RTI Connext Java API
Version 4.5f

Generated by Doxygen 1.5.5

Sat Mar 17 21:18:59 2012

Contents

1 RTI Connext

1.1
1.2

Feedback and Support for this Release.

Available Documentation.

2 Module Index

21

Modules

3 Namespace Index

3.1

Package List

4 Class Index

4.1

Class Hierarchy

5 Class Index

5.1

Class List

6 Module Documentation

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8

13
13

21
21

ii CONTENTS
6.9 DATA_WRITER_RESOURCE_LIMITS 49
6.10 DEADLINE 50
6.11 DESTINATION_.ORDER 51
6.12 DISCOVERY_CONFIG 52
6.13 DISCOVERY o 54
6.14 NDDS_DISCOVERY_PEERS 55
6.15 DOMAIN_PARTICIPANT RESOURCE_LIMITS 63
6.16 DURABILITY o 65
6.17 DURABILITY_SERVICE 66
6.18 Time Support 67
6.19 Entity Supporto 68
6.20 ENTITY_ FACTORY 69
6.21 ENTITY NAME o .. 70
6.22 EVENT 71
6.23 EXCLUSIVE_AREA 72
6.24 GROUP.DATA 73
6.25 GUID Support 74
6.26 HISTORY o 75
6.27 LATENCY_BUDGET 76
6.28 LIFESPAN 77
6.29 LIVELINESS 78
6.30 LOCATORFILTER 79
6.31 LOGGING e 80
6.32 MULTICHANNEL o 81
6.33 Object Support 82
6.31 OWNERSHIP 83
6.35 OWNERSHIP_.STRENGTH 84
6.36 PARTITION e 85
6.37 PRESENTATION 86
6.38 PROFILE 87
6.39 PROPERTY 88

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

CONTENTS iii

6.40
6.41
6.42
6.43
6.44
6.45
6.46
6.47
6.48
6.49
6.50
6.51
6.52
6.53
6.54
6.55
6.56
6.57
6.58
6.59
6.60
6.61
6.62
6.63
6.64
6.65
6.66
6.67
6.68
6.69
6.70

PUBLISH.MODE 89
QoS Policies 90
READER_DATA LIFECYCLE 99
RECEIVER.POOL oo o . 100
RELIABILITYo o e 101
RESOURCE_LIMITS 102
Return Codes L 103
Sequence Number Support 105
Status Kinds o 106
SYSTEM_RESOURCE_LIMITS 111
Thread Settings oo 112
TIME_BASED_FILTER 113
TOPICDATA e 114
TRANSPORT BUILTIN oo oo 115
TRANSPORT_-MULTICAST 118
TRANSPORT_PRIORITY 121
TRANSPORT_SELECTION 122
TRANSPORT_UNICAST 123
TYPESUPPORT oo 124
USER.DATA 126
Exception Codes 127
WIRE_.PROTOCOL 128
WRITER_DATA LIFECYCLE 134
String Built-in Type oo 135
KeyedString Built-in Type 136
Octets Built-in Type o 137
KeyedOctets Built-in Type 138
Sequence SUPpPOTt 139
Clock Selection L oo 141
Domain Moduleo oo 143
DomainParticipantFactory o000 145

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

iv CONTENTS
6.71 DomainParticipants oL 147
6.72 Built-in Topics L 153
6.73 Topic Module e 157
6.74 Topics oL e 158
6.75 User Data Type Support 160
6.76 Type Code Support, 162
6.77 Built-in Types 165
6.78 Dynamic Data L o 170
6.79 Publication Module oo 175
6.80 Publishers 176
6.81 Data Writers L 179
6.82 Flow Controllers 181
6.83 Subscription Module, 186
6.84 Subscribers L 189
6.85 DataReaders 192
6.86 Read Conditions o 194
6.87 Query Conditions 195
6.88 Data Sampleso 196
6.89 Sample Stateso 197
6.90 View States 198
6.91 Instance States L o 199
6.92 Infrastructure Module L. 200
6.93 Built-in Sequences 202
6.94 Multi-channel DataWriters 204
6.95 Pluggable Transports 207
6.96 Using Transport Plugins 213
6.97 Built-in Transport Plugins 216
6.98 Configuration Utilities 218
6.99 Durability and Persistenceo 219
6.100Configuring QoS Profiles with XML 225
6.101Publication Example oL 229

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

CONTENTS v

6.102Subscription Exampleo 230
6.103Participant Use Cases o v v v v v vt e 231
6.104Topic Use Cases o v v i it it i e 233
6.105FlowController Use Cases oo 235
6.106Publisher Use Cases 239
6.107DataWriter Use Cases 240
6.108Subscriber Use Cases 242
6.109DataReader Use Cases 245
6.110Entity Use Cases oo v it it 249
6.111Waitset Use Cases o oo i i i oo 253
6.112Transport Use Cases o i v i .. 255
6.113Filter Use Cases v e 257
6.114Creating Custom Content Filters 263
6.115Large Data Use Cases 267
6.116Documentation Roadmap 269
6.117Conventions Lo 270
6.118DDS API Reference oo 272
6.119Queries and Filters Syntax L. 278
6.120RTT Connext API Reference 286
6.121Programming How-To’s 287
6.122Programming Tools oL Lo 289
6.123rtiddsgen L oL 290
6.124rtiddspingo 303
6.125rtiddsspyo 310
Namespace Documentation 317
7.1 Package com.rti.dds.domain oL 317
7.2 Package com.rti.dds.domain.builtin00 319
7.3 Package com.rti.dds.dynamicdata 0oL 320
7.4 Package com.rti.dds.infrastructure oL 323
7.5 Package com.rti.dds.publication 338

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

vi CONTENTS
7.6 Package com.rti.dds.publication.builtin 341
7.7 Package com.rti.dds.publication.example 342
7.8 Package com.rti.dds.subscription o000 343
7.9 Package com.rti.dds.subscription.builtino 0L 348
7.10 Package com.rti.dds.subscription.example 349
7.11 Package com.rti.dds.topic oL 350
7.12 Package com.rti.dds.topic.builtino 352
7.13 Package com.rti.dds.topic.example 353
7.14 Package com.rti.dds.type.builtin. 354
7.15 Package com.rti.dds.typecodeo 360
7.16 Package com.rti.dds.util o000 364
7.17 Package com.rti.ndds.configo 365
7.18 Package com.rti.ndds.example oL 366
7.19 Package com.rti.ndds.transport L. 367

8 Class Documentation 375
8.1 AbstractBuiltinTopicDataTypeSupport Class Reference 375
8.2 AbstractPrimitiveSequence Class Reference 377
8.3 AbstractSequence Class Reference 382
8.4 AllocationSettings t Class Reference 385
8.5 AsynchronousPublisherQosPolicy Class Reference 387
8.6 AvailabilityQosPolicy Class Reference 392
8.7 BAD_PARAM Class Reference 396
8.8 BAD_TYPECODE Class Reference 397
8.9 BadKind Class Reference 398
8.10 BadMemberld Class Reference 399
8.11 BadMemberName Class Reference 400
8.12 BatchQosPolicy Class Reference 401
8.13 BooleanSeq Class Reference 405
8.14 Bounds Class Reference 411
8.15 BuiltinTopicKey_t Class Reference 412

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

CONTENTS vii

8.16
8.17
8.18
8.19
8.20
8.21
8.22
8.23
8.24
8.25
8.26
8.27
8.28
8.29
8.30
8.31
8.32
8.33
8.34
8.35
8.36
8.37
8.38
8.39
8.40
8.41
8.42
8.43
8.44
8.45
8.46

BuiltinTopicReaderResourceLimits_t Class Reference 414
Bytes Class Reference 417
BytesDataReader Class Reference. 420
BytesDataWriter Class Reference 424
ByteSeq Class Reference 428
BytesSeq Class Reference 434
BytesTypeSupport Class Reference 437
ChannelSettings_t Class Reference 441
ChannelSettingsSeq Class Reference 444
CharSeq Class Reference 445
Condition Interface Reference 451
ConditionSeq Class Reference 452
ContentFilter Interface Reference 454
ContentFilteredTopic Interface Reference 458
ContentFilterProperty_t Class Reference 463
Cookie_t Class Reference 465
Copyable Interface Reference 466
DatabaseQosPolicy Class Reference 468
DataReader Interface Reference 473
DataReaderAdapter Class Reference 497
DataReaderCacheStatus Class Reference 500
DataReaderListener Interface Reference 501
DataReaderProtocolQosPolicy Class Reference 504
DataReaderProtocolStatus Class Reference 508
DataReaderQos Class Reference 518
DataReaderResourceLimitsQosPolicy Class Reference 524
DataReaderSeq Class Reference 536
DataWriter Interface Reference 538
DataWriterAdapter Class Reference 560
DataWriterCacheStatus Class Reference 565
DataWriterListener Interface Reference 566

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

viii CONTENTS
8.47 DataWriterProtocolQosPolicy Class Reference 571
8.48 DataWriterProtocolStatus Class Reference 576
8.49 DataWriterQos Class Reference 588
8.50 DataWriterResourceLimitsInstanceReplacementKind Class Ref-

EIETICE . .« v v v v e e e e e e e e e e 594
8.51 DataWriterResourceLimitsQosPolicy Class Reference 598
8.52 DeadlineQosPolicy Class Reference 604
8.53 DestinationOrderQosPolicy Class Reference 607
8.54 DestinationOrderQosPolicyKind Class Reference 610
8.55 DiscoveryBuiltinReaderFragmentationResourceLimits_t ~ Class

Reference 612
8.56 DiscoveryConfigBuiltinPluginKind Class Reference 614
8.57 DiscoveryConfigQosPolicy Class Reference 615
8.58 DiscoveryPluginPromiscuityKind Class Reference 623
8.59 DiscoveryQosPolicy Class Reference 624
8.60 DomainEntity Interface Reference 628
8.61 DomainParticipant Interface Reference 629
8.62 DomainParticipantAdapter Class Reference 703
8.63 DomainParticipantFactory Class Reference 708
8.64 DomainParticipantFactoryQos Class Reference 732
8.65 DomainParticipantListener Interface Reference 734
8.66 DomainParticipantQos Class Reference 736
8.67 DomainParticipantResourceLimitsQosPolicy Class Reference . . 741
8.68 DoubleSeq Class Reference 759
8.69 DurabilityQosPolicy Class Reference 765
8.70 DurabilityQosPolicyKind Class Reference 770
8.71 DurabilityServiceQosPolicy Class Reference 773
8.72 Duration_t Class Reference 776
8.73 DynamicData Class Reference 780
8.74 DynamicDatalnfo Class Reference 844
8.75 DynamicDataMemberInfo Class Reference 846
8.76 DynamicDataProperty_t Class Reference 849

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

CONTENTS ix

8.77 DynamicDataReader Class Reference 851
8.78 DynamicDataSeq Class Reference 881
8.79 DynamicDataTypeProperty_t Class Reference 883
8.80 DynamicDataTypeSerializationProperty_t Class Reference 885
8.81 DynamicDataTypeSupport Class Reference 887
8.82 DynamicDataWriter Class Reference 893
8.83 EndpointGroup_t Class Reference 909
8.84 EndpointGroupSeq Class Reference 911
8.85 Enmtity Interface Reference 912
8.86 EntityFactoryQosPolicy Class Reference 919
8.87 EntityHowTo.MyEntityListener Class Reference 922
8.88 EntityNameQosPolicy Class Reference 923
8.89 Enum Class Reference 925
8.90 EnumMember Class Reference 928
8.91 EventQosPolicy Class Reference 930
8.92 ExclusiveAreaQosPolicy Class Reference 933
8.93 FloatSeq Class Reference 936
8.94 FlowController Interface Reference 942
8.95 FlowControllerProperty_t Class Reference 946
8.96 FlowControllerSchedulingPolicy Class Reference 948
8.97 FlowControllerTokenBucketProperty_t Class Reference 951
8.98 Foo Class Reference 955
8.99 Foo Class Reference 956
8.100FooDataReader Class Reference 958
8.101FooDataReader Interface Reference 988
8.102FooDataWriter Class Reference 1021
8.103FooDataWriter Interface Reference 1040
8.104FooSeq Class Reference 1056
8.105FooSeq Class Reference 1058
8.106FooTypeSupport Class Reference 1060
8.107FooTypeSupport Class Reference 1063

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

CONTENTS

8.108 GroupDataQosPolicy Class Reference 1064
8.109GuardCondition Class Reference 1066
8.110GUID_t Class Reference 1069
8.111HistoryQosPolicy Class Reference 1071
8.112HistoryQosPolicyKind Class Reference 1075
8.113InconsistentTopicStatus Class Reference 1077
8.114Inet AddressSeq Class Reference 1079
8.115InstanceHandle_t Class Reference 1080
8.116InstanceHandleSeq Class Reference 1083
8.117InstanceStateKind Class Reference 1086
8.118IntSeq Class Reference L. 1089
8.119KeyedBytes Class Reference 1095
8.120KeyedBytesDataReader Class Reference 1098
8.121KeyedBytesDataWriter Class Reference 1106
8.122KeyedBytesSeq Class Reference 1116
8.123KeyedBytesTypeSupport Class Reference 1119
8.124KeyedString Class Reference 1123
8.125KeyedStringDataReader Class Reference 1125
8.126KeyedStringDataWriter Class Reference 1133
8.127KeyedStringSeq Class Reference 1141
8.128KeyedStringTypeSupport Class Reference 1144
8.129LatencyBudgetQosPolicy Class Reference 1148
8.130LibraryVersion_t Class Reference 1150
8.131LifespanQosPolicy Class Reference 1152
8.132Listener Interface Reference 1154
8.133LivelinessChangedStatus Class Reference. 1159
8.134LivelinessLostStatus Class Reference 1162
8.135LivelinessQosPolicy Class Reference 1164
8.136LivelinessQosPolicyKind Class Reference 1168
8.137LoanableSequence Class Reference 1170
8.138Locator_t Class Reference 1174

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

CONTENTS xi

8.139LocatorFilter_t Class Reference 1178
8.140LocatorFilterQosPolicy Class Reference 1181
8.141LocatorFilterSeq Class Reference 1183
8.142LocatorSeq Class Reference 1184
8.143LogCategory Class Reference 1185
8.144Logger Class Reference 1187
8.145LoggingQosPolicy Class Reference 1190
8.146LogPrintFormat Class Reference 1192
8.147LogVerbosity Class Reference 1195
8.148LongDoubleSeq Class Reference 1197
8.149LongSeq Class Reference 1199
8.150MultiChannelQosPolicy Class Reference 1205
8.151MultiTopic Interface Reference 1208
8.1520bjectHolder Class Reference 1211
8.1530fferedDeadlineMissedStatus Class Reference 1212
8.154OfferedIncompatibleQosStatus Class Reference 1214
8.1550wnershipQosPolicy Class Reference 1216
8.1560wnershipQosPolicyKind Class Reference 1223
8.1570OwnershipStrengthQosPolicy Class Reference 1225
8.158ParticipantBuiltinTopicData Class Reference 1227
8.159ParticipantBuiltinTopicDataDataReader Class Reference 1230
8.160ParticipantBuiltinTopicDataSeq Class Reference 1231
8.161Participant BuiltinTopicDataTypeSupport Class Reference 1232
8.162PartitionQosPolicy Class Reference 1233
8.163PresentationQosPolicy Class Reference 1237
8.164PresentationQosPolicy AccessScopeKind Class Reference 1242
8.165PRIVATE_MEMBER Class Reference 1244
8.166ProductVersion_t Class Reference 1245
8.167ProfileQosPolicy Class Reference 1247
8.168Property_t Class Reference 1250
8.169PropertyQosPolicy Class Reference 1252

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

xii CONTENTS
8.170PropertyQosPolicyHelper Class Reference 1255
8.171PropertySeq Class Reference 1259
8.172ProtocolVersion_t Class Reference. 1260
8.173PUBLIC_MEMBER Class Reference 1263
8.174PublicationBuiltinTopicData Class Reference 1264
8.175PublicationBuiltinTopicDataDataReader Class Reference 1271
8.176PublicationBuiltinTopicDataSeq Class Reference 1272
8.177PublicationBuiltinTopicDataTypeSupport Class Reference 1273
8.178 PublicationMatchedStatus Class Reference. 1274
8.179Publisher Interface Reference 1277
8.180PublisherAdapter Class Reference 1301
8.181PublisherListener Interface Reference 1302
8.182PublisherQos Class Reference 1303
8.183PublisherSeq Class Reference 1306
8.184PublishModeQosPolicy Class Reference 1308
8.185PublishModeQosPolicyKind Class Reference 1311
8.186Qos Class Reference 1313
8.187QosPolicy Class Reference 1314
8.188QosPolicyCount Class Reference 1315
8.189QosPolicyCountSeq Class Reference 1317
8.190QosPolicyld_t Class Reference 1318
8.191QueryCondition Interface Reference 1324
8.192ReadCondition Interface Reference 1326
8.193ReaderDatalifecycleQosPolicy Class Reference 1328
8.194ReceiverPoolQosPolicy Class Reference 1331
8.195RefilterQosPolicyKind Class Reference 1334
8.196ReliabilityQosPolicy Class Reference 1336
8.197ReliabilityQosPolicyKind Class Reference 1340
8.198ReliableReaderActivityChangedStatus Class Reference 1342
8.199ReliableWriterCacheChangedStatus Class Reference 1345
8.200ReliableWriterCacheEventCount Class Reference 1349

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

CONTENTS xiii

8.201RemoteParticipantPurgeKind Class Reference 1350
8.202RequestedDeadlineMissedStatus Class Reference 1353
8.203RequestedIncompatibleQosStatus Class Reference 1354
8.204ResourceLimitsQosPolicy Class Reference 1356
8.20bRETCODE_ALREADY_DELETED Class Reference 1362
8.206RETCODE_BAD_PARAMETER Class Reference 1363
8.207TRETCODE_ERROR Class Reference 1364
8.208RETCODE_ILLEGAL_OPERATION Class Reference 1365
8.209RETCODE_IMMUTABLE_POLICY Class Reference 1366
8.210RETCODE_INCONSISTENT_POLICY Class Reference 1367
8.211RETCODE_NO_DATA Class Reference 1368
8.212RETCODE_NOT_ENABLED Class Reference 1369
8.213RETCODE_OUT_OF _RESOURCES Class Reference 1370
8.214RETCODE_PRECONDITION_NOT_MET Class Reference . . . 1371
8.215RETCODE_TIMEOUT Class Reference 1372
8.216RETCODE_UNSUPPORTED Class Reference 1373
8.217RtpsReliableReaderProtocol_t Class Reference 1374
8.218RtpsReliableWriterProtocol _t Class Reference 1378
8.219RtpsReservedPortKind Class Reference 1394
8.220RtpsWellKnownPorts_t Class Reference 1396
8.221Sampleldentity_t Class Reference 1402
8.222Samplelnfo Class Reference 1404
8.223SamplelnfoSeq Class Reference 1414
8.224SampleLostStatus Class Reference 1415
8.225SampleLostStatusKind Class Reference. 1416
8.226SampleRejectedStatus Class Reference 1422
8.227SampleRejectedStatusKind Class Reference 1424
8.228SampleStateKind Class Reference 1430
8.229Sequence Interface Reference 1432
8.230SequenceNumber_t Class Reference 1435
8.231ShmemTransport Interface Reference 1439

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

xiv CONTENTS
8.232ShmemTransport.Property_t Class Reference 1443
8.233ShortSeq Class Reference 1446
8.234StatusCondition Interface Reference 1452
8.235StatusKind Class Reference 1455
8.236StringDataReader Class Reference 1465
8.237StringDataWriter Class Reference 1468
8.238StringSeq Class Reference 1470
8.239String TypeSupport Class Reference 1473
8.240StructMember Class Reference 1476
8.241Subscriber Interface Referenceo L. 1478
8.242SubscriberAdapter Class Reference 1503
8.243SubscriberListener Interface Reference 1504
8.244SubscriberQos Class Reference 1506
8.245SubscriberSeq Class Reference L. 1508
8.246SubscriptionBuiltinTopicData Class Reference 1510
8.247SubscriptionBuiltinTopicDataDataReader Class Reference 1517
8.248SubscriptionBuiltinTopicDataSeq Class Reference 1518
8.249SubscriptionBuiltinTopicDataTypeSupport Class Reference . . . 1519
8.250SubscriptionMatchedStatus Class Reference 1520
8.251SystemException Class Reference 1523
8.252SystemResourceLimitsQosPolicy Class Reference 1524
8.253TCKind Class Reference 1526
8.254ThreadSettings_t Class Reference 1531
8.255ThreadSettingsCpuRotationKind Class Reference 1534
8.256ThreadSettingsKind Class Reference 1536
8.257Time_t Class Reference 1538
8.258 TimeBasedFilterQosPolicy Class Reference 1541
8.259Topic Interface Reference 1545
8.260TopicAdapter Class Reference 1550
8.261TopicBuiltinTopicData Class Reference. 1552
8.262TopicBuiltinTopicDataDataReader Class Reference 1556

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

CONTENTS XV

8.263TopicBuiltinTopicDataSeq Class Reference 1557
8.264TopicBuiltinTopicDataTypeSupport Class Reference 1558
8.265TopicDataQosPolicy Class Reference 1559
8.266TopicDescription Interface Reference 1561
8.267TopicListener Interface Reference 1564
8.268TopicQos Class Reference 1566
8.269Transport Interface Reference 1569
8.270Transport.Property_t Class Reference. 1570
8.271TransportBuiltinKind Class Reference 1578
8.272TransportBuiltinQosPolicy Class Reference 1580
8.273TransportMulticastMapping_t Class Reference 1582
8.274TransportMulticastMappingFunction_t Class Reference 1585
8.275TransportMulticastMappingQosPolicy Class Reference 1587
8.276 TransportMulticastMappingSeq Class Reference 1589
8.277TransportMulticastQosPolicy Class Reference 1590
8.278TransportMulticastQosPolicyKind Class Reference 1593
8.279TransportMulticastSettings_t Class Reference 1594
8.280TransportMulticastSettingsSeq Class Reference 1597
8.281TransportPriorityQosPolicy Class Reference 1598
8.282TransportSelectionQosPolicy Class Reference 1600
8.283TransportSupport Class Reference 1602
8.284TransportUnicastQosPolicy Class Reference 1605
8.285TransportUnicastSettings_t Class Reference 1608
8.286 TransportUnicastSettingsSeq Class Reference 1610
8.287TypeCode Class Reference 1611
8.288TypeCodeFactory Class Reference 1641
8.289TypeSupport Interface Reference 1651
8.290TypeSupportQosPolicy Class Reference 1652
8.291UDPv4Transport Interface Reference 1654
8.292UDPv4Transport.Property_t Class Reference 1658
8.293UDPv6Transport Interface Reference 1666

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

xvi CONTENTS

8.294UDPv6Transport.Property_t Class Reference 1670
8.295Union Class Reference 1677
8.296UnionMember Class Reference 1678
8.297UserDataQosPolicy Class Reference 1680
8.298UserException Class Reference 1682
8.299ValueMember Class Reference 1683
8.300Vendorld_t Class Reference 1685
8.301Version Class Reference 1687
8.302ViewStateKind Class Reference 1689
8.303VM_ABSTRACT Class Reference 1691
8.304VM_CUSTOM Class Reference 1692
8.305VM_NONE Class Reference 1693
8.306VM_TRUNCATABLE Class Reference 1694
8.307WaitSet Class Reference 1695
8.308 WaitSetProperty_t Class Reference 1705
8.309WcharSeq Class Reference 1707
8.310WireProtocolQosPolicy Class Reference 1709
8.311WireProtocolQosPolicy AutoKind Class Reference 1718
8.312WriteParams_t Class Reference 1719
8.313WriterDataLifecycleQosPolicy Class Reference. 1722
8.314WstringSeq Class Reference 1725
9 Example Documentation 1727
9.1 HelloWorld.idl. o o 1727
9.2 HelloWorldDataReader.java 1729
9.3 HelloWorldPublisher.java 1744
9.4 HelloWorldSeq.java o 1748
9.5 HelloWorldSubscriber.java 1753

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

Chapter 1

RTI Connext

Core Libraries and Utilities
Real-Time Innovations, Inc.

RTI Connext is network middleware for real-time distributed applications. It
provides the communications services that programmers need to distribute time-
critical data between embedded and/or enterprise devices or nodes. RTI Con-
next uses the publish-subscribe communications model to make data distribu-
tion efficient and robust.

The RTI Connext Application Programming Interface (API) is based on the
OMG’s Data Distribution Service (DDS) specification. The most recent publica-
tion of this specification can be found in the Catalog of OMG Specifications
under ”Middleware Specifications”.

1.1 Feedback and Support for this Release.

For more information, visit our knowledge base (accessible from
https://support.rti.com/) to see sample code, general information on
RTI Connext, performance information, troubleshooting tips, and technical
details.

By its very nature, the knowledge base is continuously evolving and improv-
ing. We hope that you will find it helpful. If there are questions that
you would like to see addressed or comments you would like to share, please
send e-mail to support@rti.com. We can only guarantee a response for cus-
tomers with a current maintenance contract or subscription. To purchase a
maintenance contract or subscription, contact your local RTI representative

2 RTI Connext

(see http://www.rti.com/company/contact.html), send an email request to
sales@rti.com, or call +1 (408) 990-7400.

Please do not hesitate to contact RTI with questions or comments about this
release. We welcome any input on how to improve RTI Connext to suit your
needs.

1.2 Available Documentation.

The documentation for this release is provided in two forms: the HTML API
reference documentation and PDF documents. If you are new to RTI Connext,
the Documentation Roadmap (p. 269) will provide direction on how to learn
about this product.

1.2.1 The PDF documents are:

What’s New. An overview of the new features in this release.

Release Notes. System requirements, compatibility, what’s fixed in this
release, and known issues.

Getting Started Guide. Download and installation instructions. It also
lays out the core value and concepts behind the product and takes you
step-by-step through the creation of a simple example application. Devel-
opers should read this document first.

Getting Started Guide, Database Addendum. Additional installation
and setup information for database usage.

Getting Started Guide, Embedded Systems Addendum. Additional in-
stallation and setup information for embedded systems.

User’s Manual. Introduction to RTI Connext, product tour and concep-
tual presentation of the functionality of RTT Connext.

Platform Notes. Specific details, such as compilation setting and li-
braries, related to building and using RTI Connext on the various sup-
ported platforms.

QoS Reference Guide. A compact summary of supported Quality of Ser-
vice (QoS) policies.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1.2 Available Documentation. 3

XML-Based Application Creation Getting Started Guide. Details
on how to use XML-Based Application Creation, an experimental feature
in this release.

C API Reference Manual. A consolidated PDF version of the HTML C
API reference documentation.

C++ API Reference Manual. A consolidated PDF version of the HTML
C++ API reference documentation.

Java API Reference Manual. A consolidate PDF version of the HTML
Java API reference documentation.

.NET API Reference Manual. A consolidated PDF version of the HTML
.Net API reference documentation.

1.2.2 The HTML API Reference documentation contains:

DDS API Reference (p.272) - The DDS API reference.

RTI Connext API Reference (p.286) - RTI Connext API’s indepen-
dent of the DDS standard.

Programming How-To’s (p.287) - Describes and shows the common
tasks done using the API.

Programming Tools (p. 289) - RTT Connext helper tools.

The HTML API Reference documentation can be accessed through the tree view
in the left frame of the web browser window. The bulk of the documentation is
found under the entry labeled ”Modules”.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

RTI Connext

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

Chapter 2

Module Index

2.1 Modules

Here is a list of all modules:

Thread Settings 112
Documentation Roadmap 269
Conventions 270
DDS API Reference 272
Domain Module 143
DomainParticipantFactoryo 145
DomainParticipantso oo 147
Built-in Topicso o 153

Topic Module 157
Topics o 158

User Data Type Support 160

Type Code Support 162
Built-in Types oo 165
String Built-in Type oL 135
KeyedString Built-in Type 136

Octets Built-in Type 137
KeyedOctets Built-in Type 138

Dynamic Data 0o, 170
Publication Module o oo 175
Publishers 176

Data Writers 179

Flow Controllers 181
Subscription Module 186
Subscribers 189

DataReaders 192

Module Index

Read Conditions 194
Query Conditionso 195
Data Samples 196
Sample States o 197
View States e 198
Instance States 199
Infrastructure Module 200
Conditions and WaitSets 43
Time Support 67
Entity Support o 68
GUID Support 74
Object Support 82
QoS Policies 90
ASYNCHRONOUS_PUBLISHER 39
AVAILABILITY e 41
BATCH e 42
DATABASE 44
DATA READER_PROTOCOL 45
DATA_READER_RESOURCE_LIMITS 46
DATA_ WRITER_-PROTOCOL 48
DATA WRITER_RESOURCE_LIMITS 49
DEADLINE 50
DESTINATION_.ORDER 51
DISCOVERY_CONFIG 52
DISCOVERY e 54
NDDS_DISCOVERY_PEERS 55
DOMAIN_PARTICIPANT RESOURCE_LIMITS 63
DURABILITY e et 65
DURABILITY SERVICE 66
ENTITY FACTORY 69
ENTITY NAME 70
EVENT e 71
EXCLUSIVELAREA 72
GROUPDATA e 73
HISTORY e e e e 75
LATENCY BUDGET 76
LIFESPAN 7
LIVELINESS e 78
LOCATORFILTER 79
LOGGING e 80
MULTICHANNEL 81
OWNERSHIP 83
OWNERSHIP.STRENGTH 84
PARTITION 85
PRESENTATION, 86

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

2.1 Modules 7
PROFILE 87
PROPERTY 88
PUBLISH.MODE 89
READER_DATA_LIFECYCLE 99
RECEIVERPOOL 100
RELIABILITY e 101
RESOURCE_LIMITS 102
SYSTEM_RESOURCE_LIMITS 111
TIME_BASED FILTER 113
TOPIC.DATA 114
TRANSPORT BUILTIN 115
TRANSPORT _MULTICAST 118
TRANSPORT_PRIORITY 121
TRANSPORT_SELECTION 122
TRANSPORT_UNICAST 123
TYPESUPPORT 124
USER.DATA 126
WIRE_PROTOCOL 128
WRITER_.DATA LIFECYCLE 134

Return Codes 103
Sequence Number Support 105
Status Kinds 106
Exception Codes 127
Sequence Support 139
Built-in Sequences L. 202
Queries and Filters Syntax 278
RTI Connext API Reference. 286
Clock Selection 141
Multi-channel DataWriters 204
Pluggable Transports 207
Using Transport Plugins 213
Built-in Transport Plugins 216
Configuration Utilities 218
Durability and Persistence 219
Configuring QoS Profiles with XML 225
Programming How-To’s 287
Publication Example o oL 229
Subscription Example L. 230
Participant Use Cases 231
Topic Use Cases o v v i i i it i e e e e 233
FlowController Use Cases 235
Publisher Use Cases v 239
DataWriter Use Cases 240
Subscriber Use Cases. o i 242
DataReader Use Cases 245

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

Module Index

Entity Use Cases it 249
Waitset Use Cases o v v i i it 253
Transport Use Cases 255
Filter Use Cases o . i v ittt 257
Creating Custom Content Filters 263
Large Data Use Cases 267
Programming Tools o 289
rtiddsgen 290
rtiddspingo 303
rtiddsspyo 310

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

Chapter 3

Namespace Index

3.1 Package List

Here are the packages with brief descriptions (if available):

com.rti.dds.domain (Contains the com.rti.dds.domain.DomainParticipant
(p.629) class that acts as an entrypoint of RTT Connext
and acts as a factory for many of the classes. The
com.rti.dds.domain.DomainParticipant (p.629) also
acts as a container for the other objects that make up RTI
Connext) . . . o v i e 317

com.rti.dds.domain.builtin (Builtin topic (p.350) for accessing in-
formation about the DomainParticipants discovered by RTI
Connext) 319

com.rti.dds.dynamicdata (<<eXtension>> (p.270) The Dy-
namic Data API provides a way to interact with arbitrarily
complex data types at runtime without the need for code gen-
eration) 320

com.rti.dds.infrastructure (Defines the abstract classes and the in-
terfaces that are refined by the other modules. Contains com-
mon definitions such as return codes, status values, and QoS
policies) 323

10 Namespace Index
com.rti.dds.publication (Contains the
com.rti.dds.publication.FlowController (p.942),
com.rti.dds.publication.Publisher (p. 1277),
and com.rti.dds.publication.DataWriter
(p. 538) classes as well as the
com.rti.dds.publication.PublisherListener (p.1302)
and com.rti.dds.publication.DataWriterListener

(p. 566) interfaces, and more generally, all that is needed on
the publication (p.338)side)

com.rti.dds.publication.builtin (Builtin topic (p.350) for access-
ing information about the Publications discovered by RTI
Connext)

com.rti.dds.publication.example

com.rti.dds.subscription (Contains the
com.rti.dds.subscription.Subscriber (p. 1478),
com.rti.dds.subscription.DataReader (p.-473),
com.rti.dds.subscription.ReadCondition (p. 1326),
and com.rti.dds.subscription.QueryCondition
(p.1324) classes, as well as the
com.rti.dds.subscription.SubscriberListener (p.1504)
and com.rti.dds.subscription.DataReaderListener

(p.501) interfaces, and more generally, all that is needed on
the subscription (p.343) side)

com.rti.dds.subscription.builtin (Builtin topic (p. 350) for access-
ing information about the Subscriptions discovered by RTI
Connext) oo

com.rti.dds.subscription.example

com.rti.dds.topic (Contains the com.rti.dds.topic.Topic
(p. 1545), com.rti.dds.topic.ContentFiltered Topic
(p-458), and com.rti.dds.topic.MultiTopic (p.1208)
classes, the com.rti.dds.topic.TopicListener (p.1564)
interface, and more generally, all that is needed by an
application to define com.rti.dds.topic.Topic (p.1545)
objects and attach QoS policies to them)

com.rti.dds.topic.builtin (Builtin topic (p. 350) for accessing infor-
mation about the Topics discovered by RTT Connext)

com.rti.dds.topic.example (Descriptions of Foo (p.955), FooSeq
(p.-1056), and FooTypeSupport (p.1060), where Foo
(p.955) represents a user-defined data-type intended to be
distributed using DDS)o oL

com.rti.dds.type.builtin (<<eXtension>> (p. 270) RTI Connext
provides a set of very simple data types for you to use with
the topics in your application)

352

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

3.1 Package List 11

com.rti.dds.typecode (<<eXtension>> (p.270) A TypeCode

(p.1611) is a mechanism for representing a type at runtime.

RTI Connext can use type codes to send type definitions on

the network. You will need to understand this API in order to

use the Dynamic Data (p. 170) capability or to inspect the

type information you receive from remote readers and writers) 360
com.rti.dds.util (Utility types that support the DDS APT) 364
com.rti.ndds.config (Utility API’s independent of the DDS standard)365
com.rti.ndds.example (Programming HowTos: Code templates for

COIMINON USE CASES) » « « v v v v v vt et e e 366
com.rti.ndds.transport (APIs related to RTI Connext pluggable
Eransports) oo 367

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

12

Namespace Index

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

Chapter 4

Class Index

4.1 Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

AbstractBuiltinTopicDataTypeSupport 375
ParticipantBuiltinTopicDataTypeSupport 1232
PublicationBuiltinTopicDataTypeSupport 1273
SubscriptionBuiltinTopicDataTypeSupport 1519
TopicBuiltinTopicDataTypeSupport 1558

AllocationSettings_t 385

BuiltinTopicReaderResourceLimits t 414

ChannelSettings t L o 441

ChannelSettingsSeq 444

Condition 451
StatusCondition L o 1452
ReadCondition 1326

QueryCondition L o 1324

ConditionSeqo 452

ContentFilter 454

ContentFilterProperty t 463

Cookiet o 465

Copyable 466
DynamicData Lo 780
InstanceHandle t oL 1080
StringSeq 1470

WstringSeq oL 1725
Samplelnfo o 1404

BuiltinTopicKey_t o 412

14 Class Index
Bytes 417
BytesSeq 434
KeyedBytes 1095
KeyedBytesSeqo 1116
KeyedString 1123
KeyedStringSeqo 1141
AbstractPrimitiveSequence 377

BooleanSeq 405
ByteSeq 428
CharSeq 445
WecharSeq o 1707
DoubleSeqo 759
LongDoubleSeqo oo 1197
FloatSeq 936
IntSeq 1089
LongSeq o 1199
ShortSeq 1446
Enum 925
DataWriterResourceLimitsInstanceReplacementKind 594
DestinationOrderQosPolicyKind 610
DiscoveryPluginPromiscuityKind 623
DurabilityQosPolicyKind oo 770
HistoryQosPolicyKind 1075
LivelinessQosPolicyKind 1168
OwnershipQosPolicyKind 1223
PresentationQosPolicyAccessScopeKind 1242
PublishModeQosPolicyKind 1311
QosPolicyld_t 1318
RefilterQosPolicyKind oo 1334
ReliabilityQosPolicyKind 1340
RemoteParticipantPurgeKind 1350
ThreadSettingsCpuRotationKind 1534
TransportMulticastQosPolicyKind 1593
WireProtocolQosPolicyAutoKind 1718
FlowControllerSchedulingPolicy 948
SampleLostStatusKind 1416
SampleRejectedStatusKindo 1424
TCKind 1526
LogCategory 1185
LogPrintFormat 1192
LogVerbosity 1195
Foo 956
FooSeq 1058
DataReaderCacheStatus 500
DataReaderProtocolStatus 0oL 508

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

4.1 Class Hierarchy 15

DataReaderSeq 536
DataWriterCacheStatus oL 565
DataWriterProtocolStatuso oL 576
DiscoveryBuiltinReaderFragmentationResourceLimits.t 612
DiscoveryConfigBuiltinPluginKind 614
DomainParticipantFactory oo Lo 708
Duration.to 776
DynamicDatalnfo 844
DynamicDataMemberInfo 00 846
DynamicDataProperty t oo, 849
DynamicDataTypeProperty t 883
DynamicDataTypeSerializationProperty t 885
EndpointGroup_t e 909
EndpointGroupSeq e 911
Entity o 912
DomainParticipanto 629
DomainEntity Lo 628
DataWriter o 538
DynamicDataWriter o000 893
BytesDataWritero oo 424
KeyedBytesDataWriter 1106
KeyedStringDataWriter 1133
StringDataWriter oL 1468
FooDataWriter, 1021
Publisher 1277
DataReader 473
DynamicDataReader 851
BytesDataReader oL 420
KeyedBytesDataReader 1098
KeyedStringDataReader 1125
StringDataReader 1465
FooDataReader 958
Subscriber 1478
Topic e 1545
EnumMember 928
FlowController e 942
FlowControllerProperty t 946
FlowControllerTokenBucketProperty t 951
Foo e 955
FooDataReader 988
FooDataWriter L 1040
FooTypeSupport 1060
FooTypeSupport 1063
GuardCondition 1066
GUID_t . . . e 1069

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

16 Class Index
InconsistentTopicStatus L oL 1077
InetAddressSeq 1079
InstanceHandleSeq 1083
InstanceStateKindo 1086
LibraryVersion.t 1150
Listener 1154

DataWriterListener L oL 566
DataWriterAdapter 560
PublisherAdapter 1301
PublisherListener oL, 1302
DomainParticipantListener 734
DomainParticipantAdapter 703
PublisherAdapter 1301
DataReaderListener 501
DataReaderAdapter 497
SubscriberAdapter oL oL 1503
DomainParticipantAdapter 703
SubscriberListener oL Lo 1504
DomainParticipantListener 734
SubscriberAdapter Lo 1503
TopicListener L 1564
DomainParticipantListener 734
TopicAdapter 1550
EntityHowTo.MyEntityListener 922
LivelinessChangedStatus 1159
LivelinessLostStatus 1162
Locator-t 1174
LocatorFilter.t 1178
LocatorFilterSeq 1183
LocatorSeq 1184
Logger 1187
ObjectHolder 1211
OfferedDeadlineMissedStatus 1212
OfferedIncompatibleQosStatus 1214
ParticipantBuiltinTopicData 1227
ParticipantBuiltinTopicDataDataReader 1230
ParticipantBuiltinTopicDataSeq 1231
PRIVATE.MEMBER 1244
ProductVersion t L 1245
Property t. 1250
PropertyQosPolicyHelper 0o 1255
PropertySeq 1259
ProtocolVersion_t 1260
PUBLIC.MEMBER 1263
PublicationBuiltinTopicData 1264

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

4.1 Class Hierarchy 17
PublicationBuiltinTopicDataDataReader 1271
PublicationBuiltinTopicDataSeq 1272
PublicationMatchedStatus o oL 1274
PublisherSeq 1306
QOS . . e 1313

DomainParticipantFactoryQos 732
DomainParticipantQos 736
DataWriterQos 588
PublisherQos 1303
DataReaderQos 518
SubscriberQos L 1506
TopicQOS . . .« o o 1566
QosPolicy 1314
AsynchronousPublisherQosPolicy 387
AvailabilityQosPolicy oo 392
BatchQosPolicy o 401
DatabaseQosPolicy 468
DataReaderProtocolQosPolicy 504
DataReaderResourceLimitsQosPolicy 524
DataWriterProtocolQosPolicy 571
DataWriterResourceLimitsQosPolicy 598
DeadlineQosPolicyo 604
DestinationOrderQosPolicy 607
DiscoveryConfigQosPolicy 615
DiscoveryQosPolicy 624
DomainParticipantResourceLimitsQosPolicy 741
DurabilityQosPolicy oo 765
DurabilityServiceQosPolicy oL 773
EntityFactoryQosPolicy 919
EntityNameQosPolicy 923
EventQosPolicy 930
ExclusiveAreaQosPolicy 933
GroupDataQosPolicy 1064
HistoryQosPolicy 1071
LatencyBudgetQosPolicy 1148
LifespanQosPolicy 1152
LivelinessQosPolicy L 1164
LocatorFilterQosPolicy 1181
LoggingQosPolicy 1190
MultiChannelQosPolicy 1205
OwnershipQosPolicy 1216
OwnershipStrengthQosPolicy 1225
PartitionQosPolicy Lo 1233
PresentationQosPolicy oL 1237
ProfileQosPolicy 1247

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

18 Class Index
PropertyQosPolicy 1252
PublishModeQosPolicy o 1308
ReaderDataLifecycleQosPolicy 1328
ReceiverPoolQosPolicyo L 1331
ReliabilityQosPolicy o 1336
ResourceLimitsQosPolicy 1356
SystemResourceLimitsQosPolicy 1524
TimeBasedFilterQosPolicy 1541
TopicDataQosPolicy 1559
TransportBuiltinQosPolicy 1580
TransportMulticastMappingQosPolicy 1587
TransportMulticastQosPolicy 1590
TransportPriorityQosPolicy 1598
TransportSelectionQosPolicy 1600
TransportUnicastQosPolicy 1605
TypeSupportQosPolicy 1652
UserDataQosPolicy 1680
WireProtocolQosPolicy oL 1709
WriterDataLifecycleQosPolicy 1722

QosPolicyCount 1315
QosPolicyCountSeqo 1317
ReliableReaderActivityChangedStatus 1342
ReliableWriterCacheChangedStatus 1345
ReliableWriterCacheEventCount 1349
RequestedDeadlineMissedStatus 1353
RequestedIncompatibleQosStatus oL 1354
RETCODE_ERROR o .. 1364
RETCODE_ALREADY DELETED 1362
RETCODE BAD_PARAMETER 1363
RETCODEILLEGAL_OPERATION 1365
RETCODE_IMMUTABLE POLICY 1366
RETCODE_INCONSISTENT_POLICY 1367
RETCODENO.DATA 1368
RETCODENOT.ENABLED 1369
RETCODE_.OUT_.OF RESOURCES 1370
RETCODE_PRECONDITION.NOT_-MET 1371
RETCODE_TIMEOUT 1372
RETCODE_UNSUPPORTED 1373
RtpsReliableReaderProtocol t oL 1374
RtpsReliableWriterProtocol t L. 1378
RtpsReservedPortKind 1394
RtpsWellKnownPorts t 1396
Sampleldentity t 1402
SampleLostStatus Lo 1415
SampleRejectedStatus 1422

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

4.1 Class Hierarchy 19
SampleStateKind oo o 1430
SEqUENCeo e 1432

DynamicDataSeq 881
SamplelnfoSeq 1414
FooSeq e 1056
BytesSeq 434
KeyedBytesSeq 1116
KeyedStringSeq 1141
AbstractPrimitiveSequence 377
AbstractSequence 382
AbstractPrimitiveSequence 377
LoanableSequence 1170
SampleInfoSeq o o 1414
FooSeq 1056
BytesSeq 434
KeyedBytesSeq o 1116
KeyedStringSeq oL 1141
FooSeq« . . 1058
FooSeq 1058
SequenceNumber t Lo 1435
StatusKindo 1455
StructMember 1476
SubscriberSeq L 1508
SubscriptionBuiltinTopicData 1510
SubscriptionBuiltinTopicDataDataReader 1517
SubscriptionBuiltinTopicDataSeq 1518
SubscriptionMatchedStatus L. 1520
SystemException Lo 1523
BAD PARAM e 396
BAD_TYPECODE 397
ThreadSettings_t L 1531
ThreadSettingsKind L oL 1536
Timet e e 1538
TopicBuiltinTopicData 1552
TopicBuiltinTopicDataDataReader 1556
TopicBuiltinTopicDataSeq 1557
TopicDescription e 1561
ContentFilteredTopic 458
MultiTopic o e 1208
Topic e 1545
Transport L 1569
ShmemTransport Lo 1439
UDPv4Transport 1654
UDPv6Transport 1666

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

20 Class Index
Transport.Property_t o 1570
ShmemTransport.Property t 1443
UDPv4Transport.Property .t 1658
UDPv6Transport.Property t 1670
TransportBuiltinKind L o o 1578
TransportMulticastMapping t 1582
TransportMulticastMappingFunction_t 1585
TransportMulticastMappingSeq 1589
TransportMulticastSettings t 1594
TransportMulticastSettingsSeq L L. 1597
TransportSupport 1602
TransportUnicastSettings t 1608
TransportUnicastSettingsSeq 1610
TypeCode o 1611
TypeCodeFactory 1641
TypeSupport 1651
DynamicDataTypeSupport 887
BytesTypeSupport 437
KeyedBytesTypeSupport, 1119
KeyedStringTypeSupport 1144
StringTypeSupport Lo 1473
Union 1677
UnionMember 1678
UserException L 1682
BadKind 398
BadMemberldo Lo 399
BadMemberName 400
Bounds 411
ValueMember e 1683
Vendorld t 1685
Version 1687
ViewStateKind o 1689
VM_ABSTRACT s e 1691
VM_CUSTOM e 1692
VM.NONE 1693
VM_TRUNCATABLE o 1694
WaitSet 1695
WaitSetProperty_t L 1705
WriteParams_t 1719

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

Chapter 5

Class Index

5.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

AbstractBuiltinTopicDataTypeSupport 375
AbstractPrimitiveSequence 377
AbstractSequence (Abstract sequence) L. 382
AllocationSettings_t (Resource allocation settings) 385
AsynchronousPublisherQosPolicy (Configures the mechanism

that sends user data in an external middleware thread) . . . 387
AvailabilityQosPolicy (Configures the availability of data) 392

BAD _PARAM (The exception BadKind (p.398) is thrown when
an inappropriate operation is invoked on a TypeCode object) 396
BAD_TYPECODE (The exception BadKind (p.398) is thrown
when an inappropriate operation is invoked on a TypeCode

object) 397
BadKind (The exception BadKind (p.398) is thrown when an inap-

propriate operation is invoked on a TypeCode object) 398
BadMemberld (The specified TypeCode member ID is invalid) . . 399

BadMemberName (The specified TypeCode member name is invalid)400
BatchQosPolicy (Used to configure batching of multiple samples into
a single network packet in order to increase throughput for

small samples) L0 o 401
BooleanSeq (Instantiates com.rti.dds.util.Sequence (p.1432)

<boolean >) 405
Bounds (A user exception thrown when a parameter is not within the

legal bounds) 411

BuiltinTopicKey_t (The key type of the built-in topic (p. 350) types)412

Class Index

BuiltinTopicReaderResourceLimits_t (Built-in topic (p.350)
reader’s resource limits) oL 414

Bytes (Built-in type consisting of a variable-length array of opaque
bytes) 417

BytesDataReader (<<interface>> (p.271) Instantiates
DataReader < com.rti.dds.type.builtin.Bytes (p.417) >) 420

BytesDataWriter (<<interface>> (p.271) Instantiates
DataWriter < com.rti.dds.type.builtin.Bytes (p.417) >) 424

ByteSeq (Instantiates com.rti.dds.util.Sequence (p.1432) <

byte >) 428
BytesSeq (Instantiates com.rti.dds.util.Sequence (p.1432) <

com.rti.dds.type.builtin.Bytes (p.417) >) 434
BytesTypeSupport (<<interface>> (p.-271)

com.rti.dds.type.builtin.Bytes (p.417) type support

) 437
ChannelSettings_t (Type used to configure the properties of a chan-

nel) . . 441
ChannelSettingsSeq (Declares IDL sequence<

com.rti.dds.infrastructure.ChannelSettings_t (p.441)

>) 444
CharSeq (Instantiates com.rti.dds.util.Sequence (p.1432) <

char >) 445

Condition (<<interface>> (p.271) Root class for
all the conditions that may be attached to a

com.rti.dds.infrastructure.WaitSet (p.1695)) 451
ConditionSeq (Instantiates com.rti.dds.util.Sequence (p.1432)

< com.rti.dds.infrastructure.Condition (p.451) >) . . . 452
ContentFilter (<<interface>> (p.271) Inter-

face to be used by a custom filter of a

com.rti.dds.topic.ContentFilteredTopic (p.458)) 454

ContentFilteredTopic (<<interface>> (p.271) Specialization of
com.rti.dds.topic.TopicDescription (p.1561) that allows
for content-based subscriptions) 458
ContentFilterProperty_t (<<eXtension>> (p.270) Type used
to provide all the required information to enable content fil-
tering) 463
Cookie_t (<<eXtension>> (p.270) Sequence of bytes identifying
a written data sample, used when writing with parameters) . 465
Copyable (<<eXtension>> (p. 270) <<interface>> (p.271) In-
terface for all the user-defined data type classes that support

CODY) v v v v e e e e e e 466
DatabaseQosPolicy (Various threads and resource limits settings
used by RTI Connext to control its internal database) 468

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

5.1 Class List 23

DataReader (<<interface>> (p.271) Allows the application to:
(1) declare the data it wishes to receive (i.e. make a sub-
scription (p.343)) and (2) access the data received by the
attached com.rti.dds.subscription.Subscriber (p.1478)) 473
DataReaderAdapter (<<eXtension>> (p.270) A listener
adapter in the spirit of the Java AWT listener adapters. (The
Adapter provides empty implementations for the listener

methods)) L 497
DataReaderCacheStatus (<<eXtension>> (p.270) The status

of thereader’scache) 500
DataReaderListener (<<interface>> (p.271)

com.rti.dds.infrastructure.Listener (p.1154) for reader

status) ... 501
DataReaderProtocolQosPolicy (Along with

com.rti.dds.infrastructure.WireProtocolQosPolicy

(p.1709) and com.rti.dds.infrastructure.DataWriterProtocolQosPolicy

(p.571), this QoS policy configures the DDS on-the-network

protocol (RTPS)) 504
DataReaderProtocolStatus (<<eXtension>> (p.270) The sta-

tus of a reader’s internal protocol related metrics, like the

number of samples received, filtered, rejected; and status of

wire protocol traffic) oo o L 508
DataReaderQos (QoS policies supported by a

com.rti.dds.subscription.DataReader (p.473) entity

) 518
DataReaderResourceLimitsQosPolicy (Various settings that

configure how a com.rti.dds.subscription.DataReader

(p.473) allocates and uses physical memory for internal re-

SOUTCES)« v v v v e e e e e e e e 524
DataReaderSeq (Declares IDL sequence <
com.rti.dds.subscription.DataReader (p.473) >) 536

DataWriter (<<interface>> (p.271) Allows an application to
set the value of the data to be published under a given
com.rti.dds.topic.Topic (p.1545)). 538
DataWriter Adapter (<<eXtension>> (p. 270) A listener adapter
in the spirit of the Java AWT listener adapters. (The Adapter
provides empty implementations for the listener methods or

functions.)). 560
DataWriterCacheStatus (<<eXtension>> (p. 270) The status of

the writer’s cache) Lo L 565
DataWriterListener (<<interface>> (p. 271)

com.rti.dds.infrastructure.Listener (p.1154) for writer

status) ... 566

DataWriterProtocolQosPolicy (Protocol that applies only to
com.rti.dds.publication.DataWriter (p.538) instances) . 571

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

Class Index

DataWriterProtocolStatus (<<eXtenston>> (p.270) The sta-
tus of a writer’s internal protocol related metrics, like the
number of samples pushed, pulled, filtered; and status of wire
protocol traffic) oo

DataWriterQos (QoS policies supported by a
com.rti.dds.publication.DataWriter (p.538) entity
)

DataWriterResourceLimitsInstanceReplacementKind (Sets
the kinds of instances that can be replaced when instance
resource limits arereached)o oL L

DataWriterResourceLimitsQosPolicy (Various settings that con-
figure how a com.rti.dds.publication.DataWriter (p. 538)
allocates and uses physical memory for internal resources)

DeadlineQosPolicy (Expresses the maximum duration (deadline)
within which an instance is expected to be updated)

DestinationOrderQosPolicy (Controls how the mid-
dleware will deal with data sent by multiple
com.rti.dds.publication.DataWriter (p. 538) en-
tities for the same instance of data (i.e., same
com.rti.dds.topic.Topic (p.1545) and key))

DestinationOrderQosPolicyKind (Kinds of destination order) . .

DiscoveryBuiltinReaderFragmentationResourceLimits_t

DiscoveryConfigBuiltinPluginKind (Built-in discovery plugins
that can beused) oL

DiscoveryConfigQosPolicy (Settings for discovery configuration) .

DiscoveryPluginPromiscuityKind (<<eXtension>> (p.270)
Type used to indicate promiscuity mode of the discovery plu-
i) ..

DiscoveryQosPolicy (Configures the mechanism used by the middle-
ware to automatically discover and connect with new remote
applications) Lo

DomainEntity (<<interface>> (p.271) Abstract
base class for all DDS entities except for the
com.rti.dds.domain.DomainParticipant (p.629))

DomainParticipant (<<interface>> (p.271) Container for all
com.rti.dds.infrastructure.DomainEntity (p.628) ob-
Jects) ..o

DomainParticipantAdapter (<<eXtension>> (p.270) A lis-
tener adapter in the spirit of the Java AW'T listener adapters.
(The Adapter provides empty implementations for the listener
methods))

DomainParticipantFactory (<< singleton>> (p.271)
<<interface>> (p.271) Allows creation and destruc-
tion of com.rti.dds.domain.DomainParticipant (p.629)
objects)

628

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

5.1 Class List 25

DomainParticipantFactoryQos (QoS policies supported by

a com.rti.dds.domain.DomainParticipantFactory

(D-TO8)) o o 732
DomainParticipantListener (<<interface>> (p.271) Listener

for participant status) oL 734

DomainParticipantQos (QoS policies supported by a
com.rti.dds.domain.DomainParticipant (p.629) en-

BIEY) .o 736
DomainParticipantResourceLimitsQosPolicy
(Various settings that configure how a

com.rti.dds.domain.DomainParticipant (p.629) al-

locates and uses physical memory for internal resources,

including the maximum sizes of various properties) 741
DoubleSeq (Instantiates com.rti.dds.util.Sequence (p.1432) <

double >). 759
DurabilityQosPolicy (This QoS policy specifies whether or not

RTT Connext will store and deliver previously published data

samples to new com.rti.dds.subscription.DataReader

(p.473) entities that join the network later). 765
DurabilityQosPolicyKind (Kinds of durability) 770
DurabilityServiceQosPolicy (Various settings to con-

figure the external RTI Persistence Service

used by RTI Connext for DataWriters with a
com.rti.dds.infrastructure.DurabilityQosPolicy

(p.765) setting of Durability QosPoli-

cyKind. PERSISTENT_DURABILITY_QOS (p.772)

or DurabilityQosPolicyKind. TRANSIENT _-

DURABILITY_QOS (p.771)) . . .o 73
Duration_t (Type for duration representation) 776
DynamicData (A sample of any complex data type, which can be

inspected and manipulated reflectively) 780
DynamicDatalnfo (A descriptor for a

com.rti.dds.dynamicdata.DynamicData (p.780) ob-

Ject) .o 844
DynamicDataMemberInfo (A descriptor for a single member (i.e.

field) of dynamically defined data type) 846

DynamicDataProperty_t (A collection of attributes used to config-
ure com.rti.dds.dynamicdata.DynamicData (p. 780) ob-

Jects) oL 849
DynamicDataReader (Reads (subscribes to) objects of type
com.rti.dds.dynamicdata.DynamicData (p.780)) 851
DynamicDataSeq (An ordered collection of
com.rti.dds.dynamicdata.DynamicData (p.780) el
EMENtS) 881

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

Class Index

DynamicDataTypeProperty_t (A collection of attributes used
to configure com.rti.dds.dynamicdata.DynamicData
(p.-780) objects)

DynamicDataTypeSerializationProperty_t (Properties that gov-
ern how data of a certain type will be serialized on the network
)

DynamicDataTypeSupport (A factory for register-
ing a dynamically defined type and creating
com.rti.dds.dynamicdata.DynamicData (p.780) ob-
Jects) ..o

DynamicDataWriter (Writes (publishes) objects of type
com.rti.dds.dynamicdata.DynamicData (p.780))

EndpointGroup_t (Specifies a group of endpoints that can be collec-
tively identified by a name and satisfied by a quorum)

EndpointGroupSeq (A sequence of
com.rti.dds.infrastructure.EndpointGroup_t (p.909)) .

