DDS/SIP Interworking: A DDS-SIP Gateway

Jose M. Lopez-Vega Javier Povedano-Molina Juan M. Lopez-Soler

{jmlvega, jpovedano, juanma} @ugr.es

Motivation

• Integrating DDS with the IMS (Internet Mobile Subsystem)

Outline

1. The Challenge

Use cases

2. Basic Concepts

- SIP (Session Initiation Protocol)
- The IMS (IP Multimedia Subsystem)
- The RCS (Rich Communication Suite)
- DDS over the WAN and the IMS
- 3. Proposed Design
 - Advantages of using SIP
 - Proposed Architecture
- 4. Conclusions

1. The Cl	hallenge	2. Basic Concepts	3. Proposed Design	4. Conclusions	4
	Th	e Cha	llenge		
TSTC	Jose M.	Lopez-Vega et a	al DDS/SIP	Interworking: A DDS-SIP Gateway	() ugr

The Challenge

• The integration of IMS and DDS will open up a number of new possibilities

6

The Challenge - Use cases

• Medicine

- The vital signs of a patient can be published through DDS Topics
- When one of the readings is not normal, the nurse is notified through its currently active SIP device

The Challenge - Use cases

• Financial market

- Share prizes can be published through DDS Topics
- When a given share prize reaches certain value, the user is notified through its currently active SIP device

The Challenge - Use cases

- Connecting two remote DDS Domains
 - Two remote offices can establish a channel through the WAN or the IMS
 - This channel will be used for sharing its DDS domains

Outline

- 1. The Challenge
 - Use cases

2. Basic Concepts

- SIP (Session Initiation Protocol)
- The IMS (IP Multimedia Subsystem)
- The RCS (Rich Communication Suite)
- DDS over the WAN and the IMS
- 3. Proposed Design
 - Advantages of using SIP
 - Proposed Architecture
- 4. Conclusions

1. The Ch	allenge 2. Basic Concept	s 3. Proposed Design	4. Conclusions	12
	Basic Co	Dicepts		
TSTC	Jose M. Lopez-Vega e	t al DDS/SIP	Interworking: A DDS-SIP Gateway	y 🦉 ugr

A GLOBAL INITIATIVE

SIP (Session Initiation Protocol)

- SIP is a standard of the IETF, defined in the RFC3261 and several extensions
- SIP is becoming the *de-facto* standard for VoIP deployments in fixed and wireless networks.
- The mission of SIP protocol is to establish, maintain, change and terminate multimedia sessions among remote peers.

- SIP is an endpoint-to-endpoint signaling protocol
- SIP is a text-based, application protocol
- SIP syntax is similar to HTTP/1.1
- SIP can use MIME within the body message

INVITE sip:bob@biloxi.com SIP/2.0 Via: SIP/2.0/UDP pc33.atlanta.com;branch=z9hG4bK776asdhds Max-Forwards: 70 To: Bob <u>sip:bob@biloxi.com</u> From: Alice <sip:alice@atlanta.com>;tag=1928301774 Call-ID: <u>a84b4c76e66710@pc33.atlanta.com</u> CSeq: 314159 INVITE Contact: <u>sip:alice@pc33.atlanta.com</u> Content-Type: application/sdp Content-Length: 142

- SIP basic methods
 - **REGISTER**: Used by a UA to notify its current IP address and URLs.
 - **INVITE**: Used to establish a media session among user agents.
 - ACK: Confirms reliable message exchanges.
 - **CANCEL**: Terminates a pending request.
 - **BYE:** Terminates a session.
 - **OPTIONS**: Requests information about the capabilities of a caller.

- SIP constitutes the main element of the signaling plane in the IMS
 - SIP performs the session control of the IMS
- SIP eases the addition of new services to the IMS.

The IMS (IP Multimedia Subsystem)

- Third Generation (3G) networks are merging two of the most successful paradigms in communications
 - Cellular networks
 - Internet
- The IMS is the key element in 3G
 - It provides ubiquitous access to all the services that the Internet offers

18

The IMS (IP Multimedia Subsystem)

- All the power of Internet is already available for 3G users, right?
- Why do we need IMS?
 - QoS
 - User and application mobility
 - Integration of rich communication services

The IMS (IP Multimedia Subsystem)

20

- Is the IMS been used somewhere?
- Yes, in the RCS (Rich Communication Suite)
- But... what is the RCS?

The RCS (Rich Communication Suite)

- The RCS Project is a collaborative effort to speed up and facilitate the introduction of IMS
- Defines a common vision on delivering convergent, rich communication services.
- RCS fits the lifestyle communication needs of the 'always-on' users
 - RCS is the starting point for user social interaction
 - It will make multimedia social networking simpler

21

RCS - The facts

TSTC

- Currently supported by over 80 leading companies including 28 of the world's top operators
 - This represents approximately 1.8 billion global connections.

