
RTI Connext Java API

Version 4.5f

Generated by Doxygen 1.5.5

Sat Mar 17 21:18:59 2012

Contents

1 RTI Connext 1

1.1 Feedback and Support for this Release. 1

1.2 Available Documentation. 2

2 Module Index 5

2.1 Modules . 5

3 Namespace Index 9

3.1 Package List . 9

4 Class Index 13

4.1 Class Hierarchy . 13

5 Class Index 21

5.1 Class List . 21

6 Module Documentation 39

6.1 ASYNCHRONOUS PUBLISHER 39

6.2 AVAILABILITY . 41

6.3 BATCH . 42

6.4 Conditions and WaitSets . 43

6.5 DATABASE . 44

6.6 DATA READER PROTOCOL 45

6.7 DATA READER RESOURCE LIMITS 46

6.8 DATA WRITER PROTOCOL 48

ii CONTENTS

6.9 DATA WRITER RESOURCE LIMITS 49

6.10 DEADLINE . 50

6.11 DESTINATION ORDER . 51

6.12 DISCOVERY CONFIG . 52

6.13 DISCOVERY . 54

6.14 NDDS DISCOVERY PEERS . 55

6.15 DOMAIN PARTICIPANT RESOURCE LIMITS 63

6.16 DURABILITY . 65

6.17 DURABILITY SERVICE . 66

6.18 Time Support . 67

6.19 Entity Support . 68

6.20 ENTITY FACTORY . 69

6.21 ENTITY NAME . 70

6.22 EVENT . 71

6.23 EXCLUSIVE AREA . 72

6.24 GROUP DATA . 73

6.25 GUID Support . 74

6.26 HISTORY . 75

6.27 LATENCY BUDGET . 76

6.28 LIFESPAN . 77

6.29 LIVELINESS . 78

6.30 LOCATORFILTER . 79

6.31 LOGGING . 80

6.32 MULTICHANNEL . 81

6.33 Object Support . 82

6.34 OWNERSHIP . 83

6.35 OWNERSHIP STRENGTH . 84

6.36 PARTITION . 85

6.37 PRESENTATION . 86

6.38 PROFILE . 87

6.39 PROPERTY . 88

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

CONTENTS iii

6.40 PUBLISH MODE . 89

6.41 QoS Policies . 90

6.42 READER DATA LIFECYCLE 99

6.43 RECEIVER POOL . 100

6.44 RELIABILITY . 101

6.45 RESOURCE LIMITS . 102

6.46 Return Codes . 103

6.47 Sequence Number Support . 105

6.48 Status Kinds . 106

6.49 SYSTEM RESOURCE LIMITS 111

6.50 Thread Settings . 112

6.51 TIME BASED FILTER . 113

6.52 TOPIC DATA . 114

6.53 TRANSPORT BUILTIN . 115

6.54 TRANSPORT MULTICAST . 118

6.55 TRANSPORT PRIORITY . 121

6.56 TRANSPORT SELECTION . 122

6.57 TRANSPORT UNICAST . 123

6.58 TYPESUPPORT . 124

6.59 USER DATA . 126

6.60 Exception Codes . 127

6.61 WIRE PROTOCOL . 128

6.62 WRITER DATA LIFECYCLE 134

6.63 String Built-in Type . 135

6.64 KeyedString Built-in Type . 136

6.65 Octets Built-in Type . 137

6.66 KeyedOctets Built-in Type . 138

6.67 Sequence Support . 139

6.68 Clock Selection . 141

6.69 Domain Module . 143

6.70 DomainParticipantFactory . 145

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

iv CONTENTS

6.71 DomainParticipants . 147

6.72 Built-in Topics . 153

6.73 Topic Module . 157

6.74 Topics . 158

6.75 User Data Type Support . 160

6.76 Type Code Support . 162

6.77 Built-in Types . 165

6.78 Dynamic Data . 170

6.79 Publication Module . 175

6.80 Publishers . 176

6.81 Data Writers . 179

6.82 Flow Controllers . 181

6.83 Subscription Module . 186

6.84 Subscribers . 189

6.85 DataReaders . 192

6.86 Read Conditions . 194

6.87 Query Conditions . 195

6.88 Data Samples . 196

6.89 Sample States . 197

6.90 View States . 198

6.91 Instance States . 199

6.92 Infrastructure Module . 200

6.93 Built-in Sequences . 202

6.94 Multi-channel DataWriters . 204

6.95 Pluggable Transports . 207

6.96 Using Transport Plugins . 213

6.97 Built-in Transport Plugins . 216

6.98 Configuration Utilities . 218

6.99 Durability and Persistence . 219

6.100Configuring QoS Profiles with XML 225

6.101Publication Example . 229

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

CONTENTS v

6.102Subscription Example . 230

6.103Participant Use Cases . 231

6.104Topic Use Cases . 233

6.105FlowController Use Cases . 235

6.106Publisher Use Cases . 239

6.107DataWriter Use Cases . 240

6.108Subscriber Use Cases . 242

6.109DataReader Use Cases . 245

6.110Entity Use Cases . 249

6.111Waitset Use Cases . 253

6.112Transport Use Cases . 255

6.113Filter Use Cases . 257

6.114Creating Custom Content Filters 263

6.115Large Data Use Cases . 267

6.116Documentation Roadmap . 269

6.117Conventions . 270

6.118DDS API Reference . 272

6.119Queries and Filters Syntax . 278

6.120RTI Connext API Reference . 286

6.121Programming How-To’s . 287

6.122Programming Tools . 289

6.123rtiddsgen . 290

6.124rtiddsping . 303

6.125rtiddsspy . 310

7 Namespace Documentation 317

7.1 Package com.rti.dds.domain . 317

7.2 Package com.rti.dds.domain.builtin 319

7.3 Package com.rti.dds.dynamicdata 320

7.4 Package com.rti.dds.infrastructure 323

7.5 Package com.rti.dds.publication 338

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

vi CONTENTS

7.6 Package com.rti.dds.publication.builtin 341

7.7 Package com.rti.dds.publication.example 342

7.8 Package com.rti.dds.subscription 343

7.9 Package com.rti.dds.subscription.builtin 348

7.10 Package com.rti.dds.subscription.example 349

7.11 Package com.rti.dds.topic . 350

7.12 Package com.rti.dds.topic.builtin 352

7.13 Package com.rti.dds.topic.example 353

7.14 Package com.rti.dds.type.builtin 354

7.15 Package com.rti.dds.typecode . 360

7.16 Package com.rti.dds.util . 364

7.17 Package com.rti.ndds.config . 365

7.18 Package com.rti.ndds.example . 366

7.19 Package com.rti.ndds.transport 367

8 Class Documentation 375

8.1 AbstractBuiltinTopicDataTypeSupport Class Reference 375

8.2 AbstractPrimitiveSequence Class Reference 377

8.3 AbstractSequence Class Reference 382

8.4 AllocationSettings t Class Reference 385

8.5 AsynchronousPublisherQosPolicy Class Reference 387

8.6 AvailabilityQosPolicy Class Reference 392

8.7 BAD PARAM Class Reference 396

8.8 BAD TYPECODE Class Reference 397

8.9 BadKind Class Reference . 398

8.10 BadMemberId Class Reference 399

8.11 BadMemberName Class Reference 400

8.12 BatchQosPolicy Class Reference 401

8.13 BooleanSeq Class Reference . 405

8.14 Bounds Class Reference . 411

8.15 BuiltinTopicKey t Class Reference 412

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

CONTENTS vii

8.16 BuiltinTopicReaderResourceLimits t Class Reference 414

8.17 Bytes Class Reference . 417

8.18 BytesDataReader Class Reference 420

8.19 BytesDataWriter Class Reference 424

8.20 ByteSeq Class Reference . 428

8.21 BytesSeq Class Reference . 434

8.22 BytesTypeSupport Class Reference 437

8.23 ChannelSettings t Class Reference 441

8.24 ChannelSettingsSeq Class Reference 444

8.25 CharSeq Class Reference . 445

8.26 Condition Interface Reference . 451

8.27 ConditionSeq Class Reference . 452

8.28 ContentFilter Interface Reference 454

8.29 ContentFilteredTopic Interface Reference 458

8.30 ContentFilterProperty t Class Reference 463

8.31 Cookie t Class Reference . 465

8.32 Copyable Interface Reference . 466

8.33 DatabaseQosPolicy Class Reference 468

8.34 DataReader Interface Reference 473

8.35 DataReaderAdapter Class Reference 497

8.36 DataReaderCacheStatus Class Reference 500

8.37 DataReaderListener Interface Reference 501

8.38 DataReaderProtocolQosPolicy Class Reference 504

8.39 DataReaderProtocolStatus Class Reference 508

8.40 DataReaderQos Class Reference 518

8.41 DataReaderResourceLimitsQosPolicy Class Reference 524

8.42 DataReaderSeq Class Reference 536

8.43 DataWriter Interface Reference 538

8.44 DataWriterAdapter Class Reference 560

8.45 DataWriterCacheStatus Class Reference 565

8.46 DataWriterListener Interface Reference 566

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

viii CONTENTS

8.47 DataWriterProtocolQosPolicy Class Reference 571

8.48 DataWriterProtocolStatus Class Reference 576

8.49 DataWriterQos Class Reference 588

8.50 DataWriterResourceLimitsInstanceReplacementKind Class Ref-
erence . 594

8.51 DataWriterResourceLimitsQosPolicy Class Reference 598

8.52 DeadlineQosPolicy Class Reference 604

8.53 DestinationOrderQosPolicy Class Reference 607

8.54 DestinationOrderQosPolicyKind Class Reference 610

8.55 DiscoveryBuiltinReaderFragmentationResourceLimits t Class
Reference . 612

8.56 DiscoveryConfigBuiltinPluginKind Class Reference 614

8.57 DiscoveryConfigQosPolicy Class Reference 615

8.58 DiscoveryPluginPromiscuityKind Class Reference 623

8.59 DiscoveryQosPolicy Class Reference 624

8.60 DomainEntity Interface Reference 628

8.61 DomainParticipant Interface Reference 629

8.62 DomainParticipantAdapter Class Reference 703

8.63 DomainParticipantFactory Class Reference 708

8.64 DomainParticipantFactoryQos Class Reference 732

8.65 DomainParticipantListener Interface Reference 734

8.66 DomainParticipantQos Class Reference 736

8.67 DomainParticipantResourceLimitsQosPolicy Class Reference . . 741

8.68 DoubleSeq Class Reference . 759

8.69 DurabilityQosPolicy Class Reference 765

8.70 DurabilityQosPolicyKind Class Reference 770

8.71 DurabilityServiceQosPolicy Class Reference 773

8.72 Duration t Class Reference . 776

8.73 DynamicData Class Reference . 780

8.74 DynamicDataInfo Class Reference 844

8.75 DynamicDataMemberInfo Class Reference 846

8.76 DynamicDataProperty t Class Reference 849

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

CONTENTS ix

8.77 DynamicDataReader Class Reference 851

8.78 DynamicDataSeq Class Reference 881

8.79 DynamicDataTypeProperty t Class Reference 883

8.80 DynamicDataTypeSerializationProperty t Class Reference 885

8.81 DynamicDataTypeSupport Class Reference 887

8.82 DynamicDataWriter Class Reference 893

8.83 EndpointGroup t Class Reference 909

8.84 EndpointGroupSeq Class Reference 911

8.85 Entity Interface Reference . 912

8.86 EntityFactoryQosPolicy Class Reference 919

8.87 EntityHowTo.MyEntityListener Class Reference 922

8.88 EntityNameQosPolicy Class Reference 923

8.89 Enum Class Reference . 925

8.90 EnumMember Class Reference 928

8.91 EventQosPolicy Class Reference 930

8.92 ExclusiveAreaQosPolicy Class Reference 933

8.93 FloatSeq Class Reference . 936

8.94 FlowController Interface Reference 942

8.95 FlowControllerProperty t Class Reference 946

8.96 FlowControllerSchedulingPolicy Class Reference 948

8.97 FlowControllerTokenBucketProperty t Class Reference 951

8.98 Foo Class Reference . 955

8.99 Foo Class Reference . 956

8.100FooDataReader Class Reference 958

8.101FooDataReader Interface Reference 988

8.102FooDataWriter Class Reference 1021

8.103FooDataWriter Interface Reference 1040

8.104FooSeq Class Reference . 1056

8.105FooSeq Class Reference . 1058

8.106FooTypeSupport Class Reference 1060

8.107FooTypeSupport Class Reference 1063

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

x CONTENTS

8.108GroupDataQosPolicy Class Reference 1064

8.109GuardCondition Class Reference 1066

8.110GUID t Class Reference . 1069

8.111HistoryQosPolicy Class Reference 1071

8.112HistoryQosPolicyKind Class Reference 1075

8.113InconsistentTopicStatus Class Reference 1077

8.114InetAddressSeq Class Reference 1079

8.115InstanceHandle t Class Reference 1080

8.116InstanceHandleSeq Class Reference 1083

8.117InstanceStateKind Class Reference 1086

8.118IntSeq Class Reference . 1089

8.119KeyedBytes Class Reference . 1095

8.120KeyedBytesDataReader Class Reference 1098

8.121KeyedBytesDataWriter Class Reference 1106

8.122KeyedBytesSeq Class Reference 1116

8.123KeyedBytesTypeSupport Class Reference 1119

8.124KeyedString Class Reference . 1123

8.125KeyedStringDataReader Class Reference 1125

8.126KeyedStringDataWriter Class Reference 1133

8.127KeyedStringSeq Class Reference 1141

8.128KeyedStringTypeSupport Class Reference 1144

8.129LatencyBudgetQosPolicy Class Reference 1148

8.130LibraryVersion t Class Reference 1150

8.131LifespanQosPolicy Class Reference 1152

8.132Listener Interface Reference . 1154

8.133LivelinessChangedStatus Class Reference 1159

8.134LivelinessLostStatus Class Reference 1162

8.135LivelinessQosPolicy Class Reference 1164

8.136LivelinessQosPolicyKind Class Reference 1168

8.137LoanableSequence Class Reference 1170

8.138Locator t Class Reference . 1174

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

CONTENTS xi

8.139LocatorFilter t Class Reference 1178

8.140LocatorFilterQosPolicy Class Reference 1181

8.141LocatorFilterSeq Class Reference 1183

8.142LocatorSeq Class Reference . 1184

8.143LogCategory Class Reference . 1185

8.144Logger Class Reference . 1187

8.145LoggingQosPolicy Class Reference 1190

8.146LogPrintFormat Class Reference 1192

8.147LogVerbosity Class Reference . 1195

8.148LongDoubleSeq Class Reference 1197

8.149LongSeq Class Reference . 1199

8.150MultiChannelQosPolicy Class Reference 1205

8.151MultiTopic Interface Reference 1208

8.152ObjectHolder Class Reference . 1211

8.153OfferedDeadlineMissedStatus Class Reference 1212

8.154OfferedIncompatibleQosStatus Class Reference 1214

8.155OwnershipQosPolicy Class Reference 1216

8.156OwnershipQosPolicyKind Class Reference 1223

8.157OwnershipStrengthQosPolicy Class Reference 1225

8.158ParticipantBuiltinTopicData Class Reference 1227

8.159ParticipantBuiltinTopicDataDataReader Class Reference 1230

8.160ParticipantBuiltinTopicDataSeq Class Reference 1231

8.161ParticipantBuiltinTopicDataTypeSupport Class Reference 1232

8.162PartitionQosPolicy Class Reference 1233

8.163PresentationQosPolicy Class Reference 1237

8.164PresentationQosPolicyAccessScopeKind Class Reference 1242

8.165PRIVATE MEMBER Class Reference 1244

8.166ProductVersion t Class Reference 1245

8.167ProfileQosPolicy Class Reference 1247

8.168Property t Class Reference . 1250

8.169PropertyQosPolicy Class Reference 1252

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

xii CONTENTS

8.170PropertyQosPolicyHelper Class Reference 1255

8.171PropertySeq Class Reference . 1259

8.172ProtocolVersion t Class Reference 1260

8.173PUBLIC MEMBER Class Reference 1263

8.174PublicationBuiltinTopicData Class Reference 1264

8.175PublicationBuiltinTopicDataDataReader Class Reference 1271

8.176PublicationBuiltinTopicDataSeq Class Reference 1272

8.177PublicationBuiltinTopicDataTypeSupport Class Reference 1273

8.178PublicationMatchedStatus Class Reference 1274

8.179Publisher Interface Reference . 1277

8.180PublisherAdapter Class Reference 1301

8.181PublisherListener Interface Reference 1302

8.182PublisherQos Class Reference . 1303

8.183PublisherSeq Class Reference . 1306

8.184PublishModeQosPolicy Class Reference 1308

8.185PublishModeQosPolicyKind Class Reference 1311

8.186Qos Class Reference . 1313

8.187QosPolicy Class Reference . 1314

8.188QosPolicyCount Class Reference 1315

8.189QosPolicyCountSeq Class Reference 1317

8.190QosPolicyId t Class Reference . 1318

8.191QueryCondition Interface Reference 1324

8.192ReadCondition Interface Reference 1326

8.193ReaderDataLifecycleQosPolicy Class Reference 1328

8.194ReceiverPoolQosPolicy Class Reference 1331

8.195RefilterQosPolicyKind Class Reference 1334

8.196ReliabilityQosPolicy Class Reference 1336

8.197ReliabilityQosPolicyKind Class Reference 1340

8.198ReliableReaderActivityChangedStatus Class Reference 1342

8.199ReliableWriterCacheChangedStatus Class Reference 1345

8.200ReliableWriterCacheEventCount Class Reference 1349

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

CONTENTS xiii

8.201RemoteParticipantPurgeKind Class Reference 1350

8.202RequestedDeadlineMissedStatus Class Reference 1353

8.203RequestedIncompatibleQosStatus Class Reference 1354

8.204ResourceLimitsQosPolicy Class Reference 1356

8.205RETCODE ALREADY DELETED Class Reference 1362

8.206RETCODE BAD PARAMETER Class Reference 1363

8.207RETCODE ERROR Class Reference 1364

8.208RETCODE ILLEGAL OPERATION Class Reference 1365

8.209RETCODE IMMUTABLE POLICY Class Reference 1366

8.210RETCODE INCONSISTENT POLICY Class Reference 1367

8.211RETCODE NO DATA Class Reference 1368

8.212RETCODE NOT ENABLED Class Reference 1369

8.213RETCODE OUT OF RESOURCES Class Reference 1370

8.214RETCODE PRECONDITION NOT MET Class Reference . . . 1371

8.215RETCODE TIMEOUT Class Reference 1372

8.216RETCODE UNSUPPORTED Class Reference 1373

8.217RtpsReliableReaderProtocol t Class Reference 1374

8.218RtpsReliableWriterProtocol t Class Reference 1378

8.219RtpsReservedPortKind Class Reference 1394

8.220RtpsWellKnownPorts t Class Reference 1396

8.221SampleIdentity t Class Reference 1402

8.222SampleInfo Class Reference . 1404

8.223SampleInfoSeq Class Reference 1414

8.224SampleLostStatus Class Reference 1415

8.225SampleLostStatusKind Class Reference 1416

8.226SampleRejectedStatus Class Reference 1422

8.227SampleRejectedStatusKind Class Reference 1424

8.228SampleStateKind Class Reference 1430

8.229Sequence Interface Reference . 1432

8.230SequenceNumber t Class Reference 1435

8.231ShmemTransport Interface Reference 1439

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

xiv CONTENTS

8.232ShmemTransport.Property t Class Reference 1443

8.233ShortSeq Class Reference . 1446

8.234StatusCondition Interface Reference 1452

8.235StatusKind Class Reference . 1455

8.236StringDataReader Class Reference 1465

8.237StringDataWriter Class Reference 1468

8.238StringSeq Class Reference . 1470

8.239StringTypeSupport Class Reference 1473

8.240StructMember Class Reference 1476

8.241Subscriber Interface Reference . 1478

8.242SubscriberAdapter Class Reference 1503

8.243SubscriberListener Interface Reference 1504

8.244SubscriberQos Class Reference 1506

8.245SubscriberSeq Class Reference . 1508

8.246SubscriptionBuiltinTopicData Class Reference 1510

8.247SubscriptionBuiltinTopicDataDataReader Class Reference 1517

8.248SubscriptionBuiltinTopicDataSeq Class Reference 1518

8.249SubscriptionBuiltinTopicDataTypeSupport Class Reference . . . 1519

8.250SubscriptionMatchedStatus Class Reference 1520

8.251SystemException Class Reference 1523

8.252SystemResourceLimitsQosPolicy Class Reference 1524

8.253TCKind Class Reference . 1526

8.254ThreadSettings t Class Reference 1531

8.255ThreadSettingsCpuRotationKind Class Reference 1534

8.256ThreadSettingsKind Class Reference 1536

8.257Time t Class Reference . 1538

8.258TimeBasedFilterQosPolicy Class Reference 1541

8.259Topic Interface Reference . 1545

8.260TopicAdapter Class Reference . 1550

8.261TopicBuiltinTopicData Class Reference 1552

8.262TopicBuiltinTopicDataDataReader Class Reference 1556

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

CONTENTS xv

8.263TopicBuiltinTopicDataSeq Class Reference 1557

8.264TopicBuiltinTopicDataTypeSupport Class Reference 1558

8.265TopicDataQosPolicy Class Reference 1559

8.266TopicDescription Interface Reference 1561

8.267TopicListener Interface Reference 1564

8.268TopicQos Class Reference . 1566

8.269Transport Interface Reference . 1569

8.270Transport.Property t Class Reference 1570

8.271TransportBuiltinKind Class Reference 1578

8.272TransportBuiltinQosPolicy Class Reference 1580

8.273TransportMulticastMapping t Class Reference 1582

8.274TransportMulticastMappingFunction t Class Reference 1585

8.275TransportMulticastMappingQosPolicy Class Reference 1587

8.276TransportMulticastMappingSeq Class Reference 1589

8.277TransportMulticastQosPolicy Class Reference 1590

8.278TransportMulticastQosPolicyKind Class Reference 1593

8.279TransportMulticastSettings t Class Reference 1594

8.280TransportMulticastSettingsSeq Class Reference 1597

8.281TransportPriorityQosPolicy Class Reference 1598

8.282TransportSelectionQosPolicy Class Reference 1600

8.283TransportSupport Class Reference 1602

8.284TransportUnicastQosPolicy Class Reference 1605

8.285TransportUnicastSettings t Class Reference 1608

8.286TransportUnicastSettingsSeq Class Reference 1610

8.287TypeCode Class Reference . 1611

8.288TypeCodeFactory Class Reference 1641

8.289TypeSupport Interface Reference 1651

8.290TypeSupportQosPolicy Class Reference 1652

8.291UDPv4Transport Interface Reference 1654

8.292UDPv4Transport.Property t Class Reference 1658

8.293UDPv6Transport Interface Reference 1666

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

xvi CONTENTS

8.294UDPv6Transport.Property t Class Reference 1670

8.295Union Class Reference . 1677

8.296UnionMember Class Reference 1678

8.297UserDataQosPolicy Class Reference 1680

8.298UserException Class Reference 1682

8.299ValueMember Class Reference . 1683

8.300VendorId t Class Reference . 1685

8.301Version Class Reference . 1687

8.302ViewStateKind Class Reference 1689

8.303VM ABSTRACT Class Reference 1691

8.304VM CUSTOM Class Reference 1692

8.305VM NONE Class Reference . 1693

8.306VM TRUNCATABLE Class Reference 1694

8.307WaitSet Class Reference . 1695

8.308WaitSetProperty t Class Reference 1705

8.309WcharSeq Class Reference . 1707

8.310WireProtocolQosPolicy Class Reference 1709

8.311WireProtocolQosPolicyAutoKind Class Reference 1718

8.312WriteParams t Class Reference 1719

8.313WriterDataLifecycleQosPolicy Class Reference 1722

8.314WstringSeq Class Reference . 1725

9 Example Documentation 1727

9.1 HelloWorld.idl . 1727

9.2 HelloWorldDataReader.java . 1729

9.3 HelloWorldPublisher.java . 1744

9.4 HelloWorldSeq.java . 1748

9.5 HelloWorldSubscriber.java . 1753

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

Chapter 1

RTI Connext

Core Libraries and Utilities

Real-Time Innovations, Inc.

RTI Connext is network middleware for real-time distributed applications. It
provides the communications services that programmers need to distribute time-
critical data between embedded and/or enterprise devices or nodes. RTI Con-
next uses the publish-subscribe communications model to make data distribu-
tion efficient and robust.

The RTI Connext Application Programming Interface (API) is based on the
OMG’s Data Distribution Service (DDS) specification. The most recent publica-
tion of this specification can be found in the Catalog of OMG Specifications
under ”Middleware Specifications”.

1.1 Feedback and Support for this Release.

For more information, visit our knowledge base (accessible from
https://support.rti.com/) to see sample code, general information on
RTI Connext, performance information, troubleshooting tips, and technical
details.

By its very nature, the knowledge base is continuously evolving and improv-
ing. We hope that you will find it helpful. If there are questions that
you would like to see addressed or comments you would like to share, please
send e-mail to support@rti.com. We can only guarantee a response for cus-
tomers with a current maintenance contract or subscription. To purchase a
maintenance contract or subscription, contact your local RTI representative

2 RTI Connext

(see http://www.rti.com/company/contact.html), send an email request to
sales@rti.com, or call +1 (408) 990-7400.

Please do not hesitate to contact RTI with questions or comments about this
release. We welcome any input on how to improve RTI Connext to suit your
needs.

1.2 Available Documentation.

The documentation for this release is provided in two forms: the HTML API
reference documentation and PDF documents. If you are new to RTI Connext,
the Documentation Roadmap (p. 269) will provide direction on how to learn
about this product.

1.2.1 The PDF documents are:

ˆ What’s New. An overview of the new features in this release.

ˆ Release Notes. System requirements, compatibility, what’s fixed in this
release, and known issues.

ˆ Getting Started Guide. Download and installation instructions. It also
lays out the core value and concepts behind the product and takes you
step-by-step through the creation of a simple example application. Devel-
opers should read this document first.

ˆ Getting Started Guide, Database Addendum. Additional installation
and setup information for database usage.

ˆ Getting Started Guide, Embedded Systems Addendum. Additional in-
stallation and setup information for embedded systems.

ˆ User’s Manual. Introduction to RTI Connext, product tour and concep-
tual presentation of the functionality of RTI Connext.

ˆ Platform Notes. Specific details, such as compilation setting and li-
braries, related to building and using RTI Connext on the various sup-
ported platforms.

ˆ QoS Reference Guide. A compact summary of supported Quality of Ser-
vice (QoS) policies.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1.2 Available Documentation. 3

ˆ XML-Based Application Creation Getting Started Guide. Details
on how to use XML-Based Application Creation, an experimental feature
in this release.

ˆ C API Reference Manual. A consolidated PDF version of the HTML C
API reference documentation.

ˆ C++ API Reference Manual. A consolidated PDF version of the HTML
C++ API reference documentation.

ˆ Java API Reference Manual. A consolidate PDF version of the HTML
Java API reference documentation.

ˆ .NET API Reference Manual. A consolidated PDF version of the HTML
.Net API reference documentation.

1.2.2 The HTML API Reference documentation contains:

ˆ DDS API Reference (p. 272) - The DDS API reference.

ˆ RTI Connext API Reference (p. 286) - RTI Connext API’s indepen-
dent of the DDS standard.

ˆ Programming How-To’s (p. 287) - Describes and shows the common
tasks done using the API.

ˆ Programming Tools (p. 289) - RTI Connext helper tools.

The HTML API Reference documentation can be accessed through the tree view
in the left frame of the web browser window. The bulk of the documentation is
found under the entry labeled ”Modules”.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

4 RTI Connext

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

Chapter 2

Module Index

2.1 Modules

Here is a list of all modules:

Thread Settings . 112
Documentation Roadmap . 269
Conventions . 270
DDS API Reference . 272

Domain Module . 143
DomainParticipantFactory . 145
DomainParticipants . 147
Built-in Topics . 153

Topic Module . 157
Topics . 158
User Data Type Support . 160
Type Code Support . 162
Built-in Types . 165

String Built-in Type . 135
KeyedString Built-in Type 136
Octets Built-in Type . 137
KeyedOctets Built-in Type 138

Dynamic Data . 170
Publication Module . 175

Publishers . 176
Data Writers . 179
Flow Controllers . 181

Subscription Module . 186
Subscribers . 189
DataReaders . 192

6 Module Index

Read Conditions . 194
Query Conditions . 195

Data Samples . 196
Sample States . 197
View States . 198
Instance States . 199

Infrastructure Module . 200
Conditions and WaitSets . 43
Time Support . 67
Entity Support . 68
GUID Support . 74
Object Support . 82
QoS Policies . 90

ASYNCHRONOUS PUBLISHER 39
AVAILABILITY . 41
BATCH . 42
DATABASE . 44
DATA READER PROTOCOL 45
DATA READER RESOURCE LIMITS 46
DATA WRITER PROTOCOL 48
DATA WRITER RESOURCE LIMITS 49
DEADLINE . 50
DESTINATION ORDER . 51
DISCOVERY CONFIG . 52
DISCOVERY . 54

NDDS DISCOVERY PEERS 55
DOMAIN PARTICIPANT RESOURCE LIMITS 63
DURABILITY . 65
DURABILITY SERVICE . 66
ENTITY FACTORY . 69
ENTITY NAME . 70
EVENT . 71
EXCLUSIVE AREA . 72
GROUP DATA . 73
HISTORY . 75
LATENCY BUDGET . 76
LIFESPAN . 77
LIVELINESS . 78
LOCATORFILTER . 79
LOGGING . 80
MULTICHANNEL . 81
OWNERSHIP . 83
OWNERSHIP STRENGTH 84
PARTITION . 85
PRESENTATION . 86

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

2.1 Modules 7

PROFILE . 87
PROPERTY . 88
PUBLISH MODE . 89
READER DATA LIFECYCLE 99
RECEIVER POOL . 100
RELIABILITY . 101
RESOURCE LIMITS . 102
SYSTEM RESOURCE LIMITS 111
TIME BASED FILTER . 113
TOPIC DATA . 114
TRANSPORT BUILTIN . 115
TRANSPORT MULTICAST 118
TRANSPORT PRIORITY 121
TRANSPORT SELECTION 122
TRANSPORT UNICAST . 123
TYPESUPPORT . 124
USER DATA . 126
WIRE PROTOCOL . 128
WRITER DATA LIFECYCLE 134

Return Codes . 103
Sequence Number Support . 105
Status Kinds . 106
Exception Codes . 127
Sequence Support . 139

Built-in Sequences . 202
Queries and Filters Syntax . 278

RTI Connext API Reference . 286
Clock Selection . 141
Multi-channel DataWriters . 204
Pluggable Transports . 207

Using Transport Plugins . 213
Built-in Transport Plugins . 216

Configuration Utilities . 218
Durability and Persistence . 219
Configuring QoS Profiles with XML 225

Programming How-To’s . 287
Publication Example . 229
Subscription Example . 230
Participant Use Cases . 231
Topic Use Cases . 233
FlowController Use Cases . 235
Publisher Use Cases . 239
DataWriter Use Cases . 240
Subscriber Use Cases . 242
DataReader Use Cases . 245

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8 Module Index

Entity Use Cases . 249
Waitset Use Cases . 253
Transport Use Cases . 255
Filter Use Cases . 257
Creating Custom Content Filters 263
Large Data Use Cases . 267

Programming Tools . 289
rtiddsgen . 290
rtiddsping . 303
rtiddsspy . 310

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

Chapter 3

Namespace Index

3.1 Package List

Here are the packages with brief descriptions (if available):

com.rti.dds.domain (Contains the com.rti.dds.domain.DomainParticipant
(p. 629) class that acts as an entrypoint of RTI Connext
and acts as a factory for many of the classes. The
com.rti.dds.domain.DomainParticipant (p. 629) also
acts as a container for the other objects that make up RTI
Connext) . 317

com.rti.dds.domain.builtin (Builtin topic (p. 350) for accessing in-
formation about the DomainParticipants discovered by RTI
Connext) . 319

com.rti.dds.dynamicdata (<<eXtension>> (p. 270) The Dy-
namic Data API provides a way to interact with arbitrarily
complex data types at runtime without the need for code gen-
eration) . 320

com.rti.dds.infrastructure (Defines the abstract classes and the in-
terfaces that are refined by the other modules. Contains com-
mon definitions such as return codes, status values, and QoS
policies) . 323

10 Namespace Index

com.rti.dds.publication (Contains the
com.rti.dds.publication.FlowController (p. 942),
com.rti.dds.publication.Publisher (p. 1277),
and com.rti.dds.publication.DataWriter
(p. 538) classes as well as the
com.rti.dds.publication.PublisherListener (p. 1302)
and com.rti.dds.publication.DataWriterListener
(p. 566) interfaces, and more generally, all that is needed on
the publication (p. 338) side) 338

com.rti.dds.publication.builtin (Builtin topic (p. 350) for access-
ing information about the Publications discovered by RTI
Connext) . 341

com.rti.dds.publication.example 342

com.rti.dds.subscription (Contains the
com.rti.dds.subscription.Subscriber (p. 1478),
com.rti.dds.subscription.DataReader (p. 473),
com.rti.dds.subscription.ReadCondition (p. 1326),
and com.rti.dds.subscription.QueryCondition
(p. 1324) classes, as well as the
com.rti.dds.subscription.SubscriberListener (p. 1504)
and com.rti.dds.subscription.DataReaderListener
(p. 501) interfaces, and more generally, all that is needed on
the subscription (p. 343) side) 343

com.rti.dds.subscription.builtin (Builtin topic (p. 350) for access-
ing information about the Subscriptions discovered by RTI
Connext) . 348

com.rti.dds.subscription.example 349

com.rti.dds.topic (Contains the com.rti.dds.topic.Topic
(p. 1545), com.rti.dds.topic.ContentFilteredTopic
(p. 458), and com.rti.dds.topic.MultiTopic (p. 1208)
classes, the com.rti.dds.topic.TopicListener (p. 1564)
interface, and more generally, all that is needed by an
application to define com.rti.dds.topic.Topic (p. 1545)
objects and attach QoS policies to them) 350

com.rti.dds.topic.builtin (Builtin topic (p. 350) for accessing infor-
mation about the Topics discovered by RTI Connext) 352

com.rti.dds.topic.example (Descriptions of Foo (p. 955), FooSeq
(p. 1056), and FooTypeSupport (p. 1060), where Foo
(p. 955) represents a user-defined data-type intended to be
distributed using DDS) . 353

com.rti.dds.type.builtin (<<eXtension>> (p. 270) RTI Connext
provides a set of very simple data types for you to use with
the topics in your application) 354

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

3.1 Package List 11

com.rti.dds.typecode (<<eXtension>> (p. 270) A TypeCode
(p. 1611) is a mechanism for representing a type at runtime.
RTI Connext can use type codes to send type definitions on
the network. You will need to understand this API in order to
use the Dynamic Data (p. 170) capability or to inspect the
type information you receive from remote readers and writers)360

com.rti.dds.util (Utility types that support the DDS API) 364
com.rti.ndds.config (Utility API’s independent of the DDS standard)365
com.rti.ndds.example (Programming HowTos: Code templates for

common use cases) . 366
com.rti.ndds.transport (APIs related to RTI Connext pluggable

transports) . 367

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

12 Namespace Index

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

Chapter 4

Class Index

4.1 Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

AbstractBuiltinTopicDataTypeSupport 375
ParticipantBuiltinTopicDataTypeSupport 1232
PublicationBuiltinTopicDataTypeSupport 1273
SubscriptionBuiltinTopicDataTypeSupport 1519
TopicBuiltinTopicDataTypeSupport 1558

AllocationSettings t . 385
BuiltinTopicReaderResourceLimits t 414
ChannelSettings t . 441
ChannelSettingsSeq . 444
Condition . 451

StatusCondition . 1452
ReadCondition . 1326

QueryCondition . 1324
ConditionSeq . 452
ContentFilter . 454
ContentFilterProperty t . 463
Cookie t . 465
Copyable . 466

DynamicData . 780
InstanceHandle t . 1080
StringSeq . 1470

WstringSeq . 1725
SampleInfo . 1404
BuiltinTopicKey t . 412

14 Class Index

Bytes . 417
BytesSeq . 434
KeyedBytes . 1095
KeyedBytesSeq . 1116
KeyedString . 1123
KeyedStringSeq . 1141
AbstractPrimitiveSequence . 377

BooleanSeq . 405
ByteSeq . 428
CharSeq . 445

WcharSeq . 1707
DoubleSeq . 759

LongDoubleSeq . 1197
FloatSeq . 936
IntSeq . 1089
LongSeq . 1199
ShortSeq . 1446

Enum . 925
DataWriterResourceLimitsInstanceReplacementKind 594
DestinationOrderQosPolicyKind 610
DiscoveryPluginPromiscuityKind 623
DurabilityQosPolicyKind . 770
HistoryQosPolicyKind . 1075
LivelinessQosPolicyKind . 1168
OwnershipQosPolicyKind . 1223
PresentationQosPolicyAccessScopeKind 1242
PublishModeQosPolicyKind . 1311
QosPolicyId t . 1318
RefilterQosPolicyKind . 1334
ReliabilityQosPolicyKind . 1340
RemoteParticipantPurgeKind 1350
ThreadSettingsCpuRotationKind 1534
TransportMulticastQosPolicyKind 1593
WireProtocolQosPolicyAutoKind 1718
FlowControllerSchedulingPolicy 948
SampleLostStatusKind . 1416
SampleRejectedStatusKind . 1424
TCKind . 1526
LogCategory . 1185
LogPrintFormat . 1192
LogVerbosity . 1195

Foo . 956
FooSeq . 1058

DataReaderCacheStatus . 500
DataReaderProtocolStatus . 508

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

4.1 Class Hierarchy 15

DataReaderSeq . 536
DataWriterCacheStatus . 565
DataWriterProtocolStatus . 576
DiscoveryBuiltinReaderFragmentationResourceLimits t 612
DiscoveryConfigBuiltinPluginKind . 614
DomainParticipantFactory . 708
Duration t . 776
DynamicDataInfo . 844
DynamicDataMemberInfo . 846
DynamicDataProperty t . 849
DynamicDataTypeProperty t . 883
DynamicDataTypeSerializationProperty t 885
EndpointGroup t . 909
EndpointGroupSeq . 911
Entity . 912

DomainParticipant . 629
DomainEntity . 628

DataWriter . 538
DynamicDataWriter . 893
BytesDataWriter . 424
KeyedBytesDataWriter . 1106
KeyedStringDataWriter . 1133
StringDataWriter . 1468
FooDataWriter . 1021

Publisher . 1277
DataReader . 473

DynamicDataReader . 851
BytesDataReader . 420
KeyedBytesDataReader . 1098
KeyedStringDataReader . 1125
StringDataReader . 1465
FooDataReader . 958

Subscriber . 1478
Topic . 1545

EnumMember . 928
FlowController . 942
FlowControllerProperty t . 946
FlowControllerTokenBucketProperty t 951
Foo . 955
FooDataReader . 988
FooDataWriter . 1040
FooTypeSupport . 1060
FooTypeSupport . 1063
GuardCondition . 1066
GUID t . 1069

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

16 Class Index

InconsistentTopicStatus . 1077
InetAddressSeq . 1079
InstanceHandleSeq . 1083
InstanceStateKind . 1086
LibraryVersion t . 1150
Listener . 1154

DataWriterListener . 566
DataWriterAdapter . 560

PublisherAdapter . 1301
PublisherListener . 1302

DomainParticipantListener 734
DomainParticipantAdapter 703

PublisherAdapter . 1301
DataReaderListener . 501

DataReaderAdapter . 497
SubscriberAdapter . 1503

DomainParticipantAdapter 703
SubscriberListener . 1504

DomainParticipantListener 734
SubscriberAdapter . 1503

TopicListener . 1564
DomainParticipantListener . 734
TopicAdapter . 1550

EntityHowTo.MyEntityListener . 922
LivelinessChangedStatus . 1159
LivelinessLostStatus . 1162
Locator t . 1174
LocatorFilter t . 1178
LocatorFilterSeq . 1183
LocatorSeq . 1184
Logger . 1187
ObjectHolder . 1211
OfferedDeadlineMissedStatus . 1212
OfferedIncompatibleQosStatus . 1214
ParticipantBuiltinTopicData . 1227
ParticipantBuiltinTopicDataDataReader 1230
ParticipantBuiltinTopicDataSeq . 1231
PRIVATE MEMBER . 1244
ProductVersion t . 1245
Property t . 1250
PropertyQosPolicyHelper . 1255
PropertySeq . 1259
ProtocolVersion t . 1260
PUBLIC MEMBER . 1263
PublicationBuiltinTopicData . 1264

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

4.1 Class Hierarchy 17

PublicationBuiltinTopicDataDataReader 1271
PublicationBuiltinTopicDataSeq . 1272
PublicationMatchedStatus . 1274
PublisherSeq . 1306
Qos . 1313

DomainParticipantFactoryQos . 732
DomainParticipantQos . 736
DataWriterQos . 588
PublisherQos . 1303
DataReaderQos . 518
SubscriberQos . 1506
TopicQos . 1566

QosPolicy . 1314
AsynchronousPublisherQosPolicy 387
AvailabilityQosPolicy . 392
BatchQosPolicy . 401
DatabaseQosPolicy . 468
DataReaderProtocolQosPolicy . 504
DataReaderResourceLimitsQosPolicy 524
DataWriterProtocolQosPolicy . 571
DataWriterResourceLimitsQosPolicy 598
DeadlineQosPolicy . 604
DestinationOrderQosPolicy . 607
DiscoveryConfigQosPolicy . 615
DiscoveryQosPolicy . 624
DomainParticipantResourceLimitsQosPolicy 741
DurabilityQosPolicy . 765
DurabilityServiceQosPolicy . 773
EntityFactoryQosPolicy . 919
EntityNameQosPolicy . 923
EventQosPolicy . 930
ExclusiveAreaQosPolicy . 933
GroupDataQosPolicy . 1064
HistoryQosPolicy . 1071
LatencyBudgetQosPolicy . 1148
LifespanQosPolicy . 1152
LivelinessQosPolicy . 1164
LocatorFilterQosPolicy . 1181
LoggingQosPolicy . 1190
MultiChannelQosPolicy . 1205
OwnershipQosPolicy . 1216
OwnershipStrengthQosPolicy . 1225
PartitionQosPolicy . 1233
PresentationQosPolicy . 1237
ProfileQosPolicy . 1247

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

18 Class Index

PropertyQosPolicy . 1252
PublishModeQosPolicy . 1308
ReaderDataLifecycleQosPolicy . 1328
ReceiverPoolQosPolicy . 1331
ReliabilityQosPolicy . 1336
ResourceLimitsQosPolicy . 1356
SystemResourceLimitsQosPolicy 1524
TimeBasedFilterQosPolicy . 1541
TopicDataQosPolicy . 1559
TransportBuiltinQosPolicy . 1580
TransportMulticastMappingQosPolicy 1587
TransportMulticastQosPolicy . 1590
TransportPriorityQosPolicy . 1598
TransportSelectionQosPolicy . 1600
TransportUnicastQosPolicy . 1605
TypeSupportQosPolicy . 1652
UserDataQosPolicy . 1680
WireProtocolQosPolicy . 1709
WriterDataLifecycleQosPolicy . 1722

QosPolicyCount . 1315
QosPolicyCountSeq . 1317
ReliableReaderActivityChangedStatus 1342
ReliableWriterCacheChangedStatus 1345
ReliableWriterCacheEventCount . 1349
RequestedDeadlineMissedStatus . 1353
RequestedIncompatibleQosStatus . 1354
RETCODE ERROR . 1364

RETCODE ALREADY DELETED 1362
RETCODE BAD PARAMETER 1363
RETCODE ILLEGAL OPERATION 1365
RETCODE IMMUTABLE POLICY 1366
RETCODE INCONSISTENT POLICY 1367
RETCODE NO DATA . 1368
RETCODE NOT ENABLED . 1369
RETCODE OUT OF RESOURCES 1370
RETCODE PRECONDITION NOT MET 1371
RETCODE TIMEOUT . 1372
RETCODE UNSUPPORTED . 1373

RtpsReliableReaderProtocol t . 1374
RtpsReliableWriterProtocol t . 1378
RtpsReservedPortKind . 1394
RtpsWellKnownPorts t . 1396
SampleIdentity t . 1402
SampleLostStatus . 1415
SampleRejectedStatus . 1422

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

4.1 Class Hierarchy 19

SampleStateKind . 1430
Sequence . 1432

DynamicDataSeq . 881
SampleInfoSeq . 1414
FooSeq . 1056
BytesSeq . 434
KeyedBytesSeq . 1116
KeyedStringSeq . 1141
AbstractPrimitiveSequence . 377
AbstractSequence . 382

AbstractPrimitiveSequence . 377
LoanableSequence . 1170

SampleInfoSeq . 1414
FooSeq . 1056
BytesSeq . 434
KeyedBytesSeq . 1116
KeyedStringSeq . 1141
FooSeq . 1058

FooSeq . 1058
SequenceNumber t . 1435
StatusKind . 1455
StructMember . 1476
SubscriberSeq . 1508
SubscriptionBuiltinTopicData . 1510
SubscriptionBuiltinTopicDataDataReader 1517
SubscriptionBuiltinTopicDataSeq . 1518
SubscriptionMatchedStatus . 1520
SystemException . 1523

BAD PARAM . 396
BAD TYPECODE . 397

ThreadSettings t . 1531
ThreadSettingsKind . 1536
Time t . 1538
TopicBuiltinTopicData . 1552
TopicBuiltinTopicDataDataReader . 1556
TopicBuiltinTopicDataSeq . 1557
TopicDescription . 1561

ContentFilteredTopic . 458
MultiTopic . 1208
Topic . 1545

Transport . 1569
ShmemTransport . 1439
UDPv4Transport . 1654
UDPv6Transport . 1666

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

20 Class Index

Transport.Property t . 1570
ShmemTransport.Property t . 1443
UDPv4Transport.Property t . 1658
UDPv6Transport.Property t . 1670

TransportBuiltinKind . 1578
TransportMulticastMapping t . 1582
TransportMulticastMappingFunction t 1585
TransportMulticastMappingSeq . 1589
TransportMulticastSettings t . 1594
TransportMulticastSettingsSeq . 1597
TransportSupport . 1602
TransportUnicastSettings t . 1608
TransportUnicastSettingsSeq . 1610
TypeCode . 1611
TypeCodeFactory . 1641
TypeSupport . 1651

DynamicDataTypeSupport . 887
BytesTypeSupport . 437
KeyedBytesTypeSupport . 1119
KeyedStringTypeSupport . 1144
StringTypeSupport . 1473

Union . 1677
UnionMember . 1678
UserException . 1682

BadKind . 398
BadMemberId . 399
BadMemberName . 400
Bounds . 411

ValueMember . 1683
VendorId t . 1685
Version . 1687
ViewStateKind . 1689
VM ABSTRACT . 1691
VM CUSTOM . 1692
VM NONE . 1693
VM TRUNCATABLE . 1694
WaitSet . 1695
WaitSetProperty t . 1705
WriteParams t . 1719

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

Chapter 5

Class Index

5.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

AbstractBuiltinTopicDataTypeSupport 375
AbstractPrimitiveSequence . 377
AbstractSequence (Abstract sequence) 382
AllocationSettings t (Resource allocation settings) 385
AsynchronousPublisherQosPolicy (Configures the mechanism

that sends user data in an external middleware thread) . . . 387
AvailabilityQosPolicy (Configures the availability of data) 392
BAD PARAM (The exception BadKind (p. 398) is thrown when

an inappropriate operation is invoked on a TypeCode object) 396
BAD TYPECODE (The exception BadKind (p. 398) is thrown

when an inappropriate operation is invoked on a TypeCode
object) . 397

BadKind (The exception BadKind (p. 398) is thrown when an inap-
propriate operation is invoked on a TypeCode object) 398

BadMemberId (The specified TypeCode member ID is invalid) . . 399
BadMemberName (The specified TypeCode member name is invalid)400
BatchQosPolicy (Used to configure batching of multiple samples into

a single network packet in order to increase throughput for
small samples) . 401

BooleanSeq (Instantiates com.rti.dds.util.Sequence (p. 1432)
< boolean >) . 405

Bounds (A user exception thrown when a parameter is not within the
legal bounds) . 411

BuiltinTopicKey t (The key type of the built-in topic (p. 350) types)412

22 Class Index

BuiltinTopicReaderResourceLimits t (Built-in topic (p. 350)
reader’s resource limits) . 414

Bytes (Built-in type consisting of a variable-length array of opaque
bytes) . 417

BytesDataReader (<<interface>> (p. 271) Instantiates
DataReader < com.rti.dds.type.builtin.Bytes (p. 417) >) 420

BytesDataWriter (<<interface>> (p. 271) Instantiates
DataWriter < com.rti.dds.type.builtin.Bytes (p. 417) >) 424

ByteSeq (Instantiates com.rti.dds.util.Sequence (p. 1432) <
byte >) . 428

BytesSeq (Instantiates com.rti.dds.util.Sequence (p. 1432) <
com.rti.dds.type.builtin.Bytes (p. 417) >) 434

BytesTypeSupport (<<interface>> (p. 271)
com.rti.dds.type.builtin.Bytes (p. 417) type support
) . 437

ChannelSettings t (Type used to configure the properties of a chan-
nel) . 441

ChannelSettingsSeq (Declares IDL sequence<
com.rti.dds.infrastructure.ChannelSettings t (p. 441)
>) . 444

CharSeq (Instantiates com.rti.dds.util.Sequence (p. 1432) <
char >) . 445

Condition (<<interface>> (p. 271) Root class for
all the conditions that may be attached to a
com.rti.dds.infrastructure.WaitSet (p. 1695)) 451

ConditionSeq (Instantiates com.rti.dds.util.Sequence (p. 1432)
< com.rti.dds.infrastructure.Condition (p. 451) >) . . . 452

ContentFilter (<<interface>> (p. 271) Inter-
face to be used by a custom filter of a
com.rti.dds.topic.ContentFilteredTopic (p. 458)) 454

ContentFilteredTopic (<<interface>> (p. 271) Specialization of
com.rti.dds.topic.TopicDescription (p. 1561) that allows
for content-based subscriptions) 458

ContentFilterProperty t (<<eXtension>> (p. 270) Type used
to provide all the required information to enable content fil-
tering) . 463

Cookie t (<<eXtension>> (p. 270) Sequence of bytes identifying
a written data sample, used when writing with parameters) . 465

Copyable (<<eXtension>> (p. 270) <<interface>> (p. 271) In-
terface for all the user-defined data type classes that support
copy) . 466

DatabaseQosPolicy (Various threads and resource limits settings
used by RTI Connext to control its internal database) 468

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

5.1 Class List 23

DataReader (<<interface>> (p. 271) Allows the application to:
(1) declare the data it wishes to receive (i.e. make a sub-
scription (p. 343)) and (2) access the data received by the
attached com.rti.dds.subscription.Subscriber (p. 1478)) 473

DataReaderAdapter (<<eXtension>> (p. 270) A listener
adapter in the spirit of the Java AWT listener adapters. (The
Adapter provides empty implementations for the listener
methods)) . 497

DataReaderCacheStatus (<<eXtension>> (p. 270) The status
of the reader’s cache) . 500

DataReaderListener (<<interface>> (p. 271)
com.rti.dds.infrastructure.Listener (p. 1154) for reader
status) . 501

DataReaderProtocolQosPolicy (Along with
com.rti.dds.infrastructure.WireProtocolQosPolicy
(p. 1709) and com.rti.dds.infrastructure.DataWriterProtocolQosPolicy
(p. 571), this QoS policy configures the DDS on-the-network
protocol (RTPS)) . 504

DataReaderProtocolStatus (<<eXtension>> (p. 270) The sta-
tus of a reader’s internal protocol related metrics, like the
number of samples received, filtered, rejected; and status of
wire protocol traffic) . 508

DataReaderQos (QoS policies supported by a
com.rti.dds.subscription.DataReader (p. 473) entity
) . 518

DataReaderResourceLimitsQosPolicy (Various settings that
configure how a com.rti.dds.subscription.DataReader
(p. 473) allocates and uses physical memory for internal re-
sources) . 524

DataReaderSeq (Declares IDL sequence <
com.rti.dds.subscription.DataReader (p. 473) >) 536

DataWriter (<<interface>> (p. 271) Allows an application to
set the value of the data to be published under a given
com.rti.dds.topic.Topic (p. 1545)) 538

DataWriterAdapter (<<eXtension>> (p. 270) A listener adapter
in the spirit of the Java AWT listener adapters. (The Adapter
provides empty implementations for the listener methods or
functions.)) . 560

DataWriterCacheStatus (<<eXtension>> (p. 270) The status of
the writer’s cache) . 565

DataWriterListener (<<interface>> (p. 271)
com.rti.dds.infrastructure.Listener (p. 1154) for writer
status) . 566

DataWriterProtocolQosPolicy (Protocol that applies only to
com.rti.dds.publication.DataWriter (p. 538) instances) . 571

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

24 Class Index

DataWriterProtocolStatus (<<eXtension>> (p. 270) The sta-
tus of a writer’s internal protocol related metrics, like the
number of samples pushed, pulled, filtered; and status of wire
protocol traffic) . 576

DataWriterQos (QoS policies supported by a
com.rti.dds.publication.DataWriter (p. 538) entity
) . 588

DataWriterResourceLimitsInstanceReplacementKind (Sets
the kinds of instances that can be replaced when instance
resource limits are reached) 594

DataWriterResourceLimitsQosPolicy (Various settings that con-
figure how a com.rti.dds.publication.DataWriter (p. 538)
allocates and uses physical memory for internal resources) . 598

DeadlineQosPolicy (Expresses the maximum duration (deadline)
within which an instance is expected to be updated) 604

DestinationOrderQosPolicy (Controls how the mid-
dleware will deal with data sent by multiple
com.rti.dds.publication.DataWriter (p. 538) en-
tities for the same instance of data (i.e., same
com.rti.dds.topic.Topic (p. 1545) and key)) 607

DestinationOrderQosPolicyKind (Kinds of destination order) . . 610
DiscoveryBuiltinReaderFragmentationResourceLimits t . . . 612
DiscoveryConfigBuiltinPluginKind (Built-in discovery plugins

that can be used) . 614
DiscoveryConfigQosPolicy (Settings for discovery configuration) . 615
DiscoveryPluginPromiscuityKind (<<eXtension>> (p. 270)

Type used to indicate promiscuity mode of the discovery plu-
gin) . 623

DiscoveryQosPolicy (Configures the mechanism used by the middle-
ware to automatically discover and connect with new remote
applications) . 624

DomainEntity (<<interface>> (p. 271) Abstract
base class for all DDS entities except for the
com.rti.dds.domain.DomainParticipant (p. 629)) 628

DomainParticipant (<<interface>> (p. 271) Container for all
com.rti.dds.infrastructure.DomainEntity (p. 628) ob-
jects) . 629

DomainParticipantAdapter (<<eXtension>> (p. 270) A lis-
tener adapter in the spirit of the Java AWT listener adapters.
(The Adapter provides empty implementations for the listener
methods)) . 703

DomainParticipantFactory (<<singleton>> (p. 271)
<<interface>> (p. 271) Allows creation and destruc-
tion of com.rti.dds.domain.DomainParticipant (p. 629)
objects) . 708

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

5.1 Class List 25

DomainParticipantFactoryQos (QoS policies supported by
a com.rti.dds.domain.DomainParticipantFactory
(p. 708)) . 732

DomainParticipantListener (<<interface>> (p. 271) Listener
for participant status) . 734

DomainParticipantQos (QoS policies supported by a
com.rti.dds.domain.DomainParticipant (p. 629) en-
tity) . 736

DomainParticipantResourceLimitsQosPolicy
(Various settings that configure how a
com.rti.dds.domain.DomainParticipant (p. 629) al-
locates and uses physical memory for internal resources,
including the maximum sizes of various properties) 741

DoubleSeq (Instantiates com.rti.dds.util.Sequence (p. 1432) <
double >) . 759

DurabilityQosPolicy (This QoS policy specifies whether or not
RTI Connext will store and deliver previously published data
samples to new com.rti.dds.subscription.DataReader
(p. 473) entities that join the network later) 765

DurabilityQosPolicyKind (Kinds of durability) 770
DurabilityServiceQosPolicy (Various settings to con-

figure the external RTI Persistence Service
used by RTI Connext for DataWriters with a
com.rti.dds.infrastructure.DurabilityQosPolicy
(p. 765) setting of DurabilityQosPoli-
cyKind.PERSISTENT DURABILITY QOS (p. 772)
or DurabilityQosPolicyKind.TRANSIENT -
DURABILITY QOS (p. 771)) 773

Duration t (Type for duration representation) 776
DynamicData (A sample of any complex data type, which can be

inspected and manipulated reflectively) 780
DynamicDataInfo (A descriptor for a

com.rti.dds.dynamicdata.DynamicData (p. 780) ob-
ject) . 844

DynamicDataMemberInfo (A descriptor for a single member (i.e.
field) of dynamically defined data type) 846

DynamicDataProperty t (A collection of attributes used to config-
ure com.rti.dds.dynamicdata.DynamicData (p. 780) ob-
jects) . 849

DynamicDataReader (Reads (subscribes to) objects of type
com.rti.dds.dynamicdata.DynamicData (p. 780)) 851

DynamicDataSeq (An ordered collection of
com.rti.dds.dynamicdata.DynamicData (p. 780) el-
ements) . 881

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

26 Class Index

DynamicDataTypeProperty t (A collection of attributes used
to configure com.rti.dds.dynamicdata.DynamicData
(p. 780) objects) . 883

DynamicDataTypeSerializationProperty t (Properties that gov-
ern how data of a certain type will be serialized on the network
) . 885

DynamicDataTypeSupport (A factory for register-
ing a dynamically defined type and creating
com.rti.dds.dynamicdata.DynamicData (p. 780) ob-
jects) . 887

DynamicDataWriter (Writes (publishes) objects of type
com.rti.dds.dynamicdata.DynamicData (p. 780)) 893

EndpointGroup t (Specifies a group of endpoints that can be collec-
tively identified by a name and satisfied by a quorum) 909

EndpointGroupSeq (A sequence of
com.rti.dds.infrastructure.EndpointGroup t (p. 909)) . 911

Entity (<<interface>> (p. 271) Abstract base class for all the DDS
objects that support QoS policies, a listener, and a status
condition) . 912

EntityFactoryQosPolicy (A QoS policy for all
com.rti.dds.infrastructure.Entity (p. 912) types
that can act as factories for one or more other
com.rti.dds.infrastructure.Entity (p. 912) types) 919

EntityHowTo.MyEntityListener 922
EntityNameQosPolicy (Assigns a name and a role name to

a com.rti.dds.domain.DomainParticipant (p. 629),
com.rti.dds.publication.DataWriter (p. 538) or
com.rti.dds.subscription.DataReader (p. 473). These
names will be visible during the discovery process and in RTI
tools to help you visualize and debug your system) 923

Enum (A superclass for all type-safe enumerated types) 925
EnumMember (A description of a member of an enumeration) . . . 928
EventQosPolicy (Settings for event) 930
ExclusiveAreaQosPolicy (Configures multi-thread concurrency and

deadlock prevention capabilities) 933
FloatSeq (Instantiates com.rti.dds.util.Sequence (p. 1432) <

float >) . 936
FlowController (<<interface>> (p. 271) A flow controller

is the object responsible for shaping the network
traffic by determining when attached asynchronous
com.rti.dds.publication.DataWriter (p. 538) instances
are allowed to write data) . 942

FlowControllerProperty t (Determines the flow control charac-
teristics of the com.rti.dds.publication.FlowController
(p. 942)) . 946

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

5.1 Class List 27

FlowControllerSchedulingPolicy (Kinds of flow controller schedul-
ing policy) . 948

FlowControllerTokenBucketProperty t
(Com.rti.dds.publication.FlowController uses the popu-
lar token bucket approach for open loop network flow control.
The flow control characteristics are determined by the token
bucket properties) . 951

Foo (A representative user-defined data type) 955
Foo (A representative user-defined data type) 956
FooDataReader (<<interface>> (p. 271) <<generic>>

(p. 271) User data type-specific data reader) 958
FooDataReader (<<interface>> (p. 271) <<generic>>

(p. 271) User data type-specific data reader) 988
FooDataWriter (<<interface>> (p. 271) <<generic>> (p. 271)

User data type specific data writer) 1021
FooDataWriter (<<interface>> (p. 271) <<generic>> (p. 271)

User data type specific data writer) 1040
FooSeq (<<interface>> (p. 271) <<generic>> (p. 271) A type-

safe, ordered collection of elements. The type of these ele-
ments is referred to in this documentation as Foo (p. 955)
) . 1056

FooSeq (<<interface>> (p. 271) <<generic>> (p. 271) A type-
safe, ordered collection of elements. The type of these ele-
ments is referred to in this documentation as Foo (p. 956)
) . 1058

FooTypeSupport (<<interface>> (p. 271) <<generic>>
(p. 271) User data type specific interface) 1060

FooTypeSupport . 1063
GroupDataQosPolicy (Attaches a buffer of opaque data that is dis-

tributed by means of Built-in Topics (p. 153) during discov-
ery) . 1064

GuardCondition (<<interface>> (p. 271) A specific
com.rti.dds.infrastructure.Condition (p. 451) whose
trigger value is completely under the control of the
application) . 1066

GUID t (Type for GUID (Global Unique Identifier) representation) 1069
HistoryQosPolicy (Specifies the behavior of RTI Connext in the case

where the value of a sample changes (one or more times) before
it can be successfully communicated to one or more existing
subscribers) . 1071

HistoryQosPolicyKind (Kinds of history) 1075
InconsistentTopicStatus (StatusKind.INCONSISTENT TOPIC -

STATUS) . 1077
InetAddressSeq (Declares IDL sequence< java.net.InetAddress >) 1079
InstanceHandle t (Type definition for an instance handle) 1080

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

28 Class Index

InstanceHandleSeq (Instantiates com.rti.dds.util.Sequence
(p. 1432) < com.rti.dds.infrastructure.InstanceHandle -
t (p. 1080) >) . 1083

InstanceStateKind (Indicates is the samples are from a live
com.rti.dds.publication.DataWriter (p. 538) or not) . . 1086

IntSeq (Instantiates com.rti.dds.util.Sequence (p. 1432) < int >)1089
KeyedBytes (Built-in type consisting of a variable-length array of

opaque bytes and a string that is the key) 1095
KeyedBytesDataReader (<<interface>> (p. 271) Instantiates

DataReader < com.rti.dds.type.builtin.KeyedBytes
(p. 1095) >) . 1098

KeyedBytesDataWriter (<<interface>> (p. 271) Instantiates
DataWriter < com.rti.dds.type.builtin.KeyedBytes
(p. 1095) >) . 1106

KeyedBytesSeq (Instantiates com.rti.dds.util.Sequence
(p. 1432) < com.rti.dds.type.builtin.KeyedBytes
(p. 1095) >) . 1116

KeyedBytesTypeSupport (<<interface>> (p. 271)
com.rti.dds.type.builtin.KeyedBytes (p. 1095) type
support) . 1119

KeyedString (Keyed string built-in type) 1123
KeyedStringDataReader (<<interface>> (p. 271) Instantiates

DataReader < com.rti.dds.type.builtin.KeyedString
(p. 1123) >) . 1125

KeyedStringDataWriter (<<interface>> (p. 271) Instantiates
DataWriter < com.rti.dds.type.builtin.KeyedString
(p. 1123) >) . 1133

KeyedStringSeq (Instantiates com.rti.dds.util.Sequence
(p. 1432) < com.rti.dds.type.builtin.KeyedString
(p. 1123) >) . 1141

KeyedStringTypeSupport (<<interface>> (p. 271) Keyed
string type support) . 1144

LatencyBudgetQosPolicy (Provides a hint as to the maximum ac-
ceptable delay from the time the data is written to the time
it is received by the subscribing applications) 1148

LibraryVersion t (The version of a single library shipped as part of
an RTI Connext distribution) 1150

LifespanQosPolicy (Specifies how long the data written by the
com.rti.dds.publication.DataWriter (p. 538) is consid-
ered valid) . 1152

Listener (<<interface>> (p. 271) Abstract base class for all Lis-
tener (p. 1154) interfaces) 1154

LivelinessChangedStatus (StatusKind.LIVELINESS CHANGED -
STATUS) . 1159

LivelinessLostStatus (StatusKind.LIVELINESS LOST STATUS) . 1162

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

5.1 Class List 29

LivelinessQosPolicy (Specifies and configures the mechanism that
allows com.rti.dds.subscription.DataReader (p. 473) en-
tities to detect when com.rti.dds.publication.DataWriter
(p. 538) entities become disconnected or ”dead.”) 1164

LivelinessQosPolicyKind (Kinds of liveliness) 1168
LoanableSequence (A sequence capable of storing its elements di-

rectly or taking out a loan on them from an internal middle-
ware store) . 1170

Locator t (<<eXtension>> (p. 270) Type used to represent the
addressing information needed to send a message to an RTPS
Endpoint using one of the supported transports) 1174

LocatorFilter t (Specifies the configuration of an individual channel
within a MultiChannel DataWriter) 1178

LocatorFilterQosPolicy (The QoS policy used to report the
configuration of a MultiChannel DataWriter as part of
builtin.PublicationBuiltinTopicData) 1181

LocatorFilterSeq (Declares IDL sequence<
com.rti.dds.infrastructure.LocatorFilter t (p. 1178)
>) . 1183

LocatorSeq (Declares IDL sequence <
com.rti.dds.infrastructure.Locator t (p. 1174) >) 1184

LogCategory (Categories of logged messages) 1185
Logger (<<interface>> (p. 271) The singleton type used to config-

ure RTI Connext logging) . 1187
LoggingQosPolicy (Configures the RTI Connext logging facility) . 1190
LogPrintFormat (The format used to output RTI Connext diagnos-

tic information) . 1192
LogVerbosity (The verbosities at which RTI Connext diagnostic in-

formation is logged) . 1195
LongDoubleSeq (Instantiates com.rti.dds.util.Sequence

(p. 1432) < com.rti.dds.infrastructure.LongDouble >
) . 1197

LongSeq (Instantiates com.rti.dds.util.Sequence (p. 1432) <
long >) . 1199

MultiChannelQosPolicy (Configures the ability of a DataWriter to
send data on different multicast groups (addresses) based on
the value of the data) . 1205

MultiTopic ([Not supported (optional)]
<<interface>> (p. 271) A specialization of
com.rti.dds.topic.TopicDescription (p. 1561) that
allows subscriptions that combine/filter/rearrange data
coming from several topics) 1208

ObjectHolder (<<eXtension>> (p. 270) Holder of object instance)1211
OfferedDeadlineMissedStatus (StatusKind.OFFERED -

DEADLINE MISSED STATUS) 1212

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

30 Class Index

OfferedIncompatibleQosStatus (StatusKind.OFFERED -
INCOMPATIBLE QOS STATUS) 1214

OwnershipQosPolicy (Specifies whether it is allowed for multiple
com.rti.dds.publication.DataWriter (p. 538) (s) to write
the same instance of the data and if so, how these modifica-
tions should be arbitrated) 1216

OwnershipQosPolicyKind (Kinds of ownership) 1223
OwnershipStrengthQosPolicy (Specifies the value of

the strength used to arbitrate among multiple
com.rti.dds.publication.DataWriter (p. 538) objects
that attempt to modify the same instance of a data type
(identified by com.rti.dds.topic.Topic (p. 1545) + key)) . 1225

ParticipantBuiltinTopicData (Entry created when a DomainPar-
ticipant (p. 629) object is discovered) 1227

ParticipantBuiltinTopicDataDataReader (Instantiates
DataReader < builtin.ParticipantBuiltinTopicData
(p. 1227) >) . 1230

ParticipantBuiltinTopicDataSeq (Instantiates
com.rti.dds.util.Sequence (p. 1432) <
builtin.ParticipantBuiltinTopicData (p. 1227) >) 1231

ParticipantBuiltinTopicDataTypeSupport (Instantiates
TypeSupport < builtin.ParticipantBuiltinTopicData
(p. 1227) >) . 1232

PartitionQosPolicy (Set of strings that introduces a
logical partition among the topics visible by a
com.rti.dds.publication.Publisher (p. 1277) and a
com.rti.dds.subscription.Subscriber (p. 1478)) 1233

PresentationQosPolicy (Specifies how the samples representing
changes to data instances are presented to a subscribing ap-
plication) . 1237

PresentationQosPolicyAccessScopeKind (Kinds of presentation
”access scope”) . 1242

PRIVATE MEMBER (Constant used to indicate that a value type
member is private) . 1244

ProductVersion t (<<eXtension>> (p. 270) Type used to repre-
sent the current version of RTI Connext) 1245

ProfileQosPolicy (Configures the way that XML documents contain-
ing QoS profiles are loaded by RTI Connext) 1247

Property t (Properties are name/value pairs objects) 1250
PropertyQosPolicy (Stores name/value(string) pairs that can be

used to configure certain parameters of RTI Connext that are
not exposed through formal QoS policies. Can also be used
to store and propagate application-specific name/value pairs
that can be retrieved by user code during discovery) 1252

PropertyQosPolicyHelper (Policy Helpers which facilitate manage-
ment of the properties in the input policy) 1255

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

5.1 Class List 31

PropertySeq (Declares IDL sequence <
com.rti.dds.infrastructure.Property t (p. 1250) >
) . 1259

ProtocolVersion t (<<eXtension>> (p. 270) Type used to repre-
sent the version of the RTPS protocol) 1260

PUBLIC MEMBER (Constant used to indicate that a value type
member is public) . 1263

PublicationBuiltinTopicData (Entry created when a
com.rti.dds.publication.DataWriter (p. 538) is dis-
covered in association with its Publisher (p. 1277)) 1264

PublicationBuiltinTopicDataDataReader (Instantiates
DataReader < builtin.PublicationBuiltinTopicData
(p. 1264) >) . 1271

PublicationBuiltinTopicDataSeq (Instantiates
com.rti.dds.util.Sequence (p. 1432) <
builtin.PublicationBuiltinTopicData (p. 1264) >) 1272

PublicationBuiltinTopicDataTypeSupport (Instantiates
TypeSupport < builtin.PublicationBuiltinTopicData
(p. 1264) >) . 1273

PublicationMatchedStatus (StatusKind.PUBLICATION -
MATCHED STATUS) . 1274

Publisher (<<interface>> (p. 271) A publisher is the object re-
sponsible for the actual dissemination of publications) 1277

PublisherAdapter (<<eXtension>> (p. 270) A listener adapter in
the spirit of the Java AWT listener adapters. (The Adapter
provides empty implementations for the listener methods)) . 1301

PublisherListener (<<interface>> (p. 271)
com.rti.dds.infrastructure.Listener (p. 1154) for
com.rti.dds.publication.Publisher (p. 1277) status
) . 1302

PublisherQos (QoS policies supported by a
com.rti.dds.publication.Publisher (p. 1277) entity
) . 1303

PublisherSeq (Declares IDL sequence <
com.rti.dds.publication.Publisher (p. 1277) >) 1306

PublishModeQosPolicy (Specifies how RTI Connext sends applica-
tion data on the network. This QoS policy can be used to tell
RTI Connext to use its own thread to send data, instead of
the user thread) . 1308

PublishModeQosPolicyKind (Kinds of publishing mode) 1311
Qos (An abstract base class for all QoS types) 1313
QosPolicy (The base class for all QoS policies) 1314
QosPolicyCount (Type to hold a counter for a

com.rti.dds.infrastructure.QosPolicyId t (p. 1318)
) . 1315

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

32 Class Index

QosPolicyCountSeq (Declares IDL sequence <
com.rti.dds.infrastructure.QosPolicyCount (p. 1315) >) 1317

QosPolicyId t (Type to identify QosPolicies) 1318
QueryCondition (<<interface>> (p. 271) These are specialised

com.rti.dds.subscription.ReadCondition (p. 1326) ob-
jects that allow the application to also specify a filter on the
locally available data) . 1324

ReadCondition (<<interface>> (p. 271) Conditions specifi-
cally dedicated to read operations and attached to one
com.rti.dds.subscription.DataReader (p. 473)) 1326

ReaderDataLifecycleQosPolicy (Controls how a DataReader man-
ages the lifecycle of the data that it has received) 1328

ReceiverPoolQosPolicy (Configures threads used by RTI Connext
to receive and process data from transports (for example,
UDP sockets)) . 1331

RefilterQosPolicyKind (<<eXtension>> (p. 270) Kinds of Re-
filtering) . 1334

ReliabilityQosPolicy (Indicates the level of reliability of-
fered/requested by RTI Connext) 1336

ReliabilityQosPolicyKind (Kinds of reliability) 1340
ReliableReaderActivityChangedStatus (<<eXtension>>

(p. 270) Describes the activity (i.e. are acknowledgements
forthcoming) of reliable readers matched to a reliable writer) 1342

ReliableWriterCacheChangedStatus (<<eXtension>>
(p. 270) A summary of the state of a data writer’s cache of
unacknowledged samples written) 1345

ReliableWriterCacheEventCount (<<eXtension>> (p. 270)
The number of times the number of unacknowledged sam-
ples in the cache of a reliable writer hit a certain well-defined
threshold) . 1349

RemoteParticipantPurgeKind (Available behaviors for halting
communication with remote participants (and their contained
entities) with which discovery communication has been lost) 1350

RequestedDeadlineMissedStatus (StatusKind.REQUESTED -
DEADLINE MISSED STATUS) 1353

RequestedIncompatibleQosStatus (StatusKind.REQUESTED -
INCOMPATIBLE QOS STATUS) 1354

ResourceLimitsQosPolicy (Controls the amount of physical mem-
ory allocated for DDS entities, if dynamic allocations are
allowed, and how they occur. Also controls memory usage
among different instance values for keyed topics) 1356

RETCODE ALREADY DELETED (The object target of this op-
eration has already been deleted) 1362

RETCODE BAD PARAMETER (Illegal parameter value) . . . 1363
RETCODE ERROR (Generic, unspecified error) 1364

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

5.1 Class List 33

RETCODE ILLEGAL OPERATION (The operation was called
under improper circumstances) 1365

RETCODE IMMUTABLE POLICY (Application attempted to
modify an immutable QoS policy) 1366

RETCODE INCONSISTENT POLICY (Application specified a
set of QoS policies that are not consistent with each other) . 1367

RETCODE NO DATA (Indicates a transient situation where the
operation did not return any data but there is no inherent
error) . 1368

RETCODE NOT ENABLED (Operation invoked on a
com.rti.dds.infrastructure.Entity (p. 912) that is not yet
enabled) . 1369

RETCODE OUT OF RESOURCES (RTI Connext ran out of the
resources needed to complete the operation) 1370

RETCODE PRECONDITION NOT MET (A pre-condition for
the operation was not met) 1371

RETCODE TIMEOUT (The operation timed out) 1372
RETCODE UNSUPPORTED (Unsupported operation. Can only

returned by operations that are unsupported) 1373
RtpsReliableReaderProtocol t (Qos (p. 1313) related to reliable

reader protocol defined in RTPS) 1374
RtpsReliableWriterProtocol t (QoS related to the reliable writer

protocol defined in RTPS) 1378
RtpsReservedPortKind (RTPS reserved port kind, used to identify

the types of ports that can be reserved on domain (p. 317)
participant enable) . 1394

RtpsWellKnownPorts t (RTPS well-known port mapping configu-
ration) . 1396

SampleIdentity t (Type definition for an Sample Identity) 1402
SampleInfo (Information that accompanies each sample that is read

or taken) . 1404
SampleInfoSeq (Declares IDL sequence <

com.rti.dds.subscription.SampleInfo (p. 1404) >) 1414
SampleLostStatus (StatusKind.SAMPLE LOST STATUS -

STATUS) . 1415
SampleLostStatusKind (Kinds of reasons why a sample was lost) . 1416
SampleRejectedStatus (StatusKind.SAMPLE REJECTED -

STATUS) . 1422
SampleRejectedStatusKind (Kinds of reasons for rejecting a sam-

ple) . 1424
SampleStateKind (Indicates whether or not a sample has ever been

read) . 1430
Sequence (<<interface>> (p. 271) <<generic>> (p. 271) A

type-safe, ordered collection of elements. The type of these
elements is referred to in this documentation as Foo) 1432

SequenceNumber t (Type for sequence number representation) . . 1435

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

34 Class Index

ShmemTransport (Built-in transport (p. 367) plug-in for inter-
process communications using shared memory) 1439

ShmemTransport.Property t (Subclass of Trans-
port.Property t (p. 1570) allowing specification of pa-
rameters that are specific to the shared-memory transport
(p. 367)) . 1443

ShortSeq (Instantiates com.rti.dds.util.Sequence (p. 1432) <
short >) . 1446

StatusCondition (<<interface>> (p. 271) A specific
com.rti.dds.infrastructure.Condition (p. 451) that
is associated with each com.rti.dds.infrastructure.Entity
(p. 912)) . 1452

StatusKind (Type for status kinds) 1455
StringDataReader (<<interface>> (p. 271) Instantiates

DataReader < String >) . 1465
StringDataWriter (<<interface>> (p. 271) Instantiates

DataWriter < String >) . 1468
StringSeq (Declares IDL sequence < String >) 1470
StringTypeSupport (<<interface>> (p. 271) String type support)1473
StructMember (A description of a member of a struct) 1476
Subscriber (<<interface>> (p. 271) A subscriber is the object re-

sponsible for actually receiving data from a subscription
(p. 343)) . 1478

SubscriberAdapter (A listener adapter in the spirit of the Java AWT
listener adapters. (The Adapter provides empty implementa-
tions for the listener methods)) 1503

SubscriberListener (<<interface>> (p. 271)
com.rti.dds.infrastructure.Listener (p. 1154) for sta-
tus about a subscriber) . 1504

SubscriberQos (QoS policies supported by a
com.rti.dds.subscription.Subscriber (p. 1478) entity
) . 1506

SubscriberSeq (Declares IDL sequence <
com.rti.dds.subscription.Subscriber (p. 1478) >) 1508

SubscriptionBuiltinTopicData (Entry created when a
com.rti.dds.subscription.DataReader (p. 473) is dis-
covered in association with its Subscriber (p. 1478)) 1510

SubscriptionBuiltinTopicDataDataReader
(Instantiates DataReader (p. 473) <
builtin.SubscriptionBuiltinTopicData (p. 1510) >
) . 1517

SubscriptionBuiltinTopicDataSeq (Instantiates
com.rti.dds.util.Sequence (p. 1432) <
builtin.SubscriptionBuiltinTopicData (p. 1510) >
) . 1518

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

5.1 Class List 35

SubscriptionBuiltinTopicDataTypeSupport (Instantiates
TypeSupport < builtin.SubscriptionBuiltinTopicData
(p. 1510) >) . 1519

SubscriptionMatchedStatus (StatusKind.SUBSCRIPTION -
MATCHED STATUS) . 1520

SystemException (System exception) 1523
SystemResourceLimitsQosPolicy (Configures

com.rti.dds.domain.DomainParticipant (p. 629)-
independent resources used by RTI Connext.
Mainly used to change the maximum number of
com.rti.dds.domain.DomainParticipant (p. 629) en-
tities that can be created within a single process (address
space)) . 1524

TCKind (Enumeration type for TypeCode (p. 1611) kinds) 1526
ThreadSettings t (The properties of a thread of execution) 1531
ThreadSettingsCpuRotationKind (Determines how

com.rti.dds.infrastructure.ThreadSettings t.cpu -
list (p. 1532) affects processor affinity for thread-related QoS
policies that apply to multiple threads) 1534

ThreadSettingsKind (A collection of flags used to configure threads
of execution) . 1536

Time t (Type for time representation) 1538
TimeBasedFilterQosPolicy (Filter that allows a

com.rti.dds.subscription.DataReader (p. 473) to specify
that it is interested only in (potentially) a subset of the values
of the data) . 1541

Topic (<<interface>> (p. 271) The most basic description of the
data to be published and subscribed) 1545

TopicAdapter (<<eXtension>> (p. 270) A listener adapter in the
spirit of the Java AWT listener adapters. (The Adapter pro-
vides empty implementations for the listener methods)) . . . 1550

TopicBuiltinTopicData (Entry created when a Topic (p. 1545) ob-
ject discovered) . 1552

TopicBuiltinTopicDataDataReader (Instantiates DataReader <
builtin.TopicBuiltinTopicData (p. 1552) >) 1556

TopicBuiltinTopicDataSeq (Instantiates
com.rti.dds.util.Sequence (p. 1432) <
builtin.TopicBuiltinTopicData (p. 1552) >) 1557

TopicBuiltinTopicDataTypeSupport (Instantiates TypeSupport
(p. 1651) < builtin.TopicBuiltinTopicData (p. 1552) >) 1558

TopicDataQosPolicy (Attaches a buffer of opaque data that is dis-
tributed by means of Built-in Topics (p. 153) during discov-
ery) . 1559

TopicDescription (Com.rti.dds.topic.Topic entity and associated el-
ements) . 1561

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

36 Class Index

TopicListener (<<interface>> (p. 271)
com.rti.dds.infrastructure.Listener (p. 1154) for
com.rti.dds.topic.Topic (p. 1545) entities) 1564

TopicQos (QoS policies supported by a com.rti.dds.topic.Topic
(p. 1545) entity) . 1566

Transport (RTI Connext’s abstract pluggable transport (p. 367) in-
terface) . 1569

Transport.Property t (Base structure that must be inherited by
derived Transport (p. 1569) Plugin classes) 1570

TransportBuiltinKind (Built-in transport kind) 1578
TransportBuiltinQosPolicy (Specifies which built-in transports are

used) . 1580
TransportMulticastMapping t (Type representing a list of multi-

cast mapping elements) . 1582
TransportMulticastMappingFunction t (Type representing an

external mapping function) 1585
TransportMulticastMappingQosPolicy (Specifies the multicast

address on which a com.rti.dds.subscription.DataReader
(p. 473) wants to receive its data. It can also spec-
ify a port number as well as a subset of the available
(at the com.rti.dds.domain.DomainParticipant (p. 629)
level) transports with which to receive the multicast data) . 1587

TransportMulticastMappingSeq (Declares IDL sequence<
com.rti.dds.infrastructure.TransportMulticastSettings -
t (p. 1594) >) . 1589

TransportMulticastQosPolicy (Specifies the multicast address on
which a com.rti.dds.subscription.DataReader (p. 473)
wants to receive its data. It can also specify a port
number as well as a subset of the available (at the
com.rti.dds.domain.DomainParticipant (p. 629) level)
transports with which to receive the multicast data) 1590

TransportMulticastQosPolicyKind (Transport Multicast Policy
Kind) . 1593

TransportMulticastSettings t (Type representing a list of multi-
cast locators) . 1594

TransportMulticastSettingsSeq (Declares IDL sequence<
com.rti.dds.infrastructure.TransportMulticastSettings -
t (p. 1594) >) . 1597

TransportPriorityQosPolicy (This QoS policy allows the applica-
tion to take advantage of transports that are capable of send-
ing messages with different priorities) 1598

TransportSelectionQosPolicy (Specifies the physical trans-
ports a com.rti.dds.publication.DataWriter (p. 538) or
com.rti.dds.subscription.DataReader (p. 473) may use
to send or receive data) . 1600

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

5.1 Class List 37

TransportSupport (<<interface>> (p. 271) The utility class used
to configure RTI Connext pluggable transports) 1602

TransportUnicastQosPolicy (Specifies a subset of transports and a
port number that can be used by an Entity (p. 912) to receive
data) . 1605

TransportUnicastSettings t (Type representing a list of unicast lo-
cators) . 1608

TransportUnicastSettingsSeq (Declares IDL sequence<
com.rti.dds.infrastructure.TransportUnicastSettings -
t (p. 1608) >) . 1610

TypeCode (The definition of a particular data type, which you can
use to inspect the name, members, and other properties of
types generated with rtiddsgen (p. 290) or to modify types
you define yourself at runtime) 1611

TypeCodeFactory (A singleton factory for creating, copying, and
deleting data type definitions dynamically) 1641

TypeSupport (<<interface>> (p. 271) An abstract marker inter-
face that has to be specialized for each concrete user data type
that will be used by the application) 1651

TypeSupportQosPolicy (Allows you to attach application-specific
values to a DataWriter or DataReader that are passed to the
serialization or deserialization routine of the associated data
type) . 1652

UDPv4Transport (Built-in transport (p. 367) plug-in using
UDP/IPv4) . 1654

UDPv4Transport.Property t (Configurable IPv4/UDP Transport-
Plugin properties) . 1658

UDPv6Transport (Built-in transport (p. 367) plug-in using
UDP/IPv6) . 1666

UDPv6Transport.Property t (Configurable IPv6/UDP Transport-
Plugin properties) . 1670

Union . 1677
UnionMember (A description of a member of a union) 1678
UserDataQosPolicy (Attaches a buffer of opaque data that is dis-

tributed by means of Built-in Topics (p. 153) during discov-
ery) . 1680

UserException (User exception) . 1682
ValueMember (A description of a member of a value type) 1683
VendorId t (<<eXtension>> (p. 270) Type used to represent the

vendor of the service implementing the RTPS protocol) . . . 1685
Version (<<interface>> (p. 271) The version of an RTI Connext

distribution) . 1687
ViewStateKind (Indicates whether or not an instance is new) . . . 1689
VM ABSTRACT (Constant used to indicate that a value type has

the abstract modifier) . 1691

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

38 Class Index

VM CUSTOM (Constant used to indicate that a value type has the
custom modifier) . 1692

VM NONE (Constant used to indicate that a value type has no mod-
ifiers) . 1693

VM TRUNCATABLE (Constant used to indicate that a value type
has the truncatable modifier) 1694

WaitSet (<<interface>> (p. 271) Allows an applica-
tion to wait until one or more of the attached
com.rti.dds.infrastructure.Condition (p. 451) objects
has a trigger value of true or else until the timeout expires) 1695

WaitSetProperty t (<<eXtension>> (p. 270) Specifies the
com.rti.dds.infrastructure.WaitSet (p. 1695) behavior for
multiple trigger events) . 1705

WcharSeq (Instantiates com.rti.dds.util.Sequence (p. 1432) <
char >) . 1707

WireProtocolQosPolicy (Specifies the wire-protocol-related at-
tributes for the com.rti.dds.domain.DomainParticipant
(p. 629)) . 1709

WireProtocolQosPolicyAutoKind (Kind of auto mechanism used
to calculate the GUID prefix) 1718

WriteParams t (<<eXtension>> (p. 270) In-
put parameters for writing with
com.rti.dds.topic.example.FooDataWriter.write w params,
com.rti.dds.topic.example.FooDataWriter.dispose w params,
com.rti.dds.topic.example.FooDataWriter.register instance -
w params, com.rti.dds.topic.example.FooDataWriter.unregister -
instance w params) . 1719

WriterDataLifecycleQosPolicy (Controls how a
com.rti.dds.publication.DataWriter (p. 538) handles
the lifecycle of the instances (keys) that it is registered to
manage) . 1722

WstringSeq (Instantiates com.rti.dds.util.Sequence (p. 1432)
< char∗ >) . 1725

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

Chapter 6

Module Documentation

6.1 ASYNCHRONOUS PUBLISHER

<<eXtension>> (p. 270) Specifies the asynchronous publishing settings of
the com.rti.dds.publication.Publisher (p. 1277) instances.

Classes

ˆ class AsynchronousPublisherQosPolicy

Configures the mechanism that sends user data in an external middleware
thread.

Variables

ˆ static final QosPolicyId t ASYNCHRONOUSPUBLISHER QOS -
POLICY ID

<<eXtension>> (p. 270) Identifier for
com.rti.dds.infrastructure.AsynchronousPublisherQosPolicy
(p. 387)

6.1.1 Detailed Description

<<eXtension>> (p. 270) Specifies the asynchronous publishing settings of
the com.rti.dds.publication.Publisher (p. 1277) instances.

40 Module Documentation

6.1.2 Variable Documentation

6.1.2.1 final QosPolicyId t ASYNCHRONOUSPUBLISHER -
QOS POLICY ID [static, inherited]

<<eXtension>> (p. 270) Identifier for com.rti.dds.infrastructure.AsynchronousPublisherQosPolicy
(p. 387)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.2 AVAILABILITY 41

6.2 AVAILABILITY

<<eXtension>> (p. 270) Configures the availability of data.

Classes

ˆ class AvailabilityQosPolicy

Configures the availability of data.

ˆ class EndpointGroup t

Specifies a group of endpoints that can be collectively identified by a name
and satisfied by a quorum.

ˆ class EndpointGroupSeq

A sequence of com.rti.dds.infrastructure.EndpointGroup t (p. 909).

Variables

ˆ static final QosPolicyId t AVAILABILITY QOS POLICY ID

<<eXtension>> (p. 270) Identifier for
com.rti.dds.infrastructure.AvailabilityQosPolicy (p. 392)

6.2.1 Detailed Description

<<eXtension>> (p. 270) Configures the availability of data.

6.2.2 Variable Documentation

6.2.2.1 final QosPolicyId t AVAILABILITY QOS POLICY ID
[static, inherited]

<<eXtension>> (p. 270) Identifier for com.rti.dds.infrastructure.AvailabilityQosPolicy
(p. 392)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

42 Module Documentation

6.3 BATCH

<<eXtension>> (p. 270) Batch QoS policy used to enable batching in
com.rti.dds.publication.DataWriter (p. 538) instances.

Classes

ˆ class BatchQosPolicy

Used to configure batching of multiple samples into a single network packet
in order to increase throughput for small samples.

Variables

ˆ static final QosPolicyId t BATCH QOS POLICY ID

<<eXtension>> (p. 270) Identifier for
com.rti.dds.infrastructure.BatchQosPolicy (p. 401)

6.3.1 Detailed Description

<<eXtension>> (p. 270) Batch QoS policy used to enable batching in
com.rti.dds.publication.DataWriter (p. 538) instances.

6.3.2 Variable Documentation

6.3.2.1 final QosPolicyId t BATCH QOS POLICY ID [static,
inherited]

<<eXtension>> (p. 270) Identifier for com.rti.dds.infrastructure.BatchQosPolicy
(p. 401)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.4 Conditions and WaitSets 43

6.4 Conditions and WaitSets

com.rti.dds.infrastructure.Condition (p. 451) and
com.rti.dds.infrastructure.WaitSet (p. 1695) and related items.

Classes

ˆ interface Condition

<<interface>> (p. 271) Root class for all the conditions that may be at-
tached to a com.rti.dds.infrastructure.WaitSet (p. 1695).

ˆ class ConditionSeq

Instantiates com.rti.dds.util.Sequence (p. 1432) <
com.rti.dds.infrastructure.Condition (p. 451) >.

ˆ class GuardCondition

<<interface>> (p. 271) A specific com.rti.dds.infrastructure.Condition
(p. 451) whose trigger value is completely under the control of the appli-
cation.

ˆ interface StatusCondition

<<interface>> (p. 271) A specific com.rti.dds.infrastructure.Condition
(p. 451) that is associated with each com.rti.dds.infrastructure.Entity
(p. 912).

ˆ class WaitSet

<<interface>> (p. 271) Allows an application to wait until one or more of
the attached com.rti.dds.infrastructure.Condition (p. 451) objects has a
trigger value of true or else until the timeout expires.

ˆ class WaitSetProperty t

<<eXtension>> (p. 270) Specifies the
com.rti.dds.infrastructure.WaitSet (p. 1695) behavior for multiple
trigger events.

6.4.1 Detailed Description

com.rti.dds.infrastructure.Condition (p. 451) and
com.rti.dds.infrastructure.WaitSet (p. 1695) and related items.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

44 Module Documentation

6.5 DATABASE

<<eXtension>> (p. 270) Various threads and resource limits settings used
by RTI Connext to control its internal database.

Classes

ˆ class DatabaseQosPolicy

Various threads and resource limits settings used by RTI Connext to control
its internal database.

Variables

ˆ static final QosPolicyId t DATABASE QOS POLICY ID

<<eXtension>> (p. 270) Identifier for
com.rti.dds.infrastructure.DatabaseQosPolicy (p. 468)

6.5.1 Detailed Description

<<eXtension>> (p. 270) Various threads and resource limits settings used
by RTI Connext to control its internal database.

6.5.2 Variable Documentation

6.5.2.1 final QosPolicyId t DATABASE QOS POLICY ID
[static, inherited]

<<eXtension>> (p. 270) Identifier for com.rti.dds.infrastructure.DatabaseQosPolicy
(p. 468)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.6 DATA READER PROTOCOL 45

6.6 DATA READER PROTOCOL

<<eXtension>> (p. 270) Specifies the DataReader-specific protocol QoS.

Classes

ˆ class DataReaderProtocolQosPolicy

Along with com.rti.dds.infrastructure.WireProtocolQosPolicy
(p. 1709) and com.rti.dds.infrastructure.DataWriterProtocolQosPolicy
(p. 571), this QoS policy configures the DDS on-the-network protocol
(RTPS).

Variables

ˆ static final QosPolicyId t DATAREADERPROTOCOL QOS -
POLICY ID

<<eXtension>> (p. 270) Identifier for
com.rti.dds.infrastructure.DataReaderProtocolQosPolicy (p. 504)

6.6.1 Detailed Description

<<eXtension>> (p. 270) Specifies the DataReader-specific protocol QoS.

6.6.2 Variable Documentation

6.6.2.1 final QosPolicyId t DATAREADERPROTOCOL QOS -
POLICY ID [static, inherited]

<<eXtension>> (p. 270) Identifier for com.rti.dds.infrastructure.DataReaderProtocolQosPolicy
(p. 504)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

46 Module Documentation

6.7 DATA READER RESOURCE LIMITS

<<eXtension>> (p. 270) Various settings that configure how DataReaders
allocate and use physical memory for internal resources.

Classes

ˆ class DataReaderResourceLimitsQosPolicy

Various settings that configure how a
com.rti.dds.subscription.DataReader (p. 473) allocates and uses
physical memory for internal resources.

Variables

ˆ static final int AUTO MAX TOTAL INSTANCES

<<eXtension>> (p. 270) This value is used to make
com.rti.dds.infrastructure.DataReaderResourceLimitsQosPolicy.max -
total instances (p. 533) equal to com.rti.dds.infrastructure.ResourceLimitsQosPolicy.max -
instances (p. 1360).

ˆ static final QosPolicyId t DATAREADERRESOURCELIMITS -
QOS POLICY ID

<<eXtension>> (p. 270) Identifier for
com.rti.dds.infrastructure.DataReaderResourceLimitsQosPolicy
(p. 524)

6.7.1 Detailed Description

<<eXtension>> (p. 270) Various settings that configure how DataReaders
allocate and use physical memory for internal resources.

6.7.2 Variable Documentation

6.7.2.1 final int AUTO MAX TOTAL INSTANCES [static,
inherited]

<<eXtension>> (p. 270) This value is used to make
com.rti.dds.infrastructure.DataReaderResourceLimitsQosPolicy.max -
total instances (p. 533) equal to com.rti.dds.infrastructure.ResourceLimitsQosPolicy.max -
instances (p. 1360).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.7 DATA READER RESOURCE LIMITS 47

6.7.2.2 final QosPolicyId t DATAREADERRESOURCELIMITS -
QOS POLICY ID [static, inherited]

<<eXtension>> (p. 270) Identifier for com.rti.dds.infrastructure.DataReaderResourceLimitsQosPolicy
(p. 524)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

48 Module Documentation

6.8 DATA WRITER PROTOCOL

<<eXtension>> (p. 270) Along with com.rti.dds.infrastructure.WireProtocolQosPolicy
(p. 1709) and com.rti.dds.infrastructure.DataReaderProtocolQosPolicy
(p. 504), this QoS policy configures the DDS on-the-network protocol (RTPS).

Classes

ˆ class DataWriterProtocolQosPolicy

Protocol that applies only to com.rti.dds.publication.DataWriter (p. 538)
instances.

Variables

ˆ static final QosPolicyId t DATAWRITERPROTOCOL QOS -
POLICY ID

<<eXtension>> (p. 270) Identifier for
com.rti.dds.infrastructure.DataWriterProtocolQosPolicy (p. 571)

6.8.1 Detailed Description

<<eXtension>> (p. 270) Along with com.rti.dds.infrastructure.WireProtocolQosPolicy
(p. 1709) and com.rti.dds.infrastructure.DataReaderProtocolQosPolicy
(p. 504), this QoS policy configures the DDS on-the-network protocol (RTPS).

6.8.2 Variable Documentation

6.8.2.1 final QosPolicyId t DATAWRITERPROTOCOL QOS -
POLICY ID [static, inherited]

<<eXtension>> (p. 270) Identifier for com.rti.dds.infrastructure.DataWriterProtocolQosPolicy
(p. 571)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.9 DATA WRITER RESOURCE LIMITS 49

6.9 DATA WRITER RESOURCE LIMITS

<<eXtension>> (p. 270) Various settings that configure how a
com.rti.dds.publication.DataWriter (p. 538) allocates and uses physi-
cal memory for internal resources.

Classes

ˆ class DataWriterResourceLimitsInstanceReplacementKind

Sets the kinds of instances that can be replaced when instance resource limits
are reached.

ˆ class DataWriterResourceLimitsQosPolicy

Various settings that configure how a
com.rti.dds.publication.DataWriter (p. 538) allocates and uses physical
memory for internal resources.

Variables

ˆ static final QosPolicyId t DATA WRITER RESOURCE LIMITS -
QOS POLICY ID

<<eXtension>> (p. 270) Identifier for
com.rti.dds.infrastructure.DataWriterResourceLimitsQosPolicy
(p. 598)

6.9.1 Detailed Description

<<eXtension>> (p. 270) Various settings that configure how a
com.rti.dds.publication.DataWriter (p. 538) allocates and uses physi-
cal memory for internal resources.

6.9.2 Variable Documentation

6.9.2.1 final QosPolicyId t DATA WRITER -
RESOURCE LIMITS QOS POLICY ID [static,
inherited]

<<eXtension>> (p. 270) Identifier for com.rti.dds.infrastructure.DataWriterResourceLimitsQosPolicy
(p. 598)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

50 Module Documentation

6.10 DEADLINE

Expresses the maximum duration (deadline) within which an instance is ex-
pected to be updated.

Classes

ˆ class DeadlineQosPolicy

Expresses the maximum duration (deadline) within which an instance is ex-
pected to be updated.

Variables

ˆ static final QosPolicyId t DEADLINE QOS POLICY ID

Identifier for com.rti.dds.infrastructure.DeadlineQosPolicy (p. 604).

6.10.1 Detailed Description

Expresses the maximum duration (deadline) within which an instance is ex-
pected to be updated.

6.10.2 Variable Documentation

6.10.2.1 final QosPolicyId t DEADLINE QOS POLICY ID
[static, inherited]

Identifier for com.rti.dds.infrastructure.DeadlineQosPolicy (p. 604).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.11 DESTINATION ORDER 51

6.11 DESTINATION ORDER

Controls the criteria used to determine the logical order among changes made
by com.rti.dds.publication.Publisher (p. 1277) entities to the same instance
of data (i.e., matching com.rti.dds.topic.Topic (p. 1545) and key).

Classes

ˆ class DestinationOrderQosPolicy

Controls how the middleware will deal with data sent by multiple
com.rti.dds.publication.DataWriter (p. 538) entities for the same in-
stance of data (i.e., same com.rti.dds.topic.Topic (p. 1545) and key).

ˆ class DestinationOrderQosPolicyKind

Kinds of destination order.

Variables

ˆ static final QosPolicyId t DESTINATIONORDER QOS POLICY -
ID

Identifier for com.rti.dds.infrastructure.DestinationOrderQosPolicy
(p. 607).

6.11.1 Detailed Description

Controls the criteria used to determine the logical order among changes made
by com.rti.dds.publication.Publisher (p. 1277) entities to the same instance
of data (i.e., matching com.rti.dds.topic.Topic (p. 1545) and key).

6.11.2 Variable Documentation

6.11.2.1 final QosPolicyId t DESTINATIONORDER QOS -
POLICY ID [static, inherited]

Identifier for com.rti.dds.infrastructure.DestinationOrderQosPolicy
(p. 607).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

52 Module Documentation

6.12 DISCOVERY CONFIG

<<eXtension>> (p. 270) Specifies the discovery configuration QoS.

Classes

ˆ class BuiltinTopicReaderResourceLimits t

Built-in topic (p. 350) reader’s resource limits.

ˆ class DiscoveryConfigBuiltinPluginKind

Built-in discovery plugins that can be used.

ˆ class DiscoveryConfigQosPolicy

Settings for discovery configuration.

ˆ class RemoteParticipantPurgeKind

Available behaviors for halting communication with remote participants (and
their contained entities) with which discovery communication has been lost.

Variables

ˆ static final int SDP

Built-in discovery plugins that can be used.

ˆ static final int MASK NONE = 0

A bit-mask (list) of built-in discovery plugins.

ˆ static final int MASK ALL = 0xefff

A bit-mask (list) of built-in discovery plugins.

ˆ static final QosPolicyId t DISCOVERYCONFIG QOS POLICY -
ID

<<eXtension>> (p. 270) Identifier for
com.rti.dds.infrastructure.DiscoveryConfigQosPolicy (p. 615)

6.12.1 Detailed Description

<<eXtension>> (p. 270) Specifies the discovery configuration QoS.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.12 DISCOVERY CONFIG 53

6.12.2 Variable Documentation

6.12.2.1 final int SDP [static, inherited]

Built-in discovery plugins that can be used.

See also:

com.rti.dds.infrastructure.DiscoveryConfigBuiltinPluginKindMask .SDP
(p. 53)

6.12.2.2 final int MASK NONE = 0 [static, inherited]

A bit-mask (list) of built-in discovery plugins.

The bit-mask is an efficient and compact representation of a fixed-length list of
com.rti.dds.infrastructure.DiscoveryConfigBuiltinPluginKind (p. 614)
values.

QoS:

com.rti.dds.infrastructure.DiscoveryConfigQosPolicy (p. 615)
.MASK NONE

6.12.2.3 final int MASK ALL = 0xefff [static, inherited]

A bit-mask (list) of built-in discovery plugins.

The bit-mask is an efficient and compact representation of a fixed-length list of
com.rti.dds.infrastructure.DiscoveryConfigBuiltinPluginKind (p. 614)
values.

QoS:

com.rti.dds.infrastructure.DiscoveryConfigQosPolicy (p. 615)
.MASK ALL

6.12.2.4 final QosPolicyId t DISCOVERYCONFIG QOS -
POLICY ID [static, inherited]

<<eXtension>> (p. 270) Identifier for com.rti.dds.infrastructure.DiscoveryConfigQosPolicy
(p. 615)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

54 Module Documentation

6.13 DISCOVERY

<<eXtension>> (p. 270) Specifies the attributes required to discover partic-
ipants in the domain.

Modules

ˆ NDDS DISCOVERY PEERS
Environment variable or a file that specifies the default values of
com.rti.dds.infrastructure.DiscoveryQosPolicy.initial peers (p. 626)
and com.rti.dds.infrastructure.DiscoveryQosPolicy.multicast -
receive addresses (p. 625) contained in the
com.rti.dds.domain.DomainParticipantQos.discovery (p. 739)
qos policy.

Classes

ˆ class DiscoveryQosPolicy
Configures the mechanism used by the middleware to automatically discover
and connect with new remote applications.

Variables

ˆ static final QosPolicyId t DISCOVERY QOS POLICY ID
<<eXtension>> (p. 270) Identifier for
com.rti.dds.infrastructure.DiscoveryQosPolicy (p. 624)

6.13.1 Detailed Description

<<eXtension>> (p. 270) Specifies the attributes required to discover partic-
ipants in the domain.

6.13.2 Variable Documentation

6.13.2.1 final QosPolicyId t DISCOVERY QOS POLICY ID
[static, inherited]

<<eXtension>> (p. 270) Identifier for com.rti.dds.infrastructure.DiscoveryQosPolicy
(p. 624)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.14 NDDS DISCOVERY PEERS 55

6.14 NDDS DISCOVERY PEERS

Environment variable or a file that specifies the default values of
com.rti.dds.infrastructure.DiscoveryQosPolicy.initial peers (p. 626)
and com.rti.dds.infrastructure.DiscoveryQosPolicy.multicast -
receive addresses (p. 625) contained in the
com.rti.dds.domain.DomainParticipantQos.discovery (p. 739) qos
policy.

The default value of the com.rti.dds.domain.DomainParticipantQos
(p. 736) is obtained by calling com.rti.dds.domain.DomainParticipantFactory.get -
default participant qos() (p. 716).

NDDS DISCOVERY PEERS specifies the default value of the
com.rti.dds.infrastructure.DiscoveryQosPolicy.initial peers (p. 626)
and com.rti.dds.infrastructure.DiscoveryQosPolicy.multicast -
receive addresses (p. 625) fields, when the default partici-
pant QoS policies have not been explictly set by the user (i.e.,
com.rti.dds.domain.DomainParticipantFactory.set default -
participant qos() (p. 716) has never been called or was called using
DomainParticipantFactory.PARTICIPANT QOS DEFAULT).

If NDDS DISCOVERY PEERS does not contain
a multicast address, then the string sequence
com.rti.dds.infrastructure.DiscoveryQosPolicy.multicast receive -
addresses (p. 625) is cleared and the RTI discovery process will not listen for
discovery messages via multicast.

If NDDS DISCOVERY PEERS contains one or more
multicast addresses, the addresses will be stored in
com.rti.dds.infrastructure.DiscoveryQosPolicy.multicast receive -
addresses (p. 625), starting at element 0. They will be stored in the order in
which they appear in NDDS DISCOVERY PEERS.

Note: IPv4 multicast addresses must have a prefix. Therefore, when using the
UDPv6 transport: if there are any IPv4 multicast addresses in the peers list,
make sure they have ”udpv4://” in front of them (such as udpv4://239.255.0.1).

Note: Currently, RTI Connext will only listen for discov-
ery traffic on the first multicast address (element 0) in
com.rti.dds.infrastructure.DiscoveryQosPolicy.multicast receive -
addresses (p. 625).

NDDS DISCOVERY PEERS provides a mechanism to dynamically switch the
discovery configuration of an RTI Connext application without recompilation.
The application programmer is free to not use the default values; instead use

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

56 Module Documentation

values supplied by other means.

NDDS DISCOVERY PEERS can be specified either in an environment variable
as comma (’,’) separated "peer descriptors" (see Peer Descriptor Format
(p. 56)) or in a file. These formats are described below.

6.14.1 Peer Descriptor Format

A peer descriptor string specifies a range of participants at
a given locator. Peer descriptor strings are used in the
com.rti.dds.infrastructure.DiscoveryQosPolicy.initial peers (p. 626)
field and the com.rti.dds.domain.DomainParticipant.add peer() (p. 692)
operation.

The anatomy of a peer descriptor is illustrated below using a special ”StarFab-
ric” transport example.

A peer descriptor consists of:

optional Participant ID. If a simple integer is specified, it indicates the maximum
participant ID to be contacted by the RTI Connext discovery mechanism
at the given locator. If that integer is enclosed in square brackets (e.g.:
[2]) only that Participant ID will be used. You can also specify a range
in the form of [a,b]: in this case only the Participant IDs in that specific
range are contacted. If omitted, a default value of 4 is implied.

ˆ Locator. See Locator Format (p. 56).

These are separated by the ’@’ character. The separator may be omitted if a
participant ID limit is not explictly specified.

Note that the ”participant ID limit” only applies to unicast locators; it is ig-
nored for multicast locators (and therefore should be omitted for multicast peer
descriptors).

6.14.1.1 Locator Format

A locator string specifies a transport and an address in string format. Locators
are used to form peer descriptors. A locator is equivalent to a peer descriptor
with the default maximum participant ID.

A locator consists of:

optional Transport name (alias or class). This identifies the set of transport plu-
gins (Transport Aliases (p. 368)) that may be used to parse the address
portion of the locator. Note that a transport class name is an implicit alias
that is used to refer to all the transport plugin instances of that class.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.14 NDDS DISCOVERY PEERS 57

optional Address. See Address Format (p. 57).

These are separated by the ”//:” string. The separator is specified if and only
if a transport name is specified.

If a transport name is specified, the address may be omitted; in that case, all
the unicast addresses (across all transport plugin instances) associated with the
transport class are implied. Thus, a locator string may specify several addresses.

If an address is specified, the transport name and the separator string
may be omitted; in that case all the available transport plugins (for the
com.rti.dds.infrastructure.Entity (p. 912)) may be used to parse the ad-
dress string.

6.14.1.2 Address Format

An address string specifies a transport-independent network ad-
dress that qualifies a transport-dependent address string. Ad-
dresses are used to form locators. Addresses are also used in
com.rti.dds.infrastructure.DiscoveryQosPolicy.multicast receive -
addresses (p. 625), and com.rti.dds.infrastructure.TransportMulticastSettings -
t.receive address (p. 1595) fields. An address is equivalent to a locator in
which the transport name and separator are omitted.

An address consists of:

optional Network Address. An address in IPv4 or IPv6 string notation. If omit-
ted, the network address of the transport is implied (Transport Network
Address (p. 371)).

optional Transport Address. A string that is passed to the transport for process-
ing. The transport maps this string into Transport.Property t.address -
bit count bits. If omitted the network address is used as the fully qualified
address.

These are separated by the ’#’ character. If a separator is specified, it must be
followed by a non-empty string which is passed to the transport plugin.

The bits resulting from the transport address string are prepended with the net-
work address. The least significant Transport.Property t.address bit count bits
of the network address are ignored (Transport Network Address (p. 371)).

If the separator is omitted and the string is not a valid IPv4 or IPv6 address,
it is treated as a transport address with an implicit network address (of the
transport plugin).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

58 Module Documentation

6.14.2 NDDS DISCOVERY PEERS Environment Vari-
able Format

NDDS DISCOVERY PEERS can be specified via an environment variable of
the same name, consisting of a sequence of peer descriptors separated by the
comma (’,’) character.

Examples

Multicast (maximum participant ID is irrelevant)

ˆ 239.255.0.1

Default maximum participant ID on localhost

ˆ localhost

Default maximum participant ID on host 192.168.1.1 (IPv4)

ˆ 192.168.1.1

Default maximum participant ID on host FAA0::0 (IPv6)

ˆ FAA0::1

Default maximum participant ID on host FAA0::0#localhost (could be a UDPv4
transport plugin registered at network address of FAA0::0) (IPv6)

ˆ FAA0::0#localhost

Default maximum participant ID on host himalaya accessed using the ”udpv4”
transport plugin(s) (IPv4)

ˆ udpv4://himalaya

Default maximum participant ID on localhost using the ”udpv4” transport plu-
gin(s) registered at network address FAA0::0

ˆ udpv4://FAA0::0#localhost

Default maximum participant ID on all unicast addresses accessed via the
”udpv4” (UDPv4) transport plugin(s)

ˆ udpv4://

Default maximum participant ID on host 0/0/R (StarFabric)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.14 NDDS DISCOVERY PEERS 59

ˆ 0/0/R

ˆ #0/0/R

Default maximum participant ID on host 0/0/R (StarFabric) using the ”star-
fabric” (StarFabric) transport plugin(s)

ˆ starfabric://0/0/R

ˆ starfabric://#0/0/R

Default maximum participant ID on host 0/0/R (StarFabric) using the ”star-
fabric” (StarFabric) transport plugin(s) registered at network address FAA0::0

ˆ starfabric://FBB0::0#0/0/R

Default maximum participant ID on all unicast addresses accessed via the ”star-
fabric” (StarFabric) transport plugin(s)

ˆ starfabric://

Default maximum participant ID on all unicast addresses accessed via the
”shmem” (shared memory) transport plugin(s)

ˆ shmem://

Default maximum participant ID on all unicast addresses accessed via the
”shmem” (shared memory) transport plugin(s) registered at network address
FCC0::0

ˆ shmem://FCC0::0

Default maximum participant ID on hosts himalaya and gangotri

ˆ himalaya,gangotri

Maximum participant ID of 1 on hosts himalaya and gangotri

ˆ 1@himalaya,1@gangotri

Combinations of above

ˆ 239.255.0.1,localhost,192.168.1.1,0/0/R

ˆ FAA0::1,FAA0::0#localhost,FBB0::0#0/0/R

ˆ udpv4://himalaya,udpv4://FAA0::0#localhost,#0/0/R

ˆ starfabric://0/0/R,starfabric://FBB0::0#0/0/R,shmem://

ˆ starfabric://,shmem://FCC0::0,1@himalaya,1@gangotri

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

60 Module Documentation

6.14.3 NDDS DISCOVERY PEERS File Format

NDDS DISCOVERY PEERS can be specified via a file of the same name in the
program’s current working directory. A NDDS DISCOVERY PEERS file would
contain a sequence of peer descriptors separated by whitespace or the comma
(’,’) character. The file may also contain comments starting with a semicolon
(’;’) character till the end of the line.

Example:

;; NDDS_DISCOVERY_PEERS - Default Discovery Configuration File

;;

;;

;; NOTE:

;; 1. This file must be in the current working directory, i.e.

;; in the folder from which the application is launched.

;;

;; 2. This file takes precedence over the environment variable NDDS_DISCOVERY_PEERS

;;

;; Multicast

239.255.0.1 ; The default RTI Connext discovery multicast address

;; Unicast

localhost,192.168.1.1 ; A comma can be used a separator

FAA0::1 FAA0::0#localhost ; Whitespace can be used as a separator

1@himalaya ; Maximum participant ID of 1 on ’himalaya’

1@gangotri

;; UDPv4

udpv4://himalaya ; ’himalaya’ via ’udpv4’ transport plugin(s)

udpv4://FAA0::0#localhost ; ’localhost’ via ’updv4’ transport

; plugin registered at network address FAA0::0

;; Shared Memory

shmem:// ; All ’shmem’ transport plugin(s)

builtin.shmem:// ; The builtin ’shmem’ transport plugin

shmem://FCC0::0 ; Shared memory transport plugin registered

; at network address FCC0::0

;; StarFabric

0/0/R ; StarFabric node 0/0/R

starfabric://0/0/R ; 0/0/R accessed via ’starfabric’

; transport plugin(s)

starfabric://FBB0::0#0/0/R ; StarFabric transport plugin registered

; at network address FBB0::0

starfabric:// ; All ’starfabric’ transport plugin(s)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.14 NDDS DISCOVERY PEERS 61

6.14.4 NDDS DISCOVERY PEERS Precedence

If the current working directory from which the RTI Connext application is
launched contains a file called NDDS DISCOVERY PEERS, and an environ-
ment variable named NDDS DISCOVERY PEERS is also defined, the file takes
precedence; the environment variable is ignored.

6.14.5 NDDS DISCOVERY PEERS Default Value

If NDDS DISCOVERY PEERS is not specified (either as a file in the current
working directory, or as an environment variable), it implicitly defaults to the
following.

;; Multicast (only on platforms which allow UDPv4 multicast out of the box)

;;

;; This allows any RTI Connext applications anywhere on the local network to

;; discover each other over UDPv4.

builtin.udpv4://239.255.0.1 ; RTI Connext’s default discovery multicast address

;; Unicast - UDPv4 (on all platforms)

;;

;; This allows two RTI Connext applications using participant IDs up to the maximum

;; default participant ID on the local host and domain to discover each

;; other over UDP/IPv4.

builtin.udpv4://127.0.0.1

;; Unicast - Shared Memory (only on platforms that support shared memory)

;;

;; This allows two RTI Connext applications using participant IDs up to the maximum

;; default participant ID on the local host and domain to discover each

;; other over shared memory.

builtin.shmem://

6.14.6 Builtin Transport Class Names

The class names for the builtin transport plugins are:

ˆ shmem - ShmemTransport

ˆ udpv4 - UDPv4Transport

ˆ udpv6 - UDPv6Transport

These may be used as the transport names in the Locator Format (p. 56).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

62 Module Documentation

6.14.7 NDDS DISCOVERY PEERS and Local Host
Communication

Suppose you want to communicate with other RTI Connext applications on the
same host and you are setting NDDS DISCOVERY PEERS explicitly (generally
in order to use unicast discovery with applications on other hosts).

If the local host platform does not support the shared memory transport, then
you can include the name of the local host in the NDDS DISCOVERY PEERS
list.

If the local host platform supports the shared memory transport, then you can
do one of the following:

ˆ Include ”shmem://” in the NDDS DISCOVERY PEERS list. This will
cause shared memory to be used for discovery and data traffic for appli-
cations on the same host.

or:

ˆ Include the name of the local host in the NDDS DISCOVERY -
PEERS list and disable the shared memory transport in the
com.rti.dds.infrastructure.TransportBuiltinQosPolicy (p. 1580) of
the com.rti.dds.domain.DomainParticipant (p. 629). This will cause
UDP loopback to be used for discovery and data traffic for applications
on the same host.

(To check if your platform supports shared memory, see the Platform Notes
document.)

See also:

com.rti.dds.infrastructure.DiscoveryQosPolicy.multicast -
receive addresses (p. 625)
com.rti.dds.infrastructure.DiscoveryQosPolicy.initial peers
(p. 626)
com.rti.dds.domain.DomainParticipant.add peer() (p. 692)
DomainParticipantFactory.PARTICIPANT QOS DEFAULT
com.rti.dds.domain.DomainParticipantFactory.get default -
participant qos() (p. 716)
Transport Aliases (p. 368)
Transport Network Address (p. 371)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.15 DOMAIN PARTICIPANT RESOURCE LIMITS 63

6.15 DOMAIN PARTICIPANT RESOURCE -
LIMITS

<<eXtension>> (p. 270) Various settings that configure how a
com.rti.dds.domain.DomainParticipant (p. 629) allocates and uses
physical memory for internal resources, including the maximum sizes of various
properties.

Classes

ˆ class AllocationSettings t

Resource allocation settings.

ˆ class DomainParticipantResourceLimitsQosPolicy

Various settings that configure how a
com.rti.dds.domain.DomainParticipant (p. 629) allocates and uses
physical memory for internal resources, including the maximum sizes of
various properties.

Variables

ˆ static final QosPolicyId t DOMAINPARTICIPANTRESOURCE-
LIMITS QOS POLICY ID

<<eXtension>> (p. 270) Identifier for
com.rti.dds.infrastructure.DomainParticipantResourceLimitsQosPolicy
(p. 741)

6.15.1 Detailed Description

<<eXtension>> (p. 270) Various settings that configure how a
com.rti.dds.domain.DomainParticipant (p. 629) allocates and uses
physical memory for internal resources, including the maximum sizes of various
properties.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

64 Module Documentation

6.15.2 Variable Documentation

6.15.2.1 final QosPolicyId t DOMAINPARTICIPANTRE-
SOURCELIMITS QOS POLICY ID [static,
inherited]

<<eXtension>> (p. 270) Identifier for com.rti.dds.infrastructure.DomainParticipantResourceLimitsQosPolicy
(p. 741)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.16 DURABILITY 65

6.16 DURABILITY

This QoS policy specifies whether or not RTI Connext will
store and deliver previously published data samples to new
com.rti.dds.subscription.DataReader (p. 473) entities that join the
network later.

Classes

ˆ class DurabilityQosPolicy

This QoS policy specifies whether or not RTI Connext will
store and deliver previously published data samples to new
com.rti.dds.subscription.DataReader (p. 473) entities that join the
network later.

ˆ class DurabilityQosPolicyKind

Kinds of durability.

Variables

ˆ static final QosPolicyId t DURABILITY QOS POLICY ID

Identifier for com.rti.dds.infrastructure.DurabilityQosPolicy (p. 765).

6.16.1 Detailed Description

This QoS policy specifies whether or not RTI Connext will
store and deliver previously published data samples to new
com.rti.dds.subscription.DataReader (p. 473) entities that join the
network later.

6.16.2 Variable Documentation

6.16.2.1 final QosPolicyId t DURABILITY QOS POLICY ID
[static, inherited]

Identifier for com.rti.dds.infrastructure.DurabilityQosPolicy (p. 765).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

66 Module Documentation

6.17 DURABILITY SERVICE

Various settings to configure the external RTI Persis-
tence Service used by RTI Connext for DataWriters with a
com.rti.dds.infrastructure.DurabilityQosPolicy (p. 765) setting of
DurabilityQosPolicyKind.PERSISTENT DURABILITY QOS or Durabili-
tyQosPolicyKind.TRANSIENT DURABILITY QOS.

Classes

ˆ class DurabilityServiceQosPolicy

Various settings to configure the external RTI Persis-
tence Service used by RTI Connext for DataWriters with a
com.rti.dds.infrastructure.DurabilityQosPolicy (p. 765) setting of
DurabilityQosPolicyKind.PERSISTENT DURABILITY QOS
(p. 772) or DurabilityQosPolicyKind.TRANSIENT DURABILITY -
QOS (p. 771).

Variables

ˆ static final QosPolicyId t DURABILITY SERVICE QOS -
POLICY ID

Identifier for com.rti.dds.infrastructure.DurabilityServiceQosPolicy
(p. 773).

6.17.1 Detailed Description

Various settings to configure the external RTI Persis-
tence Service used by RTI Connext for DataWriters with a
com.rti.dds.infrastructure.DurabilityQosPolicy (p. 765) setting of
DurabilityQosPolicyKind.PERSISTENT DURABILITY QOS or Durabili-
tyQosPolicyKind.TRANSIENT DURABILITY QOS.

6.17.2 Variable Documentation

6.17.2.1 final QosPolicyId t DURABILITY SERVICE QOS -
POLICY ID [static, inherited]

Identifier for com.rti.dds.infrastructure.DurabilityServiceQosPolicy
(p. 773).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.18 Time Support 67

6.18 Time Support

Time and duration types and defines.

Classes

ˆ class Duration t

Type for duration representation.

ˆ class Time t

Type for time representation.

6.18.1 Detailed Description

Time and duration types and defines.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

68 Module Documentation

6.19 Entity Support

com.rti.dds.infrastructure.Entity (p. 912), com.rti.dds.infrastructure.Listener
(p. 1154) and related items.

Classes

ˆ interface DomainEntity

<<interface>> (p. 271) Abstract base class for all DDS entities except for
the com.rti.dds.domain.DomainParticipant (p. 629).

ˆ interface Entity

<<interface>> (p. 271) Abstract base class for all the DDS objects that
support QoS policies, a listener, and a status condition.

ˆ interface Listener

<<interface>> (p. 271) Abstract base class for all Listener (p. 1154) in-
terfaces.

6.19.1 Detailed Description

com.rti.dds.infrastructure.Entity (p. 912), com.rti.dds.infrastructure.Listener
(p. 1154) and related items.

com.rti.dds.infrastructure.Entity (p. 912) subtypes are cre-
ated and destroyed by factory objects. With the exception of
com.rti.dds.domain.DomainParticipant (p. 629), whose factory
is com.rti.dds.domain.DomainParticipantFactory (p. 708), all
com.rti.dds.infrastructure.Entity (p. 912) factory objects are themselves
com.rti.dds.infrastructure.Entity (p. 912) subtypes as well.

Important: all com.rti.dds.infrastructure.Entity (p. 912) delete operations
are inherently thread-unsafe. The user must take extreme care that a given
com.rti.dds.infrastructure.Entity (p. 912) is not destroyed in one thread
while being used concurrently (including being deleted concurrently) in another
thread. An operation’s effect in the presence of the concurrent deletion of the
operation’s target com.rti.dds.infrastructure.Entity (p. 912) is undefined.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.20 ENTITY FACTORY 69

6.20 ENTITY FACTORY

A QoS policy for all com.rti.dds.infrastructure.Entity (p. 912) types that
can act as factories for one or more other com.rti.dds.infrastructure.Entity
(p. 912) types.

Classes

ˆ class EntityFactoryQosPolicy

A QoS policy for all com.rti.dds.infrastructure.Entity
(p. 912) types that can act as factories for one or more other
com.rti.dds.infrastructure.Entity (p. 912) types.

Variables

ˆ static final QosPolicyId t ENTITYFACTORY QOS POLICY ID

Identifier for com.rti.dds.infrastructure.EntityFactoryQosPolicy
(p. 919).

6.20.1 Detailed Description

A QoS policy for all com.rti.dds.infrastructure.Entity (p. 912) types that
can act as factories for one or more other com.rti.dds.infrastructure.Entity
(p. 912) types.

6.20.2 Variable Documentation

6.20.2.1 final QosPolicyId t ENTITYFACTORY QOS POLICY ID
[static, inherited]

Identifier for com.rti.dds.infrastructure.EntityFactoryQosPolicy
(p. 919).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

70 Module Documentation

6.21 ENTITY NAME

<<eXtension>> (p. 270) Assigns a name to a
com.rti.dds.domain.DomainParticipant (p. 629). This name will be
visible during the discovery process and in RTI tools to help you visualize and
debug your system.

Classes

ˆ class EntityNameQosPolicy

Assigns a name and a role name to a
com.rti.dds.domain.DomainParticipant (p. 629),
com.rti.dds.publication.DataWriter (p. 538) or
com.rti.dds.subscription.DataReader (p. 473). These names will
be visible during the discovery process and in RTI tools to help you visualize
and debug your system.

6.21.1 Detailed Description

<<eXtension>> (p. 270) Assigns a name to a
com.rti.dds.domain.DomainParticipant (p. 629). This name will be
visible during the discovery process and in RTI tools to help you visualize and
debug your system.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.22 EVENT 71

6.22 EVENT

<<eXtension>> (p. 270) Configures the internal thread in a DomainPartici-
pant that handles timed events.

Classes

ˆ class EventQosPolicy

Settings for event.

Variables

ˆ static final QosPolicyId t EVENT QOS POLICY ID

<<eXtension>> (p. 270) Identifier for
com.rti.dds.infrastructure.EventQosPolicy (p. 930)

6.22.1 Detailed Description

<<eXtension>> (p. 270) Configures the internal thread in a DomainPartici-
pant that handles timed events.

6.22.2 Variable Documentation

6.22.2.1 final QosPolicyId t EVENT QOS POLICY ID [static,
inherited]

<<eXtension>> (p. 270) Identifier for com.rti.dds.infrastructure.EventQosPolicy
(p. 930)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

72 Module Documentation

6.23 EXCLUSIVE AREA

<<eXtension>> (p. 270) Configures multi-thread concurrency and deadlock
prevention capabilities.

Classes

ˆ class ExclusiveAreaQosPolicy

Configures multi-thread concurrency and deadlock prevention capabilities.

Variables

ˆ static final QosPolicyId t EXCLUSIVEAREA QOS POLICY ID

<<eXtension>> (p. 270) Identifier for
com.rti.dds.infrastructure.ExclusiveAreaQosPolicy (p. 933)

6.23.1 Detailed Description

<<eXtension>> (p. 270) Configures multi-thread concurrency and deadlock
prevention capabilities.

6.23.2 Variable Documentation

6.23.2.1 final QosPolicyId t EXCLUSIVEAREA QOS POLICY ID
[static, inherited]

<<eXtension>> (p. 270) Identifier for com.rti.dds.infrastructure.ExclusiveAreaQosPolicy
(p. 933)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.24 GROUP DATA 73

6.24 GROUP DATA

Attaches a buffer of opaque data that is distributed by means of Built-in
Topics (p. 153) during discovery.

Classes

ˆ class GroupDataQosPolicy

Attaches a buffer of opaque data that is distributed by means of Built-in
Topics (p. 153) during discovery.

Variables

ˆ static final QosPolicyId t GROUPDATA QOS POLICY ID

Identifier for com.rti.dds.infrastructure.GroupDataQosPolicy
(p. 1064).

6.24.1 Detailed Description

Attaches a buffer of opaque data that is distributed by means of Built-in
Topics (p. 153) during discovery.

6.24.2 Variable Documentation

6.24.2.1 final QosPolicyId t GROUPDATA QOS POLICY ID
[static, inherited]

Identifier for com.rti.dds.infrastructure.GroupDataQosPolicy (p. 1064).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

74 Module Documentation

6.25 GUID Support

<<eXtension>> (p. 270) GUID type and defines.

Classes

ˆ class GUID t

Type for GUID (Global Unique Identifier) representation.

6.25.1 Detailed Description

<<eXtension>> (p. 270) GUID type and defines.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.26 HISTORY 75

6.26 HISTORY

Specifies the behavior of RTI Connext in the case where the value of an instance
changes (one or more times) before it can be successfully communicated to one
or more existing subscribers.

Classes

ˆ class HistoryQosPolicy

Specifies the behavior of RTI Connext in the case where the value of a sample
changes (one or more times) before it can be successfully communicated to
one or more existing subscribers.

ˆ class HistoryQosPolicyKind

Kinds of history.

ˆ class RefilterQosPolicyKind

<<eXtension>> (p. 270) Kinds of Refiltering

Variables

ˆ static final QosPolicyId t HISTORY QOS POLICY ID

Identifier for com.rti.dds.infrastructure.HistoryQosPolicy (p. 1071).

6.26.1 Detailed Description

Specifies the behavior of RTI Connext in the case where the value of an instance
changes (one or more times) before it can be successfully communicated to one
or more existing subscribers.

6.26.2 Variable Documentation

6.26.2.1 final QosPolicyId t HISTORY QOS POLICY ID [static,
inherited]

Identifier for com.rti.dds.infrastructure.HistoryQosPolicy (p. 1071).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

76 Module Documentation

6.27 LATENCY BUDGET

Provides a hint as to the maximum acceptable delay from the time the data is
written to the time it is received by the subscribing applications.

Classes

ˆ class LatencyBudgetQosPolicy

Provides a hint as to the maximum acceptable delay from the time the data
is written to the time it is received by the subscribing applications.

Variables

ˆ static final QosPolicyId t LATENCYBUDGET QOS POLICY ID

Identifier for com.rti.dds.infrastructure.LatencyBudgetQosPolicy
(p. 1148).

6.27.1 Detailed Description

Provides a hint as to the maximum acceptable delay from the time the data is
written to the time it is received by the subscribing applications.

6.27.2 Variable Documentation

6.27.2.1 final QosPolicyId t LATENCYBUDGET QOS POLICY -
ID [static, inherited]

Identifier for com.rti.dds.infrastructure.LatencyBudgetQosPolicy
(p. 1148).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.28 LIFESPAN 77

6.28 LIFESPAN

Specifies how long the data written by the
com.rti.dds.publication.DataWriter (p. 538) is considered valid.

Classes

ˆ class LifespanQosPolicy

Specifies how long the data written by the
com.rti.dds.publication.DataWriter (p. 538) is considered valid.

Variables

ˆ static final QosPolicyId t LIFESPAN QOS POLICY ID

Identifier for com.rti.dds.infrastructure.LifespanQosPolicy (p. 1152).

6.28.1 Detailed Description

Specifies how long the data written by the
com.rti.dds.publication.DataWriter (p. 538) is considered valid.

6.28.2 Variable Documentation

6.28.2.1 final QosPolicyId t LIFESPAN QOS POLICY ID
[static, inherited]

Identifier for com.rti.dds.infrastructure.LifespanQosPolicy (p. 1152).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

78 Module Documentation

6.29 LIVELINESS

Specifies and configures the mechanism that allows
com.rti.dds.subscription.DataReader (p. 473) entities to detect when
com.rti.dds.publication.DataWriter (p. 538) entities become disconnected
or ”dead.”.

Classes

ˆ class LivelinessQosPolicy

Specifies and configures the mechanism that allows
com.rti.dds.subscription.DataReader (p. 473) entities to detect
when com.rti.dds.publication.DataWriter (p. 538) entities become
disconnected or ”dead.”.

ˆ class LivelinessQosPolicyKind

Kinds of liveliness.

Variables

ˆ static final QosPolicyId t LIVELINESS QOS POLICY ID

Identifier for com.rti.dds.infrastructure.LivelinessQosPolicy (p. 1164).

6.29.1 Detailed Description

Specifies and configures the mechanism that allows
com.rti.dds.subscription.DataReader (p. 473) entities to detect when
com.rti.dds.publication.DataWriter (p. 538) entities become disconnected
or ”dead.”.

6.29.2 Variable Documentation

6.29.2.1 final QosPolicyId t LIVELINESS QOS POLICY ID
[static, inherited]

Identifier for com.rti.dds.infrastructure.LivelinessQosPolicy (p. 1164).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.30 LOCATORFILTER 79

6.30 LOCATORFILTER

<<eXtension>> (p. 270) The QoS policy used to report the configuration of
a MultiChannel DataWriter as part of builtin.PublicationBuiltinTopicData.

Classes

ˆ class LocatorFilter t

Specifies the configuration of an individual channel within a MultiChannel
DataWriter.

ˆ class LocatorFilterQosPolicy

The QoS policy used to report the configuration of a MultiChannel
DataWriter as part of builtin.PublicationBuiltinTopicData.

ˆ class LocatorFilterSeq

Declares IDL sequence< com.rti.dds.infrastructure.LocatorFilter -
t (p. 1178) >.

Variables

ˆ static final QosPolicyId t LOCATORFILTER QOS POLICY ID

<<eXtension>> (p. 270) Identifier for
com.rti.dds.infrastructure.LocatorFilterQosPolicy (p. 1181)

6.30.1 Detailed Description

<<eXtension>> (p. 270) The QoS policy used to report the configuration of
a MultiChannel DataWriter as part of builtin.PublicationBuiltinTopicData.

6.30.2 Variable Documentation

6.30.2.1 final QosPolicyId t LOCATORFILTER QOS POLICY ID
[static, inherited]

<<eXtension>> (p. 270) Identifier for com.rti.dds.infrastructure.LocatorFilterQosPolicy
(p. 1181)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

80 Module Documentation

6.31 LOGGING

<<eXtension>> (p. 270) Configures the RTI Connext logging facility.

Classes

ˆ class LoggingQosPolicy

Configures the RTI Connext logging facility.

Variables

ˆ static final QosPolicyId t LOGGING QOS POLICY ID

<<eXtension>> (p. 270) Identifier for
com.rti.dds.infrastructure.LoggingQosPolicy (p. 1190)

6.31.1 Detailed Description

<<eXtension>> (p. 270) Configures the RTI Connext logging facility.

6.31.2 Variable Documentation

6.31.2.1 final QosPolicyId t LOGGING QOS POLICY ID
[static, inherited]

<<eXtension>> (p. 270) Identifier for com.rti.dds.infrastructure.LoggingQosPolicy
(p. 1190)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.32 MULTICHANNEL 81

6.32 MULTICHANNEL

<<eXtension>> (p. 270) Configures the ability of a DataWriter to send data
on different multicast groups (addresses) based on the value of the data.

Classes

ˆ class ChannelSettings t

Type used to configure the properties of a channel.

ˆ class ChannelSettingsSeq

Declares IDL sequence< com.rti.dds.infrastructure.ChannelSettings t
(p. 441) >.

ˆ class MultiChannelQosPolicy

Configures the ability of a DataWriter to send data on different multicast
groups (addresses) based on the value of the data.

Variables

ˆ static final QosPolicyId t MULTICHANNEL QOS POLICY ID

<<eXtension>> (p. 270) Identifier for
com.rti.dds.infrastructure.MultiChannelQosPolicy (p. 1205)

6.32.1 Detailed Description

<<eXtension>> (p. 270) Configures the ability of a DataWriter to send data
on different multicast groups (addresses) based on the value of the data.

6.32.2 Variable Documentation

6.32.2.1 final QosPolicyId t MULTICHANNEL QOS POLICY ID
[static, inherited]

<<eXtension>> (p. 270) Identifier for com.rti.dds.infrastructure.MultiChannelQosPolicy
(p. 1205)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

82 Module Documentation

6.33 Object Support

<<eXtension>> (p. 270) Object related items.

Classes

ˆ interface Copyable

<<eXtension>> (p. 270) <<interface>> (p. 271) Interface for all the
user-defined data type classes that support copy.

ˆ class ObjectHolder

<<eXtension>> (p. 270) Holder of object instance

6.33.1 Detailed Description

<<eXtension>> (p. 270) Object related items.

A user-defined type class implements this interface to indi-
cate that the class can be copied. This is typically used
in com.rti.dds.topic.example.FooDataReader.take next sample or
com.rti.dds.topic.example.FooDataReader.read next sample.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.34 OWNERSHIP 83

6.34 OWNERSHIP

Specifies whether it is allowed for multiple
com.rti.dds.publication.DataWriter (p. 538) (s) to write the same
instance of the data and if so, how these modifications should be arbitrated.

Classes

ˆ class OwnershipQosPolicy

Specifies whether it is allowed for multiple
com.rti.dds.publication.DataWriter (p. 538) (s) to write the same
instance of the data and if so, how these modifications should be arbitrated.

ˆ class OwnershipQosPolicyKind

Kinds of ownership.

Variables

ˆ static final QosPolicyId t OWNERSHIP QOS POLICY ID

Identifier for com.rti.dds.infrastructure.OwnershipQosPolicy
(p. 1216).