Entity (<<interface>> (p. 271) Abstract base class for all the DDS
objects that support QoS policies, a listener, and a status
condition)

EntityFactoryQosPolicy (A QoS policy for all
com.rti.dds.infrastructure.Entity (p-912) types
that can act as factories for one or more other
com.rti.dds.infrastructure.Entity (p.912) types).

EntityHowTo.MyEntityListener

EntityNameQosPolicy (Assigns a name and a role name to
a com.rti.dds.domain.DomainParticipant (p.629),
com.rti.dds.publication.DataWriter (p. 538) or
com.rti.dds.subscription.DataReader (p.473). These
names will be visible during the discovery process and in RTT
tools to help you visualize and debug your system).

Enum (A superclass for all type-safe enumerated types)

EnumMember (A description of a member of an enumeration) . . .

EventQosPolicy (Settings forevent)

ExclusiveAreaQosPolicy (Configures multi-thread concurrency and
deadlock prevention capabilities)

FloatSeq (Instantiates com.rti.dds.util.Sequence (p.1432) <
float >)

FlowController (<<interface>> (p.271) A flow controller
is the object responsible for shaping the network
traffic by determining when attached asynchronous
com.rti.dds.publication.DataWriter (p.538) instances
are allowed to writedata) L

FlowControllerProperty_t (Determines the flow control charac-
teristics of the com.rti.dds.publication.FlowController

(D-942)) o v o e

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

5.1 Class List 27

FlowControllerSchedulingPolicy (Kinds of flow controller schedul-
ing policy) 948
FlowControllerTokenBucketProperty_t
(Com.rti.dds.publication.FlowController uses the popu-
lar token bucket approach for open loop network flow control.
The flow control characteristics are determined by the token

bucket properties) 951
Foo (A representative user-defined data type) 955
Foo (A representative user-defined data type) 956
FooDataReader (<<interface>> (p.271) <<generic>>

(p. 271) User data type-specific data reader) 958
FooDataReader (<<interface>> (p.271) <<generic>>

(p. 271) User data type-specific data reader) 988
FooDataWriter (<<interface>> (p.271) <<generic>> (p.271)

User data type specific data writer) 1021
FooDataWriter (<<interface>> (p.271) <<generic>> (p.271)

User data type specific data writer) 1040

FooSeq (<<interface>> (p.271) <<generic>> (p.271) A type-
safe, ordered collection of elements. The type of these ele-
ments is referred to in this documentation as Foo (p.955)
) 1056
FooSeq (<<interface>> (p.271) <<generic>> (p.271) A type-
safe, ordered collection of elements. The type of these ele-
ments is referred to in this documentation as Foo (p.956)

) 1058
FooTypeSupport (<<interface>> (p.271) <<generic>>

(p. 271) User data type specific interface) 1060
FooTypeSupport 1063

GroupDataQosPolicy (Attaches a buffer of opaque data that is dis-
tributed by means of Built-in Topics (p. 153) during discov-
ETV) o v e 1064
GuardCondition (<<interface>> (p.271) A specific
com.rti.dds.infrastructure.Condition (p.451) whose
trigger value is completely under the control of the
application) L Lo 1066
GUID_t (Type for GUID (Global Unique Identifier) representation) 1069
HistoryQosPolicy (Specifies the behavior of RTT Connext in the case
where the value of a sample changes (one or more times) before
it can be successfully communicated to one or more existing

subscribers)o Lo 1071
HistoryQosPolicyKind (Kinds of history) 1075
InconsistentTopicStatus (StatusKind. INCONSISTENT_TOPIC_-

STATUS) . . . o e 1077
Inet AddressSeq (Declares IDL sequence< java.net.InetAddress >) 1079
InstanceHandle_t (Type definition for an instance handle) 1080

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

28

Class Index

InstanceHandleSeq (Instantiates com.rti.dds.util.Sequence
(p. 1432) < com.rti.dds.infrastructure.InstanceHandle_-

6 (P1080) >) . 1083
InstanceStateKind (Indicates is the samples are from a live
com.rti.dds.publication.DataWriter (p.538) or not) . . 1086

IntSeq (Instantiates com.rti.dds.util.Sequence (p.1432) < int >)1089
KeyedBytes (Built-in type consisting of a variable-length array of
opaque bytes and a string that isthekey). 1095
KeyedBytesDataReader (<<interface>> (p.271) Instantiates
DataReader < com.rti.dds.type.builtin.KeyedBytes
(p-1095) >) . . o 1098
KeyedBytesDataWriter (<<interface>> (p.271) Instantiates
DataWriter < com.rti.dds.type.builtin.KeyedBytes
(0-1095) >) o 1106
KeyedBytesSeq (Instantiates com.rti.dds.util.Sequence
(p. 1432) < com.rti.dds.type.builtin.KeyedBytes

(D.1095) >) o 1116
KeyedBytesTypeSupport (<<interface>> (p.271)

com.rti.dds.type.builtin.KeyedBytes (p.1095) type

SUPDOTE) v v v v v e e e 1119
KeyedString (Keyed string built-in type) 1123

KeyedStringDataReader (<<interface>> (p.271) Instantiates
DataReader < com.rti.dds.type.builtin.KeyedString
(D-1123) >) oo 1125

KeyedStringDataWriter (<<interface>> (p.271) Instantiates
DataWriter < com.rti.dds.type.builtin.KeyedString
(D-1123) >) o 1133

KeyedStringSeq (Instantiates com.rti.dds.util.Sequence
(p. 1432) < com.rti.dds.type.builtin.KeyedString

(D 1123) >) o 1141
KeyedStringTypeSupport (<<interface>> (p.271) Keyed
string type support) 1144

LatencyBudgetQosPolicy (Provides a hint as to the maximum ac-
ceptable delay from the time the data is written to the time

it is received by the subscribing applications) 1148
LibraryVersion_t (The version of a single library shipped as part of
an RTI Connext distribution) 1150

LifespanQosPolicy (Specifies how long the data written by the
com.rti.dds.publication.DataWriter (p.538) is consid-

eredvalid) Lo 1152
Listener (<<interface>> (p.271) Abstract base class for all Lis-

tener (p.1154) interfaces) 1154
LivelinessChangedStatus (StatusKind. LIVELINESS_CHANGED _-

STATUS) oo 1159

LivelinessLostStatus (StatusKind. LIVELINESS LOST_STATUS) . 1162

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

5.1 Class List 29

LivelinessQosPolicy (Specifies and configures the mechanism that

allows com.rti.dds.subscription.DataReader (p.473) en-

tities to detect when com.rti.dds.publication.DataWriter

(p- 538) entities become disconnected or "dead.”). 1164
LivelinessQosPolicyKind (Kinds of liveliness) 1168
LoanableSequence (A sequence capable of storing its elements di-

rectly or taking out a loan on them from an internal middle-

ware store) 1170
Locator_t (<<eXtension>> (p.270) Type used to represent the

addressing information needed to send a message to an RTPS

Endpoint using one of the supported transports) 1174
LocatorFilter_t (Specifies the configuration of an individual channel
within a MultiChannel DataWriter) 1178

LocatorFilterQosPolicy (The QoS policy used to report the
configuration of a MultiChannel DataWriter as part of

builtin.PublicationBuiltinTopicData) 1181
LocatorFilterSeq (Declares IDL sequence<

com.rti.dds.infrastructure.LocatorFilter_t (p.1178)

D 1183
LocatorSeq (Declares IDL sequence <

com.rti.dds.infrastructure.Locator_t (p.1174) >) 1184
LogCategory (Categories of logged messages) 1185
Logger (<<interface>> (p. 271) The singleton type used to config-

ure RTT Connext logging) 1187

LoggingQosPolicy (Configures the RTI Connext logging facility) . 1190
LogPrintFormat (The format used to output RTI Connext diagnos-

tic information) Lo Lo 1192
LogVerbosity (The verbosities at which RTI Connext diagnostic in-

formation is logged) oL 1195
LongDoubleSeq (Instantiates com.rti.dds.util.Sequence

(p.1432) < com.rti.dds.infrastructure.LongDouble >

) 1197
LongSeq (Instantiates com.rti.dds.util.Sequence (p.1432) <

long >) 1199

MultiChannelQosPolicy (Configures the ability of a DataWriter to
send data on different multicast groups (addresses) based on
the value of thedata) 1205
MultiTopic ([Not supported (optional)]
<<interface>> (p.271) A specialization of
com.rti.dds.topic.TopicDescription (p. 1561) that
allows subscriptions that combine/filter/rearrange data

coming from several topics) L 1208
ObjectHolder (<<eXtension>> (p.270) Holder of object instance)1211
OfferedDeadlineMissedStatus (StatusKind. OFFERED _-

DEADLINE_MISSED STATUS) 1212

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

30

Class Index

OfferedIncompatibleQosStatus (StatusKind. OFFERED _-
INCOMPATIBLE_QOSSTATUS) 1214
OwnershipQosPolicy (Specifies whether it is allowed for multiple
com.rti.dds.publication.DataWriter (p.538) (s) to write
the same instance of the data and if so, how these modifica-
tions should be arbitrated) 1216
OwnershipQosPolicyKind (Kinds of ownership) 1223
OwnershipStrengthQosPolicy (Specifies the value of
the strength used to arbitrate among multiple
com.rti.dds.publication.DataWriter (p.538) objects
that attempt to modify the same instance of a data type
(identified by com.rti.dds.topic.Topic (p. 1545) + key)) . 1225
ParticipantBuiltinTopicData (Entry created when a DomainPar-

ticipant (p.629) object is discovered) 1227
ParticipantBuiltinTopicDataDataReader (Instantiates
DataReader < builtin.ParticipantBuiltinTopicData
(p-1227) >) oo 1230
ParticipantBuiltinTopicDataSeq (Instantiates
com.rti.dds.util.Sequence (p.1432) <
builtin.ParticipantBuiltinTopicData (p.1227) >) 1231
ParticipantBuiltinTopicDataTypeSupport (Instantiates
TypeSupport < builtin.ParticipantBuiltinTopicData
(D-1227) >) o 1232

PartitionQosPolicy (Set of strings that introduces a
logical partition among the topics visible by a
com.rti.dds.publication.Publisher (p.1277) and a
com.rti.dds.subscription.Subscriber (p.1478)). 1233

PresentationQosPolicy (Specifies how the samples representing
changes to data instances are presented to a subscribing ap-

plication) 1237
PresentationQosPolicyAccessScopeKind (Kinds of presentation

7access SCOPE”) ..o e e 1242
PRIVATE_MEMBER (Constant used to indicate that a value type

member is private) oo 1244
ProductVersion_t (<<eXtension>> (p.270) Type used to repre-

sent the current version of RTI Connext) 1245
ProfileQosPolicy (Configures the way that XML documents contain-

ing QoS profiles are loaded by RTI Connext) 1247
Property_t (Properties are name/value pairs objects) 1250

PropertyQosPolicy (Stores name/value(string) pairs that can be
used to configure certain parameters of RTT Connext that are
not exposed through formal QoS policies. Can also be used
to store and propagate application-specific name/value pairs

that can be retrieved by user code during discovery) 1252
PropertyQosPolicyHelper (Policy Helpers which facilitate manage-
ment of the properties in the input policy) 1255

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

5.1 Class List 31

PropertySeq (Declares IDL sequence <

com.rti.dds.infrastructure.Property_t (p. 1250) >

) 1259
ProtocolVersion_t (<<eXtension>> (p.270) Type used to repre-

sent the version of the RTPS protocol) 1260
PUBLIC_MEMBER (Constant used to indicate that a value type

member ispublic) Lo Lo 1263
PublicationBuiltinTopicData (Entry created when a

com.rti.dds.publication.DataWriter (p.538) is dis-

covered in association with its Publisher (p.1277)) 1264
PublicationBuiltinTopicDataDataReader (Instantiates

DataReader < builtin.PublicationBuiltinTopicData

(D1264) >) o 1271
PublicationBuiltinTopicDataSeq (Instantiates

com.rti.dds.util.Sequence (p.1432) <

builtin.PublicationBuiltinTopicData (p.1264) >) 1272
PublicationBuiltinTopicDataTypeSupport (Instantiates

TypeSupport < builtin.PublicationBuiltinTopicData

(p-1264) >) . . . 1273
PublicationMatchedStatus (StatusKind. PUBLICATION -

MATCHED_STATUS).o e 1274
Publisher (<<interface>> (p.271) A publisher is the object re-

sponsible for the actual dissemination of publications) 1277
PublisherAdapter (<<eXtension>> (p. 270) A listener adapter in

the spirit of the Java AWT listener adapters. (The Adapter

provides empty implementations for the listener methods)) . 1301
PublisherListener (<<interface>> (p. 271)

com.rti.dds.infrastructure.Listener (p.1154) for

com.rti.dds.publication.Publisher (p.1277) status

) 1302
PublisherQos (QoS policies supported by a

com.rti.dds.publication.Publisher (p.1277) entity

) 1303
PublisherSeq (Declares IDL sequence <

com.rti.dds.publication.Publisher (p.1277) >). 1306
PublishModeQosPolicy (Specifies how RTI Connext sends applica-

tion data on the network. This QoS policy can be used to tell

RTT Connext to use its own thread to send data, instead of

the user thread) L. 1308
PublishModeQosPolicyKind (Kinds of publishing mode) 1311
Qos (An abstract base class for all QoS types) 1313
QosPolicy (The base class for all QoS policies) 1314
QosPolicyCount (Type to hold a counter for a

com.rti.dds.infrastructure.QosPolicyld_t (p.1318)

) 1315

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

32 Class Index
QosPolicyCountSeq (Declares IDL sequence <

com.rti.dds.infrastructure.QosPolicyCount (p.1315) >) 1317

QosPolicyId_t (Type to identify QosPolicies) 1318

QueryCondition (<<interface>> (p.271) These are specialised
com.rti.dds.subscription.ReadCondition (p.1326) ob-
jects that allow the application to also specify a filter on the
locally available data) L. 1324
ReadCondition (<<interface>> (p.271) Conditions specifi-
cally dedicated to read operations and attached to one

com.rti.dds.subscription.DataReader (p.473)) 1326
ReaderDataLifecycleQosPolicy (Controls how a DataReader man-
ages the lifecycle of the data that it has received) 1328

ReceiverPoolQosPolicy (Configures threads used by RTT Connext
to receive and process data from transports (for example,

UDP sockets)) L 1331
RefilterQosPolicyKind (<<eXtension>> (p.270) Kinds of Re-

filtering) 1334
ReliabilityQosPolicy (Indicates the level of reliability of-

fered /requested by RTI Connext) 1336
ReliabilityQosPolicyKind (Kinds of reliability) 1340
ReliableReaderActivityChangedStatus (<<eXtension>>

(p- 270) Describes the activity (i.e. are acknowledgements
forthcoming) of reliable readers matched to a reliable writer) 1342

ReliableWriterCacheChangedStatus (<<eXtension>>
(p-270) A summary of the state of a data writer’s cache of
unacknowledged samples written) L. 1345

ReliableWriterCacheEventCount (<<eXtension>> (p.270)
The number of times the number of unacknowledged sam-
ples in the cache of a reliable writer hit a certain well-defined
threshold) 1349
RemoteParticipantPurgeKind (Available behaviors for halting
communication with remote participants (and their contained
entities) with which discovery communication has been lost) 1350
RequestedDeadlineMissedStatus (StatusKind. REQUESTED _-

DEADLINE_MISSED STATUS) 1353
RequestedIncompatibleQosStatus (StatusKind. REQUESTED -
INCOMPATIBLE_QOSSTATUS) 1354

ResourceLimitsQosPolicy (Controls the amount of physical mem-
ory allocated for DDS entities, if dynamic allocations are
allowed, and how they occur. Also controls memory usage

among different instance values for keyed topics) 1356
RETCODE_ALREADY _DELETED (The object target of this op-

eration has already been deleted) 1362
RETCODE_BAD_PARAMETER (Illegal parameter value) . . . 1363
RETCODE_ERROR (Generic, unspecified error) 1364

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

5.1 Class List 33
RETCODE_ILLEGAL_OPERATION (The operation was called
under improper circumstances) 1365
RETCODE_IMMUTABLE _POLICY (Application attempted to
modify an immutable QoS policy) 1366
RETCODE_INCONSISTENT POLICY (Application specified a
set of QoS policies that are not consistent with each other) . 1367
RETCODE_NO_DATA (Indicates a transient situation where the
operation did not return any data but there is no inherent
EITOT) v v v v v e e e e e e e e 1368
RETCODE_NOT_ENABLED (Operation invoked on a
com.rti.dds.infrastructure.Entity (p.912) that is not yet
enabled) 1369
RETCODE_OUT_OF_RESOURCES (RTI Connext ran out of the
resources needed to complete the operation) 1370
RETCODE_PRECONDITION _NOT_MET (A pre-condition for
the operation wasnot met) L. 1371
RETCODE_TIMEOUT (The operation timed out). 1372
RETCODE_UNSUPPORTED (Unsupported operation. Can only
returned by operations that are unsupported) 1373
RtpsReliableReaderProtocol_t (Qos (p.1313) related to reliable
reader protocol defined in RTPS) 1374
RtpsReliableWriterProtocol_t (QoS related to the reliable writer
protocol defined in RTPS) 1378
RtpsReservedPortKind (RTPS reserved port kind, used to identify
the types of ports that can be reserved on domain (p.317)
participant enable). Lo L 1394
RtpsWellKnownPorts_t (RTPS well-known port mapping configu-
Tation) ... 1396
Sampleldentity _t (Type definition for an Sample Identity) 1402
SampleInfo (Information that accompanies each sample that is read
Ortakem) 1404
SamplelnfoSeq (Declares IDL sequence <
com.rti.dds.subscription.Samplelnfo (p.1404) >) 1414
SampleLostStatus (StatusKind. SAMPLE_LOST_STATUS -
STATUS) . . . o e 1415
SampleLostStatusKind (Kinds of reasons why a sample was lost) . 1416
SampleRejectedStatus (StatusKind. SAMPLE_REJECTED _-
STATUS) . . . oo oo 1422
SampleRejectedStatusKind (Kinds of reasons for rejecting a sam-
Ple) . . 1424
SampleStateKind (Indicates whether or not a sample has ever been
read) ... 1430
Sequence (<<interface>> (p.271) <<generic>> (p.271) A
type-safe, ordered collection of elements. The type of these
elements is referred to in this documentation as Foo) 1432
SequenceNumber_t (Type for sequence number representation) . . 1435

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

34

Class Index

ShmemTransport (Built-in transport (p.367) plug-in for inter-
process communications using shared memory) 1439

ShmemTransport.Property_t (Subclass of Trans-
port.Property_t (p.1570) allowing specification of pa-
rameters that are specific to the shared-memory transport

(P-367)) . 1443
ShortSeq (Instantiates com.rti.dds.util.Sequence (p.1432) <
short >) . .. L 1446

StatusCondition (<<interface>> (p.271) A specific
com.rti.dds.infrastructure.Condition (p.451) that
is associated with each com.rti.dds.infrastructure.Entity

(D-912))« 1452
StatusKind (Type for status kinds) 1455
StringDataReader (<<interface>> (p.271) Instantiates

DataReader < String >) 1465
StringDataWriter (<<interface>> (p.271) Instantiates

DataWriter < String >) 1468
StringSeq (Declares IDL sequence < String >) 1470
StringTypeSupport (<<interface>> (p.271) String type support)1473
StructMember (A description of a member of a struct) 1476

Subscriber (<<interface>> (p.271) A subscriber is the object re-
sponsible for actually receiving data from a subscription
(D-343)) o o 1478

Subscriber Adapter (A listener adapter in the spirit of the Java AWT
listener adapters. (The Adapter provides empty implementa-

tions for the listener methods)). 1503
SubscriberListener (<<interface>> (p.271)

com.rti.dds.infrastructure.Listener (p.1154) for sta-

tus about a subscriber) oL 1504

SubscriberQos (QoS policies supported by a
com.rti.dds.subscription.Subscriber (p.1478) entity

) 1506
SubscriberSeq (Declares IDL sequence <
com.rti.dds.subscription.Subscriber (p.1478) >) 1508

SubscriptionBuiltinTopicData (Entry created when a
com.rti.dds.subscription.DataReader (p.473) is dis-

covered in association with its Subscriber (p.1478)) 1510
SubscriptionBuiltinTopicDataDataReader

(Instantiates DataReader (p.473) <

builtin.SubscriptionBuiltinTopicData (p.1510) >

) 1517
SubscriptionBuiltinTopicDataSeq (Instantiates

com.rti.dds.util.Sequence (p.1432) <

builtin.SubscriptionBuiltinTopicData (p.1510) >

) 1518

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

5.1 Class List

35

SubscriptionBuiltinTopicDataTypeSupport (Instantiates
TypeSupport < builtin.SubscriptionBuiltinTopicData
(P-1510) >) oo

SubscriptionMatchedStatus (StatusKind. SUBSCRIPTION _-
MATCHED STATUS).o o it

SystemException (System exception)

SystemResourceLimitsQosPolicy (Configures
com.rti.dds.domain.DomainParticipant (p. 629)-
independent resources used by RTI Connext.
Mainly used to change the maximum number of
com.rti.dds.domain.DomainParticipant (p.629) en-
tities that can be created within a single process (address
SPACE)) v e e e e e e

TCKind (Enumeration type for TypeCode (p. 1611) kinds)

ThreadSettings_t (The properties of a thread of execution).

ThreadSettingsCpuRotationKind (Determines how
com.rti.dds.infrastructure.ThreadSettings_t.cpu_-
list (p. 1532) affects processor affinity for thread-related QoS
policies that apply to multiple threads)

ThreadSettingsKind (A collection of flags used to configure threads
of execution) L

Time_t (Type for time representation)

TimeBasedFilterQosPolicy (Filter that allows a
com.rti.dds.subscription.DataReader (p.473) to specify
that it is interested only in (potentially) a subset of the values
ofthedata).

Topic (<<interface>> (p.271) The most basic description of the
data to be published and subscribed)

TopicAdapter (<<eXtension>> (p.270) A listener adapter in the
spirit of the Java AWT listener adapters. (The Adapter pro-
vides empty implementations for the listener methods)) . . .

TopicBuiltinTopicData (Entry created when a Topic (p. 1545) ob-
ject discovered) o

TopicBuiltinTopicDataDataReader (Instantiates DataReader <
builtin.TopicBuiltinTopicData (p.1552) >).

TopicBuiltinTopicDataSeq (Instantiates
com.rti.dds.util.Sequence (p.1432) <
builtin.TopicBuiltinTopicData (p. 1552) >).

TopicBuiltinTopicDataTypeSupport (Instantiates TypeSupport
(p. 1651) < builtin. TopicBuiltinTopicData (p. 1552) >)

TopicDataQosPolicy (Attaches a buffer of opaque data that is dis-
tributed by means of Built-in Topics (p. 153) during discov-
BTV) v o e e e e

TopicDescription (Com.rti.dds.topic.Topic entity and associated el-
EMENtS)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

36 Class Index
TopicListener (<<interface>> (p-271)
com.rti.dds.infrastructure.Listener (p-1154) for
com.rti.dds.topic.Topic (p. 1545) entities) 1564
TopicQos (QoS policies supported by a com.rti.dds.topic.Topic
(p-15645) entity) 1566
Transport (RTI Connext’s abstract pluggable transport (p.367) in-
terface) 1569
Transport.Property_t (Base structure that must be inherited by
derived Transport (p.1569) Plugin classes) 1570
TransportBuiltinKind (Built-in transport kind) 1578
TransportBuiltinQosPolicy (Specifies which built-in transports are
used) ... 1580
TransportMulticastMapping_t (Type representing a list of multi-
cast mapping elements) L. 1582
TransportMulticastMappingFunction_t (Type representing an
external mapping function) L L. 1585

TransportMulticastMappingQosPolicy (Specifies the multicast
address on which a com.rti.dds.subscription.DataReader
(p.-473) wants to receive its data. It can also spec-
ify a port number as well as a subset of the available
(at the com.rti.dds.domain.DomainParticipant (p.629)
level) transports with which to receive the multicast data) . 1587
TransportMulticastMappingSeq (Declares IDL sequence<
com.rti.dds.infrastructure.TransportMulticastSettings_-
C(D1594) >) 1589
TransportMulticastQosPolicy (Specifies the multicast address on
which a com.rti.dds.subscription.DataReader (p.473)
wants to receive its data. It can also specify a port
number as well as a subset of the available (at the
com.rti.dds.domain.DomainParticipant (p.629) level)

transports with which to receive the multicast data) 1590
TransportMulticastQosPolicyKind (Transport Multicast Policy

Kind) . ..o 1593
TransportMulticastSettings_t (Type representing a list of multi-

cast locators) 1594

TransportMulticastSettingsSeq (Declares IDL sequence<
com.rti.dds.infrastructure.TransportMulticastSettings_-
t(p.1594) >) ... 1597

TransportPriorityQosPolicy (This QoS policy allows the applica-
tion to take advantage of transports that are capable of send-
ing messages with different priorities) 1598

TransportSelectionQosPolicy (Specifies the physical trans-
ports a com.rti.dds.publication.DataWriter (p.538) or
com.rti.dds.subscription.DataReader (p.473) may use
to send or receivedata) 1600

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

5.1 Class List 37
TransportSupport (<<interface>> (p. 271) The utility class used

to configure RTT Connext pluggable transports) 1602
TransportUnicastQosPolicy (Specifies a subset of transports and a

port number that can be used by an Entity (p.912) to receive

data) 1605
TransportUnicastSettings_t (Type representing a list of unicast lo-

Cators) 1608
TransportUnicastSettingsSeq (Declares IDL sequence<

com.rti.dds.infrastructure.TransportUnicastSettings_-

t(D1608) >) ot 1610
TypeCode (The definition of a particular data type, which you can

use to inspect the name, members, and other properties of

types generated with rtiddsgen (p.290) or to modify types

you define yourself at runtime) L. 1611
TypeCodeFactory (A singleton factory for creating, copying, and

deleting data type definitions dynamically) 1641
TypeSupport (<<interface>> (p.271) An abstract marker inter-

face that has to be specialized for each concrete user data type

that will be used by the application). 1651
TypeSupportQosPolicy (Allows you to attach application-specific

values to a DataWriter or DataReader that are passed to the

serialization or deserialization routine of the associated data

EYPE) o e 1652
UDPv4Transport (Built-in transport (p.367) plug-in using

UDP/IPv4) . . . o o e e 1654
UDPv4Transport.Property_t (Configurable IPv4/UDP Transport-

Plugin properties) 1658
UDPv6Transport (Built-in transport (p.367) plug-in using

UDP/IPv6) . . . o o oo 1666
UDPv6Transport.Property_t (Configurable IPv6/UDP Transport-

Plugin properties) 1670
Union e 1677
UnionMember (A description of a member of a union) 1678
UserDataQosPolicy (Attaches a buffer of opaque data that is dis-

tributed by means of Built-in Topics (p. 153) during discov-

ETY) v v e 1680
UserException (User exception) 1682
ValueMember (A description of a member of a value type) 1683
Vendorld_t (<<eXtension>> (p.270) Type used to represent the

vendor of the service implementing the RTPS protocol) . . . 1685
Version (<<interface>> (p.271) The version of an RTI Connext

distribution) Lo 1687
ViewStateKind (Indicates whether or not an instance is new) 1689
VM_ABSTRACT (Constant used to indicate that a value type has

the abstract modifier) 1691

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

38

Class Index

VM_CUSTOM (Constant used to indicate that a value type has the

custommodifier) Lo L 1692
VM_NONE (Constant used to indicate that a value type has no mod-

flers) 1693
VM _TRUNCATABLE (Constant used to indicate that a value type

has the truncatable modifier) 1694

WaitSet (<<interface>> (p.271) Allows an applica-
tion to wait wuntil one or more of the attached
com.rti.dds.infrastructure.Condition (p.451) objects
has a trigger_value of true or else until the timeout expires) 1695
WaitSetProperty_t (<<eXtension>> (p.270) Specifies the
com.rti.dds.infrastructure.WaitSet (p. 1695) behavior for

multiple trigger events) oL 1705
WcharSeq (Instantiates com.rti.dds.util.Sequence (p.1432) <
char >) 1707

WireProtocolQosPolicy (Specifies the wire-protocol-related at-
tributes for the com.rti.dds.domain.DomainParticipant

(0-629)) o 1709
WireProtocolQosPolicy AutoKind (Kind of auto mechanism used

to calculate the GUID prefix). 1718
WriteParams_t (<<eXtension>> (p. 270) In-

put parameters for writing with

com.rti.dds.topic.example.FooDataWriter.write_w_params,
com.rti.dds.topic.example.FooDataWriter.dispose_w_params,
com.rti.dds.topic.example.FooDataWriter.register_instance_-
w_params, com.rti.dds.topic.example.FooDataWriter.unregister -
instance_w_params) 1719
WriterDataLifecycleQosPolicy (Controls how a
com.rti.dds.publication.DataWriter (p.538) handles
the lifecycle of the instances (keys) that it is registered to

MANAZE)« v o v v e e e e e e e 1722
WstringSeq (Instantiates com.rti.dds.util.Sequence (p.1432)
<chars >) . .. oL 1725

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

Chapter 6

Module Documentation

6.1 ASYNCHRONOUS_PUBLISHER

<<eXtension>> (p.270) Specifies the asynchronous publishing settings of
the com.rti.dds.publication.Publisher (p.1277) instances.
Classes

" class AsynchronousPublisherQosPolicy

Configures the mechanism that sends user data in an external middleware
thread.

Variables

"~ static final QosPolicyld t ASYNCHRONOUSPUBLISHER_QOS -

POLICY_ID
<<eXtension>> (p-270) Identifier for
com.rti.dds.infrastructure. AsynchronousPublisherQosPolicy
(p. 387)

6.1.1 Detailed Description

<<eXtension>> (p.270) Specifies the asynchronous publishing settings of
the com.rti.dds.publication.Publisher (p.1277) instances.

40 Module Documentation

6.1.2 Variable Documentation

6.1.2.1 final QosPolicyld_t ASYNCHRONOUSPUBLISHER _-
QOS_POLICY_ID [static, inherited]

<<eXtension>> (p. 270) Identifier for com.rti.dds.infrastructure. AsynchronousPublisherQosF
(p. 387)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.2 AVAILABILITY 41

6.2 AVAILABILITY

<<eXtension>> (p.270) Configures the availability of data.

Classes

" class AvailabilityQosPolicy
Configures the availability of data.

" class EndpointGroup_t

Specifies a group of endpoints that can be collectively identified by a name
and satisfied by a quorum.

" class EndpointGroupSeq
A sequence of com.rti.dds.infrastructure. EndpointGroup_t (p. 909).

Variables

" static final QosPolicyld_t AVAILABILITY_QOS_POLICY_ID

<<eXtension>> (p-270) Identifier for
com.rti.dds.infrastructure. AvailabilityQosPolicy (p. 392)

6.2.1 Detailed Description

<<eXtension>> (p.270) Configures the availability of data.

6.2.2 Variable Documentation

6.2.2.1 final QosPolicyld_t AVAILABILITY_QOS_POLICY_ID

[static, inherited]

<<eXtension>> (p. 270) Identifier for com.rti.dds.infrastructure.AvailabilityQosPolicy
(p.392)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

42 Module Documentation

6.3 BATCH

<<eXtension>> (p.270) Batch QoS policy used to enable batching in
com.rti.dds.publication.DataWriter (p.538) instances.
Classes

" class BatchQosPolicy

Used to configure batching of multiple samples into a single network packet
in order to increase throughput for small samples.

Variables

"~ static final QosPolicyld.t BATCH_QOS_POLICY _ID

<<eXtension>> (p-270) Identifier for
com.rti.dds.infrastructure. BatchQosPolicy (p. /01)

6.3.1 Detailed Description

<<eXtension>> (p.270) Batch QoS policy used to enable batching in
com.rti.dds.publication.DataWriter (p.538) instances.

6.3.2 Variable Documentation

6.3.2.1 final QosPolicyld_t BATCH_QOS_POLICY_ID [static,

inherited]

<<eXtension>> (p. 270) Identifier for com.rti.dds.infrastructure.BatchQosPolicy
(p.401)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.4 Conditions and WaitSets 43

6.4 Conditions and WaitSets

com.rti.dds.infrastructure.Condition (p.451) and
com.rti.dds.infrastructure.WaitSet (p.1695) and related items.

Classes

~ interface Condition

<<interface>> (p.271) Root class for all the conditions that may be at-
tached to a com.rti.dds.infrastructure. WaitSet (p. 1695).

class ConditionSeq

Instantiates com.rti.dds.util.Sequence (p.1432) <
com.rti.dds.infrastructure. Condition (p. 451) >.

class GuardCondition

<<interface>> (p.271) A specific com.rti.dds.infrastructure. Condition
(p- 451) whose trigger_value is completely under the control of the appli-
cation.

interface StatusCondition

<<interface>> (p.271) A specific com.rti.dds.infrastructure. Condition
(p-451) that is associated with each com.rti.dds.infrastructure. Entity

(p- 912).

~ class WaitSet

<<interface>> (p.271) Allows an application to wait until one or more of
the attached com.rti.dds.infrastructure. Condition (p. 451) objects has a
trigger_value of true or else until the timeout expires.

class WaitSetProperty_t

<<eXtension>> (p.270) Specifies the
com.rti.dds.infrastructure. WaitSet (p. 1695) behavior for multiple
trigger events.

6.4.1 Detailed Description

com.rti.dds.infrastructure.Condition (p.451) and
com.rti.dds.infrastructure.WaitSet (p.1695) and related items.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

44 Module Documentation

6.5 DATABASE

<<eXtension>> (p.270) Various threads and resource limits settings used
by RTI Connext to control its internal database.
Classes

" class DatabaseQosPolicy

Various threads and resource limits settings used by RTI Connext to control
its internal database.

Variables

"~ static final QosPolicyld.t DATABASE_QOS_POLICY _ID

<<eXtension>> (p-270) Identifier for
com.rti.dds.infrastructure. DatabaseQosPolicy (p. 468)

6.5.1 Detailed Description

<<eXtension>> (p.270) Various threads and resource limits settings used
by RTI Connext to control its internal database.
6.5.2 Variable Documentation

6.5.2.1 final QosPolicyld_t DATABASE_QOS_POLICY_ID

[static, inherited]

<<eXtension>> (p. 270) Identifier for com.rti.dds.infrastructure.DatabaseQosPolicy
(p. 468)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.6 DATA_READER _PROTOCOL 45

6.6 DATA READER PROTOCOL

<<eXtension>> (p.270) Specifies the DataReader-specific protocol QoS.

Classes

" class DataReaderProtocolQosPolicy

Along with com.rti.dds.infrastructure. Wire ProtocolQosPolicy
(p- 1709) and com.rti.dds.infrastructure. Data Writer ProtocolQosPolicy
(p.571), this QoS policy configures the DDS on-the-network protocol
(RTPS).

Variables

" static final QosPolicyldt DATAREADERPROTOCOL_QOS -
POLICY_ID

<<eXtension>> (p-270) Identifier for
com.rti.dds.infrastructure. DataReaderProtocolQosPolicy (p. 504)

6.6.1 Detailed Description

<<eXtension>> (p.270) Specifies the DataReader-specific protocol QoS.

6.6.2 Variable Documentation

6.6.2.1 final QosPolicyld_.t DATAREADERPROTOCOL_QOS -
POLICY_ID [static, inherited]

<<eXtension>> (p. 270) Identifier for com.rti.dds.infrastructure.DataReaderProtocolQosPolicy
(p.504)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

46 Module Documentation

6.7 DATA READER RESOURCE_LIMITS

<<eXtension>> (p.270) Various settings that configure how DataReaders
allocate and use physical memory for internal resources.

Classes

" class DataReaderResourceLimitsQosPolicy

Various settings that configure how a
com.rti.dds.subscription. DataReader (p.473) allocates and wuses
physical memory for internal resources.

Variables

" static final int AUTO_MAX_TOTAL_INSTANCES

<<eXtension>> (p.270) This walue is used to make
com.rti.dds.infrastructure. DataReaderResourceLimitsQosPolicy.max_-

total_instances (p. 533) equal to com.rti.dds.infrastructure. ResourceLimitsQosPolicy.max_-
instances (p. 1360).

" static final QosPolicyld.t DATAREADERRESOURCELIMITS -
QOS_POLICY_ID

<<eXtension>> (p-270) Identifier for
com.rti.dds.infrastructure. DataReaderResourceLimits QosPolicy
(p-524)

6.7.1 Detailed Description

<<eXtension>> (p.270) Various settings that configure how DataReaders
allocate and use physical memory for internal resources.

6.7.2 Variable Documentation

6.7.2.1 final int AUTO_MAX_TOTAL_INSTANCES [static,
inherited]

<<eXtension>> (p.270) This wvalue is used to make
com.rti.dds.infrastructure.DataReaderResourceLimitsQosPolicy.max_-

total_instances (p. 533) equal to com.rti.dds.infrastructure.ResourceLimitsQosPolicy.max -
instances (p. 1360).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.7 DATA_READER _RESOURCE_LIMITS 47

6.7.2.2 final QosPolicyld_t DATAREADERRESOURCELIMITS _-
QOS_POLICY_ID [static, inherited]

<<eXtension>> (p. 270) Identifier for com.rti.dds.infrastructure.DataReaderResourceLimitsQosPolicy
(p.524)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

48 Module Documentation

6.8 DATA WRITER PROTOCOL

<<eXtension>> (p. 270) Along with com.rti.dds.infrastructure.WireProtocolQosPolicy
(p-1709) and com.rti.dds.infrastructure.DataReaderProtocolQosPolicy
(p. 504), this QoS policy configures the DDS on-the-network protocol (RTPS).

Classes

" class DataWriterProtocolQosPolicy

Protocol that applies only to com.rti.dds.publication. Data Writer (p. 538)
instances.

Variables

" static final QosPolicyld.t DATAWRITERPROTOCOL_QOS -
POLICY_ID

<<eXtension>> (p.270) Identifier for
com.rti.dds.infrastructure. Data WriterProtocolQosPolicy (p. 571)

6.8.1 Detailed Description
<<eXtension>> (p. 270) Along with com.rti.dds.infrastructure.WireProtocolQosPolicy

(p.1709) and com.rti.dds.infrastructure.DataReaderProtocolQosPolicy
(p.504), this QoS policy configures the DDS on-the-network protocol (RTPS).

6.8.2 Variable Documentation

6.8.2.1 final QosPolicyld_t DATAWRITERPROTOCOL_QOS -
POLICY_.ID [static, inherited]

<<eXtension>> (p. 270) Identifier for com.rti.dds.infrastructure.DataWriterProtocolQosPolic
(p.571)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.9 DATA_WRITER_RESOURCE_LIMITS 49

6.9 DATA WRITER RESOURCE_LIMITS

<<eXtension>> (p.270) Various settings that configure how a
com.rti.dds.publication.DataWriter (p.538) allocates and uses physi-
cal memory for internal resources.

Classes

" class DataWriterResourceLimitsInstanceReplacementKind

Sets the kinds of instances that can be replaced when instance resource limits
are reached.

"~ class DataWriterResourceLimitsQosPolicy

Various settings that configure how a
com.rti.dds.publication. Data Writer (p. 538) allocates and uses physical
memory for internal resources.

Variables

" static final QosPolicyld_t DATA_WRITER_RESOURCE_LIMITS _-
QOS_POLICY_ID

<<eXtension>> (p.270) Identifier for
com.rti.dds.infrastructure. Data WriterResourceLimitsQosPolicy
(p- 598)

6.9.1 Detailed Description

<<eXtension>> (p.270) Various settings that configure how a
com.rti.dds.publication.DataWriter (p.538) allocates and uses physi-
cal memory for internal resources.

6.9.2 Variable Documentation

6.9.2.1 final QosPolicyld .t DATA_ WRITER -
RESOURCE_LIMITS_QOS_POLICY_ID [static,

inherited]

<<eXtension>> (p. 270) Identifier for com.rti.dds.infrastructure.DataWriterResourceLimitsQosPolicy
(p. 598)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

50 Module Documentation

6.10 DEADLINE

Expresses the maximum duration (deadline) within which an instance is ex-
pected to be updated.
Classes

" class DeadlineQosPolicy

Ezpresses the mazimum duration (deadline) within which an instance is ex-
pected to be updated.

Variables

"~ static final QosPolicyld_t DEADLINE_QOS_POLICY_ID
Identifier for com.rti.dds.infrastructure. DeadlineQosPolicy (p. 604).

6.10.1 Detailed Description

Expresses the maximum duration (deadline) within which an instance is ex-
pected to be updated.

6.10.2 Variable Documentation

6.10.2.1 final QosPolicyld_t DEADLINE_QOS_POLICY _ID
[static, inherited]

Identifier for com.rti.dds.infrastructure.DeadlineQosPolicy (p.604).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.11 DESTINATION_ORDER 51

6.11 DESTINATION_ORDER

Controls the criteria used to determine the logical order among changes made
by com.rti.dds.publication.Publisher (p. 1277) entities to the same instance
of data (i.e., matching com.rti.dds.topic.Topic (p.1545) and key).

Classes

" class DestinationOrderQosPolicy

Controls how the middleware will deal with data sent by multiple
com.rti.dds.publication. Data Writer (p.538) entities for the same in-
stance of data (i.e., same com.rti.dds.topic. Topic (p. 1545) and key).

" class DestinationOrderQosPolicyKind

Kinds of destination order.

Variables

" static final QosPolicyld_t DESTINATIONORDER_QOS_POLICY _-
D

Identifier for com.rti.dds.infrastructure.DestinationOrderQosPolicy
(p. 607).

6.11.1 Detailed Description
Controls the criteria used to determine the logical order among changes made

by com.rti.dds.publication.Publisher (p. 1277) entities to the same instance
of data (i.e., matching com.rti.dds.topic.Topic (p.1545) and key).

6.11.2 Variable Documentation

6.11.2.1 final QosPolicyld_ t DESTINATIONORDER _QOS _-
POLICY_ID [static, inherited]

Identifier for com.rti.dds.infrastructure.DestinationOrderQosPolicy
(p. 607).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

52 Module Documentation

6.12 DISCOVERY _CONFIG

<<eXtension>> (p.270) Specifies the discovery configuration QoS.

Classes

" class BuiltinTopicReaderResourceLimits_t

Built-in topic (p. 350) reader’s resource limits.

" class DiscoveryConfigBuiltinPluginKind

Built-in discovery plugins that can be used.

" class DiscoveryConfigQosPolicy

Settings for discovery configuration.

" class RemoteParticipantPurgeKind

Awailable behaviors for halting communication with remote participants (and
their contained entities) with which discovery communication has been lost.

Variables

~ static final int SDP

Built-in discovery plugins that can be used.

" static final int MASK _NONE = 0
A bit-mask (list) of built-in discovery plugins.

"~ static final int MASK_ALL = Oxefff
A bit-mask (list) of built-in discovery plugins.

" static final QosPolicyld .t DISCOVERYCONFIG_QOS_POLICY _-
ID

<<eXtension>> (p-270) Identifier for
com.rti.dds.infrastructure. DiscoveryConfigQosPolicy (p. 615)

6.12.1 Detailed Description

<<eXtension>> (p.270) Specifies the discovery configuration QoS.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.12 DISCOVERY _CONFIG 53

6.12.2 Variable Documentation
6.12.2.1 final int SDP [static, inherited]
Built-in discovery plugins that can be used.

See also:

com.rti.dds.infrastructure.DiscoveryConfigBuiltinPluginKindMask .SDP
(p-53)

6.12.2.2 final int MASK_NONE = 0 [static, inherited]

A bit-mask (list) of built-in discovery plugins.

The bit-mask is an efficient and compact representation of a fixed-length list of
com.rti.dds.infrastructure.DiscoveryConfigBuiltinPluginKind (p.614)
values.

QoS:

com.rti.dds.infrastructure.DiscoveryConfigQosPolicy (p.615)
.MASK_NONE

6.12.2.3 final int MASK_ALL = Oxefff [static, inherited]

A bit-mask (list) of built-in discovery plugins.

The bit-mask is an efficient and compact representation of a fixed-length list of
com.rti.dds.infrastructure.DiscoveryConfigBuiltinPluginKind (p.614)
values.

QoS:

com.rti.dds.infrastructure.DiscoveryConfigQosPolicy (p.615)
.MASK_ALL

6.12.2.4 final QosPolicyld t DISCOVERYCONFIG_QOS -
POLICY_ID [static, inherited]

<<eXtension>> (p. 270) Identifier for com.rti.dds.infrastructure.DiscoveryConfigQosPolicy
(p.615)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

54 Module Documentation

6.13 DISCOVERY

<<eXtension>> (p.270) Specifies the attributes required to discover partic-
ipants in the domain.

Modules

" NDDS_DISCOVERY_PEERS

Environment wvariable or a file that specifies the default values of
com.rti.dds.infrastructure. DiscoveryQosPolicy.initial_peers (p. 6206)

and com.rti.dds.infrastructure. DiscoveryQosPolicy.multicast_-
receive_addresses (p. 625) contained n the
com.rti.dds.domain. DomainParticipantQos.discovery (p-739)
qos policy.

Classes

" class DiscoveryQosPolicy

Configures the mechanism used by the middleware to automatically discover
and connect with new remote applications.

Variables

" static final QosPolicyld_t DISCOVERY_QOS_POLICY_ID

<<eXtension>> (p.270) Identifier for
com.rti.dds.infrastructure. DiscoveryQosPolicy (p. 624)

6.13.1 Detailed Description

<<eXtension>> (p.270) Specifies the attributes required to discover partic-
ipants in the domain.

6.13.2 Variable Documentation

6.13.2.1 final QosPolicyld_t DISCOVERY_QOS_POLICY_ID
[static, inherited]

<<eXtension>> (p. 270) Identifier for com.rti.dds.infrastructure.DiscoveryQosPolicy
(p.624)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.14 NDDS_DISCOVERY_PEERS 55

6.14 NDDS DISCOVERY _PEERS

Environment variable or a file that specifies the default wvalues of

com.rti.dds.infrastructure.DiscoveryQosPolicy.initial _peers (p. 626)
and com.rti.dds.infrastructure.DiscoveryQosPolicy.multicast -
receive_addresses (p.625) contained in the

com.rti.dds.domain.DomainParticipantQos.discovery (p.739) qos
policy.

The default value of the com.rti.dds.domain.DomainParticipantQos
(p. 736) is obtained by calling com.rti.dds.domain.DomainParticipantFactory.get -
default_participant_qos() (p. 716).

NDDS_DISCOVERY_PEERS specifies the default value of the

com.rti.dds.infrastructure.DiscoveryQosPolicy.initial _peers (p. 626)
and com.rti.dds.infrastructure.DiscoveryQosPolicy.multicast _-
receive_addresses (p.625) fields, when the default partici-

pant QoS policies have mnot been explictly set by the wuser (i.e.,
com.rti.dds.domain.DomainParticipantFactory.set_default_-
participant_qos() (p.716) has never been called or was called using
DomainParticipantFactory. PARTICIPANT_QOS_DEFAULT).

If NDDS_DISCOVERY _PEERS does not contain
a multicast address, then the string sequence
com.rti.dds.infrastructure.DiscoveryQosPolicy.multicast_receive_-
addresses (p.625) is cleared and the RTT discovery process will not listen for
discovery messages via multicast.

If NDDS_DISCOVERY_PEERS contains one or more
multicast addresses, the addresses will be stored in
com.rti.dds.infrastructure.DiscoveryQosPolicy.multicast_receive_-
addresses (p.625), starting at element 0. They will be stored in the order in
which they appear in NDDS_DISCOVERY _PEERS.

Note: IPv4 multicast addresses must have a prefix. Therefore, when using the
UDPv6 transport: if there are any IPv4 multicast addresses in the peers list,
make sure they have "udpv4://” in front of them (such as udpv4://239.255.0.1).

Note: Currently, RTI Connext will only listen for discov-
ery traffic on the first multicast address (element 0) in
com.rti.dds.infrastructure.DiscoveryQosPolicy.multicast_receive_-
addresses (p. 625).

NDDS_DISCOVERY_PEERS provides a mechanism to dynamically switch the
discovery configuration of an RTI Connext application without recompilation.
The application programmer is free to not use the default values; instead use

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

56 Module Documentation

values supplied by other means.

NDDS_DISCOVERY_PEERS can be specified either in an environment variable
as comma (’,”) separated "peer descriptors" (see Peer Descriptor Format
(p-56)) or in a file. These formats are described below.

6.14.1 Peer Descriptor Format

A peer descriptor string specifies a range of participants at

a given locator. Peer descriptor strings are wused in the
com.rti.dds.infrastructure.DiscoveryQosPolicy.initial_peers (p. 626)
field and the com.rti.dds.domain.DomainParticipant.add_peer() (p.692)
operation.

The anatomy of a peer descriptor is illustrated below using a special ” StarFab-
ric” transport example.

A peer descriptor consists of:

optional Participant ID. If a simple integer is specified, it indicates the maximum
participant ID to be contacted by the RTT Connext discovery mechanism
at the given locator. If that integer is enclosed in square brackets (e.g.:
[2]) only that Participant ID will be used. You can also specify a range
in the form of [a,b]: in this case only the Participant IDs in that specific
range are contacted. If omitted, a default value of 4 is implied.

" Locator. See Locator Format (p. 56).

These are separated by the ’Q’ character. The separator may be omitted if a
participant ID limit is not explictly specified.

Note that the ”participant ID limit” only applies to unicast locators; it is ig-
nored for multicast locators (and therefore should be omitted for multicast peer
descriptors).

6.14.1.1 Locator Format

A locator string specifies a transport and an address in string format. Locators
are used to form peer descriptors. A locator is equivalent to a peer descriptor
with the default maximum participant ID.

A locator consists of:

optional Transport name (alias or class). This identifies the set of transport plu-
gins (Transport Aliases (p. 368)) that may be used to parse the address
portion of the locator. Note that a transport class name is an implicit alias
that is used to refer to all the transport plugin instances of that class.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.14 NDDS_DISCOVERY_PEERS 57

optional Address. See Address Format (p.57).

These are separated by the ”//:” string. The separator is specified if and only
if a transport name is specified.

If a transport name is specified, the address may be omitted; in that case, all
the unicast addresses (across all transport plugin instances) associated with the
transport class are implied. Thus, a locator string may specify several addresses.

If an address is specified, the transport name and the separator string
may be omitted; in that case all the available transport plugins (for the
com.rti.dds.infrastructure.Entity (p.912)) may be used to parse the ad-
dress string.

6.14.1.2 Address Format

An address string specifies a transport-independent network ad-

dress that qualifies a transport-dependent address string. Ad-
dresses are used to form locators. Addresses are also wused in
com.rti.dds.infrastructure.DiscoveryQosPolicy.multicast_receive_-

addresses (p. 625), and com.rti.dds.infrastructure.TransportMulticastSettings_-
t.receive_address (p.1595) fields. An address is equivalent to a locator in

which the transport name and separator are omitted.

An address consists of:

optional Network Address. An address in IPv4 or IPv6 string notation. If omit-
ted, the network address of the transport is implied (Transport Network
Address (p.371)).

optional Transport Address. A string that is passed to the transport for process-
ing. The transport maps this string into Transport.Property_t.address_-
bit_count bits. If omitted the network address is used as the fully qualified
address.

These are separated by the '#’ character. If a separator is specified, it must be
followed by a non-empty string which is passed to the transport plugin.

The bits resulting from the transport address string are prepended with the net-
work address. The least significant Transport.Property_t.address_bit_count bits
of the network address are ignored (Transport Network Address (p.371)).

If the separator is omitted and the string is not a valid IPv4 or IPv6 address,
it is treated as a transport address with an implicit network address (of the
transport plugin).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

58 Module Documentation

6.14.2 NDDS_DISCOVERY_PEERS Environment Vari-
able Format

NDDS_DISCOVERY_PEERS can be specified via an environment variable of
the same name, consisting of a sequence of peer descriptors separated by the

)

comma (’,") character.
Examples

Multicast (maximum participant ID is irrelevant)
7 239.255.0.1
Default maximum participant ID on localhost
" localhost
Default maximum participant ID on host 192.168.1.1 (IPv4)
" 192.168.1.1
Default maximum participant ID on host FAA0::0 (IPv6)
" FAAO:1

Default maximum participant ID on host FAA0::0#localhost (could be a UDPv4
transport plugin registered at network address of FAA0::0) (IPv6)

" FAAO::04#localhost

Default maximum participant ID on host himalaya accessed using the ”"udpv4”
transport plugin(s) (IPv4)

" udpv4://himalaya

Default maximum participant ID on localhost using the ”udpv4” transport plu-
gin(s) registered at network address FAAQ::0

" udpv4://FAAO0::0#1ocalhost

Default maximum participant ID on all unicast addresses accessed via the
"udpv4” (UDPv4) transport plugin(s)

" udpv4://

Default maximum participant ID on host 0/0/R (StarFabric)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.14 NDDS_DISCOVERY_PEERS 59

" 0/0/R
T #0/0/R

Default maximum participant ID on host 0/0/R (StarFabric) using the ”star-
fabric” (StarFabric) transport plugin(s)

" starfabric://0/0/R
" starfabric://#0/0/R

Default maximum participant ID on host 0/0/R (StarFabric) using the ”star-
fabric” (StarFabric) transport plugin(s) registered at network address FAAO0::0

"~ starfabric://FBB0::0#0/0/R

Default maximum participant ID on all unicast addresses accessed via the ”star-
fabric” (StarFabric) transport plugin(s)

" starfabric://

Default maximum participant ID on all unicast addresses accessed via the
"shmem” (shared memory) transport plugin(s)

" shmem://

Default maximum participant ID on all unicast addresses accessed via the
”shmem” (shared memory) transport plugin(s) registered at network address
FCCO0::0

" shmem://FCCO::0

Default maximum participant ID on hosts himalaya and gangotri
" himalaya,gangotri

Maximum participant ID of 1 on hosts himalaya and gangotri
" 1@himalaya,1@Qgangotri

Combinations of above

"~ 239.255.0.1,localhost,192.168.1.1,0/0/R

" FAAO0::1,FAAO::0#localhost, FBB0::0#0/0/R

" udpv4://himalaya,udpv4://FAA0::0#localhost,#0/0/R

" starfabric://0/0/R,starfabric: //FBB0::0#0/0/R,shmem://
" starfabric://,shmem://FCCO0::0,1@himalaya,1@gangotri

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

60 Module Documentation

6.14.3 NDDS_DISCOVERY_PEERS File Format

NDDS_DISCOVERY_PEERS can be specified via a file of the same name in the
program’s current working directory. A NDDS_DISCOVERY _PEERS file would
contain a sequence of peer descriptors separated by whitespace or the comma
(’,)) character. The file may also contain comments starting with a semicolon

)

(’;’) character till the end of the line.

