or be loaned
memory from another source. If a sequence owns its memory, it will manage its underlying
memory storage buffer itself. When a sequence's maximum size is changed, the sequence will
free and reallocate its buffer as needed. However, if a sequence was created with loaned mem-
ory by user code, then its memory is not its own to free or reallocate. Therefore, you cannot set
the maximum size of a sequence whose memory is loaned. See the API Reference HTML docu-
mentation, which is available for all supported programming languages (select Modules, RTI
Connext DDS API Reference, Infrastructure Module, Sequence Support) for more informa-
tion about how to loan and unloan memory for sequence.

In IDL, as described above, a sequence may be declared as bounded or unbounded. A
sequence's "bound" is the greatest value its maximum may take. If you use the initializer func-
tions rtiddsgen provides for your types, all sequences will have their maximums set to their
declared bounds. However, the amount of data transmitted on the wire when the sample is writ-
ten will vary.

Strings and Wide Strings

The initialization functions that rtiddsgen provides for your types will allocate all of the memory
for strings in a type to their declared bounds. Take care—if you assign a string pointer (char *) in
a data structure allocated or initialized by a Connext-generated function, you should release
(free) the memory originally allocated for the string, otherwise the memory will be leaked.

To Java and .NET users, an IDL string is a String object: it is immutable and knows its own
length. C and C++ users must take care, however, as there is no way to determine how much
memory is allocated to a character pointer "string”; all that can be determined is the string's cur-
rent logical length. In some cases, Connext may need to copy a string into a structure that user
code has provided. Connext does not free the memory of the string provided to it, as it cannot
know from where that memory was allocated.

In the C and C++ APIs, Connext therefore uses the following conventions:

[d A string's memory is "owned" by the structure that contains that string. Calling the final-
ization function provided for a type will free all recursively contained strings. If you
have allocated a contained string in a special way, you must be careful to clean up your
own memory and assign the pointer to NULL before calling the type’s finalize() method,
so that Connext will skip over that string.

[d You must provide a non-NULL string pointer for Connext to copy into. Otherwise, Con-
next will log an error.

3-37

Creating User Data Types with IDL

3.3.2

Table 3.4

3.3.3

(d When you provide a non-NULL string pointer in your data structure, Connext will copy
into the provided memory without performing any additional memory allocations. Be
careful—if you provide Connext with an uninitialized pointer or allocate a string that is
too short, you may corrupt the memory or cause a program crash. Connext will never try
to copy a string that is longer than the bound of the destination string. However, your
application must insure that any string that it allocates is long enough.

Connext provides a small set of C functions for dealing with strings. These functions simplify
common tasks, avoid some platform-specific issues (such as the lack of a strdup() function on
some platforms), and provide facilities for dealing with wide strings, for which no standard C
library exists. Connext always uses these functions internally for managing string memory; you
are recommended—but not required—to use them as well. See the API Reference HTML docu-
mentation, which is available for all supported programming languages (select Modules, RTI
Connext DDS API Reference, Infrastructure Module, String Support) for more information
about strings.

Value Types

A value type is like a structure, but with support for additional object-oriented features such as
inheritance. It is similar to what is sometimes referred to in Java as a POJO—a Plain Old Java
Object.

Readers familiar with value types in the context of CORBA should consult Table 3.4 to see which
value type-related IDL keywords are supported and what their behavior is in the context of Con-
next.

Value Type Support

Aspect Level of Support in rtiddsgen
Inheritance Single inheritance from other value types
Public state members Supported

Private state members Become public when code is generated

Custom keyword Ignored (the value type is parsed without the keyword and code is generated to

work with it)
Abstract value types No code generated (the value type is parsed, but no code is generated)
Operations No code generated (the value type is parsed, but no code is generated)

Ignored (the value type is parsed without the keyword and code is generated to

Truncatable keyword work with it)

TypeCode and rtiddsgen

Type codes are enabled by default when you run rtiddsgen. The -notypecode option disables
generation of type code information. Type-code support does increase the amount of memory
used, so if you need to save on memory, you may consider disabling type codes. (The -notype-
code option is described in rtiddsgen Command-Line Arguments (Section 3.6.1)

Locally, your application can access the type code for a generated type "Foo" by calling the
Foo::get_typecode() operation in the code for the type generated by rtiddsgen (unless type-code
support is disabled with the -notypecode option).

Note: Type-code support must be enabled if you are going to use ContentFiltered Topics (Section
5.4) with the default SQL filter. You may disable type codes and use a custom filter, as described
in Creating ContentFiltered Topics (Section 5.4.3).

3-38

Creating User Data Types with IDL

3.3.4

Table 3.5

rtiddsgen Translations for IDL Types

This section describes how to specify your data types in an IDL file. The rtiddsgen utility sup-
ports all the types listed in the following tables:

(J Table 3.5, “Specifying Data Types in IDL for C and C++,” on page 3-39
[Table 3.6, “Specifying Data Types in IDL for C++/CLL"” on page 3-43

(d Table 3.7, “Specifying Data Types in IDL for Java,” on page 3-46

In each table, the middle column shows the syntax for an IDL data type in the IDL file. The
rightmost column shows the corresponding language mapping created by rtiddsgen.

Specifying Data Types in IDL for C and C++

IDL Type Sample Entry in IDL File Sample Output Generated by rtiddsgen
char struct PrimitiveStruct { typedef struct PrimitiveStruct
{
char char member;
(see Note 1 Vs - DDS_Char char_member;
below) ! } PrimitiveStruct;
struct PrimitiveStruct { typedef struct PrimitiveStruct
wchar wchar wchar member; {
Vi - DDS_Wchar wchar_member;
! } PrimitiveStruct;
struct PrimitiveStruct { typedef struct PrimitiveStruct
octet octet octet member; {
Vi - DDS_Octet octect_member;
! } PrimitiveStruct;
struct Primitivestruct { typedef struct PrimitiveStruct
hort short short member; {
sho Vs - DDS_Short short member;
! PrimitiveStruct;
}
struct PrimitiveStruct { typedef struct PrimitiveStruct
unsigned unsigned short { DDS UnsignedShort
short unsigned short member; - ,g
Vs - - unsigned_short member;
! } PrimitiveStruct;
struct PrimitiveStruct { typedef struct PrimitiveStruct
lon long long member; {
ong } J I DDS_Long long member;
! } PrimitiveStruct;
struct Primitivestruct { typedef struct PrimitiveStruct
unsigned unsigned long { DDS UnsionedLon
long unsigned long member; - g g
Vi — - unsigned_long_member;
! } PrimitiveStruct;
struct Primitivestruct { typedef struct PrimitiveStruct
long lon long long long long member; {
g & }; g g 9 9 DDS_LongLong long long member;
! } PrimitiveStruct;
struct Primitivestruct { typedef struct PrimitiveStruct
unsigned unsigned long long { DDS UnsignedLongLong
1
unsigned long long member; -)
longlong }; d - I I unsigned_long long member;
! } PrimitiveStruct;
struct Primitivestruct { typedef struct PrimitiveStruct
float float float member; {

}i

DDS_Float float member;
} PrimitiveStruct;

3-39

Creating User Data Types with IDL

Table 3.5

Specifying Data Types in IDL for C and C++

IDL Type Sample Entry in IDL File Sample Output Generated by rtiddsgen
s typedef struct PrimitiveStruct
struct PrimitiveStruct i
double double double member;
}; - DDS_Double double_ member;
! } PrimitiveStruct;
long dou- s typedef struct PrimitiveStruct
ble struct PrimitiveStruct { {
long double long double member;
(see Note 2 }; J I - DDS_LongDouble long_double member;
below) ! } PrimitiveStruct;
pointer struct MyStruct { typedef struct MyStruct {
@ee Note 9 long * member; DDS_Long * member;
below) }i } MyStruct;
R typedef struct PrimitiveStruct
struct PrimitiveStruct i
boolean boolean boolean member;
}; - DDS_Boolean boolean member;
! } PrimitiveStruct;
N typedef enum PrimitiveEnum
enum PrimitiveEnum { {
ENUM1,
ENUM1,
ENUM2,
ENUM2,
ENUM3
y ENUM3
! } PrimitiveEnum;
enum
N typedef enum PrimitiveEnum
enum PrimitiveEnum { i
ENUM1 = 10,
ENUM1 = 10,
ENUM2 = 20,
ENUM2 = 20,
ENUM3 = 30
}' ENUM3 = 30
! } PrimitiveEnum;
C: #define SIZE 5
constant const short SIZE = 5; C++: static const DDS_Short size = 5;
typedef struct BitfieldType
struct BitfieldType ({ {
short myShort 1 : 1; DDS_Short myShort 1 : 1;
unsigned short myUnsignedShort 1: DDS_UnsignedShort myUnsignedShort 1
1; 1;
long myLong 1: 1; DDS _Long myLong 1 : 1;
unsigned long myUnsignedLong 1 :1; DDS_UnsignedLong myUnsignedLong 1
e char myChar 1 : 1; 1;
bitfield " s .1
wchar myWChar 1 : 1; DDS_Char myChar 1 : 1;
octet myOctet_1 : 1; DDS_Wchar myWChar_1 : 1;
@ee Note short : 0; DDS_Octet myOctet_1 : 1;
12bekn~) long myLong 5 : 5; DDS_Short : 0;
long myLong 30 30; DDS Long myLong 5 : 5;
short myShort_6 : 6; DDS_Long myLong_30 30;
short myShort 3and4 3+4; DDS_Short myShort 6 : 6;
short myShort; DDS_Short myShort_ 3and4 3+4;
short myShort_8 : 8; DDS_Short myShort;
long myLong 32: 32; DDS_Short myShort 8 : 8;
}; DDS_Long myLong 32 32;
} BitfieldType;
struct N typedef struct PrimitiveStruct
struct PrimitiveStruct i
char char member;
@ee Note }_ - char char_member;
10 below) ! } PrimitiveStruct;

3-40

Creating User Data Types with IDL

Table 3.5

Specifying Data Types in IDL for C and C++

IDL Type Sample Entry in IDL File Sample Output Generated by rtiddsgen
typedef struct PrimitiveUnion

union union PrimitiveUnion switch (long) { {

case 1: DDS_Long _d;
short short member; struct {

(see Note 3 default: - DDS_Short short member;

and Note long long member; DDS_Long long member;

10 below) |}; b
} PrimitiveUnion;

typedef typedef short TypedefShort; typedef DDS Short TypedefShort;

array of
above

struct OneDArrayStruct
short short_array[2];

}i

struct TwoDArrayStruct

typedef struct OneDArrayStruct

{

DDS_Short short array[2];
} OneDArrayStruct;

t def st t TwoDA St t
types short short_ arrayl[1l] [2]; {ype et strue wobArraystruc
Vi DDS_Short short array(1] [2];
} TwoDArrayStruct;
bounded

sequence of
above

struct SequenceStruct {

typedef struct SequenceStruct

{

DDSShortSeqg short_sequence;

types sequence<short, 4> short sequence; } SequenceStruct;
}i
(see Note Not;::f.Seq;%nceCs of p;lmltlve types have been
11 below) predefined by Connext.
typedef struct SequenceStruct
unbounded

sequence of
above

struct SequenceStruct {

{

DDSShortSeqg short sequence;
} SequenceStruct;

types sequence<short> short sequence;]
; ote: rtiddsgen will supply a default bound.
Note: rtidd 11 | default bound
(see Note You can specify that bound with the “-sequenc-
eSize” command-line option; see
11 below) .
Section 3.6.1.
struct ArraysOfSequences{ typedef struct ArraysOfSequences
array of sequence<short, 4> {
sequences sequences_array[2]; DDS_ShortSeq sequences_array[2];
}; } ArraysOfSequences;
typedef DDS_Short ShortArrayl[2];
DDS_SEQUENCE_NO_GET (ShortArraySeq,
ShortArray) ;
sequenceof typedef short ShortArray[2];
arrays typedef struct SequenceOfArrays
struct SequenceofArrays { {
sequence<ShortArray, 2> ShortArraySeq arrays sequence;
(see Note arrays_sequence; } SequenceOfArrays;
11 below) |};
_ _INO_ is a onnex
DDS_SEQUENCE_NO_GET C t

macro that defines a new sequence type for a
user data type. In this case, the user data type is
ShortArray:.

3-41

Creating User Data Types with IDL

Table 3.5

Specifying Data Types in IDL for C and C++

IDL Type

Sample Entry in IDL File

Sample Output Generated by rtiddsgen

sequence of

typedef sequence<short, 4>
ShortSequence;

typedef DDS_ShortSeqg ShortSequence;

DDS_SEQUENCE (ShortSequenceSeq,

sequences
ShortsS ;
struct SequencesOfSequences{ ortSequence)
Shorts ;2
@ee Note 4 Sequ:zci;nczz s:qEZEZ:. z typedef struct SequencesOfSequences{
and Note V; e —Sed ! ShortSequenceSeq
11 below) ! sequences_sequence;
} SequencesOfSequences;
t def st t Primiti St t
struct PrimitiveStruct ypeeet s rucl rimitivestruct {
bounded ,) char* string member;
. string<20> string member; —
string }i - /* maximum length = (20) */
! } PrimitiveStruct;
typedef struct PrimitiveStruct
char* string member;
struct PrimitiveStruct { /* maximum length = (255) */
unbounded string string member; } PrimitiveStruct;
string }i
Note: rtiddsgen will supply a default bound.
You can specify that bound with the -string-
Size command-line option, see Section 3.6.1.
typedef struct PrimitiveStruct
bounded struct PrimitiveStruct { DDS_Wchar * wstring member;
. wstring<20> wstring member; /* maximum length = (20)
wstring }; ny
} PrimitiveStruct;
typedef struct PrimitiveStruct {
DDS_Wchar * wstring_member;
unbounded | SE¥uct PrimitiveStruct {
wstring wstring wstring member; /* maximum length = (255) */
bi } PrimitiveStruct;
Note: rtiddsgen will supply a default bound.
With the -namespace option (only available
for C++):
namespace PackageName {
module PackageName { typedef struct Foo {
struct Foo { DDS_Long field;
module long field; } Foo;

}i
}i

}i
Without the -namespace option:
typedef struct PackageName_ Foo {
DDS_Long field;
} PackageName Foo;

3-42

Creating User Data Types with IDL

Table 3.5 Specifying Data Types in IDL for C and C++

Table 3.6

IDL Type

Sample Entry in IDL File

Sample Output Generated by rtiddsgen

valuetype

(see Note 9
and Note
10 below)

valuetype MyValueType {
public MyValueType2 * member;

}i

valuetype MyValueType {
public MyValueType2 member;

}i
valuetype MyValueType: MyBaseValueType

public MyValueType2 * member;

}i

C++:

}i

}i

{

}i

class MyValueType
seValueType

class MyValueType {
public:
MyValueType2 * member;

class MyValueType
public:
MyValueType2 member;

public MyBa-

public:
MyValueType2 * member;

{

typedef struct MyValueType {

MyValueType2 * member;

} MyValueType;

typedef struct MyValueType {

MyValueType2 member;

} MyvValueType;

typedef struct MyValueType

MyBaseValueType parent;
MyValueType2 * member;

} MyValueType;

Specifying Data Types in IDL for C++/CLI

IDL Type Sample Entry in IDL File Sample Output Generated by rtiddsgen
char struct PrimitiveStruct { public ref class PrimitiveStruct {
@ee Note 1 char char member; System: :Char char_member;
below) }i }i
struct PrimitiveStruct ({ public ref class PrimitiveStruct {
wchar wchar wchar member; System: :Char wchar_ member;
i i
struct PrimitiveStruct { public ref class PrimitiveStruct {
octet octet octet_ member; System: :Byte octet member;
}i }i
struct PrimitiveStruct ({ public ref class PrimitiveStruct {
short short short member; System::Intl6 short member;
}i Vi
struct PrimitiveStruct ({) .
.) public ref class PrimitiveStruct {
un&gned unsigned short
\ System: :UIntl6 unsigned short member;
short unsigned short member; . - -
}i '
struct PrimitiveStruct ({ public ref class PrimitiveStruct {
long long long member; System: :Int32 long member;
}i Vi
unsiened struct PrimitiveStruct ({ public ref class PrimitiveStruct {
longg unsigned long unsigned_ long member; System: :UInt32 unsigned_long member;

}i

}i

3-43

Creating User Data Types with IDL

Table 3.6

Specifying Data Types in IDL for C++/CLI

IDL Type Sample Entry in IDL File Sample Output Generated by rtiddsgen
struct PrimitiveStruct ({ public ref class PrimitiveStruct {
longlong long long long long member; System::Int64 long long member;
}i Vi
struct PrimitiveStruct { public ref class PrimitiveStruct {
unﬁgned unsigned long long System: :UInt64
longlong unsigned long_ long member; unsigned long_ long_ member;
}i }i
struct PrimitiveStruct ({ public ref class PrimitiveStruct {
float float float member; System: :Single float member;
}i Vi
struct PrimitiveStruct { public ref class PrimitiveStruct {
double double double member; System: :Double double member;
% } PrimitiveStruct;
long dou-
ble struct PrimitiveStruct { public ref class PrimitiveStruct {
long double long double member; DDS: :LongDouble long double member;
(see Note 2 }i - - } PrimitiveStruct; B B
below)
struct PrimitiveStruct { public ref class PrimitiveStruct {
boolean boolean boolean member; System: :Boolean boolean member;
i i
public enum class
enum PrimitiveEnum { PrimitiveEnum System: :Int32 {
ENUM1, ENUM1,
ENUM2, ENUM2,
ENUM3 ENUM3
}i }i
enum
enum PrimitiveEnum { public enum class
ENUM1 = 10, PrimitiveEnum System: : Int32 {
ENUM2 = 20, ENUM1 = 10,
ENUM3 = 30 ENUM2 = 20,
I ENUM3 = 30
Vi
public ref class SIZE {
constant const short SIZE = 5; public: ,
static System::Intl6 VALUE = 5;
i
struct . e
struct PrimitiveStruct { public ref class PrimitiveStruct {
char char member; System: :Char char member;
(see Note Vi - -
10 below) bi
public ref class PrimitiveUnion
union union PrimitiveUnion switch (long) { {
case 1: System::Int32 _d;
short short member; struct PrimitiveUnion u {
@ee Note 3 default: System::Intl6 short member;
and Note long long member; System::Int32 long member;
10 below) |}; b u;
Vi
array of | struct OneDArrayStruct | public ref class OneDAr{?yStruct {
above short short array[2]; array<System::Intl6>" short_array;
- /*length == 2%/
types }i b

3-44

Creating User Data Types with IDL

Table 3.6

Specifying Data Types in IDL for C++/CLI

IDL Type

Sample Entry in IDL File

Sample Output Generated by rtiddsgen

bounded
sequence of
above

struct SequenceStruct {

public ref class SequenceStruct {
ShortSeg”® short_sequence;
/*max = 4%/

types sequence<short, 4> short sequence; }i
}i
(see Note Note: Sequences of primitive types have been
11 below) predefined by Connext.
unbounded public ref class SequenceStruct {

sequence of

ShortSeq” short sequence;

/*max = <default bounds>*/
above struct SequenceStruct { },
types sequence<short> short sequence; ‘ : .
- i Note: rtiddsgen will supply a default bound.
bi You can specify that bound with the
(see Note -sequenceSize command-line option; see
11 below) Section 3.6.1.
public ref class ArraysOfSequences
struct ArraysOfSequences{ {
array of sequence<short, 4> array<DDS: :ShortSeq”>"
sequences sequences_array [2]; sequences_array;
}i // maximum length = (2)
Vi
. public ref class PrimitiveStruct {
struct PrimitiveStruct { K ~ .
bounded . . System::String” string member;
. string<20> string member; X -
string Vi - // maximum length = (20)
i Vs
public ref class PrimitiveStruct {
L System: :String” string member;
struct PrimitiveStruct { // maximum length = (255)
unbounded string string member; };
string bi Note: rtiddsgen will supply a default bound.
You can specify that bound with the -string-
Size command-line option, see Section 3.6.1.
. public ref class PrimitiveStruct ({
struct PrimitiveStruct { . A .
bounded X , System: :String” string member;
. wstring<20> wstring member; . -
wstring }; - // maximum length = (20)
i }:
public ref class PrimitiveStruct {
System::String”® string member; //
unbounded | Struct Primitivestruct { maximum length = (255)
tri wstring wstring member; i
wstrng Vi Note: rtiddsgen will supply a default bound.
You can specify that bound with the -string-
Size command-line option, see Section 3.6.1.
module PackageName { namespace PackageName {
struct Foo { public ref class Foo
module long field; System::Int32 field;

}i

}i

i
}i

3-45

Creating User Data Types with IDL

Table 3.7

Specifying Data Types in IDL for Java

Sample Java Output Generated by

IDL Type Sample Entry in IDL file .
yp P Yy rtiddsgen
char public class PrimitiveStruct
struct PrimitiveStruct ({ {
char char_member; public char char member;
(see Note 5 Vi
below) }
wchar public class PrimitiveStruct
struct PrimitiveStruct { {
wchar wchar member; public char wchar member;
(see Note 5 Vi
below) }
public class PrimitiveStruct
struct PrimitiveStruct ({ {
octet octet octet member; ublic byte byte member;
| p Y yte_
}i
}
public class PrimitiveStruct
struct PrimitiveStruct { {
short short short_ member; public short short member;
}i
}
un&gned . public class PrimitiveStruct
short struct PrimitiveStruct { {
nsigned short) .
unsig) public short unsigned short member;
unsigned_short member; - -
(see Note 6|y,
below) }
public class PrimitiveStruct
struct PrimitiveStruct { {
long long long member; public int long member;
}i
}
un&gned L public class PrimitiveStruct
long struct PrimitiveStruct i
i d1l
un51gn§ ong public int unsigned long member;
unsigned_long member; - -
(see Note 6]y,
below) }
public class PrimitiveStruct
struct PrimitiveStruct { {
long lon long long long long member; public long long long member;
g long _ _ _ _
}i
}
unggned public class PrimitiveStruct
long long struct PrimitiveStruct { {
unsigned long long public long
unsigned long long member; unsigned long long member;
(see Note 7|y,
below) 1
public class PrimitiveStruct
struct PrimitiveStruct ({ {
float float float member; ublic float float member;
] p]

}i

3-46

Creating User Data Types with IDL

Table 3.7

Specifying Data Types in IDL for Java

Sample Java Output Generated by

IDL Type Sample Entry in IDL file .
yp P Yy rtiddsgen
public class PrimitiveStruct
struct PrimitiveStruct ({ {
double double double member; public double double member;
}i
}
long(joubke public class PrimitiveStruct
struct PrimitiveStruct { {
long double long double member; public double long double member;
(see Note 7 Vi
below) }
: blic class MyStruct
pointer struct MyStruct { pubii [ass Aystru {
public int member;
(see Note 9 long * member;
below) }i }i
public class PrimitiveStruct
struct PrimitiveStruct ({ {
boolean boolean boolean member; public boolean boolean member;
i
}
public class PrimitiveEnum extends Enum
{
public static PrimitiveEnum ENUM1 =
new PrimitiveEnum ("ENUM1", O0);
enum PrimitiveEnum { public static PrimitiveEnum ENUM2 =
ENUM1, new PrimitiveEnum ("ENUM2", 1) ;
ENUM2,
ENUM3 public static PrimitiveEnum ENUM3 =
}i new PrimitiveEnum ("ENUM3", 2);
public static PrimitiveEnum
valueOf (int ordinal) ;
}
enum
public class PrimitiveEnum extends Enum
{
public static PrimitiveEnum ENUM1 =
new PrimitiveEnum ("ENUM1", 10);
enum PrimitiveEnum { public static PrimitiveEnum ENUM2 =
ENUM1 = 10, new PrimitiveEnum ("ENUM2", 10);
ENUM2 = 20,
ENUM3 = 30 public static PrimitiveEnum ENUM3 =
}; new PrimitiveEnum ("ENUM3", 20);
public static PrimitiveEnum
valueOf (int ordinal) ;
}
public class SIZE {
constant const short SIZE = 5; public static final short VALUE = 5;

}

3-47

Creating User Data Types with IDL

Table 3.7

Specifying Data Types in IDL for Java

Sample Java Output Generated by

IDL Type Sample Entry in IDL file .
yp 4 y rtiddsgen
struct BitfieldType { public class BitfieldType
{
izz;tmziii;rzjll: Li public short myShort 1;
char myChar_l.- i. public int myLong 1;
wohar myWChgr 1 ~’l' public byte myChar 1;
i - public char myWChar 1;
1 :1; . -
bitfield Z;Zit Tyg?tet_ public byte myOctet 1;
long m&LoAg — public int myLong 5;
@eeTVohle long myLong_3O 30 public int myLong 30;
— ! public short myShort 6;
below) short myShort 6 : 6; . B
short myShort 3anda 344 public short myShort_ 3and4;
chort myShort s ! public short myShort;
<hort myShort’8 - public short myShort 8;
long myzong 33, 52.' public int myLong 32;
}i -
}
ublic class PrimitiveStruct
truct
struc

(see Note 10

struct PrimitiveStruct {
char char member;

}i

{

public char char_member;

below) |
. union PrimitiveUnion switch (long) { public class PrimitiveUnion
union case 1: public int _d;
short short member; public short short member;
default: public int long member;

(see Note 10

below) long long member;
}i }
typedef of .
YP ... /* typedefs are unwounded to the original
primitives,
typedef short ShortType; type when used */
enynw' public class PrimitiveStruct
strings struct PrimitiveStruct { {
ShortType short member; public short short member;
(see Note 8 bi |
below)
typedef of /* Wrapper class */
sequences public class ShortArray
Or arrays typedef short Shorta 21; {
ypeaet shor ortArray (2] public short[] userData = new
short [2] ;
(see Note 8
below) !
public class OneDArrayStruct
{
t t OneDA St t .
struc neDArrayStruct { public short[] short array = new
short short array[2]; -
}_ - short [2] ;
}
array
public class TwoDArrayStruct
{
t t TwoDA St t
struc woDArrayStruct { public short[] [] short_array = new

short short_arrayl[1] [2];

}i

1
short [1] [2];

3-48

Creating User Data Types with IDL

Table 3.7

Specifying Data Types in IDL for Java

Sample Java Output Generated by

IDL Type Sample Entry in IDL file .
yp P Yy rtiddsgen
public class SequenceStruct
bounded {
sequence struct SequenceStruct { public ShortSeq short_ sequence = new

(see Note 11

sequence<short, 4>
short_sequence;

-

ShortSeq((4)) ;

}

below) Note: Sequences of primitive types have been pre-
defined by Connext.
public class SequenceStruct
{
unbounded public ShortSeq short sequence = new
sequence struct SequenceStruct { ShortSeq((100)) ;

(see Note 11

sequence<short> short_sequence;

—

}
Note: rtiddsgen will supply a default bound. You

below) can specify that bound with the “-sequenceSize”
command-line option; see Section 3.6.1.
public class ArraysOfSequences
struct ArraysOfSequences {
array of sequence<short, 4> public ShortSeq[] sequences_array =
sequences sequences_array [2]; new ShortSeql[2];

}i

}

sequence of
arrays

(see Note 11
below)

typedef short ShortArray[2];

struct SequenceOfArrays{
sequence<ShortArray, 2>
arrays_sequence;

}i

/* Wrapper class */
public class ShortArray
{
public short[]
short [2] ;

userData = new

}

/* Sequence of wrapper class objects */

public final class ShortArraySeq
extends ArraySequence

{

}

public class SequenceOfArrays

{

public ShortArraySeq arrays_sequence
= new ShortArraySeq((2));

3-49

Creating User Data Types with IDL

Table 3.7 Specifying Data Types in IDL for Java

. . Sample Java Output Generated b
IDL Type Sample Entry in IDL file ple] (P y
rtiddsgen
/* Wrapper class */
public class ShortSequence
{
public ShortSeq userData = new
ShortSeq((4)) ;
}
t def hort, 4
sequence of ypesiorizgu32222§ or g /* Sequence of wrapper class objects */
sequences d ! public final class ShortSequenceSeq
extends ArraySequence
struct SequencesOfSequences{ {
(see Note 4 sequence<ShortSequence, 2>
and Note 11 sequences_sequence; }
below) }i
public class SequencesOfSequences
{
public ShortSequenceSeq
sequences_sequence = new
ShortSequenceSeq((2)) ;
}
public class PrimitiveStruct
{
bounded struct PrimitiveStruct { public String string member = new
tri string<20> string member; String() ;
string Vi /* maximum length = (20) */
}
public class PrimitiveStruct
{
public String string member = new
o String() ;
unbounded struct PrimitiveStruct /* maximum length = (255) */
strin string string member;
g }i)
Note: rtiddsgen will supply a default bound. You
can specify that bound with the -stringSize com-
mand-line option, see Section 3.6.1.
public class PrimitiveStruct
{
bounded struct PrimitiveStruct ({ public String wstring member = new
tri wstring<20> wstring member; String () ;
wstring Vi /* maximum length = (20) */
}
public class PrimitiveStruct
{
ublic String wstring member = new
unbounded | SEruct PrimitiveStruct { P String()? 9
w&tﬂng } wstring wstring member; /* maximum length = (255) */
}
Note: rtiddsgen will supply a default bound.

3-50

Creating User Data Types with IDL

Table 3.7

Not
Supported—>

Supported—>

Specifying Data Types in IDL for Java

IDL Type Sample Entry in IDL file

Sample Java Output Generated by
rtiddsgen

module long field; {

package PackageName;
module PackageName {
struct Foo public class Foo

}i public int field;

}

}i

public class MyValueType {
public MyValueType2 member;
valuetype MyValueType {

public MyValueType2 * member; I
}i
Vahkﬂype public class MyValueType {
valuetype MyValueType { public MyValueType2 member;
public MyValueType2 member;
(see Note 9 Vs Vi
and Note 10
below) valuetype MyValueType: public class MyValueType extends
MyBaseValueType { MyBaseValueType
public MyValueType2 * member; {
I public MyValueType2 member;

Notes for Table 3.5 through Table 3.7:

1.

Note that in C and C++, primitive types are not represented as native language types
(e.g. long, char, etc.) but as custom types in the DDS namespace (DDS_Long,
DDS_Char, etc.). These typedefs are used to ensure that a field’s size is the same across
platforms.

Some platforms do not support long double or have different sizes for that type than
defined by IDL (16 bytes). On such platforms, DDS_LongDouble (as well as the
unsigned version) is mapped to a character array that matches the expected size of that
type by default. If you are using a platform whose native mapping has exactly the
expected size, you can instruct Connext to use the native type instead. That is, if
sizeof(long double) == 16, you can tell Connext to map DDS_LongDouble to long dou-
ble by defining the following macro either in code or on the compile line:

-DRTI_CDR_SIZEOF_LONG DOUBLE=16

Unions in IDL are mapped to structs in C and C++, so that Connext will not have to
dynamically allocate memory for unions containing variable-length fields such as strings
or sequences. To be efficient, the entire struct (or class in C++/CLI) is not sent when the
union is published. Instead, Connext uses the discriminator field of the struct to decide
what field in the struct is actually sent on the wire.

So-called "anonymous sequences" —sequences of sequences in which the sequence ele-
ment has no type name of its own—are not supported. Such sequences are deprecated in
CORBA and may be removed from future versions of IDL. For example, this is not sup-
ported:

sequence<sequence<short, 4>,4> MySequence;

Sequences of typedef’ed types, where the typedef is really a sequence, are supported. For
example, this is supported:

typedef sequence<short, 4> MyShortSequence;

3-51

Creating User Data Types with IDL

Not
Supported—>

Not
Supported—>

3.3.5

sequence<MyShortSequence, 4> MySequence;

5. IDL wchar and char are mapped to Java char, 16-bit unsigned quantities representing
Unicode characters as specified in the standard OMG IDL to Java mapping. In C++/CLI,
char and wchar are mapped to System::Char.

6. The unsigned version for integer types is mapped to its signed version as specified in the
standard OMG IDL to Java mapping.

7. There is no current support in Java for the IDL long double type. This type is mapped to
double as specified in the standard OMG IDL to Java mapping.

8. Java does not have a typedef construct, nor does C++/CLI Typedefs for types that are
neither arrays nor sequences (struct, unions, strings, wstrings, primitive types and
enums) are "unwound" to their original type until a simple IDL type or user-defined IDL
type (of the non-typedef variety) is encountered. For typedefs of sequences or arrays,
rtiddsgen will generate wrapper classes if -corba is not used; no wrapper classes are gen-
erated if -corba is used.

9. In C and C++, all the members in a value type, structure or union that are declared with
the pointer symbol ("*’) will be mapped to references (pointers). In C++/CLI and Java,
the pointer symbol is ignored because the members are always mapped as references.

10. In-line nested types are not supported inside structures, unions or valuetypes. For exam-
ple, this is not supported:

struct Outer ({
short outer short;
struct Inner ({
char inner_char;
short inner_short;
} outer nested inner;

bi

11. The sequence <Type>Seq is implicitly declared in the IDL file and therefore it cannot be
declared explicitly by the user. For example, this is not supported:

typedef sequence<Foo> FooSeq; //error

12. Data types containing bitfield members are not supported by DynamicData (Section 3.8).

Escaped Identifiers

To use an IDL keyword as an identifier, the keyword must be “escaped” by prepending an
underscore, ‘_’. In addition, you must run rtiddsgen with the -enableEscapeChar option. For
example:

struct MyStruct {
octet _octet; // octet is a keyword. To use the type
// as a member name we add ‘' _’

}i

The use of “_" is a purely lexical convention that turns off keyword checking. The generated code
will not contain “_’. For example, the mapping to C would be as follows:

struct MyStruct
unsigned char octet;

Note: If you generate code from an IDL file to a language ‘X’ (for example, C++), the keywords

of this language cannot be used as IDL identifiers, even if they are escaped. For example:

struct MyStruct

3-52

Creating User Data Types with IDL

3.3.6

3.3.7

3.3.8

long int; // error
long _int; // error

i

Referring to Other IDL Files
IDL files may refer to other IDL files using a syntax borrowed from C, C++, and C++/CLI pre-
processors:
#include “Bar.idl”
If such a statement is encountered by rtiddsgen and you are generating code for C, C++, and

C++/CLI, rtiddsgen will assume that code has been generated for Bar.idl with corresponding
header files, Bar.h and BarPlugin.h.

The generated code will automatically have:

#include “Bar.h”
#include “BarPlugin.h”

added where needed to compile correctly.

Because Java types do not refer to one another in the same way, it is not possible for rtiddsgen to
automatically generate Java import statements based on an IDL #include statement. Any
#include statements will be ignored when Java code is generated. To add imports to your gener-
ated Java code, you should use the //@copy directive (see Section 3.3.8.2).

Preprocessor Directives

rtiddsgen supports the standard preprocessor directives defined by the IDL specification, such as
#if, #endif, #include, and #define.

To support these directives, rtiddsgen calls an external C preprocessor before parsing the IDL file.
On Windows systems, the preprocessor is ‘cl.exe.” On other architectures, the preprocessor is
‘cpp.” You can change the default preprocessor with the —ppPath option. If you do not want to
run the preprocessor, use the —ppDisable option. See rtiddsgen Command-Line Arguments
(Section 3.6.1).

Using Custom Directives

The following rtiddsgen-specific directives can be used in your IDL file:
/ /@key (see Section 3.3.8.1)

//@copy (see Section 3.3.8.2)
/ /@copy-c

/ /@copy-cppcli

/ /@copy-java

/ /@copy-java-begin

/ /@copy-declaration

/ /@copy-c-declaration

/ /@copy-cppcli-declaration
/ /@copy-java-declaration

/ /@copy-java-declaration-begin
/ /@resolve-name [true | false] (see Section 3.3.8.3)

/ /@top-level [true | false] (see Section 3.3.8.4)

3-53

Creating User Data Types with IDL

3.3.8.1

Notes:

[To apply multiple directives to the same member or structure in an IDL file, put each
additional directive on a new line, as shown below:

struct A {
long a; //ekey
//@ID 20
long b;

}; //@Extensibility FINAL EXTENSIBILITY
//@top-level false

(d Custom directives start with “//@”. Do not put a space between the slashes and the @, or
the directive will not be recognized by rtiddsgen.

[The directives are case-sensitive. For instance, you must use /@key (not /@Key).

The @key Directive

To declare a key for your data type, insert the @key directive in the IDL file after one or more
fields of the data type.

With each key, Connext associates an internal 16-byte representation, called a key-hash.

If the maximum size of the serialized key is greater than 16 bytes, to generate the key-hash, Con-
next computes the MD5 key-hash of the serialized key in network-byte order. Otherwise (if the
maximum size of the serialized key is <= 16 bytes), the key-hash is the serialized key in network-
byte order.

Only struct definitions in IDL may have key fields. When rtiddsgen encounters //@key, it consid-
ers the previously declared field in the enclosing structure to be part of the key. Table 3.8 on
page 3-54 shows some examples of keys.

Table 3.8 Example Keys

Type Key Fields

struct NoKey {
long memberl;
long member2;

}

struct SimpleKey {
long memberl; //ekey

memberl
long member2;

}

struct NestedNoKey ({
SimpleKey memberl;
long member?2;

}

struct NestedKey
SimpleKey memberl; //@key

memberl.memberl
long member2;

}

struct NestedKey2 {
NoKey memberl; //ekey memberl.memberl
long member2; memberl.member?2

}

valuetype BaseValueKey {
public long memberl; //@key memberl
}

3-54

Creating User Data Types with IDL

Table 3.8

3.3.8.2

Table 3.9

Example Keys

Type Key Fields
luet DerivedValuek :B ValueK
e P s oy M T Juenben
} P g ! ¥ member?2
valuetype DerivedValue : BaseValueKey {
public long member2; memberl

}

struct ArrayKey

long memberl[3]; //ekey
}

memberl [0]
memberl [1]
memberl [2]

The @copy and Related Directives

To copy a line of text verbatim into the generated code files, use the @copy directive in the IDL
file. This feature is particularly useful when you want your generated code to contain text that is
valid in the target programming language but is not valid IDL. It is often used to add user com-
ments or headers or preprocessor commands into the generated code.

// Modification History

[] mmmmm s
// 17Jul05aaa, Created.

//@copy
//@copy
//@copy
//@copy

//@copy // #include “MyTypes.h”

These variations allow you to use the same IDL file for multiple languages:

@copy-c Copies code if the language is C or C++

@copy-cppcli Copies code if the language is C++/CLI

@copy-java Copies code if the language is Java.

@copy-ada Copies code if the language is Ada.

For example, to add import statements to generated Java code:

//@copy-java import java.util.*;

The above line would be ignored if the same IDL file was used to generate non-Java code.

In C, C++, and C++/CLI, the lines are copied into all of the “foo*.[h, ¢, cxx, cppl” files generated
from “foo.idl”. For Java, the lines are copied into all of the “*.java” files that were generated
from the original “.idl” file. The lines will not be copied into any additional files that are gener-
ated using the “-example” command line option.

@copy-java-begin copies a line of text at the beginning of all the Java files generated for a type.
The directive only applies to the first type that is immediately below in the IDL file. A similar
directive for Ada files is also available, @copy-ada-begin.

If you want rtiddsgen to copy lines only into the files that declare the data types—"foo.h” for C,
C++, and C++/CLI, “foo.java” for Java—use the “//@copy*declaration” forms of this directive.

Note that the first whitespace character to follow “//@copy” is considered a delimiter and will
not be copied into generated files. All subsequent text found on the line, including any leading
whitespaces will be copied.

3-55

Creating User Data Types with IDL

Table 3.10

3.3.8.3

Copies the text into the file where the type is declared (<type>.h for C

/ /@copy-declaration and C++, or <type>.java for Java)

/ /@copy-c-declaration Same as / /@copy-declaration, but for C and C++ code
/ /@copy-cppcli-declaration Same as / /@copy-declaration, but for C++/CLI code
/ /@copy-java-declaration Same as //@copy-declaration, but for Java-only code
/ /@copy-ada-declaration Same as / /@copy-declaration, but for Ada-only code

Same as //@copy-java-declaration, but only copies the text into the

//@copy-java-declaration-begin file where the type is declared

/ /@copy-ada-declaration-begin | Same as //@copy-java-declaration-begin, but only for Ada-only code

The @resolve-name Directive

In IDL, the “module” keyword is used to create namespaces for the declaration of types and
classes defined within the file. Here is an example IDL definition:

module PackageName {
struct Foo ({
long field;
}i

}i

For C++ and C++/CLI, you may use the -namespace command-line option, which causes rtidds-
gen to generate a namespace, such as the following;:

namespace PackageName{
typedef struct Foo {
DDS Long field;
} Foo;
} PackageName;

When generating C++/CLI, the -namespace option is considered to always be passed. Module
names are never prepended to class names.

For C, or if you do not use the -namespace command-line option for C++ or C++/CLI, the name
of the module is concatenated with the name of the structure to create the namespace. The
resulting code looks like this:
typedef struct PackageName Foo {
DDS Long field;
} PackageName Foo;

In Java, a Foo.java file will be created in a directory called PackageName to use the equivalent
concept as defined by Java. The file PackageName/Foo.java will contain a declaration of Foo
class:

public class Foo {
public int field;
bi
In a more complicated example, consider the following IDL definition:

module PackageName {
struct Bar {
long field;
Vi

struct Foo ({
Bar DbarField;

3-56

Creating User Data Types with IDL

}i

When rtiddsgen generates code for the above definition, it will resolve the “Bar” type to be
within the scope of the PackageName module and automatically generate fully-qualified type
names.

In C or C++, if you do not use -namespace, the resulting code will be:

typedef struct PackageName Bar {
DDS_Long field;
} PackageName Foo;

typedef struct PackageName Foo {
PackageName Bar barField;
} PackageName Foo;

In C++, if you use -namespace, the resulting code will be:

namespace PackageName {
typedef struct Bar {
DDS_Long field;

} Bar;

typedef struct Foo

{
PackageName: :Bar barField;
} Foo;

}

And in Java, PackageName/Bar.java and PackageName/Foo.java would be created with the
following code respectively:

public class Bar {
public int field;

}i

and

public class Foo {
public PackageName.Bar barField = PackageName.Bar.create() ;

}i

However, sometimes you may not want rtiddsgen to resolve the types of variables when mod-
ules are used. In the example above, instead of referring to the Bar as defined by the same pack-
age, you may want the barField in Foo to use Bar directly without prepending a module name.
To specify that rtiddsgen should not resolve the scope of a type, use the ‘//@resolve-name false’
directive.

For example:

module PackageName {
struct Bar {
long field;
}i

struct Foo ({
Bar barField; //@resolve-name false
Vi

}i

3-57

Creating User Data Types with IDL

3.3.84

When this directive is used, then for the field preceding the directive, rtiddsgen respects the reso-
lution of its type name indicated in the IDL file. It will use the type unmodified in the gener-
ated code. In C and C++:

typedef struct PackageName Bar {
DDS Long field;
} PackageName Foo;

typedef struct PackageName Foo {
Bar barField;
} PackageName Foo;

And in Java, in PackageName/Bar.java and PackageName/Foo.java respectively:

public class Bar {
public int field;

}i

and

public class Foo {
public Bar barField = Bar.create();

}i

It is up to you to include the correct header files (or if using Java, to import the correct packages)
so that the compiler resolves the ‘Bar’ type correctly.

When used at the end of the declaration of a structure in IDL, then the directive applies to all
types within the structure.

struct MyStructure {
Foo memberl;
Bar member2;
}: //@resolve-name false

By default, without using the directive, rtiddsgen will try to resolve the type of a field and to use
the fully qualified name in the generated code. If the type is not found to be defined within the
same scope as the structure in which it is used or in a parent scope, then rtiddsgen will generate
code with just the type name itself, assuming that the name will be resolved by the compiler
through other means available to the user (header files or import statements). A type is in the
same scope as the structure if both the type and the structure in which it is used are defined
within the same module.

The @top-level Directive

By default, rtiddsgen generates user-level type-specific methods for all structures/unions found
in an IDL file. These methods include the methods used by DataWriters and DataReaders to send
and receive data of a given type. General methods for writing and reading that take a void
pointer are not offered by Connext because they are not type safe. Instead, type-specific methods
must be created to support a particular data type.

We use the term ‘top-level type’ to refer to the data type for which you intend to create a DCPS
Topic that can be published or subscribed to. For top-level types, rtiddsgen must create all of the
type-specific methods previously described in addition to the code to serialize/deserialize those
types. However, some of structures/unions defined in the IDL file are only embedded within
higher-level structures and are not meant to be published or subscribed to individually. For non-
top-level types, the DataWriters and DataReaders methods to send or receive data of those types
are superfluous and do not need to be created. Although the existence of these methods is not a

3-58

Creating User Data Types with Extensible Markup Language (XML)

3.4

problem in and of itself, code space can be saved if these methods are not generated in the first
place.

You can mark non-top-level types in an IDL file with the directive ‘//@top-level false’ to tell rtid-
dsgen not to generate type-specific methods. Code will still be generated to serialize and deseri-
alize those types, since they may be embedded in top-level types.

In this example, rtiddsgen will generate DataWriter/DataReader code for TopLevelStruct only:

struct EmbeddedStruct
short member;
}; //etop-level false

struct TopLevelStruct{
EmbeddedStruct member;

}i

Creating User Data Types with Extensible Markup Language
(XML)

You can describe user data types with Extensible Markup Language (XML) notation. Connext
provides DTD and XSD files that describe the XML format; see <NDDSHOME>/resource/
qos_profiles_5.x.y/rtiddsgen/schema/rti_dds_topic_types.dtd and <NDDSHOME>/resource/
qos_profiles_5.x.y/rtiddsgen/schema/rti_dds_topic_types.xsd, respectively (in 5.x.y, the x and y
stand for the version numbers of the current release).

The XML validation performed by rtiddsgen always uses the DTD definition. If the <!DOC-
TYPE> tag is not in the XML file, rtiddsgen will look for the default DTD document in
<NDDSHOME->/resource/rtiddsgen/schema. Otherwise, it will use the location specified in
<!DOCTYPE>.

We recommend including a reference to the XSD/DTD files in the XML documents. This pro-
vides helpful features in code editors such as Visual Studio® and Eclipse™, including validation
and auto-completion while you are editing the XML. We recommend including the reference to
the XSD document in the XML files because it provides stricter validation and better auto-com-
pletion than the DTD document.

To include a reference to the XSD document in your XML file, use the attribute
xsi:noNamespaceSchemaLocation in the <types> tag. For example':

<?xml version="1.0" encoding="UTF-8"?>
<types xmlns:xsi="http://www.w3.0org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=
"<same as NDDSHOME>/resource/rtiddsgen/schema/rti dds topic_ types.xsd">

</types>

To include a reference to the DTD document in your XML file, use the <!DOCTYPE> tag. For
example’:
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE types SYSTEM

"<same as NDDSHOME>/resource/rtiddsgen/schema/rti dds topic types.dtd">
<types>

1. Replace <same as NDDSHOME> with the full path to the Connext installation directory.

3-59

Creating User Data Types with Extensible Markup Language (XML)

</types>

Table 3.11 shows how to map the type system constructs into XML.

Table 3.11 Mapping Type System Constructs to XML
Type/Construct Example
IDL XML IDL XML
struct PrimitiveStruct { <struct name="PrimitiveStruct"s>
u imitivi ru
char char char char_member; <member name="char_member"
b - ! type="char"/>
! </structs>
struct PrimitiveStruct { <struct name="PrimitiveStruct"s>
u imitivi ru
wchar wchar wchar wchar_member; <member name="wchar_member"
} - ! type="wchar"/>
! </structs>
struct PrimitiveStruct { <struct name="PrimitiveStruct"s>
u imitivi ru
octet octet octet octet member; <member name="octet_member"
} - ! type="octet"/>
! </structs>
struct PrimitiveStruct { <struct name="PrimitiveStruct">
u imitivi ru
short short short short member; <member name="short_member"
} - ! type="short"/>
! </structs>
struct PrimitiveStruct { <struct name="PrimitiveStruct"s>
Lnnngned unsienedShort unsigned short <member name="unsigned short_ member"
short gn unsigned_short_member; type="unsignedShort"/>
}i </structs>
struct PrimitiveStruct { <struct name="PrimitiveStruct"s>
long long long long member; <member name="long member"type="long"/>
}i </struct>
struct PrimitiveStruct { <struct name="PrimitiveStruct">
un51gned unsienedLon unsigned long <member name= "unsigned_long member"
long & & unsigned_long member; type="unsignedLong"/>
}i </struct>
struct PrimitiveStruct <struct name="PrimitiveStruct">
long long <member name="long long member"
long lon, longLon - -
)) &) long_long_ member; type="longLong"/>
}i </struct>
struct PrimitiveStruct { <struct name="PrimitiveStruct">
un51gned urmlgned— unsigned long long <member name="unsigned long_ long_member"
longlong LongLong unsigned_long long member; type="unsignedLongLong"/>
}i </struct>
¢ £ Primitivest e { <struct name="PrimitiveStruct">
struc rimitiveStruc
float float float float membe <member name="float_member"
r; -
V; - type="float"/>
! </struct>
¢ £ Primitivest e { <struct name="PrimitiveStruct">
struc rimitiveStruc
<member name="double member"
double double double double member; -
}; - type="double"/>
! </struct>
struct PrimitiveStruct { <struct name="PrimitiveStruct">
long dou- longDouble long double <member name= "long_double member"
ble & long_double_ member; type="longDouble"/>
}i </structs>
struct Primitivestruct { <struct name="PrimitiveStruct">
<member name="boolean member"
boolean boolean boolean boolean member; -
}: - type="boolean"/>
! </structs>

3-60

Creating User Data Types with Extensible Markup Language (XML)

Table 3.11 Mapping Type System Constructs to XML
Type/Construct Example
IDL XML IDL XML
<struct name="PrimitiveStruct">
<member name="string member"
string without type="string"/>
unbounde stringMaxLength | struct primitiveStruct { </struct>
d strin attribute or with string string member; or
& stringMaxLength }i <struct name="PrimitiveStruct"s>
set to -1 <member name="string_member"
type="string" stringMaxLength="-1"/>
</struct>
: : : struct name="PrimitiveStruct"
string with String- | struct PrimitiveStruct { < ; >
bounded MaxLength attri string<20> string member; <member name="string_member"
string but g } ge20> 9 ! type="string" stringMaxLength="20"/>
ute i
</struct>
<struct name="PrimitiveStruct"s>
<member name="wstring_member"
wstring without type="wstring"/>
stringMaxLength | struct PrimitiveStruct { </struct>
unbounde . .) .
d wstrin attribute or with wstring wstring member; or
& stringMaxLength |} <struct name="PrimitiveStruct"s>
set to -1 <member name="wstring_member"
type="wstring" stringMaxLength="-1"/>
</structs>
wstring with | struct PrimitiveStruct { <struct name="PrimitiveStruct">
bounded tringMaxL th wstring<20> <member name="wstring member"
wstrin stnngivlaxi.eng wstring member; type="wstring" stringMaxLength="20"/>
& attribute) - ' /y
; </structs>
pointer attribute
i struct name="PointerStruct"
with values struct PrimitivesStruct {) member name="lon member">t e="long"
. < = =
pointer true,false,0 or 1 long * long member; : g_ %) g
K - pointer="true"/>
Default (if not|} </structs
present): 0
<struct name="BitFieldStruct">
struct BitfieldStruct <member name="short member"
e . short short member: 1; type="short" bitField="1"/>
bitfield attribute unsigned short <member name="unsignedShort member"
bitfield® with the bitfield unsignedShort_member: 1; type="unsignedShort" bitField="1"/>
length short short nmember 2: 0; <member type="short" bitField="0"/>
long long member : 5; <member name="long member"
}i type="long" bitField="5"/>
</structs>
key attribute with
values true, false, | struct KeyedpPrimitiveStruct struct name="KeyedPrimitiveStruct"
< = >
; {
key direc- Oorl <member name="short member"
. b short short_ member; // . R W K
tive akey type="short" key="true"/>
. t t
Default (if not|}; </struct>
present): 0
resolveName
attribute with val- | struct <struct name=
resolve- ues true, false, 0 UnresolvedPrimitiveStruct "UnresolvedPrimitiveStruct">
name orl PrimitiveStruct <member name="primitive_member"
di . b primitive member; type="PrimitiveStruct"
irective //@resolve-name false resolveName="false"/>
Default (if not|}; </structs
present): 1

3-61

Creating User Data Types with Extensible Markup Language (XML)

Table 3.11 Mapping Type System Constructs to XML
Type/Construct Example
IDL XML IDL XML
topLevel
attribute with val- o
fal 0| struct <struct name="TopLevelPrimitiveStruct™"
£ 1 1 ues true, false, s topLevel="false">
op-leve orl TopLevelPrimitiveStruct {
A . b <member name="short_member"
directive short short member;
- type="sghort"/>
}; //e@top-level false /struct
. < >
Default (if not
present): 1
X , <directive kind="copy">
@co This text will be
Other . . /7 Py) This text will be copied in the
. . b duecnvetag copied in the generated
directives) generated files
files . .
</directives
enum PrimitiveEnum { <enum name="PrimitiveEnum">
ENUM1, <enumerator name="ENUM1"/>
ENUM2, <enumerator name="ENUM2"/>
ENUM3 <enumerator name="ENUM3"/>
}i </enums>
enum enum tag
enum PrimitiveEnum { <enum name="PrimitiveEnum">
ENUM1 = 10, <enumerator name="ENUM1" value="10"/>
ENUM2 = 20, <enumerator name="ENUM2" value="20"/>
ENUM3 = 30 <enumerator name="ENUM3" value="30"/>
}i </enum>
<const name="PI" type="double"
nstan N const double PI = 3.1415;
constant const tag u value="3.1415"/>
s <struct name="PrimitiveStruct">
struct PrimitiveStruct
<member name="short member"
struct struct tag short short_member; -
V; - type="short"/>
! </structs>
<union name="PrimitiveUnion">
<discriminator type="long"/>
<case>
<caseDiscriminator value="1"/>
. s . . <member name="short member"
union PrimitiveUnion switch -
type="short"/>
(long)
</case>
case 1: cases
<
short short member; . .
case 2: - <caseDiscriminator value="2"/>
union union tag case 3: <caseDiscriminator value="3"/>
) <member name="float member"
float float member; type="float"/ -
- = >
default: P
</case>
long long member;
) - <case>
! <caseDiscriminator value="default"/>
<member name="long member"
type="long"/>
</case>
</unions>
valuetype name="BaseValueType"
valuetype BaseValueType { = P yper>
X <member name="long member"
public long long member; s i .
. - type="long" visibility="public"/>
! </valuetypes>
1 1 aluetype DerivedvalueType:
va uetype va uetypetag valuetyp v uelyp <valuetype name="DerivedValueType"
BaseValueType {
R baseClass="BaseValueType">
public long
<member name="long member 2"
long member 2; s i i - .
b - - type="long" visibility="public"/>
! </valuetypes>

3-62

Creating User Data Types with Extensible Markup Language (XML)

Table 3.11 Mapping Type System Constructs to XML
Type/Construct Example
IDL XML IDL XML
typedef short ShortType; <typedef name="ShortType" type="short"/>
<struct name="PrimitiveStruct">
L. <member name="short member"
struct PrimitiveStruct -
short short member; type="short"/>
typedef typedef tag y - ! </struct>
typedef PrimitiveStruct .
i <typedef name="PrimitiveStructType"
PrimitiveStructType; X
type="nonBasic"
nonBasicTypeName="PrimitiveStruct"/>
<struct name="OneArrayStruct"s>
struct OneArrayStruct {
<member name="short array"
short short arrayl[2]; -
}. - type="short" arrayDimensions="2"/>
Attribute ' </struct>
arrays . .
array[)HnenSIOHS <struct name="TwoArrayStruct"s>
struct TwoArrayStruct {
<member name="short array"
short short arrayl[1l] [2]; -
}. - type="short" arrayDimensions="1,2"/>
! </structs>
. struct SequenceStruct | <struct name="SequenceStruct">
bounded Attribute sequenc2<short . <member name="short sequence"
sequence- ! type="short"
sequence short_sequence;
hdaxLengﬂ1>>0 V; sequenceMaxLength="4"/>
! </structs>
Attribute struct SequenceStruct { <struct name="SequenceStruct">
unbounde sequence- sequence<short> <member name="short sequence"
dsequence hdaxLengﬂ1setto short_sequence; type="short" sequenceMaxLength="-1"/>
-1 }i </struct>
Attributes struct <struct name= "ArrayOfSequenceStruct'">
arra of sequence- ArrayOfSequencesStruct { <member name= "short_ sequence_array"
y h4axLengﬂ1 sequence<short, 4> type="short" arrayDimensions="2"
sequences [\nd,array[)hnen- short_sequence_arrayl[2]; sequenceMaxLength="4"/>
sions }i </structs>
<typedef name="ShortArray"
typedef short type="short" dimensions="2"/>
ShortArray [2] ;
Must be irnple— <struct name=
sequence . struct "SequenceOfArrayStruct">
mented with a
ofarrays dof SequenceOfArraysStruct { <member name= "short array sequence"
type e tag sequence<ShortArray, 2> type="nonBasic"
short array sequence; nonBasicTypeName="ShortSequence"
Vi sequenceMaxLength="2"/>
</struct>
typedef sequence<short, 4
¥p d = z <typedef name="ShortSequence"
ShortSequence;
type="short"sequenceMaxLength="4"/>
sequence Must be hnple— struct <struct name="SequenceofSequencesStruct">
. <member name="short sequence_ sequence"
of mented with a|sequenceofSequencesStruct , - —
def { type="nonBasic"
sequences type € tag nonBasicTypeName="ShortSequence"
sequence<ShortSequence, 2>
sequenceMax-Length="2"/>
short_sequence_sequence;
. - — </structs>

3-63

Creating User Data Types with XML Schemas (XSD)

Table 3.11 Mapping Type System Constructs to XML

Type/Construct Example
IDL XML IDL XML
module PackageName { <module name="PackageName">
struct PrimitiveStruct ({ <struct name="PrimitiveStruct">
module nlodldetag long long_ member; <member name="long member" type="long"/>
}i </structs>
}i </module>
include include ta ftinclude <include file="PrimitiveTypes.xml"/>
) "PrimitiveTypes.idl" = ypes.

a. Data types containing bitfield members are not supported by DynamicData (Section 3.8).

b. Directives are RTT extensions to the standard IDL grammar. For additional information about directives see Using Custom
Directives (Section 3.3.8).

3.5 Creating User Data Types with XML Schemas (XSD)

You can describe data types with XML schemas (XSD), either independent or embedded in a
Web Services Description Language (WSDL) file. The format is based on the standard IDL-to-
WSDL mapping described in the OMG document "CORBA to WSDL/SOAP Interworking Spec-
ification." Defining a mapping between IDL and WSDL types enables integration between Con-
next and Web Services Technologies using WSDL.

Example Header for XSD:

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:dds="http://www.omg.org/dds"
xmlns:tns="http://www.omg.org/IDL-Mapped/"
targetNamespace="http://www.omg.org/IDL-Mapped/">
<xs8d:import namespace="http://www.omg.org/dds"
schemaLocation="rti dds topic_types_ common.xsd"/>

</xsd:schema>
Example Header for WSDL:

<?xml version="1.0" encoding="UTF-8"?>
<definitions xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:dds="http://www.omg.org/dds"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:tns="http://www.omg.org/IDL-Mapped/"
targetNamespace="http://www.omg.org/IDL-Mapped/" >
<types>
<xsd:schema targetNamespace="http://www.omg.org/IDL-Mapped/">
<xsd:import namespace="http://www.omg.org/dds"
schemaLocation="rti dds topic_ types_ common.xsd"/>

</xsd:schema>
</types>
</definitions>

3-64

Creating User Data Types with XML Schemas (XSD)

Table 3.12 describes how to map IDL types to XSD. The Connext code generator, rtiddsgen, will
only accept XSD or WSDL files that follow this mapping.

Table 3.12 Mapping Type System Constructs to XSD

Type/Construct Example
IDL XSD IDL XSD
<xsd:complexType name="PrimitiveStruct">
<xsd:sequence>
struct PrimitiveStruct ({ <xsd:element name="char member"
char dds:char® char char_ member; minOccurs="1" maxOccurs="1"
Vi type="dds:char">
</xsd:sequence>
</xsd:complexType>
<xsd:complexType name="PrimitiveStruct">
<xsd:sequence>
struct PrimitiveStruct { <xsd:element name="wchar_member"
wchar dds:wchar® wchar wchar member; minOccurs="1" maxOccurs="1"
}i type="dds:wchar">
</xsd:sequence>
</xsd:complexType>
<xsd:complexType name="PrimitiveStruct">
<xsd:sequence>
struct PrimitiveStruct <xsd:element name="octet member"
octet xsdnumﬁgnedByTe octet octet_ member; minOccurs="1" maxOccurs="1"
}i type="xsd:unsignedByte">
</xsd:sequence>
</xsd:complexTypes>
<xsd:complexType name="PrimitiveStruct">
<xsd:sequence>
struct PrimitiveStruct ({ <xsd:element name="short member"
short xsd:short short short_member; minOccurs="1" maxOccurs="1"
}i type="xsd:short"/>
</xsd:sequence>
</xsd:complexType>
<xsd:complexType name="PrimitiveStruct">
L s <xsd:sequence>
struct PrimitiveStruct {
s . s , <xsd:element name="unsigned short member"
unsigned xsd:unsigned- unsigned short . — -
hort Short nsicned short member minOccurs="1" maxOccurs="1"
u 1 H .
shor or Vs g - - type="xsd:unsignedShort"/>
! </xsd:sequence>
</xsd:complexType>
<xsd:complexType name="PrimitiveStruct">
<xsd:sequence>
struct PrimitiveStruct <xsd:element name="long member"
on, xsd:in on ong_member ; minOccurs= maxOccurss=
long d:int long long memb o] nyn 0 nin
}i type="xsd:int"/>
</xsd:sequence>
</xsd:complexType>
<xsd:complexType name="PrimitiveStruct">
S s <xsd:sequence>
struct PrimitiveStruct (:
.) <xsd:element name= "unsigned long member"
un&gned . unsigned long . o -
xsdnnnngnedlnt . minOccurs="1" maxOccurs="1"
long unsigned long member; ,
Vs - - type="xsd:unsignedInt"/>
! </xsd:sequence>
</xsd:complexType>

3-65

Creating User Data Types with XML Schemas (XSD)

Table 3.12 Mapping Type System Constructs to XSD

Type/Construct Example
IDL XSD IDL XSD
<xsd:complexType name="PrimitiveStruct">
s <xsd:sequence>
struct PrimitiveStruct ({
long lon <xsd:elementname= "long long member"
long long xsd:long J J minOccurs="1" maxOccurs="1"
long long member;
b - - type="xsd:long"/>
! </xsd:sequence>
</xsd:complexTypes>
<xsd:complexType name="PrimitiveStruct">
<xsd:sequence>
struct PrimitiveStruct <xsd:element name=
unﬁgned xsdnnnﬁgned— unsigned long long "unsigned long long member"

longlong Long unsigned_long long member; minOccurs="1" maxOccurs="1"
}i type="xsd:unsignedLong"/>
</xsd:sequence>
</xsd:complexType>
<xsd:complexType name="PrimitiveStruct">
<xsd:sequence>
struct PrimitiveStruct { <xsd:element name="float_member"
float xsd:float float float_member; minOccurs="1" maxOccurs="1"
}i type="xsd:float"/>
</xsd:sequence>
</xsd:complexType>
<xsd:complexType name="PrimitiveStruct">
<xsd:sequence>
struct PrimitiveStruct <xsd:element name="double member"
double xsd:double double double member; minOccurs="1" maxOccurs="1"
I type="xsd:double"/>
</xsd:sequence>
</xsd:complexType>
<xsd:complexType name="PrimitiveStruct">
s <xsd:sequence>
struct PrimitiveStruct ({ . .
long . long double <x§d:e1ement name="long double member
double ddsdong[knﬂﬂe long double member; minOccurs="1" maxOccurs="1"
- - ! type="dds:longDouble"/>
bi </xsd:sequence>
</xsd:complexType>
<xsd:complexType name="PrimitiveStruct">
L s <xsd:sequence>
struct PrimitiveStruct {
boolean <xsd:element name="boolean member"
boolean xsd:boolean minOccurs="1" maxOccurs="1"
boolean member;
] - type="xsd:boolean"/>
bi </xsd:sequence>
</xsd:complexType>
<xsd:complexType name="PrimitiveStruct">
<xsd:sequence>
unbounded) struct PrimitiveStruct { <xsd:element name="string member"
string Xsdshﬂng string string member; minOccurs="1" maxOccurs="1"

}i

type="xsd:string"/>
</xsd:sequence>
</xsd:complexType>

3-66

Creating User Data Types with XML Schemas (XSD)

Table 3.12 Mapping Type System Constructs to XSD

Type/Construct Example
IDL XSD IDL XSD
<xsd:complexType name="PrimitiveStruct">
<xsd:sequence>
<xsd:element name="string member"
minOccurs="1" maxOccurs="1">
xsd:string with <xsd:simpleType>
bounded restriction to struct PrimitiveStruct { <xsd:restriction base="xsd:string">

string

specify the maxi-
mum length

string<20> string member;

}i

<xsd:maxLength value="20"
fixed="true"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
</xsd:sequence>
</xsd:complexTypes>

unbounded
wstring

dds:wstring®

struct PrimitiveStruct (
wstring wstring member;

}i

<xsd:complexType name="PrimitiveStruct">
<xsd:sequence>
<xsd:element name="wstring_member"
minOccurs="1" maxOccurs="1"
type="dds:wstring"/>
</xsd:sequence>
</xsd:complexType>

bounded
wstring

xsd:wstring with
restriction to
specify the maxi-
mum length

struct PrimitiveStruct {
wstring<20>
wstring member;

—

<xsd:complexType name="PrimitiveStruct">
<xsd:sequence>
<xsd:element name="wstring member"
minOccurs="1" maxOccurs="1">
<xsd:simpleType>
<xsd:restriction base=
"dds:wstring">
<xsd:maxLength value="20"
fixed="true"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
</xsd:sequence>
</xsd:complexType>

pointer

<!-- @pointer
<true | falsel 110>
->

Default (if not
specified): false

struct PrimitiveStruct {
long * long member;

—

<xsd:complexType name="PrimitiveStruct">
<xsd:sequence>
<xsd:element name="long member"
minOccurs="1" maxOccurs="1"
type="xsd:int"/>
<!-- @pointer true -->
</xsd:sequence>
</xsd:complexType>

3-67

Creating User Data Types with XML Schemas (XSD)

Table 3.12 Mapping Type System Constructs to XSD

Type/Construct

Example

IDL

XSD

IDL

XSD

<!-- @bitField

struct BitfieldStruct {
short short member: 1;
unsigned short

<xsd:complexType name="BitfieldStruct">
<xsd:sequence>

<xsd:element name="short member"
minOccurs="1" maxOccurs="1"
type="xsd:short"/>
<!-- @bitField 1
<xsd:element name=‘unsignedShort member"
minOccurs="1" maxOccurs="1"
type="xsd:unsignedShort"/>

-=>

bﬂﬁekfj <biﬁkﬂdlengﬂq> unsignedShort_member: 1; <!-- @bitField 1 -->
short: 0; <xsd:element name="_ANONYMOUS_3"
> long long member: 5; minOccurs="1" maxOccurs="1"
}i type="xsd:short"/>
<!-- @bitField 0 -->
<xsd:element name="long member"
minOccurs="1" maxOccurs="1"
type="xsd:int"/>
<!-- @bitField 5 -->
</xsd:sequence>
</xsd:complexType>
<F-@key <xsd:complexType name="KeyedPrimitiveStruct">
<xsd:sequence>
<true | false| 110> | struct <xsd:element name="long member"
key - KeyedPrimitiveStruct { minOccurs="1" maxOccurs="1"
directive® long long member; //@key type="xsd:int"/>
}i <!-- @key true -->
Default (if not </xsd:sequence>
specified): false </xsd:complexType>
<l-- @resolve- <xsd:complexType name=
Name struct "UnresolvedPrimitiveStruct">
UnresolvedPrimitiveStruct <xsd:sequence>
resolve- <true | false | 110> { <xsd:element name="primitive member"
name direc- PrimitiveStruct minOccurs="1" maxOccurs="1"
tive© e primitive member; type="PrimitiveStruct"/>
//@resolve-name false <!-- @resolveName false -->
Default (if not|}; </xsd:sequence>
specﬂﬁedytrue </xsd:complexType>
<xsd:complexType
<l-- @topLevel name="TopLevelPrimitiveStruct">
<truelfalse 110> | (. . ¢ <xsd:sequences>
- s <xsd:element name="short member"
topJevel > TopLevelPrimitiveStruct { . " -
directive® short short member; minOccurs="1" maxOccurs="1
— type="xsd:short"/>
Default (if not }i //etop-level false </xsd:sequence>
specified): true </xsd:complexType>
<!-- @topLevel false -->
<!--
other . @<directive //@?OplehlS text will be <!--@copy This text will be copied in the
directives® kind> c?pled in the generated generated files --»
<value> files
>

3-68

Creating User Data Types with XML Schemas (XSD)

Table 3.12 Mapping Type System Constructs to XSD

Type/Construct Example
IDL XSD IDL XSD
<xsd:simpleType name="PrimitiveEnum">
<xsd:restriction base="xsd:string"s>
<xsd:enumeration value="ENUM1"/>
<xsd:enumeration value="ENUM2"/>
<xsd:enumeration value="ENUM3"/>
</xsd:restriction>
</xsd:simpleType>
<xsd:simpleType name="PrimitiveEnum">
<xsd:restriction base="xsd:string">
<xsd:enumeration value="ENUM1">
<xsd:annotation>
enum PrimitiveEnum { <xsd:appinfo>
ENUM1, <ordinal>10</ordinal>
ENUM2, </xsd:appinfo>
ENUM3 </xsd:annotations>
xsd:simpleType }i </xsd:enumera?ion>
enum . . <xsd:enumeration value="ENUM2">
with enumeration o)
enum PrimitiveEnum { <xsd:annotations>
ENUM1 = 10, <xsd:appinfo>
ENUM2 = 20, <ordinal>20</ordinal>
ENUM3 = 30 </xsd:appinfo>
Vi </xsd:annotation>
</xsd:enumeration>
<xsd:enumeration value="ENUM3'">
<xsd:annotation>
<xsd:appinfo>
<ordinal>30</ordinal>
</xsd:appinfo>
</xsd:annotation>
</xsd:enumerations>
</xsd:restriction>
</xsd:simpleType>
constant IDL constants are mapped by substituting their value directly in the generated file
<xsd:complexType name="PrimitiveStruct">
<xsd:sequence>
xsdronqﬂexTYpe struct PrimitiveStruct { <xsd:element name="short_ member"
struct with short short_member; minOccurs="1" maxOccurs="1"
xsd:sequence i type="xsd:short"/>
</xsd:sequence>
</xsd:complexType>

3-69

Creating User Data Types with XML Schemas (XSD)

Table 3.12 Mapping Type System Constructs to XSD

Type/Construct

Example

IDL XSD

IDL

XSD

xsd:complexType

union . .
with xsd:choice

union PrimitiveUnion
switch (long) ({
case 1:
short short member;
default:
long long_member;

}i

<xsd:complexType name="PrimitiveUnion">
<xsd:sequence>

<xsd:element name="discriminator"

type="xsd:int"/>

<xsd:choice>
case 1
<xsd:element name="short_member"
minOccurs="0" maxOccurs="1"
type="xsd:short">

d

<!-- -->

<xsd:annotation>
<xsd:appinfo>
<case>l</case>
</xsd:appinfo>
</xsd:annotation>
</xsd:element>
case default
<xsd:element name="long member"
minOccurs="0" maxOccurs="1"
type="xsd:int">
<xsd:annotation>
<xsd:appinfo>
<case>default</case>
</xsd:appinfo>
</xsd:annotation>
</xsd:element>
</xsd:choice>
</xsd:sequence>

<!-- -->

</xsd:complexTypes>

xsd:complexType
with @valuetype
directive

valuetype

valuetype BaseValueType {
public long
long member;

}i

valuetype
DerivedValueType:
BaseValueType {
public long
long_member2;
public long
long member3;

}i

<xsd:complexType name="BaseValueType">
<xsd:sequence>
<xsd:element name="long member"
maxOccurs="1" minOccurs="1"
type="xs:int"/>
<!-- @visibility public -->
</xsd:sequence>
</xs:complexType>
<!-- @valuetype true -->

<xs:complexType name="DerivedValueType">
<xs:complexContent>
<xs:extension base="BaseValueType">
<XS:sequence>
<xs:element name= "long member2"
maxOccurs="1" minOccurs="1"
type="xs:int"/>
<!-- @visibility public -->
<xs:element name= "long member3"
maxOccurs="1" minOccurs="1"
type="xs:int"/>
<!-- @visibility public -->
</Xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>
<!-- @valuetype true -->

3-70

Creating User Data Types with XML Schemas (XSD)

Table 3.12 Mapping Type System Constructs to XSD

Type/Construct Example
IDL XSD IDL XSD
<xsd:simpleType name="ShortType">
<xsd:restriction base="xsd:short"/>
</xsd:simpleType>
<!—- Struct definition -->
<xsd:complexType name="PrimitiveStruct">
<xsd:sequence>
<xsd:element name="short member"
typedef short ShortType; . -
minOccurs="1" maxOccurs="1"
o type="xsd:short"/>
struct PrimitiveStruct
hort short mber: </xsd:sequence>
Type definitions }.S ort short_member; </xsd:complexType>
are mapped to|’’
typedef PP s
XML schema type L <!—- Typedef definition -->
L typedef PrimitiveType
restrictions <xsd:complexType

PrimitiveStructType;

name="PrimitiveTypeStructType">
<xsd:complexContent>
<xsd:restriction base="PrimitiveStruct”>
<xsd:sequence>
<xsd:element name="short_ member"
minOccurs="1" maxOccurs="1"
type="xsd:short"/>
</xsd:sequence>
</xsd:restriction>
</xsd:complexContent >
</xsd:complexType>

arrays

n xsd:complex-
Type with
sequence contain-
ing one element
with min & max
occurs

There is one
xsd:complexType
per array dimen-
sion

struct OneArrayStruct ({
short short arrayl[2];

}i

<!-- Array type -->
<xsd:complexType name=
"OneArrayStruct short array ArrayOfShort"s
<xsd:sequence>
<xsd:element name="item" minOccurs="2"
maxOccurs="2" type="xsd:short">
</xsd:element>
</xsd:sequence>
</xsd:complexType>
<!-- Struct w unidimensional array member -->
<xsd:complexType name="OneArrayStruct">
<xsd:sequence>
<xsd:element name="short_array"
minOccurs="1" maxOccurs="1"
type=
"OneArrayStruct_short array ArrayOfShort"/>
</xsd:sequence>
</xsd:complexType>

3-71

Creating User Data Types with XML Schemas (XSD)

Table 3.12 Mapping Type System Constructs to XSD

Type/Construct

Example

IDL XSD IDL

XSD

n xsd:complex-
Type with
sequence contain-
ing one element

with min & max | gt yee TwoArrayStruct {

<!--Second dimension array type -->
<xsd:complexType name=
"TwoArrayStruct_short_array ArrayOfShort'"s>
<xsd:sequence>
<xsd:element name="item" minOccurs="2"
maxOccurs="2" type="xsd:short">
</xsd:element>
</xsd:sequence>
</xsd:complexType>

<!-- First dimension array type -->
<xsd:complexType name=
"TwoArrayStruct_short_ array ArrayOfArrayOfShort"s>
<xsd:sequence>
<xsd:element name="item"

arrayf oceurs short short array[2] [1]; minOccurs="1" maxOccurs="1"
(cont’d) Vs - type=
! "TwoArrayStruct_short_array ArrayOfShort"s
There is one </xsd:element>
xsd:complexType </xsd:sequence>
per array dimen- </xsd:complexType>
sion
<!--Struct containing a bidimensional array
member -->
<xsd:complexType name="TwoArrayStruct">
<xsd:sequence>
<xsd:element name="short_array"
minOccurs="1" maxOccurs="1"
type=
"TwoArrayStruct_short array ArrayOfArrayOfShort"/>
</xsd:sequence>
</xsd:complexType>
<!-- Sequence type -->
<xsd:complexType name=
"SequenceStruct_short_ sequence_ SequenceOfShort"s
<xsd:sequence>
<xsd:element name="item" minOccurs="0"
maxOccurs="4" type="xsd:short">
</xsd:element>
XsdronqﬂexType </xsd:sequence>
b with sequence struct SequenceStruct { </xsd:complexType>
ounded .. sequence<short, 4>
containing one s
sequence short_sequence; <!-- Struct containing a bounded sequence

element with min .
;
& max occurs

member -->
<xsd:complexType name="SequenceStruct">
<xsd:sequence>
<xsd:element name="short_ sequence"
minOccurs="1" maxOccurs="1"
type=
"SequenceStruct_short sequence SequenceOfShort"/>
</xsd:sequence>
</xsd:complexTypes>

3-72

Creating User Data Types with XML Schemas (XSD)

Table 3.12 Mapping Type System Constructs to XSD

Type/Construct Example

IDL XSD IDL XSD

<!-- Sequence type -->
<xsd:complexType name=
"SequenceStruct_short sequence_SequenceOfShort">
<xsd:sequence>
<xsd:element name="item"
minOccurs="0" maxOccurs="unbounded"
type="xsd:short"/>

xsdxonqﬂeXTYpe </xsd:sequence>
unbound- with sequence struct SequenceStruct { </xsd:complexType>
o sequence<short>
ed containing one .
short_sequence; <!-- Struct containing an unbounded sequence

sequence element with min Vs
& max occurs

member -->
<xsd:complexType name="SequenceStruct">
<xsd:sequence>
<xsd:element name="short_ sequence"
minOccurs="1" maxOccurs="1"
type=
"SequenceStruct_short sequence_ SequenceOfShort"/>
</xsd:sequence>
</xsd:complexType>

3-73

Creating User Data Types with XML Schemas (XSD)

Table 3.12 Mapping Type System Constructs to XSD

Type/Construct Example
IDL XSD IDL XSD
<!-- Sequence declaration -->
<xsd:complexType
names=

n + 1 xsd:com-
plexType with
sequence contain-
ing one element
with min & max

ocCurs struct
ArrayOfSequencesStruct {
array of
sequence<short, 4>
sequences .
There is one sequence_sequence [2] ;

xsd:complexType bi
per array dimen-
sion and one
xsd:complexType
for the sequence

"ArrayOfSequencesStruct_sequence_array_ SequenceOf
Short">
<xsd:sequence>
<xsd:element name="item"
minOccurs="0" maxOccurs="4"
type="xsd:short">
</xsd:element>
</xsd:sequence>
</xsd:complexType>

<!-- Array declaration -->
<xsd:complexType
name=
"ArrayOfSequencesStruct_sequence_array ArrayOf
SequenceOfShort">
<xsd:sequence>
<xsd:element name="item"
minOccurs="2" maxOccurs="2"
type=
"ArrayOfSequencesStruct_sequence_array SequenceOf
Short">
</xsd:element>
</xsd:sequence>
</xsd:complexType>

<!-- Structure containing a member that is an
array of sequences -->
<xsd:complexType name="ArrayOfSequencesStruct">
<xsd:sequence>
<xsd:element name="sequence_array"
minOccurs="1" maxOccurs="1"
type=
"ArrayOfSequencesStruct sequence_array ArrayOf
SequenceOfShort"/>
</xsd:sequence>
</xsd:complexType>

3-74

Creating User Data Types with XML Schemas (XSD)

Table 3.12 Mapping Type System Constructs to XSD

Type/Construct

Example

IDL

XSD

IDL

XSD

sequence of
arrays

type

array

Sequences of
arrays must be
implemented

using an explicit

definition

(typedef) for the

typedef short
ShortArray[2] ;

struct
SequenceOfArraysStruct {
sequence<ShortArray, 2>
arrays_sequence;

}i

<!-- Array declaration -->
<xsd:complexType name="ShortArray"s>
<xsd:sequence>
<xsd:element name="item"
minOccurs="2" maxOccurs="2"
type="xsd:short">
</xsd:element>
</xsd:sequence>
</xsd:complexType>

<!-- Sequence declaration -->
<xsd:complexType name=
"SequencesOfArraysStruct_array_ sequence_SequenceO
fShortArray">
<xsd:sequence>
<xsd:element name="item"
minOccurs="0" maxOccurs="2"
type="ShortArray">
</xsd:element>
</xsd:sequence>
</xsd:complexType>

<!-- Struct containing a sequence of arrays -->
<xsd:complexType name="SequenceOfArraysStruct"s>

<xsd:sequence>

<xsd:element name="arrays_sequence"
minOccurs="1" maxOccurs="1"
type=

"SequencesOfArraysStruct_arrays_sequence_Sequence
OfShortArray"/>

</xsd:sequence>
</xsd:complexType>

3-75

Creating User Data Types with XML Schemas (XSD)

Table 3.12 Mapping Type System Constructs to XSD

Type/Construct Example
IDL XSD IDL XSD
<!-- Internal sequence declaration -->
<xsd:complexType name="ShortSequence">
<xsd:sequence>
<xsd:element name="item"
minOccurs="0" maxOccurs="4"
type="xsd:short">
</xsd:element>
</xsd:sequence>
</xsd:complexType>
<!-- External sequence declaration -->
<xsd:complexType name=
Sequences of | typedef sequence<short, 4> "SequencesOfSequences_sequences_sequence_Sequence
sequences must ShortSequence; OfShortSequence">
be implemented <xsd:sequence> .
sequence of . . ., |struct <xsd:element name="item"
using an explicit .
sequences L SequenceOfSequences { minOccurs="0" maxOccurs="2"
type definition " "
sequence<ShortSequence, 2> type="ShortSequence" >
Gypedeﬂ for the sequences_sequence; </xsd:element>
second sequence }i </xsd:sequence>
</xsd:complexType>
<!--Struct containing a sequence of sequences -->
<xsd:complexType name="SequenceOfSequences">
<xsd:sequence>
<xsd:element name="sequences_sequence"
minOccurs="1" maxOccurs="1"
type="SequencesOfSequences_
sequences_sequence_SequenceOfShortSequence"/>
</xsd:sequence>
</xsd:complexType>
<xsd:complexType name=
Modules are module PackageName | "PackageName.PrimitiveStruct">
: u
Inapped addlng ,g, . <xsd:sequence>
struct PrimitiveStruct {
the name of the <xsd:element name="long member"
module long long member;) —
module before the . - minOccurs="1" maxOccurs="1"
name of each type Vs ’ type="xsd:int"/>
inside the module </xsd:sequence>
</xsd:complexType>
. . #include <xsd:include schemalocation=
include xsd:include Nt i . L
PrimitiveType.idl" "PrimitiveType.xsd"/>

a. All files that use the primitive types char, wchar, long double and wstring must reference rti_dds_topic_types_common.xsd. See Primitive
Types (Section 3.5.1).

b. Data types containing bitfield members are not supported by DynamicData (Section 3.8).

c. Directives are RTI extensions to the standard IDL grammar. For additional information about directives see Using Custom Directives (Sec-

tion 3.3.8).

d. The discriminant values can be described using comments (as specified by the standard) or xsd:annotation tags. We recommend using

annotations because comments may be removed by XSD/XML parsers.