6.34.1 Detailed Description

Specifies whether it is allowed for multiple
com.rti.dds.publication.DataWriter (p. 538) (s) to write the same
instance of the data and if so, how these modifications should be arbitrated.

6.34.2 Variable Documentation

6.34.2.1 final QosPolicyId t OWNERSHIP QOS POLICY ID
[static, inherited]

Identifier for com.rti.dds.infrastructure.OwnershipQosPolicy (p. 1216).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

84 Module Documentation

6.35 OWNERSHIP STRENGTH

Specifies the value of the strength used to arbitrate among multiple
com.rti.dds.publication.DataWriter (p. 538) objects that attempt to mod-
ify the same instance of a data type (identified by com.rti.dds.topic.Topic
(p. 1545) + key).

Classes

ˆ class OwnershipStrengthQosPolicy

Specifies the value of the strength used to arbitrate among mul-
tiple com.rti.dds.publication.DataWriter (p. 538) objects that at-
tempt to modify the same instance of a data type (identified by
com.rti.dds.topic.Topic (p. 1545) + key).

Variables

ˆ static final QosPolicyId t OWNERSHIPSTRENGTH QOS -
POLICY ID

Identifier for com.rti.dds.infrastructure.OwnershipStrengthQosPolicy
(p. 1225).

6.35.1 Detailed Description

Specifies the value of the strength used to arbitrate among multiple
com.rti.dds.publication.DataWriter (p. 538) objects that attempt to mod-
ify the same instance of a data type (identified by com.rti.dds.topic.Topic
(p. 1545) + key).

6.35.2 Variable Documentation

6.35.2.1 final QosPolicyId t OWNERSHIPSTRENGTH QOS -
POLICY ID [static, inherited]

Identifier for com.rti.dds.infrastructure.OwnershipStrengthQosPolicy
(p. 1225).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.36 PARTITION 85

6.36 PARTITION

Set of strings that introduces a logical partition among the top-
ics visible by a com.rti.dds.publication.Publisher (p. 1277) and a
com.rti.dds.subscription.Subscriber (p. 1478).

Classes

ˆ class PartitionQosPolicy

Set of strings that introduces a logical partition among the top-
ics visible by a com.rti.dds.publication.Publisher (p. 1277) and a
com.rti.dds.subscription.Subscriber (p. 1478).

Variables

ˆ static final QosPolicyId t PARTITION QOS POLICY ID

Identifier for com.rti.dds.infrastructure.PartitionQosPolicy (p. 1233).

6.36.1 Detailed Description

Set of strings that introduces a logical partition among the top-
ics visible by a com.rti.dds.publication.Publisher (p. 1277) and a
com.rti.dds.subscription.Subscriber (p. 1478).

6.36.2 Variable Documentation

6.36.2.1 final QosPolicyId t PARTITION QOS POLICY ID
[static, inherited]

Identifier for com.rti.dds.infrastructure.PartitionQosPolicy (p. 1233).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

86 Module Documentation

6.37 PRESENTATION

Specifies how the samples representing changes to data instances are presented
to a subscribing application.

Classes

ˆ class PresentationQosPolicy

Specifies how the samples representing changes to data instances are pre-
sented to a subscribing application.

ˆ class PresentationQosPolicyAccessScopeKind

Kinds of presentation ”access scope”.

Variables

ˆ static final QosPolicyId t PRESENTATION QOS POLICY ID

Identifier for com.rti.dds.infrastructure.PresentationQosPolicy
(p. 1237).

6.37.1 Detailed Description

Specifies how the samples representing changes to data instances are presented
to a subscribing application.

6.37.2 Variable Documentation

6.37.2.1 final QosPolicyId t PRESENTATION QOS POLICY ID
[static, inherited]

Identifier for com.rti.dds.infrastructure.PresentationQosPolicy (p. 1237).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.38 PROFILE 87

6.38 PROFILE

<<eXtension>> (p. 270) Configures the way that XML documents contain-
ing QoS profiles are loaded by RTI Connext.

Classes

ˆ class ProfileQosPolicy

Configures the way that XML documents containing QoS profiles are loaded
by RTI Connext.

Variables

ˆ static final QosPolicyId t PROFILE QOS POLICY ID

<<eXtension>> (p. 270) Identifier for
com.rti.dds.infrastructure.ProfileQosPolicy (p. 1247)

6.38.1 Detailed Description

<<eXtension>> (p. 270) Configures the way that XML documents contain-
ing QoS profiles are loaded by RTI Connext.

6.38.2 Variable Documentation

6.38.2.1 final QosPolicyId t PROFILE QOS POLICY ID [static,
inherited]

<<eXtension>> (p. 270) Identifier for com.rti.dds.infrastructure.ProfileQosPolicy
(p. 1247)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

88 Module Documentation

6.39 PROPERTY

<<eXtension>> (p. 270) Stores name/value (string) pairs that can be used
to configure certain parameters of RTI Connext that are not exposed through
formal QoS policies. Can also be used to store and propagate application-specific
name/value pairs that can be retrieved by user code during discovery.

Classes

ˆ class Property t

Properties are name/value pairs objects.

ˆ class PropertyQosPolicy

Stores name/value(string) pairs that can be used to configure certain param-
eters of RTI Connext that are not exposed through formal QoS policies. Can
also be used to store and propagate application-specific name/value pairs that
can be retrieved by user code during discovery.

ˆ class PropertyQosPolicyHelper

Policy Helpers which facilitate management of the properties in the input
policy.

ˆ class PropertySeq

Declares IDL sequence < com.rti.dds.infrastructure.Property t
(p. 1250) >.

6.39.1 Detailed Description

<<eXtension>> (p. 270) Stores name/value (string) pairs that can be used
to configure certain parameters of RTI Connext that are not exposed through
formal QoS policies. Can also be used to store and propagate application-specific
name/value pairs that can be retrieved by user code during discovery.

See com.rti.dds.infrastructure.PropertyQosPolicy (p. 1252)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.40 PUBLISH MODE 89

6.40 PUBLISH MODE

<<eXtension>> (p. 270) Specifies how RTI Connext sends application data
on the network. This QoS policy can be used to tell RTI Connext to use its
own thread to send data, instead of the user thread.

Classes

ˆ class PublishModeQosPolicy

Specifies how RTI Connext sends application data on the network. This QoS
policy can be used to tell RTI Connext to use its own thread to send data,
instead of the user thread.

ˆ class PublishModeQosPolicyKind

Kinds of publishing mode.

Variables

ˆ static final QosPolicyId t PUBLISHMODE QOS POLICY ID

<<eXtension>> (p. 270) Identifier for
com.rti.dds.infrastructure.PublishModeQosPolicy (p. 1308)

6.40.1 Detailed Description

<<eXtension>> (p. 270) Specifies how RTI Connext sends application data
on the network. This QoS policy can be used to tell RTI Connext to use its
own thread to send data, instead of the user thread.

6.40.2 Variable Documentation

6.40.2.1 final QosPolicyId t PUBLISHMODE QOS POLICY ID
[static, inherited]

<<eXtension>> (p. 270) Identifier for com.rti.dds.infrastructure.PublishModeQosPolicy
(p. 1308)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

90 Module Documentation

6.41 QoS Policies

Quality of Service (QoS) policies.

Modules

ˆ ASYNCHRONOUS PUBLISHER
<<eXtension>> (p. 270) Specifies the asynchronous publishing settings of
the com.rti.dds.publication.Publisher (p. 1277) instances.

ˆ AVAILABILITY
<<eXtension>> (p. 270) Configures the availability of data.

ˆ BATCH
<<eXtension>> (p. 270) Batch QoS policy used to enable batching in
com.rti.dds.publication.DataWriter (p. 538) instances.

ˆ DATABASE
<<eXtension>> (p. 270) Various threads and resource limits settings used
by RTI Connext to control its internal database.

ˆ DATA READER PROTOCOL
<<eXtension>> (p. 270) Specifies the DataReader-specific protocol QoS.

ˆ DATA READER RESOURCE LIMITS
<<eXtension>> (p. 270) Various settings that configure how DataReaders
allocate and use physical memory for internal resources.

ˆ DATA WRITER PROTOCOL
<<eXtension>> (p. 270) Along with com.rti.dds.infrastructure.WireProtocolQosPolicy
(p. 1709) and com.rti.dds.infrastructure.DataReaderProtocolQosPolicy
(p. 504), this QoS policy configures the DDS on-the-network protocol
(RTPS).

ˆ DATA WRITER RESOURCE LIMITS
<<eXtension>> (p. 270) Various settings that configure how a
com.rti.dds.publication.DataWriter (p. 538) allocates and uses physical
memory for internal resources.

ˆ DEADLINE
Expresses the maximum duration (deadline) within which an instance is ex-
pected to be updated.

ˆ DESTINATION ORDER

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.41 QoS Policies 91

Controls the criteria used to determine the logical order among changes made
by com.rti.dds.publication.Publisher (p. 1277) entities to the same in-
stance of data (i.e., matching com.rti.dds.topic.Topic (p. 1545) and key).

ˆ DISCOVERY CONFIG

<<eXtension>> (p. 270) Specifies the discovery configuration QoS.

ˆ DISCOVERY

<<eXtension>> (p. 270) Specifies the attributes required to discover par-
ticipants in the domain.

ˆ DOMAIN PARTICIPANT RESOURCE LIMITS

<<eXtension>> (p. 270) Various settings that configure how a
com.rti.dds.domain.DomainParticipant (p. 629) allocates and uses
physical memory for internal resources, including the maximum sizes of
various properties.

ˆ DURABILITY

This QoS policy specifies whether or not RTI Connext will
store and deliver previously published data samples to new
com.rti.dds.subscription.DataReader (p. 473) entities that join the
network later.

ˆ DURABILITY SERVICE

Various settings to configure the external RTI Persis-
tence Service used by RTI Connext for DataWriters with a
com.rti.dds.infrastructure.DurabilityQosPolicy (p. 765) setting of
DurabilityQosPolicyKind.PERSISTENT DURABILITY QOS or Durabili-
tyQosPolicyKind.TRANSIENT DURABILITY QOS.

ˆ ENTITY FACTORY

A QoS policy for all com.rti.dds.infrastructure.Entity
(p. 912) types that can act as factories for one or more other
com.rti.dds.infrastructure.Entity (p. 912) types.

ˆ ENTITY NAME

<<eXtension>> (p. 270) Assigns a name to a
com.rti.dds.domain.DomainParticipant (p. 629). This name will
be visible during the discovery process and in RTI tools to help you visualize
and debug your system.

ˆ EVENT

<<eXtension>> (p. 270) Configures the internal thread in a DomainPar-
ticipant that handles timed events.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

92 Module Documentation

ˆ EXCLUSIVE AREA

<<eXtension>> (p. 270) Configures multi-thread concurrency and dead-
lock prevention capabilities.

ˆ GROUP DATA

Attaches a buffer of opaque data that is distributed by means of Built-in
Topics (p. 153) during discovery.

ˆ HISTORY

Specifies the behavior of RTI Connext in the case where the value of an
instance changes (one or more times) before it can be successfully communi-
cated to one or more existing subscribers.

ˆ LATENCY BUDGET

Provides a hint as to the maximum acceptable delay from the time the data
is written to the time it is received by the subscribing applications.

ˆ LIFESPAN

Specifies how long the data written by the
com.rti.dds.publication.DataWriter (p. 538) is considered valid.

ˆ LIVELINESS

Specifies and configures the mechanism that allows
com.rti.dds.subscription.DataReader (p. 473) entities to detect
when com.rti.dds.publication.DataWriter (p. 538) entities become
disconnected or ”dead.”.

ˆ LOCATORFILTER

<<eXtension>> (p. 270) The QoS policy used to report the configuration of
a MultiChannel DataWriter as part of builtin.PublicationBuiltinTopicData.

ˆ LOGGING

<<eXtension>> (p. 270) Configures the RTI Connext logging facility.

ˆ MULTICHANNEL

<<eXtension>> (p. 270) Configures the ability of a DataWriter to send
data on different multicast groups (addresses) based on the value of the data.

ˆ OWNERSHIP

Specifies whether it is allowed for multiple
com.rti.dds.publication.DataWriter (p. 538) (s) to write the same
instance of the data and if so, how these modifications should be arbitrated.

ˆ OWNERSHIP STRENGTH

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.41 QoS Policies 93

Specifies the value of the strength used to arbitrate among mul-
tiple com.rti.dds.publication.DataWriter (p. 538) objects that at-
tempt to modify the same instance of a data type (identified by
com.rti.dds.topic.Topic (p. 1545) + key).

ˆ PARTITION

Set of strings that introduces a logical partition among the top-
ics visible by a com.rti.dds.publication.Publisher (p. 1277) and a
com.rti.dds.subscription.Subscriber (p. 1478).

ˆ PRESENTATION

Specifies how the samples representing changes to data instances are pre-
sented to a subscribing application.

ˆ PROFILE

<<eXtension>> (p. 270) Configures the way that XML documents con-
taining QoS profiles are loaded by RTI Connext.

ˆ PROPERTY

<<eXtension>> (p. 270) Stores name/value (string) pairs that can be used
to configure certain parameters of RTI Connext that are not exposed through
formal QoS policies. Can also be used to store and propagate application-
specific name/value pairs that can be retrieved by user code during discovery.

ˆ PUBLISH MODE

<<eXtension>> (p. 270) Specifies how RTI Connext sends application data
on the network. This QoS policy can be used to tell RTI Connext to use its
own thread to send data, instead of the user thread.

ˆ READER DATA LIFECYCLE

Controls how a DataReader manages the lifecycle of the data that it has
received.

ˆ RECEIVER POOL

<<eXtension>> (p. 270) Configures threads used by RTI Connext to re-
ceive and process data from transports (for example, UDP sockets).

ˆ RELIABILITY

Indicates the level of reliability offered/requested by RTI Connext.

ˆ RESOURCE LIMITS

Controls the amount of physical memory allocated for DDS entities, if dy-
namic allocations are allowed, and how they occur. Also controls memory
usage among different instance values for keyed topics.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

94 Module Documentation

ˆ SYSTEM RESOURCE LIMITS
<<eXtension>> (p. 270) Configures DomainParticipant-independent re-
sources used by RTI Connext.

ˆ TIME BASED FILTER
Filter that allows a com.rti.dds.subscription.DataReader (p. 473) to
specify that it is interested only in (potentially) a subset of the values of
the data.

ˆ TOPIC DATA
Attaches a buffer of opaque data that is distributed by means of Built-in
Topics (p. 153) during discovery.

ˆ TRANSPORT BUILTIN
<<eXtension>> (p. 270) Specifies which built-in transports are used.

ˆ TRANSPORT MULTICAST
<<eXtension>> (p. 270) Specifies the multicast address on which a
com.rti.dds.subscription.DataReader (p. 473) wants to receive its data.
It can also specify a port number, as well as a subset of the available (at the
com.rti.dds.domain.DomainParticipant (p. 629) level) transports with
which to receive the multicast data.

ˆ TRANSPORT PRIORITY
This QoS policy allows the application to take advantage of transports that
are capable of sending messages with different priorities.

ˆ TRANSPORT SELECTION
<<eXtension>> (p. 270) Specifies the physical transports
that a com.rti.dds.publication.DataWriter (p. 538) or
com.rti.dds.subscription.DataReader (p. 473) may use to send or
receive data.

ˆ TRANSPORT UNICAST
<<eXtension>> (p. 270) Specifies a subset of transports and a port number
that can be used by an Entity to receive data.

ˆ TYPESUPPORT
<<eXtension>> (p. 270) Allows you to attach application-specific values
to a DataWriter or DataReader that are passed to the serialization or dese-
rialization routine of the associated data type.

ˆ USER DATA
Attaches a buffer of opaque data that is distributed by means of Built-in
Topics (p. 153) during discovery.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.41 QoS Policies 95

ˆ WIRE PROTOCOL
<<eXtension>> (p. 270) Specifies the wire protocol related attributes for
the com.rti.dds.domain.DomainParticipant (p. 629).

ˆ WRITER DATA LIFECYCLE
Controls how a DataWriter handles the lifecycle of the instances (keys) that
it is registered to manage.

Classes

ˆ class Qos
An abstract base class for all QoS types.

ˆ class QosPolicy
The base class for all QoS policies.

ˆ class QosPolicyCount
Type to hold a counter for a com.rti.dds.infrastructure.QosPolicyId t
(p. 1318).

ˆ class QosPolicyCountSeq
Declares IDL sequence < com.rti.dds.infrastructure.QosPolicyCount
(p. 1315) >.

ˆ class QosPolicyId t
Type to identify QosPolicies.

6.41.1 Detailed Description

Quality of Service (QoS) policies.

Data Distribution Service (DDS) relies on the use of QoS. A QoS is a set of
characteristics that controls some aspect of the behavior of DDS. A QoS is
comprised of individual QoS policies (objects conceptually deriving from an
abstract QosPolicy class).

The QosPolicy provides the basic mechanism for an application to specify quality
of service parameters. It has an attribute name that is used to uniquely identify
each QosPolicy.

QosPolicy implementation is comprised of a name, an ID, and a type. The type
of a QosPolicy value may be atomic, such as an integer or float, or compound

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

96 Module Documentation

(a structure). Compound types are used whenever multiple parameters must
be set coherently to define a consistent value for a QosPolicy.

QoS (i.e., a list of QosPolicy objects) may be associated with all
com.rti.dds.infrastructure.Entity (p. 912) objects in the system such as
com.rti.dds.topic.Topic (p. 1545), com.rti.dds.publication.DataWriter
(p. 538), com.rti.dds.subscription.DataReader
(p. 473), com.rti.dds.publication.Publisher (p. 1277),
com.rti.dds.subscription.Subscriber (p. 1478), and
com.rti.dds.domain.DomainParticipant (p. 629).

6.41.2 Specifying QoS on entities

QosPolicies can be set programmatically when an
com.rti.dds.infrastructure.Entity (p. 912) is created, or modified with
the com.rti.dds.infrastructure.Entity (p. 912)’s set qos (abstract)
(p. 913) method.

QosPolicies can also be configured from XML resources (files, strings). With
this approach, you can change the QoS without recompiling the application.
For more information, see Configuring QoS Profiles with XML (p. 225).

To customize a com.rti.dds.infrastructure.Entity (p. 912)’s QoS before cre-
ating the entity, the correct pattern is:

ˆ First, initialize a QoS object with the appropriate INITIALIZER con-
structor.

ˆ Call the relevant get <entity> default qos() method.

ˆ Modify the QoS values as desired.

ˆ Finally, create the entity.

Each QosPolicy is treated independently from the others. This approach has
the advantage of being very extensible. However, there may be cases where
several policies are in conflict. Consistency checking is performed each time the
policies are modified via the set qos (abstract) (p. 913) operation, or when
the com.rti.dds.infrastructure.Entity (p. 912) is created.

When a policy is changed after being set to a given value, it is not re-
quired that the new value be applied instantaneously; RTI Connext is al-
lowed to apply it after a transition phase. In addition, some QosPolicy
have immutable semantics, meaning that they can only be specified either at
com.rti.dds.infrastructure.Entity (p. 912) creation time or else prior to call-
ing the com.rti.dds.infrastructure.Entity.enable (p. 915) operation on the
entity.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.41 QoS Policies 97

Each com.rti.dds.infrastructure.Entity (p. 912) can be configured with
a list of QosPolicy objects. However, not all QosPolicies are sup-
ported by each com.rti.dds.infrastructure.Entity (p. 912). For in-
stance, a com.rti.dds.domain.DomainParticipant (p. 629) supports a dif-
ferent set of QosPolicies than a com.rti.dds.topic.Topic (p. 1545) or a
com.rti.dds.publication.Publisher (p. 1277).

6.41.3 QoS compatibility

In several cases, for communications to occur properly (or efficiently), a QosPol-
icy on the publisher side must be compatible with a corresponding policy on
the subscriber side. For example, if a com.rti.dds.subscription.Subscriber
(p. 1478) requests to receive data reliably while the corresponding
com.rti.dds.publication.Publisher (p. 1277) defines a best-effort policy,
communication will not happen as requested.

To address this issue and maintain the desirable decoupling of publication
and subscription as much as possible, the QosPolicy specification follows the
subscriber-requested, publisher-offered pattern.

In this pattern, the subscriber side can specify a ”requested” value for
a particular QosPolicy. The publisher side specifes an ”offered” value
for that QosPolicy. RTI Connext will then determine whether the
value requested by the subscriber side is compatible with what is of-
fered by the publisher side. If the two policies are compatible, then
communication will be established. If the two policies are not com-
patible, RTI Connext will not establish communications between the two
com.rti.dds.infrastructure.Entity (p. 912) objects and will record this
fact by means of the StatusKind.OFFERED INCOMPATIBLE QOS STATUS
on the publisher end and StatusKind.REQUESTED INCOMPATIBLE -
QOS STATUS on the subscriber end. The application can detect this
fact by means of a com.rti.dds.infrastructure.Listener (p. 1154) or a
com.rti.dds.infrastructure.Condition (p. 451).

The following properties are defined on a QosPolicy.

ˆ RxO (p. 97) property

The QosPolicy objects that need to be set in a compatible manner between
the publisher and subscriber end are indicated by the setting of the
RxO (p. 97) property:

– RxO (p. 97) = YES indicates that the policy can be set both at
the publishing and subscribing ends and the values must be set in a
compatible manner. In this case the compatible values are explicitly
defined.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

98 Module Documentation

– RxO (p. 97) = NO indicates that the policy can be set both at the
publishing and subscribing ends but the two settings are independent.
That is, all combinations of values are compatible.

– RxO (p. 97) = N/A indicates that the policy can only be specified
at either the publishing or the subscribing end, but not at both ends.
So compatibility does not apply.

ˆ Changeable (p. 98) property

Determines whether a QosPolicy can be changed.

NO (p. 98) – policy can only be specified at
com.rti.dds.infrastructure.Entity (p. 912) creation time.

UNTIL ENABLE (p. 98) – policy can only be changed before the
com.rti.dds.infrastructure.Entity (p. 912) is enabled.

YES (p. 98) – policy can be changed at any time.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.42 READER DATA LIFECYCLE 99

6.42 READER DATA LIFECYCLE

Controls how a DataReader manages the lifecycle of the data that it has received.

Classes

ˆ class ReaderDataLifecycleQosPolicy

Controls how a DataReader manages the lifecycle of the data that it has
received.

Variables

ˆ static final QosPolicyId t READERDATALIFECYCLE QOS -
POLICY ID

Identifier for com.rti.dds.infrastructure.ReaderDataLifecycleQosPolicy
(p. 1328).

6.42.1 Detailed Description

Controls how a DataReader manages the lifecycle of the data that it has received.

6.42.2 Variable Documentation

6.42.2.1 final QosPolicyId t READERDATALIFECYCLE QOS -
POLICY ID [static, inherited]

Identifier for com.rti.dds.infrastructure.ReaderDataLifecycleQosPolicy
(p. 1328).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

100 Module Documentation

6.43 RECEIVER POOL

<<eXtension>> (p. 270) Configures threads used by RTI Connext to receive
and process data from transports (for example, UDP sockets).

Classes

ˆ class ReceiverPoolQosPolicy

Configures threads used by RTI Connext to receive and process data from
transports (for example, UDP sockets).

Variables

ˆ static final QosPolicyId t RECEIVERPOOL QOS POLICY ID

<<eXtension>> (p. 270) Identifier for
com.rti.dds.infrastructure.ReceiverPoolQosPolicy (p. 1331)

6.43.1 Detailed Description

<<eXtension>> (p. 270) Configures threads used by RTI Connext to receive
and process data from transports (for example, UDP sockets).

6.43.2 Variable Documentation

6.43.2.1 final QosPolicyId t RECEIVERPOOL QOS POLICY ID
[static, inherited]

<<eXtension>> (p. 270) Identifier for com.rti.dds.infrastructure.ReceiverPoolQosPolicy
(p. 1331)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.44 RELIABILITY 101

6.44 RELIABILITY

Indicates the level of reliability offered/requested by RTI Connext.

Classes

ˆ class ReliabilityQosPolicy

Indicates the level of reliability offered/requested by RTI Connext.

ˆ class ReliabilityQosPolicyKind

Kinds of reliability.

Variables

ˆ static final QosPolicyId t RELIABILITY QOS POLICY ID

Identifier for com.rti.dds.infrastructure.ReliabilityQosPolicy
(p. 1336).

6.44.1 Detailed Description

Indicates the level of reliability offered/requested by RTI Connext.

6.44.2 Variable Documentation

6.44.2.1 final QosPolicyId t RELIABILITY QOS POLICY ID
[static, inherited]

Identifier for com.rti.dds.infrastructure.ReliabilityQosPolicy (p. 1336).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

102 Module Documentation

6.45 RESOURCE LIMITS

Controls the amount of physical memory allocated for DDS entities, if dynamic
allocations are allowed, and how they occur. Also controls memory usage among
different instance values for keyed topics.

Classes

ˆ class ResourceLimitsQosPolicy

Controls the amount of physical memory allocated for DDS entities, if dy-
namic allocations are allowed, and how they occur. Also controls memory
usage among different instance values for keyed topics.

Variables

ˆ static final QosPolicyId t RESOURCELIMITS QOS POLICY ID

Identifier for com.rti.dds.infrastructure.ResourceLimitsQosPolicy
(p. 1356).

ˆ static final int LENGTH UNLIMITED

A special value indicating an unlimited quantity.

6.45.1 Detailed Description

Controls the amount of physical memory allocated for DDS entities, if dynamic
allocations are allowed, and how they occur. Also controls memory usage among
different instance values for keyed topics.

6.45.2 Variable Documentation

6.45.2.1 final QosPolicyId t RESOURCELIMITS QOS POLICY -
ID [static, inherited]

Identifier for com.rti.dds.infrastructure.ResourceLimitsQosPolicy
(p. 1356).

6.45.2.2 final int LENGTH UNLIMITED [static, inherited]

A special value indicating an unlimited quantity.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.46 Return Codes 103

6.46 Return Codes

Types of return codes.

Classes

ˆ class RETCODE ALREADY DELETED

The object target of this operation has already been deleted.

ˆ class RETCODE BAD PARAMETER

Illegal parameter value.

ˆ class RETCODE ERROR

Generic, unspecified error.

ˆ class RETCODE ILLEGAL OPERATION

The operation was called under improper circumstances.

ˆ class RETCODE IMMUTABLE POLICY

Application attempted to modify an immutable QoS policy.

ˆ class RETCODE INCONSISTENT POLICY

Application specified a set of QoS policies that are not consistent with each
other.

ˆ class RETCODE NO DATA

Indicates a transient situation where the operation did not return any data
but there is no inherent error.

ˆ class RETCODE NOT ENABLED

Operation invoked on a com.rti.dds.infrastructure.Entity (p. 912) that is
not yet enabled.

ˆ class RETCODE OUT OF RESOURCES

RTI Connext ran out of the resources needed to complete the operation.

ˆ class RETCODE PRECONDITION NOT MET

A pre-condition for the operation was not met.

ˆ class RETCODE TIMEOUT

The operation timed out.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

104 Module Documentation

ˆ class RETCODE UNSUPPORTED

Unsupported operation. Can only returned by operations that are unsup-
ported.

6.46.1 Detailed Description

Types of return codes.

6.46.2 Standard Return Codes

Any void operation that documents that it may throw an exception of type
RETCODE ERROR may throw exactly RETCODE ERROR or RETCODE -
ILLEGAL OPERATION. Any such operation that takes one or more input pa-
rameters may additionally throw the subclass RETCODE BAD PARAMETER.
Any operation on an object created from any of the factories may addition-
ally throw the subclass RETCODE ALREADY DELETED. Any operation
that is stated as optional may additionally throw the subclass RETCODE -
UNSUPPORTED.

Thus, the standard return codes are:

ˆ RETCODE OK

ˆ RETCODE ERROR

ˆ RETCODE ILLEGAL OPERATION

ˆ RETCODE ALREADY DELETED

ˆ RETCODE BAD PARAMETER

ˆ RETCODE UNSUPPORTED

Operations that may throw any other exception type will state so explicitly.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.47 Sequence Number Support 105

6.47 Sequence Number Support

<<eXtension>> (p. 270) Sequence number type and defines.

Classes

ˆ class SequenceNumber t

Type for sequence number representation.

6.47.1 Detailed Description

<<eXtension>> (p. 270) Sequence number type and defines.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

106 Module Documentation

6.48 Status Kinds

Kinds of communication status.

Classes

ˆ class StatusKind

Type for status kinds.

Variables

ˆ static final int STATUS MASK NONE

No bits are set.

ˆ static final int STATUS MASK ALL

All bits are set.

6.48.1 Detailed Description

Kinds of communication status.

Entity:

com.rti.dds.infrastructure.Entity (p. 912)

QoS:

QoS Policies (p. 90)

Listener:

com.rti.dds.infrastructure.Listener (p. 1154)

Each concrete com.rti.dds.infrastructure.Entity (p. 912) is associated with
a set of Status objects whose value represents the communication status of that
entity. Each status value can be accessed with a corresponding method on the
com.rti.dds.infrastructure.Entity (p. 912).

When these status values change, the corresponding
com.rti.dds.infrastructure.StatusCondition (p. 1452) objects are ac-
tivated and the proper com.rti.dds.infrastructure.Listener (p. 1154)
objects are invoked to asynchronously inform the application.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.48 Status Kinds 107

An application is notified of communication status by
means of the com.rti.dds.infrastructure.Listener (p. 1154)
or the com.rti.dds.infrastructure.WaitSet (p. 1695) /
com.rti.dds.infrastructure.Condition (p. 451) mechanism. The
two mechanisms may be combined in the application (e.g.,
using com.rti.dds.infrastructure.WaitSet (p. 1695) (s) /
com.rti.dds.infrastructure.Condition (p. 451) (s) to access the data
and com.rti.dds.infrastructure.Listener (p. 1154) (s) to be warned
asynchronously of erroneous communication statuses).

It is likely that the application will choose one or the other mechanism for each
particular communication status (not both). However, if both mechanisms are
enabled, then the com.rti.dds.infrastructure.Listener (p. 1154) mechanism
is used first and then the com.rti.dds.infrastructure.WaitSet (p. 1695) ob-
jects are signalled.

The statuses may be classified into:

ˆ read communication statuses: i.e., those that are related to arrival
of data, namely StatusKind.DATA ON READERS STATUS and Sta-
tusKind.DATA AVAILABLE STATUS.

ˆ plain communication statuses: i.e., all the others.

Read communication statuses are treated slightly differently than the others be-
cause they don’t change independently. In other words, at least two changes will
appear at the same time (StatusKind.DATA ON READERS STATUS and Sta-
tusKind.DATA AVAILABLE STATUS) and even several of the last kind may
be part of the set. This ’grouping’ has to be communicated to the application.

For each plain communication status, there is a corresponding structure to hold
the status value. These values contain the information related to the change of
status, as well as information related to the statuses themselves (e.g., contains
cumulative counts).

6.48.2 Changes in Status

Associated with each one of an com.rti.dds.infrastructure.Entity (p. 912)’s
communication status is a logical StatusChangedFlag. This flag indicates
whether that particular communication status has changed since the last time
the status was read by the application. The way the status changes is slightly
different for the Plain Communication Status and the Read Communication
status.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

108 Module Documentation

6.48.2.1 Changes in plain communication status

For the plain communication status, the StatusChangedFlag flag is initially
set to FALSE. It becomes TRUE whenever the plain communication status
changes and it is reset to false each time the application accesses the plain
communication status via the proper get <plain communication status>()
operation on the com.rti.dds.infrastructure.Entity (p. 912).

The communication status is also reset to FALSE whenever the associated lis-
tener operation is called as the listener implicitly accesses the status which is
passed as a parameter to the operation. The fact that the status is reset prior
to calling the listener means that if the application calls the get <plain commu-
nication status> from inside the listener it will see the status already reset.

An exception to this rule is when the associated listener is the ’nil’ listener. The
’nil’ listener is treated as a NOOP and the act of calling the ’nil’ listener does
not reset the communication status.

For example, the value of the StatusChangedFlag associated with
the StatusKind.REQUESTED DEADLINE MISSED STATUS will be-
come TRUE each time new deadline occurs (which increases the
com.rti.dds.subscription.RequestedDeadlineMissedStatus.total -
count (p. 1353) field). The value changes to FALSE when
the application accesses the status via the corresponding
com.rti.dds.subscription.DataReader.get requested deadline -
missed status (p. 484) method on the proper Entity

6.48.2.2 Changes in read communication status

For the read communication status, the StatusChangedFlag flag is initially
set to FALSE. The StatusChangedFlag becomes TRUE when either a data-
sample arrives or else the com.rti.dds.subscription.ViewStateKind
(p. 1689), com.rti.dds.subscription.SampleStateKind (p. 1430),
or com.rti.dds.subscription.InstanceStateKind (p. 1086)
of any existing sample changes for any reason other
than a call to com.rti.dds.topic.example.FooDataReader.read,
com.rti.dds.topic.example.FooDataReader.take or their variants. Specifi-
cally any of the following events will cause the StatusChangedFlag to become
TRUE:

ˆ The arrival of new data.

ˆ A change in the com.rti.dds.subscription.InstanceStateKind
(p. 1086) of a contained instance. This can be caused by either:

– The arrival of the notification that an instance has been disposed by:

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.48 Status Kinds 109

* the com.rti.dds.publication.DataWriter (p. 538) that owns
it if OWNERSHIP (p. 83) QoS kind= OwnershipQosPoli-
cyKind.EXCLUSIVE OWNERSHIP QOS

* or by any com.rti.dds.publication.DataWriter (p. 538)
if OWNERSHIP (p. 83) QoS kind= OwnershipQosPoli-
cyKind.SHARED OWNERSHIP QOS

– The loss of liveliness of the com.rti.dds.publication.DataWriter
(p. 538) of an instance for which there is no other
com.rti.dds.publication.DataWriter (p. 538).

– The arrival of the notification that an instance has been unregistered
by the only com.rti.dds.publication.DataWriter (p. 538) that is
known to be writing the instance.

Depending on the kind of StatusChangedFlag, the flag transitions to FALSE
again as follows:

ˆ The StatusKind.DATA AVAILABLE STATUS StatusChangedFlag be-
comes FALSE when either the corresponding listener operation (on data -
available) is called or the read or take operation (or their variants) is called
on the associated com.rti.dds.subscription.DataReader (p. 473).

ˆ The StatusKind.DATA ON READERS STATUS StatusChangedFlag
becomes FALSE when any of the following events occurs:

– The corresponding listener operation (on data on readers) is called.

– The on data available listener operation is called on any
com.rti.dds.subscription.DataReader (p. 473) belonging to
the com.rti.dds.subscription.Subscriber (p. 1478).

– The read or take operation (or their variants) is called on any
com.rti.dds.subscription.DataReader (p. 473) belonging to the
com.rti.dds.subscription.Subscriber (p. 1478).

See also:

com.rti.dds.infrastructure.Listener (p. 1154)
com.rti.dds.infrastructure.WaitSet (p. 1695),
com.rti.dds.infrastructure.Condition (p. 451)

6.48.3 Variable Documentation

6.48.3.1 final int STATUS MASK NONE [static, inherited]

No bits are set.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

110 Module Documentation

6.48.3.2 final int STATUS MASK ALL [static, inherited]

All bits are set.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.49 SYSTEM RESOURCE LIMITS 111

6.49 SYSTEM RESOURCE LIMITS

<<eXtension>> (p. 270) Configures DomainParticipant-independent re-
sources used by RTI Connext.

Classes

ˆ class SystemResourceLimitsQosPolicy

Configures com.rti.dds.domain.DomainParticipant (p. 629)-
independent resources used by RTI Connext. Mainly used to change
the maximum number of com.rti.dds.domain.DomainParticipant
(p. 629) entities that can be created within a single process (address space).

Variables

ˆ static final QosPolicyId t SYSTEMRESOURCELIMITS QOS -
POLICY ID

<<eXtension>> (p. 270) Identifier for
com.rti.dds.infrastructure.SystemResourceLimitsQosPolicy
(p. 1524)

6.49.1 Detailed Description

<<eXtension>> (p. 270) Configures DomainParticipant-independent re-
sources used by RTI Connext.

6.49.2 Variable Documentation

6.49.2.1 final QosPolicyId t SYSTEMRESOURCELIMITS QOS -
POLICY ID [static, inherited]

<<eXtension>> (p. 270) Identifier for com.rti.dds.infrastructure.SystemResourceLimitsQosPolicy
(p. 1524)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

112 Module Documentation

6.50 Thread Settings

The properties of a thread of execution.

Classes

ˆ class ThreadSettings t

The properties of a thread of execution.

ˆ class ThreadSettingsCpuRotationKind

Determines how com.rti.dds.infrastructure.ThreadSettings t.cpu list
(p. 1532) affects processor affinity for thread-related QoS policies that ap-
ply to multiple threads.

ˆ class ThreadSettingsKind

A collection of flags used to configure threads of execution.

Variables

ˆ static final int THREAD SETTINGS KIND MASK DEFAULT

The mask of default thread options.

6.50.1 Detailed Description

The properties of a thread of execution.

6.50.2 Variable Documentation

6.50.2.1 final int THREAD SETTINGS KIND MASK DEFAULT
[static, inherited]

The mask of default thread options.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.51 TIME BASED FILTER 113

6.51 TIME BASED FILTER

Filter that allows a com.rti.dds.subscription.DataReader (p. 473) to spec-
ify that it is interested only in (potentially) a subset of the values of the data.

Classes

ˆ class TimeBasedFilterQosPolicy

Filter that allows a com.rti.dds.subscription.DataReader (p. 473) to
specify that it is interested only in (potentially) a subset of the values of
the data.

Variables

ˆ static final QosPolicyId t TIMEBASEDFILTER QOS POLICY -
ID

Identifier for com.rti.dds.infrastructure.TimeBasedFilterQosPolicy
(p. 1541).

6.51.1 Detailed Description

Filter that allows a com.rti.dds.subscription.DataReader (p. 473) to spec-
ify that it is interested only in (potentially) a subset of the values of the data.

6.51.2 Variable Documentation

6.51.2.1 final QosPolicyId t TIMEBASEDFILTER QOS POLICY -
ID [static, inherited]

Identifier for com.rti.dds.infrastructure.TimeBasedFilterQosPolicy
(p. 1541).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

114 Module Documentation

6.52 TOPIC DATA

Attaches a buffer of opaque data that is distributed by means of Built-in
Topics (p. 153) during discovery.

Classes

ˆ class TopicDataQosPolicy

Attaches a buffer of opaque data that is distributed by means of Built-in
Topics (p. 153) during discovery.

Variables

ˆ static final QosPolicyId t TOPICDATA QOS POLICY ID

Identifier for com.rti.dds.infrastructure.TopicDataQosPolicy
(p. 1559).

6.52.1 Detailed Description

Attaches a buffer of opaque data that is distributed by means of Built-in
Topics (p. 153) during discovery.

6.52.2 Variable Documentation

6.52.2.1 final QosPolicyId t TOPICDATA QOS POLICY ID
[static, inherited]

Identifier for com.rti.dds.infrastructure.TopicDataQosPolicy (p. 1559).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.53 TRANSPORT BUILTIN 115

6.53 TRANSPORT BUILTIN

<<eXtension>> (p. 270) Specifies which built-in transports are used.

Classes

ˆ class TransportBuiltinKind

Built-in transport kind.

ˆ class TransportBuiltinQosPolicy

Specifies which built-in transports are used.

Variables

ˆ static final QosPolicyId t TRANSPORTBUILTIN QOS POLICY -
ID

<<eXtension>> (p. 270) Identifier for
com.rti.dds.infrastructure.TransportBuiltinQosPolicy (p. 1580)

ˆ static final String UDPv4 ALIAS

Alias name for the UDPv4 built-in transport.

ˆ static final String SHMEM ALIAS

Alias name for the shared memory built-in transport.

ˆ static final String UDPv6 ALIAS

Alias name for the UDPv6 built-in transport.

ˆ static final int MASK NONE

None of the built-in transports will be registered automatically when the
com.rti.dds.domain.DomainParticipant (p. 629) is enabled. The user
must explictly register transports using TransportSupport.register transport.

ˆ static final int MASK DEFAULT

The default value of com.rti.dds.infrastructure.TransportBuiltinQosPolicy.mask
(p. 1581).

ˆ static final int MASK ALL

All the available built-in transports are registered automatically when the
com.rti.dds.domain.DomainParticipant (p. 629) is enabled.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

116 Module Documentation

6.53.1 Detailed Description

<<eXtension>> (p. 270) Specifies which built-in transports are used.

See also:

Changing the automatically registered built-in transports (p. 255)

6.53.2 Variable Documentation

6.53.2.1 final QosPolicyId t TRANSPORTBUILTIN QOS -
POLICY ID [static, inherited]

<<eXtension>> (p. 270) Identifier for com.rti.dds.infrastructure.TransportBuiltinQosPolicy
(p. 1580)

6.53.2.2 final String UDPv4 ALIAS [static, inherited]

Alias name for the UDPv4 built-in transport.

6.53.2.3 final String SHMEM ALIAS [static, inherited]

Alias name for the shared memory built-in transport.

6.53.2.4 final String UDPv6 ALIAS [static, inherited]

Alias name for the UDPv6 built-in transport.

6.53.2.5 final int MASK NONE [static, inherited]

None of the built-in transports will be registered automatically when the
com.rti.dds.domain.DomainParticipant (p. 629) is enabled. The user must
explictly register transports using TransportSupport.register transport.

See also:

com.rti.dds.infrastructure.TransportBuiltinKindMask

6.53.2.6 final int MASK DEFAULT [static, inherited]

The default value of com.rti.dds.infrastructure.TransportBuiltinQosPolicy.mask
(p. 1581).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.53 TRANSPORT BUILTIN 117

The set of builtin transport plugins that will be automatically registered with
the participant by default. The user can register additional transports using
TransportSupport.register transport.

See also:

com.rti.dds.infrastructure.TransportBuiltinKindMask

6.53.2.7 final int MASK ALL [static, inherited]

All the available built-in transports are registered automatically when the
com.rti.dds.domain.DomainParticipant (p. 629) is enabled.

See also:

com.rti.dds.infrastructure.TransportBuiltinKindMask

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

118 Module Documentation

6.54 TRANSPORT MULTICAST

<<eXtension>> (p. 270) Specifies the multicast address on which a
com.rti.dds.subscription.DataReader (p. 473) wants to receive its data.
It can also specify a port number, as well as a subset of the available (at
the com.rti.dds.domain.DomainParticipant (p. 629) level) transports with
which to receive the multicast data.

Classes

ˆ class TransportMulticastMappingQosPolicy
Specifies the multicast address on which a
com.rti.dds.subscription.DataReader (p. 473) wants to receive its
data. It can also specify a port number as well as a subset of the avail-
able (at the com.rti.dds.domain.DomainParticipant (p. 629) level)
transports with which to receive the multicast data.

ˆ class TransportMulticastQosPolicy
Specifies the multicast address on which a
com.rti.dds.subscription.DataReader (p. 473) wants to receive its
data. It can also specify a port number as well as a subset of the avail-
able (at the com.rti.dds.domain.DomainParticipant (p. 629) level)
transports with which to receive the multicast data.

ˆ class TransportMulticastQosPolicyKind
Transport Multicast Policy Kind.

Variables

ˆ static final QosPolicyId t TRANSPORTMULTICAST QOS -
POLICY ID

<<eXtension>> (p. 270) Identifier for
com.rti.dds.infrastructure.TransportMulticastQosPolicy (p. 1590)

ˆ static final TransportMulticastQosPolicyKind AUTOMATIC -
TRANSPORT MULTICAST QOS

Transport Multicast Policy Kind.

ˆ static final TransportMulticastQosPolicyKind UNICAST ONLY -
TRANSPORT MULTICAST QOS = new TransportMulticas-
tQosPolicyKind(”UNICAST ONLY TRANSPORT MULTICAST QOS”,
1)

Transport Multicast Policy Kind.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.54 TRANSPORT MULTICAST 119

6.54.1 Detailed Description

<<eXtension>> (p. 270) Specifies the multicast address on which a
com.rti.dds.subscription.DataReader (p. 473) wants to receive its data.
It can also specify a port number, as well as a subset of the available (at
the com.rti.dds.domain.DomainParticipant (p. 629) level) transports with
which to receive the multicast data.

6.54.2 Variable Documentation

6.54.2.1 final QosPolicyId t TRANSPORTMULTICAST QOS -
POLICY ID [static, inherited]

<<eXtension>> (p. 270) Identifier for com.rti.dds.infrastructure.TransportMulticastQosPolicy
(p. 1590)

6.54.2.2 final TransportMulticastQosPolicyKind
AUTOMATIC TRANSPORT MULTICAST QOS
[static, inherited]

Initial value:

new TransportMulticastQosPolicyKind(

"AUTOMATIC_TRANSPORT_MULTICAST_QOS", 0)

Transport Multicast Policy Kind.

See also:

com.rti.dds.infrastructure.TransportMulticastQosPolicy.AUTOMATIC -
TRANSPORT MULTICAST QOS

6.54.2.3 final TransportMulticastQosPolicyKind
UNICAST ONLY TRANSPORT MULTICAST QOS =
new TransportMulticastQosPolicyKind(”UNICAST -
ONLY TRANSPORT MULTICAST QOS”, 1) [static,
inherited]

Transport Multicast Policy Kind.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

120 Module Documentation

See also:

com.rti.dds.infrastructure.TransportMulticastQosPolicy.UNICAST -
ONLY TRANSPORT MULTICAST QOS

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.55 TRANSPORT PRIORITY 121

6.55 TRANSPORT PRIORITY

This QoS policy allows the application to take advantage of transports that are
capable of sending messages with different priorities.

Classes

ˆ class TransportPriorityQosPolicy

This QoS policy allows the application to take advantage of transports that
are capable of sending messages with different priorities.

Variables

ˆ static final QosPolicyId t TRANSPORTPRIORITY QOS -
POLICY ID

Identifier for com.rti.dds.infrastructure.TransportPriorityQosPolicy
(p. 1598).

6.55.1 Detailed Description

This QoS policy allows the application to take advantage of transports that are
capable of sending messages with different priorities.

6.55.2 Variable Documentation

6.55.2.1 final QosPolicyId t TRANSPORTPRIORITY QOS -
POLICY ID [static, inherited]

Identifier for com.rti.dds.infrastructure.TransportPriorityQosPolicy
(p. 1598).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

122 Module Documentation

6.56 TRANSPORT SELECTION

<<eXtension>> (p. 270) Specifies the physical transports
that a com.rti.dds.publication.DataWriter (p. 538) or
com.rti.dds.subscription.DataReader (p. 473) may use to send or re-
ceive data.

Classes

ˆ class TransportSelectionQosPolicy

Specifies the physical transports a com.rti.dds.publication.DataWriter
(p. 538) or com.rti.dds.subscription.DataReader (p. 473) may use to
send or receive data.

Variables

ˆ static final QosPolicyId t TRANSPORTSELECTION QOS -
POLICY ID

<<eXtension>> (p. 270) Identifier for
com.rti.dds.infrastructure.TransportSelectionQosPolicy (p. 1600)

6.56.1 Detailed Description

<<eXtension>> (p. 270) Specifies the physical transports
that a com.rti.dds.publication.DataWriter (p. 538) or
com.rti.dds.subscription.DataReader (p. 473) may use to send or re-
ceive data.

6.56.2 Variable Documentation

6.56.2.1 final QosPolicyId t TRANSPORTSELECTION QOS -
POLICY ID [static, inherited]

<<eXtension>> (p. 270) Identifier for com.rti.dds.infrastructure.TransportSelectionQosPolicy
(p. 1600)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.57 TRANSPORT UNICAST 123

6.57 TRANSPORT UNICAST

<<eXtension>> (p. 270) Specifies a subset of transports and a port number
that can be used by an Entity to receive data.

Classes

ˆ class TransportUnicastQosPolicy

Specifies a subset of transports and a port number that can be used by an
Entity (p. 912) to receive data.

Variables

ˆ static final QosPolicyId t TRANSPORTUNICAST QOS -
POLICY ID

<<eXtension>> (p. 270) Identifier for
com.rti.dds.infrastructure.TransportUnicastQosPolicy (p. 1605)

6.57.1 Detailed Description

<<eXtension>> (p. 270) Specifies a subset of transports and a port number
that can be used by an Entity to receive data.

6.57.2 Variable Documentation

6.57.2.1 final QosPolicyId t TRANSPORTUNICAST QOS -
POLICY ID [static, inherited]

<<eXtension>> (p. 270) Identifier for com.rti.dds.infrastructure.TransportUnicastQosPolicy
(p. 1605)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

124 Module Documentation

6.58 TYPESUPPORT

<<eXtension>> (p. 270) Allows you to attach application-specific values to a
DataWriter or DataReader that are passed to the serialization or deserialization
routine of the associated data type.

Classes

ˆ class TypeSupportQosPolicy

Allows you to attach application-specific values to a DataWriter or
DataReader that are passed to the serialization or deserialization routine
of the associated data type.

Variables

ˆ static final QosPolicyId t TYPESUPPORT QOS POLICY ID

<<eXtension>> (p. 270) Identifier for
com.rti.dds.infrastructure.TypeSupportQosPolicy (p. 1652)

ˆ static final QosPolicyId t ENTITYNAME QOS POLICY ID

<<eXtension>> (p. 270) Identifier for
com.rti.dds.infrastructure.TypeSupportQosPolicy (p. 1652)

6.58.1 Detailed Description

<<eXtension>> (p. 270) Allows you to attach application-specific values to a
DataWriter or DataReader that are passed to the serialization or deserialization
routine of the associated data type.

6.58.2 Variable Documentation

6.58.2.1 final QosPolicyId t TYPESUPPORT QOS POLICY ID
[static, inherited]

<<eXtension>> (p. 270) Identifier for com.rti.dds.infrastructure.TypeSupportQosPolicy
(p. 1652)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.58 TYPESUPPORT 125

6.58.2.2 final QosPolicyId t ENTITYNAME QOS POLICY ID
[static, inherited]

<<eXtension>> (p. 270) Identifier for com.rti.dds.infrastructure.TypeSupportQosPolicy
(p. 1652)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

126 Module Documentation

6.59 USER DATA

Attaches a buffer of opaque data that is distributed by means of Built-in
Topics (p. 153) during discovery.

Classes

ˆ class UserDataQosPolicy

Attaches a buffer of opaque data that is distributed by means of Built-in
Topics (p. 153) during discovery.

Variables

ˆ static final QosPolicyId t USERDATA QOS POLICY ID

Identifier for com.rti.dds.infrastructure.UserDataQosPolicy (p. 1680).

6.59.1 Detailed Description

Attaches a buffer of opaque data that is distributed by means of Built-in
Topics (p. 153) during discovery.

6.59.2 Variable Documentation

6.59.2.1 final QosPolicyId t USERDATA QOS POLICY ID
[static, inherited]

Identifier for com.rti.dds.infrastructure.UserDataQosPolicy (p. 1680).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.60 Exception Codes 127

6.60 Exception Codes

<<eXtension>> (p. 270) Exception codes.

Classes

ˆ class BAD PARAM

The exception BadKind (p. 398) is thrown when an inappropriate operation
is invoked on a TypeCode object.

ˆ class BAD TYPECODE

The exception BadKind (p. 398) is thrown when an inappropriate operation
is invoked on a TypeCode object.

ˆ class BadKind

The exception BadKind (p. 398) is thrown when an inappropriate operation
is invoked on a TypeCode object.

ˆ class BadMemberId

The specified TypeCode member ID is invalid.

ˆ class BadMemberName

The specified TypeCode member name is invalid.

ˆ class Bounds

A user exception thrown when a parameter is not within the legal bounds.

ˆ class SystemException

System exception.

ˆ class UserException

User exception.

6.60.1 Detailed Description

<<eXtension>> (p. 270) Exception codes.

These exceptions are used for error handling by the Type Code Support
(p. 162) API.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

128 Module Documentation

6.61 WIRE PROTOCOL

<<eXtension>> (p. 270) Specifies the wire protocol related attributes for the
com.rti.dds.domain.DomainParticipant (p. 629).

Classes

ˆ class RtpsReservedPortKind
RTPS reserved port kind, used to identify the types of ports that can be re-
served on domain (p. 317) participant enable.

ˆ class RtpsWellKnownPorts t
RTPS well-known port mapping configuration.

ˆ class WireProtocolQosPolicy
Specifies the wire-protocol-related attributes for the
com.rti.dds.domain.DomainParticipant (p. 629).

ˆ class WireProtocolQosPolicyAutoKind
Kind of auto mechanism used to calculate the GUID prefix.

Variables

ˆ static final QosPolicyId t WIREPROTOCOL QOS POLICY ID
<<eXtension>> (p. 270) Identifier for
com.rti.dds.infrastructure.WireProtocolQosPolicy (p. 1709)

ˆ static final int MASK DEFAULT = BUILTIN UNICAST | BUILTIN -
MULTICAST | USER UNICAST

The default value of com.rti.dds.infrastructure.WireProtocolQosPolicy.rtps -
reserved port mask (p. 1717).

ˆ static final int MASK NONE
No bits are set.

ˆ static final int MASK ALL
All bits are set.

ˆ static final RtpsWellKnownPorts t RTI BACKWARDS -
COMPATIBLE RTPS WELL KNOWN PORTS

Assign to use well-known port mappings which are compatible with previous
versions of the RTI Connext middleware.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.61 WIRE PROTOCOL 129

ˆ static final RtpsWellKnownPorts t INTEROPERABLE RTPS -
WELL KNOWN PORTS

Assign to use well-known port mappings which are compliant with OMG’s
DDS Interoperability Wire Protocol.

ˆ static final WireProtocolQosPolicyAutoKind RTPS AUTO ID -
FROM IP = new WireProtocolQosPolicyAutoKind(”RTPS AUTO -
ID FROM IP”, 0)

Kind of auto mechanism used to calculate the GUID prefix.

ˆ static final WireProtocolQosPolicyAutoKind RTPS AUTO ID -
FROM MAC = new WireProtocolQosPolicyAutoKind(”RTPS -
AUTO ID FROM MAC”, 1)

Kind of auto mechanism used to calculate the GUID prefix.

6.61.1 Detailed Description

<<eXtension>> (p. 270) Specifies the wire protocol related attributes for the
com.rti.dds.domain.DomainParticipant (p. 629).

6.61.2 Variable Documentation

6.61.2.1 final QosPolicyId t WIREPROTOCOL QOS POLICY ID
[static, inherited]

<<eXtension>> (p. 270) Identifier for com.rti.dds.infrastructure.WireProtocolQosPolicy
(p. 1709)

6.61.2.2 final int MASK DEFAULT = BUILTIN UNICAST |
BUILTIN MULTICAST | USER UNICAST [static,
inherited]

The default value of com.rti.dds.infrastructure.WireProtocolQosPolicy.rtps -
reserved port mask (p. 1717).

Most of the ports that may be needed by DDS will be reserved
by the transport when the participant is enabled. With this value
set, failure to allocate a port that is computed based on the
com.rti.dds.infrastructure.RtpsWellKnownPorts t (p. 1396) will be
detected at this time and the enable operation will fail.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

130 Module Documentation

This setting will avoid reserving the usertraffic multicast port, which is not
actually used unless there are DataReaders that enable multicast but fail to
specify a port.

Automatic participant ID selection will be based on finding a participant index
with both the discovery (metatraffic) unicast port and usertraffic unicast port
available.

See also:

com.rti.dds.infrastructure.RtpsReservedPortKindMask

6.61.2.3 final int MASK NONE [static, inherited]

No bits are set.

None of the ports that are needed by DDS will be allocated until they are
specifically required. With this value set, automatic participant Id selection
will be based on selecting a port for discovery (metatraffic) unicast traffic on a
single transport.

See also:

com.rti.dds.infrastructure.RtpsReservedPortKindMask

6.61.2.4 final int MASK ALL [static, inherited]

All bits are set.

All of the ports that may be needed by DDS will be reserved when the partic-
ipant is enabled. With this value set, failure to allocate a port that is com-
puted based on the com.rti.dds.infrastructure.RtpsWellKnownPorts t
(p. 1396) will be detected at this time, and the enable operation will fail.

Note that this will also reserve the usertraffic multicast port which is not
actually used unless there are DataReaders that enable multicast but fail to
specify a port. To avoid unnecesary resource usage for these ports, use RTPS -
RESERVED PORT MASK DEFAULT.

Automatic participant ID selection will be based on finding a participant index
with both the discovery (metatraffic) unicast port and usertraffic unicast port
available.

See also:

com.rti.dds.infrastructure.RtpsReservedPortKindMask

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.61 WIRE PROTOCOL 131

6.61.2.5 final RtpsWellKnownPorts t RTI BACKWARDS -
COMPATIBLE RTPS WELL KNOWN PORTS [static,
inherited]

Assign to use well-known port mappings which are compatible with previous
versions of the RTI Connext middleware.

Assign com.rti.dds.infrastructure.WireProtocolQosPolicy.rtps well -
known ports (p. 1715) to this value to remain compatible with previous
versions of the RTI Connext middleware that used fixed port mappings.

The following are the rtps well known ports values for RtpsWell-
KnownPorts t.RTI BACKWARDS COMPATIBLE RTPS WELL -
KNOWN PORTS (p. 131):

port base = 7400

domain id gain = 10

participant id gain = 1000

builtin multicast port offset = 2

builtin unicast port offset = 0

user multicast port offset = 1

user unicast port offset = 3

These settings are not compliant with OMG’s DDS Interoperability Wire Pro-
tocol. To comply with the specification, please use RtpsWellKnownPorts -
t.INTEROPERABLE RTPS WELL KNOWN PORTS (p. 131).

See also:

com.rti.dds.infrastructure.WireProtocolQosPolicy.rtps well -
known ports (p. 1715)
RtpsWellKnownPorts t.INTEROPERABLE RTPS WELL -
KNOWN PORTS (p. 131)

6.61.2.6 final RtpsWellKnownPorts t INTEROPERABLE -
RTPS WELL KNOWN PORTS [static,
inherited]

Assign to use well-known port mappings which are compliant with OMG’s DDS
Interoperability Wire Protocol.

Assign com.rti.dds.infrastructure.WireProtocolQosPolicy.rtps well -
known ports (p. 1715) to this value to use well-known port mappings which
are compliant with OMG’s DDS Interoperability Wire Protocol.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

132 Module Documentation

The following are the rtps well known ports values for RtpsWellKnown-
Ports t.INTEROPERABLE RTPS WELL KNOWN PORTS (p. 131):

port base = 7400

domain id gain = 250

participant id gain = 2

builtin multicast port offset = 0

builtin unicast port offset = 10

user multicast port offset = 1

user unicast port offset = 11

Assuming a maximum port number of 65535 (UDPv4), the above settings enable
the use of about 230 domains with up to 120 Participants per node per domain
(p. 317).

These settings are not backwards compatible with previous versions of the
RTI Connext middleware that used fixed port mappings. For backwards
compability, please use RtpsWellKnownPorts t.RTI BACKWARDS -
COMPATIBLE RTPS WELL KNOWN PORTS (p. 131).

See also:

com.rti.dds.infrastructure.WireProtocolQosPolicy.rtps well -
known ports (p. 1715)
RtpsWellKnownPorts t.RTI BACKWARDS COMPATIBLE -
RTPS WELL KNOWN PORTS (p. 131)

6.61.2.7 final WireProtocolQosPolicyAutoKind
RTPS AUTO ID FROM IP = new
WireProtocolQosPolicyAutoKind(”RTPS -
AUTO ID FROM IP”, 0) [static,
inherited]

Kind of auto mechanism used to calculate the GUID prefix.

See also:

com.rti.dds.infrastructure.WireProtocolQosPolicy.rtps auto id -
kind.RTPS AUTO ID FROM IP

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.61 WIRE PROTOCOL 133

6.61.2.8 final WireProtocolQosPolicyAutoKind
RTPS AUTO ID FROM MAC = new
WireProtocolQosPolicyAutoKind(”RTPS -
AUTO ID FROM MAC”, 1) [static,
inherited]

Kind of auto mechanism used to calculate the GUID prefix.

See also:

com.rti.dds.infrastructure.WireProtocolQosPolicy.rtps auto id -
kind.RTPS AUTO ID FROM MAC

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

134 Module Documentation

6.62 WRITER DATA LIFECYCLE

Controls how a DataWriter handles the lifecycle of the instances (keys) that it
is registered to manage.

Classes

ˆ class WriterDataLifecycleQosPolicy

Controls how a com.rti.dds.publication.DataWriter (p. 538) handles the
lifecycle of the instances (keys) that it is registered to manage.

Variables

ˆ static final QosPolicyId t WRITERDATALIFECYCLE QOS -
POLICY ID

Identifier for com.rti.dds.infrastructure.WriterDataLifecycleQosPolicy
(p. 1722).

6.62.1 Detailed Description

Controls how a DataWriter handles the lifecycle of the instances (keys) that it
is registered to manage.

6.62.2 Variable Documentation

6.62.2.1 final QosPolicyId t WRITERDATALIFECYCLE QOS -
POLICY ID [static, inherited]

Identifier for com.rti.dds.infrastructure.WriterDataLifecycleQosPolicy
(p. 1722).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.63 String Built-in Type 135

6.63 String Built-in Type

Built-in type consisting of a single character string.

Classes

ˆ class StringSeq

Declares IDL sequence < String > .

ˆ class StringDataReader

<<interface>> (p. 271) Instantiates DataReader < String >.

ˆ class StringDataWriter

<<interface>> (p. 271) Instantiates DataWriter < String >.

ˆ class StringTypeSupport

<<interface>> (p. 271) String type support.

6.63.1 Detailed Description

Built-in type consisting of a single character string.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

136 Module Documentation

6.64 KeyedString Built-in Type

Built-in type consisting of a string payload and a second string that is the key.

Classes

ˆ class KeyedString

Keyed string built-in type.

ˆ class KeyedStringDataReader

<<interface>> (p. 271) Instantiates DataReader <
com.rti.dds.type.builtin.KeyedString (p. 1123) >.

ˆ class KeyedStringDataWriter

<<interface>> (p. 271) Instantiates DataWriter <
com.rti.dds.type.builtin.KeyedString (p. 1123) >.

ˆ class KeyedStringSeq

Instantiates com.rti.dds.util.Sequence (p. 1432) <
com.rti.dds.type.builtin.KeyedString (p. 1123) > .

ˆ class KeyedStringTypeSupport

<<interface>> (p. 271) Keyed string type support.

6.64.1 Detailed Description

Built-in type consisting of a string payload and a second string that is the key.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.65 Octets Built-in Type 137

6.65 Octets Built-in Type

Built-in type consisting of a variable-length array of opaque bytes.

Classes

ˆ class Bytes

Built-in type consisting of a variable-length array of opaque bytes.

ˆ class BytesDataReader

<<interface>> (p. 271) Instantiates DataReader <
com.rti.dds.type.builtin.Bytes (p. 417) >.

ˆ class BytesDataWriter

<<interface>> (p. 271) Instantiates DataWriter <
com.rti.dds.type.builtin.Bytes (p. 417) >.

ˆ class BytesSeq

Instantiates com.rti.dds.util.Sequence (p. 1432) <
com.rti.dds.type.builtin.Bytes (p. 417) > .

ˆ class BytesTypeSupport

<<interface>> (p. 271) com.rti.dds.type.builtin.Bytes (p. 417) type
support.

6.65.1 Detailed Description

Built-in type consisting of a variable-length array of opaque bytes.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

138 Module Documentation

6.66 KeyedOctets Built-in Type

Built-in type consisting of a variable-length array of opaque bytes and a string
that is the key.

Classes

ˆ class KeyedBytes

Built-in type consisting of a variable-length array of opaque bytes and a string
that is the key.

ˆ class KeyedBytesDataReader

<<interface>> (p. 271) Instantiates DataReader <
com.rti.dds.type.builtin.KeyedBytes (p. 1095) >.

ˆ class KeyedBytesDataWriter

<<interface>> (p. 271) Instantiates DataWriter <
com.rti.dds.type.builtin.KeyedBytes (p. 1095) >.

ˆ class KeyedBytesSeq

Instantiates com.rti.dds.util.Sequence (p. 1432) <
com.rti.dds.type.builtin.KeyedBytes (p. 1095) >.

ˆ class KeyedBytesTypeSupport

<<interface>> (p. 271) com.rti.dds.type.builtin.KeyedBytes (p. 1095)
type support.

6.66.1 Detailed Description

Built-in type consisting of a variable-length array of opaque bytes and a string
that is the key.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.67 Sequence Support 139

6.67 Sequence Support

The com.rti.dds.util.Sequence (p. 1432) interface allows you to work with
variable-length collections of homogeneous data.

Modules

ˆ Built-in Sequences

Defines sequences of primitive data type.

Classes

ˆ class FooSeq

<<interface>> (p. 271) <<generic>> (p. 271) A type-safe, ordered col-
lection of elements. The type of these elements is referred to in this docu-
mentation as Foo (p. 955).

ˆ interface Sequence

<<interface>> (p. 271) <<generic>> (p. 271) A type-safe, ordered col-
lection of elements. The type of these elements is referred to in this docu-
mentation as Foo.

ˆ class FooSeq

<<interface>> (p. 271) <<generic>> (p. 271) A type-safe, ordered col-
lection of elements. The type of these elements is referred to in this docu-
mentation as Foo (p. 956).

6.67.1 Detailed Description

The com.rti.dds.util.Sequence (p. 1432) interface allows you to work with
variable-length collections of homogeneous data.

This interface is a minimal extension to the standard java.util.List interface,
making it easier to use RTI Connext alongside other Java APIs.

The java.util.List interface does not provide direct support for lists of prim-
itive types. The Built-in Sequences (p. 202) provide extension APIs for work-
ing with collections of primitive elements without the overhead of boxing the
unboxing.

When you use the rtiddsgen (p. 290) code generation tool, it will automatically
generate concrete sequence instantiations for each of your own custom types.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

140 Module Documentation

See also:

http://java.sun.com/javase/6/docs/api/java/util/List.html

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.68 Clock Selection 141

6.68 Clock Selection

APIs related to clock selection. RTI Connext uses clocks to measure time and
generate timestamps.

The middleware uses two clocks, an internal clock and an external clock. The
internal clock is used to measure time and handles all timing in the middleware.
The external clock is used solely to generate timestamps, such as the source
timestamp and the reception timestamp, in addition to providing the time given
by com.rti.dds.domain.DomainParticipant.get current time (p. 695).

6.68.1 Available Clocks

Two clock implementations are generally available, the monotonic clock and the
realtime clock.

The monotonic clock provides times that are monotonic from a clock that is not
adjustable. This clock is useful to use in order to not be subject to changes in
the system or realtime clock, which may be adjusted by the user or via time
synchronization protocols. However, this time generally starts from an arbitrary
point in time, such as system startup. Note that this clock is not available for
all architectures. Please see the Platform Notes for the architectures on which
it is supported. For the purposes of clock selection, this clock can be referenced
by the name ”monotonic”.

The realtime clock provides the realtime of the system. This clock may generally
be monotonic but may not be guaranteed to be so. It is adjustable and may be
subject to small and large changes in time. The time obtained from this clock
is generally a meaningful time in that it is the amount of time from a known
epoch. For the purposes of clock selection, this clock can be referenced by the
names ”realtime” or ”system”.

6.68.2 Clock Selection Strategy

By default, both the internal and external clocks use the realtime clock. If you
want your application to be robust to changes in the system time, you may use
the monotonic clock as the internal clock, and leave the system clock as the
external clock. Note, however, that this may slightly diminish performance in
that both the send and receive paths may need to obtain times from both clocks.
Since the monotonic clock is not available on all architectures, you may want
to specify ”monotonic,realtime” for the internal clock (see the table below). By
doing so, the middleware will attempt to use the monotonic clock if available,
and will fall back to the realtime clock if the monotonic clock is not available.

If you want your application to be robust to changes in the system time, you
are not relying on source timestamps, and you want to avoid obtaining times

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

142 Module Documentation

from both clocks, you may use the monotonic clock for both the internal and
external clocks.

6.68.3 Configuring Clock Selection

To configure the clock selection, use the PROPERTY (p. 88) QoS policy as-
sociated with the com.rti.dds.domain.DomainParticipant (p. 629).

See also:

com.rti.dds.infrastructure.PropertyQosPolicy (p. 1252)

The following table lists the supported clock selection properties.

Property Description
dds.clock.external clock Comma-delimited list of clocks to

use for the external clock, in the
order of preference. Valid clock
names are ”realtime”, ”system”,
and ”monotonic”.
Default: ”realtime”

dds.clock.internal clock Comma-delimited list of clocks to
use for the internal clock, in the
order of preference. Valid clock
names are ”realtime”, ”system”,
and ”monotonic”.
Default: ”realtime”

Table 6.1: Clock Selection Properties

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.69 Domain Module 143

6.69 Domain Module

Contains the com.rti.dds.domain.DomainParticipant (p. 629) class that
acts as an entrypoint of RTI Connext and acts as a factory for many of the
classes. The com.rti.dds.domain.DomainParticipant (p. 629) also acts as
a container for the other objects that make up RTI Connext.

Modules

ˆ DomainParticipantFactory

com.rti.dds.domain.DomainParticipantFactory (p. 708) entity and as-
sociated elements

ˆ DomainParticipants

com.rti.dds.domain.DomainParticipant (p. 629) entity and associated
elements

ˆ Built-in Topics

Built-in objects created by RTI Connext but accessible to the application.

Variables

ˆ static DomainParticipantFactory TheParticipantFactory = create -
singletonI()

Can be used as an alias for the singleton factory returned by the oper-
ation com.rti.dds.domain.DomainParticipantFactory.get instance()
(p. 712).

6.69.1 Detailed Description

Contains the com.rti.dds.domain.DomainParticipant (p. 629) class that
acts as an entrypoint of RTI Connext and acts as a factory for many of the
classes. The com.rti.dds.domain.DomainParticipant (p. 629) also acts as
a container for the other objects that make up RTI Connext.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

144 Module Documentation

6.69.2 Variable Documentation

6.69.2.1 DomainParticipantFactory TheParticipantFactory =
create singletonI() [static, inherited]

Can be used as an alias for the singleton factory returned by the operation
com.rti.dds.domain.DomainParticipantFactory.get instance() (p. 712).

See also:

com.rti.dds.domain.DomainParticipantFactory.get instance
(p. 712)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.70 DomainParticipantFactory 145

6.70 DomainParticipantFactory

com.rti.dds.domain.DomainParticipantFactory (p. 708) entity and asso-
ciated elements

Classes

ˆ class DomainParticipantFactory

<<singleton>> (p. 271) <<interface>> (p. 271) Allows creation and de-
struction of com.rti.dds.domain.DomainParticipant (p. 629) objects.

ˆ class DomainParticipantFactoryQos

QoS policies supported by a com.rti.dds.domain.DomainParticipantFactory
(p. 708).

Variables

ˆ static final DomainParticipantQos PARTICIPANT QOS -
DEFAULT

Special value for creating a DomainParticipant (p. 629) with default QoS.

6.70.1 Detailed Description

com.rti.dds.domain.DomainParticipantFactory (p. 708) entity and asso-
ciated elements

6.70.2 Variable Documentation

6.70.2.1 final DomainParticipantQos PARTICIPANT QOS -
DEFAULT [static, inherited]

Initial value:

new DomainParticipantQos()

Special value for creating a DomainParticipant (p. 629) with default QoS.

When used in com.rti.dds.domain.DomainParticipantFactory.create -
participant (p. 714), this special value is used to indicate that the
com.rti.dds.domain.DomainParticipant (p. 629) should be created with

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

146 Module Documentation

the default com.rti.dds.domain.DomainParticipant (p. 629) QoS by means
of the operation com.rti.dds.domain.DomainParticipantFactory.get -
default participant qos() (p. 716) and using the resulting QoS to create the
com.rti.dds.domain.DomainParticipant (p. 629).

When used in com.rti.dds.domain.DomainParticipantFactory.set -
default participant qos (p. 716), this special value is used to indicate that
the default QoS should be reset back to the initial value that would be used
if the com.rti.dds.domain.DomainParticipantFactory.set default -
participant qos (p. 716) operation had never been called.

When used in com.rti.dds.domain.DomainParticipant.set -
qos (p. 677), this special value is used to indicate that the
QoS of the com.rti.dds.domain.DomainParticipant (p. 629)
should be changed to match the current default QoS set in the
com.rti.dds.domain.DomainParticipantFactory (p. 708) that the
com.rti.dds.domain.DomainParticipant (p. 629) belongs to.

RTI Connext treats this special value as a constant.

Note: You cannot use this value to get the default QoS values
from the DomainParticipant (p. 629) factory; for this purpose,
use com.rti.dds.domain.DomainParticipantFactory.get default -
participant qos (p. 716).

See also:

NDDS DISCOVERY PEERS (p. 55)
com.rti.dds.domain.DomainParticipantFactory.create -
participant() (p. 714)
com.rti.dds.domain.DomainParticipantFactory.set default -
participant qos() (p. 716)
com.rti.dds.domain.DomainParticipant.set qos() (p. 677)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.71 DomainParticipants 147

6.71 DomainParticipants

com.rti.dds.domain.DomainParticipant (p. 629) entity and associated ele-
ments

Classes

ˆ interface DomainParticipant
<<interface>> (p. 271) Container for all
com.rti.dds.infrastructure.DomainEntity (p. 628) objects.

ˆ class DomainParticipantAdapter
<<eXtension>> (p. 270) A listener adapter in the spirit of the Java AWT
listener adapters. (The Adapter provides empty implementations for the lis-
tener methods)

ˆ interface DomainParticipantListener
<<interface>> (p. 271) Listener for participant status.

ˆ class DomainParticipantQos
QoS policies supported by a com.rti.dds.domain.DomainParticipant
(p. 629) entity.

Variables

ˆ static final TopicQos TOPIC QOS DEFAULT = new TopicQos()
Special value for creating a com.rti.dds.topic.Topic (p. 1545) with default
QoS.

ˆ static final PublisherQos PUBLISHER QOS DEFAULT = new Pub-
lisherQos()

Special value for creating a com.rti.dds.publication.Publisher (p. 1277)
with default QoS.

ˆ static final SubscriberQos SUBSCRIBER QOS DEFAULT
Special value for creating a com.rti.dds.subscription.Subscriber (p. 1478)
with default QoS.

ˆ static final FlowControllerProperty t FLOW CONTROLLER -
PROPERTY DEFAULT

<<eXtension>> (p. 270) Special value for creating a
com.rti.dds.publication.FlowController (p. 942) with default prop-
erty.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

148 Module Documentation

ˆ static final String SQLFILTER NAME

<<eXtension>> (p. 270) The name of the built-in SQL filter that can be
used with ContentFilteredTopics and MultiChannel DataWriters.

ˆ static final String STRINGMATCHFILTER NAME

<<eXtension>> (p. 270) The name of the built-in StringMatch filter that
can be used with ContentFilteredTopics and MultiChannel DataWriters.

6.71.1 Detailed Description

com.rti.dds.domain.DomainParticipant (p. 629) entity and associated ele-
ments

6.71.2 Variable Documentation

6.71.2.1 final TopicQos TOPIC QOS DEFAULT = new TopicQos()
[static, inherited]

Special value for creating a com.rti.dds.topic.Topic (p. 1545) with default
QoS.

When used in com.rti.dds.domain.DomainParticipant.create topic
(p. 670), this special value is used to indicate that the com.rti.dds.topic.Topic
(p. 1545) should be created with the default com.rti.dds.topic.Topic (p. 1545)
QoS by means of the operation get default topic qos and using the resulting
QoS to create the com.rti.dds.topic.Topic (p. 1545).

When used in com.rti.dds.domain.DomainParticipant.set default -
topic qos (p. 642), this special value is used to indicate that the de-
fault QoS should be reset back to the initial value that would be
used if the com.rti.dds.domain.DomainParticipant.set default topic -
qos (p. 642) operation had never been called.

When used in com.rti.dds.topic.Topic.set qos (p. 1547), this special
value is used to indicate that the QoS of the com.rti.dds.topic.Topic
(p. 1545) should be changed to match the current default QoS set
in the com.rti.dds.domain.DomainParticipant (p. 629) that the
com.rti.dds.topic.Topic (p. 1545) belongs to.

Note: You cannot use this value to get the default QoS values for a Topic; for
this purpose, use com.rti.dds.domain.DomainParticipant.get default -
topic qos (p. 641).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.71 DomainParticipants 149

See also:

com.rti.dds.domain.DomainParticipant.create topic (p. 670)
com.rti.dds.domain.DomainParticipant.set default topic qos
(p. 642)
com.rti.dds.topic.Topic.set qos (p. 1547)

6.71.2.2 final PublisherQos PUBLISHER QOS DEFAULT = new
PublisherQos() [static, inherited]

Special value for creating a com.rti.dds.publication.Publisher (p. 1277)
with default QoS.

When used in com.rti.dds.domain.DomainParticipant.create -
publisher (p. 656), this special value is used to indicate that the
com.rti.dds.publication.Publisher (p. 1277) should be created with
the default com.rti.dds.publication.Publisher (p. 1277) QoS by means of
the operation get default publisher qos and using the resulting QoS to create
the com.rti.dds.publication.Publisher (p. 1277).

When used in com.rti.dds.domain.DomainParticipant.set default -
publisher qos (p. 644), this special value is used to indicate that the de-
fault QoS should be reset back to the initial value that would be used
if the com.rti.dds.domain.DomainParticipant.set default publisher -
qos (p. 644) operation had never been called.

When used in com.rti.dds.publication.Publisher.set qos (p. 1289),
this special value is used to indicate that the QoS of the
com.rti.dds.publication.Publisher (p. 1277) should be changed to match
the current default QoS set in the com.rti.dds.domain.DomainParticipant
(p. 629) that the com.rti.dds.publication.Publisher (p. 1277) belongs to.

Note: You cannot use this value to get the default QoS values for a Pub-
lisher; for this purpose, use com.rti.dds.domain.DomainParticipant.get -
default publisher qos (p. 644).

See also:

com.rti.dds.domain.DomainParticipant.create publisher (p. 656)
com.rti.dds.domain.DomainParticipant.set default publisher qos
(p. 644)
com.rti.dds.publication.Publisher.set qos (p. 1289)

6.71.2.3 final SubscriberQos SUBSCRIBER QOS DEFAULT
[static, inherited]

Initial value:

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

150 Module Documentation

new SubscriberQos()

Special value for creating a com.rti.dds.subscription.Subscriber (p. 1478)
with default QoS.

When used in com.rti.dds.domain.DomainParticipant.create -
subscriber (p. 659), this special value is used to indicate that the
com.rti.dds.subscription.Subscriber (p. 1478) should be created with
the default com.rti.dds.subscription.Subscriber (p. 1478) QoS by means of
the operation get default subscriber qos and using the resulting QoS to create
the com.rti.dds.subscription.Subscriber (p. 1478).

When used in com.rti.dds.domain.DomainParticipant.set default -
subscriber qos (p. 649), this special value is used to indicate that the de-
fault QoS should be reset back to the initial value that would be used if
the com.rti.dds.domain.DomainParticipant.set default subscriber qos
(p. 649) operation had never been called.

When used in com.rti.dds.subscription.Subscriber.set qos
(p. 1493), this special value is used to indicate that the QoS of the
com.rti.dds.subscription.Subscriber (p. 1478) should be changed to match
the current default QoS set in the com.rti.dds.domain.DomainParticipant
(p. 629) that the com.rti.dds.subscription.Subscriber (p. 1478) belongs to.

Note: You cannot use this value to get the default QoS values for a Subscriber;
for this purpose, use com.rti.dds.domain.DomainParticipant.get -
default subscriber qos (p. 652).

See also:

com.rti.dds.domain.DomainParticipant.create subscriber (p. 659)
com.rti.dds.domain.DomainParticipant.get default subscriber -
qos (p. 652)
com.rti.dds.subscription.Subscriber.set qos (p. 1493)

6.71.2.4 final FlowControllerProperty t FLOW -
CONTROLLER PROPERTY DEFAULT [static,
inherited]

Initial value:

new FlowControllerProperty_t()

<<eXtension>> (p. 270) Special value for creating a
com.rti.dds.publication.FlowController (p. 942) with default property.

When used in com.rti.dds.domain.DomainParticipant.create -
flowcontroller (p. 654), this special value is used to indicate that the

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.71 DomainParticipants 151

com.rti.dds.publication.FlowController (p. 942) should be created with
the default com.rti.dds.publication.FlowController (p. 942) property by
means of the operation get default flowcontroller property and using the result-
ing QoS to create the com.rti.dds.publication.FlowControllerProperty t
(p. 946).

When used in com.rti.dds.domain.DomainParticipant.set default -
flowcontroller property (p. 640), this special value is used to indicate
that the default QoS should be reset back to the initial value that would
be used if the com.rti.dds.domain.DomainParticipant.set default -
flowcontroller property (p. 640) operation had never been called.

When used in com.rti.dds.publication.FlowController.set -
property (p. 943), this special value is used to indicate that the
property of the com.rti.dds.publication.FlowController (p. 942)
should be changed to match the current default property set in
the com.rti.dds.domain.DomainParticipant (p. 629) that the
com.rti.dds.publication.FlowController (p. 942) belongs to.

Note: You cannot use this value to get the default properties for a FlowCon-
troller; for this purpose, use com.rti.dds.domain.DomainParticipant.get -
default flowcontroller property (p. 639).

See also:

com.rti.dds.domain.DomainParticipant.create flowcontroller
(p. 654)
com.rti.dds.domain.DomainParticipant.set default -
flowcontroller property (p. 640)
com.rti.dds.publication.FlowController.set property (p. 943)

6.71.2.5 final String SQLFILTER NAME [static, inherited]

<<eXtension>> (p. 270) The name of the built-in SQL filter that can be
used with ContentFilteredTopics and MultiChannel DataWriters.

See also:

Queries and Filters Syntax (p. 278)

6.71.2.6 final String STRINGMATCHFILTER NAME [static,
inherited]

<<eXtension>> (p. 270) The name of the built-in StringMatch filter that
can be used with ContentFilteredTopics and MultiChannel DataWriters.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

152 Module Documentation

The StringMatch Filter is a subset of the SQL filter; it only supports the
MATCH relational operator on a single string field.

See also:

Queries and Filters Syntax (p. 278)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.72 Built-in Topics 153

6.72 Built-in Topics

Built-in objects created by RTI Connext but accessible to the application.

Packages

ˆ package com.rti.dds.domain.builtin

Builtin topic (p. 350) for accessing information about the DomainPartici-
pants discovered by RTI Connext.

ˆ package com.rti.dds.publication.builtin

Builtin topic (p. 350) for accessing information about the Publications dis-
covered by RTI Connext.

ˆ package com.rti.dds.subscription.builtin

Builtin topic (p. 350) for accessing information about the Subscriptions dis-
covered by RTI Connext.

ˆ package com.rti.dds.topic.builtin

Builtin topic (p. 350) for accessing information about the Topics discovered
by RTI Connext.

Classes

ˆ class ContentFilterProperty t

<<eXtension>> (p. 270) Type used to provide all the required information
to enable content filtering.

ˆ class Locator t

<<eXtension>> (p. 270) Type used to represent the addressing information
needed to send a message to an RTPS Endpoint using one of the supported
transports.

ˆ class LocatorSeq

Declares IDL sequence < com.rti.dds.infrastructure.Locator t (p. 1174)
>.

ˆ class ProductVersion t

<<eXtension>> (p. 270) Type used to represent the current version of RTI
Connext.

ˆ class ProtocolVersion t

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

154 Module Documentation

<<eXtension>> (p. 270) Type used to represent the version of the RTPS
protocol.

ˆ class VendorId t

<<eXtension>> (p. 270) Type used to represent the vendor of the service
implementing the RTPS protocol.

ˆ class BuiltinTopicKey t

The key type of the built-in topic (p. 350) types.

6.72.1 Detailed Description

Built-in objects created by RTI Connext but accessible to the application.

RTI Connext must discover and keep track of the remote entities, such as new
participants in the domain. This information may also be important to the
application, which may want to react to this discovery, or else access it on
demand.

A set of built-in topics and corresponding
com.rti.dds.subscription.DataReader (p. 473) objects are introduced
to be used by the application to access these discovery information.

The information can be accessed as if it was normal application data. This
allows the application to know when there are any changes in those val-
ues by means of the com.rti.dds.infrastructure.Listener (p. 1154) or the
com.rti.dds.infrastructure.Condition (p. 451) mechanisms.

The built-in data-readers all belong to a built-in
com.rti.dds.subscription.Subscriber (p. 1478), which can be retrieved by
using the method com.rti.dds.domain.DomainParticipant.get builtin -
subscriber (p. 684). The built-in com.rti.dds.subscription.DataReader
(p. 473) objects can be retrieved by using the operation
com.rti.dds.subscription.Subscriber.lookup datareader (p. 1490),
with the topic name as a parameter.

Built-in entities have default listener settings as well. The built-in
com.rti.dds.subscription.Subscriber (p. 1478) and all of its built-in topics
have ’nil’ listeners with all statuses appearing in their listener masks (acting
as a NO-OP listener that does not reset communication status). The built-in
DataReaders have null listeners with no statuses in their masks.

The information that is accessible about the remote entities by means of the
built-in topics includes all the QoS policies that apply to the corresponding
remote Entity. This QoS policies appear as normal ’data’ fields inside the data
read by means of the built-in Topic. Additional information is provided to
identify the Entity and facilitate the application logic.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.72 Built-in Topics 155

The built-in com.rti.dds.subscription.DataReader (p. 473) will
not provide data pertaining to entities created from the same
com.rti.dds.domain.DomainParticipant (p. 629) under the assump-
tion that such entities are already known to the application that created
them.

Refer to builtin.ParticipantBuiltinTopicData, builtin.TopicBuiltinTopicData,
builtin.SubscriptionBuiltinTopicData and builtin.PublicationBuiltinTopicData
for a description of all the built-in topics and their contents.

The QoS of the built-in com.rti.dds.subscription.Subscriber (p. 1478) and
com.rti.dds.subscription.DataReader (p. 473) objects is given by the fol-
lowing table:

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

156 Module Documentation

QoS Value

com.rti.dds.infrastructure.UserDataQosPolicy
(p. 1680)

0-length sequence

com.rti.dds.infrastructure.TopicDataQosPolicy
(p. 1559)

0-length sequence

com.rti.dds.infrastructure.GroupDataQosPolicy
(p. 1064)

0-length sequence

com.rti.dds.infrastructure.DurabilityQosPolicy
(p. 765)

DurabilityQosPoli-
cyKind.TRANSIENT LOCAL -
DURABILITY QOS

com.rti.dds.infrastructure.DurabilityServiceQosPolicy
(p. 773)

Does not apply as
com.rti.dds.infrastructure.DurabilityQosPolicyKind
(p. 770) is DurabilityQosPoli-
cyKind.TRANSIENT LOCAL -
DURABILITY QOS

com.rti.dds.infrastructure.PresentationQosPolicy
(p. 1237)

access scope = PresentationQosPoli-
cyAccessScopeKind.TOPIC -
PRESENTATION QOS
coherent access = false
ordered access = false

com.rti.dds.infrastructure.DeadlineQosPolicy
(p. 604)

Period = infinite

com.rti.dds.infrastructure.LatencyBudgetQosPolicy
(p. 1148)

duration = 0

com.rti.dds.infrastructure.OwnershipQosPolicy
(p. 1216)

OwnershipQosPoli-
cyKind.SHARED OWNERSHIP -
QOS

com.rti.dds.infrastructure.OwnershipStrengthQosPolicy
(p. 1225)

value = 0

com.rti.dds.infrastructure.LivelinessQosPolicy
(p. 1164)

kind = LivelinessQosPoli-
cyKind.AUTOMATIC -
LIVELINESS QOS lease duration =
0

com.rti.dds.infrastructure.TimeBasedFilterQosPolicy
(p. 1541)

minimum separation = 0

com.rti.dds.infrastructure.PartitionQosPolicy
(p. 1233)

0-length sequence

com.rti.dds.infrastructure.ReliabilityQosPolicy
(p. 1336)

kind = ReliabilityQosPoli-
cyKind.RELIABLE -
RELIABILITY QOS
max blocking time = 100
milliseconds

com.rti.dds.infrastructure.DestinationOrderQosPolicy
(p. 607)

DestinationOrderQosPoli-
cyKind.BY RECEPTION -
TIMESTAMP -
DESTINATIONORDER QOS

com.rti.dds.infrastructure.HistoryQosPolicy
(p. 1071)

kind =
HistoryQosPolicyKind.KEEP -
LAST HISTORY QOS depth =
1

com.rti.dds.infrastructure.ResourceLimitsQosPolicy
(p. 1356)

max samples = ResourceLimit-
sQosPolicy.LENGTH UNLIMITED
max instances = ResourceLimit-
sQosPolicy.LENGTH UNLIMITED
max samples per instance =
ResourceLimitsQosPol-
icy.LENGTH UNLIMITED

com.rti.dds.infrastructure.ReaderDataLifecycleQosPolicy
(p. 1328)

autopurge nowriter samples delay =
infinite
autopurge disposed samples delay =
infinite

com.rti.dds.infrastructure.EntityFactoryQosPolicy
(p. 919)

autoenable created entities = true

Table 6.2: QoS of built-in com.rti.dds.subscription.Subscriber (p. 1478)
and com.rti.dds.subscription.DataReader (p. 473)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.73 Topic Module 157

6.73 Topic Module

Contains the com.rti.dds.topic.Topic (p. 1545),
com.rti.dds.topic.ContentFilteredTopic (p. 458), and
com.rti.dds.topic.MultiTopic (p. 1208) classes, the
com.rti.dds.topic.TopicListener (p. 1564) interface, and more gener-
ally, all that is needed by an application to define com.rti.dds.topic.Topic
(p. 1545) objects and attach QoS policies to them.

Modules

ˆ Topics

com.rti.dds.topic.Topic (p. 1545) entity and associated elements

ˆ User Data Type Support

Defines generic classes and macros to support user data types.

ˆ Type Code Support

<<eXtension>> (p. 270) A TypeCode is a mechanism for representing a
type at runtime. RTI Connext can use type codes to send type definitions
on the network. You will need to understand this API in order to use the
Dynamic Data (p. 170) capability or to inspect the type information you
receive from remote readers and writers.

ˆ Built-in Types

<<eXtension>> (p. 270) RTI Connext provides a set of very simple data
types for you to use with the topics in your application.

ˆ Dynamic Data

<<eXtension>> (p. 270) The Dynamic Data API provides a way to inter-
act with arbitrarily complex data types at runtime without the need for code
generation.

6.73.1 Detailed Description

Contains the com.rti.dds.topic.Topic (p. 1545),
com.rti.dds.topic.ContentFilteredTopic (p. 458), and
com.rti.dds.topic.MultiTopic (p. 1208) classes, the
com.rti.dds.topic.TopicListener (p. 1564) interface, and more gener-
ally, all that is needed by an application to define com.rti.dds.topic.Topic
(p. 1545) objects and attach QoS policies to them.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

158 Module Documentation

6.74 Topics

com.rti.dds.topic.Topic (p. 1545) entity and associated elements

Classes

ˆ interface ContentFilter

<<interface>> (p. 271) Interface to be used by a custom filter of a
com.rti.dds.topic.ContentFilteredTopic (p. 458)

ˆ interface ContentFilteredTopic

<<interface>> (p. 271) Specialization of
com.rti.dds.topic.TopicDescription (p. 1561) that allows for content-
based subscriptions.

ˆ class InconsistentTopicStatus

StatusKind.INCONSISTENT TOPIC STATUS.

ˆ interface MultiTopic

[Not supported (optional)] <<interface>> (p. 271) A specialization
of com.rti.dds.topic.TopicDescription (p. 1561) that allows subscriptions
that combine/filter/rearrange data coming from several topics.

ˆ interface Topic

<<interface>> (p. 271) The most basic description of the data to be pub-
lished and subscribed.

ˆ class TopicAdapter

<<eXtension>> (p. 270) A listener adapter in the spirit of the Java AWT
listener adapters. (The Adapter provides empty implementations for the lis-
tener methods)

ˆ interface TopicDescription

com.rti.dds.topic.Topic (p. 1545) entity and associated elements

ˆ interface TopicListener

<<interface>> (p. 271) com.rti.dds.infrastructure.Listener (p. 1154)
for com.rti.dds.topic.Topic (p. 1545) entities.

ˆ class TopicQos

QoS policies supported by a com.rti.dds.topic.Topic (p. 1545) entity.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.74 Topics 159

6.74.1 Detailed Description

com.rti.dds.topic.Topic (p. 1545) entity and associated elements

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

160 Module Documentation

6.75 User Data Type Support

Defines generic classes and macros to support user data types.

Classes

ˆ class InstanceHandle t

Type definition for an instance handle.

ˆ class InstanceHandleSeq

Instantiates com.rti.dds.util.Sequence (p. 1432) <
com.rti.dds.infrastructure.InstanceHandle t (p. 1080) > .

ˆ class Foo

A representative user-defined data type.

ˆ class FooTypeSupport

<<interface>> (p. 271) <<generic>> (p. 271) User data type specific in-
terface.

ˆ interface TypeSupport

<<interface>> (p. 271) An abstract marker interface that has to be spe-
cialized for each concrete user data type that will be used by the application.

ˆ class Foo

A representative user-defined data type.

6.75.1 Detailed Description

Defines generic classes and macros to support user data types.

DDS specifies strongly typed interfaces to read and write user data. For each
data class defined by the application, there is a number of specialised classes
that are required to facilitate the type-safe interaction of the application with
RTI Connext.

RTI Connext provides an automatic means to generate all these type-specific
classes with the rtiddsgen (p. 290) utility. The complete set of automatic
classes created for a hypothetical user data type named Foo are shown below.

The macros defined here declare the strongly typed APIs needed to support an
arbitrary user defined data of type Foo.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.75 User Data Type Support 161

See also:

rtiddsgen (p. 290)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

162 Module Documentation

6.76 Type Code Support

<<eXtension>> (p. 270) A TypeCode is a mechanism for representing a type
at runtime. RTI Connext can use type codes to send type definitions on the
network. You will need to understand this API in order to use the Dynamic
Data (p. 170) capability or to inspect the type information you receive from
remote readers and writers.

Classes

ˆ class EnumMember
A description of a member of an enumeration.

ˆ class PRIVATE MEMBER
Constant used to indicate that a value type member is private.

ˆ class PUBLIC MEMBER
Constant used to indicate that a value type member is public.

ˆ class StructMember
A description of a member of a struct.

ˆ class TCKind
Enumeration type for TypeCode (p. 1611) kinds.

ˆ class TypeCode
The definition of a particular data type, which you can use to inspect the
name, members, and other properties of types generated with rtiddsgen
(p. 290) or to modify types you define yourself at runtime.

ˆ class TypeCodeFactory
A singleton factory for creating, copying, and deleting data type definitions
dynamically.

ˆ class UnionMember
A description of a member of a union.

ˆ class ValueMember
A description of a member of a value type.

ˆ class VM ABSTRACT
Constant used to indicate that a value type has the abstract modifier.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.76 Type Code Support 163

ˆ class VM CUSTOM

Constant used to indicate that a value type has the custom modifier.

ˆ class VM NONE

Constant used to indicate that a value type has no modifiers.

ˆ class VM TRUNCATABLE

Constant used to indicate that a value type has the truncatable modifier.

6.76.1 Detailed Description

<<eXtension>> (p. 270) A TypeCode is a mechanism for representing a type
at runtime. RTI Connext can use type codes to send type definitions on the
network. You will need to understand this API in order to use the Dynamic
Data (p. 170) capability or to inspect the type information you receive from
remote readers and writers.

Type codes are values that are used to describe arbitrarily complex types at
runtime. Type code values are manipulated via the TypeCode class, which has
an analogue in CORBA.

A TypeCode value consists of a type code kind (represented by the TCKind enu-
meration) and a list of members (that is, fields). These members are recursive:
each one has its own TypeCode, and in the case of complex types (structures,
arrays, and so on), these contained type codes contain their own members.

There are a number of uses for type codes. The type code mechanism can
be used to unambiguously match type representations. The TypeCode.equals
method is a more reliable test than comparing the string type names, requiring
equivalent definitions of the types.

6.76.2 Accessing a Local TypeCode

When generating types with rtiddsgen (p. 290), type codes are enabled by de-
fault. (The -notypecode option can be used to disable generation of TypeCode
information.) For these types, a TypeCode may be accessed via the FooType-
Code.VALUE member.

This API also includes support for dynamic creation of TypeCode values, typi-
cally for use with the Dynamic Data (p. 170) API. You can create a TypeCode
using the TypeCodeFactory class. You will construct the TypeCode recursively,
from the outside in: start with the type codes for primitive types, then compose
them into complex types like arrays, structures, and so on. You will find the
following methods helpful:

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

164 Module Documentation

ˆ TypeCodeFactory.get primitive tc, which provides the TypeCode in-
stances corresponding to the primitive types (e.g. TCKind.TK LONG,
TCKind.TK SHORT, and so on).

ˆ TypeCodeFactory.create string tc and TypeCodeFactory.create wstring -
tc create a TypeCode representing a text string with a certain bound (i.e.
maximum length).

ˆ TypeCodeFactory.create array tc and TypeCodeFactory.create -
sequence tc create a TypeCode for a collection based on the TypeCode
for its elements.

ˆ TypeCodeFactory.create struct tc, TypeCodeFactory.create value tc, and
TypeCodeFactory.create sparse tc create a TypeCode for a structured
type.

6.76.3 Accessing a Remote TypeCode

In addition to being used locally, RTI Connext can transmit TypeCode on the
network between participants. This information can be used to access informa-
tion about types used remotely at runtime, for example to be able to publish
or subscribe to topics of arbitrarily types (see Dynamic Data (p. 170)). This
functionality is useful for a generic system monitoring tool like rtiddsspy.

Remote TypeCode information is shared during discovery over the pub-
lication and subscription built-in topics and can be accessed using the
built-in readers for these topics; see Built-in Topics (p. 153). Dis-
covered TypeCode values are not cached by RTI Connext upon receipt
and are therefore not available from the built-in topic data returned
by com.rti.dds.publication.DataWriter.get matched subscription -
data (p. 551) or com.rti.dds.subscription.DataReader.get matched -
publication data (p. 487).

The space available locally to deserialize a discovered remote TypeCode
is specified by the com.rti.dds.domain.DomainParticipant (p. 629)’s
com.rti.dds.infrastructure.DomainParticipantResourceLimitsQosPolicy.type -
code max serialized length (p. 755) QoS parameter. To support especially
complex type codes, it may be necessary for you to increase the value of this
parameter.

See also:

TypeCode
Dynamic Data (p. 170)
rtiddsgen (p. 290)
builtin.SubscriptionBuiltinTopicData
builtin.PublicationBuiltinTopicData

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.77 Built-in Types 165

6.77 Built-in Types

<<eXtension>> (p. 270) RTI Connext provides a set of very simple data
types for you to use with the topics in your application.

Modules

ˆ String Built-in Type

Built-in type consisting of a single character string.

ˆ KeyedString Built-in Type

Built-in type consisting of a string payload and a second string that is the
key.

ˆ Octets Built-in Type

Built-in type consisting of a variable-length array of opaque bytes.

ˆ KeyedOctets Built-in Type

Built-in type consisting of a variable-length array of opaque bytes and a string
that is the key.

6.77.1 Detailed Description

<<eXtension>> (p. 270) RTI Connext provides a set of very simple data
types for you to use with the topics in your application.

The middleware provides four built-in types:

ˆ String: A payload consisting of a single string of characters. This type
has no key.

ˆ com.rti.dds.type.builtin.KeyedString (p. 1123): A payload consisting
of a single string of characters and a second string, the key, that identifies
the instance to which the sample belongs.

ˆ com.rti.dds.type.builtin.Bytes (p. 417): A payload consisting of an
opaque variable-length array of bytes. This type has no key.

ˆ com.rti.dds.type.builtin.KeyedBytes (p. 1095): A payload consisting
of an opaque variable-length array of bytes and a string, the key, that
identifies the instance to which the sample belongs.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

166 Module Documentation

The String and com.rti.dds.type.builtin.KeyedString
(p. 1123) types are appropriate for simple text-based appli-
cations. The com.rti.dds.type.builtin.Bytes (p. 417) and
com.rti.dds.type.builtin.KeyedBytes (p. 1095) types are appropriate
for applications that perform their own custom data serialization, such as
legacy applications still in the process of migrating to RTI Connext. In most
cases, string-based or structured data is preferable to opaque data, because the
latter cannot be easily visualized in tools or used with content-based filters (see
com.rti.dds.topic.ContentFilteredTopic (p. 458)).

The built-in types are very simple in order to get you up and running as quickly
as possible. If you need a structured data type you can define your own type
with exactly the fields you need in one of two ways:

ˆ At compile time, by generating code from an IDL or XML file using the
rtiddsgen (p. 290) utility

ˆ At runtime, by using the Dynamic Data (p. 170) API

6.77.2 Managing Memory for Builtin Types

When a sample is written, the DataWriter serializes it and stores the result in
a buffer obtained from a pool of preallocated buffers. In the same way, when
a sample is received, the DataReader deserializes it and stores the result in a
sample coming from a pool of preallocated samples.

For builtin types, the maximum size of the buffers/samples and depends on the
nature of the application using the builtin type.

You can configure the maximum size of the builtin types
on a per-DataWriter and per-DataReader basis using the
com.rti.dds.infrastructure.PropertyQosPolicy (p. 1252) in DataWriters,
DataReaders or Participants.

The following table lists the supported builtin type properties to configure mem-
ory allocation. When the properties are defined in the DomainParticipant, they
are applicable to all DataWriters and DataReaders belonging to the Domain-
Participant unless they are overwrittem in the DataWriters and DataReaders.

The previous properties must be set consistently with respect to the correspond-
ing ∗.max size properties that set the maximum size of the builtin types in the
typecode.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.77 Built-in Types 167

6.77.3 Typecodes for Builtin Types

The typecodes associated with the builtin types are generated from the following
IDL type definitions:

module DDS {

struct String {

string value;

};

struct KeyedString {

string key;

string value;

};

struct Octets {

sequence<octet> value;

};

struct KeyedOctets {

string key;

sequence<octet> value;

};

};

The maximum size of the strings and sequences that will be included in the type
code definitions can be configured on a per-DomainParticipant-basis by using
the properties in following table.

For more information about the built-in types, including how to control mem-
ory usage and maximum lengths, please see chapter 3, Data Types and Data
Samples, in the RTI Connext User’s Manual.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

168 Module Documentation

Property Description
dds.builtin type.string.alloc size Maximum size of the strings

published by the
com.rti.dds.type.builtin.StringDataWriter
(p. 1468) or received the
com.rti.dds.type.builtin.StringDataReader
(p. 1465) (includes the
NULL-terminated character).
Default:
dds.builtin type.string.max size if
defined. Otherwise, 1024.

dds.builtin type.keyed string.alloc -
key size

Maximum size of the keys used by
the
com.rti.dds.type.builtin.KeyedStringDataWriter
(p. 1133) or
com.rti.dds.type.builtin.KeyedStringDataReader
(p. 1125) (includes the
NULL-terminated character).
Default: dds.builtin type.keyed -
string.max key size if defined.
Otherwise, 1024.

dds.builtin type.keyed string.alloc -
size

Maximum size of the strings
published by the
com.rti.dds.type.builtin.KeyedStringDataWriter
(p. 1133) or received by the
com.rti.dds.type.builtin.KeyedStringDataReader
(p. 1125) (includes the
NULL-terminated character).
Default: dds.builtin type.keyed -
string.max size if defined.
Otherwise, 1024.

dds.builtin type.octets.alloc size Maximum size of the octet
sequences published the
com.rti.dds.type.builtin.BytesDataWriter
(p. 424) or received by the
com.rti.dds.type.builtin.BytesDataReader
(p. 420).
Default:
dds.builtin type.octets.max size if
defined. Otherwise, 2048.

dds.builtin type.keyed octets.alloc -
key size

Max-
imum size of the key published by the
com.rti.dds.type.builtin.KeyedBytesDataWriter
(p. 1106) or received by the
com.rti.dds.type.builtin.KeyedBytesDataReader
(p. 1098) (includes the
NULL-terminated character).
Default: dds.builtin type.keyed -
octets.max key size if defined.
Otherwise, 1024.

dds.builtin type.keyed octets.alloc -
size

Maximum size of the octets
sequences published by a
com.rti.dds.type.builtin.KeyedBytesDataWriter
(p. 1106) or received by a
com.rti.dds.type.builtin.KeyedBytesDataReader
(p. 1098).
Default: dds.builtin type.keyed -
octets.max size if defined.
Otherwise, 2048.

Table 6.3: Builtin Types Allocation Properties

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.77 Built-in Types 169

Property Description
dds.builtin type.string.max size Maximum size of the strings

published by the StringDataWriters
and received by the
StringDataReaders belonging to a
DomainParticipant (includes the
NULL-terminated character).
Default: 1024.

dds.builtin type.keyed string.max -
key size

Maximum size of the keys used by
the KeyedStringDataWriters and
KeyedStringDataReaders belonging
to a DomainParticipant (includes
the NULL-terminated character).
Default: 1024.

dds.builtin type.keyed string.max -
size

Maximum size of the strings
published by the
KeyedStringDataWriters and
received by the
KeyedStringDataReaders belonging
to a DomainParticipant using the
builtin type (includes the
NULL-terminated character).
Default: 1024

dds.builtin type.octets.max size Maximum size of the octet
sequences published by the
OctetsDataWriters and received by
the OctetsDataReader belonging to
a DomainParticipant.
Default: 2048

dds.builtin type.keyed octets.max -
key size

Maximum size of the keys used by
the KeyedOctetsStringDataWriters
and KeyedOctetsStringDataReaders
belonging to a DomainParticipant
(includes the NULL-terminated
character).
Default: 1024.

dds.builtin type.keyed octets.max -
size

Maximum size of the octet
sequences published by the
KeyedOctetsDataWriters and
received by the
KeyedOctetsDataReaders belonging
to a DomainParticipant.
Default: 2048

Table 6.4: Properties for Allocating Size of Builtin Types, per DomainPartici-
pant

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

170 Module Documentation

6.78 Dynamic Data

<<eXtension>> (p. 270) The Dynamic Data API provides a way to inter-
act with arbitrarily complex data types at runtime without the need for code
generation.

Classes

ˆ class DynamicData

A sample of any complex data type, which can be inspected and manipulated
reflectively.

ˆ class DynamicDataInfo

A descriptor for a com.rti.dds.dynamicdata.DynamicData (p. 780) ob-
ject.

ˆ class DynamicDataMemberInfo

A descriptor for a single member (i.e. field) of dynamically defined data type.

ˆ class DynamicDataProperty t

A collection of attributes used to configure
com.rti.dds.dynamicdata.DynamicData (p. 780) objects.

ˆ class DynamicDataReader

Reads (subscribes to) objects of type
com.rti.dds.dynamicdata.DynamicData (p. 780).

ˆ class DynamicDataSeq

An ordered collection of com.rti.dds.dynamicdata.DynamicData
(p. 780) elements.

ˆ class DynamicDataTypeProperty t

A collection of attributes used to configure
com.rti.dds.dynamicdata.DynamicData (p. 780) objects.

ˆ class DynamicDataTypeSerializationProperty t

Properties that govern how data of a certain type will be serialized on the
network.

ˆ class DynamicDataTypeSupport

A factory for registering a dynamically defined type and creating
com.rti.dds.dynamicdata.DynamicData (p. 780) objects.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.78 Dynamic Data 171

ˆ class DynamicDataWriter

Writes (publishes) objects of type com.rti.dds.dynamicdata.DynamicData
(p. 780).

Functions

ˆ DynamicDataInfo ()

A descriptor for a com.rti.dds.dynamicdata.DynamicData (p. 780) ob-
ject.

ˆ DynamicDataInfo (int member count, int stored size, boolean is -
optimized storage)

A descriptor for a com.rti.dds.dynamicdata.DynamicData (p. 780) ob-
ject.

ˆ DynamicDataMemberInfo ()

A descriptor for a single member (i.e. field) of dynamically defined data type.

ˆ DynamicDataMemberInfo (int member id, String member name,
boolean member exists, TCKind member kind, int representation count,
int element count, TCKind element kind)

A descriptor for a single member (i.e. field) of dynamically defined data type.

Variables

ˆ static final DynamicDataProperty t PROPERTY DEFAULT

Sentinel constant indicating default values for
com.rti.dds.dynamicdata.DynamicDataProperty t (p. 849).

ˆ static final DynamicDataTypeProperty t TYPE PROPERTY -
DEFAULT

Sentinel constant indicating default values for
com.rti.dds.dynamicdata.DynamicDataTypeProperty t (p. 883).

6.78.1 Detailed Description

<<eXtension>> (p. 270) The Dynamic Data API provides a way to inter-
act with arbitrarily complex data types at runtime without the need for code
generation.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

172 Module Documentation

This API allows you to define new data types, modify existing data types, and
interact reflectively with samples. To use it, you will take the following steps:

1. Obtain a TypeCode (see Type Code Support (p. 162)) that defines
the type definition you want to use.

A TypeCode includes a type’s kind (TCKind), name, and members (that is,
fields). You can create your own TypeCode using the TypeCodeFactory class –
see, for example, the TypeCodeFactory.create struct tc method. Alternatively,
you can use a remote TypeCode that you discovered on the network (see Built-
in Topics (p. 153)) or one generated by rtiddsgen (p. 290).

2. Wrap the TypeCode in a com.rti.dds.dynamicdata.DynamicDataTypeSupport
(p. 887) object.

See the constructor DynamicDataTypeSupport.DynamicDataTypeSupport.
This object lets you connect the type definition to a
com.rti.dds.domain.DomainParticipant (p. 629) and manage data
samples (of type com.rti.dds.dynamicdata.DynamicData (p. 780)).

3. Register the com.rti.dds.dynamicdata.DynamicDataTypeSupport
(p. 887) with one or more domain participants.

See com.rti.dds.dynamicdata.DynamicDataTypeSupport.register -
type (p. 889). This action associates the data type with a logical name that you
can use to create topics. (Starting with this step, working with a dynamically
defined data type is almost exactly the same as working with a generated one.)

4. Create a com.rti.dds.topic.Topic (p. 1545) from the
com.rti.dds.domain.DomainParticipant (p. 629).

Use the name under which you registered your data type – see
com.rti.dds.domain.DomainParticipant.create topic (p. 670). This
com.rti.dds.topic.Topic (p. 1545) is what you will use to produce and con-
sume data.

5. Create a com.rti.dds.dynamicdata.DynamicDataWriter (p. 893)
and/or com.rti.dds.dynamicdata.DynamicDataReader (p. 851).

These objects will produce and/or consume data (of type
com.rti.dds.dynamicdata.DynamicData (p. 780)) on the
com.rti.dds.topic.Topic (p. 1545). You can create these objects di-
rectly from the com.rti.dds.domain.DomainParticipant (p. 629) – see
com.rti.dds.domain.DomainParticipant.create datawriter (p. 661) and
com.rti.dds.domain.DomainParticipant.create datareader (p. 666)
– or by first creating intermediate com.rti.dds.publication.Publisher
(p. 1277) and com.rti.dds.subscription.Subscriber (p. 1478) objects – see
com.rti.dds.domain.DomainParticipant.create publisher (p. 656) and
com.rti.dds.domain.DomainParticipant.create subscriber (p. 659).

6. Write and/or read the data of interest.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.78 Dynamic Data 173

7. Tear down the objects described above.

You should delete them in the reverse order in which you
created them. Note that unregistering your data type with
the com.rti.dds.domain.DomainParticipant (p. 629) is op-
tional; all types are automatically unregistered when the
com.rti.dds.domain.DomainParticipant (p. 629) itself is deleted.

6.78.2 Function Documentation

6.78.2.1 DynamicDataInfo () [inherited]

A descriptor for a com.rti.dds.dynamicdata.DynamicData (p. 780) object.

See also:

com.rti.dds.dynamicdata.DynamicData.get info (p. 798)

6.78.2.2 DynamicDataInfo (int member count, int stored size,
boolean is optimized storage) [inherited]

A descriptor for a com.rti.dds.dynamicdata.DynamicData (p. 780) object.

See also:

com.rti.dds.dynamicdata.DynamicData.get info (p. 798)

6.78.2.3 DynamicDataMemberInfo () [inherited]

A descriptor for a single member (i.e. field) of dynamically defined data type.

See also:

com.rti.dds.dynamicdata.DynamicData.get member info (p. 805)

6.78.2.4 DynamicDataMemberInfo (int member id, String
member name, boolean member exists, TCKind
member kind, int representation count, int element count,
TCKind element kind) [inherited]

A descriptor for a single member (i.e. field) of dynamically defined data type.

See also:

com.rti.dds.dynamicdata.DynamicData.get member info (p. 805)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

174 Module Documentation

6.78.3 Variable Documentation

6.78.3.1 final DynamicDataProperty t PROPERTY DEFAULT
[static, inherited]

Sentinel constant indicating default values for
com.rti.dds.dynamicdata.DynamicDataProperty t (p. 849).

Pass this object instead of your own com.rti.dds.dynamicdata.DynamicDataProperty -
t (p. 849) object to use the default property values:

DynamicData sample = new DynamicData(

myTypeCode,

DynamicData.DYNAMIC_DATA_PROPERTY_DEFAULT);

See also:

com.rti.dds.dynamicdata.DynamicDataProperty t (p. 849)

6.78.3.2 final DynamicDataTypeProperty t
TYPE PROPERTY DEFAULT [static, inherited]

Sentinel constant indicating default values for
com.rti.dds.dynamicdata.DynamicDataTypeProperty t (p. 883).

Pass this object instead of your own com.rti.dds.dynamicdata.DynamicDataTypeProperty -
t (p. 883) object to use the default property values:

DynamicDataTypeSupport support = new DynamicDataTypeSupport(

myTypeCode,

DynamicDataTypeSupport.DYNAMIC_DATA_TYPE_PROPERTY_DEFAULT);

See also:

com.rti.dds.dynamicdata.DynamicDataTypeProperty t (p. 883)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.79 Publication Module 175

6.79 Publication Module

Contains the com.rti.dds.publication.FlowController
(p. 942), com.rti.dds.publication.Publisher (p. 1277), and
com.rti.dds.publication.DataWriter (p. 538) classes as well as
the com.rti.dds.publication.PublisherListener (p. 1302) and
com.rti.dds.publication.DataWriterListener (p. 566) interfaces, and
more generally, all that is needed on the publication side.

Modules

ˆ Publishers

com.rti.dds.publication.Publisher (p. 1277) entity and associated ele-
ments

ˆ Data Writers

com.rti.dds.publication.DataWriter (p. 538) entity and associated ele-
ments

ˆ Flow Controllers

<<eXtension>> (p. 270) com.rti.dds.publication.FlowController
(p. 942) and associated elements

6.79.1 Detailed Description

Contains the com.rti.dds.publication.FlowController
(p. 942), com.rti.dds.publication.Publisher (p. 1277), and
com.rti.dds.publication.DataWriter (p. 538) classes as well as
the com.rti.dds.publication.PublisherListener (p. 1302) and
com.rti.dds.publication.DataWriterListener (p. 566) interfaces, and
more generally, all that is needed on the publication side.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

176 Module Documentation

6.80 Publishers

com.rti.dds.publication.Publisher (p. 1277) entity and associated elements

Classes

ˆ interface Publisher

<<interface>> (p. 271) A publisher is the object responsible for the actual
dissemination of publications.

ˆ class PublisherAdapter

<<eXtension>> (p. 270) A listener adapter in the spirit of the Java AWT
listener adapters. (The Adapter provides empty implementations for the lis-
tener methods)

ˆ interface PublisherListener

<<interface>> (p. 271) com.rti.dds.infrastructure.Listener (p. 1154)
for com.rti.dds.publication.Publisher (p. 1277) status.

ˆ class PublisherQos

QoS policies supported by a com.rti.dds.publication.Publisher (p. 1277)
entity.

ˆ class PublisherSeq

Declares IDL sequence < com.rti.dds.publication.Publisher (p. 1277) >
.

Variables

ˆ static final DataWriterQos DATAWRITER QOS DEFAULT

Special value for creating com.rti.dds.publication.DataWriter (p. 538)
with default QoS.

ˆ static final DataWriterQos DATAWRITER QOS USE TOPIC QOS
= new DataWriterQos()

Special value for creating com.rti.dds.publication.DataWriter
(p. 538) with a combination of the default
com.rti.dds.publication.DataWriterQos (p. 588) and the
com.rti.dds.topic.TopicQos (p. 1566).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.80 Publishers 177

6.80.1 Detailed Description

com.rti.dds.publication.Publisher (p. 1277) entity and associated elements

6.80.2 Variable Documentation

6.80.2.1 final DataWriterQos DATAWRITER QOS DEFAULT
[static, inherited]

Initial value:

new DataWriterQos()

Special value for creating com.rti.dds.publication.DataWriter (p. 538) with
default QoS.

When used in com.rti.dds.publication.Publisher.create -
datawriter (p. 1284), this special value is used to indicate that the
com.rti.dds.publication.DataWriter (p. 538) should be created with
the default com.rti.dds.publication.DataWriter (p. 538) QoS by means of
the operation get default datawriter qos and using the resulting QoS to create
the com.rti.dds.publication.DataWriter (p. 538).

When used in com.rti.dds.publication.Publisher.set default -
datawriter qos (p. 1282), this special value is used to indicate that the
default QoS should be reset back to the initial value that would be used if the
com.rti.dds.publication.Publisher.set default datawriter qos (p. 1282)
operation had never been called.

When used in com.rti.dds.publication.DataWriter.set qos
(p. 543), this special value is used to indicate that the QoS of the
com.rti.dds.publication.DataWriter (p. 538) should be changed to
match the current defualt QoS set in the com.rti.dds.publication.Publisher
(p. 1277) that the com.rti.dds.publication.DataWriter (p. 538) belongs to.

Note: You cannot use this value to get the default QoS
values for a DataWriter (p. 538); for this purpose, use
com.rti.dds.domain.DomainParticipant.get default datawriter qos
(p. 647).

See also:

com.rti.dds.publication.Publisher.create datawriter (p. 1284)
com.rti.dds.publication.Publisher.set default datawriter qos
(p. 1282)
com.rti.dds.publication.DataWriter.set qos (p. 543)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

178 Module Documentation

6.80.2.2 final DataWriterQos DATAWRITER QOS USE -
TOPIC QOS = new DataWriterQos() [static,
inherited]

Special value for creating com.rti.dds.publication.DataWriter (p. 538)
with a combination of the default com.rti.dds.publication.DataWriterQos
(p. 588) and the com.rti.dds.topic.TopicQos (p. 1566).

The use of this value is equivalent to the application obtaining the
default com.rti.dds.publication.DataWriterQos (p. 588) and the
com.rti.dds.topic.TopicQos (p. 1566) (by means of the operation
com.rti.dds.topic.Topic.get qos (p. 1548)) and then combining these
two QoS using the operation com.rti.dds.publication.Publisher.copy -
from topic qos (p. 1297) whereby any policy that is set on the
com.rti.dds.topic.TopicQos (p. 1566) ”overrides” the corresponding policy
on the default QoS. The resulting QoS is then applied to the creation of the
com.rti.dds.publication.DataWriter (p. 538).

This value should only be used in com.rti.dds.publication.Publisher.create -
datawriter (p. 1284).

See also:

com.rti.dds.publication.Publisher.create datawriter (p. 1284)
com.rti.dds.publication.Publisher.get default datawriter qos
(p. 1281)
com.rti.dds.topic.Topic.get qos (p. 1548)
com.rti.dds.publication.Publisher.copy from topic qos (p. 1297)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.81 Data Writers 179

6.81 Data Writers

com.rti.dds.publication.DataWriter (p. 538) entity and associated elements

Classes

ˆ interface DataWriter

<<interface>> (p. 271) Allows an application to set the value of the data
to be published under a given com.rti.dds.topic.Topic (p. 1545).

ˆ class DataWriterAdapter

<<eXtension>> (p. 270) A listener adapter in the spirit of the Java AWT
listener adapters. (The Adapter provides empty implementations for the lis-
tener methods or functions.)

ˆ class DataWriterCacheStatus

<<eXtension>> (p. 270) The status of the writer’s cache.

ˆ interface DataWriterListener

<<interface>> (p. 271) com.rti.dds.infrastructure.Listener (p. 1154)
for writer status.

ˆ class DataWriterProtocolStatus

<<eXtension>> (p. 270) The status of a writer’s internal protocol related
metrics, like the number of samples pushed, pulled, filtered; and status of
wire protocol traffic.

ˆ class DataWriterQos

QoS policies supported by a com.rti.dds.publication.DataWriter (p. 538)
entity.

ˆ interface FooDataWriter

<<interface>> (p. 271) <<generic>> (p. 271) User data type specific
data writer.

ˆ class LivelinessLostStatus

StatusKind.LIVELINESS LOST STATUS.

ˆ class OfferedDeadlineMissedStatus

StatusKind.OFFERED DEADLINE MISSED STATUS.

ˆ class OfferedIncompatibleQosStatus

StatusKind.OFFERED INCOMPATIBLE QOS STATUS.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

180 Module Documentation

ˆ class PublicationMatchedStatus

StatusKind.PUBLICATION MATCHED STATUS.

ˆ class ReliableReaderActivityChangedStatus

<<eXtension>> (p. 270) Describes the activity (i.e. are acknowledgements
forthcoming) of reliable readers matched to a reliable writer.

ˆ class ReliableWriterCacheChangedStatus

<<eXtension>> (p. 270) A summary of the state of a data writer’s cache
of unacknowledged samples written.

ˆ class ReliableWriterCacheEventCount

<<eXtension>> (p. 270) The number of times the number of unacknowl-
edged samples in the cache of a reliable writer hit a certain well-defined
threshold.

ˆ class FooDataWriter

<<interface>> (p. 271) <<generic>> (p. 271) User data type specific
data writer.

6.81.1 Detailed Description

com.rti.dds.publication.DataWriter (p. 538) entity and associated elements

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.82 Flow Controllers 181

6.82 Flow Controllers

<<eXtension>> (p. 270) com.rti.dds.publication.FlowController
(p. 942) and associated elements

Classes

ˆ interface FlowController
<<interface>> (p. 271) A flow controller is the object responsible for
shaping the network traffic by determining when attached asynchronous
com.rti.dds.publication.DataWriter (p. 538) instances are allowed to
write data.

ˆ class FlowControllerProperty t
Determines the flow control characteristics of the
com.rti.dds.publication.FlowController (p. 942).

ˆ class FlowControllerSchedulingPolicy
Kinds of flow controller scheduling policy.

ˆ class FlowControllerTokenBucketProperty t
com.rti.dds.publication.FlowController (p. 942) uses the popular token
bucket approach for open loop network flow control. The flow control char-
acteristics are determined by the token bucket properties.

Variables

ˆ static final String DEFAULT FLOW CONTROLLER NAME
[default] Special value of com.rti.dds.infrastructure.PublishModeQosPolicy.flow -
controller name (p. 1310) that refers to the built-in default flow controller.

ˆ static final String FIXED RATE FLOW CONTROLLER -
NAME

Special value of com.rti.dds.infrastructure.PublishModeQosPolicy.flow -
controller name (p. 1310) that refers to the built-in fixed-rate flow
controller.

ˆ static final String ON DEMAND FLOW CONTROLLER -
NAME

Special value of com.rti.dds.infrastructure.PublishModeQosPolicy.flow -
controller name (p. 1310) that refers to the built-in on-demand flow
controller.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

182 Module Documentation

6.82.1 Detailed Description

<<eXtension>> (p. 270) com.rti.dds.publication.FlowController
(p. 942) and associated elements

com.rti.dds.publication.FlowController (p. 942) provides the network traf-
fic shaping capability to asynchronous com.rti.dds.publication.DataWriter
(p. 538) instances. For use cases and advantages of publishing asnychronously,
please refer to com.rti.dds.infrastructure.PublishModeQosPolicy
(p. 1308) of com.rti.dds.publication.DataWriterQos (p. 588).

See also:

com.rti.dds.infrastructure.PublishModeQosPolicy (p. 1308)
com.rti.dds.publication.DataWriterQos.publish mode (p. 593)
com.rti.dds.infrastructure.AsynchronousPublisherQosPolicy
(p. 387)

6.82.2 Variable Documentation

6.82.2.1 final String DEFAULT FLOW CONTROLLER NAME
[static, inherited]

[default] Special value of com.rti.dds.infrastructure.PublishModeQosPolicy.flow -
controller name (p. 1310) that refers to the built-in default flow controller.

RTI Connext provides several built-in com.rti.dds.publication.FlowController
(p. 942) for use with an asynchronous com.rti.dds.publication.DataWriter
(p. 538). The user can choose to use the built-in flow controllers and optionally
modify their properties or can create a custom flow controller.

By default, flow control is disabled. That is, the built-in Flow-
Controller.DEFAULT FLOW CONTROLLER NAME (p. 182)
flow controller does not apply any flow control. Instead, it al-
lows data to be sent asynchronously as soon as it is written by the
com.rti.dds.publication.DataWriter (p. 538).

Essentially, this is equivalent to a user-created
com.rti.dds.publication.FlowController (p. 942) with the following
com.rti.dds.publication.FlowControllerProperty t (p. 946) settings:

- com.rti.dds.publication.FlowControllerProperty t.scheduling -
policy (p. 947) = FlowControllerSchedulingPolicy.EDF FLOW -
CONTROLLER SCHED POLICY (p. 949)

- com.rti.dds.publication.FlowControllerProperty t.token bucket
(p. 947) max tokens = ResourceLimitsQosPolicy.LENGTH -
UNLIMITED (p. 102)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.82 Flow Controllers 183

- com.rti.dds.publication.FlowControllerProperty t.token -
bucket (p. 947) tokens added per period = ResourceLimitsQosPol-
icy.LENGTH UNLIMITED (p. 102)

- com.rti.dds.publication.FlowControllerProperty t.token bucket
(p. 947) tokens leaked per period = 0

- com.rti.dds.publication.FlowControllerProperty t.token bucket
(p. 947) period = 1 second

- com.rti.dds.publication.FlowControllerProperty t.token bucket
(p. 947) bytes per token = ResourceLimitsQosPolicy.LENGTH -
UNLIMITED (p. 102)

See also:

com.rti.dds.publication.Publisher.create datawriter (p. 1284)
com.rti.dds.domain.DomainParticipant.lookup flowcontroller
(p. 684)
com.rti.dds.publication.FlowController.set property (p. 943)
com.rti.dds.infrastructure.PublishModeQosPolicy (p. 1308)
com.rti.dds.infrastructure.AsynchronousPublisherQosPolicy
(p. 387)

6.82.2.2 final String FIXED RATE FLOW CONTROLLER NAME
[static, inherited]

Special value of com.rti.dds.infrastructure.PublishModeQosPolicy.flow -
controller name (p. 1310) that refers to the built-in fixed-rate flow controller.

RTI Connext provides several builtin (p. 341)
com.rti.dds.publication.FlowController (p. 942) for use with an asyn-
chronous com.rti.dds.publication.DataWriter (p. 538). The user can
choose to use the built-in flow controllers and optionally modify their
properties or can create a custom flow controller.

The built-in FlowController.FIXED RATE FLOW CONTROLLER -
NAME (p. 183) flow controller shapes the network traffic by allowing data
to be sent only once every second. Any accumulated samples destined for the
same destination are coalesced into as few network packets as possible.

Essentially, this is equivalent to a user-created
com.rti.dds.publication.FlowController (p. 942) with the following
com.rti.dds.publication.FlowControllerProperty t (p. 946) settings:

- com.rti.dds.publication.FlowControllerProperty t.scheduling -
policy (p. 947) = FlowControllerSchedulingPolicy.EDF FLOW -
CONTROLLER SCHED POLICY (p. 949)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

184 Module Documentation

- com.rti.dds.publication.FlowControllerProperty t.token bucket
(p. 947) max tokens = ResourceLimitsQosPolicy.LENGTH -
UNLIMITED (p. 102)

- com.rti.dds.publication.FlowControllerProperty t.token -
bucket (p. 947) tokens added per period = ResourceLimitsQosPol-
icy.LENGTH UNLIMITED (p. 102)

- com.rti.dds.publication.FlowControllerProperty t.token bucket
(p. 947) tokens leaked per period = ResourceLimitsQosPol-
icy.LENGTH UNLIMITED (p. 102)

- com.rti.dds.publication.FlowControllerProperty t.token bucket
(p. 947) period = 1 second

- com.rti.dds.publication.FlowControllerProperty t.token bucket
(p. 947) bytes per token = ResourceLimitsQosPolicy.LENGTH -
UNLIMITED (p. 102)

See also:

com.rti.dds.publication.Publisher.create datawriter (p. 1284)
com.rti.dds.domain.DomainParticipant.lookup flowcontroller
(p. 684)
com.rti.dds.publication.FlowController.set property (p. 943)
com.rti.dds.infrastructure.PublishModeQosPolicy (p. 1308)
com.rti.dds.infrastructure.AsynchronousPublisherQosPolicy
(p. 387)

6.82.2.3 final String ON DEMAND FLOW CONTROLLER -
NAME [static, inherited]

Special value of com.rti.dds.infrastructure.PublishModeQosPolicy.flow -
controller name (p. 1310) that refers to the built-in on-demand flow controller.

RTI Connext provides several builtin (p. 341)
com.rti.dds.publication.FlowController (p. 942) for use with an asyn-
chronous com.rti.dds.publication.DataWriter (p. 538). The user can
choose to use the built-in flow controllers and optionally modify their
properties or can create a custom flow controller.

The built-in FlowController.ON DEMAND FLOW CONTROLLER -
NAME (p. 184) allows data to be sent only when the user calls
com.rti.dds.publication.FlowController.trigger flow (p. 945).
With each trigger, all accumulated data since the previous trigger
is sent (across all com.rti.dds.publication.Publisher (p. 1277) or
com.rti.dds.publication.DataWriter (p. 538) instances). In other words,
the network traffic shape is fully controlled by the user. Any accumulated

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.82 Flow Controllers 185

samples destined for the same destination are coalesced into as few network
packets as possible.

This external trigger source is ideal for users who want to implement some form
of closed-loop flow control or who want to only put data on the wire every so
many samples (e.g. with the number of samples based on Transport.Property -
t.gather send buffer count max).

Essentially, this is equivalent to a user-created
com.rti.dds.publication.FlowController (p. 942) with the following
com.rti.dds.publication.FlowControllerProperty t (p. 946) settings:

- com.rti.dds.publication.FlowControllerProperty t.scheduling -
policy (p. 947) = FlowControllerSchedulingPolicy.EDF FLOW -
CONTROLLER SCHED POLICY (p. 949)

- com.rti.dds.publication.FlowControllerProperty t.token bucket
(p. 947) max tokens = ResourceLimitsQosPolicy.LENGTH -
UNLIMITED (p. 102)

- com.rti.dds.publication.FlowControllerProperty t.token -
bucket (p. 947) tokens added per period = ResourceLimitsQosPol-
icy.LENGTH UNLIMITED (p. 102)

- com.rti.dds.publication.FlowControllerProperty t.token bucket
(p. 947) tokens leaked per period = ResourceLimitsQosPol-
icy.LENGTH UNLIMITED (p. 102)

- com.rti.dds.publication.FlowControllerProperty t.token bucket
(p. 947) period = com.rti.dds.infrastructure.Duration t.INFINITE

- com.rti.dds.publication.FlowControllerProperty t.token bucket
(p. 947) bytes per token = ResourceLimitsQosPolicy.LENGTH -
UNLIMITED (p. 102)

See also:

com.rti.dds.publication.Publisher.create datawriter (p. 1284)
com.rti.dds.domain.DomainParticipant.lookup flowcontroller
(p. 684)
com.rti.dds.publication.FlowController.trigger flow (p. 945)
com.rti.dds.publication.FlowController.set property (p. 943)
com.rti.dds.infrastructure.PublishModeQosPolicy (p. 1308)
com.rti.dds.infrastructure.AsynchronousPublisherQosPolicy
(p. 387)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

186 Module Documentation

6.83 Subscription Module

Contains the com.rti.dds.subscription.Subscriber
(p. 1478), com.rti.dds.subscription.DataReader (p. 473),
com.rti.dds.subscription.ReadCondition (p. 1326), and
com.rti.dds.subscription.QueryCondition (p. 1324) classes, as well
as the com.rti.dds.subscription.SubscriberListener (p. 1504) and
com.rti.dds.subscription.DataReaderListener (p. 501) interfaces, and
more generally, all that is needed on the subscription side.

Modules

ˆ Subscribers

com.rti.dds.subscription.Subscriber (p. 1478) entity and associated ele-
ments

ˆ DataReaders

com.rti.dds.subscription.DataReader (p. 473) entity and associated ele-
ments

ˆ Data Samples

com.rti.dds.subscription.SampleInfo (p. 1404),
com.rti.dds.subscription.SampleStateKind (p. 1430),
com.rti.dds.subscription.ViewStateKind (p. 1689),
com.rti.dds.subscription.InstanceStateKind (p. 1086) and associ-
ated elements

6.83.1 Detailed Description

Contains the com.rti.dds.subscription.Subscriber
(p. 1478), com.rti.dds.subscription.DataReader (p. 473),
com.rti.dds.subscription.ReadCondition (p. 1326), and
com.rti.dds.subscription.QueryCondition (p. 1324) classes, as well
as the com.rti.dds.subscription.SubscriberListener (p. 1504) and
com.rti.dds.subscription.DataReaderListener (p. 501) interfaces, and
more generally, all that is needed on the subscription side.

6.83.2 Access to data samples

Data is made available to the application by the follow-
ing operations on com.rti.dds.subscription.DataReader
(p. 473) objects: com.rti.dds.topic.example.FooDataReader.read,

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.83 Subscription Module 187

com.rti.dds.topic.example.FooDataReader.read w -
condition, com.rti.dds.topic.example.FooDataReader.take,
com.rti.dds.topic.example.FooDataReader.take w condition, and the other
variants of read() and take().

The general semantics of the read() operation is that the application only gets
access to the corresponding data (i.e. a precise instance value); the data remains
the responsibility of RTI Connext and can be read again.

The semantics of the take() operations is that the application takes full re-
sponsibility for the data; that data will no longer be available locally to RTI
Connext. Consequently, it is possible to access the same information multiple
times only if all previous accesses were read() operations, not take().

Each of these operations returns a collection of Data values and associated
com.rti.dds.subscription.SampleInfo (p. 1404) objects. Each data value
represents an atom of data information (i.e., a value for one instance). This
collection may contain samples related to the same or different instances (iden-
tified by the key). Multiple samples can refer to the same instance if the settings
of the HISTORY (p. 75) QoS allow for it.

To return the memory back to the middleware, every read() or take()
that retrieves a sequence of samples must be followed with a call to
com.rti.dds.topic.example.FooDataReader.return loan.

See also:

Interpretation of the SampleInfo (p. 1405)

6.83.2.1 Data access patterns

The application accesses data by means of the operations read or
take on the com.rti.dds.subscription.DataReader (p. 473). These op-
erations return an ordered collection of DataSamples consisting of a
com.rti.dds.subscription.SampleInfo (p. 1404) part and a Data part.

The way RTI Connext builds the collection depends on QoS poli-
cies set on the com.rti.dds.subscription.DataReader (p. 473) and
com.rti.dds.subscription.Subscriber (p. 1478), as well as the source -
timestamp of the samples, and the parameters passed to the read() / take()
operations, namely:

ˆ the desired sample states (any combination of
com.rti.dds.subscription.SampleStateKind (p. 1430))

ˆ the desired view states (any combination of
com.rti.dds.subscription.ViewStateKind (p. 1689))

ˆ the desired instance states (any combination of
com.rti.dds.subscription.InstanceStateKind (p. 1086))

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

188 Module Documentation

The read() and take() operations are non-blocking and just deliver what is
currently available that matches the specified states.

The read w condition() and take w condition() operations take a
com.rti.dds.subscription.ReadCondition (p. 1326) object as a parameter
instead of sample, view or instance states. The behaviour is that the samples
returned will only be those for which the condition is true. These operations,
in conjunction with com.rti.dds.subscription.ReadCondition (p. 1326) ob-
jects and a com.rti.dds.infrastructure.WaitSet (p. 1695), allow performing
waiting reads.

Once the data samples are available to the data readers, they can be read or
taken by the application. The basic rule is that the application may do this in
any order it wishes. This approach is very flexible and allows the application
ultimate control.