RCS - The facts

TSTC

• RCS has the support of more than 50 leading vendors of handsets, infrastructure and applications

RCS - The facts

- On September 7th, 2009 a technical specification for value-added IMS network services was successfully tested
- This framework eases the integration of new services to the IMS

DDS over the WAN and the IMS

- DDS Routing Service
 - Spatially decouples DDS entities over the WAN
 - Does not resolve the problem of NAT/firewall traversal
- DDS WAN Service
 - Allows NAT traversal using STUN
- DDS-WS
 - A Web services DDS gateway has been proposed
 - Web services rely on HTTP

25

Outline

- 1. The Challenge
 - Use cases
- 2. Basic Concepts
 - SIP (Session Initiation Protocol)
 - The IMS (IP Multimedia Subsystem)
 - The RCS (Rich Communication Suite)
 - DDS over the WAN and the IMS

3. Proposed Design

- Advantages of using SIP
- Proposed Architecture
- 4. Conclusions

1. The Challenge 2. Basic Concepts 3. Proposed Design 4. Conclusions	27
Proposed Design	
Jose M. Lopez-Vega et al DDS/SIP Interworking: A DDS-SIP G	ateway 💓 ugr

Proposed Design

- We define the concept of DDS session
 - A DDS session is a logic channel that connects two remote DDS Domains
 - The DDS session is established using SIP signaling
 - SIP can negotiate (using SDP) the parameters of the session
 - QoS policies
 - Topics to be shared
 - Maximum sample rate

Proposed Design

- The proposed DDS-SIP gateway will have three objectives
 - To provide interoperability with SIP devices
 - Sending SMS with a summary of certain Topic values, or the Topic history
 - SIP devices will be able to update DDS Topics
 - The delivery of discovery information using SIP
 - The management of DDS sessions between two remote DDS Domains

Benefits of using SIP

- SIP is a standardized solution
 - There are a lot of compatible devices and software
 - SIP is the base of the Rich Communication Suite
 - The DDS-SIP gateway will allow DDS domains to be easily integrated in IMS
- SIP is scalable and easy to implement
- SIP resolves mobility and supports users with multiple devices

Sequence Diagrams

- The following slides contain sequence diagrams for main use cases of the SIP/DDS gateway
 - Registering the Gateway
 - DDS Session Management
 - Starting a DDS Session
 - Subscription for Remote Discovery
 - DDS and SIP Devices Interoperability
 - Sending Message
 - Topic Updating

Registering the DDS-SIP Gateway

TSTC

- A REGISTER SIP message is sent
- SIP/IP Core may request the GW to authenticate itself
- The DDS/SIP GW shall resend the SIP REGISTER request with authentication credentials.

Sequence Diagrams

- The following slides contain sequence diagrams for main use cases of the SIP/DDS gateway
 - Registering the Gateway
 - DDS Session Management
 - Starting a DDS Session
 - Subscription for Remote Discovery
 - DDS and SIP Devices Interoperability
 - Sending Message
 - Topic Updating

TSTC

Sequence Diagrams

- The following slides contain sequence diagrams for main use cases of the SIP/DDS gateway
 - Registering the Gateway
 - DDS Session Management
 - Starting a DDS Session
 - Subscription for Remote Discovery
 - DDS and SIP Devices Interoperability
 - Sending Message
 - Topic Updating

 $\Delta 0$

Sharing DDS Topics with SIP devices

TSTC

- This use case allows the DDS SIP gateway to share DDS Topics updates with any compatible SIP device.
- A message is sent after a condition is met
- This message can contain a summary of certain Topic values, or the Topic history

TSTC

1. The Ch	allenge	2. Basic Concepts	3. Proposed Design	4. Conclusions	43
	\mathbb{C}	malus	ions		
	CC				
TETE	Jose	M. Lopez-Vega e	et al DDS/S	IP Interworking: A DDS-SIP Gateway	ingr

Conclusions

- The future of mobile communications lies in the IMS (Internet Mobile Subsystem)
- SIP (Session Initiation Protocol) is the chosen protocol for the signaling plane of the IMS
- We have proposed a DDS/SIP gateway as a first step for DDS and IMS integration
- The proposed gateway will be able to establish and maintain the communication of two remote Domain
- Our proposal will enable SIP devices/DDS domain interoperability

Acknowledgment

TSTC

This work has been partially supported by the Ministerio de Ciencia e Innovacion of the Spanish Government under the project TIN2009-13992-C02-02, and the Plan Propio of the University of Granada, Spain.

45

Jose M. Lopez-Vega et al. - DDS/SIP Interworking: A DDS-SIP Gateway

TSTC