3-76

Using rtiddsgen

3.5.1

3.6

Primitive Types

The primitive types char, wchar, long double, and wstring are not supported natively in XSD.
Connext provides definitions for these types in the file <NDDSHOME>/resource/rtiddsgen/
schema/rti_dds_topic_types_common.xsd. All files that use the primitive types char, wchar, long
double and wstring must reference rti_dds_topic_types_common.xsd. For example:

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:dds="http://www.omg.org/dds" >
<xsd:import namespace="http://www.omg.org/dds"
schemalocation="rti dds topic_ types_common.xsd"/>
<xsd:complexType name="Foo">
<xsd:sequences
<xsd:element name="myChar" minOccurs="1"
maxOccurs="1" type="dds:char"/>
</xsd:sequence>
</xsd:complexType>
</xsd:schema>

Using rtiddsgen

The rtiddsgen utility provided with Connext creates the code needed to define and register a user-
data type with Connext. Using this tool is optional if:

(d You are using dynamic types (see Managing Memory for Built-in Types (Section 3.2.7))
(d You are using one of the built-in types (see Built-in Data Types (Section 3.2))
To use rtiddsgen, you must supply a description of the type in an IDL, XML, XSD, or WSDL file.
The supported syntax for each one of the notations is described in Section 3.8.5.1 (IDL),

Section 3.4 (XML) and Section 3.5 (XSD and WSDL). You can define multiple data types in the
same type-definition file.

Notes:

(J Before running rtiddsgen on a Windows system, run VCVARS32.BAT from the same
command prompt that you will use to run rtiddsgen.

(J Before using an rtiddsgen-generated makefile to compile an application, make sure the
${NDDSHOME} environment variable is set as described in the Getting Started Guide. For
INTEGRITY architectures, ${NDDSHOME} must be set when generating the project
files.

The script to run rtiddsgen is in your ${NDDSHOME}/scripts directory.

Table 3.13 on page 3-78 (for C, C++, and C++/CLI and C#) and Table 3.14 on page 3-78 (for Java)
show the files that rtiddsgen creates for an example IDL file called Hello.idl. (The file extension
will depend on the chosen language: .c for C, .cxx for C++, .cpp for C++/CLI, .cs for C#.)

3-77

Using rtiddsgen

Table 3.13

Table 3.14

Files Created by rtiddsgen for C, C++, C++/CLI, C# for Example “Hello.idl”

Generated Files

Description

Required files for the user data type. The source files should be compiled and linked with the user applica-
tion. The header files are required to use the data type in source.

You should not modify these files unless you intend to customize the generated code supporting your

type.

Hello.[c,exx, cpp]
HelloSupport.[c, cxx, cpp]
HelloPlugin.[c,cxx, cpp]

Generated code for the data types. These files contain the implementa-
tion for your data types.

Hello.h
HelloSupport.h
HelloPlugin.h

Header files that contain declarations used in the implementation of
your data types.

Optional files generated when you use the “-example <arch>" command-line option.

You may modify and use these files as a way to create simple applications that publish or subscribe to the

user data type.

Hello_publisher.[c, cxx, cpp, cs]

Example code for an application that publishes the user data type. This
example shows the basic steps to create all of the Connext objects needed
to send data.

You will need to modify the code to set and change the values being
sent in the data structure. Otherwise, just compile and run.

Hello_subscriber.[c, cxx, cpp,cs]

Example code for an application that subscribes to the user data type.
This example shows the basic steps to create all of the Connext objects
needed to receive data using a “listener” function.

No modification of this file is required. It is ready for you to compile
and run.

Hello.dsw or Hello.sIn,
Hello_publisher.dsp or
Hello_publisher.veproj,
Hello_subscriber.dsp or

Hello_subscriber.vcproj

Microsoft Visual C++ or Visual Studio .NET Project workspace and
project files, generated only for “i86Win32” architectures. To compile
the generated source code, open the workspace file and build the two
projects.

makefile_Hello_<architecture>

Makefile for non-Windows-based architectures. An example <architec-
ture> would be linux2.4gcc3.2.2.

Files Created by rtiddsgen for Java for Example “Hello.idl”

Data Type Generated Files Description
Since the Java language requires individual files to be created for each class, rtiddsgen will generate a
source file for every IDL construct that translates into a class in Java.

Constants <Name> java Class associated with the constant
Enums <Name> java Class associated with enum type
<Name>java .
) Structure/Union class
<Name>Seq.java
Structures/ . Sequence class
. <Name>DataReader.java)
Unions L Connext DataReader and DataWriter classes
<Name>DataWriter.java L. L.
. Support (serialize, deserialize, etc.) class
<Name>TypeSupport.java
Typedef —of | <Name>java Wrapper class
sequences or | <Name>Seq.java Sequence class
arrays <Name>TypeSupport.java Support (serialize, deserialize, etc.) class

3-78

Using rtiddsgen

Table 3.14

3.6.1

Note: CORBA
support requires
the RTICORBA
Compatibility
Kit

Files Created by rtiddsgen for Java for Example “Hello.idl”

Data Type

Generated Files

Description

Optional files

generated when you use the “-e

xample <arch>" command-line option. You may modify and

use these files as a way to create simple applications that publish or subscribe to the user data type.

Example code for applications that publish or subscribe to
the user data type. You should modify the code in the pub-

<Name>Publisher.java i R
N Subscriber lisher application to set and change the value of the pub-
Strl.lctures/ <Name>subscriberjava lished data. Otherwise, both files should be ready to
Unions compile and run.
. . Makefile for non-Windows-based architectures. An exam-
makefile_Hello_<architecture> . ..
ple <architecture> is linux2.4gcc3.2.2.
Structures/ .
<Name>TypeCode.
Unions/ ame 'yp.e ocejava ..| Type code class associated with the IDL type given by
T (Note: this is not generated if
ypedefs/ <Name>.
Enums you use -notypecode)

rtiddsgen Command-Line Arguments

There are several command-line options you can pass to rtiddsgen:

rtiddsgen [-d <outdirs]
[-language <C|C++|Java|C++/CLI|C#|Ada>]
(C++ only)

[-package <packagePrefix>] (Java only)
[-example <archs>]

[-namespace]

[-replace]
[-debug]

[-corba [client header file]] [-orb \<CORBA ORB\>]]
[-optimization <level of optimizations]
[-stringSize <Unbounded strings sizes>]
[-sequenceSize <Unbounded sequences sizesx]
[-notypecode]

[-ppDisable]

[-ppPath <preprocessor executables>]

[-ppOption <options>]

[-D <name>[=<value>]]

[-U <name>]

[-I <directory>]
[-noCopyable]

[-use42eAlignment]
[-enableEscapeChar]

[-typeSequenceSuffix <Suffixs>]
[-dataReaderSuffix <Suffixs>]
[-dataWriterSuffix <Suffixs>]
[-convertToXml |
-convertToXsd |
-convertToWsdl |
-convertToIdl]
[-convertToCcl]
[-convertToCcs]
[-expandOctetSeq]
[-expandCharSeq]
[-dl1ExportMacroSuffix]

[-version]
[-help]
[-verbosity

[1-3]1

3-79

Using rtiddsgen

[[-inputIdl] <IDLInputFile.idls>
[-inputXml] <XMLInputFile.xmls>

[-inputXsd] <XSDInputFile.xsd> |
[-inputWsdl] <WSDLInputFile.wsdls>]

Table 3.15 describes the options (in alphabetical order).

3.6.1.1 Return Values for rtiddsgen

The rtiddsgen script returns a 0 (zero) if there are no errors or -1 if any errors are encountered.

Table 3.15 Options for rtiddsgen

Option Description

Converts the input type description file into CCL format. This option creates a
-convertToCcl

new file with the same name as the input file and a .ccl extension.

Converts the input type description file into CCs format. This option creates a
-convertToCcs

new file with the same name as the input file and a .ccs extension.

Converts the input type description file into IDL format. This option creates a
-convertToldl

new file with the same name as the input file and a .idl extension.
—convertToWsdl Conver.ts the. input type description fille into.WSDL format. This thion creates

a new file with the same name as the input file and a .wsdl extension.

Converts the input type description file into XML format. This option creates a
-convertToXml

new file with the same name as the input file and a .xml extension.
—convertToXsd Converts the input type description file into XSD format. This option creates a

new file with the same name as the input file and a .xsd extension.

-corba

This option is only available when using the RTI CORBA Compatibility Kit for
Connext (available for purchase as a separate product). Please see Part 7: RTI
CORBA Compatibility Kit.

-D <name>[=<value>]

Defines preprocessor macros.

Note: On Windows systems, enclose the argument in quotation marks:
-D "<name>[=<value>]"

-d

Generates the output in the specified directory. By default, rtiddsgen will gener-
ate files in the directory where the input type-definition file is found.

-dataReaderSuffix <suffix>

Assigns a suffix to the name of a DataReader interface. Only applies if -corba is
also specified. By default, the suffix is 'DataReader'. Therefore, given the type
'Foo' the name of the DataReader interface will be 'FooDataReader'.

-dataWriterSuffix <suffix>

Assigns a suffix to the name of a DataWriter interface. Only applies if -corba is
also specified. By default, the suffix is 'DataWriter'. Therefore, given the type
'Foo' the name of the DataWriter interface will be 'FooDataWriter'.

-debug

Creates XML files for debugging rtiddsgen only. Use this option only at the
direction of RTI support; it is unlikely to be useful to you otherwise.

-dllExportMacroSuffix <suffix>

Defines the suffix of the macro that is used to export symbols when building
Windows DLLs. The default macro is NDDS_USER_DLL_EXPORT. When
this option is specified, the name of the macro s
NDDS_USER_DLL_EXPORT_<suffix>.

-enableEscapeChar

Enables use of the escape character '_' in IDL identifiers. When -corba is used,
this option is always enabled.

-example <arch>

Generates example application code and makefiles (for UNIX-based systems)
or workspace and project files (for Windows systems) based on the type-defini-
tion file. The parameter specifies the architecture for the example makefiles.
Valid options for <arch> are listed in the Platform Notes.

3-80

Using rtiddsgen

Table 3.15 Options for rtiddsgen

Option Description
~expandOctetSeq When converting to CCS or CCL files, expand octet sequences. The default is
to use a blob type.
~expandCharSeq When converting to CCS or CCL files, expand char sequences. The default is to

use a string type.

-I <directory>

Adds to the list of directories to be searched for type-definition files (IDL, XML,
XSD or WSDL files). Note: A type-definition file in one format cannot include a
file in another format.

-inputldl

Indicates that the input file is an IDL file, regardless of the file extension.

-inputWsdl

Indicates that the input file is a WSDL file, regardless of the file extension.

-inputXml

Indicates that the input file is a XML file, regardless of the file extension.

-inputXsd

Indicates that the input file is a XSD file, regardless of the file extension.

IDLInputFile.idl

File containing IDL descriptions of your data types. If -inputldl is not used, the
file must have a “.idl” extension.

-help

Prints out the command line options for rtiddsgen.

-language

Specifies the language to use for the generated files. The default language is
C++; you can also choose C, C++/CLI, C#, Java, or Ada.

-metp

Generates code for the Multi-Encapsulation Type Support (METP) library.

The METP library requires a special version of Connext; please contact sup-
port@rti.com for more information.

-namespace

Specifies the use of C++ namespace. (For C++ only. For C++/CLI and C#, it is
implied-namespaces are always used.)

-noCopyable

Forces rtiddsgen to put ‘copy’ logic into the corresponding TypeSupport class
rather than the type itself. This option is only used for Java code generation.
This option is not compatible with the use of ndds_standalone_type.jar (see
Section 3.7). Note that when generating code for Java, the -corba option implies
the -noCopyable option (whether or not you specify -noCopyable).?

-notypecode

Disables type-code support. By using this option, you can generate code that
can be used in a standalone manner—see Using Generated Types without Con-
next (Standalone) (Section 3.7).

Note: If you are using a large data type (more than 64 K) and type code support,
you will see a warning when type code information is sent. Connext has a type
code size limit of 64K. To avoid the warning when working with data types
with type codes larger than 64K, turn off type code support by using -notype-
code.

-replace

Allows rtiddsgen to overwrite any existing generated files. If it is not present
and existing files are found, rtiddsgen will print a warning but will not over-
write them.

-optimization

See Optimizing Typedefs (-optimization) (Section 3.6.1.2 on Page 3-82)

-orb

Specifies the CORBA ORB. The majority of code generated is independent of
the ORB. However, for some IDL features the code generated depends on the
ORB. rtiddsgen generates code compatible with ACE-TAO or JacORB. To select
an ACE_TAO version use the -orb parameter. The default is ACE_TAOL1.6.

This option can only be used with the -corba option.

-package

Specifies the root package into which generated classes will be placed. It
applies to Java only. If the type-definition file contains module declarations,
those modules will be considered subpackages of the package specified here.

3-81

Using rtiddsgen

3.6.1.2

Table 3.15 Options for rtiddsgen

Option

Description

-ppDisable

Disables the preprocessor.

-ppOption <option>

Specifies a preprocessor option. This parameter can be used multiple times to
provide the command-line options for the specified preprocessor. See -ppPath.

-ppPath
<preprocessor
executable>

Specifies the preprocessor. If you only specify the name of an executable (not a
complete path to that executable), the executable must be found in your Path.
The default value is "cpp" for non-Windows architectures and "cl.exe" for Win-
dows architectures.If you use -ppPath to provide the full path and filename for
cl.exe or the cpp preprocessor, you must also use -ppOption (described below)
to set the following preprocessor options:
If you use a non-default path for cl.exe, you also need to set:

-ppOption /nologo -ppOption /C -ppOption /E -ppOption /X
If you use a non-default path for cpp, you also need to set:

-ppOption -C

-sequenceSize

Sets the size assigned to unbounded sequences. The default value is 100 ele-
ments.

-stringSize

Sets the size assigned to unbounded strings, not counting a terminating NULL
character. The default value is 255 bytes.

-typeSequenceSuffix <suffix>

Assigns a suffix to the names of the implicit sequences defined for IDL types.
Only applies if -corba is also specified. By default, the suffix is ‘Seq'. Therefore,
given the type 'Foo' the name of the implicit sequence will be 'FooSeq'.

-U <name> Cancels any previous definition of <name>.
Makes the generated code compatible with RTI Data Distribution Service 4.2e.
_used2eAlignment This option should be used when compatibility with 4.2e is required and the

topic data types contain double, long long, unsigned long long, or long double
members.

-verbosity [1-3]

rtiddsgen verbosity:
1: exceptions
2: exceptions and warnings
3: exceptions, warnings and information (Default)

Displays the version of rtiddsgen being used, such as 5.x.y. (Note: To see “patch’

-version revision information (such as 5.x.y.z), see What Version am I Running? (Section
21.1).

WSDLInputFile.wsdl WSDL file .contalrung XSD descriptions .of your data types. If -inputWsdl is not
used, the file must have an .wsdl extension.

XMLInputFile.idl File (;ontammg XML descrlpt10n§ of your data types. If -inputXml is not used,
the file must have an .xml extension.

XSDInputFile.xsd File containing XSD descriptions of your data types. If -inputXsd is not used,

the file must have an .xsd extension.

a. CORBA support is only available when using the RTI CORBA Compatibility Kit (available for purchase as a separate prod-
uct). See Part 7: RTI CORBA Compatibility Kit.

Optimizing Typedefs (-optimization)

The -optimization option specifies how support for typedefs is generated in C and C++ code.
This option is only useful when there are typedefs defined in the IDL file. This option only
applies to C and C++ because the Java language does not contain the typedef construct. In other
words, rtiddsgen always resolves typedef’ed names to their most basic types when generating
Java code (except for typedefs of arrays and sequences which are converted to wrapper

3-82

Using Generated Types without Connext (Standalone)

3.7

classes—see Note 8 on Page 3-52). Effectively, Java code is always generated with an equivalent
optimization level of 2. Choices are:

[0 (default): No optimization. Typedef’ed types are treated as full types and type-plugin
and support code is generated and invoked when the typedefs are used in other struc-
tures.

(d 1: The compiler generates type-plugin and support code for typedefs but optimizes its
use. If a type is a typedef that can be resolved either to a primitive type (char, short, long,
etc.) or to another type that is defined in the same IDL file, then when the typedef is used
in the definition of another structure, rtiddsgen will generate code that invokes the plugin
and support code of the most basic type to which the typedef can be resolved.

This will save at least one function call for serialization, deserialization, and other manip-
ulation of the parent structure. This optimization level is always safe to use unless the
user intends to modify the generated type-plugin and support code. In that case, we rec-
ommend using the default of no optimization of typedefs.

(J 2: Same as level 1 with the addition that the type-plugin and support code for typedefs
are not generated (since they would not be used by the code for data types defined in the
same IDL file that uses the typedefs).

This typedef optimization level is only recommend if you only have a single IDL file that
contains the definitions of all of the user data types passed by Connext on the network. If
you have multiple IDL files, and types defined in one file use typedefs that are defined in
another, then rtiddsgen will generate code assuming that the type-plugin and support
code were generated for the typedef’ed types. If level 2 optimization was used when
generating the code for the IDL file that contained the typedefs, then the plugin and sup-
port code for the typedefs would not have been generated, and compilation and linking
errors will result.

For example, consider this declaration:

typedef short MyShort

struct MyStructure {
MyShort member;

With optimization 0: The type-plugin and support code for MyStructure will use the generated
code for MyShort to serialize, deserialize, or otherwise manipulate the member field of MyS-
tructure.

With optimization 1: The type plug-in and support code for MyStructure will directly serialize,
deserialize or otherwise manipulate the member field of MyStructure as a short—saving a func-
tion call. However, plugin and support code for MyShort is still generated because it would be
used by the code generated from another IDL file that refers to MyShort.

With optimization 2: The type-plugin and support code for MyStructure will directly serialize,
deserialize or otherwise manipulate the member field of MyStructure as a short-saving a func-
tion call. In addition, no plugin or support code for MyShort is generated.

Using Generated Types without Connext (Standalone)

You can use the generated type-specific source and header files without linking the Connext
libraries or even including the Connext header files. That is, the generated files for your data
types can be used standalone.

3-83

Using Generated Types without Connext (Standalone)

3.7.1

3.7.2

The directory <NDDSHOME>/resource/rtiddsgen/standalone contains the required helper
files:

(J include: header and templates files for C and C++.

[src: source files for C and C++.

[class: Java jar file.

Note: You must use rtiddsgen’s -notypecode option to generate code for standalone use.

Using Standalone Types in C

The generated files that can be used standalone are:

(J <idl file name>.c: Types source file

[<idl file name>.h: Types header file

The type plug-in code (<idl file>Plugin.[c,h]) and type-support code (<idl file>Support.[c,h])
cannot be used standalone.

To use the rtiddsgen-generated types in a standalone manner:

1. Make sure you use rtiddsgen’s -notypecode option to generate the code.

2. Include the directory <NDDSHOME>/resource/rtiddsgen/standalone/include in the
list of directories to be searched for header files.

3. Add the source files, ndds_standalone_type.c and <idl file name>.c, to your project.

4. Include the file <idl file name>.h in the source files that will use the generated types in a
standalone manner.

5. Compile the project using the following two preprocessor definitions:
a. NDDS_STANDALONE_TYPE

b. The definition for your platform (RTI_VXWORKS, RTI_QNX, RTI_WIN32,
RTI_INTY, RTI_LYNX or RTI_UNIX)

Using Standalone Types in C++

The generated files that can be used standalone are:

[<idl file name>.cxx: Types source file

(J <idl file name>.h: Types header file

The type-plugin code (<idl file>Plugin.[cxx,h]) and type-support code (<idl file>Sup-
port.[exx,h]) cannot be used standalone.

To use the generated types in a standalone manner:

1. Make sure you use rtiddsgen’s -notypecode option to generate the code.

2. Include the directory <NDDSHOME>/resource/rtiddsgen/standalone/include in the
list of directories to be searched for header files.

3. Add the source files, ndds_standalone_type.cxx and <idl file name>.cxx, to your proj-
ect.

4. Include the file <idl file name>.h in the source files that will use the rtiddsgen types in a
standalone manner.

3-84

Interacting Dynamically with User Data Types

3.7.3

3.8

3.8.1

5. Compile the project using the following two preprocessor definitions:
a. NDDS_STANDALONE_TYPE

b. The definition for your platform (such as RTI_VXWORKS, RTI_QNX, RTI_WIN32,
RTI_INTY, RTI_LYNX or RTI_UNIX)

Standalone Types in Java

The generated files that can be used standalone are:

1 <idl type>.java
1 <idl type>Seq.java

The type code (<idl file>TypeCode.java), type-support code (<idl type>TypeSupport.java),
DataReader code (<idl file>DataReader.java) and DataWriter code (<idl file>DataWriter.java)
cannot be used standalone.

To use the generated types in a standalone manner:

1. Make sure you use rtiddsgen’s -notypecode option to generate the code.
2. Include the file ndds_standalone_type.jar in the classpath of your project.

3. Compile the project using the standalone types files (<idl type>.java and <idl
type>Seq.java).

Interacting Dynamically with User Data Types

Introduction to TypeCode

Type schemas—the names and definitions of a type and its fields—are represented by TypeCode
objects. A type code value consists of a type code kind (see the TCKind enumeration below) and
a list of members. For compound types like structs and arrays, this list will recursively include
one or more type code values.

enum TCKind {
TK_NULL,
TK_SHORT,
TK_LONG,
TK_USHORT,
TK _ULONG,
TK _FLOAT,
TK _DOUBLE,
TK_BOOLEAN,
TK_CHAR,
TK _OCTET,
TK_STRUCT,
TK _UNION,
TK_ENUM,
TK_STRING,
TK_SEQUENCE,
TK_ARRAY,
TK ALIAS,
TK LONGLONG,
TK_ULONGLONG,

3-85

Interacting Dynamically with User Data Types

3.8.2

TK_LONGDOUBLE,
TK_WCHAR,
TK_WSTRING,
TK_VALUE,
TK_SPARSE

}

Type codes unambiguously match type representations and provide a more reliable test than
comparing the string type names.

The TypeCode class, modeled after the corresponding CORBA API, provides access to type-
code information. For details on the available operations for the TypeCode class, see the API
Reference HTML documentation, which is available for all supported programming languages
(select Modules, RTI Connext DDS API Reference, Topic Module, Type Code Support).

Type codes are enabled by default when you run rtiddsgen. The -notypecode option disables

generation of type code information. Type-code support does increase the amount of memory
used, so if you need to save on memory, you may consider disabling type codes. See rtiddsgen
Command-Line Arguments (Section 3.6.1).

Note: Type-code support must be enabled if you are going to use ContentFiltered Topics (Section
5.4) with the default SQL filter. You may disable type codes and use a custom filter, as described
in Creating ContentFilteredTopics (Section 5.4.3).

Defining New Types

Note: This section does not apply when using the separate add-on product, Ada 2005 Language
Support, which does not support Dynamic Types.

Locally, your application can access the type code for a generated type "Foo" by calling the
Foo_get_typecode() operation in the code for the type generated by rtiddsgen (unless type-code
support is disabled with the -notypecode option). But you can also create TypeCodes at run time
without any code generation.

Creating a TypeCode is parallel to the way you would define the type statically: you define the
type itself with some name, then you add members to it, each with its own name and type.

For example, consider the following statically defined type. It might be in C, C++, or IDL; the
syntax is largely the same.

struct MyType ({

long my integer;

float my float;

bool my bool;

string<128> my_ string; // @key
}i

This is how you would define the same type at run time in C++:

DDS_ExceptionCode t ex = DDS_NO_EXCEPTION CODE;
DDS_StructMemberSeq structMembers; // ignore for now
DDS TypeCodeFactory* factory = DDS TypeCodeFactory::get instance() ;
DDS TypeCode* structTc = factory->create struct tc(

"MyType", structMembers, ex);

// If structTc is NULL, check 'ex' for more information.

structTc->add _member ("my integer", DDS_TYPECODE MEMBER ID INVALID,
factory->get primitive tc(DDS_TK LONG) ,
DDS TYPECODE NONKEY MEMBER, ex);

structTc->add member ("my float", DDS_TYPECODE MEMBER_ ID INVALID,

3-86

Interacting Dynamically with User Data Types

3.8.3

factory->get primitive tc(DDS_TK FLOAT),
DDS TYPECODE NONKEY MEMBER, ex);

structTc->add member ("my bool", DDS TYPECODE MEMBER ID INVALID,
factory->get_primitive_tc (DDS_TK_ BOOLEAN) ,
DDS_TYPECODE NONKEY MEMBER, ex);

structTc->add member ("my string", DDS TYPECODE MEMBER ID INVALID,
factory->create string tc(128),
DDS TYPECODE KEY MEMBER, ex);

More detailed documentation for the methods and constants you see above, including example
code, can be found in the API Reference HTML documentation, which is available for all sup-
ported programming languages.

If, as in the example above, you know all of the fields that will exist in the type at the time of its
construction, you can use the StructMemberSeq to simplify the code:

DDS_StructMemberSeq structMembers;
structMembers.ensure length(4, 4);
DDS TypeCodeFactory* factory = DDS TypeCodeFactory::get instance() ;

structMembers [0] .name = DDS_String dup("my_ integer");
structMembers [0] .type = factory->get_primitive_tc (DDS_TK_LONG) ;

structMembers [1] .name = DDS_String dup ("my float");
structMembers [1] .type = factory->get primitive tc(DDS_TK FLOAT) ;

structMembers [2] .name = DDS_String dup ("my bool") ;
structMembers [2] .type = factory->get_primitive_tc (DDS_TK BOOLEAN) ;

structMembers [3] .name = DDS_String dup ("my_ string");
structMembers [3] .type = factory->create string tc(128);
structMembers [3] .is _key = DDS BOOLEAN TRUE;

DDS_ExceptionCode t ex = DDS_NO EXCEPTION_CODE;
DDS_TypeCode* structTc = factory->create struct tc("MyType",
structMembers, ex);

After you have defined the TypeCode, you will register it with a DomainParticipant using a logi-
cal name. You will use this logical name later when you create a Topic.

DDSDynamicDataTypeSupport* type support =
new DDSDynamicDataTypeSupport (structTc,
DDS_DYNAMIC_DATA TYPE PROPERTY DEFAULT) ;

DDS ReturnCode t retcode = type support->register type (participant,
"My Logical Type Name") ;

Now that you have created a type, you will need to know how to interact with objects of that
type. Continue reading Section 3.8.3 below for more information.

Sending Only a Few Fields

In some cases, your data model may contain a large number of potential fields, but it may not be
desirable or appropriate to include a value for every one of them with every data sample.

3-87

Interacting Dynamically with User Data Types

(J It may use too much bandwidth. You may have a very large data structure, parts of
which are updated very frequently. Rather than resending the entire data structure with
every change, you may wish to send only those fields that have changed and rely on the
recipients to reassemble the complete state themselves.

[It may not make sense. Some fields may only have meaning in the presence of other
fields. For example, you may have an event stream in which certain fields are only rele-
vant for certain kinds of events.

To support these and similar cases, Connext supports sparse value types. A sample of such a
type only contains the field values that were explicitly set by the sender. A recipient of that sam-
ple will receive an error when trying to look up the value of any other field.

An endpoint (DataWriter or DataReader) using a sparse value type will not communicate with
another endpoint using a non-sparse value type or structure type, even if the two types contain
similar member definitions, because these kinds of types have different semantics. A structure
or non-sparse value type is a commitment to provide exactly the data described by the type's
members and in a certain order. In contrast, a sparse value type is a commitment to provide
some subset of those data values in no particular order.

Because direct programming language representations of data types typically have no way to
express the concept of sparse fields (there is no way, for example, for a C structure to omit some
of its fields), using sparse types requires use of the dynamic type API described in Defining New
Types (Section 3.8.2). You will use the Dynamic Data API to work with sparse samples, just as
you would with samples of any other dynamically defined type. For more information about
working with sparse samples, see Objects of Dynamically Defined Types (Section 3.9.2) or the
API Reference HTML documentation (select Modules, RTI Connext DDS API Reference, Topic
Module, Dynamic Data).

A sparse version of the "MyType" type described above would be defined like this:

DDS ExceptionCode t ex = DDS NO EXCEPTION_ CODE;
DDS TypeCodeFactory* factory = DDS TypeCodeFactory::get instance() ;
DDS TypeCode* sparseTc = factory->create sparse tc(

"MySparseType", DDS VM NONE, NULL, ex) ;

// add members

sparseTc->add_member ("my integer", ID MY INTEGER,
factory->get primitive tc(DDS_TK LONG),
DDS TYPECODE NONKEY MEMBER, ex);

sparseTc->add member ("my float", ID MY FLOAT,
factory->get_primitive_tc(DDS_TK FLOAT),
DDS_TYPECODE NONKEY MEMBER, ex);

sparseTc->add_member ("my bool", ID MY BOOL,
factory->get primitive tc(DDS_TK BOOLEAN) ,
DDS TYPECODE NONKEY MEMBER, ex);

sparseTc->add member ("my string", ID MY STRING,
factory->create_string tc(128),
DDS_TYPECODE KEY MEMBER, ex);

Detailed descriptions of the methods and constants you see above can be found in the API Ref-
erence HTML documentation.

Integral to the definition of a sparse type are the member IDs of its fields. An ID is a two-byte
integer that uniquely identifies a field within its parent type; these IDs are chosen by the type's
designer. (In the code example above, ID_MY_INTEGER, ID_MY_FLOAT, and ID_MY_BOOL
are examples of user-defined symbolic constants representing member ID values.) When a
sparse sample is serialized, the middleware will embed the IDs of the fields that are present, so
that recipients will know how to deserialize it.

3-88

Interacting Dynamically with User Data Types

3.8.4

3.8.5

Although member IDs are a relatively efficient way to describe a sample's contents, they do use
network bandwidth. This can be an important issue if you are considering using sparse types to
decrease the size of your data samples on the network. Although the relative cost of adding
member IDs to your packets will vary depending on the sizes and layout of your fields, the fol-
lowing is a good rule of thumb: if you expect a given data sample to contain less than half of the
fields that are legal for its type, sparse types will probably save you on bandwidth. If, on the
other hand, most samples contain most fields, you will probably be better off using a plain struc-
ture type and simply ignoring irrelevant fields on the receiving side.

Type Extension and Versioning

As your system evolves, you may find that your data types need to change. And unless your
system is relatively small, you may not be able to bring it all down at once in order to modify
them. Instead, you may need to upgrade your types one component at a time—or even on the
fly, without bringing any part of the system down.

You can use the sparse types described above to efficiently version types—and not just at the
level of entire types, but at the level of individual fields.

(J You can add new fields to a type at any time. Because the type is sparse, existing pub-
lishers of the type that have not been updated will simply omit the new field in any data
samples they send. If you anticipate changing your types in future versions of your sys-
tem, make sure that you ignore fields that you do not recognize, so that your application
will be robust to future type changes.

sparseTc->add _member ("myNewInteger", ID MY NEW INTEGER,
DDS_TheTypeCodeFactory->get primitive tc (TK_LONG),
DDS TYPECODE NONKEY MEMBER, ex);

[d You cannot remove fields from an existing type. Doing so would break older applica-
tions and invalidate historical samples that might already be in the caches of upgraded
applications. Instead, simply stop sending values for the fields you wish to deprecate.

Sending Type Codes on the Network

In addition to being used locally, serialized type codes are typically published automatically
during discovery as part of the built-in topics for publications and subscriptions. See Built-in
DataReaders (Section 16.2). This allows applications to publish or subscribe to topics of arbitrary
types. This functionality is useful for generic system monitoring tools like the rtiddsspy debug
tool. For details on using rtiddsspy, see the API Reference HTML documentation (select Mod-
ules, Programming Tools).

Note: Type codes are not cached by Connext upon receipt and are therefore not available from
the built-in data returned by the DataWriter’s get_matched_subscription_data() operation or the
DataReader’s get_matched_publication_data() operation.

If your data type has an especially complex type code, you may need to increase the value of the
type_code_max_serialized_length field in the DomainParticipant’s
DOMAIN_PARTICIPANT_RESOURCE_LIMITS QosPolicy (DDS Extension) (Section 8.5.4). Or,
to prevent the propagation of type codes altogether, you can set this value to zero (0). Be aware
that some features of monitoring tools, as well as some features of the middleware itself (such as
ContentFilteredTopics) will not work correctly if you disable TypeCode propagation.

3-89

Interacting Dynamically with User Data Types

3.8.5.1 Type Codes for Built-in Types

The type codes associated with the built-in types are generated from the following IDL type def-

initions:

module DDS

i

/* String */
struct String {

string<max_size> value;

}i
/* KeyedString */
struct KeyedString ({

string<max sizes> key; //ekey
string<max_size> value;

/* Octets */
struct Octets

sequence<octet, max size> value;

}i
/* KeyedOctets */
struct KeyedOctets ({

string<max_size> key; //e@key
sequence<octet, max_size> value;

}i

The maximum size (max_size) of the strings and sequences that will be included in the type
code definitions can be configured on a per-DomainParticipant-basis by using the properties in
Table 3.16.

Table 3.16 Properties for Allocating Size of Built-in Types, per DomainParticipant

Built-
in
Type

Property

Description

String

dds.builtin_type.string.max_size

Maximum size of the strings published by the DataWriters
and received by the DataReaders belonging to a DomainPartic-
ipant (includes the NULL-terminated character).

Default: 1024

Keyed-
String

dds.builtin_type keyed_string.
max_key_size

Maximum size of the keys used by the DataWriters and
DataReaders belonging to a DomainParticipant (includes the
NULL-terminated character).

Default: 1024

dds.builtin_type keyed_string.

max_size

Maximum size of the strings published by the DataWriters
and received by the DataReaders belonging to a DomainPartic-
ipant using the built-in type (includes the NULL-terminated
character).

Default: 1024

Octets

dds.builtin_type.octets.max_size

Maximum size of the octet sequences published by the
DataWriters and DataReaders belonging to a DomainPartici-
pant.

Default: 2048

3-90

Working with Data Samples

Table 3.16 Properties for Allocating Size of Built-in Types, per DomainParticipant

3.9

3.9.1

Built-
in Property Description
Type
Maximum size of the key published by the DataWriter and
e received by the DataReaders belonging to the
dds.bulltmTtyp e.keyed_octets. DomainParticipant (includes the NULL-terminated charac-
max_key_size N
er).
Keyed- Default:1024.
Octets
Maximum size of the octet sequences published by the
dds.builtin_type keyed_octets. DataWriters and DataReaders belonging to a DomainPartici-
max_size pant.
Default: 2048

Working with Data Samples

You should now understand how to define and work with data types, whether you're using the
simple data types built into the middleware (see Built-in Data Types (Section 3.2)), dynamically
defined types (see Managing Memory for Built-in Types (Section 3.2.7)), or code generated from
IDL, XML, XSD, or WSDL files (see Sections 3.3 through 3.5).

Now that you have chosen one or more data types to work with, this section will help you
understand how to create and manipulate objects of those types.

Obijects of Concrete Types

If you use one of the built-in types, or decide to generate custom types from an IDL or XML file,
your Connext data type is like any other data type in your application: a class or structure with
fields, methods, and other members that you interact with directly.

In C and C++, you create and delete your own objects from factories, just as you create Connext
objects from factories. In the case of user data types, the factory is a singleton object called the
type support. Objects allocated from these factories are deeply allocated and fully initialized.

/* In the generated header file: */
struct MyData {

char* myString;
}i

/* In your code: */
MyData* sample = MyDataTypeSupport create data() ;
char* str = sample->myString; /*empty, non-NULL string*/

/* ... */

MyDataTypeSupport delete data (sample) ;
In C++, as in C, you create and delete objects using the TypeSupport factories.

MyData* sample = MyDataTypeSupport::create data() ;
char* str = sample->myString; // empty, non-NULL string
//

MyDataTypeSupport: :delete data (sample) ;

391

Working with Data Samples

3.9.2

In C# and C++/CLI, you can use a no-argument constructor to allocate objects. Those objects
will be deallocated by the garbage collector as appropriate.

// In the generated code (C++/CLI):
public ref struct MyData

public:

System: :String” myString;

}i

// In your code, if you are using C#:
MyData sample = new MyData() ;
System.String str = sample.myString; // empty, non-null string

// In your code, if you are using C++/CLI:
MyData” sample = gcnew MyDatal() ;
System: :String”® str = sample->myString; // empty, non-nullptr string

In Java, you can use a no-argument constructor to allocate objects. Those objects will be deallo-
cated by the garbage collector as appropriate.

// In the generated code:
public class MyData {

public String myStrlng = nn.
}

// In your code:
MyData sample = new MyData() ;
String str = sample->myString; // empty, non-null string

Objects of Dynamically Defined Types

If you are working with a data type that was discovered or defined at run time, you will use the
reflective API provided by the DynamicData class to get and set the fields of your object.

Consider the following type definition:

struct MyData {
long myInteger;

As with a statically defined type, you will create objects from a TypeSupport factory. How to cre-
ate or otherwise obtain a TypeCode, and how to subsequently create from it a Dynamic-
DataTypeSupport, is described in Defining New Types (Section 3.8.2).

For more information about the DynamicData and DynamicDataTypeSupport classes, consult
the API Reference HTML documentation, which is available for all supported programming
languages (select Modules, RTI Connext DDS API Reference, Topic Module, Dynamic Data).

In C:

DDS DynamicDataTypeSupport* support = ...;
DDS DynamicData* sample = DDS DynamicDataTypeSupport create data (support) ;
DDS_Long theInteger = 0;
DDS_ReturnCode_t success = DDS_DynamicData_set long(sample,
"myInteger", DDS DYNAMIC DATA MEMBER ID UNSPECIFIED, 5);
/* Error handling omitted. */
success = DDS DynamicData get long(sample, &theInteger,
"myInteger", DDS DYNAMIC DATA MEMBER ID UNSPECIFIED) ;
/* Error handling omitted. "theInteger" now contains the value 5
if no error occurred.

*/

3-92

Working with Data Samples

3.9.3

In C++:

DDSDynamicDataTypeSupport* support = .

DDS DynamicData* sample = support->create datal();

DDS_ReturnCode_ t success = sample->set long("myInteger",
DDS_DYNAMIC DATA MEMBER ID UNSPECIFIED, 5);

// Error handling omitted.

DDS Long theInteger = 0;

success = sample->get long(&theInteger, "myInteger",

DDS_DYNAMIC DATA MEMBER ID UNSPECIFIED) ;
// Error handling omitted.

// "thelInteger" now contains the value 5 if no error occurred.
In C++/CLI:

using DDS;

DynamicDataTypeSupport” support = .

DynamicData” sample = support-s>create data() ;

sample->set_ long("myInteger",
DynamicData: :MEMBER ID UNSPECIFIED, 5);

int thelInteger = sample->get long("myInteger",
0 /*redundant w/ field name*/) ;
/* Exception handling omitted.
* "theInteger" now contains the value 5 if no error occurred.
*/
In Ci:

using namespace DDS;

DynamicDataTypeSupport support = .7

DynamicData sample = support.create_ data() ;

sample.set long("myInteger", DynamicData.MEMBER ID UNSPECIFIED, 5);

int thelInteger = sample.get long("myInteger",
DynamicData.MEMBER ID UNSPECIFIED) ;
/* Exception handling omitted.
* "theInteger" now contains the value 5 if no error occurred.
*/
In Java:

import com.rti.dds.dynamicdata.*;

DynamicDataTypeSupport support = .7

DynamicData sample = (DynamicData) support.create data() ;
sample.set int ("myInteger", DynamicData.MEMBER ID UNSPECIFIED, 5);

int thelInteger = sample.get int ("myInteger",
DynamicData.MEMBER ID UNSPECIFIED) ;
/* Exception handling omitted.

* "theInteger" now contains the value 5 if no error occurred.

*/

Accessing the Discriminator Value in a Union

A union type can only hold a single member. The member_id for this member is equal to the
discriminator value. To get the value of the discriminator, use the operation
get_member_info_by_index() on the DynamicData using an index value of 0. This operation
fills in a DynamicDataMemberInfo structure, which includes a member_id field that is the value
of the discriminator.

3-93

Working with Data Samples

Once you know the discriminator value, you can use the proper version of get_<type>() (such as
get_long()) to access the member value.

For example:

DynamicDataMemberInfo memberInfo = new DynamicDataMemberInfo() ;
myDynamicData.get member info by index(memberInfo, O0);

int discriminatorValue = memberInfo.member id;

int myMemberValue = myDynamicData.get_ long(null, discriminatorValue) ;

3-94

Chapter 4 Entities

The main classes extend an abstract base class called an Entity. Every Entity has a set of associ-
ated events known as statuses and a set of associated Quality of Service Policies (QosPolicies). In
addition, a Listener may be registered with the Entity to be called when status changes occur.

Entities may also have attached Conditions, which provide a way to wait for status changes.

This chapter describes the common operations and general designed patterns shared by all Enti-
ties including DomainParticipants, Topics, Publishers, DataWriters, Subscribers, and DataReaders. In
subsequent chapters, the specific statuses, Listeners, Conditions, and QosPolicies for each class

will be discussed in detail.

DomainParticipantFactory

<<create T

Publizher

P
“rreatel

<<ereate>> .,

DataWriter

<rreaten>

ContentFilteredTopic
<=creates> <<ereate>> o
DomainParticipant | ezt
''''' wrmemeeee-i MultiTopic
= - "L'""*-,..
[/ Sermaten e
a <<ereaterr oo
i T i
Subscriber
= -
Topic ___,--"<<:.:n-,ats>>
<<create> <<ereate>> .
erealer. DataReader
A <<t T
N = e ereaten
Lo S L
B il
StatusCondition ReadCondition “eereateR>
QueryConditon

4-1

Common Operations for All Entities

4.1

4.1.1

Table 4.1

Common Operations for All Entities

All Entities (DomainParticipants, Topics, Publishers, DataWriters, Subscribers, and DataReaders) pro-

vide operations for:

(d Creating and Deleting Entities (Section 4.1.1)

[d Enabling Entities (Section 4.1.2)

(J Getting an Entity’s Instance Handle (Section 4.1.3)
(J Getting Status and Status Changes (Section 4.1.4)
(J Getting and Setting Listeners (Section 4.1.5)

[Getting the StatusCondition (Section 4.1.6)

1 Getting, Setting, and Comparing QosPolicies (Section 4.1.7)

Creating and Deleting Entities

The factory design pattern is used in creating and deleting Entities. Instead of declaring and con-
structing or destructing Entities directly, a factory object is used to create an Entity. Almost all
entity factories are objects that are also entities. The only exception is the factory for a Domain-
Participant. See Table 4.1.

Entity Factories

Entity Created by
DomainParticipant](:;Osrtr::ilcr:1 Efrfglfeltlz;n(t)i?gss govided by Connext)
Topic
Publisher
Subscriber DomainParticipant
DataWriter®
DataReader®
DataWriter® Publisher
DataReader® Subscriber

a. DataWriters may be created by a DomainParticipant or a Publisher. Similarly, DataReaders may be created by a
DomainParticipant or a Subscriber.

All entities that are factories have:

(J Operations to create and delete child entities. For example:

DDSPublisher::create_datawriter,
DDSDomainParticipant::delete_topic

(J Operations to get and set the default QoS values used when creating child entities. For

example:

DDSSubscriber::get_default_datareader_qos,
DDSDomainParticipantFactory::set_default_participant_qos

(d An ENTITYFACTORY QosPolicy (Section 6.4.2) to specify whether or not the newly cre-
ated child entity should be automatically enabled upon creation.

4-2

Common Operations for All Entities

4.1.2.1

An entity that is a factory cannot be deleted until all the child entities created by it have been
deleted.

Each Entity obtained through create_<entity>() must eventually be deleted by calling
delete_<entity>, or by calling delete_contained_entities().

Enabling Entities

The enable() operation changes an Entity from a non-operational to an operational state. Entity
objects can be created disabled or enabled. This is controlled by the value of the ENTITYFAC-
TORY QosPolicy (Section 6.4.2) on the corresponding factory for the Entity (not on the Entity
itself).

By default, all Entities are automatically created in the enabled state. This means that as soon as
the Entity is created, it is ready to be used. In some cases, you may want to create the Entity in a
‘disabled’ state. For example, by default, as soon as you create a DataReader, the DataReader will
start receiving new samples for its Topic if they are being sent. However, your application may
still be initializing other components and may not be ready to process the data at that time. In
that case, you can tell the Subscriber to create the DataReader in a disabled state. After all of the
other parts of the application have been created and initialized, then the DataReader can be
enabled to actually receive messages.

To create a particular entity in a disabled state, modify the EntityFactory QosPolicy of its corre-
sponding factory entity before calling create_<entity>(). For example, to create a disabled
DataReader, modify the Subscriber’s QoS as follows:

DDS_SubscriberQos subscriber gos;
subscriber->get gos (subscriber gos) ;
subscriber gos.entity factory.autoenable created entities =

DDS_BOOLEAN FALSE;
subscriber->set gos (subscriber gos) ;

DDSDataReader* datareader = subscriber->create datareader (
topic, DDS_DATAREADER QOS DEFAULT, listener);

When the application is ready to process received data, it can enable the DataReader:

datareader->enable() ;

Rules for Calling enable()

In the following, a ‘Factory’ refers to a DomainParticipant, Publisher, or Subscriber; a ‘child” refers
to an entity created by the factory:

(1 If the factory is disabled, its children are always created disabled, regardless of the set-
ting in the factory's EntityFactoryQoS.

[If the factory is enabled, its children will be created either enabled or disabled, according
to the setting in the factory's EntityFactory Qos.

[Calling enable() on a child whose factory object is still disabled will fail and return
DDS_RECODE_RECONDITION_NOT_MET.

[Calling enable() on a factory with EntityFactoryQoS set to DDS_BOOLEAN_TRUE will
recursively enable all of the factory’s children. If the factory’s EntityFactoryQoS is set to
DDS_BOOLEAN_FALSE, only the factory itself will be enabled.

(J Calling enable() on an entity that is already enabled returns DDS_RETCODE_OK and
has no effect.

4-3

Common Operations for All Entities

(d There is no complementary “disable” operation. You cannot disable an entity after it is
enabled. Disabled entities must have been created in that state.

(d An entity’s Listener will only be invoked if the entity is enabled.

[The existence of an entity is not propagated to other DomainParticipants until the entity is
enabled (see Chapter 14: Discovery).

[If a DataWriter / DataReader is to be created in an enabled state, then the associated Topic
must already be enabled. The enabled state of the Topic does not matter, if the Publisher/
Subscriber has its EntityFactory QosPolicy to create children in a disabled state.

(1 When calling enable() for a DataWriter / DataReader, both the Publisher / Subscriber and the
Topic must be enabled, or the operation will fail and return
DDS_RETCODE_PRECONDITION_NOT_MET.

The following operations may be invoked on disabled Entities:

(J get_qos() and set_qos() Some DDS-specified QosPolicies are immutable—they cannot
be changed after an Entity is enabled. This means that for those policies, if the entity was
created in the disabled state, get/set_qos() can be used to change the values of those pol-
icies until enabled() is called on the Entity. After the Entity is enabled, changing the val-
ues of those policies will not affect the Entity. However, there are mutable QosPolicies
whose values can be changed at anytime—even after the Entity has been enabled.

Finally, there are extended QosPolicies that are not a part of the DDS specification but
offered by Connext to control extended features for an Entity. Some of those extended
QosPolicies cannot be changed after the Entity has been created—regardless of whether
the Entity is enabled or disabled.

Into which exact categories a QosPolicy falls—mutable at any time, immutable after
enable, immutable after creation—is described in the documentation for the specific pol-
icy.

[get_status_changes() and get_* status() The status of an Entity can be retrieved at any
time (but the status of a disabled Entity never changes). (Note: get_*_status() resets the
related status so it no longer considered “changed.”)

[get_statuscondition() An Entity’s StatusCondition can be checked at any time (although
the status of a disabled Entity never changes).

(d get_listener() and set_listener() An Entity’s Listener can be changed at any time.

(J create_*() and delete_*() A factory Entity can still be used to create or delete any child
Entity that it can produce. Note: following the rules discussed previously, a disabled
Entity will always create its children in a disabled state, no matter what the value of the
EntityFactory QosPolicy is.

J lookup_*() An Entity can always look up children it has previously created.

Most other operations are not allowed on disabled Entities. Executing one of those operations
when an Entity is disabled will result in a return code of DDS_RETCODE_NOT_ENABLED.
The documentation for a particular operation will explicitly state if it is not allowed to be used if
the Entity is disabled.

Note: The builtin transports are implicitly registered when (a) the DomainParticipant is enabled,
(b) the first DataWriter/DataReader is created, or (c) you look up a builtin data reader, whichever
happens first. Any changes to the builtin transport properties that are made after the builtin
transports have been registered will have no affect on any DataWriters/DataReaders.

4-4

Common Operations for All Entities

Getting an Entity’s Instance Handle

The Entity class provides an operation to retrieve an instance handle for the object. The opera-
tion is simply:

InstanceHandle t get_ instance handle()

An instance handle is a global ID for the entity that can be used in methods that allow user
applications to determine if the entity was locally created, if an entity is owned (created) by
another entity, etc.

Getting Status and Status Changes

The get_status_changes() operation retrieves the set of events, also known in DDS terminology
as communication statuses, in the Entity that have changed since the last time
get_status_changes() was called. This method actually returns a value that must be bitwise
AND’ed with an enumerated bit mask to test whether or not a specific status has changed. The
operation can be used in a polling mechanism to see if any statuses related to the Entity have
changed. If an entity is disabled, all communication statuses are in the “unchanged” state so the
list returned by the get_status_changes() operation will be empty.

A set of statuses is defined for each class of Entities. For each status, there is a corresponding
operation, get_<status-name>_status(), that can be used to get its current value. For example, a
DataWriter has a DDS_OFFERED_DEADLINE_MISSED status; it also has a
get_offered_deadline_missed_status() operation:

DDS_StatusMask statuses;
DDS OfferedDeadlineMissedStatus deadline stat;

statuses = datawriter->get status_ changes() ;

if (statuses & DDS_OFFERED DEADLINE MISSED STATUS) {
datawriter->get offered deadline missed status (&deadline_stat) ;
printf (“Deadline missed %d times.\n”,
deadline stat.total count);

}

To reset a status (so that it is no longer considered “changed”), call get_<status-name>_status().
Or, in the case of the DDS_DATA_AVAILABLE status, call read(), take(), or one of their vari-
ants.

Note: If you use a StatusCondition to be notified that a particular status has changed, the Status-
Condition’s trigger_value will remain true unless you call get_*_status() to reset the status.

See also: Statuses (Section 4.3) and StatusConditions (Section 4.6.8).

Getting and Setting Listeners

Each type of Entity has an associated Listener, see Listeners (Section 4.4). A Listener represents a
set of functions that users may install to be called asynchronously when the state of communica-
tion statuses change.

The get_listener() operation returns the current Listener attached to the Entity.

The set_listener() operation installs a Listener on an Entity. The Listener will only be invoked on
the changes of statuses specified by the accompanying mask. Only one listener can be attached
to each Entity. If a Listener was already attached, set_listener() will replace it with the new one.

4-5

Common Operations for All Entities

4.1.7

The get_listener() and set_listener() operations are directly provided by the DomainParticipant,
Topic, Publisher, DataWriter, Subscriber, and DataReader classes so that listeners and masks used in
the argument list are specific to each Entity.

Note: The set_listener() operation is not synchronized with the listener callbacks, so it is possi-
ble to set a new listener on an participant while the old listener is in a callback. Therefore you
should be careful not to delete any listener that has been set on an enabled participant unless
some application-specific means are available of ensuring that the old listener cannot still be in
use.

See Section 4.4 for more information about Listeners.

Getting the StatusCondition

Each type of Entity may have an attached StatusCondition, which can be accessed through the
get_statuscondition() operation. You can attach the StatusCondition to a WaitSet, to cause your
application to wait for specific status changes that affect the Entity.

See Section 4.6 for more information about StatusConditions and WaitSets.

Getting, Setting, and Comparing QosPolicies

Each type of Entity has an associated set of QosPolicies (see Section 4.2). QosPolicies allow you
to configure and set properties for the Entity.

While most QosPolicies are defined by the DDS specification, some are offered by Connext as
extensions to control parameters specific to the implementation.

There are two ways to specify a QoS policy:
[d Programmatically, as described in this section.

[QosPolicies can also be configured from XML resources (files, strings)—with this
approach, you can change the QoS without recompiling the application. The QoS settings
are automatically loaded by the DomainParticipantFactory when the first DomainPartici-
pant is created. See Chapter 17: Configuring QoS with XML.

The get_qos() operation retrieves the current values for the set of QosPolicies defined for the
Entity.

QosPolicies can be set programmatically when an Entity is created, or modified with the Entity's
set_qos() operation.

The set_qos() operation sets the QosPolicies of the entity. Note: not all QosPolicy changes will
take effect instantaneously; there may be a delay since some QosPolicies set for one entity, for
example, a DataReader, may actually affect the operation of a matched entity in another applica-
tion, for example, a DataWriter.

The get_qos() and set_qos() operations are passed QoS structures that are specific to each
derived entity class, since the set of QosPolicies that effect each class of entities is different.

The equals() operation compares two Entity’s QoS structures for equality. It takes two parame-
ters for the two Entities” QoS structures to be compared, then returns TRUE is they are equal (all
values are the same) or FALSE if they are not equal.

Each QosPolicy has default values (listed in the API Reference HTML documentation). If you
want to use custom values, there are three ways to change QosPolicy settings:

[Before Entity creation (if custom values should be used for multiple Entities). See
Section 4.1.7.1.

4-6

Common Operations for All Entities

4.1.7.1

(J During Entity creation (if custom values are only needed for a particular Entity). See
Section 4.1.7.2.

[After Entity creation (if the values initially specified for a particular Entity are no longer
appropriate). See Section 4.1.7.3.

Regardless of when or how you make QoS changes, there are some rules to follow:

[Some QosPolicies interact with each other and thus must be set in a consistent manner.
For instance, the maximum value of the HISTORY QosPolicy’s depth parameter is limited
by values set in the RESOURCE_LIMITS QosPolicy. If the values within a QosPolicy
structure are inconsistent, then set_qos() will return the error
INCONSISTENT_POLICY, and the operation will have no effect.

(d Some policies can only be set when the Entity is created, or before the Entity is enabled.
Others can be changed at any time. In general, all standard DDS QosPolicies can be
changed before the Entity is enabled. A subset can be changed after the Entity is enabled.
Connext-specific QosPolicies either cannot be changed after creation or can be changed at
any time. The changeability of each QosPolicy is documented in the API Reference
HTML documentation as well as in Table 4.2. If you attempt to change a policy after it
cannot be changed, set_qos() will fail with a return IMMUTABLE_POLICY.

Changing the QoS Defaults Used to Create Entities: set_default_*_qos()

Each parent factory has a set of default QoS settings that are used when the child entity is cre-
ated. The DomainParticipantFactory has default QoS values for creating DomainParticipants. A
DomainParticipant has a set of default QoS for each type of entity that can be created from the
DomainParticipant (Topic, Publisher, Subscriber, DataWriter, and DataReader). Likewise, a Publisher
has a set of default QoS values used when creating DataWriters, and a Subscriber has a set of
default QoS values used when creating DataReaders.

An entity’s QoS are set when it is created. Once an entity is created, all of its QoS—for itself and
its child entities—are fixed unless you call set_qos() or set_qos_with_profile() on that entity.
Calling set_default_<entity>_qos() on a parent entity will have no effect on child entities that
have already been created.

You can change these default values so that they are automatically applied when new child enti-
ties are created. For example, suppose you want all DataWriters for a particular Publisher to have
their RELIABILITY QosPolicy set to RELIABLE. Instead of making this change for each DataWW-
riter when it is created, you can change the default used when any DataWriter is created from the
Publisher by using the Publisher’s set_default_datawriter_qos() operation.

DDS_DataWriterQos default datawriter gos;

// get the current default values
publisher->get default datawriter gos(default datawriter gos);

// change to desired default values
default datawriter gos.reliability.kind =
DDS_RELIABLE RELIABILITY QOS;

// set the new default values
publisher->set default datawriter gos(default datawriter gos);

// created datawriters will use new default values
datawriter = publisher-s>create datawriter(topic, NULL, NULL, NULL) ;

Note: It is not safe to get or set the default QoS values for an entity while another thread may be
simultaneously calling get_default _<entity>_qos(), set_default _<entity>_qos(), or

4-7

Common Operations for All Entities

4.1.7.2

4.1.7.3

create_<entity>() with DDS_<ENTITY>_QOS_DEFAULT as the qos parameter (for the same
entity).

Another way to make QoS changes is by using XML resources (files, strings). For more informa-
tion, see Chapter 17: Configuring QoS with XML.

Setting QoS During Entity Creation

If you only want to change a QosPolicy for a particular entity, you can pass in the desired
QosPolicies for an entity in its creation routine.

To customize an entity's QoS before creating it:

1. (C APIOnly) Initialize a QoS object with the appropriate INITIALIZER constructor.
2. Call the relevant get_<entity>_default_qos() method.
3. Modify the QoS values as desired.
4. Create the entity.
For example, to change the RELIABLE QosPolicy for a DataWriter before creating it:
// Initialize the QoS object

DDS DataWriterQos datawriter gos;

// Get the default values
publisher->get default datawriter_gos(datawriter gos) ;

// Modify the QoS values as desired
datawriter gos.reliability.kind = DDS BEST EFFORT RELIABILITY QOS;

// Create the DataWriter with new values
datawriter =
publisher->create datawriter(topic, datawriter gos, NULL, NULL) ;

Another way to set QoS during entity creation is by using a QoS profile. For more information,
see Chapter 17: Configuring QoS with XML.

Changing the QoS for an Existing Entity

Some policies can also be changed after the entity has been created. To change such a policy after
the entity has been created, use the entity’s set_qos() operation.

For example, suppose you want to tweak the DEADLINE QoS for an existing DataWriter:
DDS DataWriterQos datawriter gos;

// get the current values
datawriter->get gos(datawriter gos);

// make desired changes
datawriter gos.deadline.period.sec = 3;
datawriter_gos.deadline.period.nanosec = 0;

// set new values
datawriter->set gos(datawriter gos);

Another way to make QoS changes is by using a QoS profile. For more information, see
Chapter 17: Configuring QoS with XML.

Note: In the code examples presented in this section, we are not testing for the return code for
the set_qos(), set_default_*_qos() functions. If the values used in the QosPolicy structures are

4-8

QosPolicies

4.1.7.4

4.1.7.5

Not Allowed—>

4.2

inconsistent then the functions will fail and return INCONSISTENT _POLICY. In addition,
set_qos() may return IMMUTABLE_POLICY if you try to change a QosPolicy on an Entity after
that policy has become immutable. User code should test for and address those anomalous conditions.

Comparing QoS Values

Default QoS Values

Connext provides special constants for each Entity type that can be used in set_qos() and
set_default_*_qos() to reset the QosPolicy values to the original DDS default values:

(J DDS_PARTICIPANT_QOS_DEFAULT
(J DDS_PUBLISHER_QOS_DEFAULT
(d DDS_SUBSCRIBER_QOS_DEFAULT
(J DDS_DATAWRITER_QOS_DEFAULT
(J DDS_DATAREADER_QOS_DEFAULT
(J DDS_TOPIC_QOS_DEFAULT
For example, if you want to set a DataWriter’s QoS back to their DDS-specified default values:
datawriter->set_qgos (DDS_DATAWRITER_QOS_ DEFAULT) ;

Or if you want to reset the default QosPolicies used by a Publisher to create DataWriters back to
their DDS-specified default values:

publisher->set default datawriter gos (DDS_DATAWRITER QOS DEFAULT) ;

Note: These defaults cannot be used to initialize a QoS structure for an entity. For example, the
following is NOT allowed:

DataWriterQos dataWriterQos = DATAWRITER QOS_DEFAULT;
// modify QoS...
create datawriter (dataWriterQos) ;

QosPolicies

Connext’s behavior is controlled by the Quality of Service (QoS) policies of the data communica-
tion entities (DomainParticipant, Topic, Publisher, Subscriber, DataWriter, and DataReader) used in
your applications. This section summarizes each of the QosPolicies that you can set for the vari-
ous entities.

The QosPolicy class is the abstract base class for all the QosPolicies. It provides the basic mecha-
nism for an application to specify quality of service parameters. Table 4.2 on page 4-10 lists each
supported QosPolicy (in alphabetical order), provides a summary, and points to a section in the
manual that provides further details.

The detailed description of a QosPolicy that applies to multiple Entities is provided in the first
chapter that discusses an Entity whose behavior the QoS affects. Otherwise, the discussion of a
QosPolicy can be found in the chapter of the particular Entity to which the policy applies. As
you will see in the detailed description sections, all QosPolicies have one or more parameters
that are used to configure the policy. The how’s and why’s of tuning the parameters are also dis-
cussed in those sections.

49

QosPolicies

As first discussed in Controlling Behavior with Quality of Service (QoS) Policies (Section 2.5.1),
QosPolicies may interact with each other, and certain values of QosPolicies can be incompatible
with the values set for other policies.

The set_qos() operation will fail if you attempt to specify a set of values would result in an
inconsistent set of policies. To indicate a failure, set_qos() will return
INCONSISTENT_POLICY. Section 4.2.1 provides further information on QoS compatibility
within an Entity as well as across matching Entities, as does the discussion/reference section for
each QosPolicy listed in Table 4.2 on page 4-10.

The values of some QosPolicies cannot be changed after the Entity is created or after the Entity is
enabled. Others may be changed at any time. The detailed section on each QosPolicy states
when each policy can be changed. If you attempt to change a QosPolicy after it becomes immu-
table (because the associated Entity has been created or enabled, depending on the policy),

set_qos() will fail with a return code of IMMUTABLE_POLICY.

Table 4.2 QosPolicies
QosPolicy Summary
Asynchronous- Configures the mechanism that sends user data in an external middleware thread. See
Publisher Section 6.4.1.
This QoS policy is used in the context of two features:
For a Collaborative DataWriter, specifies the group of DataWriters expected to collaboratively
provide data and the timeouts that control when to allow data to be available that may skip
Availability samples.
For a Durable Subscription, configures a set of Durable Subscriptions on a DataWriter.
See Section 6.5.1.
Specifies and configures the mechanism that allows Connext to collect multiple user data
Batch samples to be sent in a single network packet, to take advantage of the efficiency of sending
larger packets and thus increase effective throughput. See Section 6.5.2.
Various settings and resource limits used by Connext to control its internal database. See
Database Section 8.5.1.
DataReaderProtocol This QosPolicy configures the Connext on-the-network protocol, RTPS. See Section 7.6.1.

DataReaderResourceLimits

Various settings that configure how DataReaders allocate and use physical memory for
internal resources. See Section 7.6.2.

DataWriterProtocol

This QosPolicy configures the Connext on-the-network protocol, RTPS. See Section 6.5.3.

DataWriterResourceLimits

Controls how many threads can concurrently block on a write() call of this DataWriter. Also
controls the number of batches managed by the DataWriter and the instance-replacement
kind used by the DataWriter. See Section 6.5.4.

Deadline

For a DataReader, specifies the maximum expected elapsed time between arriving data sam-
ples.

For a DataWriter, specifies a commitment to publish samples with no greater elapsed time
between them.

See Section 6.5.5.

DestinationOrder

Controls how Connext will deal with data sent by multiple DataWriters for the same topic.
Can be set to "by reception timestamp" or to "by source timestamp." See Section 6.5.6.

Discovery

Configures the mechanism used by Connext to automatically discover and connect with
new remote applications. See Section 8.5.2.

DiscoveryConfig

Controls the amount of delay in discovering entities in the system and the amount of dis-
covery traffic in the network. See Section 8.5.3.

DomainParticipantResource-
Limits

Various settings that configure how DomainParticipants allocate and use physical memory
for internal resources, including the maximum sizes of various properties. See Section 8.5.4.

4-10

QosPolicies

Table 4.2 QosPolicies

QosPolicy Summary
. Specifies whether or not Connext will store and deliver data that were previously published
Durability to new DataReaders. See Section 6.5.7.
. . Various settings to configure the external Persistence Service used by Connext for DataWrit-
DurabilityService ers with a Durability QoS setting of Persistent Durability. See Section 6.5.8.
EntityFactory Controls whether or not child entities are created in the enabled state. See Section 6.4.2.
EntityName Assigns a name and role_name to an Entity. See Section 6.5.9.
Configures the DomainParticipant’s internal thread that handles timed events. See
Event Section 8.5.5.
. Configures multi-thread concurrency and deadlock prevention capabilities. See
ExclusiveArea Section 6.4.3.
Along with TOPIC_DATA QosPolicy (Section 5.2.1) and USER_DATA QosPolicy (Section
GroupData 6.5.25), this QosPolicy is used to attach a buffer of bytes to Connext's discovery meta-data.
See 6.4.4.
Specifies how much data must be stored by Connext for the DataWriter or DataReader. This
History QosPolicy affects the RELIABILITY QosPolicy (Section 6.5.19) as well as the DURABILITY
QosPolicy (Section 6.5.7). See Section 6.5.10.
LatencyBudget Suggestion to Connext on how much time is allowed to deliver data. See Section 6.5.11.
) Specifies how long Connext should consider data sent by an user application to be valid.
Lifespan See Section 6.5.12.
Lo Specifies and configures the mechanism that allows DataReaders to detect when DataWriters
Liveliness become disconnected or "dead." See Section 6.5.13.
Logging Configures the properties associated with Connext logging. See Section 8.4.1.
. Configures a DataWriter’s ability to send data on different multicast groups (addresses)
MultiChannel based on the value of the data. See Section 6.5.14.
. Along with Ownership Strength, specifies if DataReaders for a topic can receive data from
Ownership multiple DataWriters at the same time. See Section 6.5.15.
. Used to arbitrate among multiple DataWriters of the same instance of a Topic when Owner-
OwnershipStrength ship QoSPolicy is EXLUSIVE. See Section 6.5.16.
. Adds string identifiers that are used for matching DataReaders and DataWriters for the same
Partition Topic. See Section 6.4.5.
) Controls how Connext presents data received by an application to the DataReaders of the
Presentation data. See Section 6.4.6.
) Configures the way that XML documents containing QoS profiles are loaded by RTI. See
Profile Section 8.4.2.
Stores name/value(string) pairs that can be used to configure certain parameters of Con-
next that are not exposed through formal QoS policies. It can also be used to store and prop-
Property agate application-specific name/value pairs, which can be retrieved by user code during
discovery. See Section 6.5.17.
Specifies how Connext sends application data on the network. By default, data is sent in the
PublishMode user thread that calls the DataWriter’s write() operation. However, this QosPolicy can be
used to tell Connext to use its own thread to send the data. See Section 6.5.18.
. Controls how a DataReader manages the lifecycle of the data that it has received. See
ReaderDataLifeCycle Section 7.6.3.
Configures threads used by Connext to receive and process data from transports (for exam-
ReceiverPool

ple, UDP sockets). See Section 8.5.6.

4-11

QosPolicies

Table 4.2 QosPolicies

QosPolicy Summary
Reliability Specifies whether or not Connext will deliver data reliably. See Section 6.5.19.
Controls the amount of physical memory allocated for entities, if dynamic allocations are
ResourceLimits allowed, and how they occur. Also controls memory usage among different instance values

for keyed topics. See Section 6.5.20.

SystemResourceLimits

Configures DomainParticipant-independent resources used by Connext. Mainly used to
change the maximum number of DomainParticipants that can be created within a single pro-
cess (address space). See Section 8.4.3.

Set by a DataReader to limit the number of new data values received over a period of time.

TimeBasedFilter See Section 7.6.4.
. Along with Group Data QosPolicy and User Data QosPolicy, used to attach a buffer of
TopicData bytes to Connext's discovery meta-data. See Section 5.2.1.
TransportBuiltin Specifies which built-in transport plugins are used. See Section 8.5.7.
Specifies the multicast address on which a DataReader wants to receive its data. Can specify
TransportMulticast a port number as well as a subset of the available transports with which to receive the mul-

ticast data. See Section 7.6.5.

TransportMulticastMapping

Specifies the automatic mapping between a list of topic expressions and multicast address
that can be used by a DataReader to receive data for a specific topic. See Section 8.5.8.

Set by a DataWriter to tell Connext that the data being sent is a different "priority" than other

TransportPriority data. See Section 6.5.21.
. Allows you to select which physical transports a DataWriter or DataReader may use to send
TransportSelection or receive its data. See Section 6.5.22.
. Specifies a subset of transports and port number that can be used by an Entity to receive
TransportUnicast data. See Section 6.5.23.

TypeConsistencyEnforcement

Defines rules that determine whether the type used to publish a given data stream is con-
sistent with that used to subscribe to it. See Section 7.6.6.

Used to attach application-specific value(s) to a DataWriter or DataReader. These values are

TypeSupport passed to the serialization or deserialization routine of the associated data type. Also con-
trols whether padding bytes are set to 0 during serialization. See Section 6.5.24.
Along with Topic Data QosPolicy and Group Data QosPolicy, used to attach a buffer of
UserData bytes to Connext's discovery meta-data. See Section 6.5.25.
) Specifies IDs used by the RTPS wire protocol to create globally unique identifiers. See
WireProtocol Section 8.5.9.
. . Controls how a DataWriter handles the lifecycle of the instances (keys) that the DataWriter
WriterDataLifeCycle

is registered to manage. See Section 6.5.26.

4.2.1 QoS Requested vs. Offered Compatibility—the RxO Property

Some QosPolicies that apply to entities on the sending and receiving sides must have their val-
ues set in a compatible manner. This is known as the policy’s ‘requested vs. offered” (RxO) prop-
erty. Entities on the publishing side ‘offer’ to provide a certain behavior. Entities on the
subscribing side ‘request’ certain behavior. For Connext to connect the sending entity to the
receiving entity, the offered behavior must satisfy the requested behavior.

For some QosPolicies, the allowed values may be graduated in a way that the offered value will
satisfy the requested value if the offered value is either greater than or less than the requested
value. For example, if a DataWriter’s DEADLINE QosPolicy specifies a duration less than or
equal to a DataReader’s DEADLINE QosPolicy, then the DataWriter is promising to publish data
at least as fast or faster than the DataReader requires new data to be received. This is a compatible

4-12

QosPolicies

4.2.2

situation (see Section 6.5.5).

Other QosPolicies require the values on the sending side and the subscribing side to be exactly
equal for compatibility to be met. For example, if a DataWriter's OWNERSHIP QosPolicy is set
to SHARED, and the matching DataReader’s value is set to EXCLUSIVE, then this is an incom-
patible situation since the DataReader and DataWriter have different expectations of what will
happen if more than one DataWriter publishes an instance of the Topic (see OWNERSHIP
QosPolicy (Section 6.5.15)).

Finally there are QosPolicies that do not require compatibility between the sending entity and
the receiving entity, or that only apply to one side or the other. Whether or not related entities on
the publishing and subscribing sides must use compatible settings for a QosPolicy is indicated
in the policy’s RxO property, which is provided in the detailed section on each QosPolicy.

RxO = YESThe policy is set at both the publishing and subscribing ends and the values must be
set in a compatible manner. What it means to be compatible is defined by the QosPolicy.

RxO = NOThe policy is set only on one end or at both the publishing and subscribing ends, but
the two settings are independent. There the requested vs. offered semantics are not used
for these QosPolicies.

For those QosPolicies that follow the RxO semantics, Connext will compare the values of those
policies for compatibility. If they are compatible, then Connext will connect the sending entity to
the receiving entity allowing data to be sent between them. If they are found to be incompatible,
then Connext will not interconnect the entities preventing data to be sent between them.

In addition, Connext will record this event by changing the associated communication status in
both the sending and receiving applications, see Types of Communication Status (Section 4.3.1).
Also, if you have installed Listeners on the associated Entities, then Connext will invoke the asso-
ciated callback functions to notify user code that an incompatible QoS combination has been
found, see Types of Listeners (Section 4.4.1).