To access data coherently, or in order, the PRESENTATION (p. 86) QoS
must be set properly.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.84 Subscribers 189

6.84 Subscribers

com.rti.dds.subscription.Subscriber (p. 1478) entity and associated ele-
ments

Classes

ˆ interface Subscriber

<<interface>> (p. 271) A subscriber is the object responsible for actually
receiving data from a subscription (p. 343).

ˆ class SubscriberAdapter

A listener adapter in the spirit of the Java AWT listener adapters. (The
Adapter provides empty implementations for the listener methods).

ˆ interface SubscriberListener

<<interface>> (p. 271) com.rti.dds.infrastructure.Listener (p. 1154)
for status about a subscriber.

ˆ class SubscriberQos

QoS policies supported by a com.rti.dds.subscription.Subscriber
(p. 1478) entity.

ˆ class SubscriberSeq

Declares IDL sequence < com.rti.dds.subscription.Subscriber (p. 1478)
> .

Variables

ˆ static final DataReaderQos DATAREADER QOS DEFAULT

Special value for creating data reader with default QoS.

ˆ static final DataReaderQos DATAREADER QOS USE TOPIC -
QOS = new DataReaderQos()

Special value for creating com.rti.dds.subscription.DataReader
(p. 473) with a combination of the default
com.rti.dds.subscription.DataReaderQos (p. 518) and the
com.rti.dds.topic.TopicQos (p. 1566).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

190 Module Documentation

6.84.1 Detailed Description

com.rti.dds.subscription.Subscriber (p. 1478) entity and associated ele-
ments

6.84.2 Variable Documentation

6.84.2.1 final DataReaderQos DATAREADER QOS DEFAULT
[static, inherited]

Initial value:

new DataReaderQos()

Special value for creating data reader with default QoS.

When used in com.rti.dds.subscription.Subscriber.create -
datareader (p. 1485), this special value is used to indicate that the
com.rti.dds.subscription.DataReader (p. 473) should be created with
the default com.rti.dds.subscription.DataReader (p. 473) QoS by means
of the operation get default datareader qos and using the resulting QoS to
create the com.rti.dds.subscription.DataReader (p. 473).

When used in com.rti.dds.subscription.Subscriber.set default -
datareader qos (p. 1483), this special value is used to indicate that the
default QoS should be reset back to the initial value that would be used if
the com.rti.dds.subscription.Subscriber.set default datareader qos
(p. 1483) operation had never been called.

When used in com.rti.dds.subscription.DataReader.set qos
(p. 480), this special value is used to indicate that the QoS of the
com.rti.dds.subscription.DataReader (p. 473) should be changed to match
the current default QoS set in the com.rti.dds.subscription.Subscriber
(p. 1478) that the com.rti.dds.subscription.DataReader (p. 473) belongs
to.

Note: You cannot use this value to get the default QoS
values for a DataReader (p. 473); for this purpose, use
com.rti.dds.domain.DomainParticipant.get default datareader qos
(p. 649).

See also:

com.rti.dds.subscription.Subscriber.create datareader (p. 1485)
com.rti.dds.subscription.Subscriber.set default datareader qos
(p. 1483)
com.rti.dds.subscription.DataReader.set qos (p. 480)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.84 Subscribers 191

6.84.2.2 final DataReaderQos DATAREADER QOS USE -
TOPIC QOS = new DataReaderQos() [static,
inherited]

Special value for creating com.rti.dds.subscription.DataReader
(p. 473) with a combination of the default
com.rti.dds.subscription.DataReaderQos (p. 518) and the
com.rti.dds.topic.TopicQos (p. 1566).

The use of this value is equivalent to the application obtaining the
default com.rti.dds.subscription.DataReaderQos (p. 518) and the
com.rti.dds.topic.TopicQos (p. 1566) (by means of the operation
com.rti.dds.topic.Topic.get qos (p. 1548)) and then combining these two
QoS using the operation com.rti.dds.subscription.Subscriber.copy -
from topic qos (p. 1500) whereby any policy that is set on the
com.rti.dds.topic.TopicQos (p. 1566) ”overrides” the corresponding policy
on the default QoS. The resulting QoS is then applied to the creation of the
com.rti.dds.subscription.DataReader (p. 473).

This value should only be used in com.rti.dds.subscription.Subscriber.create -
datareader (p. 1485).

See also:

com.rti.dds.subscription.Subscriber.create datareader (p. 1485)
com.rti.dds.subscription.Subscriber.get default datareader qos
(p. 1482)
com.rti.dds.topic.Topic.get qos (p. 1548)
com.rti.dds.subscription.Subscriber.copy from topic qos (p. 1500)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

192 Module Documentation

6.85 DataReaders

com.rti.dds.subscription.DataReader (p. 473) entity and associated ele-
ments

Modules

ˆ Read Conditions

com.rti.dds.subscription.ReadCondition (p. 1326) and associated ele-
ments

ˆ Query Conditions

com.rti.dds.subscription.QueryCondition (p. 1324) and associated ele-
ments

Classes

ˆ interface DataReader

<<interface>> (p. 271) Allows the application to: (1) declare the data it
wishes to receive (i.e. make a subscription (p. 343)) and (2) access the data
received by the attached com.rti.dds.subscription.Subscriber (p. 1478).

ˆ class DataReaderAdapter

<<eXtension>> (p. 270) A listener adapter in the spirit of the Java AWT
listener adapters. (The Adapter provides empty implementations for the lis-
tener methods)

ˆ class DataReaderCacheStatus

<<eXtension>> (p. 270) The status of the reader’s cache.

ˆ interface DataReaderListener

<<interface>> (p. 271) com.rti.dds.infrastructure.Listener (p. 1154)
for reader status.

ˆ class DataReaderProtocolStatus

<<eXtension>> (p. 270) The status of a reader’s internal protocol related
metrics, like the number of samples received, filtered, rejected; and status of
wire protocol traffic.

ˆ class DataReaderQos

QoS policies supported by a com.rti.dds.subscription.DataReader
(p. 473) entity.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.85 DataReaders 193

ˆ class DataReaderSeq

Declares IDL sequence < com.rti.dds.subscription.DataReader (p. 473)
> .

ˆ interface FooDataReader

<<interface>> (p. 271) <<generic>> (p. 271) User data type-specific
data reader.

ˆ class LivelinessChangedStatus

StatusKind.LIVELINESS CHANGED STATUS.

ˆ class RequestedDeadlineMissedStatus

StatusKind.REQUESTED DEADLINE MISSED STATUS.

ˆ class RequestedIncompatibleQosStatus

StatusKind.REQUESTED INCOMPATIBLE QOS STATUS.

ˆ class SampleLostStatus

StatusKind.SAMPLE LOST STATUS STATUS.

ˆ class SampleLostStatusKind

Kinds of reasons why a sample was lost.

ˆ class SampleRejectedStatus

StatusKind.SAMPLE REJECTED STATUS.

ˆ class SampleRejectedStatusKind

Kinds of reasons for rejecting a sample.

ˆ class SubscriptionMatchedStatus

StatusKind.SUBSCRIPTION MATCHED STATUS.

ˆ class FooDataReader

<<interface>> (p. 271) <<generic>> (p. 271) User data type-specific
data reader.

6.85.1 Detailed Description

com.rti.dds.subscription.DataReader (p. 473) entity and associated ele-
ments

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

194 Module Documentation

6.86 Read Conditions

com.rti.dds.subscription.ReadCondition (p. 1326) and associated elements

Classes

ˆ interface ReadCondition

<<interface>> (p. 271) Conditions specifically dedicated to read operations
and attached to one com.rti.dds.subscription.DataReader (p. 473).

6.86.1 Detailed Description

com.rti.dds.subscription.ReadCondition (p. 1326) and associated elements

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.87 Query Conditions 195

6.87 Query Conditions

com.rti.dds.subscription.QueryCondition (p. 1324) and associated ele-
ments

Classes

ˆ interface QueryCondition

<<interface>> (p. 271) These are specialised
com.rti.dds.subscription.ReadCondition (p. 1326) objects that al-
low the application to also specify a filter on the locally available data.

6.87.1 Detailed Description

com.rti.dds.subscription.QueryCondition (p. 1324) and associated ele-
ments

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

196 Module Documentation

6.88 Data Samples

com.rti.dds.subscription.SampleInfo (p. 1404),
com.rti.dds.subscription.SampleStateKind (p. 1430),
com.rti.dds.subscription.ViewStateKind (p. 1689),
com.rti.dds.subscription.InstanceStateKind (p. 1086) and associated
elements

Modules

ˆ Sample States

com.rti.dds.subscription.SampleStateKind (p. 1430) and associated el-
ements

ˆ View States

com.rti.dds.subscription.ViewStateKind (p. 1689) and associated ele-
ments

ˆ Instance States

com.rti.dds.subscription.InstanceStateKind (p. 1086) and associated
elements

Classes

ˆ class SampleInfo

Information that accompanies each sample that is read or taken.

ˆ class SampleInfoSeq

Declares IDL sequence < com.rti.dds.subscription.SampleInfo
(p. 1404) > .

6.88.1 Detailed Description

com.rti.dds.subscription.SampleInfo (p. 1404),
com.rti.dds.subscription.SampleStateKind (p. 1430),
com.rti.dds.subscription.ViewStateKind (p. 1689),
com.rti.dds.subscription.InstanceStateKind (p. 1086) and associated
elements

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.89 Sample States 197

6.89 Sample States

com.rti.dds.subscription.SampleStateKind (p. 1430) and associated ele-
ments

Classes

ˆ class SampleStateKind

Indicates whether or not a sample has ever been read.

Variables

ˆ static final int ANY SAMPLE STATE = 0xffff
Any sample state SampleStateKind.READ SAMPLE STATE (p. 1430)
| SampleStateKind.NOT READ SAMPLE STATE (p. 1431).

6.89.1 Detailed Description

com.rti.dds.subscription.SampleStateKind (p. 1430) and associated ele-
ments

6.89.2 Variable Documentation

6.89.2.1 final int ANY SAMPLE STATE = 0xffff [static,
inherited]

Any sample state SampleStateKind.READ SAMPLE STATE (p. 1430) |
SampleStateKind.NOT READ SAMPLE STATE (p. 1431).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

198 Module Documentation

6.90 View States

com.rti.dds.subscription.ViewStateKind (p. 1689) and associated ele-
ments

Classes

ˆ class ViewStateKind

Indicates whether or not an instance is new.

Variables

ˆ static final int ANY VIEW STATE = 0xffff
Any view state ViewStateKind.NEW VIEW STATE (p. 1690) | View-
StateKind.NOT NEW VIEW STATE (p. 1690).

6.90.1 Detailed Description

com.rti.dds.subscription.ViewStateKind (p. 1689) and associated ele-
ments

6.90.2 Variable Documentation

6.90.2.1 final int ANY VIEW STATE = 0xffff [static, inherited]

Any view state ViewStateKind.NEW VIEW STATE (p. 1690) | View-
StateKind.NOT NEW VIEW STATE (p. 1690).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.91 Instance States 199

6.91 Instance States

com.rti.dds.subscription.InstanceStateKind (p. 1086) and associated ele-
ments

Classes

ˆ class InstanceStateKind
Indicates is the samples are from a live
com.rti.dds.publication.DataWriter (p. 538) or not.

Variables

ˆ static final int ANY INSTANCE STATE = 0xffff
Any instance state ALIVE INSTANCE STATE | NOT ALIVE -
DISPOSED INSTANCE STATE | NOT ALIVE NO WRITERS -
INSTANCE STATE.

ˆ static final int NOT ALIVE INSTANCE STATE = 0x006
Not alive instance state NOT ALIVE DISPOSED INSTANCE STATE |
NOT ALIVE NO WRITERS INSTANCE STATE.

6.91.1 Detailed Description

com.rti.dds.subscription.InstanceStateKind (p. 1086) and associated ele-
ments

6.91.2 Variable Documentation

6.91.2.1 final int ANY INSTANCE STATE = 0xffff [static,
inherited]

Any instance state ALIVE INSTANCE STATE | NOT ALIVE DISPOSED -
INSTANCE STATE | NOT ALIVE NO WRITERS INSTANCE STATE.

6.91.2.2 final int NOT ALIVE INSTANCE STATE = 0x006
[static, inherited]

Not alive instance state NOT ALIVE DISPOSED INSTANCE STATE | NOT -
ALIVE NO WRITERS INSTANCE STATE.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

200 Module Documentation

6.92 Infrastructure Module

Defines the abstract classes and the interfaces that are refined by the other
modules. Contains common definitions such as return codes, status values, and
QoS policies.

Modules

ˆ Conditions and WaitSets
com.rti.dds.infrastructure.Condition (p. 451) and
com.rti.dds.infrastructure.WaitSet (p. 1695) and related items.

ˆ Time Support
Time and duration types and defines.

ˆ Entity Support
com.rti.dds.infrastructure.Entity (p. 912),
com.rti.dds.infrastructure.Listener (p. 1154) and related items.

ˆ GUID Support
<<eXtension>> (p. 270) GUID type and defines.

ˆ Object Support
<<eXtension>> (p. 270) Object related items.

ˆ QoS Policies
Quality of Service (QoS) policies.

ˆ Return Codes
Types of return codes.

ˆ Sequence Number Support
<<eXtension>> (p. 270) Sequence number type and defines.

ˆ Status Kinds
Kinds of communication status.

ˆ Exception Codes
<<eXtension>> (p. 270) Exception codes.

ˆ Sequence Support
The com.rti.dds.util.Sequence (p. 1432) interface allows you to work with
variable-length collections of homogeneous data.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.92 Infrastructure Module 201

Classes

ˆ class Enum

A superclass for all type-safe enumerated types.

6.92.1 Detailed Description

Defines the abstract classes and the interfaces that are refined by the other
modules. Contains common definitions such as return codes, status values, and
QoS policies.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

202 Module Documentation

6.93 Built-in Sequences

Defines sequences of primitive data type.

Classes

ˆ class BooleanSeq
Instantiates com.rti.dds.util.Sequence (p. 1432) < boolean >.

ˆ class ByteSeq
Instantiates com.rti.dds.util.Sequence (p. 1432) < byte >.

ˆ class CharSeq
Instantiates com.rti.dds.util.Sequence (p. 1432) < char >.

ˆ class DoubleSeq
Instantiates com.rti.dds.util.Sequence (p. 1432) < double >.

ˆ class FloatSeq
Instantiates com.rti.dds.util.Sequence (p. 1432) < float >.

ˆ class IntSeq
Instantiates com.rti.dds.util.Sequence (p. 1432) < int >.

ˆ class LongDoubleSeq
Instantiates com.rti.dds.util.Sequence (p. 1432) <
com.rti.dds.infrastructure.LongDouble >.

ˆ class LongSeq
Instantiates com.rti.dds.util.Sequence (p. 1432) < long >.

ˆ class ShortSeq
Instantiates com.rti.dds.util.Sequence (p. 1432) < short >.

ˆ class StringSeq
Declares IDL sequence < String > .

ˆ class WcharSeq
Instantiates com.rti.dds.util.Sequence (p. 1432) < char >.

ˆ class WstringSeq
Instantiates com.rti.dds.util.Sequence (p. 1432) < char∗ >.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.93 Built-in Sequences 203

6.93.1 Detailed Description

Defines sequences of primitive data type.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

204 Module Documentation

6.94 Multi-channel DataWriters

APIs related to Multi-channel DataWriters.

6.94.1 What is a Multi-channel DataWriter?

A Multi-channel com.rti.dds.publication.DataWriter (p. 538) is a
com.rti.dds.publication.DataWriter (p. 538) that is configured to send
data over multiple multicast addresses, according to some filtering criteria
applied to the data.

To determine which multicast addresses will be used to send the data,
the middleware evaluates a set of filters that are configured for the
com.rti.dds.publication.DataWriter (p. 538). Each filter ”guards” a
channel (a set of multicast addresses). Each time a multi-channel
com.rti.dds.publication.DataWriter (p. 538) writes data, the filters are ap-
plied. If a filter evaluates to true, the data is sent over that filter’s associated
channel (set of multicast addresses). We refer to this type of filter as a Channel
Guard filter.

6.94.2 Configuration on the Writer Side

To configure a multi-channel com.rti.dds.publication.DataWriter
(p. 538), simply define a list of all its channels in the
com.rti.dds.infrastructure.MultiChannelQosPolicy (p. 1205).

The com.rti.dds.infrastructure.MultiChannelQosPolicy (p. 1205) is
propagated along with discovery traffic. The value of this policy is available
in builtin.PublicationBuiltinTopicData.locator filter.

6.94.3 Configuration on the Reader Side

No special changes are required in a subscribing application to get data from a
multichannel com.rti.dds.publication.DataWriter (p. 538). If you want the
com.rti.dds.subscription.DataReader (p. 473) to subscribe to only a subset
of the channels, use a com.rti.dds.topic.ContentFilteredTopic (p. 458).

For more information on Multi-channel DataWriters, refer to the User’s Manual.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.94 Multi-channel DataWriters 205

6.94.4 Reliability with Multi-Channel DataWriters

6.94.4.1 Reliable Delivery

Reliable delivery is only guaranteed when the
com.rti.dds.infrastructure.PresentationQosPolicy.access -
scope (p. 1241) is set to PresentationQosPolicyAccessS-
copeKind.INSTANCE PRESENTATION QOS and the filters in
com.rti.dds.infrastructure.MultiChannelQosPolicy (p. 1205) are keyed-
only based.

If any of the guard filters are based on non-key fields, RTI Connext only guar-
antees reception of the most recent data from the MultiChannel DataWriter.

6.94.4.2 Reliable Protocol Considerations

Reliability is maintained on a per-channel basis. Each channel has its
own reliability channel send queue. The size of that queue is limited
by com.rti.dds.infrastructure.ResourceLimitsQosPolicy.max samples
(p. 1359) and/or com.rti.dds.infrastructure.DataWriterResourceLimitsQosPolicy.max -
batches (p. 600).

The protocol parameters described in com.rti.dds.infrastructure.DataWriterProtocolQosPolicy
(p. 571) are applied per channel, with the following exceptions:

com.rti.dds.infrastructure.RtpsReliableWriterProtocol t.low -
watermark (p. 1381) and com.rti.dds.infrastructure.RtpsReliableWriterProtocol -
t.high watermark (p. 1381): The low watermark and high watermark control
the queue levels (in number of samples) that determine when to switch
between regular and fast heartbeat rates. With MultiChannel DataWriters,
high watermark and low watermark refer to the DataWriter’s queue (not
the reliability channel queue). Therefore, periodic heartbeating cannot be
controlled on a per-channel basis.

Important: With MultiChannel DataWriters, low watermark and high -
watermark refer to application samples even if batching is enabled. This be-
havior differs from the one without MultiChannel DataWriters (where low -
watermark and high watermark refer to batches).

com.rti.dds.infrastructure.RtpsReliableWriterProtocol -
t.heartbeats per max samples (p. 1385): This field defines the num-
ber of heartbeats per send queue. For MultiChannel DataWriters, the
value is applied per channel. However, the send queue size that is used
to calculate the a piggyback heartbeat rate is defined per DataWriter (see
com.rti.dds.infrastructure.ResourceLimitsQosPolicy.max samples
(p. 1359))

Important: With MultiChannel DataWriters, heartbeats per max samples

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

206 Module Documentation

refers to samples even if batching is enabled. This behavior differs from the one
without MultiChannels DataWriters (where heartbeats per max samples refers
to batches).

With batching and MultiChannel DataWriters, the size of
the DataWriter’s send queue should be configured using
com.rti.dds.infrastructure.ResourceLimitsQosPolicy.max samples
(p. 1359) instead of max batches com.rti.dds.infrastructure.DataWriterResourceLimitsQosPolicy.max -
batches (p. 600) in order to take advantage of heartbeats per max samples.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.95 Pluggable Transports 207

6.95 Pluggable Transports

APIs related to RTI Connext pluggable transports.

Modules

ˆ Using Transport Plugins

Configuring transports used by RTI Connext.

ˆ Built-in Transport Plugins

Transport plugins delivered with RTI Connext.

6.95.1 Detailed Description

APIs related to RTI Connext pluggable transports.

6.95.2 Overview

RTI Connext has a pluggable transports architecture. The core of RTI Con-
next is transport agnostic; it does not make any assumptions about the actual
transports used to send and receive messages. Instead, the RTI Connext core
uses an abstract ”transport API” to interact with the transport plugins which
implement that API.

A transport plugin implements the abstract transport API and performs the
actual work of sending and receiving messages over a physical transport. A
collection of builtin plugins (see Built-in Transport Plugins (p. 216)) is
delivered with RTI Connext for commonly used transports. New transport
plugins can easily be created, thus enabling RTI Connext applications to run
over transports that may not even be conceived yet. This is a powerful capability
and that distinguishes RTI Connext from competing middleware approaches.

RTI Connext also provides a set of APIs for installing and configuring trans-
port plugins to be used in an application. So that RTI Connext applications
work out of the box, a subset of the builtin transport plugins is preconfigured
by default (see com.rti.dds.infrastructure.TransportBuiltinQosPolicy
(p. 1580)). You can ”turn-off” some or all of the builtin transport plugins. In
addition, you can configure other transport plugins for use by the application.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

208 Module Documentation

6.95.3 Transport Aliases

In order to use a transport plugin instance in an RTI Connext application, it
must be registered with a com.rti.dds.domain.DomainParticipant (p. 629).
When you register a transport, you specify a sequence of ”alias” strings to
symbolically refer to the transport plugin. The same alias strings can be used
to register more than one transport plugin.

You can register multiple transport plugins with a
com.rti.dds.domain.DomainParticipant (p. 629). An alias sym-
bolically refers to one or more transport plugins registered with the
com.rti.dds.domain.DomainParticipant (p. 629). Builtin transport
plugin instances can be referred to using preconfigured aliases (see TRANS-
PORT BUILTIN (p. 115)).

A transport plugin’s class name is automatically used as an implicit alias. It
can be used to refer to all the transport plugin instances of that class.

You can use aliases to refer to transport plugins, in order to specify:

- the transport plugins to use for discovery (see
com.rti.dds.infrastructure.DiscoveryQosPolicy.enabled transports
(p. 625)), and for com.rti.dds.publication.DataWriter (p. 538)
and com.rti.dds.subscription.DataReader (p. 473) entities (see
com.rti.dds.infrastructure.TransportSelectionQosPolicy (p. 1600)).

- the multicast addresses on which to receive discovery messages (see
com.rti.dds.infrastructure.DiscoveryQosPolicy.multicast receive -
addresses (p. 625)), and the multicast addresses and ports on which to receive
user data (see com.rti.dds.subscription.DataReaderQos.multicast
(p. 522)).

- the unicast ports used for user data (see
com.rti.dds.infrastructure.TransportUnicastQosPolicy (p. 1605))
on both com.rti.dds.publication.DataWriter (p. 538) and
com.rti.dds.subscription.DataReader (p. 473) entities.

- the transport plugins used to parse an address string in a locator (Locator
Format (p. 56) and NDDS DISCOVERY PEERS (p. 55)).

A com.rti.dds.domain.DomainParticipant (p. 629) (and con-
tained its entities) start using a transport plugin after the
com.rti.dds.domain.DomainParticipant (p. 629) is enabled (see
com.rti.dds.infrastructure.Entity.enable (p. 915)). An entity will use
all the transport plugins that match the specified transport QoS policy. All
transport plugins are treated uniformly, regardless of how they were created
or registered; there is no notion of some transports being more ”special” that
others.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.95 Pluggable Transports 209

6.95.4 Transport Lifecycle

A transport plugin is owned by whoever created it. Thus, if you create and
register a transport plugin with a com.rti.dds.domain.DomainParticipant
(p. 629), you are responsible for deleting it by calling its destructor. Note that
builtin transport plugins (TRANSPORT BUILTIN (p. 115)) and transport
plugins that are loaded through the PROPERTY (p. 88) QoS policy (see
Loading Transport Plugins through Property QoS Policy of Domain
Participant (p. 213)) are automatically managed by RTI Connext.

A user-created transport plugin must not be deleted while it is still in
use by a com.rti.dds.domain.DomainParticipant (p. 629). This
generally means that a user-created transport plugin instance can
only be deleted after the com.rti.dds.domain.DomainParticipant
(p. 629) with which it was registered is deleted (see
com.rti.dds.domain.DomainParticipantFactory.delete participant
(p. 715)). Note that a transport plugin cannot be ”unregistered” from a
com.rti.dds.domain.DomainParticipant (p. 629).

A transport plugin instance cannot be registered with more than one
com.rti.dds.domain.DomainParticipant (p. 629) at a time. This require-
ment is necessary to guarantee the multi-threaded safety of the transport API.

If the same physical transport resources are to be used with more
than one com.rti.dds.domain.DomainParticipant (p. 629) in the same
address space, the transport plugin should be written in such a
way so that it can be instantiated multiple times—once for each
com.rti.dds.domain.DomainParticipant (p. 629) in the address space.
Note that it is always possible to write the transport plugin so that multi-
ple transport plugin instances share the same underlying resources; however the
burden (if any) of guaranteeing multi-threaded safety to access shared resource
shifts to the transport plugin developer.

6.95.5 Transport Class Attributes

A transport plugin instance is associated with two kinds of attributes:

- the class attributes that are decided by the plugin writer; these are invariant
across all instances of the transport plugin class, and

- the instance attributes that can be set on a per instance basis by the transport
plugin user.

Every transport plugin must specify the following class attributes.

transport class id (see Transport.Property t.classid) Identifies a
transport plugin implementation class. It denotes a unique ”class”
to which the transport plugin instance belongs. The class is used to

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

210 Module Documentation

distinguish between different transport plugin implementations. Thus,
a transport plugin vendor should ensure that its transport plugin
implementation has a unique class.

Two transport plugin instances report the same class iff they have com-
patible implementations. Transport plugin instances with mismatching
classes are not allowed (by the RTI Connext Core) to communicate with
one another.

Multiple implementations (possibly from different vendors) for a physical
transport mechanism can co-exist in an RTI Connext application, provided
they use different transport class IDs.

The class ID can also be used to distinguish between different transport
protocols over the same physical transport network (e.g., UDP vs. TCP
over the IP routing infrastructure).

transport significant address bit count (see Transport.Property t.address bit count)
RTI Connext’s addressing is modeled after the IPv6 and uses 128-bit
addresses (java.net.InetAddress) to route messages.

A transport plugin is expected to map the transport’s internal addressing
scheme to 128-bit addresses. In general, this mapping is likely to use only
N least significant bits (LSB); these are specified by this attribute.

>-------------- netmask ----------------<

+---------------------------------------+----------------------------+

| Network Address | Transport Local Address |

+---------------------------------------+----------------------------+

>------------ N ------------<

address_bits_count

Only these bits are used

by the transport plugin.

The remaining bits of an address using the 128-bit address representa-
tion will be considered as part of the ”network address” (see Transport
Network Address (p. 371)) and thus ignored by the transport plugin’s
internal addressing scheme.

For unicast addresses, the transport plugin is expected to ignore the higher
(128 - Transport.Property t.address bit count) bits. RTI Connext is free
to manipulate those bits freely in the addresses passed in/out to the trans-
port plugin APIs.

Theoretically, the significant address bits count, N is related to the size of
the underlying transport network as follows:

address bits count >= ceil(log2(total addressable transport unicast interfaces))

The equality holds when the most compact (theoretical) internal address
mapping scheme is used. A practical address mapping scheme may waste
some bits.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.95 Pluggable Transports 211

6.95.6 Transport Instance Attributes

The per instance attributes to configure the plugin instance are generally passed
in to the plugin constructor. These are defined by the transport plugin writer,
and can be used to:

- customize the behavior of an instance of a transport plugin, including the send
and the receiver buffer sizes, the maximum message size, various transport level
classes of service (CoS), and so on.

- specify the resource values, network interfaces to use, various transport level
policies, and so on.

RTI Connext requires that every transport plugin instance must specify
the Transport.Property t.message size max and Transport.Property t.gather -
send buffer count max.

It is up to the transport plugin developer to make these available for configura-
tion to transport plugin user.

Note that it is important that the instance attributes are ”compatible” between
the sending side and the receiving side of communicating applications using
different instances of a transport plugin class. For example, if one side is con-
figured to send messages larger than can be received by the other side, then
communications via the plugin may fail.

6.95.7 Transport Network Address

The address bits not used by the transport plugin for its internal addressing
constitute its network address bits.

In order for RTI Connext to properly route the messages, each unicast interface
in the RTI Connext domain must have a unique address. RTI Connext allows
the user to specify the value of the network address when installing a transport
plugin via the TransportSupport.register transport() API.

The network address for a transport plugin should be chosen such that the
resulting fully qualified 128-bit address will be unique in the RTI Connext
domain. Thus, if two instances of a transport plugin are registered with a
com.rti.dds.domain.DomainParticipant (p. 629), they will be at different
network addresses in order for their unicast interfaces to have unique fully qual-
ified 128-bit addresses. It is also possible to create multiple transports with the
same network address, as it can be useful for certain use cases; note that this
will require special entity configuration for most transports to avoid clashes in
resource use (e.g. sockets for UDPv4 transport).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

212 Module Documentation

6.95.8 Transport Send Route

By default, a transport plugin is configured to send outgoing messages destined
to addresses in the network address range at which the plugin was registered.

RTI Connext allows the user to configure the routing of outgoing messages via
the TransportSupport.add send route() API, so that a transport plugin will be
used to send messages only to certain ranges of destination addresses. The
method can be called multiple times for a transport plugin, with different ad-
dress ranges.

+--+

| Outgoing Address Range 1 -> Transport Plugin |

+--+

| : -> : |

+--+

| Outgoing Address Range K -> Transport Plugin |

+--+

The user can set up a routing table to restrict the use of a transport plugin to
send messages to selected addresses ranges.

6.95.9 Transport Receive Route

By default, a transport plugin is configured to receive incoming messages des-
tined to addresses in the network address range at which the plugin was regis-
tered.

RTI Connext allows the user to configure the routing of incoming messages via
the TransportSupport.add receive route() API, so that a transport plugin will
be used to receive messages only on certain ranges of addresses. The method can
be called multiple times for a transport plugin, with different address ranges.

+--+

| Transport Plugin <- Incoming Address Range 1 |

+--+

| : <- : |

+--+

| Transport Plugin <- Incoming Address Range M |

+--+

The user can set up a routing table to restrict the use of a transport plugin
to receive messages from selected ranges. For example, the user may restrict a
transport plugin to

- receive messages from a certain multicast address range.

- receive messages only on certain unicast interfaces (when multiple unicast
interfaces are available on the transport plugin).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.96 Using Transport Plugins 213

6.96 Using Transport Plugins

Configuring transports used by RTI Connext.

Classes

ˆ class TransportSupport
<<interface>> (p. 271) The utility class used to configure RTI Connext
pluggable transports.

6.96.1 Detailed Description

Configuring transports used by RTI Connext.

There is more than one way to install a transport plugin for use with RTI
Connext:

ˆ If it is a builtin transport plugin, by specifying a bitmask
in com.rti.dds.infrastructure.TransportBuiltinQosPolicy (p. 1580)
(see Built-in Transport Plugins (p. 216))

ˆ For all other non-builtin transport plugins, by dynamically load-
ing the plugin through PROPERTY (p. 88) QoS policy settings of
com.rti.dds.domain.DomainParticipant (p. 629) (on UNIX, Solaris
and Windows systems only) (see Loading Transport Plugins through
Property QoS Policy of Domain Participant (p. 213))

The lifecycle of the transport plugin is automatically managed by RTI Connext.
See Transport Lifecycle (p. 369) for details.

6.96.2 Loading Transport Plugins through Property QoS
Policy of Domain Participant

On UNIX, Solaris and Windows operating systems, a non-builtin transport
plugin written in C/C++ and built as a dynamic-link library (∗.dll/∗.so) can be
loaded by RTI Connext through the PROPERTY (p. 88) QoS policy settings
of the com.rti.dds.domain.DomainParticipant (p. 629). The dynamic-link
library (and all the dependent libraries) need to be in the path during runtime (in
LD LIBRARY PATH environment variable on Linux/Solaris systems,and in
PATH environment variable for Windows systems).

To allow dynamic loading of the transport plugin, the transport plugin must
implement the RTI Connext abstract transport API and must provide a func-
tion with the signature NDDS Transport create plugin that can be called by

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

214 Module Documentation

RTI Connext to create an instance of the transport plugin. The name of
the dynamic library that contains the transport plugin implementation, the
name of the function and properties that can be used to create the plu-
gin, and the aliases and network address that are used to register the plu-
gin can all be specified through the PROPERTY (p. 88) QoS policy of the
com.rti.dds.domain.DomainParticipant (p. 629).

The following table lists the property names that are used to load the transport
plugins dynamically:

A transport plugin is dynamically created and registered to the
com.rti.dds.domain.DomainParticipant (p. 629) by RTI Connext when:

ˆ the com.rti.dds.domain.DomainParticipant (p. 629) is enabled,

ˆ the first DataWriter/DataReader is created, or

ˆ you lookup a builtin DataReader (com.rti.dds.subscription.Subscriber.lookup -
datareader (p. 1490)),

whichever happens first.

Any changes to the transport plugin related properties in PROPERTY
(p. 88) QoS policy after the transport plugin has been registered with the
com.rti.dds.domain.DomainParticipant (p. 629) will have no effect.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.96 Using Transport Plugins 215

Property Name Description Required?
dds.transport.load -
plugins

Comma-separated
strings indicating the
prefix names of all
plugins that will be
loaded by RTI
Connext. Up to 8
plugins may be
specified. For example,
”dds.transport.WAN.wan1,
dds.transport.DTLS.dtls1”,
In the following
examples,
<TRANSPORT -
PREFIX> is used to
indicate one element of
this string that is used
as a prefix in the
property names for all
the settings that are
related to the plugin.
<TRANSPORT -
PREFIX> must begin
with ”dds.transport.”
(such as
”dds.transport.mytransport”).

YES

<TRANSPORT -
PREFIX>.library

Should be set to the
name of the dynamic
library (∗.so for
Unix/Solaris, and ∗.dll
for Windows) that
contains the transport
plugin implementation.
This library (and all
the other dependent
dynamic libraries)
needs to be in the path
during run time for
used by RTI Connext
(in the LD -
LIBRARY PATH
environment variable
on UNIX/Solaris
systems, in PATH for
Windows systems).

YES

<TRANSPORT -
PREFIX>.create -
function

Should be set to the
name of the function
with the prototype of
NDDS Transport -
create plugin that can
be called by RTI
Connext to create an
instance of the plugin.
The resulting transport
plugin will then be
registered by RTI
Connext through
TransportSup-
port.register transport

YES

<TRANSPORT -
PREFIX>.aliases

Used to register the
transport plugin
returned by
NDDS Transport -
create plugin (as
specified by
<TRANSPORT -
PREFIX>.create -
function) to the
com.rti.dds.domain.DomainParticipant
(p. 629). Refer to
aliases in parameter
in TransportSup-
port.register transport
for details. Aliases
should be specified as
comma separated
string, with each
comma delimiting an
alias. If it is not
specified,
<TRANSPORT -
PREFIX> is used as
the default alias for the
plugin

NO

<TRANSPORT -
PREFIX>.network -
address

Used to register the
transport plugin
returned by
NDDS Transport -
create plugin (as
specified by
<TRANSPORT -
PREFIX>.create -
function) to the
com.rti.dds.domain.DomainParticipant
(p. 629). Refer to
network address in
parameter in
TransportSup-
port.register transport
for details. If it is not
specified, the net-
work address out
output parameter from
NDDS Transport -
create plugin is used.
The default value is a
zeroed out network
address.

NO

<TRANSPORT -
PREFIX>.<property -
name>

Property that is passed
into NDDS Transport -
create plugin (as
specified by
<TRANSPORT -
PREFIX>.create -
function) for creating
the transport plugin.
This property
name-value pair will be
passed to
NDDS Transport -
create plugin after
stripping out
<TRANSPORT -
PREFIX> from the
property name. The
parsing of this property
and configuring the
transport using this
property should be
handled by the
implementation of each
transport plugin.
Multiple
<TRANSPORT -
PREFIX>.<property -
name> can be
specified.
Note: ”library”,
”create function”,
”aliases” and
”network address”
cannot be used as the
<property name> due
to conflicts with other
builtin property names.

NO

Table 6.5: Properties for dynamically loading and registering transport plugins

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

216 Module Documentation

6.97 Built-in Transport Plugins

Transport plugins delivered with RTI Connext.

Classes

ˆ interface ShmemTransport

Built-in transport (p. 367) plug-in for inter-process communications using
shared memory.

ˆ interface UDPv4Transport

Built-in transport (p. 367) plug-in using UDP/IPv4.

ˆ interface UDPv6Transport

Built-in transport (p. 367) plug-in using UDP/IPv6.

6.97.1 Detailed Description

Transport plugins delivered with RTI Connext.

The TRANSPORT BUILTIN (p. 115) specifies the collection of transport
plugins that can be automatically configured and managed by RTI Connext as
a convenience to the user.

These transport plugins can simply be turned ”on” or ”off” by a specify-
ing a bitmask in com.rti.dds.infrastructure.TransportBuiltinQosPolicy
(p. 1580), thus bypassing the steps for setting up a transport plugin. RTI Con-
next preconfigures the transport plugin properties, the network address, and
the aliases to ”factory defined” values.

If a builtin transport plugin is turned ”on” in
com.rti.dds.infrastructure.TransportBuiltinQosPolicy (p. 1580),
the plugin is implicitly created and registered to the corresponding
com.rti.dds.domain.DomainParticipant (p. 629) by RTI Connext when:

ˆ the com.rti.dds.domain.DomainParticipant (p. 629) is enabled,

ˆ the first DataWriter/DataReader is created, or

ˆ you lookup a builtin DataReader (com.rti.dds.subscription.Subscriber.lookup -
datareader (p. 1490)),

whichever happens first.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.97 Built-in Transport Plugins 217

Each builtin transport contains its own set of properties. For example, the
UDPv4Transport allows the application to specify whether or not multicast is
supported, the maximum size of the message, and provides a mechanism for the
application to filter out network interfaces.

The builtin transport plugin properties can be changed by the
method TransportSupport.set builtin transport property() or by us-
ing the PROPERTY (p. 88) QoS policy associated with the
com.rti.dds.domain.DomainParticipant (p. 629). Builtin transport plugin
properties specified in com.rti.dds.infrastructure.PropertyQosPolicy
(p. 1252) always overwrite the ones specified through TransportSupport.set -
builtin transport property(). Refer to the specific builtin transport for the list
of property names that can be specified through PROPERTY (p. 88) QoS
policy.

Any changes to the builtin transport properties after the builtin transports have
been registered with will have no effect.

See also:

TransportSupport.set builtin transport property()
com.rti.dds.infrastructure.PropertyQosPolicy (p. 1252)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

218 Module Documentation

6.98 Configuration Utilities

Utility API’s independent of the DDS standard.

Classes

ˆ class LibraryVersion t

The version of a single library shipped as part of an RTI Connext distribution.

ˆ class LogCategory

Categories of logged messages.

ˆ class Logger

<<interface>> (p. 271) The singleton type used to configure RTI Connext
logging.

ˆ class LogPrintFormat

The format used to output RTI Connext diagnostic information.

ˆ class LogVerbosity

The verbosities at which RTI Connext diagnostic information is logged.

ˆ class Version

<<interface>> (p. 271) The version of an RTI Connext distribution.

6.98.1 Detailed Description

Utility API’s independent of the DDS standard.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.99 Durability and Persistence 219

6.99 Durability and Persistence

APIs related to RTI Connext Durability and Persistence. RTI Connext offers
the following mechanisms for achieving durability and persistence:

ˆ Durable Writer History (p. 219)

ˆ Durable Reader State (p. 219)

ˆ Data Durability (p. 220)

To use any of these features, you need a relational database, which is not in-
cluded with RTI Connext. Supported databases are listed in the Release Notes.

These three features can be used separately or in combination.

6.99.1 Durable Writer History

This feature allows a com.rti.dds.publication.DataWriter (p. 538) to
locally persist its local history cache so that it can survive shut-
downs, crashes and restarts. When an application restarts, each
com.rti.dds.publication.DataWriter (p. 538) that has been configured to
have durable writer history automatically loads all the data in its his-
tory cache from disk and can carry on sending data as if it had never
stopped executing. To the rest of the system, it will appear as if the
com.rti.dds.publication.DataWriter (p. 538) had been temporarily discon-
nected from the network and then reappeared.

See also:

Configuring Durable Writer History (p. 221)

6.99.2 Durable Reader State

This feature allows a com.rti.dds.subscription.DataReader (p. 473) to
locally persists its state and remember the data it has already received.
When an application restarts, each com.rti.dds.subscription.DataReader
(p. 473) that has been configured to have durable reader state automati-
cally loads its state from disk and can carry on receiving data as if it
had never stopped executing. Data that had already been received by the
com.rti.dds.subscription.DataReader (p. 473) before the restart will be
suppressed so it is not sent over the network.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

220 Module Documentation

6.99.3 Data Durability

This feature is a full implementation of the OMG DDS Persistence Pro-
file. The DURABILITY (p. 65) QoS lets an application configure a
com.rti.dds.publication.DataWriter (p. 538) such that the information
written by the com.rti.dds.publication.DataWriter (p. 538) survives be-
yond the lifetime of the com.rti.dds.publication.DataWriter (p. 538).
In this manner, a late-joining com.rti.dds.subscription.DataReader
(p. 473) can subscribe and receive the information even after the
com.rti.dds.publication.DataWriter (p. 538) application is no longer exe-
cuting. To use this feature, you need RTI Persistence Service – an optional
product that can be purchased separately.

6.99.4 Durability and Persistence Based on Virtual GUID

Every modification to the global dataspace made by a
com.rti.dds.publication.DataWriter (p. 538) is identified by a pair
(virtual GUID, sequence number).

ˆ The virtual GUID (Global Unique Identifier) is a 16-byte character identi-
fier associated with a com.rti.dds.publication.DataWriter (p. 538) or
com.rti.dds.subscription.DataReader (p. 473); it is used to uniquely
identify this entity in the global data space.

ˆ The sequence number is a 64-bit identifier that identifies changes published
by a specific com.rti.dds.publication.DataWriter (p. 538).

Several com.rti.dds.publication.DataWriter (p. 538) entities
can be configured with the same virtual GUID. If each of these
com.rti.dds.publication.DataWriter (p. 538) entities publishes a sam-
ple with sequence number ’0’, the sample will only be received once by the
com.rti.dds.subscription.DataReader (p. 473) entities subscribing to the
content published by the com.rti.dds.publication.DataWriter (p. 538)
entities.

RTI Connext also uses the virtual GUID (Global Unique Identifier) to associate
a persisted state (state in permanent storage) to the corresponding DDS entity.

For example, the history of a com.rti.dds.publication.DataWriter (p. 538)
will be persisted in a database table with a name generated from the vir-
tual GUID of the com.rti.dds.publication.DataWriter (p. 538). If the
com.rti.dds.publication.DataWriter (p. 538) is restarted, it must have as-
sociated the same virtual GUID to restore its previous history.

Likewise, the state of a com.rti.dds.subscription.DataReader (p. 473)
will be persisted in a database table whose name is generated from the
com.rti.dds.subscription.DataReader (p. 473) virtual GUID

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.99 Durability and Persistence 221

A com.rti.dds.publication.DataWriter (p. 538)’s virtual GUID can be con-
figured using com.rti.dds.infrastructure.DataWriterProtocolQosPolicy.virtual -
guid (p. 572). Similarly, a com.rti.dds.subscription.DataReader
(p. 473)’s virtual GUID can be configured using
com.rti.dds.infrastructure.DataReaderProtocolQosPolicy.virtual -
guid (p. 505).

The builtin.PublicationBuiltinTopicData and builtin.SubscriptionBuiltinTopicData
structures include the virtual GUID associated with the discovered publication
or subscription.

Refer to the User’s Manual for additional use cases.

See also:

com.rti.dds.infrastructure.DataWriterProtocolQosPolicy.virtual -
guid (p. 572) com.rti.dds.infrastructure.DataReaderProtocolQosPolicy.virtual -
guid (p. 505).

6.99.5 Configuring Durable Writer History

To configure a com.rti.dds.publication.DataWriter (p. 538) to have
durable writer history, use the PROPERTY (p. 88) QoS policy as-
sociated with the com.rti.dds.publication.DataWriter (p. 538) or the
com.rti.dds.domain.DomainParticipant (p. 629).

Properties defined for the com.rti.dds.domain.DomainParticipant (p. 629)
will be applied to all the com.rti.dds.publication.DataWriter (p. 538) ob-
jects belonging to the com.rti.dds.domain.DomainParticipant (p. 629), un-
less the property is overwritten by the com.rti.dds.publication.DataWriter
(p. 538).

See also:

com.rti.dds.infrastructure.PropertyQosPolicy (p. 1252)

The following table lists the supported durable writer history properties.

6.99.6 Configuring Durable Reader State

To configure a com.rti.dds.subscription.DataReader (p. 473) with
durable reader state, use the PROPERTY (p. 88) QoS policy as-
sociated with the com.rti.dds.subscription.DataReader (p. 473) or
com.rti.dds.domain.DomainParticipant (p. 629).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

222 Module Documentation

A property defined in the com.rti.dds.domain.DomainParticipant (p. 629)
will be applicable to all the com.rti.dds.subscription.DataReader (p. 473)
belonging to the com.rti.dds.domain.DomainParticipant (p. 629) unless it
is overwritten by the com.rti.dds.subscription.DataReader (p. 473).

See also:

com.rti.dds.infrastructure.PropertyQosPolicy (p. 1252)

The following table lists the supported durable reader state properties.

6.99.7 Configuring Data Durability

RTI Connext implements DurabilityQosPolicyKind.TRANSIENT -
DURABILITY QOS and DurabilityQosPolicyKind.PERSISTENT -
DURABILITY QOS durability using RTI Persistence Service, available
for purchase as a separate RTI product.

For more information on RTI Persistence Service, refer to the User’s Manual,
or the RTI Persistence Service online documentation.

See also:

DURABILITY (p. 65)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.99 Durability and Persistence 223

Property Description
dds.data writer.history.plugin name Must be set to ”dds.data -

writer.history.odbc plugin.builtin”
to enable durable writer history in
the DataWriter. This property is
required.

dds.data writer.history.odbc -
plugin.dsn

The ODBC DSN (Data Source
Name) associated with the database
where the writer history must be
persisted. This property is required.

dds.data writer.history.odbc -
plugin.driver

This property tells RTI Connext
which ODBC driver to load. If the
property is not specified, RTI
Connext will try to use the standard
ODBC driver manager library:
UnixOdbc (odbc32.dll) on
UNIX/Linux systems; the Windows
ODBC driver manager (libodbc.so)
on Windows systems).

dds.data writer.history.odbc -
plugin.username

Configures the username used to
connect to the database. This
property is not used if it is
unspecified. There is no default
value.

dds.data writer.history.odbc -
plugin.password

Configures the password used to
connect to the database. This
property is not used if it is
unspecified. There is no default
value.

dds.data writer.history.odbc -
plugin.shared

If set to 1, RTI Connext creates a
single connection per DSN that will
be shared across DataWriters within
the same Publisher.
If set to 0 (the default), a
com.rti.dds.publication.DataWriter
(p. 538) will create its own database
connection.
Default: 0 (false)

dds.data writer.history.odbc -
plugin.instance cache max size

These properties configure the
resource limits associated with the
ODBC writer history caches. To
minimize the number of accesses to
the database, RTI Connext uses two
caches, one for samples and one for
instances. The initial and maximum
sizes of these caches are configured
using these properties. The resource
limits initial instances,
max instances, initial samples,
max samples and
max samples per instance in the
com.rti.dds.infrastructure.ResourceLimitsQosPolicy
(p. 1356) are used to configure the
maximum number of samples and
instances that can be stored in the
relational database. Default:
com.rti.dds.infrastructure.ResourceLimitsQosPolicy.max -
instances
(p. 1360)

dds.data writer.history.odbc -
plugin.instance cache init size

See description above. Default:
com.rti.dds.infrastructure.ResourceLimitsQosPolicy.initial -
instances
(p. 1360)

dds.data writer.history.odbc -
plugin.sample cache max size

See description above. Default: 32
(the minimum)

dds.data writer.history.odbc -
plugin.sample cache init size

See description above. Default: 32

dds.data writer.history.odbc -
plugin.restore

This property indicates whether or
not the persisted writer history
must be restored once the
com.rti.dds.publication.DataWriter
(p. 538) is restarted. If the value is
0, the content of the database
associated with the
com.rti.dds.publication.DataWriter
(p. 538) being restarted will be
deleted. If the value is 1, the
com.rti.dds.publication.DataWriter
(p. 538) will restore its previous
state from the database content.
Default: 1

dds.data writer.history.odbc -
plugin.in memory state

This property determines how much
state will be kept in memory by the
ODBC writer history in order to
avoid accessing the database.
When in memory state is equal to
1, instance cache max size is always
equal to
com.rti.dds.infrastructure.ResourceLimitsQosPolicy.max -
instances (p. 1360) (it cannot be
changed). In addition, the ODBC
writer history will keep in memory a
fixed state overhead of 24 bytes per
sample. In this operating mode, the
ODBC writer history provides the
best performance. However, the
restore operation will be slower and
the maximum number of samples
that the writer history can manage
will be limited by the available
physical memory.
If in memory state is equal to 0, all
the state will be kept in the
underlying database. In this
operating mode, the maximum
number of samples in the writer
history will not be limited by the
physical memory available unless
the underlying database is an
in-memory database (TimesTen).
Default: 1

Table 6.6: Durable Writer History Properties

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

224 Module Documentation

Property Description
dds.data reader.state.odbc.dsn The ODBC DSN (Data Source

Name) as-
sociated with the database where the
com.rti.dds.subscription.DataReader
(p. 473) state must be persisted.
This property is required.

dds.data reader.state.filter -
redundant samples

To enable durable reader state, this
property must be set to 1.
Otherwise, the reader state will not
be kept and/or persisted. When the
reader state is not maintained, RTI
Connext does not filter duplicate
samples that may be coming from
the same virtual writer. By default,
this property is set to 1.

dds.data reader.state.odbc.driver This property is used to indicate
which ODBC driver to load. If the
property is not specified, RTI
Connext will try to use the standard
ODBC driver manager library:
UnixOdbc (odbc32.dll) on
UNIX/Linux systems; the Windows
ODBC driver manager (libodbc.so)
on Windows systems).

dds.data -
reader.state.odbc.username

This property configures the
username used to connect to the
database. This property is not used
if it is unspecified. There is no
default value.

dds.data reader.state.odbc.password This property configures the
password used to connect to the
database. This property is not used
if it is unspecified. There is no
default value.

dds.data reader.state.restore This property indicates if the
persisted
com.rti.dds.subscription.DataReader
(p. 473) state must be restored or
not once the
com.rti.dds.subscription.DataReader
(p. 473) is restarted. If this property
is 0, the previous state will be
deleted from the database. If it is 1,
the
com.rti.dds.subscription.DataReader
(p. 473) will restore its previous
state from the database content.
Default: 1

dds.data reader.state.checkpoint -
frequency

This property controls how often
the reader state is stored in the
database. A value of N means to
store the state once every N
samples.
A high frequency will provide better
performance. However, if the reader
is restarted it may receive some
duplicate samples. These samples
will be filtered by the middleware
and they will not be propagated to
the application.
Default: 1

dds.data reader.state.persistence -
service.request depth

This property indicates the number
of most recent historical samples
that the persisted
com.rti.dds.subscription.DataReader
(p. 473) wants to receive when it
starts up.
Default: 0

Table 6.7: Durable Reader State Properties

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.100 Configuring QoS Profiles with XML 225

6.100 Configuring QoS Profiles with XML

APIs related to XML QoS Profiles.

6.100.1 Loading QoS Profiles from XML Resources

A ’QoS profile’ is a group of QoS settings, specified in XML format. By using
QoS profiles, you can change QoS settings without recompiling the application.

The Qos profiles are loaded when the following operations are called:

ˆ com.rti.dds.domain.DomainParticipantFactory.create -
participant (p. 714)

ˆ com.rti.dds.domain.DomainParticipantFactory.create -
participant with profile (p. 730)

ˆ com.rti.dds.domain.DomainParticipantFactory.set default -
participant qos with profile (p. 717)

ˆ com.rti.dds.domain.DomainParticipantFactory.get default -
participant qos (p. 716)

ˆ com.rti.dds.domain.DomainParticipantFactory.set default -
library (p. 721)

ˆ com.rti.dds.domain.DomainParticipantFactory.set default -
profile (p. 722)

ˆ com.rti.dds.domain.DomainParticipantFactory.get participant -
qos from profile (p. 723)

ˆ com.rti.dds.domain.DomainParticipantFactory.get topic qos -
from profile (p. 728)

ˆ com.rti.dds.domain.DomainParticipantFactory.get topic qos -
from profile w topic name (p. 728)

ˆ com.rti.dds.domain.DomainParticipantFactory.get publisher -
qos from profile (p. 724)

ˆ com.rti.dds.domain.DomainParticipantFactory.get subscriber -
qos from profile (p. 724)

ˆ com.rti.dds.domain.DomainParticipantFactory.get datawriter -
qos from profile (p. 725)

ˆ com.rti.dds.domain.DomainParticipantFactory.get datawriter -
qos from profile w topic name (p. 726)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

226 Module Documentation

ˆ com.rti.dds.domain.DomainParticipantFactory.get datareader -
qos from profile (p. 726)

ˆ com.rti.dds.domain.DomainParticipantFactory.get datareader -
qos from profile w topic name (p. 727)

ˆ com.rti.dds.domain.DomainParticipantFactory.get qos profile -
libraries (p. 729)

ˆ com.rti.dds.domain.DomainParticipantFactory.get qos profiles
(p. 729)

ˆ com.rti.dds.domain.DomainParticipantFactory.load profiles
(p. 720)

The QoS profiles are reloaded replacing previously loaded profiles when the
following operations are called:

ˆ com.rti.dds.domain.DomainParticipantFactory.set qos (p. 719)

ˆ com.rti.dds.domain.DomainParticipantFactory.reload profiles
(p. 720)

The com.rti.dds.domain.DomainParticipantFactory.unload profiles()
(p. 720) operation will free the resources associated with the XML QoS pro-
files.

There are five ways to configure the XML resources (listed by load order):

ˆ The file NDDS QOS PROFILES.xml in $NDDSHOME/resource/qos -
profiles 4.5f/xml is loaded if it exists and
com.rti.dds.infrastructure.ProfileQosPolicy.ignore resource -
profile (p. 1249) in com.rti.dds.infrastructure.ProfileQosPolicy
(p. 1247) is set to false (first to be loaded). An example file, NDDS QOS -
PROFILES.example.xml, is available for reference.

ˆ The URL groups separated by semicolons referenced by the en-
viroment variable NDDS QOS PROFILES are loaded if they ex-
ist and com.rti.dds.infrastructure.ProfileQosPolicy.ignore -
environment profile (p. 1248) in com.rti.dds.infrastructure.ProfileQosPolicy
(p. 1247) is set to false.

ˆ The file USER QOS PROFILES.xml in the work-
ing directory will be loaded if it exists and
com.rti.dds.infrastructure.ProfileQosPolicy.ignore user profile
(p. 1248) in com.rti.dds.infrastructure.ProfileQosPolicy (p. 1247) is
set to false.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.100 Configuring QoS Profiles with XML 227

ˆ The URL groups referenced by com.rti.dds.infrastructure.ProfileQosPolicy.url -
profile (p. 1248) in com.rti.dds.infrastructure.ProfileQosPolicy
(p. 1247) will be loaded if specified.

ˆ The sequence of XML strings referenced by
com.rti.dds.infrastructure.ProfileQosPolicy.string profile
(p. 1248) will be loaded if specified (last to be loaded).

The above methods can be combined together.

6.100.2 URL

The location of the XML resources (only files and strings are supported) is
specified using a URL (Uniform Resource Locator) format. For example:

File Specification: file:///usr/local/default dds.xml

String Specification: str://”<dds><qos library> . . . lt;/qos -
library></dds>”

If the URL schema name is omitted, RTI Connext will assume a file name. For
example:

File Specification: /usr/local/default dds.xml

6.100.2.1 URL groups

To provide redundancy and fault tolerance, you can specify multiple locations
for a single XML document via URL groups. The syntax of a URL group is as
follows:

[URL1 | URL2 | URL2 | . . .| URLn]

For example:

[file:///usr/local/default dds.xml | file:///usr/local/alternative -
default dds.xml]

Only one of the elements in the group will be loaded by RTI Connext, starting
from the left.

Brackets are not required for groups with a single URL.

6.100.2.2 NDDS QOS PROFILES environment variable

The environment variable NDDS QOS PROFILES contains a list of URL
groups separated by ’;’

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

228 Module Documentation

The URL groups referenced by the enviroment variable are loaded if they exist
and com.rti.dds.infrastructure.ProfileQosPolicy.ignore environment -
profile (p. 1248) is set to false

For more information on XML Configuration, refer to the User’s Manual.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.101 Publication Example 229

6.101 Publication Example

A data publication example.

6.101.1 A typical publication example

Prep

ˆ Create user data types using rtiddsgen (p. 290)

Set up

ˆ Get the factory (p. 231)

ˆ Set up participant (p. 231)

ˆ Set up publisher (p. 239)

ˆ Register user data type(s) (p. 233)

ˆ Set up topic(s) (p. 233)

ˆ Set up data writer(s) (p. 240)

Adjust the desired quality of service (QoS)

ˆ Adjust QoS on entities as necessary (p. 249)

Send data

ˆ Send data (p. 241)

Tear down

ˆ Tear down data writer(s) (p. 241)

ˆ Tear down topic(s) (p. 233)

ˆ Tear down publisher (p. 239)

ˆ Tear down participant (p. 232)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

230 Module Documentation

6.102 Subscription Example

A data subscription example.

6.102.1 A typical subscription example

Prep

ˆ Create user data types using rtiddsgen (p. 290)

Set up

ˆ Get the factory (p. 231)

ˆ Set up participant (p. 231)

ˆ Set up subscriber (p. 242)

ˆ Register user data type(s) (p. 233)

ˆ Set up topic(s) (p. 233)

ˆ Set up data reader(s) (p. 245)

ˆ Set up data reader (p. 246) OR Set up subscriber (p. 242) to receive
data

Adjust the desired quality of service (QoS)

ˆ Adjust QoS on entities as necessary (p. 249)

Receive data

ˆ Access received data either via a reader (p. 246) OR via a subscriber
(p. 243) (possibly in a ordered or coherent (p. 244) manner)

Tear down

ˆ Tear down data reader(s) (p. 248)

ˆ Tear down topic(s) (p. 233)

ˆ Tear down subscriber (p. 244)

ˆ Tear down participant (p. 232)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.103 Participant Use Cases 231

6.103 Participant Use Cases

Working with domain partcipants. Working with domain participants.

6.103.1 Turning off auto-enable of newly created partici-
pant(s)

ˆ Get the factory (p. 231)

ˆ Change the value of the ENTITY FACTORY (p. 69) for the
com.rti.dds.domain.DomainParticipantFactory (p. 708)

DomainParticipantFactoryQos factory_qos = new DomainParticipantFactoryQos();

try {

factory.get_qos(factory_qos);

/* Change the QosPolicy to create disabled participants */

factory_qos.entity_factory.autoenable_created_entities = false;

factory.set_qos(factory_qos);

} catch (RETCODE_ERROR err) {

System.out.println(

"***Error: changing domain participant factory qos\n");

}

6.103.2 Getting the factory

ˆ Get the DDSDomainParticipantFactory instance:

DomainParticipantFactory factory = null;

factory = DomainParticipantFactory.get_instance();

6.103.3 Setting up a participant

ˆ Get the factory (p. 231)

ˆ Create DDSDomainParticipant:

int domain_id = 10;

DomainParticipantQos participant_qos = new DomainParticipantQos();

// initialize participant_qos with default values

factory.get_default_participant_qos(participant_qos);

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

232 Module Documentation

/* Set the peer hosts. These list all the computers the application

may communicate with along with the maximum maximum participant

index of the participants that can concurrently run on that

computer. This list only needs to be a superset of the actual list

of computers and participants that will be running at any time.

*/

/* To run this example across multiple nodes, modify the following

IP addresses to match your network configuration.

*/

final String[] NDDS_DISCOVERY_INITIAL_PEERS = {

"1@udpv4://10.10.1.192",

"1@udpv4://10.10.1.190",

"1@udpv4://10.10.1.152"

};

participant_qos.discovery.initial_peers.

ensureCapacity(NDDS_DISCOVERY_INITIAL_PEERS.length);

for (int i = 0; i < NDDS_DISCOVERY_INITIAL_PEERS.length; ++i) {

participant_qos.discovery.initial_peers.add(

NDDS_DISCOVERY_INITIAL_PEERS[i]);

}

// Initialize listener if desired

DomainParticipantListener participant_listener = null;

// Create the participant

DomainParticipant participant = null;

try {

participant = factory.create_participant(

domain_id, participant_qos,

participant_listener, StatusKind.STATUS_MASK_NONE);

} catch (RETCODE_ERROR err) {

// participant couldn’t be created

}

6.103.4 Tearing down a participant

ˆ Get the factory (p. 231)

ˆ Delete DDSDomainParticipant:

try {

factory.delete_participant(participant);

} catch (RETCODE_ERROR err) {

// unable to delete

}

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.104 Topic Use Cases 233

6.104 Topic Use Cases

Working with topics.

6.104.1 Registering a user data type

ˆ Set up participant (p. 231)

ˆ Register user data type of type Foo under the name ”My Type”

String type_name = "My_Type";

FooTypeSupport.register_type(participant, type_name);

6.104.2 Setting up a topic

ˆ Set up participant (p. 231)

ˆ Ensure user data type is registered (p. 233)

ˆ Create a com.rti.dds.topic.Topic (p. 1545) under the name ”my topic”

String topic_name = "my_topic";

String type_type = "My_Type"; // user data type

TopicQos topic_qos = new TopicQos();

// MyTopicListener is user defined and

// implements TopicListener

TopicListener topic_listener = new MyTopicListener(); // or = null

participant.get_default_topic_qos(topic_qos);

Topic topic = null;

try {

topic = participant.create_topic(topic_name, type_name,

topic_qos, topic_listener,

StatusKind.STATUS_MASK_ALL);

} catch (RETCODE_ERROR err) {

// handle exception

}

6.104.3 Tearing down a topic

ˆ Delete Topic:

try {

participant.delete_topic(topic);

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

234 Module Documentation

} catch (RETCODE_ERROR err) {

// handle exception

}

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.105 FlowController Use Cases 235

6.105 FlowController Use Cases

Working with flow controllers.

6.105.1 Creating a flow controller

ˆ Set up participant (p. 231)

ˆ Create a flow controller

FlowController controller = null;

FlowControllerProperty_t property = new FlowControllerProperty_t();

retcode = participant.get_default_flowcontroller_property(property);

// optionally modify flow controller property values

try {

controller = participant.create_flowcontroller(

"my flow controller name", property);

} catch (RETCODE_ERROR err) {

// handle exception

}

6.105.2 Flow controlling a data writer

ˆ Set up participant (p. 231)

ˆ Create flow controller (p. 235)

ˆ Create an asynchronous data writer, FooDataWriter, of user data type
Foo:

DataWriterQos writer_qos = new DataWriterQos();

// MyWriterListener is user defined and

// implements DataWriterListener

MyWriterListener writer_listener = new MyWriterListener(); // or = null

publisher.get_default_datawriter_qos(writer_qos);

/* Change the writer QoS to publish asnychronously */

writer_qos.publish_mode.kind = PublishModeQosPolicyKind.ASYNCHRONOUS_PUBLISH_MODE_QOS;

/* Setup to use the previously created flow controller */

writer_qos.publish_mode.flow_controller_name = "my flow controller name";

/* Samples queued for asynchronous write are subject to the History Qos policy */

writer_qos.history.kind = HistoryQosPolicyKind.KEEP_ALL_HISTORY_QOS;

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

236 Module Documentation

FooDataWriter writer = null;

try {

writer = (FooDataWriter) publisher.create_datawriter(topic, writer_qos,

writer_listener,

StatusKind.STATUS_MASK_ALL);

/* Send data asynchronously... */

/* Wait for asynchronous send completes, if desired */

writer.wait_for_asynchronous_publishing(timout);

} catch (RETCODE_ERROR err) {

// handle exception

}

6.105.3 Using the built-in flow controllers

RTI Connext provides several built-in flow controllers.

The FlowController.DEFAULT FLOW CONTROLLER NAME built-in
flow controller provides the basic asynchronous writer behavior. When
calling com.rti.dds.topic.example.FooDataWriter.write, the call signals
the com.rti.dds.publication.Publisher (p. 1277) asynchronous publish-
ing thread (com.rti.dds.publication.PublisherQos.asynchronous -
publisher (p. 1304)) to send the actual data. As with
any PublishModeQosPolicyKind.ASYNCHRONOUS PUBLISH -
MODE QOS com.rti.dds.publication.DataWriter (p. 538), the
com.rti.dds.topic.example.FooDataWriter.write call returns immedi-
ately afterwards. The data is sent immediately in the context of the
com.rti.dds.publication.Publisher (p. 1277) asynchronous publishing
thread.

When using the FlowController.FIXED RATE FLOW CONTROLLER -
NAME flow controller, data is also sent in the context of the
com.rti.dds.publication.Publisher (p. 1277) asynchronous publish-
ing thread, but at a regular fixed interval. The thread accumu-
lates samples from different com.rti.dds.publication.DataWriter
(p. 538) instances and generates data on the wire only once per
com.rti.dds.publication.FlowControllerTokenBucketProperty -
t.period (p. 953).

In contrast, the FlowController.ON DEMAND FLOW -
CONTROLLER NAME flow controller permits flow only when
com.rti.dds.publication.FlowController.trigger flow (p. 945) is called.
The data is still sent in the context of the com.rti.dds.publication.Publisher
(p. 1277) asynchronous publishing thread. The thread accumulates samples
from different com.rti.dds.publication.DataWriter (p. 538) instances

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.105 FlowController Use Cases 237

(across any com.rti.dds.publication.Publisher (p. 1277)) and sends all data
since the previous trigger.

The properties of the built-in com.rti.dds.publication.FlowController
(p. 942) instances can be adjusted.

ˆ Set up participant (p. 231)

ˆ Lookup built-in flow controller

FlowController controller = null;

try {

controller = participant.lookup_flowcontroller(

FlowController.DEFAULT_FLOW_CONTROLLER_NAME);

} catch (RETCODE_ERROR err) {

// This should never happen, built-in flow controllers are always created

// handle exception

}

ˆ Change property of built-in flow controller, if desired

FlowControllerProperty_t property = new FlowControllerProperty_t();

/* Get the property of the looked-up default flow controller */

controller.get_property(property);

/* Change the property value as desired */

property.token_bucket.period.sec = 2;

property.token_bucket.period.nanosec = 0;

/* Update the flow controller property */

controller.set_property(property);

ˆ Create a data writer using the correct flow controller name
(p. 235)

6.105.4 Shaping the network traffic for a particular trans-
port

ˆ Set up participant (p. 231)

ˆ Create the transports (p. 255)

ˆ Create a separate flow controller for each transport (p. 235)

ˆ Configure com.rti.dds.publication.DataWriter (p. 538) instances to
only use a single transport

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

238 Module Documentation

ˆ Associate all data writers using the same transport to the cor-
responding flow controller (p. 235)

ˆ For each transport, the corresponding flow controller limits the network
traffic based on the token bucket properties

6.105.5 Coalescing multiple samples in a single network
packet

ˆ Set up participant (p. 231)

ˆ Create a flow controller with a desired token bucket period
(p. 235)

ˆ Associate the data writer with the flow controller (p. 235)

ˆ Multiple samples written within the specified period will be coalesced
into a single network packet (provided that tokens added per period
and bytes per token permit).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.106 Publisher Use Cases 239

6.106 Publisher Use Cases

Working with publishers.

6.106.1 Setting up a publisher

ˆ Set up participant (p. 231)

ˆ Create a DDSPublisher

PublisherQos publisher_qos = new PublisherQos();

// MyPublisherListener is user defined and

// extends DDSPublisherListener

PublisherListener publisher_listener

= new MyPublisherListener(); // or = null

participant.get_default_publisher_qos(publisher_qos);

Publisher publisher = null;

try {

publisher = participant.create_publisher(publisher_qos,

publisher_listener,

StatusKind.STATUS_MASK_ALL);

} catch (RETCODE_ERROR err) {

// respond to exception

}

6.106.2 Tearing down a publisher

ˆ Delete DDSPublisher:

try {

participant.delete_publisher(publisher);

} catch (RETCODE_ERROR err) {

// respond to exception

}

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

240 Module Documentation

6.107 DataWriter Use Cases

Working with data writers.

6.107.1 Setting up a data writer

ˆ Set up publisher (p. 239)

ˆ Set up a topic (p. 233)

ˆ Create a data writer, FooDataWriter, of user data type Foo:

DataWriterQos writer_qos = new DataWriterQos();

// MyWriterListener is user defined and

// implements DataWriterListener

MyWriterListener writer_listener = new MyWriterListener(); // or = null

publisher.get_default_datawriter_qos(writer_qos);

FooDataWriter writer = null;

try {

writer = (FooDataWriter) publisher.create_datawriter(topic, writer_qos,

writer_listener,

StatusKind.STATUS_MASK_ALL);

} catch (RETCODE_ERROR err) {

// handle exception

}

6.107.2 Managing instances

ˆ Getting an instance ”key” value of user data type Foo

Foo data = ...; // user data

try {

writer.get_key_value(data, instance_handle);

} catch (RETCODE_ERROR err) {

// ... check for cause of failure

}

ˆ Registering an instance of type Foo

InstanceHandle_t instance_handle = InstanceHandle_t.HANDLE_NIL;

instance_handle = writer->register_instance(data);

ˆ Unregistering an instance of type Foo

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.107 DataWriter Use Cases 241

try {

writer.unregister_instance(data, instance_handle);

} catch (RETCODE_ERROR err) {

// ... check for cause of failure

}

ˆ Disposing of an instance of type Foo

try {

writer.dispose(data, instance_handle);

} catch (RETCODE_ERROR err) {

// ... check for cause of failure

}

6.107.3 Sending data

ˆ Set up data writer (p. 240)

ˆ Register instance (p. 240)

ˆ Write instance of type Foo

Foo data = new Foo(); // user data

InstanceHandle_t instance_handle

= InstanceHandle_t.HANDLE_NIL; // or a valid registered handle

try {

writer.write(data, instance_handle);

} catch (RETCODE_ERR err) {

// ... check for cause of failure

}

6.107.4 Tearing down a data writer

ˆ Delete DataWriter:

try {

publisher.delete_datawriter(writer);

} catch (RETCODE_ERR err) {

// ... check for cause of failure

}

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

242 Module Documentation

6.108 Subscriber Use Cases

Working with subscribers.

6.108.1 Setting up a subscriber

ˆ Set up participant (p. 231)

ˆ Create a Subscriber

SubscriberQos subscriber_qos = new SubscriberQos();

// MySubscriberListener is user defined and

// implements SubscriberListener

SubscriberListener subscriber_listener

= new MySubscriberListener(); // or = null

participant.get_default_subscriber_qos(subscriber_qos);

Subscriber subscriber = null;

try {

subscriber = participant.create_subscriber(subscriber_qos,

subscriber_listener,

StatusKind.STATUS_MASK_ALL);

} catch (RETCODE_ERROR err) {

// respond to exception

}

6.108.2 Set up subscriber to access received data

ˆ Set up subscriber (p. 242)

ˆ Set up to handle the DATA ON READERS STATUS status, in one or
both of the following two ways.

ˆ Enable DATA ON READERS STATUS for the SubscriberLis-
tener associated with the subscriber (p. 250)

– The processing to handle the status change is done in the
com.rti.dds.subscription.SubscriberListener.on data on -
readers (p. 1505) method of the attached listener.

– Typical processing will access the received data (p. 243), either in
arbitrary order or in a coherent and ordered manner (p. 244).

ˆ Enable DATA ON READERS STATUS for the StatusCondition
associated with the subscriber (p. 251)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.108 Subscriber Use Cases 243

– The processing to handle the status change is done when the sub-
scriber’s attached status condition is triggered (p. 253) and the
DATA ON READERS STATUS status on the subscriber is changed.

– Typical processing will access the received data (p. 243), either in
an arbitrary order or in a coherent and ordered manner (p. 244).

6.108.3 Access received data via a subscriber

ˆ Ensure subscriber is set up to access received data (p. 242)

ˆ Get the list of readers that have data samples available:

DataReaderSeq reader_seq = new DataReaderSeq(); // list of readers

int max_samples = DataReader.LENGTH_UNLIMITED;

int sample_state_mask = SampleStateKind.NOT_READ_SAMPLE_STATE;

int view_state_mask = ViewStateKind.ANY_VIEW_STATE;

int instance_state_mask = InstanceStateKind.ANY_INSTANCE_STATE;

try {

subscriber.get_datareaders(reader_seq,

sample_state_mask,

view_state_mask,

instance_state_mask);

} catch (RETCODE_ERROR err) {

// handle exception

}

ˆ Upon successfully getting the list of readers with data, process the data
readers to either:

– Read the data in each reader (p. 247), OR

– Take the data in each reader (p. 246)

If the intent is to access the data coherently or in order (p. 244), the
list of data readers must be processed in the order returned:

for (int i = 0; i < reader_seq.size(); ++i) {

FooDataReader reader = (FooDataReader) reader_seq.get(i);

// Take the data from reader,

// OR

// Read the data from reader

}

ˆ Alternatively, call com.rti.dds.subscription.Subscriber.notify -
datareaders (p. 1493) to invoke the DataReaderListener for each of the
data readers.

subscriber.notify_datareaders();

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

244 Module Documentation

6.108.4 Access received data coherently and/or in order

To access the received data coherently and/or in an ordered manner, according
to the settings of the com.rti.dds.infrastructure.PresentationQosPolicy
(p. 1237) attached to a com.rti.dds.subscription.Subscriber (p. 1478):

ˆ Ensure subscriber is set up to access received data (p. 242)

ˆ Indicate that data will be accessed via the subscriber:

subscriber.begin_access();

ˆ Access received data via the subscriber, making sure that the
data readers are processed in the order returned. (p. 243)

ˆ Indicate that the data access via the subscriber is done:

subscriber.end_access();

6.108.5 Tearing down a subscriber

ˆ Delete Subscriber:

try {

participant.delete_subscriber(subscriber);

} catch (RETCODE_ERROR err) {

// handle exception

}

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.109 DataReader Use Cases 245

6.109 DataReader Use Cases

Working with data readers.

6.109.1 Setting up a data reader

ˆ Set up subscriber (p. 242)

ˆ Set up a topic (p. 233)

ˆ Create a data reader, FooDataReader, of user data type Foo:

DataReaderQos reader_qos = new DataReaderQos();

// MyReaderListener is user defined and

// implements DataReaderListener

DataReaderListener reader_listener

= new MyReaderListener(); // or = null

subscriber.get_default_datareader_qos(reader_qos);

FooDataReader reader = null;

try {

reader = (FooDataReader) subscriber.create_datareader(topic,

reader_qos,

reader_listener,

StatusKind.STATUS_MASK_ALL);

} catch (RETCODE_ERROR err) {

// respond to exception

}

6.109.2 Managing instances

ˆ Given a data reader

FooDataReader reader = ...;

ˆ Getting an instance ”key” value of user data type Foo

Foo data = new Foo(); // user data of type Foo

// ...

try {

reader.get_key_value(data, instance_handle);

} catch (RETCODE_ERROR err) {

// ... check for cause of failure

}

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

246 Module Documentation

6.109.3 Set up reader to access received data

ˆ Set up data reader (p. 245)

ˆ Set up to handle the DATA AVAILABLE STATUS status, in one or both
of the following two ways.

ˆ Enable DATA AVAILABLE STATUS for the DataReaderLis-
tener associated with the data reader (p. 250)

– The processing to handle the status change is done in
the com.rti.dds.subscription.DataReaderListener.on data -
available (p. 503) method of the attached listener.

– Typical processing will access the received data (p. 246).

ˆ Enable DATA AVAILABLE STATUS for the StatusCondition
associated with the data reader (p. 251)

– The processing to handle the status change is done when the data
reader’s attached status condition is triggered (p. 253) and the
DATA AVAILABLE STATUS status on the data reader is changed.

– Typical processing will access the received data (p. 246).

6.109.4 Access received data via a reader

ˆ Ensure reader is set up to access received data (p. 246)

ˆ Access the received data, by either:

– Taking the received data in the reader (p. 246), OR

– Reading the received data in the reader (p. 247)

6.109.5 Taking data

ˆ Ensure reader is set up to access received data (p. 246)

ˆ Take samples of user data type Foo. The samples are removed from the
Service. The caller is responsible for deallocating the buffers.

FooSeq data_seq = new FooSeq(); // holder for sequence of user data type Foo

SampleInfoSeq info_seq = new SampleInfoSeq(); // holder for sequence of DDS_SampleInfo

int max_samples;

int sample_state_mask = SampleStateMask.ANY_SAMPLE_STATE;

int view_state_mask = ViewStateMask.ANY_VIEW_STATE;

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.109 DataReader Use Cases 247

int instance_state_mask = InstanceStateMask.ANY_INSTANCE_STATE;

try {

reader.take(data_seq, info_seq,

max_samples,

sample_state_mask,

view_state_mask,

instance_state_mask);

} catch (RETCODE_ERROR) {

// ... check for cause of failure

}

ˆ Use the received data

// Use the received data samples ’data_seq’ and associated

// information ’info_seq’

for (int i = 0; i < data_seq.size(); ++i) {

// use... data_seq.get(i) ...

// use... info_seq.get(i) ...

}

ˆ Return the data samples and the information buffers back to the mid-
dleware. IMPORTANT : Once this call returns, you must not retain any
pointers to any part of any sample or sample info object.

reader.return_loan(data_seq, info_seq);

6.109.6 Reading data

ˆ Ensure reader is set up to access received data (p. 246)

ˆ Read samples of user data type Foo. The samples are not removed from
the Service. It remains responsible for deallocating the buffers.

FooSeq data_seq = new FooSeq(); // holder for sequence of user data type Foo

SampleInfoSeq info_seq = new SampleInfoSeq)_; // holder for sequence of DDS_SampleInfo

int max_samples;

int sample_state_mask = SampleStateMask.ANY_SAMPLE_STATE;

int view_state_mask = ViewStateMask.ANY_VIEW_STATE;

int instance_state_mask = InstanceStateMask.ANY_INSTANCE_STATE;

try {

reader.read(data_seq, info_seq,

max_samples,

sample_state_mask,

view_state_mask,

instance_state_mask);

} catch (RETCODE_ERROR) {

// ... check for cause of failure

}

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

248 Module Documentation

ˆ Use the received data

// Use the received data samples ’data_seq’ and associated

// information ’info_seq’

for (int i = 0; i < data_seq.size(); ++i) {

// use... data_seq.get(i) ...

// use... info_seq.get(i) ...

}

ˆ Return the data samples and the information buffers back to the middle-
ware

reader.return_loan(data_seq, info_seq);

6.109.7 Tearing down a data reader

ˆ Delete DDSDataReader:

try {

subscriber.delete_datareader(reader);

} catch (RETCODE_ERROR err) {

// ... check for cause of failure

}

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.110 Entity Use Cases 249

6.110 Entity Use Cases

Working with entities.

6.110.1 Enabling an entity

ˆ To enable an com.rti.dds.infrastructure.Entity (p. 912)

try {

entity.enable();

} catch (RETCODE_ERROR err) {

System.out.println(

"*** Error: failed to enable entity");

}

6.110.2 Checking if a status changed on an entity.

ˆ Given an com.rti.dds.infrastructure.Entity (p. 912) and a
com.rti.dds.infrastructure.StatusKind (p. 1455) to check for,
get the list of statuses that have changed since the last time they were
respectively cleared.

int status_changes_list = entity.get_status_changes();

ˆ Check if status kind was changed since the last time it was cleared.
A plain communication status change is cleared when the status is read
using the entity’s get <plain communication status>() method. A
read communication status change is cleared when the data is taken from
the middleware via a TDataReader take() call [see Changes in Status
(p. 107) for details].

if ((status_changes_list & status_kind) != 0) {

return true; /* ... YES, status_kind changed ... */

} else {

return false; /* ... NO, status_kind did NOT change ... */

}

6.110.3 Changing the QoS for an entity

The QoS for an entity can be specified at the entity creation time. Once an
entity has been created, its QoS can be manipulated as follows.

ˆ Get an entity’s QoS settings using get qos (abstract) (p. 914)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

250 Module Documentation

try {

entity.get_qos(qos);

} catch (RETCODE_ERROR err) {

System.out.println("***Error: failed to get qos\n");

}

ˆ Change the desired qos policy fields

/* Change the desired qos policies */

/* qos.policy.field = ... */

ˆ Set the qos using set qos (abstract) (p. 913).

try {

entity.set_qos(qos);

} catch (RETCODE_IMMUTABLE_POLICY immutable) {

System.out.println(

"***Error: tried changing a policy that can only be" +

" set at entity creation time\n");

} catch (RETCODE_INCONSISTENT_POLICY inconsistent) {

System.out.println(

"***Error: tried changing a policy to a value inconsistent" +

" with other policy settings\n");

} catch (RETCODE_ERROR other) {

System.out.println(

"***Error: tried changing a policy that can only be" +

" set at entity creation time\n");

}

6.110.4 Changing the listener and enabling/disabling sta-
tuses associated with it

The listener for an entity can be specified at the entity creation time. By default
the listener is enabled for all the statuses supported by the entity.

Once an entity has been created, its listener and/or the statuses for which it is
enabled can be manipulated as follows.

ˆ User defines entity listener methods

/* ... methods defined by EntityListener ... */

public class MyEntityListener implements Listener {

// ... methods defined by EntityListener ...

}

ˆ Get an entity’s listener using get listener (abstract) (p. 915)

entity_listener = entity.get_listener();

ˆ Enable status kind for the listener

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.110 Entity Use Cases 251

enabled_status_list |= status_kind;

ˆ Disable status kind for the listener

enabled_status_list &= ~status_kind;

ˆ Set an entity’s listener to entity listener using set listener (ab-
stract) (p. 914). Only enable the listener for the statuses specified by
the enabled status list.

try {

entity.set_listener(entity_listener, enabled_status_list);

} catch (RETCODE_ERROR err) {

// respond to failure

}

6.110.5 Enabling/Disabling statuses associated with a sta-
tus condition

Upon entity creation, by default, all the statuses are enabled for the DDS -
StatusCondition associated with the entity.

Once an entity has been created, the list of statuses for which the DDS -
StatusCondition is triggered can be manipulated as follows.

ˆ Given an entity, a status kind, and the associated status condition:

statuscondition = entity.get_statuscondition();

ˆ Get the list of statuses enabled for the status condition

enabled_status_list = statuscondition.get_enabled_statuses();

ˆ Check if the given status kind is enabled for the status condition

if ((enabled_status_list & status_kind) > 0) {

/*... YES, status_kind is enabled ... */

} else {

/* ... NO, status_kind is NOT enabled ... */

}

ˆ Enable status kind for the status condition

try {

statuscondition.set_enabled_statuses(enabled_status_list | status_kind);

} catch (RETCODE_ERROR err) {

// ... check for cause of failure

}

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

252 Module Documentation

ˆ Disable status kind for the status condition

try {

statuscondition.set_enabled_statuses(enabled_status_list & ~status_kind);

} catch (RETCODE_ERROR err) {

// ... check for cause of failure

}

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.111 Waitset Use Cases 253

6.111 Waitset Use Cases

Using wait-sets and conditions.

6.111.1 Setting up a wait-set

ˆ Create a wait-set

WaitSet waitset = new WaitSet();

ˆ Attach conditions

Condition cond1 = ...;

Condition cond2 = entity.get_statuscondition();

Condition cond3 = reader.create_readcondition(

SampleStateKind.NOT_READ_SAMPLE_STATE,

ViewStateKind.ANY_VIEW_STATE,

InstanceStateKind.ANY_INSTANCE_STATE);

Condition cond4 = new GuardCondition();

Condition cond5 = ...;

waitset.attach_condition(cond1);

waitset.attach_condition(cond2);

waitset.attach_condition(cond3);

waitset.attach_condition(cond4);

waitset.attach_condition(cond5);

6.111.2 Waiting for condition(s) to trigger

ˆ Set up a wait-set (p. 253)

ˆ Wait for a condition to trigger or timeout, whichever occurs first

Duration_t timeout = new Duration_t(0, 1000000); // 1ms

ConditionSeq active_conditions = new ConditionSeq(); // list of active conditions

boolean is_cond1_triggered = false;

boolean is_cond2_triggered = false;

try {

waitset.wait(active_conditions, timeout);

// check if "cond1" or "cond2" are triggered:

for (int i = 0; i < active_conditions.size(); ++i) {

if (active_conditions.get(i) == cond1) {

System.out.println("Cond1 was triggered!");

is_cond1_triggered = true;

}

if (active_conditions.get(i) == cond2) {

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

254 Module Documentation

System.out.println("Cond2 was triggered!");

is_cond2_triggered = true;

}

}

if (is_cond1_triggered) {

// ... do something because "cond1" was triggered ...

}

if (is_cond2_triggered) {

// ... do something because "cond2" was triggered ...

}

} catch (RETCODE_TIMEOUT timed_out) {

// timeout!

System.out.println(

"Wait timed out!! None of the conditions was triggered.");

} catch (RETCODE_ERROR ex) {

// ... check for cause of failure

throw ex;

}

6.111.3 Tearing down a wait-set

ˆ Delete the wait-set

waitset.delete();

waitset = null;

// let the wait set be garbage collected

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.112 Transport Use Cases 255

6.112 Transport Use Cases

Working with pluggable transports.

6.112.1 Changing the automatically registered built-in
transports

ˆ The TransportBuiltinKind.MASK DEFAULT specifies the transport plu-
gins that will be automatically registered with a newly created
com.rti.dds.domain.DomainParticipant (p. 629) by default.

ˆ This default can be changed by changing the value of the
value of TRANSPORT BUILTIN (p. 115) Qos Policy on the
com.rti.dds.domain.DomainParticipant (p. 629)

ˆ To change the com.rti.dds.domain.DomainParticipantQos.transport -
builtin (p. 738) Qos Policy:

DomainParticipantQos participant_qos = new DomainParticipantQos();

factory.get_default_participant_qos(participant_qos);

participant_qos.transport_builtin.mask = TransportBuiltinKind.SHMEM |

TransportBuiltinKind.UDPv4;

6.112.2 Changing the properties of the automatically reg-
istered builtin transports

The behavior of the automatically registered builtin transports can be altered
by changing their properties.

ˆ Tell the com.rti.dds.domain.DomainParticipantFactory (p. 708) to
create the participants disabled, as described in Turning off auto-
enable of newly created participant(s) (p. 231)

ˆ Get the property of the desired builtin transport plugin, say
UDPv4Transport

UDPv4Transport.Property_t property = new UDPv4Transport.Property_t();

TransportSupport.get_builtin_transport_property(participant, property);

ˆ Change the property fields as desired. Note that the properties should
be changed carefully, as inappropriate values may prevent communica-
tions. For example, the UDPv4Transport properties can be changed to

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

256 Module Documentation

support large messages (assuming the underlying operating system’s
UDPv4 stack supports the large message size). Note: if message size max
is increased from the default for any of the built-in transports, then the
DDS ReceiverPoolQosPolicy.buffer size on the DomainParticipant should
also be changed.

/* Increase the UDPv4 maximum message size to 64K (large messages). */

property.message_size_max = 65535;

property.recv_socket_buffer_size = 65535;

property.send_socket_buffer_size = 65535;

ˆ Set the property of the desired builtin transport plugin, say
UDPv4Transport

TransportSupport.set_builtin_transport_property(participant, property);

ˆ Enable the participant (p. 249) to turn on communications with other
participants in the domain using the new properties for the automatically
registered builtin transport plugins.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.113 Filter Use Cases 257

6.113 Filter Use Cases

Working with data filters.

6.113.1 Introduction

RTI Connext supports filtering data either during the ex-
change from com.rti.dds.publication.DataWriter (p. 538) to
com.rti.dds.subscription.DataReader (p. 473), or after the data has
been stored at the com.rti.dds.subscription.DataReader (p. 473).

Filtering during the exchange process is performed by a
com.rti.dds.topic.ContentFilteredTopic (p. 458), which is created by
the com.rti.dds.subscription.DataReader (p. 473) as a way of specifying a
subset of the data samples that it wishes to receive.

Filtering samples that have already been received by the
com.rti.dds.subscription.DataReader (p. 473) is performed by
creating a com.rti.dds.subscription.QueryCondition (p. 1324),
which can then used to check for matching samples, be alerted
when matching samples arrive, or retrieve matching samples
through use of the com.rti.dds.topic.example.FooDataReader.read -
w condition or com.rti.dds.topic.example.FooDataReader.take w -
condition functions. (Conditions may also be used with the APIs
com.rti.dds.topic.example.FooDataReader.read next instance w condition and
com.rti.dds.topic.example.FooDataReader.take next instance w condition.)

Filtering may be performed on any topic, either keyed or un-keyed, except the
Built-in Topics (p. 153). Filtering may be perfomed on any field, subset of
fields, or combination of fields, subject only to the limitations of the filter syntax,
and some restrictions against filtering some sparse value types of the Dynamic
Data (p. 170) API.

RTI Connext contains built in support for filtering using SQL syntax, described
in the Queries and Filters Syntax (p. 278) module.

6.113.1.1 Overview of ContentFilteredTopic

Each com.rti.dds.topic.ContentFilteredTopic (p. 458) is cre-
ated based on an existing com.rti.dds.topic.Topic (p. 1545).
The com.rti.dds.topic.Topic (p. 1545) specifies the field names
and field types of the data contained within the topic. The
com.rti.dds.topic.ContentFilteredTopic (p. 458), by means of its filter -
expression and expression parameters, futher specifies the values of the
data which the com.rti.dds.subscription.DataReader (p. 473) wishes to
receive.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

258 Module Documentation

Custom filters may also be constructed and utilized as described in the Creat-
ing Custom Content Filters (p. 263) module.

Once the com.rti.dds.topic.ContentFilteredTopic (p. 458) has been cre-
ated, a com.rti.dds.subscription.DataReader (p. 473) can be created
using the filtered topic. The filter’s characteristics are exchanged be-
tween the com.rti.dds.subscription.DataReader (p. 473) and any matching
com.rti.dds.publication.DataWriter (p. 538) during the discovery processs.

If the com.rti.dds.publication.DataWriter (p. 538) allows (by
com.rti.dds.infrastructure.DataWriterResourceLimitsQosPolicy.max -
remote reader filters (p. 600)) and the number of filtered
com.rti.dds.subscription.DataReader (p. 473) is less than or equal
to 32, and the com.rti.dds.subscription.DataReader (p. 473) ’s
com.rti.dds.infrastructure.TransportMulticastQosPolicy (p. 1590)
is empty, then the com.rti.dds.publication.DataWriter (p. 538) will per-
forming filtering and send to the com.rti.dds.subscription.DataReader
(p. 473) only those samples that meet the filtering criteria.

If disallowed by the com.rti.dds.publication.DataWriter (p. 538), or
if more than 32 com.rti.dds.subscription.DataReader (p. 473) require
filtering, or the com.rti.dds.subscription.DataReader (p. 473) has set
the com.rti.dds.infrastructure.TransportMulticastQosPolicy (p. 1590),
then the com.rti.dds.publication.DataWriter (p. 538) sends all sam-
ples to the com.rti.dds.subscription.DataReader (p. 473), and the
com.rti.dds.subscription.DataReader (p. 473) discards any samples that
do not meet the filtering criteria.

Although the filter expression cannot be changed once the
com.rti.dds.topic.ContentFilteredTopic (p. 458) has been
created, the expression parameters can be modified us-
ing com.rti.dds.topic.ContentFilteredTopic.set expression -
parameters (p. 460). Any changes made to the filtering crite-
ria by means of com.rti.dds.topic.ContentFilteredTopic.set -
expression parameters (p. 460), will be conveyed to any con-
nected com.rti.dds.publication.DataWriter (p. 538). New samples
will be subject to the modified filtering criteria, but samples that
have already been accepted or rejected are unaffected. However, if
the com.rti.dds.subscription.DataReader (p. 473) connects to a
com.rti.dds.publication.DataWriter (p. 538) that re-sends its data,
the re-sent samples will be subjected to the new filtering criteria.

6.113.1.2 Overview of QueryCondition

com.rti.dds.subscription.QueryCondition (p. 1324) com-
bine aspects of the content filtering capabilities of
com.rti.dds.topic.ContentFilteredTopic (p. 458) with state filter-

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.113 Filter Use Cases 259

ing capabilities of com.rti.dds.subscription.ReadCondition (p. 1326)
to create a reconfigurable means of filtering or searching data in the
com.rti.dds.subscription.DataReader (p. 473) queue.

com.rti.dds.subscription.QueryCondition (p. 1324) may be created on
a disabled com.rti.dds.subscription.DataReader (p. 473), or after the
com.rti.dds.subscription.DataReader (p. 473) has been enabled. If the
com.rti.dds.subscription.DataReader (p. 473) is enabled, and has already
recevied and stored samples in its queue, then all data samples in the are fil-
tered against the com.rti.dds.subscription.QueryCondition (p. 1324) fil-
ter criteria at the time that the com.rti.dds.subscription.QueryCondition
(p. 1324) is created. (Note that an exclusive lock is held on the
com.rti.dds.subscription.DataReader (p. 473) sample queue for the dura-
tion of the com.rti.dds.subscription.QueryCondition (p. 1324) creation).

Once created, incoming samples are filtered against all
com.rti.dds.subscription.QueryCondition (p. 1324) filter cri-
teria at the time of their arrival and storage into the
com.rti.dds.subscription.DataReader (p. 473) queue.

The number of com.rti.dds.subscription.QueryCondition (p. 1324) filters
that an individual com.rti.dds.subscription.DataReader (p. 473) may cre-
ate is set by com.rti.dds.infrastructure.DataReaderResourceLimitsQosPolicy.max -
query condition filters (p. 535), to an upper maximum of 32.

6.113.2 Filtering with ContentFilteredTopic

ˆ Set up subscriber (p. 242)

ˆ Set up a topic (p. 233)

ˆ Create a ContentFilteredTopic, of user data type Foo:

String cft_param_list[] = {"1", "100"};

StringSeq cft_parameters = new StringSeq(java.util.Arrays.asList(cft_param_list));

ContentFilteredTopic cft = participant.create_contentfilteredtopic(

"ContentFilteredTopic",

topic,

"value > %0 AND value < %1",

cft_parameters);

if (cft == null) {

System.err.println("create_contentfilteredtopic error\n");

return;

}

ˆ Create a FooReader using the ContentFilteredTopic:

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

260 Module Documentation

FooDataReader reader = (FooDataReader)

subscriber.create_datareader(

cft,

datareader_qos, // or Subscriber.DATAREADER_QOS_DEFAULT //

listener, // or null //

StatusKind.STATUS_MASK_ALL);

if (reader == null) {

System.err.println("create_datareader error\n");

return;

}

Once setup, reading samples with a
com.rti.dds.topic.ContentFilteredTopic (p. 458) is exactly the
same as normal reads or takes, as decribed in DataReader Use Cases
(p. 245).

ˆ Changing filter crieria using set expression parameters:

cft_parameters.set(0, "5");

cft_parameters.set(1, "9");

cft.set_expression_parameters(cft_parameters);

6.113.3 Filtering with Query Conditions

ˆ Given a data reader of type Foo

FooDataReader reader = ...;

ˆ Creating a QueryCondition

QueryCondition queryCondition = null;

String qc_param_list[] = {"1", "100"};

StringSeq qc_parameters = new StringSeq(java.util.Arrays.asList(cft_param_list));

queryCondition = reader.create_querycondition(SampleStateKind.NOT_READ_SAMPLE_STATE,

ViewStateKind.ANY_VIEW_STATE,

InstanceStateKind.ANY_INSTANCE_STATE,

"value > %0 AND value < %1",

qc_parameters);

if (queryCondition == null) {

System.err.println("create_querycondition error\n");

return;

}

ˆ Reading matching samples with a com.rti.dds.subscription.QueryCondition
(p. 1324)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.113 Filter Use Cases 261

FooSeq _dataSeq = new FooSeq();

SampleInfoSeq _infoSeq = new SampleInfoSeq();

try {

reader.read_w_condition(_dataSeq, _infoSeq,

ResourceLimitsQosPolicy.LENGTH_UNLIMITED,

queryCondition);

for(int i = 0; i < _dataSeq.size(); ++i) {

SampleInfo info = (SampleInfo)_infoSeq.get(i);

if (info.valid_data) {

// --- Process data here --- //

}

}

} catch (RETCODE_NO_DATA noData) {

// No data to process

} finally {

reader.return_loan(_dataSeq, _infoSeq);

}

ˆ com.rti.dds.subscription.QueryCondition.set -
query parameters (p. 1325) is used similarly to
com.rti.dds.topic.ContentFilteredTopic.set expression -
parameters (p. 460), and the same coding techniques can be used.

ˆ Any com.rti.dds.subscription.QueryCondition (p. 1324)
that have been created must be deleted before the
com.rti.dds.subscription.DataReader (p. 473) can be deleted. This
can be done using com.rti.dds.subscription.DataReader.delete -
contained entities (p. 489) or manually as in:

retcode = reader.delete_readcondition(queryCondition);

6.113.4 Filtering Performance

Although RTI Connext supports filtering on any field or combination of
fields using the SQL syntax of the built-in filter, filters for keyed top-
ics that filter solely on the contents of key fields have the potential for
much higher performance. This is because for key field only filters, the
com.rti.dds.subscription.DataReader (p. 473) caches the results of the fil-
ter (pass or not pass) for each instance. When another sample of the same
instance is seen at the com.rti.dds.subscription.DataReader (p. 473), the
filter results are retrieved from cache, dispensing with the need to call the filter
function.

This optimization applies to all filtering using the built-in SQL filter,
performed by the com.rti.dds.subscription.DataReader (p. 473),
for either com.rti.dds.topic.ContentFilteredTopic (p. 458) or
com.rti.dds.subscription.QueryCondition (p. 1324). This does not

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

262 Module Documentation

apply to filtering perfomed for com.rti.dds.topic.ContentFilteredTopic
(p. 458) by the com.rti.dds.publication.DataWriter (p. 538).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.114 Creating Custom Content Filters 263

6.114 Creating Custom Content Filters

Working with custom content filters.

6.114.1 Introduction

By default, RTI Connext creates content filters with the DDS SQL FILTER,
which implements a superset of the DDS-specified SQL WHERE clause. How-
ever, in many cases this filter may not be what you want. Some examples are:

ˆ The default filter can only filter based on the content of a sample, not on a
computation on the content of a sample. You can use a custom filter that
is customized for a specific type and can filter based on a computation of
the type members.

ˆ You want to use a different filter language then SQL

This HOWTO explains how to write your own custom filter and is divided into
the following sections:

ˆ The Custom Content Filter API (p. 263)

ˆ Example Using C format strings (p. 264)

6.114.2 The Custom Content Filter API

A custom content filter is created by calling the
com.rti.dds.domain.DomainParticipant.register contentfilter
(p. 698) function with a com.rti.dds.topic.ContentFilter (p. 454) that
contains a compile, an evaluate function and a finalize function.
com.rti.dds.topic.ContentFilteredTopic (p. 458) can be created with
com.rti.dds.domain.DomainParticipant.create contentfilteredtopic -
with filter (p. 675) to use this filter.

A custom content filter is used by RTI Connext at the following times during the
life-time of a com.rti.dds.topic.ContentFilteredTopic (p. 458) (the function
called is shown in parenthesis).

ˆ When a com.rti.dds.topic.ContentFilteredTopic (p. 458) is created
(compile (p. 264))

ˆ When the filter parameters are changed on the
com.rti.dds.topic.ContentFilteredTopic (p. 458) (compile (p. 264))
with com.rti.dds.topic.ContentFilteredTopic.set expression -
parameters (p. 460)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

264 Module Documentation

ˆ When a sample is filtered (evaluate (p. 264)). This function is called by
the RTI Connext core with a de-serialized sample

ˆ When a com.rti.dds.topic.ContentFilteredTopic (p. 458) is deleted
(finalize (p. 264))

6.114.2.1 The compile function

The compile (p. 264) function is used to compile a filter expression and ex-
pression parameters. Please note that the term compile is intentionally loosely
defined. It is up to the user to decide what this function should do and return.

See com.rti.dds.topic.ContentFilter.compile (p. 455) for details.

6.114.2.2 The evaluate function

The evaluate (p. 265) function is called each time a sample is received to de-
termine if a sample should be filtered out and discarded.

See com.rti.dds.topic.ContentFilter.evaluate (p. 456) for details.

6.114.2.3 The finalize function

The finalize (p. 265) function is called when an instance of the custom content
filter is no longer needed. When this function is called, it is safe to free all
resources used by this particular instance of the custom content filter.

See com.rti.dds.topic.ContentFilter.finalize (p. 457) for details.

6.114.3 Example Using C format strings

Assume that you have a type Foo.

You want to write a custom filter function that will drop all samples where the
value of Foo.x > x and x is a value determined by an expression parameter. The
filter will only be used to filter samples of type Foo.

6.114.3.1 Writing the Compile Function

The first thing to note is that we can ignore the filter expression, since we
already know what the expression is. The second is that x is a parameter that
can be changed. By using this information, the compile function is very easy to
implement. Simply return the parameter string. This string will then be passed
to the evaluate function every time a sample of this type is filtered.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.114 Creating Custom Content Filters 265

Below is the entire compile (p. 264) function.

public void compile(

ObjectHolder new_compile_data, String expression,

StringSeq parameters, TypeCode type_code, String type_class_name,

Object old_compile_data) {

new_compile_data.value = parameters.get(0);

}

6.114.3.2 Writing the Evaluate Function

The next step is to implement the evaluate function. The evaluate function
receives the parameter string with the actual value to test against. Thus the
evaluate function must read the actual value from the parameter string before
evaluating the expression. Below is the entire evaluate (p. 264) function.

public boolean evaluate(

Object compile_data, Object sample) {

String parameter = (String)compile_data;

int x;

Foo foo_sample = (Foo)sample;

x = Integer.parseInt(parameter);

return (foo_sample.x > x ? false : true);

}

6.114.3.3 Writing the Finalize Function

The last function to write is the finalize function. It is safe to free all resources
used by this particular instance of the custom content filter that is allocated in
compile. Below is the entire finalize (p. 264) function.

public void finalize(

Object compile_data) {

/* nothing to do since no resource are allocated */

}

6.114.3.4 Registering the Filter

Before the custom filter can be used, it must be registered with RTI Connext:

ContentFilter myCustomFilter = new MyContentFilter();

participant.register_contentfilter("MyCustomFilter", myCustomFilter);

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

266 Module Documentation

6.114.3.5 Unregistering the Filter

When the filter is no longer needed, it can be unregistered from RTI Connext:

participant.unregister_contentfilter("MyCustomFilter");

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.115 Large Data Use Cases 267

6.115 Large Data Use Cases

Working with large data types.

6.115.1 Introduction

RTI Connext supports data types whose size exceeds the maximum message
size of the underlying transports. A com.rti.dds.publication.DataWriter
(p. 538) will fragment data samples when required. Fragments are automatically
reassembled at the receiving end.

Once all fragments of a sample have been received, the new sample is passed
to the com.rti.dds.subscription.DataReader (p. 473) which can then make
it available to the user. Note that the new sample is treated as a regular sam-
ple at that point and its availability depends on standard QoS settings such
as com.rti.dds.infrastructure.ResourceLimitsQosPolicy.max samples
(p. 1359) and HistoryQosPolicyKind.KEEP LAST HISTORY QOS.

The large data feature is fully supported by all DDS API’s, so its use is mostly
transparent. Some additional considerations apply as explained below.

6.115.2 Writing Large Data

In order to use the large data feature with the Reliabili-
tyQosPolicyKind.RELIABLE RELIABILITY QOS setting, the
com.rti.dds.publication.DataWriter (p. 538) must be configured as an asyn-
chronous writer (PublishModeQosPolicyKind.ASYNCHRONOUS PUBLISH -
MODE QOS) with associated com.rti.dds.publication.FlowController
(p. 942).

While the use of an asynchronous writer and flow controller is optional when
using the ReliabilityQosPolicyKind.BEST EFFORT RELIABILITY QOS set-
ting, most large data use cases will benefit from the use of a flow controller to
prevent flooding the network when fragments are being sent.

ˆ Set up writer (p. 240)

ˆ Add flow control (p. 235)

6.115.3 Receiving Large Data

Large data is supported by default and in most cases, no further changes are
required.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

268 Module Documentation

The com.rti.dds.infrastructure.DataReaderResourceLimitsQosPolicy
(p. 524) allows tuning the resources available to the
com.rti.dds.subscription.DataReader (p. 473) for reassembling frag-
mented large data.

ˆ Set up reader (p. 245)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.116 Documentation Roadmap 269

6.116 Documentation Roadmap

This section contains a roadmap for the new user with pointers on what to read
first.

If you are new to RTI Connext, we recommend starting in the following order:

ˆ See the Getting Started Guide. This document provides download and
installation instructions. It also lays out the core value and concepts
behind the product and takes you step-by-step through the creation of a
simple example application.

ˆ The User’s Manual describes the features of the product and how to use
them. It is organized around the structure of the DDS APIs and certain
common high-level tasks.

ˆ The documentation in the DDS API Reference (p. 272) provides an
overview of API classes and modules for the DDS data-centric publish-
subscribe (DCPS) package from a programmer’s perspective. Start by
reading the documentation on the main page.

ˆ After reading the high level module documentation, look at the Publi-
cation Example (p. 229) and Subscription Example (p. 230) for step-
by-step examples of creating a publication and subscription. These are
hyperlinked code snippets to the full API documentation, and provide a
good place to begin learning the APIs.

ˆ Next, work through your own application using the example code files
generated by rtiddsgen (p. 290).

ˆ To integrate similar code into your own application and build system, you
will likely need to refer to the Platform Notes.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

270 Module Documentation

6.117 Conventions

This section describes the conventions used in the API documentation.

6.117.1 Unsupported Features

[Not supported (optional)] This note means that the optional feature from
the DDS specification is not supported in the current release.

6.117.2 API Documentation Terms

In the API documentation, the term module refers to a logical grouping of
documentation and elements in the API.

6.117.3 Stereotypes

Commonly used stereotypes in the API documentation include the following.

6.117.3.1 Extensions

ˆ <<eXtension>> (p. 270)

– An RTI Connext product extension to the DDS standard specifica-
tion.

– The extension APIs complement the standard APIs specified by the
OMG DDS specification. They are provided to improve product
usability and enable access to product-specific features such as plug-
gable transports.

6.117.3.2 Experimental

ˆ <<experimental>> (p. 270)

– RTI Connext experimental features are used to evaluate new features
and get user feedback.

– These features are not guaranteed to be fully supported and might be
implemented only of some of the programming languages supported
bt RTI Connext

– The functional APIs corresponding to experimental features can be
distinguished from other APIs by the suffix ’ exp’.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.117 Conventions 271

– Experimental features may or may not appear in future product re-
leases.

– The name of the experimental features APIs will change if they be-
come officially supported. At the very least the suffix ’ exp’ will be
removed.

– Experimental features should not be used in production.

6.117.3.3 Types

ˆ <<interface>> (p. 271)

– Pure interface type with no state.
– Languages such as Java natively support the concept of an inter-

face type, which is a collection of method signatures devoid of any
dynamic state.

– In C++, this is achieved via a class with all pure virtual methods
and devoid of any instance variables (ie no dynamic state).

– Interfaces are generally organized into a type hierarchy. Static type-
casting along the interface type hierarchy is ”safe” for valid objects.

ˆ <<generic>> (p. 271)

– A generic type is a skeleton class written in terms of generic pa-
rameters. Type-specific instantiations of such types are convention-
ally referred to in this documentation in terms of the hypothetical
type ”Foo”; for example: FooSeq, FooDataType, FooDataWriter,
and FooDataReader.

ˆ <<singleton>> (p. 271)

– Singleton class. There is a single instance of the class.
– Generally acccessed via a get instance() static method.

6.117.3.4 Method Parameters

ˆ <<in>> (p. 271)

– An input parameter.

ˆ <<out>> (p. 271)

– An output parameter.

ˆ <<inout>> (p. 271)

– An input and output parameter.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

272 Module Documentation

6.118 DDS API Reference

RTI Connext modules following the DDS module definitions.

Modules

ˆ Domain Module

Contains the com.rti.dds.domain.DomainParticipant (p. 629) class that
acts as an entrypoint of RTI Connext and acts as a factory for many of the
classes. The com.rti.dds.domain.DomainParticipant (p. 629) also acts
as a container for the other objects that make up RTI Connext.

ˆ Topic Module

Contains the com.rti.dds.topic.Topic (p. 1545),
com.rti.dds.topic.ContentFilteredTopic (p. 458), and
com.rti.dds.topic.MultiTopic (p. 1208) classes, the
com.rti.dds.topic.TopicListener (p. 1564) interface, and more generally,
all that is needed by an application to define com.rti.dds.topic.Topic
(p. 1545) objects and attach QoS policies to them.

ˆ Publication Module

Contains the com.rti.dds.publication.FlowController
(p. 942), com.rti.dds.publication.Publisher (p. 1277), and
com.rti.dds.publication.DataWriter (p. 538) classes as well as
the com.rti.dds.publication.PublisherListener (p. 1302) and
com.rti.dds.publication.DataWriterListener (p. 566) interfaces,
and more generally, all that is needed on the publication side.

ˆ Subscription Module

Contains the com.rti.dds.subscription.Subscriber
(p. 1478), com.rti.dds.subscription.DataReader (p. 473),
com.rti.dds.subscription.ReadCondition (p. 1326), and
com.rti.dds.subscription.QueryCondition (p. 1324) classes, as well
as the com.rti.dds.subscription.SubscriberListener (p. 1504) and
com.rti.dds.subscription.DataReaderListener (p. 501) interfaces, and
more generally, all that is needed on the subscription side.

ˆ Infrastructure Module

Defines the abstract classes and the interfaces that are refined by the other
modules. Contains common definitions such as return codes, status values,
and QoS policies.

ˆ Queries and Filters Syntax

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.118 DDS API Reference 273

6.118.1 Detailed Description

RTI Connext modules following the DDS module definitions.

6.118.2 Overview

Information flows with the aid of the following con-
structs: com.rti.dds.publication.Publisher (p. 1277) and
com.rti.dds.publication.DataWriter (p. 538) on the send-
ing side, com.rti.dds.subscription.Subscriber (p. 1478) and
com.rti.dds.subscription.DataReader (p. 473) on the receiving side.

ˆ A com.rti.dds.publication.Publisher (p. 1277) is an object re-
sponsible for data distribution. It may publish data of differ-
ent data types. A TDataWriter acts as a typed (i.e. each
com.rti.dds.publication.DataWriter (p. 538) object is dedicated
to one application data type) accessor to a publisher. A
com.rti.dds.publication.DataWriter (p. 538) is the object the appli-
cation must use to communicate to a publisher the existence and value of
data objects of a given type. When data object values have been com-
municated to the publisher through the appropriate data-writer, it is the
publisher’s responsibility to perform the distribution (the publisher will do
this according to its own QoS, or the QoS attached to the corresponding
data-writer). A publication is defined by the association of a data-writer
to a publisher. This association expresses the intent of the application to
publish the data described by the data-writer in the context provided by
the publisher.

ˆ A com.rti.dds.subscription.Subscriber (p. 1478) is an object respon-
sible for receiving published data and making it available (according to
the Subscriber’s QoS) to the receiving application. It may receive and
dispatch data of different specified types. To access the received data, the
application must use a typed TDataReader attached to the subscriber.
Thus, a subscription is defined by the association of a data-reader with
a subscriber. This association expresses the intent of the application to
subscribe to the data described by the data-reader in the context provided
by the subscriber.

com.rti.dds.topic.Topic (p. 1545) objects conceptually fit between publica-
tions and subscriptions. Publications must be known in such a way that
subscriptions can refer to them unambiguously. A com.rti.dds.topic.Topic
(p. 1545) is meant to fulfill that purpose: it associates a name (unique in the
domain i.e. the set of applications that are communicating with each other),
a data type, and QoS related to the data itself. In addition to the topic

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

274 Module Documentation

QoS, the QoS of the com.rti.dds.publication.DataWriter (p. 538) associ-
ated with that Topic and the QoS of the com.rti.dds.publication.Publisher
(p. 1277) associated to the com.rti.dds.publication.DataWriter (p. 538)
control the behavior on the publisher’s side, while the corresponding
com.rti.dds.topic.Topic (p. 1545), com.rti.dds.subscription.DataReader
(p. 473) and com.rti.dds.subscription.Subscriber (p. 1478) QoS control the
behavior on the subscriber’s side.

When an application wishes to publish data of a given type, it
must create a com.rti.dds.publication.Publisher (p. 1277) (or reuse
an already created one) and a com.rti.dds.publication.DataWriter
(p. 538) with all the characteristics of the desired publication. Sim-
ilarly, when an application wishes to receive data, it must create a
com.rti.dds.subscription.Subscriber (p. 1478) (or reuse an already created
one) and a com.rti.dds.subscription.DataReader (p. 473) to define the sub-
scription.

6.118.3 Conceptual Model

The overall conceptual model is shown below.

Notice that all the main communication objects (the specializations of Entity)
follow unified patterns of:

ˆ Supporting QoS (made up of several QosPolicy); QoS provides a generic
mechanism for the application to control the behavior of the Service and
tailor it to its needs. Each com.rti.dds.infrastructure.Entity (p. 912)
supports its own specialized kind of QoS policies (see QoS Policies
(p. 90)).

ˆ Accepting a com.rti.dds.infrastructure.Listener (p. 1154); listeners
provide a generic mechanism for the middleware to notify the appli-
cation of relevant asynchronous events, such as arrival of data cor-
responding to a subscription, violation of a QoS setting, etc. Each
com.rti.dds.infrastructure.Entity (p. 912) supports its own special-
ized kind of listener. Listeners are related to changes in status conditions
(see Status Kinds (p. 106)).

Note that only one Listener per entity is allowed (instead of a list of
them). The reason for that choice is that this allows a much simpler (and,
thus, more efficient) implementation as far as the middleware is concerned.
Moreover, if it were required, the application could easily implement a
listener that, when triggered, triggers in return attached ’sub-listeners’.

ˆ Accepting a com.rti.dds.infrastructure.StatusCondition (p. 1452)
(and a set of com.rti.dds.subscription.ReadCondition (p. 1326) ob-

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.118 DDS API Reference 275

jects for the com.rti.dds.subscription.DataReader (p. 473)); con-
ditions (in conjunction with com.rti.dds.infrastructure.WaitSet
(p. 1695) objects) provide support for an alternate communication style
between the middleware and the application (i.e., wait-based rather than
notification-based).

All DCPS entities are attached to a com.rti.dds.domain.DomainParticipant
(p. 629). A domain participant represents the local membership of the ap-
plication in a domain. A domain is a distributed concept that links all the
applications able to communicate with each other. It represents a communi-
cation plane: only the publishers and the subscribers attached to the same
domain may interact.

com.rti.dds.infrastructure.DomainEntity (p. 628) is an intermediate ob-
ject whose only purpose is to state that a DomainParticipant cannot contain
other domain participants.

At the DCPS level, data types represent information that is sent atomically.
For performance reasons, only plain data structures are handled by this level.

By default, each data modification is propagated individually, indepen-
dently, and uncorrelated with other modifications. However, an applica-
tion may request that several modifications be sent as a whole and inter-
preted as such at the recipient side. This functionality is offered on a Pub-
lisher/Subscriber basis. That is, these relationships can only be specified
among com.rti.dds.publication.DataWriter (p. 538) objects attached to
the same com.rti.dds.publication.Publisher (p. 1277) and retrieved among
com.rti.dds.subscription.DataReader (p. 473) objects attached to the same
com.rti.dds.subscription.Subscriber (p. 1478).

By definition, a com.rti.dds.topic.Topic (p. 1545) corresponds to a single data
type. However, several topics may refer to the same data type. Therefore, a
com.rti.dds.topic.Topic (p. 1545) identifies data of a single type, ranging from
one single instance to a whole collection of instances of that given type. This is
shown below for the hypothetical data type Foo.

In case a set of instances is gathered under the same topic, different instances
must be distinguishable. This is achieved by means of the values of some data
fields that form the key to that data set. The key description (i.e., the list of
data fields whose value forms the key) has to be indicated to the middleware.
The rule is simple: different data samples with the same key value represent
successive values for the same instance, while different data samples with differ-
ent key values represent different instances. If no key is provided, the data set
associated with the com.rti.dds.topic.Topic (p. 1545) is restricted to a single
instance.

Topics need to be known by the middleware and potentially propa-
gated. Topic objects are created using the create operations provided by
com.rti.dds.domain.DomainParticipant (p. 629).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

276 Module Documentation

The interaction style is straightforward on the publisher’s side: when the appli-
cation decides that it wants to make data available for publication, it calls the
appropriate operation on the related com.rti.dds.publication.DataWriter
(p. 538) (this, in turn, will trigger its com.rti.dds.publication.Publisher
(p. 1277)).

On the subscriber’s side however, there are more choices: relevant informa-
tion may arrive when the application is busy doing something else or when
the application is just waiting for that information. Therefore, depending
on the way the application is designed, asynchronous notifications or syn-
chronous access may be more appropriate. Both interaction modes are allowed,
a com.rti.dds.infrastructure.Listener (p. 1154) is used to provide a callback
for synchronous access and a com.rti.dds.infrastructure.WaitSet (p. 1695)
associated with one or several com.rti.dds.infrastructure.Condition
(p. 451) objects provides asynchronous data access.

The same synchronous and asynchronous interaction modes can also be used
to access changes that affect the middleware communication status (see Sta-
tus Kinds (p. 106)). For instance, this may occur when the middleware asyn-
chronously detects an inconsistency. In addition, other middleware information
that may be relevant to the application (such as the list of the existing topics)
is made available by means of built-in topics (p. 153) that the application can
access as plain application data, using built-in data-readers.

6.118.4 Modules

DCPS consists of five modules:

ˆ Infrastructure module (p. 200) defines the abstract classes and the
interfaces that are refined by the other modules. It also provides support
for the two interaction styles (notification-based and wait-based) with the
middleware.

ˆ Domain module (p. 143) contains the
com.rti.dds.domain.DomainParticipant (p. 629) class that acts
as an entrypoint of the Service and acts as a factory for many of the
classes. The com.rti.dds.domain.DomainParticipant (p. 629) also
acts as a container for the other objects that make up the Service.

ˆ Topic module (p. 157) contains the com.rti.dds.topic.Topic (p. 1545)
class, the com.rti.dds.topic.TopicListener (p. 1564) interface, and
more generally, all that is needed by the application to define
com.rti.dds.topic.Topic (p. 1545) objects and attach QoS policies to
them.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.118 DDS API Reference 277

ˆ Publication module (p. 175) contains the
com.rti.dds.publication.Publisher (p. 1277) and
com.rti.dds.publication.DataWriter (p. 538) classes as well as
the com.rti.dds.publication.PublisherListener (p. 1302) and
com.rti.dds.publication.DataWriterListener (p. 566) interfaces, and
more generally, all that is needed on the publication side.

ˆ Subscription module (p. 186) contains the
com.rti.dds.subscription.Subscriber (p. 1478),
com.rti.dds.subscription.DataReader (p. 473),
com.rti.dds.subscription.ReadCondition (p. 1326), and
com.rti.dds.subscription.QueryCondition (p. 1324) classes, as
well as the com.rti.dds.subscription.SubscriberListener (p. 1504)
and com.rti.dds.subscription.DataReaderListener (p. 501) in-
terfaces, and more generally, all that is needed on the subscription
side.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

278 Module Documentation

6.119 Queries and Filters Syntax

6.119.1 Syntax for DDS Queries and Filters

A subset of SQL syntax is used in several parts of the specification:

ˆ The filter expression in the com.rti.dds.topic.ContentFilteredTopic
(p. 458)

ˆ The query expression in the com.rti.dds.subscription.QueryCondition
(p. 1324)

ˆ The topic expression in the com.rti.dds.topic.MultiTopic (p. 1208)

Those expressions may use a subset of SQL, extended with the possibility to
use program variables in the SQL expression. The allowed SQL expressions are
defined with the BNF-grammar below.

The following notational conventions are made:

ˆ NonTerminals are typeset in italics.

ˆ ’Terminals’ are quoted and typeset in a fixed width font. They are
written in upper case in most cases in the BNF-grammar below, but should
be case insensitive.

ˆ TOKENS are typeset in bold.

ˆ The notation (element // ’,’) represents a non-empty comma-separated
list of elements.

6.119.2 SQL grammar in BNF

Expression ::= FilterExpression

| TopicExpression

| QueryExpression

.
FilterExpression ::= Condition

TopicExpression ::= SelectFrom { Where } ’;’

QueryExpression ::= { Condition }{ ’ORDER BY’ (FIELD-
NAME // ’,’) }

.

SelectFrom ::= ’SELECT’ Aggregation ’FROM’ Selection

.
Aggregation ::= ’*’

| (SubjectFieldSpec // ’,’)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.119 Queries and Filters Syntax 279

.
SubjectFieldSpec ::= FIELDNAME

| FIELDNAME ’AS’ IDENTIFIER
| FIELDNAME IDENTIFIER
.

Selection ::= TOPICNAME
| TOPICNAME NaturalJoin JoinItem

.
JoinItem ::= TOPICNAME

| TOPICNAME NaturalJoin JoinItem

| ’(’ TOPICNAME NaturalJoin JoinItem ’)’

.
NaturalJoin ::= ’INNER JOIN’

| ’INNER NATURAL JOIN’

| ’NATURAL JOIN’

| ’NATURAL INNER JOIN’

.
Where ::= ’WHERE’ Condition

.
Condition ::= Predicate

| Condition ’AND’ Condition

| Condition ’OR’ Condition

| ’NOT’ Condition

| ’(’ Condition ’)’

.
Predicate ::= ComparisonPredicate

| BetweenPredicate

.
ComparisonPredicate ::= ComparisonTerm RelOp ComparisonTerm

.
ComparisonTerm ::= FieldIdentifier

| Parameter

.
BetweenPredicate ::= FieldIdentifier ’BETWEEN’ Range

| FieldIdentifier ’NOT BETWEEN’ Range

.
FieldIdentifier ::= FIELDNAME

| IDENTIFIER
.

RelOp ::= ’=’ | ’>’ | ’>=’ | ’<’ | ’<=’ | ’<>’ | ’LIKE’ | ’MATCH’

.
Range ::= Parameter ’AND’ Parameter

.
Parameter ::= INTEGERVALUE

| CHARVALUE
| FLOATVALUE
| STRING
| ENUMERATEDVALUE
| BOOLEANVALUE
| PARAMETER

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

280 Module Documentation

.

Note – INNER JOIN, INNER NATURAL JOIN, NATURAL JOIN, and NAT-
URAL INNER JOIN are all aliases, in the sense that they have the same se-
mantics. They are all supported because they all are part of the SQL standard.

6.119.3 Token expression

The syntax and meaning of the tokens used in the SQL grammar is described
as follows:

ˆ IDENTIFIER - An identifier for a FIELDNAME, and is defined as any
series of characters ’a’, ..., ’z’, ’A’, ..., ’Z’, ’0’, ..., ’9’, ’ ’ but may not start
with a digit.

Formal notation:

IDENTIFIER: LETTER (PART LETTER)*

where LETTER : ["A"-"Z"," ","a"-"z"]

PART LETTER : ["A"-"Z"," ","a"-"z","0"-"9"]

ˆ FIELDNAME - A fieldname is a reference to a field in the data structure.
The dot ’.’ is used to navigate through nested structures. The number of
dots that may be used in a FIELDNAME is unlimited. The FIELDNAME
can refer to fields at any depth in the data structure. The names of the field
are those specified in the IDL definition of the corresponding structure,
which may or may not match the fieldnames that appear on the language-
specific (e.g., C/C++, Java) mapping of the structure. To reference to the
n+1 element in an array or sequence, use the notation ’[n]’, where n is a
natural number (zero included). FIELDNAME must resolve to a primitive
IDL type; that is either boolean, octet, (unsigned) short, (unsigned) long,
(unsigned) long long, float double, char, wchar, string, wstring, or enum.

Formal notation:

FIELDNAME: FieldNamePart ("." FieldNamePart)*

where FieldNamePart : IDENTIFIER ("[" Index "]")*

Index> : (["0"-"9"])+

| ["0x","0X"](["0"-"9", "A"-"F", "a"-"f"])+

Primitive IDL types referenced by FIELDNAME are treated as different types
in Predicate according to the following table:

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.119 Queries and Filters Syntax 281

Predicate Data Type IDL Type
BOOLEANVALUE boolean
INTEGERVALUE octet, (unsigned) short, (unsigned)

long, (unsigned) long long
FLOATVALUE float, double
CHARVALUE char, wchar
STRING string, wstring
ENUMERATEDVALUE enum

ˆ TOPICNAME - A topic name is an identifier for a topic, and is defined
as any series of characters ’a’, ..., ’z’, ’A’, ..., ’Z’, ’0’, ..., ’9’, ’ ’ but may
not start with a digit.

Formal notation:

TOPICNAME : IDENTIFIER

ˆ INTEGERVALUE - Any series of digits, optionally preceded by a plus
or minus sign, representing a decimal integer value within the range of the
system. A hexadecimal number is preceded by 0x and must be a valid
hexadecimal expression.

Formal notation:

INTEGERVALUE : (["+","-"])? (["0"-"9"])+ [("L","l")]?

| (["+","-"])? ["0x","0X"](["0"-"9", "A"-"F", "a"-"f"])+ [("L","l")]?

ˆ CHARVALUE - A single character enclosed between single quotes.

Formal notation:

CHARVALUE : "’" (~["’"])? "’"

ˆ FLOATVALUE - Any series of digits, optionally preceded by a plus or
minus sign and optionally including a floating point (’.’). A power-of-ten
expression may be postfixed, which has the syntax en or En, where n is
a number, optionally preceded by a plus or minus sign.

Formal notation:

FLOATVALUE : (["+","-"])? (["0"-"9"])* (".")? (["0"-"9"])+ (EXPONENT)?

where EXPONENT : ["e","E"] (["+","-"])? (["0"-"9"])+

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

282 Module Documentation

ˆ STRING - Any series of characters encapsulated in single quotes, except
the single quote itself.

Formal notation:

STRING : "’" (~["’"])* "’"

ˆ ENUMERATEDVALUE - An enumerated value is a reference to a
value declared within an enumeration. Enumerated values consist of the
name of the enumeration label enclosed in single quotes. The name used
for the enumeration label must correspond to the label names specified in
the IDL definition of the enumeration.

Formal notation:

ENUMERATEDVALUE : "’" ["A" - "Z", "a" - "z"] ["A" - "Z", "a" - "z", " ", "0" - "9"]* "’"

ˆ BOOLEANVALUE - Can either be ’TRUE’ or ’FALSE’, case insensi-
tive.

Formal notation (case insensitive):

BOOLEANVALUE : ["TRUE","FALSE"]

ˆ PARAMETER - A parameter is of the form %n, where n represents a
natural number (zero included) smaller than 100. It refers to the n + 1
th argument in the given context. Argument can only in primitive type
value format. It cannot be a FIELDNAME.

Formal notation:

PARAMETER : "%" (["0"-"9"])+

6.119.4 Type compatability in Predicate

Only certain combination of type comparisons are valid in Predicate. The fol-
lowing table marked all the compatible pairs with ’YES’:

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.119 Queries and Filters Syntax 283

BOOLEAN-
VALUE

INTE-
GERVALUEFLOAT-

VALUE
CHAR-
VALUE

STRING
ENU-
MER-
ATED-
VALUE

BOOLEAN
YES

INTE-
GERVALUE

YES YES

FLOAT-
VALUE

YES YES

CHAR-
VALUE

YES YES YES

STRING
YES

YES(∗1)
YES

ENU-
MER-
ATED-
VALUE

YES
YES(∗2) YES(∗2) YES(∗3)

ˆ (∗1) See SQL Extension: Regular Expression Matching (p. 283)

ˆ (∗2) Because the formal notation of the Enumeration values, they are
compatible with string and char literals, but they are not compatible with
string or char variables, i.e., ”MyEnum=’EnumValue’” would be correct,
but ”MyEnum=MyString” is not allowed.

ˆ (∗3) Only for same type Enums.

6.119.5 SQL Extension: Regular Expression Matching

The relational operator MATCH may only be used with string fields. The right-
hand operator is a string pattern. A string pattern specifies a template that
the left-hand field value must match. The characters ,/?∗[]-∧!% have special
meanings.

MATCH is case-sensitive.

The pattern allows limited ”wild card” matching under the following rules:

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

284 Module Documentation

Character Meaning
, ”,” separates a list of alternate

patterns. The field string is
matched if it matches one or more
of the patterns.

/ ”/” in the pattern string matches a
/ in the field string. This character
is used to separate a sequence of
mandatory substrings.

? ”?” in the pattern string matches
any single non-special characters in
the field string.

∗ ”∗” in the pattern string matches 0
or more non-special characters in
field string.

[charlist] Matches any one of the characters
from the list of characters in
charlist .

[s-e] Matches any character any
character from s to e, inclusive.

% ”%” is used to designate filter
expressions parameters.

[!charlist] or [∧charlist] Matches any characters not in
charlist (not supported).

[!s-e] or [∧s-e] Matches any characters not in the
interval [s-e] (not supported).

\ Escape character for special
characters (not supported)

The syntax is similar to the POSIX fnmatch syntax (1003.2-1992 section B.6).
The MATCH syntax is also similar to the ’subject’ strings of TIBCO Ren-
dezvous.

6.119.6 Examples

Assuming Topic ”Location” has as an associated type a structure with fields
”flight id, x, y, z”, and Topic ”FlightPlan” has as fields ”flight id, source, des-
tination”. The following are examples of using these expressions.

Example of a filter expression (for com.rti.dds.topic.ContentFilteredTopic
(p. 458)) or a query expression (for com.rti.dds.subscription.QueryCondition
(p. 1324)):

ˆ "z < 1000 AND x < 23"

Examples of a filter expression using MATCH (for

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.119 Queries and Filters Syntax 285

com.rti.dds.topic.ContentFilteredTopic (p. 458)) operator:

ˆ "symbol MATCH ’NASDAQ/GOOG’"

ˆ "symbol MATCH ’NASDAQ/[A-M]∗’"

Example of a topic expression (for com.rti.dds.topic.MultiTopic (p. 1208)
[Not supported (optional)]):

ˆ "SELECT flight id, x, y, z AS height FROM ’Location’ NATURAL JOIN

’FlightPlan’ WHERE height < 1000 AND x <23"

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

286 Module Documentation

6.120 RTI Connext API Reference

RTI Connext product specific API’s.

Modules

ˆ Clock Selection

APIs related to clock selection.

ˆ Multi-channel DataWriters

APIs related to Multi-channel DataWriters.

ˆ Pluggable Transports

APIs related to RTI Connext pluggable transports.

ˆ Configuration Utilities

Utility API’s independent of the DDS standard.

ˆ Durability and Persistence

APIs related to RTI Connext Durability and Persistence.

ˆ Configuring QoS Profiles with XML

APIs related to XML QoS Profiles.

6.120.1 Detailed Description

RTI Connext product specific API’s.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.121 Programming How-To’s 287

6.121 Programming How-To’s

These ”How To”s illustrate how to apply RTI Connext APIs to common use
cases.

Modules

ˆ Publication Example

A data publication example.

ˆ Subscription Example

A data subscription example.

ˆ Participant Use Cases

Working with domain partcipants.

ˆ Topic Use Cases

Working with topics.

ˆ FlowController Use Cases

Working with flow controllers.

ˆ Publisher Use Cases

Working with publishers.

ˆ DataWriter Use Cases

Working with data writers.

ˆ Subscriber Use Cases

Working with subscribers.

ˆ DataReader Use Cases

Working with data readers.

ˆ Entity Use Cases

Working with entities.

ˆ Waitset Use Cases

Using wait-sets and conditions.

ˆ Transport Use Cases

Working with pluggable transports.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

288 Module Documentation

ˆ Filter Use Cases

Working with data filters.

ˆ Creating Custom Content Filters

Working with custom content filters.

ˆ Large Data Use Cases

Working with large data types.

6.121.1 Detailed Description

These ”How To”s illustrate how to apply RTI Connext APIs to common use
cases.

These are a good starting point to familiarize yourself with DDS. You can use
these code fragments as ”templates” for writing your own code.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.122 Programming Tools 289

6.122 Programming Tools

Modules

ˆ rtiddsgen

Generates source code from data types declared in IDL, XML, XSD, or
WSDL files.

ˆ rtiddsping

Sends or receives simple messages using RTI Connext.

ˆ rtiddsspy

Debugging tool which receives all RTI Connext communication.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

290 Module Documentation

6.123 rtiddsgen

Generates source code from data types declared in IDL, XML, XSD, or WSDL
files. Generates code necessary to allocate, send, receive, and print user-defined
data types.

6.123.1 Usage

rtiddsgen [-d <outdir>]

[-language <C|C++|Java|C++/CLI|C#|Ada>]

[-namespace]

[-package <packagePrefix>]

[-example <arch>]

[-replace]

[-debug]

[-corba [client header file] [-orb <CORBA ORB>]]

[-optimization <level of optimization>]

[-stringSize <Unbounded strings size>]

[-sequenceSize <Unbounded sequences size>]

[-notypecode]

[-ppDisable]

[-ppPath <preprocessor executable>]

[-ppOption <option>]

[-D <name>[=<value>]]

[-U <name>]

[-I <directory>]

[-noCopyable]

[-use42eAlignment]

[-enableEscapeChar]

[-typeSequenceSuffix <Suffix>]

[-dataReaderSuffix <Suffix>]

[-dataWriterSuffix <Suffix>]

[-convertToXml |

-convertToXsd |

-convertToWsdl |

-convertToIdl]

[-convertToCcl]

[-convertToCcs]

[-expandOctetSeq]

[-expandCharSeq]

[-metp]

[-version]

[-help]

[-verbosity [1-3]]

[[-inputIdl] <IDLInputFile.idl> |

[-inputXml] <XMLInputFile.xml> |

[-inputXsd] <XSDInputFile.xsd> |

[-inputWsdl] <WSDLInputFile.wsdl>]

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.123 rtiddsgen 291

-d Specifies where to put the generated files. If omitted, the input file’s directory
is used.

-language Generates output for only the language specified. The default is
C++.

Use of generated Ada 2005 code requires installation of RTI Ada 2005 Language
Support. Please contact support@rti.com for more information.

-namespace Specifies the use of C++ namespaces (for C++ only).

-package Specifies a packagePrefix to use as the root package (for Java only).

-example Generates example programs and makefiles (for UNIX-based sys-
tems) or workspace and project files (for Windows systems) based on the input
types description file.

The <arch> parameter specifies the architecture for the example makefiles.