Example:

;; NDDS_DISCOVERY_PEERS - Default Discovery Configuration File

;3 NOTE:

HH 1. This file must be in the current working directory, i.e.
HH in the folder from which the application is launched.

HH 2. This file takes precedence over the environment variable NDDS_DISCOVERY_PEERS

53 Multicast
239.255.0.1

;3 Unicast
localhost,192.168.1.1

FAAO::1 FAAO::0#localhost

1Ghimalaya
1@gangotri

;; UDPv4
udpv4://himalaya
udpv4://FAAQ: :O#localhost

;5 Shared Memory
shmem: //

builtin.shmem://
shmem: //FCCO: :0

;3 StarFabric

0/0/R

starfabric://0/0/R
starfabric://FBBO: :0#0/0/R

starfabric://

The default RTI Connext discovery multicast address

A comma can be used a separator
Whitespace can be used as a separator

Maximum participant ID of 1 on ’himalaya’

’himalaya’ via ’udpv4’ transport plugin(s)
’localhost’ via ’updvé4’ transport

plugin registered at network address FAAO:

A1l ’>shmem’ transport plugin(s)

The builtin ’shmem’ transport plugin

Shared memory transport plugin registered
at network address FCCO::0

StarFabric node 0/0/R

0/0/R accessed via ’starfabric’
transport plugin(s)

StarFabric transport plugin registered
at network address FBBO::0

A1l ’starfabric’ transport plugin(s)

:0

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.14 NDDS_DISCOVERY_PEERS 61

6.14.4 NDDS_DISCOVERY_PEERS Precedence

If the current working directory from which the RTI Connext application is
launched contains a file called NDDS_DISCOVERY_PEERS, and an environ-
ment variable named NDDS_DISCOVERY _PEERS is also defined, the file takes
precedence; the environment variable is ignored.

6.14.5 NDDS _DISCOVERY _PEERS Default Value

If NDDS_DISCOVERY _PEERS is not specified (either as a file in the current
working directory, or as an environment variable), it implicitly defaults to the
following.

;3 Multicast (only on platforms which allow UDPv4 multicast out of the box)

;; This allows any RTI Connext applications anywhere on the local network to
;; discover each other over UDPv4.

builtin.udpv4://239.255.0.1 ; RTI Connext’s default discovery multicast address

;3 Unicast - UDPv4 (on all platforms)

;5 This allows two RTI Connext applications using participant IDs up to the maximum
;; default participant ID on the local host and domain to discover each

;; other over UDP/IPv4.

builtin.udpv4://127.0.0.1

;; Unicast - Shared Memory (only on platforms that support shared memory)

;5 This allows two RTI Connext applications using participant IDs up to the maximum
;; default participant ID on the local host and domain to discover each
;; other over shared memory.

builtin.shmem://

6.14.6 Builtin Transport Class Names

The class names for the builtin transport plugins are:

shmem - ShmemTransport
udpv4 - UDPv4Transport

udpv6 - UDPv6Transport

These may be used as the transport names in the Locator Format (p.56).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

62 Module Documentation

6.14.7 NDDS_DISCOVERY_PEERS and Local Host
Communication

Suppose you want to communicate with other RTT Connext applications on the
same host and you are setting NDDS_DISCOVERY _PEERS explicitly (generally
in order to use unicast discovery with applications on other hosts).

If the local host platform does not support the shared memory transport, then
you can include the name of the local host in the NDDS_DISCOVERY _PEERS
list.

If the local host platform supports the shared memory transport, then you can
do one of the following:

" Include ”shmem://” in the NDDS_DISCOVERY _PEERS list. This will
cause shared memory to be used for discovery and data traffic for appli-
cations on the same host.

or:

Include the name of the local host in the NDDS_DISCOVERY -
PEERS list and disable the shared memory transport in the
com.rti.dds.infrastructure.TransportBuiltinQosPolicy (p.1580) of
the com.rti.dds.domain.DomainParticipant (p.629). This will cause
UDP loopback to be used for discovery and data traffic for applications
on the same host.

(To check if your platform supports shared memory, see the Platform Notes
document.)

See also:

com.rti.dds.infrastructure.DiscoveryQosPolicy.multicast_-
receive_addresses (p.625)
com.rti.dds.infrastructure.DiscoveryQosPolicy.initial_peers
(p. 626)

com.rti.dds.domain.DomainParticipant.add_peer() (p.692)
DomainParticipantFactory. PARTICIPANT_QOS_DEFAULT
com.rti.dds.domain.DomainParticipantFactory.get_default_-
participant_qos() (p.716)

Transport Aliases (p. 368)

Transport Network Address (p.371)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.15 DOMAIN_PARTICIPANT _RESOURCE_LIMITS 63

6.15 DOMAIN_PARTICIPANT RESOURCE -
LIMITS

<<eXtension>> (p.270) Various settings that configure how a
com.rti.dds.domain.DomainParticipant (p.629) allocates and uses
physical memory for internal resources, including the maximum sizes of various

properties.

Classes

" class AllocationSettings_t

Resource allocation settings.

" class DomainParticipantResourceLimitsQosPolicy

Various settings that configure how a
com.rti.dds.domain. DomainParticipant (p.629) allocates and uses
physical memory for internal resources, including the mazrimum sizes of
various properties.

Variables

" static final QosPolicyld.t DOMAINPARTICIPANTRESOURCE-
LIMITS_QOS_POLICY_ID

<<eXtension>> (p-270) Identifier for
com.rti.dds.infrastructure. DomainParticipant ResourceLimits QosPolicy
(p-741)

6.15.1 Detailed Description

<<eXtension>> (p.270) Various settings that configure how a
com.rti.dds.domain.DomainParticipant (p.629) allocates and uses
physical memory for internal resources, including the maximum sizes of various
properties.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

64 Module Documentation

6.15.2 Variable Documentation

6.15.2.1 final QosPolicyld_t DOMAINPARTICIPANTRE-

SOURCELIMITS_QOS_POLICY_ID [static,
inherited]

<<eXtension>> (p. 270) Identifier for com.rti.dds.infrastructure.DomainParticipantResource:
(p.-741)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.16 DURABILITY 65

6.16 DURABILITY

This QoS policy specifies whether or mnot RTI Connext will
store and deliver previously published data samples to new
com.rti.dds.subscription.DataReader (p.473) entities that join the
network later.

Classes

" class DurabilityQosPolicy

This QoS policy specifies whether or mnot RTI Connext will
store and deliver previously published data samples to new
com.rti.dds.subscription. DataReader (p.473) entities that join the
network later.

" class DurabilityQosPolicyKind
Kinds of durability.

Variables

"~ static final QosPolicyld_t DURABILITY_QOS_POLICY_ID
Identifier for com.rti.dds.infrastructure. DurabilityQosPolicy (p. 765).

6.16.1 Detailed Description

This QoS policy specifies whether or not RTI Connext will
store and deliver previously published data samples to new
com.rti.dds.subscription.DataReader (p.473) entities that join the
network later.

6.16.2 Variable Documentation

6.16.2.1 final QosPolicyld_t DURABILITY_QOS_POLICY _ID

[static, inherited]

Identifier for com.rti.dds.infrastructure.DurabilityQosPolicy (p. 765).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

66 Module Documentation

6.17 DURABILITY SERVICE

Various settings to configure the external RTI Persis-
tence Service used by RTI Connext for DataWriters with a
com.rti.dds.infrastructure.DurabilityQosPolicy (p.765) setting of
DurabilityQosPolicyKind. PERSISTENT_DURABILITY_QOS or Durabili-
tyQosPolicyKind. TRANSIENT _DURABILITY _QOS.

Classes

" class DurabilityServiceQosPolicy

Various settings to configure the external RTI Persis-
tence Service wused by RTI Connext for DataWriters with a
com.rti.dds.infrastructure. DurabilityQosPolicy (p. 765) setting of
DurabilityQosPolicyKind. PERSISTENT_DURABILITY_QOS

(p. 772) or DurabilityQosPolicyKind. TRANSIENT_DURABILITY -
QOS (p.771).

Variables

" static final QosPolicyld.t DURABILITY_SERVICE_QOS -
POLICY_ID

Identifier for com.rti.dds.infrastructure. DurabilityServiceQosPolicy
(p. 773).

6.17.1 Detailed Description

Various settings to configure the external RTI Persis-
tence Service used by RTI Connext for DataWriters with a
com.rti.dds.infrastructure.DurabilityQosPolicy (p.765) setting of
DurabilityQosPolicyKind. PERSISTENT_DURABILITY_QOS or Durabili-
tyQosPolicyKind. TRANSIENT _DURABILITY _QOS.

6.17.2 Variable Documentation

6.17.2.1 final QosPolicyld_t DURABILITY_SERVICE_QOS _-
POLICY_ID [static, inherited]

Identifier for com.rti.dds.infrastructure.DurabilityServiceQosPolicy
(p.773).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.18 Time Support

67

6.18 Time Support

Time and duration types and defines.

Classes

~ class Duration_t

Type for duration representation.

~ class Time_t

Type for time representation.

6.18.1 Detailed Description

Time and duration types and defines.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

68 Module Documentation

6.19 Entity Support

com.rti.dds.infrastructure.Entity (p. 912), com.rti.dds.infrastructure.Listener
(p-1154) and related items.

Classes

" interface DomainEntity

<<interface>> (p.271) Abstract base class for all DDS entities except for
the com.rti.dds.domain. DomainParticipant (p. 629).

" interface Entity

<<interface>> (p.271) Abstract base class for all the DDS objects that
support QoS policies, a listener, and a status condition.

~ interface Listener

<<interface>> (p.271) Abstract base class for all Listener (p.1154) in-
terfaces.

6.19.1 Detailed Description

com.rti.dds.infrastructure.Entity (p. 912), com.rti.dds.infrastructure.Listener
(p. 1154) and related items.

com.rti.dds.infrastructure.Entity (p-912) subtypes are cre-
ated and destroyed by factory objects. With the exception of
com.rti.dds.domain.DomainParticipant (p. 629), whose factory
is com.rti.dds.domain.DomainParticipantFactory (p.708), all
com.rti.dds.infrastructure.Entity (p.912) factory objects are themselves
com.rti.dds.infrastructure.Entity (p.912) subtypes as well.

Important: all com.rti.dds.infrastructure.Entity (p.912) delete operations
are inherently thread-unsafe. The user must take extreme care that a given
com.rti.dds.infrastructure.Entity (p.912) is not destroyed in one thread
while being used concurrently (including being deleted concurrently) in another
thread. An operation’s effect in the presence of the concurrent deletion of the
operation’s target com.rti.dds.infrastructure.Entity (p.912) is undefined.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.20 ENTITY_FACTORY 69

6.20 ENTITY FACTORY

A QoS policy for all com.rti.dds.infrastructure.Entity (p.912) types that
can act as factories for one or more other com.rti.dds.infrastructure.Entity

(p-912) types.

Classes

" class EntityFactoryQosPolicy

A QoS policy for all com.rti.dds.infrastructure. Entity
(p.912) types that can act as factories for one or more other
com.rti.dds.infrastructure. Entity (p. 912) types.

Variables

" static final QosPolicyld_t ENTITYFACTORY_QOS_POLICY_ID

Identifier for com.rti.dds.infrastructure. EntityFactoryQosPolicy
(p- 919).

6.20.1 Detailed Description

A QoS policy for all com.rti.dds.infrastructure.Entity (p.912) types that
can act as factories for one or more other com.rti.dds.infrastructure.Entity

(p.912) types.

6.20.2 Variable Documentation

6.20.2.1 final QosPolicyld_t ENTITYFACTORY_QOS_POLICY_ID
[static, inherited]

Identifier for com.rti.dds.infrastructure.EntityFactoryQosPolicy
(p.919).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

70 Module Documentation

6.21 ENTITY NAME

<<eXtension>> (p-270) Assigns a name to a
com.rti.dds.domain.DomainParticipant (p.629). This name will be
visible during the discovery process and in RTT tools to help you visualize and
debug your system.

Classes

" class EntityNameQosPolicy

Assigns a name and a role name to a
com.rti.dds.domain. DomainParticipant (p. 629),
com.rti.dds.publication. Data Writer (p-538) or

com.rti.dds.subscription. DataReader (p.}75). These mnames will
be visible during the discovery process and in RTI tools to help you visualize
and debug your system.

6.21.1 Detailed Description

<<eXtension>> (p. 270) Assigns a name to a
com.rti.dds.domain.DomainParticipant (p.629). This name will be
visible during the discovery process and in RTI tools to help you visualize and
debug your system.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.22 EVENT 71

6.22 EVENT

<<eXtension>> (p.270) Configures the internal thread in a DomainPartici-
pant that handles timed events.
Classes

" class EventQosPolicy

Settings for event.

Variables

"~ static final QosPolicyld.t EVENT_QOS_POLICY_ID

<<eXtension>> (p-270) Identifier for
com.rti.dds.infrastructure. EventQosPolicy (p. 930)

6.22.1 Detailed Description

<<eXtension>> (p.270) Configures the internal thread in a DomainPartici-
pant that handles timed events.

6.22.2 Variable Documentation

6.22.2.1 final QosPolicylId_t EVENT_QOS_POLICY_ID [static,
inherited]

<<eXtension>> (p. 270) Identifier for com.rti.dds.infrastructure.EventQosPolicy
(p-930)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

72 Module Documentation

6.23 EXCLUSIVE_AREA

<<eXtension>> (p.270) Configures multi-thread concurrency and deadlock
prevention capabilities.
Classes

" class ExclusiveAreaQosPolicy

Configures multi-thread concurrency and deadlock prevention capabilities.

Variables

" static final QosPolicyld_t EXCLUSIVEAREA _QOS_POLICY_ID

<<eXtension>> (p-270) Identifier for
com.rti.dds.infrastructure. Exclusive AreaQosPolicy (p. 933)

6.23.1 Detailed Description

<<eXtension>> (p.270) Configures multi-thread concurrency and deadlock
prevention capabilities.

6.23.2 Variable Documentation

6.23.2.1 final QosPolicyld_t EXCLUSIVEAREA _QOS_POLICY_ID
[static, inherited]

<<eXtension>> (p. 270) Identifier for com.rti.dds.infrastructure.ExclusiveAreaQosPolicy
(p-933)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.24 GROUP_DATA 73

6.24 GROUP_DATA

Attaches a buffer of opaque data that is distributed by means of Built-in
Topics (p. 153) during discovery.
Classes

" class GroupDataQosPolicy

Attaches a buffer of opaque data that is distributed by means of Built-in
Topics (p. 153) during discovery.

Variables

" static final QosPolicyld.t GROUPDATA _QOS_POLICY_ID

Identifier for com.rti.dds.infrastructure. GroupDataQosPolicy
(p. 1064).

6.24.1 Detailed Description

Attaches a buffer of opaque data that is distributed by means of Built-in
Topics (p. 153) during discovery.

6.24.2 Variable Documentation

6.24.2.1 final QosPolicyld .t GROUPDATA _QOS_POLICY_ID

[static, inherited]

Identifier for com.rti.dds.infrastructure.GroupDataQosPolicy (p.1064).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

74 Module Documentation

6.25 GUID Support

<<eXtension>> (p.270) GUID type and defines.

Classes

" class GUID_t
Type for GUID (Global Unique Identifier) representation.

6.25.1 Detailed Description

<<eXtension>> (p.270) GUID type and defines.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.26 HISTORY 75

6.26 HISTORY

Specifies the behavior of RTT Connext in the case where the value of an instance
changes (one or more times) before it can be successfully communicated to one
or more existing subscribers.

Classes

" class HistoryQosPolicy

Specifies the behavior of RTI Connext in the case where the value of a sample
changes (one or more times) before it can be successfully communicated to
one or more existing subscribers.

" class HistoryQosPolicyKind
Kinds of history.

" class RefilterQosPolicyKind
<<eXtension>> (p.270) Kinds of Refiltering

Variables

"~ static final QosPolicyld_t HISTORY _QOS_POLICY _ID
Identifier for com.rti.dds.infrastructure. HistoryQosPolicy (p. 1071).

6.26.1 Detailed Description
Specifies the behavior of RTT Connext in the case where the value of an instance

changes (one or more times) before it can be successfully communicated to one
or more existing subscribers.

6.26.2 Variable Documentation

6.26.2.1 final QosPolicyld_t HISTORY_QOS_POLICY_ID [static,
inherited]

Identifier for com.rti.dds.infrastructure.HistoryQosPolicy (p.1071).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

76 Module Documentation

6.27 LATENCY_BUDGET

Provides a hint as to the maximum acceptable delay from the time the data is
written to the time it is received by the subscribing applications.
Classes

" class LatencyBudgetQosPolicy

Provides a hint as to the maximum acceptable delay from the time the data
is written to the time it is received by the subscribing applications.

Variables

" static final QosPolicyld_t LATENCYBUDGET_QOS_POLICY_ID

Identifier for com.rti.dds.infrastructure.LatencyBudgetQosPolicy
(p. 1148).

6.27.1 Detailed Description

Provides a hint as to the maximum acceptable delay from the time the data is
written to the time it is received by the subscribing applications.

6.27.2 Variable Documentation

6.27.2.1 final QosPolicyld t LATENCYBUDGET_QOS_POLICY _-
ID [static, inherited]

Identifier ~ for com.rti.dds.infrastructure.LatencyBudgetQosPolicy
(p. 1148).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.28 LIFESPAN 77

6.28 LIFESPAN

Specifies how long the data written by the
com.rti.dds.publication.DataWriter (p.538) is considered valid.

Classes

" class LifespanQosPolicy

Specifies how long the data written by the
com.rti.dds.publication. Data Writer (p. 538) is considered valid.

Variables

"~ static final QosPolicyld-t LIFESPAN_QOS_POLICY _ID
Identifier for com.rti.dds.infrastructure. LifespanQosPolicy (p. 1152).

6.28.1 Detailed Description

Specifies how long the data written by the
com.rti.dds.publication.DataWriter (p.538) is considered valid.

6.28.2 Variable Documentation

6.28.2.1 final QosPolicyld_t LIFESPAN_QOS_POLICY_ID
[static, inherited]

Identifier for com.rti.dds.infrastructure.LifespanQosPolicy (p.1152).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

78 Module Documentation

6.29 LIVELINESS

Specifies and configures the mechanism that allows
com.rti.dds.subscription.DataReader (p.473) entities to detect when
com.rti.dds.publication.DataWriter (p.538) entities become disconnected
or "dead.”.

Classes

" class LivelinessQosPolicy

Specifies and configures the mechanism that allows
com.rti.dds.subscription. DataReader (p.473) entities to detect
when com.rti.dds.publication. DataWriter (p.538) entities become
disconnected or "dead.”.

" class LivelinessQosPolicyKind

Kinds of liveliness.

Variables

"~ static final QosPolicyld_t LIVELINESS_QOS_POLICY_ID
Identifier for com.rti.dds.infrastructure. LivelinessQosPolicy (p. 1164).

6.29.1 Detailed Description

Specifies and configures the mechanism that allows
com.rti.dds.subscription.DataReader (p.473) entities to detect when
com.rti.dds.publication.DataWriter (p.538) entities become disconnected
or "dead.”.

6.29.2 Variable Documentation

6.29.2.1 final QosPolicyld_t LIVELINESS_QOS_POLICY_ID
[static, inherited]

Identifier for com.rti.dds.infrastructure.LivelinessQosPolicy (p.1164).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.30 LOCATORFILTER 79

6.30 LOCATORFILTER

<<eXtension>> (p.270) The QoS policy used to report the configuration of
a MultiChannel DataWriter as part of builtin.PublicationBuiltinTopicData.

Classes

~ class LocatorFilter_t

Specifies the configuration of an individual channel within a MultiChannel
DataWriter.

" class LocatorFilterQosPolicy

The QoS policy used to report the configuration of a MultiChannel
DataWriter as part of builtin. PublicationBuiltin TopicData.

" class LocatorFilterSeq

Declares IDL sequence< com.rti.dds.infrastructure.LocatorFilter--
t (p.1178) >.

Variables

" static final QosPolicyld-t LOCATORFILTER_QOS_POLICY_ID

<<eXtension>> (p-270) Identifier for
com.rti.dds.infrastructure. LocatorFilter QosPolicy (p. 1181)

6.30.1 Detailed Description

<<eXtension>> (p.270) The QoS policy used to report the configuration of
a MultiChannel DataWriter as part of builtin.PublicationBuiltinTopicData.

6.30.2 Variable Documentation

6.30.2.1 final QosPolicyld_t LOCATORFILTER_QOS_POLICY_ID

[static, inherited]

<<eXtension>> (p. 270) Identifier for com.rti.dds.infrastructure.LocatorFilterQosPolicy
(p. 1181)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

80 Module Documentation

6.31 LOGGING

<<eXtension>> (p.270) Configures the RTT Connext logging facility.

Classes

" class LoggingQosPolicy
Configures the RTI Connext logging facility.

Variables

"~ static final QosPolicyld t LOGGING_QOS_POLICY_ID

<<eXtension>> (p.270) Identifier for
com.rti.dds.infrastructure. LoggingQosPolicy (p. 1190)

6.31.1 Detailed Description

<<eXtension>> (p.270) Configures the RTT Connext logging facility.

6.31.2 Variable Documentation

6.31.2.1 final QosPolicyld_t LOGGING_QOS_POLICY_ID
[static, inherited]

<<eXtension>> (p. 270) Identifier for com.rti.dds.infrastructure.LoggingQosPolicy
(p-1190)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.32 MULTICHANNEL 81

6.32 MULTICHANNEL

<<eXtension>> (p. 270) Configures the ability of a DataWriter to send data
on different multicast groups (addresses) based on the value of the data.
Classes

" class ChannelSettings_t

Type used to configure the properties of a channel.

" class ChannelSettingsSeq

Declares IDL sequence< com.rti.dds.infrastructure. ChannelSettings_t

(p-441) >.

" class MultiChannelQosPolicy

Configures the ability of a DataWriter to send data on different multicast
groups (addresses) based on the value of the data.

Variables

"~ static final QosPolicyld_t MULTICHANNEL_QOS_POLICY_ID

<<eXtension>> (p.270) Identifier for
com.rti.dds.infrastructure. MultiChannelQosPolicy (p. 1205)

6.32.1 Detailed Description

<<eXtension>> (p. 270) Configures the ability of a DataWriter to send data
on different multicast groups (addresses) based on the value of the data.

6.32.2 Variable Documentation

6.32.2.1 final QosPolicyld_.t MULTICHANNEL_QOS_POLICY_ID
[static, inherited]

<<eXtension>> (p. 270) Identifier for com.rti.dds.infrastructure.MultiChannelQosPolicy
(p. 1205)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

82 Module Documentation

6.33 Object Support

<<eXtension>> (p.270) Object related items.

Classes

" interface Copyable

<<eXtension>> (p.270) <<interface>> (p.271) Interface for all the
user-defined data type classes that support copy.

" class ObjectHolder
<<eXtension>> (p.270) Holder of object instance

6.33.1 Detailed Description

<<eXtension>> (p.270) Object related items.

A user-defined type class implements this interface to indi-
cate that the «class can be copied. This is typically used
in com.rti.dds.topic.example.FooDataReader.take_next_sample or
com.rti.dds.topic.example.FooDataReader.read next_sample.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.34 OWNERSHIP 83

6.34 OWNERSHIP

Specifies whether it is allowed for multiple
com.rti.dds.publication.DataWriter (p.538) (s) to write the same
instance of the data and if so, how these modifications should be arbitrated.

Classes

" class OwnershipQosPolicy

Specifies whether it is allowed for multiple
com.rti.dds.publication. Data Writer (p.538) (s) to write the same
instance of the data and if so, how these modifications should be arbitrated.

" class OwnershipQosPolicyKind

Kinds of ownership.

Variables

" static final QosPolicyld.t OWNERSHIP_QOS_POLICY _ID

Identifier for com.rti.dds.infrastructure. OwnershipQosPolicy
(p. 1216).

6.34.1 Detailed Description
Specifies whether it is allowed for multiple

com.rti.dds.publication.DataWriter (p.538) (s) to write the same
instance of the data and if so, how these modifications should be arbitrated.

6.34.2 Variable Documentation

6.34.2.1 final QosPolicyld_t OWNERSHIP_QOS_POLICY _ID
[static, inherited]

Identifier for com.rti.dds.infrastructure.OwnershipQosPolicy (p. 1216).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

84 Module Documentation

6.35 OWNERSHIP STRENGTH

Specifies the value of the strength used to arbitrate among multiple
com.rti.dds.publication.DataWriter (p.538) objects that attempt to mod-
ify the same instance of a data type (identified by com.rti.dds.topic.Topic
(p. 1545) + key).

Classes

" class OwnershipStrengthQosPolicy

Specifies the wvalue of the strength wused to arbitrate among mul-
tiple com.rti.dds.publication.DataWriter (p.538) objects that at-
tempt to modify the same instance of a data type (identified by
com.rti.dds.topic. Topic (p. 1545) + key).

Variables
" static final QosPolicyldt OWNERSHIPSTRENGTH_QOS -

POLICY_ID

Identifier for com.rti.dds.infrastructure. OwnershipStrengthQosPolicy
(p. 1225).

6.35.1 Detailed Description

Specifies the value of the strength used to arbitrate among multiple
com.rti.dds.publication.DataWriter (p.538) objects that attempt to mod-
ify the same instance of a data type (identified by com.rti.dds.topic.Topic
(p- 1545) + key).

6.35.2 Variable Documentation

6.35.2.1 final QosPolicyld_.t OWNERSHIPSTRENGTH_QOS _-
POLICY_ID [static, inherited]

Identifier for com.rti.dds.infrastructure.OwnershipStrengthQosPolicy
(p.1225).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.36 PARTITION 85

6.36 PARTITION

Set of strings that introduces a logical partition among the top-
ics visible by a com.rti.dds.publication.Publisher (p.1277) and a
com.rti.dds.subscription.Subscriber (p. 1478).

Classes

" class PartitionQosPolicy

Set of strings that introduces a logical partition among the top-
ics wisible by a com.rti.dds.publication.Publisher (p.1277) and a
com.rti.dds.subscription.Subscriber (p. 1/78).

Variables

"~ static final QosPolicyld t PARTITION_QOS_POLICY _ID
Identifier for com.rti.dds.infrastructure. PartitionQosPolicy (p. 1233).

6.36.1 Detailed Description
Set of strings that introduces a logical partition among the top-

ics visible by a com.rti.dds.publication.Publisher (p.1277) and a
com.rti.dds.subscription.Subscriber (p. 1478).

6.36.2 Variable Documentation

6.36.2.1 final QosPolicyld_t PARTITION_QOS_POLICY_ID
[static, inherited]

Identifier for com.rti.dds.infrastructure.PartitionQosPolicy (p.1233).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

86 Module Documentation

6.37 PRESENTATION

Specifies how the samples representing changes to data instances are presented
to a subscribing application.

Classes

" class PresentationQosPolicy

Specifies how the samples representing changes to data instances are pre-
sented to a subscribing application.

" class PresentationQosPolicyAccessScopeKind

Kinds of presentation ”access scope”.

Variables

" static final QosPolicyld_t PRESENTATION_QOS_POLICY_ID

Identifier for com.rti.dds.infrastructure. PresentationQosPolicy
(p. 1237).

6.37.1 Detailed Description

Specifies how the samples representing changes to data instances are presented
to a subscribing application.

6.37.2 Variable Documentation

6.37.2.1 final QosPolicyld_t PRESENTATION_QOS_POLICY_ID

[static, inherited]

Identifier for com.rti.dds.infrastructure.PresentationQosPolicy (p. 1237).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.38 PROFILE 87

6.38 PROFILE

<<eXtension>> (p.270) Configures the way that XML documents contain-
ing QoS profiles are loaded by RTI Connext.
Classes

" class ProfileQosPolicy

Configures the way that XML documents containing QoS profiles are loaded
by RTI Connext.

Variables

" static final QosPolicyld_t PROFILE_QOS_POLICY_ID

<<eXtension>> (p-270) Identifier for
com.rti.dds.infrastructure. ProfileQosPolicy (p. 1247)

6.38.1 Detailed Description

<<eXtension>> (p.270) Configures the way that XML documents contain-
ing QoS profiles are loaded by RTI Connext.

6.38.2 Variable Documentation

6.38.2.1 final QosPolicyld_t PROFILE_QOS_POLICY _ID [static,

inherited]

<<eXtension>> (p. 270) Identifier for com.rti.dds.infrastructure.ProfileQosPolicy
(p. 1247)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

88 Module Documentation

6.39 PROPERTY

<<eXtension>> (p.270) Stores name/value (string) pairs that can be used
to configure certain parameters of RTT Connext that are not exposed through
formal QoS policies. Can also be used to store and propagate application-specific
name/value pairs that can be retrieved by user code during discovery.

Classes

" class Property_t

Properties are name/value pairs objects.

" class PropertyQosPolicy

Stores name/value(string) pairs that can be used to configure certain param-
eters of RTI Connext that are not exposed through formal QoS policies. Can
also be used to store and propagate application-specific name/value pairs that
can be retrieved by user code during discovery.

" class PropertyQosPolicyHelper

Policy Helpers which facilitate management of the properties in the input
policy.

" class PropertySeq

Declares IDL sequence < com.rti.dds.infrastructure. Property_t
(p- 1250) >.

6.39.1 Detailed Description

<<eXtension>> (p.270) Stores name/value (string) pairs that can be used
to configure certain parameters of RTI Connext that are not exposed through
formal QoS policies. Can also be used to store and propagate application-specific
name/value pairs that can be retrieved by user code during discovery.

See com.rti.dds.infrastructure.PropertyQosPolicy (p.1252)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.40 PUBLISH_MODE 89

6.40 PUBLISH MODE

<<eXtension>> (p.270) Specifies how RTI Connext sends application data
on the network. This QoS policy can be used to tell RTI Connext to use its
own thread to send data, instead of the user thread.

Classes

" class PublishModeQosPolicy

Specifies how RTI Connext sends application data on the network. This QoS
policy can be used to tell RTI Connext to use its own thread to send data,
instead of the user thread.

" class PublishModeQosPolicyKind
Kinds of publishing mode.

Variables

" static final QosPolicyld_t PUBLISHMODE_QOS_POLICY _ID

<<eXtension>> (p-270) Identifier for
com.rti.dds.infrastructure. PublishModeQosPolicy (p. 1308)

6.40.1 Detailed Description
<<eXtension>> (p.270) Specifies how RTI Connext sends application data

on the network. This QoS policy can be used to tell RTI Connext to use its
own thread to send data, instead of the user thread.

6.40.2 Variable Documentation

6.40.2.1 final QosPolicyld_t PUBLISHMODE_QOS_POLICY_ID
[static, inherited]

<<eXtension>> (p. 270) Identifier for com.rti.dds.infrastructure.PublishModeQosPolicy
(p. 1308)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

90 Module Documentation

6.41 QoS Policies

Quality of Service (QoS) policies.

Modules

" ASYNCHRONOUS_PUBLISHER

<<eXtension>> (p.270) Specifies the asynchronous publishing settings of
the com.rti.dds.publication. Publisher (p. 1277) instances.

" AVAILABILITY
<<eXtension>> (p.270) Configures the availability of data.

" BATCH

<<eXtension>> (p.270) Batch QoS policy used to enable batching in
com.rti.dds.publication. Data Writer (p. 538) instances.

" DATABASE

<<eXtension>> (p.270) Various threads and resource limits settings used
by RTI Connext to control its internal database.

" DATA_READER_PROTOCOL
<<eXtension>> (p.270) Specifies the DataReader-specific protocol QoS.

" DATA READER RESOURCE_LIMITS

<<eXtension>> (p.270) Various settings that configure how DataReaders
allocate and use physical memory for internal resources.

" DATA_WRITER_PROTOCOL

<<eXtension>> (p.270) Along with com.rti.dds.infrastructure. WireProtocolQosPolicy
(p. 1709) and com.rti.dds.infrastructure. DataReaderProtocolQosPolicy

(p.-504), this QoS policy configures the DDS on-the-network protocol

(RTPS).

" DATA_WRITER RESOURCE_LIMITS

<<eXtension>> (p.270) Various settings that configure how a
com.rti.dds.publication. Data Writer (p. 538) allocates and uses physical
memory for internal resources.

" DEADLINE

Expresses the mazimum duration (deadline) within which an instance is ex-
pected to be updated.

" DESTINATION_ORDER

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.41

QoS Policies 91

Controls the criteria used to determine the logical order among changes made
by com.rti.dds.publication.Publisher (p.1277) entities to the same in-
stance of data (i.e., matching com.rti.dds.topic. Topic (p. 1545) and key).

DISCOVERY_CONFIG
<<eXtension>> (p.270) Specifies the discovery configuration QoS.

DISCOVERY

<<eXtension>> (p.270) Specifies the attributes required to discover par-
ticipants in the domain.

DOMAIN_PARTICIPANT _RESOURCE_LIMITS

<<eXtension>> (p.270) Various settings that configure how a
com.rti.dds.domain. DomainParticipant (p. 629) allocates and uses
physical memory for internal resources, including the mazrimum sizes of
various properties.

DURABILITY

This QoS policy specifies whether or not RTI Connext will
store and deliver previously published data samples to new
com.rti.dds.subscription. DataReader (p./73) entities that join the
network later.

DURABILITY _SERVICE

Various settings to configure the external RTI Persis-

tence Service wused by RTI Connext for DataWriters with a
com.rti.dds.infrastructure. DurabilityQosPolicy (p.765) setting of
DurabilityQosPolicyKind. PERSISTENT_-DURABILITY_QOS or Durabili-
tyQosPolicyKind. TRANSIENT_DURABILITY_QOS.

ENTITY_FACTORY

A QoS policy for all com.rti.dds.infrastructure. Entity
(p-912) types that can act as factories for omne or more other
com.rti.dds.infrastructure. Entity (p. 912) types.

ENTITY_NAME

<<eXtension>> (p-270) Assigns a name to a
com.rti.dds.domain. DomainParticipant (p.629). This name will
be visible during the discovery process and in RTI tools to help you visualize
and debug your system.

EVENT

<<eXtension>> (p.270) Configures the internal thread in a DomainPar-
ticipant that handles timed events.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

92

Module Documentation

EXCLUSIVE_AREA

<<eXtension>> (p.270) Configures multi-thread concurrency and dead-
lock prevention capabilities.

GROUP_DATA

Attaches a buffer of opaque data that is distributed by means of Built-in
Topics (p. 153) during discovery.

HISTORY

Specifies the behavior of RTI Connext in the case where the value of an
instance changes (one or more times) before it can be successfully communi-
cated to one or more existing subscribers.

LATENCY_BUDGET

Provides a hint as to the maximum acceptable delay from the time the data
is written to the time it is received by the subscribing applications.

LIFESPAN

Specifies how long the data written by the
com.rti.dds.publication. Data Writer (p. 538) is considered valid.

LIVELINESS

Specifies and configures the mechanism that allows
com.rti.dds.subscription. DataReader (p.473) entities to detect
when com.rti.dds.publication. Data Writer (p.538) entities become
disconnected or "dead.”.

LOCATORFILTER

<<eXtension>> (p. 270) The QoS policy used to report the configuration of
a MultiChannel DataWriter as part of builtin. PublicationBuiltin TopicData.

LOGGING
<<eXtension>> (p.270) Configures the RTI Connext logging facility.

MULTICHANNEL

<<eXtension>> (p.270) Configures the ability of a DataWriter to send
data on different multicast groups (addresses) based on the value of the data.

OWNERSHIP

Specifies whether it is allowed for multiple
com.rti.dds.publication. DataWriter (p.538) (s) to write the same
instance of the data and if so, how these modifications should be arbitrated.

OWNERSHIP _STRENGTH

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.41

QoS Policies 93

Specifies the wvalue of the strength wused to arbitrate among mul-
tiple com.rti.dds.publication.DataWriter (p.5358) objects that at-
tempt to modify the same instance of a data type (identified by
com.rti.dds.topic. Topic (p. 1545) + key).

PARTITION

Set of strings that introduces a logical partition among the top-
ics wvisible by a com.rti.dds.publication.Publisher (p.1277) and a
com.rti.dds.subscription.Subscriber (p. 1478).

PRESENTATION

Specifies how the samples representing changes to data instances are pre-
sented to a subscribing application.

PROFILE

<<eXtension>> (p.270) Configures the way that XML documents con-
taining QoS profiles are loaded by RTI Connext.

PROPERTY

<<eXtension>> (p.270) Stores name/value (string) pairs that can be used
to configure certain parameters of RTI Connext that are not exposed through
formal QoS policies. Can also be used to store and propagate application-
specific name/value pairs that can be retrieved by user code during discovery.

PUBLISH_-MODE

<<eXtension>> (p.270) Specifies how RTI Connext sends application data
on the network. This QoS policy can be used to tell RTI Connext to use its
own thread to send data, instead of the user thread.

READER_DATA _LIFECYCLE

Controls how a DataReader manages the lifecycle of the data that it has
received.

RECEIVER_POOL

<<eXtension>> (p.270) Configures threads used by RTI Connext to re-
ceive and process data from transports (for example, UDP sockets).

RELIABILITY
Indicates the level of reliability offered/requested by RTI Connext.

RESOURCE_LIMITS

Controls the amount of physical memory allocated for DDS entities, if dy-
namic allocations are allowed, and how they occur. Also controls memory
usage among different instance values for keyed topics.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

94

Module Documentation

SYSTEM_RESOURCE_LIMITS

<<eXtension>> (p.270) Configures DomainParticipant-independent re-
sources used by RTI Connext.

TIME_BASED _FILTER

Filter that allows a com.rti.dds.subscription.DataReader (p.473) to
specify that it is interested only in (potentially) a subset of the values of
the data.

TOPIC_DATA

Attaches a buffer of opaque data that is distributed by means of Built-in
Topics (p. 153) during discovery.

TRANSPORT_BUILTIN
<<eXtension>> (p.270) Specifies which built-in transports are used.

TRANSPORT _MULTICAST

<<eXtension>> (p.270) Specifies the multicast address on which a
com.rti.dds.subscription. DataReader (p.473) wants to receive its data.
It can also specify a port number, as well as a subset of the available (at the
com.rti.dds.domain. DomainParticipant (p.629) level) transports with
which to receive the multicast data.

TRANSPORT_PRIORITY

This QoS policy allows the application to take advantage of transports that
are capable of sending messages with different priorities.

TRANSPORT_SELECTION

<<eXtension>> (p.270) Specifies the physical transports
that a com.rti.dds.publication. Data Writer (p.538) or
com.rti.dds.subscription. DataReader (p.473) may wuse to send or
receive data.

TRANSPORT_UNICAST

<<eXtension>> (p.270) Specifies a subset of transports and a port number
that can be used by an Entity to receive data.

TYPESUPPORT

<<eXtension>> (p.270) Allows you to attach application-specific values
to a DataWriter or DataReader that are passed to the serialization or dese-
rialization routine of the associated data type.

USER_DATA

Attaches a buffer of opaque data that is distributed by means of Built-in
Topics (p. 153) during discovery.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.41 QoS Policies 95

" WIRE_PROTOCOL

<<eXtension>> (p.270) Specifies the wire protocol related attributes for
the com.rti.dds.domain. DomainParticipant (p. 629).

" WRITER_DATA LIFECYCLE

Controls how a DataWriter handles the lifecycle of the instances (keys) that
it is registered to manage.

Classes

" class Qos

An abstract base class for all QoS types.

class QosPolicy
The base class for all QoS policies.

class QosPolicyCount

Type to hold a counter for a com.rti.dds.infrastructure. QosPolicyld_t
(p. 1518).

class QosPolicyCountSeq

Declares IDL sequence < com.rti.dds.infrastructure. QosPolicyCount
(p. 1315) >.

" class QosPolicylId_t
Type to identify QosPolicies.

6.41.1 Detailed Description

Quality of Service (QoS) policies.

Data Distribution Service (DDS) relies on the use of QoS. A QoS is a set of
characteristics that controls some aspect of the behavior of DDS. A QoS is
comprised of individual QoS policies (objects conceptually deriving from an
abstract QosPolicy class).

The QosPolicy provides the basic mechanism for an application to specify quality
of service parameters. It has an attribute name that is used to uniquely identify
each QosPolicy.

QosPolicy implementation is comprised of a name, an ID, and a type. The type
of a QosPolicy value may be atomic, such as an integer or float, or compound

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

96 Module Documentation

(a structure). Compound types are used whenever multiple parameters must
be set coherently to define a consistent value for a QosPolicy.

QoS (i.e., a list of QosPolicy objects) may be associated with all
com.rti.dds.infrastructure.Entity (p.912) objects in the system such as
com.rti.dds.topic.Topic (p.1545), com.rti.dds.publication.DataWriter

(p. 538), com.rti.dds.subscription.DataReader
(p-473), com.rti.dds.publication.Publisher (p. 1277),
com.rti.dds.subscription.Subscriber (p. 1478), and

com.rti.dds.domain.DomainParticipant (p.629).

6.41.2 Specifying QoS on entities

QosPolicies can be set programmatically when an
com.rti.dds.infrastructure.Entity (p.912) is created, or modified with
the com.rti.dds.infrastructure.Entity (p.912)’s set_qos (abstract)
(p- 913) method.

QosPolicies can also be configured from XML resources (files, strings). With
this approach, you can change the QoS without recompiling the application.
For more information, see Configuring QoS Profiles with XML (p. 225).

To customize a com.rti.dds.infrastructure.Entity (p.912)’s QoS before cre-
ating the entity, the correct pattern is:

First, initialize a QoS object with the appropriate INITIALIZER con-
structor.

Call the relevant get_<entity>_default_qos() method.
Modify the QoS values as desired.

Finally, create the entity.

Each QosPolicy is treated independently from the others. This approach has
the advantage of being very extensible. However, there may be cases where
several policies are in conflict. Consistency checking is performed each time the
policies are modified via the set_qos (abstract) (p.913) operation, or when
the com.rti.dds.infrastructure.Entity (p.912) is created.

When a policy is changed after being set to a given value, it is not re-
quired that the new value be applied instantaneously; RTI Connext is al-
lowed to apply it after a transition phase. In addition, some QosPolicy
have immutable semantics, meaning that they can only be specified either at
com.rti.dds.infrastructure.Entity (p.912) creation time or else prior to call-
ing the com.rti.dds.infrastructure.Entity.enable (p.915) operation on the
entity.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.41 QoS Policies 97

Each com.rti.dds.infrastructure.Entity (p.912) can be configured with
a list of QosPolicy objects. However, not all QosPolicies are sup-
ported by each com.rti.dds.infrastructure.Entity (p.912). For in-
stance, a com.rti.dds.domain.DomainParticipant (p.629) supports a dif-
ferent set of QosPolicies than a com.rti.dds.topic.Topic (p.1545) or a
com.rti.dds.publication.Publisher (p.1277).

6.41.3 QoS compatibility

In several cases, for communications to occur properly (or efficiently), a QosPol-
icy on the publisher side must be compatible with a corresponding policy on
the subscriber side. For example, if a com.rti.dds.subscription.Subscriber
(p.1478) requests to receive data reliably while the corresponding
com.rti.dds.publication.Publisher (p.1277) defines a best-effort policy,
communication will not happen as requested.

To address this issue and maintain the desirable decoupling of publication
and subscription as much as possible, the QosPolicy specification follows the
subscriber-requested, publisher-offered pattern.

In this pattern, the subscriber side can specify a ”requested” wvalue for
a particular QosPolicy. The publisher side specifes an ”offered” value
for that QosPolicy. RTI Connext will then determine whether the
value requested by the subscriber side is compatible with what is of-
fered by the publisher side. If the two policies are compatible, then
communication will be established. If the two policies are not com-
patible, RTT Connext will not establish communications between the two
com.rti.dds.infrastructure.Entity (p.912) objects and will record this
fact by means of the StatusKind. OFFERED_INCOMPATIBLE_QOS_STATUS
on the publisher end and StatusKind. REQUESTED_INCOMPATIBLE -
QOS_STATUS on the subscriber end. The application can detect this
fact by means of a com.rti.dds.infrastructure.Listener (p.1154) or a
com.rti.dds.infrastructure.Condition (p.451).

The following properties are defined on a QosPolicy.

" RxO (p.97) property

The QosPolicy objects that need to be set in a compatible manner between
the publisher and subscriber end are indicated by the setting of the
RxO (p.97) property:

— RxO (p.97) = YES indicates that the policy can be set both at
the publishing and subscribing ends and the values must be set in a

compatible manner. In this case the compatible values are explicitly
defined.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

Module Documentation

— RxO (p.97) = NO indicates that the policy can be set both at the
publishing and subscribing ends but the two settings are independent.
That is, all combinations of values are compatible.

— RxO (p.97) = N/A indicates that the policy can only be specified
at either the publishing or the subscribing end, but not at both ends.
So compatibility does not apply.

" Changeable (p.98) property

Determines whether a QosPolicy can be changed.

NO (p-98) — policy can only be specified @ at
com.rti.dds.infrastructure.Entity (p.912) creation time.

UNTIL ENABLE (p.98) — policy can only be changed before the
com.rti.dds.infrastructure.Entity (p.912) is enabled.

YES (p.98) — policy can be changed at any time.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.42 READER _DATA LIFECYCLE 99

6.42 READER DATA LIFECYCLE

Controls how a DataReader manages the lifecycle of the data that it has received.

Classes

" class ReaderDataLifecycleQosPolicy

Controls how a DataReader manages the lifecycle of the data that it has
received.

Variables

" static final QosPolicyldt READERDATALIFECYCLE_QOS -
POLICY_ID

Identifier for com.rti.dds.infrastructure. ReaderDataLifecycle QosPolicy
(p. 1328).

6.42.1 Detailed Description

Controls how a DataReader manages the lifecycle of the data that it has received.

6.42.2 Variable Documentation

6.42.2.1 final QosPolicyld_t READERDATALIFECYCLE_QOS _-
POLICY_ID [static, inherited]

Identifier for com.rti.dds.infrastructure.ReaderDataLifecycleQosPolicy
(p. 1328).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

100 Module Documentation

6.43 RECEIVER POOL

<<eXtension>> (p. 270) Configures threads used by RTI Connext to receive
and process data from transports (for example, UDP sockets).
Classes

" class ReceiverPoolQosPolicy

Configures threads used by RTI Connext to receive and process data from
transports (for example, UDP sockets).

Variables

" static final QosPolicyld.t RECEIVERPOOL_QOS_POLICY _ID

<<eXtension>> (p-270) Identifier for
com.rti.dds.infrastructure. ReceiverPoolQosPolicy (p. 1331)

6.43.1 Detailed Description

<<eXtension>> (p. 270) Configures threads used by RTT Connext to receive
and process data from transports (for example, UDP sockets).

6.43.2 Variable Documentation

6.43.2.1 final QosPolicyld_t RECEIVERPOOL_QOS_POLICY _ID

[static, inherited]

<<eXtension>> (p. 270) Identifier for com.rti.dds.infrastructure.ReceiverPoolQosPolicy
(p.1331)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.44 RELIABILITY 101

6.44 RELIABILITY

Indicates the level of reliability offered/requested by RTT Connext.

Classes

" class ReliabilityQosPolicy
Indicates the level of reliability offered/requested by RTI Connext.

" class ReliabilityQosPolicyKind
Kinds of reliability.

Variables

" static final QosPolicyld_t RELIABILITY _QOS_POLICY_ID

Identifier for com.rti.dds.infrastructure. ReliabilityQosPolicy
(p. 1336).

6.44.1 Detailed Description

Indicates the level of reliability offered/requested by RTI Connext.

6.44.2 Variable Documentation

6.44.2.1 final QosPolicyld_t RELIABILITY_QOS_POLICY_ID
[static, inherited]

Identifier for com.rti.dds.infrastructure.ReliabilityQosPolicy (p. 1336).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

102 Module Documentation

6.45 RESOURCE_LIMITS

Controls the amount of physical memory allocated for DDS entities, if dynamic
allocations are allowed, and how they occur. Also controls memory usage among
different instance values for keyed topics.

Classes

" class ResourceLimitsQosPolicy

Controls the amount of physical memory allocated for DDS entities, if dy-
namic allocations are allowed, and how they occur. Also controls memory
usage among different instance values for keyed topics.

Variables

"~ static final QosPolicyld_t RESOURCELIMITS_QOS_POLICY_ID

Identifier for com.rti.dds.infrastructure. ResourceLimitsQosPolicy
(p- 1356).

~ static final int LENGTH_UNLIMITED

A special value indicating an unlimited quantity.

6.45.1 Detailed Description
Controls the amount of physical memory allocated for DDS entities, if dynamic

allocations are allowed, and how they occur. Also controls memory usage among
different instance values for keyed topics.

6.45.2 Variable Documentation

6.45.2.1 final QosPolicyld_t RESOURCELIMITS_QOS_POLICY _-
ID [static, inherited]

Identifier for com.rti.dds.infrastructure.ResourceLimitsQosPolicy
(p. 1356).

6.45.2.2 final int LENGTH_UNLIMITED [static, inherited]

A special value indicating an unlimited quantity.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.46 Return Codes

6.46 Return Codes

Types of return codes.

Classes

" class RETCODE_ALREADY _DELETED
The object target of this operation has already been deleted.

" class RETCODE_BAD PARAMETER

lllegal parameter value.

" class RETCODE_ERROR

Generic, unspecified error.

" class RETCODE_ILLEGAL_OPERATION

The operation was called under improper circumstances.

" class RETCODE_IMMUTABLE_POLICY
Application attempted to modify an immutable QoS policy.

" class RETCODE_INCONSISTENT_POLICY

Application specified a set of QoS policies that are not consistent with each

other.

" class RETCODE_NO_DATA

Indicates a transient situation where the operation did not return any data

but there is no inherent error.

" class RETCODE_NOT_ENABLED

Operation invoked on a com.rti.dds.infrastructure. Entity (p. 912) that is

not yet enabled.

" class RETCODE_OUT_OF _RESOURCES

RTI Connext ran out of the resources needed to complete the operation.

" class RETCODE_PRECONDITION_NOT_MET

A pre-condition for the operation was not met.

" class RETCODE_TIMEOUT

The operation timed out.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

104 Module Documentation

" class RETCODE_UNSUPPORTED

Unsupported operation. Can only returned by operations that are unsup-
ported.

6.46.1 Detailed Description

Types of return codes.

6.46.2 Standard Return Codes

Any void operation that documents that it may throw an exception of type
RETCODE_ERROR may throw exactly RETCODE_ERROR or RETCODE -
ILLEGAL_OPERATION. Any such operation that takes one or more input pa-
rameters may additionally throw the subclass RETCODE_BAD_PARAMETER.
Any operation on an object created from any of the factories may addition-
ally throw the subclass RETCODE_ALREADY_DELETED. Any operation
that is stated as optional may additionally throw the subclass RETCODE_-
UNSUPPORTED.

Thus, the standard return codes are:

" RETCODE_OK

" RETCODE_ERROR

" RETCODE_ILLEGAL_OPERATION
" RETCODE_ALREADY_DELETED
" RETCODE_BAD_PARAMETER

" RETCODE_UNSUPPORTED

Operations that may throw any other exception type will state so explicitly.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.47 Sequence Number Support 105

6.47 Sequence Number Support
<<eXtension>> (p.270) Sequence number type and defines.

Classes

" class SequenceNumber_t

Type for sequence number representation.

6.47.1 Detailed Description

<<eXtension>> (p.270) Sequence number type and defines.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

106 Module Documentation

6.48 Status Kinds

Kinds of communication status.

Classes

" class StatusKind
Type for status kinds.

Variables

~ static final int STATUS_MASK_NONE

No bits are set.

~ static final int STATUS_MASK_ALL
All bits are set.

6.48.1 Detailed Description
Kinds of communication status.

Entity:

com.rti.dds.infrastructure.Entity (p.912)

QoS:
QoS Policies (p.90)

Listener:

com.rti.dds.infrastructure.Listener (p. 1154)

Each concrete com.rti.dds.infrastructure.Entity (p.912) is associated with
a set of Status objects whose value represents the communication status of that
entity. Each status value can be accessed with a corresponding method on the
com.rti.dds.infrastructure.Entity (p.912).

When these status values change, the corresponding
com.rti.dds.infrastructure.StatusCondition (p.1452) objects are ac-
tivated and the proper com.rti.dds.infrastructure.Listener (p.1154)
objects are invoked to asynchronously inform the application.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.48 Status Kinds 107

An application is notified of communication status by
means of the com.rti.dds.infrastructure.Listener (p.-1154)
or the com.rti.dds.infrastructure.WaitSet (p. 1695) /
com.rti.dds.infrastructure.Condition (p.451) mechanism. The

two mechanisms may be combined in the application (e.g.,
using com.rti.dds.infrastructure. WaitSet (p- 1695) (s) /
com.rti.dds.infrastructure.Condition (p.451) (s) to access the data
and com.rti.dds.infrastructure.Listener (p.1154) (s) to be warned
asynchronously of erroneous communication statuses).

It is likely that the application will choose one or the other mechanism for each
particular communication status (not both). However, if both mechanisms are
enabled, then the com.rti.dds.infrastructure.Listener (p.1154) mechanism
is used first and then the com.rti.dds.infrastructure.WaitSet (p. 1695) ob-
jects are signalled.

The statuses may be classified into:

read communication statuses: 1i.e., those that are related to arrival
of data, namely StatusKind.DATA_ON_READERS_STATUS and Sta-
tusKind. DATA_AVAILABLE _STATUS.

plain communication statuses: i.e., all the others.

Read communication statuses are treated slightly differently than the others be-
cause they don’t change independently. In other words, at least two changes will
appear at the same time (StatusKind. DATA_ON_READERS_STATUS and Sta-
tusKind. DATA_AVAILABLE_STATUS) and even several of the last kind may
be part of the set. This ’grouping’ has to be communicated to the application.

For each plain communication status, there is a corresponding structure to hold
the status value. These values contain the information related to the change of
status, as well as information related to the statuses themselves (e.g., contains
cumulative counts).

6.48.2 Changes in Status

Associated with each one of an com.rti.dds.infrastructure.Entity (p.912)’s
communication status is a logical StatusChangedFlag. This flag indicates
whether that particular communication status has changed since the last time
the status was read by the application. The way the status changes is slightly
different for the Plain Communication Status and the Read Communication
status.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

108 Module Documentation

6.48.2.1 Changes in plain communication status

For the plain communication status, the StatusChangedFlag flag is initially
set to FALSE. It becomes TRUE whenever the plain communication status
changes and it is reset to false each time the application accesses the plain
communication status via the proper get_<plain communication status>()
operation on the com.rti.dds.infrastructure.Entity (p.912).

The communication status is also reset to FALSE whenever the associated lis-
tener operation is called as the listener implicitly accesses the status which is
passed as a parameter to the operation. The fact that the status is reset prior
to calling the listener means that if the application calls the get_<plain commu-
nication status> from inside the listener it will see the status already reset.

An exception to this rule is when the associated listener is the 'nil’ listener. The
'nil’ listener is treated as a NOOP and the act of calling the 'nil’ listener does
not reset the communication status.

For example, the wvalue of the StatusChangedFlag associated with
the StatusKind. REQUESTED_DEADLINE_MISSED_STATUS will be-
come TRUE each time new deadline occurs (which increases the
com.rti.dds.subscription.RequestedDeadlineMissedStatus.total_-
count (p.1353) field). The value changes to FALSE when
the application accesses the status via the corresponding
com.rti.dds.subscription.DataReader.get_requested_deadline_-
missed_status (p.484) method on the proper Entity

6.48.2.2 Changes in read communication status

For the read communication status, the StatusChangedFlag flag is initially
set to FALSE. The StatusChangedFlag becomes TRUE when either a data-
sample arrives or else the com.rti.dds.subscription.ViewStateKind
(p. 1689), com.rti.dds.subscription.SampleStateKind (p. 1430),
or com.rti.dds.subscription.InstanceStateKind (p. 1086)
of any existing sample changes for any reason other
than a call to com.rti.dds.topic.example.FooDataReader.read,
com.rti.dds.topic.example.FooDataReader.take or their variants. Specifi-
cally any of the following events will cause the StatusChangedFlag to become
TRUE:

" The arrival of new data.