For Publishers and DataWriters, the status corresponding to this situation is
OFFERED_INCOMPATIBLE_QOS_STATUS. For Subscribers and DataReaders, the corresponding
status is REQUESTED_INCOMPATIBLE_QOS_STATUS. The question of why a DataReader is
not receiving data sent from a matching DataWriter can often be answered if you have instru-
mented the application with Listeners for the statuses noted previously.

Special QosPolicy Handling Considerations for C

Many QosPolicy structures contain variable-length sequences to store their parameters. In the
C++, C++/CLIL C# and Java languages, the memory allocation related to sequences are handled
automatically through constructors/destructors and overloaded operators. However, the C lan-
guage is limited in what it provides to automatically handle memory management. Thus, Con-
next provides functions and macros in C to initialize, copy, and finalize (free) QosPolicy
structures defined for Entities.

In the C language, it is not safe to use an Entity’s QosPolicy structure declared in user code
unless it has been initialized first. In addition, user code should always finalize an Entity’s
QosPolicy structure to release any memory allocated for the sequences—even if the Entity’s
QosPolicy structure was declared as a local, stack variable.

Thus, for a general Entity’s QosPolicy, Connext will provide:

(J DDS_<Entity>Qos_INITIALIZER This is a macro that should be used when a
DDS_<Entity>Qos structure is declared in a C application.

struct DDS_<Entity>Qos gos = DDS_<Entity>Qos INITIALIZER;

4-13

Statuses

4.3

d DDS_<Entity>Qos_initialize() This is a function that can be used to initialize a
DDS_<Entity>Qos structure instead of the macro above.

struct DDS_<Entity>Qos gos;
DDS <Entity>Q0S initialize (&gos) ;

(d DDS_<Entity>Qos_finalize() This is a function that should be used to finalize a
DDS_<Entity>Qos structure when the structure is no longer needed. It will free any
memory allocated for sequences contained in the structure.

struct DDS_<Entity>Qos gos = DDS_ <Entity>Qos INITIALIZER;
<use gos>

// now done with gos
DDS <Entity>QoS finalize (&gos) ;

(J DDS<Entity>Qos_copy() This is a function that can be used to copy one
DDS_<Entity>Qos structure to another. It will copy the sequences contained in the
source structure and allocate memory for sequence elements if needed. In the code
below, both dstQos and srcQos must have been initialized at some point earlier in the
code.

DDS <Entity>Q0S copy (&dstQos, &srcQos) ;

Statuses

This section describes the different statuses that exist for an entity. A status represents a state or
an event regarding the entity. For instance, maybe Connext found a matching DataReader for a
DataWriter, or new data has arrived for a DataReader.

Your application can retrieve an Entity’s status by:

(1 explicitly checking for any status changes with get_status_changes().
[explicitly checking a specific status with get_<status_name>_status().
[using a Listener, which provides asynchronous notification when a status changes.

[using StatusConditions and WaitSets, which provide a way to wait for status changes.

If you want your application to be notified of status changes asynchronously: create and install a
Listener for the Entity. Then internal Connext threads will call the listener methods when the sta-
tus changes. See Listeners (Section 4.4).

If you want your application to wait for status changes: set up StatusConditions to indicate the
statuses of interest, attach the StatusConditions to a WaitSet, and then call the WaitSet’s wait()
operation. The call to wait() will block until statuses in the attached Conditions changes (or until
a timeout period expires). See Conditions and WaitSets (Section 4.6).

This section includes the following:

d Types of Communication Status (Section 4.3.1)
[Special Status-Handling Considerations for C (Section 4.3.2)

4-14

Statuses

4.3.1

4.3.1.1

Types of Communication Status

Each Entity is associated with a set of Status objects representing the “communication status” of
that Entity. The list of statuses actively monitored by Connext is provided in Table 4.3 on page 4-
18. A status structure contains values that give you more information about the status; for exam-
ple, how many times the event has occurred since the last time the user checked the status, or
how many time the event has occurred in total.

Changes to status values cause activation of corresponding StatusCondition objects and trigger
invocation of the corresponding Listener functions to asynchronously inform the application that
the status has changed. For example, a change in a Topic’'s INCONSISTENT_TOPIC_STATUS
may trigger the TopicListener’s on_inconsistent_topic() callback routine (if such a Listener is
installed).

Statuses can be grouped into two categories:

[Plain communication status: In addition to a flag that indicates whether or not a status
has changed, a plain communication status also contains state and thus has a correspond-
ing structure to hold its current value.

[Read communication status: A read communication status is more like an event and has
no state other than whether or not it has occurred. Only two statuses listed in Table 4.3
are read communications statuses: DATA_AVAILABLE and DATA_ON_READERS.

As mentioned in Section 4.1.4, all entities have a get_status_changes() operation that can be
used to explicitly poll for changes in any status related to the entity. For plain statuses, each entry
has operations to get the current value of the status; for example, the Topic class has a
get_inconsistent_topic_status() operation. For read statuses, your application should use the
take() operation on the DataReader to retrieve the newly arrived data that is indicated by
DATA_AVAILABLE and DATA_ON_READER.

Note that the two read communication statuses do not change independently. If data arrives for
a DataReader, then its DATA_AVAILABLE status changes. At the same time, the
DATA_ON_READERS status changes for the DataReader’s Subscriber.

Both types of status have a StatusChangedFlag. This flag indicates whether that particular com-
munication status has changed since the last time the status was read by the application. The
way the StatusChangedFlag is maintained is slightly different for the plain communication status
and the read communication status, as described in the following sections:

(d Changes in Plain Communication Status (Section 4.3.1.1)

(d Changes in Read Communication Status (Section 4.3.1.2)

Changes in Plain Communication Status

As seen in Figure 4.1 on page 4-16, for the plain communication status, the StatusChangedFlag
flag is initially set to FALSE. It becomes TRUE whenever the plain communication status
changes and is reset to FALSE each time the application accesses the plain communication status
via the proper get_*_status() operation.

The communication status is also reset to FALSE whenever the associated listener operation is
called, as the listener implicitly accesses the status which is passed as a parameter to the opera-
tion.

The fact that the status is reset prior to calling the listener means that if the application calls the
get_*_status() operation from inside the listener, it will see the status already reset.

An exception to this rule is when the associated listener is the 'nil' listener. The 'nil' listener is
treated as a NO-OP and the act of calling the 'nil' listener does not reset the communication sta-
tus. (See Types of Listeners (Section 4.4.1).)

4-15

Statuses

Figure 4.1

4.3.1.2

Status Changes for Plain Communication Status

status changes

| v

StatusChangedFlag = FALSD < StatusChangedFlag = TRUE>

) |

User calls get_*_status(), or
after listener is invoked

For example, the value of the StatusChangedFlag associated with the
REQUESTED_DEADLINE_MISSED status will become TRUE each time new deadline occurs
(which increases the RequestedDeadlineMissed status’ total_count field). The value changes to
FALSE when the application accesses the status via the corresponding
get_requested_deadline_missed_status() operation on the proper Entity.

Changes in Read Communication Status

As seen in Figure 4.2 on page 4-17, for the read communication status, the StatusChangedFlag
flag is initially set to FALSE. The StatusChangedFlag becomes TRUE when either a data sample
arrives or the ViewStateKind, SampleStateKind, or InstanceStateKind of any existing sample
changes for any reason other than a call to one of the read/take operations. Specifically, any of
the following events will cause the StatusChangedFlag to become TRUE:

(d The arrival of new data.
(d A change in the InstanceStateKind of a contained instance. This can be caused by either:
® Notification that an instance has been disposed by:
® the DataWriter that owns it, if OWNERSHIP = EXCLUSIVE
® or by any DataWriter, if OWNERSHIP = SHARED

® The loss of liveliness of the DataWriter of an instance for which there is no other
DataWriter.

® The arrival of the notification that an instance has been unregistered by the only
DataWriter that is known to be writing the instance.

Depending on the kind of StatusChangedFlag, the flag transitions to FALSE (that is, the status
is reset) as follows:

(J The DATA_AVAILABLE StatusChangedFlag becomes FALSE when either
on_data_available() is called or the read/take operation (or their variants) is called on
the associated DataReader.

(d The DATA_ON_READERS StatusChangedFlag becomes FALSE when any of the follow-
ing occurs:

® on_data_on_readers() is called.
¢ on_data_available() is called on any DataReader belonging to the Subscriber.

¢ read(), take(), or one of their variants is called on any DataReader belonging to the Sub-
scriber.

4-16

Statuses

Figure 4.2

Status Changes for Read Communication Status

DATA ON REATERSA

clala wrrves OR change m lsbanesSiale Lor gy DalaBeader wilun Lhe Subsenber

Statust agedlilag

RN Stalus hyredlilag TRILL J

[

-

Sulaeribercon data on readers OR Daraleader: readfralre OR Dataleacler readitake

' ™y
DATA AVAILABRLE
) data amves to DataBeader OF change in InstanceState of contained instance
\1\
\ |
- - 'S ¥ =
StatusChangedFlag = FALSE] StatiusChangedFlag = TRLE J
L _ S
ks
DiataResderon_sample available OR DataResder: rend take
h. "y
4.3.2 Special Status-Handling Considerations for C

Some status structures contain variable-length sequences to store their values. In the C++, C++/
CLL C# and Java languages, the memory allocation related to sequences are handled automati-
cally through constructors/destructors and overloaded operators. However, the C language is
limited in what it provides to automatically handle memory management. Thus, Connext pro-
vides functions and macros in C to initialize, copy, and finalize (free) status structures.

In the C language, it is not safe to use a status structure that has internal sequences declared in
user code unless it has been initialized first. In addition, user code should always finalize a sta-
tus structure to release any memory allocated for the sequences—even if the status structure was
declared as a local, stack variable.

4-17

Statuses

Table 4.3

Communication Statuses

Related
Entity

Status (DDS_* STATUS)

Description

Reference

Topic

INCONSISTENT_TOPIC

Another Topic exists with the same name but dif-
ferent characteristics—for example, a different

type.

Section 5.3.1

Data-
Writer

APPLICATION_
ACKNOWLEDGMENT

This status indicates that a DataWriter has
received an application-level acknowledgment
for a sample. The listener provides the identities
of the sample and acknowledging DataReader, as
well as user-specified response data sent from the
DataReader by the acknowledgment message.

Section 6.3.12

DATA_WRITER_CACHE

The status of the DataWriter’s cache.
This status does not have a Listener.

Section 6.3.6.1

DATA_WRITER_PROTOCOL

The status of a DataWriter’s internal protocol
related metrics (such as the number of samples
pushed, pulled, filtered) and the status of wire
protocol traffic.

This status does not have a Listener.

Section 6.3.6.2

LIVELINESS_LOST

The liveliness that the DataWriter has committed
to (through its Liveliness QosPolicy) was not
respected (assert_liveliness() or write() not called
in time), thus DataReader entities may consider
the DataWriter as no longer active.

Section 6.3.6.3

OFFERED_DEADLINE_
MISSED

The deadline that the DataWriter has committed
through its Deadline QosPolicy was not
respected for a specific instance of the Topic.

Section 6.3.6.4

OFFERED_INCOMPATIBLE _
QOSs

An offered QosPolicy value was incompatible
with what was requested by a DataReader of the
same Topic.

Section 6.3.6.5

PUBLICATION_MATCHED

The DataWriter found a DataReader that matches
the Topic, has compatible QoSs and a common
partition, or a previously matched DataReader has
been deleted.

Section 6.3.6.6

RELIABLE_WRITER_
CACHE_CHANGED

The number of unacknowledged samples in a
reliable DataWriter's cache has reached one of the
predefined trigger points.

Section 6.3.6.7

RELIABLE_READER _
ACTIVITY_CHANGED

One or more reliable DataReaders has either been
discovered, deleted, or changed between active
and inactive state as specified by the Liveli-
nessQosPolicy of the DataReader.

Section 6.3.6.8

4-18

Statuses

Table 4.3

Communication Statuses

Related
Entity

Status (DDS_* STATUS)

Description

Reference

Subscriber

DATA_ON_READERS

New data is available for any of the readers that
were created from the Subscriber.

Section 7.2.9

Data-
Reader

DATA_AVAILABLE

New data (one or more samples) are available for
the specific DataReader.

Section 7.3.7.1

DATA_READER_CACHE

The status of the reader's cache.
This status does not have a Listener.

Section 7.3.7.2

DATA_READER_PROTOCOL

The status of a DataReader’s internal protocol
related metrics (such as the number of samples
received, filtered, rejected) and the status of wire
protocol traffic.

This status does not have a Listener.

Section 7.3.7.3

LIVELINESS_CHANGED

The liveliness of one or more DataWriters that
were writing instances read by the DataReader
has either been discovered, deleted, or changed
between active and inactive state as specified by
the LivelinessQosPolicy of the DataWriter.

Section 7.3.7.4

REQUESTED_DEADLINE_
MISSED

New data was not received for an instance of the
Topic within the time period set by the
DataReader’s Deadline QosPolicy.

Section 7.3.7.5

REQUESTED_
INCOMPATIBLE_QOS

A requested QosPolicy value was incompatible
with what was offered by a DataWriter of the
same Topic.

Section 7.3.7.6

SAMPLE_LOST

A sample sent by Connext has been lost (never
received).

Section 7.3.7.7

SAMPLE_REJECTED

A received sample has been rejected due to a
resource limit (buffers filled).

Section 7.3.7.8

SUBSCRIPTION_MATCHED

The DataReader has found a DataWriter that
matches the Topic, has compatible QoSs and a
common partition, or an existing matched
DataWriter has been deleted.

Section 7.3.7.9

Thus, for a general status structure,

Connext will provide:

(J DDS_<STATUS>STATUS_INITIALIZER This is a macro that should be used when a
DDS_<Status>Status structure is declared in a C application.

struct DDS_<Status>Status status =

DDS_ <Status>Status INITIALIZER;

[DDS_<Status>Status_initialize() This is a function that can be used to initialize a
DDS_<Status>Status structure instead of the macro above.

struct DDS_ <Status>Status status;
DDS <Status>Status _initialize (&Status) ;

[d DDS_<Status>Status_finalize() This is a function that should be used to finalize a
DDS_<Status>Status structure when the structure is no longer needed. It will free any
memory allocated for sequences contained in the structure.

struct DDS_<Status>Status status =

<use status>

DDS_<Status>Status_ INITIALIZER;

4-19

Listeners

4.4

4.4.1

// now done with Status
DDS <Status>Status finalize(&status);

[DDS<Status>Status_copy() This is a function that can be used to copy one DDS_<Sta-
tus>Status structure to another. It will copy the sequences contained in the source struc-
ture and allocate memory for sequence elements if needed. In the code below, both
dstStatus and srcStatus must have been initialized at some point earlier in the code.

DDS_<Status>Status_copy (&dstStatus, &srcStatus);

Note that many status structures do not have sequences internally. For those structures, you do
not need to use the macro and methods provided above. However, they have still been created
for your convenience.

Listeners

This section describes Listeners and how to use them:
d Types of Listeners (Section 4.4.1)
[Creating and Deleting Listeners (Section 4.4.2)
[d Special Considerations for Listeners in C (Section 4.4.3)
(d Hierarchical Processing of Listeners (Section 4.4.4)
(d Operations Allowed within Listener Callbacks (Section 4.4.5)

Listeners are triggered by changes in an entity’s status. For instance, maybe Connext found a
matching DataReader for a DataWriter, or new data has arrived for a DataReader.

Types of Listeners

The Listener class is the abstract base class for all listeners. Each entity class (DomainParticipant,
Topic, Publisher, DataWriter, Subscriber, and DataReader) has its own derived Listener class that add
methods for handling entity-specific statuses. The hierarchy of Listener classes is presented in
Figure 4.3. The methods are called by an internal Connext thread when the corresponding status
for the Entity changes value.

You can choose which changes in status will trigger a callback by installing a listener with a bit-
mask. Bits in the mask correspond to different statuses. The bits that are true indicate that the lis-
tener will be called back when there are changes in the corresponding status.

You can specify a listener and set its bit-mask before or after you create an Entity:
During Entity creation:
DDS_StatusMask mask = DDS_REQUESTED_ DEADLINE MISSED_STATUS |
DDS_DATA_AVAILABLE_STATUS;

datareader = subscriber->create datareader (topic,
DDS_DATAREADER_QOS_DEFAULT ,
listener, mask) ;
or afterwards:

4-20

Listeners

Figure 4.3 Listener Class Hierarchy

DDSListener
AN
DDSDataReaderListener DDSDataWriterListener DDSTopicListener
LT AN
DDSSubscriberListener DDSPublisherListener

z%; AN

DDSDomainParticipantListener

DDS_StatusMask mask = DDS_REQUESTED DEADLINE_MISSED STATUS |
DDS_DATA AVAILABLE_STATUS;

datareader->set_listener(listener, mask);

As you can see in the above examples, there are two components involved when setting up lis-
teners: the listener itself and the mask. Both of these can be null. Table 4.4 describes what hap-
pens when a status change occurs. See Hierarchical Processing of Listeners (Section 4.4.4) for
more information.

Table 4.4 Effect of Different Combinations of Listeners and Status Bit Masks

No Bits Set in Mask Some/All Bits Set in Mask

For the statuses that are enabled in the

. . |mask, the most relevant listener will be
Listener is Connext finds the next most relevant lis- called

ifi t for the ch d status.
Specified ener fot the changed statis The 'statusChangedFlag' for the relevant

status is reset.

. . Connext behaves as if the listener is not | Connext behaves as if the listener callback is
Listener is installed and finds the next most relevant | installed, but the callback is doing nothing.
NULL listener for that status. This is called a ‘nil’ listener.

4-21

Listeners

4.4.2

4.4.3

444

Creating and Deleting Listeners

There is no factory for creating or deleting a Listener; use the natural means in each language
binding (for example, “new” or “delete” in C++ or Java). For example:

class HelloWorldListener : public DDSDataReaderListener {
virtual void on data available (DDSDataReader* reader) ;

void HelloWorldListener::on data available (DDSDataReader* reader)

{
}

// Create a Listener
HelloWorldListener *reader listener = NULL;
reader listener = new HelloWorldListener() ;

printf ("received data\n") ;

// Delete a Listener
delete reader listener;

A listener cannot be deleted until the entity it is attached to has been deleted. For example, you
must delete the DataReader before deleting the DataReader’s listener.

Note: Due to a thread-safety issue, the destruction of a DomainParticipantListener from an
enabled DomainParticipant should be avoided—even if the DomainParticipantListener has been
removed from the DomainParticipant. (This limitation does not affect the Java APIL.)

Special Considerations for Listeners in C

In C, a Listener is a structure with function pointers to the user callback routines. Often, you may
only be interested in a subset of the statuses that can be monitored with the Listener. In those
cases, you may not set all of the functions pointers in a listener structure to a valid function. In
that situation, we recommend that the unused, callback-function pointers are set to NULL.
While setting the DDS_StatusMask to enable only the callbacks for the statuses in which you
are interested (and thus only enabling callbacks on the functions that actually exist) is safe, we
still recommend that you clear all of the unused callback pointers in the Listener structure.

To help, in the C language, we provide a macro that can be used to initialize a Listener structure
so that all of its callback pointers are set to NULL. For example

DDS_<Entity>Listener listener = DDS_<Entity>Listener INITIALIZER;
// now only need to set the listener callback pointers for statuses // to
be monitored

There is no need to do this in languages other than C.

Hierarchical Processing of Listeners

As seen in Figure 4.3 on page 4-21, Listeners for some entities derive from the Connext Listeners for
related entities. This means that the derived Listener has all of the methods of its parent class.
You can install Listeners at all levels of the object hierarchy. At the top is the DomainPartici-
pantListener; only one can be installed in a DomainParticipant. Then every Subscriber and Publisher
can have their own Listener. Finally, each Topic, DataReader and DataWriter can have their own lis-
teners. All are optional.

Suppose, however, that an Entity does not install a Listener, or installs a Listener that does not
have particular communication status selected in the bitmask. In this case, if/when that particu-
lar status changes for that Entity, the corresponding Listener for that Entity’s parent is called. Sta-
tus changes are “propagated” from child Entity to parent Entity until a Listener is found that is
registered for that status. Connext will give up and drop the status-change event only if no Lis-

4-22

Listeners

Table 4.5

4.4.4.1

teners have been installed in the object hierarchy to be called back for the specific status. This is
true for plain communication statuses. Read communication statuses are handle somewhat dif-
ferently, see Processing Read Communication Statuses (Section 4.4.4.1).

For example, suppose that Connext finds a matching DataWriter for a local DataReader. This event
will change the SUBSCRIPTION_MATCHED status. So the local DataReader object is checked
to see if the application has installed a listener that handles the SUBSCRIPTION_MATCH sta-
tus. If not, the Subscriber that created the DataReader is checked to see if it has a listener installed
that handles the same event. If not, the DomainParticipant is checked. The DomainParticipantLis-
tener methods are called only if none of the descendent entities of the DomainParticipant have lis-
teners that handle the particular status that has changed. Again, all listeners are optional. Your
application does not have to handle any communication statuses.

Table 4.5 lists the callback functions that are available for each Entity’s status listener.

Listener Callback Functions

Entity Listener for: Callback Functions

Topics on_inconsistent_topic()

on_liveliness_lost()

on_offered_deadline_missed()

on_offered_incompatible_qos()
Publishers and DataWriters

on_publication_matched()

on_reliable_reader_activity_changed()

on_reliable_writer_cache_changed()

DomainParticipants | Subscribers on_data_on_readers()

on_data_available

on_liveliness_changed()

on_requested_deadline_missed()

Subscribers and DataReaders | on_requested_incompatible_qos()

on_sample_lost()

on_sample_rejected()

on_subscription_matched()

Processing Read Communication Statuses

The processing of the DATA_ON_READERS and DATA_AVAILABLE read communication
statuses are handled slightly differently since, when new data arrives for a DataReader, both sta-
tuses change simultaneously. However, only one, if any, Listener will be called to handle the
event.

If there is a Listener installed to handle the DATA_ON_READERS status in the DataReader’s
Subscriber or in the DomainParticipant, then that Listener’s on_data_on_readers() function will be
called back. The DataReaderListener’s on_data_available() function is called only if the
DATA_ON_READERS status is not handle by any relevant listeners.

This can be useful if you have generic processing to do whenever new data arrives for any
DataReader. You can execute the generic code in the on_data_on_readers() method, and then dis-
patch the processing of the actual data to the specific DataReaderListener’s on_data_available()
function by calling the notify_datareaders() method on the Subscriber.

For example:

void on_data_on readers (DDSSubscriber *subscriber)

{

4-23

Exclusive Areas (EAs)

4.4.5

4.5

// Do some general processing that needs to be done
// whenever new data arrives, but is independent of
// any particular DataReader

< generic processing code here >

// Now dispatch the actual processing of the data
// to the specific DataReader for which the data
// was received

subscriber->notify datareaders() ;

Operations Allowed within Listener Callbacks

Due to the potential for deadlock, some Connext APIs should not be invoked within the func-
tions of listener callbacks. Exactly which Connext APIs are restricted depends on the Entity upon
which the Listener is installed, as well as the configuration of ‘Exclusive Areas,” as discussed in
Section 4.5.

Please read and understand Exclusive Areas (EAs) (Section 4.5) and Restricted Operations in
Listener Callbacks (Section 4.5.1) to ensure that the calls made from your Listeners are allowed
and will not cause potential deadlock situations.

Exclusive Areas (EAS)

Listener callbacks are invoked by internal Connext threads. To prevent undesirable, multi-
threaded interaction, the internal threads may take and hold semaphores (mutexes) used for
mutual exclusion. In your listener callbacks, you may want to invoke functions provided by the
Connext APL Internally, those Connext functions also may take mutexes to prevent errors due to
multi-threaded access to critical data or operations.

Once there are multiple mutexes to protect different critical regions, the possibility for deadlock
exists. Consider Figure 4.4’s scenario, in which there are two threads and two mutexes.

Figure 4.4 Multiple Mutexes Leading to a Deadlock Condition

Thread1 Thread?2
take(MutexA) take(MutexB)
take(MutexB) take(MutexA)

Deadlock!

Threadl takes MutexA while simultaneously Thread2 takes MutexB. Then, Threadl takes
MutexB and simultaneously Thread2 takes MutexA. Now both threads are blocked since they
hold a mutex that the other thread is trying to take. This is a deadlock condition.

4-24

Exclusive Areas (EAs)

While the probability of entering the deadlock situation in Figure 4.4 depends on execution tim-
ing, when there are multiple threads and multiple mutexes, care must be taken in writing code
to prevent those situations from existing in the first place. Connext has been carefully created
and analyzed so that we know our threads internally are safe from deadlock interactions.

However, when Connext threads that are holding mutexes call user code in listeners, it is possi-
ble for user code to inadvertently cause the threads to deadlock if Connext APIs that try to take
other mutexes are invoked. To help you avoid this situation, RTI has defined a concept known as
Exclusive Areas, some restrictions regarding the use of Connext APIs within user callback code,
and a QoS policy that allows you to configure Exclusive Areas.

Connext uses Exclusive Areas (EAs) to encapsulate mutexes and critical regions. Only one thread
at a time can be executing code within an EA. The formal definition of EAs and their implemen-
tation ensures safety from deadlock and efficient entering and exiting of EAs. While every Entity
created by Connext has an associated EA, EAs may be shared among several entities. A thread is
automatically in the entity's EA when it is calling the entity’s listener.

Connext allows you to configure all the Entities within an application in a single domain to share
a single Exclusive Area. This would greatly restrict the concurrency of thread execution within
Connext’s multi-threaded core. However, doing so would release all restrictions on using Con-
next APIs within your callback code.

You may also have the best of both worlds by configuring a set of Entities to share a global EA
and others to have their own. For the Entities that have their own EAs, the types of Connext oper-
ations that you can call from the Entity’s callback are restricted.

To understand why the general EA framework limits the operations that can be called in an EA,
consider a modification to the example previously presented in Figure 4.4. Suppose we create a
rule that is followed when we write our code. “For all situations in which a thread has to take
multiple mutexes, we write our code so that the mutexes are always taken in the same order.”
Following the rule will ensure us that the code we write cannot enter a deadlock situation due to
the taking of the mutexes, see Figure 4.5.

Figure 4.5 Taking Multiple Mutexes in a Specific Order to Eliminate Deadlock

Thread1 Thread?2
take(MutexA) * take(MutexA)
|
take(MutexB) |
|
|
give(MutexB) |
|
give(MutexA) | take(MutexB)

By creating an order in which multiple mutexes are taken, you can guarantee that no
deadlock situation will arise. In this case, if a thread must take both MutexA and MutexB,
we write our code so that in those cases MutexA is always taken before MutexB.

Connext defines an ordering of the mutexes it creates. Generally speaking, there are three
ordered levels of Exclusive Areas:

4-25

Exclusive Areas (EAs)

4.5.1

(J ParticipantEA There is only one ParticipantEA per participant. The creation and dele-
tion of all Entities (create_xxx(), delete_xxx()) take the ParticipantEA. In addition, the
enable() method for an Entity and the setting of the Entity’s QoS, set_qos(), also take the
ParticipantEA. There are other functions that take the ParticipantEA:
get_discovered_participants(), get_publishers(), get_subscribers(),
get_discovered_topics(), ignore_participant(), ignore_topic(), ignore_publication(),
ignore_subscription(), remove_peer(), and register_type().

[SubscriberEA This EA is created on a per-Subscriber basis by default. You can assume
that the methods of a Subscriber will take the SubscriberEA. In addition, the DataReaders
created by a Subscriber share the EA of its parent. This means that the methods of a
DataReader (including take() and read()) will take the EA of its Subscriber. Therefore,
operations on DataReaders of the same Subscriber, will be serialized, even when invoked
from multiple concurrent application threads. As mentioned, the enable() and set_qos()
methods of both Subscribers and DataReaders will take the ParticipantEA. The same is true
for the create_datareader() and delete_datareader() methods of the Subscriber.

[PublisherEA This EA is created on a per-Publisher basis by default. You can assume that
the methods of a Publisher will take the PublisherEA. In addition, the DataWriters created
by a Publisher share the EA of its parent. This means that the methods of a DataWriter
including write() will take the EA of its Publisher. Therefore, operations on DataWriters of
the same Publisher will be serialized, even when invoked from multiple concurrent appli-
cation threads. As mentioned, the enable() and set_qos() methods of both Publishers and
DataWriters will take the ParticipantEA, as well as the create_datawriter() and
delete_datawriter() methods of the Publisher.

In addition, you should also be aware that:
[The three EA levels are ordered in the following manner:
ParticipantEA < SubscriberEA < PublisherEA

1 When executing user code in a listener callback of an Entity, the internal Connext thread is
already in the EA of that Entity or used by that Entity.

(J If a thread is in an EA, it can call methods associated with either a higher EA level or that
share the same EA. It cannot call methods associated with a lower EA level nor ones that
use a different EA at the same level.

Restricted Operations in Listener Callbacks

Based on the background and rules provided in Exclusive Areas (EAs) (Section 4.5), this section
describes how EAs restrict you from using various Connext APIs from within the Listener call-
backs of different Entities. Reader callbacks take the SubscriberEA. Writer callbacks take the
PublisherEA. DomainParticipant callbacks take the ParticipantEA.

Note: these restrictions do not apply to builtin topic listener callbacks.

By default, each Publisher and Subscriber creates and uses its own EA, and shares it with its chil-
dren DataWriters and DataReaders, respectively. In that case:

Within a DataWriter /DataReader’s Listener callback, do not:
(1 create any entities
[delete any entities
(J enable any entities
[set QoS’s on any entities

Within a Subscriber / DataReader’s Listener callback, do not call any operations on:

4-26

Conditions and WaitSets

4.6

(1 Other Subscribers

(A DataReaders that belong to other Subscribers

[Publishers/DataWriters that have been configured to use the ParticipantEA (see below)
Within a Publisher / DataWriter Listener callback, do not call any operations on:

(d Other Publishers

[DataWriters that belong to other Publishers

(Any Subscribers

(d Any DataReaders

Connext will enforce the rules to avoid deadlock, and any attempt to call an illegal method from
within a Listener callback will return DDS_RETCODE_ILLEGAL_OPERATION.

However, as previously mentioned, if you are willing to trade-off concurrency for flexibility, you
may configure individual Publishers and Subscribers (and thus their DataWriters and DataReaders)
to share the EA of their participant. In the limit, only a single ParticipantEA is shared among all
Entities. When doing so, the restrictions above are lifted at a cost of greatly reduced concurrency.
You may create/delete/enable/set_qos’s and generally call all of the methods of any other
entity in the Listener callbacks of Entities that share the ParticipantEA.

Use the EXCLUSIVE_AREA QosPolicy (DDS Extension) (Section 6.4.3) of the Publisher or Sub-
scriber to set whether or not to use a shared exclusive area. By default, Publishers and Subscribers
will create and use their own individual EAs. You can configure a subset of the Publishers and
Subscribers to share the ParticipantEA if you need the Listeners associated with those entities or
children entities to be able to call any of the restricted methods listed above.

Regardless of how the EXCLUSIVE_AREA QosPolicy is set, the following operations are never
allowed in any Listener callback:

[Destruction of the entity to which the Listener is attached. For instance, a DataWriter/
DataReader Listener callback must not destroy its DataWriter / DataReader.

(J Within the TopicListener callback, you cannot call any operations on DataReaders, DataW-
riters, Publishers, Subscribers or DomainParticipants.

Conditions and WaitSets

Conditions and WaitSets provide another way for Connext to communicate status changes
(including the arrival of data) to your application. While a Listener is used to provide a callback
for asynchronous access, Conditions and WaitSets provide synchronous data access. In other
words, Listeners are notification-based and Conditions are wait-based.

A WaitSet allows an application to wait until one or more attached Conditions becomes true (or
until a timeout expires).

Briefly, your application can create a WaitSet, attach one or more Conditions to it, then call the
WaitSet’s wait() operation. The wait() blocks until one or more of the WaitSet’s attached Condi-
tions becomes TRUE.

A Condition has a trigger_value that can be TRUE or FALSE. You can retrieve the current value
by calling the Condition’s only operation, get_trigger_value().

There are three kinds of Conditions. A Condition is a root class for all the conditions that may be
attached to a WaitSet. This basic class is specialized in three classes:

4-27

Conditions and WaitSets

4.6.1

Table 4.6

(d GuardConditions (Section 4.6.6) are created by your application. Each GuardCondition
has a single, user-settable, boolean trigger_value. Your application can manually trigger
the GuardCondition by calling set_trigger_value(). Connext does not trigger or clear this
type of condition—it is completely controlled by your application.

[d ReadConditions and QueryConditions (Section 4.6.7) are created by your application,
but triggered by Connext. ReadConditions provide a way for you to specify the data sam-
ples that you want to wait for, by indicating the desired sample-states, view-states, and
instance-states’.

[StatusConditions (Section 4.6.8) are created automatically by Connext, one for each Entity.
A StatusCondition is triggered by Connext when there is a change to any of that Entity’s
enabled statuses.

Figure 4.6 on page 4-29 shows the relationship between these objects and other Entities in the

system.

A WaitSet can be associated with more than one Entity (including multiple DomainParticipants).
It can be used to wait on Conditions associated with different DomainParticipants. A WaitSet can
only be in use by one application thread at a time.

Creating and Deleting WaitSets

There is no factory for creating or deleting a WaitSet; use the natural means in each language
binding (for example, “new” or “delete” in C++ or Java).

There are two ways to create a WaitSet—with or without specifying WaitSet properties
(DDS_WaitSetProperty_t, described in Table 4.6). Waiting for Conditions (Section 4.6.3)
describes how the properties are used.

WaitSet Properties (DDS_WaitSet_Property_t)

Type

Field Name

Description

long

max_event_count

Maximum number of trigger events to cause a WaitSet to wake up.

DDS_Duration_t

max_event_delay

Maximum delay from occurrence of first trigger event to cause a
WaitSet to wake up.

This value should reflect the maximum acceptable latency
increase (time delay from occurrence of the event to waking up
the waitset) incurred as a result of waiting for additional events
before waking up the waitset.

To create a WaitSet with default behavior:

WaitSet* waitset = new WaitSet () ;

To create a WaitSet with properties:

DDS_WaitSetProperty t prop;

Prop.max event count = 5;

DDSWaitSet* waitset = new DDSWaitSet (prop) ;

To delete a WaitSet:

delete waitset;

1. These states are described in The Samplelnfo Structure (Section 7.4.6).

4-28

Conditions and WaitSets

Figure 4.6 Conditions and WaitSets

€ *)
Condition WaitSet
get_trigger value() wait()
attach_condition)
detach_conditiond)
StatusCondition GuardCondition
ReadCondition enabled statuses [*] . StatusElind
set Wigger value)
set_enabled statuses() e

view_state mask [*] - ViewStateElind
instance_state_mask [*] - InstanceStateKind statuscondition
sample_state mask [*] - SampleStateKind

ﬁx Entity
N ¥
get_statuscondition()

QueryConditon get_status changes()

query_expression : string %S
set_query_arguments()

DamainEntity

l

0.1
1

DataReader Subscriber Fublisher DataWritzr
re ate readcondition() got_datareaders() get_liveliness logt status)
create_queryconditiond) begin_accezs() get_offered_deadline_rmissed_status(
delete_readcondition() end_access() get_offered incompatible qos status()
read_w_conditionf) get_publication_matched_status()
take_w_condition() get_matched subscription_data)
get_sample_rejected_status(Topic

get_liveliness_changed_status(
get_requested deadline missed status()
get_requested incompatible_qos_statisd)
get_subscriphion_matched status(y
get_sample_lost status()

get_inconsistent topae_ statue(y

4.6.2 WaitSet Operations

WaitSets have only a few operations, as listed in Table 4.7 on page 4-30. For details, see the API
Reference HTML documentation.

4.6.3 Waiting for Conditions

The WaitSet’s wait() operation allows an application thread to wait for any of the attached Condi-
tions to trigger (become TRUE).

If any of the attached Conditions are already TRUE when wait() is called, it returns immediately.

4-29

Conditions and WaitSets

Table 4.7

WaitSet Operations

Operation Description

Attaches a Condition to this WaitSet.

You may attach a Condition to a WaitSet that is currently being waited upon
(via the wait() operation). In this case, if the Condition has a trigger_value of
attach_condition | TRUE, then attaching the Condition will unblock the WaitSet.

Adding a Condition that is already attached to the WaitSet has no effect. If the
Condition cannot be attached, Connext will return an OUT_OF_RESOURCES
error code.

Detaches a Condition from the WaitSet. Attempting to detach a Condition that is
detach_condition |not to attached the WaitSet will result in a PRECONDITION_NOT_MET

error code.

wait Blocks execution of the thread until one or more attached Conditions becomes true, or
until a user-specified timeout expires. See Section 4.6.3.

get_conditions Retrieves a list of attached Conditions.

get_property Retrieves the DDS_WaitSetProperty_t structure of the associated WaitSet.

Sets the DDS_WaitSetProperty_t structure, to configure the associated WaitSet to

set_propert .
—property return after one or more trigger events have occurred.

If none of the attached Conditions are already TRUE, wait() blocks—suspending the calling
thread. The waiting behavior depends on whether or not properties were set when the WaitSet
was created:

[If properties are not specified when the WaitSet is created:

The WaitSet will wake up as soon as a trigger event occurs (that is, when an attached Con-
dition becomes true). This is the default behavior if properties are not specified.

This ‘immediate wake-up’ behavior is optimal if you want to minimize latency (to wake
up and process the data or event as soon as possible). However, "waking up" involves a
context switch—the operating system must signal and schedule the thread that is wait-
ing on the WaitSet. A context switch consumes significant CPU and therefore waking up
on each data update is not optimal in situations where the application needs to maximize
throughput (the number of messages processed per second). This is especially true if the
receiver is CPU limited.

[If properties are specified when the WaitSet is created:

The properties configure the waiting behavior of a WaitSet. If no conditions are true at
the time of the call to wait, the WaitSet will wait for (a) max_event_count trigger events
to occur, (b) up to max_event_delay time from the occurrence of the first trigger event, or
(c) up to the timeout maximum wait duration specified in the call to wait(). (Note: The
resolution of the timeout period is constrained by the resolution of the system clock.)

If wait() does not timeout, it returns a list of the attached Conditions that became TRUE and
therefore unblocked the wait.

If wait() does timeout, it returns TIMEOUT and an empty list of Conditions.

Only one application thread can be waiting on the same WaitSet. If wait() is called on a WaitSet
that already has a thread blocking on it, the operation will immediately return
PRECONDITION_NOT_MET.

Note: If you detach a Condition from a Waitset that is currently in a wait state (that is, you are
waiting on it), wait() may return OK and an empty sequence of conditions.

4-30

Conditions and WaitSets

4.6.3.1

How WaitSets Block

The blocking behavior of the WaitSet is illustrated in Figure 4.7. The result of a wait() operation
depends on the state of the WaitSet, which in turn depends on whether at least one attached Con-
dition has a trigger_value of TRUE.

If the wait() operation is called on a WaitSet with state BLOCKED, it will block the calling
thread. If wait() is called on a WaitSet with state UNBLOCKED, it will return immediately.

When the WaitSet transitions from BLOCKED to UNBLOCKED, it wakes up the thread (if there
is one) that had called wait() on it. There is no implied “event queuing” in the awakening of a
WaitSet. That is, if several Conditions attached to the WaitSet have their trigger value transition
to true in sequence, Connext will only unblock the WaitSet once.

Figure 4.7 WaitSet Blocking Behavior

4.6.4

WaitSet-wait BLOCK calling thread

[At least one attached condition has trigger_value =— TRUE]/'wakeup waiting threads

Blocked Unblocked

[All attached conditions have trigger value == FALSE]

WaitSet:-wait/do not block. Return

Processing Triggered Conditions—What to do when Wait() Returns

When wait() returns, it provides a list of the attached Condition objects that have a trigger_value
of true. Your application can use this list to do the following for each Condition in the returned
list:

[If it is a StatusCondition:
o First, call get_status_changes() to see what status changed.

e If the status changes refer to plain communication status: call
get_<communication_status>() on the relevant Entity.

e If the status changes refer to DATA_ON_READERS!: call get_datareaders() on the rel-
evant Subscriber.

o If the status changes refer to DATA_AVAILABLE: call read() or take() on the relevant
DataReader.

[If it is a ReadCondition or a QueryCondition: You may want to call read_w_condition() or
take_w_condition() on the DataReader, with the ReadCondition as a parameter (see
read_w_condition and take_w_condition (Section 7.4.3.6)).

Note that this is just a suggestion, you do not have to use the “w_condition” operations
(or any read/take operations, for that matter) simply because you used a WaitSet. The
“w_condition” operations are just a convenient way to use the same status masks that
were set on the ReadCondition or QueryCondition.

[If it is a GuardCondition: check to see which GuardCondition changed, then react accord-
ingly. Recall that GuardConditions are completely controlled by your application.

1. And then read/take on the returned DataReader objects.

4-31

Conditions and WaitSets

4.6.5

See Conditions and WaitSet Example (Section 4.6.5) to see how to determine which of the
attached Conditions is in the returned list.

Conditions and WaitSet Example

This example creates a WaitSet and then waits for one or more attached Conditions to become
true.

// Create a WaitSet
WaitSet* waitset = new WaitSet () ;

// Attach Conditions
DDSCondition* condl = ...;
DDSCondition* cond2 = entity->get statuscondition() ;
DDSCondition* cond3 = reader->create_readcondition (
DDS_NOT READ SAMPLE_STATE,
DDS_ANY VIEW STATE,
DDS_ANY INSTANCE STATE) ;
DDSCondition* cond4 = new DDSGuardCondition() ;

DDSCondition* cond5 = ...;
DDS_ReturnCode_t retcode;

retcode = waitset->attach condition(condl) ;
if (retcode != DDS_RETCODE OK) {
// ... error

retcode = waitset->attach condition (cond2) ;
if (retcode != DDS_RETCODE OK) {

// ... error
1

retcode = wailtset->attach condition(cond3) ;
if (retcode != DDS_RETCODE OK) {
// ... error

retcode = waitset->attach condition (cond4) ;
if (retcode != DDS_RETCODE OK) {
// ... error

retcode = waitset->attach condition (conds) ;
if (retcode != DDS_RETCODE OK) ({
// ... error

// Wait for a condition to trigger or timeout

DDS_Duration t timeout = { 0, 1000000 }; // 1ms

DDSConditionSeq active conditions; // holder for active conditions
bool is condl triggered = false;

bool is cond2 triggered = false;

DDS_ReturnCode_t retcode;

retcode = waitset->wait (active conditions, timeout) ;
if (retcode == DDS_RETCODE_TIMEOUT) {

// handle timeout
printf ("Wait timed out. No conditions were triggered.\n");

}

4-32

Conditions and WaitSets

4.6.6

else if (retcode != DDS_RETCODE OK) {
// ... check for cause of failure
} else {
// success
if (active conditions.length() == 0) {
printf ("Wait timed out!! No conditions triggered.\n");
} else
// check if "condl" or "cond2" are triggered:
for(i = 0; i < active conditions.length(); ++1i) {
if (active conditions[i] == condl) ({

printf ("Condl was triggered!") ;
is_condl_triggered = true;

}

if (active conditions[i] == cond2) ({
printf ("Cond2 was triggered!") ;
is_cond2_triggered = true;

}

if (is_condl triggered && is cond2 triggered)
break;

}

if (is_condl triggered) {
// ... do something because "condl" was triggered
}

if (is_cond2 triggered) {
// ... do something because "cond2" was triggered
}

// Delete the waitset
delete waitset;
waitset = NULL;

GuardConditions

GuardConditions are created by your application. GuardConditions provide a way for your appli-
cation to manually awaken a WaitSet. Like all Conditions, it has a single boolean trigger_value.
Your application can manually trigger the GuardCondition by calling set_trigger_value().

Connext does not trigger or clear this type of condition—it is completely controlled by your
application.

A GuardCondition has no factory. It is created as an object directly by the natural means in each
language binding (e.g., using “new” in C++ or Java). For example:

// Create a Guard Condition
Condition* my guard condition = new GuardCondition() ;

// Delete a Guard Condition
delete my guard condition;

When first created, the trigger_value is FALSE.

4-33

Conditions and WaitSets

4.6.7

4.6.7.1

A GuardCondition has only two operations, get_trigger_value() and set_trigger_value().

When your application calls set_trigger_value(DDS_BOOLEAN_TRUE), Connext will awaken
any WaitSet to which the GuardCondition is attached.

ReadConditions and QueryConditions

ReadConditions are created by your application, but triggered by Connext. ReadConditions provide
a way for you to specify the data samples that you want to wait for, by indicating the desired
sample-states, view-states, and instance-states’. Then Connext will trigger the ReadCondition

when suitable samples are available.

A QueryCondition is a special ReadCondition that allows you to specify a query expression and
parameters, so you can filter on the locally available (already received) data. QueryConditions
use the same SQL-based filtering syntax as ContentFiltered Topics for query expressions, param-
eters, etc. Unlike ContentFiltered Topics, QueryConditions are applied to data already received, so
they do not affect the reception of data.

Multiple mask combinations can be associated with a single content filter. This is important
because the maximum number of content filters that may be created per DataReader is 32, but
more than 32 QueryConditions may be created per DataReader, if they are different mask-combi-
nations of the same content filter.

ReadConditions and QueryConditions are created by wusing the DataReader’s
create_readcondition() and create_querycondition() operations. For example:

DDSReadCondition* my read condition = reader->create readcondition(
DDS_NOT READ SAMPLE_STATE,
DDS_ANY VIEW STATE,
DDS_ANY INSTANCE STATE) ;

DDSQueryCondition* my query condition = reader->create querycondition/(
DDS_NOT_READ SAMPLE_ STATE,
DDS_ANY VIEW STATE,
DDS_ANY INSTANCE STATE
query expression,
query parameters) ;
Note: If you are using a ReadCondition to simply detect the presence of new data, consider using
a StatusCondition (Section 4.6.8) with the DATA_AVAILABLE_STATUS instead, which will per-

form better in this situation.

A DataReader can have multiple attached ReadConditions and QueryConditions. A ReadCondition
or QueryCondition may only be attached to one DataReader.

To delete a ReadCondition or QueryCondition, use the DataReader’s delete_readcondition() opera-
tion:

DDS_ReturnCode_t delete_readcondition (DDSReadCondition *condition)

After a ReadCondition is triggered, use the FooDataReader’s read/take “with condition” opera-
tions (see Section 7.4.3.6) to access the samples.

Table 4.8 lists the operations available on ReadConditions.

How ReadConditions are Triggered

A ReadCondition has a trigger_value that determines whether the attached WaitSet is BLOCKED
or UNBLOCKED. Unlike the StatusCondition, the trigger_value of the ReadCondition is tied to the
presence of at least one sample with a sample-state, view-state, and instance-state that matches

1. These states are described in The Samplelnfo Structure (Section 7.4.6).

4-34

Conditions and WaitSets

Table 4.8 ReadCondition and QueryCondition Operations

4.6.7.2

Operation Description

Returns the DataReader to which the ReadCondition or QueryCondition is

t_dat d
get_datareader attached.

Returns the instance states that were specified when the ReadCondition or Que-
ryCondition was created. These are the sample’s instance states that Connext
checks to determine whether or not to trigger the ReadCondition or QueryCondi-
tion .

get_instance_state_mask

Returns the sample-states that were specified when the ReadCondition or Query-
get_sample_state_mask | Condition was created. These are the sample states that Connext checks to deter-
mine whether or not to trigger the ReadCondition or QueryCondition.

Returns the view-states that were specified when the ReadCondition or Query-
get_view_state_mask Condition was created. These are the view states that Connext checks to deter-
mine whether or not to trigger the ReadCondition or QueryCondition.

those set in the ReadCondition. Furthermore, for the QueryCondition to have a
trigger_value==TRUE, the data associated with the sample must be such that the
query_expression evaluates to TRUE.

The trigger_value of a ReadCondition depends on the presence of samples on the associated
DataReader. This implies that a single ‘take” operation can potentially change the trigger_value
of several ReadConditions or QueryConditions. For example, if all samples are taken, any ReadCon-
ditions and QueryConditions associated with the DataReader that had trigger_value==TRUE
before will see the trigger_value change to FALSE. Note that this does not guarantee that Wait-
Set objects that were separately attached to those conditions will not be awakened. Once we
have trigger_value==TRUE on a condition, it may wake up the attached WaitSet, the condition
transitioning to trigger_value==FALSE does not necessarily 'unwakeup' the WaitSet, since
‘unwakening' may not be possible. The consequence is that an application blocked on a WaitSet
may return from wait() with a list of conditions, some of which are no longer “active.” This is
unavoidable if multiple threads are concurrently waiting on separate WaitSet objects and taking
data associated with the same DataReader.

Consider the following example: A ReadCondition that has a sample_state_mask =
{NOT_READ} will have a trigger_value of TRUE whenever a new sample arrives and will tran-
sition to FALSE as soon as all the newly arrived samples are either read (so their status changes
to READ) or taken (so they are no longer managed by Connext). However, if the same ReadCondi-
tion had a sample_state_mask = {READ, NOT_READ]}, then the trigger_value would only
become FALSE once all the newly arrived samples are taken (it is not sufficient to just read them,
since that would only change the SampleState to READ), which overlaps the mask on the Read-
Condition.

QueryConditions

A QueryCondition is a special ReadCondition that allows your application to also specify a filter
on the locally available data.

The query expression is similar to a SQL WHERE clause and can be parameterized by argu-
ments that are dynamically changeable by the set_query_parameters() operation.

QueryConditions are triggered in the same manner as ReadConditions, with the additional require-
ment that the sample must also satisfy the conditions of the content filter associated with the
QueryCondition.

4-35

Conditions and WaitSets

Table 4.9

4.6.8

Table 4.10

QueryCondition Operations

Operation Description

get_query_expression | Returns the query expression specified when the QueryCondition was created.

Returns the query parameters associated with the QueryCondition. That is, the
parameters specified on the last successful call to set_query_parameters(), or if
set_query_parameters() was never called, the arguments specified when the Que-
ryCondition was created.

get_query_parameters

set_query_parameters | Changes the query parameters associated with the QueryCondition.

StatusConditions

StatusConditions are created automatically by Connext, one for each Entity. Connext will trigger
the StatusCondition when there is a change to any of that Entify’s enabled statuses.

By default, when Connext creates a StatusCondition, all status bits are turned on, which means it
will check for all statuses to determine when to trigger the StatusCondition. If you only want Con-
next to check for specific statuses, you can use the StatusCondition’s set_enabled_statuses() oper-
ation and set just the desired status bits.

The trigger_value of the StatusCondition depends on the communication status of the Entity
(e.g., arrival of data, loss of information, etc.), ‘filtered” by the set of enabled statuses on the Sta-
tusCondition.

The set of enabled statuses and its relation to Listeners and WaitSets is detailed in How Status-
Conditions are Triggered (Section 4.6.8.1).

Table 4.10 lists the operations available on StatusConditions.

StatusCondition Operations

Operation Description

Defines the list of communication statuses that are taken into account to deter-
mine the trigger_value of the StatusCondition. This operation may change the
trigger_value of the StatusCondition.

WaitSets behavior depend on the changes of the trigger_value of their attached
conditions. Therefore, any WaitSet to which the StatusCondition is attached is
potentially affected by this operation.

set_enabled_statuses

If this function is not invoked, the default list of enabled statuses includes all the
statuses.

Retrieves the list of communication statuses that are taken into account to deter-
mine the trigger_value of the StatusCondition. This operation returns the statuses
that were explicitly set on the last call to set_enabled_statuses() or, if
set_enabled_statuses() was never called, the default list

get_enabled_statuses

Returns the Entity associated with the StatusCondition. Note that there is exactly

t_entit
getentty one Entity associated with each StatusCondition.

Unlike other types of Conditions, StatusConditions are created by Connext, not by your applica-
tion. To access an Entity’s StatusCondition, use the Entity’s get_statuscondition() operation. For
example:

Condition* my status_condition = entity->get statuscondition() ;

After a StatusCondition is triggered, call the Entity’s get_status_changes() operation to see which
status(es) changed.

4-36

Conditions and WaitSets

4.6.8.1

4.6.9

How StatusConditions are Triggered

The trigger_value of a StatusCondition is the boolean OR of the ChangedStatusFlag of all the
communication statuses to which it is sensitive. That is, trigger_value is FALSE only if all the
values of the ChangedStatusFlags are FALSE.

The sensitivity of the StatusCondition to a particular communication status is controlled by the
list of enabled_statuses set on the Condition by means of the set_enabled_statuses() operation.

Once a StatusCondition’s trigger value becomes true, it remains true until the status that
changed is reset. To reset a status, call the related get_*_status() operation. Or, in the case of the
data available status, call read(), take(), or one of their variants.

Therefore, if you are using a StatusCondition on a WaitSet to be notified of events, your thread
will wake up when one of the statuses associated with the StatusCondition becomes true. If you
do not reset the status, the StatusCondition’s trigger_value remains true and your WaitSet will
not block again—it will immediately wake up when you call wait().

Using Both Listeners and WaitSets

You can use Listeners and WaitSets in the same application. For example, you may want to use
WaitSets and Conditions to access the data, and Listeners to be warned asynchronously of errone-
ous communication statuses.

We recommend that you choose one or the other mechanism for each particular communication
status (not both). However, if both are enabled, the Listener mechanism is used first, then the
WaitSet objects are signaled.

4-37

Chapter 5 Topics

5.1

For a DataWriter and DataReader to communicate, they need to use the same Topic. A Topic
includes a name and an association with a user data type that has been registered with Connext.
Topic names are how different parts of the communication system find each other. Topics are
named streams of data of the same data type. DataWriters publish samples into the stream;
DataReaders subscribe to data from the stream. More than one Topic can use the same user data
type, but each Topic needs a unique name.

Topics, DataWriters, and DataReaders relate to each other as follows:
(d Multiple Topics (each with a unique name) can use the same user data type.
(d Applications may have multiple DataWriters for each Topic.
(d Applications may have multiple DataReaders for each Topic.

[DataWriters and DataReaders must be associated with the same Topic in order for them to
be connected.

[Topics are created and deleted by a DomainParticipant, and as such, are owned by that
DomainParticipant. When two applications (DomainParticipants) want to use the same
Topic, they must both create the Topic (even if the applications are on the same node).

This chapter includes the following sections:
1 Topics (Section 5.1)
1 Topic QosPolicies (Section 5.2)
[Status Indicator for Topics (Section 5.3)
(d ContentFiltered Topics (Section 5.4)

Builtin Topics: Connext uses ‘Builtin Topics’ to discover and keep track of remote entities, such as
new participants in the domain. Builtin Topics are discussed in Chapter 16.

Topics

Before you can create a Topic, you need a user data type (see Chapter 3) and a DomainParticipant
(Section 8.3). The user data type must be registered with the DomainParticipant (as we saw in the
User Data Types chapter in Section 3.8.5.1).

Once you have created a Topic, what do you do with it? Topics are primarily used as parameters
in other Entities” operations. For instance, a Topic is required when a Publisher or Subscriber cre-
ates a DataWriter or DataReader, respectively. Topics do have a few operations of their own, as

5-1

Topics

listed in Table 5.1. For details on using these operations, see the reference section or the API Ref-
erence HTML documentation.

Figure 5.1 Topic Module
1 *
DomainParticipant DomainEntity TopicDescription
e_name : stri 1
create_topic() A S:n; string e <<interface>>
delete_topic() - TupeSupport
create_multitopic()
delete_multitopic(} A register_type()
lockup_topicdescription) got_tupe_name()
iznore_topic()
delete_contained entities() <<lcreate®> woreatess
find_topic()
create_contentfilteredtopic()
delete_contentfilteredtopic{) ‘
“Ccreates i
\‘i/ ContentFiltered Topic MultiTopic
1 Topic filter_expression . string subscription_expression : string
Zet_expression_parameters() Zet_expression_parameters()
get_inconsistent_topic_status() set_expression_parameters() set_expression_parameters()
1 | 3-
0. - subscription_exprassion
<<interface>> StatusCondition WairSet
TopicListenear
on_inconsistent_topic()
Note: MultiTopics are not supported.
Table 5.1 Topic Operations
Purpose Operation Description Reference
enable Enables the Topic. Section 4.1.2
ot aos Gets the Topic’s current QosPolicy settings. This is most
8¢ often used in preparation for calling set_qos().
Sets the Topic’s QoS. Yoq can use thl's ‘operatlon to change | gaction 5.1.3
set Qo8 the values for the Topic’s QosPolicies. Note, however,
-1 that not all QosPolicies can be changed after the Topic has
been created.
equals Compares two Topic’s QoS structures for equality. Section 5.1.3.2
Configuring i
set_qos_with . s .
; Vo - Sets the Topic’s QoS based on a specified QoS profile.
the Topic profile pic's Q P QoSp

get_listener

Gets the currently installed Listener.

set_listener

Sets the Topic’s Listener. If you create the Topic without a
Listener, you can use this operation to add one later. Set-
ting the listener to NULL will remove the listener from
the Topic.

Section 5.1.5

narrow

A type-safe way to cast a pointer. This takes a DDSTop-
icDescription pointer and ‘narrows’ it to a DDSTopic
pointer.

Section 6.3.7

Topics

Table 5.1

Topic Operations
Purpose Operation Description Reference
get_inconsistent_ Allows an application to retrieve a Topic’s Section 5.3.1
Checki topic_status INCONSISTENT_TOPIC_STATUS status. o
eckin,
Status 8 Gets a list of statuses that have changed since the last
get_status_changes |time the application read the status or the listeners were | Section 4.1.4
called.
ot et_name Gets the topic_name string used to create the Topic.
Navigating | 8% P 8 : P Section 5.1.1
Relation- get_type_name Gets the type_name used to create the Topic.
ships get_participant Gets the DomainParticipant to which this Topic belongs. | Section 5.1.6.1

Creating Topics

Topics are created using the DomainParticipant’s create_topic() or create_topic_with_profile()

operation:

DDSTopic * create topic (const char *topic name,

const char *type name,
const DDS TopicQos &gos,
DDSTopicListener *listener,
DDS_StatusMask mask)

DDSTopic * create topic with profile (

const char *topic_name,
const char *type name,
const char *library name,
const char *profile name,
DDSTopicListener *listener,
DDS_ StatusMask mask)

A QoS profile is way to use QoS settings from an XML file or string. With this approach, you can
change QoS settings without recompiling the application. For details, see Chapter 17: Configuring
QoS with XML.

topic_name Name for the new Topic, must not exceed 255 characters.

type_name

qos

listener

Name for the user data type, must not exceed 255 characters. It must be the same
name that was used to register the type, and the type must be registered with the
same DomainParticipant used to create this Topic. See Section 3.6.

If you want to use the default QoS settings (described in the API Reference HTML
documentation), use DDS_TOPIC_QOS_DEFAULT for this parameter (see
Figure 5.2). If you want to customize any of the QosPolicies, supply a QoS struc-
ture (see Section 5.1.3).

If you use DDS_TOPIC_QOS_DEFAULT, it is not safe to create the topic while
another thread may be simultaneously calling the DomainParticipant’s
set_default_topic_qos() operation.

Listeners are callback routines. Connext uses them to notify your application of spe-
cific events (status changes) that may occur with respect to the Topic. The listener
parameter may be set to NULL if you do not want to install a Listener. If you use
NULL, the Listener of the DomainParticipant to which the Topic belongs will be
used instead (if it is set). For more information on TopicListeners, see Section 5.1.5.

5-3

Topics

Figure 5.2

mask This bit-mask indicates which status changes will cause the Listener to be invoked.
The bits in the mask that are set must have corresponding callbacks implemented
in the Listener. If you wuse NULL for the Listener, use
DDS_STATUS_MASK_NONE for this parameter. If the Listener implements all
callbacks, use DDS_STATUS_MASK_ALL. For information on statuses, see Lis-
teners (Section 4.4).

library_name A QoS Library is a named set of QoS profiles. See QoS Libraries (Section 17.10). If
NULL is used for library_name, the DomainParticipant’s default library is
assumed.

profile_name A QoS profile groups a set of related QoS, usually one per entity. See QoS Profiles
(Section 17.9). If NULL is used for profile_name, the DomainParticipant’s default
profile is assumed and library_name is ignored.

Note: It is not safe to create a topic while another thread is calling lookup_topicdescription() for
that same topic (see Section 8.3.7).

Creating a Topic with Default QosPolicies

const char *type name = NULL;

// register the type
type name = FooTypeSupport::get type name() ;
retcode = FooTypeSupport::register type(participant, type name) ;
if (retcode != DDS RETCODE OK) {
// handle error
}

// create the topic
DDSTopic* topic = participant->create topic ("Example Foo",
type name, DDS_TOPIC QOS DEFAULT,
NULL, DDS_STATUS MASK NONE) ;
if (topic == NULL) {
// process error here
i

For more examples, see Configuring QoS Settings when the Topic is Created (Section 5.1.3.1).

Deleting Topics
To delete a Topic, use the DomainParticipant’s delete_topic() operation:
DDS ReturnCode t delete topic (DDSTopic * topic)

Note, however, that you cannot delete a Topic if there are any existing DataReaders or DataWriters
(belonging to the same DomainParticipant) that are still using it. All DataReaders and DataWriters
associated with the Topic must be deleted first.

Setting Topic QosPolicies

A Topic’s QosPolicies control its behavior, or more specifically, the behavior of the DataWriters
and DataReaders of the Topic. You can think of the policies as the ‘properties” for the Topic. The
DDS_TopicQos structure has the following format:

DDS_TopicQos struct {

DDS_TopicDataQosPolicy topic_data;
DDS_DurabilityQosPolicy durability;
DDS_DurabilityServiceQosPolicy durability service;
DDS DeadlineQosPolicy deadline;

5-4

Topics

DDS_ LatencyBudgetQosPolicy

latency budget;

DDS LivelinessQosPolicy liveliness;

DDS ReliabilityQosPolicy reliability;

DDS DestinationOrderQosPolicy destination order;
DDS_HistoryQosPolicy history;

DDS_ResourceLimitsQosPolicy
DDS_ TransportPriorityQosPolicy
DDS_ LifespanQosPolicy
DDS_OwnershipQosPolicy

resource_limits;
transport priority;
lifespan;
ownership;

} DDS_TopicQos;

Table 5.2 summarizes the meaning of each policy (arranged alphabetically). For information on
why you would want to change a particular QosPolicy, see the section noted in the Reference
column. For defaults and valid ranges, please refer to the API Reference HTML documentation

for each policy.

Table 5.2 Topic QosPolicies

QosPolicy Description
For a DataReader, specifies the maximum expected elapsed time between arriving
data samples.
Deadline For a DataWriter, specifies a commitment to publish samples with no greater
elapsed time between them.
See Section 6.5.5.
Controls how Connext will deal with data sent by multiple DataWriters for the
DestinationOrder |same topic. Can be set to "by reception timestamp" or to "by source timestamp".
See Section 6.5.6.
. Specifies whether or not Connext will store and deliver data that were previously
Durability published to new DataReaders. See Section 6.5.7.
. . Various settings to configure the external Persistence Service used by Connext for
DurabilityService | pasairiters with a Durability QoS setting of Persistent Durability. See Section 6.5.8.
Specifies how much data must to stored by Connext for the DataWriter or
History DataReader. This QosPolicy affects the RELIABILITY QosPolicy (Section 6.5.19) as
well as the DURABILITY QosPolicy (Section 6.5.7). See Section 6.5.10.
Suggestion to Connext on how much time is allowed to deliver data. See
LatencyBudget Section 6.5.11.
) Specifies how long Connext should consider data sent by an user application to be
Lifespan valid. See Section 6.5.12.
.. Specifies and configures the mechanism that allows DataReaders to detect when
Liveliness DataWriters become disconnected or "dead." See Section 6.5.13.
. Along with Ownership Strength, specifies if DataReaders for a topic can receive
Ownership data from multiple DataWriters at the same time. See Section 6.5.15.
Reliability Specifies whether or not Connext will deliver data reliably. See Section 6.5.19.
Controls the amount of physical memory allocated for entities, if dynamic alloca-
ResourceLimits tions are allowed, and how they occur. Also controls memory usage among differ-
ent instance values for keyed topics. See Section 6.5.20.
. Along with Group Data QosPolicy and User Data QosPolicy, used to attach a buf-
TopicData fer of bytes to Connext's discovery meta-data. See Section 5.2.1.
L. Set by a DataWriter to tell Connext that the data being sent is a different "priority"
TransportPriority | yhan other data. See Section 6.5.21.

Topics

5.1.3.1 Configuring QoS Settings when the Topic is Created

As described in Creating Topics (Section 5.1.1), there are different ways to create a Topic, depend-
ing on how you want to specify its QoS (with or without a QoS profile).

(d In Figure 5.2 on page 5-4, we saw an example of how to create a Topic with default
QosPolicies by using the special constant, DDS_TOPIC_QOS_DEFAULT, which indi-
cates that the default QoS values for a Topic should be used. The default Topic QoS values
are configured in the DomainParticipant; you can change them with the DomainPartici-
pant’s set_default_topic_qos() or set_default_topic_qos_with_profile() operations (see
Section 8.3.6.5).

(A To create a Topic with non-default QoS values, without using a QoS profile, use the DomainPar-
ticipant’s get_default_topic_qos() operation to initialize a DDS_TopicQos structure.
Then change the policies from their default values before passing the QoS structure to
create_topic().

[d You can also create a Topic and specify its QoS settings via a QoS profile. To do so, call
create_topic_with_profile().

1 If you want to use a QoS profile, but then make some changes to the QoS before creating
the Topic, call get_topic_qos_from_profile(), modify the QoS and use the modified QoS
when calling create_topic().

5.1.3.2 Comparing QoS Values

The equals() operation compares two Topic’s DDS_TopicQoS structures for equality. It takes two
parameters for the two Topics” QoS structures to be compared, then returns TRUE is they are
equal (all values are the same) or FALSE if they are not equal.

5.1.3.3 Changing QoS Settings After the Topic Has Been Created

There are 2 ways to change an existing Topic’s QoS after it is has been created—again depending
on whether or not you are using a QoS Profile.

(J To change QoS programmatically (that is, without using a QoS Profile), see the example
code in Figure 5.3 on page 5-7. It retrieves the current values by calling the Topic’s
get_qos() operation. Then it modifies the value and calls set_qos() to apply the new
value. Note, however, that some QosPolicies cannot be changed after the Topic has been
enabled—this restriction is noted in the descriptions of the individual QosPolicies.

J You can also change a Topic’s (and all other Entities’) QoS by using a QoS Profile. For an
example, see Figure 5.4 on page 5-6. For more information, see Chapter 17: Configuring
QoS with XML.

Figure 5.4 Changing the QoS of an Existing Topic with a QoS Profile

retcode = topic->set_gos _with profile(
“FooProfileLibrary”, "FooProfile”) ;
if (retcode != DDS_RETCODE OK) {
// handle error
}

5-6

Topics

Figure 5.3 Changing the QoS of an Existing Topic (without a QoS Profile)

DDS TopicQos topic_gos; 1
// Get current QoS. topic points to an existing DDSTopic.
if (topic->get gos(topic gos) != DDS_RETCODE OK) {
// handle error
}

// Next, make changes.
// New ownership kind will be Exclusive
topic_gos.ownership.kind = DDS EXCLUSIVE OWNERSHIP QOS;

// Set the new QoS

if (topic->set _gos(topic_gos) != DDS_RETCODE OK) ({
// handle error

}

1. For the C AP, you need to use DDS_TopicQos_INITIALIZER or DDS_TopicQos_initialize(). See Spe-
cial QosPolicy Handling Considerations for C (Section 4.2.2)

Copying QoS From a Topic to a DataWriter or DataReader

Only the TOPIC_DATA QosPolicy strictly applies to Topics—it is described in this chapter, while
the others are described in the sections noted in the Reference column of Table 5.2. The rest of
the QosPolicies for a Topic can also be set on the corresponding DataWriters and /or DataReaders.
Actually, the values that Connext uses for those policies are taken directly from those set on the
DataWriters and DataReaders. The values for those policies are stored only for reference in the
DDS_TopicQos structure.

Because many QosPolicies affect the behavior of matching DataWriters and DataReaders, the
DDS_TopicQos structure is provided as a convenient way to set the values for those policies in
a single place in the application. Otherwise, you would have to modify the individual QosPoli-
cies within separate DataWriter and DataReader QoS structures. And because some QosPolicies
are compared between DataReaders and DataWriters, you will need to make certain that the indi-
vidual values that you set are compatible (see Section 4.2.1).

The use of the DDS_TopicQos structure to set the values of any QosPolicy except
TOPIC_DATA—which only applies to Topics—is really a way to share a single set of values with
the associated DataWriters and DataReaders, as well as to avoid creating those entities with
inconsistent QosPolicies.

To cause a DataWriter to use its Topic’s QoS settings, either:
[Pass DDS_DATAWRITER_QOS_USE_TOPIC_QOS to create_datawriter(), or
[Call the Publisher’s copy_from_topic_qos() operation

To cause a DataReader to use its Topic’s QoS settings, either:
[Pass DDS_DATAREADER_QOS_USE_TOPIC_QOS to create_datareader(), or
(d Call the Subscriber’s copy_from_topic_qos() operation

Please refer to the API Reference HTML documentation for the Publisher’s create_datawriter()
and Subscriber’s create_datareader() methods for more information about using values from the
Topic QosPolicies when creating DataWriters and DataReaders.

5-7

Topic QosPolicies

5.1.6.1

5.1.6.2

5.2

5.2.1

Setting Up Topiclisteners

When you create a Topic, you have the option of giving it a Listener. A TopicListener includes just
one callback routine, on_inconsistent_topic(). If you create a TopicListener (either as part of the
Topic creation call, or later with the set_listener() operation), Connext will invoke the TopicLis-
tener’s on_inconsistent_topic() method whenever it detects that another application has created
a Topic with same name but associated with a different user data type. For more information, see
INCONSISTENT_TOPIC Status (Section 5.3.1).

Note: Some operations cannot be used within a listener callback, see Restricted Operations in
Listener Callbacks (Section 4.5.1).

If a Topic’s Listener has not been set and Connext detects an inconsistent Topic, the DomainPartici-
pantListener (if it exists) will be notified instead (see Section 8.3.5). So you only need to set up a
TopicListener if you need to perform specific actions when there is an error on that particular
Topic. In most cases, you can set the TopicListener to NULL and process inconsistent-topic errors
in the DomainParticipantListener instead.

Navigating Relationships Among Entities

Finding a Topic’s DomainParticipant
To retrieve a handle to the Topic’s DomainParticipant, use the get_participant() operation:
DDSDomainParticipant *DDSTopicDescription: :get participant ()

Notice that this method belongs to the DDSTopicDescription class, which is the base class for
DDSTopic.

Retrieving a Topic’s Name or Type Name

If you want to retrieve the topic_name or type_name used in the create_topic() operation, use
these methods:

const char* DDSTopicDescription::get type name() ;
const char* DDSTopicDescription::get name () ;

Notice that these methods belong to the DDSTopicDescription class, which is the base class for
DDSTopic.

Topic QosPolicies

This section describes the only QosPolicy that strictly applies to Topics (and no other types of
Entities)—the TOPIC_DATA QosPolicy. For a complete list of the QosPolicies that can be set for
Topics, see Table 5.2 on page 5-5.

Most of the QosPolicies that can be set on a Topic can also be set on the corresponding DataWriter
and/or DataReader. The Topic’s QosPolicy is essentially just a place to store QoS settings that you
plan to share with multiple entities that use that Topic (see how in Section 5.1.3); they are not
used otherwise and are not propagated on the wire.

TOPIC_DATA QosPolicy

This QosPolicy provides an area where your application can store additional information related
to the Topic. This information is passed between applications during discovery (see Chapter 14:

5-8

Topic QosPolicies

Table 5.3

5.2.1.1

5.2.1.2

5.2.1.3

Discovery) using builtin-topics (see Chapter 16: Built-In Topics). How this information is used
will be up to user code. Connext does not do anything with the information stored as
TOPIC_DATA except to pass it to other applications. Use cases are usually application-to-appli-
cation identification, authentication, authorization, and encryption purposes.

The value of the TOPIC_DATA QosPolicy is sent to remote applications when they are first dis-
covered, as well as when the Topic’s set_qos() method is called after changing the value of the
TOPIC_DATA. User code can set listeners on the builtin DataReaders of the builtin Topics used by
Connext to propagate discovery information. Methods in the builtin topic listeners will be called
whenever new applications, DataReaders, and DataWriters are found. Within the user callback,
you will have access to the TOPIC_DATA that was set for the associated Topic.

Currently, TOPIC_DATA of the associated Topic is only propagated with the information that
declares a DataWriter or DataReader. Thus, you will need to access the value of TOPIC_DATA
through DDS_PublicationBuiltinTopicData or DDS_SubscriptionBuiltinTopicData (see
Chapter 16: Built-In Topics).

The structure for the TOPIC_DATA QosPolicy includes just one field, as seen in Table 5.3. The
field is a sequence of octets that translates to a contiguous buffer of bytes whose contents and
length is set by the wuser. The maximum size for the data are set in the
DOMAIN_PARTICIPANT_RESOURCE_LIMITS QosPolicy (DDS Extension) (Section 8.5.4).

DDS_TopicDataQosPolicy

Type Field Name Description

DDS_OctetSeq value default: empty

This policy is similar to the GROUP_DATA (Section 6.4.4) and USER_DATA (Section 6.5.25) pol-
icies that apply to other types of Entities.

Example

One possible use of TOPIC_DATA is to send an associated XML schema that can be used to pro-
cess the data stored in the associated user data structure of the Topic. The schema, which can be
passed as a long sequence of characters, could be used by an XML parser to take samples of the
data received for a Topic and convert them for updating some graphical user interface, web
application or database.

Properties

This QosPolicy can be modified at any time. A change in the QosPolicy will cause Connext to
send packets containing the new TOPIC_DATA to all of the other applications in the domain.

Because Topics are created independently by the applications that use the Topic, there may be dif-
ferent instances of the same Topic (same topic name and data type) in different applications. The
TOPIC_DATA for different instances of the same Topic may be set differently by different appli-
cations.

Related QosPolicies

(d GROUP_DATA QosPolicy (Section 6.4.4)
[USER_DATA QosPolicy (Section 6.5.25)

(d DOMAIN_PARTICIPANT_RESOURCE_LIMITS QosPolicy (DDS Extension) (Section
8.5.4)

5-9

Status Indicator for Topics

5.2.14

5.2.1.5

5.3

5.3.1

Applicable Entities
1 Topics (Section 5.1)

System Resource Considerations

As mentioned earlier, the maximum size of the TOPIC_DATA is set in the
topic_data_max_length field of the DOMAIN_PARTICIPANT_RESOURCE_LIMITS QosPolicy
(DDS Extension) (Section 8.5.4). Because Connext will allocate memory based on this value, you
should only increase this value if you need to. If your system does not use TOPIC_DATA, then
you can set this value to 0 to save memory. Setting the value of the TOPIC_DATA QosPolicy to
hold data longer than the value set in the topic_data_max_length field will result in failure and
an INCONSISTENT_QOS_POLICY return code.

However, should you decide to change the maximum size of TOPIC_DATA, you must make cer-
tain that all applications in the domain have changed the value of topic_data_max_length to be
the same. If two applications have different limits on the size of TOPIC_DATA, and one applica-
tion sets the TOPIC_DATA QosPolicy to hold data that is greater than the maximum size set by
another application, then the DataWriters and DataReaders of that Topic between the two applica-
tions will not connect. This is also true for the GROUP_DATA (Section 6.4.4) and USER_DATA
(Section 6.5.25) QosPolicies.

Status Indicator for Topics

There is only one communication status defined for a Topic, ON_INCONSISTENT_TOPIC. You
can use the get_inconsistent_topic_status() operation to access the current value of the status or
use a TopicListener to catch the change in the status as it occurs. See Section 4.4 for a general dis-
cussion on Listeners and Statuses.

INCONSISTENT_TOPIC Status

In order for a DataReader and a DataWriter with the same Topic to communicate, their types must
be consistent according to the DataReader’s type-consistency enforcement policy value, defined
in its TYPE_CONSISTENCY_ENFORCEMENT QosPolicy (Section 7.6.6)). This status indicates
that another DomainParticipant has created a Topic using the same name as the local Topic, but
with an inconsistent type.

The status is a structure of type DDS_InconsistentTopicStatus, see Table 5.4. The total_count
keeps track of the total number of (DataReader, DataWriter) pairs with topic names that match the
Topic to which this status is attached, but whose types are inconsistent. The TopicListener’s
on_inconsistent_topic() operation is invoked when this status changes (an inconsistent topic is
found). You «can also retrieve the current value by calling the Topic’s
get_inconsistent_topic_status() operation.

The value of total_count_change reflects the number of inconsistent topics that were found
since the last time get inconsistent_topic_status() was called by wuser code or
on_inconsistent_topic() was invoked by Connext.

5-10

ContentFilteredTopics

Table 5.4 DDS_InconsistentTopicStatus Structure

5.4

5.4.1

Type Field Name Description

Total cumulative count of (DataReader, DataWriter) pairs whose topic
DDS_Long | total_count names match the Topic to which this status is attached, but whose
types are inconsistent.

DDS_Long |total_count_change | The change in total_count since the last time this status was read.

ContentFilteredTopics

A ContentFilteredTopic is a Topic with filtering properties. It makes it possible to subscribe to
topics and at the same time specify that you are only interested in a subset of the Topic’s data.

For example, suppose you have a Topic that contains a temperature reading for a boiler, but you
are only interested in temperatures outside the normal operating range. A ContentFilteredTopic
can be used to limit the number of data samples a DataReader has to process and may also reduce
the amount of data sent over the network.