For -language C/C++, valid options for <arch> are:

sparcSol2.9gcc3.2, sparcSol2.9cc5.4, sparcSol2.10gcc3.4.2,
sparc64Sol2.10gcc3.4.2, i86Sol2.9gcc3.3.2, i86Sol2.10gcc3.4.4,
x64Sol2.10gcc3.4.3,

x64Darwin10gcc4.2.1,

i86Linux2.6gcc3.4.3, x64Linux2.6gcc3.4.5, i86Linux2.6gcc4.1.1,
x64Linux2.6gcc4.1.1, i86Linux2.6gcc4.1.2, x64Linux2.6gcc4.1.2,
i86Linux2.6gcc4.2.1, i86Linux2.6gcc4.4.3, x64Linux2.6gcc4.4.3,
x64Linux2.6gcc4.3.4, i86Linux2.6gcc4.4.5, x64Linux2.6gcc4.4.5,
i86Linux2.6gcc3.4.6, i86RedHawk5.1gcc4.1.2, i86RedHawk5.4gcc4.2.1,
x64Linux2.6gcc4.4.4, x64Linux2.6gcc4.5.1, i86Suse10.1gcc4.1.0,
x64Suse10.1gcc4.1.0, cell64Linux2.6gcc4.5.1, armv7leLinux2.6gcc4.4.1,

ppc4xxFPLinux2.6gcc4.3.3, ppc7400Linux2.6gcc3.3.3,
ppc85xxLinux2.6gcc4.3.2, ppc85xxWRLinux2.6gcc4.3.2,

i86Win32VS2005, x64Win64VS2005, i86Win32VS2008, x64Win64VS2008,
i86Win32VS2010, x64Win64VS2010,

ppc85xxInty5.0.11.xes-p2020, mpc8349Inty5.0.11.mds8349, pentiu-
mInty10.0.0.pcx86,

ppc7400Lynx4.0.0gcc3.2.2, ppc7400Lynx4.2.0gcc3.2.2,
ppc750Lynx4.0.0gcc3.2.2, ppc7400Lynx5.0.0gcc3.4.3, i86Lynx4.0.0gcc3.2.2,

ppc604Vx5.5gcc, ppc603Vx5.5gcc, ppc604Vx6.3gcc3.4.4, ppc604Vx6.3gcc3.4.4 -
rtp, ppc604Vx6.5gcc3.4.4, ppc604Vx6.5gcc3.4.4 rtp, pentiumVx6.6gcc4.1.2,
pentiumVx6.6gcc4.1.2 rtp, ppc405Vx6.6gcc4.1.2, ppc405Vx6.6gcc4.1.2 rtp,
ppc604Vx6.6gcc4.1.2, ppc604Vx6.6gcc4.1.2 rtp, pentiumVx6.7gcc4.1.2, pen-
tiumVx6.7gcc4.1.2 rtp, ppc604Vx6.7gcc4.1.2, ppc604Vx6.7gcc4.1.2 smp,
ppc604Vx6.7gcc4.1.2 rtp, ppc604Vx6.8gcc4.1.2, ppc604Vx6.8gcc4.1.2 rtp,

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

292 Module Documentation

pentiumVx6.8gcc4.1.2, pentiumVx6.8gcc4.1.2 rtp, ppc604Vx6.9gcc4.3.3,
ppc604Vx6.9gcc4.3.3 rtp, pentiumVx6.9gcc4.3.3, pentiumVx6.9gcc4.3.3 -
rtp, pentium64Vx6.9gcc4.3.3, pentium64Vx6.9gcc4.3.3 rtp,
ppc604VxT2.2.2gcc3.3.2, ppc604VxT2.2.2gcc3.3.2 v6, sbc8641Vx653-
2.3gcc3.3.2, simpcVx653-2.3gcc3.3.2,

p5AIX5.3xlc9.0, 64p5AIX5.3xlc9.0,

i86QNX6.4.1qcc gpp i86QNX6.5qcc gpp4.4.2

For -language C++/CLI and C#, valid options for <arch> are:

i86Win32dotnet2.0, x64Win64dotnet2.0, i86Win32dotnet4.0,
x64Win64dotnet4.0

For -language java, valid options for <arch> are:

i86Sol2.9jdk, i86Sol2.10jdk, x64Sol2.10jdk, sparcSol2.9jdk,
sparcSol2.10jdk, sparc64Sol2.10jdk, x64Darwin10gcc4.2.1jdk,
i86Linux2.6gcc3.4.3jdk, x64Linux2.6gcc3.4.5jdk, i86Linux2.6gcc4.1.1jdk,
x64Linux2.6gcc4.1.1jdk, i86Linux2.6gcc4.4.3jdk, x64Linux2.6gcc4.4.3jdk,
i86Linux2.6gcc4.4.5jdk, x64Linux2.6gcc4.4.5jdk, i86Linux2.6gcc4.2.1jdk,
x64Linux2.6gcc4.3.4jdk, i86Linux2.6gcc4.1.2jdk, x64Linux2.6gcc4.1.2jdk,
i86Linux2.6gcc3.4.6jdk, i86RedHawk5.1gcc4.1.2jdk, i86RedHawk5.4gcc4.2.1jdk,
i86Suse10.1gcc4.1.0jdk, x64Suse10.1gcc4.1.0jdk, i86Win32jdk,
x64Win64jdk, ppc7400Lynx4.0.0gcc3.2.2jdk, ppc750Lynx4.0.0gcc3.2.2jdk,
ppc7400Lynx5.0.0gcc3.4.3jdk, i86Lynx4.0.0gcc3.2.2jdk, p5AIX5.3xlc9.0jdk,
64p5AIX5.3xlc9.0jdk

For -language Ada, valid option for <arch> is i86Linux2.6gcc4.1.2

-replace Overwrites any existing output files. Warning: This removes any
changes you may have made to the original files.

-debug Generates intermediate files for debugging purposes.

-corba [client header file] [-orb <CORBA ORB>] Specifies that you want to
produce CORBA-compliant code.

Use [client header file] and [-orb <CORBA ORB>] for C++ only. The majority
of code generated is independent of the ORB. However, for some IDL features,
the code generated depends on the ORB. This version of rtiddsgen generates
code compatible with ACE-TAO or JacORB. To pick the ACE TAO version,
use the -orb parameter; the default is ACE TAO1.6.

client header file: the name of the header file for the IDL types generated by the
CORBA IDL compiler. This file will be included in the rtiddsgen type header
file instead of generating type definitions.

CORBA support requires the RTI CORBA Compatibility Kit, an add-
on product that provides a different version of rtiddsgen. Please contact
support@rti.com for more information.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.123 rtiddsgen 293

-optimization Sets the optimization level. (Only applies to C/C++)

ˆ 0 (default): No optimization.

ˆ 1: Compiler generates extra code for typedefs but optimizes its use. If the
type that is used is a typedef that can be resolved either to a primitive type
or to another type defined in the same file, the generated code will invoke
the code of the most basic type to which the typedef can be resolved,
unless the most basic type is an array or a sequence. This level can be
used if the generated code is not expected to be modified.

ˆ 2: Maximum optimization. Functionally the same as level 1, but extra
code for typedef is not generated. This level can be used if the typedefs
are only referred by types within the same file.

-typeSequenceSuffix Assigns a suffix to the name of the implicit sequence
defined for IDL types. (Only applies to CORBA)

By default, the suffix is ’Seq’. For example, given the type ’Foo’ the name of
the implicit sequence will be ’FooSeq’.

-dataReaderSuffix Assigns a suffix to the name of the DataReader interface.
(Only applies to CORBA)

By default, the suffix is ’DataReader’. For example, given the type ’Foo’ the
name of the DataReader interface will be ’FooDataReader’.

-dataWriterSuffix Assigns a suffix to the name of the DataWriter interface.
(Only applies to CORBA)

By default, the suffix is ’DataWriter’. For example, given the type ’Foo’ the
name of the DataWriter interface will be ’FooDataWriter’.

-stringSize Sets the size for unbounded strings. Default: 255 bytes.

-sequenceSize Sets the size for unbounded sequences. Default: 100 elements.

-notypecode: Disables the generation of type code information.

-ppDisable: Disables the preprocessor.

-ppPath <preprocessor executable>: Specifies the preprocessor path. If you
only specify the name of an executable (not a complete path to that executable),
the executable must be found in your Path.

The default value is ”cpp” for non-Windows architectures, ”cl.exe” for Windows
architectures.

If the default preprocessor is not found in your Path and you use -ppPath
to provide its full path and filename, you must also use -ppOption (described
below) to set the following preprocessor options:

ˆ If you use a non-default path for cl.exe, you also need to set:

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

294 Module Documentation

-ppOption /nologo -ppOption /C -ppOption /E -ppOption /X

ˆ If you use a non-default path for cpp, you also need to set:

-ppOption -C

-ppOption <option>: Specifies a preprocessor option. This parameter can
be used multiple times to provide the command-line options for the specified
preprocessor. See -ppPath (above).

-D <name>[=<value>]: Defines preprocessor macros.

-U <name>: Cancels any previous definition of name.

-I <directory>: Adds to the list of directories to be searched for type-definition
files (IDL, XML, XSD or WSDL files). Note: A type-definition file in one format
cannot include a file in another format.

-noCopyable: Forces rtiddsgen to put copy logic into the corresponding Type-
Support class rather than the type itself (for Java code generation only).

This option is not compatible with the use of ndds standalone type.jar.

-use42eAlignment: Generates code compliant with RTI Data Distribution
Service 4.2e.

If your RTI Connext application’s data type uses a ’double’,’long long’,’unsigned
long long’, or ’long double’ it will not be backwards compatible with RTI Data
Distribution Service 4.2e applications unless you use the -use42eAlignment flag
when generating code with rtiddsgen.

-enableEscapeChar: Enables use of the escape character ’ ’ in IDL identifiers.
With CORBA this option is always enabled.

-convertToXml: Converts the input type-description file to XML format.

-convertToIdl: Converts the input type-description file to IDL format.

-convertToXsd: Converts the input type-description file to XSD format.

-convertToWsdl: Converts the input type-description file to WSDL format.

-convertToCcl: Converts the input type-description file to CCL format.

-convertToCcs: Converts the input type-description file to CCS format.

-expandOctetSeq: When converting to CCS or CCL files, expand octet se-
quences. The default is to use a blob type.

-expandCharSeq: When converting to CCS or CCL files, expand char se-
quences. The default is to use a string type.

-metp: Generates code for the Multi-Encapsulation Type Support (METP)
library.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.123 rtiddsgen 295

-version: Prints the version, such as 4.5x. (Does not show ’patch’ revision
number.)

-help: Prints this rtiddsgen usage help.

-verbosity: rtiddsgen verbosity.

ˆ 1: exceptions

ˆ 2: exceptions and warnings

ˆ 3 (default): exceptions, warnings and information

-inputIdl: Indicates that the input file is an IDL file, regardless of the file
extension.

-inputXml: Indicates that the input file is a XML file, regardless of the file
extension.

-inputXsd: Indicates that the input file is a XSD file, regardless of the file
extension.

-inputWsdl: Indicates that the input file is a WSDL file, regardless of the file
extension.

IDLInputFile.idl: File containing IDL descriptions of your data types. If
-inputIdl is not used, the file must have an .idl extension.

XMLInputFile.xml: File containing XML descriptions of your data types. If
-inputXml is not used, the file must have an .xml extension.

XSDInputFile.xsd: File containing XSD descriptions of your data types. If
-inputXsd is not used, the file must have an .xsd extension.

XSDInputFile.wsdl: WSDL file containing XSD descriptions of your data
types. If -inputWsdl is not used, the file must have an .wsdl extension.

6.123.2 Description

rtiddsgen takes a language-independent specification of the data (in IDL, XML,
XSD or WSDL notation) and generates supporting classes and code to distribute
instances of the data over RTI Connext.

To use rtiddsgen, you must first write a description of your data types in IDL,
XML, XSD or WSDL format.

6.123.3 C++ Example

The following is an example generating the RTI Connext type myDataType:

IDL notation

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

296 Module Documentation

struct myDataType {
long value;

};

XML notation

<?xml version="1.0" encoding="UTF-8"?>

<types xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="rti dds topic types.xsd">

<struct name="myDataType">

<member name="value" type="long"/>

</struct>

</types>

XSD notation

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:dds="http://www.omg.org/dds"

xmlns:tns="http://www.omg.org/IDL-Mapped/"

targetNamespace="http://www.omg.org/IDL-Mapped/">

<xsd:import namespace="http://www.omg.org/dds" schemaLocation="rti dds topic types common.xsd"/>

<xsd:complexType name="myDataType">

<xsd:sequence>

<xsd:element name="value" minOccurs="1" maxOccurs="1" type="xsd:int"/>

</xsd:sequence>

</xsd:complexType>

</xsd:schema>

WSDL notation

<?xml version="1.0" encoding="UTF-8"?>

<definitions xmlns="http://schemas.xmlsoap.org/wsdl/" xmlns:dds="http://www.omg.org/dds" xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:tns="http://www.omg.org/IDL-Mapped/" targetNamespace="http://www.omg.org/IDL-Mapped/">

<types>

<xsd:schema targetNamespace="http://www.omg.org/IDL-Mapped/">

<xsd:import namespace="http://www.omg.org/dds" schemaLocation="rti dds topic types common.xsd"/>

<xsd:complexType name="myDataType">

<xsd:sequence>

<xsd:element name="value" minOccurs="1" maxOccurs="1" type="xsd:int"/>

</xsd:sequence>

</xsd:complexType>

</xsd:schema>

</types>

</definitions>

Assuming the name of the idl file is myFileName.(idl|xml|xsd|wsdl) then all you
need to do is type:

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.123 rtiddsgen 297

rtiddsgen myFileName.(idl|xml|xsd|wsdl)

This generates myFileName.cxx, myFileName.h, myFileNamePlugin.cxx, my-
FileNamePlugin.h, myFileNameSupport.cxx and myFileNameSupport.h. By
default, rtiddsgen will not overwrite these files. You must use the -replace
argument to do that.

6.123.4 IDL Language

In the IDL language, data types are described in a fashion almost identical to
structures in ”C.” The complete description of the language can be found at the
OMG website.

rtiddsgen does not support the full IDL language.

For detailed information about the IDL support in RTI Connext Service see
Chapter 3 of the user manual.

Below are the IDL types that are currently supported:

ˆ char

ˆ wchar

ˆ octet

ˆ short

ˆ unsigned short

ˆ long

ˆ unsigned long

ˆ long long

ˆ unsigned long long

ˆ float

ˆ double

ˆ long double

ˆ boolean

ˆ bounded string

ˆ unbounded string

ˆ bounded wstring

ˆ unbounded wstring

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

298 Module Documentation

ˆ enum

ˆ typedef

ˆ struct

ˆ valuetypes (limited support)

ˆ union

ˆ sequences

ˆ unbounded sequences

ˆ arrays

ˆ array of sequences

ˆ constant

The following non-IDL types are also supported by rtiddsgen:

ˆ bitfield

ˆ valued enum

Use of Unsupported Types in an IDL File

You may include unsupported data types in the IDL file. rtiddsgen does not
consider this an error. This allows you to use types that are defined in non-
IDL languages with either hand-written or non-rtiddsgen written plug-ins. For
example, the following is allowable:

//@copy #include "Bar.h"

//@copy #include "BarHandGeneratedPlugin.h"

struct Foo {

short height;

Bar barMember;

};

In the above case, Bar is defined externally by the user.

Multiple Types in a Single File

You can specify multiple types in a single IDL file. This can simplify manage-
ment of files in your distributed program.

Use of Directives in an IDL File

The following directives can be used in your IDL file: Note: Do not put a space
between the slashes and the @ sign. Note: Directives are case-sensitive (for
example: use key, not Key).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.123 rtiddsgen 299

ˆ //@key Specifies that the field declared just before this directive in the
enclosing structure is part of the key. Any number of a structure’s fields
may be declared part of the key.

ˆ //@copy Copies a line of text (verbatim) into the generated code (for all
languages). The text is copied into all the type-specific files generated by
rtiddsgen except the examples.

ˆ //@copy-declaration Like //@copy, but only copies the text into the file
where the type is declared (<type>.h for C++/C, or <type>.java for
Java).

ˆ //@copy-c Like //@copy, but for C++/C-only code.

ˆ //@copy-c-declaration Like //@copy-declaration, but for C++/C-only
code.

ˆ //@copy-java Like //@copy, but for Java-only code.

ˆ //@copy-java-begin Copies a line of text at the beginning of all the Java
files generated for a type. The directive only applies to the first type that
is immediately below in the IDL file.

ˆ //@copy-java-declaration Like //@copy-declaration, but for Java-only
code.

ˆ //@copy-java-declaration-begin Like //@copy-java-begin but only copies
the text into the file where the type is declared.

ˆ //@copy-ada Like //@copy, but for Ada-only code.

ˆ //@copy-ada-begin Like //@copy-java-begin, but for Ada-only code.

ˆ //@copy-ada-declaration Like //@copy-declaration, but for Ada-only
code.

ˆ //@copy-ada-declaration-begin Like //@copy-java-declaration, but for
Ada-only code.

ˆ //@resolve-name [true|false] Specifies whether or not rtiddsgen should re-
solve the scope of a type. If this directive is not present or is set to true,
rtiddsgen resolves the scope. Otherwise rtiddsgen delegates the resolution
of a type to the user.

ˆ //@top-level [true|false] Specifies whether or not rtiddsgen should generate
type-support code for a particular struct or union. The default is true.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

300 Module Documentation

6.123.5 XML Language

The data types can be described using XML.

RTI Connext provides DTD and XSD files that describe the XML format.

The DTD definition of the XML elements can be
found in ../../../resource/dtd/rti dds topic types.dtd” under
<NDDSHOME>/resource/rtiddsgen/schema.

The XSD definition of the XML elements can be
found in ../../../resource/xsd/rti dds topic types.xsd” under
<NDDSHOME>/resource/rtiddsgen/schema.

The XML validation performed by rtiddsgen always uses the DTD definition.
If the <!DOCTYPE> tag is not present in the XML file, rtiddsgen will look for
the DTD document under <NDDSHOME>/resource/rtiddsgen/schema. Oth-
erwise, it will use the location specified in <!DOCTYPE>.

For detailed information about the mapping between IDL and XML see Chapter
3 of the RTI Connext User Manual.

6.123.6 XSD Language

The data types can be described using XML schemas (XSD files). The XSD
specification is based on the standard IDL to WSDL mapping described in the
OMG document CORBA to WSDL/SOAP Interworking Specification

For detailed information about the mapping between IDL and XML see Chapter
3 of the RTI Connext User Manual.

6.123.7 WSDL Language

The data types can be described using XML schemas contained in WSDL
files. The XSD specification is based on the standard IDL to WSDL map-
ping described in the OMG document CORBA to WSDL/SOAP Interworking
Specification

For detailed information about the mapping between IDL and XML see Chapter
3 of the RTI Connext User Manual.

6.123.8 Using Generated Types Without RTI Connext
(Standalone)

You can use the generated type-specific source and header files without linking
the RTI Connext libraries or even including the RTI Connext header files. That
is, the generated files for your data types can be used standalone.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.123 rtiddsgen 301

The directory <NDDSHOME>/resource/rtiddsgen/standalone contains the
helper files required to work in standalone mode:

ˆ include: header and templates files for C/C++.

ˆ src: source files for C/C++.

ˆ class: Java jar file.

Using Standalone Types in C

The generated files that can be used standalone are:

ˆ <idl file name>.c : Types source file

ˆ <idl file name>.h : Types header file

You cannot use the type plug-in (<idl file>Plugin.c <idl file>Plugin.h) or the
type support (<idl file>Support.c <idl file>Support.h) code standalone.

To use the rtiddsgen-generated types in a standalone manner:

ˆ Include the directory <NDDSHOME>/resource/rtiddsgen/standalone/include
in the list of directories to be searched for header files.

ˆ Add the source files ndds standalone type.c and <idl file name>.c to your
project.

ˆ Include the file <idl file name>.h in the source files that will use the
generated types in a standalone way.

ˆ Compile the project using the two following preprocessor definitions:

– NDDS STANDALONE TYPE

– The definition for your platform: RTI VXWORKS, RTI QNX, RTI -
WIN32, RTI INTY, RTI LYNX or RTI UNIX

Using Standalone Types in C++

The generated files that can be used standalone are:

ˆ <idl file name>.cxx : Types source file

ˆ <idl file name>.h : Types header file

You cannot use the type plugin (<idl file>Plugin.cxx <idl file>Plugin.h) or the
type support (<idl file>Support.cxx <idl file>Support.h) code standalone.

To use the generated types in a standalone manner:

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

302 Module Documentation

ˆ Include the directory <NDDSHOME>/resource/rtiddsgen/standalone/include
in the list of directories to be searched for header files.

ˆ Add the source files ndds standalone type.cxx and <idl file name>.cxx to
your project.

ˆ Include the file <idl file name>.h in the source files that will use the
generated types in a standalone way.

ˆ Compile the project using the two following preprocessor definitions:

– NDDS STANDALONE TYPE

– The definition for your platform: RTI VXWORKS, RTI QNX, RTI -
WIN32, RTI INTY, RTI LYNX or RTI UNIX

Standalone Types in Java

The generated files that can be used standalone are:

ˆ <idl type>.java

ˆ <idl type>Seq.java

You cannot use the type code (<idl file>TypeCode.java), the type support
(<idl type>TypeSupport.java), the data reader (<idl file>DataReader.java) or
the data writer code (<idl file>DataWriter.java) standalone.

To use the generated types in a standalone manner:

ˆ Include the file ndds standalone type.jar in the classpath of your project.

ˆ Compile the project using the standalone types files (<idl type>.java <idl
type>Seq.java).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.124 rtiddsping 303

6.124 rtiddsping

Sends or receives simple messages using RTI Connext. The rtiddsping utility
uses RTI Connext to send and receive preconfigured ”Ping” messages to other
rtiddsping applications which can be running in the same or different computers.

The rtiddsping utility can used to test the network and/or computer configura-
tion and the environment settings that affect the operation of RTI Connext.

Usage

rtiddsping [-help] [-version]

[-domainId <domainId>] ... defaults to 0

[-index <NN>] ... defaults to -1 (auto)

[-appId <ID>] ... defaults to a middleware-selected value

[-Verbosity <NN>] ... can be 0..5

[-peer <PEER>] ... PEER format is NN@TRANSPORT://ADDRESS

[-discoveryTTL <NN>] ... can be 0..255

[-transport <MASK>] ... defaults to DDS TRANSPORTBUILTIN MASK DEFAULT

[-msgMaxSize <SIZE>] ... defaults to -1 (transport default)

[-shmRcvSize <SIZE>] ... defaults to -1 (transport default)

[-deadline <SS>] ... defaults to -1 (no deadline)

[-durability <TYPE>] ... TYPE can be VOLATILE or TRANSIENT LOCAL

[-multicast <ADDRESS>] ... defaults to no multicast

[-numSamples <NN>] ... defaults to infinite

[-publisher] ... this is the default

[-queueSize <NN>] ... defaults to 1

[-reliable] ... defaults to best-efforts

[-sendPeriod <SS>] ... SS is in seconds, defaults to 1

[-subscriber]

[-timeFilter <SS>] ... defaults to 0 (no filter)

[-timeout <SS>] ... SS is in seconds, defaults to infinite

[-topicName <NAME>] ... defaults to PingTopic

[-typeName <NAME>] ... defaults to PingType

[-useKeys <NN>] ... defaults to PingType

[-qosFile <file>]

[-qosProfile <lib.prof>]

Example: rtiddsping -domainId 3 -publisher -numSamples 100

VxWorks Usage

rtiddsping "[<options>]"

The options use the same syntax as above.

Example rtiddsping "-domainId 3 -publisher -numSamples 100"

If the stack of the shell is not large enough to run rtiddsping, use "taskSpawn":

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

304 Module Documentation

taskSpawn <name>,<priority>,<taskspawn options>,<stack size in bytes>,rtiddsping,"[\<options\>]"
The options use the same syntax as above.

Example taskSpawn "rtiddsping",100,0x8,50000,rtiddsping,"-domainId 3 -publisher -numSamples 100"

Options:

-help Prints a help message and exits.

-version Prints the version and exits.

-Verbosity <NN> Sets the verbosity level. The range is 0 to 5.

0 has minimal output and does not echo the fact that data is being sent or
received.

1 prints the most relevant statuses, including the sending and receiving of data.
This is the default.

2 prints a summary of the parameters that are in use and echoes more detailed
status messages.

3-5 Mostly affects the verbosity used by the internal RTI Connext modules that
implement rtiddsping. The output is not always readable; its main purpose is
to provide information that may be useful to RTI’s support team.

Example: rtiddsping -Verbosity 2

-domainId <NN>

Sets the domain ID. The valid range is 0 to 100.

Example: rtiddsping -domainId 31

-appId <ID>

Sets the application ID. If unspecified, the system will pick one automatically.

This option is rarely used.

Example: rtiddsping -appId 34556

-index <NN>

Sets the participantIndex. If participantIndex is not -1 (auto), it must be dif-
ferent than the one used by all other applications in the same computer and
domainId. If this is not respected, rtiddsping (or the application that starts
last) will get an initialization error.

Example: rtiddsping -index 2

-peer <PEER>

Specifies a PEER to be used for discovery. Like any RTI Connext application, it
defaults to the setting of the environment variable NDDS DISCOVERY PEERS

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.124 rtiddsping 305

or a preconfigured multicast address if the environment is not set.

The format used for PEER is the same one used for NDDS DISCOVERY -
PEERS and is described in detail in NDDS DISCOVERY PEERS (p. 55).
A brief summary follows:

The general format is: NN@TRANSPORT://ADDRESS where:

ˆ ADDRESS is an address (in name form or using the IP notation
xxx.xxx.xxx.xxx). ADDRESS may be a multicast address.

ˆ TRANSPORT represents the kind of transport to use and NN is the max-
imum participantIndex expected at that location. NN can be omitted and
it is defaulted to ’4’

ˆ Valid settings for TRANSPORT are ’udpv4’ and ’shmem’. The default
setting if the transport is omitted is ’udpv4’.

ˆ ADDRESS cannot be omitted if the ’-peer’ option is specified.

The -peer option may be repeated to specify multiple peers.

Example: rtiddsping -peer 10.10.1.192 -peer mars -peer 4@pluto

-discoveryTTL <TTL>

Sets the TTL (time-to-live) used for multicast discovery. If not specified, it
defaults to the built-in RTI Connext default.

The valid range is 0 to 255. The value ’0’ limits multicast to the node itself
(i.e., can only discover applications running on the same computer). The value
’1’ limits multicast discovery to computers on the same subnet. Values higher
than 1 generally indicate the maximum number of routers that may be traversed
(although some routers may be configured differently).

Example: rtiddsping -discoveryTTL 16

-transport <MASK>

A bit-mask that sets the enabled builtin transports. If not specified, the default
set of transports is used (UDPv4 + shmem). The bit values are: 1=UDPv4,
2=shmem, 8=UDPv6.

-msgMaxSize <SIZE>

Configure the maximum message size allowed by the installed transports. This
is needed if you are using rtiddsping to communicate with an application that
has set these transport parameters to larger than default values.

-shmRcvSize <SIZE>

Increase the shared memory receive-buffer size. This is needed if you are using
rtiddsping to communicate with an application that has set these transport
parameters to larger than default values.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

306 Module Documentation

-deadline <SS>

This option only applies if the ’-subscriber’ option is also specified.

Sets the DEADLINE QoS for the subscriptions made by rtiddsping.

Note that this may cause the subscription QoS to be incompatible with the
publisher if the publisher did not specify a sendPeriod greater than the deadline.
If the QoS is incompatible, rtiddsping will not receive updates.

Each time a deadline is detected, rtiddsping will print a message indicating the
number of deadlines received so far.

Example: rtiddsping -deadline 3.5

-durability <TYPE>

Sets the DURABILITY QoS used for publishing or subscribing. Valid settings
are: VOLATILE and TRANSIENT LOCAL (default). The effect of this setting
can only be observed when it is used in in conjunction with reliability and a
queueSize larger than 1. If all these conditions are met, a late-joining subscriber
will be able to see up to queueSize samples that were previously written by the
publisher.

Example: rtiddsping -durability VOLATILE

-multicast <ADDRESS>

This option only applies if the ’-subscriber’ option is also specified.

Configures ping to receive messages over multicast. The <ADDRESS> param-
eter indicates the address to use. ADDRESS must be in the valid range for mul-
ticast addresses. For IP version 4 the valid range is 224.0.0.1 to 239.255.255.255

Example: rtiddsping -multicast 225.1.1.1

-numSamples <NN>

Sets the number of samples that will be sent by rtiddsping. After those samples
are sent, rtiddsping will exit. messages.

Example: rtiddsping -numSamples 10

-publisher

Causes rtiddsping to send ping messages. This is the default.

Example: rtiddsping -publisher

-queueSize <NN>

Specifies the maximal number of samples to hold in the queue. In the case of the
publisher, it affects the samples that are available for a late-joining subscriber.

Example: rtiddsping -queueSize 100

-reliable

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.124 rtiddsping 307

Configures the RELIABILITY QoS for publishing or subscribing. The default
setting (if -reliable is not used) is BEST EFFORT

Example: rtiddsping -reliable

-sendPeriod <SS>

Sets the period (in seconds) at which rtiddsping sends the messages.

Example: rtiddsping -sendPeriod 0.5

-subscriber

Causes rtiddsping to listen for ping messages. This option cannot be specified
if ’-publisher’ is also specified.

Example: rtiddsping -subscriber

-timeFilter <SS>

This option only applies if the ’-subscriber’ option is also specified.

Sets the TIME BASED FILTER QoS for the subscriptions made by rtiddsping.
This QoS causes RTI Connext to filter out messages that are published at a rate
faster than what the filter duration permits. For example, if the filter duration
is 10 seconds, messages will be printed no faster than once every 10 seconds.

Example: rtiddsping -timeFilter 5.5

-timeout <SS>

This option only applies if the ’-subscriber’ option is also specified.

Sets a timeout (in seconds) that will cause rtiddsping to exit if no samples are
received for a duration that exceeds the timeout.

Example: rtiddsping -timeout 30

-topicName <NAME>

Sets the topic name used by rtiddsping. The default is ’RTIddsPingTopic’. To
communicate, both the publisher and subscriber must specify the same topic
name.

Example: rtiddsping -topicName Alarm

-typeName <NAME>

Sets the type name used by rtiddsping. The default is ’RTIddsPingType’. To
communicate, both publisher and subscriber must specify the same type name.

Example: rtiddsping -typeName AlarmDescription

-useKeys <NN>

This option causes rtiddsping to use a topic whose data contains a key. The
value of the NN parameter indicates the number of different data objects (each
identified by a different value of the key) that will be published by rtiddsping.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

308 Module Documentation

The value of NN only affects the publishing behavior. However NN still needs
to be specified when the -useKeys option is used with the -subscriber option.

For communication to occur, both the publisher and subscriber must agree on
whether the topic that they publish/subscribe contains a key. Consequently, if
you specify the -useKeys parameter for the publisher, you must do the same
with the subscriber. Otherwise communication will not be stablished.

Example: rtiddsping -useKeys 20

-qosFile <file>

Allow you to specify additional QoS XML settings using url profile. For more
information on the syntax, see Chapter 15 in the RTI Connext User’s Manual.

Example: rtiddsping -qosFile /home/user/QoSProfileFile.xml

-qosProfile <lib.prof>

This option specifies the library name and profile name that the tool should use.

QoS settings

rtiddsping is configured internally using a special set of QoS settings in a pro-
file called InternalPingLibrary.InternalPingProfile. This is the default profile
unless a profile called DefaultPingLibrary.DefaultPingProfile is found. You can
use the command-line option -qosProfile to tell rtiddsping to use a different
lib.profile instead of DefaultPingLibrary.DefaultPingProfile. Like all the other
RTI Connext applications, rtiddsping loads all the profiles specified using the
environment variable NDDS QOS PROFILES or the file named USER QOS -
PROFILES found in the current working directory.

The QoS settings used internally are available in the file RTIDDSSPING QOS -
PROFILES.example.xml.

Description

The usage depends on the operating system from which rtiddsping is executed.

Examples for UNIX, Linux, and Windows Systems

On UNIX, Linux, Windows and other operating systems that have a shell, the
syntax matches the one of the regular commands available in the shell. In the
examples below, the string ’shell prompt>’ represents the prompt that the shell
prints and are not part of the command that must be typed.

shell prompt> rtiddsping -domainId 3 -publisher -numSamples 100

shell prompt> rtiddsping -domainId 5 -subscriber -timeout 20

shell prompt> rtiddsping -help

VxWorks examples:

On VxWorks systems, the libraries libnddscore.so, libnddsc.so and libnddscpp.so
must first be loaded. The rtiddsping command must be typed to the VxWorks

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.124 rtiddsping 309

shell (either an rlogin shell, a target-server shell, or the serial line prompt). The
arguments are passed embedded into a single string, but otherwise have the
same syntax as for Unix/Windows. In the Unix, Linux, Windows and other
operating systems that have a shell, the syntax matches the one of the regular
commands available in the shell. In the examples below, the string ’vxworks
prompt>’ represents the prompt that the shell prints and are not part of the
command that must be typed.

vxworks prompt> rtiddsping "-domainId 3 -publisher -numSamples 100"

vxworks prompt> rtiddsping "-domainId 5 -subscriber -timeout 20"

vxworks prompt> rtiddsping "-help"

or, alternatively (to avoid overflowing the stack):

vxworks prompt> taskSpawn "rtiddsping", 100, 0x8, 50000, rtiddsping, "-domainId 3 -publisher -numSamples 100"

vxworks prompt> taskSpawn "rtiddsping", 100, 0x8, 50000, rtiddsping, "-domainId 5 -subscriber -timeout 20"

vxworks prompt> taskSpawn "rtiddsping", 100, 0x8, 50000, rtiddsping, "-help"

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

310 Module Documentation

6.125 rtiddsspy

Debugging tool which receives all RTI Connext communication. The rtiddsspy
utility allows the user to monitor groups of publications available on any RTI
Connext domain.

Note: If you have more than one DataWriter for the same Topic, and these
DataWriters have different settings for the Ownership QoS, then rtiddsspy will
only receive (and thus report on) the samples from the first DataWriter.

To run rtiddsspy, like any RTI Connext application, you must have the NDDS -
DISCOVERY PEERS environment variable that defines your RTI Connext do-
main; otherwise you must specify the peers as command line parameters.

Usage

rtiddsspy [-help] [-version]

[-domainId <domainId>] ... defaults to 0

[-index <NN>] ... defaults to -1 (auto)

[-appId <ID>] ... defaults to a middleware-selected value

[-Verbosity <NN>] ... can be 0..5

[-peer <PEER>] ... PEER format is NN@TRANSPORT://ADDRESS

[-discoveryTTL <NN>] ... can be 0..255

[-transport <MASK>] ... defaults to DDS TRANSPORTBUILTIN MASK DEFAULT

[-msgMaxSize <SIZE>] ... defaults to -1 (transport default)

[-shmRcvSize <SIZE>] ... defaults to -1 (transport default)

[-tcMaxSize <SIZE>] ... defaults to 4096

[-hOutput]

[-deadline <SS>] ... defaults to -1 (no deadline)

[-history <DEPTH>] ... defaults to 8192

[-timeFilter <SS>] ... defaults to 0 (no filter)

[-useFirstPublicationQos]

[-showHandle]

[-typeRegex <REGEX>] ... defaults to "*"

[-topicRegex <REGEX>] ... defaults to "*"

[-typeWidth <WIDTH>] ... can be 1..255

[-topicWidth <WIDTH>] ... can be 1..255

[-truncate]

[-printSample]

[-qosFile <file>]

[-qosProfile <lib.prof>]

Example: rtiddsspy -domainId 3 -topicRegex "Alarm*"

VxWorks Usage

rtiddsspy "[<options>]"

The options use the same syntax as above.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.125 rtiddsspy 311

Example rtiddsspy "-domainId 3 -topicRegex Alarm*"

rtiddsspy requires about 25 kB of stack. If the stack size of the shell from which it is invoked is not large enough, use "taskSpawn":

taskSpawn <name>, <priority>, <taskspawn options>, <stack size in bytes>, rtiddsspy, "[\<options\>]"

The options use the same syntax as above.

Example taskSpawn "rtiddsspy", 100, 0x8, 50000, rtiddsspy, "-domainId 3 -topicRegex Alarm*"

Options:

-help Prints a help message and exits.

-version Prints the version and exits.

-Verbosity <NN> Sets the verbosity level. The range is 0 to 5.

0 has minimal output and does not echo the fact that data is being sent or
received.

1 prints the most relevant statuses, including the sending and receiving of data.
This is the default.

2 prints a summary of the parameters being used and echoes more detailed
status messages.

3-5 Mostly affect the verbosity used by the internal RTI Connext modules that
implement rtiddsspy. The output is not always readable; its main purpose is to
provide information that may be useful to RTI’s support team.

Example: rtiddsspy -Verbosity 2

-domainId <NN>

Sets the domain ID. The valid range is 0 to 100.

Example: rtiddsspy -domainId 31

-appId <ID>

Sets the application ID. If unspecified, the system will pick one automatically.

This option is rarely used.

Example: rtiddsspy -appId 34556

-index <NN>

Sets the participantIndex. If participantIndex is not -1 (auto), it must be dif-
ferent than the one used by all other applications in the same computer and
domainId. If this is not respected, rtiddsspy (or the application that starts last)
will get an initialization error.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

312 Module Documentation

Example: rtiddsspy -index 2

-peer <PEER>

Specifies a PEER to be used for discovery. Like any RTI Connext application, it
defaults to the setting of the environment variable NDDS DISCOVERY PEERS
or a preconfigured multicast address if the environment is not set.

The format used for PEER is the same used for the NDDS DISCOVERY -
PEERS and is described in detail in NDDS DISCOVERY PEERS (p. 55).
A brief summary follows:

The general format is: NN@TRANSPORT://ADDRESS where:

ˆ ADDRESS is an address (in name form or using the IP notation
xxx.xxx.xxx.xxx). ADDRESS may be a multicast address.

ˆ TRANSPORT represents the kind of transport to use and NN is the max-
imum participantIndex expected at that location. NN can be omitted and
it is defaulted to ’4’

ˆ Valid settings for TRANSPORT are ’udpv4’ and ’shmem’. The default
setting if the transport is omitted is ’udpv4’

ˆ ADDRESS cannot be omitted if the ’-peer’ option is specified.

The -peer option may be repeated to specify multiple peers.

Example: rtiddsspy -peer 10.10.1.192 -peer mars -peer 4@pluto

-discoveryTTL <TTL>

Sets the TTL (time-to-live) used for multicast discovery. If not specified, it
defaults to the built-in RTI Connext default.

The valid range is 0 to 255. The value ’0’ limits multicast to the node itself (i.e.
can only discover applications running on the same computer). The value ’1’
limits multicast discovery to computers on the same subnet. Settings greater
than 1 generally indicate the maximum number of routers that may be traversed
(although some routers may be configured differently).

Example: rtiddsspy -discoveryTTL 16

-transport <MASK>

SPecifies a bit-mask that sets the enabled builtin transports. If not specified,
the default set of transports is used (UDPv4 + shmem). The bit values are:
1=UDPv4, 2=shmem, 8=UDPv6.

-msgMaxSize <SIZE>

Configures the maximum message size allowed by the installed transports. This
is needed if you are using rtiddsspy to communicate with an application that
has set these transport parameters to larger than default values.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.125 rtiddsspy 313

-shmRcvSize <SIZE>

Increases the shared memory receive-buffer size. This is needed if you are us-
ing rtiddsspy to communicate with an application that has set these transport
parameters to larger than default values.

-tcMaxSize <SIZE>

Configures the maximum size, in bytes, of a received type code.

-hOutput

Prints information on the output format used by rtiddsspy.

This option prints an explanation of the output and then exits.

Example: rtiddsspy -hOutput

-deadline <SS>

Sets the requested DEADLINE QoS for the subscriptions made by rtiddsspy.

Note that this may cause the subscription QoS to be incompatible with the
publisher if the publisher did not specify an offered deadline that is greater or
equal to the one requested by rtiddsspy. If the QoS is incompatible rtiddsspy
will not receive updates from that writer.

Each time a deadline is detected rtiddsspy will print a message that indicates
the number of deadlines received so far.

Example: rtiddsspy -deadline 3.5

-timeFilter <SS>

Sets the TIME BASED FILTER QoS for the subscriptions made by rtiddsspy.
This QoS causes RTI Connext to filter-out messages that are published at a rate
faster than what the filter duration permits. For example if the filter duration
is 10 seconds, messages will be printed no faster than once each 10 seconds.

Example: rtiddsspy -timeFilter 10.0

-history <DEPTH>

Sets the HISTORY depth QoS for the subscriptions made by rtiddsspy.

This may be relevant if the publisher has batching turned on, or if the -
useFirstPublicationQos option is used that is causing a reliable or durable sub-
scription to be created.

Example: rtiddsspy -history 1

-useFirstPublicationQos

Sets the RELIABILITY and DURABILITY QoS of the subscription based on
the first discovered publication of that topic.

See also -history option.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

314 Module Documentation

Example: rtiddsspy -useFirstPublicationQos

-showHandle

Prints additional information about each sample received. The additional infor-
mation is the ’instance handle’ field in the SampleHeader, which can be used to
distinguish among multiple instances of data objects published under the same
topic and type names.

Samples displayed that share the topic and type names and also have the same
value for the instance handle represent value updates to the same data object.
On the other hand, samples that share the topic and type names but display
different values for the instance handle.

This option causes rtiddsspy to print an explanation of updates to the values of
different data objects.

Example: rtiddsspy -showHandle

-typeRegex <REGEX>

Subscribe only to types that match the REGEX regular expression. The syntax
of the regular expression is defined by the POSIX regex function.

When typing a regular expression to a command-line shell, some symbols may
need to be escaped to avoid interpretation by the shell. In general, it is safest
to include the expression in double quotes.

This option may be repeated to specify multiple topic expressions.

Example: rtiddsspy -typeRegex ”SensorArray∗”

-topicRegex <REGEX>

Subscribe only to topics that match the REGEX regular expression. The syntax
of the regular expression is defined by the POSIX regex function.

When typing a regular expression to a command-line shell, some symbols may
need to be escaped to avoid interpretation by the shell. In general, it is safest
to include the expression in double quotes.

This option may be repeated to specify topic multiple expressions.

Example: rtiddsspy -topicRegex ”Alarm∗”

-typeWidth <WIDTH>

Sets the maximum width of the Type name column. Names wider than this will
wrap around, unless -truncate is specified. Can be 1..255.

-topicWidth <WIDTH>

Sets the maximum width of the Topic name column. Names wider than this
will wrap around, unless -truncate is specified. Can be 1..255.

-truncate

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

6.125 rtiddsspy 315

Specifies that names exceeding the maximum number of characters should be
truncated.

-printSample

Prints the value of the received samples.

-qosFile <file>

Allows you to specify additional QoS XML settings using url profile. For more
information on the syntax, see Chapter 15 in the RTI Connext User’s Manual.

Example: rtiddsspy -qosFile /home/user/QoSProfileFile.xml

-qosProfile <lib.prof>

Specifies the library name and profile name to be used.

QoS settings

rtiddsspy is configured to discover as many entities as possible. To do so, an
internal profile is defined, called InternalSpyLibrary.InternalSpyProfile. This is
the default profile, unless a profile called DefaultSpyLibrary.DefaultSpyProfile is
found. You can use the command-line option -qosProfile to tell rtiddsspy to use a
speficied lib.profile instead of DefaultSpyLibrary.DefaultSpyProfile. Like all the
other RTI Connext applications, rtiddsspy loads all the profiles specified using
the environment variable NDDS QOS PROFILES or the file named USER -
QOS PROFILES found in the current working directory.

The QoS settings used internally are available in the file RTIDDSSPY QOS -
PROFILES.example.xml.

Usage Examples

The usage depends on the operating system from which rtiddsspy is executed.

Examples for UNIX, Linux, Windows systems

On UNIX, Linux, Windows and other operating systems that have a shell, the
syntax matches the one of the regular commands available in the shell. In the
examples below, the string ’shell prompt>’ represents the prompt that the shell
prints and are not part of the command that must be typed.

shell prompt> rtiddsspy -domainId 3

shell prompt> rtiddsspy -domainId 5 -topicRegex "Alarm*"

shell prompt> rtiddsspy -help

Examples for VxWorks Systems

On VxWorks systems, the libraries libnddscore.so, libnddsc.so and libnddscpp.so
must first be loaded. The rtiddsspy command must be typed to the VxWorks
shell (either an rlogin shell, a target-server shell, or the serial line prompt).
The arguments are passed embedded into a single string, but otherwise have
the same syntax as for Unix/Windows. In UNIX, Linux, Windows and other

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

316 Module Documentation

operating systems that have a shell, the syntax matches the one of the regular
comamnds available in the shell. In the examples below, the string ’vxworks
prompt>’ represents the prompt that the shell prints and are not part of the
command that must be typed.

vxworks prompt> rtiddsspy "-domainId 3"

vxworks prompt> rtiddsspy "-domainId 5 5 -topicRegex "Alarm*"

vxworks prompt> rtiddsspy "-help"

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

Chapter 7

Namespace Documentation

7.1 Package com.rti.dds.domain

Contains the com.rti.dds.domain.DomainParticipant (p. 629) class that
acts as an entrypoint of RTI Connext and acts as a factory for many of the
classes. The com.rti.dds.domain.DomainParticipant (p. 629) also acts as
a container for the other objects that make up RTI Connext.

Classes

ˆ interface DomainParticipant

<<interface>> (p. 271) Container for all
com.rti.dds.infrastructure.DomainEntity (p. 628) objects.

ˆ class DomainParticipantAdapter

<<eXtension>> (p. 270) A listener adapter in the spirit of the Java AWT
listener adapters. (The Adapter provides empty implementations for the lis-
tener methods)

ˆ class DomainParticipantFactory

<<singleton>> (p. 271) <<interface>> (p. 271) Allows creation and de-
struction of com.rti.dds.domain.DomainParticipant (p. 629) objects.

ˆ class DomainParticipantFactoryQos

QoS policies supported by a com.rti.dds.domain.DomainParticipantFactory
(p. 708).

ˆ interface DomainParticipantListener

318 Namespace Documentation

<<interface>> (p. 271) Listener for participant status.

ˆ class DomainParticipantQos

QoS policies supported by a com.rti.dds.domain.DomainParticipant
(p. 629) entity.

Packages

ˆ package builtin

Builtin topic (p. 350) for accessing information about the DomainPartici-
pants discovered by RTI Connext.

7.1.1 Detailed Description

Contains the com.rti.dds.domain.DomainParticipant (p. 629) class that
acts as an entrypoint of RTI Connext and acts as a factory for many of the
classes. The com.rti.dds.domain.DomainParticipant (p. 629) also acts as
a container for the other objects that make up RTI Connext.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

7.2 Package com.rti.dds.domain.builtin 319

7.2 Package com.rti.dds.domain.builtin

Builtin topic (p. 350) for accessing information about the DomainParticipants
discovered by RTI Connext.

Classes

ˆ class ParticipantBuiltinTopicData

Entry created when a DomainParticipant (p. 629) object is discovered.

ˆ class ParticipantBuiltinTopicDataDataReader

Instantiates DataReader < builtin.ParticipantBuiltinTopicData
(p. 1227) > .

ˆ class ParticipantBuiltinTopicDataSeq

Instantiates com.rti.dds.util.Sequence (p. 1432) <
builtin.ParticipantBuiltinTopicData (p. 1227) > .

ˆ class ParticipantBuiltinTopicDataTypeSupport

Instantiates TypeSupport < builtin.ParticipantBuiltinTopicData
(p. 1227) > .

7.2.1 Detailed Description

Builtin topic (p. 350) for accessing information about the DomainParticipants
discovered by RTI Connext.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

320 Namespace Documentation

7.3 Package com.rti.dds.dynamicdata

<<eXtension>> (p. 270) The Dynamic Data API provides a way to inter-
act with arbitrarily complex data types at runtime without the need for code
generation.

Classes

ˆ class DynamicData

A sample of any complex data type, which can be inspected and manipulated
reflectively.

ˆ class DynamicDataInfo

A descriptor for a com.rti.dds.dynamicdata.DynamicData (p. 780) ob-
ject.

ˆ class DynamicDataMemberInfo

A descriptor for a single member (i.e. field) of dynamically defined data type.

ˆ class DynamicDataProperty t

A collection of attributes used to configure
com.rti.dds.dynamicdata.DynamicData (p. 780) objects.

ˆ class DynamicDataReader

Reads (subscribes to) objects of type
com.rti.dds.dynamicdata.DynamicData (p. 780).

ˆ class DynamicDataSeq

An ordered collection of com.rti.dds.dynamicdata.DynamicData
(p. 780) elements.

ˆ class DynamicDataTypeProperty t

A collection of attributes used to configure
com.rti.dds.dynamicdata.DynamicData (p. 780) objects.

ˆ class DynamicDataTypeSerializationProperty t

Properties that govern how data of a certain type will be serialized on the
network.

ˆ class DynamicDataTypeSupport

A factory for registering a dynamically defined type and creating
com.rti.dds.dynamicdata.DynamicData (p. 780) objects.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

7.3 Package com.rti.dds.dynamicdata 321

ˆ class DynamicDataWriter

Writes (publishes) objects of type com.rti.dds.dynamicdata.DynamicData
(p. 780).

7.3.1 Detailed Description

<<eXtension>> (p. 270) The Dynamic Data API provides a way to inter-
act with arbitrarily complex data types at runtime without the need for code
generation.

This API allows you to define new data types, modify existing data types, and
interact reflectively with samples. To use it, you will take the following steps:

1. Obtain a TypeCode (see Type Code Support (p. 162)) that defines
the type definition you want to use.

A TypeCode includes a type’s kind (TCKind), name, and members (that is,
fields). You can create your own TypeCode using the TypeCodeFactory class –
see, for example, the TypeCodeFactory.create struct tc (p. 1644) method.
Alternatively, you can use a remote TypeCode that you discovered on the net-
work (see Built-in Topics (p. 153)) or one generated by rtiddsgen (p. 290).

2. Wrap the TypeCode in a com.rti.dds.dynamicdata.DynamicDataTypeSupport
(p. 887) object.

See the constructor DynamicDataTypeSup-
port.DynamicDataTypeSupport (p. 889). This object lets you connect the
type definition to a com.rti.dds.domain.DomainParticipant (p. 629) and
manage data samples (of type com.rti.dds.dynamicdata.DynamicData
(p. 780)).

3. Register the com.rti.dds.dynamicdata.DynamicDataTypeSupport
(p. 887) with one or more domain (p. 317) participants.

See com.rti.dds.dynamicdata.DynamicDataTypeSupport.register -
type (p. 889). This action associates the data type with a logical name that you
can use to create topics. (Starting with this step, working with a dynamically
defined data type is almost exactly the same as working with a generated one.)

4. Create a com.rti.dds.topic.Topic (p. 1545) from the
com.rti.dds.domain.DomainParticipant (p. 629).

Use the name under which you registered your data type – see
com.rti.dds.domain.DomainParticipant.create topic (p. 670). This
com.rti.dds.topic.Topic (p. 1545) is what you will use to produce and con-
sume data.

5. Create a com.rti.dds.dynamicdata.DynamicDataWriter (p. 893)
and/or com.rti.dds.dynamicdata.DynamicDataReader (p. 851).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

322 Namespace Documentation

These objects will produce and/or consume data (of type
com.rti.dds.dynamicdata.DynamicData (p. 780)) on the
com.rti.dds.topic.Topic (p. 1545). You can create these objects di-
rectly from the com.rti.dds.domain.DomainParticipant (p. 629) – see
com.rti.dds.domain.DomainParticipant.create datawriter (p. 661) and
com.rti.dds.domain.DomainParticipant.create datareader (p. 666)
– or by first creating intermediate com.rti.dds.publication.Publisher
(p. 1277) and com.rti.dds.subscription.Subscriber (p. 1478) objects – see
com.rti.dds.domain.DomainParticipant.create publisher (p. 656) and
com.rti.dds.domain.DomainParticipant.create subscriber (p. 659).

6. Write and/or read the data of interest.

7. Tear down the objects described above.

You should delete them in the reverse order in which you
created them. Note that unregistering your data type with
the com.rti.dds.domain.DomainParticipant (p. 629) is op-
tional; all types are automatically unregistered when the
com.rti.dds.domain.DomainParticipant (p. 629) itself is deleted.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

7.4 Package com.rti.dds.infrastructure 323

7.4 Package com.rti.dds.infrastructure

Defines the abstract classes and the interfaces that are refined by the other
modules. Contains common definitions such as return codes, status values, and
QoS policies.

Classes

ˆ class AllocationSettings t

Resource allocation settings.

ˆ class AsynchronousPublisherQosPolicy

Configures the mechanism that sends user data in an external middleware
thread.

ˆ class AvailabilityQosPolicy

Configures the availability of data.

ˆ class BAD PARAM

The exception BadKind (p. 398) is thrown when an inappropriate operation
is invoked on a TypeCode object.

ˆ class BAD TYPECODE

The exception BadKind (p. 398) is thrown when an inappropriate operation
is invoked on a TypeCode object.

ˆ class BadKind

The exception BadKind (p. 398) is thrown when an inappropriate operation
is invoked on a TypeCode object.

ˆ class BadMemberId

The specified TypeCode member ID is invalid.

ˆ class BadMemberName

The specified TypeCode member name is invalid.

ˆ class BatchQosPolicy

Used to configure batching of multiple samples into a single network packet
in order to increase throughput for small samples.

ˆ class BooleanSeq

Instantiates com.rti.dds.util.Sequence (p. 1432) < boolean >.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

324 Namespace Documentation

ˆ class Bounds
A user exception thrown when a parameter is not within the legal bounds.

ˆ class BuiltinTopicReaderResourceLimits t
Built-in topic (p. 350) reader’s resource limits.

ˆ class ByteSeq
Instantiates com.rti.dds.util.Sequence (p. 1432) < byte >.

ˆ class ChannelSettings t
Type used to configure the properties of a channel.

ˆ class ChannelSettingsSeq
Declares IDL sequence< com.rti.dds.infrastructure.ChannelSettings t
(p. 441) >.

ˆ class CharSeq
Instantiates com.rti.dds.util.Sequence (p. 1432) < char >.

ˆ interface Condition
<<interface>> (p. 271) Root class for all the conditions that may be at-
tached to a com.rti.dds.infrastructure.WaitSet (p. 1695).

ˆ class ConditionSeq
Instantiates com.rti.dds.util.Sequence (p. 1432) <
com.rti.dds.infrastructure.Condition (p. 451) >.

ˆ class ContentFilterProperty t
<<eXtension>> (p. 270) Type used to provide all the required information
to enable content filtering.

ˆ class Cookie t
<<eXtension>> (p. 270) Sequence of bytes identifying a written data sam-
ple, used when writing with parameters.

ˆ interface Copyable
<<eXtension>> (p. 270) <<interface>> (p. 271) Interface for all the
user-defined data type classes that support copy.

ˆ class DatabaseQosPolicy
Various threads and resource limits settings used by RTI Connext to control
its internal database.

ˆ class DataReaderProtocolQosPolicy

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

7.4 Package com.rti.dds.infrastructure 325

Along with com.rti.dds.infrastructure.WireProtocolQosPolicy
(p. 1709) and com.rti.dds.infrastructure.DataWriterProtocolQosPolicy
(p. 571), this QoS policy configures the DDS on-the-network protocol
(RTPS).

ˆ class DataReaderResourceLimitsQosPolicy
Various settings that configure how a
com.rti.dds.subscription.DataReader (p. 473) allocates and uses
physical memory for internal resources.

ˆ class DataWriterProtocolQosPolicy
Protocol that applies only to com.rti.dds.publication.DataWriter (p. 538)
instances.

ˆ class DataWriterResourceLimitsInstanceReplacementKind
Sets the kinds of instances that can be replaced when instance resource limits
are reached.

ˆ class DataWriterResourceLimitsQosPolicy
Various settings that configure how a
com.rti.dds.publication.DataWriter (p. 538) allocates and uses physical
memory for internal resources.

ˆ class DeadlineQosPolicy
Expresses the maximum duration (deadline) within which an instance is ex-
pected to be updated.

ˆ class DestinationOrderQosPolicy
Controls how the middleware will deal with data sent by multiple
com.rti.dds.publication.DataWriter (p. 538) entities for the same in-
stance of data (i.e., same com.rti.dds.topic.Topic (p. 1545) and key).

ˆ class DestinationOrderQosPolicyKind
Kinds of destination order.

ˆ class DiscoveryBuiltinReaderFragmentationResourceLimits t
ˆ class DiscoveryConfigBuiltinPluginKind

Built-in discovery plugins that can be used.

ˆ class DiscoveryConfigQosPolicy
Settings for discovery configuration.

ˆ class DiscoveryPluginPromiscuityKind
<<eXtension>> (p. 270) Type used to indicate promiscuity mode of the
discovery plugin.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

326 Namespace Documentation

ˆ class DiscoveryQosPolicy
Configures the mechanism used by the middleware to automatically discover
and connect with new remote applications.

ˆ interface DomainEntity
<<interface>> (p. 271) Abstract base class for all DDS entities except for
the com.rti.dds.domain.DomainParticipant (p. 629).

ˆ class DomainParticipantResourceLimitsQosPolicy
Various settings that configure how a
com.rti.dds.domain.DomainParticipant (p. 629) allocates and uses
physical memory for internal resources, including the maximum sizes of
various properties.

ˆ class DoubleSeq
Instantiates com.rti.dds.util.Sequence (p. 1432) < double >.

ˆ class DurabilityQosPolicy
This QoS policy specifies whether or not RTI Connext will
store and deliver previously published data samples to new
com.rti.dds.subscription.DataReader (p. 473) entities that join the
network later.

ˆ class DurabilityQosPolicyKind
Kinds of durability.

ˆ class DurabilityServiceQosPolicy
Various settings to configure the external RTI Persis-
tence Service used by RTI Connext for DataWriters with a
com.rti.dds.infrastructure.DurabilityQosPolicy (p. 765) setting of
DurabilityQosPolicyKind.PERSISTENT DURABILITY QOS
(p. 772) or DurabilityQosPolicyKind.TRANSIENT DURABILITY -
QOS (p. 771).

ˆ class Duration t
Type for duration representation.

ˆ class EndpointGroup t
Specifies a group of endpoints that can be collectively identified by a name
and satisfied by a quorum.

ˆ class EndpointGroupSeq
A sequence of com.rti.dds.infrastructure.EndpointGroup t (p. 909).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

7.4 Package com.rti.dds.infrastructure 327

ˆ interface Entity

<<interface>> (p. 271) Abstract base class for all the DDS objects that
support QoS policies, a listener, and a status condition.

ˆ class EntityFactoryQosPolicy

A QoS policy for all com.rti.dds.infrastructure.Entity
(p. 912) types that can act as factories for one or more other
com.rti.dds.infrastructure.Entity (p. 912) types.

ˆ class EntityNameQosPolicy

Assigns a name and a role name to a
com.rti.dds.domain.DomainParticipant (p. 629),
com.rti.dds.publication.DataWriter (p. 538) or
com.rti.dds.subscription.DataReader (p. 473). These names will
be visible during the discovery process and in RTI tools to help you visualize
and debug your system.

ˆ class EventQosPolicy

Settings for event.

ˆ class ExclusiveAreaQosPolicy

Configures multi-thread concurrency and deadlock prevention capabilities.

ˆ class FloatSeq

Instantiates com.rti.dds.util.Sequence (p. 1432) < float >.

ˆ class GroupDataQosPolicy

Attaches a buffer of opaque data that is distributed by means of Built-in
Topics (p. 153) during discovery.

ˆ class GuardCondition

<<interface>> (p. 271) A specific com.rti.dds.infrastructure.Condition
(p. 451) whose trigger value is completely under the control of the appli-
cation.

ˆ class GUID t

Type for GUID (Global Unique Identifier) representation.

ˆ class HistoryQosPolicy

Specifies the behavior of RTI Connext in the case where the value of a sample
changes (one or more times) before it can be successfully communicated to
one or more existing subscribers.

ˆ class HistoryQosPolicyKind

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

328 Namespace Documentation

Kinds of history.

ˆ class InetAddressSeq

Declares IDL sequence< java.net.InetAddress >.

ˆ class InstanceHandle t

Type definition for an instance handle.

ˆ class InstanceHandleSeq

Instantiates com.rti.dds.util.Sequence (p. 1432) <
com.rti.dds.infrastructure.InstanceHandle t (p. 1080) > .

ˆ class IntSeq

Instantiates com.rti.dds.util.Sequence (p. 1432) < int >.

ˆ class LatencyBudgetQosPolicy

Provides a hint as to the maximum acceptable delay from the time the data
is written to the time it is received by the subscribing applications.

ˆ class LifespanQosPolicy

Specifies how long the data written by the
com.rti.dds.publication.DataWriter (p. 538) is considered valid.

ˆ interface Listener

<<interface>> (p. 271) Abstract base class for all Listener (p. 1154) in-
terfaces.

ˆ class LivelinessQosPolicy

Specifies and configures the mechanism that allows
com.rti.dds.subscription.DataReader (p. 473) entities to detect
when com.rti.dds.publication.DataWriter (p. 538) entities become
disconnected or ”dead.”.

ˆ class LivelinessQosPolicyKind

Kinds of liveliness.

ˆ class Locator t

<<eXtension>> (p. 270) Type used to represent the addressing information
needed to send a message to an RTPS Endpoint using one of the supported
transports.

ˆ class LocatorFilter t

Specifies the configuration of an individual channel within a MultiChannel
DataWriter.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

7.4 Package com.rti.dds.infrastructure 329

ˆ class LocatorFilterQosPolicy

The QoS policy used to report the configuration of a MultiChannel
DataWriter as part of builtin.PublicationBuiltinTopicData.

ˆ class LocatorFilterSeq

Declares IDL sequence< com.rti.dds.infrastructure.LocatorFilter -
t (p. 1178) >.

ˆ class LocatorSeq

Declares IDL sequence < com.rti.dds.infrastructure.Locator t (p. 1174)
>.

ˆ class LoggingQosPolicy

Configures the RTI Connext logging facility.

ˆ class LongDoubleSeq

Instantiates com.rti.dds.util.Sequence (p. 1432) <
com.rti.dds.infrastructure.LongDouble >.

ˆ class LongSeq

Instantiates com.rti.dds.util.Sequence (p. 1432) < long >.

ˆ class MultiChannelQosPolicy

Configures the ability of a DataWriter to send data on different multicast
groups (addresses) based on the value of the data.

ˆ class ObjectHolder

<<eXtension>> (p. 270) Holder of object instance

ˆ class OwnershipQosPolicy

Specifies whether it is allowed for multiple
com.rti.dds.publication.DataWriter (p. 538) (s) to write the same
instance of the data and if so, how these modifications should be arbitrated.

ˆ class OwnershipQosPolicyKind

Kinds of ownership.

ˆ class OwnershipStrengthQosPolicy

Specifies the value of the strength used to arbitrate among mul-
tiple com.rti.dds.publication.DataWriter (p. 538) objects that at-
tempt to modify the same instance of a data type (identified by
com.rti.dds.topic.Topic (p. 1545) + key).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

330 Namespace Documentation

ˆ class PartitionQosPolicy
Set of strings that introduces a logical partition among the top-
ics visible by a com.rti.dds.publication.Publisher (p. 1277) and a
com.rti.dds.subscription.Subscriber (p. 1478).

ˆ class PresentationQosPolicy
Specifies how the samples representing changes to data instances are pre-
sented to a subscribing application.

ˆ class PresentationQosPolicyAccessScopeKind
Kinds of presentation ”access scope”.

ˆ class ProductVersion t
<<eXtension>> (p. 270) Type used to represent the current version of RTI
Connext.

ˆ class ProfileQosPolicy
Configures the way that XML documents containing QoS profiles are loaded
by RTI Connext.

ˆ class Property t
Properties are name/value pairs objects.

ˆ class PropertyQosPolicy
Stores name/value(string) pairs that can be used to configure certain param-
eters of RTI Connext that are not exposed through formal QoS policies. Can
also be used to store and propagate application-specific name/value pairs that
can be retrieved by user code during discovery.

ˆ class PropertyQosPolicyHelper
Policy Helpers which facilitate management of the properties in the input
policy.

ˆ class PropertySeq
Declares IDL sequence < com.rti.dds.infrastructure.Property t
(p. 1250) >.

ˆ class ProtocolVersion t
<<eXtension>> (p. 270) Type used to represent the version of the RTPS
protocol.

ˆ class PublishModeQosPolicy
Specifies how RTI Connext sends application data on the network. This QoS
policy can be used to tell RTI Connext to use its own thread to send data,
instead of the user thread.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

7.4 Package com.rti.dds.infrastructure 331

ˆ class PublishModeQosPolicyKind

Kinds of publishing mode.

ˆ class Qos

An abstract base class for all QoS types.

ˆ class QosPolicy

The base class for all QoS policies.

ˆ class QosPolicyCount

Type to hold a counter for a com.rti.dds.infrastructure.QosPolicyId t
(p. 1318).

ˆ class QosPolicyCountSeq

Declares IDL sequence < com.rti.dds.infrastructure.QosPolicyCount
(p. 1315) >.

ˆ class QosPolicyId t

Type to identify QosPolicies.

ˆ class ReaderDataLifecycleQosPolicy

Controls how a DataReader manages the lifecycle of the data that it has
received.

ˆ class ReceiverPoolQosPolicy

Configures threads used by RTI Connext to receive and process data from
transports (for example, UDP sockets).

ˆ class RefilterQosPolicyKind

<<eXtension>> (p. 270) Kinds of Refiltering

ˆ class ReliabilityQosPolicy

Indicates the level of reliability offered/requested by RTI Connext.

ˆ class ReliabilityQosPolicyKind

Kinds of reliability.

ˆ class RemoteParticipantPurgeKind

Available behaviors for halting communication with remote participants (and
their contained entities) with which discovery communication has been lost.

ˆ class ResourceLimitsQosPolicy

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

332 Namespace Documentation

Controls the amount of physical memory allocated for DDS entities, if dy-
namic allocations are allowed, and how they occur. Also controls memory
usage among different instance values for keyed topics.

ˆ class RETCODE ALREADY DELETED

The object target of this operation has already been deleted.

ˆ class RETCODE BAD PARAMETER

Illegal parameter value.

ˆ class RETCODE ERROR

Generic, unspecified error.

ˆ class RETCODE ILLEGAL OPERATION

The operation was called under improper circumstances.

ˆ class RETCODE IMMUTABLE POLICY

Application attempted to modify an immutable QoS policy.

ˆ class RETCODE INCONSISTENT POLICY

Application specified a set of QoS policies that are not consistent with each
other.

ˆ class RETCODE NO DATA

Indicates a transient situation where the operation did not return any data
but there is no inherent error.

ˆ class RETCODE NOT ENABLED

Operation invoked on a com.rti.dds.infrastructure.Entity (p. 912) that is
not yet enabled.

ˆ class RETCODE OUT OF RESOURCES

RTI Connext ran out of the resources needed to complete the operation.

ˆ class RETCODE PRECONDITION NOT MET

A pre-condition for the operation was not met.

ˆ class RETCODE TIMEOUT

The operation timed out.

ˆ class RETCODE UNSUPPORTED

Unsupported operation. Can only returned by operations that are unsup-
ported.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

7.4 Package com.rti.dds.infrastructure 333

ˆ class RtpsReliableReaderProtocol t

Qos (p. 1313) related to reliable reader protocol defined in RTPS.

ˆ class RtpsReliableWriterProtocol t

QoS related to the reliable writer protocol defined in RTPS.

ˆ class RtpsReservedPortKind

RTPS reserved port kind, used to identify the types of ports that can be re-
served on domain (p. 317) participant enable.

ˆ class RtpsWellKnownPorts t

RTPS well-known port mapping configuration.

ˆ class SampleIdentity t

Type definition for an Sample Identity.

ˆ class SequenceNumber t

Type for sequence number representation.

ˆ class ShortSeq

Instantiates com.rti.dds.util.Sequence (p. 1432) < short >.

ˆ interface StatusCondition

<<interface>> (p. 271) A specific com.rti.dds.infrastructure.Condition
(p. 451) that is associated with each com.rti.dds.infrastructure.Entity
(p. 912).

ˆ class StatusKind

Type for status kinds.

ˆ class StringSeq

Declares IDL sequence < String > .

ˆ class SystemException

System exception.

ˆ class SystemResourceLimitsQosPolicy

Configures com.rti.dds.domain.DomainParticipant (p. 629)-
independent resources used by RTI Connext. Mainly used to change
the maximum number of com.rti.dds.domain.DomainParticipant
(p. 629) entities that can be created within a single process (address space).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

334 Namespace Documentation

ˆ class ThreadSettings t

The properties of a thread of execution.

ˆ class ThreadSettingsCpuRotationKind

Determines how com.rti.dds.infrastructure.ThreadSettings t.cpu list
(p. 1532) affects processor affinity for thread-related QoS policies that ap-
ply to multiple threads.

ˆ class ThreadSettingsKind

A collection of flags used to configure threads of execution.

ˆ class Time t

Type for time representation.

ˆ class TimeBasedFilterQosPolicy

Filter that allows a com.rti.dds.subscription.DataReader (p. 473) to
specify that it is interested only in (potentially) a subset of the values of
the data.

ˆ class TopicDataQosPolicy

Attaches a buffer of opaque data that is distributed by means of Built-in
Topics (p. 153) during discovery.

ˆ class TransportBuiltinKind

Built-in transport kind.

ˆ class TransportBuiltinQosPolicy

Specifies which built-in transports are used.

ˆ class TransportMulticastMapping t

Type representing a list of multicast mapping elements.

ˆ class TransportMulticastMappingFunction t

Type representing an external mapping function.

ˆ class TransportMulticastMappingQosPolicy

Specifies the multicast address on which a
com.rti.dds.subscription.DataReader (p. 473) wants to receive its
data. It can also specify a port number as well as a subset of the avail-
able (at the com.rti.dds.domain.DomainParticipant (p. 629) level)
transports with which to receive the multicast data.

ˆ class TransportMulticastMappingSeq

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

7.4 Package com.rti.dds.infrastructure 335

Declares IDL sequence< com.rti.dds.infrastructure.TransportMulticastSettings -
t (p. 1594) >.

ˆ class TransportMulticastQosPolicy
Specifies the multicast address on which a
com.rti.dds.subscription.DataReader (p. 473) wants to receive its
data. It can also specify a port number as well as a subset of the avail-
able (at the com.rti.dds.domain.DomainParticipant (p. 629) level)
transports with which to receive the multicast data.

ˆ class TransportMulticastQosPolicyKind
Transport Multicast Policy Kind.

ˆ class TransportMulticastSettings t
Type representing a list of multicast locators.

ˆ class TransportMulticastSettingsSeq
Declares IDL sequence< com.rti.dds.infrastructure.TransportMulticastSettings -
t (p. 1594) >.

ˆ class TransportPriorityQosPolicy
This QoS policy allows the application to take advantage of transports that
are capable of sending messages with different priorities.

ˆ class TransportSelectionQosPolicy
Specifies the physical transports a com.rti.dds.publication.DataWriter
(p. 538) or com.rti.dds.subscription.DataReader (p. 473) may use to
send or receive data.

ˆ class TransportUnicastQosPolicy
Specifies a subset of transports and a port number that can be used by an
Entity (p. 912) to receive data.

ˆ class TransportUnicastSettings t
Type representing a list of unicast locators.

ˆ class TransportUnicastSettingsSeq
Declares IDL sequence< com.rti.dds.infrastructure.TransportUnicastSettings -
t (p. 1608) >.

ˆ class TypeSupportQosPolicy
Allows you to attach application-specific values to a DataWriter or
DataReader that are passed to the serialization or deserialization routine
of the associated data type.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

336 Namespace Documentation

ˆ class UserDataQosPolicy
Attaches a buffer of opaque data that is distributed by means of Built-in
Topics (p. 153) during discovery.

ˆ class UserException
User exception.

ˆ class VendorId t
<<eXtension>> (p. 270) Type used to represent the vendor of the service
implementing the RTPS protocol.

ˆ class WaitSet
<<interface>> (p. 271) Allows an application to wait until one or more of
the attached com.rti.dds.infrastructure.Condition (p. 451) objects has a
trigger value of true or else until the timeout expires.

ˆ class WaitSetProperty t
<<eXtension>> (p. 270) Specifies the
com.rti.dds.infrastructure.WaitSet (p. 1695) behavior for multiple
trigger events.

ˆ class WcharSeq
Instantiates com.rti.dds.util.Sequence (p. 1432) < char >.

ˆ class WireProtocolQosPolicy
Specifies the wire-protocol-related attributes for the
com.rti.dds.domain.DomainParticipant (p. 629).

ˆ class WireProtocolQosPolicyAutoKind
Kind of auto mechanism used to calculate the GUID prefix.

ˆ class WriteParams t
<<eXtension>> (p. 270) Input parameters for writing
with com.rti.dds.topic.example.FooDataWriter.write w params,
com.rti.dds.topic.example.FooDataWriter.dispose w params,
com.rti.dds.topic.example.FooDataWriter.register instance w params,
com.rti.dds.topic.example.FooDataWriter.unregister instance w params

ˆ class WriterDataLifecycleQosPolicy
Controls how a com.rti.dds.publication.DataWriter (p. 538) handles the
lifecycle of the instances (keys) that it is registered to manage.

ˆ class WstringSeq
Instantiates com.rti.dds.util.Sequence (p. 1432) < char∗ >.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

7.4 Package com.rti.dds.infrastructure 337

7.4.1 Detailed Description

Defines the abstract classes and the interfaces that are refined by the other
modules. Contains common definitions such as return codes, status values, and
QoS policies.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

338 Namespace Documentation

7.5 Package com.rti.dds.publication

Contains the com.rti.dds.publication.FlowController
(p. 942), com.rti.dds.publication.Publisher (p. 1277), and
com.rti.dds.publication.DataWriter (p. 538) classes as well as
the com.rti.dds.publication.PublisherListener (p. 1302) and
com.rti.dds.publication.DataWriterListener (p. 566) interfaces, and
more generally, all that is needed on the publication (p. 338) side.

Classes

ˆ interface DataWriter

<<interface>> (p. 271) Allows an application to set the value of the data
to be published under a given com.rti.dds.topic.Topic (p. 1545).

ˆ class DataWriterAdapter

<<eXtension>> (p. 270) A listener adapter in the spirit of the Java AWT
listener adapters. (The Adapter provides empty implementations for the lis-
tener methods or functions.)

ˆ class DataWriterCacheStatus

<<eXtension>> (p. 270) The status of the writer’s cache.

ˆ interface DataWriterListener

<<interface>> (p. 271) com.rti.dds.infrastructure.Listener (p. 1154)
for writer status.

ˆ class DataWriterProtocolStatus

<<eXtension>> (p. 270) The status of a writer’s internal protocol related
metrics, like the number of samples pushed, pulled, filtered; and status of
wire protocol traffic.

ˆ class DataWriterQos

QoS policies supported by a com.rti.dds.publication.DataWriter (p. 538)
entity.

ˆ interface FlowController

<<interface>> (p. 271) A flow controller is the object responsible for
shaping the network traffic by determining when attached asynchronous
com.rti.dds.publication.DataWriter (p. 538) instances are allowed to
write data.

ˆ class FlowControllerProperty t

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

7.5 Package com.rti.dds.publication 339

Determines the flow control characteristics of the
com.rti.dds.publication.FlowController (p. 942).

ˆ class FlowControllerSchedulingPolicy

Kinds of flow controller scheduling policy.

ˆ class FlowControllerTokenBucketProperty t

com.rti.dds.publication.FlowController (p. 942) uses the popular token
bucket approach for open loop network flow control. The flow control char-
acteristics are determined by the token bucket properties.

ˆ class LivelinessLostStatus

StatusKind.LIVELINESS LOST STATUS.

ˆ class OfferedDeadlineMissedStatus

StatusKind.OFFERED DEADLINE MISSED STATUS.

ˆ class OfferedIncompatibleQosStatus

StatusKind.OFFERED INCOMPATIBLE QOS STATUS.

ˆ class PublicationMatchedStatus

StatusKind.PUBLICATION MATCHED STATUS.

ˆ interface Publisher

<<interface>> (p. 271) A publisher is the object responsible for the actual
dissemination of publications.

ˆ class PublisherAdapter

<<eXtension>> (p. 270) A listener adapter in the spirit of the Java AWT
listener adapters. (The Adapter provides empty implementations for the lis-
tener methods)

ˆ interface PublisherListener

<<interface>> (p. 271) com.rti.dds.infrastructure.Listener (p. 1154)
for com.rti.dds.publication.Publisher (p. 1277) status.

ˆ class PublisherQos

QoS policies supported by a com.rti.dds.publication.Publisher (p. 1277)
entity.

ˆ class PublisherSeq

Declares IDL sequence < com.rti.dds.publication.Publisher (p. 1277) >
.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

340 Namespace Documentation

ˆ class ReliableReaderActivityChangedStatus

<<eXtension>> (p. 270) Describes the activity (i.e. are acknowledgements
forthcoming) of reliable readers matched to a reliable writer.

ˆ class ReliableWriterCacheChangedStatus

<<eXtension>> (p. 270) A summary of the state of a data writer’s cache
of unacknowledged samples written.

ˆ class ReliableWriterCacheEventCount

<<eXtension>> (p. 270) The number of times the number of unacknowl-
edged samples in the cache of a reliable writer hit a certain well-defined
threshold.

Packages

ˆ package builtin

Builtin topic (p. 350) for accessing information about the Publications dis-
covered by RTI Connext.

ˆ package example

7.5.1 Detailed Description

Contains the com.rti.dds.publication.FlowController
(p. 942), com.rti.dds.publication.Publisher (p. 1277), and
com.rti.dds.publication.DataWriter (p. 538) classes as well as
the com.rti.dds.publication.PublisherListener (p. 1302) and
com.rti.dds.publication.DataWriterListener (p. 566) interfaces, and
more generally, all that is needed on the publication (p. 338) side.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

7.6 Package com.rti.dds.publication.builtin 341

7.6 Package com.rti.dds.publication.builtin

Builtin topic (p. 350) for accessing information about the Publications discov-
ered by RTI Connext.

Classes

ˆ class PublicationBuiltinTopicData

Entry created when a com.rti.dds.publication.DataWriter (p. 538) is dis-
covered in association with its Publisher (p. 1277).

ˆ class PublicationBuiltinTopicDataDataReader

Instantiates DataReader < builtin.PublicationBuiltinTopicData
(p. 1264) > .

ˆ class PublicationBuiltinTopicDataSeq

Instantiates com.rti.dds.util.Sequence (p. 1432) <
builtin.PublicationBuiltinTopicData (p. 1264) > .

ˆ class PublicationBuiltinTopicDataTypeSupport

Instantiates TypeSupport < builtin.PublicationBuiltinTopicData
(p. 1264) > .

7.6.1 Detailed Description

Builtin topic (p. 350) for accessing information about the Publications discov-
ered by RTI Connext.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

342 Namespace Documentation

7.7 Package com.rti.dds.publication.example

Classes

ˆ interface FooDataWriter

<<interface>> (p. 271) <<generic>> (p. 271) User data type specific
data writer.

7.7.1 Detailed Description

Describes FooDataWriter (p. 1040), where Foo represents a user-defined data-
type intended to be distributed using DDS.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

7.8 Package com.rti.dds.subscription 343

7.8 Package com.rti.dds.subscription

Contains the com.rti.dds.subscription.Subscriber
(p. 1478), com.rti.dds.subscription.DataReader (p. 473),
com.rti.dds.subscription.ReadCondition (p. 1326), and
com.rti.dds.subscription.QueryCondition (p. 1324) classes, as well
as the com.rti.dds.subscription.SubscriberListener (p. 1504) and
com.rti.dds.subscription.DataReaderListener (p. 501) interfaces, and
more generally, all that is needed on the subscription (p. 343) side.

Classes

ˆ interface DataReader

<<interface>> (p. 271) Allows the application to: (1) declare the data it
wishes to receive (i.e. make a subscription (p. 343)) and (2) access the data
received by the attached com.rti.dds.subscription.Subscriber (p. 1478).

ˆ class DataReaderAdapter

<<eXtension>> (p. 270) A listener adapter in the spirit of the Java AWT
listener adapters. (The Adapter provides empty implementations for the lis-
tener methods)

ˆ class DataReaderCacheStatus

<<eXtension>> (p. 270) The status of the reader’s cache.

ˆ interface DataReaderListener

<<interface>> (p. 271) com.rti.dds.infrastructure.Listener (p. 1154)
for reader status.

ˆ class DataReaderProtocolStatus

<<eXtension>> (p. 270) The status of a reader’s internal protocol related
metrics, like the number of samples received, filtered, rejected; and status of
wire protocol traffic.

ˆ class DataReaderQos

QoS policies supported by a com.rti.dds.subscription.DataReader
(p. 473) entity.

ˆ class DataReaderSeq

Declares IDL sequence < com.rti.dds.subscription.DataReader (p. 473)
> .

ˆ class InstanceStateKind

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

344 Namespace Documentation

Indicates is the samples are from a live
com.rti.dds.publication.DataWriter (p. 538) or not.

ˆ class LivelinessChangedStatus

StatusKind.LIVELINESS CHANGED STATUS.

ˆ interface QueryCondition

<<interface>> (p. 271) These are specialised
com.rti.dds.subscription.ReadCondition (p. 1326) objects that al-
low the application to also specify a filter on the locally available data.

ˆ interface ReadCondition

<<interface>> (p. 271) Conditions specifically dedicated to read operations
and attached to one com.rti.dds.subscription.DataReader (p. 473).

ˆ class RequestedDeadlineMissedStatus

StatusKind.REQUESTED DEADLINE MISSED STATUS.

ˆ class RequestedIncompatibleQosStatus

StatusKind.REQUESTED INCOMPATIBLE QOS STATUS.

ˆ class SampleInfo

Information that accompanies each sample that is read or taken.

ˆ class SampleInfoSeq

Declares IDL sequence < com.rti.dds.subscription.SampleInfo
(p. 1404) > .

ˆ class SampleLostStatus

StatusKind.SAMPLE LOST STATUS STATUS.

ˆ class SampleLostStatusKind

Kinds of reasons why a sample was lost.

ˆ class SampleRejectedStatus

StatusKind.SAMPLE REJECTED STATUS.

ˆ class SampleRejectedStatusKind

Kinds of reasons for rejecting a sample.

ˆ class SampleStateKind

Indicates whether or not a sample has ever been read.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

7.8 Package com.rti.dds.subscription 345

ˆ interface Subscriber
<<interface>> (p. 271) A subscriber is the object responsible for actually
receiving data from a subscription (p. 343).

ˆ class SubscriberAdapter
A listener adapter in the spirit of the Java AWT listener adapters. (The
Adapter provides empty implementations for the listener methods).

ˆ interface SubscriberListener
<<interface>> (p. 271) com.rti.dds.infrastructure.Listener (p. 1154)
for status about a subscriber.

ˆ class SubscriberQos
QoS policies supported by a com.rti.dds.subscription.Subscriber
(p. 1478) entity.

ˆ class SubscriberSeq
Declares IDL sequence < com.rti.dds.subscription.Subscriber (p. 1478)
> .

ˆ class SubscriptionMatchedStatus
StatusKind.SUBSCRIPTION MATCHED STATUS.

ˆ class ViewStateKind
Indicates whether or not an instance is new.

Packages

ˆ package builtin
Builtin topic (p. 350) for accessing information about the Subscriptions dis-
covered by RTI Connext.

ˆ package example

7.8.1 Detailed Description

Contains the com.rti.dds.subscription.Subscriber
(p. 1478), com.rti.dds.subscription.DataReader (p. 473),
com.rti.dds.subscription.ReadCondition (p. 1326), and
com.rti.dds.subscription.QueryCondition (p. 1324) classes, as well
as the com.rti.dds.subscription.SubscriberListener (p. 1504) and
com.rti.dds.subscription.DataReaderListener (p. 501) interfaces, and
more generally, all that is needed on the subscription (p. 343) side.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

346 Namespace Documentation

7.8.2 Access to data samples

Data is made available to the application by the follow-
ing operations on com.rti.dds.subscription.DataReader
(p. 473) objects: com.rti.dds.topic.example.FooDataReader.read,
com.rti.dds.topic.example.FooDataReader.read w -
condition, com.rti.dds.topic.example.FooDataReader.take,
com.rti.dds.topic.example.FooDataReader.take w condition, and the other
variants of read() and take().

The general semantics of the read() operation is that the application only gets
access to the corresponding data (i.e. a precise instance value); the data remains
the responsibility of RTI Connext and can be read again.

The semantics of the take() operations is that the application takes full re-
sponsibility for the data; that data will no longer be available locally to RTI
Connext. Consequently, it is possible to access the same information multiple
times only if all previous accesses were read() operations, not take().

Each of these operations returns a collection of Data values and associated
com.rti.dds.subscription.SampleInfo (p. 1404) objects. Each data value
represents an atom of data information (i.e., a value for one instance). This
collection may contain samples related to the same or different instances (iden-
tified by the key). Multiple samples can refer to the same instance if the settings
of the HISTORY (p. 75) QoS allow for it.

To return the memory back to the middleware, every read() or take()
that retrieves a sequence of samples must be followed with a call to
com.rti.dds.topic.example.FooDataReader.return loan.

See also:

Interpretation of the SampleInfo (p. 1405)

7.8.2.1 Data access patterns

The application accesses data by means of the operations read or
take on the com.rti.dds.subscription.DataReader (p. 473). These op-
erations return an ordered collection of DataSamples consisting of a
com.rti.dds.subscription.SampleInfo (p. 1404) part and a Data part.

The way RTI Connext builds the collection depends on QoS poli-
cies set on the com.rti.dds.subscription.DataReader (p. 473) and
com.rti.dds.subscription.Subscriber (p. 1478), as well as the source -
timestamp of the samples, and the parameters passed to the read() / take()
operations, namely:

ˆ the desired sample states (any combination of
com.rti.dds.subscription.SampleStateKind (p. 1430))

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

7.8 Package com.rti.dds.subscription 347

ˆ the desired view states (any combination of
com.rti.dds.subscription.ViewStateKind (p. 1689))

ˆ the desired instance states (any combination of
com.rti.dds.subscription.InstanceStateKind (p. 1086))

The read() and take() operations are non-blocking and just deliver what is
currently available that matches the specified states.

The read w condition() and take w condition() operations take a
com.rti.dds.subscription.ReadCondition (p. 1326) object as a parameter
instead of sample, view or instance states. The behaviour is that the samples
returned will only be those for which the condition is true. These operations,
in conjunction with com.rti.dds.subscription.ReadCondition (p. 1326) ob-
jects and a com.rti.dds.infrastructure.WaitSet (p. 1695), allow performing
waiting reads.

Once the data samples are available to the data readers, they can be read or
taken by the application. The basic rule is that the application may do this in
any order it wishes. This approach is very flexible and allows the application
ultimate control.

To access data coherently, or in order, the PRESENTATION (p. 86) QoS
must be set properly.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

348 Namespace Documentation

7.9 Package com.rti.dds.subscription.builtin

Builtin topic (p. 350) for accessing information about the Subscriptions discov-
ered by RTI Connext.

Classes

ˆ class SubscriptionBuiltinTopicData

Entry created when a com.rti.dds.subscription.DataReader (p. 473) is
discovered in association with its Subscriber (p. 1478).

ˆ class SubscriptionBuiltinTopicDataDataReader

Instantiates DataReader (p. 473) < builtin.SubscriptionBuiltinTopicData
(p. 1510) > .

ˆ class SubscriptionBuiltinTopicDataSeq

Instantiates com.rti.dds.util.Sequence (p. 1432) <
builtin.SubscriptionBuiltinTopicData (p. 1510) > .

ˆ class SubscriptionBuiltinTopicDataTypeSupport

Instantiates TypeSupport < builtin.SubscriptionBuiltinTopicData
(p. 1510) > .

7.9.1 Detailed Description

Builtin topic (p. 350) for accessing information about the Subscriptions discov-
ered by RTI Connext.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

7.10 Package com.rti.dds.subscription.example 349

7.10 Package com.rti.dds.subscription.example

Classes

ˆ interface FooDataReader

<<interface>> (p. 271) <<generic>> (p. 271) User data type-specific
data reader.

7.10.1 Detailed Description

Describes FooDataReader (p. 988), where Foo represents a user-defined data-
type intended to be distributed using DDS.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

350 Namespace Documentation

7.11 Package com.rti.dds.topic

Contains the com.rti.dds.topic.Topic (p. 1545),
com.rti.dds.topic.ContentFilteredTopic (p. 458), and
com.rti.dds.topic.MultiTopic (p. 1208) classes, the
com.rti.dds.topic.TopicListener (p. 1564) interface, and more gener-
ally, all that is needed by an application to define com.rti.dds.topic.Topic
(p. 1545) objects and attach QoS policies to them.

Classes

ˆ class BuiltinTopicKey t
The key type of the built-in topic (p. 350) types.

ˆ interface ContentFilter
<<interface>> (p. 271) Interface to be used by a custom filter of a
com.rti.dds.topic.ContentFilteredTopic (p. 458)

ˆ interface ContentFilteredTopic
<<interface>> (p. 271) Specialization of
com.rti.dds.topic.TopicDescription (p. 1561) that allows for content-
based subscriptions.

ˆ class InconsistentTopicStatus
StatusKind.INCONSISTENT TOPIC STATUS.

ˆ interface MultiTopic
[Not supported (optional)] <<interface>> (p. 271) A specialization
of com.rti.dds.topic.TopicDescription (p. 1561) that allows subscriptions
that combine/filter/rearrange data coming from several topics.

ˆ interface Topic
<<interface>> (p. 271) The most basic description of the data to be pub-
lished and subscribed.

ˆ class TopicAdapter
<<eXtension>> (p. 270) A listener adapter in the spirit of the Java AWT
listener adapters. (The Adapter provides empty implementations for the lis-
tener methods)

ˆ interface TopicDescription
com.rti.dds.topic.Topic (p. 1545) entity and associated elements

ˆ interface TopicListener

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

7.11 Package com.rti.dds.topic 351

<<interface>> (p. 271) com.rti.dds.infrastructure.Listener (p. 1154)
for com.rti.dds.topic.Topic (p. 1545) entities.

ˆ class TopicQos

QoS policies supported by a com.rti.dds.topic.Topic (p. 1545) entity.

ˆ interface TypeSupport

<<interface>> (p. 271) An abstract marker interface that has to be spe-
cialized for each concrete user data type that will be used by the application.

Packages

ˆ package builtin

Builtin topic (p. 350) for accessing information about the Topics discovered
by RTI Connext.

ˆ package example

Descriptions of Foo (p. 955), FooSeq (p. 1056), and FooTypeSupport
(p. 1060), where Foo (p. 955) represents a user-defined data-type intended
to be distributed using DDS.

7.11.1 Detailed Description

Contains the com.rti.dds.topic.Topic (p. 1545),
com.rti.dds.topic.ContentFilteredTopic (p. 458), and
com.rti.dds.topic.MultiTopic (p. 1208) classes, the
com.rti.dds.topic.TopicListener (p. 1564) interface, and more gener-
ally, all that is needed by an application to define com.rti.dds.topic.Topic
(p. 1545) objects and attach QoS policies to them.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

352 Namespace Documentation

7.12 Package com.rti.dds.topic.builtin

Builtin topic (p. 350) for accessing information about the Topics discovered by
RTI Connext.

Classes

ˆ class AbstractBuiltinTopicDataTypeSupport
ˆ class TopicBuiltinTopicData

Entry created when a Topic (p. 1545) object discovered.

ˆ class TopicBuiltinTopicDataDataReader

Instantiates DataReader < builtin.TopicBuiltinTopicData (p. 1552) > .

ˆ class TopicBuiltinTopicDataSeq

Instantiates com.rti.dds.util.Sequence (p. 1432) <
builtin.TopicBuiltinTopicData (p. 1552) > .

ˆ class TopicBuiltinTopicDataTypeSupport

Instantiates TypeSupport (p. 1651) < builtin.TopicBuiltinTopicData
(p. 1552) > .

7.12.1 Detailed Description

Builtin topic (p. 350) for accessing information about the Topics discovered by
RTI Connext.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

7.13 Package com.rti.dds.topic.example 353

7.13 Package com.rti.dds.topic.example

Descriptions of Foo (p. 955), FooSeq (p. 1056), and FooTypeSupport
(p. 1060), where Foo (p. 955) represents a user-defined data-type intended to
be distributed using DDS.

Classes

ˆ class Foo

A representative user-defined data type.

ˆ class FooSeq

<<interface>> (p. 271) <<generic>> (p. 271) A type-safe, ordered col-
lection of elements. The type of these elements is referred to in this docu-
mentation as Foo (p. 955).

ˆ class FooTypeSupport

<<interface>> (p. 271) <<generic>> (p. 271) User data type specific in-
terface.

7.13.1 Detailed Description

Descriptions of Foo (p. 955), FooSeq (p. 1056), and FooTypeSupport
(p. 1060), where Foo (p. 955) represents a user-defined data-type intended to
be distributed using DDS.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

354 Namespace Documentation

7.14 Package com.rti.dds.type.builtin

<<eXtension>> (p. 270) RTI Connext provides a set of very simple data
types for you to use with the topics in your application.

Classes

ˆ class Bytes

Built-in type consisting of a variable-length array of opaque bytes.

ˆ class BytesDataReader

<<interface>> (p. 271) Instantiates DataReader <
com.rti.dds.type.builtin.Bytes (p. 417) >.

ˆ class BytesDataWriter

<<interface>> (p. 271) Instantiates DataWriter <
com.rti.dds.type.builtin.Bytes (p. 417) >.

ˆ class BytesSeq

Instantiates com.rti.dds.util.Sequence (p. 1432) <
com.rti.dds.type.builtin.Bytes (p. 417) > .

ˆ class BytesTypeSupport

<<interface>> (p. 271) com.rti.dds.type.builtin.Bytes (p. 417) type
support.

ˆ class KeyedBytes

Built-in type consisting of a variable-length array of opaque bytes and a string
that is the key.

ˆ class KeyedBytesDataReader

<<interface>> (p. 271) Instantiates DataReader <
com.rti.dds.type.builtin.KeyedBytes (p. 1095) >.

ˆ class KeyedBytesDataWriter

<<interface>> (p. 271) Instantiates DataWriter <
com.rti.dds.type.builtin.KeyedBytes (p. 1095) >.

ˆ class KeyedBytesSeq

Instantiates com.rti.dds.util.Sequence (p. 1432) <
com.rti.dds.type.builtin.KeyedBytes (p. 1095) >.

ˆ class KeyedBytesTypeSupport

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

7.14 Package com.rti.dds.type.builtin 355

<<interface>> (p. 271) com.rti.dds.type.builtin.KeyedBytes (p. 1095)
type support.

ˆ class KeyedString

Keyed string built-in type.

ˆ class KeyedStringDataReader

<<interface>> (p. 271) Instantiates DataReader <
com.rti.dds.type.builtin.KeyedString (p. 1123) >.

ˆ class KeyedStringDataWriter

<<interface>> (p. 271) Instantiates DataWriter <
com.rti.dds.type.builtin.KeyedString (p. 1123) >.

ˆ class KeyedStringSeq

Instantiates com.rti.dds.util.Sequence (p. 1432) <
com.rti.dds.type.builtin.KeyedString (p. 1123) > .

ˆ class KeyedStringTypeSupport

<<interface>> (p. 271) Keyed string type support.

ˆ class StringDataReader

<<interface>> (p. 271) Instantiates DataReader < String >.

ˆ class StringDataWriter

<<interface>> (p. 271) Instantiates DataWriter < String >.

ˆ class StringTypeSupport

<<interface>> (p. 271) String type support.

7.14.1 Detailed Description

<<eXtension>> (p. 270) RTI Connext provides a set of very simple data
types for you to use with the topics in your application.

The middleware provides four built-in types:

ˆ String: A payload consisting of a single string of characters. This type
has no key.

ˆ com.rti.dds.type.builtin.KeyedString (p. 1123): A payload consisting
of a single string of characters and a second string, the key, that identifies
the instance to which the sample belongs.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

356 Namespace Documentation

ˆ com.rti.dds.type.builtin.Bytes (p. 417): A payload consisting of an
opaque variable-length array of bytes. This type has no key.

ˆ com.rti.dds.type.builtin.KeyedBytes (p. 1095): A payload consisting
of an opaque variable-length array of bytes and a string, the key, that
identifies the instance to which the sample belongs.

The String and com.rti.dds.type.builtin.KeyedString
(p. 1123) types are appropriate for simple text-based appli-
cations. The com.rti.dds.type.builtin.Bytes (p. 417) and
com.rti.dds.type.builtin.KeyedBytes (p. 1095) types are appropriate
for applications that perform their own custom data serialization, such as
legacy applications still in the process of migrating to RTI Connext. In most
cases, string-based or structured data is preferable to opaque data, because the
latter cannot be easily visualized in tools or used with content-based filters (see
com.rti.dds.topic.ContentFilteredTopic (p. 458)).

The built-in types are very simple in order to get you up and running as quickly
as possible. If you need a structured data type you can define your own type
with exactly the fields you need in one of two ways:

ˆ At compile time, by generating code from an IDL or XML file using the
rtiddsgen (p. 290) utility

ˆ At runtime, by using the Dynamic Data (p. 170) API

7.14.2 Managing Memory for Builtin Types

When a sample is written, the DataWriter serializes it and stores the result in
a buffer obtained from a pool of preallocated buffers. In the same way, when
a sample is received, the DataReader deserializes it and stores the result in a
sample coming from a pool of preallocated samples.

For builtin (p. 354) types, the maximum size of the buffers/samples and de-
pends on the nature of the application using the builtin (p. 354) type.

You can configure the maximum size of the builtin (p. 354)
types on a per-DataWriter and per-DataReader basis using the
com.rti.dds.infrastructure.PropertyQosPolicy (p. 1252) in DataWriters,
DataReaders or Participants.

The following table lists the supported builtin (p. 354) type properties to con-
figure memory allocation. When the properties are defined in the Domain-
Participant, they are applicable to all DataWriters and DataReaders belonging
to the DomainParticipant unless they are overwrittem in the DataWriters and
DataReaders.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

7.14 Package com.rti.dds.type.builtin 357

The previous properties must be set consistently with respect to the correspond-
ing ∗.max size properties that set the maximum size of the builtin (p. 354) types
in the typecode (p. 360).

7.14.3 Typecodes for Builtin Types

The typecodes associated with the builtin (p. 354) types are generated from
the following IDL type definitions:

module DDS {

struct String {

string value;

};

struct KeyedString {

string key;

string value;

};

struct Octets {

sequence<octet> value;

};

struct KeyedOctets {

string key;

sequence<octet> value;

};

};

The maximum size of the strings and sequences that will be included in the type
code definitions can be configured on a per-DomainParticipant-basis by using
the properties in following table.

For more information about the built-in types, including how to control mem-
ory usage and maximum lengths, please see chapter 3, Data Types and Data
Samples, in the RTI Connext User’s Manual.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

358 Namespace Documentation

Property Description
dds.builtin type.string.alloc size Maximum size of the strings

published by the
com.rti.dds.type.builtin.StringDataWriter
(p. 1468) or received the
com.rti.dds.type.builtin.StringDataReader
(p. 1465) (includes the
NULL-terminated character).
Default:
dds.builtin type.string.max size if
defined. Otherwise, 1024.

dds.builtin type.keyed string.alloc -
key size

Maximum size of the keys used by
the
com.rti.dds.type.builtin.KeyedStringDataWriter
(p. 1133) or
com.rti.dds.type.builtin.KeyedStringDataReader
(p. 1125) (includes the
NULL-terminated character).
Default: dds.builtin type.keyed -
string.max key size if defined.
Otherwise, 1024.

dds.builtin type.keyed string.alloc -
size

Maximum size of the strings
published by the
com.rti.dds.type.builtin.KeyedStringDataWriter
(p. 1133) or received by the
com.rti.dds.type.builtin.KeyedStringDataReader
(p. 1125) (includes the
NULL-terminated character).
Default: dds.builtin type.keyed -
string.max size if defined.
Otherwise, 1024.

dds.builtin type.octets.alloc size Maximum size of the octet
sequences published the
com.rti.dds.type.builtin.BytesDataWriter
(p. 424) or received by the
com.rti.dds.type.builtin.BytesDataReader
(p. 420).
Default:
dds.builtin type.octets.max size if
defined. Otherwise, 2048.

dds.builtin type.keyed octets.alloc -
key size

Max-
imum size of the key published by the
com.rti.dds.type.builtin.KeyedBytesDataWriter
(p. 1106) or received by the
com.rti.dds.type.builtin.KeyedBytesDataReader
(p. 1098) (includes the
NULL-terminated character).
Default: dds.builtin type.keyed -
octets.max key size if defined.
Otherwise, 1024.

dds.builtin type.keyed octets.alloc -
size

Maximum size of the octets
sequences published by a
com.rti.dds.type.builtin.KeyedBytesDataWriter
(p. 1106) or received by a
com.rti.dds.type.builtin.KeyedBytesDataReader
(p. 1098).
Default: dds.builtin type.keyed -
octets.max size if defined.
Otherwise, 2048.

Table 7.1: Builtin Types Allocation Properties

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

7.14 Package com.rti.dds.type.builtin 359

Property Description
dds.builtin type.string.max size Maximum size of the strings

published by the StringDataWriters
and received by the
StringDataReaders belonging to a
DomainParticipant (includes the
NULL-terminated character).
Default: 1024.

dds.builtin type.keyed string.max -
key size

Maximum size of the keys used by
the KeyedStringDataWriters and
KeyedStringDataReaders belonging
to a DomainParticipant (includes
the NULL-terminated character).
Default: 1024.

dds.builtin type.keyed string.max -
size

Maximum size of the strings
published by the
KeyedStringDataWriters and
received by the
KeyedStringDataReaders belonging
to a DomainParticipant using the
builtin (p. 354) type (includes the
NULL-terminated character).
Default: 1024

dds.builtin type.octets.max size Maximum size of the octet
sequences published by the
OctetsDataWriters and received by
the OctetsDataReader belonging to
a DomainParticipant.
Default: 2048

dds.builtin type.keyed octets.max -
key size

Maximum size of the keys used by
the KeyedOctetsStringDataWriters
and KeyedOctetsStringDataReaders
belonging to a DomainParticipant
(includes the NULL-terminated
character).
Default: 1024.

dds.builtin type.keyed octets.max -
size

Maximum size of the octet
sequences published by the
KeyedOctetsDataWriters and
received by the
KeyedOctetsDataReaders belonging
to a DomainParticipant.
Default: 2048

Table 7.2: Properties for Allocating Size of Builtin Types, per DomainPartici-
pant

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

360 Namespace Documentation

7.15 Package com.rti.dds.typecode

<<eXtension>> (p. 270) A TypeCode (p. 1611) is a mechanism for rep-
resenting a type at runtime. RTI Connext can use type codes to send type
definitions on the network. You will need to understand this API in order to
use the Dynamic Data (p. 170) capability or to inspect the type information
you receive from remote readers and writers.

Classes

ˆ class EnumMember
A description of a member of an enumeration.

ˆ class PRIVATE MEMBER
Constant used to indicate that a value type member is private.

ˆ class PUBLIC MEMBER
Constant used to indicate that a value type member is public.

ˆ class StructMember
A description of a member of a struct.

ˆ class TCKind
Enumeration type for TypeCode (p. 1611) kinds.

ˆ class TypeCode
The definition of a particular data type, which you can use to inspect the
name, members, and other properties of types generated with rtiddsgen
(p. 290) or to modify types you define yourself at runtime.

ˆ class TypeCodeFactory
A singleton factory for creating, copying, and deleting data type definitions
dynamically.

ˆ class UnionMember
A description of a member of a union.

ˆ class ValueMember
A description of a member of a value type.

ˆ class VM ABSTRACT
Constant used to indicate that a value type has the abstract modifier.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

7.15 Package com.rti.dds.typecode 361

ˆ class VM CUSTOM
Constant used to indicate that a value type has the custom modifier.

ˆ class VM NONE
Constant used to indicate that a value type has no modifiers.

ˆ class VM TRUNCATABLE
Constant used to indicate that a value type has the truncatable modifier.

7.15.1 Detailed Description

<<eXtension>> (p. 270) A TypeCode (p. 1611) is a mechanism for rep-
resenting a type at runtime. RTI Connext can use type codes to send type
definitions on the network. You will need to understand this API in order to
use the Dynamic Data (p. 170) capability or to inspect the type information
you receive from remote readers and writers.

Type codes are values that are used to describe arbitrarily complex types at
runtime. Type code values are manipulated via the TypeCode (p. 1611) class,
which has an analogue in CORBA.

A TypeCode (p. 1611) value consists of a type code kind (represented by the
TCKind (p. 1526) enumeration) and a list of members (that is, fields). These
members are recursive: each one has its own TypeCode (p. 1611), and in the
case of complex types (structures, arrays, and so on), these contained type codes
contain their own members.

There are a number of uses for type codes. The type code mechanism can be
used to unambiguously match type representations. The TypeCode.equals
(p. 1616) method is a more reliable test than comparing the string type names,
requiring equivalent definitions of the types.

7.15.2 Accessing a Local TypeCode

When generating types with rtiddsgen (p. 290), type codes are enabled by de-
fault. (The -notypecode option can be used to disable generation of TypeCode
(p. 1611) information.) For these types, a TypeCode (p. 1611) may be accessed
via the FooTypeCode.VALUE member.

This API also includes support for dynamic creation of TypeCode (p. 1611)
values, typically for use with the Dynamic Data (p. 170) API. You can create
a TypeCode (p. 1611) using the TypeCodeFactory (p. 1641) class. You will
construct the TypeCode (p. 1611) recursively, from the outside in: start with
the type codes for primitive types, then compose them into complex types like
arrays, structures, and so on. You will find the following methods helpful:

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

362 Namespace Documentation

ˆ TypeCodeFactory.get primitive tc (p. 1650), which provides the
TypeCode (p. 1611) instances corresponding to the primitive types (e.g.
TCKind.TK LONG (p. 1528), TCKind.TK SHORT (p. 1528), and
so on).

ˆ TypeCodeFactory.create string tc (p. 1647) and TypeCodeFac-
tory.create wstring tc (p. 1648) create a TypeCode (p. 1611) repre-
senting a text string with a certain bound (i.e. maximum length).

ˆ TypeCodeFactory.create array tc (p. 1649) and TypeCodeFac-
tory.create sequence tc (p. 1648) create a TypeCode (p. 1611) for a
collection based on the TypeCode (p. 1611) for its elements.

ˆ TypeCodeFactory.create struct tc (p. 1644), TypeCodeFac-
tory.create value tc (p. 1644), and TypeCodeFactory.create -
sparse tc (p. 1645) create a TypeCode (p. 1611) for a structured
type.

7.15.3 Accessing a Remote TypeCode

In addition to being used locally, RTI Connext can transmit TypeCode
(p. 1611) on the network between participants. This information can be used
to access information about types used remotely at runtime, for example to be
able to publish or subscribe to topics of arbitrarily types (see Dynamic Data
(p. 170)). This functionality is useful for a generic system monitoring tool like
rtiddsspy.

Remote TypeCode (p. 1611) information is shared during discov-
ery over the publication (p. 338) and subscription (p. 343) built-in
topics and can be accessed using the built-in readers for these top-
ics; see Built-in Topics (p. 153). Discovered TypeCode (p. 1611)
values are not cached by RTI Connext upon receipt and are there-
fore not available from the built-in topic (p. 350) data returned by
com.rti.dds.publication.DataWriter.get matched subscription -
data (p. 551) or com.rti.dds.subscription.DataReader.get matched -
publication data (p. 487).

The space available locally to deserialize a discov-
ered remote TypeCode (p. 1611) is specified by
the com.rti.dds.domain.DomainParticipant (p. 629)’s
com.rti.dds.infrastructure.DomainParticipantResourceLimitsQosPolicy.type -
code max serialized length (p. 755) QoS parameter. To support especially
complex type codes, it may be necessary for you to increase the value of this
parameter.

See also:

TypeCode (p. 1611)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

7.15 Package com.rti.dds.typecode 363

Dynamic Data (p. 170)
rtiddsgen (p. 290)
builtin.SubscriptionBuiltinTopicData
builtin.PublicationBuiltinTopicData

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

364 Namespace Documentation

7.16 Package com.rti.dds.util

Utility types that support the DDS API.

Classes

ˆ class AbstractPrimitiveSequence
ˆ class AbstractSequence

Abstract sequence.

ˆ class Enum

A superclass for all type-safe enumerated types.

ˆ class LoanableSequence

A sequence capable of storing its elements directly or taking out a loan on
them from an internal middleware store.

ˆ interface Sequence

<<interface>> (p. 271) <<generic>> (p. 271) A type-safe, ordered col-
lection of elements. The type of these elements is referred to in this docu-
mentation as Foo.

ˆ class Union

7.16.1 Detailed Description

Utility types that support the DDS API.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

7.17 Package com.rti.ndds.config 365

7.17 Package com.rti.ndds.config

Utility API’s independent of the DDS standard.

Classes

ˆ class LibraryVersion t

The version of a single library shipped as part of an RTI Connext distribution.

ˆ class LogCategory

Categories of logged messages.

ˆ class Logger

<<interface>> (p. 271) The singleton type used to configure RTI Connext
logging.

ˆ class LogPrintFormat

The format used to output RTI Connext diagnostic information.

ˆ class LogVerbosity

The verbosities at which RTI Connext diagnostic information is logged.

ˆ class Version

<<interface>> (p. 271) The version of an RTI Connext distribution.

7.17.1 Detailed Description

Utility API’s independent of the DDS standard.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

366 Namespace Documentation

7.18 Package com.rti.ndds.example

Programming HowTos: Code templates for common use cases.

Classes

ˆ class Foo

A representative user-defined data type.

ˆ class FooDataReader

<<interface>> (p. 271) <<generic>> (p. 271) User data type-specific
data reader.

ˆ class FooDataWriter

<<interface>> (p. 271) <<generic>> (p. 271) User data type specific
data writer.

ˆ class FooSeq

<<interface>> (p. 271) <<generic>> (p. 271) A type-safe, ordered col-
lection of elements. The type of these elements is referred to in this docu-
mentation as Foo (p. 956).

ˆ class FooTypeSupport

7.18.1 Detailed Description

Programming HowTos: Code templates for common use cases.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

7.19 Package com.rti.ndds.transport 367

7.19 Package com.rti.ndds.transport

APIs related to RTI Connext pluggable transports.

Classes

ˆ interface ShmemTransport

Built-in transport (p. 367) plug-in for inter-process communications using
shared memory.

ˆ interface Transport

RTI Connext’s abstract pluggable transport (p. 367) interface.

ˆ class TransportSupport

<<interface>> (p. 271) The utility class used to configure RTI Connext
pluggable transports.

ˆ interface UDPv4Transport

Built-in transport (p. 367) plug-in using UDP/IPv4.

ˆ interface UDPv6Transport

Built-in transport (p. 367) plug-in using UDP/IPv6.

7.19.1 Detailed Description

APIs related to RTI Connext pluggable transports.

7.19.2 Overview

RTI Connext has a pluggable transports architecture. The core of RTI Connext
is transport (p. 367) agnostic; it does not make any assumptions about the
actual transports used to send and receive messages. Instead, the RTI Connext
core uses an abstract ”transport API” to interact with the transport (p. 367)
plugins which implement that API.

A transport (p. 367) plugin implements the abstract transport (p. 367) API
and performs the actual work of sending and receiving messages over a physical
transport (p. 367). A collection of builtin plugins (see Built-in Transport
Plugins (p. 216)) is delivered with RTI Connext for commonly used transports.
New transport (p. 367) plugins can easily be created, thus enabling RTI Con-
next applications to run over transports that may not even be conceived yet.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

368 Namespace Documentation

This is a powerful capability and that distinguishes RTI Connext from compet-
ing middleware approaches.

RTI Connext also provides a set of APIs for installing and config-
uring transport (p. 367) plugins to be used in an application. So
that RTI Connext applications work out of the box, a subset of
the builtin transport (p. 367) plugins is preconfigured by default (see
com.rti.dds.infrastructure.TransportBuiltinQosPolicy (p. 1580)). You
can ”turn-off” some or all of the builtin transport (p. 367) plugins. In addition,
you can configure other transport (p. 367) plugins for use by the application.

7.19.3 Transport Aliases

In order to use a transport (p. 367) plugin instance in an RTI Connext applica-
tion, it must be registered with a com.rti.dds.domain.DomainParticipant
(p. 629). When you register a transport (p. 367), you specify a sequence of
”alias” strings to symbolically refer to the transport (p. 367) plugin. The same
alias strings can be used to register more than one transport (p. 367) plugin.

You can register multiple transport (p. 367) plugins with a
com.rti.dds.domain.DomainParticipant (p. 629). An alias symboli-
cally refers to one or more transport (p. 367) plugins registered with the
com.rti.dds.domain.DomainParticipant (p. 629). Builtin transport
(p. 367) plugin instances can be referred to using preconfigured aliases (see
TRANSPORT BUILTIN (p. 115)).

A transport (p. 367) plugin’s class name is automatically used as an implicit
alias. It can be used to refer to all the transport (p. 367) plugin instances of
that class.

You can use aliases to refer to transport (p. 367) plugins, in order to specify:

- the transport (p. 367) plugins to use for discovery (see
com.rti.dds.infrastructure.DiscoveryQosPolicy.enabled transports
(p. 625)), and for com.rti.dds.publication.DataWriter (p. 538)
and com.rti.dds.subscription.DataReader (p. 473) entities (see
com.rti.dds.infrastructure.TransportSelectionQosPolicy (p. 1600)).

- the multicast addresses on which to receive discovery messages (see
com.rti.dds.infrastructure.DiscoveryQosPolicy.multicast receive -
addresses (p. 625)), and the multicast addresses and ports on which to receive
user data (see com.rti.dds.subscription.DataReaderQos.multicast
(p. 522)).

- the unicast ports used for user data (see
com.rti.dds.infrastructure.TransportUnicastQosPolicy (p. 1605))
on both com.rti.dds.publication.DataWriter (p. 538) and
com.rti.dds.subscription.DataReader (p. 473) entities.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

7.19 Package com.rti.ndds.transport 369

- the transport (p. 367) plugins used to parse an address string in a locator
(Locator Format (p. 56) and NDDS DISCOVERY PEERS (p. 55)).

A com.rti.dds.domain.DomainParticipant (p. 629) (and con-
tained its entities) start using a transport (p. 367) plugin after the
com.rti.dds.domain.DomainParticipant (p. 629) is enabled (see
com.rti.dds.infrastructure.Entity.enable (p. 915)). An entity will use
all the transport (p. 367) plugins that match the specified transport (p. 367)
QoS policy. All transport (p. 367) plugins are treated uniformly, regardless
of how they were created or registered; there is no notion of some transports
being more ”special” that others.

7.19.4 Transport Lifecycle

A transport (p. 367) plugin is owned by whoever created it. Thus,
if you create and register a transport (p. 367) plugin with a
com.rti.dds.domain.DomainParticipant (p. 629), you are responsible
for deleting it by calling its destructor. Note that builtin transport (p. 367)
plugins (TRANSPORT BUILTIN (p. 115)) and transport (p. 367) plugins
that are loaded through the PROPERTY (p. 88) QoS policy (see Load-
ing Transport Plugins through Property QoS Policy of Domain
Participant (p. 213)) are automatically managed by RTI Connext.

A user-created transport (p. 367) plugin must not be deleted while it is
still in use by a com.rti.dds.domain.DomainParticipant (p. 629). This
generally means that a user-created transport (p. 367) plugin instance
can only be deleted after the com.rti.dds.domain.DomainParticipant
(p. 629) with which it was registered is deleted (see
com.rti.dds.domain.DomainParticipantFactory.delete participant
(p. 715)). Note that a transport (p. 367) plugin cannot be ”unregistered”
from a com.rti.dds.domain.DomainParticipant (p. 629).

A transport (p. 367) plugin instance cannot be registered with more than
one com.rti.dds.domain.DomainParticipant (p. 629) at a time. This re-
quirement is necessary to guarantee the multi-threaded safety of the transport
(p. 367) API.

If the same physical transport (p. 367) resources are to be used with
more than one com.rti.dds.domain.DomainParticipant (p. 629) in the
same address space, the transport (p. 367) plugin should be written in
such a way so that it can be instantiated multiple times—once for each
com.rti.dds.domain.DomainParticipant (p. 629) in the address space.
Note that it is always possible to write the transport (p. 367) plugin so that
multiple transport (p. 367) plugin instances share the same underlying re-
sources; however the burden (if any) of guaranteeing multi-threaded safety to
access shared resource shifts to the transport (p. 367) plugin developer.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

370 Namespace Documentation

7.19.5 Transport Class Attributes

A transport (p. 367) plugin instance is associated with two kinds of attributes:

- the class attributes that are decided by the plugin writer; these are invariant
across all instances of the transport (p. 367) plugin class, and

- the instance attributes that can be set on a per instance basis by the transport
(p. 367) plugin user.

Every transport (p. 367) plugin must specify the following class attributes.

transport (p. 367) class id (see Transport.Property t.classid (p. 1573))
Identifies a transport (p. 367) plugin implementation class. It denotes a
unique ”class” to which the transport (p. 367) plugin instance belongs.
The class is used to distinguish between different transport (p. 367)
plugin implementations. Thus, a transport (p. 367) plugin vendor
should ensure that its transport (p. 367) plugin implementation has a
unique class.

Two transport (p. 367) plugin instances report the same class iff they
have compatible implementations. Transport (p. 1569) plugin instances
with mismatching classes are not allowed (by the RTI Connext Core) to
communicate with one another.

Multiple implementations (possibly from different vendors) for a physical
transport (p. 367) mechanism can co-exist in an RTI Connext applica-
tion, provided they use different transport (p. 367) class IDs.

The class ID can also be used to distinguish between different transport
(p. 367) protocols over the same physical transport (p. 367) network (e.g.,
UDP vs. TCP over the IP routing infrastructure).

transport (p. 367) significant address bit count (see Transport.Property t.address bit count (p. 1573))
RTI Connext’s addressing is modeled after the IPv6 and uses 128-bit
addresses (java.net.InetAddress) to route messages.

A transport (p. 367) plugin is expected to map the transport’s inter-
nal addressing scheme to 128-bit addresses. In general, this mapping is
likely to use only N least significant bits (LSB); these are specified by this
attribute.

>-------------- netmask ----------------<

+---------------------------------------+----------------------------+

| Network Address | Transport Local Address |

+---------------------------------------+----------------------------+

>------------ N ------------<

address_bits_count

Only these bits are used

by the transport plugin.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

7.19 Package com.rti.ndds.transport 371

The remaining bits of an address using the 128-bit address representa-
tion will be considered as part of the ”network address” (see Transport
Network Address (p. 371)) and thus ignored by the transport (p. 367)
plugin’s internal addressing scheme.

For unicast addresses, the transport (p. 367) plugin is expected to ignore
the higher (128 - Transport.Property t.address bit count (p. 1573))
bits. RTI Connext is free to manipulate those bits freely in the addresses
passed in/out to the transport (p. 367) plugin APIs.

Theoretically, the significant address bits count, N is related to the size of
the underlying transport (p. 367) network as follows:

address bits count >= ceil(log2(total addressable transport unicast interfaces))

The equality holds when the most compact (theoretical) internal address
mapping scheme is used. A practical address mapping scheme may waste
some bits.

7.19.6 Transport Instance Attributes

The per instance attributes to configure the plugin instance are generally passed
in to the plugin constructor. These are defined by the transport (p. 367) plugin
writer, and can be used to:

- customize the behavior of an instance of a transport (p. 367) plugin, includ-
ing the send and the receiver buffer sizes, the maximum message size, various
transport (p. 367) level classes of service (CoS), and so on.

- specify the resource values, network interfaces to use, various transport
(p. 367) level policies, and so on.

RTI Connext requires that every transport (p. 367) plugin instance must
specify the Transport.Property t.message size max (p. 1574) and Trans-
port.Property t.gather send buffer count max (p. 1574).

It is up to the transport (p. 367) plugin developer to make these available for
configuration to transport (p. 367) plugin user.

Note that it is important that the instance attributes are ”compatible” between
the sending side and the receiving side of communicating applications using
different instances of a transport (p. 367) plugin class. For example (p. 366),
if one side is configured to send messages larger than can be received by the
other side, then communications via the plugin may fail.

7.19.7 Transport Network Address

The address bits not used by the transport (p. 367) plugin for its internal
addressing constitute its network address bits.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

372 Namespace Documentation

In order for RTI Connext to properly route the messages, each unicast interface
in the RTI Connext domain must have a unique address. RTI Connext allows
the user to specify the value of the network address when installing a transport
(p. 367) plugin via the TransportSupport.register transport() API.

The network address for a transport (p. 367) plugin should be chosen such that
the resulting fully qualified 128-bit address will be unique in the RTI Connext
domain. Thus, if two instances of a transport (p. 367) plugin are registered
with a com.rti.dds.domain.DomainParticipant (p. 629), they will be at dif-
ferent network addresses in order for their unicast interfaces to have unique fully
qualified 128-bit addresses. It is also possible to create multiple transports with
the same network address, as it can be useful for certain use cases; note that
this will require special entity configuration for most transports to avoid clashes
in resource use (e.g. sockets for UDPv4 transport (p. 367)).

7.19.8 Transport Send Route

By default, a transport (p. 367) plugin is configured to send outgoing messages
destined to addresses in the network address range at which the plugin was
registered.

RTI Connext allows the user to configure the routing of outgoing messages via
the TransportSupport.add send route() API, so that a transport (p. 367) plu-
gin will be used to send messages only to certain ranges of destination addresses.
The method can be called multiple times for a transport (p. 367) plugin, with
different address ranges.

+--+

| Outgoing Address Range 1 -> Transport Plugin |

+--+

| : -> : |

+--+

| Outgoing Address Range K -> Transport Plugin |

+--+

The user can set up a routing table to restrict the use of a transport (p. 367)
plugin to send messages to selected addresses ranges.

7.19.9 Transport Receive Route

By default, a transport (p. 367) plugin is configured to receive incoming mes-
sages destined to addresses in the network address range at which the plugin
was registered.

RTI Connext allows the user to configure the routing of incoming messages via
the TransportSupport.add receive route() API, so that a transport (p. 367)
plugin will be used to receive messages only on certain ranges of addresses.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

7.19 Package com.rti.ndds.transport 373

The method can be called multiple times for a transport (p. 367) plugin, with
different address ranges.

+--+

| Transport Plugin <- Incoming Address Range 1 |

+--+

| : <- : |

+--+

| Transport Plugin <- Incoming Address Range M |

+--+

The user can set up a routing table to restrict the use of a transport (p. 367)
plugin to receive messages from selected ranges. For example (p. 366), the user
may restrict a transport (p. 367) plugin to

- receive messages from a certain multicast address range.

- receive messages only on certain unicast interfaces (when multiple unicast
interfaces are available on the transport (p. 367) plugin).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

374 Namespace Documentation

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

Chapter 8

Class Documentation

8.1 AbstractBuiltinTopicDataTypeSupport
Class Reference

Inheritance diagram for AbstractBuiltinTopicDataTypeSupport::

Protected Member Functions

ˆ final void initialize delegateI (DataReaderDelegate delegate)

8.1.1 Detailed Description

Abstract superclass for all ∗TypeSupport classes for built-in types.

Author:

rwarren

Version:

Revision

1.17

Date

2009/11/01 18:04:49

376 Class Documentation

8.1.2 Member Function Documentation

8.1.2.1 final void initialize delegateI (DataReaderDelegate
delegate) [protected]

Subclasses should call this method immediately after chaining to the super con-
structor.

Exceptions:

NullPointerException if the delegate is null

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.2 AbstractPrimitiveSequence Class Reference 377

8.2 AbstractPrimitiveSequence Class Reference

Inheritance diagram for AbstractPrimitiveSequence::

Public Member Functions

ˆ final Class getElementType ()
ˆ abstract void add (int index, Object element)

Inserts the specified element at the specified position in this sequence.

ˆ void loan (Object buffer, int new length)
Loan a contiguous buffer to this sequence.

ˆ void unloan ()
Return the loaned buffer in the sequence and set the maximum to 0.

ˆ final boolean hasOwnership ()
Return the value of the owned flag.

ˆ final void clear ()
ˆ final void setSize (int newSize)
ˆ final int size ()
ˆ final Object copy from (Object src)

8.2.1 Detailed Description

A base class for sequences whose elements are of primitive types. Such sequences
do not support null values.

8.2.2 Member Function Documentation

8.2.2.1 final Class getElementType ()

Returns:

the primitive type of this sequence, not the wrapper type.

See also:

com.rti.dds.util.Sequence.getElementType() (p. 1434)

Reimplemented from AbstractSequence (p. 383).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

378 Class Documentation

8.2.2.2 abstract void add (int index, Object element) [pure
virtual]

Inserts the specified element at the specified position in this sequence.

See also:

java.util.List.add(int, java.lang.Object)

Reimplemented from AbstractSequence (p. 383).

Implemented in BooleanSeq (p. 410), ByteSeq (p. 433), CharSeq (p. 450),
DoubleSeq (p. 764), FloatSeq (p. 941), IntSeq (p. 1094), LongSeq
(p. 1204), and ShortSeq (p. 1451).

8.2.2.3 void loan (Object buffer, int new length)

Loan a contiguous buffer to this sequence.

This operation changes the owned flag of the sequence to false and also sets
the underlying buffer used by the sequence. See the user’s manual for more
information about sequences and memory ownership.

Use this method if you want to manage the memory used by the sequence your-
self. You must provide an array of elements and integers indicating how many
elements are allocated in that array (i.e. the maximum) and how many elements
are valid (i.e. the length). The sequence will subsequently use the memory you
provide and will not permit it to be freed by a call to Sequence.setMaximum
(p. 1433).

By default, a sequence you create owns its memory unless you explicitly loan
memory of your own to it. In a very few cases, RTI Connext will return
a sequence to you that has a loan; those cases are documented as such.
For example, if you call com.rti.dds.topic.example.FooDataReader.read
or com.rti.dds.topic.example.FooDataReader.take and pass in se-
quences with no loan and no memory allocated, RTI Connext
will loan memory to your sequences which must be unloaned with
com.rti.dds.topic.example.FooDataReader.return loan. See the documen-
tation of those methods for more information.

Precondition:

Sequence.getMaximum (p. 1433) == 0; i.e. the sequence has no memory
allocated to it.
AbstractPrimitiveSequence.hasOwnership (p. 380) == true; i.e. the
sequence does not already have an outstanding loan

Postcondition:

The sequence will store its elements in the buffer provided.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.2 AbstractPrimitiveSequence Class Reference 379

AbstractPrimitiveSequence.hasOwnership (p. 380) == false
Sequence.size() == new length
Sequence.getMaximum (p. 1433) == new max

Parameters:

buffer The new buffer that the sequence will use. Must point to enough
memory to hold new max elements of type Foo. It may be NULL if
new max == 0.

new length The desired new length for the sequence.

Returns:

true if buffer is successfully loaned to this sequence or false otherwise.
Failure only occurs due to failing to meet the pre-conditions. Upon failure
the sequence remains unmodified.

See also:

com.rti.dds.util.Sequence.unloan, com.rti.dds.util.Sequence.loan -
discontiguous

8.2.2.4 void unloan ()

Return the loaned buffer in the sequence and set the maximum to 0.

This method affects only the state of this sequence; it does not change the
contents of the buffer in any way.

Only the user who originally loaned a buffer should return that loan, as the
user may have dependencies on that memory known only to them. Unloaning
someone else’s buffer may cause unspecified problems. For example, suppose a
sequence is loaning memory from a custom memory pool. A user of the sequence
likely has no way to release the memory back into the pool, so unloaning the
sequence buffer would result in a resource leak. If the user were to then re-loan
a different buffer, the original creator of the sequence would have no way to
discover, when freeing the sequence, that the loan no longer referred to its own
memory and would thus not free the user’s memory properly, exacerbating the
situation and leading to undefined behavior.

Precondition:

owned == false

Postcondition:

owned == true
maximum == 0

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

380 Class Documentation

Returns:

true if the preconditions were met. Otherwise false. The function only
fails if the pre-conditions are not met, in which case it leaves the sequence
unmodified.

See also:

AbstractPrimitiveSequence.loan(Object, int) (p. 378),
com.rti.dds.util.Sequence.loan discontiguous, Sequence.setMaximum
(p. 1433)

8.2.2.5 final boolean hasOwnership ()

Return the value of the owned flag.

Returns:

true if sequence owns the underlying buffer, or false if it has an outstanding
loan.

8.2.2.6 final void clear ()

Set the logical size of this sequence to zero. This method does not generate any
garbage for collection.

See also:

java.util.Collection.clear()

8.2.2.7 final void setSize (int newSize)

Set the logical size of this sequence to the given value.

Parameters:

newSize the new logical size of this sequence; it must be less than or equal
to the maximum allocated length of the underlying array.

Exceptions:

IndexOutOfBoundsException if the new size is less than zero or greater
than the allocated length of the array.

See also:

AbstractSequence.getMaximum() (p. 1433)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.2 AbstractPrimitiveSequence Class Reference 381

8.2.2.8 final int size ()

The logical size of this sequence.

8.2.2.9 final Object copy from (Object src)

Implementation of the Copyable interface.

Parameters:

src An AbstractPrimitiveSequence (p. 377) which contains the data to
be copied.

Returns:

this

Exceptions:

NullPointerException If src is null.

ClassCastException If src is not a Sequence (p. 1432) OR if one of the
objects contained in the Sequence (p. 1432) is not of the expected
type.

Implements Copyable (p. 466).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

382 Class Documentation

8.3 AbstractSequence Class Reference

Abstract sequence.

Inheritance diagram for AbstractSequence::

Public Member Functions

ˆ void setMaximum (int new max)
Resize this sequence to a new desired maximum.

ˆ Class getElementType ()
ˆ void add (int index, Object element)

Inserts the specified element at the specified position in this sequence.

ˆ boolean add (Object element)
Appends the specified element to the end of this sequence.

ˆ final Object remove (int index)
Remove the element at the given index by shifting all subsequent elements
”left” by one.

8.3.1 Detailed Description

Abstract sequence.

8.3.2 Member Function Documentation

8.3.2.1 void setMaximum (int new max)

Resize this sequence to a new desired maximum.

This operation does nothing if the new desired maximum matches the current
maximum.

Note: If you add an element with add() (p. 383), the sequence’s size is in-
creased implicitly.

Postcondition:

length == MINIMUM(original length, new max)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.3 AbstractSequence Class Reference 383

Parameters:

new max Must be >= 0.

Returns:

true on success, false if the preconditions are not met. In that case the
sequence is not modified.

Implements Sequence (p. 1433).

Reimplemented in LoanableSequence (p. 1172).

8.3.2.2 Class getElementType ()

Returns:

a common supertype for all elements in this sequence.

Implements Sequence (p. 1434).

Reimplemented in AbstractPrimitiveSequence (p. 377).

8.3.2.3 void add (int index, Object element)

Inserts the specified element at the specified position in this sequence.

See also:

java.util.List.add(int, java.lang.Object)

Reimplemented in BooleanSeq (p. 410), ByteSeq (p. 433), CharSeq
(p. 450), DoubleSeq (p. 764), FloatSeq (p. 941), IntSeq (p. 1094), LongSeq
(p. 1204), ShortSeq (p. 1451), and AbstractPrimitiveSequence (p. 378).

8.3.2.4 boolean add (Object element)

Appends the specified element to the end of this sequence.

See also:

java.util.List.add(java.lang.Object)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

384 Class Documentation

8.3.2.5 final Object remove (int index)

Remove the element at the given index by shifting all subsequent elements ”left”
by one.

See also:

java.util.List.remove(int)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.4 AllocationSettings t Class Reference 385

8.4 AllocationSettings t Class Reference

Resource allocation settings.

Inherits Struct.

Public Member Functions

ˆ AllocationSettings t (int initial count, int max count, int incre-
mental count)

Constructor with the given initial, maximum and incremental values.

Public Attributes

ˆ int initial count

The initial count of resources.

ˆ int max count

The maximum count of resources.

ˆ int incremental count

The incremental count of resources.

8.4.1 Detailed Description

Resource allocation settings.

QoS:

com.rti.dds.infrastructure.DomainParticipantResourceLimitsQosPolicy
(p. 741)

8.4.2 Constructor & Destructor Documentation

8.4.2.1 AllocationSettings t (int initial count, int max count, int
incremental count)

Constructor with the given initial, maximum and incremental values.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

386 Class Documentation

8.4.3 Member Data Documentation

8.4.3.1 int initial count

The initial count of resources.

The initial resources to be allocated.

[default] It depends on the case.

[range] [0, 1 million], < max count, (or = max count only if increment count
== 0)

8.4.3.2 int max count

The maximum count of resources.

The maximum resources to be allocated.

[default] Depends on the case.

[range] [1, 1 million] or ResourceLimitsQosPolicy.LENGTH -
UNLIMITED (p. 102), > initial count (or = initial count only if incre-
ment count == 0)

8.4.3.3 int incremental count

The incremental count of resources.

The resource to be allocated when more resources are needed.

[default] Depends on the case.

[range] -1 (Double the amount of extra memory allocated each time memory
is needed) or [1,1 million] (or = 0 only if initial count == max count)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.5 AsynchronousPublisherQosPolicy Class Reference 387

8.5 AsynchronousPublisherQosPolicy Class
Reference

Configures the mechanism that sends user data in an external middleware
thread.

Inheritance diagram for AsynchronousPublisherQosPolicy::

Public Attributes

ˆ boolean disable asynchronous write

Disable asynchronous publishing.

ˆ final ThreadSettings t thread

Settings of the publishing thread.

ˆ boolean disable asynchronous batch

Disable asynchronous batch flushing.

ˆ final ThreadSettings t asynchronous batch thread

Settings of the batch flushing thread.

8.5.1 Detailed Description

Configures the mechanism that sends user data in an external middleware
thread.

Specifies the asynchronous publishing and asynchronous batch flushing settings
of the com.rti.dds.publication.Publisher (p. 1277) instances.

The QoS policy specifies whether asynchronous publishing and asynchronous
batch flushing are enabled for the com.rti.dds.publication.DataWriter
(p. 538) entities belonging to this com.rti.dds.publication.Publisher
(p. 1277). If so, the publisher will spawn up to two threads, one for asynchronous
publishing and one for asynchronous batch flushing.

See also:

com.rti.dds.infrastructure.BatchQosPolicy (p. 401).
com.rti.dds.infrastructure.PublishModeQosPolicy (p. 1308).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

388 Class Documentation

Entity:

com.rti.dds.publication.Publisher (p. 1277)

Properties:

RxO (p. 97) = N/A

Changeable (p. 98) = NO (p. 98)

8.5.2 Usage

You can use this QoS policy to reduce the amount of time your application
thread spends sending data.

You can also use it, along with com.rti.dds.infrastructure.PublishModeQosPolicy
(p. 1308) and a com.rti.dds.publication.FlowController (p. 942), to send
large data reliably. ”Large” in this context means that the data that cannot
be sent as a single packet by a network transport. For example, to send data
larger than 63K reliably using UDP/IP, you must configure RTI Connext to
fragment the data and send it asynchronously.

The asynchronous publisher thread is shared by all PublishMode-
QosPolicyKind.ASYNCHRONOUS PUBLISH MODE QOS (p. 1312)
com.rti.dds.publication.DataWriter (p. 538) instances that belong to this
publisher and handles their data transmission chores.

The asynchronous batch flushing thread is shared by all
com.rti.dds.publication.DataWriter (p. 538) instances with batching
enabled that belong to this publisher.

This QoS policy also allows you to adjust the settings of the asynchronous pub-
lishing and the asynchronous batch flushing threads. To use different threads for
two different com.rti.dds.publication.DataWriter (p. 538) entities, the in-
stances must belong to different com.rti.dds.publication.Publisher (p. 1277)
instances.

A com.rti.dds.publication.Publisher (p. 1277) must have asynchronous
publishing enabled for its com.rti.dds.publication.DataWriter (p. 538) in-
stances to write asynchronously.

A com.rti.dds.publication.Publisher (p. 1277) must have asyn-
chronous batch flushing enabled in order to flush the batches of its
com.rti.dds.publication.DataWriter (p. 538) instances asynchronously.
However, no asynchronous batch flushing thread will be started until the
first com.rti.dds.publication.DataWriter (p. 538) instance with batching
enabled is created from this com.rti.dds.publication.Publisher (p. 1277).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.5 AsynchronousPublisherQosPolicy Class Reference 389

8.5.3 Member Data Documentation

8.5.3.1 boolean disable asynchronous write

Disable asynchronous publishing.

If set to true, any com.rti.dds.publication.DataWriter (p. 538) created
with PublishModeQosPolicyKind.ASYNCHRONOUS PUBLISH -
MODE QOS (p. 1312) will fail with RETCODE INCONSISTENT -
POLICY (p. 1367).

[default] false

8.5.3.2 final ThreadSettings t thread

Settings of the publishing thread.

There is only one asynchronous publishing thread per
com.rti.dds.publication.Publisher (p. 1277).

[default] priority below normal.

The actual value depends on your architecture:

For Windows: -2

For Solaris: OS default priority

For Linux: OS default priority

For LynxOS: 13

For Integrity: 80

For VxWorks: 110

For all others: OS default priority.

[default] The actual value depends on your architecture:

For Windows: OS default stack size

For Solaris: OS default stack size

For Linux: OS default stack size

For LynxOS: 4∗16∗1024

For Integrity: 4∗20∗1024

For VxWorks: 4∗16∗1024

For all others: OS default stack size.

[default] mask = ThreadSettingsKind.THREAD SETTINGS KIND -
MASK DEFAULT (p. 112)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

390 Class Documentation

8.5.3.3 boolean disable asynchronous batch

Disable asynchronous batch flushing.

If set to true, any com.rti.dds.publication.DataWriter (p. 538) created with
batching enabled will fail with RETCODE INCONSISTENT POLICY
(p. 1367).