" A change in the com.rti.dds.subscription.InstanceStateKind
(p. 1086) of a contained instance. This can be caused by either:

— The arrival of the notification that an instance has been disposed by:

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.48 Status Kinds 109

* the com.rti.dds.publication.DataWriter (p.538) that owns
it if OWNERSHIP (p.83) QoS kind= OwnershipQosPoli-
cyKind. EXCLUSIVE_OWNERSHIP_QOS

* or by any com.rti.dds.publication.DataWriter (p.538)
if OWNERSHIP (p.83) QoS kind= OwnershipQosPoli-
cyKind. SHARED _OWNERSHIP_QOS

— The loss of liveliness of the com.rti.dds.publication.DataWriter
(p.538) of an instance for which there is mno other
com.rti.dds.publication.DataWriter (p.538).

— The arrival of the notification that an instance has been unregistered
by the only com.rti.dds.publication.DataWriter (p.538) that is
known to be writing the instance.

Depending on the kind of StatusChangedFlag, the flag transitions to FALSE
again as follows:

" The StatusKind. DATA_AVAILABLE STATUS StatusChangedFlag be-
comes FALSE when either the corresponding listener operation (on_data_-
available) is called or the read or take operation (or their variants) is called
on the associated com.rti.dds.subscription.DataReader (p.473).

" The StatusKind. DATA_ON_READERS_STATUS StatusChangedFlag
becomes FALSE when any of the following events occurs:
— The corresponding listener operation (on_data-on_readers) is called.

— The on_data_available listener operation is called on any
com.rti.dds.subscription.DataReader (p.473) belonging to
the com.rti.dds.subscription.Subscriber (p. 1478).

— The read or take operation (or their variants) is called on any
com.rti.dds.subscription.DataReader (p.473) belonging to the
com.rti.dds.subscription.Subscriber (p. 1478).

See also:

com.rti.dds.infrastructure.Listener (p. 1154)
com.rti.dds.infrastructure.WaitSet (p. 1695),
com.rti.dds.infrastructure.Condition (p.451)

6.48.3 Variable Documentation
6.48.3.1 final int STATUS_MASK_NONE [static, inherited]

No bits are set.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

110 Module Documentation

6.48.3.2 final int STATUS_MASK_ALL [static, inherited]

All bits are set.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.49 SYSTEM_RESOURCE_LIMITS 111

6.49 SYSTEM RESOURCE_LIMITS

<<eXtension>> (p.270) Configures DomainParticipant-independent re-
sources used by RTI Connext.

Classes

" class SystemResourceLimitsQosPolicy

Configures com.rti.dds.domain. DomainParticipant (p. 629)-
independent resources used by RTI Connext. Mainly used to change
the mazimum number of com.rti.dds.domain.DomainParticipant
(p- 629) entities that can be created within a single process (address space).

Variables

© static final QosPolicyld.t SYSTEMRESOURCELIMITS_QOS -

POLICY_ID
<<eXtension>> (p-270) Identifier for
com.rti.dds.infrastructure. SystemResourceLimitsQosPolicy
(p. 1524)

6.49.1 Detailed Description

<<eXtension>> (p.270) Configures DomainParticipant-independent re-
sources used by RTI Connext.

6.49.2 Variable Documentation

6.49.2.1 final QosPolicyld_.t SYSTEMRESOURCELIMITS_QOS _-
POLICY_ID [static, inherited]

<<eXtension>> (p. 270) Identifier for com.rti.dds.infrastructure.SystemResourceLimitsQosPolicy
(p- 1524)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

112 Module Documentation

6.50 Thread Settings

The properties of a thread of execution.

Classes

" class ThreadSettings_t

The properties of a thread of execution.

" class ThreadSettingsCpuRotationKind

Determines how com.rti.dds.infrastructure. ThreadSettings_t.cpu_list
(p.- 1532) affects processor affinity for thread-related QoS policies that ap-
ply to multiple threads.

" class ThreadSettingsKind

A collection of flags used to configure threads of execution.

Variables

"~ static final int THREAD_SETTINGS_KIND_MASK_DEFAULT
The mask of default thread options.

6.50.1 Detailed Description

The properties of a thread of execution.

6.50.2 Variable Documentation

6.50.2.1 final int THREAD_SETTINGS_KIND MASK_DEFAULT
[static, inherited]

The mask of default thread options.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.51 TIME_ BASED _FILTER 113

6.51 TIME BASED FILTER

Filter that allows a com.rti.dds.subscription.DataReader (p.473) to spec-
ify that it is interested only in (potentially) a subset of the values of the data.

Classes

" class TimeBasedFilterQosPolicy

Filter that allows a com.rti.dds.subscription.DataReader (p.473) to
specify that it is interested only in (potentially) a subset of the values of
the data.

Variables

" static final QosPolicyld.t TIMEBASEDFILTER _QOS_POLICY _-
ID

Identifier for com.rti.dds.infrastructure. TimeBasedFilterQosPolicy

(p- 1541).

6.51.1 Detailed Description

Filter that allows a com.rti.dds.subscription.DataReader (p.473) to spec-
ify that it is interested only in (potentially) a subset of the values of the data.

6.51.2 Variable Documentation

6.51.2.1 final QosPolicyld_.t TIMEBASEDFILTER_QOS_POLICY _-
ID [static, inheritedl]

Identifier for com.rti.dds.infrastructure.TimeBasedFilterQosPolicy
(p. 1541).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

114 Module Documentation

6.52 TOPIC_DATA

Attaches a buffer of opaque data that is distributed by means of Built-in
Topics (p. 153) during discovery.
Classes

" class TopicDataQosPolicy

Attaches a buffer of opaque data that is distributed by means of Built-in
Topics (p. 153) during discovery.

Variables

"~ static final QosPolicyld_t TOPICDATA _QOS_POLICY_ID

Identifier for com.rti.dds.infrastructure. TopicDataQosPolicy
(p. 1559).

6.52.1 Detailed Description

Attaches a buffer of opaque data that is distributed by means of Built-in
Topics (p. 153) during discovery.

6.52.2 Variable Documentation

6.52.2.1 final QosPolicyld_t TOPICDATA_QOS_POLICY_ID

[static, inherited]

Identifier for com.rti.dds.infrastructure.TopicDataQosPolicy (p. 1559).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.53 TRANSPORT _BUILTIN 115

6.53 TRANSPORT BUILTIN

<<eXtension>> (p.270) Specifies which built-in transports are used.

Classes

" class TransportBuiltinKind

Built-in transport kind.

" class TransportBuiltinQosPolicy

Specifies which built-in transports are used.

Variables

"~ static final QosPolicyld.t TRANSPORTBUILTIN_QOS_POLICY _-
ID

<<eXtension>> (p-270) Identifier for
com.rti.dds.infrastructure. TransportBuiltinQosPolicy (p. 1580)

static final String UDPv4_ALIAS
Alias name for the UDPuv4 built-in transport.

" static final String SHMEM_ALIAS

Alias name for the shared memory built-in transport.

" static final String UDPv6_ALIAS
Alias name for the UDPv6 built-in transport.

static final int MASK_NONE

None of the built-in transports will be registered automatically when the
com.rti.dds.domain. DomainParticipant (p.629) is enabled. The user
must explictly register transports using TransportSupport.register_transport.

"~ static final int MASK_DEFAULT
The default value of com.rti.dds.infrastructure. TransportBuiltin QosPolicy.mask

(p. 1581).

~ static final int MASK_ALL

All the available built-in transports are registered automatically when the
com.rti.dds.domain. DomainParticipant (p. 629) is enabled.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

116 Module Documentation

6.53.1 Detailed Description
<<eXtension>> (p.270) Specifies which built-in transports are used.

See also:

Changing the automatically registered built-in transports (p.255)

6.53.2 Variable Documentation

6.53.2.1 final QosPolicyld .t TRANSPORTBUILTIN_QOS _-
POLICY_ID [static, inherited]

<<eXtension>> (p. 270) Identifier for com.rti.dds.infrastructure. TransportBuiltinQosPolicy
(p. 1580)

6.53.2.2 final String UDPv4_ALIAS [static, inherited]

Alias name for the UDPv4 built-in transport.

6.53.2.3 final String SHMEM_ALIAS [static, inherited]

Alias name for the shared memory built-in transport.

6.53.2.4 final String UDPv6_ALIAS [static, inherited]

Alias name for the UDPv6 built-in transport.

6.53.2.5 final int MASK_NONE [static, inherited]
None of the built-in transports will be registered automatically when the
com.rti.dds.domain.DomainParticipant (p. 629) is enabled. The user must

explictly register transports using TransportSupport.register_transport.

See also:

com.rti.dds.infrastructure. TransportBuiltinKindMask

6.53.2.6 final int MASK_DEFAULT [static, inherited]

The default value of com.rti.dds.infrastructure.TransportBuiltinQosPolicy.mask
(p. 1581).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.53 TRANSPORT _BUILTIN 117

The set of builtin transport plugins that will be automatically registered with
the participant by default. The user can register additional transports using
TransportSupport.register_transport.

See also:

com.rti.dds.infrastructure. Transport BuiltinKindMask

6.53.2.7 final int MASK_ALL [static, inherited]

All the available built-in transports are registered automatically when the
com.rti.dds.domain.DomainParticipant (p.629) is enabled.

See also:

com.rti.dds.infrastructure. Transport BuiltinKindMask

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

118

Module Documentation

6.54 TRANSPORT MULTICAST

<<eXtension>> (p.270) Specifies the multicast address on which a
com.rti.dds.subscription.DataReader (p.473) wants to receive its data.
It can also specify a port number, as well as a subset of the available (at
the com.rti.dds.domain.DomainParticipant (p.629) level) transports with
which to receive the multicast data.

Classes

" class TransportMulticastMappingQosPolicy

Specifies the multicast address on which a
com.rti.dds.subscription. DataReader (p.473) wants to receive its
data. It can also specify a port number as well as a subset of the avail-
able (at the com.rti.dds.domain.DomainParticipant (p.629) level)
transports with which to receive the multicast data.

" class TransportMulticastQosPolicy

Specifies the multicast address on which a
com.rti.dds.subscription. DataReader (p.473) wants to receive its
data. It can also specify a port number as well as a subset of the avail-
able (at the com.rti.dds.domain.DomainParticipant (p.629) level)
transports with which to receive the multicast data.

~ class TransportMulticastQosPolicyKind

Transport Multicast Policy Kind.

Variables

static final QosPolicyld.t TRANSPORTMULTICAST_QOS -
POLICY_ID

<<eXtension>> (p-270) Identifier for
com.rti.dds.infrastructure. TransportMulticast QosPolicy (p. 1590)

static final TransportMulticastQosPolicyKind ~AUTOMATIC _-
TRANSPORT_MULTICAST_QOS

Transport Multicast Policy Kind.

static final TransportMulticastQosPolicyKind UNICAST_ONLY _-
TRANSPORT _MULTICAST_QOS = new TransportMulticas-
tQosPolicyKind ("UNICAST_ONLY_TRANSPORT_MULTICAST_QOS”,
1)

Transport Multicast Policy Kind.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.54 TRANSPORT _MULTICAST 119

6.54.1 Detailed Description

<<eXtension>> (p.270) Specifies the multicast address on which a
com.rti.dds.subscription.DataReader (p.473) wants to receive its data.
It can also specify a port number, as well as a subset of the available (at
the com.rti.dds.domain.DomainParticipant (p.629) level) transports with
which to receive the multicast data.

6.54.2 Variable Documentation

6.54.2.1 final QosPolicyld_t TRANSPORTMULTICAST _QOS -
POLICY_ID [static, inherited]

<<eXtension>> (p. 270) Identifier for com.rti.dds.infrastructure.TransportMulticastQosPolicy
(p- 1590)

6.54.2.2 final TransportMulticastQosPolicyKind
AUTOMATIC_TRANSPORT _MULTICAST_QOS

[static, inherited]

Initial value:

new TransportMulticastQosPolicyKind(
"AUTOMATIC_TRANSPORT_MULTICAST_QOS", 0)

Transport Multicast Policy Kind.

See also:

com.rti.dds.infrastructure. Transport Multicast QosPolicy. AUTOMATIC -
TRANSPORT_MULTICAST_QOS

6.54.2.3 final TransportMulticastQosPolicyKind
UNICAST_ONLY_TRANSPORT _MULTICAST_QOS =
new TransportMulticastQosPolicyKind (”UNICAST -
ONLY_TRANSPORT_MULTICAST_QOS”, 1) [static,
inherited]

Transport Multicast Policy Kind.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

120 Module Documentation

See also:

com.rti.dds.infrastructure. TransportMulticastQosPolicy. UNICAST _-
ONLY_TRANSPORT _MULTICAST_QOS

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.55 TRANSPORT_PRIORITY 121

6.55 TRANSPORT _PRIORITY

This QoS policy allows the application to take advantage of transports that are
capable of sending messages with different priorities.
Classes

" class TransportPriorityQosPolicy

This QoS policy allows the application to take advantage of transports that
are capable of sending messages with different priorities.

Variables

" static final QosPolicyld.t TRANSPORTPRIORITY_QOS -
POLICY_ID

Identifier for com.rti.dds.infrastructure. TransportPriorityQosPolicy
(p.-1598).

6.55.1 Detailed Description

This QoS policy allows the application to take advantage of transports that are
capable of sending messages with different priorities.

6.55.2 Variable Documentation

6.55.2.1 final QosPolicyld t TRANSPORTPRIORITY_QOS_-
POLICY_ID [static, inherited]

Identifier for com.rti.dds.infrastructure.TransportPriorityQosPolicy
(p. 1598).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

122 Module Documentation

6.56 TRANSPORT SELECTION

<<eXtension>> (p. 270) Specifies the physical transports
that a com.rti.dds.publication.DataWriter (p.538) or
com.rti.dds.subscription.DataReader (p.473) may use to send or re-
ceive data.

Classes

" class TransportSelectionQosPolicy

Specifies the physical transports a com.rti.dds.publication.Data Writer
(p. 538) or com.rti.dds.subscription.DataReader (p.473) may use to
send or receive data.

Variables

" static final QosPolicyld.t TRANSPORTSELECTION_QOS -
POLICY_ID

<<eXtension>> (p-270) Identifier for
com.rti.dds.infrastructure. TransportSelectionQosPolicy (p. 1600)

6.56.1 Detailed Description

<<eXtension>> (p. 270) Specifies the physical transports
that a com.rti.dds.publication.DataWriter (p. 538) or
com.rti.dds.subscription.DataReader (p.473) may use to send or re-
ceive data.

6.56.2 Variable Documentation

6.56.2.1 final QosPolicyld_t TRANSPORTSELECTION_QOS _-
POLICY_ID [static, inherited]

<<eXtension>> (p. 270) Identifier for com.rti.dds.infrastructure.TransportSelectionQosPolicy
(p. 1600)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.57 TRANSPORT_UNICAST 123

6.57 TRANSPORT_UNICAST

<<eXtension>> (p.270) Specifies a subset of transports and a port number
that can be used by an Entity to receive data.
Classes

" class TransportUnicastQosPolicy

Specifies a subset of transports and a port number that can be used by an
Entity (p. 912) to receive data.

Variables

"~ static final QosPolicyld_t TRANSPORTUNICAST_QOS -
POLICY_ID

<<eXtension>> (p-270) Identifier for
com.rti.dds.infrastructure. TransportUnicastQosPolicy (p. 1605)

6.57.1 Detailed Description

<<eXtension>> (p.270) Specifies a subset of transports and a port number
that can be used by an Entity to receive data.

6.57.2 Variable Documentation

6.57.2.1 final QosPolicyld t TRANSPORTUNICAST _QOS _-
POLICY_ID [static, inherited]

<<eXtension>> (p. 270) Identifier for com.rti.dds.infrastructure.TransportUnicastQosPolicy
(p- 1605)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

124 Module Documentation

6.58 TYPESUPPORT

<<eXtension>> (p. 270) Allows you to attach application-specific values to a
DataWriter or DataReader that are passed to the serialization or deserialization
routine of the associated data type.

Classes

" class TypeSupportQosPolicy

Allows you to attach application-specific values to a DataWriter or
DataReader that are passed to the serialization or deserialization routine
of the associated data type.

Variables

"~ static final QosPolicyld-t TYPESUPPORT_QOS_POLICY_ID

<<eXtension>> (p-270) Identifier for
com.rti.dds.infrastructure. TypeSupportQosPolicy (p. 1652)

" static final QosPolicyld_t ENTITYNAME_QOS_POLICY _ID

<<eXtension>> (p-270) Identifier for
com.rti.dds.infrastructure. TypeSupportQosPolicy (p. 1652)

6.58.1 Detailed Description
<<eXtension>> (p. 270) Allows you to attach application-specific values to a

DataWriter or DataReader that are passed to the serialization or deserialization
routine of the associated data type.

6.58.2 Variable Documentation

6.58.2.1 final QosPolicyId_t TYPESUPPORT_QOS_POLICY_ID
[static, inherited]

<<eXtension>> (p. 270) Identifier for com.rti.dds.infrastructure.TypeSupportQosPolicy
(p. 1652)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.58 TYPESUPPORT 125

6.58.2.2 final QosPolicyld_t ENTITYNAME_QOS_POLICY_ID
[static, inherited]

<<eXtension>> (p. 270) Identifier for com.rti.dds.infrastructure.TypeSupportQosPolicy
(p. 1652)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

126 Module Documentation

6.59 USER_DATA

Attaches a buffer of opaque data that is distributed by means of Built-in
Topics (p. 153) during discovery.
Classes

" class UserDataQosPolicy

Attaches a buffer of opaque data that is distributed by means of Built-in
Topics (p. 153) during discovery.

Variables

"~ static final QosPolicyld_t USERDATA _QOS_POLICY_ID
Identifier for com.rti.dds.infrastructure. UserDataQosPolicy (p. 1680).

6.59.1 Detailed Description

Attaches a buffer of opaque data that is distributed by means of Built-in
Topics (p. 153) during discovery.

6.59.2 Variable Documentation

6.59.2.1 final QosPolicyld t USERDATA_QOS_POLICY_ID
[static, inherited]

Identifier for com.rti.dds.infrastructure.UserDataQosPolicy (p. 1680).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.60 Exception Codes 127

6.60 Exception Codes

<<eXtension>> (p.270) Exception codes.

Classes

" class BAD_PARAM

The exception BadKind (p. 398) is thrown when an inappropriate operation
is invoked on a TypeCode object.

~ class BAD_TYPECODE

The exception BadKind (p. 398) is thrown when an inappropriate operation
is invoked on a TypeCode object.

~ class BadKind

The exception BadKind (p. 398) is thrown when an inappropriate operation
is invoked on a TypeCode object.

" class BadMemberld
The specified TypeCode member ID is invalid.

class BadMemberName

The specified TypeCode member name is invalid.

class Bounds

A user exception thrown when a parameter is not within the legal bounds.

class SystemException

System exception.

class UserException

User exception.

6.60.1 Detailed Description

<<eXtension>> (p.270) Exception codes.

These exceptions are used for error handling by the Type Code Support
(p.162) APIL

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

128 Module Documentation

6.61 WIRE PROTOCOL

<<eXtension>> (p. 270) Specifies the wire protocol related attributes for the
com.rti.dds.domain.DomainParticipant (p.629).

Classes

" class RtpsReservedPortKind

RTPS reserved port kind, used to identify the types of ports that can be re-
served on domain (p. 317) participant enable.

~ class RtpsWellKnownPorts_t
RTPS well-known port mapping configuration.

" class WireProtocolQosPolicy

Specifies the wire-protocol-related attributes for the
com.rti.dds.domain. DomainParticipant (p. 629).

" class WireProtocolQosPolicy AutoKind
Kind of auto mechanism used to calculate the GUID prefix.

Variables

" static final QosPolicyld_t WIREPROTOCOL_QOS_POLICY _ID

<<eXtension>> (p-270) Identifier for
com.rti.dds.infrastructure. Wire ProtocolQosPolicy (p. 1709)

" static final int MASK_DEFAULT = BUILTIN_UNICAST | BUILTIN -
MULTICAST | USER_UNICAST

The default value of com.rti.dds.infrastructure. Wire ProtocolQosPolicy.rtps_-
reserved_port_mask (p. 1717).

~ static final int MASK_NONE

No bits are set.

~ static final int MASK_ALL
All bits are set.

static final RtpsWellKnownPorts_t RTI_ BACKWARDS -
COMPATIBLE _RTPS _WELL_ KNOWN_PORTS

Assign to use well-known port mappings which are compatible with previous
versions of the RTI Connext middleware.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.61 WIRE_PROTOCOL 129

static final RtpsWellKnownPorts.t INTEROPERABLE_RTPS -
WELL_KNOWN_PORTS

Assign to use well-known port mappings which are compliant with OMG’s
DDS Interoperability Wire Protocol.

" static final WireProtocolQosPolicyAutoKind RTPS_AUTO_ID -
FROM_IP = new WireProtocolQosPolicy AutoKind("RTPS_AUTO -
ID_FROM_IP”, 0)

Kind of auto mechanism used to calculate the GUID prefiz.

static final ~WireProtocolQosPolicyAutoKind RTPS_AUTO_ID _-
FROM_MAC = new WireProtocolQosPolicy AutoKind(”RTPS_-
AUTOID_FROM_-MAC”, 1)

Kind of auto mechanism used to calculate the GUID prefix.

6.61.1 Detailed Description

<<eXtension>> (p. 270) Specifies the wire protocol related attributes for the
com.rti.dds.domain.DomainParticipant (p.629).

6.61.2 Variable Documentation

6.61.2.1 final QosPolicyId_t WIREPROTOCOL_QOS_POLICY_ID

[static, inherited]

<<eXtension>> (p. 270) Identifier for com.rti.dds.infrastructure.WireProtocolQosPolicy
(p.1709)

6.61.2.2 final int MASK DEFAULT = BUILTIN_UNICAST |
BUILTIN _MULTICAST | USER_UNICAST [static,

inherited]

The default value of com.rti.dds.infrastructure.WireProtocolQosPolicy.rtps_-
reserved_port_mask (p. 1717).

Most of the ports that may be needed by DDS will be reserved
by the transport when the participant is enabled. With this value
set, failure to allocate a port that is computed based on the
com.rti.dds.infrastructure.RtpsWellKnownPorts_t (p.1396) will be
detected at this time and the enable operation will fail.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

130 Module Documentation

This setting will avoid reserving the usertraffic multicast port, which is not
actually used unless there are DataReaders that enable multicast but fail to
specify a port.

Automatic participant ID selection will be based on finding a participant index
with both the discovery (metatraffic) unicast port and usertraffic unicast port
available.

See also:

com.rti.dds.infrastructure.RtpsReserved Port KindMask

6.61.2.3 final int MASK_NONE [static, inherited]

No bits are set.

None of the ports that are needed by DDS will be allocated until they are
specifically required. With this value set, automatic participant Id selection
will be based on selecting a port for discovery (metatraffic) unicast traffic on a
single transport.

See also:

com.rti.dds.infrastructure.RtpsReserved Port KindMask

6.61.2.4 final int MASK_ALL [static, inherited]

All bits are set.

All of the ports that may be needed by DDS will be reserved when the partic-
ipant is enabled. With this value set, failure to allocate a port that is com-
puted based on the com.rti.dds.infrastructure.RtpsWellKnownPorts_t
(p-1396) will be detected at this time, and the enable operation will fail.

Note that this will also reserve the usertraffic multicast port which is not
actually used unless there are DataReaders that enable multicast but fail to
specify a port. To avoid unnecesary resource usage for these ports, use RTPS_-
RESERVED_PORT_MASK_DEFAULT.

Automatic participant ID selection will be based on finding a participant index
with both the discovery (metatraffic) unicast port and usertraffic unicast port
available.

See also:

com.rti.dds.infrastructure.RtpsReservedPort KindMask

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.61 WIRE_PROTOCOL 131

6.61.2.5 final RtpsWellKnownPorts_.t RTI. BACKWARDS -
COMPATIBLE_RTPS WELL_KNOWN_PORTS [static,
inherited]

Assign to use well-known port mappings which are compatible with previous
versions of the RTIT Connext middleware.

Assign com.rti.dds.infrastructure.WireProtocolQosPolicy.rtps_well _-
known_ports (p.1715) to this value to remain compatible with previous
versions of the RTT Connext middleware that used fixed port mappings.

The following are the rtps_well known ports values for RtpsWell-
KnownPorts_ t. RTI. BACKWARDS_COMPATIBLE _RTPS_WELL -
KNOWN_PORTS (p. 131):

port_base = 7400

domain_id_gain = 10
participant_id_gain = 1000
builtin multicast_port_offset = 2
builtin unicast_port_offset = 0
user_multicast_port_offset =1
user_unicast_port_offset = 3

These settings are not compliant with OMG’s DDS Interoperability Wire Pro-
tocol. To comply with the specification, please use RtpsWellKnownPorts_-
t. INTEROPERABLE RTPS_WELL_KNOWN_PORTS (p. 131).

See also:

com.rti.dds.infrastructure.WireProtocolQosPolicy.rtps_well _-
known_ports (p. 1715)
RtpsWellKnownPorts_ t. INTEROPERABLE RTPS WELL -
KNOWN_PORTS (p.131)

6.61.2.6 final RtpsWellKnownPorts_t INTEROPERABLE -
RTPS _WELL_KNOWN_PORTS [static,

inherited]

Assign to use well-known port mappings which are compliant with OMG’s DDS
Interoperability Wire Protocol.

Assign com.rti.dds.infrastructure.WireProtocolQosPolicy.rtps_well _-
known_ports (p.1715) to this value to use well-known port mappings which
are compliant with OMG’s DDS Interoperability Wire Protocol.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

132 Module Documentation

The following are the rtps_well known_ports values for RtpsWellKnown-
Ports_t. INTEROPERABLE _RTPS _WELL_KNOWN_PORTS (p. 131):

port_base = 7400

domain_id_gain = 250
participant_id_gain = 2

builtin multicast_port_offset =0
builtin unicast_port_offset = 10
user multicast_port_offset =1
user_unicast_port_offset = 11

Assuming a maximum port number of 65535 (UDPv4), the above settings enable
the use of about 230 domains with up to 120 Participants per node per domain
(p.317).

These settings are not backwards compatible with previous versions of the
RTI Connext middleware that used fixed port mappings. For backwards
compability, please use RtpsWellKnownPorts t. RTI BACKWARDS -
COMPATIBLE RTPS_WELL_ KNOWN_PORTS (p.131).

See also:

com.rti.dds.infrastructure.WireProtocolQosPolicy.rtps_well -
known_ports (p. 1715)
RtpsWellKnownPorts_ t. RTI. BACKWARDS_COMPATIBLE -
RTPS_WELL_KNOWN_PORTS (p.131)

6.61.2.7 final WireProtocolQosPolicy AutoKind
RTPS_AUTO_ID_FROM_IP = new
WireProtocolQosPolicy AutoKind ("RTPS _-
AUTO_ID _FROM_IP”, 0) [static,

inherited]
Kind of auto mechanism used to calculate the GUID prefix.

See also:

com.rti.dds.infrastructure. WireProtocolQosPolicy.rtps_auto_id -
kind. RTPS_AUTO_ID_FROM_IP

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.61 WIRE_PROTOCOL 133

6.61.2.8 final WireProtocolQosPolicy AutoKind
RTPS_AUTO_ID FROM_MAC = new
WireProtocolQosPolicy AutoKind (" RTPS _-
AUTO_ID FROM _MAC”, 1) [static,

inherited]
Kind of auto mechanism used to calculate the GUID prefix.

See also:

com.rti.dds.infrastructure. WireProtocolQosPolicy.rtps_auto_id -
kind. RTPS_AUTO_ID_FROM_MAC

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

134 Module Documentation

6.62 WRITER DATA LIFECYCLE

Controls how a DataWriter handles the lifecycle of the instances (keys) that it
is registered to manage.
Classes

" class WriterDataLifecycleQosPolicy

Controls how a com.rti.dds.publication. Data Writer (p. 538) handles the
lifecycle of the instances (keys) that it is registered to manage.

Variables

" static final QosPolicyld.t WRITERDATALIFECYCLE_QOS -
POLICY_ID

Identifier for com.rti.dds.infrastructure. Writer DataLifecycle QosPolicy
(p. 1722).

6.62.1 Detailed Description

Controls how a DataWriter handles the lifecycle of the instances (keys) that it
is registered to manage.

6.62.2 Variable Documentation

6.62.2.1 final QosPolicyld.t WRITERDATALIFECYCLE_QOS _-
POLICY_ID [static, inherited]

Identifier for com.rti.dds.infrastructure.WriterDataLifecycleQosPolicy
(p. 1722).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.63 String Built-in Type 135

6.63 String Built-in Type

Built-in type consisting of a single character string.

Classes

" class StringSeq
Declares IDL sequence < String > .

" class StringDataReader
<<interface>> (p.271) Instantiates DataReader < String >.

" class StringDataWriter
<<interface>> (p.271) Instantiates DataWriter < String >.

" class StringTypeSupport
<<interface>> (p.271) String type support.

6.63.1 Detailed Description

Built-in type consisting of a single character string.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

136 Module Documentation

6.64 KeyedString Built-in Type

Built-in type consisting of a string payload and a second string that is the key.

Classes

" class KeyedString
Keyed string built-in type.

class KeyedStringDataReader

<<interface>> (p-271) Instantiates DataReader <
com.rti.dds.type.builtin. KeyedString (p. 1123) >.

class KeyedStringDataWriter

<<interface>> (p-271) Instantiates DataWriter <
com.rti.dds.type.builtin. KeyedString (p. 1123) >.

class KeyedStringSeq
Instantiates com.rti.dds.util.Sequence (p.1432) <

com.rti.dds.type.builtin. KeyedString (p. 1123) > .

class KeyedStringTypeSupport
<<interface>> (p.271) Keyed string type support.

6.64.1 Detailed Description

Built-in type consisting of a string payload and a second string that is the key.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.65 Octets Built-in Type 137

6.65 Octets Built-in Type

Built-in type consisting of a variable-length array of opaque bytes.

Classes

" class Bytes

Built-in type consisting of a variable-length array of opaque bytes.

class BytesDataReader

<<interface>> (p-271) Instantiates DataReader <
com.rti.dds.type.builtin. Bytes (p. 417) >.

class BytesDataWriter

<<interface>> (p-271) Instantiates DatalWiriter <
com.rti.dds.type.builtin. Bytes (p. 417) >.

class BytesSeq

Instantiates com.rti.dds.util.Sequence (p.1432) <
com.rti.dds.type.builtin. Bytes (p. 417) > .

class BytesTypeSupport

<<interface>> (p.271) com.rti.dds.type.builtin.Bytes (p.417) type
support.

6.65.1 Detailed Description

Built-in type consisting of a variable-length array of opaque bytes.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

138 Module Documentation

6.66 KeyedOctets Built-in Type

Built-in type consisting of a variable-length array of opaque bytes and a string
that is the key.

Classes

" class KeyedBytes

Built-in type consisting of a variable-length array of opaque bytes and a string
that is the key.

class KeyedBytesDataReader

<<interface>> (p-271) Instantiates DataReader <
com.rti.dds.type.builtin. KeyedBytes (p. 1095) >.

class KeyedBytesDataWriter

<<interface>> (p-271) Instantiates DataWriter <
com.rti.dds.type.builtin. KeyedBytes (p. 1095) >.

class KeyedBytesSeq

Instantiates com.rti.dds.util.Sequence (p.1432) <
com.rti.dds.type.builtin. KeyedBytes (p. 1095) >.

class KeyedBytesTypeSupport

<<interface>> (p.271) com.rti.dds.type.builtin. KeyedBytes (p. 1095)
type support.

6.66.1 Detailed Description

Built-in type consisting of a variable-length array of opaque bytes and a string
that is the key.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.67 Sequence Support 139

6.67 Sequence Support

The com.rti.dds.util.Sequence (p.1432) interface allows you to work with
variable-length collections of homogeneous data.

Modules

" Built-in Sequences

Defines sequences of primitive data type.

Classes

" class FooSeq
<<interface>> (p.271) <<generic>> (p.271) A type-safe, ordered col-

lection of elements. The type of these elements is referred to in this docu-
mentation as Foo (p.955).

" interface Sequence

<<interface>> (p.271) <<generic>> (p.271) A type-safe, ordered col-
lection of elements. The type of these elements is referred to in this docu-
mentation as Foo.

" class FooSeq
<<interface>> (p.271) <<generic>> (p.271) A type-safe, ordered col-

lection of elements. The type of these elements is referred to in this docu-
mentation as Foo (p.956).

6.67.1 Detailed Description

The com.rti.dds.util.Sequence (p.1432) interface allows you to work with
variable-length collections of homogeneous data.

This interface is a minimal extension to the standard java.util.List interface,
making it easier to use RTI Connext alongside other Java APIs.

The java.util.List interface does not provide direct support for lists of prim-
itive types. The Built-in Sequences (p. 202) provide extension APIs for work-
ing with collections of primitive elements without the overhead of boxing the
unboxing.

When you use the rtiddsgen (p. 290) code generation tool, it will automatically
generate concrete sequence instantiations for each of your own custom types.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

140 Module Documentation

See also:

http://java.sun.com/javase/6/docs/api/java/util/List.html

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.68 Clock Selection 141

6.68 Clock Selection

APIs related to clock selection. RTI Connext uses clocks to measure time and
generate timestamps.

The middleware uses two clocks, an internal clock and an external clock. The
internal clock is used to measure time and handles all timing in the middleware.
The external clock is used solely to generate timestamps, such as the source
timestamp and the reception timestamp, in addition to providing the time given
by com.rti.dds.domain.DomainParticipant.get_current_time (p.695).

6.68.1 Available Clocks

Two clock implementations are generally available, the monotonic clock and the
realtime clock.

The monotonic clock provides times that are monotonic from a clock that is not
adjustable. This clock is useful to use in order to not be subject to changes in
the system or realtime clock, which may be adjusted by the user or via time
synchronization protocols. However, this time generally starts from an arbitrary
point in time, such as system startup. Note that this clock is not available for
all architectures. Please see the Platform Notes for the architectures on which
it is supported. For the purposes of clock selection, this clock can be referenced
by the name ”monotonic”.

The realtime clock provides the realtime of the system. This clock may generally
be monotonic but may not be guaranteed to be so. It is adjustable and may be
subject to small and large changes in time. The time obtained from this clock
is generally a meaningful time in that it is the amount of time from a known
epoch. For the purposes of clock selection, this clock can be referenced by the
names "realtime” or ”system”.

6.68.2 Clock Selection Strategy

By default, both the internal and external clocks use the realtime clock. If you
want your application to be robust to changes in the system time, you may use
the monotonic clock as the internal clock, and leave the system clock as the
external clock. Note, however, that this may slightly diminish performance in
that both the send and receive paths may need to obtain times from both clocks.
Since the monotonic clock is not available on all architectures, you may want
to specify ”monotonic,realtime” for the internal_clock (see the table below). By
doing so, the middleware will attempt to use the monotonic clock if available,
and will fall back to the realtime clock if the monotonic clock is not available.

If you want your application to be robust to changes in the system time, you
are not relying on source timestamps, and you want to avoid obtaining times

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

142

Module Documentation

from both clocks, you may use the monotonic clock for both the internal and

external clocks.

6.68.3 Configuring Clock Selection

To configure the clock selection, use the PROPERTY (p.88) QoS policy as-

sociated with the com.rti.dds.domain.DomainParticipant (p.629).

See also:

com.rti.dds.infrastructure.PropertyQosPolicy (p.1252)

The following table lists the supported clock selection properties.

Property

Description

dds.clock.external_clock

Comma-delimited list of clocks to
use for the external clock, in the
order of preference. Valid clock
names are ”realtime”, ”system”,
and ”monotonic”.

Default: "realtime”

dds.clock.internal_clock

Comma-delimited list of clocks to
use for the internal clock, in the
order of preference. Valid clock
names are ’realtime”, ”system”,
and ”monotonic”.

Default: "realtime”

Table 6.1: Clock Selection Properties

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.69 Domain Module 143

6.69 Domain Module

Contains the com.rti.dds.domain.DomainParticipant (p.629) class that
acts as an entrypoint of RTI Connext and acts as a factory for many of the
classes. The com.rti.dds.domain.DomainParticipant (p.629) also acts as
a container for the other objects that make up RTI Connext.

Modules

" DomainParticipantFactory
com.rti.dds.domain. DomainParticipantFactory (p. 708) entity and as-
sociated elements

" DomainParticipants
com.rti.dds.domain. DomainParticipant (p.629) entity and associated
elements

" Built-in Topics

Built-in objects created by RTI Connext but accessible to the application.

Variables

" static DomainParticipantFactory TheParticipantFactory = create_-
singletonI()

Can be used as an alias for the singleton factory returned by the oper-
ation com.rti.dds.domain. DomainParticipantFactory.get_instance()

(p- 712).

6.69.1 Detailed Description

Contains the com.rti.dds.domain.DomainParticipant (p.629) class that
acts as an entrypoint of RTI Connext and acts as a factory for many of the
classes. The com.rti.dds.domain.DomainParticipant (p.629) also acts as
a container for the other objects that make up RTI Connext.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

144 Module Documentation

6.69.2 Variable Documentation

6.69.2.1 DomainParticipantFactory TheParticipantFactory =
create_singletonI() [static, inherited]

Can be used as an alias for the singleton factory returned by the operation
com.rti.dds.domain.DomainParticipantFactory.get_instance() (p.712).

See also:

com.rti.dds.domain.DomainParticipantFactory.get_instance
(p.712)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.70 DomainParticipantFactory 145

6.70 DomainParticipantFactory

com.rti.dds.domain.DomainParticipantFactory (p.708) entity and asso-
ciated elements
Classes

" class DomainParticipantFactory

<<singleton>> (p.271) <<interface>> (p.271) Allows creation and de-
struction of com.rti.dds.domain. DomainParticipant (p. 629) objects.

" class DomainParticipantFactoryQos

QoS policies supported by a com.rti.dds.domain. DomainParticipantFactory
(p. 708).

Variables

" static final DomainParticipantQos PARTICIPANT_QOS _-
DEFAULT

Special value for creating a DomainParticipant (p. 629) with default QoS.

6.70.1 Detailed Description

com.rti.dds.domain.DomainParticipantFactory (p.708) entity and asso-
ciated elements

6.70.2 Variable Documentation

6.70.2.1 final DomainParticipantQos PARTICIPANT_QOS -
DEFAULT [static, inherited]

Initial value:

new DomainParticipantQos()

Special value for creating a DomainParticipant (p.629) with default QoS.

When used in com.rti.dds.domain.DomainParticipantFactory.create_-
participant (p.714), this special value is used to indicate that the
com.rti.dds.domain.DomainParticipant (p.629) should be created with

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

146 Module Documentation

the default com.rti.dds.domain.DomainParticipant (p. 629) QoS by means
of the operation com.rti.dds.domain.DomainParticipantFactory.get_-
default_participant_qos() (p.716) and using the resulting QoS to create the
com.rti.dds.domain.DomainParticipant (p.629).

When wused in com.rti.dds.domain.DomainParticipantFactory.set_-
default_participant_qos (p.716), this special value is used to indicate that
the default QoS should be reset back to the initial value that would be used
if the com.rti.dds.domain.DomainParticipantFactory.set_default_-
participant_qos (p. 716) operation had never been called.

When used in com.rti.dds.domain.DomainParticipant.set _-
qos (p.677), this special value is wused to indicate that the
QoS of the com.rti.dds.domain.DomainParticipant (p. 629)
should be changed to match the current default QoS set in the
com.rti.dds.domain.DomainParticipantFactory (p.708) that the
com.rti.dds.domain.DomainParticipant (p.629) belongs to.

RTT Connext treats this special value as a constant.

Note: You cannot wuse this value to get the default QoS values
from the DomainParticipant (p.629) factory; for this purpose,
use com.rti.dds.domain.DomainParticipantFactory.get_default _-

participant_qos (p.716).

See also:

NDDS_DISCOVERY_PEERS (p.55)
com.rti.dds.domain.DomainParticipantFactory.create_-
participant() (p.714)
com.rti.dds.domain.DomainParticipantFactory.set_default_-
participant_qos() (p.716)
com.rti.dds.domain.DomainParticipant.set_qos() (p.677)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.71 DomainParticipants 147

6.71 DomainParticipants

com.rti.dds.domain.DomainParticipant (p.629) entity and associated ele-
ments

Classes

" interface DomainParticipant

<<interface>> (p-271) Container for all
com.rti.dds.infrastructure. DomainEntity (p. 628) objects.

" class DomainParticipant Adapter

<<eXtension>> (p.270) A listener adapter in the spirit of the Java AWT
listener adapters. (The Adapter provides empty implementations for the lis-
tener methods)

"~ interface DomainParticipantListener

<<interface>> (p.271) Listener for participant status.

" class DomainParticipantQos

QoS policies supported by a com.rti.dds.domain. DomainParticipant
(p- 629) entity.

Variables

" static final TopicQos TOPIC_QOS_DEFAULT = new TopicQos()

Special value for creating a com.rti.dds.topic. Topic (p. 1545) with default
QoS.

static final PublisherQos PUBLISHER_QOS_DEFAULT = new Pub-
lisherQos()

Special value for creating a com.rti.dds.publication.Publisher (p.1277)
with default QoS.

" static final SubscriberQos SUBSCRIBER_QOS_DEFAULT

Special value for creating a com.rti.dds.subscription.Subscriber (p. 1/78)
with default QoS.

static final FlowControllerProperty.t FLOW_CONTROLLER -
PROPERTY DEFAULT

<<eXtension>> (p-270) Special walue for creating a
com.rti.dds.publication. FlowController (p.942) with default prop-
erty.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

148 Module Documentation

"~ static final String SQLFILTER_NAME

<<eXtension>> (p.270) The name of the built-in SQL filter that can be
used with ContentFilteredTopics and MultiChannel DataWriters.

" static final String STRINGMATCHFILTER NAME

<<eXtension>> (p.270) The name of the built-in StringMatch filter that
can be used with ContentFilteredTopics and MultiChannel DataWriters.

6.71.1 Detailed Description

com.rti.dds.domain.DomainParticipant (p.629) entity and associated ele-
ments

6.71.2 Variable Documentation

6.71.2.1 final TopicQos TOPIC_QOS_DEFAULT = new TopicQos()
[static, inherited]

Special value for creating a com.rti.dds.topic.Topic (p.1545) with default
QoS.

When wused in com.rti.dds.domain.DomainParticipant.create_topic
(p. 670), this special value is used to indicate that the com.rti.dds.topic.Topic
(p. 1545) should be created with the default com.rti.dds.topic.Topic (p. 1545)
QoS by means of the operation get_default_topic_qos and using the resulting
QoS to create the com.rti.dds.topic.Topic (p. 1545).

When used in com.rti.dds.domain.DomainParticipant.set_default_-
topic_qos (p.642), this special value is used to indicate that the de-
fault QoS should be reset back to the initial value that would be
used if the com.rti.dds.domain.DomainParticipant.set_default_topic_-
qos (p. 642) operation had never been called.

When used in com.rti.dds.topic.Topic.set_qos (p.1547), this special
value is used to indicate that the QoS of the com.rti.dds.topic.Topic
(p.1545) should be changed to match the current default QoS set

in the com.rti.dds.domain.DomainParticipant (p.629) that the
com.rti.dds.topic.Topic (p. 1545) belongs to.

Note: You cannot use this value to get the default QoS values for a Topic; for
this purpose, use com.rti.dds.domain.DomainParticipant.get_default_-
topic_qos (p.641).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.71 DomainParticipants 149

See also:

com.rti.dds.domain.DomainParticipant.create_topic (p.670)
com.rti.dds.domain.DomainParticipant.set_default_topic_qos
(p. 642)

com.rti.dds.topic.Topic.set_qos (p. 1547)

6.71.2.2 final PublisherQos PUBLISHER _QOS_DEFAULT = new
PublisherQos() [static, inherited]

Special value for creating a com.rti.dds.publication.Publisher (p.1277)
with default QoS.

When used in com.rti.dds.domain.DomainParticipant.create_-
publisher (p.656), this special value is used to indicate that the
com.rti.dds.publication.Publisher (p.1277) should be created with
the default com.rti.dds.publication.Publisher (p.1277) QoS by means of
the operation get_default_publisher_qos and using the resulting QoS to create
the com.rti.dds.publication.Publisher (p. 1277).

When wused in com.rti.dds.domain.DomainParticipant.set_default_-
publisher_qos (p.644), this special value is used to indicate that the de-
fault QoS should be reset back to the initial value that would be used
if the com.rti.dds.domain.DomainParticipant.set_default_publisher_-
qos (p. 644) operation had never been called.

When wused in com.rti.dds.publication.Publisher.set_qos (p.1289),
this special value is wused to indicate that the QoS of the
com.rti.dds.publication.Publisher (p.1277) should be changed to match
the current default QoS set in the com.rti.dds.domain.DomainParticipant
(p.629) that the com.rti.dds.publication.Publisher (p. 1277) belongs to.

Note: You cannot use this value to get the default QoS values for a Pub-
lisher; for this purpose, use com.rti.dds.domain.DomainParticipant.get_-
default_publisher_qos (p. 644).

See also:

com.rti.dds.domain.DomainParticipant.create_publisher (p.656)
com.rti.dds.domain.DomainParticipant.set_default_publisher_qos
(p. 644)

com.rti.dds.publication.Publisher.set_gos (p. 1289)

6.71.2.3 final SubscriberQos SUBSCRIBER_QOS _DEFAULT

[static, inherited]

Initial value:

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

150 Module Documentation

new SubscriberQos()

Special value for creating a com.rti.dds.subscription.Subscriber (p.1478)
with default QoS.

When used in com.rti.dds.domain.DomainParticipant.create_-
subscriber (p.659), this special value is used to indicate that the
com.rti.dds.subscription.Subscriber (p.1478) should be created with
the default com.rti.dds.subscription.Subscriber (p. 1478) QoS by means of
the operation get_default_subscriber_qos and using the resulting QoS to create
the com.rti.dds.subscription.Subscriber (p. 1478).

When used in com.rti.dds.domain.DomainParticipant.set_default_-
subscriber_qos (p.649), this special value is used to indicate that the de-
fault QoS should be reset back to the initial value that would be used if
the com.rti.dds.domain.DomainParticipant.set_default_subscriber_qos
(p. 649) operation had never been called.

When used in com.rti.dds.subscription.Subscriber.set_qos
(p.1493), this special value is used to indicate that the QoS of the
com.rti.dds.subscription.Subscriber (p. 1478) should be changed to match
the current default QoS set in the com.rti.dds.domain.DomainParticipant
(p.629) that the com.rti.dds.subscription.Subscriber (p. 1478) belongs to.

Note: You cannot use this value to get the default QoS values for a Subscriber;
for this purpose, use com.rti.dds.domain.DomainParticipant.get_-
default_subscriber_qos (p.652).

See also:

com.rti.dds.domain.DomainParticipant.create_subscriber (p.659)
com.rti.dds.domain.DomainParticipant.get_default_subscriber_-
qos (p.652)

com.rti.dds.subscription.Subscriber.set_qos (p. 1493)

6.71.2.4 final FlowControllerProperty_t FLOW _-
CONTROLLER_PROPERTY _DEFAULT [static,
inherited]

Initial value:

new FlowControllerProperty_t()
<<eXtension>> (p-270) Special value for creating a
com.rti.dds.publication.FlowController (p.942) with default property.

When used in com.rti.dds.domain.DomainParticipant.create_-
flowcontroller (p.654), this special value is used to indicate that the

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.71 DomainParticipants 151

com.rti.dds.publication.FlowController (p.942) should be created with
the default com.rti.dds.publication.FlowController (p.942) property by
means of the operation get_default_flowcontroller_property and using the result-
ing QoS to create the com.rti.dds.publication.FlowControllerProperty_t
(p. 946).

When used in com.rti.dds.domain.DomainParticipant.set_default_-
flowcontroller_property (p.640), this special value is used to indicate
that the default QoS should be reset back to the initial value that would
be used if the com.rti.dds.domain.DomainParticipant.set_default_-
flowcontroller_property (p.640) operation had never been called.

When used in com.rti.dds.publication.FlowController.set -
property (p.943), this special value is used to indicate that the
property of the com.rti.dds.publication.FlowController (p.942)
should be changed to match the current default property set in
the com.rti.dds.domain.DomainParticipant (p. 629) that the
com.rti.dds.publication.FlowController (p.942) belongs to.

Note: You cannot use this value to get the default properties for a FlowCon-
troller; for this purpose, use com.rti.dds.domain.DomainParticipant.get_-
default_flowcontroller_property (p.639).

See also:

com.rti.dds.domain.DomainParticipant.create_flowcontroller
(p. 654)

com.rti.dds.domain.DomainParticipant.set_default_-
flowcontroller_property (p.640)
com.rti.dds.publication.FlowController.set_property (p.943)

6.71.2.5 final String SQLFILTER_NAME [static, inherited]

<<eXtension>> (p.270) The name of the built-in SQL filter that can be
used with ContentFilteredTopics and MultiChannel DataWriters.

See also:

Queries and Filters Syntax (p.278)

6.71.2.6 final String STRINGMATCHFILTER_NAME [static,
inherited]

<<eXtension>> (p.270) The name of the built-in StringMatch filter that
can be used with ContentFilteredTopics and MultiChannel DataWriters.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

152 Module Documentation

The StringMatch Filter is a subset of the SQL filter; it only supports the
MATCH relational operator on a single string field.

See also:

Queries and Filters Syntax (p.278)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.72 Built-in Topics 153

6.72 Built-in Topics

Built-in objects created by RTI Connext but accessible to the application.

Packages

" package com.rti.dds.domain.builtin

Builtin topic (p. 350) for accessing information about the DomainPartici-
pants discovered by RTI Connext.

" package com.rti.dds.publication.builtin

Builtin topic (p. 350) for accessing information about the Publications dis-
covered by RTI Connext.

" package com.rti.dds.subscription.builtin

Builtin topic (p. 350) for accessing information about the Subscriptions dis-
covered by RTI Connext.

" package com.rti.dds.topic.builtin

Builtin topic (p. 350) for accessing information about the Topics discovered
by RTI Connext.

Classes

" class ContentFilterProperty_t

<<eXtension>> (p.270) Type used to provide all the required information
to enable content filtering.

~ class Locator_t

<<eXtension>> (p.270) Type used to represent the addressing information
needed to send a message to an RTPS Endpoint using one of the supported
transports.

" class LocatorSeq

Declares IDL sequence < com.rti.dds.infrastructure. Locator_t (p. 117})
>.

" class ProductVersion_t

<<eXtension>> (p.270) Type used to represent the current version of RTI
Connext.

~ class ProtocolVersion_t

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

154 Module Documentation

<<eXtension>> (p.270) Type used to represent the version of the RTPS
protocol.

~ class VendorlId_t

<<eXtension>> (p.270) Type used to represent the vendor of the service
implementing the RTPS protocol.

" class BuiltinTopicKey_t
The key type of the built-in topic (p. 350) types.

6.72.1 Detailed Description

Built-in objects created by RTI Connext but accessible to the application.

RTI Connext must discover and keep track of the remote entities, such as new
participants in the domain. This information may also be important to the
application, which may want to react to this discovery, or else access it on
demand.

A set of built-in topics and corresponding
com.rti.dds.subscription.DataReader (p.473) objects are introduced
to be used by the application to access these discovery information.

The information can be accessed as if it was normal application data. This
allows the application to know when there are any changes in those val-
ues by means of the com.rti.dds.infrastructure.Listener (p.1154) or the
com.rti.dds.infrastructure.Condition (p.451) mechanisms.

The built-in data-readers all belong to a built-in
com.rti.dds.subscription.Subscriber (p.1478), which can be retrieved by
using the method com.rti.dds.domain.DomainParticipant.get_builtin_-
subscriber (p.684). The built-in com.rti.dds.subscription.DataReader
(p.473) objects can be retrieved by using the operation
com.rti.dds.subscription.Subscriber.lookup_datareader (p- 1490),
with the topic name as a parameter.

Built-in entities have default listener settings as well. The built-in
com.rti.dds.subscription.Subscriber (p.1478) and all of its built-in topics
have 'nil’ listeners with all statuses appearing in their listener masks (acting
as a NO-OP listener that does not reset communication status). The built-in
DataReaders have null listeners with no statuses in their masks.

The information that is accessible about the remote entities by means of the
built-in topics includes all the QoS policies that apply to the corresponding
remote Entity. This QoS policies appear as normal ’data’ fields inside the data
read by means of the built-in Topic. Additional information is provided to
identify the Entity and facilitate the application logic.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.72 Built-in Topics 155

The built-in com.rti.dds.subscription.DataReader (p.473) will
not provide data pertaining to entities created from the same
com.rti.dds.domain.DomainParticipant (p.629) under the assump-
tion that such entities are already known to the application that created
them.

Refer to builtin.ParticipantBuiltinTopicData, builtin. TopicBuiltinTopicData,
builtin.SubscriptionBuiltinTopicData and builtin.PublicationBuiltinTopicData
for a description of all the built-in topics and their contents.

The QoS of the built-in com.rti.dds.subscription.Subscriber (p.1478) and
com.rti.dds.subscription.DataReader (p.473) objects is given by the fol-
lowing table:

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

156 Module Documentation
QoS Value
0-length sequence
com.rti.dds.infrastructure.UserDataQosPolicy

(p. 1680)

com.rti.dds.infrastructure.TopicDataQosPolicy

(p. 1559)

0-length sequence

com.rti.dds.infrastructure.Group
(p. 1064)

0-length sequence
DataQosPolicy

com.rti.dds.infrastructure.Durab
(p.765)

DurabilityQosPoli-
litgIQod PRiIANSIENT _LOCAL -
DURABILITY_QOS

com.rti.dds.infrastructure.Durab
(p-773)

Does not apply as
litgBervicdldsiPedstyucture. Durab
(p- 770) is DurabilityQosPoli-
cyKind. TRANSIENT _LOCAL -
DURABILITY_QOS

com.rti.dds.infrastructure.Presentatida@oSPalidgind. TOPIC -

(p.1237)

access_scope = PresentationQosPoli-

PRESENTATION_QOS
coherent_access = false
ordered_access = false

com.rti.dds.infrastructure.Deadli
(p.604)

Period = infinite
neQosPolicy

com.rti.dds.infrastructure.Latenc
(p.1148)

duration = 0
yBudgetQosPolicy

com.rti.dds.infrastructure.Owner
(p.- 1216)

OwnershipQosPoli-

ShifokBHARED OWNERSHIP -
QOS

com.rti.dds.infrastructure.Owner
(p- 1225)

value = 0
shipStrengthQosPolicy

com.rti.dds.infrastructure.Livelin
(p-1164)

kind = LivelinessQosPoli-

esyQosPAFOMATIC -
LIVELINESS_QOS lease_duration =
0

com.rti.dds.infrastructure.TimeB
(p. 1541)

minimum_separation = 0
asedFilterQosPolicy

com.rti.dds.infrastructure.Partiti
(p.1233)

0-length sequence
onQosPolicy

com.rti.dds.infrastructure.Reliab

kind = ReliabilityQosPoli-

(p' 1%G?rated on Sat Mar 17 21:18:59 2(Q

litglQud FickA BLE. -
1RELBQBHH@YBEQ@81 API by Doxygen
max_blocking_time = 100

milliseconds

DestinationOrderQosPoli-
com.rti.dds.infrastructure.DestinatichiQdBYQRISPERAFON _-
(p.607) TIMESTAMP -

DESTINATIONORDER_-QOS

[

kind =

R T 1. [—

lityQosPolicyKind

6.73 Topic Module 157

6.73 Topic Module

Contains the com.rti.dds.topic.Topic (p- 1545),
com.rti.dds.topic.ContentFiltered Topic (p. 458), and
com.rti.dds.topic.MultiTopic (p.- 1208) classes, the

com.rti.dds.topic.TopicListener (p.1564) interface, and more gener-
ally, all that is needed by an application to define com.rti.dds.topic.Topic
(p. 1545) objects and attach QoS policies to them.

Modules

" Topics

com.rti.dds.topic. Topic (p. 1545) entity and associated elements

" User Data Type Support

Defines generic classes and macros to support user data types.