This section includes the following:

[Overview (Section 5.4.1)

[Where Filtering is Applied—Publishing vs. Subscribing Side (Section 5.4.2)
[Creating ContentFiltered Topics (Section 5.4.3)

[Deleting ContentFiltered Topics (Section 5.4.4)

(J Using a ContentFiltered Topic (Section 5.4.5)

(d SQL Filter Expression Notation (Section 5.4.6)

(d STRINGMATCH Filter Expression Notation (Section 5.4.7)

[Custom Content Filters (Section 5.4.8)

Overview

A ContentFilteredTopic creates a relationship between a Topic, also called the related topic, and
user-specified filtering properties. The filtering properties consist of an expression and a set of
parameters.

(J The filter expression evaluates a logical expression on the Topic content. The filter
expression is similar to the WHERE clause in a SQL expression.

(J The parameters are strings that give values to the 'parameters’ in the filter expression.
There must be one parameter string for each parameter in the filter expression.

A ContentFilteredTopic is a type of topic description, and can be used to create DataReaders.
However, a ContentFilteredTopic is not an entity—it does not have QosPolicies or Listeners.

A ContentFiltered Topic relates to other entities in Connext as follows:

[ContentFiltered Topics are used when creating DataReaders, not DataWriters.
[Multiple DataReaders can be created with the same ContentFiltered Topic.
[A ContentFilteredTopic belongs to (is created /deleted by) a DomainParticipant.

(d A ContentFiltered Topic and Topic must be in the same DomainParticipant.

5-11

ContentFilteredTopics

5.4.2

(d A ContentFiltered Topic can only be related to a single Topic.
(1 A Topic can be related to multiple ContentFiltered Topics.

[A ContentFilteredTopic can have the same name as a Topic, but ContentFilteredTopics
must have unique names within the same DomainParticipant.

[A DataReader created with a ContentFilteredTopic will use the related Topic's QoS and
Listeners.

(J Changing filter parameters on a ContentFilteredTopic causes all DataReaders using the
same ContentFiltered Topic to see the change.

(d A Topic cannot be deleted as long as at least one ContentFiltered Topic that has been cre-
ated with it exists.

(d A ContentFilteredTopic cannot be deleted as long as at least one DataReader that has been
created with the ContentFilteredTopic exists.

Where Filtering is Applied—Publishing vs. Subscribing Side

Filtering may be performed on either side of the distributed application. (The DataWriter obtains
the filter expression and parameters from the DataReader during discovery.)

Connext also supports network-switch filtering for multi-channel DataWriters (see Chapter 18:
Multi-channel DataWriters).

A DataWriter will automatically filter data samples for a DataReader if all of the following are
true; otherwise filtering is performed by the DataReader.

1. The DataWriter is filtering for no more than
writer_resource_limits.max_remote_reader_filters DataReaders at the same time.

® There is a resource-limit on the DataWriter called

writer_resource_limits.max_remote_reader_filters (see

DATA_WRITER_RESOURCE_LIMITS QosPolicy (DDS Extension) (Section 6.5.4)).
This value can be from 0-32. 0 means do not filter any DataReader and 32 (default
value) means filter up to 32 DataReaders.

e If a DataWriter is filtering max_remote_reader_filters DataReaders at the same time
and a new filtered DataReader is created, then the newly created DataReader
(max_remote_reader_filters + 1) is not filtered. Even if one of the first
(max_remote_reader_filters) DataReaders is deleted, that already created DataReader
(max_remote_reader_filters + 1) will still not be filtered. However, any subsequently
created DataReaders will be filtered as long as the number of DataReaders currently
being filtered is not more than writer_resource_limits.max_remote_reader_filters.

2. The DataReader is not subscribing to data using multicast.

3. There are no more than 4 matching DataReaders in the same locator (see Peer Descriptor
Format (Section 14.2.1)).

4. The DataWriter has infinite liveliness. (See LIVELINESS QosPolicy (Section 6.5.13).)

5. The DataWriter is not using an Asynchronous Publisher. (That is, the DataWriter’s
PUBLISH_MODE QosPolicy (DDS Extension) (Section 6.5.18) kind is set to
DDS_SYNCHRONOUS_PUBLISHER_MODE_QOS.) See Note below.

6. If you are using a custom filter (not the default one), it must be registered in the Domain-
Participant of the DataWriter and the DataReader.

Notes:

5-12

ContentFilteredTopics

5.4.3

Connext supports limited writer-side filtering if asynchronous publishing is enabled. The mid-
dleware will not send any sample to a destination if the sample is filtered out by all the
DataReaders on that destination. However, if there is one DataReader to which the sample has to
be sent, all the DataReaders on the destination will do reader side filtering for the incoming sam-

ple.

In addition to filtering new samples, a DataWriter can also be configured to filter previously
written samples stored in the DataWriter’s queue for newly discovered DataReaders. To do so,
use the refilter field in the DataWriter’s HISTORY QosPolicy (Section 6.5.10).

Creating ContentFilteredTopics

To create a ContentFilteredTopic that uses the default SQL filter, use the DomainParticipant’s
create_contentfilteredtopic() operation:

DDS_ContentFilteredTopic *create_ contentfilteredtopic

(const char * name,
const DDS Topic * related topic,
const char * filter expression,

const DDS StringSeq & expression parameters)

Or, to use a custom filter or the builtin STRINGMATCH filter (see Section 5.4.7), use the
create_contentfilteredtopic_with_filter() variation:

DDS_ContentFilteredTopic *create contentfilteredtopic_with filter

(const char * name,
DDSTopic * related topic,
const char * filter expression,
const DDS_StringSeq & expression parameters,
const char * filter name =
DDS SQLFILTER NAME)
name Name of the ContentFilteredTopic. Note that it is legal for a ContentFil-

teredTopic to have the same name as a Topic in the same DomainParticipant,
but a ContentFiltered Topic cannot have the same name as another Content-
FilteredTopic in the same DomainParticipant. This parameter cannot be
NULL.

related_topic The related Topic to be filtered. The related topic must be in the same
DomainParticipant as the ContentFilteredTopic. This parameter cannot be
NULL. The same related topic can be used in many different ContentFil-
teredTopics.

filter_expression A logical expression on the contents on the Topic. If the expression evalu-
ates to TRUE, a sample is received; otherwise it is discarded. This parame-
ter cannot be NULL. Once a ContentFilteredTopic is created, its
filter_expression cannot be changed. The notation for this expression
depends on the filter that you are using (specified by the filter_name
parameter). See SQL Filter Expression Notation (Section 5.4.6) and
STRINGMATCH Filter Expression Notation (Section 5.4.7).

expression_parameters A string sequence of filter expression parameters. Each parameter cor-
responds to a positional argument in the filter expression: element 0 corre-
sponds to positional argument 0, element 1 to positional argument 1, and

so forth.

The expression_parameters can be changed with
set_expression_parameters() (Section 5.4.5.2),
append_to_expression_parameter() (Section 5.4.5.4) and

remove_from_expression_parameter() (Section 5.4.5.5).

5-13

ContentFilteredTopics

5.4.3.1

filter_name Name of the content filter to use for filtering. The filter must have been pre-
viously registered with the DomainParticipant (see Registering a Custom
Filter = (Section 5.4.8.2)). There are two builtin filters,

DDS_SQLFILTER_NAME1 (the default filter) and
DDS_STRINGMATCHFILTER_NAME'—these are automatically regis-
tered.

To use the STRINGMATCH filter, call
create_contentfilteredtopic_with_filter() with

"DDS_STRINGMATCHFILTER_NAME" as the filter name. STRING-
MATCH filter expressions have the syntax:
<field name> MATCH <string pattern> (see Section 5.4.7).

If you run rtiddsgen with -notypecode, then you must use the "with_filter" version with a cus-
tom filter instead—do not use the builtin SQL filter or the STRINGMATCH filter with the -not-
ypecode option because they require type-codes. See rtiddsgen Command-Line Arguments
(Section 3.6.1).

To summarize:

[To use the builtin default SQL filter:
® Do not use -notypecode when running rtiddsgen
o (all create_contentfilteredtopic()
® See SQL Filter Expression Notation (Section 5.4.6)
(d To use the builtin STRINGMATCH filter:
¢ Do not use -notypecode when running rtiddsgen

® Call create_contentfilteredtopic_with_filter(), setting the filter_name to
DDS_STRINGMATCHFILTER_NAME

® See STRINGMATCH Filter Expression Notation (Section 5.4.7)
(1 To use a custom filter:

® call create_contentfilteredtopic_with_filter(), setting the filter_name to a registered
custom filter

(1 To use rtiddsgen with -notypecode:

e call create_contentfilteredtopic_with_filter(), setting the filter_name to a registered
custom filter

Note: Be careful with memory management of the string sequence in some of the ContentFil-
teredTopic APIs. See the String Support section in the API Reference HTML documentation
(within the Infrastructure module) for details on sequences.

Creating ContentFilteredTopics for Built-in Types

To create a ContentFiltered Topic for a built-in type (see Built-in Data Types (Section 3.2)), use the
standard DomainParticipant operations, create_contentfilteredtopic() or
create_contentfilteredtopic_with_filter.

The field names used in the filter expressions for the built-in SQL (see Section 5.4.6) and String-
Match filters (see Section 5.4.7) must correspond to the names provided in the IDL description of
the built-in types.

1. In the Java and C# APIs, you can access the names of the builtin filters by using
DomainParticipant.SQLFILTER_NAME and DomainParticipant. STRINGMATCHFILTER_NAME.

5-14

ContentFilteredTopics

ContenifFilteredTopic Creation Examples:
For simplicity, error handling is not shown in the following examples.

C Example:

DDS Topic * topic = NULL;
DDS_ContentFilteredTopic * contentFilteredTopic = NULL;
struct DDS_StringSeq parameters = DDS_SEQUENCE INITIALIZER;

/* Create a string ContentFilteredTopic */

topic = DDS DomainParticipant create topic(
participant, "StringTopic",
DDS_StringTypeSupport get type name (),
&DDS_TOPIC_QOS_DEFAULT,NULL, DDS_STATUS MASK NONE) ;

contentFilteredTopic =
DDS DomainParticipant create contentfilteredtopic(
participant, "StringContentFilteredTopic",
topic, "value = 'Hello World!'", ¶meters) ;

C++ Example with Namespaces:

using namespace DDS;

/* Create a String ContentFilteredTopic */

Topic * topic = participant->create topic(
"StringTopic", StringTypeSupport::get type name(),
TOPIC QOS DEFAULT, NULL, STATUS MASK NONE) ;

StringSeq parameters;

ContentFilteredTopic * contentFilteredTopic =
participant->create contentfilteredtopic (
"StringContentFilteredTopic", topic,
"value = 'Hello World!'", parameters);

C++/CLI Example:

using namespace DDS;

/* Create a String ContentFilteredTopic */

Topic” topic = participant-s>create topic
"StringTopic", StringTypeSupport::get type name(),
DomainParticipant::TOPIC_QOS_DEFAULT,
nullptr, StatusMask::STATUS MASK NONE) ;

StringSeq” parameters = gcnew StringSeq() ;

ContentFilteredTopic” contentFilteredTopic =
participant->create contentfilteredtopic (
"StringContentFilteredTopic", topic,
"value = 'Hello World!'", parameters);

C# Example:

using namespace DDS;

/* Create a String ContentFilteredTopic */

5-15

ContentFilteredTopics

Topic topic = participant.create_ topic/(
"StringTopic", StringTypeSupport.get type name(),
DomainParticipant.TOPIC QOS DEFAULT,
null, StatusMask.STATUS MASK NONE) ;

StringSeq parameters = new StringSeq() ;

ContentFilteredTopic contentFilteredTopic =
participant.create contentfilteredtopic(
"StringContentFilteredTopic", topic,
"value = 'Hello World!'", parameters);

Java Example:

import com.rti.dds.type.builtin.*;

/* Create a String ContentFilteredTopic */

Topic topic = participant.create_topic(
"StringTopic", StringTypeSupport.get type name(),
DomainParticipant.TOPIC QOS DEFAULT,
null, StatusKind.STATUS MASK NONE) ;

StringSeq parameters = new StringSeq() ;

ContentFilteredTopic contentFilteredTopic =
participant.create contentfilteredtopic(
"StringContentFilteredTopic", topic,
"value = 'Hello World!'", parameters);

5.4.4 Deleting ContentFilteredTopics

To delete a ContentFilteredTopic, use the DomainParticipant’s delete_contentfilteredtopic()
operation:
1. Make sure no DataReaders are using the ContentFilteredTopic. (If this is not true, the
operation returns PRECONDITION_NOT_MET.)

2. Delete the ContentFiltered Topic by using the DomainParticipant’s
delete_contentfilteredtopic() operation.

DDS ReturnCode t delete contentfilteredtopic
(DDSContentFilteredTopic * a_ contentfilteredtopic)

5.4.5 Using a ContentFilteredTopic

Once you've created a ContentFiltered Topic, you can use the operations listed in Table 5.5.

Table 5.5 ContentFilteredTopic Operations

Operation Description Reference

append_to_expression_parameter (;oncatenates a string value to the input expres- Section 5.4.5.4
sion parameter

get_expression_parameters Gets the expression parameters. Section 5.4.5.1

get_filter_expression Gets the expression. Section 5.4.5.6

get_related_topic Gets the related Topic. Section 5.4.5.7

5-16

ContentFilteredTopics

Table 5.5 ContentFilteredTopic Operations

5.4.5.1

5.4.5.2

5.4.5.3

Operation Description Reference
ts a DDS_TopicDescripti inter t - .
narrow Cas s a S_ opicDescription pointer to a Con Section 5.4.5.8
tentFilteredTopic pointer.
f i t R tri lue from the input i .
remove_from_expression_parameter | Removes a string value from the input expression | ¢ | .~ - -
parameter
set_expression_parameters Changes the expression parameters. Section 5.4.5.2

Getting the Current Expression Parameters

To get the expression parameters, use the ContentFilteredTopic’s get_expression_parameters()
operation:

DDS_ReturnCode_ t get expression parameters
(struct DDS_StringSeqg & parameters)

parameters The filter expression parameters.

The memory for the strings in this sequence is managed as described in the String
Support section of the API Reference HTML documentation (within the Infra-
structure module). In particular, be careful to avoid a situation in which Connext
allocates a string on your behalf and you then reuse that string in such a way that
Connext believes it to have more memory allocated to it than it actually does. This
parameter cannot be NULL.

This operation gives you the expression parameters that were specified on the last successful
call to set_expression_parameters() or, if that was never called, the parameters specified when
the ContentFilteredTopic was created.

Setting Expression Parameters
To change the expression parameters associated with a ContentFiltered Topic:

DDS_ReturnCode_ t set expression parameters
(const struct DDS_StringSeq & parameters)

parameters The filter expression parameters. Each element in the parameter sequence corre-
sponds to a positional parameter in the filter expression. When using the default
DDS_SQLFILTER_NAME, parameter strings are automatically converted to the
member type. For example, "4" is converted to the integer 4. This parameter can-
not be NULL.

Note: The ContentFilteredTopic’s operations do not manage the sequences; you must ensure
that the parameter sequences are valid. Please refer to the String Support section in the API Ref-
erence HTML documentation (within the Infrastructure module) for details on sequences.

Setting an Expression

To change the filter expression as well as the expression parameters associated with a Content-
Filtered Topic:

DDS_ReturnCode set expression(
const char * expression, const struct DDS StringSeq & parameters
expression The new expression to be set in the ContentFiltered Topic.

parameters The filter expression parameters. Same considerations as for
set_expression_parameters() are applied; see Setting Expression Parameters
(Section 5.4.5.2).

5-17

ContentFilteredTopics

5.4.5.4

5.4.5.5

5.4.5.6

5.4.5.7

5.4.5.8

Appending a String to an Expression Parameter

To concatenate a string to an expression parameter, use the ContentFilteredTopic's
append_to_expression_parameter() operation:

DDS ReturnCode t append to expression parameter (
const DDS Long index,
const char* value) ;

When using the STRINGMATCH filter, index must be 0.

This function is only intended to be used with the builtin SQL and STRINGMATCH filters. This
function can be used in expression parameters associated with MATCH operators (see SOL
Extension: Regular Expression Matching (Section 5.4.6.4)) to add a pattern to the match pattern
list. For example, if filter_expression is:

symbol MATCH 'IBM'

Then append_to_expression_parameter(0, "MSFT") would generate the expression:

symbol MATCH 'IBM,MSFT'

Removing a String from an Expression Parameter

To remove a string from an expression parameter use the ContentFilteredTopic's
remove_from_expression_parameter() operation:

DDS_ReturnCode_t remove from expression parameter (
const DDS Long index,
const char* value)

When using the STRINGMATCH filter, index must be 0.

This function is only intended to be used with the builtin SQL and STRINGMATCH filters. It
can be used in expression parameters associated with MATCH operators (see SQL Extension:
Regular Expression Matching (Section 5.4.6.4)) to remove a pattern from the match pattern list.
For example, if filter_expression is:

symbol MATCH 'IBM,MSFT'
Then remove_from_expression_parameter(0, "IBM") would generate the expression:

symbol MATCH 'MSFT'

Getting the Filter Expression

To get the filter expression that was specified when the ContentFiltered Topic was created:
const char* get filter expression ()

There is no corresponding set operation. The filter expression can only be set when the Content-

FilteredTopic is created.

Getting the Related Topic

To get the related topic that was specified when the ContentFilteredTopic was created:

DDS_Topic * get related topic ()

‘Narrowing’ a ContentFilteredTopic to a TopicDescription

To safely cast a DDS_TopicDescription pointer to a ContentFilteredTopic pointer, use the Con-
tentFilteredTopic’s narrow() operation:

DDS TopicDescription* narrow ()

5-18

ContentFilteredTopics

5.4.6

5.4.6.1

SaQl Filter Expression Notation

A SQL filter expression is similar to the WHERE clause in SQL. The SQL expression format pro-
vided by Connext also supports the MATCH operator as an extended operator (see
Section 5.4.6.4).

The following sections provide more information:
[SQL Grammar (Section 5.4.6.1)
(d Token Expressions (Section 5.4.6.2)
(d Type Compatibility in the Predicate (Section 5.4.6.3)
(d SQL Extension: Regular Expression Matching (Section 5.4.6.4)
(d Composite Members (Section 5.4.6.5)
1 Strings (Section 5.4.6.6)
[Enumerations (Section 5.4.6.7)
[Pointers (Section 5.4.6.8)
[Arrays (Section 5.4.6.9)
(J Sequences (Section 5.4.6.10)
[Example SQL Filter Expressions (Section 5.4.6.11)

SQL Grammar

This section describes the subset of SQL syntax, in Backus—Naur Form (BNF), that you can use
to form filter expressions.

The following notational conventions are used:
[NonTerminals are typeset in italics.

['Terminals' are quoted and typeset in a fixed width font. They are written in upper
case in most cases in the BNF-grammar below, but should be case insensitive.

[TOKENS are typeset in bold.

(J The notation (element // ',') represents a non-empty, comma-separated list of ele-
ments.
Expression ::= FilterExpression
| TopicExpression
| QueryExpression
FilterExpression ::= Condition
TopicExpression ::= SelectFrom { Where } ';'
QueryExpression ::= { Condition }{ 'ORDER BY' (FIELDNAME // ',') }
SelectFrom ::= 'SELECT' Aggregation 'FROM' Selection
Aggregation HEE

| (SubjectFieldSpec // ',')

SubjectFieldSpec ::

= FIELDNAME
| FIELDNAME 'AS' IDENTIFIER
| FIELDNAME IDENTIFIER
Selection ::= TOPICNAME

| TOPICNAME NaturalJoin JoinItem

5-19

ContentFilteredTopics

5.4.6.2

JoinItem ::= TOPICNAME
| TOPICNAME NaturalJoin JoinItem

| v

NaturalJoin ::=

TOPICNAME NaturalJoin JoinItem ')'

'INNER JOIN'

| 'INNER NATURAL JOIN'
| 'NATURAL JOIN'
| 'NATURAL INNER JOIN'

Where HEE

Condition ti=

l(l

'WHERE'

Condition

Predicate
| Condition
| Condition
| 'NOT"

| Condition ')

'AND'
IORI
Condition

Condition
Condition

Predicate ::= ComparisonPredicate
| BetweenPredicate

ComparisonPredicate

::= ComparisonTerm RelOp ComparisonTerm

::= FieldIdentifier

ComparisonTerm
Parameter
BetweenPredicate ::= FieldIdentifier 'BETWEEN' Range
FieldIdentifier 'NOT BETWEEN' Range
FieldIdentifier ::= FIELDNAME
IDENTIFIER
RelOp L P e P R P '<>' | 'LIKE'
Range ::= Parameter 'AND' Parameter
Parameter ::= INTEGERVALUE
| CHARVALUE
| FLOATVALUE
| STRING
| ENUMERATEDVALUE
| BOOLEANVALUE
| PARAMETER

| 'MATCH'

Note: INNER JOIN, INNER NATURAL JOIN, NATURAL JOIN, and NATURAL INNER JOIN
are all aliases, in the sense that they have the same semantics. They are all supported
because they all are part of the SQL standard.

Token Expressions

The syntax and meaning of the tokens used in SQL grammar is described as follows:

IDENTIFIER—An identifier for a FIELDNAME, defined as any series of characters 'a', ...,

lzll

‘A, ..., 'Z2',

'O',

IDENTIFIER: LETTER (PART_ LETTER) *

where LETTER:

PART LETTER:

llAll_llle’ll Il,llall_llzll]

[”A"_"Z","_”,”a”_”Z","O"_"9”]

., '9', '_' butmay not start with a digit.

5-20

ContentFilteredTopics

FIELDNAME—A reference to a field in the data structure. A dot '.' is used to navigate through
nested structures. The number of dots that may be used in a FIELDNAME is unlimited.
The FIELDNAME can refer to fields at any depth in the data structure. The names of the
field are those specified in the IDL definition of the corresponding structure, which may
or may not match the fieldnames that appear on the language-specific (e.g., C/C++, Java)
mapping of the structure. To reference the n+1 element in an array or sequence, use the
notation ' [n] ', where n is a natural number (zero included). FIELDNAME must resolve
to a primitive IDL type; that is either boolean, octet, (unsigned) short, (unsigned) long,
(unsigned) long long, float double, char, wchar, string, wstring, or enum.

FIELDNAME: FieldNamePart ("." FieldNamePart)*
where FieldNamePart : IDENTIFIER ("[" Index "]")*
Index> : (["0"-"9"])+
| ["OX","OX"](["O"—"9", llAn_nFn’ llall_llfll])+

Primitive IDL types referenced by FIELDNAME are treated as different types in Predicate
according to the following table:

Predicate Data Type IDL Type
BOOLEANVALUE boolean
INTEGERVALUE octet, (unsigned) short, (unsigned) long, (unsigned) long long
FLOATVALUE float, double
CHARVALUE char, wchar
STRING string, wstring
ENUMERATEDVALUE enum

TOPICNAME—An identifier for a topic, and is defined as any series of characters 'a',
'z', 'A', ..., 'Z', '0', ..., '9', '_' butmay not start with a digit.

TOPICNAME : IDENTIFIER

INTEGERVALUE—Any series of digits, optionally preceded by a plus or minus sign, representing a
decimal integer value within the range of the system. 'L' or '1' must be used for long
long, otherwise long is assumed. A hexadecimal number is preceded by 0x and must be a
valid hexadecimal expression.

INTEGERVALUE ([u+u,||_u])? ([uon_n9u])+ [("L","l")]?
| ([""‘"1"_"])? [IIOXIIIIIOXH]([IIOII_II9III
nAu_uFu, llall_llfll])+ [("L","l")]?

CHARVALUE—A single character enclosed between single quotes.

CHARVALUE : "'" (~["'n])? mninm

FLOATVALUE—Any series of digits, optionally preceded by a plus or minus sign and optionally
including a floating point (*.'). 'F' or '£' must be used for float, otherwise double is
assumed. A power-of-ten expression may be postfixed, which has the syntax en or En,
where n is a number, optionally preceded by a plus or minus sign.

FLOATVALUE : ([u+u’u_u])? ([uou_u9ll])* (ll'll)? ([lloll_ll9ll])+
(EXPONENT) ? [("F","£")]?
where EXPONENT: ["e","E"] ([l|+nln_n])? ([mom-m9n])+

STRING—Any series of characters encapsulated in single quotes, except the single quote itself.

STRING : "'" (~[mwrnw])* nrm

5-21

ContentFilteredTopics

5.4.6.3

Table 5.6

5.4.6.4

ENUMERATEDVALUE—A reference to a value declared within an enumeration. Enumerated values
consist of the name of the enumeration label enclosed in single quotes. The name used for
the enumeration label must correspond to the label names specified in the IDL definition
of the enumeration.

EN'[JMERATEDVALUE . min ["A" —- n Z n , n all —- n A n]
[IIAII - "Z", llall - "Z", ll_ll, IIOII - ||9||]* mirn
BOOLEANVALUE—Can either be 'TRUE' or 'FALSE', and is case insensitive.
BOOLEANVALUE : ["TRUE","FALSE"]
PARAMETER—Takes the form %n, where n represents a natural number (zero included) smaller

than 100. It refers to the (n + 1)th argument in the given context. This argument can only
be in primitive type value format. It cannot be a FIELDNAME.

PARAMETER : "%" (["0"-"9"])+

Type Compadtibility in the Predicate

As seen in Table 5.6, only certain combinations of type comparisons are valid in the Predicate.

Valid Type Comparisons

BOOLEAN | INTEGER |FLOAT | CHAR | (oo~ | ENUMERATED
VALUE | VALUE |VALUE|VALUE VALUE
BOOLEAN YES
INTEGERVALUE YES YES
FLOATVALUE YES YES
CHARVALUE YES YES YES
STRING YES | YES® YES
ENUMERATED YES vEsS® | YESP YES©
VALUE

a. See Section 5.4.6.4.

b. Because of the formal notation of the Enumeration values, they are compatible with string and char literals, but
they are not compatible with string or char variables, i.e., "MyEnum='EnumValue" is correct, but "MyEnum=MyS-
tring” is not allowed.

c. Only for same-type Enums.

Sal Extension: Regular Expression Matching

The relational operator MATCH may only be used with string fields. The right-hand operator is
a string pattern. A string pattern specifies a template that the left-hand field must match.

MATCH is case-sensitive. These characters have special meaning: ,/?*[1-"1\%
The pattern allows limited "wild card" matching under the rules in Table 5.7 on page 5-23.

The syntax is similar to the POSIX® fnmatch syntax'. The MATCH syntax is also similar to the
'subject’ strings of TIBCO Rendezvous®. Some example expressions include:

"symbol MATCH 'NASDAQ/[A-G]*'"
"symbol MATCH 'NASDAQ/GOOG,NASDAQ/MSFT'"

1. See http:/ /www.opengroup.org/onlinepubs/000095399/functions/fnmatch.html.

5-22

http://www.opengroup.org/onlinepubs/000095399/functions/fnmatch.html

ContentFilteredTopics

Table 5.7

5.4.6.5

5.4.6.6

5.4.6.7

Wild Card Matching

Character Meaning

A, separates a list of alternate patterns. The field string is matched if it matches
one or more of the patterns.

/ A / in the pattern string matches a / in the field string. It separates a sequence of
mandatory substrings.
5 A ? in the pattern string matches any single non-special characters in the field
) string.
* A * in the pattern string matches 0 or more non-special characters in field string.
% This special character is used to designate filter expression parameters.
\ (Not supported) Escape character for special characters.
[charlist] Matches any one of the characters in charlist.
!charlist . .
[AC ar s] F | (Not supported) Matches any one of the characters not in charlist.
["charlist]
[s-e] Matches any character from s to e, inclusive.

[!s-e] or [“s-el |(Notsupported) Matches any character not in the interval s to e.

Composite Members

Any member can be used in the filter expression, with the following exceptions:
[128-bit floating point numbers (long doubles) are not supported
(1 bitfields are not supported
(J LIKE is not supported

Composite members are accessed using the familiar dot notation, such as "x.y.z > 5". For
unions, the notation is special due to the nature of the IDL union type.

On the publishing side, you can access the union discriminator with myunion._d and the actual
member with myunion._u.mymember. If you want to use a ContentFilteredTopic on the sub-
scriber side and filter a sample with a top-level union, you can access the union discriminator
directly with _d and the actual member with mymember in the filter expression.

Strings

The filter expression and parameters can use IDL strings. String constants must appear between
single quotation marks ().
For example:

" fish = 'salmon' "

Strings used as parameter values must contain the enclosing quotation marks () within the
parameter value; do not place the quotation marks within the expression statement. For exam-
ple, the expression " symbol MATCH %0 " with parameter 0 set to " TBM' " is legal, whereas the
expression " symbol MATCH '%0" " with parameter 0 set to " IBM " will not compile.

Enumerations

A filter expression can use enumeration values, such as GREEN, instead of the numerical value.
For example, if x is an enumeration of GREEN, YELLOW and RED, the following expressions
are valid:

"X = 'GREEN'"
IIX < IREDI n

5-23

ContentFilteredTopics

5.4.6.8

5.4.6.9

5.4.6.10

Pointers

Pointers can be used in filter expressions and are automatically dereferenced to the correct
value.

For example:

struct Point ({
long x;
long y;

}i

struct Rectangle ({
Point *u 1;
Point *1_r;

The following expression is valid on a Topic of type Rectangle:

"u 1.x > 1 r.x"

Arrays
Arrays are accessed with the familiar [] notation.
For example:

struct ArrayType ({
long value[255] [5];
}i

The following expression is valid on a Topic of type ArrayType:
"value[244] [2] = 5"

In order to compare an array of bytes(octets in idl), instead of comparing each individual ele-
ment of the array using [I notation, Connext provides a helper function, hex(). The hex() function
can be used to represent an array of bytes (octets in IDL). To use the hex() function, use the nota-
tion &hex() and pass the byte array as a sequence of hexadecimal values.

For example:
ghex (07 08 09 OA 0B Oc 0D OE OF 10 11 12 13 14 15 16)
Here the leftmost-pair represents the byte and index 0.

Note: If the length of the octet array represented by the hex() function does not match the length
of the field being compared, it will result in a compilation error.

For example:

struct ArrayType {
octet valuel[2];
}i

The following expression is valid:

"value = &hex (12 0A)"

Sequences
Sequence elements can be accessed using the () or [] notation.

For example:

struct SequenceType {
sequence<long> s;

5-24

ContentFilteredTopics

5.4.6.11

Figure 5.5 Filtering Example

The following expressions are valid on a Topic of type SequenceType:

"S(l) = 5"
"S[l] = g5n

Example SQL Filter Expressions

Assume that you have a Topic with two floats, X and Y, which are the coordinates of an object
moving inside a rectangle measuring 200 x 200 units. This object moves quite a bit, generating
lots of samples that you are not interested in. Instead you only want to receive samples outside
the middle of the rectangle, as seen in Figure 5.5. That is, you want to filter out data points in the
gray box.

Drop samples
with [¢y]
values in this area

100

50

50 100 150 200

The filter expression would look like this (remember the expression is written so that samples
that we do want will pass):

"(X < 50 or X > 150) and (Y < 50 or Y > 150)"

While this filter works, it cannot be changed after the ContentFilteredTopic has been created.
Suppose you would like the ability to adjust the coordinates that are considered outside the
acceptable range (changing the size of the gray box). You can achieve this by using filter param-
eters. An more flexible way to write the expression is this:

"(X < %0 or X > %1) and (Y < %2 or Y > %3)"

Recall that when you create a ContentFilteredTopic (see Section 5.4.3), you pass a
expression_parameters string sequence as one of the parameters. Each element in the string
sequence corresponds to one argument.

See the String and Sequence Support sections of the API Reference HTML documentation
(from the Modules page, select RTI Connext DDS API Reference, Infrastructure Module).

In C++, the filter parameters could be assigned like this:

FilterParameter[0] "5Q";
FilterParameter[1] "150";
FilterParameter[2] = "50";
FilterParameter [3] "150";

5-25

ContentFilteredTopics

5.4.7

5.4.7.1

With these parameters, the filter expression is identical to the first approach. However, it is now
possible to change the parameters by calling set_expression_parameters(). For example, per-
haps you decide that you only want to see data points where X < 10 or X > 190. To make this
change:

FilterParameter [0] = 10
FilterParameter[1l] = 190
set expression parameters(....)

Note: The new filter parameters will affect all DataReaders that have been created with this Con-
tentFiltered Topic.

STRINGMATCH Filter Expression Notation

The STRINGMATCH Filter is a subset of the SQL filter; it only supports the MATCH relational
operator on a single string field. It is introduced mainly for the use case of partitioning data
according to channels in the DataWriter's MULTI_CHANNEL QosPolicy (DDS Extension) (Sec-
tion 6.5.14) in Market Data applications.

A STRINGMATCH filter expression has the following syntax:

<field name> MATCH <string patterns

The STRINGMATCH filter is provided to support the narrow use case of filtering a single string
field of the sample against a comma-separated list of matching string values. It is intended to be
used in conjunction with ContentFiltered Topic helper routines
append_to_expression_parameter() (Section 5.4.5.4) and
remove_from_expression_parameter() (Section 5.4.5.5), which allow you to easily append and
remove individual string values from the comma-separated list of string values.

The STRINGMATCH filter must contain only one <field name>, and a single occurrence of the
MATCH operator. The <string pattern> must be either the single parameter %0, or a single,
comma-separated list of strings without intervening spaces.

During creation of a STRINGMATCH filter, the <string pattern> is automatically parameterized.
That is, during creation, if the <string pattern> specified in the filter expression is not the param-
eter %0, then the comma-separated list of strings is copied to the initial contents of parameter 0
and the <string pattern> in the filter expression is replaced with the parameter %0.

The initial matching string list is converted to an explicit parameter value so that subsequent
additions and deletions of string values to and from the list of matching strings may be per-
formed with the append_to_expression_parameter() and
remove_from_expression_parameter() operations mentioned above.

Example STRINGMATCH Filter Expressions

[This expression evaluates to TRUE if the value of symbol is equal to NASDAQ/MSFT:
symbol MATCH 'NASDAQ/MSFT'

[This expression evaluates to TRUE if the value of symbol is equal to NASDAQ/IBM or
NASDAQ/MSFT:

symbol MATCH 'NASDAQ/IBM,NASDAQ/MSFT'

(J This expression evaluates to TRUE if the value of symbol corresponds to NASDAQ and
starts with a letter between M and Y:

symbol MATCH 'NASDAQ/ [M-Y]*'

5-26

ContentFilteredTopics

5.4.7.2

5.4.8

5.4.8.1

STRINGMATCH Filter Expression Parameters

In the builtin STRINGMATCH filter, there is one, and only one, parameter: parameter 0. (If you
want to add more parameters, see Appending a String to an Expression Parameter (Section
5.4.5.4).) The parameter can be specified explicitly using the same syntax as the SQL filter or
implicitly by using a constant string pattern. For example:

symbol MATCH %0 (Explicit parameter)
symbol MATCH ‘IBM’ (Implicit parameter initialized to IBM)

Strings used as parameter values must contain the enclosing quotation marks (') within the
parameter value; do not place the quotation marks within the expression statement. For exam-
ple, the expression " symbol MATCH %0 " with parameter 0 set to " IBM' " is legal, whereas the
expression " symbol MATCH '%0" " with parameter 0 set to " IBM " will not compile.

Custom Content Filters

By default, a ContentFilteredTopic will use a SQL-like content filter, DDS_SQLFILTER_NAME
(see SQL Filter Expression Notation (Section 5.4.6)), which implements a superset of the content
filter. There is another builtin filter, DDS_STRINGMATCHFILTER_NAME (see STRING-
MATCH Filter Expression Notation (Section 5.4.7)). Both of these are automatically registered.

If you want to use a different filter, you must register it first, then create the ContentFiltered-
Topic using create_contentfilteredtopic_with_filter() (see Creating ContentFiltered Topics (Sec-
tion 5.4.3)).

One reason to use a custom filter is that the default filter can only filter based on relational oper-
ations between topic members, not on a computation involving topic members. For example, if
you want to filter based on the sum of the members, you must create your own filter.

Notes:
(d The API for using a custom content filter is subject to change in a future release.

(d Custom content filters are not supported when using the .NET APIs.

Filtering on the Writer Side with Custom Filters

There are two approaches for performing writer-side filtering. The first approach is to evaluate
each written sample against filters of all the readers that have content filter specified and iden-
tify the readers whose filter passes the sample.

The second approach is to evaluate the written sample once for the writer and then rely on the
filter implementation to provide a set of readers whose filter passes the sample. This approach
allows the filter implementation to cache the result of filtering, if possible. For example, consider
a scenario where the data is described by the struct shown below, where 10<x<20:

struct MyData {
int x;
int y;

}i

If the filter expression is based only on the x field, the filter implementation can maintain a hash
map for all the different values of x and cache the filtering results in the hash map. Then any
future evaluations will only be O(1), because it only requires a lookup in the hash map.

But if in the same example, a reader has a content filter that is based on both x and y, or just y,
the filter implementation cannot cache the result—because the filter was only maintaining a
hash map for x. In this case, the filter implementation can inform Connext that it will not be cach-
ing the result for those DataReaders. The filter can use DDS_ExpressionProperty to indicate to the
middleware whether or not it will cache the results for DataReader. Table 5.8 describes

5-27

ContentFilteredTopics

Table 5.8

5.4.8.2

DDS_ExpressionProperty.

DDS_ExpressionProperty

Type Field Name Description

Indicates if the filter expression is based only on key fields. In this

DDS_Boolean | key_only _filter case, Connext itself can cache the filtering results.

Indicates if the filter implementation can cache the filtering result for
the expression provided. If this is true then Connext will do no cach-
ing or explicit filter evaluation for the associated DataReader. It will
instead rely on the filter implementation to provide appropriate
results.

writer_side_filter_

DDS_Boolean L
optimization

Registering a Custom Filter
To use a custom filter, it must be registered in the following places:

(J Register the custom filter in any subscribing application in which the filter is used to cre-
ate a ContentFilteredTopic and corresponding DataReader.

[In each publishing application, you only need to register the custom filter if you want to
p g app y y g y
perform writer-side filtering. A DataWriter created with an associated filter will use that
filter if it discovers a matched DataReader that uses the same filter.

For example, suppose Application A on the subscription side creates a Topic named X and a
ContentFilteredTopic named filteredX (and a corresponding DataReader), using a previously
registered content filter, myFilter. With only that, you will have filtering on the subscription
side. If you also want to perform filtering in any application that publishes Topic X, then you also
need to register the same definition of the ContentFilter myFilter in that application.

To register a new filter, use the DomainParticipant’s register_contentfilter() operation :

DDS ReturnCode t register contentfilter (const char * filter name,
const DDSContentFilter * contentfilter)

)

filtler_name The name of the filter. The name must be unique within the DomainParticipant.
The filter_name cannot have a length of 0. The same filtering functions and
handle can be registered under different names.

content_filter This class specifies the functions that will be used to process the filter.

You must derive from the DDSContentFilter base class and implement the vir-
tual compile, evaluate, and finalize functions described below.

Optionally, you can derive from the DDSWriterContentFilter base class instead,
to implement additional filtering operations that will be used by the DataWriter.
When performing writer-side filtering, these operations allow a sample to be
evaluated once for the DataWriter, instead of evaluating the sample for every
DataReader that is matched with the DataWriter. An instance of the derived class
is then used as an argument when calling register_contentfilter().

® compile

The function that will be used to compile a filter expression and parameters.
Connext will call this function when a ContentFilteredTopic is created and
when the filter parameters are changed. This parameter cannot be NULL.
See Compile Function (Section 5.4.8.5). This is a member of DDSContentFil-
ter and DDSWriterContentFilter.

1. This operation is an extension to the DDS standard.

5-28

ContentFilteredTopics

evaluate

The function that will be called by Connext each time a sample is received. Its
purpose is to evaluate the sample based on the filter. This parameter cannot
be NULL. See Evaluate Function (Section 5.4.8.6). This is a member of
DDSContentFilter and DDSWriterContentFilter.

finalize

The function that will be called by Connext when an instance of the custom
content filter is no longer needed. This parameter may be NULL. See Final-
ize Function (Section 5.4.8.7). This is a member of DDSContentFilter and
DDSWriterContentFilter.

writer_attach

The function that will be used to create some state required to perform filter-
ing on the writer side using the operations provided in DDSWriterContent-
Filter. Connext will call this function for every DataWriter; it will be called
only the first time the DataWriter matches a DataReader using the specified fil-
ter. This function will not be called for any subsequent DataReaders that
match the DataWriter and are using the same filter. See Writer Attach Func-
tion (Section 5.4.8.8). This is a member of DDSWriterContentFilter.

writer_detach

The function that will be used to delete any state created using the
writer_attach function. Connext will call this function when the DataWriter is
deleted. See Writer Detach Function (Section 5.4.8.9). This is a member of
DDSWriterContentFilter.

writer_compile

The function that will be used by the DataWriter to compile filter expression
and parameters provided by the reader. Connext will call this function when
the DataWriter discovers a DataReader with a ContentFilteredTopic or when a
DataWriter is notified of a change in DataReader’s filter parameter. This func-
tion will receive as an input a DDS_Cookie_t which uniquely identifies the
DataReader for which the function was invoked. See Writer Compile Func-
tion (Section 5.4.8.10). This is a member of DDSWriterContentFilter.

writer_evaluate

The function that will be called by Connext every time a DataWriter writes a
new sample. Its purpose is to evaluate the sample for all the readers for
which the DataWriter is performing writer-side filtering and return the list of
DDS_Cookie_t associated with the DataReaders whose filter pass the sample.
See Writer Evaluate Function (Section 5.4.8.11).

writer_return_loan

The function that will be called by Connext to return the loan on a sequence
of DDS_Cookie_t provided by the writer_evaluate function. See Writer
Return Loan Function (Section 5.4.8.12). This is a member of DDSWriterCon-
tentFilter.

writer_finalize

The function that will be called by Connext to notify the filter implementa-
tion that the DataWriter is no longer matching with a DataReader for which it
was previously performing writer-side filtering. This will allow the filter to
purge any state it was maintaining for the DataReader. See Writer Finalize

5-29

ContentFilteredTopics

5.4.8.3

5.4.8.4

5.4.8.5

Function (Section 5.4.8.13). This is a member of DDSWriterContentFilter.

Unregistering a Custom Filter

To unregister a filter, use the DomainParticipant’s unregister_contentfilter() operation', which is
useful if you want to reuse a particular filter name. (Note: You do not have to unregister the fil-
ter before deleting the parent DomainParticipant. If you do not need to reuse the filter name to
register another filter, there is no reason to unregister the filter.)

DDS ReturnCode t unregister contentfilter (const char * filter name)

filter_name The name of the previously registered filter. The name must be unique within
the DomainParticipant. The filter_name cannot have a length of 0.

If you attempt to unregister a filter that is still being used by a ContentFiltered-
Topic, unregister_contentfilter() will return PRECONDITION_NOT_MET.

If there are still existing discovered DataReaders with the same filter_name and
the filter's compile function has previously been called on the discovered
DataReaders, the filter’s finalize function will be called on those discovered
DataReaders before the content filter is unregistered. This means filtering will be
performed on the application that is creating the DataReader.

Retrieving a ContentFilter

If you know the name of a ContentFilter, you can get a pointer to its structure. If the ContentFil-
ter has not already been registered, this operation will return NULL.

DDS_ContentFilter *lookup contentfilter (const char * filter_ name)

Compile Function

The compile function specified in the ContentFilter will be used to compile a filter expression
and parameters. Please note that the term ‘compile’ is intentionally defined very broadly. It is
entirely up to you, as the user, to decide what this function should do. The only requirement is
that the error_code parameter passed to the compile function must return OK on successful exe-
cution. For example:

DDS ReturnCode t sample compile function(
void ** new_compile data,
const char * expression,
const DDS_StringSeq & parameters,
const DDS TypeCode * type code,

const char * type class name,
void * old compile data)
{
new_compile data = (void)DDS_String dup (parameters[0]) ;

return DDS_RETCODE_OK;

}

new_compile_data A user-specified opaque pointer of this instance of the content filter. This
value is passed to the evaluate and finalize functions.

expression An ASCIIZ string with the filter expression the ContentFilteredTopic was
created with. Note that the memory used by the parameter pointer is
owned by Connext. If you want to manipulate this string, you must make
a copy of it first. Do not free the memory for this string.

1. This operation is an extension to the DDS standard.

5-30

ContentFilteredTopics

5.4.8.6

parameters

Important:

type_code

type_class_name

old_compile_data

Evaluate Function

A string sequence of expression parameters used to create the ContentFil-
teredTopic. The string sequence is equal (but not identical) to the string
sequence passed to create_contentfilteredtopic() (see
expression_parameters in Section 5.4.3).

The sequence passed to the compile function is owned by Connext and
must not be referred to outside the compile function.

A pointer to the type code of the related Topic. A type code is a description
of the topic members, such as their type (long, octet, etc.), but does not
contain any information with respect to the memory layout of the struc-
tures. The type code can be used to write filters that can be used with any
type. See Using Generated Types without Connext (Standalone) (Section
3.7). [Note: If you are using the Java API, this parameter will always be
NULL.]

Fully qualified class name of the related Topic.

The new_compile_data value from a previous call to this instance of a con-
tent filter. If compile is called more than once for an instance of a Con-
tentFiltered Topic (such as if the expression parameters are changed), then
the new_compile_data value returned by the previous invocation is
passed in the old_compile_data parameter (which can be NULL). If this
is a new instance of the filter, NULL is passed. This parameter is useful
for freeing or reusing previously allocated resources.

The evaluate function specified in the ContentFilter will be called each time a sample is
received. This function’s purpose is to determine if a sample should be filtered out (not put in

the receive queue).

For example:

DDS_Boolean sample evaluate_ function/(

void* compile data,
const void* sample,
struct DDS FilterSampleInfo * meta data) {

char *parameter = (char*)compile data;

DDS_Long X;

Foo *foo sample

(Foo*) sample;

sscanf (parameter, "%d", &x) ;

return (foo sample->x > x ? DDS_BOOLEAN FALSE : DDS_BOOLEAN TRUE) ;

}

The function may use

the following parameters:

compile_data The last return value from the compile function for this instance of the con-
tent filter. Can be NULL.

sample A pointer to a C structure with the data to filter. Note that the evaluate func-
tion always receives deserialized data.

meta_data A pointer to the meta data associated with the sample.

Note: Currently the meta_data field only supports related_sample_identity
(described in Table 6.15, “DDS_WriteParams_t,” on page 6-32).

5-31

ContentFilteredTopics

5.4.8.7

5.4.8.8

5.4.8.9

5.4.8.10

Finalize Function

The finalize function specified in the ContentFilter will be called when an instance of the cus-
tom content filter is no longer needed. When this function is called, it is safe to free all resources
used by this particular instance of the custom content filter.

For example:

void sample finalize function (void* compile data) {
/* free parameter string from compile function */
DDS_String free((char *)compile data);

}
The finalize function may use the following optional parameters:
system_key See Section 5.4.8.5.

handle This is the opaque returned by the last call to the compile function.

Writer Attach Function

The writer_attach function specified in the WriterContentFilter will be used to create some state
that can be used by the filter to perform writer-side filtering more efficiently. It is entirely up to
you, as the implementer of the filter, to decide if the filter requires this state.

The function has the following parameter:

writer_filter_data A user-specified opaque pointer to some state created on the writer side
that will help perform writer-side filtering efficiently.

Writer Detach Function

The writer_detach function specified in the WriterContentFilter will be used to free up any state
that was created using the writer_attach function.

The function has the following parameter:

writer_filter_data A pointer to the state created using the writer_attach function.

Writer Compile Function

The writer_compile function specified in the WriterContentFilter will be used by a DataWriter to
compile a filter expression and parameters associated with a DataReader for which the DataW-
riter is performing filtering. The function will receive as input a DDS_Cookie_t that uniquely
identifies the DataReader for which the function was invoked.

The function has the following parameters:
writer_filter_data A pointer to the state created using the writer_attach function.

prop A pointer to DDS_ExpressionProperty. This is an output parameter. It
allows you to indicate to Connext if a filter expression can be optimized (as
described in Filtering on the Writer Side with Custom Filters (Section
5.4.8.1)).

expression An ASCIIZ string with the filter expression the ContentFilteredTopic was
created with. Note that the memory used by the parameter pointer is
owned by Connext. If you want to manipulate this string, you must make a
copy of it first. Do not free the memory for this string.

parameters A string sequence of expression parameters used to create the ContentFil-
teredTopic. The string sequence is equal (but not identical) to the string
sequence passed to create_contentfilteredtopic() (see
expression_parameters in Creating ContentFiltered Topics (Section 5.4.3)).

5-32

ContentFilteredTopics

5.4.8.11

5.4.8.12

5.4.8.13

Important: The sequence passed to the compile function is owned by Con-
next and must not be referred to outside the writer_compile function.

type_code A pointer to the type code of the related Topic. A type code is a description
of the topic members, such as their type (long, octet, etc.), but does not con-
tain any information with respect to the memory layout of the structures.
The type code can be used to write filters that can be used with any type.
See Using Generated Types without Connext (Standalone) (Section 3.7).
[Note: If you are using the Java AP], this parameter will always be NULL.]

type_class_name The fully qualified class name of the related Topic.

cookie DDS_Cookie_t to uniquely identify the DataReader for which the
writer_compile function was called.

Writer Evaluate Function

The writer_evaluate function specified in the WriterContentFilter will be used by a DataWriter
to retrieve the list of DataReaders whose filter passed the sample. The writer_evaluate function
returns a sequence of cookies which identifies the set of DataReaders whose filter passes the sam-

ple.
The function has the following parameters:

writer_filter_data A pointer to the state created using the writer_attach function.

sample A pointer to the data to be filtered. Note that the writer_evaluate function
always receives deserialized data.

meta_data A pointer to the meta-data associated with the sample.
Note: Currently the meta_data field only supports
related_sample_identity (described in Table 6.15, “DDS_WriteParams_t,”
on page 6-32).

Writer Return Loan Function

Connext uses the writer_return_loan function specified in the WriterContentFilter to indicate to
the filter implementation that it has finished using the sequence of cookies returned by the fil-
ter’s writer_evaluate function. Your filter implementation should not free the memory associ-
ated with the cookie sequence before the writer_return_loan function is called.

The function has the following parameters:
writer_filter_data A pointer to the state created using the writer_attach function.

cookies The sequence of cookies for which the writer_return_loan function was
called.

Writer Finalize Function

The writer_finalize function specified in the WriterContentFilter will be called when the DataW-
riter no longer matches with a DataReader that was created with ContentFilteredTopic. This will
allow the filter implementation to delete any state it was maintaining for the DataReader.

The function has the following parameters:
writer_filter_data A pointer to the state created using the writer_attach function.

cookie A DDS_Cookie_t to uniquely identify the DataReader for which the
writer_finalize was called.

5-33

Chapter 6 Sending Data

6.1

This chapter discusses how to create, configure, and use Publishers and DataWriters to send data.
It describes how these entities interact, as well as the types of operations that are available for

them.

This chapter includes the following sections:

(d Preview: Steps to Sending Data (Section 6.1)
(1 Publishers (Section 6.2)

[DataWriters (Section 6.3)

(1 Publisher/Subscriber QosPolicies (Section 6.4)
(1 DataWriter QosPolicies (Section 6.5)

[FlowControllers (DDS Extension) (Section 6.6)

The goal of this chapter is to help you become familiar with the Entities you need for sending
data. For up-to-date details such as formal parameters and return codes on any mentioned oper-
ations, please see the API Reference HTML documentation.

Preview: Steps to Sending Data

To send samples of a data instance:

1. Create and configure the required Entities:

a.
b.

oo oo oo

Create a DomainParticipant (see Section 8.3.1).

Register user data types1 with the DomainParticipant. For example, the ‘FooData-
Type'.
Use the DomainParticipant to create a Topic with the registered data type.

. Optionally?, use the DomainParticipant to create a Publisher.

Use the Publisher or DomainParticipant to create a DataWriter for the Topic.

Use a type-safe method to cast the generic DataWriter created by the Publisher to a
type-specific DataWriter. For example, ‘FooDataWriter’.

1. Type registration is not required for built-in types (see Section 3.2.1).

2. You are not required to explicitly create a Publisher; instead, you can use the 'implicit Publisher' created from the
DomainParticipant. See Creating Publishers Explicitly vs. Implicitly (Section 6.2.1).

6-1

Publishers

6.2

g. Optionally, register data instances with the DataWriter. If the Topic’s user data type
contain key fields, then registering a data instance (data with a specific key value) will
improve performance when repeatedly sending data with the same key. You may reg-
ister many different data instances; each registration will return an instance handle cor-
responding to the specific key value. For non-keyed data types, instance registration
has no effect. See Section2.2.2 for more information on keyed data types and
instances.

2. Every time there is changed data to be published:

a. Store the data in a variable of the correct data type (for instance, variable ‘Foo’ of the
type ‘FooDataType”).

b. Call the FooDataWriter’s write() operation, passing it a reference to the variable
‘Foo’. For non-keyed data types or for non-registered instances, also pass in
DDS_HANDLE_NIL.

For keyed data types, you should pass in the instance handle corresponding to the
instance stored in ‘Foo’, if you have registered the instance previously. This means
that the data stored in ‘Foo’ has the same key value that was used to create instance
handle.

c. The write() function will take a snapshot of the contents of ‘Foo” and store it in Con-
next internal buffers from where the data sample is sent under the criteria set by the
Publisher’s and DataWriter’s QosPolicies. If there are matched DataReaders, then the
data sample will have been passed to the physical transport plug-in/device driver by
the time that write() returns.

Publishers

An application that intends to publish information needs the following Entities: DomainPartici-
pant, Topic, Publisher, and DataWriter. All Entities have a corresponding specialized Listener and a
set of QosPolicies. A Listener is how Connext notifies your application of status changes relevant
to the Entity. The QosPolicies allow your application to configure the behavior and resources of
the Entity.

' A DomainParticipant defines the domain in which the information will be made available.

(A Topic defines the name under which the data will be published, as well as the type (for-
mat) of the data itself.

(d An application writes data using a DataWriter. The DataWriter is bound at creation time
to a Topic, thus specifying the name under which the DataWriter will publish the data and
the type associated with the data. The application uses the DataWriter’s write() operation
to indicate that a new value of the data is available for dissemination.

[A Publisher manages the activities of several DataWriters. The Publisher determines when
the data is actually sent to other applications. Depending on the settings of various
QosPolicies of the Publisher and DataWriter, data may be buffered to be sent with the data
of other DataWriters or not sent at all. By default, the data is sent as soon as the DataW-
riter’s write() function is called.

You may have multiple Publishers, each managing a different set of DataWriters, or you
may choose to use one Publisher for all your DataWriters.

For more information, see Creating Publishers Explicitly vs. Implicitly (Section 6.2.1).

6-2

Publishers

Figure 6.1

6.2.1

Figure 6.1 on page 6-3 shows how these Entities are related, as well as the methods defined for

each Entity.

Publication Module

DomainParticipant

Dger
— ccreates < aregles
| H
\..i; ;

Diata Writer & ! - Publisher
register_instamce(l W cimnlicifss begin_coherent_changes()
reghiter Ramce W Hmnestamp " CosPolicy & P create_datavwriter()

, .) A,) AE] o
urregdsier inviameed) I 'l:; . . delele dalawriler()

. . . . feamplicit .
wnregister_instamce_w_timestampy) . = lookup_datawriter)

dispose()

dispoye W Hmesiiampi

writed)

WFLE W FIHESTImmp

wsserl liveliness()

et liveliness_lost_status()

2ot offtred deadline missed status()
2el_ollered_incomnpalible_gos_status(
get_publication_matched_stats)
gel_key velue()
2ed_roalched_subseriplionsd)

et matched subscription_datal
walt for acknowledgments[
Tookup_instamce)

w' [dtliiuil_dalam'il:r_qos

* 1
= Topic
1
1 e T
qi-\ Aerammplicil -
g implicits -
\\ n’_’.'/ 0.1
ol -,

StatusCondition

X)

WailSel

*
== implicit==
0.1

Wl

woinlerlaces

DentaWriter Listener e

or_ollered_incoropatible_gos()
on_offered deadline missed()
on liveliness lost()
or_publication_roatch()

[

suspend publicaticns)
resurne publicalions()
end_coherent_changes(
delete_contained_entities()

sl delaoll_dalawriler_gos()
get_defanlt_datawriter_qos))
copy from topic gos()
wail_for_acknowledgrnenls()
delete_contained_entities_copy

<<jtnplicit==
1

Sinterface= =
PublizirerListener

Publishers are used to perform the operations listed in Table 6.1 on page 6-4. You can find more
information about the operations by looking in the section listed under the Reference column.
For details such as formal parameters and return codes, please see the API Reference HTML

documentation.

Note: Some operations cannot be used within a listener callback, see Restricted Operations in
Listener Callbacks (Section 4.5.1).

Creating Publishers Explicitly vs. Implicitly

To send data, your application must have a Publisher. However, you are not required to explicitly

create one. If you do not create one, the middleware will implicitly create a Publisher the first
time you create a DataWriter using the DomainParticipant’s operations. It will be created with
default QoS (DDS_PUBLISHER_QOS_DEFAULT) and no Listener.

6-3

Publishers

Table 6.1 Publisher Operations
qukmg Operation Description Reference
with ...

begin_coherent_ Indlcat?s' th;?t the application will begin a coherent set Section 6.3.10
changes of modifications.
create_datawriter Creates a DataWriter that will belong to the Publisher.
create_datawriter_ Sets the DataWriter’s QoS based on a specified QoS Section 6.3.1
with_profile profile.

. Copies relevant QosPolicies from a Topic into a .
copy_from_topic_qos DataWriterQoS structure. Section 6.2.4.6
delete_contained_ Deletes all of the DataWriters that were created by the .

o . Section 6.2.3.1

entities Publisher.

delete_datawriter Deletes a DataWriter that belongs to the Publisher. Section 6.3.3

end_coherent_changes Endg the coherent set initiated by Section 6.3.10
begin_coherent_changes().

get_all_datawriters 5:;2eves all the DataWriters created from this Pub- Section 6.3.2

DataWriters :

get_default_ Copies the Publisher’s default DataWriterQoS values Section 6.3.15

datawriter_qos into a DataWriterQos structure. o
Will always return 0 since there are no Statuses cur- .

get_status_changes rently defined for Publishers. Section 4.1.4

lookup_datawriter ?;,t;cleves a DataWriter previously created for a specific Section 6.2.6

set_default_datawriter_ Sets or changes the default DataWriterQos values.

qos .

: - Section 6.2.4.5
set_default_datawriter_ | Sets or changes the default DataWriterQos values
qos_with_profile based on a QoS profile.

Blocks until all data written by the Publisher’s reliable
wait_for_ DataWriters are acknowledged by all matched reliable Section 6.2.7
acknowledgments DataReaders, or until the a specified timeout duration, -
max_wait, elapses.
get_default_library Gets the Publisher’s default QoS profile library.
get_default_profile Gets the Publisher’s default QoS profile.
Libraries get_default_proflle_ Gets the’hbrary that contains the Publisher’s default Section 6.2.4.4
and Profiles | library QoS profile.
set_default_library Sets the default library for a Publisher.
set_default_profile Sets the default profile for a Publisher.
.. t participant Gets the DomainParticipant that was used to create the Section 6.2.6
Participants | get_particip Publisher. “

6-4

Publishers

Table 6.1

6.2.2

Publishers set_qos_with_profﬂe file

Publisher Operations
Vg;ilﬁiig Operation Description Reference

enable Enables the Publisher. Section 4.1.2

equals Compares two Publisher’s QoS structures for equality. | Section 6.2.4.2
Gets the Publisher’s current QosPolicy settings. This is

get_qos most often used in preparation for calling set_qos().
Sets the Publisher’s QoS. You can use this operation to

set_qos change the values for the Publisher’s QosPolicies. Note, Section 6.2.4

however, that not all QosPolicies can be changed after
the Publisher has been created.

Sets the Publisher’s QoS based on a specified QoS pro-

get_listener Gets the currently installed Listener.

Sets the Publisher’s Listener. If you created the Pub-|gection 6.2.5
set_listener lisher without a Listener, you can use this operation to
add one later.

Provides a hint that multiple data-objects within the
suspend_publications | Publisher are about to be written. Connext does not

currently use this hint. Section 6.2.9

resume_publications Reverses the action of suspend_publications().

A Publisher (implicit or explicit) gets its own default QoS and the default QoS for its child
DataWriters from the DomainParticipant. These default QoS are set when the Publisher is created.
(This is true for Subscribers and DataReaders, too.)

The 'implicit Publisher' can be accessed using the DomainParticipant’s get_implicit_publisher()
operation (see Section 8.3.9). You can use this ‘implicit Publisher’ just like any other Publisher (it
has the same operations, QosPolicies, etc.). So you can change the mutable QoS and set a Lis-
tener if desired.

DataWriters are created by calling create_datawriter() or create_datawriter_with_profile()—
these operations exist for DomainParticipants and Publishers. If you use the DomainParticipant to
create a DataWriter, it will belong to the implicit Publisher. If you use a Publisher to create a
DataWriter, it will belong to that Publisher.

The middleware will use the same implicit Publisher for all DataWriters that are created using the
DomainParticipant’s operations.

Having the middleware implicitly create a Publisher allows you to skip the step of creating a
Publisher. However, having all your DataWriters belong to the same Publisher can reduce the con-
currency of the system because all the write operations will be serialized.

Creating Publishers

Before you can explicitly create a Publisher, you need a DomainParticipant (see Section 8.3). To
create a Publisher, use the DomainParticipant’s create_publisher() or
create_publisher_with_profile() operations:

DDSPublisher * create publisher (const DDS PublisherQos &gos,
DDSPublisherListener *listener,
DDS_StatusMask mask)

DDSPublisher * create publisher with profile (
const char *library name,

6-5

Publishers

Figure 6.2

const char *profile name,
DDSPublisherListener *listener,
DDS_ StatusMask mask)

A QoS profile is way to use QoS settings from an XML file or string. With this approach, you can
change QoS settings without recompiling the application. For details, see Chapter 17: Configur-
ing QoS with XML.

gos If you want the default QoS settings (described in the API Reference HTML documenta-
tion), use DDS_PUBLISHER_QOS_DEFAULT for this parameter (see Figure 6.2). If you
want to customize any of the QosPolicies, supply a QoS structure (see Figure 6.3). The
QoS structure for a Publisher is described in Section 6.4.

Note: If you use DDS_PUBLISHER_QOS_DEFAULT, it is not safe to create the Pub-
lisher while another thread may be simultaneously calling set_default_publisher_qos().

listener Listeners are callback routines. Connext uses them to notify your application when spe-
cific events (status changes) occur with respect to the Publisher or the DataWriters created
by the Publisher. The listener parameter may be set to NULL if you do not want to install a
Listener. If you use NULL, the Listener of the DomainParticipant to which the Publisher
belongs will be used instead (if it is set). For more information on PublisherListeners, see
Section 6.2.5.

mask This bit-mask indicates which status changes will cause the Publisher’s Listener to be
invoked. The bits set in the mask must have corresponding callbacks implemented in the
Listener. If you use NULL for the Listener, use DDS_STATUS_MASK_NONE for this
parameter. If the Listener implements all callbacks, use DDS_STATUS_MASK_ALL. For
information on statuses, see Listeners (Section 4.4).

library_name A QoS Library is a named set of QoS profiles. See QoS Libraries (Section 17.10). If
NULL is used for library_name, the DomainParticipant’s default library is assumed (see
Section 6.2.4.4).

profile_name A QoS profile groups a set of related QoS, usually one per entity. See QoS Profiles
(Section 17.9). If NULL is used for profile_name, the DomainParticipant’s default profile is
assumed and library_name is ignored.

Creating a Publisher with Default QosPolicies

// create the publisher
DDSPublisher* publisher =
participant->create publisher (DDS_PUBLISHER QOS DEFAULT,

NULL,
DDS_STATUS MASK_NONE) ;

if (publisher == NULL) {

// handle error
}i

For more examples, see Configuring QoS Settings when the Publisher is Created (Section
6.2.4.1).

After you create a Publisher, the next step is to use the Publisher to create a DataWriter for each
Topic, see Section 6.3.1. For a list of operations you can perform with a Publisher, see Table 6.1 on
page 6-4.

6-6

Publishers

6.2.3

6.2.3.1

6.2.4

6.2.4.1

Deleting Publishers
This section applies to both implicitly and explicitly created Publishers.
To delete a Publisher:

1. You must first delete all DataWriters that were created with the Publisher. Use the Pub-
lisher’s delete_datawriter() operation to delete them one at a time, or use the
delete_contained_entities() operation (Section 6.2.3.1) to delete them all at the same
time.

DDS_ReturnCode_ t delete_datawriter (DDSDataWriter *a_datawriter)

2. Delete the Publisher by using the DomainParticipant’s delete_publisher() operation.
DDS ReturnCode t delete publisher (DDSPublisher *p)

Note: A Publisher cannot be deleted within a Listener callback, see Restricted Operations in Lis-
tener Callbacks (Section 4.5.1).

Deleting Contained DataWriters

The Publisher’s delete_contained_entities() operation deletes all the DataWriters that were cre-
ated by the Publisher.

DDS_ReturnCode_t delete contained entities ()

After this operation returns successfully, the application may delete the Publisher (see
Section 6.2.3).

Setting Publisher QosPolicies

A Publisher’s QosPolicies control its behavior. Think of the policies as the configuration and
behavior ‘properties” of the Publisher. The DDS_PublisherQos structure has the following for-
mat:

DDS_PublisherQos struct {

DDS PresentationQosPolicy presentation;

DDS PartitionQosPolicy partition;
DDS_GroupDataQosPolicy group data;
DDS_EntityFactoryQosPolicy entity factory;
DDS_AsynchronousPublisherQosPolicy asynchronous_ publisher;
DDS_ExclusiveAreaQosPolicy exclusive_ area;
DDS_EntityNameQosPolicy publisher name;

} DDS_PublisherQos;

Note: set_qos() cannot always be used in a listener callback; see Restricted Operations in Lis-
tener Callbacks (Section 4.5.1).

Table 6.2 summarizes the meaning of each policy. (They appear alphabetically in the table.) For
information on why you would want to change a particular QosPolicy, see the referenced sec-
tion. For defaults and valid ranges, please refer to the API Reference HTML documentation for

each policy.

Configuring QoS Settings when the Publisher is Created

As described in Creating Publishers (Section 6.2.2), there are different ways to create a Publisher,
depending on how you want to specify its QoS (with or without a QoS Profile).

6-7

Publishers

Table 6.2

Publisher QosPolicies

QosPolicy

Description

ASYNCHRONOUS_PUBLISHER QosPol-
icy (DDS Extension) (Section 6.4.1)

Configures the mechanism that sends user data in an exter-
nal middleware thread.

ENTITYFACTORY QosPolicy
6.4.2)

(Section

Controls whether or not child entities are created in the
enabled state.

ENTITY_NAME QosPolicy (DDS
Extension) (Section 6.5.9)

Assigns a name and role_name to a Publisher.

EXCLUSIVE_AREA QosPolicy (DDS

Extension) (Section 6.4.3)

Configures multi-thread concurrency and deadlock preven-
tion capabilities.

GROUP_DATA QosPolicy (Section 6.4.4)

Along with TOPIC_DATA QosPolicy (Section 5.2.1) and
USER_DATA QosPolicy (Section 6.5.25), this QosPolicy is
used to attach a buffer of bytes to Connext's discovery meta-
data.

PARTITION QosPolicy (Section 6.4.5)

Adds string identifiers that are used for matching DataRead-
ers and DataWriters for the same Topic.

PRESENTATION QosPolicy (Section 6.4.6)

Controls how Connext presents data received by an applica-
tion to the DataReaders of the data.

1 In Figure 6.2 on page 6-6 we saw an example of how to explicitly create a Publisher with
default QosPolicies. It used the special constant, DDS_PUBLISHER_QOS_DEFAULT,
which indicates that the default QoS values for a Publisher should be used. Default Pub-
lisher QosPolicies are configured in the DomainParticipant; you can change them with the

DomainParticipant’s

set_default_publisher qos() or

set_default_publisher_qos_with_profile() operation (see Section 8.3.6.5).

[To create a Publisher with non-default QoS settings, without using a QoS profile, see
Figure 6.3 on page 6-9. It uses the DomainParticipant’s get_default_publisher_qos()
method to initialize a DDS_PublisherQos structure. Then the policies are modified from
their default values before the QoS structure is passed to create_publisher().

[You can also create a Publisher and specify its QoS settings via a QoS Profile. To do so, call
create_publisher_with_profile(), as seen in Figure 6.4 on page 6-9.

[If you want to use a QoS profile, but then make some changes to the QoS before creating
the Publisher, call the DomainParticipantFactory’s get_publisher_qos_from_profile(),
modify the QoS and use the modified QoS structure when calling create_publisher(), as

seen in Figure 6.5 on page 6-10.

For more information, see Creating Publishers (Section 6.2.2) and Chapter 17: Configuring QoS

with XML.

6-8

Publishers

Figure 6.3 Creating a Publisher with Non-default QosPolicies (not from a profile)
DDS_PublisherQos publisher gos;?®

// get defaults
if (participant->get default publisher gos(publisher gos) !=
DDS_RETCODE_OK) {
// handle error
}
// make QoS changes here
// for example, this changes the ENTITY FACTORY QoS
publisher gos.entity factory.autoenable created entities =
DDS_BOOLEAN FALSE;
// create the publisher
DDSPublisher* publisher =
participant->create publisher (publisher gos,
NULL, DDS_STATUS MASK NONE) ;
if (publisher == NULL) {
// handle error

1. For the C API, you need to use DDS_PublisherQos_INITIALIZER or DDS_PublisherQos_initialize(). See
Section 4.2.2

Figure 6.4 Creating a Publisher with a QoS Profile

// create the publisher with QoS profile
DDSPublisher* publisher =
participant->create publisher with profile(

“MyPublisherLibary”,
“MyPublisherProfile”,
NULL, DDS_STATUS MASK NONE) ;

if (publisher == NULL) ({

// handle error

6-9

Publishers

Figure 6.5 Getting QoS Values from a Profile, Changing QoS Values, Creating a Publisher with

6.2.4.2

6.24.3

Modified QoS Values

DDS_PublisherQos publisher_qos;1

// Get publisher QoS from profile
retcode = factory->get publisher gos from profile (publisher gos,
“PublisherLibrary”,
“PublisherProfile”) ;
if (retcode != DDS_RETCODE OK) {
// handle error
}

// Makes QoS changes here
// New entity factory autoenable created entities will be true
publisher gos.entity factory.autoenable created entities =
DDS_BOOLEAN_TRUE;
// create the publisher with modified QoS
DDSPublisher* publisher = participant->create publisher(
“Example Foo”,
type name,
publisher gos,
NULL, DDS_STATUS MASK NONE) ;
if (publisher == NULL) {
// handle error
}

1. For the C API, you need to use DDS_PublisherQos_INITIALIZER or DDS_PublisherQos_initialize(). See
Section 4.2.2

Comparing QoS Values

The equals() operation compares two Publisher’s DDS_PublisherQoS structures for equality. It
takes two parameters for the two Publisher’s QoS structures to be compared, then returns TRUE
is they are equal (all values are the same) or FALSE if they are not equal.

Changing QoS Settings After the Publisher Has Been Created

There are 2 ways to change an existing Publisher’s QoS after it is has been created—again
depending on whether or not you are using a QoS Profile.

(d To change an existing Publisher’s QoS programmatically (that is, without using a QoS
profile): get_qos() and set_qos(). See the example code in Figure 6.6. It retrieves the cur-
rent values by calling the Publisher’s get_qos() operation. Then it modify the value and
call set_qos() to apply the new value. Note, however, that some QosPolicies cannot be
changed after the Publisher has been enabled—this restriction is noted in the descriptions
of the individual QosPolicies.

[d You can also change a Publisher’s (and all other Entities’) QoS by using a QoS Profile and
calling set_qos_with_profile(). For an example, see Figure 6.7. For more information, see
Chapter 17: Configuring QoS with XML.

6-10

Publishers

Figure 6.6 Changing the Qos of an Existing Publisher

Figure 6.7

6.24.4

DDS_PublisherQos publisher gos;?!
// Get current QoS. publisher points to an existing DDSPublisher.
if (publisher-s>get gos(publisher gos) != DDS_RETCODE OK) {
// handle error
}

// make changes
// New entity factory autoenable created entities will be true
publisher gos.entity factory.autoenable created entities =DDS BOOLEAN TRUE;
// Set the new QoS
if (publisher->set gos(publisher gos) != DDS_RETCODE OK) ({
// handle error
}

1. For the C API, you need to use DDS_PublisherQos_INITIALIZER or DDS_PublisherQos_Initialize(). See
Section 4.2.2

Changing the QoS of an Existing Publisher with a QoS Profile

retcode = publisher->set gos with profile(
“PublisherProfileLibrary”, ”PublisherProfile”) ;

if (retcode != DDS_RETCODE_OK) {
// handle error
}

Getting and Setting the Publisher’s Default QoS Profile and Library

You can retrieve the default QoS profile used to create Publishers with the get_default_profile()
operation.

You can also get the default library for Publishers, as well as the library that contains the Pub-
lisher’s default profile (these are not necessarily the same library); these operations are called
get_default_library() and get_default_library_profile(), respectively. These operations are for
informational purposes only (that is, you do not need to use them as a precursor to setting a
library or profile.) For more information, see Chapter 17: Configuring QoS with XML.

virtual const char * get default library ()
const char * get default profile ()
const char * get_default profile library ()

There are also operations for setting the Publisher’s default library and profile:

DDS ReturnCode t set default library (const char * library name)
DDS ReturnCode t set default profile (const char * library name,
const char * profile_name)

These operations only affect which library/profile will be used as the default the next time a
default Publisher library /profile is needed during a call to one of this Publisher’s operations.

When calling a Publisher operation that requires a profile_name parameter, you can use NULL
to refer to the default profile. (This same information applies to setting a default library.) If the
default library /profile is not set, the Publisher inherits the default from the DomainParticipant.

set_default_profile() does not set the default QoS for DataWriters created by the Publisher; for
this functionality, use the Publisher’s set_default datawriter_qos_with_profile(), see

6-11

Publishers

6.2.4.5

6.2.4.6

Section 6.2.4.5 (you may pass in NULL after having called the Publisher’s set_default_profile()).

set_default_profile() does not set the default QoS for newly created Publishers; for this function-
ality, use the DomainParticipant’s set_default_publisher_qos_with_profile() operation, see
Section 8.3.6.5.

Getting and Setting Default QoS for DataWriters

These operations set the default QoS that will be used for new DataWriters if create_datawriter()
is called with DDS_DATAWRITER_QOS_DEFAULT as the ‘qos’ parameter:

DDS ReturnCode t set default datawriter gos (const DDS DataWriterQos &gos)

DDS_ReturnCode_t set default datawriter gos_with profile (
const char *library name,
const char *profile name)

The above operations may potentially allocate memory, depending on the sequences contained
in some QoS policies.

To get the default QoS that will be used for creating DataWriters if create_datawriter() is called
with DDS_PARTICIPANT_QOS_DEFAULT as the ‘qos’ parameter:

DDS ReturnCode t get default datawriter gos (DDS DataWriterQos & gos)

This operation gets the QoS settings that were specified on the last successful call to
set_default_datawriter_qos() or set_default_datawriter_qos_with_profile(), or if the call was
never made, the default values listed in DDS_DataWriterQos.

Note: It is not safe to set the default DataWriter QoS values while another thread may be simulta-
neously calling get_default datawriter_qos(), set_default_datawriter_qos(), or
create_datawriter() with DDS_DATAWRITER_QOS_DEFAULT as the qos parameter. It is also
not safe to get the default DataWriter QoS values while another thread may be simultaneously
calling set_default_datawriter_qos(),

Other Publisher QoS-Related Operations

[d Copying a Topic’s QoS into a DataWriter's QoS This method is provided as a convenience
for setting the values in a DataWriterQos structure before using that structure to create a
DataWriter. As explained in Section 5.1.3, most of the policies in a TopicQos structure do
not apply directly to the Topic itself, but to the associated DataWriters and DataReaders of
that Topic. The TopicQos serves as a single container where the values of QosPolicies that
must be set compatibly across matching DataWriters and DataReaders can be stored.

Thus instead of setting the values of the individual QosPolicies that make up a DataWrit-
erQos structure every time you need to create a DataWriter for a Topic, you can use the
Publisher’s copy_from_topic_qos() operation to “import” the Topic’s QosPolicies into a
DataWriterQos structure. This operation copies the relevant policies in the TopicQos to the
corresponding policies in the DataWriterQos.

This copy operation will often be used in combination with the Publisher’s
get_default_datawriter_qos() and the Topic’s get_qos() operations. The Topic’s QoS val-
ues are merged on top of the Publisher’s default DataWriter QosPolicies with the result
used to create a new DataWriter, or to set the QoS of an existing one (see Section 6.3.15).

(1 Copying a Publisher's QoS C API users should use the DDS_PublisherQos_copy() opera-
tion rather than using structure assignment when copying between two QoS structures.
The copy() operation will perform a deep copy so that policies that allocate heap mem-
ory such as sequences are copied correctly. In C++, C++/CLI, C# and Java, a copy con-
structor is provided to take care of sequences automatically.