If com.rti.dds.infrastructure.BatchQosPolicy.max flush delay
(p. 403) is different than com.rti.dds.infrastructure.Duration t.INFINITE,
com.rti.dds.infrastructure.AsynchronousPublisherQosPolicy.disable -
asynchronous batch (p. 390) must be set false.

[default] false

8.5.3.4 final ThreadSettings t asynchronous batch thread

Settings of the batch flushing thread.

There is only one asynchronous batch flushing thread per
com.rti.dds.publication.Publisher (p. 1277).

[default] priority below normal.

The actual value depends on your architecture:

For Windows: -2

For Solaris: OS default priority

For Linux: OS default priority

For LynxOS: 13

For Integrity: 80

For VxWorks: 110

For all others: OS default priority.

[default] The actual value depends on your architecture:

For Windows: OS default stack size

For Solaris: OS default stack size

For Linux: OS default stack size

For LynxOS: 4∗16∗1024

For Integrity: 4∗20∗1024

For VxWorks: 4∗16∗1024

For all others: OS default stack size.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.5 AsynchronousPublisherQosPolicy Class Reference 391

[default] mask = ThreadSettingsKind.THREAD SETTINGS KIND -
MASK DEFAULT (p. 112)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

392 Class Documentation

8.6 AvailabilityQosPolicy Class Reference

Configures the availability of data.

Inheritance diagram for AvailabilityQosPolicy::

Public Attributes

ˆ final Duration t max data availability waiting time
Defines how much time to wait before delivering a sample to the application
without having received some of the previous samples.

ˆ final Duration t max endpoint availability waiting time
Defines how much time to wait to discover DataWriters providing samples
for the same data source (virtual GUID).

ˆ final EndpointGroupSeq required matched endpoint groups
A sequence of endpoint groups.

8.6.1 Detailed Description

Configures the availability of data.

Entity:

com.rti.dds.subscription.DataReader (p. 473)

Properties:

RxO (p. 97) = NO
Changeable (p. 98) = NO

8.6.2 Usage

This QoS policy is used in the context of the Collaborative DataWriters feature.

Collaborative DataWriters

The Collaborative DataWriters feature allows having multiple DataWriters pub-
lishing samples from a common logical data source. The DataReaders will
combine the samples coming from the DataWriters in order to reconstruct the
correct order at the source.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.6 AvailabilityQosPolicy Class Reference 393

This QoS policy allows you to configure the ordering and combination process
in the DataReader and can be used to support two different use cases:

ˆ Ordered delivery of samples with RTI Persistence
Service: When a late-joining DataReader configured with
com.rti.dds.infrastructure.DurabilityQosPolicy (p. 765) set to
DurabilityQosPolicyKind.PERSISTENT DURABILITY -
QOS (p. 772) or DurabilityQosPolicyKind.TRANSIENT -
DURABILITY QOS (p. 771) joins a DDS domain (p. 317), it
will start receiving historical samples from multiple DataWriters. For
example, if the original DataWriter is still alive, the newly created
DataReader will receive samples from the original DataWriter and one
or more RTI Persistence Service DataWriters (PRSTDataWriters). This
policy can be used to configure the sample ordering process on the
DataReader.

ˆ Ordered delivery of samples with Group Ordered
Access: This policy can also be used to configure the
sample ordering process when the Subscriber is configured
with com.rti.dds.infrastructure.PresentationQosPolicy
(p. 1237) access scope set to PresentationQosPolicyAccessS-
copeKind.GROUP PRESENTATION QOS (p. 1243). In this
case, the Subscriber must deliver in order the samples published by a
group of DataWriters that belong to the same Publisher and have access -
scope set to PresentationQosPolicyAccessScopeKind.GROUP -
PRESENTATION QOS (p. 1243).

Each sample published in a DDS domain (p. 317) for a given logical data source
is uniquely identified by a pair (virtual GUID, virtual sequence number). Sam-
ples from the same data source (same virtual GUID) can be published by dif-
ferent DataWriters. A DataReader will deliver a sample (VGUIDn, VSNm) to
the application if one of the following conditions is satisfied:

ˆ (VGUIDn, VSNm-1) has already been delivered to the application.

ˆ All the known DataWriters publishing VGUIDn have announced that they
do not have (VGUIDn, VSNm-1).

ˆ None of the known DataWriters publishing GUIDn have announced po-
tential availability of (VGUIDn, VSNm-1) and both timeouts in this QoS
policy have expired.

A DataWriter announces potential availability of samples by using virtual heart-
beats (HBs).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

394 Class Documentation

When com.rti.dds.infrastructure.PresentationQosPolicy.access scope
(p. 1241) is set to PresentationQosPolicyAccessScopeKind.TOPIC -
PRESENTATION QOS (p. 1243) or PresentationQosPolicyAc-
cessScopeKind.INSTANCE PRESENTATION QOS (p. 1243), the
virtual HB contains information about the samples contained in the
com.rti.dds.publication.DataWriter (p. 538) history.

When com.rti.dds.infrastructure.PresentationQosPolicy.access scope
(p. 1241) is set to PresentationQosPolicyAccessScopeKind.GROUP -
PRESENTATION QOS (p. 1243), the virtual HB contains information
about all DataWriters in the com.rti.dds.publication.Publisher (p. 1277).

The frequency at which virtual HBs are
sent is controlled by the protocol parameters
com.rti.dds.infrastructure.RtpsReliableWriterProtocol t.virtual -
heartbeat period (p. 1383) and com.rti.dds.infrastructure.RtpsReliableWriterProtocol -
t.samples per virtual heartbeat (p. 1384).

8.6.3 Member Data Documentation

8.6.3.1 final Duration t max data availability waiting time

Defines how much time to wait before delivering a sample to the application
without having received some of the previous samples.

A sample identified by (GUIDn, SNm) will be delivered to the application if this
timeout expires for the sample and the following two conditions are satisfied:

ˆ None of the known DataWriters publishing GUIDn have announced po-
tential availability of (GUIDn, SNm-1).

ˆ The DataWriters for all the endpoint groups specified in required -
matched endpoint groups (p. 395) have been discovered or max -
endpoint availability waiting time (p. 394) has expired.

[default] com.rti.dds.infrastructure.Duration t.AUTO
(com.rti.dds.infrastructure.Duration t.INFINITE for PresentationQosPol-
icyAccessScopeKind.GROUP PRESENTATION QOS (p. 1243).
Otherwise, 0 seconds)

[range] [0, com.rti.dds.infrastructure.Duration t.INFINITE],
com.rti.dds.infrastructure.Duration t.AUTO

8.6.3.2 final Duration t max endpoint availability waiting time

Defines how much time to wait to discover DataWriters providing samples for
the same data source (virtual GUID).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.6 AvailabilityQosPolicy Class Reference 395

The set of endpoint groups that are required to provide samples for a data source
can be configured using required matched endpoint groups (p. 395).

A non-consecutive sample identified by (GUIDn, SNm) cannot be delivered to
the application unless DataWriters for all the endpoint groups in required -
matched endpoint groups (p. 395) are discovered or this timeout expires.

[default] com.rti.dds.infrastructure.Duration t.AUTO
(com.rti.dds.infrastructure.Duration t.INFINITE for PresentationQosPol-
icyAccessScopeKind.GROUP PRESENTATION QOS (p. 1243).
Otherwise, 0 seconds)

[range] [0, com.rti.dds.infrastructure.Duration t.INFINITE],
com.rti.dds.infrastructure.Duration t.AUTO

8.6.3.3 final EndpointGroupSeq required matched endpoint groups

A sequence of endpoint groups.

In the context of Collaborative DataWriters, it specifies the set of endpoint
groups that are expected to provide samples for the same data source.

The quorum count in a group represents the number of DataWriters that must
be discovered for that group before the DataReader is allowed to provide non
consecutive samples to the application.

A DataWriter becomes a member of an endpoint group by configuring the
role name in com.rti.dds.publication.DataWriterQos.publication name
(p. 593).

[default] Empty sequence

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

396 Class Documentation

8.7 BAD PARAM Class Reference

The exception BadKind (p. 398) is thrown when an inappropriate operation is
invoked on a TypeCode object.

Inheritance diagram for BAD PARAM::

8.7.1 Detailed Description

The exception BadKind (p. 398) is thrown when an inappropriate operation is
invoked on a TypeCode object.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.8 BAD TYPECODE Class Reference 397

8.8 BAD TYPECODE Class Reference

The exception BadKind (p. 398) is thrown when an inappropriate operation is
invoked on a TypeCode object.

Inheritance diagram for BAD TYPECODE::

8.8.1 Detailed Description

The exception BadKind (p. 398) is thrown when an inappropriate operation is
invoked on a TypeCode object.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

398 Class Documentation

8.9 BadKind Class Reference

The exception BadKind (p. 398) is thrown when an inappropriate operation is
invoked on a TypeCode object.

Inheritance diagram for BadKind::

8.9.1 Detailed Description

The exception BadKind (p. 398) is thrown when an inappropriate operation is
invoked on a TypeCode object.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.10 BadMemberId Class Reference 399

8.10 BadMemberId Class Reference

The specified TypeCode member ID is invalid.

Inheritance diagram for BadMemberId::

8.10.1 Detailed Description

The specified TypeCode member ID is invalid.

This failure can occur, for example, when querying a field by ID when no such
ID is defined in the type.

See also:

com.rti.dds.infrastructure.BadMemberName (p. 400)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

400 Class Documentation

8.11 BadMemberName Class Reference

The specified TypeCode member name is invalid.

Inheritance diagram for BadMemberName::

8.11.1 Detailed Description

The specified TypeCode member name is invalid.

This failure can occur, for example, when querying a field by name when no
such name is defined in the type.

See also:

com.rti.dds.infrastructure.BadMemberId (p. 399)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.12 BatchQosPolicy Class Reference 401

8.12 BatchQosPolicy Class Reference

Used to configure batching of multiple samples into a single network packet in
order to increase throughput for small samples.

Inheritance diagram for BatchQosPolicy::

Public Attributes

ˆ boolean enable

Specifies whether or not batching is enabled.

ˆ int max data bytes

The maximum cumulative length of all serialized samples in a batch.

ˆ int max samples

The maximum number of samples in a batch.

ˆ final Duration t max flush delay

The maximum flush delay.

ˆ final Duration t source timestamp resolution

Batch source timestamp resolution.

ˆ boolean thread safe write

Determines whether or not the write operation is thread safe.

8.12.1 Detailed Description

Used to configure batching of multiple samples into a single network packet in
order to increase throughput for small samples.

This QoS policy configures the ability of the middleware to collect multiple user
data samples to be sent in a single network packet, to take advantage of the
efficiency of sending larger packets and thus increase effective throughput.

This QoS policy can be used to dramatically increase effective throughput for
small data samples. Usually, throughput for small samples (size < 2048 bytes) is
limited by CPU capacity and not by network bandwidth. Batching many smaller
samples to be sent in a single large packet will increase network utilization, and
thus throughput, in terms of samples per second.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

402 Class Documentation

Entity:

com.rti.dds.publication.DataWriter (p. 538)

Properties:

RxO (p. 97) = NO
Changeable (p. 98) = UNTIL ENABLE (p. 98)

8.12.2 Member Data Documentation

8.12.2.1 boolean enable

Specifies whether or not batching is enabled.

[default] false

8.12.2.2 int max data bytes

The maximum cumulative length of all serialized samples in a batch.

A batch is flushed automatically when this maximum is reached.

max data bytes does not include the meta data associated with the batch sam-
ples. Each sample has at least 8 bytes of meta data containing information such
as the timestamp and sequence number. The meta data can be as large as 52
bytes for keyed topics and 20 bytes for unkeyed topics.

Note: Batches must contain whole samples. If a new batch is started and its
initial sample causes the serialized size to exceed max data bytes, RTI Connext
will send the sample in a single batch.

[default] 1024

[range] [1,ResourceLimitsQosPolicy.LENGTH UNLIMITED (p. 102)]

8.12.3 Consistency

The setting of com.rti.dds.infrastructure.BatchQosPolicy.max -
data bytes (p. 402) must be consistent with
com.rti.dds.infrastructure.BatchQosPolicy.max samples (p. 402).
For these two values to be consistent, they cannot be both ResourceLimit-
sQosPolicy.LENGTH UNLIMITED (p. 102).

8.12.3.1 int max samples

The maximum number of samples in a batch.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.12 BatchQosPolicy Class Reference 403

A batch is flushed automatically when this maximum is reached.

[default] ResourceLimitsQosPolicy.LENGTH UNLIMITED (p. 102)

[range] [1,ResourceLimitsQosPolicy.LENGTH UNLIMITED (p. 102)]

8.12.4 Consistency

The setting of com.rti.dds.infrastructure.BatchQosPolicy.max -
samples (p. 402) must be consistent with
com.rti.dds.infrastructure.BatchQosPolicy.max data bytes (p. 402).
For these two values to be consistent, they cannot be both ResourceLimit-
sQosPolicy.LENGTH UNLIMITED (p. 102).

8.12.4.1 final Duration t max flush delay

The maximum flush delay.

A batch is flushed automatically after the delay specified by this parameter.

The delay is measured from the time the first sample in the batch is written by
the application.

[default] com.rti.dds.infrastructure.Duration t.INFINITE

[range] [0,com.rti.dds.infrastructure.Duration t.INFINITE]

8.12.5 Consistency

The setting of com.rti.dds.infrastructure.BatchQosPolicy.max -
flush delay (p. 403) must be consistent with
com.rti.dds.infrastructure.AsynchronousPublisherQosPolicy.disable -
asynchronous batch (p. 390) and com.rti.dds.infrastructure.BatchQosPolicy.thread -
safe write (p. 404). If the delay is differ-
ent than com.rti.dds.infrastructure.Duration t.INFINITE,
com.rti.dds.infrastructure.AsynchronousPublisherQosPolicy.disable -
asynchronous batch (p. 390) must be set to false and
com.rti.dds.infrastructure.BatchQosPolicy.thread safe write (p. 404)
must be set to true.

8.12.5.1 final Duration t source timestamp resolution

Batch source timestamp resolution.

The value of this field determines how the source timestamp is associated with
the samples in a batch.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

404 Class Documentation

A sample written with timestamp ’t’ inherits the source timestamp ’t2’ associ-
ated with the previous sample unless (’t’ - ’t2’) > source timestamp resolution.

If source timestamp resolution is set to com.rti.dds.infrastructure.Duration -
t.INFINITE, every sample in the batch will share the source timestamp as-
sociated with the first sample.

If source timestamp resolution is set to zero, every sample in the batch will
contain its own source timestamp corresponding to the moment when the sample
was written.

The performance of the batching process is better when source timestamp -
resolution is set to com.rti.dds.infrastructure.Duration t.INFINITE.

[default] com.rti.dds.infrastructure.Duration t.INFINITE

[range] [0,com.rti.dds.infrastructure.Duration t.INFINITE]

8.12.6 Consistency

The setting of com.rti.dds.infrastructure.BatchQosPolicy.source -
timestamp resolution (p. 403) must be consistent with
com.rti.dds.infrastructure.BatchQosPolicy.thread safe write (p. 404).
If com.rti.dds.infrastructure.BatchQosPolicy.thread safe write (p. 404)
is set to false, com.rti.dds.infrastructure.BatchQosPolicy.source -
timestamp resolution (p. 403) must be set to
com.rti.dds.infrastructure.Duration t.INFINITE.

8.12.6.1 boolean thread safe write

Determines whether or not the write operation is thread safe.

If this parameter is set to true, multiple threads can call write on the
com.rti.dds.publication.DataWriter (p. 538) concurrently.

[default] true

8.12.7 Consistency

The setting of com.rti.dds.infrastructure.BatchQosPolicy.thread -
safe write (p. 404) must be consistent with
com.rti.dds.infrastructure.BatchQosPolicy.source timestamp -
resolution (p. 403). If com.rti.dds.infrastructure.BatchQosPolicy.thread -
safe write (p. 404) is set to false, com.rti.dds.infrastructure.BatchQosPolicy.source -
timestamp resolution (p. 403) must be set to
com.rti.dds.infrastructure.Duration t.INFINITE.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.13 BooleanSeq Class Reference 405

8.13 BooleanSeq Class Reference

Instantiates com.rti.dds.util.Sequence (p. 1432) < boolean >.

Inheritance diagram for BooleanSeq::

Public Member Functions

ˆ BooleanSeq ()
Constructs an empty sequence of booleans with an initial maximum of zero.

ˆ BooleanSeq (int initialMaximum)
Constructs an empty sequence of booleans with the given initial maximum.

ˆ BooleanSeq (boolean[] booleans)
Constructs a new sequence containing the given booleans.

ˆ boolean addAllBoolean (boolean[] elements, int offset, int length)
Append length elements from the given array to this sequence, starting at
index offset in that array.

ˆ boolean addAllBoolean (boolean[] elements)
ˆ void addBoolean (boolean element)

Append the element to the end of the sequence.

ˆ void addBoolean (int index, boolean element)
Shift all elements in the sequence starting from the given index and add the
element to the given index.

ˆ boolean getBoolean (int index)
Returns the boolean at the given index.

ˆ boolean setBoolean (int index, boolean element)
Set the new boolean at the given index and return the old boolean.

ˆ void setBoolean (int dstIndex, boolean[] elements, int srcIndex, int
length)

Copy a portion of the given array into this sequence.

ˆ boolean[] toArrayBoolean (boolean[] array)
Return an array containing copy of the contents of this sequence.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

406 Class Documentation

ˆ int getMaximum ()

Get the current maximum number of elements that can be stored in this
sequence.

ˆ Object get (int index)

A wrapper for getBoolean(int) (p. 407) that returns a java.lang.Boolean.

ˆ Object set (int index, Object element)

A wrapper for setBoolean() (p. 408).

ˆ void add (int index, Object element)

A wrapper for addBoolean(int, int).

8.13.1 Detailed Description

Instantiates com.rti.dds.util.Sequence (p. 1432) < boolean >.

Instantiates:

<<generic>> (p. 271) com.rti.dds.util.Sequence (p. 1432)

See also:

boolean
com.rti.dds.util.Sequence (p. 1432)

8.13.2 Constructor & Destructor Documentation

8.13.2.1 BooleanSeq ()

Constructs an empty sequence of booleans with an initial maximum of zero.

8.13.2.2 BooleanSeq (int initialMaximum)

Constructs an empty sequence of booleans with the given initial maximum.

8.13.2.3 BooleanSeq (boolean[] booleans)

Constructs a new sequence containing the given booleans.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.13 BooleanSeq Class Reference 407

Parameters:

booleans the initial contents of this sequence

Exceptions:

NullPointerException if the input array is null

8.13.3 Member Function Documentation

8.13.3.1 boolean addAllBoolean (boolean[] elements, int offset,
int length)

Append length elements from the given array to this sequence, starting at index
offset in that array.

Exceptions:

NullPointerException if the given array is null.

8.13.3.2 boolean addAllBoolean (boolean[] elements)

Exceptions:

NullPointerException if the given array is null

8.13.3.3 void addBoolean (boolean element)

Append the element to the end of the sequence.

8.13.3.4 void addBoolean (int index, boolean element)

Shift all elements in the sequence starting from the given index and add the
element to the given index.

8.13.3.5 boolean getBoolean (int index)

Returns the boolean at the given index.

Exceptions:

IndexOutOfBoundsException if the index is out of bounds.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

408 Class Documentation

8.13.3.6 boolean setBoolean (int index, boolean element)

Set the new boolean at the given index and return the old boolean.

Exceptions:

IndexOutOfBoundsException if the index is out of bounds.

8.13.3.7 void setBoolean (int dstIndex, boolean[] elements, int
srcIndex, int length)

Copy a portion of the given array into this sequence.

Parameters:

dstIndex the index at which to start copying into this sequence.

elements an array of primitive elements.

srcIndex the index at which to start copying from the given array.

length the number of elements to copy.

Exceptions:

IndexOutOfBoundsException if copying would cause access of data
outside array bounds.

8.13.3.8 boolean [] toArrayBoolean (boolean[] array)

Return an array containing copy of the contents of this sequence.

Parameters:

array The array into which this sequence should be copied. It may be
null. If it is, or if array length is too small, the array will be ignored,
and a new array of the necessary length will be created and copied
into instead.

Returns:

A non-null array containing a copy of the contents of this sequence.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.13 BooleanSeq Class Reference 409

8.13.3.9 int getMaximum ()

Get the current maximum number of elements that can be stored in this se-
quence.

The maximum of the sequence represents the maximum number of elements that
the underlying buffer can hold. It does not represent the current number of
elements.

The maximum is a non-negative number. It is initialized when the sequence is
first created.

The maximum can be changed implicitly by adding an element to the sequence
with add() (p. 410), or explicitly by calling Sequence.setMaximum.

Returns:

the current maximum of the sequence.

See also:

Sequence.size()

Implements Sequence (p. 1433).

8.13.3.10 Object get (int index) [virtual]

A wrapper for getBoolean(int) (p. 407) that returns a java.lang.Boolean.

See also:

java.util.List.get(int)

Implements AbstractPrimitiveSequence (p. 377).

8.13.3.11 Object set (int index, Object element) [virtual]

A wrapper for setBoolean() (p. 408).

Exceptions:

ClassCastException if the element is not of type Boolean.

See also:

java.util.List.set(int, java.lang.Object)

Implements AbstractPrimitiveSequence (p. 377).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

410 Class Documentation

8.13.3.12 void add (int index, Object element) [virtual]

A wrapper for addBoolean(int, int).

Exceptions:

ClassCastException if the element is not of type Boolean.

See also:

java.util.List.add(int, java.lang.Object)

Implements AbstractPrimitiveSequence (p. 378).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.14 Bounds Class Reference 411

8.14 Bounds Class Reference

A user exception thrown when a parameter is not within the legal bounds.

Inheritance diagram for Bounds::

8.14.1 Detailed Description

A user exception thrown when a parameter is not within the legal bounds.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

412 Class Documentation

8.15 BuiltinTopicKey t Class Reference

The key type of the built-in topic (p. 350) types.

Inheritance diagram for BuiltinTopicKey t::

Public Member Functions

ˆ void copy from (BuiltinTopicKey t other)
ˆ Object copy from (Object other)

Copy value of a data type from source.

Public Attributes

ˆ final int[] value
An array of four integers that uniquely represents a remote
com.rti.dds.infrastructure.Entity (p. 912).

8.15.1 Detailed Description

The key type of the built-in topic (p. 350) types.

Each remote com.rti.dds.infrastructure.Entity (p. 912) to be discovered is
can be uniquely identified by this key. This is the key of all the built-in topic
(p. 350) data types.

See also:

builtin.ParticipantBuiltinTopicData
builtin.TopicBuiltinTopicData (p. 1552)
builtin.PublicationBuiltinTopicData
builtin.SubscriptionBuiltinTopicData

8.15.2 Member Function Documentation

8.15.2.1 void copy from (BuiltinTopicKey t other)

Exceptions:

NullPointerException if ’other’ is null.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.15 BuiltinTopicKey t Class Reference 413

8.15.2.2 Object copy from (Object src)

Copy value of a data type from source.

Copy data into this object from another. This copy is intended to be a deep
copy, so that all data members (recursively) are copied (not just resetting Object
references).

This operation returns the object that is copied if copy is successful.

Parameters:

src <<in>> (p. 271) The Object which contains the data to be copied.

Returns:

Generally, return this but special cases (such as Enum) exist.

Exceptions:

NullPointerException If src is null.

ClassCastException If src is not the same type as this.

Implements Copyable (p. 466).

8.15.3 Member Data Documentation

8.15.3.1 final int [] value

An array of four integers that uniquely represents a remote
com.rti.dds.infrastructure.Entity (p. 912).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

414 Class Documentation

8.16 BuiltinTopicReaderResourceLimits t
Class Reference

Built-in topic (p. 350) reader’s resource limits.

Inherits Struct.

Public Member Functions

ˆ BuiltinTopicReaderResourceLimits t ()
Constructor with default initial and maximum values.

ˆ BuiltinTopicReaderResourceLimits t (int initial samples, int
max samples, int initial infos, int max infos, int initial outstanding -
reads, int max outstanding reads, int max samples per read)

Constructor with the given initial and maximum values.

Public Attributes

ˆ int initial samples

Initial number of samples.

ˆ int max samples

Maximum number of samples.

ˆ int initial infos

Initial number of sample infos.

ˆ int max infos

Maximum number of sample infos.

8.16.1 Detailed Description

Built-in topic (p. 350) reader’s resource limits.

Defines the resources that can be used for a built-in-topic data reader.

A built-in topic (p. 350) data reader subscribes reliably to built-in topics con-
taining declarations of new entities or updates to existing entities in the domain
(p. 317). Keys are used to differentiate among entities of the same type. RTI
Connext assigns a unique key to each entity in a domain (p. 317).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.16 BuiltinTopicReaderResourceLimits t Class Reference 415

Properties:

RxO (p. 97) = N/A
Changeable (p. 98) = NO (p. 98)

QoS:

com.rti.dds.infrastructure.DiscoveryConfigQosPolicy (p. 615)

8.16.2 Constructor & Destructor Documentation

8.16.2.1 BuiltinTopicReaderResourceLimits t ()

Constructor with default initial and maximum values.

8.16.2.2 BuiltinTopicReaderResourceLimits t (int initial samples,
int max samples, int initial infos, int max infos, int
initial outstanding reads, int max outstanding reads, int
max samples per read)

Constructor with the given initial and maximum values.

8.16.3 Member Data Documentation

8.16.3.1 int initial samples

Initial number of samples.

This should be a value between 1 and initial number of instance of the built-in-
topic reader, depending on how many instances are sending data concurrently.

[default] 64

[range] [1, 1 million], <= max samples

8.16.3.2 int max samples

Maximum number of samples.

This should be a value between 1 and max number of instance of the built-in-
topic reader, depending on how many instances are sending data concurrently.
Also, it should not be less than initial samples.

[default] ResourceLimitsQosPolicy.LENGTH UNLIMITED (p. 102)

[range] [1, 1 million] or ResourceLimitsQosPolicy.LENGTH -
UNLIMITED (p. 102), >= initial samples

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

416 Class Documentation

8.16.3.3 int initial infos

Initial number of sample infos.

The initial number of info units that a built-in topic (p. 350)
com.rti.dds.subscription.DataReader (p. 473) can have. Info units
are used to store com.rti.dds.subscription.SampleInfo (p. 1404).

[default] 64

[range] [1, 1 million] <= max infos

8.16.3.4 int max infos

Maximum number of sample infos.

The maximum number of info units that a built-in topic (p. 350)
com.rti.dds.subscription.DataReader (p. 473) can use to store
com.rti.dds.subscription.SampleInfo (p. 1404).

[default] ResourceLimitsQosPolicy.LENGTH UNLIMITED (p. 102)

[range] [1, 1 million] or ResourceLimitsQosPolicy.LENGTH -
UNLIMITED (p. 102), >= initial infos

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.17 Bytes Class Reference 417

8.17 Bytes Class Reference

Built-in type consisting of a variable-length array of opaque bytes.

Inheritance diagram for Bytes::

Public Member Functions

ˆ Bytes ()

Default Constructor.

ˆ Bytes (Bytes src)

Copy constructor.

ˆ Bytes (int size)

Constructor that specifies the size of the allocated bytes array.

ˆ Object copy from (Object src)

Copy src into this object.

Public Attributes

ˆ int length

Number of bytes to serialize.

ˆ int offset

Offset from which to start serializing bytes .

ˆ byte[] value

com.rti.dds.type.builtin.Bytes (p. 417) array value.

8.17.1 Detailed Description

Built-in type consisting of a variable-length array of opaque bytes.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

418 Class Documentation

8.17.2 Constructor & Destructor Documentation

8.17.2.1 Bytes ()

Default Constructor.

The default constructor initializes the newly created object with null value, zero
length, and zero offset.

8.17.2.2 Bytes (Bytes src)

Copy constructor.

Parameters:

src <<in>> (p. 271) Object to copy from.

Exceptions:

NullPointerException if src is null.

8.17.2.3 Bytes (int size)

Constructor that specifies the size of the allocated bytes array.

After this method is called, length and offset are set to zero.

Parameters:

size <<in>> (p. 271) Size of the allocated bytes array.

Exceptions:

IllegalArgumentException if size is negative

8.17.3 Member Function Documentation

8.17.3.1 Object copy from (Object src)

Copy src into this object.

This method performs a deep copy of src and it allocates memory for the value
if required.

Parameters:

src <<in>> (p. 271) Object to copy from.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.17 Bytes Class Reference 419

Returns:

this if success. Otherwise, null.

Exceptions:

NullPointerException if src is null.

Implements Copyable (p. 466).

8.17.4 Member Data Documentation

8.17.4.1 int length

Number of bytes to serialize.

8.17.4.2 int offset

Offset from which to start serializing bytes .

The first position of the bytes array has offset 0.

8.17.4.3 byte [] value

com.rti.dds.type.builtin.Bytes (p. 417) array value.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

420 Class Documentation

8.18 BytesDataReader Class Reference

<<interface>> (p. 271) Instantiates DataReader <
com.rti.dds.type.builtin.Bytes (p. 417) >.

Inheritance diagram for BytesDataReader::

Public Member Functions

ˆ void read (BytesSeq received data, SampleInfoSeq info seq, int max -
samples, int sample states, int view states, int instance states)

Access a collection of data samples from the
com.rti.dds.subscription.DataReader (p. 473).

ˆ void take (BytesSeq received data, SampleInfoSeq info seq, int max -
samples, int sample states, int view states, int instance states)

Access a collection of data-samples from the
com.rti.dds.subscription.DataReader (p. 473).

ˆ void read w condition (BytesSeq received data, SampleInfoSeq
info seq, int max samples, ReadCondition condition)

Accesses via com.rti.dds.type.builtin.BytesDataReader.read
(p. 421) the samples that match the criteria specified in the
com.rti.dds.subscription.ReadCondition (p. 1326).

ˆ void take w condition (BytesSeq received data, SampleInfoSeq
info seq, int max samples, ReadCondition condition)

Analogous to com.rti.dds.type.builtin.BytesDataReader.read -
w condition (p. 422) except it accesses samples via the
com.rti.dds.type.builtin.BytesDataReader.take (p. 421) operation.

ˆ void read next sample (Bytes received data, SampleInfo sample -
info)

Copies the next not-previously-accessed data value from the
com.rti.dds.subscription.DataReader (p. 473).

ˆ void take next sample (Bytes received data, SampleInfo sample -
info)

Copies the next not-previously-accessed data value from the
com.rti.dds.subscription.DataReader (p. 473).

ˆ void return loan (BytesSeq received data, SampleInfoSeq info seq)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.18 BytesDataReader Class Reference 421

Indicates to the com.rti.dds.subscription.DataReader (p. 473) that
the application is done accessing the collection of received data and
info seq obtained by some earlier invocation of read or take on the
com.rti.dds.subscription.DataReader (p. 473).

8.18.1 Detailed Description

<<interface>> (p. 271) Instantiates DataReader <
com.rti.dds.type.builtin.Bytes (p. 417) >.

See also:

com.rti.dds.topic.example.FooDataReader
com.rti.dds.subscription.DataReader (p. 473)

8.18.2 Member Function Documentation

8.18.2.1 void read (BytesSeq received data, SampleInfoSeq
info seq, int max samples, int sample states, int
view states, int instance states)

Access a collection of data samples from the
com.rti.dds.subscription.DataReader (p. 473).

See also:

com.rti.dds.topic.example.FooDataReader.read

8.18.2.2 void take (BytesSeq received data, SampleInfoSeq
info seq, int max samples, int sample states, int
view states, int instance states)

Access a collection of data-samples from the
com.rti.dds.subscription.DataReader (p. 473).

See also:

com.rti.dds.topic.example.FooDataReader.take

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

422 Class Documentation

8.18.2.3 void read w condition (BytesSeq received data,
SampleInfoSeq info seq, int max samples, ReadCondition
condition)

Accesses via com.rti.dds.type.builtin.BytesDataReader.read
(p. 421) the samples that match the criteria specified in the
com.rti.dds.subscription.ReadCondition (p. 1326).

See also:

com.rti.dds.topic.example.FooDataReader.read w condition

8.18.2.4 void take w condition (BytesSeq received data,
SampleInfoSeq info seq, int max samples, ReadCondition
condition)

Analogous to com.rti.dds.type.builtin.BytesDataReader.read -
w condition (p. 422) except it accesses samples via the
com.rti.dds.type.builtin.BytesDataReader.take (p. 421) operation.

See also:

com.rti.dds.topic.example.FooDataReader.take w condition

8.18.2.5 void read next sample (Bytes received data, SampleInfo
sample info)

Copies the next not-previously-accessed data value from the
com.rti.dds.subscription.DataReader (p. 473).

See also:

com.rti.dds.topic.example.FooDataReader.read next sample

8.18.2.6 void take next sample (Bytes received data, SampleInfo
sample info)

Copies the next not-previously-accessed data value from the
com.rti.dds.subscription.DataReader (p. 473).

See also:

com.rti.dds.topic.example.FooDataReader.take next sample

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.18 BytesDataReader Class Reference 423

8.18.2.7 void return loan (BytesSeq received data, SampleInfoSeq
info seq)

Indicates to the com.rti.dds.subscription.DataReader (p. 473) that
the application is done accessing the collection of received data and
info seq obtained by some earlier invocation of read or take on the
com.rti.dds.subscription.DataReader (p. 473).

See also:

com.rti.dds.topic.example.FooDataReader.return loan

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

424 Class Documentation

8.19 BytesDataWriter Class Reference

<<interface>> (p. 271) Instantiates DataWriter <
com.rti.dds.type.builtin.Bytes (p. 417) >.

Inheritance diagram for BytesDataWriter::

Public Member Functions

ˆ void write (Bytes instance data, InstanceHandle t handle)

Modifies the value of a com.rti.dds.type.builtin.Bytes (p. 417) data in-
stance.

ˆ void write (byte[] octets, int offset, int length, InstanceHandle t han-
dle)

<<eXtension>> (p. 270) Modifies the value of a
com.rti.dds.type.builtin.Bytes (p. 417) data instance.

ˆ void write (ByteSeq octets, InstanceHandle t handle)

<<eXtension>> (p. 270) Modifies the value of a
com.rti.dds.type.builtin.Bytes (p. 417) data instance.

ˆ void write w timestamp (Bytes instance data, InstanceHandle t
handle, Time t source timestamp)

Performs the same function as com.rti.dds.type.builtin.BytesDataWriter.write
(p. 425) except that it also provides the value for the source timestamp.

ˆ void write w timestamp (byte[] octets, int offset, int length, Instance-
Handle t handle, Time t source timestamp)

<<eXtension>> (p. 270) Performs the same function as Bytes-
DataWriter.write (p. 425) except that it also provides the value for the
source timestamp.

ˆ void write w timestamp (ByteSeq octets, InstanceHandle t handle,
Time t source timestamp)

<<eXtension>> (p. 270) Performs the same function as Bytes-
DataWriter.write (p. 425) except that it also provides the value for the
source timestamp.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.19 BytesDataWriter Class Reference 425

8.19.1 Detailed Description

<<interface>> (p. 271) Instantiates DataWriter <
com.rti.dds.type.builtin.Bytes (p. 417) >.

See also:

com.rti.dds.topic.example.FooDataWriter
com.rti.dds.publication.DataWriter (p. 538)

8.19.2 Member Function Documentation

8.19.2.1 void write (Bytes instance data, InstanceHandle t handle)

Modifies the value of a com.rti.dds.type.builtin.Bytes (p. 417) data instance.

See also:

com.rti.dds.topic.example.FooDataWriter.write

8.19.2.2 void write (byte[] octets, int offset, int length,
InstanceHandle t handle)

<<eXtension>> (p. 270) Modifies the value of a
com.rti.dds.type.builtin.Bytes (p. 417) data instance.

Parameters:

octets <<in>> (p. 271) Array of bytes to be published.

offset <<in>> (p. 271) Offset from which to start publishing.

length <<in>> (p. 271) Number of bytes to be published.

handle <<in>> (p. 271) The special value InstanceHandle -
t.HANDLE NIL (p. 1082) should be used always.

See also:

com.rti.dds.topic.example.FooDataWriter.write

8.19.2.3 void write (ByteSeq octets, InstanceHandle t handle)

<<eXtension>> (p. 270) Modifies the value of a
com.rti.dds.type.builtin.Bytes (p. 417) data instance.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

426 Class Documentation

Parameters:

octets <<in>> (p. 271) Sequence of bytes to be published.

handle <<in>> (p. 271) The special value InstanceHandle -
t.HANDLE NIL (p. 1082) should be used always.

See also:

com.rti.dds.topic.example.FooDataWriter.write

8.19.2.4 void write w timestamp (Bytes instance data,
InstanceHandle t handle, Time t source timestamp)

Performs the same function as com.rti.dds.type.builtin.BytesDataWriter.write
(p. 425) except that it also provides the value for the source timestamp.

See also:

com.rti.dds.topic.example.FooDataWriter.write w timestamp

8.19.2.5 void write w timestamp (byte[] octets, int offset,
int length, InstanceHandle t handle, Time t
source timestamp)

<<eXtension>> (p. 270) Performs the same function as Bytes-
DataWriter.write (p. 425) except that it also provides the value for the
source timestamp.

Parameters:

octets <<in>> (p. 271) Array of bytes to be published.

offset <<in>> (p. 271) Offset from which to start publishing.

length <<in>> (p. 271) Number of bytes to be published.

handle <<in>> (p. 271) The special value InstanceHandle -
t.HANDLE NIL (p. 1082) should be used always.

source timestamp <<in>> (p. 271) The timestamp value must be
greater than or equal to the timestamp value used in the last writer
operation. See com.rti.dds.topic.example.FooDataWriter.write w -
timestamp. Cannot be NULL.

See also:

com.rti.dds.topic.example.FooDataWriter.write w timestamp

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.19 BytesDataWriter Class Reference 427

8.19.2.6 void write w timestamp (ByteSeq octets,
InstanceHandle t handle, Time t source timestamp)

<<eXtension>> (p. 270) Performs the same function as Bytes-
DataWriter.write (p. 425) except that it also provides the value for the
source timestamp.

Parameters:

octets <<in>> (p. 271) Sequence of bytes to be published.

handle <<in>> (p. 271) The special value InstanceHandle -
t.HANDLE NIL (p. 1082) should be used always.

source timestamp <<in>> (p. 271) The timestamp value must be
greater than or equal to the timestamp value used in the last writer
operation. See com.rti.dds.topic.example.FooDataWriter.write w -
timestamp. Cannot be NULL.

See also:

com.rti.dds.topic.example.FooDataWriter.write w timestamp

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

428 Class Documentation

8.20 ByteSeq Class Reference

Instantiates com.rti.dds.util.Sequence (p. 1432) < byte >.

Inheritance diagram for ByteSeq::

Public Member Functions

ˆ ByteSeq ()
Constructs an empty sequence of bytes with an initial maximum of zero.

ˆ ByteSeq (int initialMaximum)
Constructs an empty sequence of bytes with the given initial maximum.

ˆ ByteSeq (byte[] bytes)
Construct a new sequence containing the given bytes.

ˆ boolean addAllByte (byte[] elements, int offset, int length)
Append length elements from the given array to this sequence, starting at
index offset in that array.

ˆ boolean addAllByte (byte[] elements)
ˆ void addByte (byte element)

Append the element to the end of the sequence.

ˆ void addByte (int index, byte element)
Shift all elements in the sequence starting from the given index and add the
element to the given index.

ˆ byte getByte (int index)
Returns the byte at the given index.

ˆ byte setByte (int index, byte element)
Set the new byte at the given index and return the old byte.

ˆ void setByte (int dstIndex, byte[] elements, int srcIndex, int length)
Copy a portion of the given array into this sequence.

ˆ byte[] toArrayByte (byte[] array)
Return an array containing copy of the contents of this sequence.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.20 ByteSeq Class Reference 429

ˆ int getMaximum ()
Get the current maximum number of elements that can be stored in this
sequence.

ˆ Object get (int index)
A wrapper for getByte(int) (p. 430) that returns a java.lang.Byte.

ˆ Object set (int index, Object element)
A wrapper for setByte() (p. 431).

ˆ void add (int index, Object element)
A wrapper for addByte(int, int).

8.20.1 Detailed Description

Instantiates com.rti.dds.util.Sequence (p. 1432) < byte >.

Instantiates:

<<generic>> (p. 271) com.rti.dds.util.Sequence (p. 1432)

See also:

byte
com.rti.dds.util.Sequence (p. 1432)

8.20.2 Constructor & Destructor Documentation

8.20.2.1 ByteSeq ()

Constructs an empty sequence of bytes with an initial maximum of zero.

8.20.2.2 ByteSeq (int initialMaximum)

Constructs an empty sequence of bytes with the given initial maximum.

8.20.2.3 ByteSeq (byte[] bytes)

Construct a new sequence containing the given bytes.

Parameters:

bytes the initial contents of this sequence

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

430 Class Documentation

Exceptions:

NullPointerException if the input array is null

8.20.3 Member Function Documentation

8.20.3.1 boolean addAllByte (byte[] elements, int offset, int
length)

Append length elements from the given array to this sequence, starting at index
offset in that array.

Exceptions:

NullPointerException if the given array is null.

8.20.3.2 boolean addAllByte (byte[] elements)

Exceptions:

NullPointerException if the given array is null

8.20.3.3 void addByte (byte element)

Append the element to the end of the sequence.

8.20.3.4 void addByte (int index, byte element)

Shift all elements in the sequence starting from the given index and add the
element to the given index.

8.20.3.5 byte getByte (int index)

Returns the byte at the given index.

Exceptions:

IndexOutOfBoundsException if the index is out of bounds.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.20 ByteSeq Class Reference 431

8.20.3.6 byte setByte (int index, byte element)

Set the new byte at the given index and return the old byte.

Exceptions:

IndexOutOfBoundsException if the index is out of bounds.

8.20.3.7 void setByte (int dstIndex, byte[] elements, int srcIndex,
int length)

Copy a portion of the given array into this sequence.

Parameters:

dstIndex the index at which to start copying into this sequence.

elements an array of primitive elements.

srcIndex the index at which to start copying from the given array.

length the number of elements to copy.

Exceptions:

IndexOutOfBoundsException if copying would cause access of data
outside array bounds.

8.20.3.8 byte [] toArrayByte (byte[] array)

Return an array containing copy of the contents of this sequence.

Parameters:

array The array into which this sequence should be copied. It may be
null. If it is, or if array length is too small, the array will be ignored,
and a new array of the necessary length will be created and copied
into instead.

Returns:

A non-null array containing a copy of the contents of this sequence.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

432 Class Documentation

8.20.3.9 int getMaximum ()

Get the current maximum number of elements that can be stored in this se-
quence.

The maximum of the sequence represents the maximum number of elements that
the underlying buffer can hold. It does not represent the current number of
elements.

The maximum is a non-negative number. It is initialized when the sequence is
first created.

The maximum can be changed implicitly by adding an element to the sequence
with add() (p. 433), or explicitly by calling Sequence.setMaximum.

Returns:

the current maximum of the sequence.

See also:

Sequence.size()

Implements Sequence (p. 1433).

8.20.3.10 Object get (int index) [virtual]

A wrapper for getByte(int) (p. 430) that returns a java.lang.Byte.

See also:

java.util.List.get(int)

Implements AbstractPrimitiveSequence (p. 377).

8.20.3.11 Object set (int index, Object element) [virtual]

A wrapper for setByte() (p. 431).

Exceptions:

ClassCastException if the element is not of type Byte.

See also:

java.util.List.set(int, java.lang.Object)

Implements AbstractPrimitiveSequence (p. 377).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.20 ByteSeq Class Reference 433

8.20.3.12 void add (int index, Object element) [virtual]

A wrapper for addByte(int, int).

Exceptions:

ClassCastException if the element is not of type Byte.

See also:

java.util.List.add(int, java.lang.Object)

Implements AbstractPrimitiveSequence (p. 378).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

434 Class Documentation

8.21 BytesSeq Class Reference

Instantiates com.rti.dds.util.Sequence (p. 1432) <
com.rti.dds.type.builtin.Bytes (p. 417) > .

Inheritance diagram for BytesSeq::

Public Member Functions

ˆ BytesSeq ()

Constructs an empty sequence of com.rti.dds.type.builtin.Bytes (p. 417)
objects with an initial maximum of zero.

ˆ BytesSeq (int initialMaximum)

Constructs an empty sequence of com.rti.dds.type.builtin.Bytes (p. 417)
objects with the given initial maximum.

ˆ BytesSeq (Collection elements)

Constructs a new sequence containing the given
com.rti.dds.type.builtin.Bytes (p. 417) objects.

ˆ Object copy from (Object src)

Package Attributes

ˆ transient Sequence loanedInfoSequence = null

8.21.1 Detailed Description

Instantiates com.rti.dds.util.Sequence (p. 1432) <
com.rti.dds.type.builtin.Bytes (p. 417) > .

Instantiates:

<<generic>> (p. 271) com.rti.dds.util.Sequence (p. 1432)

See also:

com.rti.dds.type.builtin.Bytes (p. 417)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.21 BytesSeq Class Reference 435

8.21.2 Constructor & Destructor Documentation

8.21.2.1 BytesSeq ()

Constructs an empty sequence of com.rti.dds.type.builtin.Bytes (p. 417) ob-
jects with an initial maximum of zero.

8.21.2.2 BytesSeq (int initialMaximum)

Constructs an empty sequence of com.rti.dds.type.builtin.Bytes (p. 417) ob-
jects with the given initial maximum.

8.21.2.3 BytesSeq (Collection elements)

Constructs a new sequence containing the given
com.rti.dds.type.builtin.Bytes (p. 417) objects.

Parameters:

elements the initial contents of this sequence.

Exceptions:

NullPointerException if the input collection is null

8.21.3 Member Function Documentation

8.21.3.1 Object copy from (Object src)

Copy data into this object from another. The result of this method is that
both this and src will be the same size and contain the same data.

Parameters:

src The Object which contains the data to be copied

Returns:

this

Exceptions:

NullPointerException If src is null.

ClassCastException If src is not a Sequence OR if one of the objects
contained in the Sequence is not of the expected type.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

436 Class Documentation

See also:

com.rti.dds.infrastructure.Copyable.copy from
(p. 466)(java.lang.Object)

Implements Copyable (p. 466).

8.21.4 Member Data Documentation

8.21.4.1 transient Sequence loanedInfoSequence = null [package]

When a memory loan has been taken out in the lower layers of NDDS, store a
pointer to the native sequence here. That way, when we call finish(), we can
give the memory back.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.22 BytesTypeSupport Class Reference 437

8.22 BytesTypeSupport Class Reference

<<interface>> (p. 271) com.rti.dds.type.builtin.Bytes (p. 417) type sup-
port.

Inheritance diagram for BytesTypeSupport::

Static Public Member Functions

ˆ static void register type (DomainParticipant participant, String
type name)

Allows an application to communicate to RTI Connext the existence of the
com.rti.dds.type.builtin.Bytes (p. 417) data type.

ˆ static void unregister type (DomainParticipant participant, String
type name)

Allows an application to unregister the com.rti.dds.type.builtin.Bytes
(p. 417) data type from RTI Connext. After calling unregister type, no fur-
ther communication using this type is possible.

ˆ static String get type name ()

Get the default name for the com.rti.dds.type.builtin.Bytes (p. 417) type.

8.22.1 Detailed Description

<<interface>> (p. 271) com.rti.dds.type.builtin.Bytes (p. 417) type sup-
port.

8.22.2 Member Function Documentation

8.22.2.1 static void register type (DomainParticipant participant,
String type name) [static]

Allows an application to communicate to RTI Connext the existence of the
com.rti.dds.type.builtin.Bytes (p. 417) data type.

By default, The com.rti.dds.type.builtin.Bytes (p. 417) built-in type is
automatically registered when a DomainParticipant is created using the
type name returned by com.rti.dds.type.builtin.BytesTypeSupport.get -
type name (p. 439). Therefore, the usage of this function is optional and it

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

438 Class Documentation

is only required when the automatic built-in type registration is disabled using
the participant property ”dds.builtin type.auto register”.

This method can also be used to register the same
com.rti.dds.type.builtin.BytesTypeSupport (p. 437) with a
com.rti.dds.domain.DomainParticipant (p. 629) using different values for
the type name.

If register type is called multiple times with the same
com.rti.dds.domain.DomainParticipant (p. 629) and type name, the
second (and subsequent) registrations are ignored by the operation.

Parameters:

participant <<in>> (p. 271) the com.rti.dds.domain.DomainParticipant
(p. 629) to register the data type com.rti.dds.type.builtin.Bytes
(p. 417) with. Cannot be null.

type name <<in>> (p. 271) the type name under with the
data type com.rti.dds.type.builtin.Bytes (p. 417) is reg-
istered with the participant; this type name is used when
creating a new com.rti.dds.topic.Topic (p. 1545). (See
com.rti.dds.domain.DomainParticipant.create topic (p. 670).)
The name may not be null or longer than 255 characters.

Exceptions:

One of the Standard Return Codes (p. 104), RETCODE -
PRECONDITION NOT MET or RETCODE OUT OF -
RESOURCES.

MT Safety:

UNSAFE on the FIRST call. It is not safe for two threads to simultaneously
make the first call to register a type. Subsequent calls are thread safe.

See also:

com.rti.dds.domain.DomainParticipant.create topic (p. 670)

8.22.2.2 static void unregister type (DomainParticipant
participant, String type name) [static]

Allows an application to unregister the com.rti.dds.type.builtin.Bytes
(p. 417) data type from RTI Connext. After calling unregister type, no further
communication using this type is possible.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.22 BytesTypeSupport Class Reference 439

Precondition:

The com.rti.dds.type.builtin.Bytes (p. 417) type with type name is reg-
istered with the participant and all com.rti.dds.topic.Topic (p. 1545) ob-
jects referencing the type have been destroyed. If the type is not registered
with the participant, or if any com.rti.dds.topic.Topic (p. 1545) is asso-
ciated with the type, the operation will fail with RETCODE ERROR.

Postcondition:

All information about the type is removed from RTI Connext. No further
communication using this type is possible.

Parameters:

participant <<in>> (p. 271) the com.rti.dds.domain.DomainParticipant
(p. 629) to unregister the data type com.rti.dds.type.builtin.Bytes
(p. 417) from. Cannot be null.

type name <<in>> (p. 271) the type name under with the data type
com.rti.dds.type.builtin.Bytes (p. 417) is registered with the par-
ticipant. The name should match a name that has been previously
used to register a type with the participant. Cannot be null.

Exceptions:

One of the Standard Return Codes (p. 104), RETCODE BAD -
PARAMETER or RETCODE ERROR

MT Safety:

SAFE.

See also:

com.rti.dds.type.builtin.BytesTypeSupport.register type (p. 437)

8.22.2.3 static String get type name () [static]

Get the default name for the com.rti.dds.type.builtin.Bytes (p. 417) type.

Can be used for calling com.rti.dds.type.builtin.BytesTypeSupport.register -
type (p. 437) or creating com.rti.dds.topic.Topic (p. 1545).

Returns:

default name for the com.rti.dds.type.builtin.Bytes (p. 417) type.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

440 Class Documentation

See also:

com.rti.dds.type.builtin.BytesTypeSupport.register type (p. 437)
com.rti.dds.domain.DomainParticipant.create topic (p. 670)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.23 ChannelSettings t Class Reference 441

8.23 ChannelSettings t Class Reference

Type used to configure the properties of a channel.

Inherits Struct.

Public Member Functions

ˆ ChannelSettings t ()
Constructor.

ˆ ChannelSettings t (ChannelSettings t src)
Constructor.

ˆ ChannelSettings t (TransportMulticastSettingsSeq multicast -
settings, String filter expression)

Constructor.

Public Attributes

ˆ TransportMulticastSettingsSeq multicast settings
A sequence of com.rti.dds.infrastructure.TransportMulticastSettings t
(p. 1594) used to configure the multicast addresses associated with a channel.

ˆ String filter expression
A logical expression used to determine the data that will be published in the
channel.

8.23.1 Detailed Description

Type used to configure the properties of a channel.

QoS:

com.rti.dds.infrastructure.MultiChannelQosPolicy (p. 1205)

8.23.2 Constructor & Destructor Documentation

8.23.2.1 ChannelSettings t ()

Constructor.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

442 Class Documentation

8.23.2.2 ChannelSettings t (ChannelSettings t src)

Constructor.

Parameters:

src <<in>> (p. 271) Settings used to initialized the new settings.

8.23.2.3 ChannelSettings t (TransportMulticastSettingsSeq
multicast settings, String filter expression)

Constructor.

Parameters:

multicast settings <<in>> (p. 271) Multicast settings.

filter expression <<in>> (p. 271) Filter expression.

8.23.3 Member Data Documentation

8.23.3.1 TransportMulticastSettingsSeq multicast settings

Initial value:

new TransportMulticastSettingsSeq()

A sequence of com.rti.dds.infrastructure.TransportMulticastSettings t
(p. 1594) used to configure the multicast addresses associated with a channel.

The sequence cannot be empty.

The maximum number of multicast locators in a channel is limited to four (A
locator is defined by a transport alias, a multicast address and a port)

[default] Empty sequence (invalid value)

8.23.3.2 String filter expression

A logical expression used to determine the data that will be published in the
channel.

If the expression evaluates to TRUE, a sample will be published on the channel.

An empty string always evaluates the expression to TRUE.

A NULL value is not allowed.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.23 ChannelSettings t Class Reference 443

The syntax of the expression will depend on the value of
com.rti.dds.infrastructure.MultiChannelQosPolicy.filter name
(p. 1207)

The filter expression length (including NULL-
terminated character) cannot be greater than
com.rti.dds.infrastructure.DomainParticipantResourceLimitsQosPolicy.channel -
filter expression max length (p. 756).

See also:

Queries and Filters Syntax (p. 278)

[default] NULL (invalid value)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

444 Class Documentation

8.24 ChannelSettingsSeq Class Reference

Declares IDL sequence< com.rti.dds.infrastructure.ChannelSettings t
(p. 441) >.

Inherits ArraySequence.

8.24.1 Detailed Description

Declares IDL sequence< com.rti.dds.infrastructure.ChannelSettings t
(p. 441) >.

A sequence of com.rti.dds.infrastructure.ChannelSettings t (p. 441) used
to configure the channels’ properties. If the length of the sequence is zero,
the com.rti.dds.infrastructure.MultiChannelQosPolicy (p. 1205) has no
effect.

Instantiates:

<<generic>> (p. 271) com.rti.dds.util.Sequence (p. 1432)

See also:

com.rti.dds.infrastructure.ChannelSettings t (p. 441)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.25 CharSeq Class Reference 445

8.25 CharSeq Class Reference

Instantiates com.rti.dds.util.Sequence (p. 1432) < char >.

Inheritance diagram for CharSeq::

Public Member Functions

ˆ CharSeq ()
Constructs an empty sequence of single-byte (serialized) characters with an
initial maximum of zero.

ˆ CharSeq (int initialMaximum)
Constructs an empty sequence of single-byte (serialized) characters with the
given initial maximum.

ˆ CharSeq (char[] chars)
Constructs a new sequence containing the given single-byte (serialized) char-
acters.

ˆ final boolean addAllChar (char[] elements, int offset, int length)
Append length elements from the given array to this sequence, starting at
index offset in that array.

ˆ final boolean addAllChar (char[] elements)
Append the elements of the given array into this sequence.

ˆ final void addChar (char element)
Append the element to the end of the sequence.

ˆ final void addChar (int index, char element)
Shift all elements in the sequence starting from the given index and add the
element to the given index.

ˆ final char getChar (int index)
Returns the character at the given index.

ˆ final char setChar (int index, char element)
Set the new character at the given index and return the old character.

ˆ final void setChar (int dstIndex, char[] elements, int srcIndex, int
length)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

446 Class Documentation

Copy a portion of the given array into this sequence.

ˆ final char[] toArrayChar (char[] array)
Return an array containing copy of the contents of this sequence.

ˆ final int getMaximum ()
Get the current maximum number of elements that can be stored in this
sequence.

ˆ final Object get (int index)
A wrapper for getChar(int) (p. 447) that returns a java.lang.Character.

ˆ final Object set (int index, Object element)
A wrapper for setChar() (p. 448).

ˆ final void add (int index, Object element)
A wrapper for addChar(int, int).

8.25.1 Detailed Description

Instantiates com.rti.dds.util.Sequence (p. 1432) < char >.

Instantiates:

<<generic>> (p. 271) com.rti.dds.util.Sequence (p. 1432)

See also:

char
com.rti.dds.util.Sequence (p. 1432)

8.25.2 Constructor & Destructor Documentation

8.25.2.1 CharSeq ()

Constructs an empty sequence of single-byte (serialized) characters with an
initial maximum of zero.

8.25.2.2 CharSeq (int initialMaximum)

Constructs an empty sequence of single-byte (serialized) characters with the
given initial maximum.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.25 CharSeq Class Reference 447

8.25.2.3 CharSeq (char[] chars)

Constructs a new sequence containing the given single-byte (serialized) charac-
ters.

Parameters:

chars the initial contents of this sequence

8.25.3 Member Function Documentation

8.25.3.1 final boolean addAllChar (char[] elements, int offset, int
length)

Append length elements from the given array to this sequence, starting at index
offset in that array.

Exceptions:

NullPointerException if the given array is null.

8.25.3.2 final boolean addAllChar (char[] elements)

Append the elements of the given array into this sequence.

Exceptions:

NullPointerException if the given array is null

8.25.3.3 final void addChar (char element)

Append the element to the end of the sequence.

8.25.3.4 final void addChar (int index, char element)

Shift all elements in the sequence starting from the given index and add the
element to the given index.

8.25.3.5 final char getChar (int index)

Returns the character at the given index.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

448 Class Documentation

Exceptions:

IndexOutOfBoundsException if the index is out of bounds.

8.25.3.6 final char setChar (int index, char element)

Set the new character at the given index and return the old character.

Exceptions:

IndexOutOfBoundsException if the index is out of bounds.

8.25.3.7 final void setChar (int dstIndex, char[] elements, int
srcIndex, int length)

Copy a portion of the given array into this sequence.

Parameters:

dstIndex the index at which to start copying into this sequence.

elements an array of primitive elements.

srcIndex the index at which to start copying from the given array.

length the number of elements to copy.

Exceptions:

IndexOutOfBoundsException if copying would cause access of data
outside array bounds.

8.25.3.8 final char [] toArrayChar (char[] array)

Return an array containing copy of the contents of this sequence.

Parameters:

array The array into which this sequence should be copied. It may be
null. If it is, or if array length is too small, the array will be ignored,
and a new array of the necessary length will be created and copied
into instead.

Returns:

A non-null array containing a copy of the contents of this sequence.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.25 CharSeq Class Reference 449

8.25.3.9 final int getMaximum ()

Get the current maximum number of elements that can be stored in this se-
quence.

The maximum of the sequence represents the maximum number of elements that
the underlying buffer can hold. It does not represent the current number of
elements.

The maximum is a non-negative number. It is initialized when the sequence is
first created.

The maximum can be changed implicitly by adding an element to the sequence
with add() (p. 450), or explicitly by calling Sequence.setMaximum.

Returns:

the current maximum of the sequence.

See also:

Sequence.size()

Implements Sequence (p. 1433).

8.25.3.10 final Object get (int index) [virtual]

A wrapper for getChar(int) (p. 447) that returns a java.lang.Character.

See also:

java.util.List.get(int)

Implements AbstractPrimitiveSequence (p. 377).

8.25.3.11 final Object set (int index, Object element) [virtual]

A wrapper for setChar() (p. 448).

Exceptions:

ClassCastException if the element is not of type Character.

See also:

java.util.List.set(int, java.lang.Object)

Implements AbstractPrimitiveSequence (p. 377).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

450 Class Documentation

8.25.3.12 final void add (int index, Object element) [virtual]

A wrapper for addChar(int, int).

Exceptions:

ClassCastException if the element is not of type Character.

See also:

java.util.List.add(int, java.lang.Object)

Implements AbstractPrimitiveSequence (p. 378).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.26 Condition Interface Reference 451

8.26 Condition Interface Reference

<<interface>> (p. 271) Root class for all the conditions that may be attached
to a com.rti.dds.infrastructure.WaitSet (p. 1695).

Inheritance diagram for Condition::

Package Functions

ˆ boolean get trigger value ()
Retrieve the trigger value.

8.26.1 Detailed Description

<<interface>> (p. 271) Root class for all the conditions that may be attached
to a com.rti.dds.infrastructure.WaitSet (p. 1695).

This basic class is specialised in three classes:

com.rti.dds.infrastructure.GuardCondition (p. 1066),
com.rti.dds.infrastructure.StatusCondition (p. 1452), and
com.rti.dds.subscription.ReadCondition (p. 1326).

A com.rti.dds.infrastructure.Condition (p. 451) has a trigger value that
can be true or false and is set automatically by RTI Connext.

See also:

com.rti.dds.infrastructure.WaitSet (p. 1695)

8.26.2 Member Function Documentation

8.26.2.1 boolean get trigger value () [package]

Retrieve the trigger value.

Returns:

the trigger value.

Implemented in GuardCondition (p. 1067).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

452 Class Documentation

8.27 ConditionSeq Class Reference

Instantiates com.rti.dds.util.Sequence (p. 1432) <
com.rti.dds.infrastructure.Condition (p. 451) >.

Inherits AbstractNativeSequence.

Public Member Functions

ˆ ConditionSeq (Collection conditions)
Create a Condition (p. 451) Sequence with the given contents. The size and
the maximum of the new sequence will match the size of the given collection.

ˆ ConditionSeq ()
Create a empty Condition (p. 451) Sequence with a initial maximum of
zero.

ˆ ConditionSeq (int initial maximum)
Create a Condition (p. 451) Sequence with the specified initial maximum.

ˆ int getMaximum ()
Get the current maximum number of elements that can be stored in this
sequence.

8.27.1 Detailed Description

Instantiates com.rti.dds.util.Sequence (p. 1432) <
com.rti.dds.infrastructure.Condition (p. 451) >.

Instantiates:

<<generic>> (p. 271) com.rti.dds.util.Sequence (p. 1432)

See also:

com.rti.dds.infrastructure.WaitSet (p. 1695)
com.rti.dds.util.Sequence (p. 1432)

8.27.2 Constructor & Destructor Documentation

8.27.2.1 ConditionSeq (Collection conditions)

Create a Condition (p. 451) Sequence with the given contents. The size and
the maximum of the new sequence will match the size of the given collection.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.27 ConditionSeq Class Reference 453

Parameters:

conditions The initial contents of the sequence

Exceptions:

NullPointerException if the given collection is null

8.27.2.2 ConditionSeq ()

Create a empty Condition (p. 451) Sequence with a initial maximum of zero.

8.27.2.3 ConditionSeq (int initial maximum)

Create a Condition (p. 451) Sequence with the specified initial maximum.

Parameters:

initial maximum The initial maximum of the sequence.

8.27.3 Member Function Documentation

8.27.3.1 int getMaximum ()

Get the current maximum number of elements that can be stored in this se-
quence.

The maximum of the sequence represents the maximum number of elements that
the underlying buffer can hold. It does not represent the current number of
elements.

The maximum is a non-negative number. It is initialized when the sequence is
first created.

The maximum can be changed implicitly by adding an element to the sequence
with add() (p. 383), or explicitly by calling Sequence.setMaximum.

Returns:

the current maximum of the sequence.

See also:

Sequence.size()

Implements Sequence (p. 1433).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

454 Class Documentation

8.28 ContentFilter Interface Reference

<<interface>> (p. 271) Interface to be used by a custom filter of a
com.rti.dds.topic.ContentFilteredTopic (p. 458)

Inherited by CustomContentFilterHowTo.MyContentFilter.

Public Member Functions

ˆ void compile (ObjectHolder new compile data, String expression,
StringSeq parameters, TypeCode type code, String type class name,
Object old compile data)

Compile an instance of the content filter according to the filter expression
and parameters of the given data type.

ˆ boolean evaluate (Object compile data, Object sample)
Evaluate whether the sample is passing the filter or not according to the
sample content.

ˆ void finalize (Object compile data)
A previously compiled instance of the content filter is no longer in use and
resources can now be cleaned up.

8.28.1 Detailed Description

<<interface>> (p. 271) Interface to be used by a custom filter of a
com.rti.dds.topic.ContentFilteredTopic (p. 458)

Entity:

com.rti.dds.topic.ContentFilteredTopic (p. 458)

This is the interface that can be implemented by an
application-provided class and then registered with the
com.rti.dds.domain.DomainParticipant (p. 629) such that samples
can be filtered for a com.rti.dds.topic.ContentFilteredTopic (p. 458) with
the given filter name.

Note: the API for using a custom content filter is subject to change in a future
release.

See also:

com.rti.dds.topic.ContentFilteredTopic (p. 458)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.28 ContentFilter Interface Reference 455

com.rti.dds.domain.DomainParticipant.register contentfilter
(p. 698)

8.28.2 Member Function Documentation

8.28.2.1 void compile (ObjectHolder new compile data, String
expression, StringSeq parameters, TypeCode type code,
String type class name, Object old compile data)

Compile an instance of the content filter according to the filter expression and
parameters of the given data type.

This method is called when an instance of the locally registered content filter
is created or when the expression parameter for the locally registered content
filter instance is changed.

An instance of the locally registered content filter is created every time a local
com.rti.dds.topic.ContentFilteredTopic (p. 458) with the matching filter
name is created, or when a com.rti.dds.subscription.DataReader (p. 473)
with a matching filter name is discovered.

It is possible for multiple threads to be calling into this function at the same
time. However, this function will never be called on a content filter that has
been unregistered.

Parameters:

new compile data <<out>> (p. 271) User specified opaque pointer
of this instance of the content filter. This value is then passed
to the com.rti.dds.topic.ContentFilter.evaluate (p. 456) and
com.rti.dds.topic.ContentFilter.finalize (p. 457) functions for
this instance of the content filter. Can be set to NULL.

expression <<in>> (p. 271) An ASCIIZ string with the filter expres-
sion. The memory used by this string is owned by RTI Connext and
must not be freed. If you want to manipulate this string, you must
first make a copy of it.

parameters <<in>> (p. 271) A string sequence with the expres-
sion parameters the com.rti.dds.topic.ContentFilteredTopic
(p. 458) was created with. The string sequence is
equal (but not identical) to the string sequence passed
to com.rti.dds.domain.DomainParticipant.create -
contentfilteredtopic (p. 673). Note that the sequence passed
to the compile function is owned by RTI Connext and must not be
referenced outside the compile function.

type code <<in>> (p. 271) A pointer to the type code for
the related com.rti.dds.topic.Topic (p. 1545) of the

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

456 Class Documentation

com.rti.dds.topic.ContentFilteredTopic (p. 458). A type -
code is a description of a type in terms of which types it contains
(such as long, string, etc.) and the corresponding member field names
in the data type structure. The type code can be used to write custom
content filters that can be used with any type. This parameter is
always NULL in Java.

type class name <<in>> (p. 271) Fully qualified class name of the re-
lated com.rti.dds.topic.Topic (p. 1545).

old compile data <<in>> (p. 271) The previous new compile data
value from a previous call to this instance of a content filter. If
the compile function is called more than once for an instance of a
com.rti.dds.topic.ContentFilteredTopic (p. 458), e.g., if the ex-
pression parameters are changed, then the new compile data value re-
turned by the previous invocation is passed in the old compile data
parameter (which can be NULL). If this is a new instance of the fil-
ter, NULL is passed. This parameter is useful for freeing or reusing
resources previously allocated for this

Exceptions:

One of the Standard Return Codes (p. 104)

8.28.2.2 boolean evaluate (Object compile data, Object sample)

Evaluate whether the sample is passing the filter or not according to the sample
content.

This method is called when a sample for a locally cre-
ated com.rti.dds.subscription.DataReader (p. 473) associated
with the filter is received, or when a sample for a discovered
com.rti.dds.subscription.DataReader (p. 473) assocated with the fil-
ter needs to be sent.

It is possible for multiple threads to be calling into this function at the same
time. However, this function will never be called on a content filter that has
been unregistered.

Parameters:

compile data <<in>> (p. 271) The last return value of the
com.rti.dds.topic.ContentFilter.compile (p. 455) function
for this instance of the content filter. Can be NULL.

sample <<in>> (p. 271) Pointer to a deserialized sample to be filtered

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.28 ContentFilter Interface Reference 457

Returns:

The function must return 0 if the sample should be filtered out, non zero
otherwise

8.28.2.3 void finalize (Object compile data)

A previously compiled instance of the content filter is no longer in use and
resources can now be cleaned up.

This method is called when an instance of the locally registered content filter is
deleted.

An instance of the locally registered content filter is deleted every time a local
com.rti.dds.topic.ContentFilteredTopic (p. 458) with the matching filter
name is deleted, or when a com.rti.dds.subscription.DataReader (p. 473)
with a matching filter name is removed due to discovery.

This method is also called on all instances of the discov-
ered com.rti.dds.subscription.DataReader (p. 473) with
a matching filter name if the filter is unregistered with
com.rti.dds.domain.DomainParticipant.unregister contentfilter
(p. 700)

It is possible for multiple threads to be calling into this function at the same
time. However, this function will never be called on a content filter that has
been unregistered.

Parameters:

compile data <<in>> (p. 271) The last return value of the
com.rti.dds.topic.ContentFilter.compile (p. 455) function
for this instance of the content filter. Can be NULL.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

458 Class Documentation

8.29 ContentFilteredTopic Interface Reference

<<interface>> (p. 271) Specialization of com.rti.dds.topic.TopicDescription
(p. 1561) that allows for content-based subscriptions.

Inheritance diagram for ContentFilteredTopic::

Public Member Functions

ˆ String get filter expression ()
Get the filter expression.

ˆ void get expression parameters (StringSeq parameters)
Get the expression parameters.

ˆ void set expression parameters (StringSeq parameters)
Set the expression parameters.

ˆ Topic get related topic ()
Get the related topic.

ˆ void append to expression parameter (int index, String val)
<<eXtension>> (p. 270) Appends a string term to the specified parameter
string.

ˆ void remove from expression parameter (int index, String val)
<<eXtension>> (p. 270) Removes a string term from the specified param-
eter string.

8.29.1 Detailed Description

<<interface>> (p. 271) Specialization of com.rti.dds.topic.TopicDescription
(p. 1561) that allows for content-based subscriptions.

It describes a more sophisticated subscription (p. 343) that indicates a
com.rti.dds.subscription.DataReader (p. 473) does not want to necessarily
see all values of each instance published under the com.rti.dds.topic.Topic
(p. 1545). Rather, it wants to see only the values whose contents satisfy certain
criteria. This class therefore can be used to request content-based subscriptions.

The selection of the content is done using the filter expression with param-
eters expression parameters.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.29 ContentFilteredTopic Interface Reference 459

ˆ The filter expression attribute is a string that specifies the criteria to
select the data samples of interest. It is similar to the WHERE part of an
SQL clause.

ˆ The expression parameters attribute is a sequence of strings that give
values to the ’parameters’ (i.e. ”%n” tokens) in the filter expression.
The number of supplied parameters must fit with the requested values in
the filter expression (i.e. the number of n tokens).

Queries and Filters Syntax (p. 278) describes the syntax of filter -
expression and expression parameters.

Note on Content-Based Filtering and Sparse Value Types

If you are a user of the Dynamic Data (p. 170) API, you may define
sparse value types; that is, types for which every data sample need not in-
clude a value for every field defined in the type. (See TCKind.TK SPARSE
and TypeCodeFactory.create sparse tc.) In order for a filter expression on
a field to be well defined, that field must be present in the data sample.
That means that you will only be able to perform a content-based filter on
fields that are marked as TypeCode.KEY MEMBER (p. 1639) or Type-
Code.NONKEY REQUIRED MEMBER (p. 1639).

8.29.2 Member Function Documentation

8.29.2.1 String get filter expression ()

Get the filter expression.

Return the filter expression associated with the
com.rti.dds.topic.ContentFilteredTopic (p. 458).

Returns:

the filter expression.

8.29.2.2 void get expression parameters (StringSeq parameters)

Get the expression parameters.

Return the expression parameters associated with the
com.rti.dds.topic.ContentFilteredTopic (p. 458). expression -
parameters is either specified on the last successful call to
com.rti.dds.topic.ContentFilteredTopic.set expression parameters
(p. 460) or, if that method is never called, the parameters specified when the
com.rti.dds.topic.ContentFilteredTopic (p. 458) was created.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

460 Class Documentation

Parameters:

parameters <<inout>> (p. 271) the filter expression parameters. Can-
not be NULL.

Exceptions:

One of the Standard Return Codes (p. 104)

See also:

com.rti.dds.domain.DomainParticipant.create -
contentfilteredtopic (p. 673)
com.rti.dds.topic.ContentFilteredTopic.set expression -
parameters (p. 460)

8.29.2.3 void set expression parameters (StringSeq parameters)

Set the expression parameters.

Change the expression parameters associated with the
com.rti.dds.topic.ContentFilteredTopic (p. 458).

Parameters:

parameters <<in>> (p. 271) the filter expression parameters Cannot be
NULL.. Length of sequence cannot be greater than 100.

Exceptions:

One of the Standard Return Codes (p. 104)

8.29.2.4 Topic get related topic ()

Get the related topic.

Return the com.rti.dds.topic.Topic (p. 1545) specified when the
com.rti.dds.topic.ContentFilteredTopic (p. 458) was created.

Returns:

The com.rti.dds.topic.Topic (p. 1545) assocated with the
com.rti.dds.topic.ContentFilteredTopic (p. 458).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.29 ContentFilteredTopic Interface Reference 461

8.29.2.5 void append to expression parameter (int index, String
val)

<<eXtension>> (p. 270) Appends a string term to the specified parameter
string.

Appends the input string to the end of the specified parameter string, separated
by a comma. If the original parameter string is enclosed in quotation marks (”),
the resultant string will also be enclosed in quotation marks.

This method can be used in expression parameters associated with MATCH
operators in order to add a pattern to the match pattern list. For example
(p. 353), if the filter expression parameter value is:

’IBM’

Then append to expression parameter(0, ”MSFT”) would generate the new
value:

’IBM,MSFT’

Parameters:

index <<in>> (p. 271) The index of the parameter string to be mod-
ified. The first index is index 0. When using the DomainPar-
ticipant.STRINGMATCHFILTER NAME (p. 151) filter, index
must be 0.

val <<in>> (p. 271) The string term to be appended to the parameter
string.

Exceptions:

One of the Standard Return Codes (p. 104)

8.29.2.6 void remove from expression parameter (int index, String
val)

<<eXtension>> (p. 270) Removes a string term from the specified parameter
string.

Removes the input string from the specified parameter string. To be found and
removed, the input string must exist as a complete term, bounded by comma
separators or the strong boundary. If the original parameter string is enclosed
in quotation marks (”), the resultant string will also be enclosed in quotation
marks. If the removed term was the last entry in the string, the result will be
a string of empty quotation marks.

This method can be used in expression parameters associated with MATCH op-
erators in order to remove a pattern from the match pattern list. For example

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

462 Class Documentation

(p. 353), if the filter expression paremeter value is:

’IBM,MSFT’

Then remove from expression parameter(0, ”IBM”) would generate the expres-
sion:

’MSFT’

Parameters:

index <<in>> (p. 271) The index of the parameter string to be mod-
ified. The first index is index 0. When using the DomainPar-
ticipant.STRINGMATCHFILTER NAME (p. 151) filter, index
must be 0.

val <<in>> (p. 271) The string term to be removed from the parameter
string.

Exceptions:

One of the Standard Return Codes (p. 104)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.30 ContentFilterProperty t Class Reference 463

8.30 ContentFilterProperty t Class Reference

<<eXtension>> (p. 270) Type used to provide all the required information
to enable content filtering.

Inherits Struct.

Public Member Functions

ˆ ContentFilterProperty t ()
Constructor.

Public Attributes

ˆ String content filter topic name
Name of the Content-filtered Topic associated with the Reader.

ˆ String related topic name
Name of the Topic related to the Content-filtered Topic.

ˆ String filter class name
Identifies the filter class this filter belongs to. RTPS can support multiple
filter classes (SQL, regular expressions, custom filters, etc).

ˆ String filter expression
The actual filter expression. Must be a valid expression for the filter class
specified using filterClassName.

ˆ final StringSeq expression parameters
Defines the value for each parameter in the filter expression.

8.30.1 Detailed Description

<<eXtension>> (p. 270) Type used to provide all the required information
to enable content filtering.

8.30.2 Constructor & Destructor Documentation

8.30.2.1 ContentFilterProperty t ()

Constructor.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

464 Class Documentation

8.30.3 Member Data Documentation

8.30.3.1 String content filter topic name

Name of the Content-filtered Topic associated with the Reader.

8.30.3.2 String related topic name

Name of the Topic related to the Content-filtered Topic.

8.30.3.3 String filter class name

Identifies the filter class this filter belongs to. RTPS can support multiple filter
classes (SQL, regular expressions, custom filters, etc).

8.30.3.4 String filter expression

The actual filter expression. Must be a valid expression for the filter class
specified using filterClassName.

8.30.3.5 final StringSeq expression parameters

Defines the value for each parameter in the filter expression.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.31 Cookie t Class Reference 465

8.31 Cookie t Class Reference

<<eXtension>> (p. 270) Sequence of bytes identifying a written data sample,
used when writing with parameters.

Inherits Struct.

Public Attributes

ˆ final ByteSeq value

a sequence of octets

8.31.1 Detailed Description

<<eXtension>> (p. 270) Sequence of bytes identifying a written data sample,
used when writing with parameters.

8.31.2 Member Data Documentation

8.31.2.1 final ByteSeq value

a sequence of octets

[default] Empty (zero-sized)

[range] Octet sequence of length [0,com.rti.dds.infrastructure.DataWriterResourceLimitsQosPolicy.cookie -
max length (p. 601)]

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

466 Class Documentation

8.32 Copyable Interface Reference

<<eXtension>> (p. 270) <<interface>> (p. 271) Interface for all the user-
defined data type classes that support copy.

Inheritance diagram for Copyable::

Public Member Functions

ˆ Object copy from (Object src)

Copy value of a data type from source.

8.32.1 Detailed Description

<<eXtension>> (p. 270) <<interface>> (p. 271) Interface for all the user-
defined data type classes that support copy.

A class implements the com.rti.dds.infrastructure.Copyable (p. 466) inter-
face to indicate that it allows its entire state to be replaced with the state of
another object. This state copy is a deep copy, such that subsequent changes
to any part of one object will not be observed in the other.

Therefore, in general, object references in this object cannot simply be reas-
signed to those in the source object. (Strings are an exception to this rule,
because they are immutable.)

8.32.2 Member Function Documentation

8.32.2.1 Object copy from (Object src)

Copy value of a data type from source.

Copy data into this object from another. This copy is intended to be a deep
copy, so that all data members (recursively) are copied (not just resetting Object
references).

This operation returns the object that is copied if copy is successful.

Parameters:

src <<in>> (p. 271) The Object which contains the data to be copied.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.32 Copyable Interface Reference 467

Returns:

Generally, return this but special cases (such as Enum) exist.

Exceptions:

NullPointerException If src is null.

ClassCastException If src is not the same type as this.

Implemented in DynamicData (p. 796), InstanceHandle t (p. 1081),
StringSeq (p. 1471), SampleInfo (p. 1409), BuiltinTopicKey t (p. 413),
Bytes (p. 418), BytesSeq (p. 435), KeyedBytes (p. 1096), Keyed-
BytesSeq (p. 1117), KeyedString (p. 1124), KeyedStringSeq (p. 1142),
AbstractPrimitiveSequence (p. 381), Enum (p. 926), Foo (p. 956), and
FooSeq (p. 1059).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

468 Class Documentation

8.33 DatabaseQosPolicy Class Reference

Various threads and resource limits settings used by RTI Connext to control its
internal database.

Inheritance diagram for DatabaseQosPolicy::

Public Attributes

ˆ final ThreadSettings t thread
Database thread settings.

ˆ final Duration t shutdown timeout
The maximum wait time during a shutdown.

ˆ final Duration t cleanup period
The database thread will wake up at this rate to clean up the database.

ˆ final Duration t shutdown cleanup period
The clean-up period used during database shut-down.

ˆ int initial records
The initial number of total records.

ˆ int max skiplist level
The maximum level of the skiplist.

ˆ int initial weak references
The initial number of weak references.

ˆ int max weak references
The maximum number of weak references.

8.33.1 Detailed Description

Various threads and resource limits settings used by RTI Connext to control its
internal database.

RTI uses an internal in-memory ”database” to store information about enti-
ties created locally as well as remote entities found during the discovery pro-
cess. This database uses a background thread to garbage-collect records related

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.33 DatabaseQosPolicy Class Reference 469

to deleted entities. When the com.rti.dds.domain.DomainParticipant
(p. 629) that maintains this database is deleted, it shuts down this thread.

The Database QoS policy is used to configure how RTI Connext manages its
database, including how often it cleans up, the priority of the database thread,
and limits on resources that may be allocated by the database.

You may be interested in modifying the
com.rti.dds.infrastructure.DatabaseQosPolicy.shutdown timeout
(p. 470) and com.rti.dds.infrastructure.DatabaseQosPolicy.shutdown -
cleanup period (p. 470) parameters to decrease the time it takes to delete a
com.rti.dds.domain.DomainParticipant (p. 629) when your application is
shutting down.

The com.rti.dds.infrastructure.DomainParticipantResourceLimitsQosPolicy
(p. 741) controls the memory allocation for elements stored in the database.

This QoS policy is an extension to the DDS standard.

Entity:

com.rti.dds.domain.DomainParticipant (p. 629)

Properties:

RxO (p. 97) = N/A
Changeable (p. 98) NO (p. 98)

8.33.2 Member Data Documentation

8.33.2.1 final ThreadSettings t thread

Database thread settings.

There is only one database thread: the clean-up thread.

[default] priority low.

The actual value depends on your architecture:

For Windows: -3

For Solaris: OS default priority

For Linux: OS default priority

For LynxOS: 10

For INTEGRITY: 60

For VxWorks: 120

For all others: OS default priority.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

470 Class Documentation

[default] The actual value depends on your architecture:

For Windows: OS default stack size

For Solaris: OS default stack size

For Linux: OS default stack size

For LynxOS: 16∗1024

For INTEGRITY: 20∗1024

For VxWorks: 16∗1024

For all others: OS default stack size.

[default] mask com.rti.dds.infrastructure.ThreadSettingsKind.THREAD -
SETTINGS STDIO (p. 1536)

8.33.2.2 final Duration t shutdown timeout

The maximum wait time during a shutdown.

The domain (p. 317) participant will exit after the timeout, even if the database
has not been fully cleaned up.

[default] 15 seconds

[range] [0,com.rti.dds.infrastructure.Duration t.INFINITE]

8.33.2.3 final Duration t cleanup period

The database thread will wake up at this rate to clean up the database.

[default] 61 seconds

[range] [0,1 year]

8.33.2.4 final Duration t shutdown cleanup period

The clean-up period used during database shut-down.

[default] 1 second

[range] [0,1 year]

8.33.2.5 int initial records

The initial number of total records.

[default] 1024

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.33 DatabaseQosPolicy Class Reference 471

[range] [1,10 million]

8.33.2.6 int max skiplist level

The maximum level of the skiplist.

The skiplist is used to keep records in the database. Usually, the search time is
log2(N), where N is the total number of records in one skiplist. However, once N
exceeds 2∧n, where n is the maximum skiplist level, the search time will become
more and more linear. Therefore, the maximum level should be set such that
2∧n is larger than the maximum(N among all skiplists). Usually, the maximum
N is the maximum number of remote and local writers or readers.

[default] 14

[range] [1,31]

8.33.2.7 int initial weak references

The initial number of weak references.

See com.rti.dds.infrastructure.DatabaseQosPolicy.max weak -
references (p. 471) for more information about what a weak reference
is.

If the QoS set contains an initial weak references value that is too small to
ever grow to com.rti.dds.infrastructure.DatabaseQosPolicy.max weak -
references (p. 471) using RTI Connext’ internal algorithm, this value will be
adjusted upwards as necessary. Subsequent accesses of this value will reveal the
actual initial value used.

Changing the value of this field is an advanced feature; it is recommended that
you consult with RTI support personnel before doing so.

[default] 2049, which is the minimum initial value imposed by REDA when the
maximum is unlimited. If a lower value is specified, it will simply be increased
to 2049 automatically.

[range] [1, 100 million], <= max weak references

See also:

com.rti.dds.infrastructure.DatabaseQosPolicy.max weak -
references (p. 471)

8.33.2.8 int max weak references

The maximum number of weak references.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

472 Class Documentation

A weak reference is an internal data structure that refers to a record within RTI
Connext’ internal database. This field configures the maximum number of such
references that RTI Connext may create.

The actual number of weak references is permitted to grow from an initial value
(indicated by com.rti.dds.infrastructure.DatabaseQosPolicy.initial -
weak references (p. 471)) to this maximum. To prevent RTI Connext from
allocating any weak references after the system has reached a steady state, set
the initial and maximum values equal to one another. To indicate that the
number of weak references should continue to grow as needed indefinitely, set
this field to ResourceLimitsQosPolicy.LENGTH UNLIMITED (p. 102).
Be aware that although a single weak reference occupies very little memory,
allocating a very large number of them can have a significant impact on your
overall memory usage.

Tuning this value precisely is difficult without intimate knowledge of the struc-
ture of RTI Connext’ database; doing so is an advanced feature not required
by most applications. The default value has been chosen to be sufficient for
reasonably large systems. If you believe you may need to modify this value,
please consult with RTI support personnel for assistance.

[default] ResourceLimitsQosPolicy.LENGTH UNLIMITED (p. 102)

[range] [1, 100 million] or ResourceLimitsQosPolicy.LENGTH -
UNLIMITED (p. 102), >= initial weak references

See also:

com.rti.dds.infrastructure.DatabaseQosPolicy.initial weak -
references (p. 471)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.34 DataReader Interface Reference 473

8.34 DataReader Interface Reference

<<interface>> (p. 271) Allows the application to: (1) declare the data it
wishes to receive (i.e. make a subscription (p. 343)) and (2) access the data
received by the attached com.rti.dds.subscription.Subscriber (p. 1478).

Inheritance diagram for DataReader::

Public Member Functions

ˆ ReadCondition create readcondition (int sample states, int view -
states, int instance states)

Creates a com.rti.dds.subscription.ReadCondition (p. 1326).

ˆ QueryCondition create querycondition (int sample states, int view -
states, int instance states, String query expression, StringSeq query -
parameters)

Creates a com.rti.dds.subscription.QueryCondition (p. 1324).

ˆ void delete readcondition (ReadCondition condition)

Deletes a com.rti.dds.subscription.ReadCondition (p. 1326) or
com.rti.dds.subscription.QueryCondition (p. 1324) attached to the
com.rti.dds.subscription.DataReader (p. 473).

ˆ void set qos (DataReaderQos qos)

Sets the reader QoS.

ˆ void set qos with profile (String library name, String profile name)

<<eXtension>> (p. 270) Change the QoS of this reader using the input
XML QoS profile.

ˆ void get qos (DataReaderQos qos)

Gets the reader QoS.

ˆ void set listener (DataReaderListener l, int mask)

Sets the reader listener.

ˆ DataReaderListener get listener ()

Get the reader listener.

ˆ void call listenerT (int mask)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

474 Class Documentation

Calls the reader listener.

ˆ void get sample rejected status (SampleRejectedStatus status)

Accesses the StatusKind.SAMPLE REJECTED STATUS communication
status.

ˆ void get liveliness changed status (LivelinessChangedStatus sta-
tus)

Accesses the StatusKind.LIVELINESS CHANGED STATUS communica-
tion status.

ˆ void get requested deadline missed status (RequestedDeadline-
MissedStatus status)

Accesses the StatusKind.REQUESTED DEADLINE MISSED STATUS
communication status.

ˆ void get requested incompatible qos status (RequestedIncom-
patibleQosStatus status)

Accesses the StatusKind.REQUESTED INCOMPATIBLE QOS STATUS
communication status.

ˆ void get sample lost status (SampleLostStatus status)

Accesses the StatusKind.SAMPLE LOST STATUS STATUS communica-
tion status.

ˆ void get subscription matched status (SubscriptionMatchedSta-
tus status)

Accesses the StatusKind.SUBSCRIPTION MATCHED STATUS communi-
cation status.

ˆ void get datareader cache status (DataReaderCacheStatus sta-
tus)

<<eXtension>> (p. 270) Get the datareader cache status for this reader.

ˆ void get datareader protocol status (DataReaderProtocolStatus
status)

<<eXtension>> (p. 270) Get the datareader protocol status for this reader.

ˆ void get matched publication datareader protocol status
(DataReaderProtocolStatus status, InstanceHandle t publica-
tion handle)

<<eXtension>> (p. 270) Get the datareader protocol status for this reader,
per matched publication (p. 338) identified by the publication handle.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.34 DataReader Interface Reference 475

ˆ void get matched publications (InstanceHandleSeq publication -
handles)

Retrieve the list of publications currently ”associated” with this
com.rti.dds.subscription.DataReader (p. 473).

ˆ void get matched publication data (PublicationBuiltinTopicData
publication data, InstanceHandle t publication handle)

This operation retrieves the information on a publication (p. 338) that
is currently ”associated” with the com.rti.dds.subscription.DataReader
(p. 473).

ˆ TopicDescription get topicdescription ()
Returns the com.rti.dds.topic.TopicDescription (p. 1561) associated
with the com.rti.dds.subscription.DataReader (p. 473).

ˆ Subscriber get subscriber ()
Returns the com.rti.dds.subscription.Subscriber (p. 1478) to which the
com.rti.dds.subscription.DataReader (p. 473) belongs.

ˆ void delete contained entities ()
Deletes all the entities that were created by means of the ”create” operations
on the com.rti.dds.subscription.DataReader (p. 473).

ˆ void wait for historical data (Duration t max wait)
Waits until all ”historical” data is received for
com.rti.dds.subscription.DataReader (p. 473) entities that have a
non-VOLATILE Durability Qos kind.

ˆ void read untyped (List received data, SampleInfoSeq info seq, int
max samples, int sample states, int view states, int instance states)

Read data samples, if any are available.

ˆ void take untyped (List received data, SampleInfoSeq info seq, int
max samples, int sample states, int view states, int instance states)

Take data samples, if any are available.

ˆ void read w condition untyped (List received data, SampleInfoSeq
info seq, int max samples, ReadCondition read condition)

Read data samples, if any are available.

ˆ void take w condition untyped (List received data, SampleInfoSeq
info seq, int max samples, ReadCondition read condition)

Take data samples, if any are available.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

476 Class Documentation

ˆ void read next sample untyped (Object received data, SampleInfo
sample info)

Read data samples, if any are available.

ˆ void take next sample untyped (Object received data, SampleInfo
sample info)

Take data samples, if any are available.

ˆ void read instance untyped (List received data, SampleInfoSeq
info seq, int max samples, InstanceHandle t a handle, int sample -
states, int view states, int instance states)

Read data samples, if any are available.

ˆ void take instance untyped (List received data, SampleInfoSeq
info seq, int max samples, InstanceHandle t a handle, int sample -
states, int view states, int instance states)

Take data samples, if any are available.

ˆ void read instance w condition untyped (List received data, Sam-
pleInfoSeq info seq, int max samples, InstanceHandle t a handle,
ReadCondition read condition)

Read data samples, if any are available.

ˆ void take instance w condition untyped (List received data, Sam-
pleInfoSeq info seq, int max samples, InstanceHandle t a handle,
ReadCondition read condition)

Take data samples, if any are available.

ˆ void read next instance untyped (List received data, SampleIn-
foSeq info seq, int max samples, InstanceHandle t a handle, int sam-
ple states, int view states, int instance states)

Read data samples, if any are available.

ˆ void take next instance untyped (List received data, SampleIn-
foSeq info seq, int max samples, InstanceHandle t a handle, int sam-
ple states, int view states, int instance states)

Take data samples, if any are available.

ˆ void read next instance w condition untyped (List received data,
SampleInfoSeq info seq, int max samples, InstanceHandle t a handle,
ReadCondition read condition)

Read data samples, if any are available.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.34 DataReader Interface Reference 477

ˆ void take next instance w condition untyped (List received data,
SampleInfoSeq info seq, int max samples, InstanceHandle t a handle,
ReadCondition read condition)

Take data samples, if any are available.

ˆ void return loan untyped (List received data, SampleInfoSeq info -
seq)

Return loaned sample data and meta-data.

ˆ void get key value untyped (Object key holder, InstanceHandle t
handle)

Fill in the key fields of the given data sample.

8.34.1 Detailed Description

<<interface>> (p. 271) Allows the application to: (1) declare the data it
wishes to receive (i.e. make a subscription (p. 343)) and (2) access the data
received by the attached com.rti.dds.subscription.Subscriber (p. 1478).

QoS:

com.rti.dds.subscription.DataReaderQos (p. 518)

Status:

StatusKind.DATA AVAILABLE STATUS;
StatusKind.LIVELINESS CHANGED STATUS,
com.rti.dds.subscription.LivelinessChangedStatus (p. 1159);
StatusKind.REQUESTED DEADLINE MISSED STATUS,
com.rti.dds.subscription.RequestedDeadlineMissedStatus
(p. 1353);
StatusKind.REQUESTED INCOMPATIBLE QOS STATUS,
com.rti.dds.subscription.RequestedIncompatibleQosStatus
(p. 1354);
StatusKind.SAMPLE LOST STATUS STATUS,
com.rti.dds.subscription.SampleLostStatus (p. 1415);
StatusKind.SAMPLE REJECTED STATUS,
com.rti.dds.subscription.SampleRejectedStatus (p. 1422);
StatusKind.SUBSCRIPTION MATCHED STATUS,
com.rti.dds.subscription.SubscriptionMatchedStatus

Listener:

com.rti.dds.subscription.DataReaderListener (p. 501)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

478 Class Documentation

A com.rti.dds.subscription.DataReader (p. 473) refers
to exactly one com.rti.dds.topic.TopicDescription
(p. 1561) (either a com.rti.dds.topic.Topic (p. 1545), a
com.rti.dds.topic.ContentFilteredTopic (p. 458) or a
com.rti.dds.topic.MultiTopic (p. 1208)) that identifies the data to be
read.

The subscription (p. 343) has a unique resulting type. The data-reader may
give access to several instances of the resulting type, which can be distinguished
from each other by their key.

com.rti.dds.subscription.DataReader (p. 473) is an abstract class. It must
be specialised for each particular application data-type (see USER DATA
(p. 126)). The additional methods or functions that must be defined in the
auto-generated class for a hypothetical application type Foo are specified in the
generic type com.rti.dds.topic.example.FooDataReader.

The following operations may be called even if the
com.rti.dds.subscription.DataReader (p. 473) is not enabled. Other
operations will fail with the value RETCODE NOT ENABLED if called on a
disabled com.rti.dds.subscription.DataReader (p. 473):

ˆ The base-class operations com.rti.dds.subscription.DataReader.set -
qos (p. 480), com.rti.dds.subscription.DataReader.get qos
(p. 482), com.rti.dds.subscription.DataReader.set listener
(p. 482), com.rti.dds.subscription.DataReader.get listener
(p. 483), com.rti.dds.infrastructure.Entity.enable (p. 915),
com.rti.dds.infrastructure.Entity.get statuscondition (p. 917)
and com.rti.dds.infrastructure.Entity.get status changes (p. 917)

ˆ com.rti.dds.subscription.DataReader.get liveliness changed -
status (p. 484) com.rti.dds.subscription.DataReader.get -
requested deadline missed status (p. 484)
com.rti.dds.subscription.DataReader.get -
requested incompatible qos status (p. 484)
com.rti.dds.subscription.DataReader.get sample lost status
(p. 485) com.rti.dds.subscription.DataReader.get sample -
rejected status (p. 483) com.rti.dds.subscription.DataReader.get -
subscription matched status (p. 485)

All sample-accessing operations, namely: com.rti.dds.topic.example.FooDataReader.read,
com.rti.dds.topic.example.FooDataReader.take, com.rti.dds.topic.example.FooDataReader.read -
w condition, and com.rti.dds.topic.example.FooDataReader.take w condition
may fail with the error RETCODE PRECONDITION NOT MET as described
in com.rti.dds.subscription.Subscriber.begin access (p. 1499).

See also:

Operations Allowed in Listener Callbacks (p. 1156)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.34 DataReader Interface Reference 479

8.34.2 Member Function Documentation

8.34.2.1 ReadCondition create readcondition (int sample states,
int view states, int instance states)

Creates a com.rti.dds.subscription.ReadCondition (p. 1326).

The returned com.rti.dds.subscription.ReadCondition (p. 1326) will be at-
tached and belong to the com.rti.dds.subscription.DataReader (p. 473).

Parameters:

sample states <<in>> (p. 271) sample state of the data samples that
are of interest

view states <<in>> (p. 271) view state of the data samples that are of
interest

instance states <<in>> (p. 271) instance state of the data samples that
are of interest

Returns:

return com.rti.dds.subscription.ReadCondition (p. 1326) created. Re-
turns NULL in case of failure.

8.34.2.2 QueryCondition create querycondition (int sample states,
int view states, int instance states, String
query expression, StringSeq query parameters)

Creates a com.rti.dds.subscription.QueryCondition (p. 1324).

The returned com.rti.dds.subscription.QueryCondition (p. 1324) will be
attached and belong to the com.rti.dds.subscription.DataReader (p. 473).

Queries and Filters Syntax (p. 278) describes the syntax of query -
expression and query parameters.

Parameters:

sample states <<in>> (p. 271) sample state of the data samples that
are of interest

view states <<in>> (p. 271) view state of the data samples that are of
interest

instance states <<in>> (p. 271) instance state of the data samples that
are of interest

query expression <<in>> (p. 271) Expression for the query. Cannot
be NULL.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

480 Class Documentation

query parameters <<in>> (p. 271) Parameters for the query expres-
sion. Cannot be NULL.

Returns:

return com.rti.dds.subscription.QueryCondition (p. 1324) created.
Returns NULL in case of failure.

8.34.2.3 void delete readcondition (ReadCondition condition)

Deletes a com.rti.dds.subscription.ReadCondition (p. 1326) or
com.rti.dds.subscription.QueryCondition (p. 1324) attached to the
com.rti.dds.subscription.DataReader (p. 473).

Since com.rti.dds.subscription.QueryCondition (p. 1324) specializes
com.rti.dds.subscription.ReadCondition (p. 1326), it can also be used to
delete a com.rti.dds.subscription.QueryCondition (p. 1324).

Precondition:

The com.rti.dds.subscription.ReadCondition (p. 1326) must be at-
tached to the com.rti.dds.subscription.DataReader (p. 473), or the op-
eration will fail with the error RETCODE PRECONDITION NOT MET.

Parameters:

condition <<in>> (p. 271) Condition to be deleted.

Exceptions:

One of the Standard Return Codes (p. 104), or RETCODE -
PRECONDITION NOT MET

8.34.2.4 void set qos (DataReaderQos qos)

Sets the reader QoS.

This operation modifies the QoS of the com.rti.dds.subscription.DataReader
(p. 473).

The com.rti.dds.subscription.DataReaderQos.user data (p. 521),
com.rti.dds.subscription.DataReaderQos.deadline (p. 521),
com.rti.dds.subscription.DataReaderQos.latency budget (p. 521),
com.rti.dds.subscription.DataReaderQos.time based filter (p. 521),
com.rti.dds.subscription.DataReaderQos.reader data lifecycle (p. 522)
can be changed. The other policies are immutable.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.34 DataReader Interface Reference 481

Parameters:

qos <<in>> (p. 271) The com.rti.dds.subscription.DataReaderQos
(p. 518) to be set to. Policies must be consis-
tent. Immutable policies cannot be changed after
com.rti.dds.subscription.DataReader (p. 473) is en-
abled. The special value Subscriber.DATAREADER -
QOS DEFAULT (p. 190) can be used to indicate that
the QoS of the com.rti.dds.subscription.DataReader
(p. 473) should be changed to match the current default
com.rti.dds.subscription.DataReaderQos (p. 518) set in the
com.rti.dds.subscription.Subscriber (p. 1478). Cannot be NULL.

Exceptions:

One of the Standard Return Codes (p. 104), RETCODE -
IMMUTABLE POLICY, or RETCODE INCONSISTENT POLICY.

See also:

com.rti.dds.subscription.DataReaderQos (p. 518) for rules on consis-
tency among QoS
set qos (abstract) (p. 913)
com.rti.dds.subscription.DataReader.set qos (p. 480)
Operations Allowed in Listener Callbacks (p. 1156)

8.34.2.5 void set qos with profile (String library name, String
profile name)

<<eXtension>> (p. 270) Change the QoS of this reader using the input XML
QoS profile.

This operation modifies the QoS of the com.rti.dds.subscription.DataReader
(p. 473).

The com.rti.dds.subscription.DataReaderQos.user data (p. 521),
com.rti.dds.subscription.DataReaderQos.deadline (p. 521),
com.rti.dds.subscription.DataReaderQos.latency budget (p. 521),
com.rti.dds.subscription.DataReaderQos.time based filter (p. 521),
com.rti.dds.subscription.DataReaderQos.reader data lifecycle (p. 522)
can be changed. The other policies are immutable.

Parameters:

library name <<in>> (p. 271) Library name containing the XML QoS
profile. If library name is null RTI Connext will use the default
library (see com.rti.dds.subscription.Subscriber.set default -
library (p. 1495)).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

482 Class Documentation

profile name <<in>> (p. 271) XML QoS Profile name. If pro-
file name is null RTI Connext will use the default profile (see
com.rti.dds.subscription.Subscriber.set default profile
(p. 1496)).

Exceptions:

One of the Standard Return Codes (p. 104), RETCODE -
IMMUTABLE POLICY, or RETCODE INCONSISTENT POLICY.

See also:

com.rti.dds.subscription.DataReaderQos (p. 518) for rules on consis-
tency among QoS
com.rti.dds.subscription.DataReader.set qos (p. 480)
Operations Allowed in Listener Callbacks (p. 1156)

8.34.2.6 void get qos (DataReaderQos qos)

Gets the reader QoS.

This method may potentially allocate memory depending on the sequences con-
tained in some QoS policies.

Parameters:

qos <<inout>> (p. 271) The com.rti.dds.subscription.DataReaderQos
(p. 518) to be filled up. Cannot be NULL.

Exceptions:

One of the Standard Return Codes (p. 104)

See also:

get qos (abstract) (p. 914)

8.34.2.7 void set listener (DataReaderListener l, int mask)

Sets the reader listener.

Parameters:

l <<in>> (p. 271) com.rti.dds.subscription.DataReaderListener
(p. 501) to set to

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.34 DataReader Interface Reference 483

mask <<in>> (p. 271) com.rti.dds.infrastructure.StatusMask associated
with the com.rti.dds.subscription.DataReaderListener (p. 501).

Exceptions:

One of the Standard Return Codes (p. 104)

See also:

set listener (abstract) (p. 914)

8.34.2.8 DataReaderListener get listener ()

Get the reader listener.

Returns:

com.rti.dds.subscription.DataReaderListener (p. 501) of the
com.rti.dds.subscription.DataReader (p. 473).

See also:

get listener (abstract) (p. 915)

8.34.2.9 void call listenerT (int mask)

Calls the reader listener.

See also:

get listener (abstract) (p. 915)

8.34.2.10 void get sample rejected status (SampleRejectedStatus
status)

Accesses the StatusKind.SAMPLE REJECTED STATUS communication sta-
tus.

Parameters:

status <<inout>> (p. 271) com.rti.dds.subscription.SampleRejectedStatus
(p. 1422) to be filled in. Cannot be NULL.

Exceptions:

One of the Standard Return Codes (p. 104)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

484 Class Documentation

8.34.2.11 void get liveliness changed status
(LivelinessChangedStatus status)

Accesses the StatusKind.LIVELINESS CHANGED STATUS communication
status.

Parameters:

status <<inout>> (p. 271) com.rti.dds.subscription.LivelinessChangedStatus
(p. 1159) to be filled in. Cannot be NULL.

Exceptions:

One of the Standard Return Codes (p. 104)

8.34.2.12 void get requested deadline missed status
(RequestedDeadlineMissedStatus status)

Accesses the StatusKind.REQUESTED DEADLINE MISSED STATUS com-
munication status.

Parameters:

status <<inout>> (p. 271) com.rti.dds.subscription.RequestedDeadlineMissedStatus
(p. 1353) to be filled in. Cannot be NULL.

Exceptions:

One of the Standard Return Codes (p. 104)

8.34.2.13 void get requested incompatible qos status
(RequestedIncompatibleQosStatus status)

Accesses the StatusKind.REQUESTED INCOMPATIBLE QOS STATUS com-
munication status.

Parameters:

status <<inout>> (p. 271) com.rti.dds.subscription.RequestedIncompatibleQosStatus
(p. 1354) to be filled in. Cannot be NULL.

Exceptions:

One of the Standard Return Codes (p. 104)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.34 DataReader Interface Reference 485

8.34.2.14 void get sample lost status (SampleLostStatus status)

Accesses the StatusKind.SAMPLE LOST STATUS STATUS communication
status.

Parameters:

status <<inout>> (p. 271) com.rti.dds.subscription.SampleLostStatus
(p. 1415) to be filled in. Cannot be NULL.

Exceptions:

One of the Standard Return Codes (p. 104)

8.34.2.15 void get subscription matched status
(SubscriptionMatchedStatus status)

Accesses the StatusKind.SUBSCRIPTION MATCHED STATUS communica-
tion status.

Parameters:

status <<inout>> (p. 271) com.rti.dds.subscription.SubscriptionMatchedStatus
(p. 1520) to be filled in. Cannot be NULL.

Exceptions:

One of the Standard Return Codes (p. 104)

8.34.2.16 void get datareader cache status
(DataReaderCacheStatus status)

<<eXtension>> (p. 270) Get the datareader cache status for this reader.

Parameters:

status <<inout>> (p. 271) com.rti.dds.subscription.DataReaderCacheStatus
(p. 500) to be filled in. Cannot be NULL.

Exceptions:

One of the Standard Return Codes (p. 104) or RETCODE NOT -
ENABLED.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

486 Class Documentation

8.34.2.17 void get datareader protocol status
(DataReaderProtocolStatus status)

<<eXtension>> (p. 270) Get the datareader protocol status for this reader.

Parameters:

status <<inout>> (p. 271) com.rti.dds.subscription.DataReaderProtocolStatus
(p. 508) to be filled in. Cannot be NULL.

Exceptions:

One of the Standard Return Codes (p. 104) or RETCODE NOT -
ENABLED.

8.34.2.18 void get matched publication datareader protocol status
(DataReaderProtocolStatus status, InstanceHandle t
publication handle)

<<eXtension>> (p. 270) Get the datareader protocol status for this reader,
per matched publication (p. 338) identified by the publication handle.

Note: Status for a remote entity is only kept while the entity is alive. Once a
remote entity is no longer alive, its status is deleted.

Parameters:

status <<inout>> (p. 271). The information to be filled in on the asso-
ciated publication (p. 338). Cannot be NULL.

publication handle <<in>> (p. 271). Handle to a specific publication
(p. 338) associated with the com.rti.dds.publication.DataWriter
(p. 538). Cannot be NULL.. Must correspond to
a publication (p. 338) currently associated with the
com.rti.dds.subscription.DataReader (p. 473).

Exceptions:

One of the Standard Return Codes (p. 104) or RETCODE NOT -
ENABLED

8.34.2.19 void get matched publications (InstanceHandleSeq
publication handles)

Retrieve the list of publications currently ”associated” with this
com.rti.dds.subscription.DataReader (p. 473).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.34 DataReader Interface Reference 487

Matching publications are those in the same domain (p. 317) that
have a matching com.rti.dds.topic.Topic (p. 1545), compatible QoS
common partition that the com.rti.dds.domain.DomainParticipant
(p. 629) has not indicated should be ”ignored” by means of the
com.rti.dds.domain.DomainParticipant.ignore publication (p. 688) op-
eration.

The handles returned in the publication handles’ list are the ones that
are used by the DDS implementation to locally identify the correspond-
ing matched com.rti.dds.publication.DataWriter (p. 538) entities. These
handles match the ones that appear in the instance handle field of the
com.rti.dds.subscription.SampleInfo (p. 1404) when reading the Publi-
cationBuiltinTopicDataTypeSupport.PUBLICATION TOPIC NAME builtin
(p. 348) topic (p. 350)

Parameters:

publication handles <<inout>> (p. 271). The sequence will be grown
if the sequence has ownership and the system has the corresponding
resources. Use a sequence without ownership to avoid dynamic mem-
ory allocation. If the sequence is too small to store all the matches
and the system can not resize the sequence, this method will fail with
RETCODE OUT OF RESOURCES.

The maximum number of matches possible is configured with
com.rti.dds.infrastructure.DomainParticipantResourceLimitsQosPolicy
(p. 741). You can use a zero-maximum sequence without ownership to quickly
check whether there are any matches without allocating any memory. Cannot
be NULL..

Exceptions:

One of the Standard Return Codes (p. 104), or RETCODE OUT OF -
RESOURCES if the sequence is too small and the system can not resize
it, or RETCODE NOT ENABLED

8.34.2.20 void get matched publication data
(PublicationBuiltinTopicData publication data,
InstanceHandle t publication handle)

This operation retrieves the information on a publication (p. 338) that is cur-
rently ”associated” with the com.rti.dds.subscription.DataReader (p. 473).

Publication with a matching com.rti.dds.topic.Topic (p. 1545), compatible
QoS and common partition that the application has not indicated should be ”ig-
nored” by means of the com.rti.dds.domain.DomainParticipant.ignore -
publication (p. 688) operation.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

488 Class Documentation

The publication handle must correspond to a publication (p. 338) cur-
rently associated with the com.rti.dds.subscription.DataReader (p. 473).
Otherwise, the operation will fail with RETCODE BAD PARAMETER.
Use the operation com.rti.dds.subscription.DataReader.get matched -
publications (p. 486) to find the publications that are currently matched with
the com.rti.dds.subscription.DataReader (p. 473).

Note: This operation does not retrieve the following information in
builtin.PublicationBuiltinTopicData:

ˆ builtin.PublicationBuiltinTopicData.type code

ˆ builtin.PublicationBuiltinTopicData.property

The above information is available through
com.rti.dds.subscription.DataReaderListener.on data -
available() (p. 503) (if a reader listener is installed on the
builtin.PublicationBuiltinTopicDataDataReader).

Parameters:

publication data <<inout>> (p. 271). The information to be filled in
on the associated publication (p. 338). Cannot be NULL.

publication handle <<in>> (p. 271). Handle to a specific publication
(p. 338) associated with the com.rti.dds.publication.DataWriter
(p. 538). Cannot be NULL.. Must correspond to
a publication (p. 338) currently associated with the
com.rti.dds.subscription.DataReader (p. 473).

Exceptions:

One of the Standard Return Codes (p. 104) or RETCODE NOT -
ENABLED

8.34.2.21 TopicDescription get topicdescription ()

Returns the com.rti.dds.topic.TopicDescription (p. 1561) associated with
the com.rti.dds.subscription.DataReader (p. 473).

Returns that same com.rti.dds.topic.TopicDescription (p. 1561) that was
used to create the com.rti.dds.subscription.DataReader (p. 473).

Returns:

com.rti.dds.topic.TopicDescription (p. 1561) associated with the
com.rti.dds.subscription.DataReader (p. 473).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.34 DataReader Interface Reference 489

8.34.2.22 Subscriber get subscriber ()

Returns the com.rti.dds.subscription.Subscriber (p. 1478) to which the
com.rti.dds.subscription.DataReader (p. 473) belongs.

Returns:

com.rti.dds.subscription.Subscriber (p. 1478) to which the
com.rti.dds.subscription.DataReader (p. 473) belongs.

8.34.2.23 void delete contained entities ()

Deletes all the entities that were created by means of the ”create” operations
on the com.rti.dds.subscription.DataReader (p. 473).

Deletes all contained com.rti.dds.subscription.ReadCondition (p. 1326)
and com.rti.dds.subscription.QueryCondition (p. 1324) objects.

The operation will fail with RETCODE PRECONDITION NOT MET if the
any of the contained entities is in a state where it cannot be deleted.

Once com.rti.dds.subscription.DataReader.delete contained -
entities (p. 489) completes successfully, the application may delete the
com.rti.dds.subscription.DataReader (p. 473), knowing that it has
no contained com.rti.dds.subscription.ReadCondition (p. 1326) and
com.rti.dds.subscription.QueryCondition (p. 1324) objects.

Exceptions:

One of the Standard Return Codes (p. 104), or RETCODE -
PRECONDITION NOT MET

8.34.2.24 void wait for historical data (Duration t max wait)

Waits until all ”historical” data is received for
com.rti.dds.subscription.DataReader (p. 473) entities that have a
non-VOLATILE Durability Qos kind.

This operation is intended only for com.rti.dds.subscription.DataReader
(p. 473) entities that have a non-VOLATILE Durability QoS kind.

As soon as an application enables a non-VOLATILE
com.rti.dds.subscription.DataReader (p. 473), it will start receiving
both ”historical” data (i.e., the data that was written prior to the time the
com.rti.dds.subscription.DataReader (p. 473) joined the domain (p. 317))
as well as any new data written by the com.rti.dds.publication.DataWriter

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

490 Class Documentation

(p. 538) entities. There are situations where the application logic may require
the application to wait until all ”historical” data is received. This is the purpose
of the com.rti.dds.subscription.DataReader.wait for historical data
(p. 489) operations.

The operation com.rti.dds.subscription.DataReader.wait for -
historical data (p. 489) blocks the calling thread until either all ”historical”
data is received, or else duration specified by the max wait parameter clapses,
whichever happens first. A successful completion indicates that all the ”histor-
ical” data was ”received”; timing out indicates that max wait elapsed before
all the data was received.

Parameters:

max wait <<in>> (p. 271) Timeout value. Cannot be NULL.

Exceptions:

One of the Standard Return Codes (p. 104), RETCODE TIMEOUT
or RETCODE NOT ENABLED.

8.34.2.25 void read untyped (List received data, SampleInfoSeq
info seq, int max samples, int sample states, int
view states, int instance states)

Read data samples, if any are available.

This method allows type-independent code to work with a variety of concrete
com.rti.dds.topic.example.FooDataReader classes in a consistent way.

Statically type-safe code should use the appropriate
com.rti.dds.topic.example.FooDataReader.read method instead of this one. See
that method for detailed documentation.

See also:

com.rti.dds.subscription.DataReader.take untyped (p. 490)
com.rti.dds.topic.example.FooDataReader.read

8.34.2.26 void take untyped (List received data, SampleInfoSeq
info seq, int max samples, int sample states, int
view states, int instance states)

Take data samples, if any are available.

This method allows type-independent code to work with a variety of concrete
com.rti.dds.topic.example.FooDataReader classes in a consistent way.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.34 DataReader Interface Reference 491

Statically type-safe code should use the appropriate
com.rti.dds.topic.example.FooDataReader.take method instead of this one. See
that method for detailed documentation.

See also:

com.rti.dds.subscription.DataReader.read untyped (p. 490)
com.rti.dds.topic.example.FooDataReader.take

8.34.2.27 void read w condition untyped (List received data,
SampleInfoSeq info seq, int max samples,
ReadCondition read condition)

Read data samples, if any are available.

This method allows type-independent code to work with a variety of concrete
com.rti.dds.topic.example.FooDataReader classes in a consistent way.

Statically type-safe code should use the appropriate
com.rti.dds.topic.example.FooDataReader.read w condition method instead of
this one. See that method for detailed documentation.

See also:

com.rti.dds.subscription.DataReader.take w condition untyped
(p. 491)
com.rti.dds.topic.example.FooDataReader.read w condition

8.34.2.28 void take w condition untyped (List received data,
SampleInfoSeq info seq, int max samples,
ReadCondition read condition)

Take data samples, if any are available.

This method allows type-independent code to work with a variety of concrete
com.rti.dds.topic.example.FooDataReader classes in a consistent way.

Statically type-safe code should use the appropriate
com.rti.dds.topic.example.FooDataReader.take w condition method instead of
this one. See that method for detailed documentation.

See also:

com.rti.dds.subscription.DataReader.read w condition untyped
(p. 491)
com.rti.dds.topic.example.FooDataReader.take w condition

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

492 Class Documentation

8.34.2.29 void read next sample untyped (Object received data,
SampleInfo sample info)

Read data samples, if any are available.

This method allows type-independent code to work with a variety of concrete
com.rti.dds.topic.example.FooDataReader classes in a consistent way.

Statically type-safe code should use the appropriate
com.rti.dds.topic.example.FooDataReader.read next sample method instead of
this one. See that method for detailed documentation.

See also:

com.rti.dds.subscription.DataReader.take next sample untyped
(p. 492)
com.rti.dds.topic.example.FooDataReader.read next sample

8.34.2.30 void take next sample untyped (Object received data,
SampleInfo sample info)

Take data samples, if any are available.

This method allows type-independent code to work with a variety of concrete
com.rti.dds.topic.example.FooDataReader classes in a consistent way.

Statically type-safe code should use the appropriate
com.rti.dds.topic.example.FooDataReader.take next sample method instead of
this one. See that method for detailed documentation.

See also:

com.rti.dds.subscription.DataReader.read next sample untyped
(p. 492)
com.rti.dds.topic.example.FooDataReader.take next sample

8.34.2.31 void read instance untyped (List received data,
SampleInfoSeq info seq, int max samples,
InstanceHandle t a handle, int sample states, int
view states, int instance states)

Read data samples, if any are available.

This method allows type-independent code to work with a variety of concrete
com.rti.dds.topic.example.FooDataReader classes in a consistent way.

Statically type-safe code should use the appropriate
com.rti.dds.topic.example.FooDataReader.read instance method instead of
this one. See that method for detailed documentation.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.34 DataReader Interface Reference 493

See also:

com.rti.dds.subscription.DataReader.take instance untyped
(p. 493)
com.rti.dds.topic.example.FooDataReader.read instance

8.34.2.32 void take instance untyped (List received data,
SampleInfoSeq info seq, int max samples,
InstanceHandle t a handle, int sample states, int
view states, int instance states)

Take data samples, if any are available.

This method allows type-independent code to work with a variety of concrete
com.rti.dds.topic.example.FooDataReader classes in a consistent way.

Statically type-safe code should use the appropriate
com.rti.dds.topic.example.FooDataReader.take instance method instead of
this one. See that method for detailed documentation.

See also:

com.rti.dds.subscription.DataReader.read instance untyped
(p. 492)
com.rti.dds.topic.example.FooDataReader.take instance

8.34.2.33 void read instance w condition untyped (List
received data, SampleInfoSeq info seq, int max samples,
InstanceHandle t a handle, ReadCondition
read condition)

Read data samples, if any are available.

This method allows type-independent code to work with a variety of concrete
com.rti.dds.topic.example.FooDataReader classes in a consistent way.

Statically type-safe code should use the appropriate
com.rti.dds.topic.example.FooDataReader.read next instance w condition
method instead of this one. See that method for detailed documentation.

See also:

com.rti.dds.subscription.DataReader.take next instance w -
condition untyped (p. 495)
com.rti.dds.topic.example.FooDataReader.read next instance w condition

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

494 Class Documentation

8.34.2.34 void take instance w condition untyped (List
received data, SampleInfoSeq info seq, int max samples,
InstanceHandle t a handle, ReadCondition
read condition)

Take data samples, if any are available.

This method allows type-independent code to work with a variety of concrete
com.rti.dds.topic.example.FooDataReader classes in a consistent way.

Statically type-safe code should use the appropriate
com.rti.dds.topic.example.FooDataReader.take next instance w condition
method instead of this one. See that method for detailed documentation.

See also:

com.rti.dds.subscription.DataReader.read next instance w -
condition untyped (p. 495)
com.rti.dds.topic.example.FooDataReader.take next instance w condition

8.34.2.35 void read next instance untyped (List received data,
SampleInfoSeq info seq, int max samples,
InstanceHandle t a handle, int sample states, int
view states, int instance states)

Read data samples, if any are available.

This method allows type-independent code to work with a variety of concrete
com.rti.dds.topic.example.FooDataReader classes in a consistent way.

Statically type-safe code should use the appropriate
com.rti.dds.topic.example.FooDataReader.read next instance method instead
of this one. See that method for detailed documentation.

See also:

com.rti.dds.subscription.DataReader.take next instance untyped
(p. 494)
com.rti.dds.topic.example.FooDataReader.read next instance

8.34.2.36 void take next instance untyped (List received data,
SampleInfoSeq info seq, int max samples,
InstanceHandle t a handle, int sample states, int
view states, int instance states)

Take data samples, if any are available.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.34 DataReader Interface Reference 495

This method allows type-independent code to work with a variety of concrete
com.rti.dds.topic.example.FooDataReader classes in a consistent way.

Statically type-safe code should use the appropriate
com.rti.dds.topic.example.FooDataReader.take next instance method instead
of this one. See that method for detailed documentation.

See also:

com.rti.dds.subscription.DataReader.read next instance -
untyped (p. 494)
com.rti.dds.topic.example.FooDataReader.take next instance

8.34.2.37 void read next instance w condition untyped (List
received data, SampleInfoSeq info seq, int max samples,
InstanceHandle t a handle, ReadCondition
read condition)

Read data samples, if any are available.

This method allows type-independent code to work with a variety of concrete
com.rti.dds.topic.example.FooDataReader classes in a consistent way.

Statically type-safe code should use the appropriate
com.rti.dds.topic.example.FooDataReader.read next instance w condition
method instead of this one. See that method for detailed documentation.

See also:

com.rti.dds.subscription.DataReader.take next instance w -
condition untyped (p. 495)
com.rti.dds.topic.example.FooDataReader.read next instance w condition

8.34.2.38 void take next instance w condition untyped (List
received data, SampleInfoSeq info seq, int max samples,
InstanceHandle t a handle, ReadCondition
read condition)

Take data samples, if any are available.

This method allows type-independent code to work with a variety of concrete
com.rti.dds.topic.example.FooDataReader classes in a consistent way.

Statically type-safe code should use the appropriate
com.rti.dds.topic.example.FooDataReader.take next instance w condition
method instead of this one. See that method for detailed documentation.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

496 Class Documentation

See also:

com.rti.dds.subscription.DataReader.read next instance w -
condition untyped (p. 495)
com.rti.dds.topic.example.FooDataReader.take next instance w condition

8.34.2.39 void return loan untyped (List received data,
SampleInfoSeq info seq)

Return loaned sample data and meta-data.

This method allows type-independent code to work with a variety of concrete
com.rti.dds.topic.example.FooDataReader classes in a consistent way.

Statically type-safe code should use the appropriate
com.rti.dds.topic.example.FooDataReader.return loan method instead of
this one. See that method for detailed documentation.

See also:

com.rti.dds.topic.example.FooDataReader.return loan

8.34.2.40 void get key value untyped (Object key holder,
InstanceHandle t handle)

Fill in the key fields of the given data sample.

This method allows type-independent code to work with a variety of concrete
com.rti.dds.topic.example.FooDataReader classes in a consistent way.

Statically type-safe code should use the appropriate
com.rti.dds.topic.example.FooDataReader.get key value method instead of
this one. See that method for detailed documentation.

See also:

com.rti.dds.topic.example.FooDataReader.get key value

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.35 DataReaderAdapter Class Reference 497

8.35 DataReaderAdapter Class Reference

<<eXtension>> (p. 270) A listener adapter in the spirit of the Java AWT
listener adapters. (The Adapter provides empty implementations for the listener
methods)

Inheritance diagram for DataReaderAdapter::

Public Member Functions

ˆ void on requested deadline missed (DataReader reader, Re-
questedDeadlineMissedStatus status)

Handles the StatusKind.REQUESTED DEADLINE MISSED STATUS
communication status.

ˆ void on requested incompatible qos (DataReader reader, Re-
questedIncompatibleQosStatus status)

Handles the StatusKind.REQUESTED INCOMPATIBLE QOS STATUS
communication status.

ˆ void on sample rejected (DataReader reader, SampleRejectedSta-
tus status)

Handles the StatusKind.SAMPLE REJECTED STATUS communication
status.

ˆ void on liveliness changed (DataReader reader, Liveliness-
ChangedStatus status)

Handles the StatusKind.LIVELINESS CHANGED STATUS communication
status.

ˆ void on data available (DataReader reader)
Handle the StatusKind.DATA AVAILABLE STATUS communication sta-
tus.

ˆ void on sample lost (DataReader reader, SampleLostStatus sta-
tus)

Handles the StatusKind.SAMPLE LOST STATUS STATUS communication
status.

ˆ void on subscription matched (DataReader reader, Subscription-
MatchedStatus status)

Handles the StatusKind.SUBSCRIPTION MATCHED STATUS communi-
cation status.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

498 Class Documentation

8.35.1 Detailed Description

<<eXtension>> (p. 270) A listener adapter in the spirit of the Java AWT
listener adapters. (The Adapter provides empty implementations for the listener
methods)

Clients who do not wish to implement all listener methods can subclass this
class and override only the methods of interest.

8.35.2 Member Function Documentation

8.35.2.1 void on requested deadline missed (DataReader reader,
RequestedDeadlineMissedStatus status)

Handles the StatusKind.REQUESTED DEADLINE MISSED STATUS com-
munication status.

Implements DataReaderListener (p. 502).

8.35.2.2 void on requested incompatible qos (DataReader reader,
RequestedIncompatibleQosStatus status)

Handles the StatusKind.REQUESTED INCOMPATIBLE QOS STATUS com-
munication status.

Implements DataReaderListener (p. 502).

8.35.2.3 void on sample rejected (DataReader reader,
SampleRejectedStatus status)

Handles the StatusKind.SAMPLE REJECTED STATUS communication sta-
tus.

Implements DataReaderListener (p. 503).

8.35.2.4 void on liveliness changed (DataReader reader,
LivelinessChangedStatus status)

Handles the StatusKind.LIVELINESS CHANGED STATUS communication
status.

Implements DataReaderListener (p. 503).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.35 DataReaderAdapter Class Reference 499

8.35.2.5 void on data available (DataReader reader)

Handle the StatusKind.DATA AVAILABLE STATUS communication status.

Implements DataReaderListener (p. 503).

8.35.2.6 void on sample lost (DataReader reader,
SampleLostStatus status)

Handles the StatusKind.SAMPLE LOST STATUS STATUS communication
status.

Implements DataReaderListener (p. 503).

8.35.2.7 void on subscription matched (DataReader reader,
SubscriptionMatchedStatus status)

Handles the StatusKind.SUBSCRIPTION MATCHED STATUS communica-
tion status.

Implements DataReaderListener (p. 503).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

500 Class Documentation

8.36 DataReaderCacheStatus Class Reference

<<eXtension>> (p. 270) The status of the reader’s cache.

Inherits Status.

Public Attributes

ˆ long sample count peak

The highest number of samples in the reader’s queue over the lifetime of the
reader.

ˆ long sample count

The number of samples in the reader’s queue.

8.36.1 Detailed Description

<<eXtension>> (p. 270) The status of the reader’s cache.

Entity:

com.rti.dds.subscription.DataReader (p. 473)

8.36.2 Member Data Documentation

8.36.2.1 long sample count peak

The highest number of samples in the reader’s queue over the lifetime of the
reader.

8.36.2.2 long sample count

The number of samples in the reader’s queue.

includes samples that may not yet be available to be read or taken by the user,
due to samples being received out of order or PRESENTATION (p. 86)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.37 DataReaderListener Interface Reference 501

8.37 DataReaderListener Interface Reference

<<interface>> (p. 271) com.rti.dds.infrastructure.Listener (p. 1154) for
reader status.

Inheritance diagram for DataReaderListener::

Public Member Functions

ˆ void on requested deadline missed (DataReader reader, Re-
questedDeadlineMissedStatus status)

Handles the StatusKind.REQUESTED DEADLINE MISSED STATUS
communication status.

ˆ void on requested incompatible qos (DataReader reader, Re-
questedIncompatibleQosStatus status)

Handles the StatusKind.REQUESTED INCOMPATIBLE QOS STATUS
communication status.

ˆ void on sample rejected (DataReader reader, SampleRejectedSta-
tus status)

Handles the StatusKind.SAMPLE REJECTED STATUS communication
status.

ˆ void on liveliness changed (DataReader reader, Liveliness-
ChangedStatus status)

Handles the StatusKind.LIVELINESS CHANGED STATUS communication
status.

ˆ void on data available (DataReader reader)
Handle the StatusKind.DATA AVAILABLE STATUS communication sta-
tus.

ˆ void on sample lost (DataReader reader, SampleLostStatus sta-
tus)

Handles the StatusKind.SAMPLE LOST STATUS STATUS communication
status.

ˆ void on subscription matched (DataReader reader, Subscription-
MatchedStatus status)

Handles the StatusKind.SUBSCRIPTION MATCHED STATUS communi-
cation status.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

502 Class Documentation

8.37.1 Detailed Description

<<interface>> (p. 271) com.rti.dds.infrastructure.Listener (p. 1154) for
reader status.

Entity:

com.rti.dds.subscription.DataReader (p. 473)

Status:

StatusKind.DATA AVAILABLE STATUS;
StatusKind.LIVELINESS CHANGED STATUS,
com.rti.dds.subscription.LivelinessChangedStatus (p. 1159);
StatusKind.REQUESTED DEADLINE MISSED STATUS,
com.rti.dds.subscription.RequestedDeadlineMissedStatus
(p. 1353);
StatusKind.REQUESTED INCOMPATIBLE QOS STATUS,
com.rti.dds.subscription.RequestedIncompatibleQosStatus
(p. 1354);
StatusKind.SAMPLE LOST STATUS STATUS,
com.rti.dds.subscription.SampleLostStatus (p. 1415);
StatusKind.SAMPLE REJECTED STATUS,
com.rti.dds.subscription.SampleRejectedStatus (p. 1422);
StatusKind.SUBSCRIPTION MATCHED STATUS,
com.rti.dds.subscription.SubscriptionMatchedStatus (p. 1520);

See also:

Status Kinds (p. 106)
Operations Allowed in Listener Callbacks (p. 1156)

8.37.2 Member Function Documentation

8.37.2.1 void on requested deadline missed (DataReader reader,
RequestedDeadlineMissedStatus status)

Handles the StatusKind.REQUESTED DEADLINE MISSED STATUS com-
munication status.

Implemented in DataReaderAdapter (p. 498).

8.37.2.2 void on requested incompatible qos (DataReader reader,
RequestedIncompatibleQosStatus status)

Handles the StatusKind.REQUESTED INCOMPATIBLE QOS STATUS com-
munication status.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.37 DataReaderListener Interface Reference 503

Implemented in DataReaderAdapter (p. 498).

8.37.2.3 void on sample rejected (DataReader reader,
SampleRejectedStatus status)

Handles the StatusKind.SAMPLE REJECTED STATUS communication sta-
tus.

Implemented in DataReaderAdapter (p. 498).

8.37.2.4 void on liveliness changed (DataReader reader,
LivelinessChangedStatus status)

Handles the StatusKind.LIVELINESS CHANGED STATUS communication
status.

Implemented in DataReaderAdapter (p. 498).

8.37.2.5 void on data available (DataReader reader)

Handle the StatusKind.DATA AVAILABLE STATUS communication status.

Implemented in DataReaderAdapter (p. 499).

8.37.2.6 void on sample lost (DataReader reader,
SampleLostStatus status)

Handles the StatusKind.SAMPLE LOST STATUS STATUS communication
status.

Implemented in DataReaderAdapter (p. 499).

8.37.2.7 void on subscription matched (DataReader reader,
SubscriptionMatchedStatus status)

Handles the StatusKind.SUBSCRIPTION MATCHED STATUS communica-
tion status.

Implemented in DataReaderAdapter (p. 499).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

504 Class Documentation

8.38 DataReaderProtocolQosPolicy Class Ref-
erence

Along with com.rti.dds.infrastructure.WireProtocolQosPolicy (p. 1709)
and com.rti.dds.infrastructure.DataWriterProtocolQosPolicy (p. 571),
this QoS policy configures the DDS on-the-network protocol (RTPS).

Inheritance diagram for DataReaderProtocolQosPolicy::

Public Attributes

ˆ GUID t virtual guid

The virtual GUID (Global Unique Identifier).

ˆ int rtps object id

The RTPS Object ID.

ˆ boolean expects inline qos

Specifies whether this DataReader expects inline QoS with every sample.

ˆ boolean disable positive acks

Whether the reader sends positive acknowledgements to writers.

ˆ boolean propagate dispose of unregistered instances

Indicates whether or not an instance can move to the InstanceS-
tateKind.NOT ALIVE DISPOSED INSTANCE STATE state without being
in the InstanceStateKind.ALIVE INTANCE STATE state.

ˆ final RtpsReliableReaderProtocol t rtps reliable reader

The reliable protocol defined in RTPS.

8.38.1 Detailed Description

Along with com.rti.dds.infrastructure.WireProtocolQosPolicy (p. 1709)
and com.rti.dds.infrastructure.DataWriterProtocolQosPolicy (p. 571),
this QoS policy configures the DDS on-the-network protocol (RTPS).

DDS has a standard protocol for packet (user and meta data) exchange be-
tween applications using DDS for communications. This QoS policy and
com.rti.dds.infrastructure.DataReaderProtocolQosPolicy (p. 504) give

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.38 DataReaderProtocolQosPolicy Class Reference 505

you control over configurable portions of the protocol, including the configura-
tion of the reliable data delivery mechanism of the protocol on a per DataWriter
or DataReader basis.

These configuration parameters control timing, timeouts, and give you the abil-
ity to tradeoff between speed of data loss detection and repair versus network
and CPU bandwidth used to maintain reliability.

It is important to tune the reliability protocol (on a
per com.rti.dds.publication.DataWriter (p. 538) and
com.rti.dds.subscription.DataReader (p. 473) basis) to meet the re-
quirements of the end-user application so that data can be sent between
DataWriters and DataReaders in an efficient and optimal manner in the
presence of data loss.

You can also use this QoS policy to control how RTI Connext responds
to ”slow” reliable DataReaders or ones that disconnect or are other-
wise lost. See com.rti.dds.infrastructure.ReliabilityQosPolicy (p. 1336)
for more information on the per-DataReader/DataWriter reliability con-
figuration. com.rti.dds.infrastructure.HistoryQosPolicy (p. 1071) and
com.rti.dds.infrastructure.ResourceLimitsQosPolicy (p. 1356) also play
an important role in the DDS reliable protocol.

This QoS policy is an extension to the DDS standard.

Entity:

com.rti.dds.subscription.DataReader (p. 473)

Properties:

RxO (p. 97) = N/A
Changeable (p. 98) = NO (p. 98)

8.38.2 Member Data Documentation

8.38.2.1 GUID t virtual guid

The virtual GUID (Global Unique Identifier).

The virtual GUID is used to uniquely identify different incarnations of the same
com.rti.dds.subscription.DataReader (p. 473).

The association between a com.rti.dds.subscription.DataReader (p. 473)
and its persisted state is done using the virtual GUID.

[default] com.rti.dds.infrastructure.GUID t.AUTO

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

506 Class Documentation

8.38.2.2 int rtps object id

The RTPS Object ID.

This value is used to determine the RTPS object ID of a data reader according
to the DDS-RTPS Interoperability Wire Protocol.

Only the last 3 bytes are used; the most significant byte is ignored.

If the default value is specified, RTI Connext will automatically assign the object
ID based on a counter value (per participant) starting at 0x00800000. That
value is incremented for each new data reader.

A rtps object id value in the interval [0x00800000,0x00ffffff] may collide with the
automatic values assigned by RTI Connext. In those cases, the recomendation
is not to use automatic object ID assigment.

[default] com.rti.dds.infrastructure.WireProtocolQosPolicy.RTPS -
AUTO ID (p. 1714)

[range] [0,0x00ffffff]

8.38.2.3 boolean expects inline qos

Specifies whether this DataReader expects inline QoS with every sample.

In RTI Connext, a com.rti.dds.subscription.DataReader (p. 473)
nominally relies on Discovery to propagate QoS on a matched
com.rti.dds.publication.DataWriter (p. 538). Alternatively, a
com.rti.dds.subscription.DataReader (p. 473) may get information
on a matched com.rti.dds.publication.DataWriter (p. 538) through QoS
sent inline with a sample.

Asserting com.rti.dds.infrastructure.DataReaderProtocolQosPolicy.expects -
inline qos (p. 506) indicates to a matching
com.rti.dds.publication.DataWriter (p. 538) that this
com.rti.dds.subscription.DataReader (p. 473) expects to receive in-
line QoS with every sample. The complete set of inline QoS that a
com.rti.dds.publication.DataWriter (p. 538) may send inline is specified
by the Real-Time Publish-Subscribe (RTPS) Wire Interoperability Protocol.