" Type Code Support

<<eXtension>> (p.270) A TypeCode is a mechanism for representing a
type at runtime. RTI Connext can use type codes to send type definitions
on the network. You will need to understand this API in order to use the
Dynamic Data (p. 170) capability or to inspect the type information you
receive from remote readers and writers.

" Built-in Types

<<eXtension>> (p.270) RTI Connext provides a set of very simple data
types for you to use with the topics in your application.

" Dynamic Data

<<eXtension>> (p.270) The Dynamic Data API provides a way to inter-
act with arbitrarily complex data types at runtime without the need for code
generation.

6.73.1 Detailed Description

Contains the com.rti.dds.topic.Topic (p. 1545),
com.rti.dds.topic.ContentFiltered Topic (p. 458), and
com.rti.dds.topic.MultiTopic (p- 1208) classes, the

com.rti.dds.topic.TopicListener (p.1564) interface, and more gener-
ally, all that is needed by an application to define com.rti.dds.topic.Topic
(p. 1545) objects and attach QoS policies to them.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

158 Module Documentation

6.74 Topics

com.rti.dds.topic.Topic (p. 1545) entity and associated elements

Classes

~ interface ContentFilter

<<interface>> (p.271) Interface to be used by a custom filter of a
com.rti.dds.topic. ContentFilteredTopic (p. 458)

interface ContentFilteredTopic

<<interface>> (p.271) Specialization of
com.rti.dds.topic. TopicDescription (p.1561) that allows for content-
based subscriptions.

class InconsistentTopicStatus
StatusKind. INCONSISTENT_-TOPIC_STATUS.

interface MultiTopic

/[Not supported (optional)] <<interface>> (p.271) A specialization
of com.rti.dds.topic. TopicDescription (p. 1561) that allows subscriptions
that combine/filter /rearrange data coming from several topics.

interface Topic

<<interface>> (p.271) The most basic description of the data to be pub-
lished and subscribed.

class TopicAdapter

<<eXtension>> (p.270) A listener adapter in the spirit of the Java AWT
listener adapters. (The Adapter provides empty implementations for the lis-
tener methods)

interface TopicDescription

com.rti.dds.topic. Topic (p. 1545) entity and associated elements

interface TopicListener

<<interface>> (p.271) com.rti.dds.infrastructure.Listener (p.115/)
for com.rti.dds.topic. Topic (p. 1545) entities.

class TopicQos
QoS policies supported by a com.rti.dds.topic. Topic (p. 1545) entity.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.74 Topics 159

6.74.1 Detailed Description

com.rti.dds.topic.Topic (p. 1545) entity and associated elements

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

160 Module Documentation

6.75 User Data Type Support

Defines generic classes and macros to support user data types.

Classes

~ class InstanceHandle_t

Type definition for an instance handle.

class InstanceHandleSeq

Instantiates com.rti.dds.util.Sequence (p.1432) <
com.rti.dds.infrastructure. InstanceHandle_t (p. 1080) > .

class Foo

A representative user-defined data type.

class FooTypeSupport

<<interface>> (p.271) <<generic>> (p.271) User data type specific in-
terface.

interface TypeSupport

<<interface>> (p.271) An abstract marker interface that has to be spe-
cialized for each concrete user data type that will be used by the application.

class Foo

A representative user-defined data type.

6.75.1 Detailed Description

Defines generic classes and macros to support user data types.

DDS specifies strongly typed interfaces to read and write user data. For each
data class defined by the application, there is a number of specialised classes
that are required to facilitate the type-safe interaction of the application with
RTI Connext.

RTI Connext provides an automatic means to generate all these type-specific
classes with the rtiddsgen (p.290) utility. The complete set of automatic
classes created for a hypothetical user data type named Foo are shown below.

The macros defined here declare the strongly typed APIs needed to support an
arbitrary user defined data of type Foo.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.75 User Data Type Support 161

See also:

rtiddsgen (p.290)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

162 Module Documentation

6.76 Type Code Support

<<eXtension>> (p. 270) A TypeCode is a mechanism for representing a type
at runtime. RTI Connext can use type codes to send type definitions on the
network. You will need to understand this API in order to use the Dynamic
Data (p.170) capability or to inspect the type information you receive from
remote readers and writers.

Classes

~ class EnumMember

A description of a member of an enumeration.

" class PRIVATE_MEMBER

Constant used to indicate that a value type member is private.

~ class PUBLIC_MEMBER

Constant used to indicate that a value type member is public.

class StructMember

A description of a member of a struct.

" class TCKind
Enumeration type for TypeCode (p. 1611) kinds.

class TypeCode

The definition of a particular data type, which you can use to inspect the
name, members, and other properties of types generated with rtiddsgen
(p- 290) or to modify types you define yourself at runtime.

class TypeCodeFactory

A singleton factory for creating, copying, and deleting data type definitions
dynamically.

class UnionMember

A description of a member of a union.

class ValueMember

A description of a member of a value type.

~ class VM_ABSTRACT

Constant used to indicate that a value type has the abstract modifier.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.76 Type Code Support 163

~ class VM_CUSTOM

Constant used to indicate that a value type has the custom modifier.

~ class VMI_NONE

Constant used to indicate that a value type has no modifiers.

~ class VM_TRUNCATABLE

Constant used to indicate that a value type has the truncatable modifier.

6.76.1 Detailed Description

<<eXtension>> (p.270) A TypeCode is a mechanism for representing a type
at runtime. RTI Connext can use type codes to send type definitions on the
network. You will need to understand this API in order to use the Dynamic
Data (p.170) capability or to inspect the type information you receive from
remote readers and writers.

Type codes are values that are used to describe arbitrarily complex types at
runtime. Type code values are manipulated via the TypeCode class, which has
an analogue in CORBA.

A TypeCode value consists of a type code kind (represented by the TCKind enu-
meration) and a list of members (that is, fields). These members are recursive:
each one has its own TypeCode, and in the case of complex types (structures,
arrays, and so on), these contained type codes contain their own members.

There are a number of uses for type codes. The type code mechanism can
be used to unambiguously match type representations. The TypeCode.equals
method is a more reliable test than comparing the string type names, requiring
equivalent definitions of the types.

6.76.2 Accessing a Local TypeCode

When generating types with rtiddsgen (p. 290), type codes are enabled by de-
fault. (The -notypecode option can be used to disable generation of TypeCode
information.) For these types, a TypeCode may be accessed via the FooType-
Code.VALUE member.

This API also includes support for dynamic creation of TypeCode values, typi-
cally for use with the Dynamic Data (p. 170) APIL You can create a TypeCode
using the TypeCodeFactory class. You will construct the TypeCode recursively,
from the outside in: start with the type codes for primitive types, then compose
them into complex types like arrays, structures, and so on. You will find the
following methods helpful:

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

164 Module Documentation

TypeCodeFactory.get_primitive_tc, which provides the TypeCode in-
stances corresponding to the primitive types (e.g. TCKind. TK_LONG,
TCKind. TK_SHORT, and so on).

TypeCodeFactory.create_string_tc and TypeCodeFactory.create_wstring -
tc create a TypeCode representing a text string with a certain bound (i.e.
maximum length).

TypeCodeFactory.create_array_tc and TypeCodeFactory.create_-
sequence_tc create a TypeCode for a collection based on the TypeCode
for its elements.

TypeCodeFactory.create_struct_tc, TypeCodeFactory.create_value_tc, and
TypeCodeFactory.create_sparse_tc create a TypeCode for a structured

type.

6.76.3 Accessing a Remote TypeCode

In addition to being used locally, RTT Connext can transmit TypeCode on the
network between participants. This information can be used to access informa-
tion about types used remotely at runtime, for example to be able to publish
or subscribe to topics of arbitrarily types (see Dynamic Data (p.170)). This
functionality is useful for a generic system monitoring tool like rtiddsspy.

Remote TypeCode information is shared during discovery over the pub-
lication and subscription built-in topics and can be accessed using the
built-in readers for these topics; see Built-in Topics (p.153). Dis-
covered TypeCode values are not cached by RTI Connext upon receipt
and are therefore not available from the built-in topic data returned
by com.rti.dds.publication.DataWriter.get_matched_subscription_-
data (p.551) or com.rti.dds.subscription.DataReader.get_matched -
publication_data (p. 487).

The space available locally to deserialize a discovered remote TypeCode

is specified by the com.rti.dds.domain.DomainParticipant (p.629)’s
com.rti.dds.infrastructure.DomainParticipantResourceLimitsQosPolicy.type_-
code_max_serialized_length (p.755) QoS parameter. To support especially

complex type codes, it may be necessary for you to increase the value of this
parameter.

See also:

TypeCode

Dynamic Data (p. 170)

rtiddsgen (p.290)
builtin.SubscriptionBuiltin TopicData
builtin.PublicationBuiltinTopicData

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.77 Built-in Types 165

6.77 Built-in Types

<<eXtension>> (p.270) RTI Connext provides a set of very simple data
types for you to use with the topics in your application.

Modules

" String Built-in Type

Built-in type consisting of a single character string.

" KeyedString Built-in Type
Built-in type consisting of a string payload and a second string that is the
key.

" Octets Built-in Type

Built-in type consisting of a variable-length array of opaque bytes.

" KeyedOctets Built-in Type

Built-in type consisting of a variable-length array of opaque bytes and a string
that is the key.

6.77.1 Detailed Description

<<eXtension>> (p.270) RTI Connext provides a set of very simple data
types for you to use with the topics in your application.

The middleware provides four built-in types:

String: A payload consisting of a single string of characters. This type
has no key.

com.rti.dds.type.builtin.KeyedString (p. 1123): A payload consisting
of a single string of characters and a second string, the key, that identifies
the instance to which the sample belongs.

com.rti.dds.type.builtin.Bytes (p.417): A payload consisting of an
opaque variable-length array of bytes. This type has no key.

com.rti.dds.type.builtin.KeyedBytes (p. 1095): A payload consisting
of an opaque variable-length array of bytes and a string, the key, that
identifies the instance to which the sample belongs.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

166 Module Documentation

The String and com.rti.dds.type.builtin.KeyedString
(p.1123) types are appropriate for simple text-based appli-
cations. The com.rti.dds.type.builtin.Bytes (p.417) and

com.rti.dds.type.builtin.KeyedBytes (p.1095) types are appropriate
for applications that perform their own custom data serialization, such as
legacy applications still in the process of migrating to RTT Connext. In most
cases, string-based or structured data is preferable to opaque data, because the
latter cannot be easily visualized in tools or used with content-based filters (see
com.rti.dds.topic.ContentFilteredTopic (p.458)).

The built-in types are very simple in order to get you up and running as quickly
as possible. If you need a structured data type you can define your own type
with exactly the fields you need in one of two ways:

" At compile time, by generating code from an IDL or XML file using the
rtiddsgen (p.290) utility

" At runtime, by using the Dynamic Data (p. 170) API

6.77.2 Managing Memory for Builtin Types

When a sample is written, the DataWriter serializes it and stores the result in
a buffer obtained from a pool of preallocated buffers. In the same way, when
a sample is received, the DataReader deserializes it and stores the result in a
sample coming from a pool of preallocated samples.

For builtin types, the maximum size of the buffers/samples and depends on the
nature of the application using the builtin type.

You can configure the maximum size of the builtin types
on a per-DataWriter = and per-DataReader basis using the
com.rti.dds.infrastructure.PropertyQosPolicy (p.1252) in DataWriters,
DataReaders or Participants.

The following table lists the supported builtin type properties to configure mem-
ory allocation. When the properties are defined in the DomainParticipant, they
are applicable to all DataWriters and DataReaders belonging to the Domain-
Participant unless they are overwrittem in the DataWriters and DataReaders.

The previous properties must be set consistently with respect to the correspond-
ing x.max_size properties that set the maximum size of the builtin types in the
typecode.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.77 Built-in Types

167

6.77.3 Typecodes for Builtin Types

The typecodes associated with the builtin types are generated from the following

IDL type definitions:

module DDS {
struct String {
string value;

};

struct KeyedString {
string key;
string value;

};

struct Octets {

sequence<octet> value;

};

struct KeyedOctets {
string key;

sequence<octet> value;

};
};

The maximum size of the strings and sequences that will be included in the type
code definitions can be configured on a per-DomainParticipant-basis by using

the properties in following table.

For more information about the built-in types, including how to control mem-
ory usage and maximum lengths, please see chapter 3, Data Types and Data

Samples, in the RTT Connext User’s Manual.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

168

Module Documentation

Property

Description

dds.builtin_type.string.alloc_size

Maximum size of the strings
published by the
com.rti.dds.type.builtin.StringDa
(p. 1468) or received the
com.rti.dds.type.builtin.StringDa
(p. 1465) (includes the
NULL-terminated character).

Default:
dds.builtin_type.string.max_size if
defined. Otherwise, 1024.

dds.builtin_type.keyed _string.alloc_-
key_size

Maximum size of the keys used by
the

taWriter

taReader

com.rti.dds.type.builtin.KeyedStringDataWriter

(p-1133) or

com.rti.dds.type.builtin.KeyedStringDataReader

(p. 1125) (includes the
NULL-terminated character).
Default: dds.builtin_type.keyed_-
string.max_key _size if defined.
Otherwise, 1024.

dds.builtin_type.keyed_string.alloc_-
size

Maximum size of the strings
published by the
com.rti.dds.type.builtin.KeyedSt1
(p- 1133) or received by the

ingDataWriter

com.rti.dds.type.builtin.KeyedStringDataReader

(p.- 1125) (includes the
NULL-terminated character).
Default: dds.builtin_type.keyed_-
string.max_size if defined.
Otherwise, 1024.

dds.builtin_type.octets.alloc_size

Maximum size of the octet

sequences published the
com.rti.dds.type.builtin.BytesDa
(p- 424) or received by the
com.rti.dds.type.builtin.BytesDa
(p. 420).

Default:
dds.builtin_type.octets.max_size if
defined. Otherwise, 2048.

dds.builtin_type.keyed_octets.alloc_-
key _size

Max-

imum size of the key published by the
com.rti.dds.type.builtin.KeyedBy
(p.- 1106) or received by the
com.rti.dds.type.builtin.KeyedBy
(p-1098) (includes the
NULL-terminated character).

Generated on Sat Mar 17 21:18:59 2(Q

1Defamts ddsdhsdd tinviyapkeyadoxygen
octets.max_key size if defined.
Otherwise, 1024.

dds.builtin_type.keyed_octets.alloc_-
size

Maximum size of the octets

sequences published by a
com.rti.dds.type.builtin.KeyedBy
(p. 1106) or received by a
com.rti.dds.type.builtin.KeyedBy
(r 1TOOR)

taWriter

taReader

tesDataWriter

tesDataReader

tesDataWriter

tesDataReader

6.77 Built-in Types

169

Property

Description

dds.builtin_type.string.max_size

Maximum size of the strings
published by the StringDataWriters
and received by the
StringDataReaders belonging to a
DomainParticipant (includes the
NULL-terminated character).
Default: 1024.

dds.builtin_type.keyed_string.max_-
key _size

Maximum size of the keys used by
the KeyedStringDataWriters and
KeyedStringDataReaders belonging
to a DomainParticipant (includes
the NULL-terminated character).
Default: 1024.

dds.builtin_type.keyed_string.max_-
size

Maximum size of the strings
published by the
KeyedStringDataWriters and
received by the
KeyedStringDataReaders belonging
to a DomainParticipant using the
builtin type (includes the
NULL-terminated character).
Default: 1024

dds.builtin_type.octets.max_size

Maximum size of the octet
sequences published by the
OctetsDataWriters and received by
the OctetsDataReader belonging to
a DomainParticipant.

Default: 2048

dds.builtin_type.keyed_octets.max -
key _size

Maximum size of the keys used by
the KeyedOctetsStringDataWriters
and KeyedOctetsStringDataReaders
belonging to a DomainParticipant
(includes the NULL-terminated
character).

Default: 1024.

dds.builtin_type.keyed_octets.max _-
size

Maximum size of the octet
sequences published by the
KeyedOctetsDataWriters and
received by the
KeyedOctetsDataReaders belonging
to a DomainParticipant.

Default: 2048

Table 6.4: Properties for Allocating Size of Builtin Types, per DomainPartici-

pant

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

170 Module Documentation

6.78 Dynamic Data

<<eXtension>> (p.270) The Dynamic Data API provides a way to inter-
act with arbitrarily complex data types at runtime without the need for code
generation.

Classes

" class DynamicData

A sample of any complex data type, which can be inspected and manipulated
reflectively.

class DynamicDataInfo

A descriptor for a com.rti.dds.dynamicdata. DynamicData (p. 780) ob-
ject.

class DynamicDataMemberInfo

A descriptor for a single member (i.e. field) of dynamically defined data type.

class DynamicDataProperty_t

A collection of attributes used to configure
com.rti.dds.dynamicdata. DynamicData (p. 780) objects.

class DynamicDataReader

Reads (subscribes to) objects of type
com.rti.dds.dynamicdata. DynamicData (p. 780).

class DynamicDataSeq

An ordered collection of com.rti.dds.dynamicdata. DynamicData
(p. 780) elements.

class DynamicDataTypeProperty_t

A collection of attributes used to configure
com.rti.dds.dynamicdata. DynamicData (p. 780) objects.

class DynamicDataTypeSerializationProperty _t

Properties that govern how data of a certain type will be serialized on the
network.

class DynamicDataTypeSupport

A factory for registering a dynamically defined type and creating
com.rti.dds.dynamicdata. DynamicData (p. 780) objects.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.78 Dynamic Data 171

® class DynamicDataWriter

Writes (publishes) objects of type com.rti.dds.dynamicdata. DynamicData
(p- 780).

Functions

" DynamicDatalnfo ()

A descriptor for a com.rti.dds.dynamicdata. DynamicData (p. 780) ob-
ject.

DynamicDatalnfo (int member_count, int stored_size, boolean is_-
optimized_storage)

A descriptor for a com.rti.dds.dynamicdata. DynamicData (p. 780) ob-
ject.

DynamicDataMemberlInfo ()
A descriptor for a single member (i.e. field) of dynamically defined data type.

DynamicDataMemberInfo (int member_id, String member name,
boolean member_exists, TCKind member_kind, int representation_count,
int element_count, TCKind element_kind)

A descriptor for a single member (i.e. field) of dynamically defined data type.

Variables

"~ static final DynamicDataProperty_.t PROPERTY_DEFAULT

Sentinel constant indicating default values for
com.rti.dds.dynamicdata. DynamicDataProperty_t (p. 8/9).

" static final DynamicDataTypeProperty.t TYPE_PROPERTY _-
DEFAULT

Sentinel constant indicating default values for
com.rti.dds.dynamicdata. DynamicDataTypeProperty_t (p. 883).

6.78.1 Detailed Description

<<eXtension>> (p.270) The Dynamic Data API provides a way to inter-
act with arbitrarily complex data types at runtime without the need for code
generation.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

172 Module Documentation

This API allows you to define new data types, modify existing data types, and
interact reflectively with samples. To use it, you will take the following steps:

1. Obtain a TypeCode (see Type Code Support (p.162)) that defines
the type definition you want to use.

A TypeCode includes a type’s kind (TCKind), name, and members (that is,
fields). You can create your own TypeCode using the TypeCodeFactory class —
see, for example, the TypeCodeFactory.create_struct_tc method. Alternatively,
you can use a remote TypeCode that you discovered on the network (see Built-
in Topics (p. 153)) or one generated by rtiddsgen (p.290).

2. Wrap the TypeCode in a com.rti.dds.dynamicdata.DynamicDataTypeSupport
(p. 887) object.

See the constructor DynamicDataTypeSupport.DynamicDataTypeSupport.
This object lets you connect the type definition to a
com.rti.dds.domain.DomainParticipant (p.629) and manage data
samples (of type com.rti.dds.dynamicdata.DynamicData (p.780)).

3. Register the com.rti.dds.dynamicdata.DynamicDataTypeSupport
(p. 887) with one or more domain participants.

See com.rti.dds.dynamicdata.DynamicDataTypeSupport.register_-
type (p.889). This action associates the data type with a logical name that you
can use to create topics. (Starting with this step, working with a dynamically
defined data type is almost exactly the same as working with a generated one.)

4. Create a com.rti.dds.topic.Topic (p.1545) from the
com.rti.dds.domain.DomainParticipant (p.629).

Use the name under which you registered your data type — see
com.rti.dds.domain.DomainParticipant.create_topic (p.670). This

com.rti.dds.topic.Topic (p. 1545) is what you will use to produce and con-
sume data.

5. Create a com.rti.dds.dynamicdata.DynamicDataWriter (p.893)
and/or com.rti.dds.dynamicdata.DynamicDataReader (p.851).

These objects will produce and/or consume data (of type
com.rti.dds.dynamicdata.DynamicData (p.780)) on the
com.rti.dds.topic.Topic (p.1545). You can create these objects di-
rectly from the com.rti.dds.domain.DomainParticipant (p.629) — see
com.rti.dds.domain.DomainParticipant.create_datawriter (p.661) and
com.rti.dds.domain.DomainParticipant.create_datareader (p. 666)
— or by first creating intermediate com.rti.dds.publication.Publisher
(p-1277) and com.rti.dds.subscription.Subscriber (p.1478) objects — see
com.rti.dds.domain.DomainParticipant.create_publisher (p.656) and
com.rti.dds.domain.DomainParticipant.create_subscriber (p.659).

6. Write and/or read the data of interest.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.78 Dynamic Data 173

7. Tear down the objects described above.

You should delete them in the reverse order in which you

created them. Note that wunregistering your data type with
the com.rti.dds.domain.DomainParticipant (p. 629) is op-
tional; all types are automatically unregistered when the

com.rti.dds.domain.DomainParticipant (p.629) itself is deleted.

6.78.2 Function Documentation
6.78.2.1 DynamicDataInfo () [inherited]

A descriptor for a com.rti.dds.dynamicdata.DynamicData (p. 780) object.

See also:

com.rti.dds.dynamicdata.DynamicData.get_info (p.798)

6.78.2.2 DynamicDatalnfo (int member_count, int stored_size,
boolean is_optimized_storage) [inherited]

A descriptor for a com.rti.dds.dynamicdata.DynamicData (p. 780) object.

See also:

com.rti.dds.dynamicdata.DynamicData.get_info (p.798)

6.78.2.3 DynamicDataMemberInfo () [inherited]

A descriptor for a single member (i.e. field) of dynamically defined data type.

See also:

com.rti.dds.dynamicdata.DynamicData.get_member_info (p.805)

6.78.2.4 DynamicDataMemberInfo (int member_id, String
member_name, boolean member_exists, TCKind
member_kind, int representation_count, int element_count,
TCKind element_kind) [inherited]

A descriptor for a single member (i.e. field) of dynamically defined data type.

See also:

com.rti.dds.dynamicdata.DynamicData.get_member_info (p.805)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

174 Module Documentation

6.78.3 Variable Documentation

6.78.3.1 final DynamicDataProperty_t PROPERTY _DEFAULT
[static, inherited]

Sentinel constant indicating default values for
com.rti.dds.dynamicdata.DynamicDataProperty_t (p.849).

Pass this object instead of your own com.rti.dds.dynamicdata.DynamicDataProperty_-
t (p. 849) object to use the default property values:

DynamicData sample = new DynamicData(
myTypeCode,
DynamicData.DYNAMIC_DATA_PROPERTY_DEFAULT) ;

See also:

com.rti.dds.dynamicdata.DynamicDataProperty_t (p.849)

6.78.3.2 final DynamicDataTypeProperty_t
TYPE_PROPERTY_DEFAULT [static, inherited]

Sentinel constant indicating default values for
com.rti.dds.dynamicdata.DynamicDataTypeProperty_t (p.883).

Pass this object instead of your own com.rti.dds.dynamicdata.DynamicDataTypeProperty -
t (p. 883) object to use the default property values:

DynamicDataTypeSupport support = new DynamicDataTypeSupport (
myTypeCode,
DynamicDataTypeSupport.DYNAMIC_DATA_TYPE_PROPERTY_DEFAULT) ;

See also:

com.rti.dds.dynamicdata.DynamicDataTypeProperty_t (p. 883)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.79 Publication Module 175

6.79 Publication Module

Contains the com.rti.dds.publication.FlowController
(p-942), com.rti.dds.publication.Publisher (p. 1277), and
com.rti.dds.publication.DataWriter (p.538) classes as well as
the com.rti.dds.publication.PublisherListener (p-1302) and
com.rti.dds.publication.DataWriterListener (p.566) interfaces, and
more generally, all that is needed on the publication side.

Modules

~ Publishers

com.rti.dds.publication. Publisher (p.1277) entity and associated ele-
ments

" Data Writers

com.rti.dds.publication. Data Writer (p.538) entity and associated ele-
ments

~ Flow Controllers

<<eXtension>> (p.270) com.rti.dds.publication.FlowController
(p- 942) and associated elements

6.79.1 Detailed Description

Contains the com.rti.dds.publication.FlowController
(p-942), com.rti.dds.publication.Publisher (p. 1277), and
com.rti.dds.publication.DataWriter (p.538) classes as well as
the com.rti.dds.publication.PublisherListener (p-1302) and
com.rti.dds.publication.DataWriterListener (p.566) interfaces, and
more generally, all that is needed on the publication side.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

176 Module Documentation

6.80 Publishers

com.rti.dds.publication.Publisher (p.1277) entity and associated elements

Classes

"~ interface Publisher

<<interface>> (p.271) A publisher is the object responsible for the actual
dissemination of publications.

class Publisher Adapter

<<eXtension>> (p.270) A listener adapter in the spirit of the Java AWT
listener adapters. (The Adapter provides empty implementations for the lis-
tener methods)

interface PublisherListener

<<interface>> (p.271) com.rti.dds.infrastructure.Listener (p.115/)
for com.rti.dds.publication. Publisher (p. 1277) status.

" class PublisherQos
QoS policies supported by a com.rti.dds.publication.Publisher (p. 1277)
entity.

class PublisherSeq

Declares IDL sequence < com.rti.dds.publication. Publisher (p. 1277) >

Variables

"~ static final DataWriterQos DATAWRITER_QOS_DEFAULT

Special value for creating com.rti.dds.publication.Data Writer (p.538)
with default QoS.

" static final DataWriterQos DATAWRITER _QOS_USE_TOPIC_QOS
= new DataWriterQos()

Special wvalue for creating com.rti.dds.publication. Data Writer
(p- 538) with a combination of the default
com.rti.dds.publication. Data WriterQos (p. 588) and the
com.rti.dds.topic. TopicQos (p. 1566).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.80 Publishers 177

6.80.1 Detailed Description

com.rti.dds.publication.Publisher (p.1277) entity and associated elements

6.80.2 Variable Documentation

6.80.2.1 final DataWriterQos DATAWRITER _QOS_DEFAULT

[static, inherited]
Initial value:

new DataWriterQos()

Special value for creating com.rti.dds.publication.DataWriter (p. 538) with
default QoS.

When used in com.rti.dds.publication.Publisher.create_-
datawriter (p.1284), this special value is used to indicate that the
com.rti.dds.publication.DataWriter (p.538) should be created with
the default com.rti.dds.publication.DataWriter (p.538) QoS by means of
the operation get_default_datawriter_qos and using the resulting QoS to create
the com.rti.dds.publication.DataWriter (p.538).

When used in com.rti.dds.publication.Publisher.set_default -
datawriter_qos (p.1282), this special value is used to indicate that the
default QoS should be reset back to the initial value that would be used if the
com.rti.dds.publication.Publisher.set_default_datawriter_qos (p.1282)
operation had never been called.

When used in com.rti.dds.publication.DataWriter.set_qos
(p.543), this special value is used to indicate that the QoS of the
com.rti.dds.publication.DataWriter (p.538) should be changed to
match the current defualt QoS set in the com.rti.dds.publication.Publisher
(p.1277) that the com.rti.dds.publication.DataWriter (p.538) belongs to.

Note: You cannot wuse this value to get the default QoS
values for a DataWriter (p.538); for this purpose, use
com.rti.dds.domain.DomainParticipant.get_default_datawriter_qos
(p. 647).

See also:

com.rti.dds.publication.Publisher.create_datawriter (p.1284)
com.rti.dds.publication.Publisher.set_default_datawriter_qos
(p. 1282)

com.rti.dds.publication.DataWriter.set_qos (p. 543)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

178 Module Documentation

6.80.2.2 final DataWriterQos DATAWRITER_QOS_USE -
TOPIC_QOS = new DataWriterQos() [static,
inherited]

Special value for creating com.rti.dds.publication.DataWriter (p.538)
with a combination of the default com.rti.dds.publication.DataWriterQos
(p-588) and the com.rti.dds.topic.TopicQos (p. 1566).

The use of this value is equivalent to the application obtaining the
default com.rti.dds.publication.DataWriterQos (p.588) and the
com.rti.dds.topic.TopicQos (p.1566) (by means of the operation
com.rti.dds.topic.Topic.get_qos (p.1548)) and then combining these
two QoS using the operation com.rti.dds.publication.Publisher.copy_-
from_topic_qos (p.1297) whereby any policy that is set on the
com.rti.dds.topic.TopicQos (p.1566) ”overrides” the corresponding policy
on the default QoS. The resulting QoS is then applied to the creation of the
com.rti.dds.publication.DataWriter (p.538).

This value should only be used in com.rti.dds.publication.Publisher.create_-
datawriter (p.1284).

See also:

com.rti.dds.publication.Publisher.create_datawriter (p.1284)
com.rti.dds.publication.Publisher.get_default_datawriter_qos
(p. 1281)

com.rti.dds.topic.Topic.get_qos (p. 1548)
com.rti.dds.publication.Publisher.copy_from_topic_qos (p. 1297)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.81 Data Writers 179

6.81 Data Writers

com.rti.dds.publication.DataWriter (p. 538) entity and associated elements

Classes

" interface DataWriter

<<interface>> (p.271) Allows an application to set the value of the data
to be published under a given com.rti.dds.topic. Topic (p. 155).

class DataWriter Adapter

<<eXtension>> (p.270) A listener adapter in the spirit of the Java AWT
listener adapters. (The Adapter provides empty implementations for the lis-
tener methods or functions.)

class DataWriterCacheStatus
<<eXtension>> (p.270) The status of the writer’s cache.

interface DataWriterListener

<<interface>> (p.271) com.rti.dds.infrastructure.Listener (p.1154)
for writer status.

class DataWriterProtocolStatus

<<eXtension>> (p.270) The status of a writer’s internal protocol related
metrics, like the number of samples pushed, pulled, filtered; and status of
wire protocol traffic.

class DataWriterQos

QoS policies supported by a com.rti.dds.publication. Data Writer (p. 558)
entity.

interface FooDataWriter

<<interface>> (p.271) <<generic>> (p.271) User data type specific
data writer.

class LivelinessLostStatus
StatusKind. LIVELINESS_LOST_STATUS.

" class OfferedDeadlineMissedStatus
StatusKind. OFFERED_DEADLINE_MISSED_STATUS.

class OfferedIncompatibleQosStatus
StatusKind. OFFERED_INCOMPATIBLE_QOS_STATUS.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

180

Module Documentation

class PublicationMatchedStatus
StatusKind. PUBLICATION_-MATCHED_STATUS.

class ReliableReaderActivityChangedStatus

<<eXtension>> (p. 270) Describes the activity (i.e. are acknowledgements
forthcoming) of reliable readers matched to a reliable writer.

class ReliableWriterCacheChangedStatus

<<eXtension>> (p.270) A summary of the state of a data writer’s cache
of unacknowledged samples written.

class ReliableWriterCacheEventCount

<<eXtension>> (p.270) The number of times the number of unacknowl-
edged samples in the cache of a reliable writer hit a certain well-defined
threshold.

class FooDataWriter

<<interface>> (p.271) <<generic>> (p.271) User data type specific
data writer.

6.81.1 Detailed Description

com.rti.dds.publication.DataWriter (p. 538) entity and associated elements

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.82 Flow Controllers 181

6.82 Flow Controllers

<<eXtension>> (p.270) com.rti.dds.publication.FlowController
(p-942) and associated elements

Classes

~ interface FlowController

<<interface>> (p.271) A flow controller is the object responsible for
shaping the network traffic by determining when attached asynchronous
com.rti.dds.publication. Data Writer (p.538) instances are allowed to
write data.

" class FlowControllerProperty_t

Determines the flow control characteristics of the
com.rti.dds.publication. FlowController (p. 942).

" class FlowControllerSchedulingPolicy
Kinds of flow controller scheduling policy.

" class FlowControllerTokenBucketProperty_t

com.rti.dds.publication. FlowController (p. 942) uses the popular token
bucket approach for open loop network flow control. The flow control char-
acteristics are determined by the token bucket properties.

Variables

" static final String DEFAULT _FLOW_CONTROLLER_NAME

[default] Special value of com.rti.dds.infrastructure. PublishModeQosPolicy.flow_-
controller_name (p. 1310) that refers to the built-in default flow controller.

" static final String FIXED RATE FLOW_CONTROLLER -
NAME

Special value of com.rti.dds.infrastructure. PublishModeQosPolicy.flow_-
controller_name (p.1310) that refers to the built-in fized-rate flow
controller.

" static final String ON_DEMAND_FLOW_CONTROLLER -
NAME

Special value of com.rti.dds.infrastructure. PublishModeQosPolicy.flow_-
controller_name (p. 1310) that refers to the built-in on-demand flow
controller.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

182 Module Documentation

6.82.1 Detailed Description

<<eXtension>> (p.270) com.rti.dds.publication.FlowController
(p.942) and associated elements

com.rti.dds.publication.FlowController (p. 942) provides the network traf-
fic shaping capability to asynchronous com.rti.dds.publication.DataWriter
(p.538) instances. For use cases and advantages of publishing asnychronously,
please refer to com.rti.dds.infrastructure.PublishModeQosPolicy
(p- 1308) of com.rti.dds.publication.DataWriterQos (p. 588).

See also:

com.rti.dds.infrastructure.PublishModeQosPolicy (p. 1308)
com.rti.dds.publication.DataWriterQos.publish_mode (p. 593)
com.rti.dds.infrastructure. AsynchronousPublisherQosPolicy
(p. 387)

6.82.2 Variable Documentation

6.82.2.1 final String DEFAULT_FLOW_CONTROLLER_NAME
[static, inherited]

[default] Special value of com.rti.dds.infrastructure.PublishModeQosPolicy.flow_-
controller_name (p. 1310) that refers to the built-in default flow controller.

RTI Connext provides several built-in com.rti.dds.publication.FlowController
(p.942) for use with an asynchronous com.rti.dds.publication.DataWriter
(p.538). The user can choose to use the built-in flow controllers and optionally
modify their properties or can create a custom flow controller.

By default, flow control is disabled. That is, the built-in Flow-
Controller. DEFAULT _FLOW_CONTROLLER_NAME (p. 182)
flow controller does not apply any flow control. Instead, it al-
lows data to be sent asynchronously as soon as it is written by the
com.rti.dds.publication.DataWriter (p.538).

Essentially, this is equivalent to a user-created
com.rti.dds.publication.FlowController (p.942) with the following
com.rti.dds.publication.FlowControllerProperty t (p.946) settings:

- com.rti.dds.publication.FlowControllerProperty_t.scheduling_-
policy (p.947) = FlowControllerSchedulingPolicy. EDF_FLOW _-
CONTROLLER _SCHED POLICY (p.949)

- com.rti.dds.publication.FlowControllerProperty_t.token_bucket
(p.947) max_tokens = ResourceLimitsQosPolicy. LENGTH -
UNLIMITED (p. 102)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.82 Flow Controllers 183

- com.rti.dds.publication.FlowControllerProperty_t.token_-
bucket (p.947) tokens_added per period = ResourceLimitsQosPol-
icy. LENGTH_UNLIMITED (p.102)

- com.rti.dds.publication.FlowControllerProperty_t.token_bucket
(p.947) tokens_leaked per_period = 0

- com.rti.dds.publication.FlowControllerProperty_t.token_bucket
(p-947) period = 1 second

- com.rti.dds.publication.FlowControllerProperty_t.token_bucket
(p.-947) Dbytes_per_token = ResourceLimitsQosPolicy. LENGTH -
UNLIMITED (p. 102)

See also:

com.rti.dds.publication.Publisher.create_datawriter (p.1284)
com.rti.dds.domain.DomainParticipant.lookup_flowcontroller
(p.684)

com.rti.dds.publication.FlowController.set_property (p.943)
com.rti.dds.infrastructure.PublishModeQosPolicy (p.1308)
com.rti.dds.infrastructure.AsynchronousPublisherQosPolicy
(p. 387)

6.82.2.2 final String FIXED _RATE FLOW_CONTROLLER_NAME
[static, inherited]

Special value of com.rti.dds.infrastructure.PublishModeQosPolicy.flow_-
controller_name (p. 1310) that refers to the built-in fixed-rate flow controller.

RTI Connext provides several builtin (p. 341)
com.rti.dds.publication.FlowController (p.942) for use with an asyn-
chronous com.rti.dds.publication.DataWriter (p.538). The user can

choose to wuse the built-in flow controllers and optionally modify their
properties or can create a custom flow controller.

The built-in FlowController. FIXED_RATE_FLOW_CONTROLLER -
NAME (p.183) flow controller shapes the network traffic by allowing data
to be sent only once every second. Any accumulated samples destined for the
same destination are coalesced into as few network packets as possible.

Essentially, this is equivalent to a user-created
com.rti.dds.publication.FlowController (p.942) with the following
com.rti.dds.publication.FlowControllerProperty t (p.946) settings:

- com.rti.dds.publication.FlowControllerProperty_t.scheduling_-
policy (p.947) = FlowControllerSchedulingPolicy. EDF_FLOW _-
CONTROLLER_SCHED_POLICY (p.949)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

184 Module Documentation

- com.rti.dds.publication.FlowControllerProperty_t.token_bucket
(p.947) max_tokens = ResourceLimitsQosPolicy. LENGTH _-
UNLIMITED (p. 102)

- com.rti.dds.publication.FlowControllerProperty_t.token_-
bucket (p.947) tokens_added per period = ResourceLimitsQosPol-
icy. LENGTH_UNLIMITED (p.102)

- com.rti.dds.publication.FlowControllerProperty_t.token_bucket
(p. 947) tokens_leaked_per_period = ResourceLimitsQosPol-
icy. LENGTH_UNLIMITED (p.102)

- com.rti.dds.publication.FlowControllerProperty_t.token_bucket
(p.947) period = 1 second

- com.rti.dds.publication.FlowControllerProperty_t.token_bucket
(p.-947) Dbytes_per_token = ResourceLimitsQosPolicy. LENGTH -
UNLIMITED (p. 102)

See also:

com.rti.dds.publication.Publisher.create_datawriter (p.1284)
com.rti.dds.domain.DomainParticipant.lookup_flowcontroller
(p. 684)

com.rti.dds.publication.FlowController.set_property (p.943)
com.rti.dds.infrastructure.PublishModeQosPolicy (p. 1308)
com.rti.dds.infrastructure.AsynchronousPublisherQosPolicy
(p. 387)

6.82.2.3 final String ON_DEMAND _FLOW_CONTROLLER _-
NAME [static, inherited]

Special value of com.rti.dds.infrastructure.PublishModeQosPolicy.flow_-
controller_name (p. 1310) that refers to the built-in on-demand flow controller.

RTI Connext provides several builtin (p.341)
com.rti.dds.publication.FlowController (p.942) for use with an asyn-
chronous com.rti.dds.publication.DataWriter (p.538). The user can
choose to wuse the built-in flow controllers and optionally modify their
properties or can create a custom flow controller.

The built-in FlowController. ON_DEMAND_FLOW_CONTROLLER -
NAME (p.184) allows data to be sent only when the user calls
com.rti.dds.publication.FlowController.trigger_flow (p- 945).
With each trigger, all accumulated data since the previous trigger
is sent (across all com.rti.dds.publication.Publisher (p.1277) or
com.rti.dds.publication.DataWriter (p.538) instances). In other words,
the network traffic shape is fully controlled by the user. Any accumulated

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.82 Flow Controllers 185

samples destined for the same destination are coalesced into as few network
packets as possible.

This external trigger source is ideal for users who want to implement some form
of closed-loop flow control or who want to only put data on the wire every so
many samples (e.g. with the number of samples based on Transport.Property -
t.gather_send_buffer_count_max).

Essentially, this is equivalent to a user-created
com.rti.dds.publication.FlowController (p.942) with the following
com.rti.dds.publication.FlowControllerProperty_t (p. 946) settings:

- com.rti.dds.publication.FlowControllerProperty _t.scheduling_-
policy (p.947) = FlowControllerSchedulingPolicy.EDF_FLOW _-
CONTROLLER_SCHED_POLICY (p.949)

- com.rti.dds.publication.FlowControllerProperty_t.token_bucket
(p.947) max_tokens = ResourceLimitsQosPolicy. LENGTH _-
UNLIMITED (p. 102)

- com.rti.dds.publication.FlowControllerProperty_t.token_-
bucket (p.947) tokens_added per_period = ResourceLimitsQosPol-
icy LENGTH_UNLIMITED (p. 102)

- com.rti.dds.publication.FlowControllerProperty_t.token_bucket
(p.947) tokens_leaked_per_period = ResourceLimitsQosPol-
icy LENGTH_UNLIMITED (p. 102)

- com.rti.dds.publication.FlowControllerProperty_t.token_bucket
(p.947) period = com.rti.dds.infrastructure.Duration_t. INFINITE

- com.rti.dds.publication.FlowControllerProperty_t.token_bucket
(p.947) Dbytesper_token = ResourceLimitsQosPolicy. LENGTH -
UNLIMITED (p. 102)

See also:

com.rti.dds.publication.Publisher.create_datawriter (p.1284)
com.rti.dds.domain.DomainParticipant.lookup_flowcontroller
(p.684)

com.rti.dds.publication.FlowController.trigger_flow (p.945)
com.rti.dds.publication.FlowController.set_property (p.943)
com.rti.dds.infrastructure.PublishModeQosPolicy (p.1308)
com.rti.dds.infrastructure.AsynchronousPublisherQosPolicy
(p. 387)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

186 Module Documentation

6.83 Subscription Module

Contains the com.rti.dds.subscription.Subscriber
(p. 1478), com.rti.dds.subscription.DataReader (p-473),
com.rti.dds.subscription.Read Condition (p- 1326), and

com.rti.dds.subscription.QueryCondition (p.1324) classes, as well
as the com.rti.dds.subscription.SubscriberListener (p.1504) and
com.rti.dds.subscription.DataReaderListener (p.501) interfaces, and
more generally, all that is needed on the subscription side.

Modules

~ Subscribers

com.rti.dds.subscription.Subscriber (p. 1478) entity and associated ele-

ments

" DataReaders
com.rti.dds.subscription. DataReader (p./73) entity and associated ele-
ments

" Data Samples

com.rti.dds.subscription.SamplelInfo (p- 1404),
com.rti.dds.subscription.SampleStateKind (p. 1430),
com.rti.dds.subscription. ViewStateKind (p. 1689),

com.rti.dds.subscription.InstanceStateKind (p.1086) and associ-
ated elements

6.83.1 Detailed Description

Contains the com.rti.dds.subscription.Subscriber
(p. 1478), com.rti.dds.subscription.DataReader (p-473),
com.rti.dds.subscription.ReadCondition (p. 1326), and

com.rti.dds.subscription.QueryCondition (p.1324) classes, as well
as the com.rti.dds.subscription.SubscriberListener (p.1504) and
com.rti.dds.subscription.DataReaderListener (p.501) interfaces, and
more generally, all that is needed on the subscription side.

6.83.2 Access to data samples

Data is made available to the application by the follow-
ing operations on com.rti.dds.subscription.DataReader
(p.473) objects: com.rti.dds.topic.example.FooDataReader.read,

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.83 Subscription Module 187

com.rti.dds.topic.example.FooDataReader.read_w_-

condition, com.rti.dds.topic.example.FooDataReader.take,
com.rti.dds.topic.example.FooDataReader.take_w_condition, and the other
variants of read() and take().

The general semantics of the read () operation is that the application only gets
access to the corresponding data (i.e. a precise instance value); the data remains
the responsibility of RTI Connext and can be read again.

The semantics of the take() operations is that the application takes full re-
sponsibility for the data; that data will no longer be available locally to RTI
Connext. Consequently, it is possible to access the same information multiple
times only if all previous accesses were read() operations, not take().

Each of these operations returns a collection of Data values and associated
com.rti.dds.subscription.SampleInfo (p.1404) objects. Each data value
represents an atom of data information (i.e., a value for one instance). This
collection may contain samples related to the same or different instances (iden-
tified by the key). Multiple samples can refer to the same instance if the settings
of the HISTORY (p.75) QoS allow for it.

To return the memory back to the middleware, every read() or take()
that retrieves a sequence of samples must be followed with a call to
com.rti.dds.topic.example.FooDataReader.return_loan.

See also:

Interpretation of the Samplelnfo (p. 1405)

6.83.2.1 Data access patterns

The application accesses data by means of the operations read or
take on the com.rti.dds.subscription.DataReader (p.473). These op-
erations return an ordered collection of DataSamples consisting of a
com.rti.dds.subscription.SampleInfo (p.1404) part and a Data part.

The way RTI Connext builds the collection depends on QoS poli-
cies set on the com.rti.dds.subscription.DataReader (p.473) and
com.rti.dds.subscription.Subscriber (p.1478), as well as the source -
timestamp of the samples, and the parameters passed to the read() / take()
operations, namely:

the desired sample states (any combination of
com.rti.dds.subscription.SampleStateKind (p. 1430))

the desired view states (any combination of
com.rti.dds.subscription.ViewStateKind (p. 1689))

the desired instance states (any combination of
com.rti.dds.subscription.InstanceStateKind (p. 1086))

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

188 Module Documentation

The read() and take() operations are non-blocking and just deliver what is
currently available that matches the specified states.

The read w_condition() and take_w_condition() operations take a
com.rti.dds.subscription.ReadCondition (p.1326) object as a parameter
instead of sample, view or instance states. The behaviour is that the samples
returned will only be those for which the condition is true. These operations,
in conjunction with com.rti.dds.subscription.ReadCondition (p. 1326) ob-
jects and a com.rti.dds.infrastructure.WaitSet (p. 1695), allow performing
waiting reads.

Once the data samples are available to the data readers, they can be read or
taken by the application. The basic rule is that the application may do this in
any order it wishes. This approach is very flexible and allows the application
ultimate control.

To access data coherently, or in order, the PRESENTATION (p.86) QoS
must be set properly.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.84 Subscribers 189

6.84 Subscribers

com.rti.dds.subscription.Subscriber (p.1478) entity and associated ele-
ments

Classes

" interface Subscriber

<<interface>> (p.271) A subscriber is the object responsible for actually
receiving data from a subscription (p. 343).

class SubscriberAdapter

A listener adapter in the spirit of the Java AWT listener adapters. (The
Adapter provides empty implementations for the listener methods).

interface SubscriberListener

<<interface>> (p.271) com.rti.dds.infrastructure.Listener (p.1154)
for status about a subscriber.

class SubscriberQos
QoS policies supported by a com.rti.dds.subscription.Subscriber
(p. 1478) entity.

class SubscriberSeq

Declares IDL sequence < com.rti.dds.subscription.Subscriber (p. 1/78)
> .

Variables

"~ static final DataReaderQos DATAREADER_QOS_DEFAULT

Special value for creating data reader with default QoS.

" static final DataReaderQos DATAREADER_QOS_USE_TOPIC -
QOS = new DataReaderQos()

Special wvalue for creating com.rti.dds.subscription. DataReader
(p-473) with a combination of the default
com.rti.dds.subscription. DataReaderQos (p.518) and the
com.rti.dds.topic. TopicQos (p. 1566).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

190 Module Documentation

6.84.1 Detailed Description

com.rti.dds.subscription.Subscriber (p.1478) entity and associated ele-
ments

6.84.2 Variable Documentation

6.84.2.1 final DataReaderQos DATAREADER_QOS_DEFAULT
[static, inherited]

Initial value:

new DataReaderQos()

Special value for creating data reader with default QoS.

When used in com.rti.dds.subscription.Subscriber.create_-
datareader (p.1485), this special value is used to indicate that the
com.rti.dds.subscription.DataReader (p.473) should be created with
the default com.rti.dds.subscription.DataReader (p.473) QoS by means
of the operation get_default_datareader_qos and using the resulting QoS to
create the com.rti.dds.subscription.DataReader (p.473).

When used in com.rti.dds.subscription.Subscriber.set_default_-
datareader_qos (p.1483), this special value is used to indicate that the
default QoS should be reset back to the initial value that would be used if
the com.rti.dds.subscription.Subscriber.set_default_datareader_qos
(p. 1483) operation had never been called.

When used in com.rti.dds.subscription.DataReader.set_qos
(p.480), this special value is used to indicate that the QoS of the
com.rti.dds.subscription.DataReader (p.473) should be changed to match
the current default QoS set in the com.rti.dds.subscription.Subscriber
(p.1478) that the com.rti.dds.subscription.DataReader (p.473) belongs
to.

Note: You cannot use this value to get the default QoS
values for a DataReader (p.473); for this purpose, use
com.rti.dds.domain.DomainParticipant.get_default_datareader_qos
(p. 649).

See also:

com.rti.dds.subscription.Subscriber.create_datareader (p. 1485)
com.rti.dds.subscription.Subscriber.set_default_datareader_qos
(p. 1483)

com.rti.dds.subscription.DataReader.set_qos (p. 480)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.84 Subscribers 191

6.84.2.2 final DataReaderQos DATAREADER_QOS_USE -
TOPIC_QOS = new DataReaderQos() [static,
inherited]

Special value for creating com.rti.dds.subscription.DataReader
(p-473) with a combination of the default
com.rti.dds.subscription.DataReaderQos (p.518) and the
com.rti.dds.topic.TopicQos (p. 1566).

The use of this value is equivalent to the application obtaining the
default com.rti.dds.subscription.DataReaderQos (p.518) and the
com.rti.dds.topic.TopicQos (p.1566) (by means of the operation
com.rti.dds.topic.Topic.get_qos (p.1548)) and then combining these two
QoS using the operation com.rti.dds.subscription.Subscriber.copy_-
from_topic_qos (p.1500) whereby any policy that is set on the
com.rti.dds.topic.TopicQos (p.1566) ”overrides” the corresponding policy
on the default QoS. The resulting QoS is then applied to the creation of the
com.rti.dds.subscription.DataReader (p.473).

This value should only be used in com.rti.dds.subscription.Subscriber.create_-
datareader (p. 1485).

See also:

com.rti.dds.subscription.Subscriber.create_datareader (p. 1485)
com.rti.dds.subscription.Subscriber.get_default_datareader_qos
(p- 1482)

com.rti.dds.topic.Topic.get_qos (p. 1548)
com.rti.dds.subscription.Subscriber.copy_from_topic_gos (p. 1500)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

192 Module Documentation

6.85 DataReaders

com.rti.dds.subscription.DataReader (p.473) entity and associated ele-
ments

Modules

" Read Conditions

com.rti.dds.subscription. ReadCondition (p.1326) and associated ele-
ments

" Query Conditions

com.rti.dds.subscription. QueryCondition (p. 1324) and associated ele-
ments

Classes

~ interface DataReader

<<interface>> (p.271) Allows the application to: (1) declare the data it
wishes to receive (i.e. make a subscription (p. 3/3)) and (2) access the data
received by the attached com.rti.dds.subscription.Subscriber (p. 1478).

class DataReaderAdapter

<<eXtension>> (p.270) A listener adapter in the spirit of the Java AWT
listener adapters. (The Adapter provides empty implementations for the lis-
tener methods)

class DataReaderCacheStatus
<<eXtension>> (p.270) The status of the reader’s cache.

interface DataReaderListener

<<interface>> (p.271) com.rti.dds.infrastructure.Listener (p.115/)
for reader status.

class DataReaderProtocolStatus

<<eXtension>> (p.270) The status of a reader’s internal protocol related
metrics, like the number of samples received, filtered, rejected; and status of
wire protocol traffic.

class DataReaderQos

QoS policies supported by a com.rti.dds.subscription. DataReader
(p- 473) entity.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.85 DataReaders 193

class DataReaderSeq

Declares IDL sequence < com.rti.dds.subscription. DataReader (p. /73)
> .

interface FooDataReader

<<interface>> (p.271) <<generic>> (p.271) User data type-specific
data reader.

class LivelinessChangedStatus
StatusKind. LIVELINESS_.CHANGED_STATUS.

class RequestedDeadlineMissedStatus
StatusKind. REQUESTED_DEADLINE_MISSED_STATUS.

class RequestedIncompatibleQosStatus
StatusKind. REQUESTED_INCOMPATIBLE_-QOS_-STATUS.

class SampleLostStatus
StatusKind.SAMPLE_LOST_-STATUS_STATUS.

class SampleLostStatusKind

Kinds of reasons why a sample was lost.

class SampleRejectedStatus
StatusKind. SAMPLE_REJECTED_STATUS.

class SampleRejectedStatusKind

Kinds of reasons for rejecting a sample.

class SubscriptionMatchedStatus
StatusKind.SUBSCRIPTION_-MATCHED_STATUS.

class FooDataReader

<<interface>> (p.271) <<generic>> (p.271) User data type-specific
data reader.

6.85.1 Detailed Description

com.rti.dds.subscription.DataReader (p.473) entity and associated ele-
ments

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

194 Module Documentation

6.86 Read Conditions

com.rti.dds.subscription.ReadCondition (p. 1326) and associated elements

Classes

~ interface ReadCondition

<<interface>> (p.271) Conditions specifically dedicated to read operations
and attached to one com.rti.dds.subscription. DataReader (p. ,73).

6.86.1 Detailed Description

com.rti.dds.subscription.ReadCondition (p. 1326) and associated elements

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.87 Query Conditions 195

6.87 Query Conditions

com.rti.dds.subscription.QueryCondition (p.1324) and associated ele-
ments

Classes

" interface QueryCondition

<<interface>> (p.271) These are specialised
com.rti.dds.subscription. ReadCondition (p.1326) objects that al-
low the application to also specify a filter on the locally available data.

6.87.1 Detailed Description

com.rti.dds.subscription.QueryCondition (p.1324) and associated ele-
ments

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

196 Module Documentation

6.88 Data Samples

com.rti.dds.subscription.SampleInfo (p- 1404),
com.rti.dds.subscription.SampleStateKind (p- 1430),
com.rti.dds.subscription.ViewStateKind (p. 1689),

com.rti.dds.subscription.InstanceStateKind (p.1086) and associated
elements

Modules

" Sample States

com.rti.dds.subscription.SampleStateKind (p. 1430) and associated el-
ements

" View States

com.rti.dds.subscription. ViewStateKind (p. 1689) and associated ele-
ments

" Instance States

com.rti.dds.subscription.InstanceStateKind (p. 1086) and associated
elements

Classes

" class Samplelnfo

Information that accompanies each sample that is read or taken.

" class SampleInfoSeq

Declares IDL sequence < com.rti.dds.subscription.Samplelnfo

(p.- 1404) > .

6.88.1 Detailed Description

com.rti.dds.subscription.SampleInfo (p. 1404),
com.rti.dds.subscription.SampleStateKind (p. 1430),
com.rti.dds.subscription.ViewStateKind (p. 1689),

com.rti.dds.subscription.InstanceStateKind (p.1086) and associated
elements

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.89 Sample States 197

6.89 Sample States

com.rti.dds.subscription.SampleStateKind (p.1430) and associated ele-
ments
Classes

" class SampleStateKind

Indicates whether or not a sample has ever been read.

Variables

" static final int ANY_SAMPLE_STATE = 0Oxffff

Any sample state SampleStateKind. READ_SAMPLE _STATE (p. 1430)
| SampleStateKind. NOT-READ_SAMPLE _STATE (p. 1431).

6.89.1 Detailed Description

com.rti.dds.subscription.SampleStateKind (p.1430) and associated ele-
ments

6.89.2 Variable Documentation

6.89.2.1 final int ANY_SAMPLE_STATE = Oxffff [static,
inherited]

Any sample state SampleStateKind. READ_SAMPLE_STATE (p. 1430) |
SampleStateKind. NOT_READ_SAMPLE_STATE (p. 1431).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

198 Module Documentation

6.90 View States

com.rti.dds.subscription.ViewStateKind (p.1689) and associated ele-
ments
Classes

~ class ViewStateKind

Indicates whether or not an instance is new.