6-12

Publishers

6.2.5

[Clearing QoS-Related Memory Some QosPolicies contain sequences that allocate mem-
ory dynamically as they grow or shrink. The C API's DDS_PublisherQos_finalize()
operation frees the memory used by sequences but otherwise leaves the QoS unchanged.
C API users should call finalize() on all DDS_PublisherQos objects before they are freed,
or for QoS structures allocated on the stack, before they go out of scope. In C++, C++/
CLIL C# and Java, the memory used by sequences is freed in the destructor.

Setting Up Publisherlisteners

Like all Entities, Publishers may optionally have Listeners. Listeners are user-defined objects that
implement a DDS-defined interface (i.e. a pre-defined set of callback functions). Listeners pro-
vide the means for Connext to notify applications of any changes in Statuses (events) that may be
relevant to it. By writing the callback functions in the Listener and installing the Listener into the
Publisher, applications can be notified to handle the events of interest. For more general informa-
tion on Listeners and Statuses, see Section 4.4.

Note: Some operations cannot be used within a listener callback, see Restricted Operations in
Listener Callbacks (Section 4.5.1).

As illustrated in Figure 6.1 on page 6-3, the PublisherListener interface extends the DataWriterLis-
tener interface. In other words, the PublisherListener interface contains all the functions in the
DataWriterListener interface. There are no Publisher-specific statuses, and thus there are no Pub-
lisher-specific functions.

Instead, the methods of a PublisherListener will be called back for changes in the Statuses of any
of the DataWriters that the Publisher has created. This is only true if the DataWriter itself does not
have a DataWriterListener installed, see Section 6.3.4. If a DataWriterListener has been installed
and has been enabled to handle a Status change for the DataWriter, then Connext will call the
method of the DataWriterListener instead.

If you want a Publisher to handle status events for its DataWriters, you can set up a PublisherLis-
tener during the Publisher’s creation or use the set_listener() method after the Publisher is created.
The last parameter is a bit-mask with which you should set which Status events that the Pub-
lisherListener will handle. For example,

DDS_StatusMask mask = DDS_OFFERED DEADLINE MISSED STATUS |
DDS_OFFERED_INCOMPATIBLE QOS STATUS;
publisher = participant->create_publisher (DDS_PUBLISHER_QOS_ DEFAULT,
listener, mask) ;
or

DDS_StatusMask mask = DDS_OFFERED DEADLINE MISSED STATUS |
DDS_OFFERED_INCOMPATIBLE QOS STATUS;
publisher->set listener(listener, mask) ;

As previously mentioned, the callbacks in the PublisherListener act as ‘default’ callbacks for all
the DataWriters contained within. When Connext wants to notify a DataWriter of a relevant Status
change (for example, PUBLICATION_MATCHED), it first checks to see if the DataWriter has
the corresponding DataWriterListener callback enabled (such as the on_publication_matched ()
operation). If so, Connext dispatches the event to the DataWriterListener callback. Otherwise, Con-
next dispatches the event to the corresponding PublisherListener callback.

A particular callback in a DataWriter is not enabled if either:

(J The application installed a NULL DataWriterListener (meaning there are no callbacks for
the DataWriter at all).

6-13

Publishers

Figure 6.8

(J The application has disabled the callback for a DataWriterListener. This is done by turning
off the associated status bit in the mask parameter passed to the set_listener() or
create_datawriter() call when installing the DataWriterListener on the DataWriter. For
more information on DataWriterListeners, see Section 6.3.4.

Similarly, the callbacks in the DomainParticipantListener act as ‘default’ callbacks for all the Pub-
lishers that belong to it. For more information on DomainParticipantListeners, see Section 8.3.5.

For example, Figure 6.8 shows how to create a Publisher with a Listener that simply prints the
events it receives.

Example Code to Create a Publisher with a Simple Listener

class MyPublisherListener : public DDSPublisherListener ({
public:
virtual void on_offered deadline missed(DDSDataWriter* writer,
const DDS OfferedDeadlineMissedStatusé& status) ;

virtual void on liveliness lost (DDSDataWriter* writer,
const DDS LivelinessLostStatus& status);

virtual void on_offered incompatible gos(DDSDataWriter* writer,
const DDS OfferedIncompatibleQosStatus& status) ;

virtual void on publication matched (DDSDataWriter* writer,
const DDS PublicationMatchedStatus& status) ;

virtual void
on_reliable writer cache_ changed (DDSDataWriter* writer,
const DDS ReliableWriterCacheChangedStatus& status);

virtual void on reliable reader activity changed
(DDSDataWriter* writer,
const DDS_ReliableReaderActivityChangedStatus& status) ;

}i

void MyPublisherListener::on offered deadline missed(
DDSDataWriter* writer,
const DDS_OfferedDeadlineMissedStatus& status)

{
}

printf (“on _offered deadline missed\n”) ;

// ...Implement all remaining listeners in a similar manner...
DDSPublisherListener *myPubListener = new MyPublisherListener () ;
DDSPublisher* publisher = participant->create publisher (

DDS_PUBLISHER QOS DEFAULT,
myPubListener, DDS_ STATUS MASK ALL) ;

6-14

Publishers

6.2.6

6.2.7

6.2.8

Finding a Publisher’s Related Entities

These Publisher operations are useful for obtaining a handle to related entities:

[get_participant(): Gets the DomainParticipant with which a Publisher was created.

(J lookup_datawriter(): Finds a DataWriter created by the Publisher with a Topic of a particu-
lar name. Note that in the event that multiple DataWriters were created by the same Pub-
lisher with the same Topic, any one of them may be returned by this method.

(J DDS_Publisher_as_Entity(): This method is provided for C applications and is neces-
sary when invoking the parent class Entity methods on Publishers. For example, to call
the Entity method get_status_changes() on a Publisher, my_pub, do the following:

DDS _Entity get status_changes (DDS Publisher as Entity(my pub))

DDS_Publisher_as_Entity() is not provided in the C++, C++/CLI, C# and Java APIs
because the object-oriented features of those languages make it unnecessary.

Waiting for Acknowledgments in a Publisher

The Publisher’s wait_for_acknowledgments() operation blocks the calling thread until either all
data written by the Publisher’s reliable DataWriters is acknowledged or the duration specified by
the max_wait parameter elapses, whichever happens first.

Note that if a thread is blocked in the call to wait_for_acknowledgments() on a Publisher and a
different thread writes new samples on any of the Publisher’s reliable DataWriters, the new sam-
ples must be acknowledged before unblocking the thread that is waiting on
wait_for_acknowledgments().

DDS ReturnCode t wait for acknowledgments
(const DDS Duration t & max wait)

This operation returns DDS_RETCODE_OK if all the samples were acknowledged, or
DDS_RETCODE_TIMEOUT if the max_wait duration expired first.

There is a similar operation available for individual DataWriters, see Section 6.3.11.

The reliability protocol used by Connext is discussed in Chapter 10: Reliable Communications.

Statuses for Publishers

There are no statuses specific to the Publisher itself. The following statuses can be monitored by
the PublisherListener for the Publisher’s DataWriters.

(1 OFFERED_DEADLINE_MISSED Status (Section 6.3.6.4)

(1 LIVELINESS_LOST Status (Section 6.3.6.3)

(1 OFFERED_INCOMPATIBLE_QOS Status (Section 6.3.6.5)

(J PUBLICATION_MATCHED Status (Section 6.3.6.6)

(J RELIABLE_WRITER_CACHE_CHANGED Status (DDS Extension) (Section 6.3.6.7)

[RELIABLE_READER_ACTIVITY_CHANGED Status (DDS Extension) (Section 6.3.6.8)

6-15

DataWriters

6.2.9

6.3

Suspending and Resuming Publications

The operations suspend_publications() and resume_publications() provide a hint to Connext
that multiple data-objects within the Publisher are about to be written. Connext does not cur-
rently use this hint.

DataWriters

To create a DataWriter, you need a DomainParticipant and a Topic.

You need a DataWriter for each Topic that you want to publish. Once you have a DataWriter, you
can use it to perform the operations listed in Table 6.3. The most important operation is write(),
described in Section 6.3.8. For more details on all operations, see the API Reference HTML docu-
mentation.

DataWriters are created by using operations on a DomainParticipant or a Publisher, as described in
Section 6.3.1. If you use the DomainParticipant’s operations, the DataWriter will belong to an
implicit Publisher that is automatically created by the middleware. If you use a Publisher’s opera-
tions, the DataWriter will belong to that Publisher. So either way, the DataWriter belongs to a Pub-
lisher.

Note: Some operations cannot be used within a listener callback, see Restricted Operations in
Listener Callbacks (Section 4.5.1).

Table 6.3 DataWriter Operations
Working with Operation Description Reference
assert_liveliness Manually asserts the liveliness of the DataWriter. |Section 6.3.17
enable Enables the DataWriter. Section 4.1.2
equals Compares two DataWriter’s QoS structures for Section 6.3.15.2
equality.
get_qos Gets the QoS. Section 6.3.15
DataWriters lookup_instance Gets a handle, given an instance. (Useful for Section 6.3.14.3
keyed data types only.)
set_qos Modifies the QoS. Section 6.3.15
set_qos_with_profile Modifies the QoS based on a QoS profile. Section 6.3.15
get_listener Gets the currently installed Listener.
Section 6.3.4
set_listener Replaces the Listener.

6-16

DataWriters

Table 6.3 DataWriter Operations
Working with Operation Description Reference
. States that the instance no longer exists. (Useful
dispose
for keyed data types only.)
Same as dispose, but allows the application to Section 6.3.14.2
dispose_w_timestamp override the automatic source_timestamp. (Use-
ful for keyed data types only.)
flush Makes the batch available to be sent on the net- Section 6.3.9
work.
get_key_value kMe;;ps an instance_handle to the corresponding Section 6.3.14.4
A type-safe way to cast a pointer. This takes a
narrow DDSDataWriter pointer and ‘narrows’ it to a ‘Foo- | Section 6.3.7
DataWriter” where ‘Foo’ is the related data type.
FooData- States the intent of the DataWriter to write values
Writer register._instance of the data-instance that matches a specified lfey.
(See Improves the performance of subsequent writes

Section 6.3.7)

to the instance. (Useful for keyed data types only.)

register_instance_w_
timestamp

Like register_instance, but allows the application
to override the automatic source_timestamp.
(Useful for keyed data types only.)

unregister_instance

Reverses register_instance. Relinquishes the own-
ership of the instance. (Useful for keyed data

types only.)

unregister_instance_w_
timestamp

Like unregister_instance, but allows the applica-
tion to override the automatic source_timestamp.
(Useful for keyed data types only.)

Section 6.3.14.1

FooData-
Writer
(See
Section 6.3.7)

write Writes a new value for a data-instance.
. . Same as write, but allows the application to over- | Section 6.3.8
write_w_timestamp . . .
ride the automatic source_timestamp.
Same as write, but allows the application to spec-
write_w_params ify parameters such as source timestamp and |Section 6.3.8

instance handle.

dispose_w_params

Same as dispose, but allows the application to
specify parameters such as source timestamp and
instance handle..

Section 6.3.14.2

register_w_params

Same as register, but allows the application to
specify parameters such as source timestamp,
instance handle.

unregister_w_params

Same as unregister, but allows the application to
specify parameters such as source timestamp, and
instance handle.

Section 6.3.14.1

6-17

DataWriters

Table 6.3 DataWriter Operations
Working with Operation Description Reference
Gets a list of subscriptions that have a matching
get_matched_ o and bl h .
subscriptions Topic and compatible QoS. These are the subscrip-
tions currently associated with the DataWriter.
get_matched_ Gets information on a subscription with a match-
subscription_data ing Topic and compatible QoS. Section 6.3.16.1
Matched Gets a list of locators for subscriptions that have a
Subscriptions | get_matched_ matching Topic and compatible QoS. These are
subscription_locators the subscriptions currently associated with the
DataWriter.
get_mefltched_ Gets information about the DomainParticipant of a .
subscription_ . .. Section 6.3.16.2
.. matching subscription.
participant_data
Gets a list of statuses that have changed since the
get_status_changes last time the application read the status or the lis- | Section 4.1.4
teners were called.
get_liveliness_lost_status | Gets LIVELINESS_LOST status.
get_offered_deadline_ | -\ GFFERED DEADLINE_MISSED status.
missed_status
get_offered_ Gets OFFERED_INCOMPATIBLE_QOS status.
incompatible_qos_status
sgte:t—ups ublication_match_ | . pUBIICATION_MATCHED_QOS status.
get_reliable_writer_ Gets RELIABLE_WRITER_CACHE_CHANGED | goction 6.3.6
cache_changed_status status
Status i Gets
get_reliable_reader_ RELIABLE_READER_ACTIVITY_CHANGED
activity_changed_status
status
get_datawriter_cache_ | o\ pATA WRITER_CACHE_status
status
get_datawriter_protocol_
status Gets DATA_WRITER_PROTOCOL status
get_matched_ Gets DATA_WRITER_PROTOCOL status for this
subscription_datawriter_ | DataWriter, per matched subscription identified
protocol_status by the subscription_handle.

Section 6.3.6
get_matched_ . | Gets DATA_WRITER_PROTOCOL status for this
subscription_datawriter_) . . .

DataWriter, per matched subscription as identi-
protocol_status_ .
fied by a locator.
by_locator
. Gets the Publisher to which the DataWriter
get_publisher)
belongs. Section 6.3.16.3
get_topic Get the Topic associated with the DataWriter.
Other Blocks the calling thread until either all data writ-
wait_for_ ten by the DataWriter is acknowledged by all Section 6.3.11
acknowledgements matched Reliable DataReaders, or until the a speci- cehon 6.9.
fied timeout duration, max_wait, elapses.

6-18

DataWriters

6.3.1

Creating DataWriters

Before you can create a DataWriter, you need a DomainParticipant, a Topic, and optionally, a Pub-
lisher.

DataWriters are created by calling create_datawriter() or create_datawriter_with_profile()—
these operations exist for DomainParticipants and Publishers. If you use the DomainParticipant to
create a DataWriter, it will belong to the implicit Publisher described in Section 6.2.1. If you use a
Publisher’s operations to create a DataWriter, it will belong to that Publisher.

DDSDataWriter* create datawriter (DDSTopic *topic,
const DDS_DataWriterQos &gos,
DDSDataWriterListener *listener,
DDS_StatusMask mask)

DDSDataWriter * create datawriter with profile (
DDSTopic * topic,
const char * library name,
const char * profile name,
DDSDataWriterListener * listener,
DDS_StatusMask mask)

A QoS profile is way to use QoS settings from an XML file or string. With this approach, you can
change QoS settings without recompiling the application. For details, see Chapter 17: Configur-
ing QoS with XML.

topic The Topic that the DataWriter will publish. This must have been previously created by the
same DomainParticipant.

gos If you want the default QoS settings (described in the API Reference HTML documenta-
tion), use the constant DDS_DATAWRITER_QOS_DEFAULT for this parameter (see
Figure 6.9 on page 6-20). If you want to customize any of the QosPolicies, supply a QoS
structure (see Section 6.3.15).

Note: If you use DDS_DATAWRITER_QOS_DEFAULT for the qos parameter, it is not safe
to create the DataWriter while another thread may be simultaneously calling the Pub-
lisher’s set_default_datawriter_qos() operation.

listener Listeners are callback routines. Connext uses them to notify your application of specific
events (status changes) that may occur with respect to the DataWriter. The listener parame-
ter may be set to NULL; in this case, the PublisherListener (or if that is NULL, the Domain-
ParticipantListener) will be used instead. For more information, see Section 6.3.4.

mask This bit-mask indicates which status changes will cause the Listener to be invoked. The
bits set in the mask must have corresponding callbacks implemented in the Listener. If you
use NULL for the Listener, use DDS_STATUS_MASK_NONE for this parameter. If the Lis-
tener implements all callbacks, use DDS_STATUS_MASK_ALL. For information on sta-
tuses, see Listeners (Section 4.4).

library_name A QoS Library is a named set of QoS profiles. See QoS Libraries (Section 17.10).

profile_name A QoS profile groups a set of related QoS, usually one per entity. See QoS Profiles
(Section 17.9).

For more examples on how to create a DataWriter, see Configuring QoS Settings when the
DataWriter is Created (Section 6.3.15.1)

After you create a DataWriter, you can use it to write data. See Writing Data (Section 6.3.8).

6-19

DataWriters

Note: When a DataWriter is created, only those transports already registered are available to the
DataWriter. The built-in transports are implicitly registered when (a) the DomainParticipant is
enabled, (b) the first DataWriter is created, or (c) you look up a built-in data reader, whichever
happens first.

Figure 6.9 Creating a DataWriter with Default QosPolicies and a Listener

6.3.2

6.3.3

// MyWriterListener is user defined, extends DDSDataWriterListener
DDSDataWriterListener* writer_ listener = new MyWriterListener() ;

DDSDataWriter* writer = publisher->create datawriter(
topic,
DDS DATAWRITER QOS DEFAULT,
writer_ listener,
DDS_STATUS MASK ALL) ;
if (writer == NULL) ({
// ... error

}i

// narrow it for your specific data type
FooDataWriter* foo writer = FooDataWriter::narrow(writer) ;

Getting All DataWriters

To retrieve all the DataWriters created by the Publisher, use the Publisher’s get_all_datawriters()
operation:

DDS_ReturnCode_t get_all datawriters(DDS_Publisher* self,
struct DDS DataWriterSeg* writers);

Deleting DataWriters
To delete a single DataWriter, use the Publisher’s delete_datawriter() operation:

DDS_ReturnCode t delete_datawriter (DDSDataWriter *a_datawriter)

Note: A DataWriter cannot be deleted within its own writer listener callback, see Restricted
Operations in Listener Callbacks (Section 4.5.1)

6-20

TN

DataWriters

6.3.4

To delete all of a Publisher’s DataWriters, use the Publisher’s delete_contained_entities() opera-
tion (see Section 6.2.3.1).

Special instructions for deleting DataWriters if you are using the ‘Timestamp’ APIs and
BY_SOURCE_TIMESTAMP Destination Order:

This note only applies when the DataWriter’s DestinationOrderQosPolicy’s kind is
BY_SOURCE_TIMESTAMP.

Calls to delete_datawriter() may fail if your application has previously used the “with time-
stamp” APIs (write_w_timestamp(), register_instance_w_timestamp(),
unregister_instance_w_timestamp(), or dispose_w_timestamp()) with a timestamp that is
larger than the time at which delete_datawriter() is called.

To prevent delete_datawriter() from failing in this situation, either:

[Change the WriterDataLifeCycle QoS Policy so that Connext will not auto-dispose
unregistered instances:

writer gos.writer data lifecycle.
autodispose unregistered instances =
DDS_BOOLEAN FALSE;
or

(d Explicitly call unregister_instance_w_timestamp() for all instances modified with the
*_w_timestamp() APIs before calling delete_datawriter().

Setting Up DataWriterListeners

DataWriters may optionally have Listeners. Listeners are essentially callback routines and provide
the means for Connext to notify your application of the occurrence of events (status changes) rel-
evant to the DataWriter. For more general information on Listeners, see Listeners (Section 4.4).

Note: Some operations cannot be used within a listener callback, see Restricted Operations in
Listener Callbacks (Section 4.5.1).

If you do not implement a DataWriterListener, the associated PublisherListener is used instead. If
that Publisher also does not have a Listener, then the DomainParticipant’s Listener is used if one
exists (see Section 6.2.5 and Section 8.3.5).

Listeners are typically set up when the DataWriter is created (see Section 6.2). You can also set one
up after creation by using the set_listener() operation. Connext will invoke a DataWriter’s Lis-
tener to report the status changes listed in Table 6.4 (if the Listener is set up to handle the partic-
ular status, see Section 6.3.4).

Table 6.4 DataWriterlistener Callbacks

This DataWriterListener . .
callback... ... is triggered by ...

A replacement of an existing instance by a new instance; see Con-

on_instance_replaced() figuring DataWriter Instance Replacement (Section 6.5.20.2)

on_liveliness_lost A change to LIVELINESS_LOST Status (Section 6.3.6.3)
on_offered_deadline_missed A change to OFFERED_DEADLINE_MISSED Status (Section
6.3.6.4)
. . A change to OFFERED_INCOMPATIBLE_QOS Status (Section
on_offered_incompatible_qos 6.3.6.5)

6-21

DataWriters

Table 6.4

6.3.5

Table 6.5

6.3.6

DataWriterlListener Callbacks

This DataWriterListener

callback... ... is triggered by ...

on_publication_matched A change to PUBLICATION_MATCHED Status (Section 6.3.6.6)

A change to RELIABLE_WRITER_CACHE_CHANGED Status

on_reliable_writer_cache_changed (DDS Extension) (Section 6.3.6.7)

A change to RELIABLE_READER_ACTIVITY_CHANGED Status

on_reliable_reader_activity_changed (DDS Extension) (Section 6.3.6.8)

Checking DataWriter Status

You can access an individual communication status for a DataWriter with the operations shown
in Table 6.5.

DataWriter Status Operations

Use this operation... ...to retrieve this status:

get_datawriter_cache_status DATA_WRITER_CACHE_STATUS (Section 6.3.6.1)

get_datawriter_protocol_status

get_matched_subscription_datawriter_
protocol_status DATA_WRITER_PROTOCOL_STATUS (Section 6.3.6.2)

get_matched_subscription_datawriter_
protocol_status_by_locator

get_liveliness_lost_status LIVELINESS_LOST Status (Section 6.3.6.3)
get_offered_deadline_missed_status OFFERED_DEADLINE_MISSED Status (Section 6.3.6.4)
get_offered_incompatible_qos_status OFFERED_INCOMPATIBLE_QOS Status (Section 6.3.6.5)
get_publication_match_status PUBLICATION_MATCHED Status (Section 6.3.6.6)

RELIABLE_WRITER_CACHE_CHANGED Status (DDS

get_reliable_writer_cache_changed_status Extension) (Section 6.3.6.7)

RELIABLE_READER_ACTIVITY_CHANGED Status

get_reliable_reader_activity_changed_status (DDS Extension) (Section 6.3.6.8)

get_status_changes A list of what changed in all of the above.

These methods are useful in the event that no Listener callback is set to receive notifications of
status changes. If a Listener is used, the callback will contain the new status information, in
which case calling these methods is unlikely to be necessary.

The get_status_changes() operation provides a list of statuses that have changed since the last
time the status changes were ‘reset.” A status change is reset each time the application calls the
corresponding get_*_status(), as well as each time Connext returns from calling the Listener call-
back associated with that status.

For more on status, see Setting Up DataWriterListeners (Section 6.3.4), Statuses for DataWriters
(Section 6.3.6), and Listeners (Section 4.4).

Statuses for DataWriters

There are several types of statuses available for a DataWriter. You can use the get_*_status()
operations (Section 6.3.15) to access them, or use a DataWriterListener (Section 6.3.4) to listen for
changes in their values. Each status has an associated data structure and is described in more
detail in the following sections.

6-22

DataWriters

(J DATA_WRITER_CACHE_STATUS (Section 6.3.6.1)

(J DATA_WRITER_PROTOCOL_STATUS (Section 6.3.6.2)

[LIVELINESS_LOST Status (Section 6.3.6.3)

(J OFFERED_DEADLINE_MISSED Status (Section 6.3.6.4)

(J OFFERED_INCOMPATIBLE_QOS Status (Section 6.3.6.5)

(J PUBLICATION_MATCHED Status (Section 6.3.6.6)

(J RELIABLE_WRITER_CACHE_CHANGED Status (DDS Extension) (Section 6.3.6.7)

(J RELIABLE_READER_ACTIVITY_CHANGED Status (DDS Extension) (Section 6.3.6.8)

6.3.6.1 DATA_WRITER_CACHE_STATUS
This status keeps track of the number of samples in the DataWriter’s queue.

This status does not have an associated Listener. You can access this status by calling the DataW-
riter’s get_datawriter_cache_status() operation, which will return the status structure described
in Table 6.6.

Table 6.6 DDS_DataWriterCacheStatus

Type Field Name Description

Highest number of samples in the DataWriter’s queue over the

DDS_Long | sample_count_peak lifetime of the DataWriter.

Current number of samples in the DataWriter’s queue (including

DDS_Long | sample_count unregister and dispose samples)

6.3.6.2 DATA_WRITER_PROTOCOL_STATUS

This status includes internal protocol related metrics (such as the number of samples pushed,
pulled, filtered) and the status of wire-protocol traffic.

(d Pulled samples are samples sent for repairs (that is, samples that had to be resent), for late
joiners, and all samples sent by the local DataWriter when push_on_write (in
DATA_WRITER_PROTOCOL QosPolicy (DDS Extension) (Section 6.5.3)) is
DDS_BOOLEAN_FALSE.

(d Pushed samples are samples sent on write() when push_on_write is
DDS_BOOLEAN_TRUE.

[Filtered samples are samples that are not sent due to DataWriter filtering (time-based fil-
tering and ContentFilteredTopics).

This status does not have an associated Listener. You can access this status by calling the follow-
ing operations on the DataWriter (all of which return the status structure described in Table 6.7
on page 6-24):

(| get_datawriter_protocol_status() returns the sum of the protocol status for all the
matched subscriptions for the DataWriter.

[get_matched_subscription_datawriter_protocol_status() returns the protocol status of a
particular matched subscription, identified by a subscription_handle.

[get_matched_subscription_datawriter_protocol_status_by_locator() returns the proto-
col status of a particular matched subscription, identified by a locator. (See Locator For-
mat (Section 14.2.1.1).)

6-23

DataWriters

Table 6.7

Note: Status for a remote entity is only kept while the entity is alive. Once a remote entity is no

longer alive, its status is deleted. If you try to get the matched subscription status for a remote

entity that is no longer alive, the “get status’ call will return an error.

DDS_DataWriterProtocolStatus

Type

Field Name

Description

DDS_LongLong

pushed_sample_count

The number of user samples pushed on write from a local
DataWriter to a matching remote DataReader.

pushed_sample_count_change

The incremental change in the number of user samples
pushed on write from a local DataWriter to a matching remote
DataReader since the last time the status was read.

pushed_sample_bytes

The number of bytes of user samples pushed on write from a
local DataWriter to a matching remote DataReader.

pushed_sample_bytes_change

The incremental change in the number of bytes of user sam-
ples pushed on write from a local DataWriter to a matching
remote DataReader since the last time the status was read.

DDS_LongLong

filtered_sample_count

The number of user samples preemptively filtered by a local
DataWriter due to Content-Filtered Topics.

filtered_sample_count_change

The incremental change in the number of user samples pre-
emptively filtered by a local DataWriter due to ContentFil-
teredTopics since the last time the status was read.

filtered_sample_bytes

The number of user samples preemptively filtered by a local
DataWriter due to ContentFiltered Topics.

filtered_sample_bytes_change

The incremental change in the number of user samples pre-
emptively filtered by a local DataWriter due to ContentFil-
teredTopics since the last time the status was read.

DDS_LongLong

sent_heartbeat_count

The number of Heartbeats sent between a local DataWriter
and matching remote DataReaders.

sent_heartbeat_count_change

The incremental change in the number of Heartbeats sent
between a local DataWriter and matching remote DataReaders
since the last time the status was read.

sent_heartbeat_bytes

The number of bytes of Heartbeats sent between a local
DataWriter and matching remote DataReader.

sent_heartbeat_bytes_change

The incremental change in the number of bytes of Heartbeats
sent between a local DataWriter and matching remote
DataReaders since the last time the status was read.

DDS_LongLong

pulled_sample_count

The number of user samples pulled from local DataWriter by
matching DataReaders.

pulled_sample_count_change

The incremental change in the number of user samples pulled
from local DataWriter by matching DataReaders since the last
time the status was read.

pulled_sample_bytes

The number of bytes of user samples pulled from local
DataWriter by matching DataReaders.

pulled_sample_bytes_change

The incremental change in the number of bytes of user sam-
ples pulled from local DataWriter by matching DataReaders
since the last time the status was read.

6-24

DataWriters

Table 6.7

DDS_DataWriterProtocolStatus

Type

Field Name

Description

DDS_LongLong

received_ack_count

The number of ACKs from a remote DataReader received by a
local DataWriter.

received_ack_count_change

The incremental change in the number of ACKs from a
remote DataReader received by a local DataWriter since the
last time the status was read.

received_ack_bytes

The number of bytes of ACKs from a remote DataReader
received by a local DataWriter.

received_ack_bytes_change

The incremental change in the number of bytes of ACKSs from
a remote DataReader received by a local DataWriter since the
last time the status was read.

DDS_LongLong

received_nack_count

The number of NACKSs from a remote DataReader received by
a local DataWriter.

received_nack_count_change

The incremental change in the number of NACKs from a
remote DataReader received by a local DataWriter since the
last time the status was read.

received_nack_bytes

The number of bytes of NACKs from a remote DataReader
received by a local DataWriter.

received_nack_bytes_change

The incremental change in the number of bytes of NACKs
from a remote DataReader received by a local DataWriter since
the last time the status was read.

DDS_LongLong

sent_gap_count

The number of GAPs sent from local DataWriter to matching
remote DataReaders.

sent_gap_count_change

The incremental change in the number of GAPs sent from
local DataWriter to matching remote DataReaders since the last
time the status was read.

sent_gap_bytes

The number of bytes of GAPs sent from local DataWriter to
matching remote DataReaders.

sent_gap_bytes_change

The incremental change in the number of bytes of GAPs sent
from local DataWriter to matching remote DataReaders since
the last time the status was read.

DDS_LongLong

rejected_sample_count

The number of times a sample is rejected for unanticipated
reasons in the send path.

rejected_sample_count_change

The incremental change in the number of times a sample is
rejected due to exceptions in the send path since the last time
the status was read.

DDS_Long

send_window_size

Current maximum number of outstanding samples allowed
in the DataWriter's queue.

6-25

DataWriters

Table 6.7 DDS_DataWriterProtocolStatus

Type

Field Name

Description

DDS_Sequence
Number_t

first_available_sample_
sequence_number

Sequence number of the first available sample in the Data\V-
riter’s reliability queue.

last_available_sample_
sequence_number

Sequence number of the last available sample in the Data\W-
riter’s reliability queue.

first_unacknowledged_sample_
sequence_number

Sequence number of the first unacknowledged sample in the
DataWriter’s reliability queue.

first_available_sample_virtual
sequence_number

Virtual sequence number of the first available sample in the
DataWriter’s reliability queue.

last_available_sample_virtual
sequence_number

Virtual sequence number of the last available sample in the
DataWriter’s reliability queue.

first_unacknowledged_sample_
virtual_sequence_number

Virtual sequence number of the first unacknowledged sample
in the DataWriter's reliability queue.

DDS_Sequence
Number_t

first_unacknowledged_sample_
subscription_handle

Instance Handle of the matching remote DataReader for which
the DataWriter has kept the first available sample in the reli-
ability queue.

first_unelapsed_keep_duration_
sample_sequence_number

Sequence number of the first sample kept in the DataWriter’s
queue whose keep_duration (applied when
disable_positive_acks is set) has not yet elapsed.

6-26

DataWriters

6.3.6.3

Table 6.8

6.3.6.4

Table 6.9

6.3.6.5

LIVELINESS_LOST Status

A change to this status indicates that the DataWriter failed to signal its liveliness within the time
specified by the LIVELINESS QosPolicy (Section 6.5.13).

It is different than the RELIABLE_READER_ACTIVITY_CHANGED Status (DDS Extension)
(Section 6.3.6.8) status that provides information about the liveliness of a DataWriter’s matched
DataReaders; this status reflects the DataWriter’s own liveliness.

The structure for this status appears in Table 6.8 on page 6-27.

DDS_LivelinessLostStatus

Type Field Name Description

Cumulative number of times the DataWriter failed to explicitly signal

DDS_Long | total_count its liveliness within the liveliness period.

The change in total_count since the last time the Listener was called

DDS_L total t_ch
S_Long otal_count_change or the status was read.

The DataWriterListener’s on_liveliness_lost() callback is invoked when this status changes. You
can also retrieve the value by calling the DataWriter’s get_liveliness_lost_status() operation.

OFFERED_DEADLINE_MISSED Status

A change to this status indicates that the DataWriter failed to write data within the time period
set in its DEADLINE QosPolicy (Section 6.5.5).

The structure for this status appears in Table 6.9.

DDS_OfferedDeadlineMissedStatus

Type Field Name Description

Cumulative number of times the DataWriter failed to write

DDS_Long total_count within its offered deadline.

DDS_Long fotal_count_change The change in total_count since the last time the Listener was
called or the status was read.

DDS_Instance Handle to the last data-instance in the DataWriter for which an

last_instance_handle offered deadline was missed.

Handle_t

The DataWriterListener’s on_offered_deadline_missed() operation is invoked when this status
changes. You can also retrieve the wvalue by «calling the DataWriter's
get_deadline_missed_status() operation.

OFFERED_INCOMPATIBLE_QOS Status

A change to this status indicates that the DataWriter discovered a DataReader for the same Topic,
but that DataReader had requested QoS settings incompatible with this DataWriter’s offered QoS.

The structure for this status appears in Table 6.10.

Table 6.10 DDS_OfferedincompatibleQoSStatus

Type Field Name Description

Cumulative number of times the DataWriter discovered a
DDS_Long total_count DataReader for the same Topic with a requested QoS that is
incompatible with that offered by the DataWriter.

The change in total_count since the last time the Listener was

DDS_Long total_count_change called or the status was read.

6-27

DataWriters

Table 6.10 DDS_OfferedincompatibleQoSStatus

6.3.6.6

Table 6.11

Type Field Name Description

The ID of the QosPolicy that was found to be incompatible the
last time an incompatibility was detected. (Note: if there are

DDS_QosPolicyld_t | last_policy_id multiple incompatible policies, only one of them is reported

here.)

A list containing—for each policy—the total number of times
DDS_ olicies that the DataWriter discovered a DataReader for the same Topic
QosPolicyCountSeq P with a requested QoS that is incompatible with that offered by

the DataWriter.

The DataWriterListener’s on_offered_incompatible_qos() callback is invoked when this status
changes. You can also retrieve the value by «calling the DataWriter’s
get_offered_incompatible_qos_status() operation.

PUBLICATION_MATCHED Status

A change to this status indicates that the DataWriter discovered a matching DataReader.

A 'match’ occurs only if the DataReader and DataWriter have the same Topic, same data type
(implied by having the same Topic), and compatible QosPolicies. In addition, if user code has
directed Connext to ignore certain DataReaders, then those DataReaders will never be matched.
See Section 16.4.2 for more on setting up a DomainParticipant to ignore specific DataReaders.

The structure for this status appears in Table 6.11.

DDS_PublicationMatchedStatus

Type Field Name Description

Cumulative number of times the DataWriter discovered a

total_count "match" with a DataReader.

The change in total_count since the last time the Listener was

total_count_chan
otal_count_c &€ called or the status was read.

DDS_Long The number of DataReaders currently matched to the DataW-
current_count .
riter.
current_count_peak The highest value that current_count has reached until now.

The change in current_count since the last time the listener

current_count_change
- . & was called or the status was read.

DDS_Instance L. Handle to the last DataReader that matched the DataWriter
last_subscription_handle .
Handle_t causing the status to change.

The DataWriterListener’s on_publication_matched() callback is invoked when this status
changes. You can also retrieve the value by «calling the DataWriter’s
get_publication_match_status() operation.

6-28

DataWriters

6.3.6.7

Table 6.12

Table 6.13

RELIABLE_WRITER_CACHE_CHANGED Status (DDS Extension)

A change to this status indicates that the number of unacknowledged samples' in a reliable
DataWriter's cache has reached one of these trigger points:

[The cache is empty (contains no unacknowledged samples)

[The cache is full (the number of unacknowledged samples has reached the value speci-
fied in DDS_ResourceLimitsQosPolicy::max_samples)

[The number of unacknowledged samples has reached a high or low watermark. See the

high_watermark

and

low_watermark

fields in Table 6.36 of the

DATA_WRITER_PROTOCOL QosPolicy (DDS Extension) (Section 6.5.3).

For more about the reliable protocol used by Connext and specifically, what it means for a sam-
ple to be ‘unacknowledged,” see Chapter 10: Reliable Communications.

The structure for this status appears in Table6.12. The supporting structure,
DDS_ReliableWriterCacheEventCount, is described in Table 6.13.
DDS_ReliableWriterCacheChangedStatus

Type Field Name Description

DDS_ReliableWriter

empty_reliable_writer_

cache

How many times the reliable DataWriter’s cache of unac-
knowledged samples has become empty.

full_reliable_writer_
cache

How many times the reliable DataWriter’s cache of unac-
knowledged samples has become full.

CacheEventCount low_watermark_ How many times the reliable DataWriter’s cache of unac-
reliable_writer_cache knowledged samples has fallen to the low watermark.
high_watermark_ How many times the reliable DataWriter’s cache of unac-
reliable_writer_cache knowledged samples has risen to the high watermark.
unacknowledged_ The current number of unacknowledged samples in the
sample_count DataWriter's cache.

DDS_Long

unacknowledged_
sample_count_peak

The highest value that unacknowledged_sample_count
has reached until now.

DDS_ReliableWriterCacheEventCount

Type Field Name Description
DDS_Long | total_count The total number of times the event has occurred.
The number of times the event has occurred since the Listener was
DDS_Long total_count_change .
last invoked or the status read.

The DataWriterListener’s on_reliable_writer_cache_changed() callback is invoked when this sta-

tus changes.

You

can also

retrieve

get_reliable_writer_cache_changed_status() operation.

If a

reliable
RtpsReliableWriterProtocol_t.min_send_window_size
RtpsReliableWriterProtocol_t.max_send_window_size set to

DataWriter's

send

the value by calling the DataWriter’s
window is finite, with both
and

positive values, then

full_reliable_writer_cache_status counts the number of times the unacknowledged sample
count reaches the send window size.

1. If batching is enabled, this still refers to a number of samples, not batches.

6-29

DataWriters

6.3.6.8

Table 6.14

6.3.7

RELIABLE_READER_ACTIVITY_CHANGED Status (DDS Extension)
This status indicates that one or more reliable DataReaders has become active or inactive.

This status is the reciprocal status to the LIVELINESS_CHANGED Status (Section 7.3.7.4) on the
DataReader. 1t is different than LIVELINESS_LOST Status (Section 6.3.6.3) status on the DataW-
riter, in that the latter informs the DataWriter about its own liveliness; this status informs the
DataWriter about the liveliness of its matched DataReaders.

A reliable DataReader is considered active by a reliable DataWriter with which it is matched if
that DataReader acknowledges the samples that it has been sent in a timely fashion. For the defi-
nition of "timely" in this context, see DATA_WRITER_PROTOCOL QosPolicy (DDS Extension)
(Section 6.5.3).

This status is only used for DataWriters whose RELIABILITY QosPolicy (Section 6.5.19) is set to
RELIABLE. For best-effort DataWriters, all counts in this status will remain at zero.

The structure for this status appears in Table 6.14.

DDS_ReliableReaderActivityChangedStatus

Type Field Name Description

The current number of reliable readers currently matched with

active_count this reliable DataWriter.

The number of reliable readers that have been dropped by this
inactive_count reliable DataWriter because they failed to send acknowledge-
DDS_Long ments in a timely fashion.

The change in the number of active reliable DataReaders since the

active_count_change . .
tve_count & Listener was last invoked or the status read.

The change in the number of inactive reliable DataReaders since

i i h . .
Inactive_count_change the Listener was last invoked or the status read.

The instance handle of the last reliable DataReader to be deter-
mined to be inactive.

DDS_Instance

Handle t last_instance_handle

The DataWriterListener’s on_reliable_reader_activity_changed() callback is invoked when this
status changes. You can also retrieve the value by calling the DataWriter’s
get_reliable_reader_activity_changed_status() operation.

Using a Type-Specific DataWriter (FooDataWriter)

Recall that a Topic is bound to a data type that specifies the format of the data associated with the
Topic. Data types are either defined dynamically or in code generated from definitions in IDL or
XML; see Chapter 3: Data Types and Data Samples. For each of your application's generated
data types, such as 'Foo', there will be a FooDataWriter class (or a set of functions in C). This
class allows the application to use a type-safe interface to interact with samples of type 'Foo'.
You will use the FooDataWriter's write() operation used to send data. For dynamically defined
data-types, you will use the DynamicDataWriter class.

In fact, you will use the FooDataWriter any time you need to perform type-specific operations,
such as registering or writing instances. Table 6.3 indicates which operations must be called
using FooDataWriter. For operations that are not type-specific, you can call the operation using
either a FooDataWriter or a DDSDataWriter objectl.

You may notice that the Publisher’s create_datawriter() operation returns a pointer to an object of
type DDSDataWriter; this is because the create_datawriter() method is used to create DataWrit-

1. In the C API, the non type-specific operations must be called using a DDS_DataWriter pointer.

6-30

DataWriters

6.3.8

ers of any data type. However, when executed, the function actually returns a specialization (an
object of a derived class) of the DataWriter that is specific for the data type of the associated
Topic. For a Topic of type ‘Foo’, the object actually returned by create_datawriter() is a FooData-
Writer.

To safely cast a generic DDSDataWriter pointer to a FooDataWriter pointer, you should use the
static narrow() method of the FooDataWriter class. The narrow() method will return NULL if
the generic DDSDataWriter pointer is not pointing at an object that is really a FooDataWriter.

For instance, if you create a Topic bound to the type ‘Alarm’, all DataWriters created for that Topic
will be of type ‘AlarmDataWriter.” To access the type-specific methods of AlarmDataWriter, you
must cast the generic DDSDataWriter pointer returned by create_datawriter(). For example:

DDSDataWriter* writer = publisher-s>create datawriter(topic,writer gos,
NULL, NULL) ;
AlarmDataWriter *alarm writer = AlarmDataWriter::narrow(writer);
if (alarm writer == NULL) ({
// ... error
}i

In the C AP, there is also a way to do the opposite of narrow(). FooDataWriter_as_datawriter()
casts a FooDataWriter as a DDSDataWriter, and FooDataReader_as_datareader() casts a FooDa-
taReader as a DDSDataReader.

Writing Data

The write() operation informs Connext that there is a new value for a data-instance to be pub-
lished for the corresponding Topic. By default, calling write() will send the data immediately
over the network (assuming that there are matched DataReaders). However, you can configure
and execute operations on the DataWriter’s Publisher to buffer the data so that it is sent in a batch
with data from other DataWriters or even to prevent the data from being sent. Those sending
“modes” are configured using the PRESENTATION QosPolicy (Section 6.4.6) as well as the Pub-
lisher’s suspend /resume_publications() operations. The actual transport-level communications
may be done by a separate, lower-priority thread when the Publisher is configured to send the
data for its DataWriters. For more information on threads, see Chapter 19: Connext Threading
Model.

When you call write(), Connext automatically attaches a stamp of the current time that is sent
with the data sample to the DataReader(s). The timestamp appears in the source_timestamp field
of the DDS_Samplelnfo structure that is provided along with your data using DataReaders (see
The Samplelnfo Structure (Section 7.4.6)).

DDS ReturnCode t write (const Foo &instance data,
const DDS InstanceHandle t &handle)

You can use an alternate DataWriter operation called write_w_timestamp(). This performs the
same action as write(), but allows the application to explicitly set the source_timestamp. This is
useful when you want the user application to set the value of the timestamp instead of the
default clock used by Connext.

DDS_ReturnCode t write w_timestamp (const Foo &instance_data,
const DDS_InstanceHandle_t &handle,
const DDS_Time_ t &source_timestamp)

Note that, in general, the application should not mix these two ways of specifying timestamps.
That is, for each DataWriter, the application should either always use the automatic timestamp-
ing mechanism (by calling the normal operations) or always specify a timestamp (by calling the
“w_timestamp” variants of the operations). Mixing the two methods may result in not receiving
sent data.

6-31

DataWriters

You can also use an alternate DataWriter operation, write_w_params(), which performs the
same action as write(), but allows the application to explicitly set the fields contained in the
DDS_WriteParams structure, see Table 6.15 on page 6-32.

Table 6.15 DDS_WriteParams_t

Type

Field Name

Description

DDS_Boolean

replace_auto

Allows retrieving the actual value of those fields that were
automatic.

When this field is set to true, the fields that were configured
with an automatic value (for example,
DDS_AUTO_SAMPLE_IDENTITY in identity) receive their
actual value after write_w_params is called.

DDS

Sampleldentity_t

identity

Identity of the sample being written. The identity consists of a
pair (Virtual Writer GUID, Virtual Sequence Number).
When the value DDS_AUTO_SAMPLE_IDENTITY is used, the
write_w_params() operation will determine the sample iden-
tity as follows:
® The Virtual Writer GUID (writer_guid) is the virtual
GUID associated with the DataWriter writing the sam-
ple. This virtual GUID is configured using the member
virtual_guid in DATA_WRITER_PROTOCOL_STATUS
(Section 6.3.6.2).

® The Virtual Sequence Number (sequence_number) is
increased by one with respect to the previous value.

The virtual sequence numbers for a given virtual GUID must be
strictly monotonically increasing. If you try to write a sample
with a sequence number smaller or equal to the last sequence
number, the write operation will fail.

A DataReader can inspect the identity of a received sample by
accessing the fields original publication_virtual_guid and
original_publication_virtual_sequence_number in The Sam-
pleInfo Structure (Section 7.4.6).

DDS_
Sampleldentity_t

related_sample_
identity

The identity of another sample related to this one.

The value of this field identifies another sample that is logically
related to the one that is written.

For example, the DataWriter created by a Replier (sets
Chapter 22: Introduction to the Request-Reply Communication
Pattern) uses this field to associate the identity of the request
sample to reponse sample.

To specify that there is no related sample identity use the value
DDS_UNKNOWN_SAMPLE_IDENTITY,

A DataReader can inspect the related sample identity of a
received sample by accessing the fields
related_original_publication_virtual_guid and
related_original_publication_virtual_sequence_number in
The Samplelnfo Structure (Section 7.4.6).

DDS_Time

source_timestamp

Source timestamp that will be associated to the sample that is
written.

If source_timestamp is set to DDS_TIMER_INVALID, the mid-
dleware will assign the value.

A DataReader can inspect the source_timestamp value of a
received sample by accessing the field source_timestamp The
Samplelnfo Structure (Section 7.4.6).

6-32

DataWriters

Table 6.15 DDS_WriteParams_t

6.3.8.1

Type Field Name Description

DDS The instance handle.

Insta;l ceHandle_t handle This value can be either the handle returned by a previous call

to register_instance or the special value DDS_HANDLE_NIL.

Positive integer designating the relative priority of the sample,
used to determine the transmission order of pending transmis-
sions.

To use publication priorities, the DataWriter’s PUBLISH_MODE
QosPolicy (DDS Extension) (Section 6.5.18) must be set for
asynchronous publishing and the DataWriter must use a
DDS_Long priority FlowController =~ with ~a highest-priority first
scheduling_policy.

For Multi-channel DataWriters, the publication priority of
a sample may be used as a filter criteria for determining
channel membership.

For additional information in Priority Samples see Prioritized
Samples (Section 6.6.4).

Note: Prioritized samples are not supported when using the Java, Ada, or NET APlIs. Therefore
the priority field in DDS_WriteParams_t does not exist when using these APlIs.

When using the C API, a newly created variable of type DDS_WriteParams_t should be initial-
ized by setting it to DDS_WRITEPARAMS_DEFAULT.

The write() operation also asserts liveliness on the DataWriter, the associated Publisher, and the
associated DomainParticipant. It has the same effect with regards to liveliness as an explicit call to
assert_liveliness(), see Section 6.3.17 and the LIVELINESS QosPolicy (Section 6.5.13). Maintain-
ing liveliness is important for DataReaders to know that the DataWriter still exists and for the
proper behavior of the OWNERSHIP QosPolicy (Section 6.5.15).

See also: Clock Selection (Section 8.6).

Blocking During a write()

The write() operation may block if the RELIABILITY QosPolicy (Section 6.5.19) kind is set to
Reliable and the modification would cause data to be lost or cause one of the limits specified in
the RESOURCE_LIMITS QosPolicy (Section 6.5.20) to be exceeded. Specifically, write() may
block in the following situations (note that the list may not be exhaustive), even if its HISTORY
QosPolicy (Section 6.5.10) is KEEP_LAST:

[If max_samples' < max_instances, the DataWriter may block regardless of the depth
field in the HISTORY QosPolicy (Section 6.5.10).

O If max_samples < (max_instances * depth), in the situation where the max_samples
resource limit is exhausted, Connext may discard samples of some other instance, as long
as at least one sample remains for such an instance. If it is still not possible to make space
available to store the modification, the writer is allowed to block.

(1 If min_send_window_size < max_samples, it is possible for the send_window_size
limit to be reached before Conmnext is allowed to discard samples, in which case the
DataWriter will block.

This operation may also block when using BEST_EFFORT Reliability (Section 6.5.20) and ASYN-
CHRONOUS Publish Mode (Section 6.5.18) QoS settings. In this case, the DataWriter will queue

1. max_samples in is DDS_ResourceLimitsQosPolicy

6-33

DataWriters

6.3.9

6.3.10

samples until they are sent by the asynchronous publishing thread. The number of samples that
can be stored is determined by the HISTORY QosPolicy (Section 6.5.10). If the asynchronous
thread does not send samples fast enough (such as when using a slow FlowController
(Section 6.6)), the queue may fill up. In that case, subsequent write calls will block.

If this operation does block for any of the above reasons, the RELIABILITY max_blocking_time
configures the maximum time the write operation may block (waiting for space to become avail-
able). If max_blocking_time elapses before the DataWriter can store the modification without
exceeding the limits, the operation will fail and return RETCODE_TIMEOUT.

Flushing Batches of Data Samples

The flush() operation makes a batch of data samples available to be sent on the network.

DDS_ReturnCode t flush ()

If the DataWriter’'s PUBLISH_MODE QosPolicy (DDS Extension) (Section 6.5.18) kind is not
ASYNCHRONOUS, the batch will be sent on the network immediately in the context of the call-
ing thread.

If the DataWriter’s PublishModeQosPolicy kind is ASYNCHRONOUS, the batch will be sent in
the context of the asynchronous publishing thread.

The flush() operation may block based on the conditions described in Blocking During a write()
(Section 6.3.8.1).

If this operation does block, the max_blocking_time in the RELIABILITY QosPolicy (Section
6.5.19) configures the maximum time the write operation may block (waiting for space to
become available). If max_blocking_time elapses before the DataWriter is able to store the mod-
ification without exceeding the limits, the operation will fail and return TIMEOUT.

For more information on batching, see the BATCH QosPolicy (DDS Extension) (Section 6.5.2).

Writing Coherent Sets of Data Samples

A publishing application can request that a set of data-sample changes be propagated in such a
way that they are interpreted at the receivers' side as a cohesive set of modifications. In this case,
the receiver will only be able to access the data after all the modifications in the set are available
at the subscribing end.

This is useful in cases where the values are inter-related. For example, suppose you have two
data-instances representing the ‘altitude’” and ‘velocity vector” of the same aircraft. If both are
changed, it may be important to ensure that reader see both together (otherwise, it may errone-
ously interpret that the aircraft is on a collision course).

To use this mechanism:
1. Call the Publisher’s begin_coherent_changes() operation to indicate the start a coherent
set.
2. For each sample in the coherent set: call the FooDataWriter’s write() operation.
3. Call the Publisher’s end_coherent_changes() operation to terminate the set.
Calls to begin_coherent_changes() and end_coherent_changes() can be nested.
See also: the coherent_access field in the PRESENTATION QosPolicy (Section 6.4.6).

6-34

DataWriters

6.3.11

6.3.12

6.3.12.1

Waiting for Acknowledgments in a DataWriter

The DataWriter's wait_for_acknowledgments() operation blocks the calling thread until either
all data written by the reliable DataWriter is acknowledged by (a) all reliable DataReaders that are
matched and alive and (b) by all required subscriptions (see Required Subscriptions (Section
6.3.13)), or until the duration specified by the max_wait parameter elapses, whichever happens
first.

Note that if a thread is blocked in the call to wait_for_acknowledgments() on a DataWriter and a
different thread writes new samples on the same DataWriter, the new samples must be acknowl-
edged before unblocking the thread waiting on wait_for_acknowledgments().

DDS ReturnCode t wait for acknowledgments (
const DDS Duration t & max wait)

This operation returns DDS_RETCODE_OK if all the samples were acknowledged, or
DDS_RETCODE_TIMEOUT if the max_wait duration expired first.

If the DataWriter does not have its RELIABILITY QosPolicy (Section 6.5.19) kind set to RELI-
ABLE, the operation will immedjiately return DDS_RETCODE_OK.

There is a similar operation available at the Publisher level, see Waiting for Acknowledgments in
a Publisher (Section 6.2.7).

The reliability protocol used by Connext is discussed in Chapter 10: Reliable Communications.
The application acknowledgment mechanism is discussed in Application Acknowledgment
(Section 6.3.12) and Chapter 13: Guaranteed Delivery of Data.

Application Acknowledgment

The RELIABILITY QosPolicy (Section 6.5.19) determines whether or not data published by a
DataWriter will be reliably delivered by Connext to matching DataReaders. The reliability protocol
used by Connext is discussed in Chapter 10: Reliable Communications.

With protocol-level reliability alone, the producing application knows that the information is
received by the protocol layer on the consuming side. However, the producing application can-
not be certain that the consuming application read that information or was able to successfully
understand and process it. The information could arrive in the consumer’s protocol stack and be
placed in the DataReader cache but the consuming application could either crash before it reads
it from the cache, not read its cache, or read the cache using queries or conditions that prevent
that particular data sample from being accessed. Furthermore, the consuming application could
access the sample, but not be able to interpret its meaning or process it in the intended way.

The mechanism to let a DataWriter know to keep the sample around, not just until it has been
acknowledged by the reliability protocol, but until the application has been able to process the
sample is aptly called Application Acknowledgment. A reliable DataWriter will keep the samples
until the application acknowledges the samples. When the subscriber application is restarted,
the middleware will know that the application did not acknowledge successfully processing the
samples and will resend them.

Application Acknowledgment Kinds
Connext supports three kinds of application acknowledgment, which is configured in the RELI-

ABILITY QosPolicy (Section 6.5.19)):

1. DDS_PROTOCOL_ACKNOWLEDGMENT_MODE (Default): In essence, this mode is
identical to using no application-level acknowledgment. Samples are acknowledged
according to the Real-Time Publish-Subscribe (RTPS) reliability protocol. RTPS AckNack
messages will acknowledge that the middleware received the sample.

6-35

DataWriters

6.3.12.2

6.3.12.3

2. DDS_APPLICATION_AUTO_ACKNOWLEDGMENT_MODE: Samples are automati-

cally acknowledged by the middleware after the subscribing application accesses them,
either through calling take() or read() on the sample. The samples are acknowledged
after return_loan() is called.

DDS_APPLICATION_EXPLICIT_ACKNOWLEDGMENT_MODE: Samples are
acknowledged after the subscribing application explicitly calls acknowledge on the sam-
ple. This can be done by either calling the DataReader’s acknowledge_sample() or
acknowledge_all() operations. When using acknowledge_sample(), the application will
provide the DDS_Samplelnfo to identify the sample being acknowledge. When using
acknowledge_all, all the samples that have been read or taken by the reader will be
acknowledged.

Note: Even in DDS_APPLICATION_EXPLICIT_ACKNOWLEDGMENT_MODE, some
samples may be automatically acknowledged. This is the case when samples are filtered
out by the reader using time-based filter, or using content filters. Additionally, when the
reader is explicitly configured to use KEEP_LAST history kind, samples may be replaced
in the reader queue due to resource constraints. In that case, the sample will be automat-
ically acknowledged by the middleware if it has not been read by the application before
it was replaced. To truly guarantee successful processing of samples, it is recommended
to use KEEP_ALL history kind.

Explicitly Acknowledging a Single Sample (C++)

void MyReaderListener::on data available (DDSDataReader *reader)

{

}

Foo sample;
DDS_SampleInfo info;
FooDataReader* fooReader = FooDataReader::narrow (reader) ;
DDS ReturnCode t retcode = fooReader->take next sample (sample, info);
if (retcode == DDS_RETCODE OK) ({
if (info.valid data) ({
// Process sample

retcode = reader->acknowledge sample (info) ;
if (retcode != DDS RETCODE OK) {

// Error
}

}
} else {

// Not OK or NO DATA
}

Explicitly Acknowledging All Samples (C++)

void MyReaderListener::on data available (DDSDataReader *reader)

{

// Loop while samples available

for(;;) {
retcode = string reader->take next sample(sample, info);
if (retcode == DDS_RETCODE_NO DATA) {
// No more samples
break;

}

// Process sample

}

retcode = reader-sacknowledge all() ;

6-36

DataWriters

6.3.12.4

6.3.12.5

if (retcode != DDS_RETCODE_ OK) {
// Error
1

}

Notification of Delivery with Application Acknowledgment

A DataWriter can use the wait_for_acknowledgments() operation to be notified when all the
samples in the DataWriter’s queue have been acknowledged. See Waiting for Acknowledgments
in a DataWriter (Section 6.3.11).

retCode = fooWriter->write(sample, DDS_HANDLE NIL) ;
if (retCode != DDS_RETCODE OK) {

// Error
}

retcode = writer->wait for acknowledgments (timeout) ;

if (retCode != DDS_RETCODE OK) {
if (retCode == DDS_RETCODE TIMEOUT) {
// Timeout: Sample not acknowledged yet
} else {
// Error

}
}

Connext does not provide a way to get delivery notifications on a per DataReader and sample
basis. If your application requires acknowledgment of message receipt, use the Request/Reply
communication pattern with an Acknowledgment type (see Chapter 22: Introduction to the
Request-Reply Communication Pattern).

Application-Level Acknowledgment Protocol

When the subscribing application confirms it has successfully processed a sample, an AppAck
RTPS message is sent to the publishing application. This message will be resent until the pub-

6-37

DataWriters

lishing application confirms receipt of the AppAck message by sending an AppAckConf RTPS
message. See Figures 6.10 through 6.12.

Figure 6.10 AppAck RTPS Messages Sent when Application Acknowledges a Sample

:DataWlriter :DataReader L Application
1: 5end 51

|
T 2:Send 52 T |
|
|
'i' T 3: Taks 1,52 |
| i i
| | 4: Agtnowledge S152 |
|
| 5. AppAck 51,52 T T
|
= e |
| & AppACKC onfSi1,52 | |
|
|

Figure 6.11 AppAck RTPS Messages Resent Until Acknowledged Through AppAckConf RTPS Message

| : Data\Writer | | : Hetwork | : DataReader : Applic ation

| | | 1: Acknowledge 51,52

M

Messages
i lost

|
|
| | 2 sopas 152 |
|
|
|

The second
| AppAck is sent

after
Bpp_sok_period

| A:AppM'IanfELSE |

T | L

6-38

DataWriters

Figure 6.12 AppAck RTPS Messages Sent as a Sequence of Intervals, Combined to Optimize for Bandwidth

6.3.12.6

6.3.12.7

6.3.12.8

| : DataWriter | | s Hetwork | | : DataReader | cApplication

1: Adonowledge 51,52

3 Acknowledge 53

| |
| |
| | 2. .
| hNessags U
i lost
| .
| |
| |
|
|

7

Periodic and Non-Periodic AppAck Messages

You can configure whether AppAck RIPS messages are sent immediately or periodically
through the DATA_READER_PROTOCOL QosPolicy (DDS Extension) (Section 7.6.1 on page 7-
54). The samples_per_app_ack (in Table 7.20, “DDS_RtpsReliableReaderProtocol_t,” on page 7-
56) determines the minimum number of samples acknowledged by one application-level
Acknowledgment message. The middleware will not send an AppAck message until it has at
least this many samples pending acknowledgment. By default, samples_per_app_ack is 1 and
the AppAck RTPS message is sent immediately. Independently, the app_ack_period (in
Table 7.20, “DDS_RtpsReliableReaderProtocol_t,” on page 7-56) determines the rate at which a
DataReader will send AppAck messages.

Application Acknowledgment and Persistence Service

Application Acknowledgment is fully supported by RTI Persistence Service. The combination of
Application Acknowledgment and Persistence Service is actually a common configuration. In
addition to keeping samples available until fully acknowledged, Persistence Service, when used
in peer-to-peer mode, can take advantage of AppAck messages to avoid sending duplicate mes-
sages to the subscribing application. Because AppAck messages are sent to all matching writers,
when the subscriber acknowledges the original publisher, Persistence Service will also be notified
of this event and will not send out duplicate messages. This is illustrated in Figure 6.13.

Application Acknowledgment and Routing Service

Application Acknowledgment is supported by RTI Routing Service: That is, Routing Service will
acknowledge the sample it has processed. Routing Service is an active participant in the Connext
system and not transparent to the publisher or subscriber. As such, Routing Service will acknowl-
edge to the publisher, and the subscriber will acknowledge to Routing Service. However, the pub-
lisher will not get a notification from the subscriber directly.

6-39

DataWriters

Figure 6.13 Application Acknowledgment and Persistence Service

6.3.13

6.3.13.1

A single AppAck notifies both
the original DataWriter and
Persistence Service.

AppAck
- S—

AppAck
Global :
Dataspace

DataWriter DataReader

Samples acknowledged to the
Original DataWriter are not sent
by the Persistence service.

Persistence Service
(Peer-to-Peer mode)

Required Subscriptions

The DURABILITY QosPolicy (Section 6.5.7) specifies whether acknowledged samples need to be
kept in the DataWriter’s queue and made available to late-joining applications. When a late join-
ing application is discovered, available samples will be sent to the late joiner. With the Durabil-
ity QoS alone, there is no way to specify or characterize the intended consumers of the
information and you do not have control over which samples will be kept for late-joining appli-
cations. If while waiting for late-joining applications, the middleware needs to free up samples,
it will reclaim samples if they have been previously acknowledged by active/matching readers.

There are scenarios where you know a priori that a particular set of applications will join the
system: e.g., a logging service or a known processing application. The Required Subscription fea-
ture is designed to keep data until these known late joining applications acknowledge the data.

Another use case is when DataReaders become temporarily inactive due to not responding to
heartbeats, or when the subscriber temporarily became disconnected and purged from the dis-
covery database. In both cases, the DataWriter will no longer keep the sample for this DataReader.
The Required Subscription feature will keep the data until these known DataReaders have
acknowledged the data.

To use Required Subscriptions, the DataReaders and DataWriters must have their RELIABILITY
QosPolicy (Section 6.5.19) kind set to RELIABLE.

Named, Required and Durable Subscriptions

Before describing the Required Subscriptions, it is important to understand a few concepts:

(J Named Subscription: Through the ENTITY_NAME QosPolicy (DDS Extension) (Section
6.5.9), each DataReader can be given a specific name. This name can be used by tools to
identify a specific DataReader. Additionally, the DataReader can be given a role_name. For
example: LOG_APP_1 DataReader belongs to the logger applications (role_name =
“LOGGER”).

(J Required Subscription is a named subscription to which a DataWriter is configured to
deliver data to. This is true even if the DataReaders serving those subscriptions are not
available yet. The DataWriter must store the sample until it has been acknowledged by all

6-40

DataWriters

6.3.13.2

6.3.13.3

6.3.14

active reliable DataReaders and acknowledged by all required subscriptions. The DataW-
riter is not waiting for a specific DataReader, rather it is waiting for DataReaders belonging
to the required subscription by setting their role_name to the subscription name.

[Durable Subscription is a required subscription where samples are stored and for-
warded by an external service. In this case, the required subscription is served by RTI
Persistence Service. See Configuring Durable Subscriptions in Persistence Service (Section
27.9).

Durability QoS and Required Subscriptions

The DURABILITY QosPolicy (Section 6.5.7) and the Required Subscriptions feature complement
each other.

The DurabilityQosPolicy determines whether or not Connext will store and deliver previously
acknowledged samples to new DataReaders that join the network later. You can specify to either
not make the samples available (DDS_VOLATILE_DURABILITY_QOS kind), or to make them
available and declare you are storing the samples in memory
(DDS_TRANSIENT_LOCAL_DURABILITY_QOS or DDS_TRANSIENT_DURABILITY_QOS
kind) or in permanent storage (DDS_PERSISTENT_DURABILITY_QOS).

Required subscriptions help answer the question of when a sample is considered acknowledged
before the DurabilityQosPolicy determines whether to keep it. When required subscriptions are
used, a sample is considered acknowledged by a DataWriter when both the active DataReaders
and a quorum of required subscriptions have acknowledged the sample. (Acknowledging a
sample can be done either at the protocol or application level—see Application Acknowledg-
ment (Section 6.3.12)).

Required Subscriptions Configuration

Each DataReader can be configured to be part of a named subscription, by giving it a role_name
using the ENTITY_NAME QosPolicy (DDS Extension) (Section 6.5.9). A DataWriter can then be
configured using the AVAILABILITY QosPolicy (DDS Extension) (Section 6.5.1)
(required_matched_endpoint_groups) with a list of required named subscriptions identified by
the role_name. Additionally, the DataWriter can be configured with a quorum or minimum num-
ber of DataReaders from a given named subscription that must receive a sample.

When configured with a list of required subscriptions, a DataWriter will store a sample until the
sample is acknowledged by all active reliable DataReaders, as well as all required subscriptions.
When a quorum is specified, a minimum number of DataReaders of the required subscription
must acknowledge a sample in order for the sample to be considered acknowledged. Specifying
a quorum provides a level of redundancy in the system as multiple applications or services
acknowledge they have received the sample. Each individual DataReader is identified using its
own virtual GUID (see DATA_READER_PROTOCOL QosPolicy (DDS Extension) (Section
7.6.1)).

Managing Data Instances (Working with Keyed Data Types)

This section applies only to data types that use keys, see Samples, Instances, and Keys (Section
2.2.2). Using the following operations for non-keyed types has no effect.

Topics come in two flavors: those whose associated data type has specified some fields as defin-
ing the ‘key,” and those whose associated data type has not. An example of a data-type that spec-
ifies key fields is shown in Figure 6.14.

Figure 6.14 Data Type with a Key

typedef struct Flight ({
long flightld; //ekey

6-41

DataWriters

6.3.14.1

string departureAirport;
string arrivalAirport;
Time t departureTime;
Time t estimatedArrivalTime;
Location_t currentPosition;

}i

If the data type has some fields that act as a ‘key,” the Topic essentially defines a collection of
data-instances whose values can be independently maintained. In Figure 6.14, the flightld is the
‘key’. Different flights will have different values for the key. Each flight is an instance of the
Topic. Each write() will update the information about a single flight. DataReaders can be
informed when new flights appear or old ones disappear.

Since the key fields are contained within the data structure, Connext could examine the key
fields each time it needs to determine which data-instance is being modified. However, for per-
formance and semantic reasons, it is better for your application to declare all the data-instances
it intends to modify—prior to actually writing any samples. This is known as registration,
described below in Section 6.3.14.1.

The register_instance() operation provides a handle to the instance (of type
DDS_InstanceHandle_t) that can be used later to refer to the instance.

Registering and Unregistering Instances

If your data type has a key, you may improve performance by registering an instance (data asso-
ciated with a particular value of the key) before you write data for the instance. You can do this
for any number of instances up the maximum number of instances configured in the DataW-
riter’s RESOURCE_LIMITS QosPolicy (Section 6.5.20). Instance registration is completely
optional.

Registration tells Connext that you are about to modify (write or dispose of) a specific instance.
This allows Connext to pre-configure itself to process that particular instance, which can improve
performance.

If you write without registering, you can pass the NIL instance handle as part of the write() call.

If you register the instance first, Connext can look up the instance beforehand and return a han-
dle to that instance. Then when you pass this handle to the write() operation, Connext no longer
needs to analyze the data to check what instance it is for. Instead, it can directly update the
instance pointed to by the instance handle.

In summary, by registering an instance, all subsequent write() calls to that instance become more
efficient. If you only plan to write once to a particular instance, registration does not ‘buy’ you
much in performance, but in general, it is good practice.

To register an instance, use the DataWriter’s register_instance() operation. For best performance,
it should be invoked prior to calling any operation that modifies the instance, such as write(),
write_w_timestamp(), dispose(), or dispose_w_timestamp().

When you are done using that instance, you can unregister it. To unregister an instance, use the
DataWriter’s unregister_instance() operation. Unregistering tells Connext that the DataWriter
does not intend to modify that data-instance anymore, allowing Connext to recover any
resources it allocated for the instance. It does not delete the instance; that is done with the
dispose_instance() operation, see Section 6.3.14.2. autodispose_unregistered_instances in the
WRITER_DATA_LIFECYCLE QoS Policy (Section 6.5.26) controls whether instances are auto-
matically disposed when they are unregistered.

unregister_instance() should only be used on instances that have been previously registered.
The use of these operations is illustrated in Figure 6.15.

6-42

DataWriters

Figure 6.15 Registering an Instance
Flight myFlight;
// writer is a previously-created FlightDataWriter
myFlight.flightId = 265;

DDS_InstanceHandle_t fl265Handle =
writer->register instance (myFlight) ;

// Each time we update the flight, we can pass the handle

myFlight.departureAirport = “SJc”;

myFlight.arrivalAirport = “LAX";

myFlight.departureTime = {120000, 0};

myFlight.estimatedArrivalTime = {130200, 0};

myFlight.currentPosition = { {37, 20}, {121, 53} };

if (writer-swrite (myFlight, fl265Handle) != DDS_RETCODE_OK) {
// ... handle error

}

// Once we are done updating the flight, it can be unregistered
if (writer-sunregister instance(myFlight, fl265Handle) !=
DDS_RETCODE_ OK) {
// ... handle error

Once an instance has been unregistered, and assuming that no other DataWriters are writing val-
ues for the instance, the matched DataReaders will eventually get an indication that the instance
no longer has any DataWriters. This is communicated to the DataReaders by means of the
DDS_Samplelnfo that accompanies each data-sample (see Section 7.4.6). Once there are no
DataWriters for the instance, the DataReader will see the value of DDS_InstanceStateKind for
that instance to be NOT_ALIVE_NO_WRITERS.

The unregister_instance() operation may affect the ownership of the data instance (see the
OWNERSHIP QosPolicy (Section 6.5.15)). If the DataWriter was the exclusive owner of the
instance, then calling unregister_instance() relinquishes that ownership, and another DataWV-
riter can become the exclusive owner of the instance.

The unregister_instance() operation indicates only that a particular DataWriter no longer has
anything to say about the instance.

Note that this is different than the dispose() operation discussed in the next section, which
informs DataReaders that the data-instance is no longer “alive.” The state of an instance is stored
in the DDS_SamplelInfo structure that accompanies each sample of data that is received by a
DataReader. User code can access the instance state to see if an instance is “alive”—meaning
there is at least one DataWriter that is publishing samples for the instance, see Instance States
(Section 7.4.6.4).

See also:
(d Unregistering vs. Disposing: on page 6-136.
(d Use Cases for Unregistering without Disposing: on page 6-136.

6-43

DataWriters

6.3.14.2

6.3.14.3

6.3.14.4

6.3.15

Disposing of Data

The dispose() operation informs DataReaders that, as far as the DataWriter knows, the data-
instance no longer exists and can be considered “not alive.” When the dispose() operation is
called, the instance state stored in the DDS_Samplelnfo structure, accessed through DataRead-
ers, will change to NOT_ALIVE_DISPOSED for that particular instance.

See Unregistering vs. Disposing: on page 6-136.

By default, instances are automatically disposed when they are unregistered. This behavior is controlled
by the autodispose_unregistered_instances field in the WRITER_DATA_LIFECYCLE QoS Policy
(Section 6.5.26).

For example, in a flight tracking system, when a flight lands, a DataWriter may dispose the data-
instance corresponding to the flight. In that case, all DataReaders who are monitoring the flight
will see the instance state change to NOT_ALIVE_DISPOSED, indicating that the flight has
landed.

If a particular instance is never disposed, its instance state will eventually change from ALIVE
to NOT_ALIVE_NO_WRITERS once all the DataWriters that were writing that instance unreg-
ister the instance or lose their liveliness. For more information on DataWriter liveliness, see the
LIVELINESS QosPolicy (Section 6.5.13).

See also:

(J Propagating Serialized Keys with Disposed-Instance Notifications (Section 6.5.3.5 on
page 6-89).

(d Use Cases for Unregistering without Disposing: on page 6-136.

Looking Up an Instance Handle

Some operations, such as write(), require an instance_handle parameter. If you need to get such
as handle, you can call the FooDataWriter’s lookup_instance() operation, which takes an instance
as a parameter and returns a handle to that instance. This is useful for keyed data types.

DDS InstanceHandle t lookup instance (const Foo & key holder)

The instance must have already been registered (see Section 6.3.14.1). If the instance is not regis-
tered, this operation returns DDS_HANDLE_NIL.

Getting the Key Value for an Instance

Once you have an instance handle (using register_instance() or lookup_instance()), you can use
the DataWriter’s get_key_value() operation to retrieve the value of the key of the corresponding
instance. The key fields of the data structure passed into get_key_value() will be filled out with
the original values used to generate the instance handle. The key fields are defined when the
data type is defined, see Samples, Instances, and Keys (Section 2.2.2) for more information.

Following our example in Figure6.15 on page 6-43, register_instance() returns a
DDS_InstanceHandle_t (fl1265Handle) that can be used in the call to the FlightDataWriter’s
get_key_value() operation. The value of the key is returned in a structure of type Flight with the
flightld field filled in with the integer 265.

See also: Propagating Serialized Keys with Disposed-Instance Notifications (Section 6.5.3.5).

Setting DataWriter QosPolicies
The DataWriter’s QosPolicies control its resources and behavior.

The DDS_DataWriterQos structure has the following format:

DDS_DataWriterQos struct {

6-44

DataWriters

DDS DurabilityQosPolicy

DDS DurabilityServiceQosPolicy
DDS DeadlineQosPolicy

DDS_ LatencyBudgetQosPolicy
DDS_LivelinessQosPolicy

DDS ReliabilityQosPolicy
DDS_DestinationOrderQosPolicy
DDS HistoryQosPolicy
DDS_ResourceLimitsQosPolicy
DDS TransportPriorityQosPolicy
DDS_LifespanQosPolicy
DDS_UserDataQosPolicy
DDS_OwnershipQosPolicy

DDS_ OwnershipStrengthQosPolicy

DDS WriterDataLifecycleQosPolicy
// extensions to the DDS standard:

durability;
durability service;
deadline;

latency budget;
liveliness;
reliability;
destination_ order;
history;

resource limits;
transport priority;
lifespan;

user data;
ownership;
ownership strength;
writer data lifecycle;

DDS_DataWriterResourceLimitsQosPolicy writer resource limits;

DDS_DataWriterProtocolQosPolicy
DDS_TransportSelectionQosPolicy

DDS_TransportUnicastQosPolicy
DDS_PublishModeQosPolicy
DDS_PropertyQosPolicy
DDS_BatchQosPolicy
DDS_MultiChannelQosPolicy
DDS AvailabilityQosPolicy
DDS_EntityNameQosPolicy
DDS_TypeSupportQosPolicy

} DDS DataWriterQos;

protocol;

transport selection;
unicast;

publish mode;
property;

batch;
multi_channel;
availability;
publication name;
type support;

Note: set_qos() cannot always be used within a listener callback, see Restricted Operations in

Listener Callbacks (Section 4.5.1).

Table 6.16 summarizes the meaning of each policy. (They appear alphabetically in the table.) For
information on why you would want to change a particular QosPolicy, see the referenced sec-
tion. For defaults and valid ranges, please refer to the API Reference HTML documentation.

Table 6.16 DataWriter QosPolicies

QosPolicy Description
This QoS policy is used in the context of two features:
e Availability QoS Policy and Collaborative DataWriters (Section 6.5.1.1)
® Availability QoS Policy and Required Subscriptions (Section 6.5.1.2)
For Collaborative DataWriters, Availability specifies the group of DataWriters
Availability expected to collaboratively provide data and the timeouts that control when to
allow data to be available that may skip samples.
For Required Subscriptions, Availability configures a set of Required Subscrip-
tions on a DataWriter.
See Section 6.5.1
Specifies and configures the mechanism that allows Connext to collect multiple
Batch user data samples to be sent in a single network packet, to take advantage of the
efficiency of sending larger packets and thus increase effective throughput. See
Section 6.5.2.
DataWriterProtocol Thls. QosPolicy configures the Connext on-the-network protocol, RTPS. See
Section 6.5.3.
DataWriterResourceLimits Cpntrols how many threads can concurrently block on a write() call of this DataWW-
riter. See Section 6.5.4.