Because RTI Connext com.rti.dds.publication.DataWriter (p. 538) and
com.rti.dds.subscription.DataReader (p. 473) cache Discovery informa-
tion, inline QoS are largely redundant and thus unecessary. Only for other state-
less implementations whose com.rti.dds.subscription.DataReader (p. 473)
does not cache Discovery information is inline QoS necessary.

Also note that inline QoS are additional wire-payload that consume additional
bandwidth and serialization and deserialization time.

[default] false

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.38 DataReaderProtocolQosPolicy Class Reference 507

8.38.2.4 boolean disable positive acks

Whether the reader sends positive acknowledgements to writers.

If set to true, the reader does not send positive acknowledgments (ACKs) in re-
sponse to Heartbeat messages. The reader will send negative acknowledgements
(NACKs) when a Heartbeat advertises samples that it has not received.

Otherwise, if set to false (the default), the reader
will send ACKs to writers that expect ACKs
(com.rti.dds.infrastructure.DataWriterProtocolQosPolicy.disable -
positive acks (p. 573) = false) and it will
not send ACKs to writers that disable ACKs
(com.rti.dds.infrastructure.DataWriterProtocolQosPolicy.disable -
positive acks (p. 573) = true)

[default] false

8.38.2.5 boolean propagate dispose of unregistered instances

Indicates whether or not an instance can move to the InstanceStateKind.NOT -
ALIVE DISPOSED INSTANCE STATE state without being in the InstanceS-
tateKind.ALIVE INTANCE STATE state.

This field only applies to keyed readers.

When the field is set to true, the DataReader will receive dispose notifications
even if the instance is not alive.

To guarantee the key availability through the usage
of the API com.rti.dds.topic.example.FooDataReader.get -
key value, this option should be used in combination
com.rti.dds.infrastructure.DataWriterProtocolQosPolicy.serialize -
key with dispose (p. 574) on the DataWriter that should be set to true.

[default] false

8.38.2.6 final RtpsReliableReaderProtocol t rtps reliable reader

Initial value:

new RtpsReliableReaderProtocol_t()

The reliable protocol defined in RTPS.

[default] min heartbeat response delay 0 seconds; max heartbeat response -
delay 0.5 seconds

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

508 Class Documentation

8.39 DataReaderProtocolStatus Class Refer-
ence

<<eXtension>> (p. 270) The status of a reader’s internal protocol related
metrics, like the number of samples received, filtered, rejected; and status of
wire protocol traffic.

Inherits Status.

Public Attributes

ˆ long received sample count

The number of user samples from a remote DataWriter received for the first
time by a local DataReader (p. 473).

ˆ long received sample count change

The incremental change in the number of user samples from a remote
DataWriter received for the first time by a local DataReader (p. 473) since
the last time the status was read.

ˆ long received sample bytes

The number of bytes of user samples from a remote DataWriter received for
the first time by a local DataReader (p. 473).

ˆ long received sample bytes change

The incremental change in the number of bytes of user samples from a remote
DataWriter received for the first time by a local DataReader (p. 473) since
the last time the status was read.

ˆ long duplicate sample count

The number of samples from a remote DataWriter received, not for the first
time, by a local DataReader (p. 473).

ˆ long duplicate sample count change

The incremental change in the number of samples from a remote DataWriter
received, not for the first time, by a local DataReader (p. 473) since the last
time the status was read.

ˆ long duplicate sample bytes

The number of bytes of samples from a remote DataWriter received, not for
the first time, by a local DataReader (p. 473).

ˆ long duplicate sample bytes change

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.39 DataReaderProtocolStatus Class Reference 509

The incremental change in the number of bytes of samples from a remote
DataWriter received, not for the first time, by a local DataReader (p. 473)
since the last time the status was read.

ˆ long filtered sample count

The number of user samples filtered by the local DataReader (p. 473) due
to Content-Filtered Topics or Time-Based Filter.

ˆ long filtered sample count change

The incremental change in the number of user samples filtered by the local
DataReader (p. 473) due to Content-Filtered Topics or Time-Based Filter
since the last time the status was read.

ˆ long filtered sample bytes

The number of bytes of user samples filtered by the local DataReader
(p. 473) due to Content-Filtered Topics or Time-Based Filter.

ˆ long filtered sample bytes change

The incremental change in the number of bytes of user samples filtered by the
local DataReader (p. 473) due to Content-Filtered Topics or Time-Based
Filter since the last time the status was read.

ˆ long received heartbeat count

The number of Heartbeats from a remote DataWriter received by a local
DataReader (p. 473).

ˆ long received heartbeat count change

The incremental change in the number of Heartbeats from a remote
DataWriter received by a local DataReader (p. 473) since the last time the
status was read.

ˆ long received heartbeat bytes

The number of bytes of Heartbeats from a remote DataWriter received by a
local DataReader (p. 473).

ˆ long received heartbeat bytes change

The incremental change in the number of bytes of Heartbeats from a remote
DataWriter received by a local DataReader (p. 473) since the last time the
status was read.

ˆ long sent ack count

The number of ACKs sent from a local DataReader (p. 473) to a matching
remote DataWriter.

ˆ long sent ack count change

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

510 Class Documentation

The incremental change in the number of ACKs sent from a local
DataReader (p. 473) to a matching remote DataWriter since the last time
the status was read.

ˆ long sent ack bytes

The number of bytes of ACKs sent from a local DataReader (p. 473) to a
matching remote DataWriter.

ˆ long sent ack bytes change

The incremental change in the number of bytes of ACKs sent from a local
DataReader (p. 473) to a matching remote DataWriter since the last time
the status was read.

ˆ long sent nack count

The number of NACKs sent from a local DataReader (p. 473) to a matching
remote DataWriter.

ˆ long sent nack count change

The incremental change in the number of NACKs sent from a local
DataReader (p. 473) to a matching remote DataWriter since the last time
the status was read.

ˆ long sent nack bytes

The number of bytes of NACKs sent from a local DataReader (p. 473) to
a matching remote DataWriter.

ˆ long sent nack bytes change

The incremental change in the number of bytes of NACKs sent from a local
DataReader (p. 473) to a matching remote DataWriter since the last time
the status was read.

ˆ long received gap count

The number of GAPs received from remote DataWriter to this DataReader
(p. 473).

ˆ long received gap count change

The incremental change in the number of GAPs received from remote
DataWriter to this DataReader (p. 473) since the last time the status was
read.

ˆ long received gap bytes

The number of bytes of GAPs received from remote DataWriter to this
DataReader (p. 473).

ˆ long received gap bytes change

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.39 DataReaderProtocolStatus Class Reference 511

The incremental change in the number of bytes of GAPs received from remote
DataWriter to this DataReader (p. 473) since the last time the status was
read.

ˆ long rejected sample count
The number of times a sample is rejected due to exceptions in the receive
path.

ˆ long rejected sample count change
The incremental change in the number of times a sample is rejected due to
exceptions in the receive path since the last time the status was read.

ˆ SequenceNumber t first available sample sequence number
Sequence number of the first available sample in a matched Datawriters reli-
ability queue.

ˆ SequenceNumber t last available sample sequence number
Sequence number of the last available sample in a matched Datawriter’s re-
liability queue.

ˆ SequenceNumber t last committed sample sequence number
Sequence number of the newest sample received from the matched DataWriter
committed to the DataReader’s queue.

ˆ int uncommitted sample count
Number of received samples that are not yet available to be read or taken,
due to being received out of order.

8.39.1 Detailed Description

<<eXtension>> (p. 270) The status of a reader’s internal protocol related
metrics, like the number of samples received, filtered, rejected; and status of
wire protocol traffic.

Entity:

com.rti.dds.subscription.DataReader (p. 473)

8.39.2 Member Data Documentation

8.39.2.1 long received sample count

The number of user samples from a remote DataWriter received for the first
time by a local DataReader (p. 473).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

512 Class Documentation

8.39.2.2 long received sample count change

The incremental change in the number of user samples from a remote DataWriter
received for the first time by a local DataReader (p. 473) since the last time
the status was read.

8.39.2.3 long received sample bytes

The number of bytes of user samples from a remote DataWriter received for the
first time by a local DataReader (p. 473).

8.39.2.4 long received sample bytes change

The incremental change in the number of bytes of user samples from a remote
DataWriter received for the first time by a local DataReader (p. 473) since the
last time the status was read.

8.39.2.5 long duplicate sample count

The number of samples from a remote DataWriter received, not for the first
time, by a local DataReader (p. 473).

Such samples can be redundant, out-of-order, etc. and are not stored in the
reader’s queue.

8.39.2.6 long duplicate sample count change

The incremental change in the number of samples from a remote DataWriter
received, not for the first time, by a local DataReader (p. 473) since the last
time the status was read.

Such samples can be redundant, out-of-order, etc. and are not stored in the
reader’s queue.

8.39.2.7 long duplicate sample bytes

The number of bytes of samples from a remote DataWriter received, not for the
first time, by a local DataReader (p. 473).

Such samples can be redundant, out-of-order, etc. and are not stored in the
reader’s queue.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.39 DataReaderProtocolStatus Class Reference 513

8.39.2.8 long duplicate sample bytes change

The incremental change in the number of bytes of samples from a remote
DataWriter received, not for the first time, by a local DataReader (p. 473)
since the last time the status was read.

Such samples can be redundant, out-of-order, etc. and are not stored in the
reader’s queue.

8.39.2.9 long filtered sample count

The number of user samples filtered by the local DataReader (p. 473) due to
Content-Filtered Topics or Time-Based Filter.

8.39.2.10 long filtered sample count change

The incremental change in the number of user samples filtered by the local
DataReader (p. 473) due to Content-Filtered Topics or Time-Based Filter since
the last time the status was read.

8.39.2.11 long filtered sample bytes

The number of bytes of user samples filtered by the local DataReader (p. 473)
due to Content-Filtered Topics or Time-Based Filter.

8.39.2.12 long filtered sample bytes change

The incremental change in the number of bytes of user samples filtered by the
local DataReader (p. 473) due to Content-Filtered Topics or Time-Based Filter
since the last time the status was read.

8.39.2.13 long received heartbeat count

The number of Heartbeats from a remote DataWriter received by a local
DataReader (p. 473).

8.39.2.14 long received heartbeat count change

The incremental change in the number of Heartbeats from a remote DataWriter
received by a local DataReader (p. 473) since the last time the status was read.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

514 Class Documentation

8.39.2.15 long received heartbeat bytes

The number of bytes of Heartbeats from a remote DataWriter received by a
local DataReader (p. 473).

8.39.2.16 long received heartbeat bytes change

The incremental change in the number of bytes of Heartbeats from a remote
DataWriter received by a local DataReader (p. 473) since the last time the
status was read.

8.39.2.17 long sent ack count

The number of ACKs sent from a local DataReader (p. 473) to a matching
remote DataWriter.

8.39.2.18 long sent ack count change

The incremental change in the number of ACKs sent from a local DataReader
(p. 473) to a matching remote DataWriter since the last time the status was
read.

8.39.2.19 long sent ack bytes

The number of bytes of ACKs sent from a local DataReader (p. 473) to a
matching remote DataWriter.

8.39.2.20 long sent ack bytes change

The incremental change in the number of bytes of ACKs sent from a local
DataReader (p. 473) to a matching remote DataWriter since the last time the
status was read.

8.39.2.21 long sent nack count

The number of NACKs sent from a local DataReader (p. 473) to a matching
remote DataWriter.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.39 DataReaderProtocolStatus Class Reference 515

8.39.2.22 long sent nack count change

The incremental change in the number of NACKs sent from a local DataReader
(p. 473) to a matching remote DataWriter since the last time the status was read.

8.39.2.23 long sent nack bytes

The number of bytes of NACKs sent from a local DataReader (p. 473) to a
matching remote DataWriter.

8.39.2.24 long sent nack bytes change

The incremental change in the number of bytes of NACKs sent from a local
DataReader (p. 473) to a matching remote DataWriter since the last time the
status was read.

8.39.2.25 long received gap count

The number of GAPs received from remote DataWriter to this DataReader
(p. 473).

8.39.2.26 long received gap count change

The incremental change in the number of GAPs received from remote
DataWriter to this DataReader (p. 473) since the last time the status was
read.

8.39.2.27 long received gap bytes

The number of bytes of GAPs received from remote DataWriter to this
DataReader (p. 473).

8.39.2.28 long received gap bytes change

The incremental change in the number of bytes of GAPs received from remote
DataWriter to this DataReader (p. 473) since the last time the status was
read.

8.39.2.29 long rejected sample count

The number of times a sample is rejected due to exceptions in the receive path.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

516 Class Documentation

8.39.2.30 long rejected sample count change

The incremental change in the number of times a sample is rejected due to
exceptions in the receive path since the last time the status was read.

8.39.2.31 SequenceNumber t first available sample sequence -
number

Sequence number of the first available sample in a matched Datawriters relia-
bility queue.

Applicable only for reliable DataReaders, and when retrieving matched
DataWriter statuses.

Updated upon receiving Heartbeat submessages from a matched reliable
DataWriter.

8.39.2.32 SequenceNumber t last available sample sequence -
number

Sequence number of the last available sample in a matched Datawriter’s relia-
bility queue.

Applicable only for reliable DataReaders, and when retrieving matched
DataWriter statuses.

Updated upon receiving Heartbeat submessages from a matched reliable
DataWriter.

8.39.2.33 SequenceNumber t last committed sample sequence -
number

Sequence number of the newest sample received from the matched DataWriter
committed to the DataReader’s queue.

Applicable only when retrieving matched DataWriter statuses.

For best-effort DataReaders, this is the sequence number of the latest sample
received.

For reliable DataReaders, this is the sequence number of the latest sample that
is available to be read or taken from the DataReader’s queue.

8.39.2.34 int uncommitted sample count

Number of received samples that are not yet available to be read or taken, due
to being received out of order.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.39 DataReaderProtocolStatus Class Reference 517

Applicable only when retrieving matched DataWriter statuses.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

518 Class Documentation

8.40 DataReaderQos Class Reference

QoS policies supported by a com.rti.dds.subscription.DataReader (p. 473)
entity.

Inheritance diagram for DataReaderQos::

Public Attributes

ˆ final DurabilityQosPolicy durability
Durability policy, DURABILITY (p. 65).

ˆ final DeadlineQosPolicy deadline
Deadline policy, DEADLINE (p. 50).

ˆ final LatencyBudgetQosPolicy latency budget
Latency budget policy, LATENCY BUDGET (p. 76).

ˆ final LivelinessQosPolicy liveliness
Liveliness policy, LIVELINESS (p. 78).

ˆ final ReliabilityQosPolicy reliability
Reliability policy, RELIABILITY (p. 101).

ˆ final DestinationOrderQosPolicy destination order
Destination order policy, DESTINATION ORDER (p. 51).

ˆ final HistoryQosPolicy history
History policy, HISTORY (p. 75).

ˆ final ResourceLimitsQosPolicy resource limits
Resource limits policy, RESOURCE LIMITS (p. 102).

ˆ final UserDataQosPolicy user data
User data policy, USER DATA (p. 126).

ˆ final OwnershipQosPolicy ownership
Ownership policy, OWNERSHIP (p. 83).

ˆ final TimeBasedFilterQosPolicy time based filter
Time-based filter policy, TIME BASED FILTER (p. 113).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.40 DataReaderQos Class Reference 519

ˆ final ReaderDataLifecycleQosPolicy reader data lifecycle

Reader data lifecycle policy, READER DATA LIFECYCLE (p. 99).

ˆ final DataReaderResourceLimitsQosPolicy reader resource -
limits

<<eXtension>> (p. 270) com.rti.dds.subscription.DataReader
(p. 473) resource limits policy, DATA READER RESOURCE LIMITS
(p. 46). This policy is an extension to the DDS standard.

ˆ final DataReaderProtocolQosPolicy protocol

<<eXtension>> (p. 270) com.rti.dds.subscription.DataReader
(p. 473) protocol policy, DATA READER PROTOCOL (p. 45)

ˆ final TransportSelectionQosPolicy transport selection

<<eXtension>> (p. 270) Transport selection policy, TRANSPORT -
SELECTION (p. 122).

ˆ final TransportUnicastQosPolicy unicast

<<eXtension>> (p. 270) Unicast transport policy, TRANSPORT -
UNICAST (p. 123).

ˆ final TransportMulticastQosPolicy multicast

<<eXtension>> (p. 270) Multicast transport policy, TRANSPORT -
MULTICAST (p. 118).

ˆ final PropertyQosPolicy property

<<eXtension>> (p. 270) Property policy, PROPERTY (p. 88).

ˆ final AvailabilityQosPolicy availability

<<eXtension>> (p. 270) Availability policy, AVAILABILITY (p. 41).

ˆ final EntityNameQosPolicy subscription name

<<eXtension>> (p. 270) EntityName policy, ENTITY NAME (p. 70).

ˆ final TypeSupportQosPolicy type support

<<eXtension>> (p. 270) type support data, TYPESUPPORT (p. 124).

8.40.1 Detailed Description

QoS policies supported by a com.rti.dds.subscription.DataReader (p. 473)
entity.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

520 Class Documentation

You must set certain members in a consistent manner:

com.rti.dds.subscription.DataReaderQos.deadline.period >=
com.rti.dds.subscription.DataReaderQos.time based filter.minimum separation

com.rti.dds.subscription.DataReaderQos.history.depth <=
com.rti.dds.subscription.DataReaderQos.resource limits.max samples per -
instance

com.rti.dds.subscription.DataReaderQos.resource limits.max samples per -
instance <= com.rti.dds.subscription.DataReaderQos.resource limits.max -
samples com.rti.dds.subscription.DataReaderQos.resource limits.initial -
samples <= com.rti.dds.subscription.DataReaderQos.resource limits.max -
samples

com.rti.dds.subscription.DataReaderQos.resource limits.initial instances <=
com.rti.dds.subscription.DataReaderQos.resource limits.max instances

com.rti.dds.subscription.DataReaderQos.reader resource limits.initial remote -
writers per instance <= com.rti.dds.subscription.DataReaderQos.reader -
resource limits.max remote writers per instance

com.rti.dds.subscription.DataReaderQos.reader resource limits.initial infos <=
com.rti.dds.subscription.DataReaderQos.reader resource limits.max infos

com.rti.dds.subscription.DataReaderQos.reader resource limits.max remote -
writers per instance <= com.rti.dds.subscription.DataReaderQos.reader -
resource limits.max remote writers

com.rti.dds.subscription.DataReaderQos.reader resource limits.max samples -
per remote writer <= com.rti.dds.subscription.DataReaderQos.resource -
limits.max samples

length of com.rti.dds.subscription.DataReaderQos.user data.value <=
com.rti.dds.domain.DomainParticipantQos.resource limits.reader user data -
max length

If any of the above are not true, com.rti.dds.subscription.DataReader.set -
qos (p. 480) and com.rti.dds.subscription.DataReader.set qos with -
profile (p. 481) will fail with RETCODE INCONSISTENT POLICY

8.40.2 Member Data Documentation

8.40.2.1 final DurabilityQosPolicy durability

Durability policy, DURABILITY (p. 65).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.40 DataReaderQos Class Reference 521

8.40.2.2 final DeadlineQosPolicy deadline

Deadline policy, DEADLINE (p. 50).

8.40.2.3 final LatencyBudgetQosPolicy latency budget

Latency budget policy, LATENCY BUDGET (p. 76).

8.40.2.4 final LivelinessQosPolicy liveliness

Liveliness policy, LIVELINESS (p. 78).

8.40.2.5 final ReliabilityQosPolicy reliability

Reliability policy, RELIABILITY (p. 101).

8.40.2.6 final DestinationOrderQosPolicy destination order

Destination order policy, DESTINATION ORDER (p. 51).

8.40.2.7 final HistoryQosPolicy history

History policy, HISTORY (p. 75).

8.40.2.8 final ResourceLimitsQosPolicy resource limits

Resource limits policy, RESOURCE LIMITS (p. 102).

8.40.2.9 final UserDataQosPolicy user data

User data policy, USER DATA (p. 126).

8.40.2.10 final OwnershipQosPolicy ownership

Ownership policy, OWNERSHIP (p. 83).

8.40.2.11 final TimeBasedFilterQosPolicy time based filter

Time-based filter policy, TIME BASED FILTER (p. 113).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

522 Class Documentation

8.40.2.12 final ReaderDataLifecycleQosPolicy reader data lifecycle

Reader data lifecycle policy, READER DATA LIFECYCLE (p. 99).

8.40.2.13 final DataReaderResourceLimitsQosPolicy
reader resource limits

<<eXtension>> (p. 270) com.rti.dds.subscription.DataReader (p. 473)
resource limits policy, DATA READER RESOURCE LIMITS (p. 46).
This policy is an extension to the DDS standard.

8.40.2.14 final DataReaderProtocolQosPolicy protocol

<<eXtension>> (p. 270) com.rti.dds.subscription.DataReader (p. 473)
protocol policy, DATA READER PROTOCOL (p. 45)

8.40.2.15 final TransportSelectionQosPolicy transport selection

<<eXtension>> (p. 270) Transport selection policy, TRANSPORT -
SELECTION (p. 122).

Specifies the transports available for use by the
com.rti.dds.subscription.DataReader (p. 473).

8.40.2.16 final TransportUnicastQosPolicy unicast

<<eXtension>> (p. 270) Unicast transport policy, TRANSPORT -
UNICAST (p. 123).

Specifies the unicast transport interfaces and ports on which messages can be
received.

The unicast interfaces are used to receive messages from
com.rti.dds.publication.DataWriter (p. 538) entities in the domain
(p. 317).

8.40.2.17 final TransportMulticastQosPolicy multicast

<<eXtension>> (p. 270) Multicast transport policy, TRANSPORT -
MULTICAST (p. 118).

Specifies the multicast group addresses and ports on which messages can be
received.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.40 DataReaderQos Class Reference 523

The multicast addresses are used to receive messages from
com.rti.dds.publication.DataWriter (p. 538) entities in the domain
(p. 317).

8.40.2.18 final PropertyQosPolicy property

<<eXtension>> (p. 270) Property policy, PROPERTY (p. 88).

8.40.2.19 final AvailabilityQosPolicy availability

<<eXtension>> (p. 270) Availability policy, AVAILABILITY (p. 41).

8.40.2.20 final EntityNameQosPolicy subscription name

<<eXtension>> (p. 270) EntityName policy, ENTITY NAME (p. 70).

8.40.2.21 final TypeSupportQosPolicy type support

<<eXtension>> (p. 270) type support data, TYPESUPPORT (p. 124).

Optional value that is passed to a type plugin’s on endpoint attached and de-
serialization functions.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

524 Class Documentation

8.41 DataReaderResourceLimitsQosPolicy
Class Reference

Various settings that configure how a com.rti.dds.subscription.DataReader
(p. 473) allocates and uses physical memory for internal resources.

Inheritance diagram for DataReaderResourceLimitsQosPolicy::

Public Attributes

ˆ int max remote writers
The maximum number of remote writers from which a
com.rti.dds.subscription.DataReader (p. 473) may read, including
all instances.

ˆ int max remote writers per instance
The maximum number of remote writers from which a
com.rti.dds.subscription.DataReader (p. 473) may read a single
instance.

ˆ int max samples per remote writer
The maximum number of out-of-order samples from a given
remote com.rti.dds.publication.DataWriter (p. 538) that a
com.rti.dds.subscription.DataReader (p. 473) may store when main-
taining a reliable connection to the com.rti.dds.publication.DataWriter
(p. 538).

ˆ int max infos
The maximum number of info units that a
com.rti.dds.subscription.DataReader (p. 473) can use to store
com.rti.dds.subscription.SampleInfo (p. 1404).

ˆ int initial remote writers
The initial number of remote writers from which a
com.rti.dds.subscription.DataReader (p. 473) may read, including
all instances.

ˆ int initial remote writers per instance
The initial number of remote writers from which a
com.rti.dds.subscription.DataReader (p. 473) may read a single
instance.

ˆ int initial infos

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.41 DataReaderResourceLimitsQosPolicy Class Reference 525

The initial number of info units that a
com.rti.dds.subscription.DataReader (p. 473) can have, which are
used to store com.rti.dds.subscription.SampleInfo (p. 1404).

ˆ int initial outstanding reads
The initial number of outstanding calls to read/take (or one of
their variants) on the same com.rti.dds.subscription.DataReader
(p. 473) for which memory has not been returned by calling
com.rti.dds.topic.example.FooDataReader.return loan.

ˆ int max outstanding reads
The maximum number of outstanding read/take calls (or one of
their variants) on the same com.rti.dds.subscription.DataReader
(p. 473) for which memory has not been returned by calling
com.rti.dds.topic.example.FooDataReader.return loan.

ˆ int max samples per read
The maximum number of data samples that the ap-
plication can receive from the middleware in a sin-
gle call to com.rti.dds.topic.example.FooDataReader.read or
com.rti.dds.topic.example.FooDataReader.take. If more data exists in
the middleware, the application will need to issue multiple read/take calls.

ˆ boolean disable fragmentation support
Determines whether the com.rti.dds.subscription.DataReader (p. 473)
can receive fragmented samples.

ˆ int max fragmented samples
The maximum number of samples for which the
com.rti.dds.subscription.DataReader (p. 473) may store fragments
at a given point in time.

ˆ int initial fragmented samples
The initial number of samples for which a
com.rti.dds.subscription.DataReader (p. 473) may store fragments.

ˆ int max fragmented samples per remote writer
The maximum number of samples per remote writer for which a
com.rti.dds.subscription.DataReader (p. 473) may store fragments.

ˆ int max fragments per sample
Maximum number of fragments for a single sample.

ˆ boolean dynamically allocate fragmented samples
Determines whether the com.rti.dds.subscription.DataReader (p. 473)
pre-allocates storage for storing fragmented samples.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

526 Class Documentation

ˆ int max total instances

Maximum number of instances for which a DataReader will keep state.

ˆ int max remote virtual writers

The maximum number of remote virtual writers from which a
com.rti.dds.subscription.DataReader (p. 473) may read, including
all instances.

ˆ int initial remote virtual writers

The initial number of remote virtual writers from which a
com.rti.dds.subscription.DataReader (p. 473) may read, including
all instances.

ˆ int max remote virtual writers per instance

The maximum number of virtual remote writers that can be associated with
an instance.

ˆ int initial remote virtual writers per instance

The initial number of virtual remote writers per instance.

ˆ int max query condition filters

The maximum number of query condition filters a reader is allowed.

Static Public Attributes

ˆ static final int AUTO MAX TOTAL INSTANCES

<<eXtension>> (p. 270) This value is used to make
com.rti.dds.infrastructure.DataReaderResourceLimitsQosPolicy.max -
total instances (p. 533) equal to com.rti.dds.infrastructure.ResourceLimitsQosPolicy.max -
instances (p. 1360).

8.41.1 Detailed Description

Various settings that configure how a com.rti.dds.subscription.DataReader
(p. 473) allocates and uses physical memory for internal resources.

DataReaders must allocate internal structures to handle the maximum
number of DataWriters that may connect to it, whether or not a
com.rti.dds.subscription.DataReader (p. 473) handles data fragmentation
and how many data fragments that it may handle (for data samples larger than

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.41 DataReaderResourceLimitsQosPolicy Class Reference 527

the MTU of the underlying network transport), how many simultaneous out-
standing loans of internal memory holding data samples can be provided to user
code, as well as others.

Most of these internal structures start at an initial size and, by default, will grow
as needed by dynamically allocating additional memory. You may set fixed,
maximum sizes for these internal structures if you want to bound the amount
of memory that can be used by a com.rti.dds.subscription.DataReader
(p. 473). By setting the initial size to the maximum size, you will prevent
RTI Connext from dynamically allocating any memory after the creation of the
com.rti.dds.subscription.DataReader (p. 473).

This QoS policy is an extension to the DDS standard.

Entity:

com.rti.dds.subscription.DataReader (p. 473)

Properties:

RxO (p. 97) = N/A
Changeable (p. 98) = NO (p. 98)

8.41.2 Member Data Documentation

8.41.2.1 int max remote writers

The maximum number of remote writers from which a
com.rti.dds.subscription.DataReader (p. 473) may read, including all
instances.

[default] ResourceLimitsQosPolicy.LENGTH UNLIMITED (p. 102)

[range] [1, 1 million] or ResourceLimitsQosPolicy.LENGTH -
UNLIMITED (p. 102), >= initial remote writers, >= max remote writers -
per instance

For unkeyed types, this value has to be equal to max remote writers per -
instance if max remote writers per instance is not equal to ResourceLimit-
sQosPolicy.LENGTH UNLIMITED (p. 102).

Note: For efficiency, set max remote writers >=
com.rti.dds.infrastructure.DataReaderResourceLimitsQosPolicy.max -
remote writers per instance (p. 527).

8.41.2.2 int max remote writers per instance

The maximum number of remote writers from which a
com.rti.dds.subscription.DataReader (p. 473) may read a single in-

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

528 Class Documentation

stance.

[default] ResourceLimitsQosPolicy.LENGTH UNLIMITED (p. 102)

[range] [1, 1024] or ResourceLimitsQosPolicy.LENGTH UNLIMITED
(p. 102), <= max remote writers or ResourceLimitsQosPolicy.LENGTH -
UNLIMITED (p. 102), >= initial remote writers per instance

For unkeyed types, this value has to be equal to max remote writers if it is not
ResourceLimitsQosPolicy.LENGTH UNLIMITED (p. 102).

Note: For efficiency, set max remote writers per instance <=
com.rti.dds.infrastructure.DataReaderResourceLimitsQosPolicy.max -
remote writers (p. 527)

8.41.2.3 int max samples per remote writer

The maximum number of out-of-order samples from a given
remote com.rti.dds.publication.DataWriter (p. 538) that a
com.rti.dds.subscription.DataReader (p. 473) may store when main-
taining a reliable connection to the com.rti.dds.publication.DataWriter
(p. 538).

[default] ResourceLimitsQosPolicy.LENGTH UNLIMITED (p. 102)

[range] [1, 100 million] or ResourceLimit-
sQosPolicy.LENGTH UNLIMITED (p. 102), <=
com.rti.dds.infrastructure.ResourceLimitsQosPolicy.max samples
(p. 1359)

8.41.2.4 int max infos

The maximum number of info units that a
com.rti.dds.subscription.DataReader (p. 473) can use to store
com.rti.dds.subscription.SampleInfo (p. 1404).

When read/take is called on a DataReader, the DataReader passes a sequence of
data samples and an associated sample info sequence. The sample info sequence
contains additional information for each data sample.

max infos determines the resources allocated for storing sample info. This mem-
ory is loaned to the application when passing a sample info sequence.

Note that sample info is a snapshot, generated when read/take is called.

max infos should not be less than max samples.

[default] ResourceLimitsQosPolicy.LENGTH UNLIMITED (p. 102)

[range] [1, 1 million] or ResourceLimitsQosPolicy.LENGTH -
UNLIMITED (p. 102), >= initial infos

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.41 DataReaderResourceLimitsQosPolicy Class Reference 529

8.41.2.5 int initial remote writers

The initial number of remote writers from which a
com.rti.dds.subscription.DataReader (p. 473) may read, including all
instances.

[default] 2

[range] [1, 1 million], <= max remote writers

For unkeyed types this value has to be equal to initial remote writers per -
instance.

Note: For efficiency, set initial remote writers >=
com.rti.dds.infrastructure.DataReaderResourceLimitsQosPolicy.initial -
remote writers per instance (p. 529).

8.41.2.6 int initial remote writers per instance

The initial number of remote writers from which a
com.rti.dds.subscription.DataReader (p. 473) may read a single in-
stance.

[default] 2

[range] [1,1024], <= max remote writers per instance

For unkeyed types this value has to be equal to initial remote writers.

Note: For efficiency, set initial remote writers per instance <=
com.rti.dds.infrastructure.DataReaderResourceLimitsQosPolicy.initial -
remote writers (p. 529).

8.41.2.7 int initial infos

The initial number of info units that a
com.rti.dds.subscription.DataReader (p. 473) can have, which are
used to store com.rti.dds.subscription.SampleInfo (p. 1404).

[default] 32

[range] [1,1 million], <= max infos

8.41.2.8 int initial outstanding reads

The initial number of outstanding calls to read/take (or one of
their variants) on the same com.rti.dds.subscription.DataReader
(p. 473) for which memory has not been returned by calling
com.rti.dds.topic.example.FooDataReader.return loan.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

530 Class Documentation

[default] 2

[range] [1, 65536], <= max outstanding reads

8.41.2.9 int max outstanding reads

The maximum number of outstanding read/take calls (or one of
their variants) on the same com.rti.dds.subscription.DataReader
(p. 473) for which memory has not been returned by calling
com.rti.dds.topic.example.FooDataReader.return loan.

[default] ResourceLimitsQosPolicy.LENGTH UNLIMITED (p. 102)

[range] [1, 65536] or ResourceLimitsQosPolicy.LENGTH UNLIMITED
(p. 102), >= initial outstanding reads

8.41.2.10 int max samples per read

The maximum number of data samples that the application can receive from the
middleware in a single call to com.rti.dds.topic.example.FooDataReader.read
or com.rti.dds.topic.example.FooDataReader.take. If more data exists in the
middleware, the application will need to issue multiple read/take calls.

When reading data using listeners, the expected number of samples available
for delivery in a single take call is typically small: usually just one, in the
case of unbatched data, or the number of samples in a single batch, in the case
of batched data. (See com.rti.dds.infrastructure.BatchQosPolicy (p. 401)
for more information about this feature.) When polling for data or using
a com.rti.dds.infrastructure.WaitSet (p. 1695), however, multiple samples
(or batches) could be retrieved at once, depending on the data rate.

A larger value for this parameter makes the API simpler to use at the expense
of some additional memory consumption.

[default] 1024

[range] [1,65536]

8.41.2.11 boolean disable fragmentation support

Determines whether the com.rti.dds.subscription.DataReader (p. 473) can
receive fragmented samples.

When fragmentation support is not needed, disabling fragmentation support
will save some memory resources.

[default] false

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.41 DataReaderResourceLimitsQosPolicy Class Reference 531

8.41.2.12 int max fragmented samples

The maximum number of samples for which the
com.rti.dds.subscription.DataReader (p. 473) may store fragments at
a given point in time.

At any given time, a com.rti.dds.subscription.DataReader (p. 473)
may store fragments for up to max fragmented samples samples while
waiting for the remaining fragments. These samples need not have
consecutive sequence numbers and may have been sent by different
com.rti.dds.publication.DataWriter (p. 538) instances.

Once all fragments of a sample have been received, the sample is treated
as a regular sample and becomes subject to standard QoS settings such
as com.rti.dds.infrastructure.ResourceLimitsQosPolicy.max samples
(p. 1359).

The middleware will drop fragments if the max fragmented samples limit has
been reached. For best-effort communication, the middleware will accept a
fragment for a new sample, but drop the oldest fragmented sample from the
same remote writer. For reliable communication, the middleware will drop
fragments for any new samples until all fragments for at least one older sample
from that writer have been received.

Only applies if com.rti.dds.infrastructure.DataReaderResourceLimitsQosPolicy.disable -
fragmentation support (p. 530) is false.

[default] 1024

[range] [1, 1 million]

8.41.2.13 int initial fragmented samples

The initial number of samples for which a
com.rti.dds.subscription.DataReader (p. 473) may store fragments.

Only applies if com.rti.dds.infrastructure.DataReaderResourceLimitsQosPolicy.disable -
fragmentation support (p. 530) is false.

[default] 4

[range] [1,1024], <= max fragmented samples

8.41.2.14 int max fragmented samples per remote writer

The maximum number of samples per remote writer for which a
com.rti.dds.subscription.DataReader (p. 473) may store fragments.

Logical limit so a single remote writer cannot consume all available resources.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

532 Class Documentation

Only applies if com.rti.dds.infrastructure.DataReaderResourceLimitsQosPolicy.disable -
fragmentation support (p. 530) is false.

[default] 256

[range] [1, 1 million], <= max fragmented samples

8.41.2.15 int max fragments per sample

Maximum number of fragments for a single sample.

Only applies if com.rti.dds.infrastructure.DataReaderResourceLimitsQosPolicy.disable -
fragmentation support (p. 530) is false.

[default] 512

[range] [1, 1 million] or ResourceLimitsQosPolicy.LENGTH -
UNLIMITED (p. 102)

8.41.2.16 boolean dynamically allocate fragmented samples

Determines whether the com.rti.dds.subscription.DataReader (p. 473) pre-
allocates storage for storing fragmented samples.

By default, the middleware will allocate mem-
ory upfront for storing fragments for up to
com.rti.dds.infrastructure.DataReaderResourceLimitsQosPolicy.initial -
fragmented samples (p. 531) samples. This memory may grow up to
com.rti.dds.infrastructure.DataReaderResourceLimitsQosPolicy.max -
fragmented samples (p. 531) if needed.

If dynamically allocate fragmented samples is set to true, the middleware
does not allocate memory upfront, but instead allocates memory from the heap
upon receiving the first fragment of a new sample. The amount of memory allo-
cated equals the amount of memory needed to store all fragments in the sample.
Once all fragments of a sample have been received, the sample is deserialized
and stored in the regular receive queue. At that time, the dynamically allocated
memory is freed again.

This QoS setting may be useful for large, but variable-sized data types where
upfront memory allocation for multiple samples based on the maximum possible
sample size may be expensive. The main disadvantage of not pre-allocating
memory is that one can no longer guarantee the middleware will have sufficient
resources at run-time.

Only applies if com.rti.dds.infrastructure.DataReaderResourceLimitsQosPolicy.disable -
fragmentation support (p. 530) is false.

[default] false

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.41 DataReaderResourceLimitsQosPolicy Class Reference 533

8.41.2.17 int max total instances

Maximum number of instances for which a DataReader will keep state.

The maximum number of instances actively managed by a DataReader is deter-
mined by com.rti.dds.infrastructure.ResourceLimitsQosPolicy.max -
instances (p. 1360).

These instances have associated DataWriters or samples in the
DataReader’s queue and are visible to the user through op-
erations such as com.rti.dds.topic.example.FooDataReader.take,
com.rti.dds.topic.example.FooDataReader.read, and
com.rti.dds.topic.example.FooDataReader.get key value.

The features Durable Reader State, MultiChannel DataWriters and RTI Persis-
tence Service require RTI Connext to keep some internal state even for instances
without DataWriters or samples in the DataReader’s queue. The additional
state is used to filter duplicate samples that could be coming from different
DataWriter channels or from multiple executions of RTI Persistence Service.

The total maximum number of instances that will be managed by the middle-
ware, including instances without associated DataWriters or samples, is deter-
mined by max total instances.

When a new instance is received, RTI Connext will check the re-
source limit com.rti.dds.infrastructure.ResourceLimitsQosPolicy.max -
instances (p. 1360). If the limit is exceeded, RTI Connext will drop the sample
and report it as lost and rejected. If the limit is not exceeded, RTI Connext
will check max total instances. If max total instances is exceeded, RTI Connext
will replace an existing instance without DataWriters and samples with the new
one. The application could receive duplicate samples for the replaced instance
if it becomes alive again.

[default] DataReaderResourceLimitsQosPolicy.AUTO MAX -
TOTAL INSTANCES (p. 46)

[range] [1, 1 million] or ResourceLimitsQosPolicy.LENGTH -
UNLIMITED (p. 102) or DataReaderResourceLimit-
sQosPolicy.AUTO MAX TOTAL INSTANCES (p. 46), >=
com.rti.dds.infrastructure.ResourceLimitsQosPolicy.max instances
(p. 1360)

8.41.2.18 int max remote virtual writers

The maximum number of remote virtual writers from which a
com.rti.dds.subscription.DataReader (p. 473) may read, including all
instances.

When com.rti.dds.infrastructure.PresentationQosPolicy.access scope

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

534 Class Documentation

(p. 1241) is set to PresentationQosPolicyAccessScopeKind.GROUP -
PRESENTATION QOS (p. 1243), this value determines the maxi-
mum number of DataWriter groups that can be managed by the
com.rti.dds.subscription.Subscriber (p. 1478) containing this
com.rti.dds.subscription.DataReader (p. 473).

Since the com.rti.dds.subscription.Subscriber (p. 1478) may contain more
than one com.rti.dds.subscription.DataReader (p. 473), only the setting of
the first applies.

[default] ResourceLimitsQosPolicy.LENGTH UNLIMITED (p. 102)

[range] [1, 1 million] or ResourceLimitsQosPolicy.LENGTH -
UNLIMITED (p. 102), >= initial remote virtual writers, >= max remote -
virtual writers per instance

8.41.2.19 int initial remote virtual writers

The initial number of remote virtual writers from which a
com.rti.dds.subscription.DataReader (p. 473) may read, including all
instances.

[default] 2

[range] [1, 1 million] or ResourceLimitsQosPolicy.LENGTH -
UNLIMITED (p. 102), <= max remote virtual writers

8.41.2.20 int max remote virtual writers per instance

The maximum number of virtual remote writers that can be associated with an
instance.

[default] ResourceLimitsQosPolicy.LENGTH UNLIMITED (p. 102)

[range] [1, 1024] or ResourceLimitsQosPolicy.LENGTH UNLIMITED
(p. 102), >= initial remote virtual writers per instance

For unkeyed types, this value is ignored.

The features of Durable Reader State and MultiChannel DataWriters, and RTI
Persistence Service require RTI Connext to keep some internal state per virtual
writer and instance that is used to filter duplicate samples. These duplicate
samples could be coming from different DataWriter channels or from multiple
executions of RTI Persistence Service.

Once an association between a remote virtual writer and an instance is es-
tablished, it is permanent – it will not disappear even if the physical writer
incarnating the virtual writer is destroyed.

If max remote virtual writers per instance is exceeded for an instance, RTI

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.41 DataReaderResourceLimitsQosPolicy Class Reference 535

Connext will not associate this instance with new virtual writers. Duplicates
samples from these virtual writers will not be filtered on the reader.

If you are not using Durable Reader State, MultiChannel DataWriters or RTI
Persistence Service in your system, you can set this property to 1 to optimize
resources.

8.41.2.21 int initial remote virtual writers per instance

The initial number of virtual remote writers per instance.

[default] 2

[range] [1, 1024], <= max remote virtual writers per instance

For unkeyed types, this value is ignored.

8.41.2.22 int max query condition filters

The maximum number of query condition filters a reader is allowed.

[default] 4

[range] [0, 32]

This value determines the maximum number of unique query condition content
filters that a reader may create.

Each query condition content filter is comprised of both its query expression
and query parameters. Two query conditions that have the same query -
expression will require unique query condition filters if their query paramters
differ. Query conditions that differ only in their state masks will share the same
query condition filter.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

536 Class Documentation

8.42 DataReaderSeq Class Reference

Declares IDL sequence < com.rti.dds.subscription.DataReader (p. 473) >
.

Inherits AbstractNativeSequence.

Public Member Functions

ˆ DataReaderSeq (Collection readers)
ˆ int getMaximum ()

Get the current maximum number of elements that can be stored in this
sequence.

8.42.1 Detailed Description

Declares IDL sequence < com.rti.dds.subscription.DataReader (p. 473) >
.

See also:

com.rti.dds.util.Sequence (p. 1432)

8.42.2 Constructor & Destructor Documentation

8.42.2.1 DataReaderSeq (Collection readers)

Exceptions:

NullPointerException if the given collection is null

8.42.3 Member Function Documentation

8.42.3.1 int getMaximum ()

Get the current maximum number of elements that can be stored in this se-
quence.

The maximum of the sequence represents the maximum number of elements that
the underlying buffer can hold. It does not represent the current number of
elements.

The maximum is a non-negative number. It is initialized when the sequence is
first created.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.42 DataReaderSeq Class Reference 537

The maximum can be changed implicitly by adding an element to the se-
quence with add() (p. 383), or explicitly by calling Sequence.setMaximum
(p. 1433).

Returns:

the current maximum of the sequence.

See also:

Sequence.size()

Implements Sequence (p. 1433).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

538 Class Documentation

8.43 DataWriter Interface Reference

<<interface>> (p. 271) Allows an application to set the value of the data to
be published under a given com.rti.dds.topic.Topic (p. 1545).

Inheritance diagram for DataWriter::

Public Member Functions

ˆ void set qos (DataWriterQos qos)

Sets the writer QoS.

ˆ void set qos with profile (String library name, String profile name)

<<eXtension>> (p. 270) Change the QoS of this writer using the input
XML QoS profile.

ˆ void get qos (DataWriterQos qos)

Gets the writer QoS.

ˆ void set listener (DataWriterListener l, int mask)

Sets the writer listener.

ˆ DataWriterListener get listener ()

Get the writer listener.

ˆ void get liveliness lost status (LivelinessLostStatus status)

Accesses the StatusKind.LIVELINESS LOST STATUS communication sta-
tus.

ˆ void get offered deadline missed status (OfferedDeadlineMissed-
Status status)

Accesses the StatusKind.OFFERED DEADLINE MISSED STATUS com-
munication status.

ˆ void get offered incompatible qos status (OfferedIncompatible-
QosStatus status)

Accesses the StatusKind.OFFERED INCOMPATIBLE QOS STATUS com-
munication status.

ˆ void get publication matched status (PublicationMatchedStatus
status)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.43 DataWriter Interface Reference 539

Accesses the StatusKind.PUBLICATION MATCHED STATUS communica-
tion status.

ˆ void get reliable writer cache changed status (ReliableWriter-
CacheChangedStatus status)

<<eXtension>> (p. 270) Get the reliable cache status for this writer.

ˆ void get reliable reader activity changed status (ReliableRead-
erActivityChangedStatus status)

<<eXtension>> (p. 270) Get the reliable reader activity changed status for
this writer.

ˆ void get datawriter cache status (DataWriterCacheStatus sta-
tus)

<<eXtension>> (p. 270) Get the datawriter cache status for this writer.

ˆ void get datawriter protocol status (DataWriterProtocolStatus
status)

<<eXtension>> (p. 270) Get the datawriter protocol status for this writer.

ˆ void get matched subscription datawriter protocol status
(DataWriterProtocolStatus status, InstanceHandle t subscrip-
tion handle)

<<eXtension>> (p. 270) Get the datawriter protocol status for this writer,
per matched subscription (p. 343) identified by the subscription handle.

ˆ void get matched subscription datawriter protocol status by -
locator (DataWriterProtocolStatus status, Locator t locator)

<<eXtension>> (p. 270) Get the datawriter protocol status for this writer,
per matched subscription (p. 343) identified by the locator.

ˆ void get matched subscription locators (LocatorSeq locators)

<<eXtension>> (p. 270) Retrieve the list of locators for subscriptions
currently ”associated” with this com.rti.dds.publication.DataWriter
(p. 538).

ˆ void get matched subscriptions (InstanceHandleSeq subscription -
handles)

Retrieve the list of subscriptions currently ”associated” with this
com.rti.dds.publication.DataWriter (p. 538).

ˆ void get matched subscription data (SubscriptionBuiltinTopic-
Data subscription data, InstanceHandle t subscription handle)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

540 Class Documentation

This operation retrieves the information on a subscription (p. 343) that
is currently ”associated” with the com.rti.dds.publication.DataWriter
(p. 538).

ˆ Topic get topic ()

This operation returns the com.rti.dds.topic.Topic (p. 1545) associated
with the com.rti.dds.publication.DataWriter (p. 538).

ˆ Publisher get publisher ()

This operation returns the com.rti.dds.publication.Publisher (p. 1277) to
which the com.rti.dds.publication.DataWriter (p. 538) belongs.

ˆ void wait for acknowledgments (Duration t max wait)

Blocks the calling thread until all data written by reliable
com.rti.dds.publication.DataWriter (p. 538) entity is acknowledged, or
until timeout expires.

ˆ void wait for asynchronous publishing (Duration t max wait)

<<eXtension>> (p. 270) Blocks the calling thread until asynchronous send-
ing is complete.

ˆ void assert liveliness ()

This operation manually asserts the liveliness of this
com.rti.dds.publication.DataWriter (p. 538).

ˆ void flush ()

<<eXtension>> (p. 270) Flushes the batch in progress in the context of the
calling thread.

ˆ InstanceHandle t register instance untyped (Object instance -
data)

Register a new instance with this writer.

ˆ InstanceHandle t register instance w timestamp untyped (Ob-
ject instance data, Time t source timestamp)

Register a new instance with this writer using the given time instead of the
current time.

ˆ void unregister instance untyped (Object instance data, Instance-
Handle t handle)

Unregister a new instance from this writer.

ˆ void unregister instance w timestamp untyped (Object instance -
data, InstanceHandle t handle, Time t source timestamp)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.43 DataWriter Interface Reference 541

Unregister a new instance from this writer using the given time instead of
the current time.

ˆ void write untyped (Object instance data, InstanceHandle t han-
dle)

Publish a data sample.

ˆ void write w timestamp untyped (Object instance data, Instance-
Handle t handle, Time t source timestamp)

Publish a data sample using the given time instead of the current time.

ˆ void dispose untyped (Object instance data, InstanceHandle t han-
dle)

Dispose a data sample.

ˆ void dispose w timestamp untyped (Object instance data, Instance-
Handle t handle, Time t source timestamp)

Dispose a data sample using the given time instead of the current time.

ˆ void get key value untyped (Object key holder, InstanceHandle t
handle)

Fill in the key fields of the given data sample.

ˆ InstanceHandle t lookup instance untyped (Object key value)
Given a sample with the given key field values, return the handle correspond-
ing to its instance.

8.43.1 Detailed Description

<<interface>> (p. 271) Allows an application to set the value of the data to
be published under a given com.rti.dds.topic.Topic (p. 1545).

QoS:

com.rti.dds.publication.DataWriterQos (p. 588)

Status:

StatusKind.LIVELINESS LOST STATUS, com.rti.dds.publication.LivelinessLostStatus
(p. 1162);
StatusKind.OFFERED DEADLINE MISSED STATUS,
com.rti.dds.publication.OfferedDeadlineMissedStatus (p. 1212);
StatusKind.OFFERED INCOMPATIBLE QOS STATUS,
com.rti.dds.publication.OfferedIncompatibleQosStatus (p. 1214);

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

542 Class Documentation

StatusKind.PUBLICATION MATCHED STATUS,
com.rti.dds.publication.PublicationMatchedStatus (p. 1274);
StatusKind.RELIABLE READER ACTIVITY CHANGED STATUS,
com.rti.dds.publication.ReliableReaderActivityChangedStatus
(p. 1342);
StatusKind.RELIABLE WRITER CACHE CHANGED STATUS,
com.rti.dds.publication.ReliableWriterCacheChangedStatus

Listener:

com.rti.dds.publication.DataWriterListener (p. 566)

A com.rti.dds.publication.DataWriter (p. 538) is attached to exactly one
com.rti.dds.publication.Publisher (p. 1277), that acts as a factory for it.

A com.rti.dds.publication.DataWriter (p. 538) is bound to exactly one
com.rti.dds.topic.Topic (p. 1545) and therefore to exactly one data
type. The com.rti.dds.topic.Topic (p. 1545) must exist prior to the
com.rti.dds.publication.DataWriter (p. 538)’s creation.

com.rti.dds.publication.DataWriter (p. 538) is an abstract class. It must
be specialized for each particular application data-type (see USER DATA
(p. 126)). The additional methods or functions that must be defined in the
auto-generated class for a hypothetical application type Foo are specified in the
example (p. 342) type com.rti.dds.publication.DataWriter (p. 538).

The following operations may be called even if the
com.rti.dds.publication.DataWriter (p. 538) is not enabled. Other
operations will fail with RETCODE NOT ENABLED if called on a disabled
com.rti.dds.publication.DataWriter (p. 538):

ˆ The base-class operations com.rti.dds.publication.DataWriter.set -
qos (p. 543), com.rti.dds.publication.DataWriter.get qos
(p. 544), com.rti.dds.publication.DataWriter.set listener
(p. 545), com.rti.dds.publication.DataWriter.get listener
(p. 545), com.rti.dds.infrastructure.Entity.enable (p. 915),
com.rti.dds.infrastructure.Entity.get statuscondition (p. 917)
and com.rti.dds.infrastructure.Entity.get status changes (p. 917)

ˆ com.rti.dds.publication.DataWriter.get liveliness lost -
status (p. 546) com.rti.dds.publication.DataWriter.get -
offered deadline missed status (p. 546)
com.rti.dds.publication.DataWriter.get -
offered incompatible qos status (p. 546)
com.rti.dds.publication.DataWriter.get publication matched -
status (p. 547) com.rti.dds.publication.DataWriter.get -
reliable writer cache changed status (p. 547)
com.rti.dds.publication.DataWriter.get reliable reader -
activity changed status (p. 547)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.43 DataWriter Interface Reference 543

Several com.rti.dds.publication.DataWriter (p. 538) may operate in dif-
ferent threads. If they share the same com.rti.dds.publication.Publisher
(p. 1277), the middleware guarantees that its operations are thread-safe.

See also:

com.rti.dds.topic.example.FooDataWriter
Operations Allowed in Listener Callbacks (p. 1156)

8.43.2 Member Function Documentation

8.43.2.1 void set qos (DataWriterQos qos)

Sets the writer QoS.

This operation modifies the QoS of the com.rti.dds.publication.DataWriter
(p. 538).

The com.rti.dds.publication.DataWriterQos.user data (p. 592),
com.rti.dds.publication.DataWriterQos.deadline (p. 591),
com.rti.dds.publication.DataWriterQos.latency budget (p. 591),
com.rti.dds.publication.DataWriterQos.ownership strength (p. 592),
com.rti.dds.publication.DataWriterQos.transport priority (p. 592),
com.rti.dds.publication.DataWriterQos.lifespan (p. 592) and
com.rti.dds.publication.DataWriterQos.writer data lifecycle (p. 592)
can be changed. The other policies are immutable.

Parameters:

qos <<in>> (p. 271) The com.rti.dds.publication.DataWriterQos
(p. 588) to be set to. Policies must be consistent. Immutable policies
cannot be changed after com.rti.dds.publication.DataWriter
(p. 538) is enabled. The special value Publisher.DATAWRITER -
QOS DEFAULT (p. 177) can be used to indicate that
the QoS of the com.rti.dds.publication.DataWriter
(p. 538) should be changed to match the current default
com.rti.dds.publication.DataWriterQos (p. 588) set in the
com.rti.dds.publication.Publisher (p. 1277). Cannot be NULL.

Exceptions:

One of the Standard Return Codes (p. 104), RETCODE -
IMMUTABLE POLICY or RETCODE INCONSISTENT POLICY

See also:

com.rti.dds.publication.DataWriterQos (p. 588) for rules on consis-
tency among QoS

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

544 Class Documentation

set qos (abstract) (p. 913)
Operations Allowed in Listener Callbacks (p. 1156)

8.43.2.2 void set qos with profile (String library name, String
profile name)

<<eXtension>> (p. 270) Change the QoS of this writer using the input XML
QoS profile.

This operation modifies the QoS of the com.rti.dds.publication.DataWriter
(p. 538).

The com.rti.dds.publication.DataWriterQos.user data (p. 592),
com.rti.dds.publication.DataWriterQos.deadline (p. 591),
com.rti.dds.publication.DataWriterQos.latency budget (p. 591),
com.rti.dds.publication.DataWriterQos.ownership strength (p. 592),
com.rti.dds.publication.DataWriterQos.transport priority (p. 592),
com.rti.dds.publication.DataWriterQos.lifespan (p. 592) and
com.rti.dds.publication.DataWriterQos.writer data lifecycle (p. 592)
can be changed. The other policies are immutable.

Parameters:

library name <<in>> (p. 271) Library name containing the XML
QoS profile. If library name is null RTI Connext will use
the default library (see com.rti.dds.publication.Publisher.set -
default library (p. 1291)).

profile name <<in>> (p. 271) XML QoS Profile name. If pro-
file name is null RTI Connext will use the default pro-
file (see com.rti.dds.publication.Publisher.set default profile
(p. 1292)).

Exceptions:

One of the Standard Return Codes (p. 104), RETCODE -
IMMUTABLE POLICY or RETCODE INCONSISTENT POLICY

See also:

com.rti.dds.publication.DataWriterQos (p. 588) for rules on consis-
tency among QoS
Operations Allowed in Listener Callbacks (p. 1156)

8.43.2.3 void get qos (DataWriterQos qos)

Gets the writer QoS.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.43 DataWriter Interface Reference 545

This method may potentially allocate memory depending on the sequences con-
tained in some QoS policies.

Parameters:

qos <<inout>> (p. 271) The com.rti.dds.publication.DataWriterQos
(p. 588) to be filled up. Cannot be NULL.

Exceptions:

One of the Standard Return Codes (p. 104)

See also:

get qos (abstract) (p. 914)

8.43.2.4 void set listener (DataWriterListener l, int mask)

Sets the writer listener.

Parameters:

l <<in>> (p. 271) com.rti.dds.publication.DataWriterListener
(p. 566) to set to

mask <<in>> (p. 271) com.rti.dds.infrastructure.StatusMask associated
with the com.rti.dds.publication.DataWriterListener (p. 566).

Exceptions:

One of the Standard Return Codes (p. 104)

See also:

set listener (abstract) (p. 914)

8.43.2.5 DataWriterListener get listener ()

Get the writer listener.

Returns:

com.rti.dds.publication.DataWriterListener (p. 566) of the
com.rti.dds.publication.DataWriter (p. 538).

See also:

get listener (abstract) (p. 915)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

546 Class Documentation

8.43.2.6 void get liveliness lost status (LivelinessLostStatus status)

Accesses the StatusKind.LIVELINESS LOST STATUS communication status.

Parameters:

status <<inout>> (p. 271) com.rti.dds.publication.LivelinessLostStatus
(p. 1162) to be filled in. Cannot be NULL.

Exceptions:

One of the Standard Return Codes (p. 104)

8.43.2.7 void get offered deadline missed status
(OfferedDeadlineMissedStatus status)

Accesses the StatusKind.OFFERED DEADLINE MISSED STATUS communi-
cation status.

Parameters:

status <<inout>> (p. 271) com.rti.dds.publication.OfferedDeadlineMissedStatus
(p. 1212) to be filled in. Cannot be NULL.

Exceptions:

One of the Standard Return Codes (p. 104)

8.43.2.8 void get offered incompatible qos status
(OfferedIncompatibleQosStatus status)

Accesses the StatusKind.OFFERED INCOMPATIBLE QOS STATUS commu-
nication status.

Parameters:

status <<inout>> (p. 271) com.rti.dds.publication.OfferedIncompatibleQosStatus
(p. 1214) to be filled in. Cannot be NULL.

Exceptions:

One of the Standard Return Codes (p. 104)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.43 DataWriter Interface Reference 547

8.43.2.9 void get publication matched status
(PublicationMatchedStatus status)

Accesses the StatusKind.PUBLICATION MATCHED STATUS communica-
tion status.

Parameters:

status <<inout>> (p. 271) com.rti.dds.publication.PublicationMatchedStatus
(p. 1274) to be filled in. Cannot be NULL.

Exceptions:

One of the Standard Return Codes (p. 104)

8.43.2.10 void get reliable writer cache changed status
(ReliableWriterCacheChangedStatus status)

<<eXtension>> (p. 270) Get the reliable cache status for this writer.

Parameters:

status <<inout>> (p. 271) com.rti.dds.publication.ReliableWriterCacheChangedStatus
(p. 1345) to be filled in. Cannot be NULL.

Exceptions:

One of the Standard Return Codes (p. 104)

8.43.2.11 void get reliable reader activity changed status
(ReliableReaderActivityChangedStatus status)

<<eXtension>> (p. 270) Get the reliable reader activity changed status for
this writer.

Parameters:

status <<inout>> (p. 271) com.rti.dds.publication.ReliableReaderActivityChangedStatus
(p. 1342) to be filled in. Cannot be NULL.

Exceptions:

One of the Standard Return Codes (p. 104)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

548 Class Documentation

8.43.2.12 void get datawriter cache status (DataWriterCacheStatus
status)

<<eXtension>> (p. 270) Get the datawriter cache status for this writer.

Parameters:

status <<inout>> (p. 271) com.rti.dds.publication.DataWriterCacheStatus
(p. 565) to be filled in. Cannot be NULL.

Exceptions:

One of the Standard Return Codes (p. 104) or RETCODE NOT -
ENABLED.

8.43.2.13 void get datawriter protocol status
(DataWriterProtocolStatus status)

<<eXtension>> (p. 270) Get the datawriter protocol status for this writer.

Parameters:

status <<inout>> (p. 271) com.rti.dds.publication.DataWriterProtocolStatus
(p. 576) to be filled in. Cannot be NULL.

Exceptions:

One of the Standard Return Codes (p. 104) or RETCODE NOT -
ENABLED.

8.43.2.14 void get matched subscription datawriter protocol status
(DataWriterProtocolStatus status, InstanceHandle t
subscription handle)

<<eXtension>> (p. 270) Get the datawriter protocol status for this writer,
per matched subscription (p. 343) identified by the subscription handle.

Note: Status for a remote entity is only kept while the entity is alive. Once a
remote entity is no longer alive, its status is deleted.

Parameters:

status <<inout>> (p. 271) com.rti.dds.publication.DataWriterProtocolStatus
(p. 576) to be filled in. Cannot be NULL.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.43 DataWriter Interface Reference 549

subscription handle <<in>> (p. 271) Handle to a
specific subscription (p. 343) associated with the
com.rti.dds.subscription.DataReader (p. 473). Cannot be
NULL.Must correspond to a subscription (p. 343) currently
associated with the com.rti.dds.publication.DataWriter (p. 538).

Exceptions:

One of the Standard Return Codes (p. 104) or RETCODE NOT -
ENABLED.

8.43.2.15 void get matched subscription datawriter protocol -
status by locator (DataWriterProtocolStatus status,
Locator t locator)

<<eXtension>> (p. 270) Get the datawriter protocol status for this writer,
per matched subscription (p. 343) identified by the locator.

Note: Status for a remote entity is only kept while the entity is alive. Once a
remote entity is no longer alive, its status is deleted.

Parameters:

status <<inout>> (p. 271) com.rti.dds.publication.DataWriterProtocolStatus
(p. 576) to be filled in Cannot be NULL.

locator <<in>> (p. 271) Locator to a specific locator associated with
the com.rti.dds.subscription.DataReader (p. 473). Cannot be
NULL.Must correspond to a locator of one or more subscriptions
currently associated with the com.rti.dds.publication.DataWriter
(p. 538).

Exceptions:

One of the Standard Return Codes (p. 104) or RETCODE NOT -
ENABLED.

8.43.2.16 void get matched subscription locators (LocatorSeq
locators)

<<eXtension>> (p. 270) Retrieve the list of locators for subscriptions cur-
rently ”associated” with this com.rti.dds.publication.DataWriter (p. 538).

Matched subscription (p. 343) locators include locators for all those
subscriptions in the same domain (p. 317) that have a match-
ing com.rti.dds.topic.Topic (p. 1545), compatible QoS and com-
mon partition that the com.rti.dds.domain.DomainParticipant

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

550 Class Documentation

(p. 629) has not indicated should be ”ignored” by means of the
com.rti.dds.domain.DomainParticipant.ignore subscription (p. 689)
operation.

The locators returned in the locators list are the ones that are used by
the DDS implementation to communicate with the corresponding matched
com.rti.dds.subscription.DataReader (p. 473) entities.

Parameters:

locators <<inout>> (p. 271). Handles of all the matched subscription
(p. 343) locators.

The sequence will be grown if the sequence has ownership and the system has the
corresponding resources. Use a sequence without ownership to avoid dynamic
memory allocation. If the sequence is too small to store all the matches and
the system can not resize the sequence, this method will fail with RETCODE -
OUT OF RESOURCES. Cannot be NULL..

Exceptions:

One of the Standard Return Codes (p. 104), or RETCODE OUT OF -
RESOURCES if the sequence is too small and the system can not resize
it, or RETCODE NOT ENABLED

8.43.2.17 void get matched subscriptions (InstanceHandleSeq
subscription handles)

Retrieve the list of subscriptions currently ”associated” with this
com.rti.dds.publication.DataWriter (p. 538).

Matched subscriptions include all those in the same domain (p. 317) that
have a matching com.rti.dds.topic.Topic (p. 1545), compatible QoS and
common partition that the com.rti.dds.domain.DomainParticipant
(p. 629) has not indicated should be ”ignored” by means of the
com.rti.dds.domain.DomainParticipant.ignore subscription (p. 689)
operation.

The handles returned in the subscription handles list are the
ones that are used by the DDS implementation to locally identify
the corresponding matched com.rti.dds.subscription.DataReader
(p. 473) entities. These handles match the ones that appear in the
com.rti.dds.subscription.SampleInfo.instance handle (p. 1410) field
of the com.rti.dds.subscription.SampleInfo (p. 1404) when reading the
SubscriptionBuiltinTopicDataTypeSupport.SUBSCRIPTION TOPIC NAME
builtin (p. 341) topic (p. 350).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.43 DataWriter Interface Reference 551

Parameters:

subscription handles <<inout>> (p. 271). Handles of all the matched
subscriptions.

The sequence will be grown if the sequence has ownership and the system has the
corresponding resources. Use a sequence without ownership to avoid dynamic
memory allocation. If the sequence is too small to store all the matches and
the system can not resize the sequence, this method will fail with RETCODE -
OUT OF RESOURCES.

The maximum number of matches possible is configured with
com.rti.dds.infrastructure.DomainParticipantResourceLimitsQosPolicy
(p. 741). You can use a zero-maximum sequence without ownership to quickly
check whether there are any matches without allocating any memory. Cannot
be NULL..

Exceptions:

One of the Standard Return Codes (p. 104), or RETCODE OUT OF -
RESOURCES if the sequence is too small and the system can not resize
it, or RETCODE NOT ENABLED

8.43.2.18 void get matched subscription data
(SubscriptionBuiltinTopicData subscription data,
InstanceHandle t subscription handle)

This operation retrieves the information on a subscription (p. 343) that is cur-
rently ”associated” with the com.rti.dds.publication.DataWriter (p. 538).

The subscription handle must correspond to a subscription (p. 343) cur-
rently associated with the com.rti.dds.publication.DataWriter (p. 538).
Otherwise, the operation will fail and fail with RETCODE BAD -
PARAMETER. Use com.rti.dds.publication.DataWriter.get matched -
subscriptions (p. 550) to find the subscriptions that are currently matched
with the com.rti.dds.publication.DataWriter (p. 538).

Note: This operation does not retrieve the following information in
builtin.SubscriptionBuiltinTopicData:

ˆ builtin.SubscriptionBuiltinTopicData.type code

ˆ builtin.SubscriptionBuiltinTopicData.property

ˆ builtin.SubscriptionBuiltinTopicData.content filter property

The above information is available through
com.rti.dds.subscription.DataReaderListener.on data -

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

552 Class Documentation

available() (p. 503) (if a reader listener is installed on the
builtin.SubscriptionBuiltinTopicDataDataReader).

Parameters:

subscription data <<inout>> (p. 271). The information to be filled in
on the associated subscription (p. 343). Cannot be NULL.

subscription handle <<in>> (p. 271). Handle to a
specific subscription (p. 343) associated with the
com.rti.dds.subscription.DataReader (p. 473). Cannot be
NULL.. Must correspond to a subscription (p. 343) currently
associated with the com.rti.dds.publication.DataWriter (p. 538).

Exceptions:

One of the Standard Return Codes (p. 104), or RETCODE NOT -
ENABLED

8.43.2.19 Topic get topic ()

This operation returns the com.rti.dds.topic.Topic (p. 1545) associated with
the com.rti.dds.publication.DataWriter (p. 538).

This is the same com.rti.dds.topic.Topic (p. 1545) that was used to create
the com.rti.dds.publication.DataWriter (p. 538).

Returns:

com.rti.dds.topic.Topic (p. 1545) that was used to create the
com.rti.dds.publication.DataWriter (p. 538).

8.43.2.20 Publisher get publisher ()

This operation returns the com.rti.dds.publication.Publisher (p. 1277) to
which the com.rti.dds.publication.DataWriter (p. 538) belongs.

Returns:

com.rti.dds.publication.Publisher (p. 1277) to which the
com.rti.dds.publication.DataWriter (p. 538) belongs.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.43 DataWriter Interface Reference 553

8.43.2.21 void wait for acknowledgments (Duration t max wait)

Blocks the calling thread until all data written by reliable
com.rti.dds.publication.DataWriter (p. 538) entity is acknowledged,
or until timeout expires.

This operation blocks the calling thread until either all data written by the reli-
able com.rti.dds.publication.DataWriter (p. 538) entity is acknowledged by
all matched reliable com.rti.dds.subscription.DataReader (p. 473) entities,
or else the duration specified by the max wait parameter elapses, whichever hap-
pens first. A successful completion indicates that all the samples written have
been acknowledged by all reliable matched data readers; a time out indicates
that max wait elapsed before all the data was acknowledged.

If the com.rti.dds.publication.DataWriter (p. 538) does not have
com.rti.dds.infrastructure.ReliabilityQosPolicy (p. 1336) kind set to RE-
LIABLE the operation will complete immediately with RETCODE OK.

Parameters:

max wait <<in>> (p. 271) Specifies maximum time to wait for acknowl-
edgements com.rti.dds.infrastructure.Duration t (p. 776) .

Exceptions:

One of the Standard Return Codes (p. 104), RETCODE NOT -
ENABLED, RETCODE TIMEOUT

8.43.2.22 void wait for asynchronous publishing (Duration t
max wait)

<<eXtension>> (p. 270) Blocks the calling thread until asynchronous send-
ing is complete.

This operation blocks the calling thread (up to max wait) until all data
written by the asynchronous com.rti.dds.publication.DataWriter
(p. 538) is sent and acknowledged (if reliable) by all matched
com.rti.dds.subscription.DataReader (p. 473) entities. A successful
completion indicates that all the samples written have been sent and acknowl-
edged where applicable; a time out indicates that max wait elapsed before all
the data was sent and/or acknowledged.

In other words, this guarantees that sending to best effort
com.rti.dds.subscription.DataReader (p. 473) is complete in addition to
what com.rti.dds.publication.DataWriter.wait for acknowledgments
(p. 553) provides.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

554 Class Documentation

If the com.rti.dds.publication.DataWriter (p. 538) does not have
com.rti.dds.infrastructure.PublishModeQosPolicy (p. 1308) kind set to
PublishModeQosPolicyKind.ASYNCHRONOUS PUBLISH MODE QOS the
operation will complete immediately with RETCODE OK.

Parameters:

max wait <<in>> (p. 271) Specifies maximum time to wait for acknowl-
edgements com.rti.dds.infrastructure.Duration t (p. 776) .

Exceptions:

One of the Standard Return Codes (p. 104), RETCODE NOT -
ENABLED, RETCODE TIMEOUT

8.43.2.23 void assert liveliness ()

This operation manually asserts the liveliness of this
com.rti.dds.publication.DataWriter (p. 538).

This is used in combination with the LIVELINESS (p. 78) policy to indicate to
RTI Connext that the com.rti.dds.publication.DataWriter (p. 538) remains
active.

You only need to use this operation if the LIVELINESS (p. 78) setting is
either LivelinessQosPolicyKind.MANUAL BY PARTICIPANT LIVELINESS -
QOS or LivelinessQosPolicyKind.MANUAL BY TOPIC LIVELINESS QOS.
Otherwise, it has no effect.

Note: writing data via the com.rti.dds.topic.example.FooDataWriter.write or
com.rti.dds.topic.example.FooDataWriter.write w timestamp operation asserts
liveliness on the com.rti.dds.publication.DataWriter (p. 538) itself, and its
com.rti.dds.domain.DomainParticipant (p. 629). Consequently the use of
assert liveliness() (p. 554) is only needed if the application is not writing data
regularly.

Exceptions:

One of the Standard Return Codes (p. 104) or RETCODE NOT -
ENABLED

See also:

com.rti.dds.infrastructure.LivelinessQosPolicy (p. 1164)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.43 DataWriter Interface Reference 555

8.43.2.24 void flush ()

<<eXtension>> (p. 270) Flushes the batch in progress in the context of the
calling thread.

After being flushed, the batch is available to be sent on the network.

If the com.rti.dds.publication.DataWriter (p. 538) does not have
com.rti.dds.infrastructure.PublishModeQosPolicy (p. 1308) kind set to
PublishModeQosPolicyKind.ASYNCHRONOUS PUBLISH MODE QOS, the
batch will be sent on the network immediately (in the context of the calling
thread).

If the com.rti.dds.publication.DataWriter (p. 538) does have
com.rti.dds.infrastructure.PublishModeQosPolicy (p. 1308) kind set to
PublishModeQosPolicyKind.ASYNCHRONOUS PUBLISH MODE QOS, the
batch will be sent in the context of the asynchronous publishing thread.

This operation may block in the same conditions than
com.rti.dds.topic.example.FooDataWriter.write.

If this operation does block, the RELIABILITY max blocking time configures
the maximum time the write operation may block (waiting for space to become
available). If max blocking time elapses before the DDS DataWriter is able to
store the modification without exceeding the limits, the operation will fail with
DDS RETCODE TIMEOUT.

MT Safety:

flush() (p. 555) is only thread-safe with batching if
com.rti.dds.infrastructure.BatchQosPolicy.thread safe write
(p. 404) is TRUE.

Exceptions:

One of the Standard Return Codes (p. 104), RETCODE -
TIMEOUT, RETCODE OUT OF RESOURCES or RETCODE -
NOT ENABLED.

8.43.2.25 InstanceHandle t register instance untyped (Object
instance data)

Register a new instance with this writer.

This method allows type-independent code to work with a variety of concrete
com.rti.dds.topic.example.FooDataWriter classes in a consistent way.

Statically type-safe code should use the appropriate
com.rti.dds.topic.example.FooDataWriter.register instance method instead
of this one. See that method for detailed documentation.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

556 Class Documentation

See also:

com.rti.dds.publication.DataWriter.unregister instance untyped
(p. 556)
com.rti.dds.topic.example.FooDataWriter.register instance

8.43.2.26 InstanceHandle t register instance w timestamp untyped
(Object instance data, Time t source timestamp)

Register a new instance with this writer using the given time instead of the
current time.

This method allows type-independent code to work with a variety of concrete
com.rti.dds.topic.example.FooDataWriter classes in a consistent way.

Statically type-safe code should use the appropriate
com.rti.dds.topic.example.FooDataWriter.register instance w timestamp
method instead of this one. See that method for detailed documentation.

See also:

com.rti.dds.publication.DataWriter.unregister instance w -
timestamp untyped (p. 557)
com.rti.dds.topic.example.FooDataWriter.register instance

8.43.2.27 void unregister instance untyped (Object instance data,
InstanceHandle t handle)

Unregister a new instance from this writer.

This method allows type-independent code to work with a variety of concrete
com.rti.dds.topic.example.FooDataWriter classes in a consistent way.

Statically type-safe code should use the appropriate
com.rti.dds.topic.example.FooDataWriter.unregister instance method instead
of this one. See that method for detailed documentation.

See also:

com.rti.dds.publication.DataWriter.register instance untyped
(p. 555)
com.rti.dds.topic.example.FooDataWriter.unregister instance

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.43 DataWriter Interface Reference 557

8.43.2.28 void unregister instance w timestamp untyped (Object
instance data, InstanceHandle t handle, Time t
source timestamp)

Unregister a new instance from this writer using the given time instead of the
current time.

This method allows type-independent code to work with a variety of concrete
com.rti.dds.topic.example.FooDataWriter classes in a consistent way.

Statically type-safe code should use the appropriate FooDataWriter.unregister -
instance w timestamp method instead of this one. See that method for detailed
documentation.

See also:

com.rti.dds.publication.DataWriter.register instance w -
timestamp untyped (p. 556)
FooDataWriter.unregister instance w timestamp

8.43.2.29 void write untyped (Object instance data,
InstanceHandle t handle)

Publish a data sample.

This method allows type-independent code to work with a variety of concrete
com.rti.dds.topic.example.FooDataWriter classes in a consistent way.

Statically type-safe code should use the appropriate
com.rti.dds.topic.example.FooDataWriter.write method instead of this one. See
that method for detailed documentation.

See also:

com.rti.dds.publication.DataWriter.write w timestamp untyped
(p. 557)
com.rti.dds.topic.example.FooDataWriter.write

8.43.2.30 void write w timestamp untyped (Object instance data,
InstanceHandle t handle, Time t source timestamp)

Publish a data sample using the given time instead of the current time.

This method allows type-independent code to work with a variety of concrete
com.rti.dds.topic.example.FooDataWriter classes in a consistent way.

Statically type-safe code should use the appropriate
com.rti.dds.topic.example.FooDataWriter.write w timestamp method instead
of this one. See that method for detailed documentation.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

558 Class Documentation

See also:

com.rti.dds.publication.DataWriter.write untyped (p. 557)
com.rti.dds.topic.example.FooDataWriter.write w timestamp

8.43.2.31 void dispose untyped (Object instance data,
InstanceHandle t handle)

Dispose a data sample.

This method allows type-independent code to work with a variety of concrete
com.rti.dds.topic.example.FooDataWriter classes in a consistent way.

Statically type-safe code should use the appropriate
com.rti.dds.topic.example.FooDataWriter.dispose method instead of this
one. See that method for detailed documentation.

See also:

com.rti.dds.publication.DataWriter.dispose w timestamp -
untyped (p. 558)
com.rti.dds.topic.example.FooDataWriter.dispose

8.43.2.32 void dispose w timestamp untyped (Object
instance data, InstanceHandle t handle, Time t
source timestamp)

Dispose a data sample using the given time instead of the current time.

This method allows type-independent code to work with a variety of concrete
com.rti.dds.topic.example.FooDataWriter classes in a consistent way.

Statically type-safe code should use the appropriate
com.rti.dds.topic.example.FooDataWriter.dispose w timestamp method in-
stead of this one. See that method for detailed documentation.

See also:

com.rti.dds.publication.DataWriter.dispose untyped (p. 558)
com.rti.dds.topic.example.FooDataWriter.dispose w timestamp

8.43.2.33 void get key value untyped (Object key holder,
InstanceHandle t handle)

Fill in the key fields of the given data sample.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.43 DataWriter Interface Reference 559

This method allows type-independent code to work with a variety of concrete
com.rti.dds.topic.example.FooDataWriter classes in a consistent way.

Statically type-safe code should use the appropriate
com.rti.dds.topic.example.FooDataWriter.get key value method instead of
this one. See that method for detailed documentation.

See also:

com.rti.dds.topic.example.FooDataWriter.get key value

8.43.2.34 InstanceHandle t lookup instance untyped (Object
key value)

Given a sample with the given key field values, return the handle corresponding
to its instance.

This method allows type-independent code to work with a variety of concrete
com.rti.dds.topic.example.FooDataWriter classes in a consistent way.

Statically type-safe code should use the appropriate
com.rti.dds.topic.example.FooDataWriter.lookup instance method instead
of this one. See that method for detailed documentation.

See also:

com.rti.dds.topic.example.FooDataWriter.lookup instance

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

560 Class Documentation

8.44 DataWriterAdapter Class Reference

<<eXtension>> (p. 270) A listener adapter in the spirit of the Java AWT
listener adapters. (The Adapter provides empty implementations for the listener
methods or functions.)

Inheritance diagram for DataWriterAdapter::

Public Member Functions

ˆ void on offered deadline missed (DataWriter writer, OfferedDead-
lineMissedStatus status)

Handles the StatusKind.OFFERED DEADLINE MISSED STATUS status.

ˆ void on offered incompatible qos (DataWriter writer, OfferedIn-
compatibleQosStatus status)

Handles the StatusKind.OFFERED INCOMPATIBLE QOS STATUS sta-
tus.

ˆ void on liveliness lost (DataWriter writer, LivelinessLostStatus
status)

Handles the StatusKind.LIVELINESS LOST STATUS status.

ˆ void on publication matched (DataWriter writer, Publication-
MatchedStatus status)

Handles the StatusKind.PUBLICATION MATCHED STATUS status.

ˆ void on reliable writer cache changed (DataWriter writer, Reli-
ableWriterCacheChangedStatus status)

<<eXtension>> (p. 270) A change has occurred in the writer’s cache of
unacknowledged samples.

ˆ void on reliable reader activity changed (DataWriter writer, Reli-
ableReaderActivityChangedStatus status)

<<eXtension>> (p. 270) A matched reliable reader has become active or
become inactive.

ˆ void on instance replaced (DataWriter writer, InstanceHandle t
handle)

Notifies when an instance is replaced in DataWriter (p. 538) queue.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.44 DataWriterAdapter Class Reference 561

8.44.1 Detailed Description

<<eXtension>> (p. 270) A listener adapter in the spirit of the Java AWT
listener adapters. (The Adapter provides empty implementations for the listener
methods or functions.)

Clients who do not wish to implement all listener methods can subclass this
class and override only the methods of interest.

8.44.2 Member Function Documentation

8.44.2.1 void on offered deadline missed (DataWriter writer,
OfferedDeadlineMissedStatus status)

Handles the StatusKind.OFFERED DEADLINE MISSED STATUS status.

This callback is called when the deadline that the
com.rti.dds.publication.DataWriter (p. 538) has committed through
its DEADLINE (p. 50) qos policy was not respected for a specific instance.
This callback is called for each deadline period elapsed during which the
com.rti.dds.publication.DataWriter (p. 538) failed to provide data for an
instance.

Parameters:

writer <<out>> (p. 271) Locally created
com.rti.dds.publication.DataWriter (p. 538) that triggers
the listener callback

status <<out>> (p. 271) Current deadline missed status of locally cre-
ated com.rti.dds.publication.DataWriter (p. 538)

Implements DataWriterListener (p. 567).

8.44.2.2 void on offered incompatible qos (DataWriter writer,
OfferedIncompatibleQosStatus status)

Handles the StatusKind.OFFERED INCOMPATIBLE QOS STATUS status.

This callback is called when the com.rti.dds.publication.DataWriterQos
(p. 588) of the com.rti.dds.publication.DataWriter (p. 538) was incompat-
ible with what was requested by a com.rti.dds.subscription.DataReader
(p. 473). This callback is called when a com.rti.dds.publication.DataWriter
(p. 538) has discovered a com.rti.dds.subscription.DataReader (p. 473)
for the same com.rti.dds.topic.Topic (p. 1545) and common partition,
but with a requested QoS that is incompatible with that offered by the
com.rti.dds.publication.DataWriter (p. 538).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

562 Class Documentation

Parameters:

writer <<out>> (p. 271) Locally created
com.rti.dds.publication.DataWriter (p. 538) that triggers
the listener callback

status <<out>> (p. 271) Current incompatible qos status of locally cre-
ated com.rti.dds.publication.DataWriter (p. 538)

Implements DataWriterListener (p. 568).

8.44.2.3 void on liveliness lost (DataWriter writer,
LivelinessLostStatus status)

Handles the StatusKind.LIVELINESS LOST STATUS status.

This callback is called when the liveliness that the
com.rti.dds.publication.DataWriter (p. 538) has committed through
its LIVELINESS (p. 78) qos policy was not respected; this
com.rti.dds.subscription.DataReader (p. 473) entities will con-
sider the com.rti.dds.publication.DataWriter (p. 538) as no longer
”alive/active”. This callback will not be called when an already not alive
com.rti.dds.publication.DataWriter (p. 538) simply renames not alive for
another liveliness period.

Parameters:

writer <<out>> (p. 271) Locally created
com.rti.dds.publication.DataWriter (p. 538) that triggers
the listener callback

status <<out>> (p. 271) Current liveliness lost status of locally created
com.rti.dds.publication.DataWriter (p. 538)

Implements DataWriterListener (p. 568).

8.44.2.4 void on publication matched (DataWriter writer,
PublicationMatchedStatus status)

Handles the StatusKind.PUBLICATION MATCHED STATUS status.

This callback is called when the com.rti.dds.publication.DataWriter
(p. 538) has found a com.rti.dds.subscription.DataReader (p. 473) that
matches the com.rti.dds.topic.Topic (p. 1545), has a common par-
tition and compatible QoS, or has ceased to be matched with a
com.rti.dds.subscription.DataReader (p. 473) that was previously consid-
ered to be matched.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.44 DataWriterAdapter Class Reference 563

Parameters:

writer <<out>> (p. 271) Locally created
com.rti.dds.publication.DataWriter (p. 538) that triggers
the listener callback

status <<out>> (p. 271) Current publication (p. 338) match status of
locally created com.rti.dds.publication.DataWriter (p. 538)

Implements DataWriterListener (p. 569).

8.44.2.5 void on reliable writer cache changed (DataWriter writer,
ReliableWriterCacheChangedStatus status)

<<eXtension>> (p. 270) A change has occurred in the writer’s cache of un-
acknowledged samples.

Parameters:

writer <<out>> (p. 271) Locally created
com.rti.dds.publication.DataWriter (p. 538) that triggers
the listener callback

status <<out>> (p. 271) Current reliable writer cache changed status of
locally created com.rti.dds.publication.DataWriter (p. 538)

Implements DataWriterListener (p. 569).

8.44.2.6 void on reliable reader activity changed (DataWriter
writer, ReliableReaderActivityChangedStatus status)

<<eXtension>> (p. 270) A matched reliable reader has become active or
become inactive.

Parameters:

writer <<out>> (p. 271) Locally created
com.rti.dds.publication.DataWriter (p. 538) that triggers
the listener callback

status <<out>> (p. 271) Current reliable reader activity changed status
of locally created com.rti.dds.publication.DataWriter (p. 538)

Implements DataWriterListener (p. 570).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

564 Class Documentation

8.44.2.7 void on instance replaced (DataWriter writer,
InstanceHandle t handle)

Notifies when an instance is replaced in DataWriter (p. 538) queue.

This callback is called when an instance is replaced by the
com.rti.dds.publication.DataWriter (p. 538) due to instance resource
limits being reached. This callback returns to the user the handle of the
replaced instance, which can be used to get the key of the replaced instance.

Parameters:

writer <<out>> (p. 271) Locally created
com.rti.dds.publication.DataWriter (p. 538) that triggers
the listener callback

handle <<out>> (p. 271) Handle of the replaced instance

Implements DataWriterListener (p. 570).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.45 DataWriterCacheStatus Class Reference 565

8.45 DataWriterCacheStatus Class Reference

<<eXtension>> (p. 270) The status of the writer’s cache.

Inherits Status.

Public Attributes

ˆ long sample count peak

Highest number of samples in the writer’s queue over the lifetime of the
writer.

ˆ long sample count

Number of samples in the writer’s queue.

8.45.1 Detailed Description

<<eXtension>> (p. 270) The status of the writer’s cache.

Entity:

com.rti.dds.publication.DataWriter (p. 538)

8.45.2 Member Data Documentation

8.45.2.1 long sample count peak

Highest number of samples in the writer’s queue over the lifetime of the writer.

8.45.2.2 long sample count

Number of samples in the writer’s queue.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

566 Class Documentation

8.46 DataWriterListener Interface Reference

<<interface>> (p. 271) com.rti.dds.infrastructure.Listener (p. 1154) for
writer status.

Inheritance diagram for DataWriterListener::

Public Member Functions

ˆ void on offered deadline missed (DataWriter writer, OfferedDead-
lineMissedStatus status)

Handles the StatusKind.OFFERED DEADLINE MISSED STATUS status.

ˆ void on offered incompatible qos (DataWriter writer, OfferedIn-
compatibleQosStatus status)

Handles the StatusKind.OFFERED INCOMPATIBLE QOS STATUS sta-
tus.

ˆ void on liveliness lost (DataWriter writer, LivelinessLostStatus
status)

Handles the StatusKind.LIVELINESS LOST STATUS status.

ˆ void on publication matched (DataWriter writer, Publication-
MatchedStatus status)

Handles the StatusKind.PUBLICATION MATCHED STATUS status.

ˆ void on reliable writer cache changed (DataWriter writer, Reli-
ableWriterCacheChangedStatus status)

<<eXtension>> (p. 270) A change has occurred in the writer’s cache of
unacknowledged samples.

ˆ void on reliable reader activity changed (DataWriter writer, Reli-
ableReaderActivityChangedStatus status)

<<eXtension>> (p. 270) A matched reliable reader has become active or
become inactive.

ˆ void on instance replaced (DataWriter writer, InstanceHandle t
handle)

Notifies when an instance is replaced in DataWriter (p. 538) queue.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.46 DataWriterListener Interface Reference 567

8.46.1 Detailed Description

<<interface>> (p. 271) com.rti.dds.infrastructure.Listener (p. 1154) for
writer status.

Entity:

com.rti.dds.publication.DataWriter (p. 538)

Status:

StatusKind.LIVELINESS LOST STATUS, com.rti.dds.publication.LivelinessLostStatus
(p. 1162);
StatusKind.OFFERED DEADLINE MISSED STATUS,
com.rti.dds.publication.OfferedDeadlineMissedStatus (p. 1212);
StatusKind.OFFERED INCOMPATIBLE QOS STATUS,
com.rti.dds.publication.OfferedIncompatibleQosStatus (p. 1214);
StatusKind.PUBLICATION MATCHED STATUS,
com.rti.dds.publication.PublicationMatchedStatus (p. 1274);
StatusKind.RELIABLE READER ACTIVITY CHANGED STATUS,
com.rti.dds.publication.ReliableReaderActivityChangedStatus
(p. 1342);
StatusKind.RELIABLE WRITER CACHE CHANGED STATUS,
com.rti.dds.publication.ReliableWriterCacheChangedStatus
(p. 1345);

See also:

Status Kinds (p. 106)
Operations Allowed in Listener Callbacks (p. 1156)

8.46.2 Member Function Documentation

8.46.2.1 void on offered deadline missed (DataWriter writer,
OfferedDeadlineMissedStatus status)

Handles the StatusKind.OFFERED DEADLINE MISSED STATUS status.

This callback is called when the deadline that the
com.rti.dds.publication.DataWriter (p. 538) has committed through
its DEADLINE (p. 50) qos policy was not respected for a specific instance.
This callback is called for each deadline period elapsed during which the
com.rti.dds.publication.DataWriter (p. 538) failed to provide data for an
instance.

Parameters:

writer <<out>> (p. 271) Locally created

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

568 Class Documentation

com.rti.dds.publication.DataWriter (p. 538) that triggers
the listener callback

status <<out>> (p. 271) Current deadline missed status of locally cre-
ated com.rti.dds.publication.DataWriter (p. 538)

Implemented in DomainParticipantAdapter (p. 704), and DataWriter-
Adapter (p. 561).

8.46.2.2 void on offered incompatible qos (DataWriter writer,
OfferedIncompatibleQosStatus status)

Handles the StatusKind.OFFERED INCOMPATIBLE QOS STATUS status.

This callback is called when the com.rti.dds.publication.DataWriterQos
(p. 588) of the com.rti.dds.publication.DataWriter (p. 538) was incompat-
ible with what was requested by a com.rti.dds.subscription.DataReader
(p. 473). This callback is called when a com.rti.dds.publication.DataWriter
(p. 538) has discovered a com.rti.dds.subscription.DataReader (p. 473)
for the same com.rti.dds.topic.Topic (p. 1545) and common partition,
but with a requested QoS that is incompatible with that offered by the
com.rti.dds.publication.DataWriter (p. 538).

Parameters:

writer <<out>> (p. 271) Locally created
com.rti.dds.publication.DataWriter (p. 538) that triggers
the listener callback

status <<out>> (p. 271) Current incompatible qos status of locally cre-
ated com.rti.dds.publication.DataWriter (p. 538)

Implemented in DomainParticipantAdapter (p. 705), and DataWriter-
Adapter (p. 561).

8.46.2.3 void on liveliness lost (DataWriter writer,
LivelinessLostStatus status)

Handles the StatusKind.LIVELINESS LOST STATUS status.

This callback is called when the liveliness that the
com.rti.dds.publication.DataWriter (p. 538) has committed through
its LIVELINESS (p. 78) qos policy was not respected; this
com.rti.dds.subscription.DataReader (p. 473) entities will con-
sider the com.rti.dds.publication.DataWriter (p. 538) as no longer
”alive/active”. This callback will not be called when an already not alive
com.rti.dds.publication.DataWriter (p. 538) simply renames not alive for
another liveliness period.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.46 DataWriterListener Interface Reference 569

Parameters:

writer <<out>> (p. 271) Locally created
com.rti.dds.publication.DataWriter (p. 538) that triggers
the listener callback

status <<out>> (p. 271) Current liveliness lost status of locally created
com.rti.dds.publication.DataWriter (p. 538)

Implemented in DomainParticipantAdapter (p. 705), and DataWriter-
Adapter (p. 562).

8.46.2.4 void on publication matched (DataWriter writer,
PublicationMatchedStatus status)

Handles the StatusKind.PUBLICATION MATCHED STATUS status.

This callback is called when the com.rti.dds.publication.DataWriter
(p. 538) has found a com.rti.dds.subscription.DataReader (p. 473) that
matches the com.rti.dds.topic.Topic (p. 1545), has a common par-
tition and compatible QoS, or has ceased to be matched with a
com.rti.dds.subscription.DataReader (p. 473) that was previously consid-
ered to be matched.

Parameters:

writer <<out>> (p. 271) Locally created
com.rti.dds.publication.DataWriter (p. 538) that triggers
the listener callback

status <<out>> (p. 271) Current publication (p. 338) match status of
locally created com.rti.dds.publication.DataWriter (p. 538)

Implemented in DomainParticipantAdapter (p. 706), and DataWriter-
Adapter (p. 562).

8.46.2.5 void on reliable writer cache changed (DataWriter writer,
ReliableWriterCacheChangedStatus status)

<<eXtension>> (p. 270) A change has occurred in the writer’s cache of un-
acknowledged samples.

Parameters:

writer <<out>> (p. 271) Locally created
com.rti.dds.publication.DataWriter (p. 538) that triggers
the listener callback

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

570 Class Documentation

status <<out>> (p. 271) Current reliable writer cache changed status of
locally created com.rti.dds.publication.DataWriter (p. 538)

Implemented in DomainParticipantAdapter (p. 707), and DataWriter-
Adapter (p. 563).

8.46.2.6 void on reliable reader activity changed (DataWriter
writer, ReliableReaderActivityChangedStatus status)

<<eXtension>> (p. 270) A matched reliable reader has become active or
become inactive.

Parameters:

writer <<out>> (p. 271) Locally created
com.rti.dds.publication.DataWriter (p. 538) that triggers
the listener callback

status <<out>> (p. 271) Current reliable reader activity changed status
of locally created com.rti.dds.publication.DataWriter (p. 538)

Implemented in DomainParticipantAdapter (p. 706), and DataWriter-
Adapter (p. 563).

8.46.2.7 void on instance replaced (DataWriter writer,
InstanceHandle t handle)

Notifies when an instance is replaced in DataWriter (p. 538) queue.

This callback is called when an instance is replaced by the
com.rti.dds.publication.DataWriter (p. 538) due to instance resource
limits being reached. This callback returns to the user the handle of the
replaced instance, which can be used to get the key of the replaced instance.

Parameters:

writer <<out>> (p. 271) Locally created
com.rti.dds.publication.DataWriter (p. 538) that triggers
the listener callback

handle <<out>> (p. 271) Handle of the replaced instance

Implemented in DomainParticipantAdapter (p. 707), and DataWriter-
Adapter (p. 564).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.47 DataWriterProtocolQosPolicy Class Reference 571

8.47 DataWriterProtocolQosPolicy Class Refer-
ence

Protocol that applies only to com.rti.dds.publication.DataWriter (p. 538)
instances.

Inheritance diagram for DataWriterProtocolQosPolicy::

Public Attributes

ˆ GUID t virtual guid

The virtual GUID (Global Unique Identifier).

ˆ int rtps object id

The RTPS Object ID.

ˆ boolean push on write

Whether to push sample out when write is called.

ˆ boolean disable positive acks

Controls whether or not the writer expects positive acknowledgements from
matching readers.

ˆ boolean disable inline keyhash

Controls whether or not a keyhash is propagated on the wire with each sample.

ˆ boolean serialize key with dispose

Controls whether or not the serialized key is propagated on the wire with
dispose samples.

ˆ final RtpsReliableWriterProtocol t rtps reliable writer

The reliable protocol defined in RTPS.

8.47.1 Detailed Description

Protocol that applies only to com.rti.dds.publication.DataWriter (p. 538)
instances.

DDS has a standard protocol for packet (user and meta data) exchange be-
tween applications using DDS for communications. This QoS policy and

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

572 Class Documentation

com.rti.dds.infrastructure.DataWriterProtocolQosPolicy (p. 571) give
you control over configurable portions of the protocol, including the configura-
tion of the reliable data delivery mechanism of the protocol on a per DataWriter
or DataReader basis.

These configuration parameters control timing, timeouts, and give you the abil-
ity to tradeoff between speed of data loss detection and repair versus network
and CPU bandwidth used to maintain reliability.

It is important to tune the reliability protocol (on a
per com.rti.dds.publication.DataWriter (p. 538) and
com.rti.dds.subscription.DataReader (p. 473) basis) to meet the re-
quirements of the end-user application so that data can be sent between
DataWriters and DataReaders in an efficient and optimal manner in the
presence of data loss.

You can also use this QoS policy to control how RTI Connext responds
to ”slow” reliable DataReaders or ones that disconnect or are other-
wise lost. See com.rti.dds.infrastructure.ReliabilityQosPolicy (p. 1336)
for more information on the per-DataReader/DataWriter reliability con-
figuration. com.rti.dds.infrastructure.HistoryQosPolicy (p. 1071) and
com.rti.dds.infrastructure.ResourceLimitsQosPolicy (p. 1356) also play
an important role in the DDS reliable protocol.

This QoS policy is an extension to the DDS standard.

Entity:

com.rti.dds.publication.DataWriter (p. 538)

Properties:

RxO (p. 97) = N/A
Changeable (p. 98) = NO (p. 98)

8.47.2 Member Data Documentation

8.47.2.1 GUID t virtual guid

The virtual GUID (Global Unique Identifier).

The virtual GUID is used to uniquely identify different incarnations of the same
com.rti.dds.publication.DataWriter (p. 538).

RTI Connext uses the virtual GUID to associate a persisted writer history to a
specific com.rti.dds.publication.DataWriter (p. 538).

The RTI Connext Persistence Service uses the virtual GUID to send samples
on behalf of the original com.rti.dds.publication.DataWriter (p. 538).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.47 DataWriterProtocolQosPolicy Class Reference 573

[default] com.rti.dds.infrastructure.GUID t.AUTO

8.47.2.2 int rtps object id

The RTPS Object ID.

This value is used to determine the RTPS object ID of a data writer according
to the DDS-RTPS Interoperability Wire Protocol.

Only the last 3 bytes are used; the most significant byte is ignored.

If the default value is specified, RTI Connext will automatically assign the object
ID based on a counter value (per participant) starting at 0x00800000. That
value is incremented for each new data writer.

A rtps object id value in the interval [0x00800000,0x00ffffff] may collide with the
automatic values assigned by RTI Connext. In those cases, the recomendation
is not to use automatic object ID assigment.

[default] com.rti.dds.infrastructure.WireProtocolQosPolicy.RTPS -
AUTO ID (p. 1714)

[range] [0,0x00ffffff]

8.47.2.3 boolean push on write

Whether to push sample out when write is called.

If set to true (the default), the writer will send a sample every time write is
called. Otherwise, the sample is put into the queue waiting for a NACK from
remote reader(s) to be sent out.

Note: push on write must be TRUE for Asynchronous DataWriters (those
with PublishModeQosPolicyKind.ASYNCHRONOUS PUBLISH -
MODE QOS (p. 1312)). Otherwise, samples will never be sent.

[default] true

8.47.2.4 boolean disable positive acks

Controls whether or not the writer expects positive acknowledgements from
matching readers.

If set to true, the writer does not expect readers to send send positive acknowl-
edgments to the writer. Consequently, instead of keeping a sample queued
until all readers have positively acknowledged it, the writer will keep a sam-
ple for at least com.rti.dds.infrastructure.RtpsReliableWriterProtocol -
t.disable positive acks min sample keep duration (p. 1387), after which
the sample is logically considered as positively acknowledged.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

574 Class Documentation

If set to false (the default), the writer expects to receive
positive acknowledgements from its acknowledging readers
(com.rti.dds.infrastructure.DataReaderProtocolQosPolicy.disable -
positive acks (p. 507) = false) and it applies
the keep-duration to its non-acknowledging readers
(com.rti.dds.infrastructure.DataReaderProtocolQosPolicy.disable -
positive acks (p. 507) = true).

A writer with both acknowledging and non-acknowledging readers keeps a sam-
ple queued until acknowledgements have been received from all acknowledging
readers and the keep-duration has elapsed for non-acknowledging readers.

[default] false

8.47.2.5 boolean disable inline keyhash

Controls whether or not a keyhash is propagated on the wire with each sample.

This field only applies to keyed writers.

With each key, RTI Connext associates an internal 16-byte representation, called
a keyhash.

When this field is false, the keyhash is sent on the wire with every data instance.

When this field is true, the keyhash is not sent on the wire and the readers must
compute the value using the received data.

If the reader is CPU bound, sending the keyhash on the wire may increase
performance, because the reader does not have to get the keyhash from the
data.

If the writer is CPU bound, sending the keyhash on the wire may decrease
performance, because it requires more bandwidth (16 more bytes per sample).

Note: Setting disable inline keyhash to true is not compatible with using RTI
Real-Time Connect or RTI Recorder.

[default] false

8.47.2.6 boolean serialize key with dispose

Controls whether or not the serialized key is propagated on the wire with dispose
samples.

This field only applies to keyed writers.

We recommend setting this field to true if there are DataReaders where
com.rti.dds.infrastructure.DataReaderProtocolQosPolicy.propagate -
dispose of unregistered instances (p. 507) is also true.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.47 DataWriterProtocolQosPolicy Class Reference 575

Important: When this field is true, batching will not be compatible with RTI
Connext 4.3e, 4.4b, or 4.4c. The com.rti.dds.subscription.DataReader
(p. 473) entities will receive incorrect data and/or encounter deserialization er-
rors.

[default] false

8.47.2.7 final RtpsReliableWriterProtocol t rtps reliable writer

Initial value:

new RtpsReliableWriterProtocol_t()

The reliable protocol defined in RTPS.

[default] low watermark 0;

high watermark 1;

heartbeat period 3.0 seconds;

fast heartbeat period 3.0 seconds;

late joiner heartbeat period 3.0 seconds;

virtual heartbeat period com.rti.dds.infrastructure.Duration t.AUTO;

samples per virtual heartbeat ResourceLimitsQosPolicy.LENGTH -
UNLIMITED (p. 102);

max heartbeat retries 10;

inactivate nonprogressing readers false;

heartbeats per max samples 8;

min nack response delay 0.0 seconds;

max nack response delay 0.2 seconds;

max bytes per nack response 131072

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

576 Class Documentation

8.48 DataWriterProtocolStatus Class Refer-
ence

<<eXtension>> (p. 270) The status of a writer’s internal protocol related
metrics, like the number of samples pushed, pulled, filtered; and status of wire
protocol traffic.

Inherits Status.

Public Attributes

ˆ long pushed sample count

The number of user samples pushed on write from a local DataWriter
(p. 538) to a matching remote DataReader.

ˆ long pushed sample count change

The incremental change in the number of user samples pushed on write from
a local DataWriter (p. 538) to a matching remote DataReader since the
last time the status was read.

ˆ long pushed sample bytes

The number of bytes of user samples pushed on write from a local
DataWriter (p. 538) to a matching remote DataReader.

ˆ long pushed sample bytes change

The incremental change in the number of bytes of user samples pushed on
write from a local DataWriter (p. 538) to a matching remote DataReader
since the last time the status was read.

ˆ long filtered sample count

The number of user samples preemptively filtered by a local DataWriter
(p. 538) due to Content-Filtered Topics.

ˆ long filtered sample count change

The incremental change in the number of user samples preemptively filtered
by a local DataWriter (p. 538) due to Content-Filtered Topics since the last
time the status was read.

ˆ long filtered sample bytes

The number of user samples preemptively filtered by a local DataWriter
(p. 538) due to Content-Filtered Topics.

ˆ long filtered sample bytes change

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.48 DataWriterProtocolStatus Class Reference 577

The incremental change in the number of user samples preemptively filtered
by a local DataWriter (p. 538) due to Content-Filtered Topics since the last
time the status was read.

ˆ long sent heartbeat count

The number of Heartbeats sent between a local DataWriter (p. 538) and
matching remote DataReader.

ˆ long sent heartbeat count change

The incremental change in the number of Heartbeats sent between a local
DataWriter (p. 538) and matching remote DataReader since the last time
the status was read.

ˆ long sent heartbeat bytes

The number of bytes of Heartbeats sent between a local DataWriter (p. 538)
and matching remote DataReader.

ˆ long sent heartbeat bytes change

The incremental change in the number of bytes of Heartbeats sent between a
local DataWriter (p. 538) and matching remote DataReader since the last
time the status was read.

ˆ long pulled sample count

The number of user samples pulled from local DataWriter (p. 538) by
matching DataReaders.

ˆ long pulled sample count change

The incremental change in the number of user samples pulled from local
DataWriter (p. 538) by matching DataReaders since the last time the status
was read.

ˆ long pulled sample bytes

The number of bytes of user samples pulled from local DataWriter (p. 538)
by matching DataReaders.

ˆ long pulled sample bytes change

The incremental change in the number of bytes of user samples pulled from
local DataWriter (p. 538) by matching DataReaders since the last time the
status was read.

ˆ long received ack count

The number of ACKs from a remote DataReader received by a local
DataWriter (p. 538).

ˆ long received ack count change

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

578 Class Documentation

The incremental change in the number of ACKs from a remote DataReader
received by a local DataWriter (p. 538) since the last time the status was
read.

ˆ long received ack bytes

The number of bytes of ACKs from a remote DataReader received by a local
DataWriter (p. 538).

ˆ long received ack bytes change

The incremental change in the number of bytes of ACKs from a remote
DataReader received by a local DataWriter (p. 538) since the last time the
status was read.

ˆ long received nack count

The number of NACKs from a remote DataReader received by a local
DataWriter (p. 538).

ˆ long received nack count change

The incremental change in the number of NACKs from a remote DataReader
received by a local DataWriter (p. 538) since the last time the status was
read.

ˆ long received nack bytes

The number of bytes of NACKs from a remote DataReader received by a local
DataWriter (p. 538).

ˆ long received nack bytes change

The incremental change in the number of bytes of NACKs from a remote
DataReader received by a local DataWriter (p. 538) since the last time the
status was read.

ˆ long sent gap count

The number of GAPs sent from local DataWriter (p. 538) to matching
remote DataReaders.

ˆ long sent gap count change

The incremental change in the number of GAPs sent from local DataWriter
(p. 538) to matching remote DataReaders since the last time the status was
read.

ˆ long sent gap bytes

The number of bytes of GAPs sent from local DataWriter (p. 538) to match-
ing remote DataReaders.

ˆ long sent gap bytes change

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.48 DataWriterProtocolStatus Class Reference 579

The incremental change in the number of bytes of GAPs sent from local
DataWriter (p. 538) to matching remote DataReaders since the last time
the status was read.

ˆ long rejected sample count
The number of times a sample is rejected due to exceptions in the send path.

ˆ long rejected sample count change
The incremental change in the number of times a sample is rejected due to
exceptions in the send path since the last time the status was read.

ˆ int send window size
Current maximum number of outstanding samples allowed in the
DataWriter’s queue.

ˆ SequenceNumber t first available sample sequence number
The sequence number of the first available sample currently queued in the
local DataWriter (p. 538).

ˆ SequenceNumber t last available sample sequence number
The sequence number of the last available sample currently queued in the
local DataWriter (p. 538).

ˆ SequenceNumber t first unacknowledged sample sequence -
number

The sequence number of the first unacknowledged sample currently queued in
the local DataWriter (p. 538).

ˆ SequenceNumber t first available sample virtual sequence -
number

The virtual sequence number of the first available sample currently queued in
the local DataWriter (p. 538).

ˆ SequenceNumber t last available sample virtual sequence -
number

The virtual sequence number of the last available sample currently queued in
the local DataWriter (p. 538).

ˆ SequenceNumber t first unacknowledged sample virtual -
sequence number

The virtual sequence number of the first unacknowledged sample currently
queued in the local DataWriter (p. 538).

ˆ InstanceHandle t first unacknowledged sample subscription -
handle

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

580 Class Documentation

The handle of a remote DataReader that has not acknowledged the first un-
acknowledged sample of the local DataWriter (p. 538).

ˆ SequenceNumber t first unelapsed keep duration sample -
sequence number

The sequence number of the first sample whose keep duration has not yet
elapsed.

8.48.1 Detailed Description

<<eXtension>> (p. 270) The status of a writer’s internal protocol related
metrics, like the number of samples pushed, pulled, filtered; and status of wire
protocol traffic.

Entity:

com.rti.dds.publication.DataWriter (p. 538)

8.48.2 Member Data Documentation

8.48.2.1 long pushed sample count

The number of user samples pushed on write from a local DataWriter (p. 538)
to a matching remote DataReader.

Counts protocol (RTPS) messages pushed by a DataWriter (p. 538) when writ-
ing, unregistering, and disposing. The count is the number of sends done inter-
nally, and it may be greater than the number of user writes.

For large data, counts whole samples, not fragments.

8.48.2.2 long pushed sample count change

The incremental change in the number of user samples pushed on write from
a local DataWriter (p. 538) to a matching remote DataReader since the last
time the status was read.

Counts protocol (RTPS) messages pushed by a DataWriter (p. 538) when writ-
ing, unregistering, and disposing.

For large data, counts whole samples, not fragments.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.48 DataWriterProtocolStatus Class Reference 581

8.48.2.3 long pushed sample bytes

The number of bytes of user samples pushed on write from a local DataWriter
(p. 538) to a matching remote DataReader.

Counts bytes of protocol (RTPS) messages pushed by a DataWriter (p. 538)
when writing, unregistering, and disposing. The count of bytes corresponds to
the number of sends done internally, and it may be greater than the number of
user writes.

For large data, counts bytes of whole samples, not fragments.

8.48.2.4 long pushed sample bytes change

The incremental change in the number of bytes of user samples pushed on write
from a local DataWriter (p. 538) to a matching remote DataReader since the
last time the status was read.

Counts bytes of protocol (RTPS) messages pushed by a DataWriter (p. 538)
when writing, unregistering, and disposing.

For large data, counts bytes of whole samples, not fragments.

8.48.2.5 long filtered sample count

The number of user samples preemptively filtered by a local DataWriter
(p. 538) due to Content-Filtered Topics.

8.48.2.6 long filtered sample count change

The incremental change in the number of user samples preemptively filtered by
a local DataWriter (p. 538) due to Content-Filtered Topics since the last time
the status was read.

8.48.2.7 long filtered sample bytes

The number of user samples preemptively filtered by a local DataWriter
(p. 538) due to Content-Filtered Topics.

8.48.2.8 long filtered sample bytes change

The incremental change in the number of user samples preemptively filtered by
a local DataWriter (p. 538) due to Content-Filtered Topics since the last time
the status was read.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

582 Class Documentation

8.48.2.9 long sent heartbeat count

The number of Heartbeats sent between a local DataWriter (p. 538) and
matching remote DataReader.

Because periodic and piggyback heartbeats are sent to remote readers and their
locators differently in different situations, when a reader has more than one loca-
tor, this count may be larger than expected, to reflect the sending of Heartbeats
to the multiple locators.

8.48.2.10 long sent heartbeat count change

The incremental change in the number of Heartbeats sent between a local
DataWriter (p. 538) and matching remote DataReader since the last time the
status was read.

8.48.2.11 long sent heartbeat bytes

The number of bytes of Heartbeats sent between a local DataWriter (p. 538)
and matching remote DataReader.

Because periodic and piggyback heartbeats are sent to remote readers and their
locators differently in different situations, when a reader has more than one loca-
tor, this count may be larger than expected, to reflect the sending of Heartbeats
to the multiple locators.

8.48.2.12 long sent heartbeat bytes change

The incremental change in the number of bytes of Heartbeats sent between a
local DataWriter (p. 538) and matching remote DataReader since the last time
the status was read.

8.48.2.13 long pulled sample count

The number of user samples pulled from local DataWriter (p. 538) by matching
DataReaders.

Pulled samples are samples sent for repairs, for late joiners,
and all samples sent by the local DataWriter (p. 538) when
com.rti.dds.infrastructure.DataWriterProtocolQosPolicy.push -
on write (p. 573) is false.

For large data, counts whole samples, not fragments.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.48 DataWriterProtocolStatus Class Reference 583

8.48.2.14 long pulled sample count change

The incremental change in the number of user samples pulled from local
DataWriter (p. 538) by matching DataReaders since the last time the status
was read.

Pulled samples are samples sent for repairs, for late joiners,
and all samples sent by the local DataWriter (p. 538) when
com.rti.dds.infrastructure.DataWriterProtocolQosPolicy.push -
on write (p. 573) is false.

For large data, counts whole samples, not fragments.

8.48.2.15 long pulled sample bytes

The number of bytes of user samples pulled from local DataWriter (p. 538) by
matching DataReaders.

Pulled samples are samples sent for repairs, for late joiners,
and all samples sent by the local DataWriter (p. 538) when
com.rti.dds.infrastructure.DataWriterProtocolQosPolicy.push -
on write (p. 573) is false.

For large data, counts bytes of whole samples, not fragments.

8.48.2.16 long pulled sample bytes change

The incremental change in the number of bytes of user samples pulled from local
DataWriter (p. 538) by matching DataReaders since the last time the status
was read.

Pulled samples are samples sent for repairs, for late joiners,
and all samples sent by the local DataWriter (p. 538) when
com.rti.dds.infrastructure.DataWriterProtocolQosPolicy.push -
on write (p. 573) is false.

For large data, counts bytes of whole samples, not fragments.

8.48.2.17 long received ack count

The number of ACKs from a remote DataReader received by a local
DataWriter (p. 538).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

584 Class Documentation

8.48.2.18 long received ack count change

The incremental change in the number of ACKs from a remote DataReader
received by a local DataWriter (p. 538) since the last time the status was
read.

8.48.2.19 long received ack bytes

The number of bytes of ACKs from a remote DataReader received by a local
DataWriter (p. 538).

8.48.2.20 long received ack bytes change

The incremental change in the number of bytes of ACKs from a remote
DataReader received by a local DataWriter (p. 538) since the last time the
status was read.

8.48.2.21 long received nack count

The number of NACKs from a remote DataReader received by a local
DataWriter (p. 538).

8.48.2.22 long received nack count change

The incremental change in the number of NACKs from a remote DataReader
received by a local DataWriter (p. 538) since the last time the status was read.

8.48.2.23 long received nack bytes

The number of bytes of NACKs from a remote DataReader received by a local
DataWriter (p. 538).

8.48.2.24 long received nack bytes change

The incremental change in the number of bytes of NACKs from a remote
DataReader received by a local DataWriter (p. 538) since the last time the
status was read.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.48 DataWriterProtocolStatus Class Reference 585

8.48.2.25 long sent gap count

The number of GAPs sent from local DataWriter (p. 538) to matching remote
DataReaders.

8.48.2.26 long sent gap count change

The incremental change in the number of GAPs sent from local DataWriter
(p. 538) to matching remote DataReaders since the last time the status was
read.

8.48.2.27 long sent gap bytes

The number of bytes of GAPs sent from local DataWriter (p. 538) to matching
remote DataReaders.

8.48.2.28 long sent gap bytes change

The incremental change in the number of bytes of GAPs sent from local
DataWriter (p. 538) to matching remote DataReaders since the last time the
status was read.

8.48.2.29 long rejected sample count

The number of times a sample is rejected due to exceptions in the send path.

8.48.2.30 long rejected sample count change

The incremental change in the number of times a sample is rejected due to
exceptions in the send path since the last time the status was read.

8.48.2.31 int send window size

Current maximum number of outstanding samples allowed in the DataWriter’s
queue.

Spans the range from com.rti.dds.infrastructure.RtpsReliableWriterProtocol -
t.min send window size (p. 1389) to com.rti.dds.infrastructure.RtpsReliableWriterProtocol -
t.max send window size (p. 1390).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

586 Class Documentation

8.48.2.32 SequenceNumber t first available sample sequence -
number

The sequence number of the first available sample currently queued in the local
DataWriter (p. 538).

Applies only for local DataWriter (p. 538) status.

8.48.2.33 SequenceNumber t last available sample sequence -
number

The sequence number of the last available sample currently queued in the local
DataWriter (p. 538).

Applies only for local DataWriter (p. 538) status.

8.48.2.34 SequenceNumber t first unacknowledged sample -
sequence number

The sequence number of the first unacknowledged sample currently queued in
the local DataWriter (p. 538).

Applies only for local DataWriter (p. 538) status.

8.48.2.35 SequenceNumber t first available sample virtual -
sequence number

The virtual sequence number of the first available sample currently queued in
the local DataWriter (p. 538).

Applies only for local DataWriter (p. 538) status.

8.48.2.36 SequenceNumber t last available sample virtual -
sequence number

The virtual sequence number of the last available sample currently queued in
the local DataWriter (p. 538).

Applies only for local DataWriter (p. 538) status.

8.48.2.37 SequenceNumber t first unacknowledged sample -
virtual sequence number

The virtual sequence number of the first unacknowledged sample currently
queued in the local DataWriter (p. 538).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.48 DataWriterProtocolStatus Class Reference 587

Applies only for local DataWriter (p. 538) status.

8.48.2.38 InstanceHandle t first unacknowledged sample -
subscription handle

The handle of a remote DataReader that has not acknowledged the first unac-
knowledged sample of the local DataWriter (p. 538).

Applies only for local DataWriter (p. 538) status.

8.48.2.39 SequenceNumber t first unelapsed keep duration -
sample sequence number

The sequence number of the first sample whose keep duration has not yet
elapsed.

Applicable only when com.rti.dds.infrastructure.DataWriterProtocolQosPolicy.disable -
positive acks (p. 573) is set.

Sequence number of the first sample kept in the
DataWriter’s queue whose keep duration (applied when
com.rti.dds.infrastructure.DataWriterProtocolQosPolicy.disable -
positive acks (p. 573) is set) has not yet elapsed.

Applies only for local DataWriter (p. 538) status.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

588 Class Documentation

8.49 DataWriterQos Class Reference

QoS policies supported by a com.rti.dds.publication.DataWriter (p. 538)
entity.

Inheritance diagram for DataWriterQos::

Public Attributes

ˆ final DurabilityQosPolicy durability
Durability policy, DURABILITY (p. 65).

ˆ final DurabilityServiceQosPolicy durability service
DurabilityService policy, DURABILITY SERVICE (p. 66).

ˆ final DeadlineQosPolicy deadline
Deadline policy, DEADLINE (p. 50).

ˆ final LatencyBudgetQosPolicy latency budget
Latency budget policy, LATENCY BUDGET (p. 76).

ˆ final LivelinessQosPolicy liveliness
Liveliness policy, LIVELINESS (p. 78).

ˆ final ReliabilityQosPolicy reliability
Reliability policy, RELIABILITY (p. 101).

ˆ final DestinationOrderQosPolicy destination order
Destination order policy, DESTINATION ORDER (p. 51).

ˆ final HistoryQosPolicy history
History policy, HISTORY (p. 75).

ˆ final ResourceLimitsQosPolicy resource limits
Resource limits policy, RESOURCE LIMITS (p. 102).

ˆ final TransportPriorityQosPolicy transport priority
Transport priority policy, TRANSPORT PRIORITY (p. 121).

ˆ final LifespanQosPolicy lifespan
Lifespan policy, LIFESPAN (p. 77).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.49 DataWriterQos Class Reference 589

ˆ final UserDataQosPolicy user data

User data policy, USER DATA (p. 126).

ˆ final OwnershipQosPolicy ownership

Ownership policy, OWNERSHIP (p. 83).

ˆ final OwnershipStrengthQosPolicy ownership strength

Ownership strength policy, OWNERSHIP STRENGTH (p. 84).

ˆ final WriterDataLifecycleQosPolicy writer data lifecycle

Writer data lifecycle policy, WRITER DATA LIFECYCLE (p. 134).

ˆ final DataWriterResourceLimitsQosPolicy writer resource -
limits

<<eXtension>> (p. 270) Writer resource limits policy, DATA -
WRITER RESOURCE LIMITS (p. 49).

ˆ final DataWriterProtocolQosPolicy protocol

<<eXtension>> (p. 270) com.rti.dds.publication.DataWriter (p. 538)
protocol policy, DATA WRITER PROTOCOL (p. 48)

ˆ final TransportSelectionQosPolicy transport selection

<<eXtension>> (p. 270) Transport plugin selection policy, TRANS-
PORT SELECTION (p. 122).

ˆ final TransportUnicastQosPolicy unicast

<<eXtension>> (p. 270) Unicast transport policy, TRANSPORT -
UNICAST (p. 123).

ˆ final PublishModeQosPolicy publish mode

<<eXtension>> (p. 270) Publish mode policy, PUBLISH MODE
(p. 89).

ˆ final PropertyQosPolicy property

<<eXtension>> (p. 270) Property policy, PROPERTY (p. 88).

ˆ final BatchQosPolicy batch

<<eXtension>> (p. 270) Batch policy, BATCH (p. 42).

ˆ final MultiChannelQosPolicy multi channel

<<eXtension>> (p. 270) Multi channel policy, MULTICHANNEL
(p. 81).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

590 Class Documentation

ˆ final EntityNameQosPolicy publication name = create entity -
name policyI()

ˆ final TypeSupportQosPolicy type support
<<eXtension>> (p. 270) Type support data, TYPESUPPORT (p. 124).

8.49.1 Detailed Description

QoS policies supported by a com.rti.dds.publication.DataWriter (p. 538)
entity.

You must set certain members in a consistent manner:

- com.rti.dds.publication.DataWriterQos.history.depth <=
com.rti.dds.publication.DataWriterQos.resource limits.max samples per -
instance

- com.rti.dds.publication.DataWriterQos.resource limits.max samples per -
instance <= com.rti.dds.publication.DataWriterQos.resource limits.max -
samples

- com.rti.dds.publication.DataWriterQos.resource limits.initial samples <=
com.rti.dds.publication.DataWriterQos.resource limits.max samples

- com.rti.dds.publication.DataWriterQos.resource limits.initial instances <=
com.rti.dds.publication.DataWriterQos.resource limits.max instances

- length of com.rti.dds.publication.DataWriterQos.user data.value <=
com.rti.dds.domain.DomainParticipantQos.resource limits (p. 739)
.writer user data max length

If any of the above are not true, com.rti.dds.publication.DataWriter.set -
qos (p. 543) and com.rti.dds.publication.DataWriter.set qos with -
profile (p. 544) and com.rti.dds.publication.Publisher.set default -
datawriter qos (p. 1282) and com.rti.dds.publication.Publisher.set -
default datawriter qos with profile (p. 1283) will
fail with RETCODE INCONSISTENT POLICY and
com.rti.dds.publication.Publisher.create datawriter (p. 1284) and
com.rti.dds.publication.Publisher.create datawriter with profile
(p. 1286) and will return NULL.

Entity:

com.rti.dds.publication.DataWriter (p. 538)

See also:

QoS Policies (p. 90) allowed ranges within each Qos.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.49 DataWriterQos Class Reference 591

8.49.2 Member Data Documentation

8.49.2.1 final DurabilityQosPolicy durability

Durability policy, DURABILITY (p. 65).

8.49.2.2 final DurabilityServiceQosPolicy durability service

DurabilityService policy, DURABILITY SERVICE (p. 66).

8.49.2.3 final DeadlineQosPolicy deadline

Deadline policy, DEADLINE (p. 50).

8.49.2.4 final LatencyBudgetQosPolicy latency budget

Latency budget policy, LATENCY BUDGET (p. 76).

8.49.2.5 final LivelinessQosPolicy liveliness

Liveliness policy, LIVELINESS (p. 78).

8.49.2.6 final ReliabilityQosPolicy reliability

Reliability policy, RELIABILITY (p. 101).

8.49.2.7 final DestinationOrderQosPolicy destination order

Destination order policy, DESTINATION ORDER (p. 51).

8.49.2.8 final HistoryQosPolicy history

History policy, HISTORY (p. 75).

8.49.2.9 final ResourceLimitsQosPolicy resource limits

Resource limits policy, RESOURCE LIMITS (p. 102).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

592 Class Documentation

8.49.2.10 final TransportPriorityQosPolicy transport priority

Transport priority policy, TRANSPORT PRIORITY (p. 121).

8.49.2.11 final LifespanQosPolicy lifespan

Lifespan policy, LIFESPAN (p. 77).

8.49.2.12 final UserDataQosPolicy user data

User data policy, USER DATA (p. 126).

8.49.2.13 final OwnershipQosPolicy ownership

Ownership policy, OWNERSHIP (p. 83).

8.49.2.14 final OwnershipStrengthQosPolicy ownership strength

Ownership strength policy, OWNERSHIP STRENGTH (p. 84).

8.49.2.15 final WriterDataLifecycleQosPolicy writer data lifecycle

Writer data lifecycle policy, WRITER DATA LIFECYCLE (p. 134).

8.49.2.16 final DataWriterResourceLimitsQosPolicy
writer resource limits

<<eXtension>> (p. 270) Writer resource limits policy, DATA WRITER -
RESOURCE LIMITS (p. 49).

8.49.2.17 final DataWriterProtocolQosPolicy protocol

<<eXtension>> (p. 270) com.rti.dds.publication.DataWriter (p. 538)
protocol policy, DATA WRITER PROTOCOL (p. 48)

8.49.2.18 final TransportSelectionQosPolicy transport selection

<<eXtension>> (p. 270) Transport plugin selection policy, TRANS-
PORT SELECTION (p. 122).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.49 DataWriterQos Class Reference 593

Specifies the transports available for use by the
com.rti.dds.publication.DataWriter (p. 538).

8.49.2.19 final TransportUnicastQosPolicy unicast

<<eXtension>> (p. 270) Unicast transport policy, TRANSPORT -
UNICAST (p. 123).

Specifies the unicast transport interfaces and ports on which messages can be
received.

The unicast interfaces are used to receive messages from
com.rti.dds.subscription.DataReader (p. 473) entities in the domain
(p. 317).

8.49.2.20 final PublishModeQosPolicy publish mode

<<eXtension>> (p. 270) Publish mode policy, PUBLISH MODE (p. 89).

Determines whether the com.rti.dds.publication.DataWriter (p. 538) pub-
lishes data synchronously or asynchronously and how.

8.49.2.21 final PropertyQosPolicy property

<<eXtension>> (p. 270) Property policy, PROPERTY (p. 88).

8.49.2.22 final BatchQosPolicy batch

<<eXtension>> (p. 270) Batch policy, BATCH (p. 42).

8.49.2.23 final MultiChannelQosPolicy multi channel

<<eXtension>> (p. 270) Multi channel policy, MULTICHANNEL (p. 81).

8.49.2.24 final EntityNameQosPolicy publication name =
create entity name policyI()

8.49.2.25 final TypeSupportQosPolicy type support

<<eXtension>> (p. 270) Type support data, TYPESUPPORT (p. 124).

Optional value that is passed to a type plugin’s on endpoint attached and seri-
alization functions.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

594 Class Documentation

8.50 DataWriterResourceLimitsInstanceReplacementKind
Class Reference

Sets the kinds of instances that can be replaced when instance resource limits
are reached.

Inheritance diagram for DataWriterResourceLimitsInstanceReplacementKind::

Static Public Attributes

ˆ static final DataWriterResourceLimitsInstanceReplacementKind
UNREGISTERED INSTANCE REPLACEMENT

Allows a com.rti.dds.publication.DataWriter (p. 538) to reclaim unreg-
istered acknowledged instances.

ˆ static final DataWriterResourceLimitsInstanceReplacementKind
ALIVE INSTANCE REPLACEMENT

Allows a com.rti.dds.publication.DataWriter (p. 538) to reclaim alive
acknowledged instances.

ˆ static final DataWriterResourceLimitsInstanceReplacementKind
DISPOSED INSTANCE REPLACEMENT

Allows a com.rti.dds.publication.DataWriter (p. 538) to reclaim dis-
posed acknowledged instances.

ˆ static final DataWriterResourceLimitsInstanceReplacementKind
ALIVE THEN DISPOSED INSTANCE REPLACEMENT

Allows a com.rti.dds.publication.DataWriter (p. 538) first to reclaim an
alive acknowledged instance, and then if necessary a disposed acknowledged
instance.

ˆ static final DataWriterResourceLimitsInstanceReplacementKind
DISPOSED THEN ALIVE INSTANCE REPLACEMENT

Allows a com.rti.dds.publication.DataWriter (p. 538) first to reclaim a
disposed acknowledged instance, and then if necessary an alive acknowledged
instance.

ˆ static final DataWriterResourceLimitsInstanceReplacementKind
ALIVE OR DISPOSED INSTANCE REPLACEMENT

Allows a com.rti.dds.publication.DataWriter (p. 538) to reclaim a either
an alive acknowledged instance or a disposed acknowledged instance.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.50 DataWriterResourceLimitsInstanceReplacementKind Class
Reference 595

8.50.1 Detailed Description

Sets the kinds of instances that can be replaced when instance resource limits
are reached.

When com.rti.dds.infrastructure.ResourceLimitsQosPolicy.max -
instances (p. 1360) is reached, a com.rti.dds.publication.DataWriter
(p. 538) will try to make room for a new instance by attempting to re-
claim an existing instance based on the instance replacement kind specified
by com.rti.dds.infrastructure.DataWriterResourceLimitsQosPolicy.instance -
replacement.

Only instances whose states match the specified kinds are eligible to be replaced.
In addition, an instance must have had all of its samples fully acknowledged for
it to be considered replaceable.

For all kinds, a com.rti.dds.publication.DataWriter (p. 538) will re-
place the oldest instance satisfying that kind. For example, when
the kind is DataWriterResourceLimitsInstanceReplacemen-
tKind.UNREGISTERED INSTANCE REPLACEMENT (p. 596),
a com.rti.dds.publication.DataWriter (p. 538) will remove the oldest fully
acknowledged unregistered instance, if such an instance exists.

If no replaceable instance exists, the invoked function will either return
with an appropriate out-of-resources return code, or in the case of a
write, it may first block to wait for an instance to be acknowledged.
Otherwise, the com.rti.dds.publication.DataWriter (p. 538) will replace
the old instance with the new instance, and invoke, if available, the
com.rti.dds.publication.DataWriterListener InstanceReplacedCallback to notify
the user about an instance being replaced.

A com.rti.dds.publication.DataWriter (p. 538) checks for replaceable in-
stances in the following order, stopping once a replaceable instance is found:

If com.rti.dds.infrastructure.DataWriterResourceLimitsQosPolicy.replace -
empty instances (p. 601) is true, a com.rti.dds.publication.DataWriter
(p. 538) first tries replacing instances that have no samples. These
empty instances can be unregistered, disposed, or alive. Next, a
com.rti.dds.publication.DataWriter (p. 538) tries replacing unreg-
istered instances. Since an unregistered instance indicates that the
com.rti.dds.publication.DataWriter (p. 538) is done modifying it, un-
registered instances are replaced before instances of any other state (alive,
disposed). This is the same as the DataWriterResourceLimitsInstanceRe-
placementKind.UNREGISTERED INSTANCE REPLACEMENT
(p. 596) kind. Then, a com.rti.dds.publication.DataWriter
(p. 538) tries replacing what is specified by
com.rti.dds.infrastructure.DataWriterResourceLimitsQosPolicy.instance -
replacement. With unregistered instances already checked, this leaves alive and
disposed instances. When both alive and disposed instances may be replaced,

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

596 Class Documentation

the kind specifies whether the particular order matters (e.g. DISPOSED -
THEN ALIVE, ALIVE THEN DISPOSED) or not (ALIVE OR DISPOSED).

QoS:

com.rti.dds.infrastructure.DataWriterResourceLimitsQosPolicy
(p. 598)

8.50.2 Member Data Documentation

8.50.2.1 final DataWriterResourceLimitsInstanceReplacementKind
UNREGISTERED INSTANCE REPLACEMENT
[static]

Allows a com.rti.dds.publication.DataWriter (p. 538) to reclaim unregis-
tered acknowledged instances.

By default all instance replacement kinds first attempt to
reclaim an unregistered acknowledged instance. Used in
com.rti.dds.infrastructure.DataWriterResourceLimitsQosPolicy.instance -
replacement [default]

8.50.2.2 final DataWriterResourceLimitsInstanceReplacementKind
ALIVE INSTANCE REPLACEMENT [static]

Allows a com.rti.dds.publication.DataWriter (p. 538) to reclaim alive ac-
knowledged instances.

When an unregistered acknowledged instance is not available to reclaim, this
kind allows a com.rti.dds.publication.DataWriter (p. 538) to reclaim an
alive acknowledged instance, where an alive instance is a registered, non-
disposed instance. The least recently registered or written alive instance will be
reclaimed.

8.50.2.3 final DataWriterResourceLimitsInstanceReplacementKind
DISPOSED INSTANCE REPLACEMENT [static]

Allows a com.rti.dds.publication.DataWriter (p. 538) to reclaim disposed
acknowledged instances.

When an unregistered acknowledged instance is not available to reclaim, this
kind allows a com.rti.dds.publication.DataWriter (p. 538) to reclaim a dis-
posed acknowledged instance. The least recently disposed instance will be re-
claimed.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.50 DataWriterResourceLimitsInstanceReplacementKind Class
Reference 597

8.50.2.4 final DataWriterResourceLimitsInstanceReplacementKind
ALIVE THEN DISPOSED INSTANCE -
REPLACEMENT [static]

Allows a com.rti.dds.publication.DataWriter (p. 538) first to reclaim an
alive acknowledged instance, and then if necessary a disposed acknowledged
instance.

When an unregistered acknowledged instance is not available to reclaim, this
kind allows a com.rti.dds.publication.DataWriter (p. 538) first try reclaim-
ing an alive acknowledged instance. If no instance is reclaimable, then it trys
reclaiming a disposed acknowledged instance. The least recently used (i.e. reg-
istered, written, or disposed) instance will be reclaimed.

8.50.2.5 final DataWriterResourceLimitsInstanceReplacementKind
DISPOSED THEN ALIVE INSTANCE -
REPLACEMENT [static]

Allows a com.rti.dds.publication.DataWriter (p. 538) first to reclaim a dis-
posed acknowledged instance, and then if necessary an alive acknowledged in-
stance.

When an unregistered acknowledged instance is not available to reclaim, this
kind allows a com.rti.dds.publication.DataWriter (p. 538) first try reclaim-
ing a disposed acknowledged instance. If no instance is reclaimable, then it trys
reclaiming an alive acknowledged instance. The least recently used (i.e. dis-
posed, registered, or written) instance will be reclaimed.

8.50.2.6 final DataWriterResourceLimitsInstanceReplacementKind
ALIVE OR DISPOSED INSTANCE REPLACEMENT
[static]

Allows a com.rti.dds.publication.DataWriter (p. 538) to reclaim a either
an alive acknowledged instance or a disposed acknowledged instance.

When an unregistered acknowledged instance is not available to re-
claim, this kind allows a com.rti.dds.publication.DataWriter (p. 538)
to reclaim either an alive acknowledged instance or a disposed acknowl-
edged instance. If both instance kinds are available to reclaim, the
com.rti.dds.publication.DataWriter (p. 538) will reclaim the least recently
used (i.e. disposed, registered, or written) instance.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

598 Class Documentation

8.51 DataWriterResourceLimitsQosPolicy
Class Reference

Various settings that configure how a com.rti.dds.publication.DataWriter
(p. 538) allocates and uses physical memory for internal resources.

Inheritance diagram for DataWriterResourceLimitsQosPolicy::

Public Attributes

ˆ int initial concurrent blocking threads

The initial number of threads that are allowed to concurrently block on write
call on the same com.rti.dds.publication.DataWriter (p. 538).

ˆ int max concurrent blocking threads

The maximum number of threads that are allowed to concurrently block on
write call on the same com.rti.dds.publication.DataWriter (p. 538).

ˆ int max remote reader filters

The maximum number of remote readers for which the writer will perform
content-based filtering.

ˆ int max batches

Represents the maximum number of batches a
com.rti.dds.publication.DataWriter (p. 538) will manage.

ˆ int initial batches

Represents the initial number of batches a
com.rti.dds.publication.DataWriter (p. 538) will manage.

ˆ int cookie max length

Represents the maximum length in bytes of a
com.rti.dds.infrastructure.Cookie t (p. 465).

ˆ boolean replace empty instances

Whether or not to replace empty instances during instance replacement.

ˆ boolean autoregister instances

Whether or not to automatically register new instances.

ˆ int initial virtual writers

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.51 DataWriterResourceLimitsQosPolicy Class Reference 599

The initial number of virtual writers supported by a
com.rti.dds.publication.DataWriter (p. 538).

ˆ int max virtual writers

The maximum number of virtual writers supported by a
com.rti.dds.publication.DataWriter (p. 538).