Variables

" static final int ANY_VIEW_STATE = 0Oxffff

Any view state ViewStateKind. NEW_VIEW_STATE (p. 1690) | View-
StateKind. NOT_NEW_VIEW_STATE (p. 1690).

6.90.1 Detailed Description

com.rti.dds.subscription.ViewStateKind (p.1689) and associated ele-
ments

6.90.2 Variable Documentation
6.90.2.1 final int ANY_VIEW_STATE = OxfIff [static, inherited]

Any view state ViewStateKind. NEW_VIEW_STATE (p.1690) | View-
StateKind. NOT_NEW_VIEW_STATE (p. 1690).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.91 Instance States 199

6.91 Instance States

com.rti.dds.subscription.InstanceStateKind (p. 1086) and associated ele-
ments

Classes

~ class InstanceStateKind

Indicates is the samples are from a live
com.rti.dds.publication. Data Writer (p. 538) or not.

Variables

" static final int ANY_INSTANCE_STATE = Oxffff

Any instance state ALIVE_INSTANCE_STATE | NOT-ALIVE.-
DISPOSED_INSTANCE_STATE | NOT_ALIVE_NO_-WRITERS_-
INSTANCE_STATE.

" static final int NOT_ALIVE_INSTANCE_STATE = 0x006

Not alive instance state NOT-ALIVE_DISPOSED_INSTANCE_STATE |
NOT_ALIVE_NO_WRITERS_INSTANCE_STATE.

6.91.1 Detailed Description

com.rti.dds.subscription.InstanceStateKind (p.1086) and associated ele-
ments

6.91.2 Variable Documentation

6.91.2.1 final int ANY_INSTANCE_STATE = Oxffff [static,
inherited]

Any instance state ALIVEINSTANCE_STATE | NOT_ALIVE_DISPOSED -
INSTANCE_STATE | NOT_ALIVE_NO_WRITERS_INSTANCE_STATE.

6.91.2.2 final int NOT_ALIVE_ INSTANCE_STATE = 0x006

[static, inherited]

Not alive instance state NOT_ALIVE_DISPOSED_INSTANCE_STATE | NOT -
ALIVE . NO_WRITERS_INSTANCE_STATE.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

200 Module Documentation

6.92 Infrastructure Module

Defines the abstract classes and the interfaces that are refined by the other
modules. Contains common definitions such as return codes, status values, and
QoS policies.

Modules

Conditions and WaitSets

com.rti.dds.infrastructure. Condition (p-451) and
com.rti.dds.infrastructure. WaitSet (p. 1695) and related items.

Time Support

Time and duration types and defines.

Entity Support

com.rti.dds.infrastructure. Entity (p. 912),
com.rti.dds.infrastructure. Listener (p. 115}) and related items.

" GUID Support
<<eXtension>> (p.270) GUID type and defines.

Object Support
<<eXtension>> (p.270) Object related items.

" QoS Policies
Quality of Service (QoS) policies.

Return Codes

Types of return codes.

Sequence Number Support
<<eXtension>> (p.270) Sequence number type and defines.

Status Kinds

Kinds of communication status.

Exception Codes
<<eXtension>> (p.270) Ezception codes.

Sequence Support

The com.rti.dds.util. Sequence (p. 1432) interface allows you to work with
variable-length collections of homogeneous data.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.92 Infrastructure Module 201

Classes

~ class Enum

A superclass for all type-safe enumerated types.

6.92.1 Detailed Description

Defines the abstract classes and the interfaces that are refined by the other
modules. Contains common definitions such as return codes, status values, and
QoS policies.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

202 Module Documentation

6.93 Built-in Sequences

Defines sequences of primitive data type.

Classes

" class BooleanSeq

Instantiates com.rti.dds.util.Sequence (p.1432) < boolean >.

class ByteSeq
Instantiates com.rti.dds.util.Sequence (p.1432) < byte >.

class CharSeq
Instantiates com.rti.dds.util.Sequence (p.1432) < char >.

class DoubleSeq
Instantiates com.rti.dds.util.Sequence (p.1432) < double >.

class FloatSeq
Instantiates com.rti.dds.util.Sequence (p.1432) < float >.

class IntSeq
Instantiates com.rti.dds.util.Sequence (p.1432) < int >.

class LongDoubleSeq

Instantiates com.rti.dds.util.Sequence (p.1432) <
com.rti.dds.infrastructure. LongDouble >.

class LongSeq
Instantiates com.rti.dds.util.Sequence (p.1432) < long >.

class ShortSeq
Instantiates com.rti.dds.util.Sequence (p.1432) < short >.

class StringSeq
Declares IDL sequence < String > .

class WcharSeq
Instantiates com.rti.dds.util.Sequence (p.1432) < char >.

class WstringSeq
Instantiates com.rti.dds.util.Sequence (p.1432) < charx >.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.93 Built-in Sequences 203

6.93.1 Detailed Description

Defines sequences of primitive data type.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

204 Module Documentation

6.94 Multi-channel DataWriters

APIs related to Multi-channel DataWriters.

6.94.1 What is a Multi-channel DataWriter?

A Multi-channel com.rti.dds.publication.DataWriter (p.538) is a
com.rti.dds.publication.DataWriter (p.538) that is configured to send
data over multiple multicast addresses, according to some filtering criteria
applied to the data.

To determine which multicast addresses will be used to send the data,
the middleware evaluates a set of filters that are configured for the
com.rti.dds.publication.DataWriter (p.538). Each filter ”guards” a
channel (a set of multicast addresses). Each time a multi-channel
com.rti.dds.publication.DataWriter (p.538) writes data, the filters are ap-
plied. If a filter evaluates to true, the data is sent over that filter’s associated
channel (set of multicast addresses). We refer to this type of filter as a Channel
Guard filter.

6.94.2 Configuration on the Writer Side

To configure a multi-channel com.rti.dds.publication.DataWriter
(p.538), simply define a list of all its channels in the
com.rti.dds.infrastructure.MultiChannelQosPolicy (p.1205).

The com.rti.dds.infrastructure.MultiChannelQosPolicy (p.1205) is
propagated along with discovery traffic. The value of this policy is available
in builtin.PublicationBuiltinTopicData.locator _filter.

6.94.3 Configuration on the Reader Side

No special changes are required in a subscribing application to get data from a
multichannel com.rti.dds.publication.DataWriter (p.538). If you want the
com.rti.dds.subscription.DataReader (p. 473) to subscribe to only a subset
of the channels, use a com.rti.dds.topic.ContentFilteredTopic (p. 458).

For more information on Multi-channel DataWriters, refer to the User’s Manual.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.94 Multi-channel DataWriters 205

6.94.4 Reliability with Multi-Channel DataWriters
6.94.4.1 Reliable Delivery

Reliable delivery is only guaranteed when the
com.rti.dds.infrastructure.PresentationQosPolicy.access_-

scope (p. 1241) is set to PresentationQosPolicy A ccessS-
copeKind. INSTANCE_PRESENTATION_QOS and the filters in
com.rti.dds.infrastructure.MultiChannelQosPolicy (p.1205) are keyed-
only based.

If any of the guard filters are based on non-key fields, RTI Connext only guar-
antees reception of the most recent data from the MultiChannel DataWriter.

6.94.4.2 Reliable Protocol Considerations

Reliability is maintained on a per-channel basis. FEach channel has its

own reliability channel send queue. The size of that queue is limited

by com.rti.dds.infrastructure.ResourceLimitsQosPolicy.max_samples

(p. 1359) and/or com.rti.dds.infrastructure.DataWriterResourceLimitsQosPolicy.max_-
batches (p. 600).

The protocol parameters described in com.rti.dds.infrastructure.DataWriterProtocolQosPolicy
(p.571) are applied per channel, with the following exceptions:

com.rti.dds.infrastructure.RtpsReliableWriterProtocol_t.low_-

watermark (p. 1381) and com.rti.dds.infrastructure.RtpsReliableWriterProtocol -
t.high_watermark (p.1381): The low watermark and high watermark control

the queue levels (in number of samples) that determine when to switch

between regular and fast heartbeat rates. With MultiChannel DataWriters,
high_watermark and low_watermark refer to the DataWriter’'s queue (not

the reliability channel queue). Therefore, periodic heartbeating cannot be

controlled on a per-channel basis.

Important: With MultiChannel DataWriters, low_watermark and high -
watermark refer to application samples even if batching is enabled. This be-
havior differs from the one without MultiChannel DataWriters (where low._-
watermark and high_watermark refer to batches).

com.rti.dds.infrastructure.RtpsReliableWriterProtocol _-
t.heartbeats_per_max_samples (p.1385): This field defines the num-
ber of heartbeats per send queue. For MultiChannel DataWriters, the
value is applied per channel. However, the send queue size that is used
to calculate the a piggyback heartbeat rate is defined per DataWriter (see
com.rti.dds.infrastructure.ResourceLimitsQosPolicy.max_samples

(p.- 1359))

Important: With MultiChannel DataWriters, heartbeats_per_max_samples

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

206 Module Documentation

refers to samples even if batching is enabled. This behavior differs from the one
without MultiChannels DataWriters (where heartbeats_per_max_samples refers
to batches).

With batching and MultiChannel DataWriters, the size of

the DataWriter’s send queue should be configured using
com.rti.dds.infrastructure.ResourceLimitsQosPolicy.max_samples

(p- 1359) instead of max_batches com.rti.dds.infrastructure.DataWriterResourceLimitsQosPolic
batches (p.600) in order to take advantage of heartbeats_per_max_samples.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.95 Pluggable Transports 207

6.95 Pluggable Transports

APIs related to RTT Connext pluggable transports.

Modules

" Using Transport Plugins

Configuring transports used by RTI Connext.

" Built-in Transport Plugins

Transport plugins delivered with RTI Connext.

6.95.1 Detailed Description

APIs related to RTT Connext pluggable transports.

6.95.2 Overview

RTT Connext has a pluggable transports architecture. The core of RTI Con-
next is transport agnostic; it does not make any assumptions about the actual
transports used to send and receive messages. Instead, the RTT Connext core
uses an abstract ”transport API” to interact with the transport plugins which
implement that API.

A transport plugin implements the abstract transport API and performs the
actual work of sending and receiving messages over a physical transport. A
collection of builtin plugins (see Built-in Transport Plugins (p.216)) is
delivered with RTI Connext for commonly used transports. New transport
plugins can easily be created, thus enabling RTI Connext applications to run
over transports that may not even be conceived yet. This is a powerful capability
and that distinguishes RTT Connext from competing middleware approaches.

RTT Connext also provides a set of APIs for installing and configuring trans-
port plugins to be used in an application. So that RTI Connext applications
work out of the box, a subset of the builtin transport plugins is preconfigured
by default (see com.rti.dds.infrastructure.TransportBuiltinQosPolicy
(p-1580)). You can "turn-off” some or all of the builtin transport plugins. In
addition, you can configure other transport plugins for use by the application.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

208 Module Documentation

6.95.3 Transport Aliases

In order to use a transport plugin instance in an RTI Connext application, it
must be registered with a com.rti.dds.domain.DomainParticipant (p. 629).
When you register a transport, you specify a sequence of ”alias” strings to
symbolically refer to the transport plugin. The same alias strings can be used
to register more than one transport plugin.

You can register multiple transport plugins with a
com.rti.dds.domain.DomainParticipant (p.629). An alias sym-
bolically refers to one or more transport plugins registered with the
com.rti.dds.domain.DomainParticipant (p.629). Builtin transport

plugin instances can be referred to using preconfigured aliases (see TRANS-
PORT_BUILTIN (p.115)).

A transport plugin’s class name is automatically used as an implicit alias. It
can be used to refer to all the transport plugin instances of that class.

You can use aliases to refer to transport plugins, in order to specify:

- the transport plugins to use for discovery (see
com.rti.dds.infrastructure.DiscoveryQosPolicy.enabled_transports
(p.625)), and for com.rti.dds.publication.DataWriter (p.538)
and com.rti.dds.subscription.DataReader (p.473) entities (see
com.rti.dds.infrastructure.TransportSelectionQosPolicy (p.1600)).

- the multicast addresses on which to receive discovery messages (see
com.rti.dds.infrastructure.DiscoveryQosPolicy.multicast_receive_-

addresses (p.625)), and the multicast addresses and ports on which to receive
user data (see com.rti.dds.subscription.DataReaderQos.multicast

(p. 522)).

- the unicast ports used for user data (see
com.rti.dds.infrastructure.TransportUnicast QosPolicy (p. 1605))
on both com.rti.dds.publication.DataWriter (p.538) and
com.rti.dds.subscription.DataReader (p.473) entities.

- the transport plugins used to parse an address string in a locator (Locator
Format (p.56) and NDDS_DISCOVERY _PEERS (p. 55)).

A com.rti.dds.domain.DomainParticipant (p.629) (and con-
tained its entities) start using a transport plugin after the
com.rti.dds.domain.DomainParticipant (p.629) is enabled (see
com.rti.dds.infrastructure.Entity.enable (p.915)). An entity will use
all the transport plugins that match the specified transport QoS policy. All
transport plugins are treated uniformly, regardless of how they were created
or registered; there is no notion of some transports being more ”special” that
others.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.95 Pluggable Transports 209

6.95.4 Transport Lifecycle

A transport plugin is owned by whoever created it. Thus, if you create and
register a transport plugin with a com.rti.dds.domain.DomainParticipant
(p. 629), you are responsible for deleting it by calling its destructor. Note that
builtin transport plugins (TRANSPORT_BUILTIN (p. 115)) and transport
plugins that are loaded through the PROPERTY (p.88) QoS policy (see
Loading Transport Plugins through Property QoS Policy of Domain
Participant (p.213)) are automatically managed by RTI Connext.

A user-created transport plugin must not be deleted while it is still in
use by a com.rti.dds.domain.DomainParticipant (p.629). This
generally means that a user-created transport plugin instance can
only be deleted after the com.rti.dds.domain.DomainParticipant
(p.629) with which it was registered is deleted (see
com.rti.dds.domain.DomainParticipantFactory.delete_participant
(p.715)). Note that a transport plugin cannot be "unregistered” from a
com.rti.dds.domain.DomainParticipant (p.629).

A transport plugin instance cannot be registered with more than one
com.rti.dds.domain.DomainParticipant (p.629) at a time. This require-
ment is necessary to guarantee the multi-threaded safety of the transport API.

If the same physical transport resources are to be used with more
than one com.rti.dds.domain.DomainParticipant (p.629) in the same
address space, the transport plugin should be written in such a
way so that it can be instantiated multiple times—once for each
com.rti.dds.domain.DomainParticipant (p.629) in the address space.
Note that it is always possible to write the transport plugin so that multi-
ple transport plugin instances share the same underlying resources; however the
burden (if any) of guaranteeing multi-threaded safety to access shared resource
shifts to the transport plugin developer.

6.95.5 Transport Class Attributes

A transport plugin instance is associated with two kinds of attributes:

- the class attributes that are decided by the plugin writer; these are invariant
across all instances of the transport plugin class, and

- the instance attributes that can be set on a per instance basis by the transport
plugin user.

Every transport plugin must specify the following class attributes.

transport class id (see Transport.Property_t.classid) Identifies a
transport plugin implementation class. It denotes a unique ”class”
to which the transport plugin instance belongs. The class is used to

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

210 Module Documentation

distinguish between different transport plugin implementations. Thus,
a transport plugin vendor should ensure that its transport plugin
implementation has a unique class.

Two transport plugin instances report the same class iff they have com-
patible implementations. Transport plugin instances with mismatching
classes are not allowed (by the RTI Connext Core) to communicate with
one another.

Multiple implementations (possibly from different vendors) for a physical
transport mechanism can co-exist in an RTT Connext application, provided
they use different transport class IDs.

The class ID can also be used to distinguish between different transport
protocols over the same physical transport network (e.g., UDP vs. TCP
over the IP routing infrastructure).

transport significant address bit count (see Transport.Property_t.address_bit_count)
RTI Connext’s addressing is modeled after the IPv6 and uses 128-bit
addresses (java.net.InetAddress) to route messages.

A transport plugin is expected to map the transport’s internal addressing
scheme to 128-bit addresses. In general, this mapping is likely to use only
N least significant bits (LSB); these are specified by this attribute.

} -+
| Network Address | Transport Local Address |

N
address_bits_count

Only these bits are used
by the transport plugin.

The remaining bits of an address using the 128-bit address representa-
tion will be considered as part of the "network address” (see Transport
Network Address (p.371)) and thus ignored by the transport plugin’s
internal addressing scheme.

For unicast addresses, the transport plugin is expected to ignore the higher
(128 - Transport.Property_t.address_bit_count) bits. RTT Connext is free
to manipulate those bits freely in the addresses passed in/out to the trans-
port plugin APIs.

Theoretically, the significant address bits count, N is related to the size of
the underlying transport network as follows:

address_bits_count >= ceil(loga(total_addressable_transport_unicast_inter faces))

The equality holds when the most compact (theoretical) internal address
mapping scheme is used. A practical address mapping scheme may waste
some bits.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.95 Pluggable Transports 211

6.95.6 Transport Instance Attributes

The per instance attributes to configure the plugin instance are generally passed
in to the plugin constructor. These are defined by the transport plugin writer,
and can be used to:

- customize the behavior of an instance of a transport plugin, including the send
and the receiver buffer sizes, the maximum message size, various transport level
classes of service (CoS), and so on.

- specify the resource values, network interfaces to use, various transport level
policies, and so on.

RTT Connext requires that every transport plugin instance must specify
the Transport.Property_t.message_size_max and Transport.Property_t.gather_-
send_buffer_count_max.

It is up to the transport plugin developer to make these available for configura-
tion to transport plugin user.

Note that it is important that the instance attributes are ” compatible” between
the sending side and the receiving side of communicating applications using
different instances of a transport plugin class. For example, if one side is con-
figured to send messages larger than can be received by the other side, then
communications via the plugin may fail.

6.95.7 Transport Network Address

The address bits not used by the transport plugin for its internal addressing
constitute its network address bits.

In order for RTT Connext to properly route the messages, each unicast interface
in the RTT Connext domain must have a unique address. RTT Connext allows
the user to specify the value of the network address when installing a transport
plugin via the TransportSupport.register_transport() API.

The network address for a transport plugin should be chosen such that the
resulting fully qualified 128-bit address will be unique in the RTI Connext
domain. Thus, if two instances of a transport plugin are registered with a
com.rti.dds.domain.DomainParticipant (p.629), they will be at different
network addresses in order for their unicast interfaces to have unique fully qual-
ified 128-bit addresses. It is also possible to create multiple transports with the
same network address, as it can be useful for certain use cases; note that this
will require special entity configuration for most transports to avoid clashes in
resource use (e.g. sockets for UDPv4 transport).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

212 Module Documentation

6.95.8 Transport Send Route

By default, a transport plugin is configured to send outgoing messages destined
to addresses in the network address range at which the plugin was registered.

RTI Connext allows the user to configure the routing of outgoing messages via
the TransportSupport.add_send_route() API, so that a transport plugin will be
used to send messages only to certain ranges of destination addresses. The
method can be called multiple times for a transport plugin, with different ad-
dress ranges.

Outgoing Address Range 1 -> Transport Plugin

Outgoing Address Range K -> Transport Plugin

|
v
+ — 4+ — + — 4+

+ — + — + — +

The user can set up a routing table to restrict the use of a transport plugin to
send messages to selected addresses ranges.

6.95.9 Transport Receive Route

By default, a transport plugin is configured to receive incoming messages des-
tined to addresses in the network address range at which the plugin was regis-
tered.

RTT Connext allows the user to configure the routing of incoming messages via
the TransportSupport.add_receive_route() API, so that a transport plugin will
be used to receive messages only on certain ranges of addresses. The method can
be called multiple times for a transport plugin, with different address ranges.

Transport Plugin <- Incoming Address Range 1

<-

Transport Plugin <- Incoming Address Range M

+ — + — + — +
+ — + — + — +

The user can set up a routing table to restrict the use of a transport plugin
to receive messages from selected ranges. For example, the user may restrict a
transport plugin to

- receive messages from a certain multicast address range.

- receive messages only on certain unicast interfaces (when multiple unicast
interfaces are available on the transport plugin).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.96 Using Transport Plugins 213

6.96 Using Transport Plugins

Configuring transports used by RTT Connext.

Classes

" class TransportSupport

<<interface>> (p.271) The utility class used to configure RTI Connext
pluggable transports.

6.96.1 Detailed Description

Configuring transports used by RTI Connext.

There is more than one way to install a transport plugin for use with RTI
Connext:

“ If it is a builtin transport plugin, by specifying a bitmask
in com.rti.dds.infrastructure.TransportBuiltinQosPolicy (p. 1580)
(see Built-in Transport Plugins (p.216))

For all other non-builtin transport plugins, by dynamically load-
ing the plugin through PROPERTY (p.88) QoS policy settings of
com.rti.dds.domain.DomainParticipant (p.629) (on UNIX, Solaris
and Windows systems only) (see Loading Transport Plugins through
Property QoS Policy of Domain Participant (p.213))

The lifecycle of the transport plugin is automatically managed by RTT Connext.
See Transport Lifecycle (p. 369) for details.

6.96.2 Loading Transport Plugins through Property QoS
Policy of Domain Participant

On UNIX, Solaris and Windows operating systems, a non-builtin transport
plugin written in C/C++ and built as a dynamic-link library (*.dll/*.s0) can be
loaded by RTI Connext through the PROPERTY (p.88) QoS policy settings
of the com.rti.dds.domain.DomainParticipant (p.629). The dynamic-link
library (and all the dependent libraries) need to be in the path during runtime (in
LD_LIBRARY _PATH environment variable on Linux/Solaris systems,and in
PATH environment variable for Windows systems).

To allow dynamic loading of the transport plugin, the transport plugin must
implement the RTI Connext abstract transport API and must provide a func-
tion with the signature NDDS_Transport_create_plugin that can be called by

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

214 Module Documentation

RTT Connext to create an instance of the transport plugin. The name of
the dynamic library that contains the transport plugin implementation, the
name of the function and properties that can be used to create the plu-
gin, and the aliases and network address that are used to register the plu-
gin can all be specified through the PROPERTY (p.88) QoS policy of the
com.rti.dds.domain.DomainParticipant (p.629).

The following table lists the property names that are used to load the transport
plugins dynamically:

A transport plugin is dynamically created and registered to the
com.rti.dds.domain.DomainParticipant (p.629) by RTI Connext when:

" the com.rti.dds.domain.DomainParticipant (p.629) is enabled,

" the first DataWriter/DataReader is created, or

" you lookup a builtin DataReader (com.rti.dds.subscription.Subscriber.lookup_-
datareader (p. 1490)),

whichever happens first.

Any changes to the transport plugin related properties in PROPERTY
(p-88) QoS policy after the transport plugin has been registered with the
com.rti.dds.domain.DomainParticipant (p.629) will have no effect.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.96 Using Transport Plugins

215

Property Name

Description

Required?

dds.transport.load_-
plugins

Comma-separated
strings indicating the
prefix names of all
plugins that will be
loaded by RTI

Connext. Up to 8
plugins may be
specified. For example,
”dds.transport. WAN.wal
dds.transport.DTLS.dtls
In the following
examples,
<TRANSPORT -
PREFIX> is used to
indicate one element of
this string that is used
as a prefix in the
property names for all
the settings that are
related to the plugin.
<TRANSPORT -
PREFIX> must begin
with ”dds.transport.”
(such as
”dds.transport.mytransp

YES

11,
177’

ort”).

<TRANSPORT -
PREFIX> library

Should be set to the
name of the dynamic
library (x.so for
Unix/Solaris, and *.dll
for Windows) that
contains the transport
plugin implementation.
This library (and all
the other dependent
dynamic libraries)
needs to be in the path
during run time for
used by RTT Connext
(in the LD _-
LIBRARY_PATH
environment variable
on UNIX/Solaris
systems, in PATH for
Windows systems).

YES

<TRANSPORT -
PREFIX>.create_-

Should be set to the
name of the function

YES

cBaaetion on Sat Mar 17 21

18v5ehobhie Rrobaty P sHext
NDDS_Transport_-
create_plugin that can
be called by RTI
Connext to create an
instance of the plugin.
The resulting transport
plugin will then be
recistered bv RT1

Java API by Doxygen

216 Module Documentation

6.97 Built-in Transport Plugins

Transport plugins delivered with RTT Connext.

Classes

" interface ShmemTransport

Built-in transport (p. 367) plug-in for inter-process communications using
shared memory.

" interface UDPv4Transport
Built-in transport (p. 367) plug-in using UDP/IPvj.

" interface UDPv6Transport
Built-in transport (p. 367) plug-in using UDP/IPv6.

6.97.1 Detailed Description

Transport plugins delivered with RTI Connext.

The TRANSPORT BUILTIN (p. 115) specifies the collection of transport
plugins that can be automatically configured and managed by RTI Connext as
a convenience to the user.

These transport plugins can simply be turned "on” or "off” by a specify-
ing a bitmask in com.rti.dds.infrastructure.TransportBuiltinQosPolicy
(p. 1580), thus bypassing the steps for setting up a transport plugin. RTT Con-
next preconfigures the transport plugin properties, the network address, and
the aliases to "factory defined” values.

If a builtin transport plugin is turned ”on” in
com.rti.dds.infrastructure.TransportBuiltinQosPolicy (p. 1580),
the plugin is implicitly created and registered to the corresponding
com.rti.dds.domain.DomainParticipant (p.629) by RTI Connext when:

" the com.rti.dds.domain.DomainParticipant (p.629) is enabled,
" the first DataWriter/DataReader is created, or

" you lookup a builtin DataReader (com.rti.dds.subscription.Subscriber.lookup_-
datareader (p. 1490)),

whichever happens first.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.97 Built-in Transport Plugins 217

Each builtin transport contains its own set of properties. For example, the
UDPv4Transport allows the application to specify whether or not multicast is
supported, the maximum size of the message, and provides a mechanism for the
application to filter out network interfaces.

The builtin transport plugin properties can be changed by the
method TransportSupport.set_builtin_transport_property() or by us-
ing the PROPERTY (p.88) QoS policy associated with the
com.rti.dds.domain.DomainParticipant (p.629). Builtin transport plugin
properties specified in com.rti.dds.infrastructure.PropertyQosPolicy
(p. 1252) always overwrite the ones specified through TransportSupport.set_-
builtin_transport_property(). Refer to the specific builtin transport for the list
of property names that can be specified through PROPERTY (p.88) QoS
policy.

Any changes to the builtin transport properties after the builtin transports have
been registered with will have no effect.

See also:

TransportSupport.set_builtin_transport_property ()
com.rti.dds.infrastructure.PropertyQosPolicy (p.1252)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

218 Module Documentation

6.98 Configuration Utilities

Utility API’s independent of the DDS standard.

Classes

" class Library Version_t

The version of a single library shipped as part of an RTI Connext distribution.

class LogCategory

Categories of logged messages.

class Logger

<<interface>> (p.271) The singleton type used to configure RTI Connext
logging.

class LogPrintFormat

The format used to output RTI Connext diagnostic information.

class LogVerbosity

The verbosities at which RTI Connext diagnostic information is logged.

class Version

<<interface>> (p.271) The version of an RTI Connext distribution.

6.98.1 Detailed Description

Utility API’s independent of the DDS standard.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.99 Durability and Persistence 219

6.99 Durability and Persistence

APIs related to RTI Connext Durability and Persistence. RTI Connext offers
the following mechanisms for achieving durability and persistence:

" Durable Writer History (p.219)
" Durable Reader State (p.219)
" Data Durability (p.220)

To use any of these features, you need a relational database, which is not in-
cluded with RTI Connext. Supported databases are listed in the Release Notes.

These three features can be used separately or in combination.

6.99.1 Durable Writer History

This feature allows a com.rti.dds.publication.DataWriter (p.538) to
locally persist its local history cache so that it can survive shut-
downs, crashes and restarts. When an application restarts, each
com.rti.dds.publication.DataWriter (p.538) that has been configured to
have durable writer history automatically loads all the data in its his-
tory cache from disk and can carry on sending data as if it had never
stopped executing. To the rest of the system, it will appear as if the
com.rti.dds.publication.DataWriter (p.538) had been temporarily discon-
nected from the network and then reappeared.

See also:

Configuring Durable Writer History (p.221)

6.99.2 Durable Reader State

This feature allows a com.rti.dds.subscription.DataReader (p.473) to
locally persists its state and remember the data it has already received.
When an application restarts, each com.rti.dds.subscription.DataReader
(p-473) that has been configured to have durable reader state automati-
cally loads its state from disk and can carry on receiving data as if it
had never stopped executing. Data that had already been received by the
com.rti.dds.subscription.DataReader (p.473) before the restart will be
suppressed so it is not sent over the network.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

220 Module Documentation

6.99.3 Data Durability

This feature is a full implementation of the OMG DDS Persistence Pro-
filee. The DURABILITY (p.65) QoS lets an application configure a
com.rti.dds.publication.DataWriter (p.538) such that the information
written by the com.rti.dds.publication.DataWriter (p.538) survives be-
yond the lifetime of the com.rti.dds.publication.DataWriter (p.538).
In this manner, a late-joining com.rti.dds.subscription.DataReader
(p-473) can subscribe and receive the information even after the
com.rti.dds.publication.DataWriter (p.538) application is no longer exe-
cuting. To use this feature, you need RTI Persistence Service — an optional
product that can be purchased separately.

6.99.4 Durability and Persistence Based on Virtual GUID

Every modification to the global dataspace made by a
com.rti.dds.publication.DataWriter (p.538) is identified by a pair
(virtual GUID, sequence number).

" The virtual GUID (Global Unique Identifier) is a 16-byte character identi-
fier associated with a com.rti.dds.publication.DataWriter (p.538) or
com.rti.dds.subscription.DataReader (p.473); it is used to uniquely
identify this entity in the global data space.

" The sequence number is a 64-bit identifier that identifies changes published
by a specific com.rti.dds.publication.DataWriter (p. 538).

Several com.rti.dds.publication.DataWriter (p. 538) entities
can be configured with the same virtual GUID. If each of these
com.rti.dds.publication.DataWriter (p.538) entities publishes a sam-
ple with sequence number ’0’, the sample will only be received once by the
com.rti.dds.subscription.DataReader (p.473) entities subscribing to the
content published by the com.rti.dds.publication.DataWriter (p.538)
entities.

RTT Connext also uses the virtual GUID (Global Unique Identifier) to associate
a persisted state (state in permanent storage) to the corresponding DDS entity.

For example, the history of a com.rti.dds.publication.DataWriter (p.538)
will be persisted in a database table with a name generated from the vir-
tual GUID of the com.rti.dds.publication.DataWriter (p.538). If the
com.rti.dds.publication.DataWriter (p.538) is restarted, it must have as-
sociated the same virtual GUID to restore its previous history.

Likewise, the state of a com.rti.dds.subscription.DataReader (p.473)
will be persisted in a database table whose name is generated from the
com.rti.dds.subscription.DataReader (p.473) virtual GUID

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.99 Durability and Persistence 221

A com.rti.dds.publication.DataWriter (p.538)’s virtual GUID can be con-

figured using com.rti.dds.infrastructure.DataWriterProtocolQosPolicy.virtual -
guid (p.572). Similarly, a com.rti.dds.subscription.DataReader
(p-473)’s virtual GUID can be configured using
com.rti.dds.infrastructure.DataReaderProtocolQosPolicy.virtual _-

guid (p. 505).

The builtin.PublicationBuiltinTopicData and builtin.SubscriptionBuiltinTopicData
structures include the virtual GUID associated with the discovered publication

or subscription.

Refer to the User’s Manual for additional use cases.

See also:

com.rti.dds.infrastructure.DataWriterProtocolQosPolicy.virtual -
guid (p. 572) com.rti.dds.infrastructure.DataReaderProtocolQosPolicy.virtual -
guid (p. 505).

6.99.5 Configuring Durable Writer History

To configure a com.rti.dds.publication.DataWriter (p.538) to have
durable writer history, use the PROPERTY (p.88) QoS policy as-
sociated with the com.rti.dds.publication.DataWriter (p.538) or the
com.rti.dds.domain.DomainParticipant (p.629).

Properties defined for the com.rti.dds.domain.DomainParticipant (p.629)
will be applied to all the com.rti.dds.publication.DataWriter (p.538) ob-
jects belonging to the com.rti.dds.domain.DomainParticipant (p.629), un-
less the property is overwritten by the com.rti.dds.publication.DataWriter
(p-538).

See also:

com.rti.dds.infrastructure.PropertyQosPolicy (p.1252)

The following table lists the supported durable writer history properties.

6.99.6 Configuring Durable Reader State

To configure a com.rti.dds.subscription.DataReader (p.473) with
durable reader state, use the PROPERTY (p.88) QoS policy as-
sociated with the com.rti.dds.subscription.DataReader (p.473) or
com.rti.dds.domain.DomainParticipant (p.629).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

222 Module Documentation

A property defined in the com.rti.dds.domain.DomainParticipant (p.629)
will be applicable to all the com.rti.dds.subscription.DataReader (p.473)
belonging to the com.rti.dds.domain.DomainParticipant (p.629) unless it
is overwritten by the com.rti.dds.subscription.DataReader (p.473).

See also:

com.rti.dds.infrastructure.PropertyQosPolicy (p.1252)

The following table lists the supported durable reader state properties.

6.99.7 Configuring Data Durability

RTI Connext implements DurabilityQosPolicyKind. TRANSIENT _-
DURABILITY_QOS and DurabilityQosPolicyKind. PERSISTENT _-
DURABILITY_QOS durability using RTIT Persistence Service, available
for purchase as a separate RTT product.

For more information on RTI Persistence Service, refer to the User’s Manual,
or the RTT Persistence Service online documentation.
See also:

DURABILITY (p.65)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.99 Durability and Persistence

223

Property

Description

dds.data_writer.history.plugin_name

Must be set to ”dds.data_-
writer.history.odbc_plugin.builtin”
to enable durable writer history in
the DataWriter. This property is
required.

dds.data_writer.history.odbc_-
plugin.dsn

The ODBC DSN (Data Source
Name) associated with the database
where the writer history must be
persisted. This property is required.

dds.data_writer.history.odbc_-
plugin.driver

This property tells RTT Connext
which ODBC driver to load. If the
property is not specified, RTI
Connext will try to use the standard
ODBC driver manager library:
UnixOdbc (odbe32.d11) on
UNIX/Linux systems; the Windows
ODBC driver manager (libodbec.so)
on Windows systems).

dds.data_writer.history.odbc_-
plugin.username

Configures the username used to
connect to the database. This
property is not used if it is
unspecified. There is no default
value.

dds.data_writer.history.odbc_-
plugin.password

Configures the password used to
connect to the database. This
property is not used if it is
unspecified. There is no default
value.

dds.data_writer.history.odbc_-
plugin.shared

If set to 1, RTI Connext creates a
single connection per DSN that will
be shared across DataWriters within
the same Publisher.

If set to 0 (the default), a
com.rti.dds.publication.DataWrit]
(p. 538) will create its own database
connection.

Default: 0 (false)

dds.data_writer.history.odbc_-
plugin.instance_cache_max_size

These properties configure the
resource limits associated with the
ODBC writer history caches. To
minimize the number of accesses to
the database, RTT Connext uses two
caches, one for samples and one for
instances. The initial and maximum
sizes of these caches are configured
using these properties. The resource

Generated on Sat Mar 17 21:18:59 2012 for|

ﬂjﬂ’nmﬁniﬁahﬁnstmeby Doxygen
max_instances, initial_samples,
max_samples and
max_samples_per_instance in the
com.rti.dds.infrastructure.Resous
(p. 1356) are used to configure the
maximum number of samples and
instances that can be stored in the
rolational databace Dafari1lt-

ceLimitsQosPolicy

224 Module Documentation
Property Description
dds.data_reader.state.odbc.dsn The ODBC DSN (Data Source

Name) as-

sociated with the database where the

com.rti.dds.subscription.DataReader

(p.473) state must be persisted.
This property is required.

dds.data_reader.state.filter_-
redundant_samples

To enable durable reader state, this
property must be set to 1.
Otherwise, the reader state will not
be kept and/or persisted. When the
reader state is not maintained, RTI
Connext does not filter duplicate
samples that may be coming from
the same virtual writer. By default,
this property is set to 1.

dds.data_reader.state.odbc.driver

This property is used to indicate
which ODBC driver to load. If the
property is not specified, RTI
Connext will try to use the standard
ODBC driver manager library:
UnixOdbc (odbe32.d11) on
UNIX/Linux systems; the Windows
ODBC driver manager (libodbe.so)
on Windows systems).

dds.data_-
reader.state.odbc.username

This property configures the
username used to connect to the
database. This property is not used
if it is unspecified. There is no
default value.

dds.data_reader.state.odbc.password

This property configures the
password used to connect to the
database. This property is not used
if it is unspecified. There is no
default value.

dds.data_reader.state.restore

This property indicates if the
persisted
com.rti.dds.subscription.DataRe3
(p. 473) state must be restored or
not once the
com.rti.dds.subscription.DataRe3
(p.-473) is restarted. If this property
is 0, the previous state will be
deleted from the database. If it is 1,
the
com.rti.dds.subscription.DataRed
(p.473) will restore its previous

i der

yder

yder

Generated on Sat Mar 17 21:18:59 2(Q

1steske HIane dideedia tabase ROBFEDbxy gen
Default: 1

dds.data_reader.state.checkpoint _-
frequency

This property controls how often
the reader state is stored in the
database. A value of N means to
store the state once every N
samples.

A high frequency will provide better

nerfarmance Howeoever 1f +he reader

6.100 Configuring QoS Profiles with XML 225

6.100 Configuring QoS Profiles with XML

APIs related to XML QoS Profiles.

6.100.1 Loading QoS Profiles from XML Resources
A QoS profile’ is a group of QoS settings, specified in XML format. By using
QoS profiles, you can change QoS settings without recompiling the application.
The Qos profiles are loaded when the following operations are called:

" com.rti.dds.domain.DomainParticipantFactory.create_-

participant (p.714)

com.rti.dds.domain.DomainParticipantFactory.create_-
participant_with_profile (p. 730)

com.rti.dds.domain.DomainParticipantFactory.set_default_-
participant_qos_with_profile (p.717)

com.rti.dds.domain.DomainParticipantFactory.get_default_-
participant_qos (p.716)

com.rti.dds.domain.DomainParticipantFactory.set_default_-
library (p.721)

com.rti.dds.domain.DomainParticipantFactory.set_default_-
profile (p.722)

com.rti.dds.domain.DomainParticipantFactory.get_participant_-
gos_from_profile (p.723)

com.rti.dds.domain.DomainParticipantFactory.get_topic_qos_-
from_profile (p. 728)

com.rti.dds.domain.DomainParticipantFactory.get_topic_qos._-
from_profile_ w_topic_name (p.728)

com.rti.dds.domain.DomainParticipantFactory.get_publisher_-
gos_from _profile (p.724)

com.rti.dds.domain.DomainParticipantFactory.get_subscriber_-
gos_from_profile (p.724)

com.rti.dds.domain.DomainParticipantFactory.get_datawriter_-
qos_from_profile (p. 725)

com.rti.dds.domain.DomainParticipantFactory.get_datawriter_-
qos_from _profile_w_topic_name (p. 726)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

226 Module Documentation

com.rti.dds.domain.DomainParticipantFactory.get_datareader_-
gos_from _profile (p. 726)

com.rti.dds.domain.DomainParticipantFactory.get_datareader _-
gos_from _profile_w_topic_name (p. 727)

com.rti.dds.domain.DomainParticipantFactory.get_qos_profile_-
libraries (p.729)

com.rti.dds.domain.DomainParticipantFactory.get_qos_profiles
(p-729)

com.rti.dds.domain.DomainParticipantFactory.load_profiles
(p-720)

The QoS profiles are reloaded replacing previously loaded profiles when the
following operations are called:

" com.rti.dds.domain.DomainParticipantFactory.set_qos (p.719)

" com.rti.dds.domain.DomainParticipantFactory.reload _profiles
(p.720)

The com.rti.dds.domain.DomainParticipantFactory.unload_profiles()
(p.720) operation will free the resources associated with the XML QoS pro-
files.

There are five ways to configure the XML resources (listed by load order):

" The file NDDS_QOS_PROFILES.xml in $NDDSHOME/resource/qos_-
profiles_4.5f/xml is loaded if it exists and
com.rti.dds.infrastructure.ProfileQosPolicy.ignore_resource_-
profile (p.1249) in com.rti.dds.infrastructure.ProfileQosPolicy
(p. 1247) is set to false (first to be loaded). An example file, NDDS_Q0S_-
PROFILES.example.xml, is available for reference.

The URL groups separated by semicolons referenced by the en-

viroment variable NDDS_QOS_PROFILES are loaded if they ex-

ist and com.rti.dds.infrastructure.ProfileQosPolicy.ignore_-
environment_profile (p. 1248) in com.rti.dds.infrastructure.ProfileQosPolicy
(p. 1247) is set to false.

" The file USER_QOS_PROFILES.xml in the work-
ing directory will be loaded if it exists and
com.rti.dds.infrastructure.ProfileQosPolicy.ignore_user_profile
(p. 1248) in com.rti.dds.infrastructure.ProfileQosPolicy (p.1247) is
set to false.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.100 Configuring QoS Profiles with XML 227

The URL groups referenced by com.rti.dds.infrastructure.ProfileQosPolicy.url _-
profile (p.1248) in com.rti.dds.infrastructure.ProfileQosPolicy
(p. 1247) will be loaded if specified.

" The sequence of XML strings referenced by
com.rti.dds.infrastructure.ProfileQosPolicy.string_profile
(p. 1248) will be loaded if specified (last to be loaded).

The above methods can be combined together.

6.100.2 URL

The location of the XML resources (only files and strings are supported) is
specified using a URL (Uniform Resource Locator) format. For example:

File Specification: file:///usr/local/default_dds.xml

String Specification: str://” <dds><qos_library> . . . It;/qos_-
library>&1t/dds>"

If the URL schema name is omitted, RTT Connext will assume a file name. For
example:

File Specification: /usr/local/default_dds.xml

6.100.2.1 URL groups

To provide redundancy and fault tolerance, you can specify multiple locations
for a single XML document via URL groups. The syntax of a URL group is as
follows:

[URL1 | URL2 | URL2 | . . .| URLn]
For example:

[file:///usr/local/default_dds.xml | file:///usr/local/alternative_~
default_dds.xml]

Only one of the elements in the group will be loaded by RTT Connext, starting
from the left.

Brackets are not required for groups with a single URL.

6.100.2.2 NDDS_QOS_PROFILES environment variable

The environment variable NDDS_QOS_PROFILES contains a list of URL
groups separated by ’;’

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

228 Module Documentation

The URL groups referenced by the enviroment variable are loaded if they exist
and com.rti.dds.infrastructure.ProfileQosPolicy.ignore_environment _-
profile (p.1248) is set to false

For more information on XML Configuration, refer to the User’s Manual.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.101 Publication Example 229

6.101 Publication Example

A data publication example.

6.101.1 A typical publication example
Prep

" Create user data types using rtiddsgen (p.290)
Set up
" Get the factory (p.231)

" Set up participant (p.231)

" Set up publisher (p.239)

" Register user data type(s) (p.233)

" Set up topic(s) (p.233)

" Set up data writer(s) (p.240)
Adjust the desired quality of service (QoS)

" Adjust QoS on entities as necessary (p.249)
Send data

" Send data (p.241)
Tear down

" Tear down data writer(s) (p.241)

" Tear down topic(s) (p.233)

" Tear down publisher (p.239)

" Tear down participant (p.232)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

230 Module Documentation

6.102 Subscription Example

A data subscription example.

6.102.1 A typical subscription example
Prep
" Create user data types using rtiddsgen (p.290)
Set up
" Get the factory (p.231)
" Set up participant (p.231)
Set up subscriber (p.242)
Register user data type(s) (p.233)
Set up topic(s) (p.233)
Set up data reader(s) (p.245)

Set up data reader (p.246) OR Set up subscriber (p. 242) to receive
data

Adjust the desired quality of service (QoS)
" Adjust QoS on entities as necessary (p.249)
Receive data

" Access received data either via a reader (p.246) OR via a subscriber
(p. 243) (possibly in a ordered or coherent (p.244) manner)

Tear down
" Tear down data reader(s) (p.248)
" Tear down topic(s) (p.233)
" Tear down subscriber (p.244)

" Tear down participant (p.232)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.103 Participant Use Cases 231

6.103 Participant Use Cases

Working with domain partcipants. Working with domain participants.

6.103.1 Turning off auto-enable of newly created partici-
pant(s)

Get the factory (p.231)

" Change the value of the ENTITY_FACTORY (p.69) for the
com.rti.dds.domain.DomainParticipantFactory (p.708)

DomainParticipantFactoryQos factory_qos = new DomainParticipantFactoryQos();

try {
factory.get_qos(factory_qos);

/* Change the QosPolicy to create disabled participants */
factory_qos.entity_factory.autoenable_created_entities = false;

factory.set_qos(factory_qos);
} catch (RETCODE_ERROR err) {

System.out.println(
"x*xxError: changing domain participant factory qos\n");

6.103.2 Getting the factory

" Get the DDSDomainParticipantFactory instance:

DomainParticipantFactory factory = null;

factory = DomainParticipantFactory.get_instance();

6.103.3 Setting up a participant

Get the factory (p.231)

" Create DDSDomainParticipant:

int domain_id = 10;
DomainParticipantQos participant_qos = new DomainParticipantQos();

// initialize participant_qos with default values
factory.get_default_participant_qos(participant_qos);

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

232 Module Documentation

/* Set the peer hosts. These list all the computers the application
may communicate with along with the maximum maximum participant
index of the participants that can concurrently run on that
computer. This list only needs to be a superset of the actual list
of computers and participants that will be running at any time.

*/

/* To run this example across multiple nodes, modify the following
IP addresses to match your network configuration.
*/
final String[] NDDS_DISCOVERY_INITIAL_PEERS = {
"1@udpv4://10.10.1.192",
"1@udpv4://10.10.1.190",
"1@udpv4://10.10.1.152"
3
participant_qos.discovery.initial_peers.
ensureCapacity (NDDS_DISCOVERY_INITIAL_PEERS.length);

for (int i = 0; i < NDDS_DISCOVERY_INITIAL_PEERS.length; ++i) {
participant_qos.discovery.initial_peers.add(
NDDS_DISCOVERY_INITIAL_PEERS[i]);
}

// Initialize listener if desired
DomainParticipantListener participant_listener = null;

// Create the participant
DomainParticipant participant = null;
try {
participant = factory.create_participant (
domain_id, participant_qos,
participant_listener, StatusKind.STATUS_MASK_NONE);
} catch (RETCODE_ERROR err) {
// participant couldn’t be created

}

6.103.4 Tearing down a participant

Get the factory (p.231)

Delete DDSDomainParticipant:

try {

factory.delete_participant (participant);
} catch (RETCODE_ERROR err) {

// unable to delete
}

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.104 Topic Use Cases 233

6.104 Topic Use Cases

Working with topics.

6.104.1 Registering a user data type

Set up participant (p.231)

" Register user data type of type Foo under the name ”My_Type”

String type_name = "My_Type";

FooTypeSupport.register_type(participant, type_name);

6.104.2 Setting up a topic

Set up participant (p.231)

Ensure user data type is registered (p.233)

" Create a com.rti.dds.topic.Topic (p. 1545) under the name ”my_topic”

String topic_name = "my_topic";
String type_type = "My_Type"; // user data type
TopicQos topic_qgos = new TopicQos();

// MyTopicListener is user defined and
// implements TopicListener
TopicListener topic_listener = new MyTopicListener(); // or = null

participant.get_default_topic_qos(topic_qgos);

Topic topic = null;
try {
topic = participant.create_topic(topic_name, type_name,
topic_qos, topic_listener,
StatusKind.STATUS_MASK_ALL) ;
} catch (RETCODE_ERROR err) {
// handle exception
}

6.104.3 Tearing down a topic
Delete Topic:

try {
participant.delete_topic(topic);

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

234 Module Documentation

} catch (RETCODE_ERROR err) {
// handle exception
}

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.105 FlowController Use Cases 235

6.105 FlowController Use Cases

Working with flow controllers.

6.105.1 Creating a flow controller

Set up participant (p.231)

~ Create a flow controller

FlowController controller = null;
FlowControllerProperty_t property = new FlowControllerProperty_t();

retcode = participant.get_default_flowcontroller_property(property);
// optionally modify flow controller property values
try {
controller = participant.create_flowcontroller(
"my flow controller name", property);
} catch (RETCODE_ERROR err) {

// handle exception
}

6.105.2 Flow controlling a data writer

Set up participant (p.231)
Create flow controller (p.235)

" Create an asynchronous data writer, FooDataWriter, of user data type
Foo:

DataWriterQos writer_qos = new DataWriterQos();

// MyWriterListener is user defined and

// implements DataWriterListener

MyWriterListener writer_listener = new MyWriterListener(); // or = null

publisher.get_default_datawriter_qos(writer_qgos);

/* Change the writer QoS to publish asnychronously */
writer_qos.publish_mode.kind = PublishModeQosPolicyKind.ASYNCHRONOUS_PUBLISH_MODE_QOS;

/* Setup to use the previously created flow controller */
writer_qos.publish_mode.flow_controller_name = "my flow controller name";

/* Samples queued for asynchronous write are subject to the History Qos policy */
writer_qgos.history.kind = HistoryQosPolicyKind.KEEP_ALL_HISTORY_QOS;

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

236 Module Documentation

FooDataWriter writer = null;
try {
writer = (FooDataWriter) publisher.create_datawriter(topic, writer_qos,
writer_listener,
StatusKind.STATUS_MASK_ALL) ;

/* Send data asynchronously... */

/* Wait for asynchronous send completes, if desired */
writer.wait_for_asynchronous_publishing(timout) ;

} catch (RETCODE_ERROR err) {
// handle exception
}

6.105.3 Using the built-in flow controllers

RTI Connext provides several built-in flow controllers.

The FlowController. DEFAULT_FLOW_CONTROLLER_NAME built-in
flow controller provides the basic asynchronous writer behavior. When
calling com.rti.dds.topic.example.FooDataWriter.write, the call signals
the com.rti.dds.publication.Publisher (p.1277) asynchronous publish-
ing thread (com.rti.dds.publication.PublisherQos.asynchronous_-
publisher (p.1304)) to send the actual data. As with
any PublishModeQosPolicyKind. ASYNCHRONOUS_PUBLISH _-
MODE_QOS com.rti.dds.publication.DataWriter (p. 538), the
com.rti.dds.topic.example.FooDataWriter.write call returns immedi-
ately afterwards. The data is sent immediately in the context of the
com.rti.dds.publication.Publisher (p.1277) asynchronous publishing
thread.

When using the FlowController. FIXED RATE_FLOW_CONTROLLER -
NAME flow controller, data is also sent in the context of the
com.rti.dds.publication.Publisher (p.1277) asynchronous publish-
ing thread, but at a regular fixed interval. The thread accumu-
lates samples from different com.rti.dds.publication.DataWriter
(p.538) instances and generates data on the wire only once per
com.rti.dds.publication.FlowControllerTokenBucketProperty _-
t.period (p.953).

In contrast, the FlowController. ON_DEMAND_FLOW _-
CONTROLLER_NAME flow controller permits flow only when
com.rti.dds.publication.FlowController.trigger flow (p.945) is called.
The data is still sent in the context of the com.rti.dds.publication.Publisher
(p.1277) asynchronous publishing thread. The thread accumulates samples
from different com.rti.dds.publication.DataWriter (p.538) instances

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.105 FlowController Use Cases 237

(across any com.rti.dds.publication.Publisher (p. 1277)) and sends all data
since the previous trigger.

The properties of the built-in com.rti.dds.publication.FlowController
(p-942) instances can be adjusted.
Set up participant (p.231)

Lookup built-in flow controller

FlowController controller = null;
try {
controller = participant.lookup_flowcontroller(
FlowController.DEFAULT _FLOW_CONTROLLER_NAME) ;
} catch (RETCODE_ERROR err) {

// This should never happen, built-in flow controllers are always created
// handle exception

" Change property of built-in flow controller, if desired

FlowControllerProperty_t property = new FlowControllerProperty_t();

/* Get the property of the looked-up default flow controller */
controller.get_property(property) ;

/* Change the property value as desired */
property.token_bucket.period.sec = 2;

property.token_bucket.period.nanosec = 0;

/* Update the flow controller property */
controller.set_property(property) ;

Create a data writer using the correct flow controller name
(p. 235)

6.105.4 Shaping the network traffic for a particular trans-
port

Set up participant (p.231)
Create the transports (p.255)
Create a separate flow controller for each transport (p.235)

Configure com.rti.dds.publication.DataWriter (p.538) instances to
only use a single transport

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

238 Module Documentation

" Associate all data writers using the same transport to the cor-
responding flow controller (p.235)

" For each transport, the corresponding flow controller limits the network
traffic based on the token bucket properties

6.105.5 Coalescing multiple samples in a single network
packet

Set up participant (p.231)

Create a flow controller with a desired token bucket period
(p. 235)

Associate the data writer with the flow controller (p.235)

Multiple samples written within the specified period will be coalesced
into a single network packet (provided that tokens_added per_period
and bytes_per_token permit).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.106 Publisher Use Cases 239

6.106 Publisher Use Cases

Working with publishers.

6.106.1 Setting up a publisher

Set up participant (p.231)

~ Create a DDSPublisher

PublisherQos publisher_gos = new PublisherQos();

// MyPublisherListener is user defined and
// extends DDSPublisherListener
PublisherListener publisher_listener

= new MyPublisherListener(); // or = null

participant.get_default_publisher_qos(publisher_qos);

Publisher publisher = null;
try {
publisher = participant.create_publisher(publisher_qos,
publisher_listener,
StatusKind.STATUS_MASK_ALL) ;
} catch (RETCODE_ERROR err) {
// respond to exception

}

6.106.2 Tearing down a publisher
Delete DDSPublisher:

try {

participant.delete_publisher (publisher);
} catch (RETCODE_ERROR err) {

// respond to exception

}

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

240 Module Documentation

6.107 DataWriter Use Cases

Working with data writers.

6.107.1 Setting up a data writer

Set up publisher (p.239)
Set up a topic (p. 233)

" Create a data writer, FooDataWriter, of user data type Foo:

DataWriterQos writer_qos = new DataWriterQos();

// MyWriterListener is user defined and
// implements DataWriterListener
MyWriterListener writer_listener = new MyWriterListener(); // or = null

publisher.get_default_datawriter_qos(writer_qos);

FooDataWriter writer = null;
try {
writer = (FooDataWriter) publisher.create_datawriter(topic, writer_qos,
writer_listener,
StatusKind.STATUS_MASK_ALL) ;
} catch (RETCODE_ERROR err) {
// handle exception
}

6.107.2 Managing instances
" Getting an instance "key” value of user data type Foo

Foo data = ...; // user data
try {

writer.get_key_value(data, instance_handle);
} catch (RETCODE_ERROR err) {

// ... check for cause of failure

}

Registering an instance of type Foo

InstanceHandle_t instance_handle = InstanceHandle_t.HANDLE_NIL;

instance_handle = writer->register_instance(data);

Unregistering an instance of type Foo

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.107 DataWriter Use Cases 241

try {

writer.unregister_instance(data, instance_handle);
} catch (RETCODE_ERROR err) {

// ... check for cause of failure

}

Disposing of an instance of type Foo

try {

writer.dispose(data, instance_handle);
} catch (RETCODE_ERROR err) {

// ... check for cause of failure

}

6.107.3 Sending data

Set up data writer (p.240)
Register instance (p.240)

" Write instance of type Foo

Foo data = new Foo(); // user data

InstanceHandle_t instance_handle
= InstanceHandle_t.HANDLE_NIL; // or a valid registered handle

try {

writer.write(data, instance_handle);
} catch (RETCODE_ERR err) {

// ... check for cause of failure

}

6.107.4 Tearing down a data writer
Delete DataWriter:

try {
publisher.delete_datawriter(writer);
} catch (RETCODE_ERR err) {
// ... check for cause of failure

}

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

242 Module Documentation

6.108 Subscriber Use Cases

Working with subscribers.