6-45

DataWriters

Table 6.16

DataWriter QosPolicies
QosPolicy Description
* For a DataReader, it specifies the maximum expected elapsed time between
arriving data samples.
Deadline ® For a DataWriter, it specifies a commitment to publish samples with no
greater elapsed time between them.
See Section 6.5.5.
Controls how Connext will deal with data sent by multiple DataWriters for the
DestinationOrder same topic. Can be set to "by reception timestamp" or to "by source timestamp".
See Section 6.5.6.
Durabilit Specifies whether or not Connext will store and deliver data that were previously
y published to new DataReaders. See Section 6.5.7.
Various settings to configure the external Persistence Service® used by Connext for
DurabilityService DataWriters with a Durability QoS setting of Persistent Durability. See
Section 6.5.8.
EntityName Assigns a name to a DataWriter. See Section 6.5.9.
Specifies how much data must to stored by Connextfor the DataWriter or
History DataReader. This QosPolicy affects the RELIABILITY QosPolicy (Section 6.5.19) as
well as the DURABILITY QosPolicy (Section 6.5.7). See Section 6.5.10.
Suggestion to Connext on how much time is allowed to deliver data. See
LatencyBudget ;
Section 6.5.11.
Lifespan Specifies how long Connext should consider data sent by an user application to be
P valid. See Section 6.5.12.
Liveliness Specifies and configures the mechanism that allows DataReaders to detect when
DataWriters become disconnected or "dead." See Section 6.5.13.
. Configures a DataWriter’s ability to send data on different multicast groups
MultiChannel (addresses) based on the value of the data. See Section 6.5.14.
Ownershi Along with OwnershipStrength, specifies if DataReaders for a topic can receive
p data from multiple DataWriters at the same time. See Section 6.5.15.
OwnershipStrength Used to arbitrate among multiple DataWriters of the same instance of a Topic
P & when Ownership QosPolicy is EXLUSIVE. See Section 6.5.16.
o Adds string identifiers that are used for matching DataReaders and DataWriters for
Partition . .
the same Topic. See Section 6.4.5.
Stores name/value (string) pairs that can be used to configure certain parameters
of Connext that are not exposed through formal QoS policies. It can also be used to
Property - s . .
store and propagate application-specific name/value pairs, which can be
retrieved by user code during discovery. See Section 6.5.17.
Specifies how Connext sends application data on the network. By default, data is
PublishMode sent in the user thread that calls the DataWriter’s write() operation. However, this
QosPolicy can be used to tell Connext to use its own thread to send the data. See
Section 6.5.18.
Reliability Specifies whether or not Connext will deliver data reliably. See Section 6.5.19.
Controls the amount of physical memory allocated for entities, if dynamic alloca-
ResourceLimits tions are allowed, and how they occur. Also controls memory usage among differ-
ent instance values for keyed topics. See Section 6.5.20.
TransportPrior Set by a DataWriter to tell Connext that the data being sent is a different "priority”
P y than other data. See Section 6.5.21.
TransportSelection Allows you to select which physical transports a DataWriter or DataReader may

use to send or receive its data. See Section 6.5.22.

6-46

DataWriters

Table 6.16 DataWriter QosPolicies
QosPolicy Description

TransportUnicast Spec.lfles a subset of t.ransports and port number that can be used by an Entity to
receive data. See Section 6.5.23.
Used to attach application-specific value(s) to a DataWriter or DataReader. These

TvpeSupport values are passed to the serialization or deserialization routine of the associated

ypesupp data type. Also controls whether padding bytes are set to 0 during serialization.

See Section 6.5.24.

UserData Along with Topic Data QosPolicy and Group Data QosPolicy, used to attach a buf-
fer of bytes to Connext's discovery meta-data. See Section 6.5.25.

WriterDataLifeCycle Control§ hc?w a DataWrzter handles the llfgcycle of the instances (keys) that the
DataWriter is registered to manage. See Section 6.5.26.

6.3.15.1

a. Persistence Service is included with Connext Messaging.

Many of the DataWriter QosPolicies also apply to DataReaders (see Section 7.3). For a DataWriter
to communicate with a DataReader, their QosPolicies must be compatible. Generally, for the
QosPolicies that apply both to the DataWriter and the DataReader, the setting in the DataWriter is
considered an “offer” and the setting in the DataReader is a “request.” Compatibility means that
what is offered by the DataWriter equals or surpasses what is requested by the DataReader. Each
policy’s description includes compatibility restrictions. For more information on compatibility,
see QoS Requested vs. Offered Compatibility—the RxO Property (Section 4.2.1).

Some of the policies may be changed after the DataWriter has been created. This allows the
application to modify the behavior of the DataWriter while it is in use. To modify the QoS of an
already-created DataWriter, use the get_qos() and set_qos() operations on the DataWriter. This is
a general pattern for all Entities, described in Section 4.1.7.3.

Configuring QoS Settings when the DataWriter is Created

As described in Creating DataWriters (Section 6.3.1), there are different ways to create a DataW-
riter, depending on how you want to specify its QoS (with or without a QoS Profile).

[In Figure 6.9 on page 6-20, we saw an example of how to create a DataWriter with default
QosPolicies by using the special constant, DDS_DATAWRITER_QOS_DEFAULT,
which indicates that the default QoS values for a DataWriter should be used. The default
DataWriter QoS values are configured in the Publisher or DomainParticipant; you can
change them with set_default_datawriter_qos() or
set_default_datawriter_qos_with_profile(). Then any DataWriters created with the Pub-
lisher will use the new default values. As described in Section 4.1.7, this is a general pat-
tern that applies to the construction of all Entities.

[To create a DataWriter with non-default QoS without using a QoS Profile, see the example
code in Figure 6.16 on page 6-48. It uses the Publisher’s get_default_writer_qos() method
to initialize a DDS_DataWriterQos structure. Then, the policies are modified from their
default values before the structure is used in the create_datawriter() method.

[You can also create a DataWriter and specify its QoS settings via a QoS Profile. To do so,
you will call create_datawriter_with_profile(), as seen in Figure 6.17 on page 6-48.

[If you want to use a QoS profile, but then make some changes to the QoS before creating
the DataWriter, call get_datawriter_qos_from_profile() and create_datawriter() as seen
in Figure 6.18 on page 6-49.

For more information, see Creating DataWriters (Section 6.3.1) and Chapter 17: Configuring QoS
with XML.

6-47

DataWriters

Figure 6.16 Creating a DataWriter with Modified QosPolicies (not from a profile)

DDS DataWriterQos writer_qos;1

// initialize writer gos with default values
publisher->get default datawriter gos(writer gos);

// make QoS changes
writer gos.history.depth = 5;

// Create the writer with modified gos
DDSDataWriter * writer = publisher->create datawriter(
topic, writer gos,
NULL, DDS_STATUS MASK NONE) ;
if (writer == NULL) {
// ... error
}

// narrow it for your specific data type
FooDataWriter* foo writer = FooDataWriter::narrow(writer) ;

1. Note: In C, you must initialize the QoS structures before they are used, see Section 4.2.2.

Figure 6.17 Creating a DataWriter with a QoS Profile

// Create the datawriter
DDSDataWriter * writer =
publisher->create datawriter with profile(

topic,
“MyWriterLibrary”,
“MyWriterProfile”,
NULL, DDS_ STATUS MASK NONE) ;
if (writer == NULL) {
// ... error

}i

// narrow it for your specific data type
FooDataWriter* foo writer = FooDataWriter::narrow(writer) ;

6.3.15.2 Comparing QoS Values

The equals() operation compares two DataWriter’s DDS_DataWriterQoS structures for equality.
It takes two parameters for the two DataWriter’s QoS structures to be compared, then returns
TRUE is they are equal (all values are the same) or FALSE if they are not equal.

6-48

DataWriters

Figure 6.18 Getting QoS Values from a Profile, Changing QoS Values, Creating a DataWriter with
Modified QoS Values

DDS DataWriterQos writer_qos;l

// Get writer QoS from profile

retcode = factory->get datawriter gos_from profile(
writer gos,
“WriterProfileLibrary”,
“WriterProfile”) ;

if (retcode != DDS_RETCODE_ OK) {

// handle error
}

// Makes QoS changes
writer gos.history.depth

5;

DDSDataWriter * writer = publisher->create_datawriter (
topic, writer gos,
NULL, DDS_STATUS MASK NONE) ;
if (participant == NULL) {
// handle error

1. Note: In C, you must initialize the QoS structures before they are used, see Section 4.2.2.

6-49

DataWriters

6.3.156.3 Changing QoS Settings After the DataWriter Has Been Created

There are two ways to change an existing DataWriter’s QoS after it is has been created—again
depending on whether or not you are using a QoS Profile.

[d To change QoS programmatically (that is, without using a QoS Profile), use get_qos()
and set_qos(). See the example code in Figure 6.19. It retrieves the current values by call-
ing the DataWriter’s get_qos() operation. Then it modifies the value and calls set_qos() to
apply the new value. Note, however, that some QosPolicies cannot be changed after the
DataWriter has been enabled—this restriction is noted in the descriptions of the individ-
ual QosPolicies.

[d You can also change a DataWriter’s (and all other Entities’) QoS by using a QoS Profile
and calling set_qos_with_profile(). For an example, see Figure 6.20. For more informa-
tion, see Chapter 17: Configuring QoS with XML.

Figure 6.19 Changing the QoS of an Existing DataWriter (without a QoS Profile)
DDS DataWriterQos writer gos;®

// Get current QoS.

if (datawriter->get gos(writer gos) != DDS_RETCODE OK) {
// handle error

}

// Makes QoS changes here
writer gos.history.depth = 5;

// Set the new QoS

if (datawriter->set gos(writer gos) != DDS_RETCODE OK) ({
// handle error

}

1. For the C API, you need to use DDS_ParticipantQos_INITIALIZER or DDS_ParticipantQos_initialize(). See
Section 4.2.2

Figure 6.20 Changing the QoS of an Existing DataWriter with a QoS Profile

retcode = writer->set_gos_with profile(
“WriterProfileLibrary”,”"WriterProfile”) ;
if (retcode != DDS_RETCODE OK) {
// handle error
}

6-50

DataWriters

6.3.15.4

Using a Topic’s QoS to Initialize a DataWriter's QoS

Several DataWriter QosPolicies can also be found in the QosPolicies for Topics (see Section 5.1.3).
The QosPolicies set in the Topic do not directly affect the DataWriters (or DataReaders) that use
that Topic. In many ways, some QosPolicies are a Topic-level concept, even though the DDS stan-
dard allows you to set different values for those policies for different DataWriters and DataRead-
ers of the same Topic. Thus, the policies in the DDS_TopicQos structure exist as a way to help
centralize and annotate the intended or suggested values of those QosPolicies. Connext does not
check to see if the actual policies set for a DataWriter is aligned with those set in the Topic to
which it is bound.

There are many ways to use the QosPolicies’ values set in the Topic when setting the QosPolicies’
values in a DataWriter. The most straightforward way is to get the values of policies directly
from the Topic and use them in the policies for the DataWriter, as shown in Figure 6.21.

Figure 6.21 Copying Selected QoS from a Topic when Creating a DataWriter

DDS_DataWriterQos writer gos;’
DDS_ TopicQos topic_gos;
// topic and publisher already created

// get current QoS for the topic, default QoS for the writer
if (topic->get gos(topic_qgos) != DDS RETCODE OK) {

// handle error
}

if (publisher-s>get default datawriter gos(writer gos) != DDS_RETCODE OK) {
// handle error
}

// Copy specific policies from the topic QoS to the writer QoS
writer gos.deadline = topic_gos.deadline;
writer gos.reliability = topic gos.reliability;

// Create the DataWriter with the modified QoS
DDSDataWriter* writer = publisher-s>create datawriter (topic,
writer gos,NULL, DDS_STATUS MASK NONE) ;

1. Note in C, you must initialize the QoS structures before they are used, see Section 4.2.2.

6-51

DataWriters

You can use the Publisher’s copy_from_topic_qos() operation to copy all of the common policies
from the Topic QoS to a DataWriter QoS. This is illustrated in Figure 6.22.

Figure 6.22 Copying all QoS from a Topic when Creating a DataWriter

DDS DataWriterQos writer gos;?

DDS TopicQos topic_gos;
// topic, publisher, writer listener already created

if (topic->get gos(topic_gos) != DDS_RETCODE OK) {
// handle error
}
if (publisher->get default datawriter gos(writer gos) != DDS_RETCODE_OK)
{
// handle error
}

// copy relevant QosPolicies from topic’s gos into writer’s gos
publisher->copy from topic gos(writer gos, topic_gos) ;

// Optionally, modify policies as desired
writer gos.deadline.duration.sec = 1;
writer_gos.deadline.duration.nanosec = 0;

// Create the DataWriter with the modified QoS
DDSDataWriter* writer = publisher-s>create datawriter(topic,
writer gos, writer listener, DDS_STATUS MASK ALL) ;

1. Note in C, you must initialize the QoS structures before they are used, see Section 4.2.2.

In another design pattern, you may want to start with the default QoS values for a DataWriter
and override them with the QoS values of the Topic. Figure 6.23 gives an example of how to do
this.

Because this is a common pattern, Connext provides a special macro,
DDS_DATAWRITER_QOS_USE_TOPIC_QOS, that can be used to indicate that the DataW-
riter should be created with the set of QoS values that results from modifying the default DataW-
riter QosPolicies with the QoS values specified by the Topic. Figure 6.24 shows how the macro is
used.

6-52

DataWriters

The code fragments shown in Figure 6.23 and Figure 6.24 result in identical QoS settings for the
created DataWriter.

Figure 6.23 Combining Default Topic and DataWriter QoS (Option 1)

DDS_DataWriterQos writer gos;?'
DDS_TopicQos topic_gos;
// topic, publisher, writer listener already created

if (topic->get gos(topic_gos) != DDS_RETCODE OK) ({
// handle error
}

if (publisher-s>get default datawriter gos(writer gos) != DDS_RETCODE_OK) {
// handle error
}

if (publisher->copy from topic gos(writer gos, topic gos) !=
DDS_RETCODE_OK) {
// handle error
}
// Create the DataWriter with the combined QoS
DDSDataWriter* writer = publisher-s>create datawriter(topic, writer gos,
writer listener,DDS STATUS MASK ALL) ;

1. Note in C, you must initialize the QoS structures before they are used, see Section 4.2.2.

Figure 6.24 Combining Default Topic and DataWriter QoS (Option 2)

6.3.16

6.3.16.1

// topic, publisher, writer listener already created

DDSDataWriter* writer = publisher-s>create datawriter (topic,
DDS_DATAWRITER QOS USE TOPIC QOS,
writer_ listener, DDS_STATUS_MASK ALL) ;

For more information on the general use and manipulation of QosPolicies, see Section 4.1.7.

Navigating Relationships Among Entities

Finding Matching Subscriptions

The following DataWriter operations can be used to get information on the DataReaders that are
currently associated with the DataWriter (that is, the DataReaders to which Connext will send the
data written by the DataWriter).

(| get_matched_subscriptions()
(| get_matched_subscription_data()
(1 get_matched_subscription_locators()

get_matched_subscriptions() will return a sequence of handles to matched DataReaders. You can
use these handles in the get_matched_subscription_data() method to get information about the
DataReader such as the values of its QosPolicies.

get_matched_subscription_locators() retrieves a list of locators for subscriptions currently
"associated" with the DataWriter. Matched subscription locators include locators for all those
subscriptions in the same domain that have a matching Topic, compatible QoS, and a common
partition that the DomainParticipant has not indicated should be "ignored." These are the locators

6-53

DataWriters

6.3.16.2

6.3.16.3

that Connext uses to communicate with matching DataReaders. (See Locator Format (Section
14.2.1.1).)

You can also get the DATA_WRITER_PROTOCOL_STATUS for matching subscriptions with
these operations (see Section 6.3.6.2):

(| get_matched_subscription_datawriter_protocol_status()
(1 get_matched_subscription_datawriter_protocol_status_by_locator()
Notes:

(J Status/data for a matched subscription is only kept while the matched subscription is
alive. Once a matched subscription is no longer alive, its status is deleted. If you try to get
the status/data for a matched subscription that is no longer alive, the 'get status' or ' get
data' call will return an error.

(d DataReaders that have been ignored using the DomainParticipant’s ignore_subscription()
operation are not considered to be matched even if the DataReader has the same Topic and
compatible QosPolicies. Thus, they will not be included in the list of DataReaders
returned by get_matched_subscriptions() or get_matched_subscription_locators(). See
Section 16.4.2 for more on ignore_subscription().

[The get_matched_subscription_data() operation does not retrieve the following infor-
mation from built-in-topic data structures: type_code, property, and
content_filter_property. This information is available through the on_data_available()
callback (if a DataReaderListener is installed on the SubscriptionBuiltinTopicDataDa-
taReader).

[See also: Finding the Matching Subscription’s ParticipantBuiltinTopicData (Section
6.3.16.2)

Finding the Matching Subscription’s ParticipantBuiltinTopicData

get_matched_subscription_participant_data() allows you to get the
DDS_ParticipantBuiltinTopicData (see Table 16.1) of a matched subscription using a subscrip-
tion handle.

This operation retrieves the information on a discovered DomainParticipant associated with the
subscription that is currently matching with the DataWriter.The subscription handle passed into
this operation must correspond to a subscription currently associated with the DataWriter. Oth-
erwise, the operation will fail with RETCODE_BAD_PARAMETER. The operation may also fail
with RETCODE_PRECONDITION_NOT_MET if the subscription corresponds to the same
DomainParticipant to which the DataWriter belongs.

Use get_matched_subscriptions() (see Finding Matching Subscriptions (Section 6.3.16.1)) to
find the subscriptions that are currently matched with the DataWriter.

Note: This operation does not retrieve the ParticipantBuiltinTopicData_property. This informa-
tion is available through the on_data_available() callback (if a DataReaderListener is installed
on the SubscriptionBuiltinTopicDataDataReader.
Finding Related Entities
These operations are useful for obtaining a handle to various related entities:

(J get_publisher()

(1 get_topic()

get_publisher() returns the Publisher that created the DataWriter. get_topic() returns the Topic
with which the DataWriter is associated.

6-54

DataWriters

6.3.17

6.3.18

Asserting Liveliness

The assert_liveliness() operation can be used to manually assert the liveliness of the DataWriter
without writing data. This operation is only useful if the kind of LIVELINESS QosPolicy (Sec-
tion 6.5.13) is MANUAL_BY_PARTICIPANT or MANUAL_BY_TOPIC.

How DataReaders determine if DataWriters are alive is configured using the LIVELINESS
QosPolicy (Section 6.5.13). The lease_duration parameter of the LIVELINESS QosPolicy is a
contract by the DataWriter to all of its matched DataReaders that it will send a packet within the
time value of the lease_duration to state that it is still alive.

There are three ways to assert liveliness. One is to have Connext itself send liveliness packets
periodically when the kind of LIVELINESS QosPolicy is set to AUTOMATIC. The other two
ways to assert liveliness, used when liveliness is set to MANUAL, are to call write() to send data
or to call the assert_liveliness() operation without sending data.

Turbo Mode and Automatic Throttling for DataWriter Performance—Experimental
Features

This section describes two experimental features. The DataWriter has many QoS settings that can
affect the latency and throughput of outgoing data. There are QoS settings to control send win-
dow size (see Understanding the Send Queue and Setting its Size (Section 10.3.2.1)) and settings
that allow to aggregate multiple samples together to reduce CPU and bandwidth utilization (see
BATCH QosPolicy (DDS Extension) (Section 6.5.2) and FlowControllers (DDS Extension) (Sec-
tion 6.6)). The choice of settings that provide the best performance depends on several factors,
such as the frequency of writing data, the size of the data, or the condition of the network. If
these factors do not change over time, you can choose values for those QoS settings that best suit
your system. If these factors do change over time in your system, you can use the following
properties to let Connext automatically adjust the QoS settings as system conditions change:

(J dds.domain_participant.auto_throttle.enable: Configures the DomainParticipant to
gather internal measurements (during DomainParticipant creation) that are required for
the Auto Throttle feature. This allows DataWriters belonging to this DomainParticipant to
use the Auto Throttle feature. Default: false.

(J dds.data_writer.auto_throttle.enable: Enables automatic throttling in the DataWriter so
it can automatically adjust the writing rate and the send window size; this minimizes the
need for repair samples and improves latency. Default: false. For additional information
on automatic throttling, see Turbo Mode: Automatically Adjusting the Number of Bytes
in a Batch—Experimental Feature (Section 6.5.2.4).

Note: This property takes effect only in DataWriters that belong to a DomainParticipant
that has set the property dds.domain_participant.auto_throttle.enable (described
above) to true.

[dds.data_writer.enable_turbo_mode: Enables Turbo Mode and adjusts the batch
max_data_bytes (see BATCH QosPolicy (DDS Extension) (Section 6.5.2)) based on how
frequently the DataWriter writes data. Default: false. For additional information, see
Turbo Mode: Automatically Adjusting the Number of Bytes in a Batch—Experimental
Feature (Section 6.5.2.4).

The Built-in QoS profile BuiltinQosLibExp::Generic.AutoTuning enables both Turbo Mode and
Auto Throttling.

6-55

Publisher/Subscriber QosPolicies

6.4

6.4.1

Publisher/Subscriber QosPolicies

This section provides detailed information on the QosPolicies associated with a Publisher. Note
that Subscribers have the exact same set of policies. Table 6.2 on page 6-8 provides a quick refer-
ence. They are presented here in alphabetical order.

(d ASYNCHRONOUS_PUBLISHER QosPolicy (DDS Extension) (Section 6.4.1)
(d ENTITYFACTORY QosPolicy (Section 6.4.2)

(d EXCLUSIVE_AREA QosPolicy (DDS Extension) (Section 6.4.3)

(d GROUP_DATA QosPolicy (Section 6.4.4)

(d PARTITION QosPolicy (Section 6.4.5)

(d PRESENTATION QosPolicy (Section 6.4.6)

ASYNCHRONOUS_PUBLISHER QosPolicy (DDS Extension)

This QosPolicy is used to enable or disable asynchronous publishing and asynchronous batch
flushing for the Publisher.

This QosPolicy can be used to reduce amount of time spent in the user thread to send data. You
can use it to send large data reliably. Large in this context means that the data cannot be sent as a
single packet by a transport. For example, to send data larger than 63K reliably using UDP/IP,
you must configure Connext to send the data using asynchronous Publishers.

If so configured, the Publisher will spawn two threads, one for asynchronous publishing and one
for asynchronous batch flushing. The asynchronous publisher thread will be shared by all
DataWriters (belonging to this Publisher) that have their PUBLISH_MODE QosPolicy (DDS
Extension) (Section 6.5.18) kind set to ASYNCHRONOUS. The asynchronous publishing thread
will then handle the data transmission chores for those DataWriters. This thread will only be
spawned when the first of these DataWriters is enabled.

The asynchronous batch flushing thread will be shared by all DataWriters (belonging to this Pub-
lisher) that have batching enabled and max_flush_delay different than DURATION_INFINITE
in BATCH QosPolicy (DDS Extension) (Section 6.5.2). This thread will only be spawned when
the first of these DataWriters is enabled.

This QosPolicy allows you to adjust the asynchronous publishing and asynchronous batch
flushing threads independently.

Batching and asynchronous publication are independent of one another. Flushing a batch on an
asynchronous DataWriter makes it available for sending to the DataWriter’s FlowControllers
(DDS Extension) (Section 6.6). From the point of view of the FlowController, a batch is treated
like one large sample.

Connext will sometimes coalesce multiple samples into a single network datagram. For example,
samples buffered by a FlowController or sent in response to a negative acknowledgement
(NACK) may be coalesced. This behavior is distinct from sample batching. Data samples sent by
different asynchronous DataWriters belonging to the same Publisher to the same destination will
not be coalesced into a single network packet. Instead, two separate network packets will be
sent. Only samples written by the same DataWriter and intended for the same destination will be
coalesced.

This QosPolicy includes the members in Table 6.17.

6-56

Publisher/Subscriber QosPolicies

Table 6.17 DDS_AsynchronousPublisherQosPolicy

Type Field Name Description

Disables asynchronous publishing. To write
DDS_Boolean disable_asynchronous_write |asynchronously, this field must be FALSE (the
default).

Settings for the publishing thread. These set-
DDS_ThreadSettings_t | thread tings are OS-dependent (see the Platform
Notes).

Disables asynchronous batch flushing. To flush
DDS_Boolean disable_asynchronous_batch |asynchronously, this field must be FALSE (the
default).

Settings for the asynchronous batch flushing
thread.

These settings are OS-dependent (see the Plat-
form Notes).

DDS_ThreadSettings_t | asynchronous_batch_thread

6.4.1.1 Properties
This QosPolicy cannot be modified after the Publisher is created.

Since it is only for Publishers, there are no compatibility restrictions for how it is set on the pub-
lishing and subscribing sides.

6.4.1.2 Related QosPolicies

O If disable_asynchronous_write is TRUE (not the default), then any DataWriters created
from this Publisher must have their PUBLISH_MODE QosPolicy (DDS Extension) (Sec-
tion 6.5.18) kind set to SYNCHRONOUS. (Otherwise create_datawriter() will return
INCONSISTENT_QOS.)

O 1f disable_asynchronous_batch is TRUE (not the default), then any DataWriters created
from this Publisher must have max_flush_delay in BATCH QosPolicy (DDS Extension)
(Section 6.5.2) set to DURATION_INFINITE. (Otherwise create_datawriter() will return
INCONSISTENT_QOS.)

[DataWriters configured to use the MULTI_CHANNEL QosPolicy (DDS Extension) (Sec-
tion 6.5.14) do not support asynchronous publishing; an error is returned if a multi-chan-
nel DataWriter is configured for asynchronous publishing.

6.4.1.3 Applicable Entities
(1 Publishers (Section 6.2)

6.4.1.4 System Resource Considerations
Two threads can potentially be created:

[For asynchronous publishing, system resource usage depends on the activity of the asyn-
chronous thread controlled by the FlowController (see FlowControllers (DDS Extension)
(Section 6.6)).

[For asynchronous batch flushing, system resource usage depends on the activity of the
asynchronous thread controlled by max_flush_delay in BATCH QosPolicy (DDS Exten-
sion) (Section 6.5.2).

6-57

Publisher/Subscriber QosPolicies

6.4.2

Table 6.18

ENTITYFACTORY QosPolicy
This QosPolicy controls whether or not child entities are created in the enabled state.

This QosPolicy applies to the DomainParticipantFactory, DomainParticipants, Publishers, and Sub-
scribers, which act as ‘factories’ for the creation of subordinate entities. A DomainParticipantFac-
tory is used to create DomainParticipants. A DomainParticipant is used to create both Publishers
and Subscribers. A Publisher is used to create DataWriters, similarly a Subscriber is used to create
DataReaders.

Entities can be created either in an ‘enabled’ or ‘disabled” state. An enabled entity can actively
participate in communication. A disabled entity cannot be discovered or take part in communi-
cation until it is explicitly enabled. For example, Connext will not send data if the write() opera-
tion is called on a disabled DataWriter, nor will Connext deliver data to a disabled DataReader.
You can only enable a disabled entity. Once an entity is enabled, you cannot disable it, see
Section 4.1.2 about the enable() method.

The ENTITYFACTORY contains only one member, as illustrated in Table 6.18.

DDS_EntityFactoryQosPolicy

Type Field Name Description

DDS_BOOLEAN_TRUE: enable entities when they are cre-
ated

DDS_BOOLEAN_FALSE: do not enable entities when they
are created

DDS_Boolean |autoenable_created_entities

The ENTITYFACTORY QosPolicy controls whether the entities created from the factory are
automatically enabled upon creation or are left disabled. For example, if a Publisher is config-
ured to auto-enable created entities, then all DataWriters created from that Publisher will be auto-
matically enabled.

Note: if an entity is disabled, then all of the child entities it creates are also created in a disabled
state, regardless of the setting of this QosPolicy. However, enabling a disabled entity will enable
all of its children if this QosPolicy is set to autoenable child entities.

Note: an entity can only be enabled; it cannot be disabled after its been enabled.
See Section 6.4.2.1 for an example of how to set this policy.
There are various reasons why you may want to create entities in the disabled state:

[To get around a “chicken and egg”-type issue. Where you need to have an entity in order
to modify it, but you don’t want the entity to be used by Connext until it has been modi-
fied.

For example, if you create a DomainParticipant in the enabled state, it will immediately
start sending packets to other nodes trying to discover if other Connext applications exist.
However, you may want to configure the built-in topic reader listener before discovery
occurs. To do this, you need to create a DomainParticipant in the disabled state because
once enabled, discovery will occur. If you set up the built-in topic reader listener after the
DomainParticipant is enabled, you may miss some discovery traffic.

[d You may want to create entities without having them automatically start to work. This
especially pertains to DataReaders. If you create a DataReader in an enabled state and you
are using DataReaderListeners, Connext will immediately search for matching DataWriters
and callback the listener as soon as data is published. This may not be what you want to
happen if your application is still in the middle of initialization when data arrives.

6-58

Publisher/Subscriber QosPolicies

6.4.2.1

So typically, you would create all entities in a disabled state, and then when all parts of
the application have been initialized, one would enable all entities at the same time using
the enable() operation on the DomainParticipant, see Section 4.1.2.

[An entity’s existence is not advertised to other participants in the network until the entity
is enabled. Instead of sending an individual declaration packet to other applications
announcing the existence of the entity, Connext can be more efficient in bundling multiple
declarations into a single packet when you enable all entities at the same time.

See Section 4.1.2 for more information about enabled/disabled entities.

Example
The code in Figure 6.25 illustrates how to use the ENTITYFACTORY QoS.

Figure 6.25 Configuring a Publisher so that New DataWriters are Disabled

6.4.2.2

6.4.2.3

6.4.2.4

DDS_PublisherQos publisher gos;?!
// topic, publisher, writer listener already created

if (publisher-s>get gos(publisher gos) != DDS_RETCODE OK) {
// handle error
}

publisher gos.entity factory.autoenable created entities =
DDS_BOOLEAN_FALSE;
if (publisher-s>set gos(publisher gos) != DDS_RETCODE OK) {
// handle error
}

// Subsequently created DataWriters are created disabled and

// must be explicitly enabled by the user-code

DDSDataWriter* writer = publisher->create datawriter(topic,
DDS_DATAWRITER_QOS DEFAULT,
writer listener, DDS_STATUS MASK ALL) ;

// now do other initialization

// Now explicitly enable the DataWriter, this will allow other

// applications to discover the DataWriter and for this application
// to send data when the DataWriter’s write() method is called
writer->enable() ;

1. Note in C, you must initialize the QoS structures before they are used, see Section 4.2.2.

Properties
This QosPolicy can be modified at any time.

It can be set differently on the publishing and subscribing sides.

Related QosPolicies

This QosPolicy does not interact with any other policies.

Applicable Entities

(d DomainParticipantFactory (Section 8.2)

6-59

Publisher/Subscriber QosPolicies

6.4.2.5

6.4.3

Table 6.19

(d DomainParticipants (Section 8.3)
(1 Publishers (Section 6.2)
[Subscribers (Section 7.2)

System Resource Considerations

This QosPolicy does not significantly impact the use of system resources.

EXCLUSIVE_AREA QosPolicy (DDS Extension)

This QosPolicy controls the creation and use of Exclusive Areas. An exclusive area (EA) is a
mutex with built-in deadlock protection when multiple EAs are in use. It is used to provide
mutual exclusion among different threads of execution. Multiple EAs allow greater concurrency
among the internal and user threads when executing Connext code.

EAs allow Connext to be multi-threaded while preventing threads from a classical deadlock sce-
nario for multi-threaded applications. EAs prevent a DomainParticipant’s internal threads from
deadlocking with each other when executing internal code as well as when executing the code
of user-registered listener callbacks.

Within an EA, all calls to the code protected by the EA are single threaded. Each DomainPartici-
pant, Publisher and Subscriber represents a separate EA. All DataWriters of the same Publisher and
all DataReaders of the same Subscriber share the EA of its parent. This means that the DataWriters
of the same Publisher and the DataReaders of the same Subscriber are inherently single threaded.

Within an EA, there are limitations on how code protected by a different EA can be accessed. For
example, when data is being processed by user code received in the DataReaderListener of a
Subscriber EA, the user code may call the write() function of a DataWriter that is protected by the
EA of its Publisher. So you can send data in the function called to process received data. How-
ever, you cannot create entities or call functions that are protected by the EA of the DomainPartic-
ipant. See Exclusive Areas (EAs) (Section 4.5) for the complete documentation on Exclusive
Areas.

With this QoS, you can force a Publisher or Subscriber to share the same EA as its DomainPartici-
pant. Using this capability, the restriction of not being to create entities in a DataReaderListener's
on_data_available() callback is lifted. However, the trade-off is that the application has reduced
concurrency through the Entities that share an EA.

Note that the restrictions on calling methods in a different EA only exists for user code that is
called in registered Listeners by internal DomainParticipant threads. User code may call all Con-
next functions for any Entities from their own threads at any time.

The EXCLUSIVE_AREA includes a single member, as listed in Table 6.19. For the default value,
please refer to the API Reference HTML documentation.

DDS_ExclusiveAreaQosPolicy

Type Field Name Description

DDS_BOOLEAN_FALSE:
subordinates will not use the same EA

DDS_BOOLEAN_TRUE:
subordinates will use the same EA

DDS_Boolean |use_shared_exclusive_area

The implications and restrictions of using a private or shared EA are discussed in Section 4.5.
The basic trade-off is concurrency versus restrictions on which methods can be called in user, lis-
tener, callback functions. To summarize:

Behavior when the Publisher or Subscriber’s use_shared_exclusive_area is set to FALSE:

6-60

Publisher/Subscriber QosPolicies

(J The creation of the Publisher/Subscriber will create an EA that will be used only by the
Publisher/Subscriber and the DataWriters/DataReaders that belong to them.

[Consequences: This setting maximizes concurrency at the expense of creating a mutex
for the Publisher or Subscriber. In addition, using a separate EA may restrict certain Con-
next operations (see Operations Allowed within Listener Callbacks (Section 4.4.5)) from
being called from the callbacks of Listeners attached to those entities and the entities that
they create. This limitation results from a built-in deadlock protection mechanism.

Behavior when the Publisher or Subscriber’s use_shared_exclusive_area is set to TRUE:

[The creation of the Publisher/Subscriber does not create a new EA. Instead, the Publisher/
Subscriber, along with the DataWriters/DataReaders that they create, will use a common EA
shared with the DomainParticipant.

(d Consequences: By sharing the same EA among multiple entities, you may decrease the
amount of concurrency in the application, which can adversely impact performance.
However, this setting does use less resources and allows you to call almost any operation
on any Entity within a listener callback (see Exclusive Areas (EAs) (Section 4.5) for full
details).

6.4.3.1 Example
The code in Figure 6.26 illustrates how to change the EXCLUSIVE_AREA policy.
Figure 6.26 Creating a Publisher with a Shared Exclusive Area
DDS_PublisherQos publisher gos;?®
// domain, publisher listener have been previously created
if (participant->get default publisher gos(publisher gos) !=

DDS_RETCODE_OK) {
// handle error

}

publisher gos.exclusive area.use_ shared exclusive area = DDS BOOLEAN TRUE;

DDSPublisher* publisher = participant-s>create publisher (publisher gos,
publisher listener, DDS_STATUS MASK ALL) ;

1. Note in C, you must initialize the QoS structures before they are used, see Section 4.2.2.

6.4.3.2 Properties
This QosPolicy cannot be modified after the Entity has been created.
It can be set differently on the publishing and subscribing sides.

6.4.3.3 Related QosPolicies

This QosPolicy does not interact with any other policies.
6.4.3.4 Applicable Entities

(1 Publishers (Section 6.2)
[Subscribers (Section 7.2)

6-61

Publisher/Subscriber QosPolicies

6.4.3.5

644

Table 6.20

6.4.4.1

System Resource Considerations

This QosPolicy affects the use of operating-system mutexes. When use_shared_exclusive_area
is FALSE, the creation of a Publisher or Subscriber will create an operating-system mutex.

GROUP_DATA QosPolicy

This QosPolicy provides an area where your application can store additional information related
to the Publisher and Subscriber. This information is passed between applications during discov-
ery (see Chapter 14: Discovery) using built-in-topics (see Chapter 16: Built-In Topics). How this
information is used will be up to user code. Connext does not do anything with the information
stored as GROUP_DATA except to pass it to other applications.

Use cases are often application-to-application identification, authentication, authorization, and
encryption purposes. For example, applications can use this QosPolicy to send security certifi-
cates to each other for RSA-type security.

The value of the GROUP_DATA QosPolicy is sent to remote applications when they are first dis-
covered, as well as when the Publisher or Subscriber’s set_qos() method is called after changing
the value of the GROUP_DATA. User code can set listeners on the built-in DataReaders of the
built-in Topics used by Connext to propagate discovery information. Methods in the built-in topic
listeners will be called whenever new DomainParticipants, DataReaders, and DataWriters are
found. Within the user callback, you will have access to the GROUP_DATA that was set for the
associated Publisher or Subscriber.

Currently, GROUP_DATA of the associated Publisher or Subscriber is only propagated with the
information that declares a DataWriter or DataReader. Thus, you will need to access the value of
GROUP_DATA through DDS_PublicationBuiltinTopicData or
DDS_SubscriptionBuiltinTopicData (see Chapter 16: Built-In Topics).

The structure for the GROUP_DATA QosPolicy includes just one field, as seen in Table 6.20. The
field is a sequence of octets that translates to a contiguous buffer of bytes whose contents and
length is set by the wuser. The maximum size for the data are set in the
DOMAIN_PARTICIPANT_RESOURCE_LIMITS QosPolicy (DDS Extension) (Section 8.5.4).

DDS_GroupDataQosPolicy

Type Field Name Description

DDS_OctetSeq value Empty by default

This policy is similar to the USER_DATA QosPolicy (Section 6.5.25) and TOPIC_DATA QosPol-
icy (Section 5.2.1) that apply to other types of Entities.

Example

One possible use of GROUP_DATA is to pass some credential or certificate that your subscriber
application can use to accept or reject communication with the DataWriters that belong to the
Publisher (or vice versa, where the publisher application can validate the permission of
DataReaders of a Subscriber to receive its data). The value of the GROUP_DATA of the Publisher is
propagated in the ‘group_data’ field of the DDS_PublicationBuiltinTopicData that is sent with
the declaration of each DataWriter. Similarly, the value of the GROUP_DATA of the Subscriber is
propagated in the ‘group_data’ field of the DDS_SubscriptionBuiltinTopicData that is sent
with the declaration of each DataReader.

When Connext discovers a DataWriter/DataReader, the application can be notified of the discov-
ery of the new entity and retrieve information about the DataWriter/DataReader QoS by reading
the DCPSPublication or DCPSSubscription built-in topics (see Chapter 16: Built-In Topics).
Your application can then examine the GROUP_DATA field in the built-in Topic and decide

6-62

Publisher/Subscriber QosPolicies

whether or not the DataWriter/DataReader should be allowed to communicate with local
DataReaders/DataWriters. If communication is not allowed, the application can use the Domain-
Participant’s ignore_publication() or ignore_subscription() operation to reject the newly discov-
ered remote entity as one with which the application allows Connext to communicate. See
Figure 16.2, “Ignoring Publications,” on page 16-13 for an example of how to do this.

The code in Figure 6.27 illustrates how to change the GROUP_DATA policy.

Figure 6.27 Creating a Publisher with GROUP_DATA

6.4.4.2

6.4.4.3

6.4.4.4

DDS_PublisherQos publisher gos;®
int i = 0;

// Bytes that will be used for the group data. In this case 8 bytes
// of some information that is meaningful to the user application
char myGroupData [GROUP_DATA SIZE] =

{ 0x34, o0xaa, Oxfe, 0x31, 0x7a, 0xf2, 0x34, Oxaa};

// assume that domainparticipant and publisher listener
// are already created
if (participant->get default publisher gos(publisher gos) !=
DDS_RETCODE_OK) {
// handle error

}

// Must set the size of the sequence first
publisher gos.group data.value.maximum(GROUP DATA SIZE) ;
publisher gos.group data.value.length (GROUP_DATA SIZE) ;

for (i = 0; i < GROUP_DATA SIZE; i++) ({

publisher gos.group data.value[i] = myGroupData[i]
}

DDSPublisher* publisher = participant->create publisher(publisher gos,
publisher listener, DDS_STATUS_MASK ALL) ;

1. Note in C, you must initialize the QoS structures before they are used, see Section 4.2.2.

Properties
This QosPolicy can be modified at any time.

It can be set differently on the publishing and subscribing sides.
Related QosPolicies

(d TOPIC_DATA QosPolicy (Section 5.2.1)
(d USER_DATA QosPolicy (Section 6.5.25)

(d DOMAIN_PARTICIPANT_RESOURCE_LIMITS QosPolicy (DDS Extension) (Section
8.5.4)

Applicable Entities

[Publishers (Section 6.2)
[Subscribers (Section 7.2)

6-63

Publisher/Subscriber QosPolicies

6.4.4.5

6.4.5

System Resource Considerations

As mentioned earlier, the maximum size of the GROUP_DATA is set in the
publisher_group_data_max_length and subscriber_group_data_max_length fields of the
DOMAIN_PARTICIPANT_RESOURCE_LIMITS QosPolicy (DDS Extension) (Section 8.5.4).
Because Connext will allocate memory based on this value, you should only increase this value if
you need to. If your system does not use GROUP_DATA, then you can set this value to zero to
save memory. Setting the value of the GROUP_DATA QosPolicy to hold data longer than the
value set in the [publisher/subscriber]_group_data_max_length fields will result in failure and
an INCONSISTENT_QOS_POLICY return code.

However, should you decide to change the maximum size of GROUP_DATA, you must make
certain that all applications in the domain have changed the value of [publisher/sub-
scriber]_group_data_max_length to be the same. If two applications have different limits on the
size of GROUP DATA, and one application sets the GROUP_DATA QosPolicy to hold data that
is greater than the maximum size set by another application, then the matching DataWriters and
DataReaders of the Publisher and Subscriber between the two applications will not connect. This is
also true for the TOPIC_DATA (Section 5.2.1) and USER_DATA (Section 6.5.25) QosPolicies.

PARTITION QosPolicy

The PARTITION QoS provides another way to control which DataWriters will match—and thus
communicate with—which DataReaders. It can be used to prevent DataWriters and DataReaders
that would have otherwise matched with the same Topic and compatible QosPolicies from talk-
ing to each other. Much in the same way that only applications within the same domain will
communicate with each other, only DataWriters and DataReaders that belong to the same parti-
tion can talk to each other.

The PARTITION QoS applies to Publishers and Subscribers, therefore the DataWriters and
DataReaders belong to the partitions as set on the Publishers and Subscribers that created them.
The mechanism implementing the PARTITION QoS is relatively lightweight, and membership
in a partition can be dynamically changed. Unlike the creation and destruction of DomainPartici-
pants, there is no spawning and killing of threads or allocation and deallocation of memory
when Publishers and Subscribers add or remove themselves from partitions.

The PARTITION QoS consists of a set of partition names that identify the partitions of which the
Entity is a member. These names are simply strings, and DataWriters and DataReaders are consid-

ered to be in the same partition if they have more than one partition name in common in the
PARTITION QoS set on their Publishers or Subscribers.

Conceptually each partition name can be thought of as defining a “visibility plane” within the
domain. DataWriters will make their data available on all the visibility planes that correspond to
its Publisher’s partition names, and the DataReaders will see the data that is placed on any of the
visibility planes that correspond to its Subscriber’s partition names.

Figure 6.28 illustrates the concept of PARTITION QoS. In this figure, all DataWriters and
DataReaders belong to the same domain and refer to the same Topic. DataWriter1 is configured to
belong to three partitions: partition_A, partition_B, and partition_C. DataWriter2 belongs to
partition_C and partition_D.

Similarly, DataReader1 is configured to belong to partition_A and partition_B, and DataReader2
belongs only to partition_C. Given this topology, the data written by DataWriter1 is visible in
partitions A, B, and C. The oval tagged with the number “1” represents one data-sample written
by DataWriterl.

Similarly, the data written by DataWriter2 is visible in partitions C and D. The oval tagged with
the number “2” represents one data-sample written by DataWriter2.

6-64

Publisher/Subscriber QosPolicies

Figure 6.28 Controlling Visibility of Data with the PARTITION QoS

6.4.5.1

Observes data
written only on the

available on all the ‘ planes

specified visibility @ partition_A v\7//

Makes its data specified visibility

planes

| DataReader]]

1o partition B “+

DataWriterl

&1 <2 partition C 4..--‘ DataReader2]

| DataWriter2]—""'"'
T >

partition D

The result is that the data written by DataWriterl will be received by both DataReaderl and
DataReader2, but the data written by DataWriter2 will only be visible by DataReader?2.

Publishers and Subscribers always belong to a partition. By default, Publishers and Subscribers
belong to a single partition whose name is the empty string, “”. If you set the PARTITION QoS
to be an empty set, Connext will assign the Publisher or Subscriber to the default partition, ““.
Thus, for the example above, without using the PARTITION QoS, DataReaders 1 and 2 would
have received all data samples written by DataWriters 1 and 2.

Rules for PARTITION Matching

On the Publisher side, the PARTITION QosPolicy associates a set of strings (partition names)
with the Publisher. On the Subscriber side, the application also uses the PARTITION QoS to asso-
ciate partition names with the Subscriber.

Taking into account the PARTITION QoS, a DataWriter will communicate with a DataReader if
and only if the following conditions apply:

1. The DataWriter and DataReader belong to the same domain. That is, their respective
DomainParticipants are bound to the same domain ID (see Section 8.3.1).

2. The DataWriter and DataReader have matching Topics. That is, each is associated with a
Topic with the same topic_name and data type.

3. The QoS offered by the DataWriter is compatible with the QoS requested by the
DataReader.

4. The application has not used the ignore_participant(), ignore_datareader(), or
ignore_datawriter() APIs to prevent the association (see Section 16.4).

5. The Publisher to which the DataWriter belongs and the Subscriber to which the DataReader
belongs must have at least one matching partition name.

The last condition reflects the visibility of the data introduced by the PARTITION QoS. Match-
ing partition names is done by string comparison, thus partition names are case sensitive.

6-65

Publisher/Subscriber QosPolicies

6.4.5.2

Table 6.21

6.4.5.3

NOTE: Failure to match partitions is not considered an incompatible QoS and does not trigger
any listeners or change any status conditions.

Pattern Matching for PARTITION Names

You may also add strings that are regular expressions' to the PARTITION QosPolicy. A regular
expression does not define a set of partitions to which the Publisher or Subscriber belongs, as
much as it is used in the partition matching process to see if a remote entity has a partition name
that would be matched with the regular expression. That is, the regular expressions in the PAR-
TITION QoS of a Publisher are never matched against those found in the PARTITION QoS of a
Subscriber. Regular expressions are always matched against “concrete” partition names. Thus, a
concrete partition name may not contain any reserved characters that are used to define regular

IS 4T AT

expressions, for example “*’,*.’, ‘+’, etc.

If a PARTITION QoS only contains regular expressions, then the Publisher or Subscriber will be
assigned automatically to the default partition with the empty string name (“*). Thus, do not be
fooled into thinking that a PARTITION QoS that only contains the string “*” matches another
PARTITION QoS that only contains the string “*”. Yes, the Publisher will match the Subscriber,
but it is because they both belong to the default “* partition.

DataWriters and DataReaders are considered to have a partition in common if the sets of parti-
tions that their associated Publishers and Subscribers have defined have:

(J at least one concrete partition name in common
[a regular expression in one Entity that matches a concrete partition name in another
Entity

The programmatic representation of the PARTITION QoS is shown in Table 6.21. The QosPolicy
contains the single string sequence, name. Each element in the sequence can be a concrete name
or a regular expression. The Entity will be assigned to the default “* partition if the sequence is

empty.
DDS_PartitionQosPolicy
Type Field Name Description
Empty by default.
DDS_StringSeq | name There can be up to 64 names, with a maximum of 256 characters
summed across all names.

You can have one long partition string of 256 chars, or multiple shorter strings that add up to 256
or less characters. For example, you can have one string of 4 chars and one string of 252 chars.

Example

Since the set of partitions for a Publisher or Subscriber can be dynamically changed, the Partition
QosPolicy is useful to control which DataWriters can send data to which DataReaders and vice
versa—even if all of the DataWriters and DataReaders are for the same topic. This facility is useful
for creating temporary separation groups among entities that would otherwise be connected to
and exchange data each other.

Note when using Partitions and Durability: If a Publisher changes partitions after startup, it is
possible for a reliable, latejoining DataReader to receive data that was written for both the orig-
inal and the new partition. For example, suppose a DataWriter with TRANSIENT_LOCAL
Durability initially writes samples with Partition A, but later changes to Partition B. In this case,
a reliable, late-joining DataReader configured for Partition B will receive whatever samples have

1. As defined by the POSIX fnmatch API (1003.2-1992 section B.6).

6-66

Publisher/Subscriber QosPolicies

been saved for the DataWriter. These may include samples which were written when the
DataWriter was using Partition A.

The code in Figure 6.29 illustrates how to change the PARTITION policy.

Figure 6.29 Setting Partition Names on a Publisher

DDS_PublisherQos publisher gos;?!
// domain, publisher listener have been previously created

if (participant->get default publisher gos(publisher gos) !=
DDS_RETCODE_OK) {
// handle error

}

// Set the partition QoS

publisher gos.partition.name.maximum(3) ;

publisher gos.partition.name.length(3);

publisher gos.partition.name[0] = DDS String dup (“partition A”);
publisher gos.partition.name[1] DDS_String dup (“partition B”);
publisher gos.partition.name([2] = DDS_String dup(“partition_C”);

DDSPublisher* publisher = participant->create publisher (publisher gos,
publisher listener, DDS_STATUS MASK ALL) ;

1. Note in C, you must initialize the QoS structures before they are used, see Section 4.2.2.

The ability to dynamically control which DataWriters are matched to which DataReaders (of the
same Topic) offered by the PARTITION QoS can be used in many different ways. Using parti-
tions, connectivity can be controlled based on location-based partitioning, access-control
groups, purpose, or a combination of these and other application-defined criteria. We will exam-
ine some of these options via concrete examples.

Example of location-based partitions. Assume you have a set of Topics in a traffic management
system such as “TrafficAlert,” “AccidentReport,” and “CongestionStatus.” You may want to
control the visibility of these Topics based on the actual location to which the information
applies. You can do this by placing the Publisher in a partition that represents the area to which
the information applies. This can be done using a string that includes the city, state, and country,
such as “USA /California/Santa Clara.” A Subscriber can then choose whether it wants to see the
alerts in a single city, the accidents in a set of states, or the congestion status across the US. Some
concrete examples are shown in Table 6.22.

Table 6.22 Example of Using Location-Based Partitions

Publisher Partitions Subscriber Partitions Result
Specify a single partition name|Specify —multiple partition | Limits the visibility of the data to
using the pattern: names, one per region of inter- | Subscribers that express interest in
“<country>/<state>/ <city>" est the geographical region.

(Subscriber participant is irrele- | Send only information for Santa

USA/California/Santa Clara vant here.) Clara, California.

6-67

Publisher/Subscriber QosPolicies

Table 6.22 Example of Using Location-Based Partitions

Table 6.23

6.4.5.4

Publisher Partitions

Subscriber Partitions

Result

(Publisher partition is irrelevant

“USA /California/Santa Clara”

Receive only information for Santa
Clara, California.

“USA /California/Santa Clara”
“USA /California/Sunnyvale”

Receive information for Santa Clara
or Sunnyvale, California.

here.) “USA/California/*” Receive information for California
“USA /Nevada/*” or Nevada.
“USA /California/*” Receive inf on for Californi
“USA /Nevada/Reno” eceive information for California

and two cities in Nevada.

“USA/Nevada/Las Vegas”

Example of access-control group partitions. Suppose you have an application where access to
the information must be restricted based on reader membership to access-control groups. You
can map this group-controlled visibility to partitions by naming all the groups (e.g. executives,
payroll, financial, general-staff, consultants, external-people) and assigning the Publisher to the
set of partitions that represents which groups should have access to the information. The Sub-
scribers specify the groups to which they belong, and the partition-matching behavior will
ensure that the information is only distributed to Subscribers belonging to the appropriate
groups. Some concrete examples are shown in Table 6.23.

Example of Access-Control Group Partitions

Publisher Partitions Subscriber Partitions Result

Specify several partition
names, one per group
that is allowed access:

Specify multiple partition
names, one per group to which
the Subscriber belongs.

Limits the visibility of the data to Subscribers
that belong to the access-groups specified by
the Publisher.

Makes information available only to Sub-

“payroll” Subscriber participant is irrele- . . : .
,,E. Y ial” Ezant here.) P p scribers that have access to either financial or
mancia ’ payroll information.
(Publisher participant is | “executives” Gain access to information that is intended
irrelevant hg re) p i o1 for executives or people with access to the
. inancia

finances.

A slight variation of this pattern could be used to confine the information based on security lev-
els.

Example of purpose-based partitions: Assume an application containing subsystems that can
be used for multiple purposes, such as training, simulation, and real use. In some occasions it is
convenient to be able to dynamically switch the subsystem from operating in the “simulation
world” to the “training world” or to the “real world.” For supervision purposes, it may be con-
venient to observe multiple worlds, so that you can compare the each one’s results. This can be
accomplished by setting a partition name in the Publisher that represents the “world” to which it
belongs and a set of partition names in the Subscriber that model the worlds that it can observe.

Propetrties

This QosPolicy can be modified at any time.

Strictly speaking, this QosPolicy does not have request-offered semantics, although it is matched
between DataWriters and DataReaders, and communication is established only if there is a match
between partition names.

6-68

Publisher/Subscriber QosPolicies

6.4.5.5

6.4.5.6

6.4.5.7

6.4.6

6.4.6.1

Related QosPolicies

[DOMAIN_PARTICIPANT_RESOURCE_LIMITS QosPolicy (DDS Extension) (Section
8.5.4).

Applicable Entities

(1 Publishers (Section 6.2)
[Subscribers (Section 7.2)

System Resource Considerations

Partition names are propagated along with the declarations of the DataReaders and the DataWrit-
ers and can be examined by user code through built-in topics (see Chapter 16: Built-In Topics).
Thus the sum-total length of the partition names will impact the bandwidth needed to transmit
those declarations, as well as the memory used to store them.

The maximum number of partitions and the maximum number of characters that can be used
for the sum-total length of all partition names are configured using the max_partitions and
max_partition_cumulative_characters fields of the
DOMAIN_PARTICIPANT_RESOURCE_LIMITS QosPolicy (DDS Extension) (Section 8.5.4). Set-
ting more partitions or using longer names than allowed by those limits will result in failure and
an INCONSISTENT_QOS_POLICY return code.

However, should you decide to change the maximum number of partitions or maximum cumu-
lative length of partition names, then you must make certain that all applications in the domain
have changed the values of max_partitions and max_partition_cumulative_characters to be the
same. If two applications have different values for those settings, and one application sets the
PARTITION QosPolicy to hold more partitions or longer names than set by another application,
then the matching DataWriters and DataReaders of the Publisher and Subscriber between the two
applications will not connect. This similar to the restrictions for the GROUP_DATA
(Section 6.4.4), USER_DATA (Section 6.5.25), and TOPIC_DATA (Section 5.2.1) QosPolicies.

PRESENTATION QosPolicy

Usually DataReaders will receive data in the order that it was sent by a DataWriter. In addition,
data is presented to the DataReader as soon as the application receives the next value expected.

Sometimes, you may want a set of data for the same DataWriter to be presented to the receiving
DataReader only after ALL the elements of the set have been received, but not before. You may
also want the data to be presented in a different order than it was received. Specifically, for
keyed data, you may want Connext to present the data in keyed or instance order.

The Presentation QosPolicy allows you to specify different scopes of presentation: within a
DataWriter, across instances of a DataWriter, and even across different DataWriters of a publisher.
It also controls whether or not a set of changes within the scope must be delivered at the same
time or delivered as soon as each element is received.

There are three components to this QoS, the boolean flag coherent_access, the boolean flag
ordered_access, and an enumerated setting for the access_scope. The structure used is shown in
Table 6.24.

Coherent Access

A 'coherent set' is a set of data-sample modifications that must be propagated in such a way that
they are interpreted at the receiver's side as a consistent set; that is, the receiver will only be able
to access the data after all the modifications in the set are available at the subscribing end.

6-69

Publisher/Subscriber QosPolicies

Table 6.24 DDS_PresentationQosPolicy

Type

Field Name

Description

DDS_Presentation_
QosPolicy AccessScope-
Kind

access_scope

Controls the granularity used when coherent_access and/or
ordered_access are TRUE.

If both coherent_access and ordered_access are FALSE,
access_scope’s setting has no effect.

e DDS_INSTANCE_PRESENTATION_QOS:
Queue is ordered/sorted per instance

e DDS_TOPIC_PRESENTATION_QOS:
Queue is ordered /sorted per topic (across all instances)

¢ DDS_GROUP_PRESENTATION_QOS:
Queue is ordered/sorted per topic across all instances
belonging to DataWriter (or DataReaders) within the same
Publisher (or Subscriber). ~ Not supported for
coherent_access = TRUE.

e DDS_HIGHEST_OFFERED_PRESENTATION_QOS: Only
applies to Subscribers. With this setting, the Subscriber will
use the access scope specified by each remote Publisher.

DDS_Boolean

coherent_access

Controls whether Connext will preserve the groupings of
changes made by the publishing application by means of
begin_coherent_changes() and end_coherent_changes().
¢ DDS_BOOLEAN_FALSE: Coherency is not preserved.
The value of access_scope is ignored.
e DDS _BOOLEAN_TRUE: Changes made to instances
within each DataWriter will be available to the DataReader as
a coherent set, based on the value of access_scope. Not sup-
ported for access_scope = GROUP.

DDS_Boolean

ordered_access

Controls whether Connext will preserve the order of changes.
¢ DDS_BOOLEAN_FALSE: The order of samples is only
preserved for each instance, not across instances. The value
of access_scope is ignored.
e DDS_BOOLEAN_TRUE: The order of samples from a
DataWriter is preserved, based on the value set in
access_scope.

Coherency enables a publishing application to change the value of several data-instances and
have those changes be seen atomically (as a cohesive set) by the readers.

Setting coherent_access to TRUE only behaves as described in the DDS specification when the
DataWriter and DataReader are configured for reliable delivery. Non-reliable DataReaders will
never receive samples that belong to a coherent set.

To send a coherent set of data samples, the publishing application uses the Publisher’s
begin_coherent_changes() and end_coherent_changes() operations (see Writing Coherent Sets
of Data Samples (Section 6.3.10)).

If coherent_access is TRUE, then the access_scope controls the maximum extent of the coherent

changes, as follows:

(d If access_scope is INSTANCE, the use of begin_coherent changes() and
end_coherent_changes() has no effect on how the subscriber can access the data. This is
because, with the scope limited to each instance, changes to separate instances are con-
sidered independent and thus cannot be grouped by a coherent change.

6-70

Publisher/Subscriber QosPolicies

6.4.6.2

6.4.6.3

(J If access_scope is TOPIC, then coherent changes (indicated by their enclosure within
calls to begin_coherent_changes() and end_coherent_changes()) will be made available
as such to each remote DataReader independently. That is, changes made to instances
within the each individual DataWriter will be available as a coherent set with respect to
other changes to instances in that same DataWriter, but will not be grouped with changes
made to instances belonging to a different DataWriter.

[If access_scope is GROUP, coherent changes made to instances through a DataWriter
attached to a common Publisher are made available as a unit to remote subscribers.
Coherent access with GROUP access scope is currently not supported.

Ordered Access

If ordered_access is TRUE, then access_scope controls the scope of the order in which samples
are presented to the subscribing application, as follows:

[If access_scope is INSTANCE, the relative order of samples sent by a DataWriter is only
preserved on an per-instance basis. If two samples refer to the same instance (identified
by Topic and a particular value for the key) then the order in which they are stored in the
DataReader’s queue is consistent with the order in which the changes occurred. However,
if the two samples belong to different instances, the order in which they are presented
may or may not match the order in which the changes occurred.

[If access_scope is TOPIC, the relative order of samples sent by a DataWriter is preserved
for all samples of all instances. The coherent grouping and/or order in which samples
appear in the DataReader’s queue is consistent with the grouping/order in which the
changes occurred—even if the samples affect different instances.

[If access_scope is GROUP, the scope spans all instances belonging to DataWriter entities
within the same Publisher—even if they are instances of different topics. Changes made
to instances via DataWriter entities attached to the same Publisher are made available to
Subscribers on the same order they occurred.

[If access_scope is HIGHEST_OFFERED, the Subscriber will use the access scope specified
by each remote Publisher.

The data stored in the DataReader is accessed by the DataReader’s read() /take() APIs. The appli-
cation does not have to access the data samples in the same order as they are stored in the queue.
How the application actually gets the data from the DataReader is ultimately under the control of
the user code, see Using DataReaders to Access Data (Read & Take) (Section 7.4).

Example

Coherency is useful in cases where the values are inter-related (for example, if there are two
data-instances representing the altitude and velocity vector of the same aircraft and both are
changed, it may be useful to communicate those values in a way the reader can see both
together; otherwise, it may e.g., erroneously interpret that the aircraft is on a collision course).

Ordered access is useful when you need to ensure that samples appear on the DataReader’s
queue in the order sent by one or multiple DataWriters within the same Publisher.

To illustrate the effect of the PRESENTATION QosPolicy with TOPIC and INSTANCE access
scope, assume the following sequence of samples was written by the DataWriter: {Al, B1, C1, A2,
B2, C2}. In this example, A, B, and C represent different instances (i.e., different keys). Assume
all of these samples have been propagated to the DataReader’s history queue before your applica-
tion invokes the read() operation. The data-sample sequence returned depends on how the PRE-
SENTATION QoS is set, as shown in Table 6.25.

To illustrate the effect of a PRESENTATION QosPolicy with GROUP access_scope, assume the
following sequence of samples was written by two DataWriters, W1 and W2, within the same

6-71

Publisher/Subscriber QosPolicies

Table 6.25

Table 6.26

6.4.6.4

Table 6.27

Effect of ordered_access for access_scope INSTANCE and TOPIC

Sequence retrieved via “read()”.
PRESENTATION QoS Order sent was {A1, B1, C1, A2, B2, C2}
Order received was {A1, A2, B1, B2, C1, C2}

ordered_access = FALSE

{A1, A2, B1,B2,C1, C2}
access_scope = <any>
ordered_access = TRUE
B Al, A2,B1,B2,C1,C2
access_scope = INSTANCE { }
dered = TRUE
ordered_access {A1,B1,C1, A2, B2, C2}

access_scope = TOPIC

Publisher: {(W1,A1), (W2,B1), (W1,C1), (W2,A2), (W1,B2), (W2,C2)}. As in the previous example,
A, B, and C represent different instances (i.e., different keys). With access_scope set to
INSTANCE or TOPIC, the middleware cannot guarantee that the application will receive the
samples in the same order they were published by W1 and W2. With access_scope set to
GROUP, the middleware is able to provide the samples in order to the application as long as the
read()/take() operations are invoked within a begin_access()/end_access() block (see
Section 7.2.5).

Effect of ordered_access for access_scope GROUP

Sequence retrieved via “read()”.
PRESENTATION QoS Order sent was {(W1,A1), (W2,B1), (W1,C1), (W2,A2),
(W1,B2), (W2,C2)}

The order across DataWriters will not be preserved. Samples
may be delivered in multiple orders. For example:

{(W1,A1), (W1,C1), (W1,B2), (W2,B1), (W2,A2), (W2,C2)}
{(W1,A1), (W2,B1), (W1,B2), (W1,C1), (W2,A2), (W2,C2)}

ordered_access = FALSE
or
access_scope = TOPIC or INSTANCE

ordered_access = TRUE Samples are delivered in the same order they were published:
access_scope = GROUP {(W1,A1), (W2,B1), (W1,C1), (W2,A2), (W1,B2), (W2,C2)}
Properties

This QosPolicy cannot be modified after the Publisher or Subscriber is enabled.

This QoS must be set compatibly between the DataWriter’s Publisher and the DataReader’s Sub-
scriber. The compatible combinations are shown in Table 6.27 and Table 6.28 for ordered_access
and Table 6.29 for coherent_access.

Valid Combinations of ordered_access and access_scope, with Subscriber’s ordered_access =
False

Subscriber Requests:
{ordered_access/access_scope}
False/Instance | False/Topic | False/Group |False/Highest

False/Instance 4 incompatible | incompatible v

False/Topic v v incompatible v

Publisher |False/Group v 4 v v
offers: True/Instance v incompatible | incompatible v
True/Topic 4 4 incompatible 4

True/Group v v v v

6-72

DataWriter QosPolicies

Table 6.28 Valid Combinations of ordered_access and access_scope, with Subscriber’s ordered_access =

Table 6.29

6.4.6.5

6.4.6.6

6.4.6.7

6.5

True
Subscriber Requests:
{ordered_access/access_scope} : -
True/Instance | True/Topic True/Group |True/Highest
False/Instance incompatible | incompatible | incompatible | incompatible
False/Topic incompatible | incompatible | incompatible | incompatible
Publisher |false/Group incompatible | incompatible | incompatible | incompatible
offers: True/Instance v incompatible | incompatible v
True/Topic v v incompatible v
True/Group v v v v
Valid Combinations of Presentation Coherent Access and Access Scope
Subscriber requests:
{coherent_access/access_scope} - -
False/Instance | False/Topic | True/Instance | True/Topic
False/Instance v incompatible | incompatible | incompatible
Publisher |False/Topic v v incompatible | incompatible
offers: True/Instance v incompatible v incompatible
True/Topic v v 4 v

Related QosPolicies

The DESTINATION_ORDER QosPolicy (Section 6.5.6) is closely related and also affects the
ordering of data samples on a per-instance basis when there are multiple DataWriters.

The DATA_READER_PROTOCOL QosPolicy (DDS Extension) (Section 7.6.1) may be used to
configure the sample ordering process in the Subscribers configured with GROUP or
HIGHEST_OFFERED access_scope.

Applicable Entities

[Publishers (Section 6.2)
[Subscribers (Section 7.2)

System Resource Considerations

The use of this policy does not significantly impact the usage of resources.

DataWriter QosPolicies

This section provides detailed information about the QosPolicies associated with a DataWriter.
Table 6.16 on page 6-45 provides a quick reference. They are presented here in alphabetical
order.

(d AVAILABILITY QosPolicy (DDS Extension) (Section 6.5.1)

(d BATCH QosPolicy (DDS Extension) (Section 6.5.2)

(d DATA_WRITER_PROTOCOL QosPolicy (DDS Extension) (Section 6.5.3)

d DATA_WRITER_RESOURCE_LIMITS QosPolicy (DDS Extension) (Section 6.5.4)

6-73

DataWriter QosPolicies

(d DEADLINE QosPolicy (Section 6.5.5)

(d DESTINATION_ORDER QosPolicy (Section 6.5.6)

(d DURABILITY QosPolicy (Section 6.5.7)

(d DURABILITY SERVICE QosPolicy (Section 6.5.8)

[ENTITY_NAME QosPolicy (DDS Extension) (Section 6.5.9)

[HISTORY QosPolicy (Section 6.5.10)

(d LATENCYBUDGET QoS Policy (Section 6.5.11)

(d LIFESPAN QoS Policy (Section 6.5.12)

(d LIVELINESS QosPolicy (Section 6.5.13)

(d MULTI_CHANNEL QosPolicy (DDS Extension) (Section 6.5.14)
[OWNERSHIP QosPolicy (Section 6.5.15)

(d OWNERSHIP_STRENGTH QosPolicy (Section 6.5.16)

(d PROPERTY QosPolicy (DDS Extension) (Section 6.5.17)

(d PUBLISH_MODE QosPolicy (DDS Extension) (Section 6.5.18)
(d RELIABILITY QosPolicy (Section 6.5.19)

(d RESOURCE_LIMITS QosPolicy (Section 6.5.20)

(d TRANSPORT_PRIORITY QosPolicy (Section 6.5.21)

(d TRANSPORT_SELECTION QosPolicy (DDS Extension) (Section 6.5.22)
(d TRANSPORT_UNICAST QosPolicy (DDS Extension) (Section 6.5.23)
(d TYPESUPPORT QosPolicy (DDS Extension) (Section 6.5.24)

(d USER_DATA QosPolicy (Section 6.5.25)

(d WRITER_DATA_LIFECYCLE QoS Policy (Section 6.5.26)

6.5.1 AVAILABILITY QosPolicy (DDS Extension)

This QoS policy configures the availability of data and it is used in the context of two features:
[Collaborative DataWriters (Section 6.5.1.1)
(d Required Subscriptions (Section 6.5.1.2)

It contains the members listed in Table 6.30.

Table 6.30 DDS_AuvailabilityQosPolicy

Type Field Name Description

Enables support for required subscriptions in a DataW-

enable_required_subscripti riter.

DDS_Boolean ons For Collaborative DataWriters: Not applicable.

For Required Subscriptions: See Table 6.33.

Defines how much time to wait before delivering a sam-

ple to the application without having received some of
struct max_data_availability_ the previous samples.

DDS_Duration_t | waiting_time For Collaborative DataWriters: See Table 6.32.
For Required Subscriptions: Not applicable.

6-74

DataWriter QosPolicies

Table 6.30 DDS_AvailabilityQosPolicy

Table 6.31

6.5.1.1

Type Field Name Description

Defines how much time to wait to discover DataWriters

struct max_endpoint_availability_ providing samples for the same data source.
DDS_Duration_t | waiting_time For Collaborative DataWriters: See Table 6.32.

For Required Subscriptions: Not applicable.
struct A sequence of endpoint groups, described in Table 6.31.

DDS_Endpoint- requlr?d_matched_ For Collaborative DataWriters: See Table 6.32.
endpoint_groups

GroupSeq For Required Subscriptions: See Table 6.33

struct DDS_EndpointGroup_t

Type | Field Name Description

Defines the role name of the endpoint group.

char* |role_name If used in the AvailabilityQosPolicy on a DataWriter, it specifies the name that
identifies a Required Subscription.

Defines the minimum number of members that satisfies the endpoint group.

If used in the AvailabilityQosPolicy on a DataWriter, it specifies the number of
DataReaders with a specific role name that must acknowledge a sample before
the sample is considered to be acknowledged by the Required Subscription.

int quorum_count

Availability QoS Policy and Collaborative DataWriters

The Collaborative DataWriters feature allows you to have multiple DataWriters publishing sam-
ples from a common logical data source. The DataReaders will combine the samples coming from
the DataWriters in order to reconstruct the correct order at the source. The Availability QosPolicy
allows you to configure the sample combination (synchronization) process in the DataReader.

Each sample published in a DDS domain for a given logical data source is uniquely identified by
a pair (virtual GUID, virtual sequence number). Samples from the same data source (same vir-
tual GUID) can be published by different DataWriters.

A DataReader will deliver a sample (VGUIDn, VSNm) to the application if one of the following
conditions is satisfied:

(d (GUIDn, SNm-1) has already been delivered to the application.

(A All the known DataWriters publishing VGUIDn have announced that they do not have
(VGUIDn, VSNm-1).

(J None of the known DataWriters publishing VGUIDn have announced potential availabil-
ity of (VGUIDn, VSNm-1) and both timeouts in this QoS policy have expired.

A DataWriter announces potential availability of samples by using virtual heartbeats. The fre-
quency at which virtual heartbeats are sent is controlled by the protocol parameters
virtual_heartbeat_period and samples_per_virtual_ heartbeat (see Table 6.36,
“DDS_RtpsReliableWriterProtocol_t,” on page 6-84).

Table 6.32 describes the fields of this policy when used for a Collaborative DataWriter.

For further information, see Chapter 11: Collaborative DataWriters.

6-75

DataWriter QosPolicies

Table 6.32 Configuring Collaborative DataWriters with DDS_AvailabilityQosPolicy

Field Name

Description for Collaborative DataWriters

max_data_availability_
waiting_time

Defines how much time to wait before delivering a sample to the applica-
tion without having received some of the previous samples.

A sample identified by (VGUIDn, VSNm) will be delivered to the applica-
tion if this timeout expires for the sample and the following two conditions
are satisfied:

* None of the known DataWriters publishing VGUIDn have announced
potential availability of (VGUIDn, VSNm-1).

e The DataWriters for all the endpoint groups specified in
required_matched_endpoint_groups have been discovered or
max_endpoint_availability_waiting_time has expired.

max_endpoint_availability_
waiting_time

Defines how much time to wait to discover DataWriters providing samples
for the same data source.

The set of endpoint groups that are required to provide samples for a data
source can be configured using required_matched_endpoint_groups.

A non-consecutive sample identified by (GUIDn, SNm) cannot be delivered
to the application unless the DataWriters for all the endpoint groups in
required_matched_endpoint_groups are discovered or this timeout
expires.

required_matched_
endpoint_groups

Specifies the set of endpoint groups that are expected to provide samples for
the same data source.

The quorum count in a group represents the number of DataWriters that
must be discovered for that group before the DataReader is allowed to pro-
vide non consecutive samples to the application.

A DataWriter becomes a member of an endpoint group by configuring the
role_name in the DataWriter’s ENTITY_NAME QosPolicy (DDS Extension)
(Section 6.5.9).

The DataWriters created by RTI Persistence Service have a predefined
role_name of ‘PERSISTENCE_SERVICE’. For other DataWriters, the
role_name is not set by default.

6.5.1.2 Availability QoS Policy and Required Subscriptions

In the context of Required Subscriptions, the Availability QosPolicy can be used to configure a
set of required subscriptions on a DataWriter.

Required Subscriptions are preconfigured, named subscriptions that may leave and subsequently
rejoin the network from time to time, at the same or different physical locations. Any time a
required subscription is disconnected, any samples that would have been delivered to it are
stored for delivery if and when the subscription rejoins the network.

Table 6.33 describes the fields of this policy when used for a Required Subscription.

For further information, see Required Subscriptions (Section 6.3.13).

Table 6.33 Configuring Required Subscriptions with DDS_AvailabilityQosPolicy

Field Name

Description for Required Subscriptions

enable_required_subscriptio
ns

Enables support for Required Subscriptions in a DataWriter.

6-76

DataWriter QosPolicies

Table 6.33 Configuring Required Subscriptions with DDS_AvailabilityQosPolicy

6.5.1.3

6.5.1.4

6.5.1.5

6.5.1.6

Field Name Description for Required Subscriptions

max_data_availability_
waiting_time

- — Not applicable to Required Subscriptions.
max_endpoint_availability_

waiting_time

A sequence of endpoint groups that specify the Required Subscriptions on a
DataWriter.

Each Required Subscription is specified by a name and a quorum count.

The quorum count represents the number of DataReaders that have to
acknowledge the sample before it can be considered fully acknowledged
for that Required Subscription.

required_matched_
endpoint_groups

A DataReader is associated with a Required Subscription by configuring the
role_name in the DataReader’s ENTITY_NAME QosPolicy (DDS Extension)
(Section 6.5.9).

Properties

For DataWriters, all the members in this QosPolicy can be changed after the DataWriter is created
except for the member enable_required_subscriptions.

For DataReaders, this QosPolicy cannot be changed after the DataReader is created.

There are no compatibility restrictions for how it is set on the publishing and subscribing sides.
Related QosPolicies

(d ENTITY_NAME QosPolicy (DDS Extension) (Section 6.5.9)

(d DOMAIN_PARTICIPANT_RESOURCE_LIMITS QosPolicy (DDS Extension) (Section
8.5.4)

(d DURABILITY QosPolicy (Section 6.5.7)
Applicable Entities

[DataWriters (Section 6.3)
[DataReaders (Section 7.3)

System Resource Considerations

The resource limits for the endpoint groups in required_matched_endpoint_groups are deter-
mined by two values in the DOMAIN_PARTICIPANT_RESOURCE_LIMITS QosPolicy (DDS
Extension) (Section 8.5.4):

(1 max_endpoint_groups

d max_endpoint_group_cumulative_characters
The maximum number of virtual writers (identified by a virtual GUID) that can be managed by
a DataReader is determined by the max_remote_virtual_writers in
DATA_READER_RESOURCE_LIMITS QosPolicy (DDS Extension) (Section 7.6.2). When the
Subscriber’s access_scope is GROUP, max_remote_virtual_writers determines the maximum

number of DataWriter groups supported by the Subscriber. Since the Subscriber may contain more
than one DataReader, only the setting of the first applies.

6-77

DataWriter QosPolicies

6.5.2 BATCH QosPolicy (DDS Extension)

This QosPolicy can be used to decrease the amount of communication overhead associated with
the transmission and (in the case of reliable communication) acknowledgement of small sam-
ples, in order to increase throughput.

It specifies and configures the mechanism that allows Connext to collect multiple user data sam-
ples to be sent in a single network packet, to take advantage of the efficiency of sending larger
packets and thus increase effective throughput.

This QosPolicy can be used to increase effective throughput dramatically for small data samples.
Throughput for small samples (size < 2048 bytes) is typically limited by CPU capacity and not
by network bandwidth. Batching many smaller samples to be sent in a single large packet will
increase network utilization and thus throughput in terms of samples per second.

It contains the members listed in Table 6.34.

Table 6.34 DDS_BatchQosPolicy

Type Field Name Description
DDS_Boolean enable Enables/disables batching.

Sets the maximum cumulative length of all serialized sam-
ples in a batch.

Before or when this limit is reached, the batch is automati-

DDS_Long max_data_bytes cally flushed.
The size does not include the meta-data associated with the
batch samples.
Sets the maximum number of samples in a batch.
DDS_Long max_samples When this limit is reached, the batch is automatically

flushed.

Sets the maximum flush delay.

When this duration is reached, the batch is automatically
struct DDS_Duration_t | max_flush_delay flushed.

The delay is measured from the time the first sample in the
batch is written by the application.

6-78

DataWriter QosPolicies

Table 6.34 DDS_BatchQosPolicy

Type

Field Name

Description

struct DDS_Duration_t

source_timestamp_
resolution

Sets the batch source timestamp resolution.

The value of this field determines how the source time-
stamp is associated with the samples in a batch.

A sample written with timestamp 't' inherits the source
timestamp 't2' associated with the previous sample, unless
('t' - 't2") is greater than source_timestamp_resolution.

If source_timestamp_resolution is DURATION_INFINITE,
every sample in the batch will share the source timestamp
associated with the first sample.

If source_timestamp_resolution is zero, every sample in
the batch will contain its own source timestamp corre-
sponding to the moment when the sample was written.

The performance of the batching process is better when

source_timestamp_resolution is set to
DURATION_INFINITE.

DDS_Boolean

thread_safe_write

Determines whether or not the write operation is thread-
safe.

If TRUE, multiple threads can call write on the DataWriter
concurrently.

A setting of FALSE can be used to increase batching
throughput for batches with many small samples.