8.51.1 Detailed Description

Various settings that configure how a com.rti.dds.publication.DataWriter
(p. 538) allocates and uses physical memory for internal resources.

DataWriters must allocate internal structures to han-
dle the simultaneously blocking of threads trying to call
com.rti.dds.topic.example.FooDataWriter.write on the same
com.rti.dds.publication.DataWriter (p. 538), for the storage used to
batch small samples, and for content-based filters specified by DataReaders.

Most of these internal structures start at an initial size and, by de-
fault, will be grown as needed by dynamically allocating additional mem-
ory. You may set fixed, maximum sizes for these internal structures
if you want to bound the amount of memory that can be used by a
com.rti.dds.publication.DataWriter (p. 538). By setting the initial size to
the maximum size, you will prevent RTI Connext from dynamically allocating
any memory after the creation of the com.rti.dds.publication.DataWriter
(p. 538).

This QoS policy is an extension to the DDS standard.

Entity:

com.rti.dds.publication.DataWriter (p. 538)

Properties:

RxO (p. 97) = N/A
Changeable (p. 98) = NO (p. 98)

8.51.2 Member Data Documentation

8.51.2.1 int initial concurrent blocking threads

The initial number of threads that are allowed to concurrently block on write
call on the same com.rti.dds.publication.DataWriter (p. 538).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

600 Class Documentation

This value only applies if com.rti.dds.infrastructure.HistoryQosPolicy
(p. 1071) has its kind set to HistoryQosPoli-
cyKind.KEEP ALL HISTORY QOS (p. 1076) and
com.rti.dds.infrastructure.ReliabilityQosPolicy.max blocking time
(p. 1339) is > 0.

[default] 1

[range] [1, 10000], <= max concurrent blocking threads

8.51.2.2 int max concurrent blocking threads

The maximum number of threads that are allowed to concurrently block on
write call on the same com.rti.dds.publication.DataWriter (p. 538).

This value only applies if com.rti.dds.infrastructure.HistoryQosPolicy
(p. 1071) has its kind set to HistoryQosPoli-
cyKind.KEEP ALL HISTORY QOS (p. 1076) and
com.rti.dds.infrastructure.ReliabilityQosPolicy.max blocking time
(p. 1339) is > 0.

[default] ResourceLimitsQosPolicy.LENGTH UNLIMITED (p. 102)

[range] [1, 10000] or ResourceLimitsQosPolicy.LENGTH UNLIMITED
(p. 102), >= initial concurrent blocking threads

8.51.2.3 int max remote reader filters

The maximum number of remote readers for which the writer will perform
content-based filtering.

[default] 32

[range] [0, 32]

8.51.2.4 int max batches

Represents the maximum number of batches a
com.rti.dds.publication.DataWriter (p. 538) will manage.

[default] ResourceLimitsQosPolicy.LENGTH UNLIMITED (p. 102)

When batching is enabled, the maximum number of samples that a
com.rti.dds.publication.DataWriter (p. 538) can store is limited by this
value and com.rti.dds.infrastructure.ResourceLimitsQosPolicy.max -
samples (p. 1359).

[range] [1,100 million] or ResourceLimitsQosPolicy.LENGTH -
UNLIMITED (p. 102) >= DDS RtpsReliableWriterProtocol t.heartbeats -

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.51 DataWriterResourceLimitsQosPolicy Class Reference 601

per max samples if batching is enabled

See also:

com.rti.dds.infrastructure.BatchQosPolicy (p. 401)

8.51.2.5 int initial batches

Represents the initial number of batches a
com.rti.dds.publication.DataWriter (p. 538) will manage.

[default] 8

[range] [1,100 million]

See also:

com.rti.dds.infrastructure.BatchQosPolicy (p. 401)

8.51.2.6 int cookie max length

Represents the maximum length in bytes of a
com.rti.dds.infrastructure.Cookie t (p. 465).

[default] ResourceLimitsQosPolicy.LENGTH UNLIMITED (p. 102)

Sets the maximum allowed byte-sequence length of a
com.rti.dds.infrastructure.Cookie t (p. 465) used when writing with
parameters

[range] [1,100 million] or ResourceLimitsQosPolicy.LENGTH -
UNLIMITED (p. 102)

See also:

com.rti.dds.topic.example.FooDataWriter.write w params,
com.rti.dds.topic.example.FooDataWriter.dispose w params,
com.rti.dds.topic.example.FooDataWriter.register instance w params,
com.rti.dds.topic.example.FooDataWriter.unregister instance w params

8.51.2.7 boolean replace empty instances

Whether or not to replace empty instances during instance replacement.

When a com.rti.dds.publication.DataWriter
(p. 538) has more active instances than allowed by

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

602 Class Documentation

com.rti.dds.infrastructure.ResourceLimitsQosPolicy.max -
instances (p. 1360), it tries to make room by replacing an existing
instance. This field configures whether empty instances (i.e. in-
stances with no samples) may be replaced. If set true, then a
com.rti.dds.publication.DataWriter (p. 538) will first try reclaim-
ing empty instances, before trying to replace whatever is specified by
com.rti.dds.infrastructure.DataWriterResourceLimitsQosPolicy.instance -
replacement.

[default] false

See also:

com.rti.dds.infrastructure.DataWriterResourceLimitsInstanceReplacementKind
(p. 594)

8.51.2.8 boolean autoregister instances

Whether or not to automatically register new instances.

[default] true

When set to true, it is possible to write with a non-NIL handle of an instance
that is not registered: the write operation will succeed and the instance will be
registered. Otherwise, that write operation would fail.

See also:

com.rti.dds.topic.example.FooDataWriter.write

8.51.2.9 int initial virtual writers

The initial number of virtual writers supported by a
com.rti.dds.publication.DataWriter (p. 538).

[default] 1

[range] [1, 1000000], or ResourceLimitsQosPolicy.LENGTH -
UNLIMITED (p. 102)

8.51.2.10 int max virtual writers

The maximum number of virtual writers supported by a
com.rti.dds.publication.DataWriter (p. 538).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.51 DataWriterResourceLimitsQosPolicy Class Reference 603

Sets the maximum number of unique virtual writers supported by a
com.rti.dds.publication.DataWriter (p. 538), where virtual writers are
added when samples are written with the virtual writer GUID.

This field is specially relevant in the configuration of Persistence Service
DataWriters since these DataWriters will publish samples on behalf of multiple
virtual writers.

[default] ResourceLimitsQosPolicy.LENGTH UNLIMITED (p. 102)

[range] [1, 1000000], or ResourceLimitsQosPolicy.LENGTH -
UNLIMITED (p. 102)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

604 Class Documentation

8.52 DeadlineQosPolicy Class Reference

Expresses the maximum duration (deadline) within which an instance is ex-
pected to be updated.

Inheritance diagram for DeadlineQosPolicy::

Public Attributes

ˆ final Duration t period
Duration of the deadline period.

8.52.1 Detailed Description

Expresses the maximum duration (deadline) within which an instance is ex-
pected to be updated.

A com.rti.dds.subscription.DataReader (p. 473) expects a new sample up-
dating the value of each instance at least once every period. That is, period
specifies the maximum expected elapsed time between arriving data samples.

A com.rti.dds.publication.DataWriter (p. 538) indicates that
the application commits to write a new value (using the
com.rti.dds.publication.DataWriter (p. 538)) for each instance man-
aged by the com.rti.dds.publication.DataWriter (p. 538) at least once
every period.

This QoS can be used during system integration to ensure that applications
have been coded to meet design specifications.

It can also be used during run time to detect when systems are performing
outside of design specifications. Receiving applications can take appropriate
actions to prevent total system failure when data is not received in time. For
topics on which data is not expected to be periodic, period should be set to an
infinite value.

Entity:

com.rti.dds.topic.Topic (p. 1545), com.rti.dds.subscription.DataReader
(p. 473), com.rti.dds.publication.DataWriter (p. 538)

Status:

StatusKind.OFFERED DEADLINE MISSED STATUS (p. 1458),
StatusKind.REQUESTED DEADLINE MISSED STATUS

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.52 DeadlineQosPolicy Class Reference 605

(p. 1458), StatusKind.OFFERED INCOMPATIBLE QOS -
STATUS (p. 1459), StatusKind.REQUESTED INCOMPATIBLE -
QOS STATUS (p. 1459)

Properties:

RxO (p. 97) = YES
Changeable (p. 98) = YES (p. 98)

8.52.2 Usage

This policy is useful for cases where a com.rti.dds.topic.Topic (p. 1545) is
expected to have each instance updated periodically. On the publishing side
this setting establishes a contract that the application must meet. On the
subscribing side the setting establishes a minimum requirement for the remote
publishers that are expected to supply the data values.

When RTI Connext ’matches’ a com.rti.dds.publication.DataWriter
(p. 538) and a com.rti.dds.subscription.DataReader (p. 473) it
checks whether the settings are compatible (i.e., offered deadline
<= requested deadline); if they are not, the two entities are in-
formed (via the com.rti.dds.infrastructure.Listener (p. 1154) or
com.rti.dds.infrastructure.Condition (p. 451) mechanism) of the in-
compatibility of the QoS settings and communication will not occur.

Assuming that the reader and writer ends have compatible set-
tings, the fulfilment of this contract is monitored by RTI Con-
next and the application is informed of any violations by means
of the proper com.rti.dds.infrastructure.Listener (p. 1154) or
com.rti.dds.infrastructure.Condition (p. 451).

8.52.3 Compatibility

The value offered is considered compatible with the value requested if and only
if the inequality offered period <= requested period holds.

8.52.4 Consistency

The setting of the DEADLINE (p. 50) policy must be set consistently with
that of the TIME BASED FILTER (p. 113).

For these two policies to be consistent the settings must be such that deadline
period >= minimum separation.

An attempt to set these policies in an inconsistent manner will result in
RETCODE INCONSISTENT POLICY (p. 1367) in set qos (abstract)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

606 Class Documentation

(p. 913), or the com.rti.dds.infrastructure.Entity (p. 912) will not be cre-
ated.

For a com.rti.dds.subscription.DataReader (p. 473), the DEADLINE
(p. 50) policy and com.rti.dds.infrastructure.TimeBasedFilterQosPolicy
(p. 1541) may interact such that even though the
com.rti.dds.publication.DataWriter (p. 538) is writing sam-
ples fast enough to fulfill its commitment to its own dead-
line, the com.rti.dds.subscription.DataReader (p. 473)
may see violations of its deadline. This happens because
RTI Connext will drop any samples received within the
com.rti.dds.infrastructure.TimeBasedFilterQosPolicy.minimum -
separation (p. 1544). To avoid triggering the
com.rti.dds.subscription.DataReader (p. 473)’s deadline, even though
the matched com.rti.dds.publication.DataWriter (p. 538) is meeting its
own deadline, set the two QoS parameters so that:

reader deadline >= reader minimum separation + writer deadline

See com.rti.dds.infrastructure.TimeBasedFilterQosPolicy (p. 1541) for
more information about the interactions between deadlines and time-based fil-
ters.

See also:

com.rti.dds.infrastructure.TimeBasedFilterQosPolicy (p. 1541)

8.52.5 Member Data Documentation

8.52.5.1 final Duration t period

Duration of the deadline period.

[default] com.rti.dds.infrastructure.Duration t.INFINITE

[range] [1 nanosec, 1 year] or com.rti.dds.infrastructure.Duration t.INFINITE,
>= com.rti.dds.infrastructure.TimeBasedFilterQosPolicy.minimum -
separation (p. 1544)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.53 DestinationOrderQosPolicy Class Reference 607

8.53 DestinationOrderQosPolicy Class Refer-
ence

Controls how the middleware will deal with data sent by multiple
com.rti.dds.publication.DataWriter (p. 538) entities for the same instance
of data (i.e., same com.rti.dds.topic.Topic (p. 1545) and key).

Inheritance diagram for DestinationOrderQosPolicy::

Public Attributes

ˆ DestinationOrderQosPolicyKind kind

Specifies the desired kind of destination order.

ˆ final Duration t source timestamp tolerance

<<eXtension>> (p. 270) Allowed tolerance between source timestamps of
consecutive samples.

8.53.1 Detailed Description

Controls how the middleware will deal with data sent by multiple
com.rti.dds.publication.DataWriter (p. 538) entities for the same instance
of data (i.e., same com.rti.dds.topic.Topic (p. 1545) and key).

Entity:

com.rti.dds.topic.Topic (p. 1545), com.rti.dds.subscription.DataReader
(p. 473), com.rti.dds.publication.DataWriter (p. 538)

Status:

StatusKind.OFFERED INCOMPATIBLE QOS STATUS
(p. 1459), StatusKind.REQUESTED INCOMPATIBLE QOS -
STATUS (p. 1459)

Properties:

RxO (p. 97) = YES
Changeable (p. 98) = UNTIL ENABLE (p. 98)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

608 Class Documentation

8.53.2 Usage

When multiple DataWriters send data for the same topic (p. 350), the order
in which data from different DataWriters are received by the applications of
different DataReaders may be different. So different DataReaders may not
receive the same ”last” value when DataWriters stop sending data.

This QoS policy controls how each subscriber resolves the fi-
nal value of a data instance that is written by multiple
com.rti.dds.publication.DataWriter (p. 538) entities (which may be
associated with different com.rti.dds.publication.Publisher (p. 1277)
entities) running on different nodes.

The default setting, DestinationOrderQosPolicyKind.BY -
RECEPTION TIMESTAMP DESTINATIONORDER QOS (p. 610),
indicates that (assuming the OWNERSHIP STRENGTH (p. 84)
policy allows it) the latest received value for the instance should be
the one whose value is kept. That is, data will be delivered by a
com.rti.dds.subscription.DataReader (p. 473) in the order in which
it was received (which may lead to inconsistent final values).

The setting DestinationOrderQosPolicyKind.BY SOURCE -
TIMESTAMP DESTINATIONORDER QOS (p. 611) indicates that
(assuming the OWNERSHIP STRENGTH (p. 84) allows it, within
each instance) the source timestamp of the change shall be used to de-
termine the most recent information. That is, data will be delivered by a
com.rti.dds.subscription.DataReader (p. 473) in the order in which it was
sent . If data arrives on the network with a source timestamp that is later than
the source timestamp of the last data delivered, the new data will be dropped.
This ’by source timestamp’ ordering therefore works best when system clocks
are relatively synchronized among writing machines.

When using DestinationOrderQosPolicyKind.BY SOURCE -
TIMESTAMP DESTINATIONORDER QOS (p. 611), not all data
sent by multiple com.rti.dds.publication.DataWriter (p. 538) entities may
be delivered to a com.rti.dds.subscription.DataReader (p. 473) and not
all DataReaders will see the same data sent by DataWriters. However, all
DataReaders will see the same ”final” data when DataWriters ”stop” sending
data. This is the only setting that, in the case of concurrently publishing
com.rti.dds.publication.DataWriter (p. 538) entities updating the same
instance of a shared-ownership topic (p. 350), ensures all subscribers will end
up with the same final value for the instance.

This QoS can be used to create systems that have the property of ”eventual con-
sistency.” Thus intermediate states across multiple applications may be incon-
sistent, but when DataWriters stop sending changes to the same topic (p. 350),
all applications will end up having the same state.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.53 DestinationOrderQosPolicy Class Reference 609

8.53.3 Compatibility

The value offered is considered compatible with the value requested
if and only if the inequality offered kind >= requested kind evalu-
ates to ’TRUE’. For the purposes of this inequality, the values of
com.rti.dds.infrastructure.DestinationOrderQosPolicy.kind (p. 609)
are considered ordered such that DestinationOrderQosPolicyKind.BY -
RECEPTION TIMESTAMP DESTINATIONORDER QOS (p. 610)
< DestinationOrderQosPolicyKind.BY SOURCE TIMESTAMP -
DESTINATIONORDER QOS (p. 611)

8.53.4 Member Data Documentation

8.53.4.1 DestinationOrderQosPolicyKind kind

Specifies the desired kind of destination order.

[default] DestinationOrderQosPolicyKind.BY RECEPTION -
TIMESTAMP DESTINATIONORDER QOS (p. 610),

8.53.4.2 final Duration t source timestamp tolerance

<<eXtension>> (p. 270) Allowed tolerance between source timestamps of
consecutive samples.

When a com.rti.dds.publication.DataWriter (p. 538) sets
com.rti.dds.infrastructure.DestinationOrderQosPolicyKind (p. 610)
to DestinationOrderQosPolicyKind.BY SOURCE TIMESTAMP -
DESTINATIONORDER QOS (p. 611), when when writing a sample, its
timestamp must not be less than the timestamp of the previously written
sample. However, if it is less than the timestamp of the previously written
sample but the difference is less than this tolerance, the sample will use the
previously written sample’s timestamp as its timestamp. Otherwise, if the
difference is greater than this tolerance, the write will fail.

When a com.rti.dds.subscription.DataReader (p. 473) sets
com.rti.dds.infrastructure.DestinationOrderQosPolicyKind
(p. 610) to DestinationOrderQosPolicyKind.BY SOURCE -
TIMESTAMP DESTINATIONORDER QOS (p. 611), the
com.rti.dds.subscription.DataReader (p. 473) will accept a sample only if
the difference between its source timestamp and the reception timestamp is no
greater than this tolerance. Otherwise, the sample is rejected.

[default] 100 milliseconds for com.rti.dds.publication.DataWriter (p. 538),
30 seconds for com.rti.dds.subscription.DataReader (p. 473)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

610 Class Documentation

8.54 DestinationOrderQosPolicyKind Class
Reference

Kinds of destination order.

Inheritance diagram for DestinationOrderQosPolicyKind::

Static Public Attributes

ˆ static final DestinationOrderQosPolicyKind BY RECEPTION -
TIMESTAMP DESTINATIONORDER QOS

[default] Indicates that data is ordered based on the reception time at each
com.rti.dds.subscription.Subscriber (p. 1478).

ˆ static final DestinationOrderQosPolicyKind BY SOURCE -
TIMESTAMP DESTINATIONORDER QOS

Indicates that data is ordered based on a time-stamp placed at the source (by
RTI Connext or by the application).

8.54.1 Detailed Description

Kinds of destination order.

QoS:

com.rti.dds.infrastructure.DestinationOrderQosPolicy (p. 607)

8.54.2 Member Data Documentation

8.54.2.1 final DestinationOrderQosPolicyKind BY RECEPTION -
TIMESTAMP DESTINATIONORDER QOS
[static]

[default] Indicates that data is ordered based on the reception time at each
com.rti.dds.subscription.Subscriber (p. 1478).

Since each subscriber may receive the data at different times there is no guaran-
teed that the changes will be seen in the same order. Consequently, it is possible
for each subscriber to end up with a different final value for the data.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.54 DestinationOrderQosPolicyKind Class Reference 611

8.54.2.2 final DestinationOrderQosPolicyKind BY SOURCE -
TIMESTAMP DESTINATIONORDER QOS
[static]

Indicates that data is ordered based on a time-stamp placed at the source (by
RTI Connext or by the application).

In any case this guarantees a consistent final value for the data in all subscribers.

See also:

Special Instructions if Using ’Timestamp’ APIs and BY -
SOURCE TIMESTAMP Destination Ordering: (p. 1288)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

612 Class Documentation

8.55 DiscoveryBuiltinReaderFragmentationResourceLimits -
t Class Reference

Inherits Struct.

Public Member Functions

ˆ DiscoveryBuiltinReaderFragmentationResourceLimits t ()
ˆ DiscoveryBuiltinReaderFragmentationResourceLimits t (boolean

disable fragmentation support, int max fragmented samples, int
initial fragmented samples, int max fragmented samples per -
remote writer, int max fragments per sample, boolean dynami-
cally allocate fragmented samples)

Public Attributes

ˆ boolean disable fragmentation support = false
ˆ int max fragmented samples = 1024
ˆ int initial fragmented samples = 4
ˆ int max fragmented samples per remote writer = 256
ˆ int max fragments per sample = 512
ˆ boolean dynamically allocate fragmented samples = false

8.55.1 Detailed Description

DiscoveryBuiltinReaderFragmentationResourceLimits t (p. 612)

8.55.2 Constructor & Destructor Documentation

8.55.2.1 DiscoveryBuiltinReaderFragmentationResourceLimits t ()

DiscoveryBuiltinReaderFragmentationResourceLimits t new with no -
parameter

8.55.2.2 DiscoveryBuiltinReaderFragmentationResourceLimits t
(boolean disable fragmentation support, int
max fragmented samples, int initial fragmented samples,
int max fragmented samples per remote writer,
int max fragments per sample, boolean
dynamically allocate fragmented samples)

DiscoveryBuiltinReaderFragmentationResourceLimits t new with ints

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.55 DiscoveryBuiltinReaderFragmentationResourceLimits t Class
Reference 613

8.55.3 Member Data Documentation

8.55.3.1 boolean disable fragmentation support = false

DiscoveryBuiltinReaderFragmentationResourceLimits t disable -
fragmentation support

8.55.3.2 int max fragmented samples = 1024

DiscoveryBuiltinReaderFragmentationResourceLimits t max fragmented -
samples

8.55.3.3 int initial fragmented samples = 4

DiscoveryBuiltinReaderFragmentationResourceLimits t initial fragmented -
samples

8.55.3.4 int max fragmented samples per remote writer = 256

DiscoveryBuiltinReaderFragmentationResourceLimits t max fragmented -
samples per remote writer

8.55.3.5 int max fragments per sample = 512

DiscoveryBuiltinReaderFragmentationResourceLimits t max fragments per -
sample

8.55.3.6 boolean dynamically allocate fragmented samples = false

DiscoveryBuiltinReaderFragmentationResourceLimits t dynamically allocate -
fragmented samples

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

614 Class Documentation

8.56 DiscoveryConfigBuiltinPluginKind Class
Reference

Built-in discovery plugins that can be used.

Static Public Attributes

ˆ static final int SDP

Built-in discovery plugins that can be used.

ˆ static final int MASK NONE = 0
A bit-mask (list) of built-in discovery plugins.

ˆ static final int MASK ALL = 0xefff
A bit-mask (list) of built-in discovery plugins.

ˆ static final int MASK DEFAULT = SDP

8.56.1 Detailed Description

Built-in discovery plugins that can be used.

See also:

com.rti.dds.infrastructure.DiscoveryConfigBuiltinPluginKindMask

8.56.2 Member Data Documentation

8.56.2.1 final int MASK DEFAULT = SDP [static]

DiscoveryConfigBuiltinPluginKindMask.MASK DEFAULT

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.57 DiscoveryConfigQosPolicy Class Reference 615

8.57 DiscoveryConfigQosPolicy Class Reference

Settings for discovery configuration.

Inheritance diagram for DiscoveryConfigQosPolicy::

Public Attributes

ˆ final Duration t participant liveliness lease duration
The liveliness lease duration for the participant.

ˆ final Duration t participant liveliness assert period
The period to assert liveliness for the participant.

ˆ RemoteParticipantPurgeKind remote participant purge kind
The participant’s behavior for maintaining knowledge of remote participants
(and their contained entities) with which discovery communication has been
lost.

ˆ final Duration t max liveliness loss detection period
The maximum amount of time between when a remote entity stops maintain-
ing its liveliness and when the matched local entity realizes that fact.

ˆ int initial participant announcements
The number of initial announcements sent when a participant is first enabled
or when a remote participant is newly discovered.

ˆ final Duration t min initial participant announcement period
The minimum period between initial announcements when a participant is
first enabled or when a remote participant is newly discovered.

ˆ final Duration t max initial participant announcement period
The maximum period between initial announcements when a participant is
first enabled or when a remote participant is newly discovered.

ˆ final BuiltinTopicReaderResourceLimits t participant reader -
resource limits

Resource limits.

ˆ final BuiltinTopicReaderResourceLimits t publication reader -
resource limits

Resource limits.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

616 Class Documentation

ˆ final BuiltinTopicReaderResourceLimits t subscription reader -
resource limits

Resource limits.

ˆ final RtpsReliableWriterProtocol t publication writer

RTPS protocol-related configuration settings for a built-in publication
(p. 338) writer.

ˆ final WriterDataLifecycleQosPolicy publication writer data -
lifecycle

Writer data lifecycle settings for a built-in publication (p. 338) writer.

ˆ final RtpsReliableWriterProtocol t subscription writer

RTPS protocol-related configuration settings for a built-in subscription
(p. 343) writer.

ˆ final WriterDataLifecycleQosPolicy subscription writer data -
lifecycle

Writer data lifecycle settings for a built-in subscription (p. 343) writer.

ˆ final RtpsReliableReaderProtocol t publication reader

RTPS protocol-related configuration settings for a built-in publication
(p. 338) reader.

ˆ final RtpsReliableReaderProtocol t subscription reader

RTPS protocol-related configuration settings for a built-in subscription
(p. 343) reader.

ˆ int builtin discovery plugins

The kind mask for built-in discovery plugins.

ˆ final RtpsReliableReaderProtocol t participant message -
reader

RTPS protocol-related configuration settings for a built-in participant mes-
sage reader.

ˆ final RtpsReliableWriterProtocol t participant message writer

RTPS protocol-related configuration settings for a built-in participant mes-
sage writer.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.57 DiscoveryConfigQosPolicy Class Reference 617

8.57.1 Detailed Description

Settings for discovery configuration.

This QoS policy is an extension to the DDS standard.

This QoS policy controls the amount of delay in discovering entities in the
system and the amount of discovery traffic in the network.

The amount of network traffic required by the discovery process can vary widely,
based on how your application has chosen to configure the middleware’s network
addressing (e.g., unicast vs. multicast, multicast TTL, etc.), the size of the
system, whether all applications are started at the same time or whether start
times are staggered, and other factors. Your application can use this policy
to make tradeoffs between discovery completion time and network bandwidth
utilization. In addition, you can introduce random back-off periods into the
discovery process to decrease the probability of network contention when many
applications start simultaneously.

Entity:

com.rti.dds.domain.DomainParticipant (p. 629)

Properties:

RxO (p. 97) = N/A
Changeable (p. 98) = NO (p. 98)

8.57.2 Member Data Documentation

8.57.2.1 final Duration t participant liveliness lease duration

The liveliness lease duration for the participant.

This is the same as the expiration time of the DomainParticipant as defined in
the RTPS protocol.

If the participant has not refreshed its own liveliness to other participants at
least once within this period, it may be considered as stale by other participants
in the network.

Should be strictly greater than com.rti.dds.infrastructure.DiscoveryConfigQosPolicy.participant -
liveliness assert period (p. 618).

[default] 100 seconds

[range] [1 nanosec,1 year], > participant liveliness assert period

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

618 Class Documentation

8.57.2.2 final Duration t participant liveliness assert period

The period to assert liveliness for the participant.

The period at which the participant will refresh its liveliness to all the peers.

Should be strictly less than com.rti.dds.infrastructure.DiscoveryConfigQosPolicy.participant -
liveliness lease duration (p. 617).

[default] 30 seconds

[range] [1 nanosec,1 year), < participant liveliness lease duration

8.57.2.3 RemoteParticipantPurgeKind remote participant purge -
kind

The participant’s behavior for maintaining knowledge of remote participants
(and their contained entities) with which discovery communication has been
lost.

Most users will not need to change this value from its default,
com.rti.dds.infrastructure.RemoteParticipantPurgeKind.LIVELINESS -
BASED REMOTE PARTICIPANT PURGE (p. 1351). However,
com.rti.dds.infrastructure.RemoteParticipantPurgeKind.NO -
REMOTE PARTICIPANT PURGE (p. 1351) may be a good choice
if the following conditions apply:

1. Discovery communication with a remote participant may be lost while
data communication remains intact. Such will not typically be the case if
discovery takes place over the Simple Discovery Protocol, but may be the
case if the RTI Enterprise Discovery Service is used.

2. Extensive and prolonged lack of discovery communication between partic-
ipants is not expected to be common, either because participant loss itself
is expected to be rare, or because participants may be lost sporadically
but will typically return again.

3. Maintaining inter-participant liveliness is problematic, per-
haps because a participant has no writers with the appropriate
com.rti.dds.infrastructure.LivelinessQosPolicyKind (p. 1168).

[default] com.rti.dds.infrastructure.RemoteParticipantPurgeKind.LIVELINESS -
BASED REMOTE PARTICIPANT PURGE (p. 1351)

8.57.2.4 final Duration t max liveliness loss detection period

The maximum amount of time between when a remote entity stops maintaining
its liveliness and when the matched local entity realizes that fact.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.57 DiscoveryConfigQosPolicy Class Reference 619

Notification of the loss of liveliness of a remote entity may come more quickly
that this duration, depending on the liveliness contract between the local and
remote entities and the capabilities of the discovery mechanism in use. For
example, a com.rti.dds.subscription.DataReader (p. 473) will learn of the
loss of liveliness of a matched com.rti.dds.publication.DataWriter (p. 538)
within the reader’s offered liveliness lease duration.

Shortening this duration will increase the responsiveness of entities to communi-
cation failures. However, it will also increase the CPU usage of the application,
as the liveliness of remote entities will be examined more frequently.

[default] 60 seconds

[range] [0, 1 year]

8.57.2.5 int initial participant announcements

The number of initial announcements sent when a participant is first enabled
or when a remote participant is newly discovered.

Also, when a new remote participant appears, the local participant can announce
itself to the peers multiple times controlled by this parameter.

[default] 5

[range] [0,1 million]

8.57.2.6 final Duration t min initial participant announcement -
period

The minimum period between initial announcements when a participant is first
enabled or when a remote participant is newly discovered.

A random delay between this and com.rti.dds.infrastructure.DiscoveryConfigQosPolicy.max -
initial participant announcement period (p. 620) is introduced in between
initial announcements when a new remote participant is discovered.

The setting of com.rti.dds.infrastructure.DiscoveryConfigQosPolicy.min -
initial participant announcement period (p. 619) must be consistent with
com.rti.dds.infrastructure.DiscoveryConfigQosPolicy.max initial -
participant announcement period (p. 620). For these two values to be
consistent, they must verify that:

com.rti.dds.infrastructure.DiscoveryConfigQosPolicy.min -
initial participant announcement period (p. 619) <=
com.rti.dds.infrastructure.DiscoveryConfigQosPolicy.max initial -
participant announcement period (p. 620).

[default] 1 second

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

620 Class Documentation

[range] [1 nanosec,1 year]

8.57.2.7 final Duration t max initial participant announcement -
period

The maximum period between initial announcements when a participant is first
enabled or when a remote participant is newly discovered.

A random delay between com.rti.dds.infrastructure.DiscoveryConfigQosPolicy.min -
initial participant announcement period (p. 619) and this is introduced
in between initial announcements when a new remote participant is discovered.

The setting of com.rti.dds.infrastructure.DiscoveryConfigQosPolicy.max -
initial participant announcement period (p. 620) must be consistent with
com.rti.dds.infrastructure.DiscoveryConfigQosPolicy.min initial -
participant announcement period (p. 619). For these two values to be
consistent, they must verify that:

com.rti.dds.infrastructure.DiscoveryConfigQosPolicy.min -
initial participant announcement period (p. 619) <=
com.rti.dds.infrastructure.DiscoveryConfigQosPolicy.max initial -
participant announcement period (p. 620).

[default] 1 second

[range] [1 nanosec,1 year]

8.57.2.8 final BuiltinTopicReaderResourceLimits t
participant reader resource limits

Resource limits.

Resource limit of the built-in topic (p. 350) participant reader. For details,
see com.rti.dds.infrastructure.BuiltinTopicReaderResourceLimits t
(p. 414).

8.57.2.9 final BuiltinTopicReaderResourceLimits t
publication reader resource limits

Resource limits.

Resource limit of the built-in topic (p. 350) pub-
lication (p. 338) reader. For details, see
com.rti.dds.infrastructure.BuiltinTopicReaderResourceLimits t
(p. 414).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.57 DiscoveryConfigQosPolicy Class Reference 621

8.57.2.10 final BuiltinTopicReaderResourceLimits t
subscription reader resource limits

Resource limits.

Resource limit of the built-in topic (p. 350) sub-
scription (p. 343) reader. For details, see
com.rti.dds.infrastructure.BuiltinTopicReaderResourceLimits t
(p. 414).

8.57.2.11 final RtpsReliableWriterProtocol t publication writer

RTPS protocol-related configuration settings for a built-in publication (p. 338)
writer.

For details, refer to the com.rti.dds.publication.DataWriterQos (p. 588)

8.57.2.12 final WriterDataLifecycleQosPolicy
publication writer data lifecycle

Writer data lifecycle settings for a built-in publication (p. 338) writer.

For details, refer to the com.rti.dds.infrastructure.WriterDataLifecycleQosPolicy
(p. 1722). com.rti.dds.infrastructure.WriterDataLifecycleQosPolicy.autodispose -
unregistered instances (p. 1723) will always be forced to true.

8.57.2.13 final RtpsReliableWriterProtocol t subscription writer

RTPS protocol-related configuration settings for a built-in subscription
(p. 343) writer.

For details, refer to the com.rti.dds.publication.DataWriterQos (p. 588)

8.57.2.14 final WriterDataLifecycleQosPolicy
subscription writer data lifecycle

Writer data lifecycle settings for a built-in subscription (p. 343) writer.

For details, refer to the com.rti.dds.infrastructure.WriterDataLifecycleQosPolicy
(p. 1722). com.rti.dds.infrastructure.WriterDataLifecycleQosPolicy.autodispose -
unregistered instances (p. 1723) will always be forced to true.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

622 Class Documentation

8.57.2.15 final RtpsReliableReaderProtocol t publication reader

RTPS protocol-related configuration settings for a built-in publication (p. 338)
reader.

For details, refer to the com.rti.dds.subscription.DataReaderQos (p. 518)

8.57.2.16 final RtpsReliableReaderProtocol t subscription reader

RTPS protocol-related configuration settings for a built-in subscription
(p. 343) reader.

For details, refer to the com.rti.dds.subscription.DataReaderQos (p. 518)

8.57.2.17 int builtin discovery plugins

Initial value:

DiscoveryConfigBuiltinPluginKind.MASK_DEFAULT

The kind mask for built-in discovery plugins.

There are several built-in discovery plugin. This mask enables the different
plugins. Any plugin not enabled will not be created.

[default] DiscoveryConfigBuiltinPluginKind.SDP (p. 53)

8.57.2.18 final RtpsReliableReaderProtocol t
participant message reader

RTPS protocol-related configuration settings for a built-in participant message
reader.

For details, refer to the com.rti.dds.subscription.DataReaderQos (p. 518)

8.57.2.19 final RtpsReliableWriterProtocol t
participant message writer

RTPS protocol-related configuration settings for a built-in participant message
writer.

For details, refer to the com.rti.dds.publication.DataWriterQos (p. 588)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.58 DiscoveryPluginPromiscuityKind Class Reference 623

8.58 DiscoveryPluginPromiscuityKind Class
Reference

<<eXtension>> (p. 270) Type used to indicate promiscuity mode of the dis-
covery plugin.

Inheritance diagram for DiscoveryPluginPromiscuityKind::

8.58.1 Detailed Description

<<eXtension>> (p. 270) Type used to indicate promiscuity mode of the dis-
covery plugin.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

624 Class Documentation

8.59 DiscoveryQosPolicy Class Reference

Configures the mechanism used by the middleware to automatically discover
and connect with new remote applications.

Inheritance diagram for DiscoveryQosPolicy::

Public Attributes

ˆ final StringSeq enabled transports

The transports available for use by the Discovery mechanism.

ˆ final StringSeq multicast receive addresses

Specifies the multicast group addresses on which discovery-related meta-
traffic can be received by the DomainParticipant.

ˆ int metatraffic transport priority

The transport priority to use for the Discovery meta-traffic.

ˆ final StringSeq initial peers

Determines the initial list of peers that will be contacted by the Discovery
mechanism to send announcements about the presence of this participant.

ˆ boolean accept unknown peers

Whether to accept a new participant that is not in the initial peers list.

8.59.1 Detailed Description

Configures the mechanism used by the middleware to automatically discover
and connect with new remote applications.

Entity:

com.rti.dds.domain.DomainParticipant (p. 629)

Properties:

RxO (p. 97) = N/A
Changeable (p. 98) = NO (p. 98)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.59 DiscoveryQosPolicy Class Reference 625

8.59.2 Usage

This QoS policy identifies where on the network this application can potentially
discover other applications with which to communicate.

The middleware will periodically send network packets to these locations, an-
nouncing itself to any remote applications that may be present, and will listen
for announcements from those applications.

This QoS policy is an extension to the DDS standard.

See also:

NDDS DISCOVERY PEERS (p. 55)
com.rti.dds.infrastructure.DiscoveryConfigQosPolicy (p. 615)

8.59.3 Member Data Documentation

8.59.3.1 final StringSeq enabled transports

The transports available for use by the Discovery mechanism.

Only these transports can be used by the discovery mech-
anism to send meta-traffic via the builtin endpoints (built-
in com.rti.dds.subscription.DataReader (p. 473) and
com.rti.dds.publication.DataWriter (p. 538)).

Also determines the unicast addresses on which the Discovery mechanism will
listen for meta-traffic. These along with the domain id and participant id
determine the unicast locators on which the Discovery mechanism can receive
meta-data.

Alias names for the builtin transports are defined in TRANSPORT -
BUILTIN (p. 115).

[default] Empty sequence. All the transports available to the DomainPartici-
pant are available for use by the Discovery mechanism.

[range] Sequence of non-null,non-empty strings.

8.59.3.2 final StringSeq multicast receive addresses

Initial value:

new StringSeq()

Specifies the multicast group addresses on which discovery-related meta-traffic
can be received by the DomainParticipant.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

626 Class Documentation

The multicast group addresses on which the Discovery mechanism will listen for
meta-traffic.

Each element of this list must be a valid multicast address (IPv4 or IPv6) in
the proper format (see Address Format (p. 57)).

The domain id determines the multicast port on which the Discovery mecha-
nism can receive meta-data.

If NDDS DISCOVERY PEERS does not contain
a multicast address, then the string sequence
com.rti.dds.infrastructure.DiscoveryQosPolicy.multicast receive -
addresses (p. 625) is cleared and the RTI discovery process will not listen for
discovery messages via multicast.

If NDDS DISCOVERY PEERS contains one or more
multicast addresses, the addresses will be stored in
com.rti.dds.infrastructure.DiscoveryQosPolicy.multicast receive -
addresses (p. 625), starting at element 0. They will be stored in the order
they appear NDDS DISCOVERY PEERS.

Note: Currently, RTI Connext will only listen for discov-
ery traffic on the first multicast address (element 0) in
com.rti.dds.infrastructure.DiscoveryQosPolicy.multicast receive -
addresses (p. 625).

[default] See NDDS DISCOVERY PEERS (p. 55)

[range] Sequence of length [0,1], whose elements are multicast addresses. Cur-
rently only the first multicast address (if any) is used. The rest are ignored.

See also:

Address Format (p. 57)

8.59.3.3 int metatraffic transport priority

The transport priority to use for the Discovery meta-traffic.

The discovery metatraffic will be sent by the built-in
com.rti.dds.publication.DataWriter (p. 538) using this transport pri-
ority.

[default] 0

8.59.3.4 final StringSeq initial peers

Determines the initial list of peers that will be contacted by the Discovery
mechanism to send announcements about the presence of this participant.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.59 DiscoveryQosPolicy Class Reference 627

If there is a remote peer com.rti.dds.domain.DomainParticipant (p. 629)
such as is described in this list, it will become aware of this participant and will
engage in the Discovery protocol to exchange meta-data with this participant.

Each element of this list must be a peer descriptor in the proper format (see
Peer Descriptor Format (p. 56)).

[default] See NDDS DISCOVERY PEERS (p. 55)

[range] Sequence of arbitrary length.

See also:

Peer Descriptor Format (p. 56)
com.rti.dds.domain.DomainParticipant.add peer() (p. 692)

8.59.3.5 boolean accept unknown peers

Whether to accept a new participant that is not in the initial peers list.

If false, the participant will only communicate with those in the initial peers list
and those added via com.rti.dds.domain.DomainParticipant.add peer()
(p. 692).

If true, the participant will also communicate with all discovered remote partic-
ipants.

Note: If accept unknown peers is false and shared memory is disabled, applica-
tions on the same node will not communicate if only ’localhost’ is specified in
the peers list. If shared memory is disabled or ’shmem://’ is not specified in the
peers list, to communicate with other applications on the same node through
the loopback interface, you must put the actual node address or hostname in
NDDS DISCOVERY PEERS (p. 55).

[default] true

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

628 Class Documentation

8.60 DomainEntity Interface Reference

<<interface>> (p. 271) Abstract base class for all DDS entities except for
the com.rti.dds.domain.DomainParticipant (p. 629).

Inheritance diagram for DomainEntity::

8.60.1 Detailed Description

<<interface>> (p. 271) Abstract base class for all DDS entities except for
the com.rti.dds.domain.DomainParticipant (p. 629).

Its sole purpose is to conceptually express that
com.rti.dds.domain.DomainParticipant (p. 629) is a special kind of
com.rti.dds.infrastructure.Entity (p. 912) that acts as a container of all
other com.rti.dds.infrastructure.Entity (p. 912) but itself cannot contain
other com.rti.dds.domain.DomainParticipant (p. 629).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.61 DomainParticipant Interface Reference 629

8.61 DomainParticipant Interface Reference

<<interface>> (p. 271) Container for all
com.rti.dds.infrastructure.DomainEntity (p. 628) objects.

Inheritance diagram for DomainParticipant::

Public Member Functions

ˆ void get default flowcontroller property (FlowControllerProp-
erty t prop)

<<eXtension>> (p. 270) Copies the default
com.rti.dds.publication.FlowControllerProperty t (p. 946)
values for this domain (p. 317) participant into the given
com.rti.dds.publication.FlowControllerProperty t (p. 946) instance.

ˆ void set default flowcontroller property (FlowControllerProp-
erty t prop)

<<eXtension>> (p. 270) Set the default
com.rti.dds.publication.FlowControllerProperty t (p. 946) values
for this domain (p. 317) participant.

ˆ void get default topic qos (TopicQos qos)
Copies the default com.rti.dds.topic.TopicQos (p. 1566) values for this
domain (p. 317) participant into the given com.rti.dds.topic.TopicQos
(p. 1566) instance.

ˆ void set default topic qos (TopicQos qos)
Set the default com.rti.dds.topic.TopicQos (p. 1566) values for this do-
main (p. 317) participant.

ˆ void set default topic qos with profile (String library name, String
profile name)

<<eXtension>> (p. 270) Set the default com.rti.dds.topic.TopicQos
(p. 1566) values for this domain (p. 317) participant based on the input
XML QoS profile.

ˆ void get default publisher qos (PublisherQos qos)
Copy the default com.rti.dds.publication.PublisherQos (p. 1303) val-
ues into the provided com.rti.dds.publication.PublisherQos (p. 1303) in-
stance.

ˆ void set default publisher qos (PublisherQos qos)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

630 Class Documentation

Set the default com.rti.dds.publication.PublisherQos (p. 1303) values for
this DomainParticipant (p. 629).

ˆ void set default publisher qos with profile (String library name,
String profile name)

<<eXtension>> (p. 270) Set the default
com.rti.dds.publication.PublisherQos (p. 1303) values for this Do-
mainParticipant (p. 629) based on the input XML QoS profile.

ˆ void get default datawriter qos (DataWriterQos qos)
<<eXtension>> (p. 270) Copy the default
com.rti.dds.publication.DataWriterQos (p. 588) values into the
provided com.rti.dds.publication.DataWriterQos (p. 588) instance.

ˆ void set default datawriter qos (DataWriterQos qos)
<<eXtension>> (p. 270) Set the default DataWriterQos values for this
DomainParticipant (p. 629).

ˆ void set default datawriter qos with profile (String library name,
String profile name)

<<eXtension>> (p. 270) Set the default
com.rti.dds.publication.DataWriterQos (p. 588) values for this
domain (p. 317) participant based on the input XML QoS profile.

ˆ void get default datareader qos (DataReaderQos qos)
<<eXtension>> (p. 270) Copy the default
com.rti.dds.subscription.DataReaderQos (p. 518) values into the
provided com.rti.dds.subscription.DataReaderQos (p. 518) instance.

ˆ void set default subscriber qos (SubscriberQos qos)
Set the default com.rti.dds.subscription.SubscriberQos (p. 1506) values
for this Domain{articipant.

ˆ void set default subscriber qos with profile (String library name,
String profile name)

<<eXtension>> (p. 270) Set the default
com.rti.dds.subscription.SubscriberQos (p. 1506) values for this
DomainParticipant (p. 629) based on the input XML QoS profile.

ˆ void get default subscriber qos (SubscriberQos qos)
Copy the default com.rti.dds.subscription.SubscriberQos (p. 1506) val-
ues into the provided com.rti.dds.subscription.SubscriberQos (p. 1506)
instance.

ˆ void set default datareader qos (DataReaderQos qos)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.61 DomainParticipant Interface Reference 631

<<eXtension>> (p. 270) Set the default
com.rti.dds.subscription.DataReaderQos (p. 518) values for this
domain (p. 317) participant.

ˆ void set default datareader qos with profile (String library name,
String profile name)

<<eXtension>> (p. 270) Set the default
com.rti.dds.subscription.DataReaderQos (p. 518) values for this
DomainParticipant (p. 629) based on the input XML QoS profile.

ˆ FlowController create flowcontroller (String name, FlowCon-
trollerProperty t prop)

<<eXtension>> (p. 270) Creates a com.rti.dds.publication.FlowController
(p. 942) with the desired property.

ˆ void delete flowcontroller (FlowController fc)
<<eXtension>> (p. 270) Deletes an existing
com.rti.dds.publication.FlowController (p. 942).

ˆ Publisher create publisher (PublisherQos qos, PublisherListener
listener, int mask)

Creates a com.rti.dds.publication.Publisher (p. 1277) with
the desired QoS policies and attaches to it the specified
com.rti.dds.publication.PublisherListener (p. 1302).

ˆ Publisher create publisher with profile (String library name, String
profile name, PublisherListener listener, int mask)

<<eXtension>> (p. 270) Creates a new
com.rti.dds.publication.Publisher (p. 1277) object using the
com.rti.dds.publication.PublisherQos (p. 1303) associated with the
input XML QoS profile.

ˆ void delete publisher (Publisher p)
Deletes an existing com.rti.dds.publication.Publisher (p. 1277).

ˆ Subscriber create subscriber (SubscriberQos qos, SubscriberLis-
tener listener, int mask)

Creates a com.rti.dds.subscription.Subscriber (p. 1478)
with the desired QoS policies and attaches to it the specified
com.rti.dds.subscription.SubscriberListener (p. 1504).

ˆ Subscriber create subscriber with profile (String library name,
String profile name, SubscriberListener listener, int mask)

<<eXtension>> (p. 270) Creates a new
com.rti.dds.subscription.Subscriber (p. 1478) object using the

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

632 Class Documentation

com.rti.dds.publication.PublisherQos (p. 1303) associated with the
input XML QoS profile.

ˆ void delete subscriber (Subscriber s)

Deletes an existing com.rti.dds.subscription.Subscriber (p. 1478).

ˆ DataWriter create datawriter (Topic topic, DataWriterQos qos,
DataWriterListener listener, int mask)

<<eXtension>> (p. 270) Creates a com.rti.dds.publication.DataWriter
(p. 538) that will be attached and belong to the implicit
com.rti.dds.publication.Publisher (p. 1277).

ˆ DataWriter create datawriter with profile (Topic topic, String li-
brary name, String profile name, DataWriterListener listener, int
mask)

<<eXtension>> (p. 270) Creates a com.rti.dds.publication.DataWriter
(p. 538) using a XML QoS profile that will be attached and belong to the
implicit com.rti.dds.publication.Publisher (p. 1277).

ˆ void delete datawriter (DataWriter a datawriter)

<<eXtension>> (p. 270) Deletes a com.rti.dds.publication.DataWriter
(p. 538) that belongs to the implicit com.rti.dds.publication.Publisher
(p. 1277).

ˆ DataReader create datareader (TopicDescription topic,
DataReaderQos qos, DataReaderListener listener, int mask)

<<eXtension>> (p. 270) Creates a com.rti.dds.subscription.DataReader
(p. 473) that will be attached and belong to the implicit
com.rti.dds.subscription.Subscriber (p. 1478).

ˆ DataReader create datareader with profile (TopicDescription
topic, String library name, String profile name, DataReaderListener
listener, int mask)

<<eXtension>> (p. 270) Creates a com.rti.dds.subscription.DataReader
(p. 473) using a XML QoS profile that will be attached and belong to the
implicit com.rti.dds.subscription.Subscriber (p. 1478).

ˆ void delete datareader (DataReader a datareader)

<<eXtension>> (p. 270) Deletes a com.rti.dds.subscription.DataReader
(p. 473) that belongs to the implicit com.rti.dds.subscription.Subscriber
(p. 1478).

ˆ Topic create topic (String topic name, String type name, TopicQos
qos, TopicListener listener, int mask)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.61 DomainParticipant Interface Reference 633

Creates a com.rti.dds.topic.Topic (p. 1545) with the desired QoS policies
and attaches to it the specified com.rti.dds.topic.TopicListener (p. 1564).

ˆ Topic create topic with profile (String topic name, String type name,
String library name, String profile name, TopicListener listener, int
mask)

<<eXtension>> (p. 270) Creates a new com.rti.dds.topic.Topic
(p. 1545) object using the com.rti.dds.publication.PublisherQos
(p. 1303) associated with the input XML QoS profile.

ˆ void delete topic (Topic topic)
Deletes a com.rti.dds.topic.Topic (p. 1545).

ˆ ContentFilteredTopic create contentfilteredtopic (String name,
Topic related topic, String filter expression, StringSeq expression -
parameters)

Creates a com.rti.dds.topic.ContentFilteredTopic (p. 458), that can be
used to do content-based subscriptions.

ˆ ContentFilteredTopic create contentfilteredtopic with filter
(String name, Topic related topic, String filter expression, StringSeq
expression parameters, String filter name)

<<eXtension>> (p. 270) Creates a com.rti.dds.topic.ContentFilteredTopic
(p. 458) using the specified filter to do content-based subscriptions.

ˆ void delete contentfilteredtopic (ContentFilteredTopic a -
contentfilteredtopic)

Deletes a com.rti.dds.topic.ContentFilteredTopic (p. 458).

ˆ MultiTopic create multitopic (String name, String type name, String
subscription expression, StringSeq expression parameters)

[Not supported (optional)] Creates a MultiTopic that can be used to sub-
scribe to multiple topics and combine/filter the received data into a resulting
type.

ˆ void delete multitopic (MultiTopic a multitopic)
[Not supported (optional)] Deletes a com.rti.dds.topic.MultiTopic
(p. 1208).

ˆ void set qos (DomainParticipantQos qos)
Change the QoS of this DomainParticipant (p. 629).

ˆ void set qos with profile (String library name, String profile name)
<<eXtension>> (p. 270) Change the QoS of this domain (p. 317) partic-
ipant using the input XML QoS profile.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

634 Class Documentation

ˆ void get qos (DomainParticipantQos qos)
Get the participant QoS.

ˆ String get default library ()
<<eXtension>> (p. 270) Gets the default XML library associated with a
com.rti.dds.domain.DomainParticipant (p. 629).

ˆ void set default library (String library name)
<<eXtension>> (p. 270) Sets the default XML library for a
com.rti.dds.domain.DomainParticipant (p. 629).

ˆ String get default profile ()
<<eXtension>> (p. 270) Gets the default XML profile associated with a
com.rti.dds.domain.DomainParticipant (p. 629).

ˆ void set default profile (String library name, String profile name)
<<eXtension>> (p. 270) Sets the default XML profile for a
com.rti.dds.domain.DomainParticipant (p. 629).

ˆ String get default profile library ()
<<eXtension>> (p. 270) Gets the library where the default XML QoS pro-
file is contained for a com.rti.dds.domain.DomainParticipant (p. 629).

ˆ void set listener (DomainParticipantListener l, int mask)
Sets the participant listener.

ˆ DomainParticipantListener get listener ()
Get the participant listener.

ˆ void get publishers (PublisherSeq publishers)
<<eXtension>> (p. 270) Allows the application to access all the publishers
the participant has.

ˆ void get subscribers (SubscriberSeq subscribers)
<<eXtension>> (p. 270) Allows the application to access all the sub-
scribers the participant has.

ˆ Subscriber get builtin subscriber ()
Accesses the built-in com.rti.dds.subscription.Subscriber (p. 1478).

ˆ FlowController lookup flowcontroller (String name)
<<eXtension>> (p. 270) Looks up an existing locally-created
com.rti.dds.publication.FlowController (p. 942), based on its name.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.61 DomainParticipant Interface Reference 635

ˆ Topic find topic (String topic name, Duration t timeout)
Finds an existing (or ready to exist) com.rti.dds.topic.Topic (p. 1545),
based on its name.

ˆ TopicDescription lookup topicdescription (String topic name)
Looks up an existing, locally created com.rti.dds.topic.TopicDescription
(p. 1561), based on its name.

ˆ void ignore participant (InstanceHandle t handle)
Instructs RTI Connext to locally ignore a remote
com.rti.dds.domain.DomainParticipant (p. 629).

ˆ void ignore topic (InstanceHandle t handle)
Instructs RTI Connext to locally ignore a com.rti.dds.topic.Topic
(p. 1545).

ˆ void ignore publication (InstanceHandle t handle)
Instructs RTI Connext to locally ignore a publication (p. 338).

ˆ void ignore subscription (InstanceHandle t handle)
Instructs RTI Connext to locally ignore a subscription (p. 343).

ˆ int get domain id ()
Get the unique domain (p. 317) identifier.

ˆ void assert liveliness ()
Manually asserts the liveliness of this
com.rti.dds.domain.DomainParticipant (p. 629).

ˆ void delete contained entities ()
Delete all the entities that were created by means of the ”create” operations
on the com.rti.dds.domain.DomainParticipant (p. 629).

ˆ void add peer (String peer desc string)
<<eXtension>> (p. 270) Attempt to contact one or more additional peer
participants.

ˆ void remove peer (String peer desc string)
<<eXtension>> (p. 270) Remove one or more peer participants from
the list of peers with which this com.rti.dds.domain.DomainParticipant
(p. 629) will try to communicate.

ˆ void get current time (Time t current time)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

636 Class Documentation

Returns the current value of the time.

ˆ void get discovered participants (InstanceHandleSeq participant -
handles)

Returns list of discovered com.rti.dds.domain.DomainParticipant
(p. 629) s.

ˆ void get discovered participant data (ParticipantBuiltinTopic-
Data participant data, InstanceHandle t participant handle)

Returns builtin.ParticipantBuiltinTopicData (p. 1227) for the specified
com.rti.dds.domain.DomainParticipant (p. 629) .

ˆ void get discovered topics (InstanceHandleSeq topic handles)
Returns list of discovered com.rti.dds.topic.Topic (p. 1545) objects.

ˆ void get discovered topic data (TopicBuiltinTopicData topic data,
InstanceHandle t topic handle)

Returns builtin.TopicBuiltinTopicData for the specified
com.rti.dds.topic.Topic (p. 1545).

ˆ boolean contains entity (InstanceHandle t a handle)
Completes successfully with true if the referenced
com.rti.dds.infrastructure.Entity (p. 912) is contained by the
com.rti.dds.domain.DomainParticipant (p. 629).

ˆ void register contentfilter (String filter name, ContentFilter content-
filter)

<<eXtension>> (p. 270) Register a content filter which can be used to
create a com.rti.dds.topic.ContentFilteredTopic (p. 458).

ˆ ContentFilter lookup contentfilter (String filter name)
<<eXtension>> (p. 270) Lookup a content filter previously registered
with com.rti.dds.domain.DomainParticipant.register contentfilter
(p. 698).

ˆ void unregister contentfilter (String filter name)
<<eXtension>> (p. 270) Unregister a content filter previously registered
with com.rti.dds.domain.DomainParticipant.register contentfilter
(p. 698).

ˆ Publisher get implicit publisher ()
<<eXtension>> (p. 270) Returns the implicit
com.rti.dds.publication.Publisher (p. 1277). If an implicit Publisher
does not already exist, this creates one.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.61 DomainParticipant Interface Reference 637

ˆ Subscriber get implicit subscriber ()
<<eXtension>> (p. 270) Returns the implicit
com.rti.dds.subscription.Subscriber (p. 1478). If an implicit Sub-
scriber does not already exist, this creates one.

Static Public Attributes

ˆ static final TopicQos TOPIC QOS DEFAULT = new TopicQos()
Special value for creating a com.rti.dds.topic.Topic (p. 1545) with default
QoS.

ˆ static final PublisherQos PUBLISHER QOS DEFAULT = new
PublisherQos()

Special value for creating a com.rti.dds.publication.Publisher (p. 1277)
with default QoS.

ˆ static final SubscriberQos SUBSCRIBER QOS DEFAULT
Special value for creating a com.rti.dds.subscription.Subscriber (p. 1478)
with default QoS.

ˆ static final FlowControllerProperty t FLOW CONTROLLER -
PROPERTY DEFAULT

<<eXtension>> (p. 270) Special value for creating a
com.rti.dds.publication.FlowController (p. 942) with default prop-
erty.

ˆ static final String SQLFILTER NAME
<<eXtension>> (p. 270) The name of the built-in SQL filter that can be
used with ContentFilteredTopics and MultiChannel DataWriters.

ˆ static final String STRINGMATCHFILTER NAME
<<eXtension>> (p. 270) The name of the built-in StringMatch filter that
can be used with ContentFilteredTopics and MultiChannel DataWriters.

8.61.1 Detailed Description

<<interface>> (p. 271) Container for all
com.rti.dds.infrastructure.DomainEntity (p. 628) objects.

The DomainParticipant (p. 629) object plays several roles:

- It acts as a container for all other com.rti.dds.infrastructure.Entity
(p. 912) objects.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

638 Class Documentation

- It acts as factory for the com.rti.dds.publication.Publisher
(p. 1277), com.rti.dds.subscription.Subscriber (p. 1478),
com.rti.dds.topic.Topic (p. 1545) and com.rti.dds.topic.MultiTopic
(p. 1208) com.rti.dds.infrastructure.Entity (p. 912) objects.

- It represents the participation of the application on a communication plane
that isolates applications running on the same set of physical computers from
each other. A domain (p. 317) establishes a virtual network linking all ap-
plications that share the same domainId and isolating them from applications
running on different domains. In this way, several independent distributed ap-
plications can coexist in the same physical network without interfering, or even
being aware of each other.

- It provides administration services in the domain (p. 317), offering
operations that allow the application to ignore locally any information
about a given participant (ignore participant() (p. 686)), publication
(p. 338) (ignore publication() (p. 688)), subscription (p. 343) (ignore -
subscription() (p. 689)) or topic (p. 350) (ignore topic() (p. 687)).

The following operations may be called even if the
com.rti.dds.domain.DomainParticipant (p. 629) is not enabled. (Op-
erations NOT in this list will fail with the value RETCODE NOT ENABLED
if called on a disabled DomainParticipant (p. 629)).

ˆ Operations defined at the base-class level: set qos() (p. 677), set -
qos with profile() (p. 678), get qos() (p. 679), set listener() (p. 682),
get listener() (p. 682), enable() (p. 915);

ˆ Factory operations: create flowcontroller() (p. 654), create -
topic() (p. 670), create topic with profile() (p. 671), create -
publisher() (p. 656), create publisher with profile() (p. 657), cre-
ate subscriber() (p. 659), create subscriber with profile() (p. 660),
delete flowcontroller() (p. 655), delete topic() (p. 673), delete -
publisher() (p. 658), delete subscriber() (p. 661), set default -
flowcontroller property() (p. 640), get default flowcontroller -
property() (p. 639), set default topic qos() (p. 642), set default -
topic qos with profile() (p. 642), get default topic qos() (p. 641),
set default publisher qos() (p. 644), set default publisher -
qos with profile() (p. 645), get default publisher qos() (p. 644),
set default subscriber qos() (p. 649), set default subscriber -
qos with profile() (p. 650), get default subscriber qos() (p. 652),
delete contained entities() (p. 691), set default datareader qos()
(p. 652), set default datareader qos with profile() (p. 653), get -
default datareader qos() (p. 649), set default datawriter qos()
(p. 647), set default datawriter qos with profile() (p. 648), get -
default datawriter qos() (p. 647), set default library() (p. 679),
set default profile() (p. 680);

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.61 DomainParticipant Interface Reference 639

ˆ Operations for looking up topics: lookup topicdescription() (p. 686);

ˆ Operations that access status: get statuscondition() (p. 917), get -
status changes() (p. 917).

QoS:

com.rti.dds.domain.DomainParticipantQos (p. 736)

Status:

Status Kinds (p. 106)

Listener:

com.rti.dds.domain.DomainParticipantListener (p. 734)

See also:

Operations Allowed in Listener Callbacks (p. 1156)

8.61.2 Member Function Documentation

8.61.2.1 void get default flowcontroller property
(FlowControllerProperty t prop)

<<eXtension>> (p. 270) Copies the default
com.rti.dds.publication.FlowControllerProperty t (p. 946)
values for this domain (p. 317) participant into the given
com.rti.dds.publication.FlowControllerProperty t (p. 946) instance.

The retrieved property will match the set of values specified on the last
successful call to com.rti.dds.domain.DomainParticipant.set default -
flowcontroller property (p. 640), or else, if the call was never made, the de-
fault values listed in com.rti.dds.publication.FlowControllerProperty t
(p. 946).

MT Safety:

UNSAFE. It is not safe to retrieve the default flow controller properties
from a DomainParticipant (p. 629) while another thread may be simulta-
neously calling com.rti.dds.domain.DomainParticipant.set default -
flowcontroller property (p. 640)

Parameters:

prop <<in>> (p. 271) Default property to be retrieved. Cannot be
NULL.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

640 Class Documentation

Exceptions:

One of the Standard Return Codes (p. 104)

See also:

DomainParticipant.FLOW CONTROLLER PROPERTY -
DEFAULT (p. 150)
com.rti.dds.domain.DomainParticipant.create flowcontroller
(p. 654)

8.61.2.2 void set default flowcontroller property
(FlowControllerProperty t prop)

<<eXtension>> (p. 270) Set the default
com.rti.dds.publication.FlowControllerProperty t (p. 946) values
for this domain (p. 317) participant.

This default value will be used for newly created
com.rti.dds.publication.FlowController (p. 942) if Do-
mainParticipant.FLOW CONTROLLER PROPERTY -
DEFAULT (p. 150) is specified as the property parameter when
com.rti.dds.domain.DomainParticipant.create flowcontroller (p. 654)
is called.

Precondition:

The specified property values must be consistent, or else the operation will
have no effect and fail with RETCODE INCONSISTENT POLICY

MT Safety:

UNSAFE. It is not safe to set the default flow controller properties for
a DomainParticipant (p. 629) while another thread may be simul-
taneously calling com.rti.dds.domain.DomainParticipant.set -
default flowcontroller property (p. 640) ,
com.rti.dds.domain.DomainParticipant.get -
default flowcontroller property (p. 639) or calling
com.rti.dds.domain.DomainParticipant.create flowcontroller
(p. 654) with DomainParticipant.FLOW CONTROLLER -
PROPERTY DEFAULT (p. 150) as the qos parameter.

Parameters:

prop <<in>> (p. 271) Default property to be set. The special value
DomainParticipant.FLOW CONTROLLER PROPERTY -
DEFAULT (p. 150) may be passed as property to indicate that

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.61 DomainParticipant Interface Reference 641

the default property should be reset to the default values the factory
would use if com.rti.dds.domain.DomainParticipant.set -
default flowcontroller property (p. 640) had never been called.
Cannot be NULL.

Exceptions:

One of the Standard Return Codes (p. 104), or RETCODE -
INCONSISTENT POLICY

See also:

DomainParticipant.FLOW CONTROLLER PROPERTY -
DEFAULT (p. 150)
com.rti.dds.domain.DomainParticipant.create flowcontroller
(p. 654)

8.61.2.3 void get default topic qos (TopicQos qos)

Copies the default com.rti.dds.topic.TopicQos (p. 1566) values for this
domain (p. 317) participant into the given com.rti.dds.topic.TopicQos
(p. 1566) instance.

The retrieved qos will match the set of values specified on the last success-
ful call to com.rti.dds.domain.DomainParticipant.set default topic qos
(p. 642), or else, if the call was never made, the default values listed in
com.rti.dds.topic.TopicQos (p. 1566).

This method may potentially allocate memory depending on the sequences con-
tained in some QoS policies.

MT Safety:

UNSAFE. It is not safe to retrieve the default Topic QoS from a
DomainParticipant (p. 629) while another thread may be simulta-
neously calling com.rti.dds.domain.DomainParticipant.set default -
topic qos (p. 642)

Parameters:

qos <<in>> (p. 271) Default qos to be retrieved. Cannot be NULL.

Exceptions:

One of the Standard Return Codes (p. 104)

See also:

DomainParticipant.TOPIC QOS DEFAULT (p. 148)
com.rti.dds.domain.DomainParticipant.create topic (p. 670)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

642 Class Documentation

8.61.2.4 void set default topic qos (TopicQos qos)

Set the default com.rti.dds.topic.TopicQos (p. 1566) values for this domain
(p. 317) participant.

This default value will be used for newly created
com.rti.dds.topic.Topic (p. 1545) if DomainParticipant.TOPIC -
QOS DEFAULT (p. 148) is specified as the qos parameter when
com.rti.dds.domain.DomainParticipant.create topic (p. 670) is called.

Precondition:

The specified QoS policies must be consistent, or else the operation will
have no effect and fail with RETCODE INCONSISTENT POLICY

MT Safety:

UNSAFE. It is not safe to set the default topic (p. 350) QoS for a Do-
mainParticipant (p. 629) while another thread may be simultaneously
calling com.rti.dds.domain.DomainParticipant.set default topic -
qos (p. 642), com.rti.dds.domain.DomainParticipant.get default -
topic qos (p. 641) or calling com.rti.dds.domain.DomainParticipant.create -
topic (p. 670) with DomainParticipant.TOPIC QOS DEFAULT
(p. 148) as the qos parameter.

Parameters:

qos <<in>> (p. 271) Default qos to be set. The special value
DomainParticipant.TOPIC QOS DEFAULT (p. 148) may
be passed as qos to indicate that the default QoS should
be reset back to the initial values the factory would used if
com.rti.dds.domain.DomainParticipant.set default topic qos
(p. 642) had never been called. Cannot be NULL.

Exceptions:

One of the Standard Return Codes (p. 104), or RETCODE -
INCONSISTENT POLICY

See also:

DomainParticipant.TOPIC QOS DEFAULT (p. 148)
com.rti.dds.domain.DomainParticipant.create topic (p. 670)

8.61.2.5 void set default topic qos with profile (String
library name, String profile name)

<<eXtension>> (p. 270) Set the default com.rti.dds.topic.TopicQos

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.61 DomainParticipant Interface Reference 643

(p. 1566) values for this domain (p. 317) participant based on the input XML
QoS profile.

This default value will be used for newly created
com.rti.dds.topic.Topic (p. 1545) if DomainParticipant.TOPIC -
QOS DEFAULT (p. 148) is specified as the qos parameter when
com.rti.dds.domain.DomainParticipant.create topic (p. 670) is called.

Precondition:

The com.rti.dds.topic.TopicQos (p. 1566) contained in the specified
XML QoS profile must be consistent, or else the operation will have no
effect and fail with RETCODE INCONSISTENT POLICY

MT Safety:

UNSAFE. It is not safe to set the default topic (p. 350) QoS for a Do-
mainParticipant (p. 629) while another thread may be simultaneously
calling com.rti.dds.domain.DomainParticipant.set default topic -
qos (p. 642), com.rti.dds.domain.DomainParticipant.get default -
topic qos (p. 641) or calling com.rti.dds.domain.DomainParticipant.create -
topic (p. 670) with DomainParticipant.TOPIC QOS DEFAULT
(p. 148) as the qos parameter.

Parameters:

library name <<in>> (p. 271) Library name containing the XML QoS
profile. If library name is null RTI Connext will use the de-
fault library (see com.rti.dds.domain.DomainParticipant.set -
default library (p. 679)).

profile name <<in>> (p. 271) XML QoS Profile name. If pro-
file name is null RTI Connext will use the default pro-
file (see com.rti.dds.domain.DomainParticipant.set default -
profile (p. 680)).

If the input profile cannot be found the method fails with RETCODE ERROR.

Exceptions:

One of the Standard Return Codes (p. 104), or RETCODE -
INCONSISTENT POLICY

See also:

DomainParticipant.TOPIC QOS DEFAULT (p. 148)
com.rti.dds.domain.DomainParticipant.create topic with profile
(p. 671)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

644 Class Documentation

8.61.2.6 void get default publisher qos (PublisherQos qos)

Copy the default com.rti.dds.publication.PublisherQos (p. 1303) values
into the provided com.rti.dds.publication.PublisherQos (p. 1303) instance.

The retrieved qos will match the set of values specified on the last successful
call to com.rti.dds.domain.DomainParticipant.set default publisher -
qos (p. 644), or com.rti.dds.domain.DomainParticipant.set default -
publisher qos with profile (p. 645), or else, if the call was never made, the
default values listed in com.rti.dds.publication.PublisherQos (p. 1303).

This method may potentially allocate memory depending on the sequences con-
tained in some QoS policies.

If DomainParticipant.PUBLISHER QOS DEFAULT
(p. 149) is specified as the qos parameter when
com.rti.dds.domain.DomainParticipant.create topic (p. 670) is called,
the default value of the QoS set in the factory, equivalent to the value
obtained by calling com.rti.dds.domain.DomainParticipant.get -
default publisher qos (p. 644), will be used to create the
com.rti.dds.publication.Publisher (p. 1277).

MT Safety:

UNSAFE. It is not safe to retrieve the default publisher QoS from
a DomainParticipant (p. 629) while another thread may be simulta-
neously calling com.rti.dds.domain.DomainParticipant.set default -
publisher qos (p. 644)

Parameters:

qos <<inout>> (p. 271) Qos to be filled up. Cannot be NULL.

Exceptions:

One of the Standard Return Codes (p. 104)

See also:

DomainParticipant.PUBLISHER QOS DEFAULT (p. 149)
com.rti.dds.domain.DomainParticipant.create publisher (p. 656)

8.61.2.7 void set default publisher qos (PublisherQos qos)

Set the default com.rti.dds.publication.PublisherQos (p. 1303) values for
this DomainParticipant (p. 629).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.61 DomainParticipant Interface Reference 645

This set of default values will be used for a newly created
com.rti.dds.publication.Publisher (p. 1277) if DomainPartici-
pant.PUBLISHER QOS DEFAULT (p. 149) is specified as the qos pa-
rameter when com.rti.dds.domain.DomainParticipant.create publisher
(p. 656) is called.

Precondition:

The specified QoS policies must be consistent, or else the operation will
have no effect and fail with RETCODE INCONSISTENT POLICY

MT Safety:

UNSAFE. It is not safe to set the default publisher QoS for a Domain-
Participant (p. 629) while another thread may be simultaneously calling
com.rti.dds.domain.DomainParticipant.set default publisher -
qos (p. 644), com.rti.dds.domain.DomainParticipant.get -
default publisher qos (p. 644) or calling
com.rti.dds.domain.DomainParticipant.create publisher (p. 656)
with DomainParticipant.PUBLISHER QOS DEFAULT (p. 149) as
the qos parameter.

Parameters:

qos <<in>> (p. 271) Default qos to be set. The special value
DomainParticipant.PUBLISHER QOS DEFAULT (p. 149)
may be passed as qos to indicate that the default QoS should
be reset back to the initial values the factory would used
if com.rti.dds.domain.DomainParticipant.set default -
publisher qos (p. 644) had never been called. Cannot be NULL.

Exceptions:

One of the Standard Return Codes (p. 104), or RETCODE -
INCONSISTENT POLICY

See also:

DomainParticipant.PUBLISHER QOS DEFAULT (p. 149)
com.rti.dds.domain.DomainParticipant.create publisher (p. 656)

8.61.2.8 void set default publisher qos with profile (String
library name, String profile name)

<<eXtension>> (p. 270) Set the default
com.rti.dds.publication.PublisherQos (p. 1303) values for this Do-
mainParticipant (p. 629) based on the input XML QoS profile.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

646 Class Documentation

This set of default values will be used for a newly created
com.rti.dds.publication.Publisher (p. 1277) if DomainPartici-
pant.PUBLISHER QOS DEFAULT (p. 149) is specified as the qos pa-
rameter when com.rti.dds.domain.DomainParticipant.create publisher
(p. 656) is called.

Precondition:

The com.rti.dds.publication.PublisherQos (p. 1303) contained in the
specified XML QoS profile must be consistent, or else the operation will
have no effect and fail with RETCODE INCONSISTENT POLICY

MT Safety:

UNSAFE. It is not safe to set the default publisher QoS for a Domain-
Participant (p. 629) while another thread may be simultaneously calling
com.rti.dds.domain.DomainParticipant.set default publisher -
qos (p. 644), com.rti.dds.domain.DomainParticipant.get -
default publisher qos (p. 644) or calling
com.rti.dds.domain.DomainParticipant.create publisher (p. 656)
with DomainParticipant.PUBLISHER QOS DEFAULT (p. 149) as
the qos parameter.

Parameters:

library name <<in>> (p. 271) Library name containing the XML QoS
profile. If library name is null RTI Connext will use the de-
fault library (see com.rti.dds.domain.DomainParticipant.set -
default library (p. 679)).

profile name <<in>> (p. 271) XML QoS Profile name. If pro-
file name is null RTI Connext will use the default pro-
file (see com.rti.dds.domain.DomainParticipant.set default -
profile (p. 680)).

If the input profile cannot be found, the method fails with RETCODE ERROR.

Exceptions:

One of the Standard Return Codes (p. 104), or RETCODE -
INCONSISTENT POLICY

See also:

DomainParticipant.PUBLISHER QOS DEFAULT (p. 149)
com.rti.dds.domain.DomainParticipant.create publisher with -
profile (p. 657)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.61 DomainParticipant Interface Reference 647

8.61.2.9 void get default datawriter qos (DataWriterQos qos)

<<eXtension>> (p. 270) Copy the default
com.rti.dds.publication.DataWriterQos (p. 588) values into the pro-
vided com.rti.dds.publication.DataWriterQos (p. 588) instance.

The retrieved qos will match the set of values specified on the last successful
call to com.rti.dds.domain.DomainParticipant.set default datawriter -
qos (p. 647), or com.rti.dds.domain.DomainParticipant.set default -
datawriter qos with profile (p. 648), or else, if the call was never made, the
default values listed in com.rti.dds.publication.DataWriterQos (p. 588).

This method may potentially allocate memory depending on the sequences con-
tained in some QoS policies.

MT Safety:

UNSAFE. It is not safe to retrieve the default DataWriter QoS
from a DomainPartipant while another thread may be simultane-
ously calling com.rti.dds.domain.DomainParticipant.set default -
datawriter qos (p. 647).

Parameters:

qos <<inout>> (p. 271) Qos to be filled up. Cannot be NULL.

Exceptions:

One of the Standard Return Codes (p. 104)

8.61.2.10 void set default datawriter qos (DataWriterQos qos)

<<eXtension>> (p. 270) Set the default DataWriterQos values for this Do-
mainParticipant (p. 629).

This set of default values will be inherited for a newly created
com.rti.dds.publication.Publisher (p. 1277).

Precondition:

The specified QoS policies must be consistent, or else the operation will
have no effect and fail with RETCODE INCONSISTENT POLICY

MT Safety:

UNSAFE. It is not safe to set the default DataWriter QoS for a Domain-
Participant (p. 629) while another thread may be simultaneously calling

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

648 Class Documentation

com.rti.dds.domain.DomainParticipant.set default datawriter -
qos (p. 647) or com.rti.dds.domain.DomainParticipant.get -
default datawriter qos (p. 647).

Parameters:

qos <<in>> (p. 271) Default qos to be set. The special value
Publisher.DATAWRITER QOS DEFAULT (p. 177) may
be passed as qos to indicate that the default QoS should
be reset back to the initial values the factory would used
if com.rti.dds.domain.DomainParticipant.set default -
datawriter qos (p. 647) had never been called. Cannot be
NULL.

Exceptions:

One of the Standard Return Codes (p. 104), or RETCODE -
INCONSISTENT POLICY

8.61.2.11 void set default datawriter qos with profile (String
library name, String profile name)

<<eXtension>> (p. 270) Set the default
com.rti.dds.publication.DataWriterQos (p. 588) values for this domain
(p. 317) participant based on the input XML QoS profile.

This set of default values will be inherited for a newly created
com.rti.dds.publication.Publisher (p. 1277).

Precondition:

The com.rti.dds.publication.DataWriterQos (p. 588) contained in the
specified XML QoS profile must be consistent, or else the operation will
have no effect and fail with RETCODE INCONSISTENT POLICY

MT Safety:

UNSAFE. It is not safe to set the default DataWriter QoS for a Domain-
Participant (p. 629) while another thread may be simultaneously calling
com.rti.dds.domain.DomainParticipant.set default datawriter -
qos (p. 647) or com.rti.dds.domain.DomainParticipant.get -
default datawriter qos (p. 647)

Parameters:

library name <<in>> (p. 271) Library name containing the XML QoS
profile. If library name is null RTI Connext will use the de-
fault library (see com.rti.dds.domain.DomainParticipant.set -
default library (p. 679)).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.61 DomainParticipant Interface Reference 649

profile name <<in>> (p. 271) XML QoS Profile name. If pro-
file name is null RTI Connext will use the default pro-
file (see com.rti.dds.domain.DomainParticipant.set default -
profile (p. 680)).

If the input profile cannot be found, the method fails with RETCODE ERROR.

Exceptions:

One of the Standard Return Codes (p. 104), or RETCODE -
INCONSISTENT POLICY

8.61.2.12 void get default datareader qos (DataReaderQos qos)

<<eXtension>> (p. 270) Copy the default
com.rti.dds.subscription.DataReaderQos (p. 518) values into the provided
com.rti.dds.subscription.DataReaderQos (p. 518) instance.

The retrieved qos will match the set of values specified on the last successful call
to com.rti.dds.domain.DomainParticipant.set default datareader -
qos (p. 652), or com.rti.dds.domain.DomainParticipant.set default -
datareader qos with profile (p. 653), or else, if the call was never made, the
default values listed in com.rti.dds.subscription.DataReaderQos (p. 518).

This method may potentially allocate memory depending on the sequences con-
tained in some QoS policies.

MT Safety:

UNSAFE. It is not safe to retrieve the default DataReader QoS from
a DomainParticipant (p. 629) while another thread may be simulta-
neously calling com.rti.dds.domain.DomainParticipant.set default -
datareader qos (p. 652).

Parameters:

qos <<inout>> (p. 271) Qos to be filled up. Cannot be NULL.

Exceptions:

One of the Standard Return Codes (p. 104)

8.61.2.13 void set default subscriber qos (SubscriberQos qos)

Set the default com.rti.dds.subscription.SubscriberQos (p. 1506) values for
this Domain{articipant.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

650 Class Documentation

This set of default values will be used for a newly created
com.rti.dds.subscription.Subscriber (p. 1478) if DomainPartici-
pant.SUBSCRIBER QOS DEFAULT (p. 149) is specified as the qos
parameter when com.rti.dds.domain.DomainParticipant.create -
subscriber (p. 659) is called.

Precondition:

The specified QoS policies must be consistent, or else the operation will
have no effect and fail with RETCODE INCONSISTENT POLICY

MT Safety:

UNSAFE. It is not safe to set the default Subscriber QoS for a Domain-
Participant (p. 629) while another thread may be simultaneously calling
com.rti.dds.domain.DomainParticipant.set default subscriber -
qos (p. 649), com.rti.dds.domain.DomainParticipant.get -
default subscriber qos (p. 652) or calling
com.rti.dds.domain.DomainParticipant.create subscriber (p. 659)
with DomainParticipant.SUBSCRIBER QOS DEFAULT (p. 149)
as the qos parameter.

Parameters:

qos <<in>> (p. 271) Default qos to be set. The special value Do-
mainParticipant.SUBSCRIBER QOS DEFAULT (p. 149)
may be passed as qos to indicate that the default QoS should
be reset back to the initial values the factory would used
if com.rti.dds.domain.DomainParticipant.set default -
subscriber qos (p. 649) had never been called. Cannot be
NULL.

Exceptions:

One of the Standard Return Codes (p. 104), or RETCODE -
INCONSISTENT POLICY

8.61.2.14 void set default subscriber qos with profile (String
library name, String profile name)

<<eXtension>> (p. 270) Set the default
com.rti.dds.subscription.SubscriberQos (p. 1506) values for this Do-
mainParticipant (p. 629) based on the input XML QoS profile.

This set of default values will be used for a newly created
com.rti.dds.subscription.Subscriber (p. 1478) if DomainPartici-
pant.SUBSCRIBER QOS DEFAULT (p. 149) is specified as the qos

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.61 DomainParticipant Interface Reference 651

parameter when com.rti.dds.domain.DomainParticipant.create -
subscriber (p. 659) is called.

Precondition:

The com.rti.dds.subscription.SubscriberQos (p. 1506) contained in
the specified XML QoS profile must be consistent, or else the operation
will have no effect and fail with RETCODE INCONSISTENT POLICY

MT Safety:

UNSAFE. It is not safe to set the default Subscriber QoS for a Domain-
Participant (p. 629) while another thread may be simultaneously calling
com.rti.dds.domain.DomainParticipant.set default subscriber -
qos (p. 649), com.rti.dds.domain.DomainParticipant.get -
default subscriber qos (p. 652) or calling
com.rti.dds.domain.DomainParticipant.create subscriber (p. 659)
with DomainParticipant.SUBSCRIBER QOS DEFAULT (p. 149)
as the qos parameter.

Parameters:

library name <<in>> (p. 271) Library name containing the XML QoS
profile. If library name is null RTI Connext will use the de-
fault library (see com.rti.dds.domain.DomainParticipant.set -
default library (p. 679)).

profile name <<in>> (p. 271) XML QoS Profile name. If pro-
file name is null RTI Connext will use the default pro-
file (see com.rti.dds.domain.DomainParticipant.set default -
profile (p. 680)).

If the input profile cannot be found, the method fails with RETCODE ERROR.

Exceptions:

One of the Standard Return Codes (p. 104), or RETCODE -
INCONSISTENT POLICY

See also:

DomainParticipant.SUBSCRIBER QOS DEFAULT (p. 149)
com.rti.dds.domain.DomainParticipant.create subscriber with -
profile (p. 660)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

652 Class Documentation

8.61.2.15 void get default subscriber qos (SubscriberQos qos)

Copy the default com.rti.dds.subscription.SubscriberQos (p. 1506) val-
ues into the provided com.rti.dds.subscription.SubscriberQos (p. 1506) in-
stance.

The retrieved qos will match the set of values specified on the last successful
call to com.rti.dds.domain.DomainParticipant.set default subscriber -
qos (p. 649), or com.rti.dds.domain.DomainParticipant.set default -
subscriber qos with profile (p. 650), or else, if the call was never made, the
default values listed in com.rti.dds.subscription.SubscriberQos (p. 1506).

This method may potentially allocate memory depending on the sequences con-
tained in some QoS policies.

If DomainParticipant.SUBSCRIBER QOS DEFAULT
(p. 149) is specified as the qos parameter when
com.rti.dds.domain.DomainParticipant.create subscriber (p. 659)
is called, the default value of the QoS set in the factory, equivalent to the
value obtained by calling com.rti.dds.domain.DomainParticipant.get -
default subscriber qos (p. 652), will be used to create the
com.rti.dds.subscription.Subscriber (p. 1478).

MT Safety:

UNSAFE. It is not safe to retrieve the default Subscriber QoS from
a DomainParticipant (p. 629) while another thread may be simulta-
neously calling com.rti.dds.domain.DomainParticipant.set default -
subscriber qos (p. 649).

Parameters:

qos <<inout>> (p. 271) Qos to be filled up. Cannot be NULL.

Exceptions:

One of the Standard Return Codes (p. 104)

See also:

DomainParticipant.SUBSCRIBER QOS DEFAULT (p. 149)
com.rti.dds.domain.DomainParticipant.create subscriber (p. 659)

8.61.2.16 void set default datareader qos (DataReaderQos qos)

<<eXtension>> (p. 270) Set the default
com.rti.dds.subscription.DataReaderQos (p. 518) values for this do-
main (p. 317) participant.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.61 DomainParticipant Interface Reference 653

This set of default values will be inherited for a newly created
com.rti.dds.subscription.Subscriber (p. 1478).

Precondition:

The specified QoS policies must be consistent, or else the operation will
have no effect and fail with RETCODE INCONSISTENT POLICY

MT Safety:

UNSAFE. It is not safe to set the default DataReader QoS for a Domain-
Participant (p. 629) while another thread may be simultaneously calling
com.rti.dds.domain.DomainParticipant.set default datareader -
qos (p. 652) or com.rti.dds.domain.DomainParticipant.get -
default datareader qos (p. 649).

Parameters:

qos <<in>> (p. 271) Default qos to be set. The special value
Subscriber.DATAREADER QOS DEFAULT (p. 190) may
be passed as qos to indicate that the default QoS should
be reset back to the initial values the factory would used
if com.rti.dds.domain.DomainParticipant.set default -
datareader qos (p. 652) had never been called. Cannot be
NULL.

Exceptions:

One of the Standard Return Codes (p. 104), or RETCODE -
INCONSISTENT POLICY

8.61.2.17 void set default datareader qos with profile (String
library name, String profile name)

<<eXtension>> (p. 270) Set the default
com.rti.dds.subscription.DataReaderQos (p. 518) values for this Do-
mainParticipant (p. 629) based on the input XML QoS profile.

This set of default values will be inherited for a newly created
com.rti.dds.subscription.Subscriber (p. 1478).

Precondition:

The com.rti.dds.subscription.DataReaderQos (p. 518) contained in
the specified XML QoS profile must be consistent, or else the operation
will have no effect and fail with RETCODE INCONSISTENT POLICY

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

654 Class Documentation

MT Safety:

UNSAFE. It is not safe to set the default DataReader QoS for a Domain-
Participant (p. 629) while another thread may be simultaneously calling
com.rti.dds.domain.DomainParticipant.set default datareader -
qos (p. 652) or com.rti.dds.domain.DomainParticipant.get -
default datareader qos (p. 649).

Parameters:

library name <<in>> (p. 271) Library name containing the XML QoS
profile. If library name is null RTI Connext will use the de-
fault library (see com.rti.dds.domain.DomainParticipant.set -
default library (p. 679)).

profile name <<in>> (p. 271) XML QoS Profile name. If pro-
file name is null RTI Connext will use the default pro-
file (see com.rti.dds.domain.DomainParticipant.set default -
profile (p. 680)).

If the input profile cannot be found, the method fails with RETCODE ERROR.

Exceptions:

One of the Standard Return Codes (p. 104), or RETCODE -
INCONSISTENT POLICY

8.61.2.18 FlowController create flowcontroller (String name,
FlowControllerProperty t prop)

<<eXtension>> (p. 270) Creates a com.rti.dds.publication.FlowController
(p. 942) with the desired property.

The created com.rti.dds.publication.FlowController (p. 942) is as-
sociated with a com.rti.dds.publication.DataWriter (p. 538) via
com.rti.dds.infrastructure.PublishModeQosPolicy.flow controller -
name (p. 1310). A single com.rti.dds.publication.FlowController
(p. 942) may service multiple com.rti.dds.publication.DataWriter
(p. 538) instances, even if they belong to a different
com.rti.dds.publication.Publisher (p. 1277). The property deter-
mines how the com.rti.dds.publication.FlowController (p. 942) shapes the
network traffic.

Precondition:

The specified property must be consistent, or the operation will fail and
no com.rti.dds.publication.FlowController (p. 942) will be created.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.61 DomainParticipant Interface Reference 655

MT Safety:

UNSAFE. If DomainParticipant.FLOW CONTROLLER -
PROPERTY DEFAULT (p. 150) is used for property, it is not
safe to create the flow controller while another thread may be simul-
taneously calling com.rti.dds.domain.DomainParticipant.set -
default flowcontroller property (p. 640) or trying to lookup that flow
controller with com.rti.dds.domain.DomainParticipant.lookup -
flowcontroller (p. 684).

Parameters:

name <<in>> (p. 271) name of the
com.rti.dds.publication.FlowController (p. 942) to create.
A com.rti.dds.publication.DataWriter (p. 538) is associated with
a com.rti.dds.publication.FlowController (p. 942) by name.
Limited to 255 characters.

prop <<in>> (p. 271) property to be used for creating the new
com.rti.dds.publication.FlowController (p. 942). The spe-
cial value DomainParticipant.FLOW CONTROLLER -
PROPERTY DEFAULT (p. 150) can be used to indi-
cate that the com.rti.dds.publication.FlowController
(p. 942) should be created with the default
com.rti.dds.publication.FlowControllerProperty t (p. 946)
set in the com.rti.dds.domain.DomainParticipant (p. 629).
Cannot be NULL.

Returns:

Newly created flow controller object or NULL on failure.

See also:

com.rti.dds.publication.FlowControllerProperty t (p. 946) for rules
on consistency among property
DomainParticipant.FLOW CONTROLLER PROPERTY -
DEFAULT (p. 150)
com.rti.dds.domain.DomainParticipant.get default -
flowcontroller property (p. 639)

8.61.2.19 void delete flowcontroller (FlowController fc)

<<eXtension>> (p. 270) Deletes an existing
com.rti.dds.publication.FlowController (p. 942).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

656 Class Documentation

Precondition:

The com.rti.dds.publication.FlowController (p. 942) must not have
any attached com.rti.dds.publication.DataWriter (p. 538) objects. If
there are any attached com.rti.dds.publication.DataWriter (p. 538) ob-
jects, it will fail with RETCODE PRECONDITION NOT MET.
The com.rti.dds.publication.FlowController (p. 942) must have been
created by this com.rti.dds.domain.DomainParticipant (p. 629), or
else it will fail with RETCODE PRECONDITION NOT MET.

Postcondition:

The com.rti.dds.publication.FlowController (p. 942) is deleted if this
method completes successfully.

Parameters:

fc <<in>> (p. 271) The com.rti.dds.publication.FlowController
(p. 942) to be deleted.

Exceptions:

One of the Standard Return Codes (p. 104), or RETCODE -
PRECONDITION NOT MET.

8.61.2.20 Publisher create publisher (PublisherQos qos,
PublisherListener listener, int mask)

Creates a com.rti.dds.publication.Publisher (p. 1277) with
the desired QoS policies and attaches to it the specified
com.rti.dds.publication.PublisherListener (p. 1302).

Precondition:

The specified QoS policies must be consistent, or the operation will fail and
no com.rti.dds.publication.Publisher (p. 1277) will be created.

MT Safety:

UNSAFE. If DomainParticipant.PUBLISHER QOS DEFAULT
(p. 149) is used for qos, it is not safe to create the pub-
lisher while another thread may be simultaneously calling
com.rti.dds.domain.DomainParticipant.set default publisher qos
(p. 644).

Parameters:

qos <<in>> (p. 271) QoS to be used for creating the new
com.rti.dds.publication.Publisher (p. 1277). The spe-

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.61 DomainParticipant Interface Reference 657

cial value DomainParticipant.PUBLISHER QOS -
DEFAULT (p. 149) can be used to indicate that the
com.rti.dds.publication.Publisher (p. 1277) should be cre-
ated with the default com.rti.dds.publication.PublisherQos
(p. 1303) set in the com.rti.dds.domain.DomainParticipant
(p. 629). Cannot be NULL.

listener <<in>> (p. 271). Listener to be attached to the newly created
com.rti.dds.publication.Publisher (p. 1277).

mask <<in>> (p. 271). Changes of communication status to be invoked
on the listener.

Returns:

newly created publisher object or NULL on failure.

See also:

Specifying QoS on entities (p. 96) for information on setting QoS before
entity creation
com.rti.dds.publication.PublisherQos (p. 1303) for rules on consis-
tency among QoS
DomainParticipant.PUBLISHER QOS DEFAULT (p. 149)
com.rti.dds.domain.DomainParticipant.create publisher with -
profile (p. 657)
com.rti.dds.domain.DomainParticipant.get default publisher qos
(p. 644)
com.rti.dds.publication.Publisher.set listener (p. 1294)

8.61.2.21 Publisher create publisher with profile (String
library name, String profile name, PublisherListener
listener, int mask)

<<eXtension>> (p. 270) Creates a new com.rti.dds.publication.Publisher
(p. 1277) object using the com.rti.dds.publication.PublisherQos (p. 1303)
associated with the input XML QoS profile.

Precondition:

The com.rti.dds.publication.PublisherQos (p. 1303) in the input
profile must be consistent, or the operation will fail and no
com.rti.dds.publication.Publisher (p. 1277) will be created.

Parameters:

library name <<in>> (p. 271) Library name containing the XML QoS
profile. If library name is null RTI Connext will use the de-

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

658 Class Documentation

fault library (see com.rti.dds.domain.DomainParticipant.set -
default library (p. 679)).

profile name <<in>> (p. 271) XML QoS Profile name. If pro-
file name is null RTI Connext will use the default pro-
file (see com.rti.dds.domain.DomainParticipant.set default -
profile (p. 680)).

listener <<in>> (p. 271). Listener to be attached to the newly created
com.rti.dds.publication.Publisher (p. 1277).

mask <<in>> (p. 271). Changes of communication status to be invoked
on the listener.

Returns:

newly created publisher object or NULL on failure.

See also:

Specifying QoS on entities (p. 96) for information on setting QoS before
entity creation
com.rti.dds.publication.PublisherQos (p. 1303) for rules on consis-
tency among QoS
com.rti.dds.domain.DomainParticipant.create publisher (p. 656)
com.rti.dds.domain.DomainParticipant.get default publisher qos
(p. 644)
com.rti.dds.publication.Publisher.set listener (p. 1294)

8.61.2.22 void delete publisher (Publisher p)

Deletes an existing com.rti.dds.publication.Publisher (p. 1277).

Precondition:

The com.rti.dds.publication.Publisher (p. 1277) must not have any at-
tached com.rti.dds.publication.DataWriter (p. 538) objects. If there
are existing com.rti.dds.publication.DataWriter (p. 538) objects, it
will fail with RETCODE PRECONDITION NOT MET.
com.rti.dds.publication.Publisher (p. 1277) must have been created by
this com.rti.dds.domain.DomainParticipant (p. 629), or else it will fail
with RETCODE PRECONDITION NOT MET.

Postcondition:

Listener installed on the com.rti.dds.publication.Publisher (p. 1277)
will not be called after this method completes successfully.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.61 DomainParticipant Interface Reference 659

Parameters:

p <<in>> (p. 271) com.rti.dds.publication.Publisher (p. 1277) to be
deleted.

Exceptions:

One of the Standard Return Codes (p. 104), or RETCODE -
PRECONDITION NOT MET.

8.61.2.23 Subscriber create subscriber (SubscriberQos qos,
SubscriberListener listener, int mask)

Creates a com.rti.dds.subscription.Subscriber (p. 1478) with
the desired QoS policies and attaches to it the specified
com.rti.dds.subscription.SubscriberListener (p. 1504).

Precondition:

The specified QoS policies must be consistent, or the operation will fail and
no com.rti.dds.subscription.Subscriber (p. 1478) will be created.

MT Safety:

UNSAFE. If DomainParticipant.SUBSCRIBER QOS -
DEFAULT (p. 149) is used for qos, it is not safe to create the
subscriber while another thread may be simultaneously calling
com.rti.dds.domain.DomainParticipant.set default subscriber -
qos (p. 649).

Parameters:

qos <<in>> (p. 271) QoS to be used for creating the new
com.rti.dds.subscription.Subscriber (p. 1478). The spe-
cial value DomainParticipant.SUBSCRIBER QOS -
DEFAULT (p. 149) can be used to indicate that the
com.rti.dds.subscription.Subscriber (p. 1478) should be cre-
ated with the default com.rti.dds.subscription.SubscriberQos
(p. 1506) set in the com.rti.dds.domain.DomainParticipant
(p. 629). Cannot be NULL.

listener <<in>> (p. 271). Listener to be attached to the newly created
com.rti.dds.subscription.Subscriber (p. 1478).

mask <<in>> (p. 271). Changes of communication status to be invoked
on the listener.

Returns:

newly created subscriber object or NULL on failure.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

660 Class Documentation

See also:

Specifying QoS on entities (p. 96) for information on setting QoS before
entity creation
com.rti.dds.subscription.SubscriberQos (p. 1506) for rules on consis-
tency among QoS
DomainParticipant.SUBSCRIBER QOS DEFAULT (p. 149)
com.rti.dds.domain.DomainParticipant.create subscriber with -
profile (p. 660)
com.rti.dds.domain.DomainParticipant.get default subscriber -
qos (p. 652)
com.rti.dds.subscription.Subscriber.set listener (p. 1498)

8.61.2.24 Subscriber create subscriber with profile (String
library name, String profile name, SubscriberListener
listener, int mask)

<<eXtension>> (p. 270) Creates a new com.rti.dds.subscription.Subscriber
(p. 1478) object using the com.rti.dds.publication.PublisherQos (p. 1303)
associated with the input XML QoS profile.

Precondition:

The com.rti.dds.subscription.SubscriberQos (p. 1506) in the in-
put profile must be consistent, or the operation will fail and no
com.rti.dds.subscription.Subscriber (p. 1478) will be created.

Parameters:

library name <<in>> (p. 271) Library name containing the XML QoS
profile. If library name is null RTI Connext will use the de-
fault library (see com.rti.dds.domain.DomainParticipant.set -
default library (p. 679)).

profile name <<in>> (p. 271) XML QoS Profile name. If pro-
file name is null RTI Connext will use the default pro-
file (see com.rti.dds.domain.DomainParticipant.set default -
profile (p. 680)).

listener <<in>> (p. 271). Listener to be attached to the newly created
com.rti.dds.subscription.Subscriber (p. 1478).

mask <<in>> (p. 271). Changes of communication status to be invoked
on the listener.

Returns:

newly created subscriber object or NULL on failure.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.61 DomainParticipant Interface Reference 661

See also:

Specifying QoS on entities (p. 96) for information on setting QoS before
entity creation
com.rti.dds.subscription.SubscriberQos (p. 1506) for rules on consis-
tency among QoS
com.rti.dds.domain.DomainParticipant.create subscriber (p. 659)
com.rti.dds.domain.DomainParticipant.get default subscriber -
qos (p. 652)
com.rti.dds.subscription.Subscriber.set listener (p. 1498)

8.61.2.25 void delete subscriber (Subscriber s)

Deletes an existing com.rti.dds.subscription.Subscriber (p. 1478).

Precondition:

The com.rti.dds.subscription.Subscriber (p. 1478) must not have any
attached com.rti.dds.subscription.DataReader (p. 473) objects. If
there are existing com.rti.dds.subscription.DataReader (p. 473) ob-
jects, it will fail with RETCODE PRECONDITION NOT MET
The com.rti.dds.subscription.Subscriber (p. 1478) must have been cre-
ated by this com.rti.dds.domain.DomainParticipant (p. 629), or else
it will fail with RETCODE PRECONDITION NOT MET.

Postcondition:

A Listener installed on the com.rti.dds.subscription.Subscriber
(p. 1478) will not be called after this method completes successfully.

Parameters:

s <<in>> (p. 271) com.rti.dds.subscription.Subscriber (p. 1478) to
be deleted.

Exceptions:

One of the Standard Return Codes (p. 104), or RETCODE -
PRECONDITION NOT MET.

8.61.2.26 DataWriter create datawriter (Topic topic,
DataWriterQos qos, DataWriterListener listener, int
mask)

<<eXtension>> (p. 270) Creates a com.rti.dds.publication.DataWriter
(p. 538) that will be attached and belong to the implicit
com.rti.dds.publication.Publisher (p. 1277).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

662 Class Documentation

Precondition:

The given com.rti.dds.topic.Topic (p. 1545) must have been created from
the same DomainParticipant (p. 629) as the implicit Publisher. If it was
created from a different DomainParticipant (p. 629), this method will
fail.

The com.rti.dds.publication.DataWriter (p. 538) created using this
method will be associated with the implicit Publisher. This Publisher
is automatically created (if it does not exist) using DomainPartici-
pant.PUBLISHER QOS DEFAULT (p. 149) when the following methods
are called: com.rti.dds.domain.DomainParticipant.create datawriter
(p. 661), com.rti.dds.domain.DomainParticipant.create datawriter -
with profile (p. 663), or com.rti.dds.domain.DomainParticipant.get -
implicit publisher (p. 701).

MT Safety:

UNSAFE. If Publisher.DATAWRITER QOS DEFAULT
(p. 177) is used for the qos parameter, it is not safe to create
the DataWriter while another thread may be simultaneously calling
com.rti.dds.domain.DomainParticipant.set default datawriter -
qos (p. 647).

Parameters:

topic (p. 350) <<in>> (p. 271) The com.rti.dds.topic.Topic
(p. 1545) that the com.rti.dds.publication.DataWriter (p. 538)
will be associated with. Cannot be NULL.

qos <<in>> (p. 271) QoS to be used for creating the
new com.rti.dds.publication.DataWriter (p. 538).
The special value Publisher.DATAWRITER QOS -
DEFAULT (p. 177) can be used to indicate that the
com.rti.dds.publication.DataWriter (p. 538) should be cre-
ated with the default com.rti.dds.publication.DataWriterQos
(p. 588) set in the implicit com.rti.dds.publication.Publisher
(p. 1277). The special value Publisher.DATAWRITER -
QOS USE TOPIC QOS (p. 178) can be used to in-
dicate that the com.rti.dds.publication.DataWriter
(p. 538) should be created with the combination of the de-
fault com.rti.dds.publication.DataWriterQos (p. 588)
set on the com.rti.dds.publication.Publisher (p. 1277)
and the com.rti.dds.topic.TopicQos (p. 1566) of the
com.rti.dds.topic.Topic (p. 1545). Cannot be NULL.

listener <<in>> (p. 271) The listener of the
com.rti.dds.publication.DataWriter (p. 538).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.61 DomainParticipant Interface Reference 663

mask <<in>> (p. 271). Changes of communication status to be invoked
on the listener.

Returns:

A com.rti.dds.publication.DataWriter (p. 538) of a derived class spe-
cific to the data type associated with the com.rti.dds.topic.Topic
(p. 1545) or NULL if an error occurred.

See also:

com.rti.dds.topic.example.FooDataWriter
Specifying QoS on entities (p. 96) for information on setting QoS before
entity creation
com.rti.dds.publication.DataWriterQos (p. 588) for rules on consis-
tency among QoS
Publisher.DATAWRITER QOS DEFAULT (p. 177)
Publisher.DATAWRITER QOS USE TOPIC QOS (p. 178)
com.rti.dds.domain.DomainParticipant.create datawriter with -
profile (p. 663)
com.rti.dds.domain.DomainParticipant.get default datawriter -
qos (p. 647)
com.rti.dds.domain.DomainParticipant.get implicit publisher
(p. 701)
com.rti.dds.topic.Topic.set qos (p. 1547)
com.rti.dds.publication.DataWriter.set listener (p. 545)

8.61.2.27 DataWriter create datawriter with profile (Topic
topic, String library name, String profile name,
DataWriterListener listener, int mask)

<<eXtension>> (p. 270) Creates a com.rti.dds.publication.DataWriter
(p. 538) using a XML QoS profile that will be attached and belong to the implicit
com.rti.dds.publication.Publisher (p. 1277).

Precondition:

The given com.rti.dds.topic.Topic (p. 1545) must have been created from
the same DomainParticipant (p. 629) as the implicit Publisher. If it was
created from a different DomainParticipant (p. 629), this method will
return NULL.

The com.rti.dds.publication.DataWriter (p. 538) created using this
method will be associated with the implicit Publisher. This Publisher
is automatically created (if it does not exist) using DomainPartici-
pant.PUBLISHER QOS DEFAULT (p. 149) when the following methods

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

664 Class Documentation

are called: com.rti.dds.domain.DomainParticipant.create datawriter
(p. 661), com.rti.dds.domain.DomainParticipant.create datawriter -
with profile (p. 663), or com.rti.dds.domain.DomainParticipant.get -
implicit publisher (p. 701)

Parameters:

topic (p. 350) <<in>> (p. 271) The com.rti.dds.topic.Topic
(p. 1545) that the com.rti.dds.publication.DataWriter (p. 538)
will be associated with. Cannot be NULL.

library name <<in>> (p. 271) Library name containing the XML QoS
profile. If library name is null RTI Connext will use the de-
fault library (see com.rti.dds.domain.DomainParticipant.set -
default library (p. 679)).

profile name <<in>> (p. 271) XML QoS Profile name. If pro-
file name is null RTI Connext will use the default pro-
file (see com.rti.dds.domain.DomainParticipant.set default -
profile (p. 680)).

listener <<in>> (p. 271) The listener of the
com.rti.dds.publication.DataWriter (p. 538).

mask <<in>> (p. 271). Changes of communication status to be invoked
on the listener.

Returns:

A com.rti.dds.publication.DataWriter (p. 538) of a derived class spe-
cific to the data type associated with the com.rti.dds.topic.Topic
(p. 1545) or NULL if an error occurred.

See also:

com.rti.dds.topic.example.FooDataWriter
Specifying QoS on entities (p. 96) for information on setting QoS before
entity creation
com.rti.dds.publication.DataWriterQos (p. 588) for rules on consis-
tency among QoS
com.rti.dds.domain.DomainParticipant.create datawriter (p. 661)
com.rti.dds.domain.DomainParticipant.get default datawriter -
qos (p. 647)
com.rti.dds.domain.DomainParticipant.get implicit publisher
(p. 701)
com.rti.dds.topic.Topic.set qos (p. 1547)
com.rti.dds.publication.DataWriter.set listener (p. 545)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.61 DomainParticipant Interface Reference 665

8.61.2.28 void delete datawriter (DataWriter a datawriter)

<<eXtension>> (p. 270) Deletes a com.rti.dds.publication.DataWriter
(p. 538) that belongs to the implicit com.rti.dds.publication.Publisher
(p. 1277).

The deletion of the com.rti.dds.publication.DataWriter (p. 538) will au-
tomatically unregister all instances. Depending on the settings of the
WRITER DATA LIFECYCLE (p. 134) QosPolicy, the deletion of the
com.rti.dds.publication.DataWriter (p. 538) may also dispose all instances.

8.61.3 Special Instructions if Using ’Timestamp’ APIs
and BY SOURCE TIMESTAMP Destination Or-
dering:

If the DataWriter’s com.rti.dds.infrastructure.DestinationOrderQosPolicy.kind
(p. 609) is DestinationOrderQosPolicyKind.BY SOURCE TIMESTAMP -
DESTINATIONORDER QOS, calls to delete datawriter() (p. 665) may
fail if your application has previously used the ’with timestamp’ APIs
(write w timestamp(), register instance w timestamp(), unregister instance -
w timestamp(), or dispose w timestamp()) with a timestamp larger (later)
than the time at which delete datawriter() (p. 665) is called. To prevent
delete datawriter() (p. 665) from failing in this situation, either:

ˆ Change the WRITER DATA LIFECYCLE (p. 134) QosPolicy
so that RTI Connext will not autodispose unregistered instances (set
com.rti.dds.infrastructure.WriterDataLifecycleQosPolicy.autodispose -
unregistered instances (p. 1723) to false.) or

ˆ Explicitly call unregister instance w timestamp() for all instances modi-
fied with the ∗ w timestamp() APIs before calling delete datawriter()
(p. 665).

Precondition:

If the com.rti.dds.publication.DataWriter (p. 538) does not belong to
the implicit com.rti.dds.publication.Publisher (p. 1277), the operation
will fail with RETCODE PRECONDITION NOT MET.

Postcondition:

Listener installed on the com.rti.dds.publication.DataWriter (p. 538)
will not be called after this method completes successfully.

Parameters:

a datawriter <<in>> (p. 271) The com.rti.dds.publication.DataWriter
(p. 538) to be deleted.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

666 Class Documentation

Exceptions:

One of the Standard Return Codes (p. 104) or RETCODE -
PRECONDITION NOT MET.

See also:

com.rti.dds.domain.DomainParticipant.get implicit publisher
(p. 701)

8.61.3.1 DataReader create datareader (TopicDescription topic,
DataReaderQos qos, DataReaderListener listener, int
mask)

<<eXtension>> (p. 270) Creates a com.rti.dds.subscription.DataReader
(p. 473) that will be attached and belong to the implicit
com.rti.dds.subscription.Subscriber (p. 1478).

Precondition:

The given com.rti.dds.topic.TopicDescription (p. 1561) must have
been created from the same DomainParticipant (p. 629) as the implicit
Subscriber. If it was created from a different DomainParticipant (p. 629),
this method will return NULL.

The com.rti.dds.subscription.DataReader (p. 473) created using this
method will be associated with the implicit Subscriber. This Subscriber
is automatically created (if it does not exist) using DomainPartici-
pant.SUBSCRIBER QOS DEFAULT (p. 149) when the following methods
are called: com.rti.dds.domain.DomainParticipant.create datareader
(p. 666), com.rti.dds.domain.DomainParticipant.create datareader -
with profile (p. 668), or com.rti.dds.domain.DomainParticipant.get -
implicit subscriber (p. 701).

MT Safety:

UNSAFE. If Subscriber.DATAREADER QOS DEFAULT
(p. 190) is used for the qos parameter, it is not safe to create
the datareader while another thread may be simultaneously calling
com.rti.dds.domain.DomainParticipant.set default datareader -
qos (p. 652).

Parameters:

topic (p. 350) <<in>> (p. 271) The com.rti.dds.topic.TopicDescription
(p. 1561) that the com.rti.dds.subscription.DataReader (p. 473)
will be associated with. Cannot be NULL.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.61 DomainParticipant Interface Reference 667

qos <<in>> (p. 271) The qos of the
com.rti.dds.subscription.DataReader (p. 473). The
special value Subscriber.DATAREADER QOS -
DEFAULT (p. 190) can be used to indicate that the
com.rti.dds.subscription.DataReader (p. 473) should be created
with the default com.rti.dds.subscription.DataReaderQos
(p. 518) set in the implicit com.rti.dds.subscription.Subscriber
(p. 1478). If com.rti.dds.topic.TopicDescription
(p. 1561) is of type com.rti.dds.topic.Topic (p. 1545)
or com.rti.dds.topic.ContentFilteredTopic (p. 458),
the special value Subscriber.DATAREADER QOS -
USE TOPIC QOS (p. 191) can be used to indicate
that the com.rti.dds.subscription.DataReader (p. 473)
should be created with the combination of the default
com.rti.dds.subscription.DataReaderQos (p. 518) set
on the implicit com.rti.dds.subscription.Subscriber
(p. 1478) and the com.rti.dds.topic.TopicQos (p. 1566) (in
the case of a com.rti.dds.topic.ContentFilteredTopic
(p. 458), the com.rti.dds.topic.TopicQos (p. 1566) of
the related com.rti.dds.topic.Topic (p. 1545)). if Sub-
scriber.DATAREADER QOS USE TOPIC QOS (p. 191)
is used, topic (p. 350) cannot be a com.rti.dds.topic.MultiTopic
(p. 1208). Cannot be NULL.

listener <<in>> (p. 271) The listener of the
com.rti.dds.subscription.DataReader (p. 473).

mask <<in>> (p. 271). Changes of communication status to be invoked
on the listener.

Returns:

A com.rti.dds.subscription.DataReader (p. 473) of a derived class
specific to the data-type associated with the com.rti.dds.topic.Topic
(p. 1545) or NULL if an error occurred.

See also:

com.rti.dds.topic.example.FooDataReader
Specifying QoS on entities (p. 96) for information on setting QoS before
entity creation
com.rti.dds.subscription.DataReaderQos (p. 518) for rules on consis-
tency among QoS
com.rti.dds.domain.DomainParticipant.create datareader with -
profile (p. 668)
com.rti.dds.domain.DomainParticipant.get default datareader -
qos (p. 649)
com.rti.dds.domain.DomainParticipant.get implicit subscriber
(p. 701)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

668 Class Documentation

com.rti.dds.topic.Topic.set qos (p. 1547)
com.rti.dds.subscription.DataReader.set listener (p. 482)

8.61.3.2 DataReader create datareader with profile
(TopicDescription topic, String library name, String
profile name, DataReaderListener listener, int mask)

<<eXtension>> (p. 270) Creates a com.rti.dds.subscription.DataReader
(p. 473) using a XML QoS profile that will be attached and belong to the
implicit com.rti.dds.subscription.Subscriber (p. 1478).

Precondition:

The given com.rti.dds.topic.TopicDescription (p. 1561) must have
been created from the same DomainParticipant (p. 629) as the implicit
subscriber. If it was created from a different DomainParticipant (p. 629),
this method will return NULL.

The com.rti.dds.subscription.DataReader (p. 473) created using this
method will be associated with the implicit Subscriber. This Subscriber
is automatically created (if it does not exist) using DomainPartici-
pant.SUBSCRIBER QOS DEFAULT (p. 149) when the following methods
are called: com.rti.dds.domain.DomainParticipant.create datareader
(p. 666), com.rti.dds.domain.DomainParticipant.create datareader -
with profile (p. 668), or com.rti.dds.domain.DomainParticipant.get -
implicit subscriber (p. 701)

Parameters:

topic (p. 350) <<in>> (p. 271) The com.rti.dds.topic.TopicDescription
(p. 1561) that the com.rti.dds.subscription.DataReader (p. 473)
will be associated with. Cannot be NULL.

library name <<in>> (p. 271) Library name containing the XML QoS
profile. If library name is null RTI Connext will use the de-
fault library (see com.rti.dds.domain.DomainParticipant.set -
default library (p. 679)).

profile name <<in>> (p. 271) XML QoS Profile name. If pro-
file name is null RTI Connext will use the default pro-
file (see com.rti.dds.domain.DomainParticipant.set default -
profile (p. 680)).

listener <<in>> (p. 271) The listener of the
com.rti.dds.subscription.DataReader (p. 473).

mask <<in>> (p. 271). Changes of communication status to be invoked
on the listener.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.61 DomainParticipant Interface Reference 669

Returns:

A com.rti.dds.subscription.DataReader (p. 473) of a derived class
specific to the data-type associated with the com.rti.dds.topic.Topic
(p. 1545) or NULL if an error occurred.

See also:

com.rti.dds.topic.example.FooDataReader
Specifying QoS on entities (p. 96) for information on setting QoS before
entity creation
com.rti.dds.subscription.DataReaderQos (p. 518) for rules on consis-
tency among QoS
com.rti.dds.domain.DomainParticipant.create datareader (p. 666)
com.rti.dds.domain.DomainParticipant.get default datareader -
qos (p. 649)
com.rti.dds.domain.DomainParticipant.get implicit subscriber
(p. 701)
com.rti.dds.topic.Topic.set qos (p. 1547)
com.rti.dds.subscription.DataReader.set listener (p. 482)

8.61.3.3 void delete datareader (DataReader a datareader)

<<eXtension>> (p. 270) Deletes a com.rti.dds.subscription.DataReader
(p. 473) that belongs to the implicit com.rti.dds.subscription.Subscriber
(p. 1478).

Precondition:

If the com.rti.dds.subscription.DataReader (p. 473) does not belong
to the implicit com.rti.dds.subscription.Subscriber (p. 1478), or if ther
are any existing com.rti.dds.subscription.ReadCondition (p. 1326) or
com.rti.dds.subscription.QueryCondition (p. 1324) objects that are
attached to the com.rti.dds.subscription.DataReader (p. 473), or if
there are outstanding loans on samples (as a result of a call to read(),
take(), or one of the variants thereof), the operation fails with the error
RETCODE PRECONDITION NOT MET.

Postcondition:

Listener installed on the com.rti.dds.subscription.DataReader (p. 473)
will not be called after this method completes successfully.

Parameters:

a datareader <<in>> (p. 271) The com.rti.dds.subscription.DataReader
(p. 473) to be deleted.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

670 Class Documentation

Exceptions:

One of the Standard Return Codes (p. 104) or RETCODE -
PRECONDITION NOT MET.

See also:

com.rti.dds.domain.DomainParticipant.get implicit subscriber
(p. 701)

8.61.3.4 Topic create topic (String topic name, String type name,
TopicQos qos, TopicListener listener, int mask)

Creates a com.rti.dds.topic.Topic (p. 1545) with the desired QoS policies and
attaches to it the specified com.rti.dds.topic.TopicListener (p. 1564).

Precondition:

The application is not allowed to create two com.rti.dds.topic.Topic
(p. 1545) objects with the same topic name attached to the same
com.rti.dds.domain.DomainParticipant (p. 629). If the application at-
tempts this, this method will fail and return a NULL topic (p. 350).
The specified QoS policies must be consistent, or the operation will fail and
no com.rti.dds.topic.Topic (p. 1545) will be created.
Prior to creating a com.rti.dds.topic.Topic (p. 1545), the type must
have been registered with RTI Connext. This is done using the
com.rti.dds.topic.example.FooTypeSupport.register type (p. 1060)
operation on a derived class of the TypeSupport interface.

MT Safety:

UNSAFE. It is not safe to create a topic (p. 350) while another
thread is trying to lookup that topic (p. 350) description with
com.rti.dds.domain.DomainParticipant.lookup topicdescription
(p. 686).

MT Safety:

UNSAFE. If DomainParticipant.TOPIC QOS DEFAULT
(p. 148) is used for qos, it is not safe to create the topic
(p. 350) while another thread may be simultaneously calling
com.rti.dds.domain.DomainParticipant.set default topic qos
(p. 642).

Parameters:

topic name <<in>> (p. 271) Name for the new topic (p. 350), must not
exceed 255 characters. Cannot be NULL.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.61 DomainParticipant Interface Reference 671

type name <<in>> (p. 271) The type to which the new
com.rti.dds.topic.Topic (p. 1545) will be bound. Cannot be
NULL.

qos <<in>> (p. 271) QoS to be used for creating the new
com.rti.dds.topic.Topic (p. 1545). The special value Domain-
Participant.TOPIC QOS DEFAULT (p. 148) can be used to in-
dicate that the com.rti.dds.topic.Topic (p. 1545) should be cre-
ated with the default com.rti.dds.topic.TopicQos (p. 1566) set in
the com.rti.dds.domain.DomainParticipant (p. 629). Cannot be
NULL.

listener <<in>> (p. 271). Listener to be attached to the newly created
com.rti.dds.topic.Topic (p. 1545).

mask <<in>> (p. 271). Changes of communication status to be invoked
on the listener.

Returns:

newly created topic (p. 350), or NULL on failure

See also:

Specifying QoS on entities (p. 96) for information on setting QoS before
entity creation
com.rti.dds.topic.TopicQos (p. 1566) for rules on consistency among
QoS
DomainParticipant.TOPIC QOS DEFAULT (p. 148)
com.rti.dds.domain.DomainParticipant.create topic with profile
(p. 671)
com.rti.dds.domain.DomainParticipant.get default topic qos
(p. 641)
com.rti.dds.topic.Topic.set listener (p. 1549)

8.61.3.5 Topic create topic with profile (String topic name, String
type name, String library name, String profile name,
TopicListener listener, int mask)

<<eXtension>> (p. 270) Creates a new com.rti.dds.topic.Topic (p. 1545)
object using the com.rti.dds.publication.PublisherQos (p. 1303) associated
with the input XML QoS profile.

Precondition:

The application is not allowed to create two
com.rti.dds.topic.TopicDescription (p. 1561) objects
with the same topic name attached to the same

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

672 Class Documentation

com.rti.dds.domain.DomainParticipant (p. 629). If the applica-
tion attempts this, this method will fail and return a NULL topic
(p. 350).
The com.rti.dds.topic.TopicQos (p. 1566) in the input profile must be
consistent, or the operation will fail and no com.rti.dds.topic.Topic
(p. 1545) will be created.
Prior to creating a com.rti.dds.topic.Topic (p. 1545), the type must
have been registered with RTI Connext. This is done using the
com.rti.dds.topic.example.FooTypeSupport.register type (p. 1060)
operation on a derived class of the TypeSupport interface.

MT Safety:

UNSAFE. It is not safe to create a topic (p. 350) while another
thread is trying to lookup that topic (p. 350) description with
com.rti.dds.domain.DomainParticipant.lookup topicdescription
(p. 686).

Parameters:

topic name <<in>> (p. 271) Name for the new topic (p. 350), must not
exceed 255 characters. Cannot be NULL.

type name <<in>> (p. 271) The type to which the new
com.rti.dds.topic.Topic (p. 1545) will be bound. Cannot be
NULL.

library name <<in>> (p. 271) Library name containing the XML QoS
profile. If library name is null RTI Connext will use the de-
fault library (see com.rti.dds.domain.DomainParticipant.set -
default library (p. 679)).

profile name <<in>> (p. 271) XML QoS Profile name. If pro-
file name is null RTI Connext will use the default pro-
file (see com.rti.dds.domain.DomainParticipant.set default -
profile (p. 680)).

listener <<in>> (p. 271). Listener to be attached to the newly created
com.rti.dds.topic.Topic (p. 1545).

mask <<in>> (p. 271). Changes of communication status to be invoked
on the listener.

Returns:

newly created topic (p. 350), or NULL on failure

See also:

Specifying QoS on entities (p. 96) for information on setting QoS before
entity creation

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.61 DomainParticipant Interface Reference 673

com.rti.dds.topic.TopicQos (p. 1566) for rules on consistency among
QoS
com.rti.dds.domain.DomainParticipant.create topic (p. 670)
com.rti.dds.domain.DomainParticipant.get default topic qos
(p. 641)
com.rti.dds.topic.Topic.set listener (p. 1549)

8.61.3.6 void delete topic (Topic topic)

Deletes a com.rti.dds.topic.Topic (p. 1545).

Precondition:

If the com.rti.dds.topic.Topic (p. 1545) does not belong to the applica-
tion’s com.rti.dds.domain.DomainParticipant (p. 629), this operation
fails with RETCODE PRECONDITION NOT MET.
Make sure no objects are using the topic (p. 350). More specifically,
there must be no existing com.rti.dds.subscription.DataReader
(p. 473), com.rti.dds.publication.DataWriter (p. 538),
com.rti.dds.topic.ContentFilteredTopic (p. 458), or
com.rti.dds.topic.MultiTopic (p. 1208) objects belonging to the
same com.rti.dds.domain.DomainParticipant (p. 629) that are using
the com.rti.dds.topic.Topic (p. 1545). If delete topic is called on a
com.rti.dds.topic.Topic (p. 1545) with any of these existing objects
attached to it, it will fail with RETCODE PRECONDITION NOT MET.

Postcondition:

Listener installed on the com.rti.dds.topic.Topic (p. 1545) will not be
called after this method completes successfully.

Parameters:

topic (p. 350) <<in>> (p. 271) com.rti.dds.topic.Topic (p. 1545) to
be deleted.

Exceptions:

One of the Standard Return Codes (p. 104), or RETCODE -
PRECONDITION NOT MET

8.61.3.7 ContentFilteredTopic create contentfilteredtopic (String
name, Topic related topic, String filter expression,
StringSeq expression parameters)

Creates a com.rti.dds.topic.ContentFilteredTopic (p. 458), that can be
used to do content-based subscriptions.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

674 Class Documentation

The com.rti.dds.topic.ContentFilteredTopic (p. 458) only relates to sam-
ples published under that com.rti.dds.topic.Topic (p. 1545), filtered accord-
ing to their content. The filtering is done by means of evaluating a logical
expression that involves the values of some of the data-fields in the sample.
The logical expression derived from the filter expression and expression -
parameters arguments.

Queries and Filters Syntax (p. 278) describes the syntax of filter -
expression and expression parameters.

Precondition:

The application is not allowed to create two
com.rti.dds.topic.ContentFilteredTopic (p. 458) ob-
jects with the same topic name attached to the same
com.rti.dds.domain.DomainParticipant (p. 629). If the applica-
tion attempts this, this method will fail and returns NULL.
If related topic does not belong to this
com.rti.dds.domain.DomainParticipant (p. 629), this operation
returns NULL.
This function will create a content filter using the builtin (p. 319) SQL filter
which implements a superset of the DDS specification. This filter requires
that all IDL types have been compiled with typecodes. If this precondition
is not met, this operation returns NULL. Do not use rtiddsgen’s -notypecode
option if you want to use the builtin (p. 319) SQL filter.

Parameters:

name <<in>> (p. 271) Name for the new content filtered topic (p. 350),
must not exceed 255 characters. Cannot be NULL.

related topic <<in>> (p. 271) com.rti.dds.topic.Topic (p. 1545) to
be filtered. Cannot be NULL.

filter expression <<in>> (p. 271) Cannot be NULL

expression parameters <<in>> (p. 271) Cannot be NULL.An empty
sequence must be used if the filter expression does not contain any
parameters. Length of sequence cannot be greater than 100.

Returns:

newly created com.rti.dds.topic.ContentFilteredTopic (p. 458), or
NULL on failure

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.61 DomainParticipant Interface Reference 675

8.61.3.8 ContentFilteredTopic create contentfilteredtopic -
with filter (String name, Topic related topic, String
filter expression, StringSeq expression parameters,
String filter name)

<<eXtension>> (p. 270) Creates a com.rti.dds.topic.ContentFilteredTopic
(p. 458) using the specified filter to do content-based subscriptions.

Parameters:

name <<in>> (p. 271) Name for the new content filtered topic (p. 350).
Cannot exceed 255 characters. Cannot be NULL.

related topic <<in>> (p. 271) com.rti.dds.topic.Topic (p. 1545) to
be filtered. Cannot be NULL.

filter expression <<in>> (p. 271) Cannot be NULL.

expression parameters <<in>> (p. 271) Cannot be NULL.. An empty
sequence must be used if the filter expression does not contain any
parameters. Length of the sequence cannot be greater than 100.

filter name <<in>> (p. 271) Name of content filter to
use. Must previously have been registered with
com.rti.dds.domain.DomainParticipant.register contentfilter
(p. 698) on the same com.rti.dds.domain.DomainParticipant
(p. 629). Cannot be NULL.

Builtin filter names are DomainParticipant.SQLFILTER NAME (p. 151)
and DomainParticipant.STRINGMATCHFILTER NAME (p. 151)

Returns:

newly created com.rti.dds.topic.ContentFilteredTopic (p. 458), or
NULL on failure

8.61.3.9 void delete contentfilteredtopic (ContentFilteredTopic
a contentfilteredtopic)

Deletes a com.rti.dds.topic.ContentFilteredTopic (p. 458).

Precondition:

The deletion of a com.rti.dds.topic.ContentFilteredTopic
(p. 458) is not allowed if there are any existing
com.rti.dds.subscription.DataReader (p. 473) objects that are
using the com.rti.dds.topic.ContentFilteredTopic (p. 458). If the op-
eration is called on a com.rti.dds.topic.ContentFilteredTopic (p. 458)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

676 Class Documentation

with existing com.rti.dds.subscription.DataReader (p. 473) objects
attached to it, it will fail with RETCODE PRECONDITION NOT MET.
The com.rti.dds.topic.ContentFilteredTopic (p. 458) must be created
by this com.rti.dds.domain.DomainParticipant (p. 629), or else this
operation will fail with RETCODE PRECONDITION NOT MET.

Parameters:

a contentfilteredtopic <<in>> (p. 271)

Exceptions:

One of the Standard Return Codes (p. 104) or RETCODE -
PRECONDITION NOT MET

8.61.3.10 MultiTopic create multitopic (String name, String
type name, String subscription expression, StringSeq
expression parameters)

[Not supported (optional)] Creates a MultiTopic that can be used to sub-
scribe to multiple topics and combine/filter the received data into a resulting
type.

The resulting type is specified by the type name argument. The list of topics
and the logic used to combine, filter, and rearrange the information from each
com.rti.dds.topic.Topic (p. 1545) are specified using the subscription -
expression and expression parameters arguments.

Queries and Filters Syntax (p. 278) describes the syntax of subscription -
expression and expression parameters.

Precondition:

The application is not allowed to create two
com.rti.dds.topic.TopicDescription (p. 1561) objects with the same
name attached to the same com.rti.dds.domain.DomainParticipant
(p. 629). If the application attempts this, this method will fail and return
NULL.
Prior to creating a com.rti.dds.topic.MultiTopic (p. 1208), the type
must have been registered with RTI Connext. This is done using the
com.rti.dds.topic.example.FooTypeSupport.register type (p. 1060)
operation on a derived class of the TypeSupport interface. Otherwise, this
method will return NULL.

Parameters:

name <<in>> (p. 271) Name of the newly create
com.rti.dds.topic.MultiTopic (p. 1208). Cannot be NULL.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.61 DomainParticipant Interface Reference 677

type name <<in>> (p. 271) Cannot be NULL.
subscription expression <<in>> (p. 271) Cannot be NULL.
expression parameters <<in>> (p. 271) Cannot be NULL.

Returns:

NULL

8.61.3.11 void delete multitopic (MultiTopic a multitopic)

[Not supported (optional)] Deletes a com.rti.dds.topic.MultiTopic
(p. 1208).

Precondition:

The deletion of a com.rti.dds.topic.MultiTopic (p. 1208) is not allowed
if there are any existing com.rti.dds.subscription.DataReader (p. 473)
objects that are using the com.rti.dds.topic.MultiTopic (p. 1208). If the
delete multitopic operation is called on a com.rti.dds.topic.MultiTopic
(p. 1208) with existing com.rti.dds.subscription.DataReader (p. 473)
objects attached to it, it will fail with RETCODE PRECONDITION -
NOT MET.
The com.rti.dds.topic.MultiTopic (p. 1208) must be created by this
com.rti.dds.domain.DomainParticipant (p. 629), or else this operation
will fail with RETCODE PRECONDITION NOT MET.

Parameters:

a multitopic <<in>> (p. 271)

Exceptions:

RETCODE UNSUPPORTED

8.61.3.12 void set qos (DomainParticipantQos qos)

Change the QoS of this DomainParticipant (p. 629).

The com.rti.dds.domain.DomainParticipantQos.user data (p. 738) and
com.rti.dds.domain.DomainParticipantQos.entity factory (p. 738) can
be changed. The other policies are immutable.

Parameters:

qos <<in>> (p. 271) Set of policies to be applied to
com.rti.dds.domain.DomainParticipant (p. 629). Policies

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

678 Class Documentation

must be consistent. Immutable policies cannot be changed after
com.rti.dds.domain.DomainParticipant (p. 629) is enabled. The
special value DomainParticipantFactory.PARTICIPANT -
QOS DEFAULT (p. 145) can be used to indicate that
the QoS of the com.rti.dds.domain.DomainParticipant
(p. 629) should be changed to match the current default
com.rti.dds.domain.DomainParticipantQos (p. 736) set in
the com.rti.dds.domain.DomainParticipantFactory (p. 708).
Cannot be NULL.

Exceptions:

One of the Standard Return Codes (p. 104), RETCODE -
IMMUTABLE POLICY if immutable policy is changed, or RET-
CODE INCONSISTENT POLICY if policies are inconsistent

See also:

com.rti.dds.domain.DomainParticipantQos (p. 736) for rules on con-
sistency among QoS
set qos (abstract) (p. 913)

8.61.3.13 void set qos with profile (String library name, String
profile name)

<<eXtension>> (p. 270) Change the QoS of this domain (p. 317) participant
using the input XML QoS profile.

The com.rti.dds.domain.DomainParticipantQos.user data (p. 738) and
com.rti.dds.domain.DomainParticipantQos.entity factory (p. 738) can
be changed. The other policies are immutable.

Parameters:

library name <<in>> (p. 271) Library name containing the XML QoS
profile. If library name is null RTI Connext will use the default li-
brary (see com.rti.dds.domain.DomainParticipantFactory.set -
default library (p. 721)).

profile name <<in>> (p. 271) XML QoS Profile name. If pro-
file name is null RTI Connext will use the default pro-
file (see com.rti.dds.domain.DomainParticipantFactory.set -
default profile (p. 722)).

Exceptions:

One of the Standard Return Codes (p. 104), RETCODE -
IMMUTABLE POLICY if immutable policy is changed, or RET-
CODE INCONSISTENT POLICY if policies are inconsistent

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.61 DomainParticipant Interface Reference 679

See also:

com.rti.dds.domain.DomainParticipantQos (p. 736) for rules on con-
sistency among QoS

8.61.3.14 void get qos (DomainParticipantQos qos)

Get the participant QoS.

This method may potentially allocate memory depending on the sequences con-
tained in some QoS policies.

Parameters:

qos <<inout>> (p. 271) QoS to be filled up. Cannot be NULL.

Exceptions:

One of the Standard Return Codes (p. 104)

See also:

get qos (abstract) (p. 914)

8.61.3.15 String get default library ()

<<eXtension>> (p. 270) Gets the default XML library associated with a
com.rti.dds.domain.DomainParticipant (p. 629).

Returns:

The default library or null if the default library was not set.

See also:

com.rti.dds.domain.DomainParticipant.set default library (p. 679)

8.61.3.16 void set default library (String library name)

<<eXtension>> (p. 270) Sets the default XML library for a
com.rti.dds.domain.DomainParticipant (p. 629).

This method specifies the library that will be used as the default the next time
a default library is needed during a call to one of this DomainParticipant’s
operations.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

680 Class Documentation

Any API requiring a library name as a parameter can use null to refer to the
default library.

If the default library is not set, the com.rti.dds.domain.DomainParticipant
(p. 629) inherits the default from the com.rti.dds.domain.DomainParticipantFactory
(p. 708) (see com.rti.dds.domain.DomainParticipantFactory.set -
default library (p. 721)).

Parameters:

library name <<in>> (p. 271) Library name. If library name is null
any previous default is unset.

Exceptions:

One of the Standard Return Codes (p. 104)

See also:

com.rti.dds.domain.DomainParticipant.get default library
(p. 679)

8.61.3.17 String get default profile ()

<<eXtension>> (p. 270) Gets the default XML profile associated with a
com.rti.dds.domain.DomainParticipant (p. 629).

Returns:

The default profile or null if the default profile was not set.

See also:

com.rti.dds.domain.DomainParticipant.set default profile (p. 680)

8.61.3.18 void set default profile (String library name, String
profile name)

<<eXtension>> (p. 270) Sets the default XML profile for a
com.rti.dds.domain.DomainParticipant (p. 629).

This method specifies the profile that will be used as the default the
next time a default DomainParticipant (p. 629) profile is needed dur-
ing a call to one of this DomainParticipant’s operations. When calling a
com.rti.dds.domain.DomainParticipant (p. 629) method that requires a

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.61 DomainParticipant Interface Reference 681

profile name parameter, you can use NULL to refer to the default profile.
(This same information applies to setting a default library.)

If the default profile is not set, the com.rti.dds.domain.DomainParticipant
(p. 629) inherits the default from the com.rti.dds.domain.DomainParticipantFactory
(p. 708) (see com.rti.dds.domain.DomainParticipantFactory.set -
default profile (p. 722)).

This method does not set the default QoS for entities created by the
com.rti.dds.domain.DomainParticipant (p. 629); for this functionality, use
the methods set default <entity> qos with profile (you may pass in NULL after
having called set default profile() (p. 680)).

This method does not set the default QoS for newly
created DomainParticipants; for this functionality, use
com.rti.dds.domain.DomainParticipantFactory.set default -
participant qos with profile (p. 717).

Parameters:

library name <<in>> (p. 271) The library name containing the profile.
profile name <<in>> (p. 271) The profile name. If profile name is null

any previous default is unset.

Exceptions:

One of the Standard Return Codes (p. 104)

See also:

com.rti.dds.domain.DomainParticipant.get default profile (p. 680)
com.rti.dds.domain.DomainParticipant.get default profile -
library (p. 681)

8.61.3.19 String get default profile library ()

<<eXtension>> (p. 270) Gets the library where the default XML QoS profile
is contained for a com.rti.dds.domain.DomainParticipant (p. 629).

The default profile library is automatically set when
com.rti.dds.domain.DomainParticipant.set default profile (p. 680)
is called.

This library can be different than the com.rti.dds.domain.DomainParticipant
(p. 629) default library (see com.rti.dds.domain.DomainParticipant.get -
default library (p. 679)).

Returns:

The default profile library or null if the default profile was not set.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

682 Class Documentation

See also:

com.rti.dds.domain.DomainParticipant.set default profile (p. 680)

8.61.3.20 void set listener (DomainParticipantListener l, int mask)

Sets the participant listener.

Parameters:

l <<in>> (p. 271) Listener to be installed on entity.

mask <<in>> (p. 271) Changes of communication status to be invoked
on the listener.

MT Safety:

Unsafe. This method is not synchronized with the listener callbacks, so it
is possible to set a new listener on a participant when the old listener is in
a callback.

Exceptions:

One of the Standard Return Codes (p. 104)

See also:

set listener (abstract) (p. 914)

8.61.3.21 DomainParticipantListener get listener ()

Get the participant listener.