6.108.1 Setting up a subscriber

" Set up participant (p.231)

" Create a Subscriber

SubscriberQos subscriber_qos = new SubscriberQos();

// MySubscriberListener is user defined and
// implements SubscriberListener
SubscriberListener subscriber_listener

= new MySubscriberListener(); // or = null

participant.get_default_subscriber_qos(subscriber_gos) ;

Subscriber subscriber = null;
try {
subscriber = participant.create_subscriber(subscriber_qos,
subscriber_listener,
StatusKind.STATUS_MASK_ALL) ;
} catch (RETCODE_ERROR err) {
// respond to exception

}

6.108.2 Set up subscriber to access received data

" Set up subscriber (p.242)

" Set up to handle the DATA_ON_READERS_STATUS status, in one or
both of the following two ways.

" Enable DATA_ON_READERS_STATUS for the SubscriberLis-
tener associated with the subscriber (p.250)

— The processing to handle the status change is done in the
com.rti.dds.subscription.SubscriberListener.on_data_on_-
readers (p. 1505) method of the attached listener.

— Typical processing will access the received data (p. 243), either in
arbitrary order or in a coherent and ordered manner (p.244).

" Enable DATA_ON_READERS_STATUS for the StatusCondition
associated with the subscriber (p.251)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.108 Subscriber Use Cases 243

— The processing to handle the status change is done when the sub-
scriber’s attached status condition is triggered (p. 253) and the
DATA_ON_READERS_STATUS status on the subscriber is changed.

— Typical processing will access the received data (p. 243), either in
an arbitrary order or in a coherent and ordered manner (p.244).

6.108.3 Access received data via a subscriber

Ensure subscriber is set up to access received data (p. 242)

" Get the list of readers that have data samples available:

DataReaderSeq reader_seq = new DataReaderSeq(); // list of readers
int max_samples = DataReader.LENGTH_UNLIMITED;

int sample_state_mask = SampleStateKind.NOT_READ_SAMPLE_STATE;
int view_state_mask = ViewStateKind.ANY_VIEW_STATE;

int instance_state_mask = InstanceStateKind.ANY_INSTANCE_STATE;

try {
subscriber.get_datareaders(reader_seq,
sample_state_mask,
view_state_mask,
instance_state_mask);
} catch (RETCODE_ERROR err) {
// handle exception
}

" Upon successfully getting the list of readers with data, process the data
readers to either:

— Read the data in each reader (p.247), OR
— Take the data in each reader (p.246)

If the intent is to access the data coherently or in order (p.244), the
list of data readers must be processed in the order returned:

for (int i = 0; i < reader_seq.size(); ++i) {
FooDataReader reader = (FooDataReader) reader_seq.get(i);
// Take the data from reader,
// OR
// Read the data from reader

Alternatively, call com.rti.dds.subscription.Subscriber.notify_-
datareaders (p. 1493) to invoke the DataReaderListener for each of the
data readers.

subscriber.notify_datareaders();

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

244 Module Documentation

6.108.4 Access received data coherently and/or in order
To access the received data coherently and/or in an ordered manner, according

to the settings of the com.rti.dds.infrastructure.PresentationQosPolicy
(p.1237) attached to a com.rti.dds.subscription.Subscriber (p. 1478):

" Ensure subscriber is set up to access received data (p.242)

~ Indicate that data will be accessed via the subscriber:

subscriber.begin_access();

" Access received data via the subscriber, making sure that the
data readers are processed in the order returned. (p.243)

~ Indicate that the data access via the subscriber is done:

subscriber.end_access();

6.108.5 Tearing down a subscriber
~ Delete Subscriber:

try {
participant.delete_subscriber(subscriber);
} catch (RETCODE_ERROR err) {
// handle exception
}

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.109 DataReader Use Cases 245

6.109 DataReader Use Cases

Working with data readers.

6.109.1 Setting up a data reader

Set up subscriber (p. 242)
Set up a topic (p.233)

" Create a data reader, FooDataReader, of user data type Foo:

DataReaderQos reader_qos = new DataReaderQos();

// MyReaderListener is user defined and
// implements DataReaderListener
DataReaderListener reader_listener

= new MyReaderListener(); // or = null

subscriber.get_default_datareader_qos(reader_qos);

FooDataReader reader = null;
try {
reader = (FooDataReader) subscriber.create_datareader(topic,
reader_qos,
reader_listener,
StatusKind.STATUS_MASK_ALL);
} catch (RETCODE_ERROR err) {

// respond to exception

}

6.109.2 Managing instances

" Given a data reader

FooDataReader reader = ...;

" Getting an instance "key” value of user data type Foo

Foo data = new Foo(); // user data of type Foo
/...
try {
reader.get_key_value(data, instance_handle);
} catch (RETCODE_ERROR err) {
// ... check for cause of failure

}

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

246 Module Documentation

6.109.3 Set up reader to access received data

" Set up data reader (p.245)

" Set up to handle the DATA_AVAILABLE_STATUS status, in one or both
of the following two ways.

" Enable DATA_AVAILABLE _STATUS for the DataReaderLis-
tener associated with the data reader (p.250)

— The processing to handle the status change is done in
the com.rti.dds.subscription.DataReaderListener.on_data_-
available (p.503) method of the attached listener.

— Typical processing will access the received data (p. 246).

" Enable DATA_AVAILABLE_STATUS for the StatusCondition
associated with the data reader (p.251)

— The processing to handle the status change is done when the data
reader’s attached status condition is triggered (p.253) and the
DATA_AVAILABLE_STATUS status on the data reader is changed.

— Typical processing will access the received data (p. 246).

6.109.4 Access received data via a reader

" Ensure reader is set up to access received data (p.246)

" Access the received data, by either:

— Taking the received data in the reader (p.246), OR
— Reading the received data in the reader (p.247)

6.109.5 Taking data

" Ensure reader is set up to access received data (p.246)

" Take samples of user data type Foo. The samples are removed from the
Service. The caller is responsible for deallocating the buffers.

FooSeq data_seq = new FooSeq(); // holder for sequence of user data type Foo
SampleInfoSeq info_seq = new SampleInfoSeq(); // holder for sequence of DDS_SampleInfo

int max_samples;

int sample_state_mask = SampleStateMask.ANY_SAMPLE_STATE;

int view_state_mask = ViewStateMask.ANY_VIEW_STATE;

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.109 DataReader Use Cases 247

int instance_state_mask = InstanceStateMask.ANY_INSTANCE_STATE;

try {
reader.take(data_seq, info_seq,
max_samples,
sample_state_mask,
view_state_mask,
instance_state_mask);
} catch (RETCODE_ERROR) {
// ... check for cause of failure

}

" Use the received data

// Use the received data samples ’data_seq’ and associated
// information ’info_seq’
for (int i = 0; i < data_seq.size(); ++i) {

// use... data_seq.get(i)

// use... info_seq.get (i)

Return the data samples and the information buffers back to the mid-
dleware. IMPORTANT": Once this call returns, you must not retain any
pointers to any part of any sample or sample info object.

reader.return_loan(data_seq, info_seq);

6.109.6 Reading data

Ensure reader is set up to access received data (p. 246)

" Read samples of user data type Foo. The samples are not removed from
the Service. It remains responsible for deallocating the buffers.

FooSeq data_seq = new FooSeq(Q); // holder for sequence of user data type Foo
SampleInfoSeq info_seq = new SampleInfoSeq)_; // holder for sequence of DDS_SampleInfo

int max_samples;

int sample_state_mask = SampleStateMask.ANY_SAMPLE_STATE;

int view_state_mask = ViewStateMask.ANY_VIEW_STATE;

int instance_state_mask = InstanceStateMask.ANY_INSTANCE_STATE;

try {

reader.read(data_seq, info_seq,
max_samples,
sample_state_mask,
view_state_mask,
instance_state_mask);
} catch (RETCODE_ERROR) {
// ... check for cause of failure

}

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

248 Module Documentation

" Use the received data

// Use the received data samples ’data_seq’ and associated
// information ’info_seq’
for (int i = 0; i < data_seq.size(); ++i) {

// use... data_seq.get(i)

// use... info_seq.get (i)

Return the data samples and the information buffers back to the middle-
ware

reader.return_loan(data_seq, info_seq);

6.109.7 Tearing down a data reader
Delete DDSDataReader:

try {
subscriber.delete_datareader (reader) ;
} catch (RETCODE_ERROR err) {
// ... check for cause of failure

}

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.110 Entity Use Cases 249

6.110 Entity Use Cases

Working with entities.

6.110.1 Enabling an entity

" To enable an com.rti.dds.infrastructure.Entity (p.912)

try {
entity.enable();
} catch (RETCODE_ERROR err) {
System.out.println(
"x** Error: failed to enable entity");

6.110.2 Checking if a status changed on an entity.

" Given an com.rti.dds.infrastructure.Entity (p.912) and a
com.rti.dds.infrastructure.StatusKind (p.1455) to check for,
get the list of statuses that have changed since the last time they were
respectively cleared.

int status_changes_list = entity.get_status_changes();

Check if status_kind was changed since the last time it was cleared.
A plain communication status change is cleared when the status is read
using the entity’s get_<plain communication status>() method. A
read communication status change is cleared when the data is taken from
the middleware via a TDataReader_take() call [see Changes in Status
(p. 107) for details].

if ((status_changes_list & status_kind) != 0) {

return true; /* ... YES, status_kind changed ... */
} else {

return false; /% ... NO, status_kind did NOT change ... */
}

6.110.3 Changing the QoS for an entity

The QoS for an entity can be specified at the entity creation time. Once an
entity has been created, its QoS can be manipulated as follows.

" Get an entity’s QoS settings using get_qos (abstract) (p.914)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

250 Module Documentation

try {
entity.get_qos(qos);

} catch (RETCODE_ERROR err) {
System.out.println("***Error: failed to get gos\n");

}

Change the desired qos policy fields

/* Change the desired qos policies */
/* qos.policy.field = ... */

" Set the qos using set_qos (abstract) (p.913).

try {
entity.set_qgos(qos);
} catch (RETCODE_IMMUTABLE_POLICY immutable) {
System.out.println(
"skxError: tried changing a policy that can only be" +
" set at entity creation time\n");
} catch (RETCODE_INCONSISTENT_POLICY inconsistent) {
System.out.println(
"sx*x*Error: tried changing a policy to a value inconsistent" +
" with other policy settings\n");
} catch (RETCODE_ERROR other) {
System.out.println(
"s*x*Error: tried changing a policy that can only be" +
" set at entity creation time\n");

6.110.4 Changing the listener and enabling/disabling sta-
tuses associated with it

The listener for an entity can be specified at the entity creation time. By default
the listener is enabled for all the statuses supported by the entity.

Once an entity has been created, its listener and/or the statuses for which it is
enabled can be manipulated as follows.

User defines entity listener methods

/* ... methods defined by EntityListener ... */
public class MyEntityListener implements Listener {
// ... methods defined by EntityListener ...

}

Get an entity’s listener using get_listener (abstract) (p.915)

entity_listener = entity.get_listener();

Enable status_kind for the listener

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.110 Entity Use Cases 251

enabled_status_list |= status_kind;

Disable status_kind for the listener

enabled_status_list &= “status_kind;

" Set an entity’s listener to entity listener using set_listener (ab-
stract) (p.914). Ouly enable the listener for the statuses specified by
the enabled_status_list.

try {

entity.set_listener(entity_listener, enabled_status_list);
} catch (RETCODE_ERROR err) {

// respond to failure

}
6.110.5 Enabling/Disabling statuses associated with a sta-
tus condition

Upon entity creation, by default, all the statuses are enabled for the DDS_-
StatusCondition associated with the entity.

Once an entity has been created, the list of statuses for which the DDS_-
StatusCondition is triggered can be manipulated as follows.

" Given an entity, a status_kind, and the associated status_condition:

statuscondition = entity.get_statuscondition();

" Get the list of statuses enabled for the status_condition

enabled_status_list = statuscondition.get_enabled_statuses();

" Check if the given status_kind is enabled for the status_condition

if ((enabled_status_list & status_kind) > 0) {

/*... YES, status_kind is enabled ... */
} else {
/* ... NO, status_kind is NOT enabled ... */

}

" Enable status_kind for the status_condition

try {

statuscondition.set_enabled_statuses(enabled_status_list | status_kind);
} catch (RETCODE_ERROR err) {

// ... check for cause of failure

}

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

252 Module Documentation

Disable status_kind for the status_condition

try {

statuscondition.set_enabled_statuses(enabled_status_list & “status_kind);
} catch (RETCODE_ERROR err) {

// ... check for cause of failure

}

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.111 Waitset Use Cases 253

6.111 Waitset Use Cases

Using wait-sets and conditions.

6.111.1 Setting up a wait-set

~ Create a wait-set

WaitSet waitset = new WaitSet();

" Attach conditions

Condition condl = ...;

Condition cond2 = entity.get_statuscondition();
Condition cond3 = reader.create_readcondition(
SampleStateKind.NOT_READ_SAMPLE_STATE,

ViewStateKind.ANY_VIEW_STATE,

InstanceStateKind.ANY_INSTANCE_STATE);
Condition cond4 = new GuardCondition();
Condition condb = ...;

waitset.attach_condition(condl);
waitset.attach_condition(cond2);
waitset.attach_condition(cond3);
waitset.attach_condition(cond4);
waitset.attach_condition(cond5);

6.111.2 Waiting for condition(s) to trigger

Set up a wait-set (p.253)

" Wait for a condition to trigger or timeout, whichever occurs first

Duration_t timeout = new Duration_t(0, 1000000); // 1ms
ConditionSeq active_conditions = new ConditionSeq(); // list of active conditions

boolean is_condl_triggered = false;
boolean is_cond2_triggered = false;

try {
waitset.wait(active_conditions, timeout);

// check if "condl" or "cond2" are triggered:
for (int i = 0; i < active_conditions.size(); ++i) {
if (active_conditions.get(i) == condl) {
System.out.println("Condl was triggered!");
is_condl_triggered = true;
}

if (active_conditions.get(i) == cond2) {

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

254 Module Documentation

System.out.println("Cond2 was triggered!");
is_cond2_triggered = true;

}
}
if (is_condl_triggered) {
// ... do something because "condl" was triggered ...
}
if (is_cond2_triggered) {
// ... do something because "cond2" was triggered ...
}
} catch (RETCODE_TIMEOUT timed_out) {
// timeout!

System.out.println(
"Wait timed out!! None of the conditions was triggered.");
} catch (RETCODE_ERROR ex) {
// ... check for cause of failure
throw ex;

6.111.3 Tearing down a wait-set
Delete the wait-set

waitset.delete();
waitset = null;
// let the wait set be garbage collected

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.112 Transport Use Cases 255

6.112 Transport Use Cases

Working with pluggable transports.

6.112.1 Changing the automatically registered built-in
transports

" The TransportBuiltinKind. MASK_DEFAULT specifies the transport plu-
gins that will be automatically registered with a newly created
com.rti.dds.domain.DomainParticipant (p.629) by default.

" This default can be changed by changing the value of the
value of TRANSPORT_BUILTIN (p.115) Qos Policy on the
com.rti.dds.domain.DomainParticipant (p.629)

To change the com.rti.dds.domain.DomainParticipantQos.transport_-
builtin (p. 738) Qos Policy:

DomainParticipantQos participant_qos = new DomainParticipantQos();
factory.get_default_participant_gos(participant_qos);

participant_gos.transport_builtin.mask = TransportBuiltinKind.SHMEM |
TransportBuiltinKind.UDPv4;

6.112.2 Changing the properties of the automatically reg-
istered builtin transports

The behavior of the automatically registered builtin transports can be altered
by changing their properties.

" Tell the com.rti.dds.domain.DomainParticipantFactory (p.708) to
create the participants disabled, as described in Turning off auto-
enable of newly created participant(s) (p.231)

Get the property of the desired builtin transport plugin, say
UDPv4Transport

UDPv4Transport.Property_t property = new UDPv4Transport.Property_t();
TransportSupport.get_builtin_transport_property(participant, property);
Change the property fields as desired. Note that the properties should

be changed carefully, as inappropriate values may prevent communica-
tions. For example, the UDPv4Transport properties can be changed to

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

256 Module Documentation

support large messages (assuming the underlying operating system’s
UDPv4 stack supports the large message size). Note: if message_size_max
is increased from the default for any of the built-in transports, then the
DDS_ReceiverPoolQosPolicy.buffer_size on the DomainParticipant should
also be changed.

/* Increase the UDPv4 maximum message size to 64K (large messages). */
property.message_size_max = 65535;
property.recv_socket_buffer_size = 65535;
property.send_socket_buffer_size = 65535;

Set the property of the desired builtin transport plugin, say
UDPv4Transport

TransportSupport.set_builtin_transport_property(participant, property) ;

Enable the participant (p.249) to turn on communications with other
participants in the domain using the new properties for the automatically
registered builtin transport plugins.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.113 Filter Use Cases 257

6.113 Filter Use Cases

Working with data filters.

6.113.1 Introduction

RTI Connext supports filtering data either during the ex-
change from com.rti.dds.publication.DataWriter (p. 538) to
com.rti.dds.subscription.DataReader (p.473), or after the data has
been stored at the com.rti.dds.subscription.DataReader (p.473).

Filtering during the exchange process is performed by a
com.rti.dds.topic.ContentFilteredTopic (p.458), which is created by
the com.rti.dds.subscription.DataReader (p.473) as a way of specifying a
subset of the data samples that it wishes to receive.

Filtering samples that have already been received by the
com.rti.dds.subscription.DataReader (p.473) is performed by
creating a com.rti.dds.subscription.QueryCondition (p- 1324),
which can then wused to check for matching samples, be alerted

when matching samples arrive, or retrieve matching samples
through use of the com.rti.dds.topic.example.FooDataReader.read_-
w_condition or com.rti.dds.topic.example.FooDataReader.take_w_-
condition functions. (Conditions may also be used with the APIs

com.rti.dds.topic.example.FooDataReader.read _next_instance_w_condition and
com.rti.dds.topic.example.FooDataReader.take_next_instance_w_condition.)

Filtering may be performed on any topic, either keyed or un-keyed, except the
Built-in Topics (p.153). Filtering may be perfomed on any field, subset of
fields, or combination of fields, subject only to the limitations of the filter syntax,
and some restrictions against filtering some sparse value types of the Dynamic
Data (p.170) APIL.

RTT Connext contains built in support for filtering using SQL syntax, described
in the Queries and Filters Syntax (p.278) module.

6.113.1.1 Overview of ContentFilteredTopic

Each com.rti.dds.topic.ContentFiltered Topic (p. 458) is cre-
ated based on an existing com.rti.dds.topic.Topic (p.1545).
The com.rti.dds.topic.Topic (p.1545) specifies the field_names
and field_types of the data contained within the topic. The
com.rti.dds.topic.ContentFilteredTopic (p.458), by means of its filter_-
expression and expression_parameters, futher specifies the wvalues of the
data which the com.rti.dds.subscription.DataReader (p.473) wishes to
receive.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

258 Module Documentation

Custom filters may also be constructed and utilized as described in the Creat-
ing Custom Content Filters (p.263) module.

Once the com.rti.dds.topic.ContentFilteredTopic (p.458) has been cre-
ated, a com.rti.dds.subscription.DataReader (p.473) can be created
using the filtered topic. = The filter’s characteristics are exchanged be-
tween the com.rti.dds.subscription.DataReader (p.473) and any matching
com.rti.dds.publication.DataWriter (p.538) during the discovery processs.

If the com.rti.dds.publication.DataWriter (p.538) allows (by
com.rti.dds.infrastructure.DataWriterResourceLimitsQosPolicy.max_-
remote_reader filters (p.600)) and the number of filtered
com.rti.dds.subscription.DataReader (p.473) is less than or equal
to 32, and the com.rti.dds.subscription.DataReader (p.473) s
com.rti.dds.infrastructure.TransportMulticast QosPolicy (p- 1590)
is empty, then the com.rti.dds.publication.DataWriter (p.538) will per-
forming filtering and send to the com.rti.dds.subscription.DataReader
(p-473) only those samples that meet the filtering criteria.

If disallowed by the com.rti.dds.publication.DataWriter (p.538), or
if more than 32 com.rti.dds.subscription.DataReader (p.473) require
filtering, or the com.rti.dds.subscription.DataReader (p.473) has set
the com.rti.dds.infrastructure.TransportMulticastQosPolicy (p.1590),
then the com.rti.dds.publication.DataWriter (p.538) sends all sam-
ples to the com.rti.dds.subscription.DataReader (p.473), and the
com.rti.dds.subscription.DataReader (p.473) discards any samples that
do not meet the filtering criteria.

Although the filter_expression cannot be changed once the

com.rti.dds.topic.ContentFiltered Topic (p. 458) has been
created, the expression_parameters can be modified = us-
ing com.rti.dds.topic.ContentFilteredTopic.set_expression _-
parameters (p.460). Any changes made to the filtering crite-

ria. by means of com.rti.dds.topic.ContentFilteredTopic.set_-
expression_parameters (p.460), will be conveyed to any con-

nected com.rti.dds.publication.DataWriter (p.538). New samples
will be subject to the modified filtering criteria, but samples that
have already been accepted or rejected are unaffected. However, if

the com.rti.dds.subscription.DataReader (p.473) connects to a
com.rti.dds.publication.DataWriter (p.538) that re-sends its data,
the re-sent samples will be subjected to the new filtering criteria.

6.113.1.2 Overview of QueryCondition

com.rti.dds.subscription.QueryCondition (p. 1324) com-
bine aspects of the content filtering capabilities of
com.rti.dds.topic.ContentFilteredTopic (p.458) with state filter-

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.113 Filter Use Cases 259

ing capabilities of com.rti.dds.subscription.ReadCondition (p.1326)
to create a reconfigurable means of filtering or searching data in the
com.rti.dds.subscription.DataReader (p.473) queue.

com.rti.dds.subscription.QueryCondition (p.1324) may be created on
a disabled com.rti.dds.subscription.DataReader (p.473), or after the
com.rti.dds.subscription.DataReader (p.473) has been enabled. If the
com.rti.dds.subscription.DataReader (p.473) is enabled, and has already
recevied and stored samples in its queue, then all data samples in the are fil-
tered against the com.rti.dds.subscription.QueryCondition (p.1324) fil-
ter criteria at the time that the com.rti.dds.subscription.QueryCondition
(p-1324) is created. (Note that an exclusive lock is held on the
com.rti.dds.subscription.DataReader (p.473) sample queue for the dura-
tion of the com.rti.dds.subscription.QueryCondition (p.1324) creation).

Once created, incoming samples are filtered against all
com.rti.dds.subscription.QueryCondition (p-1324) filter cri-
teria at the time of their arrival and storage into the
com.rti.dds.subscription.DataReader (p.473) queue.

The number of com.rti.dds.subscription.QueryCondition (p.1324) filters

that an individual com.rti.dds.subscription.DataReader (p.473) may cre-

ate is set by com.rti.dds.infrastructure.DataReaderResourceLimitsQosPolicy.max_-
query_condition_filters (p.535), to an upper maximum of 32.

6.113.2 Filtering with ContentFilteredTopic

" Set up subscriber (p.242)
" Set up a topic (p.233)
" Create a ContentFilteredTopic, of user data type Foo:

String cft_param_list[] = {"1", "100"};
StringSeq cft_parameters = new StringSeq(java.util.Arrays.asList(cft_param_list));

ContentFilteredTopic cft = participant.create_contentfilteredtopic(
"ContentFilteredTopic",
topic,
"value > %0 AND value < %1",
cft_parameters);
if (cft == null) {
System.err.println("create_contentfilteredtopic error\n");
return;

" Create a FooReader using the ContentFiltered Topic:

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

260 Module Documentation

FooDataReader reader = (FooDataReader)
subscriber.create_datareader(
cft,
datareader_qos, // or Subscriber.DATAREADER_QOS_DEFAULT //
listener, // or null //
StatusKind.STATUS_MASK_ALL);

if (reader == null) {
System.err.println("create_datareader error\n");
return;

Once setup, reading samples with a
com.rti.dds.topic.ContentFilteredTopic (p.458) is exactly the
same as normal reads or takes, as decribed in DataReader Use Cases
(p. 245).

Changing filter crieria using set_expression_parameters:

cft_parameters.set(0, "5");
cft_parameters.set(1, "9");
cft.set_expression_parameters(cft_parameters);

6.113.3 Filtering with Query Conditions

Given a data reader of type Foo

FooDataReader reader = ...;

Creating a QueryCondition

QueryCondition queryCondition = null;
String qc_param_list[] = {"1", "100"};

StringSeq qc_parameters = new StringSeq(java.util.Arrays.asList(cft_param_list));
queryCondition = reader.create_querycondition(SampleStateKind.NOT_READ_SAMPLE_STATE,
ViewStateKind.ANY_VIEW_STATE,
InstanceStateKind.ANY_INSTANCE_STATE,
"value > %0 AND value < %1",
qc_parameters) ;
if (queryCondition == null) {
System.err.println("create_querycondition error\n");
return;

Reading matching samples with a com.rti.dds.subscription. QueryCondition
(p.1324)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.113 Filter Use Cases 261

FooSeq _dataSeq = new FooSeq();
SampleInfoSeq _infoSeq = new SampleInfoSeq();

try {
reader.read_w_condition(_dataSeq, _infoSeq,
ResourcelLimitsQosPolicy.LENGTH_UNLIMITED,
queryCondition) ;
for(int i = 0; i < _dataSeq.size(); ++i) {
SampleInfo info = (SampleInfo)_infoSeq.get(i);
if (info.valid_data) {
// --- Process data here --- //
}
}
} catch (RETCODE_NO_DATA noData) {
// No data to process
} finally {
reader.return_loan(_dataSeq, _infoSeq);

}

com.rti.dds.subscription.QueryCondition.set -
query_parameters (p- 1325) is used similarly to
com.rti.dds.topic.ContentFilteredTopic.set_expression_-
parameters (p.460), and the same coding techniques can be used.

Any com.rti.dds.subscription.QueryCondition (p.- 1324)
that have been created must be deleted before the
com.rti.dds.subscription.DataReader (p.473) can be deleted. This
can be done using com.rti.dds.subscription.DataReader.delete_-
contained_entities (p.489) or manually as in:

retcode = reader.delete_readcondition(queryCondition);

6.113.4 Filtering Performance

Although RTIT Connext supports filtering on any field or combination of
fields using the SQL syntax of the built-in filter, filters for keyed top-
ics that filter solely on the contents of key fields have the potential for
much higher performance. This is because for key field only filters, the
com.rti.dds.subscription.DataReader (p.473) caches the results of the fil-
ter (pass or not pass) for each instance. When another sample of the same
instance is seen at the com.rti.dds.subscription.DataReader (p.473), the
filter results are retrieved from cache, dispensing with the need to call the filter
function.

This optimization applies to all filtering using the built-in SQL filter,
performed by the com.rti.dds.subscription.DataReader (p.473),
for either = com.rti.dds.topic.ContentFilteredTopic (p. 458) or
com.rti.dds.subscription.QueryCondition (p.1324). This does not

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

262 Module Documentation

apply to filtering perfomed for com.rti.dds.topic.ContentFilteredTopic
(p.458) by the com.rti.dds.publication.DataWriter (p.538).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.114 Creating Custom Content Filters 263

6.114 Creating Custom Content Filters

Working with custom content filters.

6.114.1 Introduction

By default, RTI Connext creates content filters with the DDS_SQL_FILTER,
which implements a superset of the DDS-specified SQL. WHERE clause. How-
ever, in many cases this filter may not be what you want. Some examples are:

" The default filter can only filter based on the content of a sample, not on a
computation on the content of a sample. You can use a custom filter that
is customized for a specific type and can filter based on a computation of
the type members.

" You want to use a different filter language then SQL

This HOWTO explains how to write your own custom filter and is divided into
the following sections:

" The Custom Content Filter API (p.263)

" Example Using C format strings (p.264)

6.114.2 The Custom Content Filter API

A custom content filter is created by calling the
com.rti.dds.domain.DomainParticipant.register_contentfilter

(p.698) function with a com.rti.dds.topic.ContentFilter (p.454) that
contains a compile, an evaluate function and a finalize function.
com.rti.dds.topic.ContentFilteredTopic (p.458) can be created with
com.rti.dds.domain.DomainParticipant.create_contentfilteredtopic_-
with_filter (p.675) to use this filter.

A custom content filter is used by RTT Connext at the following times during the
life-time of a com.rti.dds.topic.ContentFilteredTopic (p. 458) (the function
called is shown in parenthesis).

" When a com.rti.dds.topic.ContentFilteredTopic (p.458) is created
(compile (p.264))

" When the filter parameters are changed on the
com.rti.dds.topic.ContentFilteredTopic (p.458) (compile (p.264))
with com.rti.dds.topic.ContentFilteredTopic.set_expression_-

parameters (p.460)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

264 Module Documentation

" When a sample is filtered (evaluate (p.264)). This function is called by
the RTT Connext core with a de-serialized sample

" When a com.rti.dds.topic.ContentFilteredTopic (p.458) is deleted
(finalize (p.264))

6.114.2.1 The compile function

The compile (p.264) function is used to compile a filter expression and ex-
pression parameters. Please note that the term compile is intentionally loosely
defined. It is up to the user to decide what this function should do and return.

See com.rti.dds.topic.ContentFilter.compile (p.455) for details.

6.114.2.2 The evaluate function

The evaluate (p.265) function is called each time a sample is received to de-
termine if a sample should be filtered out and discarded.

See com.rti.dds.topic.ContentFilter.evaluate (p.456) for details.

6.114.2.3 The finalize function

The finalize (p.265) function is called when an instance of the custom content
filter is no longer needed. When this function is called, it is safe to free all
resources used by this particular instance of the custom content filter.

See com.rti.dds.topic.ContentFilter.finalize (p.457) for details.

6.114.3 Example Using C format strings

Assume that you have a type Foo.

You want to write a custom filter function that will drop all samples where the
value of Foo.x > x and x is a value determined by an expression parameter. The
filter will only be used to filter samples of type Foo.

6.114.3.1 Writing the Compile Function

The first thing to note is that we can ignore the filter expression, since we
already know what the expression is. The second is that x is a parameter that
can be changed. By using this information, the compile function is very easy to
implement. Simply return the parameter string. This string will then be passed
to the evaluate function every time a sample of this type is filtered.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.114 Creating Custom Content Filters 265

Below is the entire compile (p.264) function.

public void compile(
ObjectHolder new_compile_data, String expression,
StringSeq parameters, TypeCode type_code, String type_class_name,
Object old_compile_data) {

new_compile_data.value = parameters.get(0);

6.114.3.2 Writing the Evaluate Function

The next step is to implement the evaluate function. The evaluate function
receives the parameter string with the actual value to test against. Thus the
evaluate function must read the actual value from the parameter string before
evaluating the expression. Below is the entire evaluate (p.264) function.

public boolean evaluate(
Object compile_data, Object sample) {

String parameter = (String)compile_data;
int x;

Foo foo_sample = (Foo)sample;
x = Integer.parselnt(parameter);

return (foo_sample.x > x 7 false : true);

6.114.3.3 Writing the Finalize Function
The last function to write is the finalize function. It is safe to free all resources
used by this particular instance of the custom content filter that is allocated in

compile. Below is the entire finalize (p.264) function.

public void finalize(
Object compile_data) {
/* nothing to do since no resource are allocated */

6.114.3.4 Registering the Filter

Before the custom filter can be used, it must be registered with RTT Connext:

ContentFilter myCustomFilter = new MyContentFilter();

participant.register_contentfilter("MyCustomFilter", myCustomFilter);

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

266 Module Documentation

6.114.3.5 Unregistering the Filter
When the filter is no longer needed, it can be unregistered from RTT Connext:

participant.unregister_contentfilter ("MyCustomFilter");

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.115 Large Data Use Cases 267

6.115 Large Data Use Cases

Working with large data types.

6.115.1 Introduction

RTI Connext supports data types whose size exceeds the maximum message
size of the underlying transports. A com.rti.dds.publication.DataWriter
(p- 538) will fragment data samples when required. Fragments are automatically
reassembled at the receiving end.

Once all fragments of a sample have been received, the new sample is passed
to the com.rti.dds.subscription.DataReader (p.473) which can then make
it available to the user. Note that the new sample is treated as a regular sam-
ple at that point and its availability depends on standard QoS settings such
as com.rti.dds.infrastructure.ResourceLimitsQosPolicy.max_samples
(p. 1359) and HistoryQosPolicyKind. KEEP_LAST _HISTORY _QOS.

The large data feature is fully supported by all DDS API’s, so its use is mostly
transparent. Some additional considerations apply as explained below.

6.115.2 Writing Large Data

In order to wuse the large data feature with the Reliabili-
tyQosPolicyKind. RELTABLE_RELIABILITY _QOS setting, the
com.rti.dds.publication.DataWriter (p. 538) must be configured as an asyn-
chronous writer (PublishModeQosPolicyKind. ASYNCHRONOUS _PUBLISH -
MODE_QOS) with associated com.rti.dds.publication.FlowController
(p.942).

While the use of an asynchronous writer and flow controller is optional when
using the ReliabilityQosPolicyKind. BEST_EFFORT _RELIABILITY_QOS set-
ting, most large data use cases will benefit from the use of a flow controller to
prevent flooding the network when fragments are being sent.

" Set up writer (p.240)

" Add flow control (p.235)

6.115.3 Receiving Large Data

Large data is supported by default and in most cases, no further changes are
required.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

268 Module Documentation

The com.rti.dds.infrastructure.DataReaderResourceLimitsQosPolicy
(p.524) allows tuning the resources available to the
com.rti.dds.subscription.DataReader (p.473) for reassembling frag-
mented large data.

" Set up reader (p.245)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.116 Documentation Roadmap 269

6.116 Documentation Roadmap

This section contains a roadmap for the new user with pointers on what to read
first.

If you are new to RTI Connext, we recommend starting in the following order:

See the Getting Started Guide. This document provides download and
installation instructions. It also lays out the core value and concepts
behind the product and takes you step-by-step through the creation of a
simple example application.

The User’s Manual describes the features of the product and how to use
them. It is organized around the structure of the DDS APIs and certain
common high-level tasks.

The documentation in the DDS API Reference (p.272) provides an
overview of API classes and modules for the DDS data-centric publish-
subscribe (DCPS) package from a programmer’s perspective. Start by
reading the documentation on the main page.

After reading the high level module documentation, look at the Publi-
cation Example (p.229) and Subscription Example (p. 230) for step-
by-step examples of creating a publication and subscription. These are
hyperlinked code snippets to the full API documentation, and provide a
good place to begin learning the APIs.

Next, work through your own application using the example code files
generated by rtiddsgen (p.290).

To integrate similar code into your own application and build system, you
will likely need to refer to the Platform Notes.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

270 Module Documentation

6.117 Conventions

This section describes the conventions used in the API documentation.

6.117.1 Unsupported Features

[Not supported (optional)] This note means that the optional feature from
the DDS specification is not supported in the current release.

6.117.2 API Documentation Terms

In the API documentation, the term module refers to a logical grouping of
documentation and elements in the APL.

6.117.3 Stereotypes

Commonly used stereotypes in the API documentation include the following.

6.117.3.1 Extensions

" <<eXtension>> (p.270)

— An RTI Connext product extension to the DDS standard specifica-
tion.

— The extension APIs complement the standard APIs specified by the
OMG DDS specification. They are provided to improve product
usability and enable access to product-specific features such as plug-
gable transports.

6.117.3.2 Experimental

" <<experimental>> (p.270)

— RTI Connext experimental features are used to evaluate new features
and get user feedback.

— These features are not guaranteed to be fully supported and might be
implemented only of some of the programming languages supported
bt RTT Connext

— The functional APIs corresponding to experimental features can be
distinguished from other APIs by the suffix *_exp’.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.117 Conventions 271

— Experimental features may or may not appear in future product re-
leases.

— The name of the experimental features APIs will change if they be-
come officially supported. At the very least the suffix "_exp’ will be
removed.

— Experimental features should not be used in production.

6.117.3.3 Types

" <<interface>> (p.271)

— Pure interface type with no state.

— Languages such as Java natively support the concept of an inter-
face type, which is a collection of method signatures devoid of any
dynamic state.

— In C++, this is achieved via a class with all pure virtual methods
and devoid of any instance variables (ie no dynamic state).

— Interfaces are generally organized into a type hierarchy. Static type-
casting along the interface type hierarchy is "safe” for valid objects.

" <<generic>> (p.271)

— A generic type is a skeleton class written in terms of generic pa-
rameters. Type-specific instantiations of such types are convention-
ally referred to in this documentation in terms of the hypothetical
type "Foo”; for example: FooSeq, FooDataType, FooDataWriter,
and FooDataReader.

" <<singleton>> (p.271)

— Singleton class. There is a single instance of the class.
— Generally acccessed via a get_instance() static method.

6.117.3.4 Method Parameters

T o<<in>> (p. 271)

— An input parameter.

T <<out>> (p.271)

— An output parameter.

" <<inout>> (p.271)

— An input and output parameter.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

272

Module Documentation

6.118

DDS API Reference

RTT Connext modules following the DDS module definitions.

Modules

" Domain Module

Contains the com.rti.dds.domain. DomainParticipant (p. 629) class that
acts as an entrypoint of RTI Connext and acts as a factory for many of the
classes. The com.rti.dds.domain. DomainParticipant (p. 629) also acts
as a container for the other objects that make up RTI Connext.

" Topic Module

Contains the com.rti.dds.topic. Topic (p.-1545),
com.rti.dds.topic. ContentFiltered Topic (p. 458), and
com.rti.dds.topic. MultiTopic (p- 1208) classes, the

com.rti.dds.topic. TopicListener (p. 1564) interface, and more generally,
all that is needed by an application to define com.rti.dds.topic. Topic
(p- 1545) objects and attach QoS policies to them.

" Publication Module

Contains the com.rti.dds.publication. FlowController
(p. 942), com.rti.dds.publication. Publisher (p.- 1277), and
com.rti.dds.publication. Data Writer (p.538) classes as well as
the com.rti.dds.publication. PublisherListener (p-1302) and
com.rti.dds.publication. Data WriterListener (p. 566) interfaces,
and more generally, all that is needed on the publication side.

Subscription Module

Contains the com.rti.dds.subscription. Subscriber
(p. 1478), com.rti.dds.subscription. DataReader (p-473),
com.rti.dds.subscription. Read Condition (p- 1326), and

com.rti.dds.subscription. QueryCondition (p.1324) classes, as well
as the com.rti.dds.subscription.SubscriberListener (p.1504) and
com.rti.dds.subscription. DataReaderListener (p.501) interfaces, and
more generally, all that is needed on the subscription side.

Infrastructure Module

Defines the abstract classes and the interfaces that are refined by the other
modules. Contains common definitions such as return codes, status values,
and QoS policies.

Queries and Filters Syntax

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.118 DDS API Reference 273

6.118.1 Detailed Description

RTT Connext modules following the DDS module definitions.

6.118.2 Overview

Information flows with the aid of the following con-

structs: com.rti.dds.publication.Publisher (p. 1277) and
com.rti.dds.publication.DataWriter (p.538) on the send-
ing side, com.rti.dds.subscription.Subscriber (p. 1478) and

com.rti.dds.subscription.DataReader (p.473) on the receiving side.

" A com.rti.dds.publication.Publisher (p.1277) is an object re-
sponsible for data distribution. It may publish data of differ-
ent data types. A TDataWriter acts as a typed (i.e. each
com.rti.dds.publication.DataWriter (p.538) object is dedicated
to one application data type) accessor to a publisher. A
com.rti.dds.publication.DataWriter (p.538) is the object the appli-
cation must use to communicate to a publisher the existence and value of
data objects of a given type. When data object values have been com-
municated to the publisher through the appropriate data-writer, it is the
publisher’s responsibility to perform the distribution (the publisher will do
this according to its own QoS, or the QoS attached to the corresponding
data-writer). A publication is defined by the association of a data-writer
to a publisher. This association expresses the intent of the application to
publish the data described by the data-writer in the context provided by
the publisher.

A com.rti.dds.subscription.Subscriber (p.1478) is an object respon-
sible for receiving published data and making it available (according to
the Subscriber’s QoS) to the receiving application. It may receive and
dispatch data of different specified types. To access the received data, the
application must use a typed TDataReader attached to the subscriber.
Thus, a subscription is defined by the association of a data-reader with
a subscriber. This association expresses the intent of the application to
subscribe to the data described by the data-reader in the context provided
by the subscriber.

com.rti.dds.topic.Topic (p.1545) objects conceptually fit between publica-
tions and subscriptions. Publications must be known in such a way that
subscriptions can refer to them unambiguously. A com.rti.dds.topic.Topic
(p. 1545) is meant to fulfill that purpose: it associates a name (unique in the
domain i.e. the set of applications that are communicating with each other),
a data type, and QoS related to the data itself. In addition to the topic

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

274 Module Documentation

QoS, the QoS of the com.rti.dds.publication.DataWriter (p.538) associ-
ated with that Topic and the QoS of the com.rti.dds.publication.Publisher
(p.1277) associated to the com.rti.dds.publication.DataWriter (p.538)
control the behavior on the publisher’s side, while the corresponding
com.rti.dds.topic.Topic (p. 1545), com.rti.dds.subscription.DataReader
(p-473) and com.rti.dds.subscription.Subscriber (p. 1478) QoS control the
behavior on the subscriber’s side.

When an application wishes to publish data of a given type, it
must create a com.rti.dds.publication.Publisher (p.1277) (or reuse
an already created one) and a com.rti.dds.publication.DataWriter
(p-538) with all the characteristics of the desired publication. Sim-
ilarly, when an application wishes to receive data, it must create a
com.rti.dds.subscription.Subscriber (p. 1478) (or reuse an already created
one) and a com.rti.dds.subscription.DataReader (p.473) to define the sub-
scription.

6.118.3 Conceptual Model

The overall conceptual model is shown below.

Notice that all the main communication objects (the specializations of Entity)
follow unified patterns of:

" Supporting QoS (made up of several QosPolicy); QoS provides a generic
mechanism for the application to control the behavior of the Service and
tailor it to its needs. Each com.rti.dds.infrastructure.Entity (p.912)
supports its own specialized kind of QoS policies (see QoS Policies

(p-90)).

Accepting a com.rti.dds.infrastructure.Listener (p.1154); listeners
provide a generic mechanism for the middleware to notify the appli-
cation of relevant asynchronous events, such as arrival of data cor-
responding to a subscription, violation of a QoS setting, etc. Each
com.rti.dds.infrastructure.Entity (p.912) supports its own special-
ized kind of listener. Listeners are related to changes in status conditions
(see Status Kinds (p. 106)).

Note that only one Listener per entity is allowed (instead of a list of
them). The reason for that choice is that this allows a much simpler (and,
thus, more efficient) implementation as far as the middleware is concerned.
Moreover, if it were required, the application could easily implement a
listener that, when triggered, triggers in return attached ’sub-listeners’.

Accepting a com.rti.dds.infrastructure.StatusCondition (p.1452)
(and a set of com.rti.dds.subscription.ReadCondition (p.1326) ob-

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.118 DDS API Reference 275

jects for the com.rti.dds.subscription.DataReader (p.473)); con-
ditions (in conjunction with com.rti.dds.infrastructure.WaitSet
(p-1695) objects) provide support for an alternate communication style
between the middleware and the application (i.e., wait-based rather than
notification-based).

All DCPS entities are attached to a com.rti.dds.domain.DomainParticipant
(p.629). A domain participant represents the local membership of the ap-
plication in a domain. A domain is a distributed concept that links all the
applications able to communicate with each other. It represents a communi-
cation plane: only the publishers and the subscribers attached to the same
domain may interact.

com.rti.dds.infrastructure.DomainEntity (p.628) is an intermediate ob-
ject whose only purpose is to state that a DomainParticipant cannot contain
other domain participants.

At the DCPS level, data types represent information that is sent atomically.
For performance reasons, only plain data structures are handled by this level.

By default, each data modification is propagated individually, indepen-
dently, and uncorrelated with other modifications. However, an applica-
tion may request that several modifications be sent as a whole and inter-
preted as such at the recipient side. This functionality is offered on a Pub-
lisher/Subscriber basis. That is, these relationships can only be specified
among com.rti.dds.publication.DataWriter (p.538) objects attached to
the same com.rti.dds.publication.Publisher (p.1277) and retrieved among
com.rti.dds.subscription.DataReader (p. 473) objects attached to the same
com.rti.dds.subscription.Subscriber (p. 1478).

By definition, a com.rti.dds.topic.Topic (p. 1545) corresponds to a single data
type. However, several topics may refer to the same data type. Therefore, a
com.rti.dds.topic.Topic (p. 1545) identifies data of a single type, ranging from
one single instance to a whole collection of instances of that given type. This is
shown below for the hypothetical data type Foo.

In case a set of instances is gathered under the same topic, different instances
must be distinguishable. This is achieved by means of the values of some data
fields that form the key to that data set. The key description (i.e., the list of
data fields whose value forms the key) has to be indicated to the middleware.
The rule is simple: different data samples with the same key value represent
successive values for the same instance, while different data samples with differ-
ent key values represent different instances. If no key is provided, the data set
associated with the com.rti.dds.topic.Topic (p. 1545) is restricted to a single
imstance.

Topics need to be known by the middleware and potentially propa-
gated. Topic objects are created using the create operations provided by
com.rti.dds.domain.DomainParticipant (p.629).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

276 Module Documentation

The interaction style is straightforward on the publisher’s side: when the appli-
cation decides that it wants to make data available for publication, it calls the
appropriate operation on the related com.rti.dds.publication.DataWriter
(p-538) (this, in turn, will trigger its com.rti.dds.publication.Publisher
(p. 1277)).

On the subscriber’s side however, there are more choices: relevant informa-
tion may arrive when the application is busy doing something else or when
the application is just waiting for that information. Therefore, depending
on the way the application is designed, asynchronous notifications or syn-
chronous access may be more appropriate. Both interaction modes are allowed,
a com.rti.dds.infrastructure.Listener (p. 1154) is used to provide a callback
for synchronous access and a com.rti.dds.infrastructure.WaitSet (p. 1695)
associated with one or several com.rti.dds.infrastructure.Condition
(p.-451) objects provides asynchronous data access.

The same synchronous and asynchronous interaction modes can also be used
to access changes that affect the middleware communication status (see Sta-
tus Kinds (p. 106)). For instance, this may occur when the middleware asyn-
chronously detects an inconsistency. In addition, other middleware information
that may be relevant to the application (such as the list of the existing topics)
is made available by means of built-in topics (p. 153) that the application can
access as plain application data, using built-in data-readers.

6.118.4 Modules

DCPS consists of five modules:

" Infrastructure module (p.200) defines the abstract classes and the
interfaces that are refined by the other modules. It also provides support
for the two interaction styles (notification-based and wait-based) with the
middleware.

Domain module (p. 143) contains the
com.rti.dds.domain.DomainParticipant (p.629) class that acts
as an entrypoint of the Service and acts as a factory for many of the
classes. The com.rti.dds.domain.DomainParticipant (p.629) also
acts as a container for the other objects that make up the Service.

Topic module (p.157) contains the com.rti.dds.topic.Topic (p. 1545)
class, the com.rti.dds.topic.TopicListener (p.1564) interface, and
more generally, all that is needed by the application to define
com.rti.dds.topic.Topic (p.1545) objects and attach QoS policies to
them.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.118 DDS API Reference 277

" Publication module (p-175) contains the

com.rti.dds.publication.Publisher (p.1277) and

com.rti.dds.publication.DataWriter (p.538) classes as well as

the com.rti.dds.publication.PublisherListener (p.1302) and

com.rti.dds.publication.DataWriterListener (p. 566) interfaces, and
more generally, all that is needed on the publication side.

" Subscription module (p. 186) contains the
com.rti.dds.subscription.Subscriber (p. 1478),
com.rti.dds.subscription.DataReader (p.473),
com.rti.dds.subscription.ReadCondition (p- 1326), and
com.rti.dds.subscription.QueryCondition (p.1324) classes, as

well as the com.rti.dds.subscription.SubscriberListener (p.1504)

and com.rti.dds.subscription.DataReaderListener (p.501)

in-

terfaces, and more generally, all that is needed on the subscription

side.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

278 Module Documentation

6.119 Queries and Filters Syntax

6.119.1 Syntax for DDS Queries and Filters

A subset of SQL syntax is used in several parts of the specification:

" The filter_expression in the com.rti.dds.topic.ContentFiltered Topic
(p. 458)

" The query_expression in the com.rti.dds.subscription.QueryCondition
(p.1324)

" The topic_expression in the com.rti.dds.topic.MultiTopic (p. 1208)

Those expressions may use a subset of SQL, extended with the possibility to
use program variables in the SQL expression. The allowed SQL expressions are
defined with the BNF-grammar below.

The following notational conventions are made:

NonTerminals are typeset in italics.

>Terminals’ are quoted and typeset in a fixed width font. They are
written in upper case in most cases in the BNF-grammar below, but should
be case insensitive.

TOKENS are typeset in bold.

The notation (element //) represents a non-empty comma-separated
list of elements.

6.119.2 SQL grammar in BNF

Ezpression ::= FilterEzpression
| TopicExzpression
| QueryEzpression

FilterExzpresstion ::= Condition

TopicEzpression SelectFrom { Where } ’;°

QueryEzpression { Condition }{ ’ORDER BY’ (FIELD-
NAME // 7,%) }

SelectFrom ’SELECT’ Aggregation ’FROM’ Selection

Aggregation = 0K
| (SubjectFieldSpec // ’,’)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.119 Queries and Filters Syntax

279

SubjectFieldSpec ::= FIELDNAME
I FIELDNAME °As’ IDENTIFIER
I FIELDNAME IDENTIFIER

Selection ::= TOPICNAME
| TOPICNAME NaturalJoin JoinItem

JoinItem ::= TOPICNAME
| TOPICNAME NaturalJoin JoinItem
| ’(> TOPICNAME VNaturalJoin JoinItem)’

NaturalJoin ::= ’INNER JOIN’
| »INNER NATURAL JOIN’
| ’NATURAL JOIN’
| ’NATURAL INNER JOIN’

Where ::= ’WHERE’ Condition

Condition ::= Predticate

Condition ’AND’ Condition
Condition ’0R’ Condition
’NOT’ Condition

>(> Condition)’

Predicate = ComparisonPredicate
| BetweenPredicate
ComparisonPredicate ::= ComparisonTerm RelOp ComparisonTerm
ComparisonTerm ::= FieldIdentifier
| Parameter
BetweenPredicate 1= FieldIdentifier ’BETWEEN’ Range
| FieldIdentifier ’NOT BETWEEN’ Range
FieldIdentifier ::= FIELDNAME
| IDENTIFIER
RelUp = 1= I ’0 I I>=2 | 10 | 1= | 1> I ;LIKE;
Range = Parameter ’AND’ Parameter
Parameter ::= INTEGERVALUE
| CHARVALUE
| FLOATVALUE
| STRING
| ENUMERATEDVALUE
| BOOLEANVALUE
| PARAMETER

’MATCH’

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

280 Module Documentation

Note — INNER JOIN, INNER NATURAL JOIN, NATURAL JOIN, and NAT-
URAL INNER JOIN are all aliases, in the sense that they have the same se-
mantics. They are all supported because they all are part of the SQL standard.

6.119.3 Token expression

The syntax and meaning of the tokens used in the SQL grammar is described
as follows:

" IDENTIFIER - An identifier for a FIELDNAME, and is defined as any

series of characters ’a’, ..., 'z, "A’, ..., ’Z’,’0’, ..., ’9’, "’ but may not start
with a digit.

Formal notation:

IDENTIFIER: LETTER (PART_LETTER)*
where LETTER : ["A"_"Z",",","a"_"Z"]
PART_LETTER : [WAN_NZN W ngu_ngn ngun_ngn]

" FIELDNAME - A fieldname is a reference to a field in the data structure.
The dot ’." is used to navigate through nested structures. The number of
dots that may be used in a FIELDNAME is unlimited. The FIELDNAME
can refer to fields at any depth in the data structure. The names of the field
are those specified in the IDL definition of the corresponding structure,
which may or may not match the fieldnames that appear on the language-
specific (e.g., C/C++, Java) mapping of the structure. To reference to the
n+1 element in an array or sequence, use the notation ’[n]’, where n is a
natural number (zero included). FIELDNAME must resolve to a primitive
IDL type; that is either boolean, octet, (unsigned) short, (unsigned) long,
(unsigned) long long, float double, char, wchar, string, wstring, or enum.

Formal notation:

FIELDNAME: FieldNamePart ("." FieldNamePart)x*
where FieldNamePart : IDENTIFIER ("[" Index "1")x*
Indez> : (["0"-"9"])+
| [I'OX","OX"](["O"_"gl', IlAIl_IIFII’ llall_llfll])+

Primitive IDL types referenced by FIELDNAME are treated as different types
in Predicate according to the following table:

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.119 Queries and Filters Syntax 281

Predicate Data Type IDL Type

BOOLEANVALUE boolean

INTEGERVALUE octet, (unsigned) short, (unsigned)
long, (unsigned) long long

FLOATVALUE float, double

CHARVALUE char, wchar

STRING string, wstring

ENUMERATEDVALUE enum

" TOPICNAME - A topic name is an identifier for a topic, and is defined
as any series of characters ’a’, ..., 'z’ 'A’, ..., ’Z’,°’0°, ..., ’9’, '’ but may
not start with a digit.

Formal notation:

TOPICNAME : IDENTIFIER

" INTEGERVALUE - Any series of digits, optionally preceded by a plus
or minus sign, representing a decimal integer value within the range of the
system. A hexadecimal number is preceded by 0x and must be a valid
hexadecimal expression.

Formal notation:

INTEGERVALUE : ([n+u’u_n])? ([||0||_||9||J)+ [("L","l")]?
| ([Il+ll’ll_ll])? ["OX","OX"](["0"—"9", "A"-"F", uan_ufn])+ [("L","l")]?

CHARVALUE - A single character enclosed between single quotes.

Formal notation:

CHARVALUE : "on ("'[ll}ll])? non

" FLOATVALUE - Any series of digits, optionally preceded by a plus or
minus sign and optionally including a floating point (*.”). A power-of-ten
expression may be postfixed, which has the syntax en or En, where n is
a number, optionally preceded by a plus or minus sign.

Formal notation:

FLOATVALUE : ([II+II’II_I|])? ([llou_ngn])* (ll.ll)? ([uou_ngll])+ (EXPONENT)?
where EXPONENT : ["e","E"] ([u+u’n_n])? ([uou_ngn])+

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

282 Module Documentation

STRING - Any series of characters encapsulated in single quotes, except
the single quote itself.

Formal notation:

STRING : "2" (~[">"])x "o

" ENUMERATEDVALUE - An enumerated value is a reference to a
value declared within an enumeration. Enumerated values consist of the
name of the enumeration label enclosed in single quotes. The name used
for the enumeration label must correspond to the label names specified in
the IDL definition of the enumeration.

Formal notation:
ENUMERATEDVALUE : nn [llAH P IIZII , llall - Ilzll] [llAll P IIZII s llall P llzll s l|7l| . |l0|| P ll9ll]* n»n

" BOOLEANVALUE - Can either be 'TRUE’ or "TFALSE’, case insensi-

tive.

Formal notation (case insensitive):

BOOLEANVALUE : ["TRUE","FALSE"]

" PARAMETER - A parameter is of the form %mn, where n represents a
natural number (zero included) smaller than 100. It refers to the n + 1

th argument in the given context. Argument can only in primitive type
value format. It cannot be a FIELDNAME.

Formal notation:

PARAMETER : "%" (["0"-"9"1)+

6.119.4 Type compatability in Predicate

Only certain combination of type comparisons are valid in Predicate. The fol-
lowing table marked all the compatible pairs with "YES’:

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.119 Queries and Filters Syntax 283
INTE- ENU-
BOOLEARERVALWEOAT-| CHAR- | STRING MER-
VALUE VALUE | VALUE ATED-
VALUE
YES
BOOLEAN
INTE- YES YES
GERVALUE
YES YES
FLOAT-
VALUE
YES YES YES
CHAR-
VALUE
YES YES
STRING YES(x1)
ENU- YES
MER- YES(%2) | YES(x2) | YES(x3)
ATED-
VALUE

" (1) See SQL Extension: Regular Expression Matching (p. 283)

" (*2) Because the formal notation of the Enumeration values, they are
compatible with string and char literals, but they are not compatible with

string or char variables, i.e., ”MyEnum="EnumValue

but ”MyEnum=MyString” is not allowed.