If batching is enabled (not the default), samples are not immediately sent when they are written.
Instead, they get collected into a "batch." A batch always contains whole number of samples—a
sample will never be fragmented into multiple batches.

A batch is sent on the network ("flushed") when one of the following things happens:

(J User-configurable flushing conditions

® A batch size limit (max_data_bytes) is reached.

® A number of samples are in the batch (max_samples).

® A time-limit (max_flush_delay) is reached, as measured from the time the first sam-
ple in the batch is written by the application.

® The application explicitly calls a DataWriter's flush() operation.
PP P y P

(J Non-user configurable flushing conditions:

® A coherent set starts or ends.

® The number of samples in the batch is equal to max_samples in RESOURCE_LIMITS
for unkeyed topics or max_samples_per_instance in RESOURCE_LIMITS for keyed
topics.

Additional

batching configuration takes place in the Publisher’s
ASYNCHRONOUS_PUBLISHER QosPolicy (DDS Extension) (Section 6.4.1).

The flush() operation is described in Flushing Batches of Data Samples (Section 6.3.9).

6-79

DataWriter QosPolicies

6.5.2.1

6.5.2.2

Synchronous and Asynchronous Flushing

Usually, a batch is flushed synchronously:

(d When a batch reaches its application-defined size limit (max_data_bytes or
max_samples) because the application called write(), the batch is flushed immediately in
the context of the writing thread.

[When an application manually flushes a batch, the batch is flushed immediately in the
context of the calling thread.

[When the first sample in a coherent set is written, the batch in progress (without includ-
ing the sample in the coherent set) is immediately flushed in the context of the writing
thread.

(d When a coherent set ends, the batch in progress is immediately flushed in the context of
the calling thread.

(J When the number of samples in a batch is equal to max_samples in RESOURCE_LIMITS
for unkeyed topics or max_samples_per_instance in RESOURCE_LIMITS for keyed top-
ics, the batch is flushed immediately in the context of the writing thread.

However, some behavior is asynchronous:

d To flush batches based on a time limit (max_flush_delay), enable asynchronous batch
flushing in the ASYNCHRONOUS_PUBLISHER QosPolicy (DDS Extension) (Section
6.4.1) of the DataWriter's Publisher. This will cause the Publisher to create an additional
thread that will be used to flush batches of that Publisher’s DataWriters. This behavior is
analogous to the way asynchronous publishing works.

[You may also use batching alongside asynchronous publication with FlowControllers
(DDS Extension) (Section 6.6). These features are independent of one another. Flushing a
batch on an asynchronous DataWriter makes it available for sending to the DataWriter’s
FlowController. From the point of view of the FlowController, a batch is treated like one
large sample.

Batching vs. Coalescing

Even when batching is disabled, Connext will sometimes coalesce multiple samples into a single
network datagram. For example, samples buffered by a FlowController or sent in response to a
negative acknowledgement (NACK) may be coalesced. This behavior is distinct from sample
batching.

Samples that are sent individually (not part of a batch) are always treated as separate samples by
Connext. Each sample is accompanied by a complete RTPS header on the network (although
samples may share UDP and IP headers) and (in the case of reliable communication) a unique
physical sequence number that must be positively or negatively acknowledged.

In contrast, batched samples share an RTPS header and an entire batch is acknowledged —posi-
tively or negatively—as a unit, potentially reducing the amount of meta-traffic on the network
and the amount of processing per individual sample.

Batching can also improve latency relative to simply coalescing. Consider two use cases:
1. A DataWriter is configured to write asynchronously with a FlowController. Even if the
FlowController's rules would allow it to publish a new sample immediately, the send

will always happen in the context of the asynchronous publishing thread. This context
switch can add latency to the send path.

6-80

DataWriter QosPolicies

6.5.2.3

6.5.2.4

6.5.2.5

6.5.2.6

6.5.2.7

2. A DataWriter is configured to write synchronously but with batching turned on. When
the batch is full, it will be sent on the wire immediately, eliminating a thread context
switch from the send path.

Batching and ContentFilteredTopics

When batching is enabled, content filtering is always done on the reader side.

Turbo Mode: Automatically Adjusting the Number of Bytes in a Batch—Experimental Feature

Turbo Mode is an experimental feature that uses an intelligent algorithm that automatically
adjusts the number of bytes in a batch at run time according to current system conditions, such
as write speed (or write frequency) and sample size. This intelligence is what gives it the ability
to increase throughput at high message rates and avoid negatively impacting message latency at
low message rates.

To enable Turbo mode, set the DataWriter's property dds.data_writer.enable_turbo_mode to
true. Turbo mode is not enabled by default.

Note: If you explicitly enable batching by setting enable to TRUE in BatchQosPolicy, the value of
the turbo mode property is ignored and turbo mode is not used.

Performance Considerations

The purpose of batching is to increase throughput when writing small samples at a high rate. In
such cases, throughput can be increased several-fold, approaching much more closely the phys-
ical limitations of the underlying network transport.

However, collecting samples into a batch implies that they are not sent on the network immedi-
ately when the application writes them; this can potentially increase latency. However, if the
application sends data faster than the network can support, an increased proportion of the net-
work's available bandwidth will be spent on acknowledgements and sample resends. In this
case, reducing that overhead by turning on batching could decrease latency while increasing
throughput.

As a general rule, to improve batching throughput:

[Set thread_safe_write to FALSE when the batch contains a big number of small samples.
If you do not use a thread-safe write configuration, asynchronous batch flushing must be
disabled.

[Set source_timestamp_resolution to DURATION_INFINITE. Note that you set this
value, every sample in the batch will share the same source timestamp.

Batching affects how often piggyback heartbeats are sent; see heartbeats_per_max_samples in
Table 6.36, “DDS_RtpsReliableWriterProtocol_t,” on page 6-84.

Maximum Transport Datagram Size

Batches cannot be fragmented. As a result, the maximum batch size (max_data_bytes) must be
set no larger than the maximum transport datagram size. For example, a UDP datagram is lim-
ited to 64 KB, so any batches sent over UDP must be less than or equal to that size.

Properties

This QosPolicy cannot be modified after the DataWriter is enabled.

Since it is only for DataWriters, there are no compatibility restrictions for how it is set on the pub-
lishing and subscribing sides.

6-81

DataWriter QosPolicies

All batching configuration occurs on the publishing side. A subscribing application does not
configure anything specific to receive batched samples, and in many cases, it will be oblivious to
whether the samples it processes were received individually or as part of a batch.

Consistency rules:

[J max_samples must be consistent with max_data_bytes: they cannot both be set to
LENGTH_UNLIMITED.

[If max_flush_delay is not DURATION_INFINITE, disable_asynchronous_batch in the
ASYNCHRONOUS_PUBLISHER QosPolicy (DDS Extension) (Section 6.4.1) must be
FALSE.

[If thread_safe write is FALSE, source_timestamp_resolution = must be
DURATION_INFINITE.

6.5.2.8 Related QosPolicies

(d To flush batches based on a time limit, enable batching in the
ASYNCHRONOUS_PUBLISHER QosPolicy (DDS Extension) (Section 6.4.1) of the
DataWriter’s Publisher.

(J Be careful when configuring a DataWriter’s LIFESPAN QoS Policy (Section 6.5.12) with a
duration shorter than the batch flush period (max_flush_delay). If the batch does not fill
up before the flush period elapses, the short duration will cause the samples to be lost
without being sent.

1 Do not configure the DataReader’s or DataWriter’s HISTORY QosPolicy (Section 6.5.10) to
be shallower than the DataWriter’s maximum batch size (max_samples). When the HIS-
TORY QosPolicy is shallower on the DataWriter, some samples may not be sent. When
the HISTORY QosPolicy is shallower on the DataReader, samples may be dropped before
being provided to the application.

[The initial and maximum numbers of batches that a DataWriter will manage is set in the
DATA_WRITER_RESOURCE_LIMITS QosPolicy (DDS Extension) (Section 6.5.4).

[The maximum number of samples that a DataWriter can store is determined by the value
max_samples in the RESOURCE_LIMITS QosPolicy (Section 6.5.20) and max_batches in
the DATA_WRITER_RESOURCE_LIMITS QosPolicy (DDS Extension) (Section 6.5.4).
The limit that is reached first is applied.

[The amount of resources required for batching depends on the configuration of the
RESOURCE_LIMITS QosPolicy (Section 6.5.20) and the
DATA_WRITER_RESOURCE_LIMITS QosPolicy (DDS Extension) (Section 6.5.4). See
Section 6.5.2.10.

6.5.29 Applicable Entities
[DataWriters (Section 6.3)
6.5.2.10 System Resource Considerations

(J Batching requires additional resources to store the meta-data associated with the samples
in the batch.

® For unkeyed topics, the meta-data will be at least 8 bytes, with a maximum of 20
bytes.

® For keyed topics, the meta-data will be at least 8 bytes, with a maximum of 52 bytes.

[Other resource considerations are described in Section 6.5.2.8.

6-82

DataWriter QosPolicies

6.5.3

Table 6.35

DATA_WRITER_PROTOCOL QosPolicy (DDS Extension)

Connext uses a standard protocol for packet (user and meta data) exchange between applica-
tions. The DataWriterProtocol QosPolicy gives you control over configurable portions of the
protocol, including the configuration of the reliable data delivery mechanism of the protocol on
a per DataWriter basis.

These configuration parameters control timing and timeouts, and give you the ability to trade
off between speed of data loss detection and repair, versus network and CPU bandwidth used to
maintain reliability.

It is important to tune the reliability protocol on a per DataWriter basis to meet the requirements
of the end-user application so that data can be sent between DataWriters and DataReaders in an
efficient and optimal manner in the presence of data loss. You can also use this QosPolicy to con-
trol how Connext responds to "slow" reliable DataReaders or ones that disconnect or are other-
wise lost.

This policy includes the members presented in Table 6.35, “DDS_DataWriterProtocolQosPolicy,”
on page 6-83 and Table 6.36, “DDS_RtpsReliableWriterProtocol_t,” on page 6-84. For defaults
and valid ranges, please refer to the API Reference HTML documentation.

For details on the reliability protocol used by Connext, see Chapter 10: Reliable Communica-
tions. See the RELIABILITY QosPolicy (Section 6.5.19) for more information on per-DataReader/
DataWriter reliability configuration. The HISTORY QosPolicy (Section 6.5.10) and
RESOURCE_LIMITS QosPolicy (Section 6.5.20) also play important roles in the DDS reliability
protocol.

DDS_DataWriterProtocolQosPolicy

Type Field Name Description

DDS_GUID_t virtual_guid A DataReader persists its state based on the virtual GUIDs of matching

The virtual GUID (Global Unique Identifier) is used to uniquely identify
the same DataWriter across multiple incarnations. In other words, this
value allows Connext to remember information about a DataWriter that
may be deleted and then recreated.

Connext uses the virtual GUID to associate a durable writer history to a
DataWriter.

Persistence Service® uses the virtual GUID to send samples on behalf of the
original DataWriter.

remote DataWriters.

For more information, see Durability and Persistence Based on Virtual
GUIDs (Section 12.2).

By default, Connext will assign a virtual GUID automatically. If you want
to restore the state of the durable writer history after a restart, you can
retrieve the value of the writer's virtual GUID using the DataWriter’s
get_qos() operation, and set the virtual GUID of the restarted DataWriter to
the same value.

Long

DDS_Unsigned-

Determines the DataWriter’s RTPS object ID, according to the DDS-RTPS
Interoperability Wire Protocol.

Only the last 3 bytes are used; the most significant byte is ignored.
rtps_object_id The rtps_host_id, rtps_app_id, rtPs_instan_ce_id in the
WIRE_PROTOCOL QosPolicy (DDS Extension) (Section 8.5.9), together
with the 3 least significant bytes in rtps_object_id, and another byte
assigned by Connext to identify the entity type, forms the BuiltinTopicKey
in PublicationBuiltinTopicData.

6-83

DataWriter QosPolicies

Table 6.35 DDS_DataWriterProtocolQosPolicy

Type

Field Name

Description

DDS_Boolean

push_on_write

Controls when a sample is sent after write() is called on a DataWriter. If
TRUE, the sample is sent immediately; if FALSE, the sample is put in a
queue until an ACK/NACK is received from a reliable DataReader.

DDS_Boolean

disable_positive_
acks

Determines whether matching DataReaders send positive acknowledge-
ments (ACKs) to the DataWriter.

When TRUE, the DataWriter will keep samples in its queue for ACK-dis-
abled readers for a minimum keep duration (see Section 6.5.3.3).

When strict reliability is not required, setting this to TRUE reduces over-
head network traffic.

DDS_Boolean

disable_inline_
keyhash

Controls whether or not the key-hash is propagated on the wire with
samples.

This field only applies to keyed writers.

Connext associates a key-hash (an internal 16-byte representation) with
each key.

When FALSE, the key-hash is sent on the wire with every data instance.
When TRUE, the key-hash is not sent on the wire (so the readers must
compute the value using the received data).

If the reader is CPU bound, sending the key-hash on the wire may increase
performance, because the reader does not have to get the key-hash from
the data.

If the writer is CPU bound, sending the key-hash on the wire may
decrease performance, because it requires more bandwidth (16 more
bytes per sample).

Note: Setting disable_inline_keyhash to TRUE is not compatible
with using RTI Real-Time Connect or RTI Recording Service.

DDS_Boolean

serialize_key_
with_dispose

Controls whether or not the serialized key is propagated on the wire with
dispose notifications.

This field only applies to keyed writers.

RTI recommends setting this field to TRUE if there are DataReaders with
propagate_dispose_of_unregistered_instances (in the
DATA_READER_PROTOCOL QosPolicy (DDS Extension) (Section 7.6.1))
also set to TRUE.

Important: When this field TRUE, batching will not be compatible with
RTI Data Distribution Service 4.3e, 4.4b, or 4.4c—the DataReaders will
receive incorrect data and/or encounter deserialization errors.

DDS_RtpsReliable
WriterProtocol_t

rtps_reliable_

writer

This structure includes the fields in Table 6.36.

a. Persistence Service is included with Connext Messaging. It saves data samples so they can be delivered to subscribing applica-
tions that join the system at a later time (see Chapter 26: Introduction to RTI Persistence Service).

Table 6.36 DDS_RipsReliableWriterProtocol_t

Type Field Name Description
low_watermark Queue levels that control when to switch between the regular
DDS_Long] and fast heartbeat rates (heartbeat period and
high_watermark fast_heartbeat_period). See Section 6.5.3.1.

6-84

DataWriter QosPolicies

Table 6.36 DDS_RipsReliableWriterProtocol_t

Type

Field Name

Description

DDS_Duration_t

heartbeat_period

fast_heartbeat_period

late_joiner_heartbeat_
period

Rates at which to send heartbeats to DataReaders with unac-
knowledged samples. See Section 6.5.3.2 and Section 10.3.4.1.

DDS_Duration_t

virtual_heartbeat_period

The rate at which a reliable DataWriter will send virtual heart-
beats. Virtual heartbeat informs the reliable DataReader about the
range of samples currently present for each virtual GUID in the
reliable writer's queue. See Section 6.5.3.6.

DDS_Long

samples_per_virtual _
heartbeat

The number of samples that a reliable DataWriter must publish
before sending a virtual heartbeat. See Section 6.5.3.6.

DDS_Long

max_heartbeat_retries

Maximum number of periodic heartbeats sent without receiving
an ACK/NACK packet before marking a DataReader ‘inactive.”
When a DataReader has not acknowledged all the samples the
reliable DataWriter has sent to it, and max_heartbeat_retries
number of periodic heartbeats have been sent without receiving
any ACK/NACK packets in return, the DataReader will be
marked as inactive (not alive) and be ignored until it resumes
sending ACK/NACKs.

Note that piggyback heartbeats do not count towards this value.
See Section 10.3.4.4.

DDS_Boolean

inactivate_nonprogressing_
readers

Allows the DataWriter to treat DataReaders that send successive
non-progressing NACK packets as inactive.

See Section 10.3.4.5.

DDS_Long

heartbeats_per_max_samples

A piggyback heartbeat is sent every [current send-window size/
heartbeats_per_max_samples] number of samples written.

If set to zero, no piggyback heartbeat will be sent.

If the current send-window size is LENGTH_UNLIMITED, 100
million is assumed as the value in the calculation.

See Configuring the Send Window Size (Section 6.5.3.4)

DDS_Duration_t

min_nack_response_delay

Minimum delay to respond to an ACK/NACK.

When a reliable DataWriter receives an ACK/NACK from a
DataReader, the DataWriter can choose to delay a while before it
sends repair samples or a heartbeat. This set the value of the min-
imum delay.

See Section 10.3.4.6.

DDS_Duration_t

max_nack_response_delay

Maximum delay to respond to a ACK/NACK.

This sets the value of maximum delay between receiving an
ACK/NACK and sending repair samples or a heartbeat.

A longer wait can help prevent storms of repair packets if many
DataReaders send NACKs at the same time. However, it delays
the repair, and hence increases the latency of the communication.
See Section 10.3.4.6.

DDS_Duration_t

nack_suppression_duration

How long consecutive NACKs are suppressed.

When a reliable DataWriter receives consecutive NACKSs within a
short duration, this may trigger the DataWriter to send redun-
dant repair messages. This value sets the duration during which
consecutive NACKs are ignored, thus preventing redundant
repairs from being sent.

6-85

DataWriter QosPolicies

Table 6.36 DDS_RipsReliableWriterProtocol_t

response

Type Field Name Description
Maximum bytes in a repair package.
DDS_Long max_bytes_per_nack_ When a reliable DataWriter resends samples, the total package

size is limited to this value.
See Section 10.3.4.3.

DDS_Duration_t

disable_positive_acks_
min_sample_keep_
duration

Minimum duration that a sample will be kept in the DataWriter’s
queue for ACK-disabled DataReaders.

See Section 6.5.3.3 and Section 10.3.4.7.

disable_positive_acks_
max_sample_keep_
duration

Maximum duration that a sample will be kept in the DataWriter’s
queue for ACK-disabled readers.

DDS_Boolean

disable_positive_acks_
enable_adaptive_
sample_keep_duration

Enables automatic dynamic adjustment of the ‘keep duration” in
response to network congestion.

DDS_Long

disable_positive_acks_
increase_sample_
keep_duration_factor

When the ‘keep duration” is dynamically controlled, the length-
ening of the ‘keep duration’ is controlled by this factor, which is
expressed as a percentage.

When the adaptive algorithm determines that the keep duration
should be increased, this factor is multiplied with the current
keep duration to get the new longer keep duration. For example,
if the current keep duration is 20 milliseconds, using the default
factor of 150% would result in a new keep duration of 30 milli-
seconds.

disable_positive_acks_
decrease_sample_
keep_duration_factor

When the ‘keep duration’ is dynamically controlled, the shorten-
ing of the ‘keep duration” is controlled by this factor, which is
expressed as a percentage.

When the adaptive algorithm determines that the keep duration
should be decreased, this factor is multiplied with the current
keep duration to get the new shorter keep duration. For example,
if the current keep duration is 20 milliseconds, using the default
factor of 95% would result in a new keep duration of 19 millisec-
onds.

DDS_Long

min_send_window_size

max_send_window_size

Minimum and maximum size for the window of outstanding
samples.

See Configuring the Send Window Size (Section 6.5.3.4).

DDS_Long

send_window_decrease_
factor

Scales the current send-window size down by this percentage to
decrease the effective send-rate in response to received negative
acknowledgement.

See Configuring the Send Window Size (Section 6.5.3.4).

DDS_Boolean

enable_multicast_periodic_he
artbeat

Controls whether or not periodic heartbeat messages are sent
over multicast.

When enabled, if a reader has a multicast destination, the writer
will send its periodic HEARTBEAT messages to that destination.
Otherwise, if not enabled or the reader does not have a multicast
destination, the writer will send its periodic HEARTBEATs over
unicast.

DDS_Long

multicast_resend_threshold

Sets the minimum number of requesting readers needed to trig-
ger a multicast resend.

See Resending Over Multicast (Section 6.5.3.7).

6-86

DataWriter QosPolicies

Table 6.36 DDS_RipsReliableWriterProtocol_t

DDS_Long

Type Field Name Description
Scales the current send-window size up by this percentage to
send_window_increase_ increase the effective send-rate when a duration has passed with-
factor out any received negative acknowledgements.

See Configuring the Send Window Size (Section 6.5.3.4)

DDS_Duration

Period in which DataWriter checks for received negative
send_window_update_ acknowledgements and conditionally increases the send-win-
period dow size when none are received.

See Configuring the Send Window Size (Section 6.5.3.4)

6.5.3.1

6.5.3.2

High and Low Watermarks

When the number of unacknowledged samples in the current send-window of a reliable DataW-
riter meets or exceeds high_watermark, the RELIABLE WRITER_CACHE_CHANGED Status
(DDS Extension) (Section 6.3.6.7) will be changed appropriately, a listener callback will be trig-
gered, and the DataWriter will start heartbeating its matched DataReaders at fast_heartbeat_rate.

When the number of samples meets or falls below low_watermark, the
RELIABLE_WRITER_CACHE_CHANGED Status (DDS Extension) (Section 6.3.6.7) will be
changed appropriately, a listener callback will be triggered, and the heartbeat rate will return to
the "normal" rate (heartbeat_rate).

Having both high and low watermarks (instead of one) helps prevent rapid flickering between
the rates, which could happen if the number of samples hovers near the cut-off point.

Increasing the high and low watermarks will make the DataWriters less aggressive about seeking
acknowledgments for sent data, decreasing the size of traffic spikes but slowing performance.

Decreasing the watermarks will make the DataWriters more aggressive, increasing both network
utilization and performance.

If batching is used, high_watermark and low_watermark refer to batches, not samples.

When min_send_window_size and max_send_window_size are not equal, the low and high
watermarks are scaled down linearly to stay within the current send-window size. The value
provided by configuration corresponds to the high and low watermarks for the
max_send_window_size.

Normal, Fast, and Late-Joiner Heartbeat Periods

The normal heartbeat_period is used until the number of samples in the reliable DataWriter’s
queue meets or exceeds high_watermark; then fast_heartbeat_period is used. Once the number
of samples meets or drops below low_watermark, heartbeat_period is used again.

(] fast_heartbeat_period must be <= heartbeat_period

Increasing fast_heartbeat_period increases the speed of discovery, but results in a larger surge
of traffic when the DataWriter is waiting for acknowledgments.

Decreasing heartbeat_period decreases the steady state traffic on the wire, but may increase
latency by decreasing the speed of repairs for lost packets when the writer does not have very
many outstanding unacknowledged samples.

Having two periodic heartbeat rates, and switching between them based on watermarks:

[Ensures that all DataReaders receive all their data as quickly as possible (the sooner they
receive a heartbeat, the sooner they can send a NACK, and the sooner the DataWriter can
send repair samples);

6-87

DataWriter QosPolicies

6.5.3.3

(J Helps prevent the DataWriter from overflowing its resource limits (as its queue starts the
fill, the DataWriter sends heartbeats faster, prompting the DataReaders to acknowledge
soonet, allowing the DataWriter to purge these acknowledged samples from its queue);

[Tunes the amount of network traffic. (Heartbeats and NACKSs use up network band-
width like any other traffic; decreasing the heartbeat rates, or increasing the threshold
before the fast rate starts, can smooth network traffic—at the expense of discovery per-
formance).

The late_joiner_heartbeat_period is used when a reliable DataReader joins after a reliable
DataWriter (with non-volatile Durability) has begun publishing samples. Once the late-joining
DataReader has received all cached samples, it will be serviced at the same rate as other reliable
DataReaders.

(1 late_joiner_heartbeat_period must be <= heartbeat_period

Disabling Positive Acknowledgements

When strict reliable communication is not required, you can configure Connext so that it does not
send positive acknowledgements (ACKs). In this case, reliability is maintained solely based on
negative acknowledgements (NACKSs). The removal of ACK traffic may improve middleware
performance. For example, when sending samples over multicast, ACK-storms that previously
may have hindered DataWriters and consumed overhead network bandwidth are now pre-
cluded.

By default, DataWriters and DataReaders are configured with positive ACKS enabled. To disable
ACKs, either:

(d Configure the DataWriter to disable positive ACKs for all matching DataReaders (by set-
ting disable_positive_acks to TRUE in the DATA_WRITER_PROTOCOL QosPolicy
(DDS Extension) (Section 6.5.3)).

(J Disable ACKs for individual DataReaders (by setting disable_positive_acks to TRUE in
the DATA_READER_PROTOCOL QosPolicy (DDS Extension) (Section 7.6.1)).

If ACKSs are disabled, instead of the DataWriter holding a sample in its send queue until all of its
DataReaders have ACKed it, the DataWriter will hold a sample for a configurable duration. This
“keep-duration" starts when a sample is written. When this time elapses, the sample is logically
considered as acknowledged by its ACK-disabled readers.

The length of the "keep-duration” can be static or dynamic, depending on how
rtps_reliable_writer.disable_positive_acks_enable_adaptive_sample_keep_duration is set.

(d When the length is static, the "keep-duration” is set to the minimum
(rtps_reliable_writer.disable_positive_acks_min_sample_keep_duration).

[When the length is dynamic, the "keep-duration” is dynamically adjusted between the
minimum and maximum durations
(rtps_reliable_writer.disable_positive_acks_min_sample_keep_duration and
rtps_reliable_writer.disable_positive_acks_max_sample_keep_duration).

Dynamic adjustment maximizes throughput and reliability in response to current network con-
ditions: when the network is congested, durations are increased to decrease the effective send
rate and relieve the congestion; when the network is not congested, durations are decreased to
increase the send rate and maximize throughput.

You should configure the minimum "keep-duration” to allow at least enough time for a possible
NACK to be received and processed. When a DataWriter has both matching ACK-disabled and
ACK-enabled DataReaders, it holds a sample in its queue until all ACK-enabled DataReaders have
ACKed it and the "keep-duration" has elapsed.

6-88

DataWriter QosPolicies

6.5.3.4

6.5.3.5

See also: Disabling Positive Acknowledgements
(disable_postive_acks_min_sample_keep_duration) (Section 10.3.4.7).

Configuring the Send Window Size

When a reliable DataWriter writes a sample, it keeps the sample in its queue until it has received
acknowledgements from all of its subscribing DataReaders. The number of these outstanding
samples is referred to as the DataWriter’s "send window." Once the number of outstanding sam-
ples has reached the send window size, subsequent writes will block until an outstanding sam-
ple is acknowledged.

Configuration of the send window sets a minimum and maximum size, which may be unlim-
ited. The min and max send windows can be the same. When set differently, the send window
will dynamically change in response to detected network congestion, as signaled by received
negative acknowledgements. When NACKs are received, the DataWriter responds to the slowed
reader by decreasing the send window by the send_window_decrease_factor to throttle down
its effective send rate. The send window will not be decreased to less than the
min_send_window_size. After a period (send_window_update_period) during which no
NACKSs are received, indicating that the reader is catching up, the DataWriter will increase the
send window size to increase the effective send rate by the percentage specified by
send_window_increase_factor. The send window will increase to no greater than the
max_send_window_size.

When both min_send_window_size and max_send_window_size are unlimited, either the
resource limits max_samples in RESOURCE_LIMITS QosPolicy (Section 6.5.20) (for non-batch-
ing) or max_batches in DATA_WRITER_RESOURCE_LIMITS QosPolicy (DDS Extension) (Sec-
tion 6.5.4) (for batching) serves as the effective max_send_window_size.

When either max_samples (for non-batching) or max_batches (for batching) is less than
max_send_window_size, it serves as the effective max_send_window_size. If it is also less than
min_send_window_size, then effectively both min and max send-window sizes are equal to
max_samples or max_batches.

Propagating Serialized Keys with Disposed-Instance Notifications

This section describes the interaction between these two fields:

(1 serialize_key_with_dispose in DATA_WRITER_PROTOCOL QosPolicy (DDS Exten-
sion) (Section 6.5.3)

(J propagate_dispose_of_unregistered_instances = in =~ DATA_READER_PROTOCOL
QosPolicy (DDS Extension) (Section 7.6.1)

RTI recommends setting serialize_key_with_dispose to TRUE if there are DataReaders with
propagate_dispose_of_unregistered_instances also set to TRUE. However, it is permissible to
set one to TRUE and the other to FALSE. The following examples will help you understand how
these fields work.

See also: Disposing of Data (Section 6.3.14.2).

Example 1
1. DataWriter’s serialize_key_with_dispose = FALSE
2. DataReader’s propagate_dispose_of_unregistered_instances = TRUE
3. DataWriter calls dispose() before writing any samples
4. DataReader calls take() and receives a disposed-instance notification (without a key)
5. DataReader calls get_key_value(), which returns an error because there is no key associ-

ated with the disposed-instance notification

6-89

DataWriter QosPolicies

6.5.3.6

6.5.3.7

Example 2

DataWriter’s serialize_key_with_dispose = TRUE
DataReader’s propagate_dispose_of_unregistered_instances = FALSE

DataWriter calls dispose() before writing any samples

W=

DataReader calls take(), which does not return any samples because none were written,
and it does not receive any disposed-instance notifications because
propagate_dispose_of_unregistered_instances = FALSE

Example 3

DataWriter’s serialize_key_with_dispose = TRUE
DataReader’s propagate_dispose_of_unregistered_instances = TRUE
DataWriter calls dispose() before writing any samples

DataReader calls take() and receives the disposed-instance notification

G R B =

DataReader calls get_key_value() and receives the key for the disposed-instance notifica-
tion

Example 4

DataWriter’s serialize_key_with_dispose = TRUE
DataReader’s propagate_dispose_of_unregistered_instances = TRUE
DataWriter calls write(), which writes a sample with a key

DataWriter calls dispose(), which writes a disposed-instance notification with a key

A S A

DataReader calls take() and receives a data sample and a disposed-instance notification;
both have keys

6. DataReader calls get_key_value() with no errors

Virtual Heartbeats

Virtual heartbeats announce the availability of samples with the Collaborative DataWriters fea-
ture described in Section 7.6.1, where multiple DataWriters publish samples from a common log-
ical data-source (identified by a virtual GUID).

When PRESENTATION QosPolicy (Section 6.4.6) access_scope is set to TOPIC or INSTANCE on
the Publisher, the virtual heartbeat contains information about the samples contained in the
DataWriter queue.

When presentation access_scope is set to GROUP on the Publisher, the virtual heartbeat contains
information about the samples in the queues of all DataWriters that belong to the Publisher.

Resending Over Multicast

Given DataReaders with multicast destinations, when a DataReader sends a NACK to request for
samples to be resent, the DataWriter can either resend them over unicast or multicast. Though
resending over multicast would save bandwidth and processing for the DataWriter, the potential
problem is that there could be DataReaders of the multicast group that did not request for any
resends, yet they would have to process, and drop, the resent samples.

Thus, to make each multicast resend more efficient, the multicast_resend_threshold is set as the
minimum number of DataReaders of the same multicast group that the DataWriter must receive
NACKs from within a single response-delay duration. This allows the DataWriter to coalesce

6-90

DataWriter QosPolicies

6.5.3.8

6.5.3.9

near-simultaneous unicast resends into a multicast resend, and it allows a "vote" from DataRead-
ers of a multicast group to exceed a threshold before resending over multicast.

The multicast_resend_threshold must be set to a positive value. Note that a threshold of 1
means that all resends will be sent over multicast. Also, note that a DataWriter with a zero
NACK response-delay (i.e., both min_nack_response_delay and min_nackresponse_delay are
zero) will resend over multicast only if the threshold is 1.

Example

For information on how to use the fields in Table 6.36, see Controlling Heartbeats and Retries
with DataWriterProtocol QosPolicy (Section 10.3.4).

The following describes a use case for when to change push_on_write to
DDS_BOOLEAN_FALSE. Suppose you have a system in which the data packets being sent is
very small. However, you want the data to be sent reliably, and the latency between the time that
data is sent to the time that data is received is not an issue. However, the total network band-
width between the DataWriter and DataReader applications is limited.

If the DataWriter sends a burst of data a a high rate, it is possible that it will overwhelm the lim-
ited bandwidth of the network. If you allocate enough space for the DataWriter to store the data
burst being sent (see RESOURCE_LIMITS QosPolicy (Section 6.5.20)), then you can use the
push_on_write parameter of the DATA_WRITER_PROTOCOL QosPolicy to delay sending the
data until the reliable DataReader asks for it.

By setting push_on_write to DDS_BOOLEAN_FALSE, when write() is called on the DataW-
riter, no data is actually sent. Instead data is stored in the DataWriter’s send queue. Periodically,
Connext will be sending heartbeats informing the DataReader about the data that is available. So
every heartbeat period, the DataReader will realize that the DataWriter has new data, and it will
send an ACK/NACK, asking for them.

When DataWriter receives the ACK/NACK packet, it will put together a package of data, up to
the size set by the parameter max_bytes_per_nack_response, to be sent to the DataReader. This
method not only self-throttles the send rate, but also uses network bandwidth more efficiently
by eliminating redundant packet headers when combining several small packets into one larger
one.

Properties
This QosPolicy cannot be modified after the DataWriter is created.

Since it is only for DataWriters, there are no compatibility restrictions for how it is set on the pub-
lishing and subscribing sides.

When setting the fields in this policy, the following rules apply. If any of these are false, Connext
returns DDS_RETCODE_INCONSISTENT_POLICY:

d min_nack_response_delay <= max_nack_response_delay
(| fast_heartbeat_period <= heartbeat_period
(1 late_joiner_heartbeat_period <= heartbeat_period
(d low_watermark < high_watermark
(1 If batching is disabled:
® heartbeats_per_max_samples <= writer_qos.resource_limits.max_samples
[If batching is enabled:

® heartbeats_per_max_samples <= writer_qos.resource_limits.max_batches

6-91

DataWriter QosPolicies

6.5.3.10

6.5.3.11

6.5.3.12

6.54

Table 6.37

Related QosPolicies

(d DATA_READER_PROTOCOL QosPolicy (DDS Extension) (Section 7.6.1)
[HISTORY QosPolicy (Section 6.5.10)
[RELIABILITY QosPolicy (Section 6.5.19)

Applicable Entities

[DataWriters (Section 6.3)

System Resource Considerations

A high max_bytes_per_nack_response may increase the instantaneous network bandwidth
required to send a single burst of traffic for resending dropped packets.

DATA_WRITER_RESOURCE_LIMITS QosPolicy (DDS Extension)

This QosPolicy defines various settings that configure how DataWriters allocate and use physical
memory for internal resources.

It includes the members in Table 6.37. For defaults and valid ranges, please refer to the API Ref-
erence HTML documentation.

DDS_DataWriterResourcelimitsQosPolicy

Type Field Name Description
DDS Lon initial_concurrent_ Initial number of threads that are allowed to concurrently
—-Ong blocking_threads block on the write() call on the same DataWriter.
DDS Lon max_concurrent_ Maximum number of threads that are allowed to concur-
—-ong blocking_threads rently block on write() call on the same DataWriter.
DDS Lon max_remote_reader_ | Maximum number of remote DataReaders for which this
—-ong filters DataWriter will perform content-based filtering.

DDS_Long initial_batches Lr;l{c;ﬁlinnguirsnzszb?(fedbatches that a DataWriter will manage if
Maximum number of batches that a DataWriter will manage
if batching is enabled.

DDS_Long max_batches When batching is enabled, the maximum number of samples

that a DataWriter can store is limited by this value and
max_samples in RESOURCE_LIMITS QosPolicy (Section
6.5.20).

DDS_DataWriter
ResourceLimits
InstanceReplace-
mentKind

instance_replacement

Sets the kinds of instances allowed to be replaced when a
DataWriter reaches instance resource limits. (See Configur-
ing DataWriter Instance Replacement (Section 6.5.20.2)

DDS_Boolean

replace_empty_
instances

Whether to replace empty instances during instance replace-
ment. (See Configuring DataWriter Instance Replacement
(Section 6.5.20.2)

DDS_Boolean

autoregister_instances

Whether to register automatically instances written with
non-NIL handle that are not yet registered, which will other-
wise return an error. This can be especially useful if the
instance has been replaced.

DDS_Long

initial_virtual_writers

Initial number of virtual writers supported by a DataWriter.

6-92

DataWriter QosPolicies

Table 6.37 DDS_DataWriterResourcelimitsQosPolicy

Type Field Name Description

Maximum number of virtual writers supported by a DataW-
riter.

Sets the maximum number of unique virtual writers sup-
ported by a DataWriter, where virtual writers are added

DDS_L irtual_writ
S_Long MAX_VITUAL_WITETS |\ hen samples are written with the virtual writer GUID.
This field is especially relevant in the configuration of Persis-
tence Service® DataWriters, since they publish information on
behalf of multiple virtual writers.
DDS_Long max_remote. readers The maximum number of remote readers supported by a

DataWriter.

max_app_ack_remote |The maximum number of application-level acknowledging

DDS_Long _readers remote readers supported by a DataWriter.

a. Persistence Service is included with Connext Messaging. It saves data samples so they can be delivered to subscribing
applications that join the system at a later time (see Chapter 26: Introduction to RTI Persistence Service).

DataWriters must allocate internal structures to handle the simultaneous blocking of threads try-
ing to call write() on the same DataWriter, for the storage used to batch small samples, and for
content-based filters specified by DataReaders.

Most of these internal structures start at an initial size and by default, will grow as needed by
dynamically allocating additional memory. You may set fixed, maximum sizes for these internal
structures if you want to bound the amount of memory that a DataWriter can use. By setting the
initial size to the maximum size, you will prevent Connext from dynamically allocating any
memory after the creation of the DataWriter.

When setting the fields in this policy, the following rule applies. If this is false, Connext returns
DDS_RETCODE_INCONSISTENT_POLICY:

(| max_concurrent_blocking_threads >= initial_concurrent_blocking_threads

The initial_concurrent_blocking threads is used to allocate necessary initial system resources.
If necessary, it will be increased automatically up to the max_concurrent_blocking_threads
limit.

Every user thread calling write() on a DataWriter may use a semaphore that will block the thread
when the DataWriter’s send queue is full. Because user code may set a timeout, each thread must
use a different semaphore. See the max_blocking time parameter of the RELIABILITY QosPol-
icy (Section 6.5.19). This QoS is offered so that the user application can control the dynamic allo-
cation of system resources by Connext.

If you do not mind if Connext dynamically allocates semaphores when needed, then you can set
the max_concurrent_blocking_threads parameter to some large value like MAX_INT. How-
ever, if you know exactly how many threads will be calling write() on the same DataWriter, and
you do not want Connext to allocate any system resources or memory after initialization, then
you should set:

max_concurrent_blocking_threads = initial_concurrent_blocking_threads = nUM
(where NUMis the number of threads that could possibly block concurrently).

Each DataWriter can perform content-based data filtering for up to max_remote_reader_filters
number of DataReaders.

Values for max_remote_reader_filters may be.

[0: The DataWriter will not perform filtering for any DataReader, which means the
DataReader will have to filter the data itself.

6-93

DataWriter QosPolicies

6.5.4.1

6.5.4.2

6.5.4.3

6.5.4.4

6.5.4.5

6.5.5

1 1 to (2%1-2): The DataWriter will filter for up to the specified number of DataReaders. In
addition, the Datawriter will store the result of the filtering per sample per DataReader.

(1 DDS_LENGTH_UNLIMITED: The DataWriter will filter for up to (231)—2 DataReaders.
However, in this case, the DataWriter will not store the filtering result per sample per
DataReader. Thus, if a sample is resent (such as due to a loss of reliable communication),
the sample will be filtered again.

For more information, see ContentFiltered Topics (Section 5.4).

Example

If there are multiple threads that can write on the same DataWriter, and the write() operation
may block (based on reliability_qos.max_blocking_time and HISTORY settings), you may
want to set initial_concurrent_blocking_threads to the most likely number of threads that will
block on the same DataWriter at the same time, and set max_concurrent_blocking_threads to
the maximum number of threads that could potentially block in the worst case.

Propetrties

This QosPolicy cannot be modified after the DataWriter is created.

Since it is only for DataWriters, there are no compatibility restrictions for how it is set on the pub-
lishing and subscribing sides.

Related QosPolicies

(d BATCH QosPolicy (DDS Extension) (Section 6.5.2)
[RELIABILITY QosPolicy (Section 6.5.19)
[HISTORY QosPolicy (Section 6.5.10)

Applicable Entities
(1 DataWriters (Section 6.3)

System Resource Considerations

Increasing the values in this QosPolicy will cause more memory usage and more system
resource usage.

DEADLINE QosPolicy

On a DataWriter, this QosPolicy states the maximum period in which the application expects to
call write() on the DataWriter, thus publishing a new sample. The application may call write()
faster than the rate set by this QosPolicy.

On a DataReader, this QosPolicy states the maximum period in which the application expects to
receive new values for the Topic. The application may receive data faster than the rate set by this
QosPolicy.

The DEADLINE QosPolicy has a single member, shown in Table 6.38. For the default and valid
range, please refer to the API Reference HTML documentation.

You can use this QosPolicy during system integration to ensure that applications have been
coded to meet design specifications. You can also use it during run time to detect when systems
are performing outside of design specifications. Receiving applications can take appropriate

6-94

DataWriter QosPolicies

Table 6.38 DDS_DeadlineQosPolicy

6.5.5.1

Type Field Name Description

For DataWriters: maximum time between writing a new value of an

. . instance.
DDS_Duration_t | period
For DataReaders: maximum time between receiving new values for

an instance.

actions to prevent total system failure when data is not received in time. For topics on which
data is not expected to be periodic, the deadline period should be set to an infinite value.

For keyed topics, the DEADLINE QoS applies on a per-instance basis. An application must call
write() for each known instance of the Topic within the period specified by the DEADLINE on
the DataWriter or receive a new value for each known instance within the period specified by
the DEADLINE on the DataReader. For a DataWriter, the deadline period begins when the
instance is first written or registered. For a DataReader, the deadline period begins when the first
sample is received.

Connext will modify the OFFERED_DEADLINE_MISSED_STATUS and call the associated
method in the DataWriterListener (see OFFERED_DEADLINE_MISSED Status (Section 6.3.6.4))
if the application fails to write() a value for an instance within the period set by the DEADLINE
QosPolicy of the DataWriter.

Similarly, Connext will modify the REQUESTED_DEADLINE_MISSED_STATUS and call the
associated method in the DataReaderListener (see REQUESTED_DEADLINE_MISSED Status
(Section 7.3.7.5)) if the application fails to receive a value for an instance within the period set by
the DEADLINE QosPolicy of the DataReader.

For DataReaders, the DEADLINE QosPolicy and the TIME_BASED_FILTER QosPolicy (Section
7.6.4) may interact such that even though the DataWriter writes samples fast enough to fulfill its
commitment to its own DEADLINE QosPolicy, the DataReader may see violations of its DEAD-
LINE QosPolicy. This happens because Connext will drop any packets received within the
minimum_separation set by the TIME_BASED_FILTER—packets that could satisfy the
DataReader’s deadline.

To avoid triggering the DataReader’s deadline even though the matched DataWriter is meeting its
own deadline, set your QoS parameters to meet the following relationship:

reader deadline period >= reader minimum separation + writer deadline period

Although you can set the DEADLINE QosPolicy on Topics, its value can only be used to initialize
the DEADLINE QosPolicies of either a DataWriter or DataReader. It does not directly affect the
operation of Connext, see Section 5.1.3.

Example

Suppose you have a time-critical piece of data that should be updated at least once every sec-
ond. You can set the DEADLINE period to 1 second on both the DataWriter and DataReader. 1f
there is no update within that time, the DataWriter will get an on_offered_deadline_missed Lis-
tener callback, and the DataReader will get on_requested_deadline_missed, so that both sides
can handle the error situation properly.

Note that in practice, there will be latency and jitter in the time between when data is send and
when data is received. Thus even if the DataWriter is sending data at exactly 1 second intervals,
the DataReader may not receive the data at exactly 1 second intervals. More likely, it will
DataReader will receive the data at 1 second plus a small variable quantity of time. Thus you
should accommodate this practical reality in choosing the DEADLINE period as well as the
actual update period of the DataWriter or your application may receive false indications of fail-
ure.

6-95

DataWriter QosPolicies

6.5.5.2

6.5.5.3

6.5.5.4

6.5.5.5

6.5.6

The DEADLINE QosPolicy also interacts with the OWNERSHIP QosPolicy when OWNERSHIP
is set to EXCLUSIVE. If a DataReader fails to receive data from the highest strength DataWriter
within its requested DEADLINE, then the DataReaders can fail-over to lower strength DataWrit-
ers, see the OWNERSHIP QosPolicy (Section 6.5.15).

Properties

This QosPolicy can be changed at any time.

The deadlines on the two sides must be compatible.

DataWriter’s DEADLINE period <= the DataReader’s DEADLINE period.

That is, the DataReader cannot expect to receive samples more often than the DataWriter commits
to sending them.

If the DataReader and DataWriter have compatible deadlines, Connext monitors this “contract”
and informs the application of any violations. If the deadlines are incompatible, both sides are
informed and communication does not occur. The ON_OFFERED_INCOMPATIBLE_QOS and
the ON_REQUESTED_INCOMPATIBLE_QOS statuses will be modified and the correspond-
ing Listeners called for the DataWriter and DataReader respectively.

Related QosPolicies

[LIVELINESS QosPolicy (Section 6.5.13)
(d OWNERSHIP QosPolicy (Section 6.5.15)
[TIME_BASED_FILTER QosPolicy (Section 7.6.4)

Applicable Entities

1 Topics (Section 5.1)
[DataWriters (Section 6.3)
[DataReaders (Section 7.3)

System Resource Considerations

A Connext-internal thread will wake up at least by the DEADLINE period to check to see if the
deadline was missed. It may wake up faster if the last sample that was published or sent was
close to the last time that the deadline was checked. Therefore a short period will use more CPU
to wake and execute the thread checking the deadline.

DESTINATION_ORDER QosPolicy

When multiple DataWriters send data for the same topic, the order in which data from different
DataWriters are received by the applications of different DataReaders may be different. Thus dif-
ferent DataReaders may not receive the same "last" value when DataWriters stop sending data.

This policy controls how each subscriber resolves the final value of a data instance that is writ-
ten by multiple DataWriters (which may be associated with different Publishers) running on dif-
ferent nodes.

This QosPolicy can be used to create systems that have the property of "eventual consistency.”
Thus intermediate states across multiple applications may be inconsistent, but when DataWriters
stop sending changes to the same topic, all applications will end up having the same state.

6-96

DataWriter QosPolicies

Each data sample includes two timestamps: a source timestamp and a destination timestamp.
The source timestamp is recorded by the DataWriter application when the data was written. The
destination timestamp is recorded by the DataReader application when the data was received.

This QoS includes the member in Table 6.39.

Table 6.39 DDS_DestinationOrderQosPolicy

Type Field Name Description
Can be either:
DDS Destination- e DDS _BY_RECEPTION_TIMESTAMP_
Or de;QosPolicyKin d kind DESTINATIONORDER_QOS

e DDS_BY_SOURCE_TIMESTAMP_
DESTINATIONORDER_QOS

Allowed tolerance between source timestamps of
consecutive samples.

DDS_Duration_t source_timestamp_tolerance |Only applies ~ when kind (above) is
DDS_BY_SOURCE_TIMESTAMP_
DESTINATIONORDER_QOS.

Each DataReader can set this QoS to:

(1 DDS_BY_RECEPTION_TIMESTAMP_DESTINATIONORDER_QOS

Assuming the OWNERSHIP_STRENGTH allows it, the latest received value for the
instance should be the one whose value is kept. Data will be delivered by a DataReader in
the order in which it was received (which may lead to inconsistent final values).

(1 DDS_BY_SOURCE_TIMESTAMP_DESTINATIONORDER_QOS

Assuming the OWNERSHIP_STRENGTH allows it, within each instance, the
source_timestamp shall be used to determine the most recent information. This is the
only setting that, in the case of concurrent same-strength DataWriters updating the same
instance, ensures all subscribers will end up with the same final value for the instance.

Data will be delivered by a DataReader in the order in which it was sent. If data arrives on
the network with a source timestamp earlier than the source timestamp of the last data
delivered, the new data will be dropped. This ordering therefore works best when sys-
tem clocks are relatively synchronized among writing machines.

Not all data sent by multiple DataWriters may be delivered to a DataReader and not all
DataReaders will see the same data sent by DataWriters. However, all DataReaders will see
the same "final" data when DataWriters "stop" sending data.

® For a DataWriter with kind
DDS_BY_SOURCE_TIMESTAMP_DESTINATIONORDER_QOS:
When writing a sample, its timestamp must not be less than the timestamp of the pre-
viously written sample. However, if it is less than the timestamp of the previously
written sample but the difference is less than this tolerance, the sample will use the
previously written sample's timestamp as its timestamp. Otherwise, if the difference
is greater than this tolerance, the write will fail.

See also: Special instructions for deleting DataWriters if you are using the “Time-
stamp’ APIs and BY_SOURCE_TIMESTAMP Destination Order: on page 6-21.

6-97

DataWriter QosPolicies

6.5.6.1

Table 6.40

6.5.6.2

6.5.6.3

6.5.6.4

6.5.7

® A DataReader with kind
DDS_BY_SOURCE_TIMESTAMP_DESTINATIONORDER_QOS will accept a sample
only if the difference between the sample’s source timestamp and the reception time-
stamp is no greater than source_timestamp_tolerance. Otherwise, the sample is
rejected.

Although you can set the DESTINATION_ORDER QosPolicy on Topics, its value can only be
used to initialize the DESTINATION_ORDER QosPolicies of either a DataWriter or DataReader. It
does not directly affect the operation of Connext, see Section 5.1.3.

Properties
This QosPolicy cannot be modified after the Entity is enabled.
This QoS must be set compatibly between the DataWriter and the DataReader. The compatible

combinations are shown in Table 6.40.

Valid Reader/Writer Combinations of DestinationOrder

L. DataReader requests:
Destination Order

BY_SOURCE BY_RECEPTION
_ BY_SOURCE v v
DataWriter offers: 15y "pr ~pprion incompatible v

If this QosPolicy is set incompatibly, the ON_OFFERED_INCOMPATIBLE_QOS and
ON_REQUESTED_INCOMPATIBLE_QOS statuses will be modified and the corresponding
Listeners called for the DataWriter and DataReader respectively.

Related QosPolicies

(d OWNERSHIP QosPolicy (Section 6.5.15)
[HISTORY QosPolicy (Section 6.5.10)

Applicable Entities

1 Topics (Section 5.1)
[DataWriters (Section 6.3)
[DataReaders (Section 7.3)

System Resource Considerations

The use of this policy does not significantly impact the use of resources.

DURABILITY QosPolicy

Because the publish-subscribe paradigm is connectionless, applications can create publications
and subscriptions in any way they choose. As soon as a matching pair of DataWriters and
DataReaders exist, then data published by the DataWriter will be delivered to the DataReader.
However, a DataWriter may publish data before a DataReader has been created. For example,
before you subscribe to a magazine, there have been past issues that were published.

The DURABILITY QosPolicy controls whether or not, and how, published samples are stored by
the DataWriter application for DataReaders that are found after the samples were initially written.
DataReaders use this QoS to request samples that were published before they were created. The
analogy is for a new subscriber to a magazine to ask for issues that were published in the past.

6-98

DataWriter QosPolicies

6.5.7.1

These are known as ‘historical” data-samples. (Reliable DataReaders may wait for these historical
samples, see Section 7.3.5.)

This QosPolicy can be used to help ensure that DataReaders get all data that was sent by DataW-
riters, regardless of when it was sent. This QosPolicy can increase system tolerance to failure
conditions.

Exactly how many samples are stored by the DataWriter or requested by the DataReader is con-
trolled using the HISTORY QosPolicy (Section 6.5.10).

For more information, please see Chapter 12: Mechanisms for Achieving Information Durability
and Persistence.

The possible settings for this QoS are:

(1 DDS_VOLATILE_DURABILITY QOS Connext is not required to send and will not deliver any
data samples to DataReaders that are discovered after the samples were initially pub-
lished.

(J DDS_TRANSIENT_LOCAL_DURABILITY_QOS Connext will store and send previously pub-
lished samples for delivery to newly discovered DataReaders as long as the DataWriter
still exists. For this setting to be effective, you must also set the RELIABILITY QosPolicy
(Section 6.5.19) kind to Reliable (not Best Effort). Which particular samples are kept
depends on other QoS settings such as HISTORY QosPolicy (Section 6.5.10) and
RESOURCE_LIMITS QosPolicy (Section 6.5.20).

[DDS_TRANSIENT_DURABILITY_QOS Connext will store previously published samples in
memory using Persistence Service, which will send the stored data to newly discovered
DataReaders. Which particular samples are kept and sent by Persistence Service depends
on the HISTORY QosPolicy (Section 6.5.10) and RESOURCE_LIMITS QosPolicy (Section
6.5.20) of the Persistence Service DataWriters. These QosPolicies can be configured in the
Persistence Service configuration file or through the DURABILITY SERVICE QosPolicy
(Section 6.5.8) of the DataWriters configured with
DDS_TRANSIENT_DURABILITY_QOS.

[DDS_PERSISTENT_DURABILITY_QOS Connext will store previously published samples in per-
manent storage, like a disk, using Persistence Service, which will send the stored data to
newly discovered DataReaders. Which particular samples are kept and sent by Persistence
Service depends on the HISTORY QosPolicy (Section 6.5.10) and RESOURCE_LIMITS
QosPolicy (Section 6.5.20) in the Persistence Service DataWriters. These QosPolicies can be
configured in the Persistence Service configuration file or through the DURABILITY SER-
VICE QosPolicy (Section 6.5.8) of the DataWriters configured with
DDS_PERSISTENT_DURABILITY_QOS.

This QosPolicy includes the members in Table 6.41. For default settings, please refer to the API
Reference HTML documentation.

With this QoS policy alone, there is no way to specify or characterize the intended consumers of
the information. With TRANSIENT_LOCAL, TRANSIENT, or PERSISTENT durability a
DataWriter can be configured to keep samples around for late-joiners. However, there is no way
to know when the information has been consumed by all the intended recipients.

Information durability can be combined with required subscriptions in order to guarantee that
samples are delivered to a set of required subscriptions. For additional details on required sub-
scriptions see Section 6.3.13 and Section 6.5.1.

Example

Suppose you have a DataWriter that sends data sporadically and its DURABILITY kind is set to
VOLATILE. If a new DataReader joins the system, it won’t see any data until the next time that
write() is called on the DataWriter. If you want the DataReader to receive any data that is valid,

6-99

DataWriter QosPolicies

Table 6.41

6.5.7.2

DDS_DurabilityQosPolicy

Type

Field Name

Description

DDS_Durability
QosPolicyKind

kind

DDS_VOLATILE_DURABILITY_QOS:
Do not save or deliver old samples.

DDS_TRANSIENT_LOCAL_DURABILITY_QOS:
Save and deliver old samples if the DataWriter still exists.

DDS_TRANSIENT_DURABILITY_QOS:
Save and deliver old samples using a memory-based service.

DDS_PERSISTENCE_DURABILITY_QOS:
Save and deliver old samples using disk-based service.

DDS_Boolean

direct_
communication

Whether or not a TRANSIENT or PERSISTENT DataReader should
receive samples directly from a TRANSIENT or PERSISTENT
DataWriter.

When TRUE, a TRANSIENT or PERSISTENT DataReader will receive
samples directly from the original DataWriter. The DataReader may
also receive samples from Persistence Service? but the duplicates will
be filtered by the middleware.

When FALSE, a TRANSIENT or PERSISTENT DataReader will
receive samples only from the DataWriter created by Persistence Ser-
vice. This ‘relay communication” pattern provides a way to guarantee
eventual consistency.

See RTI Persistence Service (Section 12.5.1).

This field only applies to DataReaders.

a. Persistence Service is included with Connext Messaging. See Chapter 26: Introduction to RTI Persistence Service.

old or new, both sides should set their DURABILITY kind to TRANSIENT_LOCAL. This will
ensure that the DataReader gets some of the previous samples immediately after it is enabled.

Properties

This QosPolicy cannot be modified after the Entity has been created.

The DataWriter and DataReader must use compatible settings for this QosPolicy. To be compati-
ble, the DataWriter and DataReader must use one of the valid combinations shown in Table 6.42.

If this QosPolicy is found to be incompatible, the ON_OFFERED_INCOMPATIBLE_QOS and
ON_REQUESTED_INCOMPATIBLE_QOS statuses will be modified and the corresponding
Listeners called for the DataWriter and DataReader respectively.

Table 6.42 Valid Combinations of Durability ‘kind’

DataReader requests:
TRANSIENT
VOLATILE "LOCAL TRANSIENT | PERSISTENT
VOLATILE v incompatible incompatible incompatible
TRANSIENT _ v v . tibl . tibl
DataWriter LOCAL incompatible | incompatible
offers:
TRANSIENT v v v incompatible
PERSISTENT v

6-100

DataWriter QosPolicies

6.5.7.3

6.5.7.4

6.5.7.5

6.5.8

Related QosPolicies

[HISTORY QosPolicy (Section 6.5.10)

(d RELIABILITY QosPolicy (Section 6.5.19)

(d DURABILITY SERVICE QosPolicy (Section 6.5.8)

(d AVAILABILITY QosPolicy (DDS Extension) (Section 6.5.1)

Applicable Entities

1 Topics (Section 5.1)
[DataWriters (Section 6.3)
[DataReaders (Section 7.3)

System Resource Considerations

Using this policy with a setting other than VOLATILE will cause Connext to use CPU and net-
work bandwidth to send old samples to matching, newly discovered DataReaders. The actual
amount of resources depends on the total size of data that needs to be sent.

The maximum number of samples that will be kept on the DataWriter’s queue for late-joiners
and/or required subscriptions is determined by max_samples in RESOURCE_LIMITS Qos Pol-

icy.
System Resource Considerations With Required Subscriptions”

By default, when TRANSIENT_LOCAL durability is used in combination with required sub-
scriptions, a DataWriter configured with KEEP_ALL in the HISTORY QosPolicy (Section 6.5.10)
will keep the samples in its cache until they are acknowledged by all the required subscriptions.
After the samples are acknowledged by the required subscriptions they will be marked as
reclaimable, but they will not be purged from the DataWriter’s queue until the DataWriter needs
these resources for new samples. This may lead to a non efficient resource utilization, specially
when max_samples is high or even UNLIMITED.

The DataWriter’s behavior can be changed to purge samples after they have been acknowledged
by all the active/matching DataReaders and all the required subscriptions configured on the
DataWriter. To do so, set the dds.data_writer.history.purge_samples_after_acknowledgment
property to 1 (see PROPERTY QosPolicy (DDS Extension) (Section 6.5.17)).

DURABILITY SERVICE QosPolicy

This QosPolicy is only used if the DURABILITY QosPolicy (Section 6.5.7) is PERSISTENT or
TRANSIENT and you are using Persistence Service, which is included with Connext Messaging.
Persistence Service is used to store and possibly forward the data sent by the DataWriter to
DataReaders who are created after the data was initially sent.

This QosPolicy configures certain parameters of Persistenice Service when it operates on the
behalf of the DataWriter, such as how much data to store. Specifically, this QosPolicy configures
the HISTORY and RESOURCE_LIMITS used by the fictitious DataReader and DataWriter used by
Persistence Service.

Note however, that by default, Persistence Service will ignore the values in the DURABILITY
SERVICE QosPolicy (Section 6.5.8) and must be configured to use those values.

For more information, please see:

d Chapter 12: Mechanisms for Achieving Information Durability and Persistence

6-101

DataWriter QosPolicies

Table 6.43

6.5.8.1

6.5.8.2

[Chapter 26: Introduction to RTI Persistence Service
[d Chapter 27: Configuring Persistence Service

This QosPolicy includes the members in Table 6.43. For default values, please refer to the API
Reference HTML documentation.

DDS_DurabilityServiceQosPolicy

Type Field Name Description
DDS. Duration. t service_cleanup_delay How long to keep all information regarding
an instance.
DDS_HistoryQosPolicyKind | history_kind Settings to use for the HISTORY QosPolicy
] (Section 6.5.10) when recouping durable
DDS_Long history_depth data.
max_samples Settings to use for the RESOURCE_LIMITS
DDS_Long max_instances QosPolicy (Section 6.5.20) when feeding
max_samples_per_instance data to a late joiner.

The service_cleanup_delay in this QosPolicy controls when Persistence Service may remove all
information regarding a data-instances. Information on a data-instance is maintained until all of
the following conditions are met:

1. The instance has been explicitly disposed
(instance_state = NOT_ALIVE_DISPOSED).

2. While in the NOT_ALIVE_DISPOSED state, Connext detects that there are no more 'live'
DataWriters writing the instance. That is, all existing writers either unregister the instance
(call unregister) or lose their liveliness.

3. A time interval longer that DurabilityService QosPolicy’s service_cleanup_delay has
elapsed since the time that Connext detected that the previous two conditions were met.

The service_cleanup_delay field is useful in the situation where your application disposes an
instance and it crashes before it has a chance to complete additional tasks related to the disposi-
tion. Upon restart, your application may ask for initial data to regain its state and the delay
introduced by service_cleanup_delay will allow your restarted application to receive the infor-
mation about the disposed instance and complete any interrupted tasks.

Although you can set the DURABILITY_SERVICE QosPolicy on a Topic, this is only useful as a
means to initialize the DURABILITY_SERVICE QosPolicy of a DataWriter. A Topic’s
DURABILITY_SERVICE setting does not directly affect the operation of Connext, see
Section 5.1.3.

Properties

This QosPolicy cannot be modified after the Entity has been enabled.

It does not apply to DataReaders, so there is no requirement for setting it compatibly on the send-
ing and receiving sides.

Related QosPolicies

(d DURABILITY QosPolicy (Section 6.5.7)
(d HISTORY QosPolicy (Section 6.5.10)
(d RESOURCE_LIMITS QosPolicy (Section 6.5.20)

6-102

DataWriter QosPolicies

6.5.8.3

6.5.8.4

6.5.9

Table 6.44

Applicable Entities

1 Topics (Section 5.1)
[DataWriters (Section 6.3)

System Resource Considerations

Since this QosPolicy configures the HISTORY and RESOURCE_LIMITS used by the fictitious
DataReader and DataWriter used by Persistence Service, it does have some impact on resource
usage.

ENTITY_NAME QosPolicy (DDS Extension)

The ENTITY_NAME QosPolicy assigns a name and role name to a DomainParticipant, Publisher,
Subscriber, DataReader, or DataWriter.

How the name is used is strictly application-dependent.

It is useful to attach names that are meaningful to the user. These names (except for Publihers and
Subscribers) are propagated during discovery so that applications can use these names to iden-
tify, in a user-context, the entities that it discovers. Also, Connext tools will print the names of
discovered entities (except for Publishers and Subscribers).

The role_name identifies the role of the entity. It is used by the Collaborative DataWriter feature
(see Availability QoS Policy and Collaborative DataWriters (Section 6.5.1.1)). With Durable Sub-
scriptions, role_name is used to specify to which Durable Subscription the DataReader belongs.
(see Availability QoS Policy and Required Subscriptions (Section 6.5.1.2).

This QosPolicy contains the members listed in Table 6.44.

DDS_EntityNameQoSPolicy
Type Field Name Description
A null-terminated string up to 255 characters in length.
char * name
To set this in XML, see Entity Names (Section 17.8.8).
A null-terminated string up to 255 characters in length.
To set this in XML, see Entity Names (Section 17.8.8).
For Collaborative DataWriters, this name is used to specify to which
char * role name endpoint group the DataWriter belongs. See. Availability QoS Policy

and Collaborative DataWriters (Section 6.5.1.1).
For Required and Durable Subscriptions this name is used to specify

to which Subscription the DataReader belongs. See Required Subscrip-
tions (Section 6.3.13).

These names will appear in the built-in topic for the entity (see the tables in Built-in DataReaders
(Section 16.2)).

Prior to get_qos(), if the name and/or role_name field in this QosPolicy is not null, Connext
assumes the memory to be valid and big enough and may write to it. If that is not desired, set
name and/or role_name to NULL before calling get_qos() and Connext will allocate adequate
memory for name.

When you call the destructor of entity’s QoS structure (DomainParticipantQos, DataReaderQos,
or DataWriterQos) (in C++, C++/CLI, and C#) or <entity>Qos_finalize() (in C), Connext will
attempt to free the memory used for name and role_name if it is not NULL. If this behavior is
not desired, set name and/or role_name to NULL before you call the destructor of entity’s QoS
structure or DomainParticipantQos_finalize().

6-103

DataWriter QosPolicies

6.5.9.1 Propetrties
This QosPolicy cannot be modified after the entity is enabled.

6.5.9.2 Related QosPolicies
[None
6.5.9.3 Applicable Entities

(d DomainParticipants (Section 8.3)
[Publishers (Section 6.2)

[Subscribers (Section 7.2)

[DataReaders (Section 7.3)

(1 DataWriters (Section 6.3)

6.5.9.4 System Resource Considerations

If the value of name in this QosPolicy is not NULL, some memory will be consumed in storing
the information in the database, but should not significantly impact the use of resource.

6.5.10 HISTORY QosPolicy

This QosPolicy configures the number of samples that Connext will store locally for DataWriters
and DataReaders. For keyed Topics, this QosPolicy applies on a per instance basis, so that Connext
will attempt to store the configured value of samples for every instance (see Samples, Instances,
and Keys (Section 2.2.2) for a discussion of keys and instances).

It includes the members seen in Table 6.45. For defaults and valid ranges, please refer to the API
Reference HTML documentation.

Table 6.45 DDS_HistoryQosPolicy

Field

Name Description

Type

DDS_KEEP_LAST_HISTORY_QOS: keep the last depth number of sam-
kind ples per instance.
DDS_KEEP_ALL_HISTORY_QOS: keep all samples.?

DDS_HistoryQos-
PolicyKind

6-104

DataWriter QosPolicies

Table 6.45 DDS_HistoryQosPolicy

Type

Field
Name

Description

DDS_Long

depth

If kind = DDS_KEEP_LAST_HISTORY_QOS, this is how many samples to
keep per instance.”

if kind = DDS_KEEP_ALL_HISTORY_QOS, this value is ignored.

DDS_RefilterQos-
PolicyKind

refilter

Specifies how a DataWriter should handle previously written samples for a
new DataReader.

When a new DataReader matches a DataWriter, the DataWriter can be con-
figured to perform content-based filtering on previously written samples
stored in the DataWriter queue for the new DataReader.

May be:

[DDS_NONE_REFILTER_QOS Do not filter existing sam-
ples for a new DataReader. The DataReader will do the filter-
ing.

(1 DDS_ALL_REFILTER_QOS Filter all existing samples for a
newly matched DataReader.

(J DDS_ON_DEMAND_REFILTER_QOS Filter existing sam-
ples only when they are requested by the DataReader.

(An extension to the DDS standard.)

a. Connext will store up to the value of the max_samples_per_instance parameter of the RESOURCE_LIMITS QosPol-

icy (Section 6.5.20).

b. depth must be <= max_samples_per_instance parameter of the RESOURCE_LIMITS QosPolicy (Section 6.5.20)

The kind determines whether or not to save a configured number of samples or all samples. It
can be set to either of the following:

() DDS_KEEP_LAST _HISTORY_QOS Connext attempts to keep the latest values of the data-
instance and discard the oldest ones when the limit as set by the depth parameter is
reached; new data will overwrite the oldest data in the queue. Thus the queue acts like a
circular buffer of length depth.

e For a DataWriter: Connext attempts to keep the most recent depth samples of each
instance (identified by a unique key) managed by the DataWriter.

® For a DataReader: Connext attempts to keep the most recent depth samples received for
each instance (identified by a unique key) until the application takes them via the
DataReader's take() operation. See Section 7.4.3 for a discussion of the difference
between read() and take().

() DDS_KEEP_ALL_HISTORY_QOS Connext attempts to keep all of the samples of a Topic.

® For a DataWriter: Connext attempts to keep all samples published by the DataWriter.

® For a DataReader: Connext attempts to keep all samples received by the DataReader for
a Topic (both keyed and non-keyed) until the application takes them via the
DataReader's take() operation. See Section 7.4.3 for a discussion of the difference
between read() and take().

® The value of the depth parameter is ignored.

The above descriptions say “attempts to keep” because the actual number of samples kept is
subject to the limitations imposed by the RESOURCE_LIMITS QosPolicy (Section 6.5.20). All of
the samples of all instances of a Topic share a single physical queue that is allocated for a DataW-
riter or DataReader. The size of this queue is configured by the RESOURCE_LIMITS QosPolicy. If

6-105

DataWriter QosPolicies

there are many difference instances for a Topic, it is possible that the physical queue may run out
of space before the number of samples reaches the depth for all instances.

In the KEEP_ALL case, Connext can only keep as many samples for a Topic (independent of
instances) as the size of the allocated queue. Connext may or may not allocate more memory
when the queue is filled, depending on the settings in the RESOURCE_LIMITS QoSPolicy of the
DataWriter or DataReader.

This QosPolicy interacts with the RELIABILITY QosPolicy (Section 6.5.19) by controlling
whether or not Connext guarantees that ALL of the data sent is received or if only the last N data
values sent are guaranteed to be received (a reduced level of reliability using the KEEP_LAST
setting). However, the physical sizes of the send and receive queues are not controlled by the
History QosPolicy. The memory allocation for the queues is controlled by the
RESOURCE_LIMITS QosPolicy (Section 6.5.20). Also, the amount of data that is sent to new
DataReaders who have configured their DURABILITY QosPolicy (Section 6.5.7) to receive previ-
ously published data is controlled by the History QosPolicy.

What happens when the physical queue is filled depends both on the setting for the HISTORY
QosPolicy as well as the RELIABILITY QosPolicy.

(1 DDS_KEEP_LAST_HISTORY_QOS

e If RELIABILITY is BEST_EFFORT: When the number of samples for an instance in
the queue reaches the value of depth, a new sample for the instance will replace the
oldest sample for the instance in the queue.

e If RELIABILITY is RELIABLE: When the number of samples for an instance in the
queue reaches the value of depth, a new sample for the instance will replace the old-
est sample for the instance in the queue—even if the sample being overwritten has not
been fully acknowledged as being received by all reliable DataReaders. This implies
that the discarded sample may be lost by some reliable DataReaders. Thus, when using
the KEEP_LAST setting, strict reliability is not guaranteed. See Chapter 10: Reliable
Communications for a complete discussion on Connext’s reliable protocol.

(1 DDS_KEEP_ALL_HISTORY_QOS

e If RELIABILITY is BEST_EFFORT: If the number of samples for an instance in the
queue reaches the value of the RESOURCE_LIMITS QosPolicy (Section 6.5.20)s
max_samples_per_instance field, a new sample for the instance will replace the old-
est sample for the instance in the queue (regardless of instance).

e If RELIABILITY is RELIABLE: When the number of samples for an instance in the
queue reaches the value of the RESOURCE_LIMITS QosPolicy (Section 6.5.20)s
max_samples_per_instance field, then:

a) for a DataWriter—a new sample for the instance will replace the oldest sample for
the instance in the sending queue—only if the sample being overwritten has been fully
acknowledged as being received by all reliable DataReaders. If the oldest sample for
the instance has not been fully acknowledged, the write() operation trying to enter a
new sample for the instance into the sending queue will block (for the
max_blocking_time specified in the RELIABLE QosPolicy).

b) for a DataReader—a new sample received by the DataReader will be discarded.
Because the DataReader will not acknowledge the discarded sample, the DataWriter is
forced to resend the sample. Hopefully, the next time the sample is received, there is
space for the instance in the DataReader’s queue to store (and accept, thus acknowl-
edge) the sample. A sample will remain in the DataReader’s queue for one of two rea-
sons. The more common reason is that the user application has not removed the

6-106

DataWriter QosPolicies

6.5.10.1

6.5.10.2

6.5.10.3

6.5.10.4

6.5.10.5

6.5.11

sample using the DataReader’s take() method. Another reason is that the sample has
been received out of order and is not available to be taken or read by the user applica-
tion until all older samples have been received.

Although you can set the HISTORY QosPolicy on Topics, its value can only be used to initialize
the HISTORY QosPolicies of either a DataWriter or DataReader. It does not directly affect the
operation of Connext, see Section 5.1.3.

Example

To achieve strict reliability, you must (1) set the DataWriter’s and DataReader’s HISTORY QosPol-
icy to KEEP_ALL, and (2) set the DataWriter’s and DataReader’s RELIABILITY QosPolicy to
RELIABLE.

See Chapter 10 for a complete discussion on Connext’s reliable protocol.

See Controlling Queue Depth with the History QosPolicy (Section 10.3.3).

Propetrties
This QosPolicy cannot be modified after the Entity has been enabled.

There is no requirement that the publishing and subscribing sides use compatible values.
Related QosPolicies

(d BATCH QosPolicy (DDS Extension) (Section 6.5.2) Do not configure the DataReader’s
depth to be shallower than the DataWriter's maximum batch size (batch_max_data_size).
Because batches are acknowledged as a group, a DataReader that cannot process an entire
batch will lose the remaining samples in it.

(d RELIABILITY QosPolicy (Section 6.5.19)
(d RESOURCE_LIMITS QosPolicy (Section 6.5.20)

Applicable Entities

1 Topics (Section 5.1)
[DataWriters (Section 6.3)
[DataReaders (Section 7.3)

System Resource Considerations

While this QosPolicy does not directly affect the system resources used by Connext, the
RESOURCE_LIMITS QosPolicy (Section 6.5.20) that must be used in conjunction with the HIS-
TORY QosPolicy (Section 6.5.10) will affect the amount of memory that Connext will allocate for
a DataWriter or DataReader.

LATENCYBUDGET QoS Policy

This QosPolicy can be used by a DDS implementation to change how it processes and sends
data that has low latency requirements. The DDS specification does not mandate whether or
how this parameter is used. Connext uses it to prioritize the sending of asynchronously pub-
lished data; see ASYNCHRONOUS_PUBLISHER QosPolicy (DDS Extension) (Section 6.4.1).

This QosPolicy also applies to Topics. The Topic’s setting for the policy is ignored unless you
explicitly make the DataWriter use it.

It contains the single member listed in Table 6.46.

6-107

DataWriter QosPolicies

Table 6.46 DDS_LatencyBudgetQosPolicy

6.5.11.1

6.5.12

Table 6.47

6.5.12.1

Type Field Name Description
Provides a hint as to the maximum acceptable delay from the time
DDS_Duration_t | duration the data is written to the time it is received by the subscribing appli-
cations.

Applicable Entities

[Topics (Section 5.1)
(1 DataWriters (Section 6.3)
[DataReaders (Section 7.3)

LIFESPAN QoS Policy

The purpose of this QoS is to avoid delivering stale data to the application. Each data sample
written by a DataWriter has an associated expiration time, beyond which the data should not be
delivered to any application. Once the sample expires, the data will be removed from the
DataReader caches, as well as from the transient and persistent information caches.

The middleware attaches timestamps to all data sent and received. The expiration time of each
sample is computed by adding the duration specified by this QoS to the destination timestamp.
To avoid inconsistencies, if you have multiple DataWriters of the same instance, they should all
use the same value for this QoS.

When you specify a finite Lifespan for your data, Connext will compare the current time with
those timestamps and drop data when your specified Lifespan expires.

The Lifespan QosPolicy can be used to control how much data is stored by Connext. Even if it is
configured to store "all" of the data sent or received for a topic (see the HISTORY QosPolicy (Sec-
tion 6.5.10)), the total amount of data it stores may be limited by the Lifespan QosPolicy.

You may also use the Lifespan QosPolicy to ensure that applications do not receive or act on
data, commands or messages that are too old and have "expired.”

It includes the single member listed in Table 6.47. For default and valid range, please refer to the
API Reference HTML documentation.

DDS_LifespanQosPolicy
Type Field Name Description
DDS_Duration_t duration Maximum duration for the data's validity.

Although you can set the LIFESPAN QosPolicy on Topics, its value can only be used to initialize
the LIFESPAN QosPolicies of DataWriters. The Topic’s setting for this QosPolicy does not
directly affect the operation of Connext, see Setting Topic QosPolicies (Section 5.1.3).

Properties

This QoS policy can be modified after the entity is enabled.

It does not apply to DataReaders, so there is no requirement that the publishing and subscribing
sides use compatible values.

6-108

DataWriter QosPolicies

6.5.12.2

6.5.12.3

6.5.12.4

6.5.13

Table 6.48

Related QoS Policies

(d BATCH QosPolicy (DDS Extension) (Section 6.5.2) Be careful when configuring a
DataWriter with a Lifespan duration shorter than the batch flush period
(batch_flush_delay). If the batch does not fill up before the flush period elapses, the
short duration will cause the samples to be lost without being sent.

(d DURABILITY QosPolicy (Section 6.5.7)
Applicable Entities

1 Topics (Section 5.1)
[DataWriters (Section 6.3)

System Resource Considerations

The use of this policy does not significantly impact the use of resources.

LIVELINESS QosPolicy

The LIVELINESS QosPolicy specifies how Connext determines whether a DataWriter is “alive.”
A DataWriter’s liveliness is used in combination with the OWNERSHIP QosPolicy (Section
6.5.15) to maintain ownership of an instance (note that the DEADLINE QosPolicy (Section 6.5.5)
is also used to change ownership when a DataWriter is still alive). That is, for a DataWriter to
own an instance, the DataWriter must still be alive as well as honoring its DEADLINE contract.

It includes the members in Table 6.48. For defaults and valid ranges, please refer to the API Ref-
erence HTML documentation.