" (*3) Only for same type Enums.

9

would

be correct,

6.119.5 SQL Extension: Regular Expression Matching

The relational operator MATCH may only be used with string fields. The right-
hand operator is a string pattern. A string pattern specifies a template that
the left-hand field value must match. The characters ,/?*[]-"!% have special

meanings.

MATCH is case-sensitive.

The pattern allows limited ”wild card” matching under the following rules:

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

284 Module Documentation

Character Meaning

y 77 separates a list of alternate
patterns. The field string is
matched if it matches one or more
of the patterns.

/ 7 /7 in the pattern string matches a
/ in the field string. This character
is used to separate a sequence of
mandatory substrings.

? ”?” in the pattern string matches
any single non-special characters in
the field string.

* ”x” in the pattern string matches 0
or more non-special characters in
field string.

[charlist] Matches any one of the characters
from the list of characters in
charlist.

[s-€] Matches any character any
character from s to e, inclusive.

% "% is used to designate filter
expressions parameters.

['charlist] or ["charlist] Matches any characters not in
charlist (not supported).

[!s-€] or ["s-€] Matches any characters not in the
interval [s-e] (not supported).

\ Escape character for special

characters (not supported)

The syntax is similar to the POSIX fnmatch syntax (1003.2-1992 section B.6).
The MATCH syntax is also similar to the ’subject’ strings of TIBCO Ren-
dezvous.

6.119.6 Examples

Assuming Topic ”Location” has as an associated type a structure with fields
"flight_id, x, y, z”, and Topic ”FlightPlan” has as fields "flight_id, source, des-
tination”. The following are examples of using these expressions.

Example of a filter_expression (for com.rti.dds.topic.ContentFiltered Topic
(p-458)) or a query_expression (for com.rti.dds.subscription.QueryCondition
(p. 1324)):

"z < 1000 AND x < 23"

Examples of a filter_expression using MATCH (for

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.119 Queries and Filters Syntax 285

com.rti.dds.topic.ContentFilteredTopic (p.458)) operator:

" "symbol MATCH ’NASDAQ/GOOG’"

" "symbol MATCH ’NASDAQ/[A-M]x’"

Example of a topic_expression (for com.rti.dds.topic.MultiTopic (p. 1208)
[Not supported (optional)]):

"SELECT flight_id, x, y, z AS height FROM ’Location’ NATURAL JOIN
’FlightPlan’ WHERE height < 1000 AND x <23"

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

286 Module Documentation

6.120 RTI Connext API Reference

RTI Connext product specific API’s.

Modules

" Clock Selection

APIs related to clock selection.

Multi-channel DataWriters
APIs related to Multi-channel DataWriters.

Pluggable Transports
APIs related to RTI Connext pluggable transports.

Configuration Utilities
Utility API’s independent of the DDS standard.

Durability and Persistence
APIs related to RTI Connext Durability and Persistence.

" Configuring QoS Profiles with XML
APIs related to XML QoS Profiles.

6.120.1 Detailed Description

RTT Connext product specific APT’s.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.121 Programming How-To’s 287

6.121 Programming How-To’s

These "How To”s illustrate how to apply RTI Connext APIs to common use
cases.

Modules

" Publication Example

A data publication example.

Subscription Example

A data subscription example.

Participant Use Cases

Working with domain partcipants.

Topic Use Cases
Working with topics.

FlowController Use Cases

Working with flow controllers.

" Publisher Use Cases
Working with publishers.

DataWriter Use Cases

Working with data writers.

Subscriber Use Cases

Working with subscribers.

DataReader Use Cases
Working with data readers.

Entity Use Cases
Working with entities.

Waitset Use Cases

Using wait-sets and conditions.

Transport Use Cases
Working with pluggable transports.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

288 Module Documentation

" Filter Use Cases
Working with data filters.

" Creating Custom Content Filters

Working with custom content filters.

" Large Data Use Cases
Working with large data types.

6.121.1 Detailed Description

These "How To”s illustrate how to apply RTI Connext APIs to common use
cases.

These are a good starting point to familiarize yourself with DDS. You can use
these code fragments as ”templates” for writing your own code.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.122 Programming Tools 289

6.122 Programming Tools

Modules

" rtiddsgen

Generates source code from data types declared in IDL, XML, XSD, or
WSDL files.

" rtiddsping

Sends or receives simple messages using RTI Connext.

" rtiddsspy

Debugging tool which receives all RTI Connext communication.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

290 Module Documentation

6.123 rtiddsgen

Generates source code from data types declared in IDL, XML, XSD, or WSDL
files. Generates code necessary to allocate, send, receive, and print user-defined
data types.

6.123.1 Usage

rtiddsgen [-d <outdir>]
[-language <C|C++|Javal|C++/CLI|C#|Ada>]
[-namespace]
[-package <packagePrefix>]
[-example <arch>]
[-replace]
[-debug]
[-corba [client header file] [-orb <CORBA ORB>]]
[-optimization <level of optimization>]
[-stringSize <Unbounded strings size>]
[-sequenceSize <Unbounded sequences size>]
[-notypecodel
[-ppDisable]
[-ppPath <preprocessor executable>]
[-ppOption <option>]
[-D <name>[=<value>]]
[-U <name>]
[-I <directory>]
[-noCopyable]
[-use42eAlignment]
[-enableEscapeChar]
[-typeSequenceSuffix <Suffix>]
[-dataReaderSuffix <Suffix>]
[-dataWriterSuffix <Suffix>]
[-convertToXml |
-convertToXsd |
-convertToWsdl |
-convertToIdl]
[-convertToCcl]
[-convertToCcs]
[-expandOctetSeq]
[-expandCharSeq]
[-metp]
[-version]
[-help]
[-verbosity [1-3]]
[[-inputIdl] <IDLInputFile.idl> |
[-inputXml] <XMLInputFile.xml> |
[-inputXsd] <XSDInputFile.xsd> |
[-inputWsdl] <WSDLInputFile.wsdl>]

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.123 rtiddsgen 291

-d Specifies where to put the generated files. If omitted, the input file’s directory
is used.

-language Generates output for only the language specified. The default is
C++.

Use of generated Ada 2005 code requires installation of RTT Ada 2005 Language
Support. Please contact support@rti.com for more information.

-namespace Specifies the use of C++ namespaces (for C++ only).
-package Specifies a packagePrefix to use as the root package (for Java only).

-example Generates example programs and makefiles (for UNIX-based sys-
tems) or workspace and project files (for Windows systems) based on the input
types description file.

The <arch> parameter specifies the architecture for the example makefiles.
For -language C/C++, valid options for <arch> are:

sparcSol2.9gcc3.2, sparcSol2.9¢cbh .4, sparcSol2.10gcc3.4.2,
sparc64Sol2.10gcc3.4.2, i86S012.9gcc3.3.2, i86S012.10gcc3.4.4,
x645012.10gcc3.4.3,

x64Darwinl0gcc4.2.1,

i86Linux2.6gcc3.4.3, x64Linux2.6gcc3.4.5, i86Linux2.6gcc4.1.1,
x64Linux2.6gcc4. 1.1, i86Linux2.6gcc4.1.2, x64Linux2.6gcc4.1.2,
i86Linux2.6gcc4.2.1, i86Linux2.6gcc4.4.3, x64Linux2.6gcc4.4.3,
x64Linux2.6gcc4.3.4, i86Linux2.6gcc4.4.5, x64Linux2.6gcc4.4.5,
i86Linux2.6gcc3.4.6, i86RedHawk5.1gccd.1.2, i86RedHawkb.4gccd.2.1,
x64Linux2.6gccd.4.4, x64Linux2.6gcc4.5.1, i86Susel0.1gccd. 1.0,
x64Susel0.1gcecd. 1.0, cell64Linux2.6gccd.5.1, armv7leLinux2.6gccd.4.1,

ppcdxxFPLinux2.6gcc4.3.3, ppc7400Linux2.6gcc3.3.3,

ppc85xxLinux2.6gcecd. 3.2, ppe85xxWRLinux2.6gcc4d.3.2,

i86Win32VS52005, x64Win64VS2005, i86Win32VS2008, x64Win64VS2008,
i86Win32VS52010, x64Win64VS2010,

ppc85xxIntyb.0.11.xes-p2020, mpc8349Inty5.0.11.mds8349, pentiu-
mInty10.0.0.pcx86,
ppc7400Lynx4.0.0gcc3.2.2, ppc7400Lynx4.2.0gcc3.2.2,

ppc750Lynx4.0.0gcc3.2.2, ppc7400Lynx5.0.0gce3.4.3, i86Lynx4.0.0gcc3.2.2,

ppc604Vx5.5gce, ppc603VxhH.5gce, ppc604Vx6.3gcc3.4.4, ppc604Vx6.3gcc3.4.4 -
rtp, ppc604Vx6.5gcc3.4.4, ppc604Vx6.5gcc3.4.4 rtp, pentiumVx6.6gccd. 1.2,
pentiumVx6.6gcc4.1.2_rtp, ppcd05Vx6.6gccd.1.2, ppcd05Vx6.6gccd.1.2_rtp,
ppc604Vx6.6gccd.1.2, ppc604Vx6.6gccd.1.2_rtp, pentiumVx6.7gccd.1.2, pen-
tiumVx6.7gccd.1.2_rtp, ppc604Vx6.7gccd. 1.2, ppc604Vx6.7gccd.1.2_smp,
ppc604Vx6.7gccd.1.2 rtp, ppc604Vx6.8gccd.1.2, ppc604Vx6.8gccd.1.2_rtp,

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

292 Module Documentation

pentiumVx6.8gcc4.1.2, pentiumVx6.8gcc4.1.2_rtp, ppc604Vx6.9gccd.3.3,
ppc604Vx6.9gcc4.3.3_rtp, pentiumVx6.9gcc4.3.3, pentiumVx6.9gccd.3.3_-
rtp, pentium64Vx6.9gcc4.3.3, pentium64Vx6.9gcc4.3.3 rtp,
ppc604VxT2.2.2gcc3.3.2, ppc604VxT2.2.2gcc3.3.2_v6, sbc8641Vx653-
2.3gcc3.3.2, simpcVx653-2.3gcc3.3.2,

pHAIX5.3x1c9.0, 64p5AIX5.3x1c9.0,
i86QNX6.4.1qcc_gpp iI86QNX6.5qcc_gpp4.4.2
For -language C++/CLI and C+#, valid options for <arch> are:

i86Win3d2dotnet2.0, x64Win64dotnet2.0, i86Win32dotnet4.0,
x64Win64dotnet4.0

For -language java, valid options for <arch> are:

i86S012.9jdk, i86S012.10jdk, x64S012.10jdk, sparcSol2.9jdk,
sparcSol2.10jdk, sparc64So012.10jdk, x64Darwinl0gcc4.2.1jdk,
i86Linux2.6gcc3.4.3jdk, x64Linux2.6gcc3.4.5jdk, i86Linux2.6gcc4.1.1jdk,
x64Linux2.6gcc4.1.1jdk, i86Linux2.6gcc4.4.3jdk, x64Linux2.6gcc4.4.3jdk,
i86Linux2.6gcc4.4.5jdk, x64Linux2.6gcc4.4.5jdk, i86Linux2.6gcc4.2.1jdk,
x64Linux2.6gcc4.3.4jdk, i86Linux2.6gcc4.1.2jdk, x64Linux2.6gcc4.1.2jdk,
i86Linux2.6gcc3.4.6jdk, i86RedHawk5.1gcc4.1.2jdk, i86RedHawk5.4gcc4.2.1jdk,
i86Susel0.1gcc4.1.0jdk, x64Susel0.1gced.1.0jdk, i86Win32jdk,
x64Win64jdk, ppc7400Lynx4.0.0gcc3.2.2jdk, ppc750Lynx4.0.0gcc3.2.2jdk,
ppc7400Lynx5.0.0gce3.4.3jdk, i86Lynx4.0.0gcc3.2.2jdk, p5AIX5.3x1c9.0jdk,
64pbAIX5.3x1c9.0jdk

For -language Ada, valid option for <arch> is i86Linux2.6gcc4.1.2

-replace Overwrites any existing output files. Warning: This removes any
changes you may have made to the original files.

-debug Generates intermediate files for debugging purposes.

-corba [client header file] [-orb <CORBA ORB>] Specifies that you want to
produce CORBA-compliant code.

Use [client header file] and [-orb <CORBA ORB>| for C++ only. The majority
of code generated is independent of the ORB. However, for some IDL features,
the code generated depends on the ORB. This version of rtiddsgen generates
code compatible with ACE-TAO or JacORB. To pick the ACE_TAO version,
use the -orb parameter; the default is ACE_TAO1.6.

client header file: the name of the header file for the IDL types generated by the
CORBA IDL compiler. This file will be included in the rtiddsgen type header
file instead of generating type definitions.

CORBA support requires the RTI CORBA Compatibility Kit, an add-
on product that provides a different version of rtiddsgen. Please contact
support@rti.com for more information.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.123 rtiddsgen 293

-optimization Sets the optimization level. (Only applies to C/C++)

" 0 (default): No optimization.

" 1: Compiler generates extra code for typedefs but optimizes its use. If the
type that is used is a typedef that can be resolved either to a primitive type
or to another type defined in the same file, the generated code will invoke
the code of the most basic type to which the typedef can be resolved,
unless the most basic type is an array or a sequence. This level can be
used if the generated code is not expected to be modified.

2: Maximum optimization. Functionally the same as level 1, but extra
code for typedef is not generated. This level can be used if the typedefs
are only referred by types within the same file.

-typeSequenceSuffix Assigns a suffix to the name of the implicit sequence
defined for IDL types. (Only applies to CORBA)

By default, the suffix is 'Seq’. For example, given the type 'Foo’ the name of
the implicit sequence will be "FooSeq’.

-dataReaderSuffix Assigns a suffix to the name of the DataReader interface.
(Only applies to CORBA)

By default, the suffix is 'DataReader’. For example, given the type 'Foo’ the
name of the DataReader interface will be 'FooDataReader’.

-dataWriterSuffix Assigns a suffix to the name of the DataWriter interface.
(Only applies to CORBA)

By default, the suffix is 'DataWriter’. For example, given the type 'Foo’ the
name of the DataWriter interface will be "FooDataWriter’.

-stringSize Sets the size for unbounded strings. Default: 255 bytes.
-sequenceSize Sets the size for unbounded sequences. Default: 100 elements.
-notypecode: Disables the generation of type code information.
-ppDisable: Disables the preprocessor.

-ppPath <preprocessor executable>: Specifies the preprocessor path. If you
only specify the name of an executable (not a complete path to that executable),
the executable must be found in your Path.

The default value is ”cpp” for non-Windows architectures, ”cl.exe” for Windows
architectures.

If the default preprocessor is not found in your Path and you use -ppPath
to provide its full path and filename, you must also use -ppOption (described
below) to set the following preprocessor options:

" If you use a non-default path for cl.exe, you also need to set:

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

294 Module Documentation

-ppOption /nologo -ppOption /C -ppOption /E -ppOption /X

" If you use a non-default path for cpp, you also need to set:

-ppOption -C

-ppOption <option>: Specifies a preprocessor option. This parameter can
be used multiple times to provide the command-line options for the specified
preprocessor. See -ppPath (above).

-D <name>[=<value>]: Defines preprocessor macros.
-U <name>: Cancels any previous definition of name.

-I <directory>: Adds to the list of directories to be searched for type-definition
files (IDL, XML, XSD or WSDL files). Note: A type-definition file in one format
cannot include a file in another format.

-noCopyable: Forces rtiddsgen to put copy logic into the corresponding Type-
Support class rather than the type itself (for Java code generation only).

This option is not compatible with the use of ndds_standalone_type.jar.

-used42eAlignment: Generates code compliant with RTI Data Distribution
Service 4.2e.

If your RTT Connext application’s data type uses a ’double’,’long long’,’unsigned
long long’, or 'long double’ it will not be backwards compatible with RTT Data
Distribution Service 4.2e applications unless you use the -use42eAlignment flag
when generating code with rtiddsgen.

-enableEscapeChar: Enables use of the escape character '’ in IDL identifiers.
With CORBA this option is always enabled.

-convertToXml: Converts the input type-description file to XML format.
-convertToldl: Converts the input type-description file to IDL format.
-convertToXsd: Converts the input type-description file to XSD format.
-convertToWsdl: Converts the input type-description file to WSDL format.
-convertToCcl: Converts the input type-description file to CCL format.
-convertToCcs: Converts the input type-description file to CCS format.

-expandOctetSeq: When converting to CCS or CCL files, expand octet se-
quences. The default is to use a blob type.

-expandCharSeq: When converting to CCS or CCL files, expand char se-
quences. The default is to use a string type.

-metp: Generates code for the Multi-Encapsulation Type Support (METP)
library.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.123 rtiddsgen 295

-version: Prints the version, such as 4.5x. (Does not show ’patch’ revision
number.)

-help: Prints this rtiddsgen usage help.

-verbosity: rtiddsgen verbosity.

~ 1: exceptions

" 2: exceptions and warnings

" 3 (default): exceptions, warnings and information
-inputIdl: Indicates that the input file is an IDL file, regardless of the file
extension.

-inputXml: Indicates that the input file is a XML file, regardless of the file
extension.

-inputXsd: Indicates that the input file is a XSD file, regardless of the file
extension.

-inputWsdl: Indicates that the input file is a WSDL file, regardless of the file
extension.

IDLInputFile.idl: File containing IDL descriptions of your data types. If
-inputldl is not used, the file must have an .idl extension.

XMLInputFile.xml: File containing XML descriptions of your data types. If
-inputXml is not used, the file must have an .xml extension.

XSDInputFile.xsd: File containing XSD descriptions of your data types. If
-inputXsd is not used, the file must have an .xsd extension.

XSDInputFile.wsdl: WSDL file containing XSD descriptions of your data
types. If -inputWsdl is not used, the file must have an .wsdl extension.

6.123.2 Description

rtiddsgen takes a language-independent specification of the data (in IDL, XML,
XSD or WSDL notation) and generates supporting classes and code to distribute
instances of the data over RTI Connext.

To use rtiddsgen, you must first write a description of your data types in IDL,
XML, XSD or WSDL format.

6.123.3 C++ Example

The following is an example generating the RTI Connext type myDataType:
IDL notation

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

296 Module Documentation

struct myDataType {
long value;
s

XML notation

<?7xml version="1.0" encoding="UTF-8"7>
<types xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemalocation="rti_dds_topic_types.xsd">
<struct name="myDataType">
<member name="value" type="long"/>
</struct>
</types>

XSD notation

<?xml version="1.0" encoding="UTF-8"7>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:dds="http://www.omg.org/dds"
xmlns:tns="http://www.omg.org/IDL-Mapped/"
targetNamespace="http://www.omg.org/IDL-Mapped/">
<xsd:import namespace="http://www.omg.org/dds" schemalocation="rti_dds_topic_types_common.xsd"/
<xsd:complexType name="myDataType">
<xsd:sequence>
<xsd:element name="value" minOccurs="1" maxOccurs="1" type="xsd:int"/>
</xsd:sequence>
</xsd:complexType>
</xsd:schema>

WSDL notation

<?7xml version="1.0" encoding="UTF-8"7>
<definitions xmlns="http://schemas.xmlsoap.org/wsdl/" xmlns:dds="http://www.omg.org/dds" xmlns:x
<types>
<xsd:schema targetNamespace="http://www.omg.org/IDL-Mapped/">
<xsd:import namespace="http://www.omg.org/dds" schemalLocation="rti_dds_topic_types_common.x
<xsd:complexType name="myDataType">
<xsd:sequence>
<xsd:element name="value" minOccurs="1" maxOccurs="1" type="xsd:int"/>
</xsd:sequence>
</xsd:complexType>
</xsd:schema>
</types>
</definitions>

Assuming the name of the idl file is myFileName. (idl|xml|xsd|wsdl) then all you
need to do is type:

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.123 rtiddsgen 297

rtiddsgen myFileName.(idl|xml|xsd|wsdl)

This generates myFileName.cxx, myFileName.h, myFileNamePlugin.cxx, my-
FileNamePlugin.h, myFileNameSupport.cxx and myFileNameSupport.h. By
default, rtiddsgen will not overwrite these files. You must use the -replace
argument to do that.

6.123.4 IDL Language

In the IDL language, data types are described in a fashion almost identical to
structures in ”C.” The complete description of the language can be found at the
OMG website.

rtiddsgen does not support the full IDL language.

For detailed information about the IDL support in RTI Connext Service see
Chapter 3 of the user manual.

Below are the IDL types that are currently supported:

" char

wchar

octet

short

unsigned short
long

unsigned long
long long
unsigned long long
float

" double

long double
boolean

bounded string
unbounded string
bounded wstring

" unbounded wstring

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

298 Module Documentation

enum

typedef

struct

valuetypes (limited support)
union

sequences

unbounded sequences
arrays

array of sequences

constant

The following non-IDL types are also supported by rtiddsgen:
"~ bitfield
"~ wvalued enum

Use of Unsupported Types in an IDL File

You may include unsupported data types in the IDL file. rtiddsgen does not
consider this an error. This allows you to use types that are defined in non-
IDL languages with either hand-written or non-rtiddsgen written plug-ins. For
example, the following is allowable:

//@copy #include "Bar.h"

//@copy #include "BarHandGeneratedPlugin.h"
struct Foo {

short height;

Bar barMember;

};
In the above case, Bar is defined externally by the user.

Multiple Types in a Single File

You can specify multiple types in a single IDL file. This can simplify manage-
ment of files in your distributed program.

Use of Directives in an IDL File

The following directives can be used in your IDL file: Note: Do not put a space
between the slashes and the @ sign. Note: Directives are case-sensitive (for
example: use key, not Key).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.123 rtiddsgen 299

//@key Specifies that the field declared just before this directive in the
enclosing structure is part of the key. Any number of a structure’s fields
may be declared part of the key.

//@copy Copies a line of text (verbatim) into the generated code (for all
languages). The text is copied into all the type-specific files generated by
rtiddsgen except the examples.

//@copy-declaration Like //@copy, but only copies the text into the file
where the type is declared (<type>.h for C++/C, or <type>.java for
Java).

//@copy-c Like //@copy, but for C++/C-only code.
//@copy-c-declaration Like //@copy-declaration, but for C++/C-only
code.

//@copy-java Like //@Qcopy, but for Java-only code.

//@copy-java-begin Copies a line of text at the beginning of all the Java
files generated for a type. The directive only applies to the first type that
is immediately below in the IDL file.

//@copy-java-declaration Like //@copy-declaration, but for Java-only
code.

//@copy-java-declaration-begin Like //@copy-java-begin but only copies
the text into the file where the type is declared.

//@copy-ada Like //@copy, but for Ada-only code.

//@copy-ada-begin Like //@Qcopy-java-begin, but for Ada-only code.

//@copy-ada-declaration Like //@copy-declaration, but for Ada-only
code.

//@copy-ada-declaration-begin Like //Qcopy-java-declaration, but for
Ada-only code.

//@resolve-name [truelfalse] Specifies whether or not rtiddsgen should re-
solve the scope of a type. If this directive is not present or is set to true,
rtiddsgen resolves the scope. Otherwise rtiddsgen delegates the resolution
of a type to the user.

//@top-level [true|false] Specifies whether or not rtiddsgen should generate
type-support code for a particular struct or union. The default is true.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

300 Module Documentation

6.123.5 XML Language

The data types can be described using XML.
RTT Connext provides DTD and XSD files that describe the XML format.

The DTD definition of the XML elements can be
found in ../../../resource/dtd /rti_dds_topic_types.dtd” under
<NDDSHOME> /resource/rtiddsgen/schema.

The XSD definition of the XML elements can be
found in ../../../resource/xsd/rti_dds_topic_types.xsd” under
<NDDSHOME> /resource/rtiddsgen/schema.

The XML validation performed by rtiddsgen always uses the DTD definition.
If the <!DOCTYPE> tag is not present in the XML file, rtiddsgen will look for
the DTD document under <NDDSHOME> /resource/rtiddsgen/schema. Oth-
erwise, it will use the location specified in <IDOCTYPE>.

For detailed information about the mapping between IDL and XML see Chapter
3 of the RTT Connext User Manual.

6.123.6 XSD Language

The data types can be described using XML schemas (XSD files). The XSD
specification is based on the standard IDL to WSDL mapping described in the
OMG document CORBA to WSDL/SOAP Interworking Specification

For detailed information about the mapping between IDL and XML see Chapter
3 of the RTI Connext User Manual.

6.123.7 WSDL Language

The data types can be described using XML schemas contained in WSDL
files. The XSD specification is based on the standard IDL to WSDL map-
ping described in the OMG document CORBA to WSDL/SOAP Interworking
Specification

For detailed information about the mapping between IDL and XML see Chapter
3 of the RTT Connext User Manual.

6.123.8 Using Generated Types Without RTI Connext
(Standalone)

You can use the generated type-specific source and header files without linking
the RTT Connext libraries or even including the RTT Connext header files. That
is, the generated files for your data types can be used standalone.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.123 rtiddsgen 301

The directory <NDDSHOME> /resource/rtiddsgen/standalone contains the
helper files required to work in standalone mode:

" include: header and templates files for C/C++.

"~ sre: source files for C/C++.

" class: Java jar file.

Using Standalone Types in C

The generated files that can be used standalone are:

" <idl file name>.c : Types source file

© <idl file name>.h : Types header file

You cannot use the type plug-in (<idl file>Plugin.c <idl file>Plugin.h) or the
type support (<idl file>Support.c <idl file>Support.h) code standalone.

To use the rtiddsgen-generated types in a standalone manner:

Include the directory <NDDSHOME > /resource/rtiddsgen/standalone/include
in the list of directories to be searched for header files.

Add the source files ndds_standalone_type.c and <idl file name>.c to your
project.

Include the file <idl file name>.h in the source files that will use the
generated types in a standalone way.

Compile the project using the two following preprocessor definitions:

— NDDS_STANDALONE_TYPE

— The definition for your platform: RTI.VXWORKS, RTI_QNX, RTI -
WIN32, RTTINTY, RTI.LYNX or RTI_.UNIX

Using Standalone Types in C++4

The generated files that can be used standalone are:

<idl file name>.cxx : Types source file

<idl file name>.h : Types header file

You cannot use the type plugin (<idl file>Plugin.cxx <idl file>Plugin.h) or the
type support (<idl file>Support.cxx <idl file>Support.h) code standalone.

To use the generated types in a standalone manner:

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

302 Module Documentation

Include the directory <NDDSHOME> /resource/rtiddsgen/standalone/include
in the list of directories to be searched for header files.

Add the source files ndds_standalone_type.cxx and <idl file name>.cxx to
your project.

Include the file <idl file name>.h in the source files that will use the
generated types in a standalone way.

" Compile the project using the two following preprocessor definitions:

— NDDS_STANDALONE_TYPE

— The definition for your platform: RTI.VXWORKS, RTI_QNX, RTI -
WIN32, RTTINTY, RTI.LYNX or RTI_UNIX

Standalone Types in Java

The generated files that can be used standalone are:

© <idl type>.java
" <idl type>Seq.java
You cannot use the type code (<idl file>TypeCode.java), the type support

(<idl type>TypeSupport.java), the data reader (<idl file>DataReader.java) or
the data writer code (<idl file>DataWriter.java) standalone.

To use the generated types in a standalone manner:

"~ Include the file ndds_standalone_type.jar in the classpath of your project.

" Compile the project using the standalone types files (<idl type>.java <idl
type>Seq.java).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.124 rtiddsping 303

6.124 rtiddsping

Sends or receives simple messages using RTI Connext. The rtiddsping utility
uses RTT Connext to send and receive preconfigured ”Ping” messages to other
rtiddsping applications which can be running in the same or different computers.

The rtiddsping utility can used to test the network and/or computer configura-
tion and the environment settings that affect the operation of RTI Connext.

Usage
rtiddsping [-help] [-version]
[-domainId <domainId>] ... defaults to 0
[-index <NN>] ... defaults to -1 (auto)
[-appId <ID>] ... defaults to a middleware-selected value
[-Verbosity <NN>] ... can be 0..5
[-peer <PEER>] ... PEER format is NNOTRANSPORT://ADDRESS
[-discoveryTTL <NN>] ... can be 0..255
[-transport <MASK>] ... defaults to DDS_TRANSPORTBUILTIN_MASK_DEFAULT
[-msgMaxSize <SIZE>] ... defaults to -1 (transport default)
[-shmRcvSize <SIZE>] ... defaults to -1 (transport default)
[-deadline <8S>] ... defaults to -1 (no deadline)
[-durability <TYPE>] ... TYPE can be VOLATILE or TRANSIENT_LOCAL
[-multicast <ADDRESS>] ... defaults to no multicast
[-numSamples <NN>] ... defaults to infinite
[-publisher] ... this is the default
[-queueSize <NN>] ... defaults to 1
[-reliable] ... defaults to best-efforts
[-sendPeriod <SS>] ... SS is in seconds, defaults to 1
[-subscriber]
[-timeFilter <SS>] ... defaults to O (no filter)
[-timeout <SS>] ... SS is in seconds, defaults to infinite
[-topicName <NAME>] ... defaults to PingTopic
[-typeName <NAME>] ... defaults to PingType
[-useKeys <NN>] ... defaults to PingType

[-qosFile <file>]
[-qosProfile <lib.prof>]

Example: rtiddsping -domainId 3 -publisher -numSamples 100

VxWorks Usage

rtiddsping "[<options>]"
The options use the same syntax as above.

Example rtiddsping "-domainId 3 -publisher -numSamples 100"

If the stack of the shell is not large enough to run rtiddsping, use "taskSpawn":

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

304 Module Documentation

taskSpawn <name>,<priority>,<taskspawn options>,<stack size in bytes>,rtiddsping,"[\<options
The options use the same syntax as above.

Example taskSpawn "rtiddsping",100,0x8,50000,rtiddsping,"-domainId 3 -publisher -numSamples

Options:

-help Prints a help message and exits.

-version Prints the version and exits.

-Verbosity <NN> Sets the verbosity level. The range is 0 to 5.

0 has minimal output and does not echo the fact that data is being sent or
received.

1 prints the most relevant statuses, including the sending and receiving of data.
This is the default.

2 prints a summary of the parameters that are in use and echoes more detailed
status messages.

3-5 Mostly affects the verbosity used by the internal RTT Connext modules that
implement rtiddsping. The output is not always readable; its main purpose is
to provide information that may be useful to RTT’s support team.

Example: rtiddsping -Verbosity 2

-domainId <NN>

Sets the domain ID. The valid range is 0 to 100.

Example: rtiddsping -domainld 31

-appld <ID>

Sets the application ID. If unspecified, the system will pick one automatically.
This option is rarely used.

Example: rtiddsping -appld 34556

-index <NN>

Sets the participantIndex. If participantIndex is not -1 (auto), it must be dif-
ferent than the one used by all other applications in the same computer and
domainlId. If this is not respected, rtiddsping (or the application that starts
last) will get an initialization error.

Example: rtiddsping -index 2
-peer <PEER>

Specifies a PEER to be used for discovery. Like any RTT Connext application, it
defaults to the setting of the environment variable NDDS_DISCOVERY _PEERS

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.124 rtiddsping 305

or a preconfigured multicast address if the environment is not set.

The format used for PEER is the same one used for NDDS_DISCOVERY _-
PEERS and is described in detail in NDDS_DISCOVERY _PEERS (p.55).
A brief summary follows:

The general format is: NNQ@TRANSPORT://ADDRESS where:

ADDRESS is an address (in name form or using the IP notation
xxX.xxx.xxx.xxx). ADDRESS may be a multicast address.

TRANSPORT represents the kind of transport to use and NN is the max-
imum participantIndex expected at that location. NN can be omitted and
it is defaulted to '4’

" Valid settings for TRANSPORT are 'udpv4’ and ’shmem’. The default
setting if the transport is omitted is 'udpv4’.

ADDRESS cannot be omitted if the -peer’ option is specified.

The -peer option may be repeated to specify multiple peers.
Example: rtiddsping -peer 10.10.1.192 -peer mars -peer 4@pluto
-discoveryTTL <TTL>

Sets the TTL (time-to-live) used for multicast discovery. If not specified, it
defaults to the built-in RTT Connext default.

The valid range is 0 to 255. The value ’0’ limits multicast to the node itself
(i.e., can only discover applications running on the same computer). The value
']’ limits multicast discovery to computers on the same subnet. Values higher
than 1 generally indicate the maximum number of routers that may be traversed
(although some routers may be configured differently).

Example: rtiddsping -discoveryTTL 16
-transport <MASK>

A bit-mask that sets the enabled builtin transports. If not specified, the default
set of transports is used (UDPv4 + shmem). The bit values are: 1=UDPv4,
2=shmem, 8=UDPv6.

-msgMaxSize <SIZE>

Configure the maximum message size allowed by the installed transports. This
is needed if you are using rtiddsping to communicate with an application that
has set these transport parameters to larger than default values.

-shmRcvSize <SIZE>

Increase the shared memory receive-buffer size. This is needed if you are using
rtiddsping to communicate with an application that has set these transport
parameters to larger than default values.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

306 Module Documentation

-deadline <SS>
This option only applies if the ’-subscriber’ option is also specified.
Sets the DEADLINE QoS for the subscriptions made by rtiddsping.

Note that this may cause the subscription QoS to be incompatible with the
publisher if the publisher did not specify a sendPeriod greater than the deadline.
If the QoS is incompatible, rtiddsping will not receive updates.

Each time a deadline is detected, rtiddsping will print a message indicating the
number of deadlines received so far.

Example: rtiddsping -deadline 3.5
-durability <TYPE>

Sets the DURABILITY QoS used for publishing or subscribing. Valid settings
are: VOLATILE and TRANSIENT _LOCAL (default). The effect of this setting
can only be observed when it is used in in conjunction with reliability and a
queueSize larger than 1. If all these conditions are met, a late-joining subscriber
will be able to see up to queueSize samples that were previously written by the
publisher.

Example: rtiddsping -durability VOLATILE
-multicast <ADDRESS>
This option only applies if the ’-subscriber’ option is also specified.

Configures ping to receive messages over multicast. The <ADDRESS> param-
eter indicates the address to use. ADDRESS must be in the valid range for mul-
ticast addresses. For IP version 4 the valid range is 224.0.0.1 to 239.255.255.255

Example: rtiddsping -multicast 225.1.1.1
-numSamples <NN>

Sets the number of samples that will be sent by rtiddsping. After those samples
are sent, rtiddsping will exit. messages.

Example: rtiddsping -numSamples 10

-publisher

Causes rtiddsping to send ping messages. This is the default.
Example: rtiddsping -publisher

-queueSize <NN>

Specifies the maximal number of samples to hold in the queue. In the case of the
publisher, it affects the samples that are available for a late-joining subscriber.

Example: rtiddsping -queueSize 100

-reliable

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.124 rtiddsping 307

Configures the RELIABILITY QoS for publishing or subscribing. The default
setting (if -reliable is not used) is BEST_EFFORT

Example: rtiddsping -reliable

-sendPeriod <SS>

Sets the period (in seconds) at which rtiddsping sends the messages.
Example: rtiddsping -sendPeriod 0.5

-subscriber

Causes rtiddsping to listen for ping messages. This option cannot be specified
if *-publisher’ is also specified.

Example: rtiddsping -subscriber
-timeFilter <SS>
This option only applies if the ’-subscriber’ option is also specified.

Sets the TIME_BASED_FILTER QoS for the subscriptions made by rtiddsping.
This QoS causes RTT Connext to filter out messages that are published at a rate
faster than what the filter duration permits. For example, if the filter duration
is 10 seconds, messages will be printed no faster than once every 10 seconds.

Example: rtiddsping -timeFilter 5.5
-timeout <SS>
This option only applies if the ’-subscriber’ option is also specified.

Sets a timeout (in seconds) that will cause rtiddsping to exit if no samples are
received for a duration that exceeds the timeout.

Example: rtiddsping -timeout 30
-topicName <NAME>

Sets the topic name used by rtiddsping. The default is 'RTIddsPingTopic’. To
communicate, both the publisher and subscriber must specify the same topic
name.

Example: rtiddsping -topicName Alarm
-typeName <NAME>

Sets the type name used by rtiddsping. The default is 'RTTddsPingType’. To
communicate, both publisher and subscriber must specify the same type name.

Example: rtiddsping -typeName AlarmDescription
-useKeys <NN>

This option causes rtiddsping to use a topic whose data contains a key. The
value of the NN parameter indicates the number of different data objects (each
identified by a different value of the key) that will be published by rtiddsping.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

308 Module Documentation

The value of NN only affects the publishing behavior. However NN still needs
to be specified when the -useKeys option is used with the -subscriber option.

For communication to occur, both the publisher and subscriber must agree on
whether the topic that they publish/subscribe contains a key. Consequently, if
you specify the -useKeys parameter for the publisher, you must do the same
with the subscriber. Otherwise communication will not be stablished.

Example: rtiddsping -useKeys 20
-qosFile <file>

Allow you to specify additional QoS XML settings using url_profile. For more
information on the syntax, see Chapter 15 in the RTI Connext User’s Manual.

Example: rtiddsping -qosFile /home/user/QoSProfileFile.xml

-qosProfile <lib.prof>

This option specifies the library name and profile name that the tool should use.
QoS settings

rtiddsping is configured internally using a special set of QoS settings in a pro-
file called InternalPingLibrary.InternalPingProfile. This is the default profile
unless a profile called DefaultPingLibrary.DefaultPingProfile is found. You can
use the command-line option -qosProfile to tell rtiddsping to use a different
lib.profile instead of DefaultPingLibrary.DefaultPingProfile. Like all the other
RTT Connext applications, rtiddsping loads all the profiles specified using the
environment variable NDDS_QOS_PROFILES or the file named USER_QOS -
PROFILES found in the current working directory.

The QoS settings used internally are available in the file RTIDDSSPING_QOS _-
PROFILES.example.xml.

Description
The usage depends on the operating system from which rtiddsping is executed.
Examples for UNIX, Linux, and Windows Systems

On UNIX, Linux, Windows and other operating systems that have a shell, the
syntax matches the one of the regular commands available in the shell. In the
examples below, the string ’shell prompt>’ represents the prompt that the shell
prints and are not part of the command that must be typed.

shell prompt> rtiddsping -domainId 3 -publisher -numSamples 100
shell prompt> rtiddsping -domainIld 5 -subscriber -timeout 20
shell prompt> rtiddsping -help

VxWorks examples:

On VxWorks systems, the libraries libnddscore.so, libnddsc.so and libnddscpp.so
must first be loaded. The rtiddsping command must be typed to the VxWorks

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.124 rtiddsping 309

shell (either an rlogin shell, a target-server shell, or the serial line prompt). The
arguments are passed embedded into a single string, but otherwise have the
same syntax as for Unix/Windows. In the Unix, Linux, Windows and other
operating systems that have a shell, the syntax matches the one of the regular
commands available in the shell. In the examples below, the string *vxworks
prompt>’ represents the prompt that the shell prints and are not part of the
command that must be typed.

vxworks prompt> rtiddsping "-domainId 3 -publisher -numSamples 100"
vxworks prompt> rtiddsping "-domainId 5 -subscriber -timeout 20"
vxworks prompt> rtiddsping "-help"

or, alternatively (to avoid overflowing the stack):

vxworks prompt> taskSpawn "rtiddsping", 100, 0x8, 50000, rtiddsping, "-domainIld 3 -publisher -numSamples 10f
vxworks prompt> taskSpawn "rtiddsping", 100, 0x8, 50000, rtiddsping, "-domainId 5 -subscriber -timeout 20"
vxworks prompt> taskSpawn "rtiddsping", 100, 0x8, 50000, rtiddsping, "-help"

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

310 Module Documentation

6.125 rtiddsspy

Debugging tool which receives all RTT Connext communication. The rtiddsspy
utility allows the user to monitor groups of publications available on any RTI
Connext domain.

Note: If you have more than one DataWriter for the same Topic, and these
DataWriters have different settings for the Ownership QoS, then rtiddsspy will
only receive (and thus report on) the samples from the first DataWriter.

To run rtiddsspy, like any RTT Connext application, you must have the NDDS _-
DISCOVERY _PEERS environment variable that defines your RTI Connext do-
main; otherwise you must specify the peers as command line parameters.

Usage

rtiddsspy [-help] [-version]

[-domainId <domainId>] ... defaults to O

[-index <NN>] ... defaults to -1 (auto)

[-appId <ID>] ... defaults to a middleware-selected value
[-Verbosity <NN>] ... can be 0..5

[-peer <PEER>] ... PEER format is NNQTRANSPORT://ADDRESS
[-discoveryTTL <NN>] ... can be 0..255

[-transport <MASK>] ... defaults to DDS_TRANSPORTBUILTIN_MASK_DEFAULT
[-msgMaxSize <SIZE>] ... defaults to -1 (transport default)
[-shmRcvSize <SIZE>] ... defaults to -1 (transport default)
[-tcMaxSize <SIZE>] ... defaults to 4096

[-hOutput]

[-deadline <SS>] ... defaults to -1 (no deadline)

[-history <DEPTH>] ... defaults to 8192

[-timeFilter <SS>] ... defaults to O (no filter)

[-useFirstPublicationQos]
[-showHandle]

[-typeRegex <REGEX>] ... defaults to "x"
[-topicRegex <REGEX>] ... defaults to "x"
[-typeWidth <WIDTH>] ... can be 1..255
[-topicWidth <WIDTH>] ... can be 1..255

[-truncate]
[-printSample]

[-qosFile <file>]
[-qosProfile <lib.prof>]

Example: rtiddsspy -domainId 3 -topicRegex "Alarmx"

VxWorks Usage

rtiddsspy "[<options>]"
The options use the same syntax as above.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.125 rtiddsspy 311

Example rtiddsspy "-domainId 3 -topicRegex Alarmx"

rtiddsspy requires about 25 kB of stack. If the stack size of the shell from which it is invoked is not I
taskSpawn <name>, <priority>, <taskspawn options>, <stack size in bytes>, rtiddsspy, "[\<options\>]"
The options use the same syntax as above.

Example taskSpawn "rtiddsspy", 100, 0x8, 50000, rtiddsspy, "-domainId 3 -topicRegex Alarmx*"

Options:

-help Prints a help message and exits.

-version Prints the version and exits.

-Verbosity <NN> Sets the verbosity level. The range is 0 to 5.

0 has minimal output and does not echo the fact that data is being sent or
received.

1 prints the most relevant statuses, including the sending and receiving of data.
This is the default.

2 prints a summary of the parameters being used and echoes more detailed
status messages.

3-5 Mostly affect the verbosity used by the internal RTT Connext modules that
implement rtiddsspy. The output is not always readable; its main purpose is to
provide information that may be useful to RTI’s support team.

Example: rtiddsspy -Verbosity 2

-domainId <NN>

Sets the domain ID. The valid range is 0 to 100.

Example: rtiddsspy -domainld 31

-appld <ID>

Sets the application ID. If unspecified, the system will pick one automatically.
This option is rarely used.

Example: rtiddsspy -appld 34556

-index <NN>

Sets the participantIndex. If participantIndex is not -1 (auto), it must be dif-
ferent than the one used by all other applications in the same computer and
domainId. If this is not respected, rtiddsspy (or the application that starts last)
will get an initialization error.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

312 Module Documentation

Example: rtiddsspy -index 2
-peer <PEER>

Specifies a PEER to be used for discovery. Like any RTI Connext application, it
defaults to the setting of the environment variable NDDS_DISCOVERY _PEERS
or a preconfigured multicast address if the environment is not set.

The format used for PEER is the same used for the NDDS_DISCOVERY _-
PEERS and is described in detail in NDDS_DISCOVERY _PEERS (p.55).
A brief summary follows:

The general format is: NNQTRANSPORT://ADDRESS where:

ADDRESS is an address (in name form or using the IP notation
xxX.Xxx.xxx.xxx). ADDRESS may be a multicast address.

TRANSPORT represents the kind of transport to use and NN is the max-
imum participantIndex expected at that location. NN can be omitted and
it is defaulted to ’4’

" Valid settings for TRANSPORT are 'udpv4’ and ’shmem’. The default
setting if the transport is omitted is udpv4’

ADDRESS cannot be omitted if the -peer’ option is specified.

The -peer option may be repeated to specify multiple peers.
Example: rtiddsspy -peer 10.10.1.192 -peer mars -peer 4@pluto
-discoveryTTL <TTL>

Sets the TTL (time-to-live) used for multicast discovery. If not specified, it
defaults to the built-in RTI Connext default.

The valid range is 0 to 255. The value ’0’ limits multicast to the node itself (i.e.
can only discover applications running on the same computer). The value 1’
limits multicast discovery to computers on the same subnet. Settings greater
than 1 generally indicate the maximum number of routers that may be traversed
(although some routers may be configured differently).

Example: rtiddsspy -discoveryTTL 16
-transport <MASK>

SPecifies a bit-mask that sets the enabled builtin transports. If not specified,
the default set of transports is used (UDPv4 + shmem). The bit values are:
1=UDPv4, 2=shmem, 8=UDPv6.

-msgMaxSize <SIZE>

Configures the maximum message size allowed by the installed transports. This
is needed if you are using rtiddsspy to communicate with an application that
has set these transport parameters to larger than default values.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.125 rtiddsspy 313

-shmRcvSize <SIZE>

Increases the shared memory receive-buffer size. This is needed if you are us-
ing rtiddsspy to communicate with an application that has set these transport
parameters to larger than default values.

-tcMaxSize <SIZE>

Configures the maximum size, in bytes, of a received type code.

-hOutput

Prints information on the output format used by rtiddsspy.

This option prints an explanation of the output and then exits.

Example: rtiddsspy -hOutput

-deadline <SS>

Sets the requested DEADLINE QoS for the subscriptions made by rtiddsspy.

Note that this may cause the subscription QoS to be incompatible with the
publisher if the publisher did not specify an offered deadline that is greater or
equal to the one requested by rtiddsspy. If the QoS is incompatible rtiddsspy
will not receive updates from that writer.

Each time a deadline is detected rtiddsspy will print a message that indicates
the number of deadlines received so far.

Example: rtiddsspy -deadline 3.5
-timeFilter <SS>

Sets the TIME_BASED_FILTER QoS for the subscriptions made by rtiddsspy.
This QoS causes RTI Connext to filter-out messages that are published at a rate
faster than what the filter duration permits. For example if the filter duration
is 10 seconds, messages will be printed no faster than once each 10 seconds.

Example: rtiddsspy -timeFilter 10.0
-history <DEPTH>
Sets the HISTORY depth QoS for the subscriptions made by rtiddsspy.

This may be relevant if the publisher has batching turned on, or if the -
useFirstPublicationQos option is used that is causing a reliable or durable sub-
scription to be created.

Example: rtiddsspy -history 1
-useFirstPublicationQos

Sets the RELIABILITY and DURABILITY QoS of the subscription based on
the first discovered publication of that topic.

See also -history option.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

314 Module Documentation

Example: rtiddsspy -useFirstPublicationQos
-showHandle

Prints additional information about each sample received. The additional infor-
mation is the 'instance_handle’ field in the SampleHeader, which can be used to
distinguish among multiple instances of data objects published under the same
topic and type names.

Samples displayed that share the topic and type names and also have the same
value for the instance_handle represent value updates to the same data object.
On the other hand, samples that share the topic and type names but display
different values for the instance_handle.

This option causes rtiddsspy to print an explanation of updates to the values of
different data objects.

Example: rtiddsspy -showHandle
-typeRegex <REGEX>

Subscribe only to types that match the REGEX regular expression. The syntax
of the regular expression is defined by the POSIX regex function.

When typing a regular expression to a command-line shell, some symbols may
need to be escaped to avoid interpretation by the shell. In general, it is safest
to include the expression in double quotes.

This option may be repeated to specify multiple topic expressions.
Example: rtiddsspy -typeRegex ”SensorArrayx*”
-topicRegex <REGEX>

Subscribe only to topics that match the REGEX regular expression. The syntax
of the regular expression is defined by the POSIX regex function.

When typing a regular expression to a command-line shell, some symbols may
need to be escaped to avoid interpretation by the shell. In general, it is safest
to include the expression in double quotes.

This option may be repeated to specify topic multiple expressions.
Example: rtiddsspy -topicRegex ” Alarmx”
-typeWidth <WIDTH>

Sets the maximum width of the Type name column. Names wider than this will
wrap around, unless —truncate is specified. Can be 1..255.

-topicWidth <WIDTH>

Sets the maximum width of the Topic name column. Names wider than this
will wrap around, unless —truncate is specified. Can be 1..255.

-truncate

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.125 rtiddsspy 315

Specifies that names exceeding the maximum number of characters should be
truncated.

-printSample
Prints the value of the received samples.
-qosFile <file>

Allows you to specify additional QoS XML settings using url_profile. For more
information on the syntax, see Chapter 15 in the RTI Connext User’s Manual.

Example: rtiddsspy -qosFile /home/user/QoSProfileFile.xml
-qosProfile <lib.prof>

Specifies the library name and profile name to be used.

QoS settings

rtiddsspy is configured to discover as many entities as possible. To do so, an
internal profile is defined, called InternalSpyLibrary.InternalSpyProfile. This is
the default profile, unless a profile called DefaultSpyLibrary.DefaultSpyProfile is
found. You can use the command-line option -qosProfile to tell rtiddsspy to use a
speficied lib.profile instead of DefaultSpyLibrary.DefaultSpyProfile. Like all the
other RTT Connext applications, rtiddsspy loads all the profiles specified using
the environment variable NDDS_QOS_PROFILES or the file named USER._-
QOS_PROFILES found in the current working directory.

The QoS settings used internally are available in the file RTIDDSSPY_QOS -
PROFILES.example.xml.

Usage Examples
The usage depends on the operating system from which rtiddsspy is executed.
Examples for UNIX, Linux, Windows systems

On UNIX, Linux, Windows and other operating systems that have a shell, the
syntax matches the one of the regular commands available in the shell. In the
examples below, the string ’shell prompt>’ represents the prompt that the shell
prints and are not part of the command that must be typed.

shell prompt> rtiddsspy -domainId 3
shell prompt> rtiddsspy -domainId 5 -topicRegex "Alarmx"
shell prompt> rtiddsspy -help

Examples for VxWorks Systems

On VxWorks systems, the libraries libnddscore.so, libnddsc.so and libnddscpp.so
must first be loaded. The rtiddsspy command must be typed to the VxWorks
shell (either an rlogin shell, a target-server shell, or the serial line prompt).
The arguments are passed embedded into a single string, but otherwise have
the same syntax as for Unix/Windows. In UNIX, Linux, Windows and other

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

316 Module Documentation

operating systems that have a shell, the syntax matches the one of the regular
comamnds available in the shell. In the examples below, the string 'vxworks
prompt>’ represents the prompt that the shell prints and are not part of the
command that must be typed.

vxworks prompt> rtiddsspy "-domainId 3"
vxworks prompt> rtiddsspy "-domainld 5 5 -topicRegex "Alarmx"
vxworks prompt> rtiddsspy "-help"

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

Chapter 7

Namespace Documentation

7.1 Package com.rti.dds.domain

Contains the com.rti.dds.domain.DomainParticipant (p.629) class that
acts as an entrypoint of RTI Connext and acts as a factory for many of the
classes. The com.rti.dds.domain.DomainParticipant (p.629) also acts as
a container for the other objects that make up RTI Connext.

Classes

" interface DomainParticipant

<<interface>> (p-271) Container for all
com.rti.dds.infrastructure. DomainEntity (p. 628) objects.

class DomainParticipant Adapter

<<eXtension>> (p.270) A listener adapter in the spirit of the Java AWT
listener adapters. (The Adapter provides empty implementations for the lis-
tener methods)

class DomainParticipantFactory

<<singleton>> (p.271) <<interface>> (p.271) Allows creation and de-
struction of com.rti.dds.domain. DomainParticipant (p. 629) objects.

class DomainParticipantFactoryQos

QoS policies supported by a com.rti.dds.domain. DomainParticipantFactory
(p. 708).

interface DomainParticipantListener

318 Namespace Documentation

<<interface>> (p.271) Listener for participant status.

~ class DomainParticipantQos

QoS policies supported by a com.rti.dds.domain. DomainParticipant
(p- 629) entity.

Packages

" package builtin

Builtin topic (p. 350) for accessing information about the DomainPartici-
pants discovered by RTI Connext.

7.1.1 Detailed Description

Contains the com.rti.dds.domain.DomainParticipant (p.629) class that
acts as an entrypoint of RTI Connext and acts as a factory for many of the
classes. The com.rti.dds.domain.DomainParticipant (p.629) also acts as
a container for the other objects that make up RTT Connext.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

7.2 Package com.rti.dds.domain.builtin 319

7.2 Package com.rti.dds.domain.builtin

Builtin topic (p.350) for accessing information about the DomainParticipants
discovered by RTI Connext.

Classes

" class ParticipantBuiltinTopicData

Entry created when a DomainParticipant (p. 629) object is discovered.

" class ParticipantBuiltinTopicDataDataReader

Instantiates DataReader < builtin.ParticipantBuiltin TopicData
(p. 1227) > .

" class ParticipantBuiltinTopicDataSeq

Instantiates com.rti.dds.util.Sequence (p.1432) <
builtin. ParticipantBuiltinTopicData (p. 1227) > .

" class ParticipantBuiltinTopicDataTypeSupport

Instantiates TypeSupport < builtin.ParticipantBuiltinTopicData
(p-1227) > .

7.2.1 Detailed Description

Builtin topic (p. 350) for accessing information about the DomainParticipants
discovered by RTI Connext.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

320 Namespace Documentation

7.3 Package com.rti.dds.dynamicdata

<<eXtension>> (p.270) The Dynamic Data API provides a way to inter-
act with arbitrarily complex data types at runtime without the need for code
generation.

Classes

" class DynamicData

A sample of any complex data type, which can be inspected and manipulated
reflectively.

class DynamicDataInfo

A descriptor for a com.rti.dds.dynamicdata. DynamicData (p. 780) ob-
ject.

class DynamicDataMemberInfo

A descriptor for a single member (i.e. field) of dynamically defined data type.

class DynamicDataProperty_t

A collection of attributes used to configure
com.rti.dds.dynamicdata. DynamicData (p. 780) objects.

class DynamicDataReader

Reads (subscribes to) objects of type
com.rti.dds.dynamicdata. DynamicData (p. 780).

class DynamicDataSeq

An ordered collection of com.rti.dds.dynamicdata. DynamicData
(p. 780) elements.

class DynamicDataTypeProperty_t

A collection of attributes used to configure
com.rti.dds.dynamicdata. DynamicData (p. 780) objects.

class DynamicDataTypeSerializationProperty _t

Properties that govern how data of a certain type will be serialized on the
network.

class DynamicDataTypeSupport

A factory for registering a dynamically defined type and creating
com.rti.dds.dynamicdata. DynamicData (p. 780) objects.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

7.3 Package com.rti.dds.dynamicdata 321

® class DynamicDataWriter

Writes (publishes) objects of type com.rti.dds.dynamicdata. DynamicData
(p. 780).

7.3.1 Detailed Description

<<eXtension>> (p.270) The Dynamic Data API provides a way to inter-
act with arbitrarily complex data types at runtime without the need for code
generation.

This APT allows you to define new data types, modify existing data types, and
interact reflectively with samples. To use it, you will take the following steps:

1. Obtain a TypeCode (see Type Code Support (p.162)) that defines
the type definition you want to use.

A TypeCode includes a type’s kind (TCKind), name, and members (that is,
fields). You can create your own TypeCode using the TypeCodeFactory class —
see, for example, the TypeCodeFactory.create_struct_tc (p.1644) method.
Alternatively, you can use a remote TypeCode that you discovered on the net-
work (see Built-in Topics (p. 153)) or one generated by rtiddsgen (p.290).

2. Wrap the TypeCode in a com.rti.dds.dynamicdata.DynamicDataTypeSupport
(p.- 887) object.

See the construct