DDS_LivelinessQosPolicy

Type Field Name Description

DDS_AUTOMATIC_LIVELINESS_QOS:

Connext will automatically assert liveliness for the DataWriter at least as
often as the lease_duration.
DDS_MANUAL_BY_PARTICIPANT_LIVELINESS_QOS:

kind The DataWriter is assumed to be alive if any Entity within the same
DomainParticipant has asserted its liveliness.
DDS_MANUAL_BY_TOPIC_LIVELINESS_QOS:

Your application must explicitly assert the liveliness of the DataWriter
within the lease_duration.

DDS_Liveliness
QosPolicyKind

The timeout by which liveliness must be asserted for the DataWriter or
the DataWriter will be considered “inactive or not alive.
DDS_Duration_t | lease_duration | Additionally, for DataReaders, the lease_duration also specifies the
maximum period at which Connext will check to see if the matching
DataWriter is still alive.

Setting a DataWriter’s kind of LIVELINESS specifies the mechanism that will be used to assert
liveliness for the DataWriter. The DataWriter’s lease_duration then specifies the maximum
period at which packets that indicate that the DataWriter is still alive are sent to matching
DataReaders.

The various mechanisms are:

(1 DDS_AUTOMATIC_LIVELINESS QOS — The DomainParticipant is responsible for automati-
cally sending packets to indicate that the DataWriter is alive; this will be done at least as
often as required by the lease_duration. This setting is appropriate when the primary

6-109

DataWriter QosPolicies

failure mode is that the publishing application itself dies. It does not cover the case in
which the application is still alive but in an erroneous state-allowing the DomainPartici-
pant to continue to assert liveliness for the DataWriter but preventing threads from calling
write() on the DataWriter.

As long as the internal threads spawned by Connext for a DomainParticipant are running,
then the liveliness of the DataWriter will be asserted regardless of the state of the rest of
the application.

This setting is certainly the most convenient, if the least accurate, method of asserting
liveliness for a DataWriter.

[DDS_MANUAL_BY_PARTICIPANT_LIVELINESS_QOS — Connext will assume that as long as the
user application has asserted the liveliness of at least one DataWriter belonging to the
same DomainParticipant or the liveliness of the DomainParticipant itself, then this DataW-
riter is also alive.

This setting allows the user code to control the assertion of liveliness for an entire group
of DataWriters with a single operation on any of the DataWriters or their DomainPartici-
pant. Its a good balance between control and convenience.

(J DDS_MANUAL_BY_TOPIC_LIVELINESS_QOS — The DataWriter is considered alive only if the
user application has explicitly called operations that assert the liveliness for that particu-
lar DataWriter.

This setting forces the user application to assert the liveliness for a DataWriter which
gives the user application great control over when other applications can consider the
DataWriter to be inactive, but at the cost of convenience.

With the MANUAL_BY_[TOPIC,PARTICIPANT] settings, user application code can assert the
liveliness of DataWriters either explicitly by calling the assert_liveliness() operation on the
DataWriter (as well as the DomainParticipant for the MANUAL_BY_PARTICIPANT setting) or
implicitly by calling write() on the DataWriter. If the application does not use either of the meth-
ods mentioned at least once every lease_duration, then the subscribing application may assume
that the DataWriter is no longer alive. Sending data MANUAL_BY_TOPIC will cause an assert
message to be sent between the DataWriter and its matched DataReaders.

Publishing applications will monitor their DataWriters to make sure that they are honoring their
LIVELINESS QosPolicy by asserting their liveliness at least at the period set by the
lease_duration. If Connext finds that a DataWriter has failed to have its liveliness asserted by its
lease_duration, an internal thread will modify the DataWriter’s LIVELINESS_LOST_STATUS
and trigger its on_liveliness_lost() DataWriterListener callback if a listener exists, see Listeners
(Section 4.4).

Setting the DataReader’s kind of LIVELINESS requests a specific mechanism for the publishing
application to maintain the liveliness of DataWriters. The subscribing application may want to
know that the publishing application is explicitly asserting the liveliness of the matching Data\W-
riter rather than inferring its liveliness through the liveliness of its DomainParticipant or its sib-
ling DataWriters.

The DataReader’s lease_duration specifies the maximum period at which matching DataWriters
must have their liveliness asserted. In addition, in the subscribing application Connext uses an
internal thread that wakes up at the period set by the DataReader’s lease_duration to see if the
DataWriter’s lease_duration has been violated.

When a matching DataWriter is determined to be dead (inactive), Connext will modify the
LIVELINESS_CHANGED_STATUS of each matching DataReader and trigger that DataReader’s
on_liveliness_changed() DataReaderListener callback (if a listener exists).

6-110

DataWriter QosPolicies

Although you can set the LIVELINESS QosPolicy on Topics, its value can only be used to initial-
ize the LIVELINESS QosPolicies of either a DataWriter or DataReader. It does not directly affect
the operation of Connext, see Section 5.1.3.

For more information on Liveliness, see Maintaining DataWriter Liveliness for kinds AUTO-
MATIC and MANUAL_BY_PARTICIPANT (Section 14.3.1.2).

6.5.13.1 Example

You can use LIVELINESS QosPolicy during system integration to ensure that applications have
been coded to meet design specifications. You can also use it during run time to detect when sys-
tems are performing outside of design specifications. Receiving applications can take appropri-
ate actions in response to disconnected DataWriters.

The LIVELINESS QosPolicy can be used to manage fail-over when the OWNERSHIP QosPolicy
(Section 6.5.15) is set to EXCLUSIVE. This implies that the DataReader will only receive data
from the highest strength DataWriter that is alive (active). When that DataWriter’s liveliness
expires, then Connext will start delivering data from the next highest strength DataWriter that is
still alive.

6.5.13.2 Properties
This QosPolicy cannot be modified after the Entity has been enabled.
The DataWriter and DataReader must use compatible settings for this QosPolicy. To be compati-
ble, both of the following conditions must be true:
1. The DataWriter and DataReader must use one of the valid combinations shown in
Table 6.49.
2. DataWriter’s lease_duration <= DataReader’s lease_duration.

If this QosPolicy is found to be incompatible, the ON_OFFERED_INCOMPATIBLE_QOS and
ON_REQUESTED_INCOMPATIBLE_QOS statuses will be modified and the corresponding
Listeners called for the DataWriter and DataReader respectively.

Table 6.49 Valid Combinations of Liveliness ‘kind’

DataReader requests:

MANUAL_ | MANUAL_BY_ AUTO-
BY_TOPIC | PARTICIPANT MATIC

MANUAL_BY_TOPIC v v v
D"‘;;‘&V\; r;,ter MANUAL_BY_PARTICIPANT | incompatible v v
AUTOMATIC incompatible incompatible 4

6.5.13.3 Related QosPolicies

(d DEADLINE QosPolicy (Section 6.5.5)
(d OWNERSHIP QosPolicy (Section 6.5.15)
(d OWNERSHIP_STRENGTH QosPolicy (Section 6.5.16)

6-111

DataWriter QosPolicies

6.5.13.4

6.5.13.5

6.5.14

Table 6.50

Applicable Entities

1 Topics (Section 5.1)
[DataWriters (Section 6.3)
[DataReaders (Section 7.3)

System Resource Considerations

An internal thread in Connext will wake up periodically to check the liveliness of all the DataW-
riters. This happens both in the application that contains the DataWriters at the lease_duration
set on the DataWriters as well as the applications that contain the DataReaders at the
lease_duration set on the DataReaders. Therefore, as lease_duration becomes smaller, more CPU
will be used to wake up threads and perform checks. A short lease_duration set on DataWriters
may also use more network bandwidth because liveliness packets are being sent at a higher
rate—this is especially true when LIVELINESS kind is set to AUTOMATIC.

MULTI_CHANNEL QosPolicy (DDS Extension)

This QosPolicy is used to partition the data published by a DataWriter across multiple channels.
A channel is defined by a filter expression and a sequence of multicast locators.

By using this QosPolicy, a DataWriter can be configured to send data to different multicast
groups based on the content of the data. Using syntax similar to those used in Content-Based
Filters, you can associate different multicast addresses with filter expressions that operate on the
values of the fields within the data. When your application’s code calls write(), data is sent to
any multicast address for which the data passes the filter.

See Chapter 18 for complete documentation on multi-channel DataWriters.

Note: Durable writer history is not supported for multi-channel DataWriters (see Chapter 18);
an error is reported if a multi-channel DataWriter tries to configure Durable Writer History.

This QosPolicy includes the members presented in Table 6.50, Table 6.51, and Table 6.52. For
defaults and valid ranges, please refer to the API Reference HTML documentation.

DDS_MultiChannelQosPolicy

Field s
Type Name Description

A sequence of channel settings used to configure the channels’
DDS_ChannelSettingsSeq | channels | properties. If the length of the sequence is zero, the QosPolicy
will be ignored. See Table 6.51.

Name of the filter class used to describe the filter expressions.
The following values are supported:

char * filter name [DDS_SQLFILTER_NAME? (see Section 5.4.6)

[DDS_STRINGMATCHFILTER_NAME? (see
Section 5.4.7)

a. InJava and C#, you can access the names of the built-in filters by usin,
DomainParticipant.SQLFILTER_NAME and DomainParticipant.STRINGMATCHFILTER_NAME.

The format of the filter_expression should correspond to one of the following filter classes:

(d DDS_SQLFILTER_NAME (see SQL Filter Expression Notation (Section 5.4.6))

[d DDS_STRINGMATCHFILTER_NAME (see STRINGMATCH Filter Expression Notation
(Section 5.4.7)

6-112

DataWriter QosPolicies

Table 6.51 DDS_ChannelSettings_t

Type Field Name Description

A sequence of multicast settings used to configure the
multicast addresses associated with a channel. The
sequence cannot be empty.

DDS_MulticastSettingsSeq | multicast_settings
- 969 - & The maximum number of multicast locators in a channel

is limited to four. (A locator is defined by a transport
alias, a multicast address and a port.) See Table 6.52.

A logical expression used to determine the data that will
be published in the channel.

This string cannot be NULL. An empty string always
char * filter_expression |evaluates to TRUE.

See SQL Filter Expression Notation (Section 5.4.6) and
STRINGMATCH Filter Expression Notation (Section
5.4.7) for expression syntax.

A positive integer designating the relative priority of the
channel, used to determine the transmission order of
pending transmissions. Larger numbers have higher pri-
ority.

To wuse publication priorities, the DataWriter’s
PUBLISH_MODE QosPolicy (DDS Extension) (Section
DDS_Long priority 6.5.18) must be set for asynchronous publishing and the
DataWriter must use a FlowController that is configured
for highest-priority-first (HPF) scheduling.

See Prioritized Samples (Section 6.6.4).

Note: Prioritized samples are not supported when using
the Java, Ada, or .NET APIs. Therefore the priority field
does not exist when using these APIs.

Table 6.52 DDS_MulticastSettings

Type Field Name Description

A sequence of transport aliases that specifies which
DDS_StringSeq transports transport should be used to publish multicast messages
for this channel.

A multicast group address on which DataReaders sub-

har * i o : . .
chat receive_address scribing to this channel will receive data.

The multicast port on which DataReaders subscribing to

DDS_Long receive_port this channel will receive data.

A DataReader can use the ContentFilteredTopic API (see Using a ContentFilteredTopic (Section
5.4.5)) to subscribe to a subset of the channels used by a DataWriter.

6.5.14.1 Example
See Chapter 18: Multi-channel DataWriters.

6.5.14.2 Properties
This QosPolicy cannot be modified after the DataWriter is created.

It does not apply to DataReaders, so there is no requirement that the publishing and subscribing
sides use compatible values.

6-113

DataWriter QosPolicies

6.5.14.3

6.5.14.4

6.5.14.5

6.5.15

Table 6.53

Related Qos Policies

[DOMAIN_PARTICIPANT_RESOURCE_LIMITS QosPolicy (DDS Extension) (Section
8.5.4)

Applicable Entities
[DataWriters (Section 6.3)

System Resource Considerations
The following fields in the DOMAIN_PARTICIPANT_RESOURCE_LIMITS QosPolicy (DDS

Extension) (Section 8.5.4) configure the resources associated with the channels stored in the
MULTI_CHANNEL QosPolicy:
(| channel_seq_max_length

(| channel_filter_expression_max_length

For information about partitioning topic data across multiple channels, please refer to
Chapter 18: Multi-channel DataWriters.

OWNERSHIP QosPolicy

The OWNERSHIP QosPolicy specifies whether a DataReader receive data for an instance of a
Topic sent by multiple DataWriters.

For non-keyed Topics, there is only one instance of the Topic.

This policy includes the single member shown in Table 6.53.

DDS_OwnershipQosPolicy

Type Field Name Description

DDS_SHARED_OWNERSHIP_QOS or

DDS_OwnershipQosPolicyKind | kind
-OwnershipQosPolicyKind kin DDS_EXCLUSIVE_OWNERSHIP_QOS

The kind of OWNERSHIP can be set to one of two values:

[SHARED Ownership

When OWNERSHIP is SHARED, and multiple DataWriters for the Topic publishes the
value of the same instance, all the updates are delivered to subscribing DataReaders. So in
effect, there is no “owner;” no single DataWriter is responsible for updating the value of
an instance. The subscribing application will receive modifications from all DataWriters.

[EXCLUSIVE Ownership

When OWNERSHIP is EXCLUSIVE, each instance can only be owned by one DataWriter
at a time. This means that a single DataWriter is identified as the exclusive owner whose
updates are allowed to modify the value of the instance for matching DataWriters. Other
DataWriters may submit modifications for the instance, but only those made by the cur-
rent owner are passed on to the DataReaders. If a non-owner DataWriter modifies an
instance, no error or notification is made; the modification is simply ignored. The owner
of the instance can change dynamically.

6-114

DataWriter QosPolicies

6.5.15.1

6.5.15.2

Note for non-keyed Topics, EXCLUSIVE ownership implies that DataReaders will pay
attention to only one DataWriter at a time because there is only a single instance. For
keyed Topics, DataReaders may actually receive data from multiple DataWriters when dif-
ferent DataWriters own different instances of the Topic.

This QosPolicy is often used to help users build systems that have redundant elements to safe-
guard against component or application failures. When systems have active and hot standby
components, the Ownership QosPolicy can be used to ensure that data from standby applica-
tions are only delivered in the case of the failure of the primary.

The Ownership QosPolicy can also be used to create data channels or topics that are designed to
be taken over by external applications for testing or maintenance purposes.

Although you can set the OWNERSHIP QosPolicy on Topics, its value can only be used to initial-
ize the OWNERSHIP QosPolicies of either a DataWriter or DataReader. It does not directly affect
the operation of Connext, see Section 5.1.3.

How Connext Selects which DataWriter is the Exclusive Owner

When OWNERSHIP is EXCLUSIVE, the owner of an instance at any given time is the DataW-
riter with the highest OWNERSHIP_STRENGTH QosPolicy (Section 6.5.16) that is “alive” as
defined by the LIVELINESS QosPolicy (Section 6.5.13)) and has not violated the DEADLINE
QosPolicy (Section 6.5.5) of the DataReader. OWNERSHIP_STRENGTH is simply an integer set
by the DataWriter.

As mentioned before, if the Topic’s data type is keyed (see Section 2.2.2) then EXCLUSIVE own-
ership is determined on a per-instance basis. That is, the DataWriter owner of each instance is
considered separately. A DataReader can receive values written by a lower strength DataWriter as
long as those values are for instances that are not being written by a higher-strength DataWriter.

If there are multiple DataWriters with the same OWNERSHIP_STRENGTH writing to the same
instance, Connext resolves the tie by choosing the DataWriter with the smallest GUID (Globally
Unique Identifier, see Section 14.1.1.). This means that different DataReaders (in different applica-
tions) of the same Topic will all choose the same DataWriter as the owner when there are multiple
DataWriters with the same strength.

The owner of an instance can change when:

(A A DataWriter with a higher OWNERSHIP_STRENGTH publishes a value for the
instance.

(d The OWNERSHIP_STRENGTH of the owning DataWriter is dynamically changed to be
less than the strength of an existing DataWriter of the instance.

[The owning DataWriter stops asserting its LIVELINESS (the DataWriter dies).

[The owning DataWriter violates the DEADLINE QosPolicy by not updating the value of
the instance within the period set by the DEADLINE.

Note however, the change of ownership is not synchronous across different DataReaders in dif-
ferent participants. That is, DataReaders in different applications may not determine that the
ownership of an instance has changed at exactly the same time.

Example

OWNERSHIP is really a property that is shared between DataReaders and DataWriters of a Topic.
However, in a system, some Topics will be exclusively owned and others will be shared. System
requirements will determine which are which.

An example of a Topic that may be shared is one that is used by applications to publish alarm
messages. If the application detects an anomalous condition, it will use a DataWriter to write a

6-115

DataWriter QosPolicies

6.5.15.3

6.5.154

6.5.15.5

6.5.15.6

Topic “Alarm.” Another application that records alarms into a system log file will have a
DataReader that subscribes to “Alarm.” In this example, any number of applications can publish
the “Alarm” message. There is no concept that only one application at a time is allowed to pub-
lish the “Alarm” message, so in this case, the OWNERSHIP of the DataWriters and DataReaders
should be set to SHARED.

In a different part of the system, EXCLUSIVE OWNERSHIP may be used to implement redun-
dancy in support of fault tolerance. Say, the distributed system controls a traffic system. It moni-
tors traffic and changes the information posted on signs, the operation of metering lights, and
the timing of traffic lights. This system must be tolerant to failure of any part of the system
including the application that actually issues commands to change the lights at a particular
intersection.

One way to implement fault tolerance is to create the system redundantly both in hardware and
software. So if a piece of the running system fails, a backup can take over. In systems where
failover from the primary to backup system must be seamless and transparent, the actual
mechanics of failover must be fast, and the redundant component must immediately pickup
where the failed component left off. For the network connections of the component, Connext can
provided redundant DataWriter and DataReaders.

In this case, you would not want the DataReaders to receive redundant messages from the redun-
dant DataWriters. Instead you will want the DataReaders to only receive messages from the pri-
mary application and only from a backup application when a failure occurs. To continue our
example, if we have redundant applications that all try to control the lights at an intersection, we
would want the DataReaders on the light to receive messages only from the primary application.
To do so, we should configure the DataWriters and DataReaders to have EXCLUSIVE OWNER-
SHIP and set the OWNERSHIP_STRENGTH differently on different redundant applications to
distinguish between primary and backup systems.

Propetrties

This QosPolicy cannot be modified after the Entity is enabled.

It must be set to the same kind on both the publishing and subscribing sides. If a DataWriter and
DataReader of the same topic are found to have different kinds set for the OWNERSHIP QoS, the
ON_OFFERED_INCOMPATIBLE_QOS and ON_REQUESTED_INCOMPATIBLE_QOS sta-
tuses will be modified and the corresponding Listeners called for the DataWriter and DataReader
respectively.

Related QosPolicies

(d DEADLINE QosPolicy (Section 6.5.5)
[LIVELINESS QosPolicy (Section 6.5.13)
[OWNERSHIP_STRENGTH QosPolicy (Section 6.5.16)

Applicable Entities

1 Topics (Section 5.1)
[DataWriters (Section 6.3)
[DataReaders (Section 7.3)

System Resource Considerations

This QosPolicy does not significantly impact the use of system resources.

6-116

DataWriter QosPolicies

6.5.16

Table 6.54

6.5.16.1

6.5.16.2

6.5.16.3

6.5.16.4

6.5.16.5

6.5.17

OWNERSHIP_STRENGTH QosPolicy

The OWNERSHIP_STRENGTH QosPolicy is used to rank DataWriters of the same instance of a
Topic, so that Connext can decide which DataWriter will have ownership of the instance when the
OWNERSHIP QosPolicy (Section 6.5.15) is set to EXCLUSIVE.

It includes the member in Table 6.54. For the default and valid range, please refer to the API Ref-
erence HTML documentation.

DDS_OwnershipStrengthQosPolicy

Type Field Name Description

DDS_Long value The strength value used to arbitrate among multiple DataWriters.

This QosPolicy only applies to DataWriters when EXCLUSIVE OWNERSHIP is used. The
strength is simply an integer value, and the DataWriter with the largest value is the owner. A
deterministic method is used to decide which DataWriter is the owner when there are multiple
DataWriters that have equal strengths. See Section 6.5.15.1 for more details.

Example

Suppose there are two DataWriters sending samples of the same Topic instance, one as the main
DataWriter, and the other as a backup. If you want to make sure the DataReader always receive
from the main one whenever possible, then set the main DataWriter to use a higher
ownership_strength value than the one used by the backup DataWriter.

Propetrties
This QosPolicy can be changed at any time.

It does not apply to DataReaders, so there is no requirement that the publishing and subscribing
sides use compatible values.

Related QosPolicies
[OWNERSHIP QosPolicy (Section 6.5.15)

Applicable Entities
[DataWriters (Section 6.3)

System Resource Considerations

The use of this policy does not significantly impact the use of resources.

PROPERTY QosPolicy (DDS Extension)

The PROPERTY QosPolicy stores name/value (string) pairs that can be used to configure certain
parameters of Connext that are not exposed through formal QoS policies.

It can also be used to store and propagate application-specific name/value pairs that can be
retrieved by user code during discovery. This is similar to the USER_DATA QosPolicy, except
this policy uses (name, value) pairs, and you can select whether or not a particular pair should
be propagated (included in the built-in topic).

It includes the member in Table 6.55.

The Property QoS stores name/value pairs for an Entity. Both the name and value are strings.
Certain configurable parameters for Entities that do not have a formal DDS QoS definition may
be configured via this QoS by using a pre-defined name and the desired setting in string form.

6-117

DataWriter QosPolicies

Table 6.55 DDS_PropertyQosPolicy

Type Field Name Description

A sequence of: (name, value) pairs and booleans that indicate
DDS_PropertySeq | value whether the pair should be propagated (included in the entity’s
built-in topic upon discovery).

You can manipulate the sequence of properties (name, value pairs) with the standard methods
available for sequences. You can also use the helper class, DDSPropertyQosPolicyHelper, which
provides another way to work with a PropertyQosPolicy object.

The PropertyQosPolicy may be used to configure:
[Durable writer history (see Section 12.3.2)
[Durable reader state (see Section 12.4.4)
[Built-in and extension Transport Plugins (see Section 15.6, Section 25.2, Section 36.2).
(d Automatic registration of built-in types (see Registering Built-in Types (Section 3.2.1))
[Clock Selection (Section 8.6)

(d Turbo Mode and Automatic Throttling for DataWriter Performance—Experimental Fea-
tures (Section 6.3.18)

In addition, you can add your own name/value pairs to the Property QoS of an Entity. You may
also use this QosPolicy to direct Connext to propagate these name/value pairs with the discov-
ery information for the Entity. Applications that discover the Entity can then access the user-spe-
cific name/value pairs in the discovery information of the remote Entity. This allows you to add
meta-information about an Entity for application-specific use, for example, authentication/
authorization certificates (which can also be done using the User or Group Data QoS).

Reasons for using the PropertyQosPolicy include:

[Some features can only be configured through the PropertyQosPolicy, not through other
QoS or APLs For example, Durable Reader State, Durable Writer History, Built-in Types,
Monotonic Clock.

[d Alternative way to configure built-in transports settings. For example, to use non-default
values for the built-in transports without using the PropertyQosPolicy, you would have
to create a DomainParticipant disabled, change the built-in transport property settings,
then enable the DomainParticipant. Using the PropertyQosPolicy to configure built-in
transport settings will save you the work of enabling and disabling the DomainPartici-
pant. Also, transport settings are not a QoS and therefore cannot be configured through
an XML file. By configuring built-in transport settings through the PropertyQosPolicy
instead, XML files can be used.

® Note: When using the Java or .NET APIs, transport configuration must take place
through the PropertyQosPolicy (not through the transport property structures).

(d Alternative way to support multiple instances of built-in transports (without using
Transport API).

J Alternative way to dynamicallgf load extension transports (such as RTI Secure WAN
Transport' or RTI TCP Transport”) or user-created transport plugins in C/C++ language
bindings. If the extension or user-created transport plugin is installed using the transport
APl instead, the library that extra transport library/code will need to be linked into your
application and may require recompilation.

1. RTI Secure WAN Transport is an optional packages available for separate purchase.

6-118

DataWriter QosPolicies

Table 6.56

6.5.17.1

6.5.17.2

6.5.17.3

6.5.17.4

6.5.18

(d Allows full pluggable transport configuration for non-C/C++ language bindings (Java,
C++/CLI, C#, etc.) The pluggable transport API is not available in those languages.
Without using PropertyQosPolicy, you cannot use extension transports (such as RTI
Secure WAN Transport) and you cannot create your own custom transport.

The PropertyQosPolicyHelper operations are described in Table 6.56. For more information, see
the API Reference HTML documentation.

PropertyQoSPolicyHelper Operations

Operation Description

get_number_of_properties | Gets the number of properties in the input policy.

Asserts the property identified by name in the input policy. (Either adds it,

assert_propert L
—property or replaces an existing one.)

add_property Adds a new property to the input policy.

lookup_property Searches for a property in the input policy given its name.
remove_property Removes a property from the input policy.

get_properties Retrieves a list of properties whose names match the input prefix.
Properties

This QosPolicy can be changed at any time.

There is no requirement that the publishing and subscribing sides use compatible values.
Related QosPolicies

(d DOMAIN_PARTICIPANT_RESOURCE_LIMITS QosPolicy (DDS Extension) (Section
8.5.4)

Applicable Entities

[DataWriters (Section 6.3)
[DataReaders (Section 7.3)
[DomainParticipants (Section 8.3)

System Resource Considerations

The DOMAIN_PARTICIPANT_RESOURCE_LIMITS QosPolicy (DDS Extension) (Section 8.5.4)
contains several fields for configuring the resources associated with the properties stored in this
QosPolicy.

PUBLISH_MODE QosPolicy (DDS Extension)

This QosPolicy determines the DataWriter’s publishing mode, either asynchronous or synchro-
nous.

The publishing mode controls whether data is written synchronously—in the context of the user
thread when calling write(), or asynchronously—in the context of a separate thread internal to
Connext.

2. RTI TCP Transport is included with your Connext distribution but is not a built-in transport and therefore not
enabled by default.

6-119

DataWriter QosPolicies

Note: Asynchronous DataWriters do not perform sender-side filtering. Any filtering, such as
time-based or content-based filtering, takes place on the DataReader side.

Each Publisher

spawns a single asynchronous publishing thread (set in its
ASYNCHRONOUS_PUBLISHER QosPolicy (DDS Extension) (Section 6.4.1)) to serve all its
asynchronous DataWriters.

When data is written asynchronously, a FlowController (Section 6.6), identified by
flow_controller_name, can be used to shape the network traffic. The FlowController's proper-
ties determine when the asynchronous publishing thread is allowed to send data and how

much.

The fastest way for Connext to send data is for the user thread to execute the middleware code
that actually sends the data itself. However, there are times when user applications may need or
want an internal middleware thread to send the data instead. For instance, for sending large
data reliably, an asynchronous thread must be used (see ASYNCHRONOUS_PUBLISHER
QosPolicy (DDS Extension) (Section 6.4.1)).

This QosPolicy can select a FlowController to prioritize or shape the data flow sent by a DataW-
riter to DataReaders. Shaping a data flow usually means limiting the maximum data rates with
which the middleware will send data for a DataWriter. The FlowController will buffer data sent
faster than the maximum rate by the DataWriter, and then only send the excess data when the
user send rate drops below the maximum rate.

If kind is set to DDS_ASYNCHRONOUS_PUBLISH_MODE_QQOS, the flow controller referred
to by flow_controller_name must exist. Otherwise, the setting will be considered inconsistent.

This QosPolicy includes the members in Table 6.57. For the defaults, please refer to the API Ref-
erence HTML documentation.

Table 6.57 DDS_PublishModeQosPolicy

Type

Field Name

Description

DDS_PublishMode
QosPolicyKind

kind

Either:
DDS_ASYNCHRONOUS_PUBLISH_MODE_QOS
DDS_SYNCHRONOUS_PUBLISH_MODE_QOS

char*

flow_controller_

name

Name of the associated flow controller.

There are three built-in FlowControllers:
DDS_DEFAULT_FLOW_CONTROLLER_NAME
DDS_FIXED_RATE_FLOW_CONTROLLER_NAME
DDS_ON_DEMAND_FLOW_CONTROLLER_NAME
You may also create your own FlowControllers.

See FlowControllers (DDS Extension) (Section 6.6).

DDS_Long

priority

A positive integer designating the relative priority of the DataW-
riter, used to determine the transmission order of pending writes.
To use publication priorities, this QosPolicy’s kind must be
DDS_ASYNCHRONOUS_PUBLISH_MODE_QOS and the
DataWriter must use a FlowController with a highest-priority
first (HPF) scheduling_policy.

See Prioritized Samples (Section 6.6.4).

Note: Prioritized samples are not supported when using the Java,
Ada, or .NET APIs. Therefore the priority field does not exist
when using these APIs.

The maximum

number of

samples that will be coalesced depends on

NDDS_Transport_Property_t::gather_send_buffer_count_max (each sample requires at least 2-

6-120

DataWriter QosPolicies

6.5.18.1

6.5.18.2

6.5.18.3

6.5.18.4

6.5.19

4 gather-send buffers). Performance can be improved by increasing
NDDS_Transport_Property_t::gather_send_buffer_count_max. Note that the maximum value
is operating system dependent.

Connext queues samples until they can be sent by the asynchronous publishing thread (as deter-
mined by the corresponding FlowController).

The number of samples that will be queued is determined by the HISTORY QosPolicy (Section
6.5.10): when using KEEP_LAST, the most recent depth samples are kept in the queue.

Once unsent samples are removed from the queue, they are no longer available to the asynchro-
nous publishing thread and will therefore never be sent.

Unless flow_controller_ name points to one of the built-in FlowControllers, finalizing the
DataWriterQos will also free the string pointed to by flow_controller_name. Therefore, you
should use DDS_String_dup() before passing the string to flow_controller_name, or reset
flow_controller_name to NULL before the destructing /finalizing the QoS.

Advantages of Asynchronous Publishing:
Asynchronous publishing may increase latency, but offers the following advantages:
[The write() call does not make any network calls and is therefore faster and more deter-
ministic. This becomes important when the user thread is executing time-critical code.

(d When data is written in bursts or when sending large data types as multiple fragments, a
flow controller can throttle the send rate of the asynchronous publishing thread to avoid
flooding the network.

(d Asynchronously written samples for the same destination will be coalesced into a single
network packet which reduces bandwidth consumption.
Properties
This QosPolicy cannot be modified after the Publisher is created.
Since it is only for DataWriters, there are no compatibility restrictions for how it is set on the pub-
lishing and subscribing sides.

Related QosPolicies

(d ASYNCHRONOUS_PUBLISHER QosPolicy (DDS Extension) (Section 6.4.1)
(d HISTORY QosPolicy (Section 6.5.10)

Applicable Entities
[DataWriters (Section 6.3)

System Resource Considerations
See Configuring Resource Limits for Asynchronous DataWriters (Section 6.5.20.1).

System resource usage depends on the settings in the corresponding FlowController (see
Section 6.6).

RELIABILITY QosPolicy

This RELIABILITY QosPolicy determines whether or not data published by a DataWriter will be
reliably delivered by Connext to matching DataReaders. The reliability protocol used by Connext
is discussed in Chapter 10: Reliable Communications.

6-121

DataWriter QosPolicies

The reliability of a connection between a DataWriter and DataReader is entirely user configurable.
It can be done on a per DataWriter / DataReader connection. A connection may be configured to
be "best effort" which means that Connext will not use any resources to monitor or guarantee
that the data sent by a DataWriter is received by a DataReader.

For some use cases, such as the periodic update of sensor values to a GUI displaying the value to
a person, "best effort” delivery is often good enough. It is certainly the fastest, most efficient, and
least resource-intensive (CPU and network bandwidth) method of getting the newest/latest
value for a topic from DataWriters to DataReaders. But there is no guarantee that the data sent
will be received. It may be lost due to a variety of factors, including data loss by the physical
transport such as wireless RF or even Ethernet. Packets received out of order are dropped and a
SAMPLE_LOST Status (Section 7.3.7.7) is generated.

However, there are data streams (topics) in which you want an absolute guarantee that all data
sent by a DataWriter is received reliably by DataReaders. This means that Connext must check
whether or not data was received, and repair any data that was lost by resending a copy of the
data as many times as it takes for the DataReader to receive the data.

Connext uses a reliability protocol configured and tuned by these QoS policies:
(d HISTORY QosPolicy (Section 6.5.10),
(d DATA_WRITER_PROTOCOL QosPolicy (DDS Extension) (Section 6.5.3),
(d DATA_READER_PROTOCOL QosPolicy (DDS Extension) (Section 7.6.1),
(d RESOURCE_LIMITS QosPolicy (Section 6.5.20)

The Reliability QoS policy is simply a switch to turn on the reliability protocol for a DataWriter/
DataReader connection. The level of reliability provided by Connext is determined by the config-
uration of the aforementioned QoS policies.

You can configure Connext to deliver ALL data in the order they were sent (also known as abso-
lute or strict reliability). Or, as a trade-off for less memory, CPU, and network usage, you can
choose a reduced level of reliability where only the last N values are guaranteed to be delivered
reliably to DataReaders (where N is user-configurable). With the reduced level of reliability, there
are no guarantees that the data sent before the last N are received. Only the last N data packets
are monitored and repaired if necessary.

It includes the members in Table 6.58. For defaults and valid ranges, please refer to the API Ref-
erence HTML documentation.

Table 6.58 DDS_ReliabilityQosPolicy

Type Field Name Description

Can be either:
e DDS_BEST_EFFORT_RELIABILITY_QOQOS:

Data samples are sent once and missed sam-
DDS_ReliabilityQosPolicyKind | kind ples are acceptable.

e DDS_RELIABLE_RELIABILITY_QOS:

Connext will make sure that data sent is
received and missed samples are resent.

6-122

DataWriter QosPolicies

Table 6.58

DDS_ReliabilityQosPolicy

Type Field Name Description

How long a DataWriter can block on a write()
when the send queue is full due to unacknowl-
edged messages. (Has no meaning for DataRead-
ers.)

DDS_Duration_t max_blocking_time

Kind of reliable acknowledgment.
Only applies when kind is RELIABLE.

Sets the kind of acknowledgments supported by a

DataWriter and sent by DataReader.

Possible values:

e DDS_PROTOCOL_
ACKNOWLEDGMENT_MODE

e DDS_APPLICATION_AUTO_
ACKNOWLEDGMENT_MODE

e DDS_APPLICATION_EXPLICIT_
ACKNOWLEDGMENT_MODE

See Application Acknowledgment Kinds
(Section 6.3.12.1)

DDS_ReliabilityQosPolicy- acknowledgment_
AcknowledgmentModeKind kind

The kind of RELIABILITY can be either:

(1 BEST_EFFORT Connext will send data samples only once to DataReaders. No effort or
resources are spent to track whether or not sent samples are received. Minimal resources
are used. This is the most deterministic method of sending data since there is no indeter-
ministic delay that can be introduced by buffering or resending data. Data samples may
be lost. This setting is good for periodic data.

(J RELIABLE Connext will send samples reliably to DataReaders-buffering sent data until
they have been acknowledged as being received by DataReaders and resending any sam-
ples that may have been lost during transport. Additional resources configured by the
HISTORY and RESOURCE_LIMITS QosPolicies may be used. Extra packets will be sent
on the network to query (heartbeat) and acknowledge the receipt of samples by the
DataReader. This setting is a good choice when guaranteed data delivery is required; for
example, sending events or commands.

To send large data reliably, you will also need to set the PUBLISH_MODE QosPolicy
(DDS Extension) (Section 6.5.18) kind to
DDS_ASYNCHRONOUS_PUBLISH_MODE_QOS. Large in this context means that the
data cannot be sent as a single packet by a transport (for example, data larger than 63K
when using UDP/IP).

While a DataWriter sends data reliably, the HISTORY QosPolicy (Section 6.5.10) and
RESOURCE_LIMITS QosPolicy (Section 6.5.20) determine how many samples can be stored
while waiting for acknowledgements from DataReaders. A sample that is sent reliably is entered
in the DataWriter’s send queue awaiting acknowledgement from DataReaders. How many sam-
ples that the DataWriter is allowed to store in the send queue for a data-instance depends on the

kind of the HISTORY QoS as well as the max_samples_per_instance and max_samples param-
eter of the RESOURCE_LIMITS QoS.

If the HISTORY kind is KEEP_LAST, then the DataWriter is allowed to have the HISTORY
depth number of samples per instance of the Topic in the send queue. Should the number of
unacknowledge samples in the send queue for a data-instance reach the HISTORY depth, then
the next sample written by the DataWriter for the instance will overwrite the oldest sample for
the instance in the queue. This implies that an unacknowledged sample may be overwritten and

6-123

DataWriter QosPolicies

6.5.19.1

6.5.19.2

Table 6.59

Table 6.60

thus lost. So even if the RELIABILITY kind is RELTABLE, if the HISTORY kind is KEEP_LAST,
it is possible that some data sent by the DataWriter will not be delivered to the DataReader. What
is guaranteed is that if the DataWriter stops writing, the last N samples that the DataWriter wrote
will be delivered reliably; where n is the value of the HISTORY depth.

However, if the HISTORY kind is KEEP_ALL, then when the send queue is filled with acknowl-
edged samples (either due to the number of unacknowledged samples for an instance reaching
the RESOURCE_LIMITS max_samples_per_instance value or the total number of unacknowl-
edged samples have reached the size of the send queue as specified by RESOURCE_LIMITS
max_samples), the next write() operation on the DataWriter will block until either a sample in
the queue has been fully acknowledged by DataReaders and thus can be overwritten or a timeout
of RELIABILITY max_blocking_period has been reached.

If there is still no space in the queue when max_blocking_time is reached, the write() call will
return a failure with the error code DDS_RETCODE_TIMEOUT.

Thus for strict reliability—a guarantee that all data samples sent by a DataWriter are received by
DataReaders—you must use a RELIABILITY kind of RELIABLE and a HISTORY kind of
KEEP_ALL for both the DataWriter and the DataReader.

Although you can set the RELIABILITY QosPolicy on Topics, its value can only be used to initial-
ize the RELIABILITY QosPolicies of either a DataWriter or DataReader. It does not directly affect
the operation of Connext, see Section 5.1.3.

Example

This QosPolicy is used to achieve reliable communications, which is discussed in Chapter 10:
Reliable Communications and Section 10.3.1.

Properties

This QosPolicy cannot be modified after the Entity has been enabled.

The DataWriter and DataReader must use compatible settings for this QosPolicy. To be compati-
ble, the DataWriter and DataReader must use one of the valid combinations for the Reliability
kind (see Table 6.59), and one of the valid combinations for the acknowledgment_kind (see
Table 6.60):

Valid Combinations of Reliability ‘kind’

DataReader requests:

BEST_EFFORT RELIABLE
BEST_EFFORT 4 incompatible
DataWriter offers:
RELIABLE v v

Valid Combinations of Reliability ‘acknowledgment_kind’

DataReader requests:
APPLICATION _ APPLICATION_
PROTOCOL AUTO EXPLICIT
PROTOCOL (%4 incompatible incompatible
Daf?fWﬂtef APPLICATION_AUTO v v v
offers:
APPLICATION_EXPLICIT v v v

6-124

DataWriter QosPolicies

6.5.19.3

6.5.19.4

6.5.19.5

6.5.20

If this QosPolicy is found to be incompatible, statuses ON_OFFERED_INCOMPATIBLE_QOS
and ON_REQUESTED_INCOMPATIBLE_QOS will be modified and the corresponding Listen-
ers called for the DataWriter and DataReader, respectively.

There are no compatibility issues regarding the value of max_blocking_wait, since it does not
apply to DataReaders.

Related QosPolicies

[HISTORY QosPolicy (Section 6.5.10)
(d PUBLISH_MODE QosPolicy (DDS Extension) (Section 6.5.18)
(d RESOURCE_LIMITS QosPolicy (Section 6.5.20)

Applicable Entities

[Topics (Section 5.1)
(1 DataWriters (Section 6.3)
[DataReaders (Section 7.3)

System Resource Considerations

Setting the kind to RELIABLE will cause Connext to use up more resources to monitor and
maintain a reliable connection between a DataWriter and all of its reliable DataReaders. This
includes the use of extra CPU and network bandwidth to send and process heartbeat, ACK/
NACK, and repair packets (see Chapter 10: Reliable Communications).

Setting max_blocking time to a non-zero number may block the sending thread when the
RELIABILITY kind is RELIABLE.

RESOURCE_LIMITS QosPolicy

For the reliability protocol (and the DURABILITY QosPolicy (Section 6.5.7)), this QosPolicy
determines the actual maximum queue size when the HISTORY QosPolicy (Section 6.5.10) is set
to KEEP_ALL.

In general, this QosPolicy is used to limit the amount of system memory that Connext can allo-
cate. For embedded real-time systems and safety-critical systems, pre-determination of maxi-
mum memory usage is often required. In addition, dynamic memory allocation could introduce
non-deterministic latencies in time-critical paths.

This QosPolicy can be set such that an entity does not dynamically allocate any more memory
after its initialization phase.

It includes the members in Table 6.61. For defaults and valid ranges, please refer to the API Ref-
erence HTML documentation.

One of the most important fields is max_samples, which sets the size and causes memory to be
allocated for the send or receive queues. For information on how this policy affects reliability,
see Tuning Queue Sizes and Other Resource Limits (Section 10.3.2).

When a DataWriter or DataReader is created, the initial_instances and initial_samples parame-
ters determine the amount of memory first allocated for the those Entities. As the application
executes, if more space is needed in the send/receive queues to store samples or as more
instances are created, then Connext will automatically allocate memory until the limits of
max_instances and max_samples are reached.

6-125

DataWriter QosPolicies

Table 6.61

6.5.20.1

DDS_ResourcelimitsQosPolicy

Type Field Name Description

Maximum number of live samples that Connext can store for a DataW-

DDS_Long | max_samples riter/DataReader. This is a physical limit.

Maximum number of instances that can be managed by a DataWriter/
DataReader.

For DataReaders, max_instances must be <= max_total_instances in the
DATA_READER_RESOURCE_LIMITS QosPolicy (DDS Extension)
(Section 7.6.2).

See also: Example (Section 6.5.20.3).

DDS_Long |max_instances

Maximum number of samples of any one instance that Connext will
store for a DataWriter/DataReader.

max_samples_ For keyed types and DataReaders, this value only applies to samples
per_instance with an instance state of DDS_ALIVE_INSTANCE_STATE.

If a keyed Topic is not used, then max_samples_per_instance must
equal max_samples.

DDS_Long

Initial number of samples that Connext will store for a DataWriter/

DDS_Long | initial_samples DataReader. (DDS extension)

Initial number of instances that can be managed by a DataWriter/

DDS_Long | initial_instances DataReader. (DDS extension)

instance_hash_ Number of hash buckets, which are used by Connext to facilitate

DDS_L
S_Long buckets instance lookup. (DDS extension).

You may set initial_instances = max_instances and initial_samples = max_samples if you do
not want Connext to dynamically allocate memory after initialization.

For keyed Topics, the max_samples_per_instance field in this policy represents maximum num-
ber of samples with the same key that are allowed to be stored by a DataWriter or DataReader.
This is a logical limit. The hard physical limit is determined by max_samples. However, because
the theoretical number of instances may be quite large (as set by max_instances), you may not
want Connext to allocate the total memory needed to hold the maximum number of samples per
instance for all possible instances (max_samples_per_instance * max_instances) because during
normal operations, the application will never have to hold that much data for the Entity.

So it is possible that an Entity will hit the physical limit max_samples before it hits the
max_samples_per_instance limit for a particular instance. However, Connext must be able to
store max_samples_per_instance for at least one instance. Therefore,
max_samples_per_instance must be <= max_samples.

Important: If a keyed data type is not used, then there is only a single instance of the Topic, so
max_samples_per_instance must equal max samples.

Once a physical or logical limit is hit, then how Connext deals with new data samples being sent
or received for a DataWriter or DataReader is described in the HISTORY QosPolicy (Section
6.5.10) setting of DDS_KEEP_ALL_HISTORY_QOS. It is closely tied to whether or not a reli-
able connection is being maintained.

Although you can set the RESOURCE_LIMITS QosPolicy on Topics, its value can only be used to
initialize the RESOURCE_LIMITS QosPolicies of either a DataWriter or DataReader. It does not
directly affect the operation of Connext, see Section 5.1.3.

Configuring Resource Limits for Asynchronous DataWriters

When using an asynchronous Publisher, if a call to write() is blocked due to a resource limit, the
block will last until the timeout period expires, which will prevent others from freeing the

6-126

DataWriter QosPolicies

6.5.20.2

6.5.20.3

resource. To avoid this situation, make sure that the DomainParticipant’s
outstanding_asynchronous_sample_allocation in the
DOMAIN_PARTICIPANT_RESOURCE_LIMITS QosPolicy (DDS Extension) (Section 8.5.4) is
always greater than the sum of all asynchronous DataWriters’ max_samples.

Configuring DataWriter Instance Replacement

When the max_instances limit is reached, a DataWriter will try to make space for a new instance
by replacing an existing instance according to the instance replacement kind set in
instance_replacement. For the sake of instance replacement, an instance is considered to be
unregistered, disposed, or alive. The oldest instance of the specified kind, if such an instance
exists, would be replaced with the new instance. Also, all samples of a replaced instance must
already have been acknowledged, such that removing the instance would not deprive any exist-
ing reader from receiving them.

Since an unregistered instance is one that a DataWriter will not update any further, unregistered
instances are replaced before any other instance kinds. This applies for all
instance_replacement kinds; for example, the ALIVE_THEN_DISPOSED kind would first
replace unregistered, then alive, and then disposed instances. The rest of the kinds specify one
or two kinds (e.g DISPOSED and ALIVE_OR_DISPOSED). For the single kind, if no unregis-
tered instances are replaceable, and no instances of the specified kind are replaceable, then the
instance replacement will fail. For the others specifying multiple kinds, it either specifies to look
for one kind first and then another kind (e.g. ALIVE_THEN_DISPOSED), meaning if the first
kind is found then that instance will be replaced, or it will replace either of the kinds specified
(e.g. ALIVE_OR_DISPOSED), whichever is older as determined by the time of instance register-
ing, writing, or disposing.

If an acknowledged instance of the specified kind is found, the DataWriter will reclaim its
resources for the mnew instance. It will also invoke the DataWriterListener’s
on_instance_replaced() callback (if installed) and notify the user with the handle of the replaced
instance, which can then be used to retrieve the instance key from within the callback. If no
replaceable instances are found, the new instance will fail to be registered; the DataWriter may
block, if the instance registration was done in the context of a write, or it may return with an out-
of-resources return code.

In addition, replace_empty_instances (in the DATA_WRITER_RESOURCE_LIMITS QosPolicy
(DDS Extension) (Section 6.5.4)) configures whether instances with no samples are eligible to be
replaced. If this is set, then a DataWriter will first try to replace empty instances, even before
replacing unregistered instances.

Example

If you want to be able to store max_samples_per_instance for every instance, then you should
set

max_samples >= max_instances * max_samples_per instance

But if you want to save memory and you do not expect that the running application will ever
reach the case where it will see max_instances of instances, then you may use a smaller value for
max_samples to save memory.

In any case, there is a lower limit for max_samples:
max_samples >= max_samples per instance

If the HISTORY QosPolicy (Section 6.5.10)’s kind is set to KEEP_LAST, then you should set:

max_samples per instance = HISTORY.depth

6-127

DataWriter QosPolicies

6.5.20.4

6.5.20.5

6.5.20.6

6.5.20.7

6.5.21

Properties
This QosPolicy cannot be modified after the Entity is enabled.

There are no requirements that the publishing and subscribing sides use compatible values.
Related QosPolicies

[HISTORY QosPolicy (Section 6.5.10)
[RELIABILITY QosPolicy (Section 6.5.19)

[For DataReaders, max_instances must be <= max_total_instances in the
DATA_READER_RESOURCE_LIMITS QosPolicy (DDS Extension) (Section 7.6.2)

Applicable Entities

1 Topics (Section 5.1)
[DataWriters (Section 6.3)
[DataReaders (Section 7.3)

System Resource Considerations

Larger initial_* numbers will increase the initial system memory usage. Larger max_* numbers
will increase the worst-case system memory usage.

Increasing instance_hash_buckets speeds up instance-lookup time but also increases memory
usage.

TRANSPORT_PRIORITY QosPolicy

The TRANSPORT_PRIORITY QosPolicy is optional and only partially supported on certain OSs
and transports by RTI. However, its intention is to allow you to specify on a per-DataWriter basis
that the data sent by a DataWriter is of a different priority.

DDS does not specify how a DDS implementation shall treat data of different priorities. It is
often difficult or impossible for DDS implementations to treat data of higher priority differently
than data of lower priority, especially when data is being sent (delivered to a physical transport)
directly by the thread that called DataWriter’s write() operation. Also, many physical network
transports themselves do not have an end-user controllable level of data packet priority.

In Connext, for the UDPv4 built-in transport, the value set in the TRANSPORT_PRIORITY
QosPolicy is used in a setsockopt call to set the TOS (type of service) bits of the IPv4 header for
datagrams sent by a DataWriter. It is platform dependent on how and whether or not the set-
sockopt has an effect. On some platforms such as Windows and Linux, external permissions
must be given to the user application in order to set the TOS bits.

It is incorrect to assume that using the TRANSPORT_PRIORITY QosPolicy will have any effect
at all on the end-to-end delivery of data from a DataWriter to a DataReader. All network elements
such as switches and routers must have the capability and be enabled to actually use the TOS
bits to treat higher-priority packets differently. Thus the ability to use the
TRANSPORT_PRIORITY QosPolicy must be designed and configured at a system level; just
turning it on in an application may have no effect at all.

It includes the member in Table 6.62. For the default and valid range, please refer to the API Ref-
erence HTML documentation.

6-128

DataWriter QosPolicies

Table 6.62 DDS_TransportPriorityQosPolicy

6.5.21.1

6.5.21.2

6.5.21.3

6.5.21.4

6.5.21.5

6.5.22

Type Field Name Description

DDS_Long value Hint as to how to set the priority.

Connext will propagate the value set on a per-DataWriter basis to the transport when the DataW-
riter publishes data. It is up to the implementation of the transport to do something with the
value, if anything.

Although you can set the TRANSPORT_PRIORITY QosPolicy on Topics, its value can only be
used to initialize the TRANSPORT_PRIORITY QosPolicies of a DataWriter. It does not directly
affect the operation of Connext, see Section 5.1.3.

Example

Should Connext be configured with a transport that can use and will honor the concept of a pri-
oritized message, then you would be able to create a DataWriter of a Topic whose data samples,
when published, will be sent at a higher priority than other DataWriters that use the same trans-
port.

Properties

This QosPolicy cannot be modified after the entity is created.

It does not apply to DataReaders, so there is no requirement that the publishing and subscribing
sides use compatible values.

Related QosPolicies

This QosPolicy does not interact with any other policies.
Applicable Entities

(J Topics (Section 5.1)
[DataWriters (Section 6.3)

System Resource Considerations

The use of this policy does not significantly impact the use of resources. However, if a transport
is implemented to use the value set by this policy, then there may be transport-specific issues
regarding the resources that the transport implementation itself uses.

TRANSPORT_SELECTION QosPolicy (DDS Extension)

The TRANSPORT_SELECTION QosPolicy allows you to select the transports that have been
installed with the DomainParticipant to be used by the DataWriter or DataReader.

An application may be simultaneously connected to many different physical transports, e.g.,
Ethernet, Infiniband, shared memory, VME backplane, and wireless. By default, the middleware
will use up to 4 transports to deliver data from a DataWriter to a DataReader.

This QosPolicy can be used to both limit and control which of the application’s available trans-
ports may be used by a DataWriter to send data or by a DataReader to receive data.

It includes the member in Table 6.63. For more information, please refer to the API Reference
HTML documentation.

Connext allows you to configure the transports that it uses to send and receive messages. A num-
ber of built-in transports, such as UDPv4 and shared memory, are available as well as custom

6-129

DataWriter QosPolicies

Table 6.63 DDS_TransportSelectionQosPolicy

6.5.22.1

6.5.22.2

6.5.22.3

6.5.22.4

6.5.22.5

6.5.23

Type Field Name Description

A sequence of aliases for the transports that may be used by the

DDS_StringSeq | enabled_transports DataWriter or DataReader.

ones that you may implement and install. Each transport will be installed in the DomainPartici-
pant with one or more aliases.

To enable a DataWriter or DataReader to use a particular transport, add the alias to the
enabled_transports sequence of this QosPolicy. An empty sequence is a special case, and indi-
cates that all transports installed in the DomainParticipant can be used by the DataWriter or
DataReader.

For more information on configuring and installing transports, please see the API Reference
HTML documentation (from the Modules page, select RTI Connext DDS API Reference, Plug-
gable Transports).

Example

Suppose a DomainParticipant has both UDPv4 and shared memory transports installed. If you
want a particular DataWriter to publish its data only over shared memory, then you should use
this QosPolicy to specify that restriction.

Properties

This QosPolicy cannot be modified after the Entity is created.

It can be set differently for the DataWriter and the DataReader.

Related QosPolicies

(d TRANSPORT_UNICAST QosPolicy (DDS Extension) (Section 6.5.23)
d TRANSPORT_MULTICAST QosPolicy (DDS Extension) (Section 7.6.5)
(d TRANSPORT_BUILTIN QosPolicy (DDS Extension) (Section 8.5.7)

Applicable Entities

[DataWriters (Section 6.3)
[DataReaders (Section 7.3)

System Resource Considerations

By restricting DataWriters from sending or DataReaders from receiving over certain transports,
you may decrease the load on those transports.

TRANSPORT_UNICAST QosPolicy (DDS Extension)

The TRANSPORT_UNICAST QosPolicy allows you to specify unicast network addresses to be
used by DomainParticipant, DataWriters and DataReaders for receiving messages.

Connext may send data to a variety of Entities, not just DataReaders. DomainParticipants receive
messages to support the discovery process discussed in Chapter 14. DataWriters may receive
ACK/NACK messages to support the reliable protocol discussed in Chapter 10: Reliable Com-
munications.

6-130

DataWriter QosPolicies

Table 6.64

Table 6.65

During discovery, each Entity announces to remote applications a list of (up to 4) unicast
addresses to which the remote application should send data (either user-data packets or reliable
protocol meta-data such as ACK/NACK and Heartbeats).

By default, the list of addresses is populated automatically with values obtained from the
enabled transport plugins allowed to be used by the Entity (see the TRANSPORT_BUILTIN
QosPolicy (DDS Extension) (Section 8.5.7) and TRANSPORT_SELECTION QosPolicy (DDS
Extension) (Section 6.5.22)). Also, the associated ports are automatically determined (see
Inbound Ports for User Traffic (Section 14.5.2)).

Use TRANSPORT_UNICAST QosPolicy to manually set the receive address list for an Entity.
You may optionally set a port to use a non-default receive port as well. Only the first 4 addresses
will be used. Connext will create a receive thread for every unique port number that it encoun-
ters (on a per transport basis).

The QosPolicy structure includes the members in Table 6.64. For more information and default
values, please refer to the API Reference HTML documentation.

DDS_TransportUnicastQosPolicy
Type Field Name Description
DDs_TransportUmcast A sequence of up to 4 unicast settings that should be used by
SettingsSeq value o . .
remote entities to address messages to be sent to this Entity.
(see Table 6.65)

DDS_TransportUnicastSettings_t

Type Field Name Description

A sequence of transport aliases that specifies which transports

DDS_StringSeq transports should be used to receive unicast messages for this Entity.
The port that should be used in the addressing of unicast mes-
DDS_Long receive_port sages destined for this Entity. A value of 0 will cause Connext to

use a default port number based on domain and participant ids.
See Ports Used for Discovery (Section 14.5).

A message sent to a unicast address will be received by a single node on the network (as
opposed to a multicast address where a single message may be received by multiple nodes).
This policy sets the unicast addresses and ports that remote entities should use when sending
messages to the Entity on which the TRANSPORT_UNICAST QosPolicy is set.

Up to four “return” unicast addresses may be configured for an Entity. Instead of specifying
addresses directly, you use the transports field of the DDS_TransportUnicastSetting_t to select
the transports (using their aliases) on which remote entities should send messages destined for
this Entity. The addresses of the selected transports will be the “return” addresses. See the API
Reference HTML documentation about configuring transports and aliases (from the Modules
page, select RTI Connext DDS API Reference, Pluggable Transports).

Note, a single transport may have more than one unicast address. For example, if a node has
multiple network interface cards (NICs), then the UDPv4 transport will have an address for
each NIC. When using the TRANSPORT_UNICAST QosPolicy to set the return addresses, a sin-
gle value for the DDS_TransportUnicastSettingsSeq may provide more than the four return
addresses that Connext currently uses.

Whether or not you are able to configure the network interfaces that are allowed to be used by a
transport is up to the implementation of the transport. For the built-in UDPv4 transport, you
may restrict an instance of the transport to use a subset of the available network interfaces. See
the API Reference HTML documentation for the built-in UDPv4 transport for more information.

6-131

DataWriter QosPolicies

6.5.23.1

6.5.23.2

6.5.23.3

For a DomainParticipant, this QoS policy sets the default list of addresses used by other applica-
tions to send user data for local DataReaders.

For a reliable DataWriter, if set, the other applications will use the specified list of addresses to
send reliable protocol packets (ACKS/NACKS) on the behalf of reliable DataReaders. Otherwise,
if not set, the other applications will use the addresses set by the DomainParticipant.

For a DataReader, if set, then other applications will use the specified list of addresses to send
user data (and reliable protocol packets for reliable DataReaders). Otherwise, if not set, the other
applications will use the addresses set by the DomainParticipant.

For a DataReader, if the port number specified by this QoS is the same as a port number specified
by a TRANSPORT_MULTICAST QoS, then the transport may choose to process data received
both via multicast and unicast with a single thread. Whether or not a transport must use differ-
ent threads to process data received via multicast or unicast for the same port number depends
on the implementation of the transport.

To use this QosPolicy, you also need to specify a port number. A port number of 0 will cause
Connext to automatically use a default value. As explained in Ports Used for Discovery (Section
14.5), the default port number for unicast addresses is based on the domain and participant IDs.
Should you choose to use a different port number, then for every unique port number used by
Entities in your application, depending on the transport, Connext may create a thread to process
messages received for that port on that transport. See Chapter 19: Connext Threading Model for
more about threads.

Threads are created on a per-transport basis, so if this QosPolicy specifies multiple transports
for a receive_port, then a thread may be created for each transport for that unique port. Some
transports may be able to share a single thread for different ports, others can not. Different Enti-
ties can share the same port number, and thus, the same thread will process all of the data for all
of the Entities sharing the same port number for a transport.

Note: If a DataWriter is using the MULTI_CHANNEL QosPolicy (DDS Extension) (Section
6.5.14), the unicast addresses specified in the TRANSPORT_UNICAST QosPolicy are ignored by
that DataWriter. The DataWriter will not publish samples on those locators.

Example

You may use this QosPolicy to restrict an Entity from receiving data through a particular trans-
port. For example, on a multi-NIC (network interface card) system, you may install different
transports for different NICs. Then you can balance the network load between network cards by
using different values for the TRANSPORT_UNICAST QosPolicy for different DataReaders.
Thus some DataReaders will receive their data from one NIC and other DataReaders will receive
their data from another.

Properties
This QosPolicy cannot be modified after the Entity is created.
It can be set differently for the DomainParticipant, the DataWriter and the DataReader.

Related QosPolicies

(d MULTI_CHANNEL QosPolicy (DDS Extension) (Section 6.5.14)

(d TRANSPORT_SELECTION QosPolicy (DDS Extension) (Section 6.5.22)
(d TRANSPORT_MULTICAST QosPolicy (DDS Extension) (Section 7.6.5)
(d TRANSPORT_BUILTIN QosPolicy (DDS Extension) (Section 8.5.7)

6-132

DataWriter QosPolicies

6.5.23.4

6.5.23.5

6.5.24

Table 6.66

Applicable Entities

(d DomainParticipants (Section 8.3)
[DataWriters (Section 6.3)
[DataReaders (Section 7.3)

System Resource Considerations

Because this QosPolicy changes the transports on which messages are received for different
Entities, the bandwidth used on the different transports may be affected.

Depending on the implementation of a transport, Connext may need to create threads to receive
and process data on a unique-port-number basis. Some transports can share the same thread to
process data received for different ports; others like UDPv4 must have different threads for
different ports. In addition, if the same port is used for both unicast and multicast, the transport
implementation will determine whether or not the same thread can be used to process both
unicast and multicast data. For UDPv4, only one thread is needed per port-independent of
whether the data was received via unicast or multicast data. See Receive Threads (Section 19.3)
for more information.

TYPESUPPORT QosPolicy (DDS Extension)

This policy can be used to modify the rtiddsgen-generated code so that the de/serialization rou-
tines act differently depending on the information passed in via the object pointer. This policy
also determines if padding bytes are set to zero during serialization.

It includes the members in Table 6.66.

DDS_TypeSupportQosPolicy

Type | Field Name Description

Value to pass into the type plug-in's serialization/deserialization function.

1w .
void plugin_data See Note.

Determines whether or not the padding bytes will be set to zero during CDR
serialization.

For a DomainParticipant: Configures how padding bytes are set when serializ-
ing data for the builtin topic DataWriters and DataReaders.

For DataWriters and DataReaders: Configures how padding bytes are set when
serializing data for that entity.

113311215;1_1;?;? cdr_padding | May be:
Kind kind ¢ ZERO_CDR_PADDING (Padding bytes will be set to zero during CDR

serialization)

* NOT_SET_CDR_PADDING (Padding bytes will not be set to any value
during CDR serialization)

¢ AUTO_CDR_PADDING (For a DomainParticipant, the default behavior is
NOT_SET_CDR_PADDING. For a DataWriter or DataReader, the behavior
is to inherit the value from the DomainParticipant.)

Note RTI generally recommends that you treat generated source files as compiler outputs
(analogous to object files) and that you do not modify them. RTI cannot support user changes to
generated source files. Furthermore, such changes would make upgrading to newer versions of
Connext more difficult, as this generated code is considered to be a part of the middleware
implementation and consequently does change from version to version. The plugin_data field

6-133

DataWriter QosPolicies

6.5.24.1

6.5.24.2

6.5.24.3

6.5.24.4

6.5.25

in this QoS policy should be considered a back door, only to be used after careful design
consideration, testing, and consultation with your RTI representative.

Properties
This QoS policy may be modified after the DataWriter or DataReader is enabled.
It can be set differently for the DataWriter and DataReader.

Related QoS Policies

None.
Applicable Entities

[DataWriters (Section 6.3)
[DataReaders (Section 7.3)
[DomainParticipants (Section 8.3)

System Resource Considerations

None.

USER_DATA QosPolicy

This QosPolicy provides an area where your application can store additional information related
to a DomainParticipant, DataWriter, or DataReader. This information is passed between applica-
tions during discovery (see Chapter 14: Discovery) using built-in-topics (see Chapter 16: Built-In
Topics). How this information is used will be up to user code. Connext does not do anything
with the information stored as USER_DATA except to pass it to other applications.

Use cases are usually for application-to-application identification, authentication, authorization,
and encryption purposes. For example, applications can use Group or User Data to send secu-
rity certificates to each other for RSA-type security.

The value of the USER_DATA QosPolicy is sent to remote applications when they are first dis-
covered, as well as when the DomainParticipant, DataWriter or DataReader’s set_qos() methods
are called after changing the value of the USER_DATA. User code can set listeners on the built-in
DataReaders of the built-in Topics used by Connext to propagate discovery information. Methods
in the built-in topic listeners will be called whenever new DomainParticipants, DataReaders, and
DataWriters are found. Within the user callback, you will have access to the USER_DATA that
was set for the associated Entity.

Currently, USER_DATA of the associated Entity is only propagated with the information that
declares a DomainParticipant, DataWriter or DataReader. Thus, you will need to access the value of
USER_DATA through DDS_ParticipantBuiltinTopicData, DDS_PublicationBuiltinTopicData
or DDS_SubscriptionBuiltinTopicData (see Chapter 16: Built-In Topics).

The structure for the USER_DATA QosPolicy includes just one field, as seen in Table 6.67. The
field is a sequence of octets that translates to a contiguous buffer of bytes whose contents and

length is set by the wuser. The maximum size for the data are set in the
DOMAIN_PARTICIPANT_RESOURCE_LIMITS QosPolicy (DDS Extension) (Section 8.5.4).

Table 6.67 DDS_UserDataQosPolicy

Type Field Name Description

DDS_OctetSeq value Default: empty

6-134

DataWriter QosPolicies

6.5.25.1

6.5.25.2

6.5.25.3

6.5.25.4

6.5.25.5

This policy is similar to the GROUP_DATA QosPolicy (Section 6.4.4) and TOPIC_DATA QosPol-
icy (Section 5.2.1) that apply to other types of Entities.

Example

One possible use of USER_DATA is to pass some credential or certificate that your subscriber
application can use to accept or reject communication with the DataWriters (or vice versa, where
the publisher application can validate the permission of DataReaders to receive its data). Using
the same method, an application (DomainParticipant) can accept or reject all connections from
another application. The value of the USER_DATA of the DomainParticipant is propagated in the
‘user_data’ field of the DDS_ParticipantBuiltinTopicData that is sent with the declaration of
each DomainParticipant. Similarly, the value of the USER_DATA of the DataWriter is propagated
in the ‘user_data’ field of the DDS_PublicationBuiltinTopicData that is sent with the declara-
tion of each DataWriter, and the value of the USER_DATA of the DataReader is propagated in the
‘user_data’ field of the DDS_SubscriptionBuiltinTopicData that is sent with the declaration of
each DataReader.

When Connext discovers a DomainParticipant / DataWriter/DataReader, the application can be noti-
fied of the discovery of the new entity and retrieve information about the Entity’s QoS by read-
ing the DCPSParticipant, DCPSPublication or DCPSSubscription built-in topics (see
Chapter 16: Built-In Topics). The user application can then examine the USER_DATA field in the
built-in Topic and decide whether or not the remote Entity should be allowed to communicate
with the local Entity. If communication is not allowed, the application can use the DomainPartici-
pant’s ignore_participant(), ignore_publication() or ignore_subscription() operation to reject
the newly discovered remote entity as one with which the application allows Connext to commu-
nicate. See Figure 16.2 for an example of how to do this.

Properties

This QosPolicy can be modified at any time. A change in the QosPolicy will cause Connext to
send packets containing the new USER_DATA to all of the other applications in the domain.

It can be set differently on the publishing and subscribing sides.
Related QosPolicies

(d TOPIC_DATA QosPolicy (Section 5.2.1)
(d GROUP_DATA QosPolicy (Section 6.4.4)

(d DOMAIN_PARTICIPANT_RESOURCE_LIMITS QosPolicy (DDS Extension) (Section
8.5.4)

Applicable Entities

[DataWriters (Section 6.3)
[DataReaders (Section 7.3)
(d DomainParticipants (Section 8.3)

System Resource Considerations

As mentioned earlier, the maximum size of the USER_DATA is set in the
participant_user_data_max_length, writer_user_data_max_length, and
reader_user_data_max_length fields of the DOMAIN_PARTICIPANT_RESOURCE_LIMITS
QosPolicy (DDS Extension) (Section 8.5.4). Because Connext will allocated memory based on this
value, you should only increase this value if you need to. If your system does not use
USER_DATA, then you can set this value to 0 to save memory. Setting the value of the

6-135

DataWriter QosPolicies

6.5.26

Table 6.68

USER_DATA QosPolicy to hold data longer than the value set in the [partici-
pant,writer,reader]_user_data_max_length field will result in failure and an
INCONSISTENT_QOS_POLICY return code.

However, should you decide to change the maximum size of USER_DATA, you must make cer-
tain that all applications in the domain have changed the value of [partici-
pant,writer,reader]_user_data_max_length to be the same. If two applications have different
limits on the size of USER_DATA, and one application sets the USER_DATA QosPolicy to hold
data that is greater than the maximum size set by another application, then the DataWriters and
DataReaders between the two applications will not connect. The DomainParticipants may also
reject connections from each other entirely. This is also true for the GROUP_DATA
(Section 6.4.4) and TOPIC_DATA (Section 5.2.1) QosPolicies.

WRITER_DATA_LIFECYCLE QoS Policy

This QoS policy controls how a DataWriter handles the lifecycle of the instances (keys) that the
DataWriter is registered to manage. This QoS policy includes the members in Table 6.68.

DDS_WriterDatalifecycleQosPolicy

Type Field Name Description

RTI_TRUE (default): Instance is disposed when unregis-

autodispose_unregistered_ tered.

DDS_Boolean .
instances

RTI_FALSE: Instance is not disposed when unregistered.

Determines how long the DataWriter will maintain infor-
mation regarding an instance that has been unregistered.

By default, the DataWriter resources associated with an
instance (e.g., the space needed to remember the Instance
Key or KeyHash) are released lazily. This means the
resources are only reclaimed when the space is needed for
another instance because max_instances (see
Section 6.5.20) is exceeded. This behavior can be changed
by setting autopurge_unregistered_instance_delay to a

value other than INFINITE.
After this time elapses, the DataWriter will purge all inter-

nal information regarding the instance, including histori-
cal samples even if max_instances has not been reached.

struct autopurge_unregistered_
DDS_Duration_t |instance_delay

You may use the DataWriter’s unregister() operation (Section 6.3.14.1) to indicate that the
DataWriter no longer wants to send data for a Topic. This QoS controls whether or not Connext
automatically also calls dispose() (Section 6.3.14.2) on the behalf of the DataWriter for the data.

Unregistering vs. Disposing:

[When an instance is unregistered, it means this particular DataWriter has no more infor-
mation/data on this instance.

[When an instance is disposed, it means the instance is "dead"—there will no more infor-
mation/data from any DataWriter on this instance.

The behavior controlled by this QoS applies on a per instance (key) basis for keyed Topics, so

when a DataWriter unregisters an instance, Connext also automatically disposes that instance.
This is the default behavior since autodispose_unregistered_instances defaults to TRUE.

Use Cases for Unregistering without Disposing:

There are situations in which you may want to set autodispose_unregistered_instances to
FALSE, so that unregistering will not automatically dispose the instance. For example:

6-136

DataWriter QosPolicies

6.5.26.1

6.5.26.2

6.5.26.3

6.5.26.4

(J In many cases where the ownership of a Topic is EXCLUSIVE (see the OWNERSHIP
QosPolicy (Section 6.5.15)), DataWriters may want to relinquish ownership of a particular
instance of the Topic to allow other DataWriters to send updates for the value of that
instance. In this case, you may want a DataWriter to just unregister an instance—without
disposing it (since there are other writers). Disposing an instance implies that the DataW-
riter no longer owns that instance, but it is a stronger statement to say that instance no
longer exists.

[User applications may be coded to trigger on the disposal of instances, thus the ability to
unregister without disposing may be useful to properly maintain the semantic of dis-
posal.

When you delete a DataWriter (Section 6.3.1), all of the instances managed by the DataWriter are
automatically unregistered. Therefore, this QoS policy determines whether or not all of the
instances are disposed when the DataWriter is deleted when you call one of these operations:

[Publisher’s delete_datawriter() (see Section 6.3.1)
[Publisher’s delete_contained_entities() (see Section 6.2.3.1)
(A DomainParticipant’s delete_contained_entities() (see Section 8.3.3)

When autodispose_unregistered_instances is TRUE, the middleware will clean up all the
resources associated with an unregistered instance (most notably, the sample history of non-vol-
atile DataWriters) when all the instance’s samples have been acknowledged by all its live
DataReaders, including the sample that indicates the wunregistration. By default,
autopurge_unregistered_instances_delay is disabled (the delay is INFINITE). If the delay is set
to zero, the DataWriter will clean up as soon as all the samples are acknowledged after the call to
unregister(). A non-zero value for the delay can be useful in two ways:

1. To keep the historical samples for late-joiners for a period of time.

2. In the context of discovery, if the applications temporarily lose the connection before the
unregistration (which represents the remote entity destruction), to provide the samples
that indicate the dispose and unregister actions once the connection is reestablished.

This delay can also be set for discovery data through these fields in the DISCOVERY_CONFIG
QosPolicy (DDS Extension) (Section 8.5.3):

(| publication_writer_data_lifecycle.autopurge_unregistered_instances_delay

(| subscription_writer_data_lifecycle.autopurge_unregistered_instances_delay

Propetrties

It does not apply to DataReaders, so there is no requirement that the publishing and subscribing
sides use compatible values.

This QoS policy may be modified after the DataWriter is enabled.

Related QoS Policies

None.
Applicable Entities
[DataWriters (Section 6.3)

System Resource Considerations

None.

6-137

FlowControllers (DDS Extension)

6.6

FlowControllers (DDS Extension)

Note: This section does not apply when using the separate add-on product, Ada 2005 Language
Support, which does not support FlowControllers.

A FlowController is the object responsible for shaping the network traffic by determining when
attached asynchronous DataWriters are allowed to write data.

You can use one of the built-in FlowControllers (and optionally modify their properties), create a
custom FlowController by using the DomainParticipant’s create_flowcontroller() operation (see
Section 6.6.6), or create a custom FlowController by using the DomainParticipant’s PROPERTY
QosPolicy (DDS Extension) (Section 6.5.17); see Creating and Configuring Custom FlowCon-
trollers with Property QoS (Section 6.6.5).

To use a FlowController, you provide its name in the DataWriter’s PUBLISH_MODE QosPolicy
(DDS Extension) (Section 6.5.18).

(d DDS_DEFAULT_FLOW_CONTROLLER_NAME

By default, flow control is disabled. That is, the built-in
DDS_DEFAULT_FLOW_CONTROLLER_NAME flow controller does not apply any
flow control. Instead, it allows data to be sent asynchronously as soon as it is written by
the DataWriter.

(1 DDS_FIXED_RATE_FLOW_CONTROLLER_NAME

The FIXED_RATE flow controller shapes the network traffic by allowing data to be sent
only once every second. Any accumulated samples destined for the same destination are
coalesced into as few network packets as possible.

(d DDS_ON_DEMAND_FLOW_CONTROLLER_NAME

The ON_DEMAND flow controller allows data to be sent only when you call the Flow-
Controller’s trigger_flow() operation. With each trigger, all accumulated data since the
previous trigger is sent (across all Publishers or DataWriters). In other words, the network
traffic shape is fully controlled by the user. Any accumulated samples destined for the
same destination are coalesced into as few network packets as possible.

This external trigger source is ideal for users who want to implement some form of
closed-loop flow control or who want to only put data on the wire every so many sam-
ples (e.g., with the number of samples based on NDDS_Transport_Property_t’'s
gather_send_buffer_count_max).

The default property settings for the built-in FlowControllers are described in the API Reference
HTML documentation.

Samples written by an asynchronous DataWriter are not sent in the context of the write() call.
Instead, Connext puts the samples in a queue for future processing. The FlowController associ-
ated with each asynchronous DataWriter determines when the samples are actually sent.

Each FlowController maintains a separate FIFO queue for each unique destination (remote
application). Samples written by asynchronous DataWriters associated with the FlowController
are placed in the queues that correspond to the intended destinations of the sample.

When tokens become available, a FlowController must decide which queue(s) to grant tokens
first. This is determined by the FlowController's scheduling_policy property (see Table 6.69).
Once a queue has been granted tokens, it is serviced by the asynchronous publishing thread.
The queued up samples will be coalesced and sent to the corresponding destination. The num-
ber of samples sent depends on the data size and the number of tokens granted.

Table 6.69 lists the properties for a FlowController.

6-138

FlowControllers (DDS Extension)

Table 6.69

Table 6.70

6.6.1

DDS_FlowControllerProperty_t

Type Field Name Description

DDS_FlowControllerSchedulingPolicy

scheduling_ Round robin, earliest deadline first, or
policy highest priority first. See Section 6.6.1.

DDS_FlowControllerTokenBucketProperty_t | token_bucket See Section 6.6.3.

Table 6.70 lists the operations available for a FlowController.

FlowController Operations
Operation Description Reference
get_property . .
Get and Set the FlowController properties. Section 6.6.8
set_property
trigger_flow Provides an external trigger to the FlowController. Section 6.6.9

get_name

Returns the name of the FlowController.

get_participant

Returns the DomainParticipant to which the FlowController belongs.

Section 6.6.10

Flow Controller Scheduling Policies

(1 Round Robin (DDS_RR_FLOW_CONTROLLER_SCHED_POLICY) Perform flow con-

trol in a round-robin (RR) fashion.

Whenever tokens become available, the FlowController distributes the tokens uniformly
across all of its (non-empty) destination queues. No destinations are prioritized. Instead,
all destinations are treated equally and are serviced in a round-robin fashion.

Earliest Deadline First (DDS_EDF_FLOW_CONTROLLER_SCHED_POLICY) Perform
flow control in an earliest-deadline-first (EDF) fashion.

A sample's deadline is determined by the time it was written plus the latency budget of
the DataWriter at the time of the write call (as specified in the
DDS_LatencyBudgetQosPolicy). The relative priority of a flow controller's destination
queue is determined by the earliest deadline across all samples it contains.

When tokens become available, the FlowController distributes tokens to the destination
queues in order of their priority. In other words, the queue containing the sample with
the earliest deadline is serviced first. The number of tokens granted equals the number of
tokens required to send the first sample in the queue. Note that the priority of a queue
may change as samples are sent (i.e., removed from the queue). If a sample must be sent
to multiple destinations or two samples have an equal deadline value, the corresponding
destination queues are serviced in a round-robin fashion.

With the default duration of 0 in the LatencyBudgetQosPolicy, using an
EDF_FLOW_CONTROLLER_SCHED_POLICY FlowController preserves the order in
which you call write() across the DataWriters asso