Returns:

Existing listener attached to the com.rti.dds.domain.DomainParticipant
(p. 629).

See also:

get listener (abstract) (p. 915)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.61 DomainParticipant Interface Reference 683

8.61.3.22 void get publishers (PublisherSeq publishers)

<<eXtension>> (p. 270) Allows the application to access all the publishers
the participant has.

If the sequence doesn’t own its buffer, and its maximum is less than the to-
tal number of publishers, it will be filled up to its maximum, and fail with
RETCODE OUT OF RESOURCES.

MT Safety:

Safe.

Parameters:

publishers <<inout>> (p. 271) a PublisherSeq object where the set or
list of publishers will be returned

Returns:

One of the Standard Return Codes (p. 104) or RETCODE OUT OF -
RESOURCES

8.61.3.23 void get subscribers (SubscriberSeq subscribers)

<<eXtension>> (p. 270) Allows the application to access all the subscribers
the participant has.

If the sequence doesn’t own its buffer, and its maximum is less than the to-
tal number of subscribers, it will be filled up to its maximum, and fail with
RETCODE OUT OF RESOURCES.

MT Safety:

Safe.

Parameters:

subscribers <<inout>> (p. 271) a SubscriberSeq object where the set
or list of subscribers will be returned

Returns:

One of the Standard Return Codes (p. 104) or RETCODE OUT OF -
RESOURCES

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

684 Class Documentation

8.61.3.24 Subscriber get builtin subscriber ()

Accesses the built-in com.rti.dds.subscription.Subscriber (p. 1478).

Each com.rti.dds.domain.DomainParticipant (p. 629) contains several
built-in com.rti.dds.topic.Topic (p. 1545) objects as well as corresponding
com.rti.dds.subscription.DataReader (p. 473) objects to access them. All
of these com.rti.dds.subscription.DataReader (p. 473) objects belong to a
single built-in com.rti.dds.subscription.Subscriber (p. 1478).

The built-in Topics are used to communicate information
about other com.rti.dds.domain.DomainParticipant (p. 629),
com.rti.dds.topic.Topic (p. 1545), com.rti.dds.subscription.DataReader
(p. 473), and com.rti.dds.publication.DataWriter (p. 538) objects.

The built-in subscriber is created when this operation is called for the
first time. The built-in subscriber is deleted automatically when the
com.rti.dds.domain.DomainParticipant (p. 629) is deleted.

Returns:

The built-in com.rti.dds.subscription.Subscriber (p. 1478) singleton.

See also:

builtin.SubscriptionBuiltinTopicData
builtin.PublicationBuiltinTopicData
builtin.ParticipantBuiltinTopicData (p. 1227)
builtin.TopicBuiltinTopicData

8.61.3.25 FlowController lookup flowcontroller (String name)

<<eXtension>> (p. 270) Looks up an existing locally-created
com.rti.dds.publication.FlowController (p. 942), based on its name.

Looks up a previously created com.rti.dds.publication.FlowController
(p. 942), including the built-in ones. Once a
com.rti.dds.publication.FlowController (p. 942) has been deleted,
subsequent lookups will fail.

MT Safety:

UNSAFE. It is not safe to lookup a flow controller description while another
thread is creating that flow controller.

Parameters:

name <<in>> (p. 271) Name of com.rti.dds.publication.FlowController
(p. 942) to search for. Limited to 255 characters. Cannot be NULL.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.61 DomainParticipant Interface Reference 685

Returns:

The flow controller if it has already been created locally, or NULL otherwise.

8.61.3.26 Topic find topic (String topic name, Duration t timeout)

Finds an existing (or ready to exist) com.rti.dds.topic.Topic (p. 1545), based
on its name.

This call can be used to block for a specified duration to wait for the
com.rti.dds.topic.Topic (p. 1545) to be created.

If the requested com.rti.dds.topic.Topic (p. 1545) already exists, it is re-
turned. Otherwise, find topic() (p. 685) waits until another thread creates
it or else returns when the specified timeout occurs.

find topic() (p. 685) is useful when multiple threads are concurrently
creating and looking up topics. In that case, one thread can
call find topic() (p. 685) and, if another thread has not yet cre-
ated the topic (p. 350) being looked up, it can wait for some pe-
riod of time for it to do so. In almost all other cases, it is more
straightforward to call com.rti.dds.domain.DomainParticipant.lookup -
topicdescription (p. 686).

The com.rti.dds.domain.DomainParticipant (p. 629) must already be en-
abled.

Note: Each com.rti.dds.topic.Topic (p. 1545) obtained by
com.rti.dds.domain.DomainParticipant.find topic (p. 685) must also be
deleted by means of com.rti.dds.domain.DomainParticipant.delete -
topic (p. 673). If com.rti.dds.topic.Topic (p. 1545) is obtained multiple
times by means of com.rti.dds.domain.DomainParticipant.find -
topic (p. 685) or com.rti.dds.domain.DomainParticipant.create -
topic (p. 670), it must also be deleted that same number of times using
com.rti.dds.domain.DomainParticipant.delete topic (p. 673).

Parameters:

topic name <<in>> (p. 271) Name of the com.rti.dds.topic.Topic
(p. 1545) to search for. Cannot be NULL.

timeout <<in>> (p. 271) The time to wait if the
com.rti.dds.topic.Topic (p. 1545) does not exist already. Cannot
be NULL.

Returns:

the topic (p. 350), if it exists, or NULL

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

686 Class Documentation

8.61.3.27 TopicDescription lookup topicdescription (String
topic name)

Looks up an existing, locally created com.rti.dds.topic.TopicDescription
(p. 1561), based on its name.

com.rti.dds.topic.TopicDescription (p. 1561) is the base class for
com.rti.dds.topic.Topic (p. 1545), com.rti.dds.topic.MultiTopic
(p. 1208) and com.rti.dds.topic.ContentFilteredTopic (p. 458). So
you can narrow the com.rti.dds.topic.TopicDescription (p. 1561) re-
turned from this operation to a com.rti.dds.topic.Topic (p. 1545) or
com.rti.dds.topic.ContentFilteredTopic (p. 458) as appropriate.

Unlike com.rti.dds.domain.DomainParticipant.find topic (p. 685), which
logically returns a new com.rti.dds.topic.Topic (p. 1545) object that must be
independently deleted, this operation returns a reference to the original local
object.

The com.rti.dds.domain.DomainParticipant (p. 629) does not have to be
enabled when you call lookup topicdescription() (p. 686).

The returned topic (p. 350) may be either enabled or disabled.

MT Safety:

UNSAFE. It is not safe to lookup a topic (p. 350) description while another
thread is creating that topic (p. 350).

Parameters:

topic name <<in>> (p. 271) Name of
com.rti.dds.topic.TopicDescription (p. 1561) to search for.
This string must be no more than 255 characters; it cannot be NULL.

Returns:

The topic (p. 350) description, if it has already been created locally, oth-
erwise it returns NULL.

8.61.3.28 void ignore participant (InstanceHandle t handle)

Instructs RTI Connext to locally ignore a remote
com.rti.dds.domain.DomainParticipant (p. 629).

From the time of this call onwards, RTI Connext will locally behave as if
the remote participant did not exist. This means it will ignore any topic
(p. 350), publication (p. 338), or subscription (p. 343) that originates on that
com.rti.dds.domain.DomainParticipant (p. 629).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.61 DomainParticipant Interface Reference 687

There is no way to reverse this operation.

This operation can be used in conjunction with the discovery of remote
participants offered by means of the builtin.ParticipantBuiltinTopicData
(p. 1227) to provide access control.

Application data can be associated with a
com.rti.dds.domain.DomainParticipant (p. 629) by means of the USER -
DATA (p. 126) policy. This application data is propagated as a field in the
built-in topic (p. 350) and can be used by an application to implement its own
access control policy.

The com.rti.dds.domain.DomainParticipant (p. 629) to ig-
nore is identified by the handle argument. This handle is the
one that appears in the com.rti.dds.subscription.SampleInfo
(p. 1404) retrieved when reading the data-samples available for the
built-in com.rti.dds.subscription.DataReader (p. 473) to the
com.rti.dds.domain.DomainParticipant (p. 629) topic (p. 350).
The built-in com.rti.dds.subscription.DataReader (p. 473) is read
with the same com.rti.dds.topic.example.FooDataReader.read and
com.rti.dds.topic.example.FooDataReader.take operations used for any
com.rti.dds.subscription.DataReader (p. 473).

Parameters:

handle <<in>> (p. 271) com.rti.dds.infrastructure.InstanceHandle -
t (p. 1080) of the com.rti.dds.domain.DomainParticipant
(p. 629) to be ignored. Cannot be NULL.

Exceptions:

One of the Standard Return Codes (p. 104), RETCODE OUT OF -
RESOURCES, RETCODE NOT ENABLED

See also:

builtin.ParticipantBuiltinTopicData (p. 1227)
ParticipantBuiltinTopicDataTypeSupport.PARTICIPANT TOPIC -
NAME
com.rti.dds.domain.DomainParticipant.get builtin subscriber
(p. 684)

8.61.3.29 void ignore topic (InstanceHandle t handle)

Instructs RTI Connext to locally ignore a com.rti.dds.topic.Topic (p. 1545).

This means it will locally ignore any publication (p. 338), or subscription
(p. 343) to the com.rti.dds.topic.Topic (p. 1545).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

688 Class Documentation

There is no way to reverse this operation.

This operation can be used to save local resources when the application knows
that it will never publish or subscribe to data under certain topics.

The com.rti.dds.topic.Topic (p. 1545) to ignore is identified by the
handle argument. This is the handle of a com.rti.dds.topic.Topic
(p. 1545) that appears in the com.rti.dds.subscription.SampleInfo
(p. 1404) retrieved when reading data samples from the built-
in com.rti.dds.subscription.DataReader (p. 473) for the
com.rti.dds.topic.Topic (p. 1545).

Parameters:

handle <<in>> (p. 271) Handle of the com.rti.dds.topic.Topic
(p. 1545) to be ignored. Cannot be NULL.

Exceptions:

One of the Standard Return Codes (p. 104), RETCODE OUT OF -
RESOURCES or RETCODE NOT ENABLED

See also:

builtin.TopicBuiltinTopicData
TopicBuiltinTopicDataTypeSupport.TOPIC TOPIC NAME
com.rti.dds.domain.DomainParticipant.get builtin subscriber
(p. 684)

8.61.3.30 void ignore publication (InstanceHandle t handle)

Instructs RTI Connext to locally ignore a publication (p. 338).

A publication (p. 338) is defined by the association of a topic (p. 350)
name, user data, and partition set on the com.rti.dds.publication.Publisher
(p. 1277) (see builtin.PublicationBuiltinTopicData). After this call, any data
written by that publication’s com.rti.dds.publication.DataWriter (p. 538)
will be ignored.

This operation can be used to ignore local and remote DataWriters.

The publication (p. 338) (DataWriter) to ignore is identified by the handle
argument.

ˆ To ignore a remote DataWriter, the handle can be ob-
tained from the com.rti.dds.subscription.SampleInfo
(p. 1404) retrieved when reading data samples from the built-
in com.rti.dds.subscription.DataReader (p. 473) for the
com.rti.dds.publication (p. 338) topic (p. 350).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.61 DomainParticipant Interface Reference 689

ˆ To ignore a local DataWriter, the handle can be obtained by calling
com.rti.dds.infrastructure.Entity.get instance handle (p. 917) for
the local DataWriter.

There is no way to reverse this operation.

Parameters:

handle <<in>> (p. 271) Handle of the
com.rti.dds.publication.DataWriter (p. 538) to be ignored.
Cannot be NULL.

Exceptions:

One of the Standard Return Codes (p. 104), RETCODE OUT OF -
RESOURCES or RETCODE NOT ENABLED

See also:

builtin.PublicationBuiltinTopicData
PublicationBuiltinTopicDataTypeSupport.PUBLICATION TOPIC -
NAME
com.rti.dds.domain.DomainParticipant.get builtin subscriber
(p. 684)

8.61.3.31 void ignore subscription (InstanceHandle t handle)

Instructs RTI Connext to locally ignore a subscription (p. 343).

A subscription (p. 343) is defined by the association of a topic (p. 350) name,
user data, and partition set on the com.rti.dds.subscription.Subscriber
(p. 1478) (see builtin.SubscriptionBuiltinTopicData). After
this call, any data received related to that subscription’s
com.rti.dds.subscription.DataReader (p. 473) will be ignored.

This operation can be used to ignore local and remote DataReaders.

The subscription (p. 343) to ignore is identified by the handle argument.

ˆ To ignore a remote DataReader, the handle can be ob-
tained from the com.rti.dds.subscription.SampleInfo
(p. 1404) retrieved when reading data samples from the built-
in com.rti.dds.subscription.DataReader (p. 473) for the
com.rti.dds.subscription (p. 343) topic (p. 350).

ˆ To ignore a local DataReader, the handle can be obtained by calling
com.rti.dds.infrastructure.Entity.get instance handle (p. 917) for
the local DataReader.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

690 Class Documentation

There is no way to reverse this operation.

Parameters:

handle <<in>> (p. 271) Handle of the
com.rti.dds.subscription.DataReader (p. 473) to be ignored.
Cannot be NULL.

Exceptions:

One of the Standard Return Codes (p. 104), RETCODE OUT OF -
RESOURCES or RETCODE NOT ENABLED

See also:

builtin.SubscriptionBuiltinTopicData
SubscriptionBuiltinTopicDataTypeSupport.SUBSCRIPTION TOPIC -
NAME
com.rti.dds.domain.DomainParticipant.get builtin subscriber
(p. 684)

8.61.3.32 int get domain id ()

Get the unique domain (p. 317) identifier.

This operation retrieves the domain id used to create the
com.rti.dds.domain.DomainParticipant (p. 629). The
domain id identifies the DDS domain (p. 317) to which the
com.rti.dds.domain.DomainParticipant (p. 629) belongs. Each DDS
domain (p. 317) represents a separate data ’communication plane’ isolated
from other domains.

Returns:

the unique domainId that was used to create the domain (p. 317)

See also:

com.rti.dds.domain.DomainParticipantFactory.create -
participant (p. 714)
com.rti.dds.domain.DomainParticipantFactory.create -
participant with profile (p. 730)

8.61.3.33 void assert liveliness ()

Manually asserts the liveliness of this com.rti.dds.domain.DomainParticipant
(p. 629).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.61 DomainParticipant Interface Reference 691

This is used in combination with the com.rti.dds.infrastructure.LivelinessQosPolicy
(p. 1164) to indicate to RTI Connext that the entity remains active.

You need to use this operation if the com.rti.dds.domain.DomainParticipant
(p. 629) conatins com.rti.dds.publication.DataWriter (p. 538) enti-
ties with the com.rti.dds.infrastructure.LivelinessQosPolicy.kind
(p. 1167) set to LivelinessQosPolicyKind.MANUAL BY PARTICIPANT -
LIVELINESS QOS and it only affects the liveliness of those
com.rti.dds.publication.DataWriter (p. 538) entities. Otherwise, it
has no effect.

Note: writing data via the com.rti.dds.topic.example.FooDataWriter.write or
com.rti.dds.topic.example.FooDataWriter.write w timestamp operation asserts
liveliness on the com.rti.dds.publication.DataWriter (p. 538) itself and its
com.rti.dds.domain.DomainParticipant (p. 629). Consequently the use of
assert liveliness() (p. 690) is only needed if the application is not writing data
regularly.

Exceptions:

One of the Standard Return Codes (p. 104), or RETCODE NOT -
ENABLED

See also:

com.rti.dds.infrastructure.LivelinessQosPolicy (p. 1164)

8.61.3.34 void delete contained entities ()

Delete all the entities that were created by means of the ”create” operations on
the com.rti.dds.domain.DomainParticipant (p. 629).

This operation deletes all contained com.rti.dds.publication.Publisher
(p. 1277) (including an implicit Publisher, if one ex-
ists), com.rti.dds.subscription.Subscriber (p. 1478) (includ-
ing implicit subscriber), com.rti.dds.topic.Topic (p. 1545),
com.rti.dds.topic.ContentFilteredTopic (p. 458), and
com.rti.dds.topic.MultiTopic (p. 1208) objects.

Prior to deleting each contained entity, this operation will re-
cursively call the corresponding delete contained entities operation
on each contained entity (if applicable). This pattern is applied
recursively. In this manner the operation delete contained -
entities() (p. 691) on the com.rti.dds.domain.DomainParticipant
(p. 629) will end up deleting all the entities recursively con-
tained in the com.rti.dds.domain.DomainParticipant (p. 629),
that is also the com.rti.dds.publication.DataWriter (p. 538),

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

692 Class Documentation

com.rti.dds.subscription.DataReader (p. 473), as well as
the com.rti.dds.subscription.QueryCondition (p. 1324) and
com.rti.dds.subscription.ReadCondition (p. 1326) objects belonging
to the contained com.rti.dds.subscription.DataReader (p. 473).

The operation will fail with RETCODE PRECONDITION NOT MET if any
of the contained entities is in a state where it cannot be deleted.

If delete contained entities() (p. 691) completes successfully, the application
may delete the com.rti.dds.domain.DomainParticipant (p. 629) knowing
that it has no contained entities.

Exceptions:

One of the Standard Return Codes (p. 104), or RETCODE -
PRECONDITION NOT MET.

8.61.3.35 void add peer (String peer desc string)

<<eXtension>> (p. 270) Attempt to contact one or more additional peer
participants.

Add the given peer description to the list of peers with which this
com.rti.dds.domain.DomainParticipant (p. 629) will try to communicate.

This method may be called at any time after this
com.rti.dds.domain.DomainParticipant (p. 629) has been created (before
or after it has been enabled).

If this method is called after com.rti.dds.infrastructure.Entity.enable
(p. 915), an attempt will be made to contact the new peer(s) immediately.

If this method is called before the DomainParticipant (p. 629) is en-
abled, the peer description will simply be added to the list that was
populated by com.rti.dds.infrastructure.DiscoveryQosPolicy.initial -
peers (p. 626); the first attempted contact will take place after this
com.rti.dds.domain.DomainParticipant (p. 629) is enabled.

Adding a peer description with this method does not guarantee that any peer(s)
discovered as a result will exactly correspond to those described:

ˆ This com.rti.dds.domain.DomainParticipant (p. 629) will attempt to
discover peer participants at the given locations but may not succeed if
no such participants are available. In this case, this method will not wait
for contact attempt(s) to be made and it will not report an error.

ˆ If remote participants described by the given peer description are discov-
ered, the distributed application is configured with asymmetric peer lists,

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.61 DomainParticipant Interface Reference 693

and com.rti.dds.infrastructure.DiscoveryQosPolicy.accept -
unknown peers (p. 627) is set to true. Thus, this
com.rti.dds.domain.DomainParticipant (p. 629) may actually
discover more peers than are described in the given peer description.

To be informed of the exact remote participants that are discovered, regardless of
which peers this com.rti.dds.domain.DomainParticipant (p. 629) attempts
to discover, use the built-in participant topic (p. 350): ParticipantBuiltinTopic-
DataTypeSupport.PARTICIPANT TOPIC NAME.

To remove specific peer locators, you may use
com.rti.dds.domain.DomainParticipant.remove peer (p. 693). If a
peer is removed, the add peer operation will add it back to the list of peers.

To stop communicating with a peer com.rti.dds.domain.DomainParticipant
(p. 629) that has been discovered, use com.rti.dds.domain.DomainParticipant.ignore -
participant (p. 686).

Adding a peer description with this method has no effect on
the com.rti.dds.infrastructure.DiscoveryQosPolicy.initial -
peers (p. 626) that may be subsequently retrieved with
com.rti.dds.domain.DomainParticipant.get qos() (p. 679) (because
com.rti.dds.infrastructure.DiscoveryQosPolicy (p. 624) is immutable).

Parameters:

peer desc string <<in>> (p. 271) New peer descriptor to be added.
The format is specified in Peer Descriptor Format (p. 56). Cannot
be NULL.

Exceptions:

One of the Standard Return Codes (p. 104)

See also:

Peer Descriptor Format (p. 56)
com.rti.dds.infrastructure.DiscoveryQosPolicy.initial peers
(p. 626)
ParticipantBuiltinTopicDataTypeSupport.PARTICIPANT TOPIC -
NAME
com.rti.dds.domain.DomainParticipant.get builtin subscriber
(p. 684)

8.61.3.36 void remove peer (String peer desc string)

<<eXtension>> (p. 270) Remove one or more peer participants from the list

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

694 Class Documentation

of peers with which this com.rti.dds.domain.DomainParticipant (p. 629)
will try to communicate.

This method may be called any time after this
com.rti.dds.domain.DomainParticipant (p. 629) has been enabled

Calling this method has the following effects:

ˆ If a com.rti.dds.domain.DomainParticipant (p. 629) was already dis-
covered, it will be locally removed along with all its entities.

ˆ Any further requests coming from a
com.rti.dds.domain.DomainParticipant (p. 629) located on any
of the removed peers will be ignored.

ˆ All the locators contained in the peer description will be removed from the
peer list. The local com.rti.dds.domain.DomainParticipant (p. 629)
will stop sending announcement to those locators.

If remote participants located on a peer that was previously removed are dis-
covered, they will be ignored untill the related peer is added back by using
com.rti.dds.domain.DomainParticipant.add peer (p. 692).

Removing a peer description with this method has no effect
on the com.rti.dds.infrastructure.DiscoveryQosPolicy.initial -
peers (p. 626) that may be subsequently retrieved with
com.rti.dds.domain.DomainParticipant.get qos() (p. 679) (because
com.rti.dds.infrastructure.DiscoveryQosPolicy (p. 624) is immutable).

Parameters:

peer desc string <<in>> (p. 271) Peer descriptor to be removed. The
format is specified in Peer Descriptor Format (p. 56). Cannot be
NULL.

Exceptions:

One of the Standard Return Codes (p. 104)

See also:

Peer Descriptor Format (p. 56)
com.rti.dds.infrastructure.DiscoveryQosPolicy.initial peers
(p. 626)
com.rti.dds.domain.DomainParticipant.add peer (p. 692)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.61 DomainParticipant Interface Reference 695

8.61.3.37 void get current time (Time t current time)

Returns the current value of the time.

The current value of the time that RTI Connext uses to time-stamp
com.rti.dds.publication.DataWriter (p. 538) and to set the reception-
timestamp for the data updates that it receives.

Parameters:

current time <<inout>> (p. 271) Current time to be filled up. Cannot
be NULL.

Exceptions:

One of the Standard Return Codes (p. 104)

8.61.3.38 void get discovered participants (InstanceHandleSeq
participant handles)

Returns list of discovered com.rti.dds.domain.DomainParticipant (p. 629)
s.

This operation retrieves the list of com.rti.dds.domain.DomainParticipant
(p. 629) s that have been discovered in the domain (p. 317) and that
the application has not indicated should be ”ignored” by means of the
com.rti.dds.domain.DomainParticipant.ignore participant (p. 686) op-
eration.

Parameters:

participant handles <<inout>> (p. 271)
com.rti.dds.infrastructure.InstanceHandleSeq
(p. 1083) to be filled with handles of the discovered
com.rti.dds.domain.DomainParticipant (p. 629) s

Exceptions:

One of the Standard Return Codes (p. 104) or RETCODE NOT -
ENABLED

8.61.3.39 void get discovered participant data
(ParticipantBuiltinTopicData participant data,
InstanceHandle t participant handle)

Returns builtin.ParticipantBuiltinTopicData (p. 1227) for the specified
com.rti.dds.domain.DomainParticipant (p. 629) .

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

696 Class Documentation

This operation retrieves information on a
com.rti.dds.domain.DomainParticipant (p. 629) that has been discovered
on the network. The participant must be in the same domain (p. 317) as the
participant on which this operation is invoked and must not have been ”ig-
nored” by means of the com.rti.dds.domain.DomainParticipant.ignore -
participant (p. 686) operation.

The participant handle must correspond to such a DomainParticipant
(p. 629). Otherwise, the operation will fail with PRECONDITION NOT MET.

Use the operation com.rti.dds.domain.DomainParticipant.get -
discovered participants (p. 695) to find the
com.rti.dds.domain.DomainParticipant (p. 629) s that are currently
discovered.

Note: This operation does not retrieve the
builtin.ParticipantBuiltinTopicData.property
(p. 1228). This information is available through
com.rti.dds.subscription.DataReaderListener.on data -
available() (p. 503) (if a reader listener is installed on the
builtin.ParticipantBuiltinTopicDataDataReader (p. 1230)).

Parameters:

participant data <<inout>> (p. 271) builtin.ParticipantBuiltinTopicData
(p. 1227) to be filled with the specified
com.rti.dds.domain.DomainParticipant (p. 629) ’s data.

participant handle <<in>> (p. 271) com.rti.dds.infrastructure.InstanceHandle -
t (p. 1080) of com.rti.dds.domain.DomainParticipant (p. 629).

Exceptions:

One of the Standard Return Codes (p. 104), RETCODE -
PRECONDITION NOT MET or RETCODE NOT ENABLED

See also:

builtin.ParticipantBuiltinTopicData (p. 1227)
com.rti.dds.domain.DomainParticipant.get discovered -
participants (p. 695)

8.61.3.40 void get discovered topics (InstanceHandleSeq
topic handles)

Returns list of discovered com.rti.dds.topic.Topic (p. 1545) objects.

This operation retrieves the list of com.rti.dds.topic.Topic (p. 1545)
s that have been discovered in the domain (p. 317) and that the

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.61 DomainParticipant Interface Reference 697

application has not indicated should be ”ignored” by means of the
com.rti.dds.domain.DomainParticipant.ignore topic (p. 687) operation.

Parameters:

topic handles <<inout>> (p. 271) com.rti.dds.infrastructure.InstanceHandleSeq
(p. 1083) to be filled with handles of the discovered
com.rti.dds.topic.Topic (p. 1545) objects

Exceptions:

One of the Standard Return Codes (p. 104) or RETCODE NOT -
ENABLED

8.61.3.41 void get discovered topic data (TopicBuiltinTopicData
topic data, InstanceHandle t topic handle)

Returns builtin.TopicBuiltinTopicData for the specified
com.rti.dds.topic.Topic (p. 1545).

This operation retrieves information on a com.rti.dds.topic.Topic (p. 1545)
that has been discovered by the local Participant and must not have been ”ig-
nored” by means of the com.rti.dds.domain.DomainParticipant.ignore -
topic (p. 687) operation.

The topic handle must correspond to such a topic (p. 350). Otherwise, the
operation will fail with RETCODE PRECONDITION NOT MET.

This call is not supported for remote topics. If a remote topic handle is used,
the operation will fail with RETCODE UNSUPPORTED.

Use the operation com.rti.dds.domain.DomainParticipant.get -
discovered topics (p. 696) to find the topics that are currently discovered.

Parameters:

topic data <<inout>> (p. 271) builtin.TopicBuiltinTopicData to be
filled with the specified com.rti.dds.topic.Topic (p. 1545)’s data.

topic handle <<in>> (p. 271) com.rti.dds.infrastructure.InstanceHandle -
t (p. 1080) of com.rti.dds.topic.Topic (p. 1545).

Exceptions:

One of the Standard Return Codes (p. 104), RETCODE -
PRECONDITION NOT MET or RETCODE NOT ENABLED

See also:

builtin.TopicBuiltinTopicData

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

698 Class Documentation

com.rti.dds.domain.DomainParticipant.get discovered topics
(p. 696)

8.61.3.42 boolean contains entity (InstanceHandle t a handle)

Completes successfully with true if the referenced
com.rti.dds.infrastructure.Entity (p. 912) is contained by the
com.rti.dds.domain.DomainParticipant (p. 629).

This operation checks whether or not the given a handle rep-
resents an com.rti.dds.infrastructure.Entity (p. 912) that
was created from the com.rti.dds.domain.DomainParticipant
(p. 629). The containment applies recursively. That is, it ap-
plies both to entities (com.rti.dds.topic.TopicDescription
(p. 1561), com.rti.dds.publication.Publisher (p. 1277), or
com.rti.dds.subscription.Subscriber (p. 1478)) created directly using
the com.rti.dds.domain.DomainParticipant (p. 629) as well as entities
created using a contained com.rti.dds.publication.Publisher (p. 1277), or
com.rti.dds.subscription.Subscriber (p. 1478) as the factory, and so forth.

The instance handle for an com.rti.dds.infrastructure.Entity (p. 912)
may be obtained from built-in topic (p. 350) data, from various statuses,
or from the operation com.rti.dds.infrastructure.Entity.get instance -
handle (p. 917).

Parameters:

a handle <<in>> (p. 271) com.rti.dds.infrastructure.InstanceHandle -
t (p. 1080) of the com.rti.dds.infrastructure.Entity (p. 912) to be
checked.

Returns:

true if com.rti.dds.infrastructure.Entity (p. 912) is contained by the
com.rti.dds.domain.DomainParticipant (p. 629), or false otherwise.

8.61.3.43 void register contentfilter (String filter name,
ContentFilter contentfilter)

<<eXtension>> (p. 270) Register a content filter which can be used to create
a com.rti.dds.topic.ContentFilteredTopic (p. 458).

DDS specifies a SQL-like content filter for use by content filtered topics. If this
filter does not meet your filtering requirements, you can register a custom filter.

To use a custom filter, it must be registered in the following places:

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.61 DomainParticipant Interface Reference 699

ˆ In any application that uses the custom filter to create a
com.rti.dds.topic.ContentFilteredTopic (p. 458) and the correspond-
ing com.rti.dds.subscription.DataReader (p. 473).

ˆ In each application that writes the data to the applications mentioned
above.

For example, suppose Application A on the subscription (p. 343) side creates a
Topic named X and a ContentFilteredTopic named filteredX (and a correspond-
ing DataReader), using a previously registered content filter, myFilter. With
only that, you will have filtering at the subscription (p. 343) side. If you also
want to perform filtering in any application that publishes Topic X, then you
also need to register the same definition of the ContentFilter myFilter in that
application.

Each filter name can only be used to registered a content filter once with a
com.rti.dds.domain.DomainParticipant (p. 629).

Parameters:

filter name <<in>> (p. 271) Name of the filter. The name must
be unique within the com.rti.dds.domain.DomainParticipant
(p. 629) and must not exceed 255 characters. Cannot be NULL.

contentfilter <<in>> (p. 271) Content filter to be registered. Cannot
be NULL.

Exceptions:

One of the Standard Return Codes (p. 104)

See also:

com.rti.dds.domain.DomainParticipant.unregister contentfilter
(p. 700)

8.61.3.44 ContentFilter lookup contentfilter (String filter name)

<<eXtension>> (p. 270) Lookup a content filter previously registered with
com.rti.dds.domain.DomainParticipant.register contentfilter (p. 698).

Parameters:

filter name <<in>> (p. 271) Name of the filter. Cannot be NULL.

Returns:

NULL if the given filter name has not been previously registered
to the com.rti.dds.domain.DomainParticipant (p. 629) with

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

700 Class Documentation

com.rti.dds.domain.DomainParticipant.register contentfilter
(p. 698). Otherwise, return the com.rti.dds.topic.ContentFilter
(p. 454) that has been previosuly registered with the given filter name.

See also:

com.rti.dds.domain.DomainParticipant.register contentfilter
(p. 698)

8.61.3.45 void unregister contentfilter (String filter name)

<<eXtension>> (p. 270) Unregister a content filter previously registered with
com.rti.dds.domain.DomainParticipant.register contentfilter (p. 698).

A filter name can be unregistered only if it has been previously reg-
istered to the com.rti.dds.domain.DomainParticipant (p. 629) with
com.rti.dds.domain.DomainParticipant.register contentfilter (p. 698).

The unregistration of filter is not allowed if there are any existing
com.rti.dds.topic.ContentFilteredTopic (p. 458) objects that are us-
ing the filter. If the operation is called on a filter with existing
com.rti.dds.topic.ContentFilteredTopic (p. 458) objects attached to it, this
operation will fail with RETCODE PRECONDITION NOT MET.

If there are still existing discovered com.rti.dds.subscription.DataReader
(p. 473) s with the same filter name and the filter’s compile
method of the filter have previously been called on the discovered
com.rti.dds.subscription.DataReader (p. 473) s, finalize method of the fil-
ter will be called on those discovered com.rti.dds.subscription.DataReader
(p. 473) s before the content filter is unregistered. This means fil-
tering will now be performed on the application that is creating the
com.rti.dds.subscription.DataReader (p. 473).

Parameters:

filter name <<in>> (p. 271) Name of the filter. Cannot be NULL.

Exceptions:

One of the Standard Return Codes (p. 104) or RETCODE -
PRECONDITION NOT MET

See also:

com.rti.dds.domain.DomainParticipant.register contentfilter
(p. 698)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.61 DomainParticipant Interface Reference 701

8.61.3.46 Publisher get implicit publisher ()

<<eXtension>> (p. 270) Returns the implicit
com.rti.dds.publication.Publisher (p. 1277). If an implicit Publisher
does not already exist, this creates one.

There can only be one implicit Publisher per DomainParticipant (p. 629).

The implicit Publisher is created with DomainParticipant.PUBLISHER -
QOS DEFAULT (p. 149) and no Listener.

This implicit Publisher will be deleted automat-
ically when the following methods are called:
com.rti.dds.domain.DomainParticipant.delete contained entities
(p. 691), or com.rti.dds.domain.DomainParticipant.delete publisher
(p. 658) with the implicit publisher as a parameter. Additionally, when a
DomainParticipant (p. 629) is deleted, if there are no attached DataWriters
that belong to the implicit Publisher, the implicit Publisher will be implicitly
deleted.

MT Safety:

UNSAFE. It is not safe to create an implicit Pub-
lisher while another thread may be simultaneously calling
com.rti.dds.domain.DomainParticipant.set default publisher qos
(p. 644).

Returns:

The implicit publisher

See also:

DomainParticipant.PUBLISHER QOS DEFAULT (p. 149)
com.rti.dds.domain.DomainParticipant.create publisher (p. 656)

8.61.3.47 Subscriber get implicit subscriber ()

<<eXtension>> (p. 270) Returns the implicit
com.rti.dds.subscription.Subscriber (p. 1478). If an implicit Subscriber
does not already exist, this creates one.

There can only be one implicit Subscriber per DomainParticipant (p. 629).

The implicit Subscriber is created with DomainPartici-
pant.SUBSCRIBER QOS DEFAULT (p. 149) and no Listener.

This implicit Subscriber will be deleted auto-
matically when the following methods are called:

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

702 Class Documentation

com.rti.dds.domain.DomainParticipant.delete contained entities
(p. 691), or com.rti.dds.domain.DomainParticipant.delete subscriber
(p. 661) with the subscriber as a parameter. Additionally, when a Domain-
Participant (p. 629) is deleted, if there are no attached DataReaders that
belong to the implicit Subscriber, the implicit Subscriber will be implicitly
deleted.

MT Safety:

UNSAFE. it is not safe to create the implicit sub-
scriber while another thread may be simultaneously calling
com.rti.dds.domain.DomainParticipant.set default subscriber -
qos (p. 649).

Returns:

The implicit subscriber

See also:

DomainParticipant.PUBLISHER QOS DEFAULT (p. 149)
com.rti.dds.domain.DomainParticipant.create subscriber (p. 659)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.62 DomainParticipantAdapter Class Reference 703

8.62 DomainParticipantAdapter Class Refer-
ence

<<eXtension>> (p. 270) A listener adapter in the spirit of the Java AWT
listener adapters. (The Adapter provides empty implementations for the listener
methods)

Inheritance diagram for DomainParticipantAdapter::

Public Member Functions

ˆ void on inconsistent topic (Topic topic, InconsistentTopicStatus
status)

Handle the StatusKind.INCONSISTENT TOPIC STATUS status.

ˆ void on offered deadline missed (DataWriter writer, OfferedDead-
lineMissedStatus status)

Handles the StatusKind.OFFERED DEADLINE MISSED STATUS status.

ˆ void on offered incompatible qos (DataWriter writer, OfferedIn-
compatibleQosStatus status)

Handles the StatusKind.OFFERED INCOMPATIBLE QOS STATUS sta-
tus.

ˆ void on liveliness lost (DataWriter writer, LivelinessLostStatus
status)

Handles the StatusKind.LIVELINESS LOST STATUS status.

ˆ void on publication matched (DataWriter writer, Publication-
MatchedStatus status)

Handles the StatusKind.PUBLICATION MATCHED STATUS status.

ˆ void on reliable reader activity changed (DataWriter writer, Reli-
ableReaderActivityChangedStatus status)

<<eXtension>> (p. 270) A matched reliable reader has become active or
become inactive.

ˆ void on reliable writer cache changed (DataWriter writer, Reli-
ableWriterCacheChangedStatus status)

<<eXtension>> (p. 270) A change has occurred in the writer’s cache of
unacknowledged samples.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

704 Class Documentation

ˆ void on instance replaced (DataWriter writer, InstanceHandle t
handle)

Notifies when an instance is replaced in DataWriter queue.

8.62.1 Detailed Description

<<eXtension>> (p. 270) A listener adapter in the spirit of the Java AWT
listener adapters. (The Adapter provides empty implementations for the listener
methods)

Clients who do not wish to implement all listener methods can subclass this
class and override only the methods of interest.

8.62.2 Member Function Documentation

8.62.2.1 void on inconsistent topic (Topic topic,
InconsistentTopicStatus status)

Handle the StatusKind.INCONSISTENT TOPIC STATUS status.

This callback is called when a remote com.rti.dds.topic.Topic (p. 1545) is
discovered but is inconsistent with the locally created com.rti.dds.topic.Topic
(p. 1545) of the same topic (p. 350) name.

Parameters:

topic (p. 350) <<out>> (p. 271) Locally created
com.rti.dds.topic.Topic (p. 1545) that triggers the listener
callback

status <<out>> (p. 271) Current inconsistent status of locally created
com.rti.dds.topic.Topic (p. 1545)

Implements TopicListener (p. 1565).

8.62.2.2 void on offered deadline missed (DataWriter writer,
OfferedDeadlineMissedStatus status)

Handles the StatusKind.OFFERED DEADLINE MISSED STATUS status.

This callback is called when the deadline that the
com.rti.dds.publication.DataWriter (p. 538) has committed through
its DEADLINE (p. 50) qos policy was not respected for a specific instance.
This callback is called for each deadline period elapsed during which the

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.62 DomainParticipantAdapter Class Reference 705

com.rti.dds.publication.DataWriter (p. 538) failed to provide data for an
instance.

Parameters:

writer <<out>> (p. 271) Locally created
com.rti.dds.publication.DataWriter (p. 538) that triggers
the listener callback

status <<out>> (p. 271) Current deadline missed status of locally cre-
ated com.rti.dds.publication.DataWriter (p. 538)

Implements DataWriterListener (p. 567).

8.62.2.3 void on offered incompatible qos (DataWriter writer,
OfferedIncompatibleQosStatus status)

Handles the StatusKind.OFFERED INCOMPATIBLE QOS STATUS status.

This callback is called when the com.rti.dds.publication.DataWriterQos
(p. 588) of the com.rti.dds.publication.DataWriter (p. 538) was incompat-
ible with what was requested by a com.rti.dds.subscription.DataReader
(p. 473). This callback is called when a com.rti.dds.publication.DataWriter
(p. 538) has discovered a com.rti.dds.subscription.DataReader (p. 473)
for the same com.rti.dds.topic.Topic (p. 1545) and common partition,
but with a requested QoS that is incompatible with that offered by the
com.rti.dds.publication.DataWriter (p. 538).

Parameters:

writer <<out>> (p. 271) Locally created
com.rti.dds.publication.DataWriter (p. 538) that triggers
the listener callback

status <<out>> (p. 271) Current incompatible qos status of locally cre-
ated com.rti.dds.publication.DataWriter (p. 538)

Implements DataWriterListener (p. 568).

8.62.2.4 void on liveliness lost (DataWriter writer,
LivelinessLostStatus status)

Handles the StatusKind.LIVELINESS LOST STATUS status.

This callback is called when the liveliness that the
com.rti.dds.publication.DataWriter (p. 538) has committed through
its LIVELINESS (p. 78) qos policy was not respected; this

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

706 Class Documentation

com.rti.dds.subscription.DataReader (p. 473) entities will con-
sider the com.rti.dds.publication.DataWriter (p. 538) as no longer
”alive/active”. This callback will not be called when an already not alive
com.rti.dds.publication.DataWriter (p. 538) simply renames not alive for
another liveliness period.

Parameters:

writer <<out>> (p. 271) Locally created
com.rti.dds.publication.DataWriter (p. 538) that triggers
the listener callback

status <<out>> (p. 271) Current liveliness lost status of locally created
com.rti.dds.publication.DataWriter (p. 538)

Implements DataWriterListener (p. 568).

8.62.2.5 void on publication matched (DataWriter writer,
PublicationMatchedStatus status)

Handles the StatusKind.PUBLICATION MATCHED STATUS status.

This callback is called when the com.rti.dds.publication.DataWriter
(p. 538) has found a com.rti.dds.subscription.DataReader (p. 473) that
matches the com.rti.dds.topic.Topic (p. 1545), has a common par-
tition and compatible QoS, or has ceased to be matched with a
com.rti.dds.subscription.DataReader (p. 473) that was previously consid-
ered to be matched.

Parameters:

writer <<out>> (p. 271) Locally created
com.rti.dds.publication.DataWriter (p. 538) that triggers
the listener callback

status <<out>> (p. 271) Current publication (p. 338) match status of
locally created com.rti.dds.publication.DataWriter (p. 538)

Implements DataWriterListener (p. 569).

8.62.2.6 void on reliable reader activity changed (DataWriter
writer, ReliableReaderActivityChangedStatus status)

<<eXtension>> (p. 270) A matched reliable reader has become active or
become inactive.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.62 DomainParticipantAdapter Class Reference 707

Parameters:

writer <<out>> (p. 271) Locally created
com.rti.dds.publication.DataWriter (p. 538) that triggers
the listener callback

status <<out>> (p. 271) Current reliable reader activity changed status
of locally created com.rti.dds.publication.DataWriter (p. 538)

Implements DataWriterListener (p. 570).

8.62.2.7 void on reliable writer cache changed (DataWriter writer,
ReliableWriterCacheChangedStatus status)

<<eXtension>> (p. 270) A change has occurred in the writer’s cache of un-
acknowledged samples.

Parameters:

writer <<out>> (p. 271) Locally created
com.rti.dds.publication.DataWriter (p. 538) that triggers
the listener callback

status <<out>> (p. 271) Current reliable writer cache changed status of
locally created com.rti.dds.publication.DataWriter (p. 538)

Implements DataWriterListener (p. 569).

8.62.2.8 void on instance replaced (DataWriter writer,
InstanceHandle t handle)

Notifies when an instance is replaced in DataWriter queue.

This callback is called when an instance is replaced by the
com.rti.dds.publication.DataWriter (p. 538) due to instance resource
limits being reached. This callback returns to the user the handle of the
replaced instance, which can be used to get the key of the replaced instance.

Parameters:

writer <<out>> (p. 271) Locally created
com.rti.dds.publication.DataWriter (p. 538) that triggers
the listener callback

handle <<out>> (p. 271) Handle of the replaced instance

Implements DataWriterListener (p. 570).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

708 Class Documentation

8.63 DomainParticipantFactory Class Refer-
ence

<<singleton>> (p. 271) <<interface>> (p. 271) Allows creation and de-
struction of com.rti.dds.domain.DomainParticipant (p. 629) objects.

Public Member Functions

ˆ abstract DomainParticipant create participant (int domainId, Do-
mainParticipantQos qos, DomainParticipantListener listener, int
mask)

Creates a new com.rti.dds.domain.DomainParticipant (p. 629) object.

ˆ abstract void delete participant (DomainParticipant a -
participant)

Deletes an existing com.rti.dds.domain.DomainParticipant (p. 629).

ˆ abstract void get default participant qos (DomainParticipantQos
qos)

Initializes the com.rti.dds.domain.DomainParticipantQos (p. 736) in-
stance with default values.

ˆ abstract void set default participant qos (DomainParticipantQos
qos)

Sets the default com.rti.dds.domain.DomainParticipantQos (p. 736)
values for this domain (p. 317) participant factory.

ˆ abstract void set default participant qos with profile (String li-
brary name, String profile name)

<<eXtension>> (p. 270) Sets the default
com.rti.dds.domain.DomainParticipantQos (p. 736) values for
this domain (p. 317) participant factory based on the input XML QoS
profile.

ˆ abstract DomainParticipant lookup participant (int domainId)
Locates an existing com.rti.dds.domain.DomainParticipant (p. 629).

ˆ abstract void get qos (DomainParticipantFactoryQos qos)
Gets the value for participant factory QoS.

ˆ abstract void set qos (DomainParticipantFactoryQos qos)
Sets the value for a participant factory QoS.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.63 DomainParticipantFactory Class Reference 709

ˆ abstract void load profiles ()

<<eXtension>> (p. 270) Loads the XML QoS profiles.

ˆ abstract void reload profiles ()

<<eXtension>> (p. 270) Reloads the XML QoS profiles.

ˆ abstract void unload profiles ()

<<eXtension>> (p. 270) Unloads the XML QoS profiles.

ˆ abstract String get default library ()

<<eXtension>> (p. 270) Gets the default XML library associated with a
com.rti.dds.domain.DomainParticipantFactory (p. 708).

ˆ abstract void set default library (String library name)

<<eXtension>> (p. 270) Sets the default XML library for a
com.rti.dds.domain.DomainParticipantFactory (p. 708).

ˆ abstract String get default profile ()

<<eXtension>> (p. 270) Gets the default XML profile associated with a
com.rti.dds.domain.DomainParticipantFactory (p. 708).

ˆ abstract void set default profile (String library name, String profile -
name)

<<eXtension>> (p. 270) Sets the default XML profile for a
com.rti.dds.domain.DomainParticipantFactory (p. 708).

ˆ abstract String get default profile library ()

<<eXtension>> (p. 270) Gets the library where the default XML pro-
file is contained for a com.rti.dds.domain.DomainParticipantFactory
(p. 708).

ˆ abstract void get participant qos from profile (DomainParticipan-
tQos qos, String library name, String profile name)

<<eXtension>> (p. 270) Gets the com.rti.dds.domain.DomainParticipantQos
(p. 736) values associated with the input XML QoS profile.

ˆ abstract void get publisher qos from profile (PublisherQos qos,
String library name, String profile name)

<<eXtension>> (p. 270) Gets the com.rti.dds.publication.PublisherQos
(p. 1303) values associated with the input XML QoS profile.

ˆ abstract void get subscriber qos from profile (SubscriberQos qos,
String library name, String profile name)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

710 Class Documentation

<<eXtension>> (p. 270) Gets the com.rti.dds.subscription.SubscriberQos
(p. 1506) values associated with the input XML QoS profile.

ˆ abstract void get datawriter qos from profile (DataWriterQos qos,
String library name, String profile name)

<<eXtension>> (p. 270) Gets the com.rti.dds.publication.DataWriterQos
(p. 588) values associated with the input XML QoS profile.

ˆ abstract void get datawriter qos from profile w topic name
(DataWriterQos qos, String library name, String profile name, String
topic name)

<<eXtension>> (p. 270) Gets the com.rti.dds.publication.DataWriterQos
(p. 588) values associated with the input XML QoS profile while applying
topic (p. 350) filters to the input topic (p. 350) name.

ˆ abstract void get datareader qos from profile (DataReaderQos
qos, String library name, String profile name)

<<eXtension>> (p. 270) Gets the com.rti.dds.subscription.DataReaderQos
(p. 518) values associated with the input XML QoS profile.

ˆ abstract void get datareader qos from profile w topic name
(DataReaderQos qos, String library name, String profile name, String
topic name)

<<eXtension>> (p. 270) Gets the com.rti.dds.subscription.DataReaderQos
(p. 518) values associated with the input XML QoS profile while applying
topic (p. 350) filters to the input topic (p. 350) name.

ˆ abstract void get topic qos from profile (TopicQos qos, String li-
brary name, String profile name)

<<eXtension>> (p. 270) Gets the com.rti.dds.topic.TopicQos
(p. 1566) values associated with the input XML QoS profile.

ˆ abstract void get topic qos from profile w topic name (TopicQos
qos, String library name, String profile name, String topic name)

<<eXtension>> (p. 270) Gets the com.rti.dds.topic.TopicQos
(p. 1566) values associated with the input XML QoS profile while applying
topic (p. 350) filters to the input topic (p. 350) name.

ˆ abstract void get qos profile libraries (StringSeq library names)
<<eXtension>> (p. 270) Gets the names of all XML QoS profile libraries
associated with the com.rti.dds.domain.DomainParticipantFactory
(p. 708)

ˆ abstract void get qos profiles (StringSeq profile names, String li-
brary name)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.63 DomainParticipantFactory Class Reference 711

<<eXtension>> (p. 270) Gets the names of all XML QoS profiles associ-
ated with the input XML QoS profile library.

ˆ abstract DomainParticipant create participant with profile (int
domainId, String library name, String profile name, DomainPartici-
pantListener listener, int mask)

<<eXtension>> (p. 270) Creates a new
com.rti.dds.domain.DomainParticipant (p. 629) object using the
com.rti.dds.domain.DomainParticipantQos (p. 736) associated with
the input XML QoS profile.

ˆ abstract void unregister thread ()

<<eXtension>> (p. 270) Allows the user to release thread specific resources
kept by the middleware.

Static Public Member Functions

ˆ static final DomainParticipantFactory get instance ()

Gets the singleton instance of this class.

ˆ static final void finalize instance ()

<<eXtension>> (p. 270) Destroys the singleton instance of this class.

Static Public Attributes

ˆ static final DomainParticipantQos PARTICIPANT QOS -
DEFAULT

Special value for creating a DomainParticipant (p. 629) with default QoS.

ˆ static DomainParticipantFactory TheParticipantFactory = cre-
ate singletonI()

Can be used as an alias for the singleton factory returned by the oper-
ation com.rti.dds.domain.DomainParticipantFactory.get instance()
(p. 712).

8.63.1 Detailed Description

<<singleton>> (p. 271) <<interface>> (p. 271) Allows creation and de-
struction of com.rti.dds.domain.DomainParticipant (p. 629) objects.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

712 Class Documentation

The sole purpose of this class is to allow the creation and destruction of
com.rti.dds.domain.DomainParticipant (p. 629) objects. This class itself
is a <<singleton>> (p. 271), and accessed via the get instance() (p. 712)
method, and destroyed with finalize instance() (p. 713) method.

A single application can participate in multiple domains by instantiating mul-
tiple com.rti.dds.domain.DomainParticipant (p. 629) objects.

An application may even instantiate multiple participants in the same domain
(p. 317). Participants in the same domain (p. 317) exchange data in the same
way regardless of whether they are in the same application or different applica-
tions or on the same node or different nodes; their location is transparent.

There are two important caveats:

ˆ When there are multiple participants on the same node (in the same
application or different applications) in the same domain (p. 317),
the application(s) must make sure that the participants do not try
to bind to the same port numbers. You must disambiguate between
the participants by setting a participant ID for each participant
(com.rti.dds.infrastructure.WireProtocolQosPolicy.participant -
id (p. 1714)). The port numbers used by a participant are calculated
based on both the participant index and the domain (p. 317) ID, so if
all participants on the same node have different participant indexes, they
can coexist in the same domain (p. 317).

ˆ You cannot mix entities from different participants. For example, you
cannot delete a topic (p. 350) on a different participant than you created
it from, and you cannot ask a subscriber to create a reader for a topic
(p. 350) created from a participant different than the subscriber’s own par-
ticipant. (Note that it is permissable for an application built on top of
RTI Connext to know about entities from different participants. For ex-
ample, an application could keep references to a reader from one domain
(p. 317) and a writer from another and then bridge the domains by writing
the data received in the reader callback.)

See also:

com.rti.dds.domain.DomainParticipant (p. 629)

8.63.2 Member Function Documentation

8.63.2.1 static final DomainParticipantFactory get instance ()
[static]

Gets the singleton instance of this class.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.63 DomainParticipantFactory Class Reference 713

MT Safety:

On non-Linux systems: UNSAFE for multiple threads
to simultaneously make the FIRST call to either
com.rti.dds.domain.DomainParticipantFactory.get instance()
(p. 712) or com.rti.dds.domain.DomainParticipantFactory.finalize -
instance() (p. 713). Subsequent calls are thread safe. (On Linux systems,
these calls are thread safe.)

DomainParticipantFactory.TheParticipantFactory (p. 144) can be used
as an alias for the singleton factory returned by this operation.

Returns:

The singleton com.rti.dds.domain.DomainParticipantFactory
(p. 708) instance.

See also:

DomainParticipantFactory.TheParticipantFactory (p. 144)

8.63.2.2 static final void finalize instance () [static]

<<eXtension>> (p. 270) Destroys the singleton instance of this class.

Only necessary to explicitly reclaim resources used by the participant factory
singleton. Note that on many OSs, these resources are automatically reclaimed
by the OS when the program terminates. However, some memory-check tools
still flag these as unreclaimed. So this method provides a way to clean up
memory used by the participant factory.

Precondition:

All participants created from the factory have been deleted.

Postcondition:

All resources belonging to the factory have been reclaimed. Another
call to com.rti.dds.domain.DomainParticipantFactory.get instance
(p. 712) will return a new lifecycle of the singleton.

MT Safety:

On non-Linux systems: UNSAFE for multiple threads
to simultaneously make the FIRST call to either
com.rti.dds.domain.DomainParticipantFactory.get instance()
(p. 712) or com.rti.dds.domain.DomainParticipantFactory.finalize -
instance() (p. 713). Subsequent calls are thread safe. (On Linux systems,
these calls are thread safe.)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

714 Class Documentation

Exceptions:

One of the Standard Return Codes (p. 104), or RETCODE -
PRECONDITION NOT MET

8.63.2.3 abstract DomainParticipant create participant
(int domainId, DomainParticipantQos qos,
DomainParticipantListener listener, int mask) [pure
virtual]

Creates a new com.rti.dds.domain.DomainParticipant (p. 629) object.

Precondition:

The specified QoS policies must be consistent or the operation will fail and
no com.rti.dds.domain.DomainParticipant (p. 629) will be created.

If you want to create multiple participants on a given host in the same do-
main (p. 317), make sure each one has a different participant index (set in
the com.rti.dds.infrastructure.WireProtocolQosPolicy (p. 1709)). This
in turn will ensure each participant uses a different port number (since the uni-
cast port numbers are calculated from the participant index and the domain
(p. 317) ID).

Note that if there is a single participant per host in a given domain (p. 317),
the participant index can be left at the default value (-1).

Parameters:

domainId <<in>> (p. 271) ID of the domain (p. 317) that the appli-
cation intends to join. [range] [>=0], and does not violate guidelines
stated in com.rti.dds.infrastructure.RtpsWellKnownPorts t
(p. 1396).

qos <<in>> (p. 271) the DomainParticipant’s QoS. The spe-
cial value DomainParticipantFactory.PARTICIPANT -
QOS DEFAULT (p. 145) can be used to indicate
that the com.rti.dds.domain.DomainParticipant
(p. 629) should be created with the default
com.rti.dds.domain.DomainParticipantQos (p. 736) set in
the com.rti.dds.domain.DomainParticipantFactory (p. 708).
Cannot be NULL.

listener <<in>> (p. 271) the domain (p. 317) participant’s listener.

mask <<in>> (p. 271). Changes of communication status to be invoked
on the listener.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.63 DomainParticipantFactory Class Reference 715

Returns:

domain (p. 317) participant or NULL on failure

See also:

Specifying QoS on entities (p. 96) for information on setting QoS before
entity creation
com.rti.dds.domain.DomainParticipantQos (p. 736) for rules on con-
sistency among QoS
DomainParticipantFactory.PARTICIPANT QOS DEFAULT
(p. 145)
NDDS DISCOVERY PEERS (p. 55)
com.rti.dds.domain.DomainParticipantFactory.create -
participant with profile() (p. 730)
com.rti.dds.domain.DomainParticipantFactory.get default -
participant qos() (p. 716)
com.rti.dds.domain.DomainParticipant.set listener() (p. 682)

8.63.2.4 abstract void delete participant (DomainParticipant
a participant) [pure virtual]

Deletes an existing com.rti.dds.domain.DomainParticipant (p. 629).

Precondition:

All domain (p. 317) entities belonging to the participant must have
already been deleted. Otherwise it fails with the error RETCODE -
PRECONDITION NOT MET.

Postcondition:

Listener installed on the com.rti.dds.domain.DomainParticipant
(p. 629) will not be called after this method returns successfully.

Parameters:

a participant <<in>> (p. 271) com.rti.dds.domain.DomainParticipant
(p. 629) to be deleted.

Exceptions:

One of the Standard Return Codes (p. 104), or RETCODE -
PRECONDITION NOT MET.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

716 Class Documentation

8.63.2.5 abstract void get default participant qos
(DomainParticipantQos qos) [pure virtual]

Initializes the com.rti.dds.domain.DomainParticipantQos (p. 736) in-
stance with default values.

The retrieved qos will match the set of values specified on the last successful
call to com.rti.dds.domain.DomainParticipantFactory.set default -
participant qos (p. 716), or com.rti.dds.domain.DomainParticipantFactory.set -
default participant qos with profile (p. 717), or else, if
the call was never made, the default values listed in
com.rti.dds.domain.DomainParticipantQos (p. 736).

This method may potentially allocate memory depending on the sequences con-
tained in some QoS policies.

Parameters:

qos <<out>> (p. 271) the domain (p. 317) participant’s QoS Cannot be
NULL.

MT Safety:

UNSAFE. It is not safe to retrieve the default QoS value from a do-
main (p. 317) participant factory while another thread may be simulta-
neously calling com.rti.dds.domain.DomainParticipantFactory.set -
default participant qos (p. 716)

Exceptions:

One of the Standard Return Codes (p. 104)

See also:

DomainParticipantFactory.PARTICIPANT QOS DEFAULT
(p. 145)
com.rti.dds.domain.DomainParticipantFactory.create -
participant (p. 714)

8.63.2.6 abstract void set default participant qos
(DomainParticipantQos qos) [pure virtual]

Sets the default com.rti.dds.domain.DomainParticipantQos (p. 736) val-
ues for this domain (p. 317) participant factory.

This method may potentially allocate memory depending on the sequences con-
tained in some QoS policies.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.63 DomainParticipantFactory Class Reference 717

MT Safety:

UNSAFE. It is not safe to retrieve the default QoS value from a do-
main (p. 317) participant factory while another thread may be simulta-
neously calling com.rti.dds.domain.DomainParticipantFactory.set -
default participant qos (p. 716)

Parameters:

qos <<inout>> (p. 271) Qos to be filled up. The special value Domain-
ParticipantFactory.PARTICIPANT QOS DEFAULT (p. 145)
may be passed as qos to indicate that the default QoS
should be reset back to the initial values the factory would
used if com.rti.dds.domain.DomainParticipantFactory.set -
default participant qos (p. 716) had never been called. Cannot be
NULL.

Exceptions:

One of the Standard Return Codes (p. 104)

See also:

DomainParticipantFactory.PARTICIPANT QOS DEFAULT
(p. 145)
com.rti.dds.domain.DomainParticipantFactory.create -
participant (p. 714)

8.63.2.7 abstract void set default participant qos with profile
(String library name, String profile name) [pure
virtual]

<<eXtension>> (p. 270) Sets the default
com.rti.dds.domain.DomainParticipantQos (p. 736) values for this
domain (p. 317) participant factory based on the input XML QoS profile.

This method may potentially allocate memory depending on the sequences con-
tained in some QoS policies.

This default value will be used for newly cre-
ated com.rti.dds.domain.DomainParticipant (p. 629)
if DomainParticipantFactory.PARTICIPANT QOS -
DEFAULT (p. 145) is specified as the qos parameter when
com.rti.dds.domain.DomainParticipantFactory.create participant
(p. 714) is called.

Precondition:

The com.rti.dds.domain.DomainParticipantQos (p. 736) contained in

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

718 Class Documentation

the specified XML QoS profile must be consistent, or else the operation will
have no effect and fail with RETCODE INCONSISTENT POLICY

MT Safety:

UNSAFE. It is not safe to retrieve the default QoS value from a do-
main (p. 317) participant factory while another thread may be simulta-
neously calling com.rti.dds.domain.DomainParticipantFactory.set -
default participant qos (p. 716)

Parameters:

library name <<in>> (p. 271) Library name containing the XML QoS
profile. If library name is null RTI Connext will use the default li-
brary (see com.rti.dds.domain.DomainParticipantFactory.set -
default library (p. 721)).

profile name <<in>> (p. 271) XML QoS Profile name. If pro-
file name is null RTI Connext will use the default pro-
file (see com.rti.dds.domain.DomainParticipantFactory.set -
default profile (p. 722)).

If the input profile cannot be found the method fails with RETCODE ERROR.

Exceptions:

One of the Standard Return Codes (p. 104), or RETCODE -
INCONSISTENT POLICY

See also:

DomainParticipantFactory.PARTICIPANT QOS DEFAULT
(p. 145)
com.rti.dds.domain.DomainParticipantFactory.create -
participant with profile (p. 730)

8.63.2.8 abstract DomainParticipant lookup participant (int
domainId) [pure virtual]

Locates an existing com.rti.dds.domain.DomainParticipant (p. 629).

If no such com.rti.dds.domain.DomainParticipant (p. 629) exists, the op-
eration will return NULL value.

If multiple com.rti.dds.domain.DomainParticipant (p. 629) entities be-
longing to that domainId exist, then the operation will return one of them.
It is not specified which one.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.63 DomainParticipantFactory Class Reference 719

Parameters:

domainId <<in>> (p. 271) ID of the domain (p. 317) participant to
lookup.

Returns:

domain (p. 317) participant if it exists, or NULL

8.63.2.9 abstract void get qos (DomainParticipantFactoryQos qos)
[pure virtual]

Gets the value for participant factory QoS.

Parameters:

qos <<inout>> (p. 271) QoS to be filled up. Cannot be NULL.

Exceptions:

One of the Standard Return Codes (p. 104)

8.63.2.10 abstract void set qos (DomainParticipantFactoryQos qos)
[pure virtual]

Sets the value for a participant factory QoS.

The com.rti.dds.domain.DomainParticipantFactoryQos.entity factory
(p. 732) can be changed. The other policies are immutable.

Note that despite having QoS, the com.rti.dds.domain.DomainParticipantFactory
(p. 708) is not an com.rti.dds.infrastructure.Entity (p. 912).

Parameters:

qos <<in>> (p. 271) Set of policies to be applied to
com.rti.dds.domain.DomainParticipantFactory (p. 708).
Policies must be consistent. Immutable policies can only be
changed before calling any other RTI Connext methods except
for com.rti.dds.domain.DomainParticipantFactory.get qos
(p. 719) Cannot be NULL.

Exceptions:

One of the Standard Return Codes (p. 104), RETCODE -
IMMUTABLE POLICY if immutable policy is changed, or RET-
CODE INCONSISTENT POLICY if policies are inconsistent

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

720 Class Documentation

See also:

com.rti.dds.domain.DomainParticipantFactoryQos (p. 732) for rules
on consistency among QoS

8.63.2.11 abstract void load profiles () [pure virtual]

<<eXtension>> (p. 270) Loads the XML QoS profiles.

The XML QoS profiles are loaded implicitly after the first
com.rti.dds.domain.DomainParticipant (p. 629) is created or explic-
itly, after a call to this method.

This has the same effect as com.rti.dds.domain.DomainParticipantFactory.reload -
profiles() (p. 720).

Exceptions:

One of the Standard Return Codes (p. 104)

See also:

com.rti.dds.infrastructure.ProfileQosPolicy (p. 1247)

8.63.2.12 abstract void reload profiles () [pure virtual]

<<eXtension>> (p. 270) Reloads the XML QoS profiles.

The XML QoS profiles are loaded implicitly after the first
com.rti.dds.domain.DomainParticipant (p. 629) is created or explic-
itly, after a call to this method.

This has the same effect as com.rti.dds.domain.DomainParticipantFactory.load -
profiles() (p. 720).

Exceptions:

One of the Standard Return Codes (p. 104)

See also:

com.rti.dds.infrastructure.ProfileQosPolicy (p. 1247)

8.63.2.13 abstract void unload profiles () [pure virtual]

<<eXtension>> (p. 270) Unloads the XML QoS profiles.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.63 DomainParticipantFactory Class Reference 721

The resources associated with the XML QoS profiles are freed. Any reference
to the profiles after calling this method will fail with an error.

Exceptions:

One of the Standard Return Codes (p. 104)

See also:

com.rti.dds.infrastructure.ProfileQosPolicy (p. 1247)

8.63.2.14 abstract String get default library () [pure virtual]

<<eXtension>> (p. 270) Gets the default XML library associated with a
com.rti.dds.domain.DomainParticipantFactory (p. 708).

Returns:

The default library or null if the default library was not set.

See also:

com.rti.dds.domain.DomainParticipantFactory.set default -
library (p. 721)

8.63.2.15 abstract void set default library (String library name)
[pure virtual]

<<eXtension>> (p. 270) Sets the default XML library for a
com.rti.dds.domain.DomainParticipantFactory (p. 708).

Any API requiring a library name as a parameter can use null to refer to the
default library.

See also:

com.rti.dds.domain.DomainParticipantFactory.set default profile
(p. 722) for more information.

Parameters:

library name <<in>> (p. 271) Library name. If library name is null
any previous default is unset.

Exceptions:

One of the Standard Return Codes (p. 104)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

722 Class Documentation

See also:

com.rti.dds.domain.DomainParticipantFactory.get default -
library (p. 721)

8.63.2.16 abstract String get default profile () [pure virtual]

<<eXtension>> (p. 270) Gets the default XML profile associated with a
com.rti.dds.domain.DomainParticipantFactory (p. 708).

Returns:

The default profile or null if the default profile was not set.

See also:

com.rti.dds.domain.DomainParticipantFactory.set default profile
(p. 722)

8.63.2.17 abstract void set default profile (String library name,
String profile name) [pure virtual]

<<eXtension>> (p. 270) Sets the default XML profile for a
com.rti.dds.domain.DomainParticipantFactory (p. 708).

This method specifies the profile that will be used as the default the next
time a default DomainParticipantFactory (p. 708) profile is needed dur-
ing a call to a DomainParticipantFactory (p. 708) method. When calling a
com.rti.dds.domain.DomainParticipantFactory (p. 708) method that re-
quires a profile name parameter, you can use NULL to refer to the default
profile. (This same information applies to setting a default library.)

This method does not set the default QoS for newly
created DomainParticipants; for this functionality, use
com.rti.dds.domain.DomainParticipantFactory.set default -
participant qos with profile (p. 717) (you may pass in NULL after
having called set default profile() (p. 722)).

Parameters:

library name <<in>> (p. 271) The library name containing the profile.
profile name <<in>> (p. 271) The profile name. If profile name is null

any previous default is unset.

Exceptions:

One of the Standard Return Codes (p. 104)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.63 DomainParticipantFactory Class Reference 723

See also:

com.rti.dds.domain.DomainParticipantFactory.get default -
profile (p. 722)
com.rti.dds.domain.DomainParticipantFactory.get default -
profile library (p. 723)

8.63.2.18 abstract String get default profile library () [pure
virtual]

<<eXtension>> (p. 270) Gets the library where the default XML profile is
contained for a com.rti.dds.domain.DomainParticipantFactory (p. 708).

The default profile library is automatically set when
com.rti.dds.domain.DomainParticipantFactory.set default profile
(p. 722) is called.

This library can be different than the com.rti.dds.domain.DomainParticipantFactory
(p. 708) default library (see com.rti.dds.domain.DomainParticipantFactory.get -
default library (p. 721)).

Returns:

The default profile library or null if the default profile was not set.

See also:

com.rti.dds.domain.DomainParticipantFactory.set default profile
(p. 722)

8.63.2.19 abstract void get participant qos from profile
(DomainParticipantQos qos, String library name, String
profile name) [pure virtual]

<<eXtension>> (p. 270) Gets the com.rti.dds.domain.DomainParticipantQos
(p. 736) values associated with the input XML QoS profile.

Parameters:

qos <<out>> (p. 271) Qos to be filled up. Cannot be NULL.

library name <<in>> (p. 271) Library name containing the XML QoS
profile. If library name is null RTI Connext will use the default li-
brary (see com.rti.dds.domain.DomainParticipantFactory.set -
default library (p. 721)).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

724 Class Documentation

profile name <<in>> (p. 271) XML QoS Profile name. If pro-
file name is null RTI Connext will use the default pro-
file (see com.rti.dds.domain.DomainParticipantFactory.set -
default profile (p. 722)).

If the input profile cannot be found, the method fails with RETCODE ERROR.

Exceptions:

One of the Standard Return Codes (p. 104)

8.63.2.20 abstract void get publisher qos from profile
(PublisherQos qos, String library name, String
profile name) [pure virtual]

<<eXtension>> (p. 270) Gets the com.rti.dds.publication.PublisherQos
(p. 1303) values associated with the input XML QoS profile.

Parameters:

qos <<out>> (p. 271) Qos to be filled up. Cannot be NULL.

library name <<in>> (p. 271) Library name containing the XML QoS
profile. If library name is null RTI Connext will use the default li-
brary (see com.rti.dds.domain.DomainParticipantFactory.set -
default library (p. 721)).

profile name <<in>> (p. 271) XML QoS Profile name. If pro-
file name is null RTI Connext will use the default pro-
file (see com.rti.dds.domain.DomainParticipantFactory.set -
default profile (p. 722)).

If the input profile cannot be found, the method fails with RETCODE ERROR.

Exceptions:

One of the Standard Return Codes (p. 104)

8.63.2.21 abstract void get subscriber qos from profile
(SubscriberQos qos, String library name, String
profile name) [pure virtual]

<<eXtension>> (p. 270) Gets the com.rti.dds.subscription.SubscriberQos
(p. 1506) values associated with the input XML QoS profile.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.63 DomainParticipantFactory Class Reference 725

Parameters:

qos <<out>> (p. 271) Qos to be filled up. Cannot be NULL.

library name <<in>> (p. 271) Library name containing the XML QoS
profile. If library name is null RTI Connext will use the default li-
brary (see com.rti.dds.domain.DomainParticipantFactory.set -
default library (p. 721)).

profile name <<in>> (p. 271) XML QoS Profile name. If pro-
file name is null RTI Connext will use the default pro-
file (see com.rti.dds.domain.DomainParticipantFactory.set -
default profile (p. 722)).

If the input profile cannot be found, the method fails with RETCODE ERROR.

Exceptions:

One of the Standard Return Codes (p. 104)

8.63.2.22 abstract void get datawriter qos from profile
(DataWriterQos qos, String library name, String
profile name) [pure virtual]

<<eXtension>> (p. 270) Gets the com.rti.dds.publication.DataWriterQos
(p. 588) values associated with the input XML QoS profile.

Parameters:

qos <<out>> (p. 271) Qos to be filled up. Cannot be NULL.

library name <<in>> (p. 271) Library name containing the XML QoS
profile. If library name is null RTI Connext will use the default li-
brary (see com.rti.dds.domain.DomainParticipantFactory.set -
default library (p. 721)).

profile name <<in>> (p. 271) XML QoS Profile name. If pro-
file name is null RTI Connext will use the default pro-
file (see com.rti.dds.domain.DomainParticipantFactory.set -
default profile (p. 722)).

If the input profile cannot be found, the method fails with RETCODE ERROR.

Exceptions:

One of the Standard Return Codes (p. 104)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

726 Class Documentation

8.63.2.23 abstract void get datawriter qos from profile w topic -
name (DataWriterQos qos, String library name, String
profile name, String topic name) [pure virtual]

<<eXtension>> (p. 270) Gets the com.rti.dds.publication.DataWriterQos
(p. 588) values associated with the input XML QoS profile while applying topic
(p. 350) filters to the input topic (p. 350) name.

Parameters:

qos <<out>> (p. 271) Qos to be filled up. Cannot be NULL.

library name <<in>> (p. 271) Library name containing the XML QoS
profile. If library name is null RTI Connext will use the default li-
brary (see com.rti.dds.domain.DomainParticipantFactory.set -
default library (p. 721)).

profile name <<in>> (p. 271) XML QoS Profile name. If pro-
file name is null RTI Connext will use the default pro-
file (see com.rti.dds.domain.DomainParticipantFactory.set -
default profile (p. 722)).

topic name <<in>> (p. 271) Topic name that will be evaluated against
the topic filter attribute in the XML QoS profile. If topic name is
null, RTI Connext will match only QoSs without explicit topic filter
expressions.

If the input profile cannot be found, the method fails with RETCODE ERROR.

Exceptions:

One of the Standard Return Codes (p. 104)

8.63.2.24 abstract void get datareader qos from profile
(DataReaderQos qos, String library name, String
profile name) [pure virtual]

<<eXtension>> (p. 270) Gets the com.rti.dds.subscription.DataReaderQos
(p. 518) values associated with the input XML QoS profile.

Parameters:

qos <<out>> (p. 271) Qos to be filled up. Cannot be NULL.

library name <<in>> (p. 271) Library name containing the XML QoS
profile. If library name is null RTI Connext will use the default li-
brary (see com.rti.dds.domain.DomainParticipantFactory.set -
default library (p. 721)).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.63 DomainParticipantFactory Class Reference 727

profile name <<in>> (p. 271) XML QoS Profile name. If pro-
file name is null RTI Connext will use the default pro-
file (see com.rti.dds.domain.DomainParticipantFactory.set -
default profile (p. 722)).

If the input profile cannot be found, the method fails with RETCODE ERROR.

Exceptions:

One of the Standard Return Codes (p. 104)

8.63.2.25 abstract void get datareader qos from profile w topic -
name (DataReaderQos qos, String library name, String
profile name, String topic name) [pure virtual]

<<eXtension>> (p. 270) Gets the com.rti.dds.subscription.DataReaderQos
(p. 518) values associated with the input XML QoS profile while applying topic
(p. 350) filters to the input topic (p. 350) name.

Parameters:

qos <<out>> (p. 271) Qos to be filled up. Cannot be NULL.

library name <<in>> (p. 271) Library name containing the XML QoS
profile. If library name is null RTI Connext will use the default li-
brary (see com.rti.dds.domain.DomainParticipantFactory.set -
default library (p. 721)).

profile name <<in>> (p. 271) XML QoS Profile name. If pro-
file name is null RTI Connext will use the default pro-
file (see com.rti.dds.domain.DomainParticipantFactory.set -
default profile (p. 722)).

topic name <<in>> (p. 271) Topic name that will be evaluated against
the topic filter attribute in the XML QoS profile. If topic name is
null, RTI Connext will match only QoSs without explicit topic filter
expressions.

If the input profile cannot be found, the method fails with RETCODE ERROR.

Exceptions:

One of the Standard Return Codes (p. 104)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

728 Class Documentation

8.63.2.26 abstract void get topic qos from profile (TopicQos
qos, String library name, String profile name) [pure
virtual]

<<eXtension>> (p. 270) Gets the com.rti.dds.topic.TopicQos (p. 1566)
values associated with the input XML QoS profile.

Parameters:

qos <<out>> (p. 271) Qos to be filled up. Cannot be NULL.

library name <<in>> (p. 271) Library name containing the XML QoS
profile. If library name is null RTI Connext will use the default li-
brary (see com.rti.dds.domain.DomainParticipantFactory.set -
default library (p. 721)).

profile name <<in>> (p. 271) XML QoS Profile name. If pro-
file name is null RTI Connext will use the default pro-
file (see com.rti.dds.domain.DomainParticipantFactory.set -
default profile (p. 722)).

If the input profile cannot be found, the method fails with RETCODE ERROR.

Exceptions:

One of the Standard Return Codes (p. 104)

8.63.2.27 abstract void get topic qos from profile w topic name
(TopicQos qos, String library name, String profile name,
String topic name) [pure virtual]

<<eXtension>> (p. 270) Gets the com.rti.dds.topic.TopicQos (p. 1566)
values associated with the input XML QoS profile while applying topic (p. 350)
filters to the input topic (p. 350) name.

Parameters:

qos <<out>> (p. 271) Qos to be filled up. Cannot be NULL.

library name <<in>> (p. 271) Library name containing the XML QoS
profile. If library name is null RTI Connext will use the default li-
brary (see com.rti.dds.domain.DomainParticipantFactory.set -
default library (p. 721)).

profile name <<in>> (p. 271) XML QoS Profile name. If pro-
file name is null RTI Connext will use the default pro-
file (see com.rti.dds.domain.DomainParticipantFactory.set -
default profile (p. 722)).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.63 DomainParticipantFactory Class Reference 729

topic name <<in>> (p. 271) Topic name that will be evaluated against
the topic filter attribute in the XML QoS profile. If topic name is
null, RTI Connext will match only QoSs without explicit topic filter
expressions.

If the input profile cannot be found, the method fails with RETCODE ERROR.

Exceptions:

One of the Standard Return Codes (p. 104)

8.63.2.28 abstract void get qos profile libraries (StringSeq
library names) [pure virtual]

<<eXtension>> (p. 270) Gets the names of all XML QoS profile libraries as-
sociated with the com.rti.dds.domain.DomainParticipantFactory (p. 708)

Parameters:

library names <<out>> (p. 271) com.rti.dds.infrastructure.StringSeq
(p. 1470) to be filled with names of XML QoS profile libraries. Cannot
be NULL.

8.63.2.29 abstract void get qos profiles (StringSeq profile names,
String library name) [pure virtual]

<<eXtension>> (p. 270) Gets the names of all XML QoS profiles associated
with the input XML QoS profile library.

Parameters:

profile names <<out>> (p. 271) com.rti.dds.infrastructure.StringSeq
(p. 1470) to be filled with names of XML QoS profiles. Cannot be
NULL.

library name <<in>> (p. 271) Library name containing the XML QoS
profile. If library name is null RTI Connext will use the default li-
brary (see com.rti.dds.domain.DomainParticipantFactory.set -
default library (p. 721)).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

730 Class Documentation

8.63.2.30 abstract DomainParticipant create participant with -
profile (int domainId, String library name, String
profile name, DomainParticipantListener listener, int
mask) [pure virtual]

<<eXtension>> (p. 270) Creates a new com.rti.dds.domain.DomainParticipant
(p. 629) object using the com.rti.dds.domain.DomainParticipantQos
(p. 736) associated with the input XML QoS profile.

Precondition:

The com.rti.dds.domain.DomainParticipantQos (p. 736) in the in-
put profile must be consistent, or the operation will fail and no
com.rti.dds.domain.DomainParticipant (p. 629) will be created.

If you want to create multiple participants on a given host in the same do-
main (p. 317), make sure each one has a different participant index (set in
the com.rti.dds.infrastructure.WireProtocolQosPolicy (p. 1709)). This
in turn will ensure each participant uses a different port number (since the uni-
cast port numbers are calculated from the participant index and the domain
(p. 317) ID).

Note that if there is a single participant per host in a given domain (p. 317),
the participant index can be left at the default value (-1).

Parameters:

domainId <<in>> (p. 271) ID of the domain (p. 317) that the appli-
cation intends to join. [range] [>=0], and does not violate guidelines
stated in com.rti.dds.infrastructure.RtpsWellKnownPorts t
(p. 1396).

library name <<in>> (p. 271) Library name containing the XML QoS
profile. If library name is null RTI Connext will use the default li-
brary (see com.rti.dds.domain.DomainParticipantFactory.set -
default library (p. 721)).

profile name <<in>> (p. 271) XML QoS Profile name. If pro-
file name is null RTI Connext will use the default pro-
file (see com.rti.dds.domain.DomainParticipantFactory.set -
default profile (p. 722)).

listener <<in>> (p. 271) the DomainParticipant’s listener.

mask <<in>> (p. 271). Changes of communication status to be invoked
on the listener.

Returns:

domain (p. 317) participant or NULL on failure

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.63 DomainParticipantFactory Class Reference 731

See also:

Specifying QoS on entities (p. 96) for information on setting QoS before
entity creation
com.rti.dds.domain.DomainParticipantQos (p. 736) for rules on con-
sistency among QoS
DomainParticipantFactory.PARTICIPANT QOS DEFAULT
(p. 145)
NDDS DISCOVERY PEERS (p. 55)
com.rti.dds.domain.DomainParticipantFactory.create -
participant() (p. 714)
com.rti.dds.domain.DomainParticipantFactory.get default -
participant qos() (p. 716)
com.rti.dds.domain.DomainParticipant.set listener() (p. 682)

8.63.2.31 abstract void unregister thread () [pure virtual]

<<eXtension>> (p. 270) Allows the user to release thread specific resources
kept by the middleware.

This function should be called by the user right before exiting a thread where
DDS API were used. In this way the middleware will be able to free all the
resources related to this specific thread. The best approach is to call the function
during the thread deletion after all the DDS related API have have been called.

Exceptions:

One of the Standard Return Codes (p. 104)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

732 Class Documentation

8.64 DomainParticipantFactoryQos Class Ref-
erence

QoS policies supported by a com.rti.dds.domain.DomainParticipantFactory
(p. 708).

Inheritance diagram for DomainParticipantFactoryQos::

Public Attributes

ˆ final EntityFactoryQosPolicy entity factory
Entity factory policy, ENTITY FACTORY (p. 69).

ˆ final SystemResourceLimitsQosPolicy resource limits
<<eXtension>> (p. 270) System resource limits, SYSTEM -
RESOURCE LIMITS (p. 111).

ˆ final ProfileQosPolicy profile
<<eXtension>> (p. 270) Qos profile policy, PROFILE (p. 87).

ˆ final LoggingQosPolicy logging
<<eXtension>> (p. 270) Logging qos policy, LOGGING (p. 80).

8.64.1 Detailed Description

QoS policies supported by a com.rti.dds.domain.DomainParticipantFactory
(p. 708).

Entity:

com.rti.dds.domain.DomainParticipantFactory (p. 708)

See also:

QoS Policies (p. 90) and allowed ranges within each Qos.

8.64.2 Member Data Documentation

8.64.2.1 final EntityFactoryQosPolicy entity factory

Entity factory policy, ENTITY FACTORY (p. 69).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.64 DomainParticipantFactoryQos Class Reference 733

8.64.2.2 final SystemResourceLimitsQosPolicy resource limits

<<eXtension>> (p. 270) System resource limits, SYSTEM -
RESOURCE LIMITS (p. 111).

8.64.2.3 final ProfileQosPolicy profile

<<eXtension>> (p. 270) Qos profile policy, PROFILE (p. 87).

8.64.2.4 final LoggingQosPolicy logging

<<eXtension>> (p. 270) Logging qos policy, LOGGING (p. 80).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

734 Class Documentation

8.65 DomainParticipantListener Interface Ref-
erence

<<interface>> (p. 271) Listener for participant status.

Inheritance diagram for DomainParticipantListener::

8.65.1 Detailed Description

<<interface>> (p. 271) Listener for participant status.

Entity:

com.rti.dds.domain.DomainParticipant (p. 629)

Status:

Status Kinds (p. 106)

This is the interface that can be implemented by an application-provided
class and then registered with the com.rti.dds.domain.DomainParticipant
(p. 629) such that the application can be notified by RTI Connext of relevant
status changes.

The com.rti.dds.domain.DomainParticipantListener (p. 734) interface
extends all other Listener interfaces and has no additional operation beyond
the ones defined by the more general listeners.

The purpose of the com.rti.dds.domain.DomainParticipantListener
(p. 734) is to be the listener of last resort that is notified of all sta-
tus changes not captured by more specific listeners attached to the
com.rti.dds.infrastructure.DomainEntity (p. 628) objects. When a rele-
vant status change occurs, RTI Connext will first attempt to notify the lis-
tener attached to the concerned com.rti.dds.infrastructure.DomainEntity
(p. 628) if one is installed. Otherwise, RTI Connext will notify the Listener
attached to the com.rti.dds.domain.DomainParticipant (p. 629).

Important: Because a com.rti.dds.domain.DomainParticipantListener
(p. 734) may receive callbacks pertaining to many different entities, it is possi-
ble for the same listener to receive multiple callbacks simultaneously in different
threads. (Such is not the case for listeners of other types.) It is therefore critical
that users of this listener provide their own protection for any thread-unsafe ac-
tivities undertaken in a com.rti.dds.domain.DomainParticipantListener
(p. 734) callback.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.65 DomainParticipantListener Interface Reference 735

Note: Due to a thread-safety issue, the destruction of a DomainPartici-
pantListener (p. 734) from an enabled DomainParticipant (p. 629) should
be avoided – even if the DomainParticipantListener (p. 734) has been re-
moved from the DomainParticipant (p. 629). (This limitation does not affect
the Java API.)

See also:

com.rti.dds.infrastructure.Listener (p. 1154)
com.rti.dds.domain.DomainParticipant.set listener (p. 682)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

736 Class Documentation

8.66 DomainParticipantQos Class Reference

QoS policies supported by a com.rti.dds.domain.DomainParticipant
(p. 629) entity.

Inheritance diagram for DomainParticipantQos::

Public Attributes

ˆ final UserDataQosPolicy user data
User data policy, USER DATA (p. 126).

ˆ final EntityFactoryQosPolicy entity factory
Entity factory policy, ENTITY FACTORY (p. 69).

ˆ final WireProtocolQosPolicy wire protocol
<<eXtension>> (p. 270) Wire Protocol policy, WIRE PROTOCOL
(p. 128).

ˆ final TransportBuiltinQosPolicy transport builtin
<<eXtension>> (p. 270) Transport Builtin policy, TRANSPORT -
BUILTIN (p. 115).

ˆ final TransportUnicastQosPolicy default unicast
<<eXtension>> (p. 270) Default Unicast Transport policy, TRANS-
PORT UNICAST (p. 123).

ˆ final DiscoveryQosPolicy discovery
<<eXtension>> (p. 270) Discovery policy, DISCOVERY (p. 54).

ˆ final DomainParticipantResourceLimitsQosPolicy resource -
limits

<<eXtension>> (p. 270) Domain participant resource limits policy, DO-
MAIN PARTICIPANT RESOURCE LIMITS (p. 63).

ˆ final EventQosPolicy event
<<eXtension>> (p. 270) Event policy, EVENT (p. 71).

ˆ final ReceiverPoolQosPolicy receiver pool
<<eXtension>> (p. 270) Receiver pool policy, RECEIVER POOL
(p. 100).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.66 DomainParticipantQos Class Reference 737

ˆ final DatabaseQosPolicy database

<<eXtension>> (p. 270) Database policy, DATABASE (p. 44).

ˆ final DiscoveryConfigQosPolicy discovery config

<<eXtension>> (p. 270) Discovery config policy, DISCOVERY -
CONFIG (p. 52).

ˆ final PropertyQosPolicy property

<<eXtension>> (p. 270) Property policy, PROPERTY (p. 88).

ˆ final EntityNameQosPolicy participant name

<<eXtension>> (p. 270) The participant name. ENTITY NAME
(p. 70)

ˆ final TypeSupportQosPolicy type support

<<eXtension>> (p. 270) Type support data, TYPESUPPORT (p. 124).

ˆ final TransportMulticastMappingQosPolicy multicast mapping

<<eXtension>> (p. 270) The multicast mapping policy. DDSTransport-
MulticastMappingQosModule

8.66.1 Detailed Description

QoS policies supported by a com.rti.dds.domain.DomainParticipant
(p. 629) entity.

Certain members must be set in a consistent manner:

Length of com.rti.dds.domain.DomainParticipantQos.user data (p. 738)
.value <= com.rti.dds.domain.DomainParticipantQos.resource limits
(p. 739) .participant user data max length

For com.rti.dds.domain.DomainParticipantQos.discovery config
(p. 739) .publication writer

high watermark <= com.rti.dds.domain.DomainParticipantQos.resource -
limits (p. 739) .local writer allocation .max count heartbeats per max samples
<= com.rti.dds.domain.DomainParticipantQos.resource limits (p. 739)
.local writer allocation.max count

For com.rti.dds.domain.DomainParticipantQos.discovery config
(p. 739) .suscription writer

high watermark <= com.rti.dds.domain.DomainParticipantQos.resource -
limits (p. 739) .local reader allocation.max count heartbeats per max samples

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

738 Class Documentation

<= com.rti.dds.domain.DomainParticipantQos.resource limits (p. 739)
.local reader allocation.max count

If any of the above are not true, com.rti.dds.domain.DomainParticipant.set -
qos (p. 677) and com.rti.dds.domain.DomainParticipant.set qos with -
profile (p. 678) and com.rti.dds.domain.DomainParticipantFactory.set -
default participant qos (p. 716) will fail with RETCODE -
INCONSISTENT POLICY, and com.rti.dds.domain.DomainParticipantFactory.create -
participant (p. 714) will fail.

Entity:

com.rti.dds.domain.DomainParticipant (p. 629)

See also:

QoS Policies (p. 90) and allowed ranges within each Qos.
NDDS DISCOVERY PEERS (p. 55)

8.66.2 Member Data Documentation

8.66.2.1 final UserDataQosPolicy user data

User data policy, USER DATA (p. 126).

8.66.2.2 final EntityFactoryQosPolicy entity factory

Entity factory policy, ENTITY FACTORY (p. 69).

8.66.2.3 final WireProtocolQosPolicy wire protocol

<<eXtension>> (p. 270) Wire Protocol policy, WIRE PROTOCOL
(p. 128).

The wire protocol (RTPS) attributes associated with the participant.

8.66.2.4 final TransportBuiltinQosPolicy transport builtin

<<eXtension>> (p. 270) Transport Builtin policy, TRANSPORT -
BUILTIN (p. 115).

8.66.2.5 final TransportUnicastQosPolicy default unicast

<<eXtension>> (p. 270) Default Unicast Transport policy, TRANS-
PORT UNICAST (p. 123).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.66 DomainParticipantQos Class Reference 739

8.66.2.6 final DiscoveryQosPolicy discovery

<<eXtension>> (p. 270) Discovery policy, DISCOVERY (p. 54).

8.66.2.7 final DomainParticipantResourceLimitsQosPolicy
resource limits

<<eXtension>> (p. 270) Domain participant resource limits policy, DO-
MAIN PARTICIPANT RESOURCE LIMITS (p. 63).

8.66.2.8 final EventQosPolicy event

<<eXtension>> (p. 270) Event policy, EVENT (p. 71).

8.66.2.9 final ReceiverPoolQosPolicy receiver pool

<<eXtension>> (p. 270) Receiver pool policy, RECEIVER POOL
(p. 100).

8.66.2.10 final DatabaseQosPolicy database

<<eXtension>> (p. 270) Database policy, DATABASE (p. 44).

8.66.2.11 final DiscoveryConfigQosPolicy discovery config

<<eXtension>> (p. 270) Discovery config policy, DISCOVERY CONFIG
(p. 52).

8.66.2.12 final PropertyQosPolicy property

<<eXtension>> (p. 270) Property policy, PROPERTY (p. 88).

8.66.2.13 final EntityNameQosPolicy participant name

<<eXtension>> (p. 270) The participant name. ENTITY NAME (p. 70)

8.66.2.14 final TypeSupportQosPolicy type support

<<eXtension>> (p. 270) Type support data, TYPESUPPORT (p. 124).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

740 Class Documentation

Optional value that is passed to a type plugin’s on participant attached func-
tion.

8.66.2.15 final TransportMulticastMappingQosPolicy
multicast mapping

<<eXtension>> (p. 270) The multicast mapping policy. DDSTransportMul-
ticastMappingQosModule

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.67 DomainParticipantResourceLimitsQosPolicy Class Reference741

8.67 DomainParticipantResourceLimitsQosPolicy
Class Reference

Various settings that configure how a com.rti.dds.domain.DomainParticipant
(p. 629) allocates and uses physical memory for internal resources, including
the maximum sizes of various properties.

Inheritance diagram for DomainParticipantResourceLimitsQosPolicy::

Public Attributes

ˆ final AllocationSettings t local writer allocation

Allocation settings applied to local DataWriters.

ˆ final AllocationSettings t local reader allocation

Allocation settings applied to local DataReaders.

ˆ final AllocationSettings t local publisher allocation

Allocation settings applied to local Publisher.

ˆ final AllocationSettings t local subscriber allocation

Allocation settings applied to local Subscriber.

ˆ final AllocationSettings t local topic allocation

Allocation settings applied to local Topic.

ˆ final AllocationSettings t remote writer allocation

Allocation settings applied to remote DataWriters.

ˆ final AllocationSettings t remote reader allocation

Allocation settings applied to remote DataReaders.

ˆ final AllocationSettings t remote participant allocation

Allocation settings applied to remote DomainParticipants.

ˆ final AllocationSettings t matching writer reader pair -
allocation

Allocation settings applied to matching local writer and remote/local reader
pairs.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

742 Class Documentation

ˆ final AllocationSettings t matching reader writer pair -
allocation

Allocation settings applied to matching local reader and remote/local writer
pairs.

ˆ final AllocationSettings t ignored entity allocation

Allocation settings applied to ignored entities.

ˆ final AllocationSettings t content filtered topic allocation

Allocation settings applied to content filtered topic (p. 350).

ˆ final AllocationSettings t content filter allocation

Allocation settings applied to content filter.

ˆ final AllocationSettings t read condition allocation

Allocation settings applied to read condition pool.

ˆ final AllocationSettings t query condition allocation

Allocation settings applied to query condition pool.

ˆ final AllocationSettings t outstanding asynchronous sample -
allocation

Allocation settings applied to the maximum number of samples (from
all com.rti.dds.publication.DataWriter (p. 538)) waiting to be asyn-
chronously written.

ˆ final AllocationSettings t flow controller allocation

Allocation settings applied to flow controllers.

ˆ int local writer hash buckets

Hash Buckets settings applied to local DataWriters.

ˆ int local reader hash buckets

Number of hash buckets for local DataReaders.

ˆ int local publisher hash buckets

Number of hash buckets for local Publisher.

ˆ int local subscriber hash buckets

Number of hash buckets for local Subscriber.

ˆ int local topic hash buckets

Number of hash buckets for local Topic.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.67 DomainParticipantResourceLimitsQosPolicy Class Reference743

ˆ int remote writer hash buckets

Number of hash buckets for remote DataWriters.

ˆ int remote reader hash buckets

Number of hash buckets for remote DataReaders.

ˆ int remote participant hash buckets

Number of hash buckets for remote DomainParticipants.

ˆ int matching writer reader pair hash buckets

Number of hash buckets for matching local writer and remote/local reader
pairs.

ˆ int matching reader writer pair hash buckets

Number of hash buckets for matching local reader and remote/local writer
pairs.

ˆ int ignored entity hash buckets

Number of hash buckets for ignored entities.

ˆ int content filtered topic hash buckets

Number of hash buckets for content filtered topics.

ˆ int content filter hash buckets

Number of hash buckets for content filters.

ˆ int flow controller hash buckets

Number of hash buckets for flow controllers.

ˆ int max gather destinations

Maximum number of destinations per RTI Connext send.

ˆ int participant user data max length

Maximum length of user data in com.rti.dds.domain.DomainParticipantQos
(p. 736) and builtin.ParticipantBuiltinTopicData.

ˆ int topic data max length

Maximum length of topic (p. 350) data
in com.rti.dds.topic.TopicQos (p. 1566),
builtin.TopicBuiltinTopicData, builtin.PublicationBuiltinTopicData and
builtin.SubscriptionBuiltinTopicData.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

744 Class Documentation

ˆ int publisher group data max length

Maximum length of group data in com.rti.dds.publication.PublisherQos
(p. 1303) and builtin.PublicationBuiltinTopicData.

ˆ int subscriber group data max length

Maximum length of group data in com.rti.dds.subscription.SubscriberQos
(p. 1506) and builtin.SubscriptionBuiltinTopicData.

ˆ int writer user data max length

Maximum length of user data in com.rti.dds.publication.DataWriterQos
(p. 588) and builtin.PublicationBuiltinTopicData.

ˆ int reader user data max length

Maximum length of user data in com.rti.dds.subscription.DataReaderQos
(p. 518) and builtin.SubscriptionBuiltinTopicData.

ˆ int max partitions

Maximum number of partition name strings allowable in a
com.rti.dds.infrastructure.PartitionQosPolicy (p. 1233).

ˆ int max partition cumulative characters

Maximum number of combined characters allowable in all partition names
in a com.rti.dds.infrastructure.PartitionQosPolicy (p. 1233).

ˆ int type code max serialized length

Maximum size of serialized string for type code.

ˆ int contentfilter property max length

This field is the maximum length of all data related to a Content-filtered
topic (p. 350).

ˆ int channel seq max length

Maximum number of channels that can be specified in
com.rti.dds.infrastructure.MultiChannelQosPolicy (p. 1205) for
MultiChannel DataWriters.

ˆ int channel filter expression max length

Maximum length of a channel com.rti.dds.infrastructure.ChannelSettings -
t.filter expression (p. 442) in a MultiChannel DataWriter.

ˆ int participant property list max length

Maximum number of properties associated with the
com.rti.dds.domain.DomainParticipant (p. 629).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.67 DomainParticipantResourceLimitsQosPolicy Class Reference745

ˆ int participant property string max length

Maximum string length of the properties associated with the
com.rti.dds.domain.DomainParticipant (p. 629).

ˆ int writer property list max length

Maximum number of properties associated with a
com.rti.dds.publication.DataWriter (p. 538).

ˆ int writer property string max length

Maximum string length of the properties associated with a
com.rti.dds.publication.DataWriter (p. 538).

ˆ int reader property list max length

Maximum number of properties associated with a
com.rti.dds.subscription.DataReader (p. 473).

ˆ int reader property string max length

Maximum string length of the properties associated with a
com.rti.dds.subscription.DataReader (p. 473).

ˆ int max endpoint groups

Maximum number of com.rti.dds.infrastructure.EndpointGroup t
(p. 909) allowable in a com.rti.dds.infrastructure.AvailabilityQosPolicy
(p. 392).

ˆ int max endpoint group cumulative characters

Maximum number of combined role name characters allowable in
all com.rti.dds.infrastructure.EndpointGroup t (p. 909) in a
com.rti.dds.infrastructure.AvailabilityQosPolicy (p. 392).

8.67.1 Detailed Description

Various settings that configure how a com.rti.dds.domain.DomainParticipant
(p. 629) allocates and uses physical memory for internal resources, including
the maximum sizes of various properties.

This QoS policy sets maximum size limits on variable-length parameters used
by the participant and its contained Entities. It also controls the initial and
maximum sizes of data structures used by the participant to store informa-
tion about locally-created and remotely-discovered entities (such as DataWrit-
ers/DataReaders), as well as parameters used by the internal database to size
the hash tables it uses.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

746 Class Documentation

By default, a com.rti.dds.domain.DomainParticipant (p. 629) is al-
lowed to dynamically allocate memory as needed as users create lo-
cal Entities such as com.rti.dds.publication.DataWriter (p. 538) and
com.rti.dds.subscription.DataReader (p. 473) objects or as the participant
discovers new applications. By setting fixed values for the maximum parame-
ters in this QoS policy, you can bound the memory that can be allocated by
a com.rti.dds.domain.DomainParticipant (p. 629). In addition, by setting
the initial values to the maximum values, you can prevent DomainParticipants
from allocating memory after the initialization period.

The maximum sizes of different variable-length parameters
such as the number of partitions that can be stored in the
com.rti.dds.infrastructure.PartitionQosPolicy (p. 1233), the maximum
length of data store in the com.rti.dds.infrastructure.UserDataQosPolicy
(p. 1680) and com.rti.dds.infrastructure.GroupDataQosPolicy (p. 1064),
and many others can be changed from their defaults using this QoS policy.
However, it is important that all DomainParticipants that need to communicate
with each other use the same set of maximum values. Otherwise, when these pa-
rameters are propagated from one com.rti.dds.domain.DomainParticipant
(p. 629) to another, a com.rti.dds.domain.DomainParticipant (p. 629)
with a smaller maximum length may reject the parameter, resulting in an error.

An important parameter in this QoS policy that is often changed by users is
com.rti.dds.infrastructure.DomainParticipantResourceLimitsQosPolicy.type -
code max serialized length (p. 755).

This QoS policy is an extension to the DDS standard.

Entity:

com.rti.dds.domain.DomainParticipant (p. 629)

Properties:

RxO (p. 97) = N/A
Changeable (p. 98) = NO (p. 98)

8.67.2 Member Data Documentation

8.67.2.1 final AllocationSettings t local writer allocation

Allocation settings applied to local DataWriters.

[default] initial count = 16; max count = ResourceLimitsQosPol-
icy.LENGTH UNLIMITED (p. 102); incremental count = -1

[range] See allowed ranges in struct com.rti.dds.infrastructure.AllocationSettings -
t (p. 385)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.67 DomainParticipantResourceLimitsQosPolicy Class Reference747

8.67.2.2 final AllocationSettings t local reader allocation

Allocation settings applied to local DataReaders.

[default] initial count = 16; max count = ResourceLimitsQosPol-
icy.LENGTH UNLIMITED (p. 102); incremental count = -1

[range] See allowed ranges in struct com.rti.dds.infrastructure.AllocationSettings -
t (p. 385)

8.67.2.3 final AllocationSettings t local publisher allocation

Allocation settings applied to local Publisher.

[default] initial count = 4; max count = ResourceLimitsQosPol-
icy.LENGTH UNLIMITED (p. 102); incremental count = -1

[range] See allowed ranges in struct com.rti.dds.infrastructure.AllocationSettings -
t (p. 385)

8.67.2.4 final AllocationSettings t local subscriber allocation

Allocation settings applied to local Subscriber.

[default] initial count = 4; max count = ResourceLimitsQosPol-
icy.LENGTH UNLIMITED (p. 102); incremental count = -1

[range] See allowed ranges in struct com.rti.dds.infrastructure.AllocationSettings -
t (p. 385)

8.67.2.5 final AllocationSettings t local topic allocation

Allocation settings applied to local Topic.

[default] initial count = 16; max count = ResourceLimitsQosPol-
icy.LENGTH UNLIMITED (p. 102); incremental count = -1

[range] See allowed ranges in struct com.rti.dds.infrastructure.AllocationSettings -
t (p. 385)

8.67.2.6 final AllocationSettings t remote writer allocation

Allocation settings applied to remote DataWriters.

Remote DataWriters include all DataWriters, both local and remote.

[default] initial count = 64; max count = ResourceLimitsQosPol-
icy.LENGTH UNLIMITED (p. 102); incremental count = -1

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

748 Class Documentation

[range] See allowed ranges in struct com.rti.dds.infrastructure.AllocationSettings -
t (p. 385)

8.67.2.7 final AllocationSettings t remote reader allocation

Allocation settings applied to remote DataReaders.

Remote DataReaders include all DataReaders, both local and remote.

[default] initial count = 64; max count = ResourceLimitsQosPol-
icy.LENGTH UNLIMITED (p. 102); incremental count = -1

[range] See allowed ranges in struct com.rti.dds.infrastructure.AllocationSettings -
t (p. 385)

8.67.2.8 final AllocationSettings t remote participant allocation

Allocation settings applied to remote DomainParticipants.

Remote DomainParticipants include all DomainParticipants, both local and re-
mote.

[default] initial count = 16; max count = ResourceLimitsQosPol-
icy.LENGTH UNLIMITED (p. 102); incremental count = -1

[range] See allowed ranges in struct com.rti.dds.infrastructure.AllocationSettings -
t (p. 385)

8.67.2.9 final AllocationSettings t matching writer reader pair -
allocation

Allocation settings applied to matching local writer and remote/local reader
pairs.

[default] initial count = 32; max count = ResourceLimitsQosPol-
icy.LENGTH UNLIMITED (p. 102); incremental count = -1

[range] See allowed ranges in struct com.rti.dds.infrastructure.AllocationSettings -
t (p. 385)

8.67.2.10 final AllocationSettings t matching reader writer pair -
allocation

Allocation settings applied to matching local reader and remote/local writer
pairs.

[default] initial count = 32; max count = ResourceLimitsQosPol-
icy.LENGTH UNLIMITED (p. 102); incremental count = -1

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.67 DomainParticipantResourceLimitsQosPolicy Class Reference749

[range] See allowed ranges in struct com.rti.dds.infrastructure.AllocationSettings -
t (p. 385)

8.67.2.11 final AllocationSettings t ignored entity allocation

Allocation settings applied to ignored entities.

[default] initial count = 8; max count = ResourceLimitsQosPol-
icy.LENGTH UNLIMITED (p. 102); incremental count = -1

[range] See allowed ranges in struct com.rti.dds.infrastructure.AllocationSettings -
t (p. 385)

8.67.2.12 final AllocationSettings t content filtered topic allocation

Allocation settings applied to content filtered topic (p. 350).

[default] initial count = 4; max count = ResourceLimitsQosPol-
icy.LENGTH UNLIMITED (p. 102); incremental count = -1

[range] See allowed ranges in struct com.rti.dds.infrastructure.AllocationSettings -
t (p. 385)

8.67.2.13 final AllocationSettings t content filter allocation

Allocation settings applied to content filter.

[default] initial count = 4; max count = ResourceLimitsQosPol-
icy.LENGTH UNLIMITED (p. 102); incremental count = -1

[range] See allowed ranges in struct com.rti.dds.infrastructure.AllocationSettings -
t (p. 385)

8.67.2.14 final AllocationSettings t read condition allocation

Allocation settings applied to read condition pool.

[default] initial count = 4; max count = ResourceLimitsQosPol-
icy.LENGTH UNLIMITED (p. 102), incremental count = -1

[range] See allowed ranges in struct com.rti.dds.infrastructure.AllocationSettings -
t (p. 385)

8.67.2.15 final AllocationSettings t query condition allocation

Allocation settings applied to query condition pool.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

750 Class Documentation

[default] initial count = 4; max count = ResourceLimitsQosPol-
icy.LENGTH UNLIMITED (p. 102), incremental count = -1

[range] See allowed ranges in struct com.rti.dds.infrastructure.AllocationSettings -
t (p. 385)

8.67.2.16 final AllocationSettings t outstanding asynchronous -
sample allocation

Allocation settings applied to the maximum number of samples (from all
com.rti.dds.publication.DataWriter (p. 538)) waiting to be asynchronously
written.

[default] initial count = 64; max count = ResourceLimitsQosPol-
icy.LENGTH UNLIMITED (p. 102), incremental count = -1

[range] See allowed ranges in struct com.rti.dds.infrastructure.AllocationSettings -
t (p. 385)

8.67.2.17 final AllocationSettings t flow controller allocation

Allocation settings applied to flow controllers.

[default] initial count = 4; max count = ResourceLimitsQosPol-
icy.LENGTH UNLIMITED (p. 102), incremental count = -1

[range] See allowed ranges in struct com.rti.dds.infrastructure.AllocationSettings -
t (p. 385)

8.67.2.18 int local writer hash buckets

Hash Buckets settings applied to local DataWriters.

[default] 4

[range] [1, 10000]

8.67.2.19 int local reader hash buckets

Number of hash buckets for local DataReaders.

[default] 4

[range] [1, 10000]

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.67 DomainParticipantResourceLimitsQosPolicy Class Reference751

8.67.2.20 int local publisher hash buckets

Number of hash buckets for local Publisher.

[default] 1

[range] [1, 10000]

8.67.2.21 int local subscriber hash buckets

Number of hash buckets for local Subscriber.

[default] 1

[range] [1, 10000]

8.67.2.22 int local topic hash buckets

Number of hash buckets for local Topic.

[default] 4

[range] [1, 10000]

8.67.2.23 int remote writer hash buckets

Number of hash buckets for remote DataWriters.

Remote DataWriters include all DataWriters, both local and remote.

[default] 16

[range] [1, 10000]

8.67.2.24 int remote reader hash buckets

Number of hash buckets for remote DataReaders.

Remote DataReaders include all DataReaders, both local and remote.

[default] 16

[range] [1, 10000]

8.67.2.25 int remote participant hash buckets

Number of hash buckets for remote DomainParticipants.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

752 Class Documentation

Remote DomainParticipants include all DomainParticipants, both local and re-
mote.

[default] 4

[range] [1, 10000]

8.67.2.26 int matching writer reader pair hash buckets

Number of hash buckets for matching local writer and remote/local reader pairs.

[default] 32

[range] [1, 10000]

8.67.2.27 int matching reader writer pair hash buckets

Number of hash buckets for matching local reader and remote/local writer pairs.

[default] 32

[range] [1, 10000]

8.67.2.28 int ignored entity hash buckets

Number of hash buckets for ignored entities.

[default] 1

[range] [1, 10000]

8.67.2.29 int content filtered topic hash buckets

Number of hash buckets for content filtered topics.

[default] 1

[range] [1, 10000]

8.67.2.30 int content filter hash buckets

Number of hash buckets for content filters.

[default] 1

[range] [1, 10000]

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.67 DomainParticipantResourceLimitsQosPolicy Class Reference753

8.67.2.31 int flow controller hash buckets

Number of hash buckets for flow controllers.

[default] 1

[range] [1, 10000]

8.67.2.32 int max gather destinations

Maximum number of destinations per RTI Connext send.

When RTI Connext sends out a message, it has the capability to send to multiple
destinations to be more efficient. The maximum number of destinations per RTI
Connext send is specified by max gather destinations.

[default] 8

[range] [4, 1 million]

8.67.2.33 int participant user data max length

Maximum length of user data in com.rti.dds.domain.DomainParticipantQos
(p. 736) and builtin.ParticipantBuiltinTopicData.

[default] 256

[range] [0,0x7fffffff]

8.67.2.34 int topic data max length

Maximum length of topic (p. 350) data in com.rti.dds.topic.TopicQos
(p. 1566), builtin.TopicBuiltinTopicData, builtin.PublicationBuiltinTopicData
and builtin.SubscriptionBuiltinTopicData.

[default] 256

[range] [0,0x7fffffff]

8.67.2.35 int publisher group data max length

Maximum length of group data in com.rti.dds.publication.PublisherQos
(p. 1303) and builtin.PublicationBuiltinTopicData.

[default] 256

[range] [0,0x7fffffff]

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

754 Class Documentation

8.67.2.36 int subscriber group data max length

Maximum length of group data in com.rti.dds.subscription.SubscriberQos
(p. 1506) and builtin.SubscriptionBuiltinTopicData.

[default] 256

[range] [0,0x7fffffff]

8.67.2.37 int writer user data max length

Maximum length of user data in com.rti.dds.publication.DataWriterQos
(p. 588) and builtin.PublicationBuiltinTopicData.

[default] 256

[range] [0,0x7fffffff]

8.67.2.38 int reader user data max length

Maximum length of user data in com.rti.dds.subscription.DataReaderQos
(p. 518) and builtin.SubscriptionBuiltinTopicData.

[default] 256

[range] [0,0x7fffffff]

8.67.2.39 int max partitions

Maximum number of partition name strings allowable in a
com.rti.dds.infrastructure.PartitionQosPolicy (p. 1233).

This setting is made on a per DomainParticipant basis; it cannot be set individ-
ually on a per Publisher/Subscriber basis. However, the limit is enforced and
applies per Publisher/Subscriber.

This value cannot exceed 64.

[default] 64

[range] [0,64]

8.67.2.40 int max partition cumulative characters

Maximum number of combined characters allowable in all partition names in a
com.rti.dds.infrastructure.PartitionQosPolicy (p. 1233).

The maximum number of combined characters should account for a terminating
NULL (’\0’) character for each partition name string.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.67 DomainParticipantResourceLimitsQosPolicy Class Reference755

This setting is made on a per DomainParticipant basis; it cannot be set individ-
ually on a per Publisher/Subscriber basis. However, the limit is enforced and
applies per Publisher/Subscriber.

This value cannot exceed 256.

[default] 256

[range] [0,256]

8.67.2.41 int type code max serialized length

Maximum size of serialized string for type code.

This parameter limits the size of the type code that a
com.rti.dds.domain.DomainParticipant (p. 629) is able to store and
propagate for user data types. Type codes can be used by external applications
to understand user data types without having the data type predefined in
compiled form. However, since type codes contain all of the information of a
data structure, including the strings that define the names of the members of
a structure, complex data structures can result in type codes larger than the
default maximum of 2048 bytes. So it is common for users to set this parameter
to a larger value. However, as with all parameters in this QoS policy defining
maximum sizes for variable-length elements, all DomainParticipants in the
same domain (p. 317) should use the same value for this parameter.

[default] 2048

[range] [0,0xffff]

8.67.2.42 int contentfilter property max length

This field is the maximum length of all data related to a Content-filtered topic
(p. 350).

This is the sum of the length of the content filter name, the length of the
related topic (p. 350) name, the length of the filter expression, the length of
the filter parameters, and the length of the filter name. The maximum number
of combined characters should account for a terminating NULL (’\0’) character
for each string.

[default] 256

[range] [0,0xffff]

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

756 Class Documentation

8.67.2.43 int channel seq max length

Maximum number of channels that can be specified in
com.rti.dds.infrastructure.MultiChannelQosPolicy (p. 1205) for Multi-
Channel DataWriters.

[default] 32

[range] [0,0xffff]

8.67.2.44 int channel filter expression max length

Maximum length of a channel com.rti.dds.infrastructure.ChannelSettings -
t.filter expression (p. 442) in a MultiChannel DataWriter.

The length should account for a terminating NULL (’\0’) character.

[default] 256

[range] [0,0xffff]

8.67.2.45 int participant property list max length

Maximum number of properties associated with the
com.rti.dds.domain.DomainParticipant (p. 629).

[default] 32

[range] [0,0xffff]

8.67.2.46 int participant property string max length

Maximum string length of the properties associated with the
com.rti.dds.domain.DomainParticipant (p. 629).

The string length is defined as the cumulative length in bytes of all the pair
(name,value) associated with the com.rti.dds.domain.DomainParticipant
(p. 629) properties.

[default] 1024

[range] [0,0xffff]

8.67.2.47 int writer property list max length

Maximum number of properties associated with a
com.rti.dds.publication.DataWriter (p. 538).

[range] [0,0xffff]

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.67 DomainParticipantResourceLimitsQosPolicy Class Reference757

[default] 32

8.67.2.48 int writer property string max length

Maximum string length of the properties associated with a
com.rti.dds.publication.DataWriter (p. 538).

The string length is defined as the cumulative length in bytes of all the pair
(name,value) associated with the data writer properties.

[default] 1024

[range] [0,0xffff]

8.67.2.49 int reader property list max length

Maximum number of properties associated with a
com.rti.dds.subscription.DataReader (p. 473).

[default] 32

[range] [0,0xffff]

8.67.2.50 int reader property string max length

Maximum string length of the properties associated with a
com.rti.dds.subscription.DataReader (p. 473).

The string length is defined as the cumulative length in bytes of all the
pair (name,value) associated with a com.rti.dds.subscription.DataReader
(p. 473) properties.

[default] 1024

[range] [0,0xffff]

8.67.2.51 int max endpoint groups

Maximum number of com.rti.dds.infrastructure.EndpointGroup t
(p. 909) allowable in a com.rti.dds.infrastructure.AvailabilityQosPolicy
(p. 392).

[default] 32

[range] [0,65535]

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

758 Class Documentation

8.67.2.52 int max endpoint group cumulative characters

Maximum number of combined role name characters allowable in
all com.rti.dds.infrastructure.EndpointGroup t (p. 909) in a
com.rti.dds.infrastructure.AvailabilityQosPolicy (p. 392).

The maximum number of combined characters should account for a terminating
NULL character for each role name string.

[default] 1024

[range] [0,65535]

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.68 DoubleSeq Class Reference 759

8.68 DoubleSeq Class Reference

Instantiates com.rti.dds.util.Sequence (p. 1432) < double >.

Inheritance diagram for DoubleSeq::

Public Member Functions

ˆ DoubleSeq ()
Constructs an empty sequence of doubles with an initial maximum of zero.

ˆ DoubleSeq (int initialMaximum)
Constructs an empty sequence of doubles with the given initial maximum.

ˆ DoubleSeq (double[] doubles)
Constructs a new sequence containing the given doubles.

ˆ final boolean addAllDouble (double[] elements, int offset, int length)
Append length elements from the given array to this sequence, starting at
index offset in that array.

ˆ final boolean addAllDouble (double[] elements)
ˆ final void addDouble (double element)

Append the element to the end of the sequence.

ˆ final void addDouble (int index, double element)
Shift all elements in the sequence starting from the given index and add the
element to the given index.

ˆ final double getDouble (int index)
Returns the double at the given index.

ˆ final double setDouble (int index, double element)
Set the new double at the given index and return the old double.

ˆ final void setDouble (int dstIndex, double[] elements, int srcIndex, int
length)

Copy a portion of the given array into this sequence.

ˆ final double[] toArrayDouble (double[] array)
Return an array containing copy of the contents of this sequence.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

760 Class Documentation

ˆ final int getMaximum ()

Get the current maximum number of elements that can be stored in this
sequence.

ˆ final Object get (int index)

A wrapper for getDouble(int) (p. 761) that returns a java.lang.Double.

ˆ final Object set (int index, Object element)

A wrapper for setDouble() (p. 762).

ˆ final void add (int index, Object element)

A wrapper for addDouble(int, int).

8.68.1 Detailed Description

Instantiates com.rti.dds.util.Sequence (p. 1432) < double >.

Instantiates:

<<generic>> (p. 271) com.rti.dds.util.Sequence (p. 1432)

See also:

double
com.rti.dds.util.Sequence (p. 1432)

8.68.2 Constructor & Destructor Documentation

8.68.2.1 DoubleSeq ()

Constructs an empty sequence of doubles with an initial maximum of zero.

8.68.2.2 DoubleSeq (int initialMaximum)

Constructs an empty sequence of doubles with the given initial maximum.

8.68.2.3 DoubleSeq (double[] doubles)

Constructs a new sequence containing the given doubles.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.68 DoubleSeq Class Reference 761

Parameters:

doubles the initial contents of this sequence

Exceptions:

NullPointerException if the input array is null

8.68.3 Member Function Documentation

8.68.3.1 final boolean addAllDouble (double[] elements, int offset,
int length)

Append length elements from the given array to this sequence, starting at index
offset in that array.

Exceptions:

NullPointerException if the given array is null.

8.68.3.2 final boolean addAllDouble (double[] elements)

Exceptions:

NullPointerException if the given array is null

8.68.3.3 final void addDouble (double element)

Append the element to the end of the sequence.

8.68.3.4 final void addDouble (int index, double element)

Shift all elements in the sequence starting from the given index and add the
element to the given index.

8.68.3.5 final double getDouble (int index)

Returns the double at the given index.

Exceptions:

IndexOutOfBoundsException if the index is out of bounds.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

762 Class Documentation

8.68.3.6 final double setDouble (int index, double element)

Set the new double at the given index and return the old double.

Exceptions:

IndexOutOfBoundsException if the index is out of bounds.

8.68.3.7 final void setDouble (int dstIndex, double[] elements, int
srcIndex, int length)

Copy a portion of the given array into this sequence.

Parameters:

dstIndex the index at which to start copying into this sequence.

elements an array of primitive elements.

srcIndex the index at which to start copying from the given array.

length the number of elements to copy.

Exceptions:

IndexOutOfBoundsException if copying would cause access of data
outside array bounds.

8.68.3.8 final double [] toArrayDouble (double[] array)

Return an array containing copy of the contents of this sequence.

Parameters:

array The array into which this sequence should be copied. It may be
null. If it is, or if array length is too small, the array will be ignored,
and a new array of the necessary length will be created and copied
into instead.

Returns:

A non-null array containing a copy of the contents of this sequence.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.68 DoubleSeq Class Reference 763

8.68.3.9 final int getMaximum ()

Get the current maximum number of elements that can be stored in this se-
quence.

The maximum of the sequence represents the maximum number of elements that
the underlying buffer can hold. It does not represent the current number of
elements.

The maximum is a non-negative number. It is initialized when the sequence is
first created.

The maximum can be changed implicitly by adding an element to the sequence
with add() (p. 764), or explicitly by calling Sequence.setMaximum.

Returns:

the current maximum of the sequence.

See also:

Sequence.size()

Implements Sequence (p. 1433).

8.68.3.10 final Object get (int index) [virtual]

A wrapper for getDouble(int) (p. 761) that returns a java.lang.Double.

See also:

java.util.List.get(int)

Implements AbstractPrimitiveSequence (p. 377).

8.68.3.11 final Object set (int index, Object element) [virtual]

A wrapper for setDouble() (p. 762).

Exceptions:

ClassCastException if the element is not of type Double.

See also:

java.util.List.set(int, java.lang.Object)

Implements AbstractPrimitiveSequence (p. 377).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

764 Class Documentation

8.68.3.12 final void add (int index, Object element) [virtual]

A wrapper for addDouble(int, int).

Exceptions:

ClassCastException if the element is not of type Double.

See also:

java.util.List.add(int, java.lang.Object)

Implements AbstractPrimitiveSequence (p. 378).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.69 DurabilityQosPolicy Class Reference 765

8.69 DurabilityQosPolicy Class Reference

This QoS policy specifies whether or not RTI Connext will
store and deliver previously published data samples to new
com.rti.dds.subscription.DataReader (p. 473) entities that join the
network later.

Inheritance diagram for DurabilityQosPolicy::

Public Attributes

ˆ DurabilityQosPolicyKind kind

The kind of durability.

ˆ boolean direct communication

<<eXtension>> (p. 270) Indicates whether or not a TRANSIENT
or PERSISTENT com.rti.dds.subscription.DataReader (p. 473)
should receive samples directly from a TRANSIENT or PERSISTENT
com.rti.dds.publication.DataWriter (p. 538)

8.69.1 Detailed Description

This QoS policy specifies whether or not RTI Connext will
store and deliver previously published data samples to new
com.rti.dds.subscription.DataReader (p. 473) entities that join the
network later.

Entity:

com.rti.dds.topic.Topic (p. 1545), com.rti.dds.subscription.DataReader
(p. 473), com.rti.dds.publication.DataWriter (p. 538)

Status:

StatusKind.OFFERED INCOMPATIBLE QOS STATUS
(p. 1459), StatusKind.REQUESTED INCOMPATIBLE QOS -
STATUS (p. 1459)

Properties:

RxO (p. 97) = YES
Changeable (p. 98) = UNTIL ENABLE (p. 98)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

766 Class Documentation

See also:

DURABILITY SERVICE (p. 66)

8.69.2 Usage

It is possible for a com.rti.dds.publication.DataWriter (p. 538) to start
publishing data before all (or any) com.rti.dds.subscription.DataReader
(p. 473) entities have joined the network.

Moreover, a com.rti.dds.subscription.DataReader (p. 473) that joins the
network after some data has been written could potentially be interested in
accessing the most current values of the data, as well as potentially some history.

This policy makes it possible for a late-joining
com.rti.dds.subscription.DataReader (p. 473) to obtain previously
published samples.

By helping to ensure that DataReaders get all data that was sent by DataWrit-
ers, regardless of when it was sent, using this QoS policy can increase system
tolerance to failure conditions.

Note that although related, this does not strictly control what data RTI Con-
next will maintain internally. That is, RTI Connext may choose to maintain
some data for its own purposes (e.g., flow control) and yet not make it available
to late-joining readers if the DURABILITY (p. 65) policy is set to Durabil-
ityQosPolicyKind.VOLATILE DURABILITY QOS (p. 771).

8.69.2.1 Transient and Persistent Durability

For the purpose of implementing the DURABILITY QoS kind TRAN-
SIENT or PERSISTENT, RTI Connext behaves as if for each Topic that
has com.rti.dds.infrastructure.DurabilityQosPolicy.kind (p. 768)
of DurabilityQosPolicyKind.TRANSIENT DURABILITY -
QOS (p. 771) or DurabilityQosPolicyKind.PERSISTENT -
DURABILITY QOS (p. 772) there is a corresponding ”built-
in” com.rti.dds.subscription.DataReader (p. 473) and
com.rti.dds.publication.DataWriter (p. 538) configured with the same
DURABILITY kind. In other words, it is as if somewhere in the system,
independent of the original com.rti.dds.publication.DataWriter (p. 538),
there is a built-in durable com.rti.dds.subscription.DataReader (p. 473)
subscribing to that Topic and a built-in durable DataWriter re-publishing it
as needed for the new subscribers that join the system. This functionality is
provided by the RTI Persistence Service.

The Persistence Service can configure itself based on the QoS of
your application’s com.rti.dds.publication.DataWriter (p. 538) and

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.69 DurabilityQosPolicy Class Reference 767

com.rti.dds.subscription.DataReader (p. 473) entities. For each tran-
sient or persistent com.rti.dds.topic.Topic (p. 1545), the built-in fictitious
Persistence Service com.rti.dds.subscription.DataReader (p. 473) and
com.rti.dds.publication.DataWriter (p. 538) have their QoS configured
from the QoS of your application’s com.rti.dds.publication.DataWriter
(p. 538) and com.rti.dds.subscription.DataReader (p. 473) entities that
communicate on that com.rti.dds.topic.Topic (p. 1545).

For a given com.rti.dds.topic.Topic (p. 1545), the usual re-
quest/offered semantics apply to the matching between any
com.rti.dds.publication.DataWriter (p. 538) in the domain
(p. 317) that writes the com.rti.dds.topic.Topic (p. 1545) and the
built-in transient/persistent com.rti.dds.subscription.DataReader
(p. 473) for that com.rti.dds.topic.Topic (p. 1545); similarly for the
built-in transient/persistent com.rti.dds.publication.DataWriter
(p. 538) for a com.rti.dds.topic.Topic (p. 1545) and any
com.rti.dds.subscription.DataReader (p. 473) for the
com.rti.dds.topic.Topic (p. 1545). As a consequence, a
com.rti.dds.publication.DataWriter (p. 538) that has an incompat-
ible QoS will not send its data to the RTI Persistence Service, and a
com.rti.dds.subscription.DataReader (p. 473) that has an incompatible
QoS will not get data from it.

Incompatibilities between local com.rti.dds.subscription.DataReader
(p. 473) and com.rti.dds.publication.DataWriter (p. 538) entities and the
corresponding fictitious built-in transient/persistent entities cause the Sta-
tusKind.REQUESTED INCOMPATIBLE QOS STATUS (p. 1459)
and StatusKind.OFFERED INCOMPATIBLE QOS STATUS
(p. 1459) to change and the corresponding Listener (p. 1154) invocations
and/or signaling of com.rti.dds.infrastructure.Condition (p. 451) objects
as they would with your application’s own entities.

The value of com.rti.dds.infrastructure.DurabilityServiceQosPolicy.service -
cleanup delay (p. 774) controls when RTI Persistence Service is able to remove
all information regarding a data instances.

Information on a data instance is maintained until the following conditions are
met:

1. The instance has been explicitly disposed (instance state = NOT ALIVE -
DISPOSED),

and

2. While in the NOT ALIVE DISPOSED state, the system detects that there
are no more ’live’ com.rti.dds.publication.DataWriter (p. 538) entities writ-
ing the instance. That is, all existing writers either unregister the instance (call
unregister) or lose their liveliness,

and

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

768 Class Documentation

3. A time interval longer that com.rti.dds.infrastructure.DurabilityServiceQosPolicy.service -
cleanup delay (p. 774) has elapsed since the moment RTI Connext detected
that the previous two conditions were met.

The utility of com.rti.dds.infrastructure.DurabilityServiceQosPolicy.service -
cleanup delay (p. 774) is apparent in the situation where an application dis-
poses an instance and it crashes before it has a chance to complete additional
tasks related to the disposition. Upon restart, the application may ask for initial
data to regain its state and the delay introduced by the service cleanup delay
will allow the restarted application to receive the information on the disposed
instance and complete the interrupted tasks.

8.69.3 Compatibility

The value offered is considered compatible with the value requested if
and only if the inequality offered kind >= requested kind evaluates
to ’TRUE’. For the purposes of this inequality, the values of DURA-
BILITY kind are considered ordered such that DurabilityQosPoli-
cyKind.VOLATILE DURABILITY QOS (p. 771) < DurabilityQosPol-
icyKind.TRANSIENT LOCAL DURABILITY QOS (p. 771) < Dura-
bilityQosPolicyKind.TRANSIENT DURABILITY QOS (p. 771)
< DurabilityQosPolicyKind.PERSISTENT DURABILITY QOS
(p. 772).

8.69.4 Member Data Documentation

8.69.4.1 DurabilityQosPolicyKind kind

The kind of durability.

[default] DurabilityQosPolicyKind.VOLATILE DURABILITY QOS
(p. 771)

8.69.4.2 boolean direct communication

<<eXtension>> (p. 270) Indicates whether or not a TRANSIENT
or PERSISTENT com.rti.dds.subscription.DataReader (p. 473)
should receive samples directly from a TRANSIENT or PERSISTENT
com.rti.dds.publication.DataWriter (p. 538)

When direct communication is set to true, a TRANSIENT or PER-
SISTENT com.rti.dds.subscription.DataReader (p. 473) will receive
samples from both the original com.rti.dds.publication.DataWriter
(p. 538) configured with TRANSIENT or PERSISTENT durability and the

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.69 DurabilityQosPolicy Class Reference 769

com.rti.dds.publication.DataWriter (p. 538) created by the persistence ser-
vice. This peer-to-peer communication pattern provides low latency between
end-points.

If the same sample is received from the original
com.rti.dds.publication.DataWriter (p. 538) and the persistence ser-
vice, the middleware will discard the duplicate.

When direct communication is set to false, a TRANSIENT or PERSISTENT
com.rti.dds.subscription.DataReader (p. 473) will only receive samples
from the com.rti.dds.publication.DataWriter (p. 538) created by the persis-
tence service. This brokered communication pattern provides a way to guarantee
eventual consistency.

[default] true

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

770 Class Documentation

8.70 DurabilityQosPolicyKind Class Reference

Kinds of durability.

Inheritance diagram for DurabilityQosPolicyKind::

Static Public Attributes

ˆ static final DurabilityQosPolicyKind VOLATILE -
DURABILITY QOS

[default] RTI Connext does not need to keep any samples of data instances
on behalf of any com.rti.dds.subscription.DataReader (p. 473) that is
unknown by the com.rti.dds.publication.DataWriter (p. 538) at the time
the instance is written.

ˆ static final DurabilityQosPolicyKind TRANSIENT LOCAL -
DURABILITY QOS

RTI Connext will attempt to keep some samples so that they can be deliv-
ered to any potential late-joining com.rti.dds.subscription.DataReader
(p. 473).

ˆ static final DurabilityQosPolicyKind TRANSIENT -
DURABILITY QOS

RTI Connext will attempt to keep some samples so that they can be deliv-
ered to any potential late-joining com.rti.dds.subscription.DataReader
(p. 473).

ˆ static final DurabilityQosPolicyKind PERSISTENT -
DURABILITY QOS

Data is kept on permanent storage, so that they can outlive a system session.

8.70.1 Detailed Description

Kinds of durability.

QoS:

com.rti.dds.infrastructure.DurabilityQosPolicy (p. 765)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.70 DurabilityQosPolicyKind Class Reference 771

8.70.2 Member Data Documentation

8.70.2.1 final DurabilityQosPolicyKind VOLATILE -
DURABILITY QOS [static]

[default] RTI Connext does not need to keep any samples of data instances
on behalf of any com.rti.dds.subscription.DataReader (p. 473) that is un-
known by the com.rti.dds.publication.DataWriter (p. 538) at the time the
instance is written.

In other words, RTI Connext will only attempt to provide the data to existing
subscribers.

8.70.2.2 final DurabilityQosPolicyKind TRANSIENT LOCAL -
DURABILITY QOS [static]

RTI Connext will attempt to keep some samples so that they can be delivered to
any potential late-joining com.rti.dds.subscription.DataReader (p. 473).

Which particular samples are kept depends on other QoS such
as com.rti.dds.infrastructure.HistoryQosPolicy (p. 1071) and
com.rti.dds.infrastructure.ResourceLimitsQosPolicy (p. 1356).
RTI Connext is only required to keep the data in memory of the
com.rti.dds.publication.DataWriter (p. 538) that wrote the data.

Data is not required to survive the com.rti.dds.publication.DataWriter
(p. 538).

For this setting to be effective, you must also set the
com.rti.dds.infrastructure.ReliabilityQosPolicy.kind (p. 1339) to
ReliabilityQosPolicyKind.RELIABLE RELIABILITY QOS (p. 1341).

8.70.2.3 final DurabilityQosPolicyKind TRANSIENT -
DURABILITY QOS [static]

RTI Connext will attempt to keep some samples so that they can be delivered to
any potential late-joining com.rti.dds.subscription.DataReader (p. 473).

Which particular samples are kept depends on other QoS such
as com.rti.dds.infrastructure.HistoryQosPolicy (p. 1071) and
com.rti.dds.infrastructure.ResourceLimitsQosPolicy (p. 1356). RTI
Connext is only required to keep the data in memory and not in permanent
storage.

Data is not tied to the lifecycle of the com.rti.dds.publication.DataWriter
(p. 538).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

772 Class Documentation

Data will survive the com.rti.dds.publication.DataWriter (p. 538).

8.70.2.4 final DurabilityQosPolicyKind PERSISTENT -
DURABILITY QOS [static]

Data is kept on permanent storage, so that they can outlive a system session.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.71 DurabilityServiceQosPolicy Class Reference 773

8.71 DurabilityServiceQosPolicy Class Refer-
ence

Various settings to configure the external RTI Persis-
tence Service used by RTI Connext for DataWriters with a
com.rti.dds.infrastructure.DurabilityQosPolicy (p. 765) setting of Dura-
bilityQosPolicyKind.PERSISTENT DURABILITY QOS (p. 772) or
DurabilityQosPolicyKind.TRANSIENT DURABILITY QOS (p. 771).

Inheritance diagram for DurabilityServiceQosPolicy::

Public Attributes

ˆ final Duration t service cleanup delay

[Not supported (optional)] Controls when the service is able to remove
all information regarding a data instances.

ˆ HistoryQosPolicyKind history kind

The kind of history to apply in recouping durable data.

ˆ int history depth

Part of history QoS policy to apply when feeding a late joiner.

ˆ int max samples

Part of resource limits QoS policy to apply when feeding a late joiner.

ˆ int max instances

Part of resource limits QoS policy to apply when feeding a late joiner.

ˆ int max samples per instance

Part of resource limits QoS policy to apply when feeding a late joiner.

8.71.1 Detailed Description

Various settings to configure the external RTI Persis-
tence Service used by RTI Connext for DataWriters with a
com.rti.dds.infrastructure.DurabilityQosPolicy (p. 765) setting of Dura-
bilityQosPolicyKind.PERSISTENT DURABILITY QOS (p. 772) or
DurabilityQosPolicyKind.TRANSIENT DURABILITY QOS (p. 771).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

774 Class Documentation

Entity:

com.rti.dds.topic.Topic (p. 1545), com.rti.dds.publication.DataWriter
(p. 538)

Properties:

RxO (p. 97) = NO
Changeable (p. 98) = UNTIL ENABLE (p. 98)

See also:

DURABILITY (p. 65)
HISTORY (p. 75)
RESOURCE LIMITS (p. 102)

8.71.2 Usage

When a DataWriter’s com.rti.dds.infrastructure.DurabilityQosPolicy.kind
(p. 768) is DurabilityQosPolicyKind.PERSISTENT DURABILITY -
QOS (p. 772) or DurabilityQosPolicyKind.TRANSIENT -
DURABILITY QOS (p. 771), an external service, the RTI Per-
sistence Service, is used to store and possibly forward the data
sent by the com.rti.dds.publication.DataWriter (p. 538) to
com.rti.dds.subscription.DataReader (p. 473) objects that are created
after the data was initially sent.

This QoS policy is used to configure certain parameters of the Persistence Service
when it operates on the behalf of the com.rti.dds.publication.DataWriter
(p. 538), such as how much data to store. For example, it configures the HIS-
TORY (p. 75) and the RESOURCE LIMITS (p. 102) used by the fictitious
DataReader and DataWriter used by the Persistence Service. Note, however,
that the Persistence Service itself may be configured to ignore these values and
instead use values from its own configuration file.

8.71.3 Member Data Documentation

8.71.3.1 final Duration t service cleanup delay

Initial value:

new Duration_t(

Duration_t.DURATION_INFINITE_SEC, Duration_t.DURATION_INFINITE_NSEC)

[Not supported (optional)] Controls when the service is able to remove all
information regarding a data instances.

[default] 0

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.71 DurabilityServiceQosPolicy Class Reference 775

8.71.3.2 HistoryQosPolicyKind history kind

The kind of history to apply in recouping durable data.

[default] HistoryQosPolicyKind.KEEP LAST HISTORY QOS
(p. 1075)

8.71.3.3 int history depth

Part of history QoS policy to apply when feeding a late joiner.

[default] 1

8.71.3.4 int max samples

Part of resource limits QoS policy to apply when feeding a late joiner.

[default] ResourceLimitsQosPolicy.LENGTH UNLIMITED (p. 102)

8.71.3.5 int max instances

Part of resource limits QoS policy to apply when feeding a late joiner.

[default] ResourceLimitsQosPolicy.LENGTH UNLIMITED (p. 102)

8.71.3.6 int max samples per instance

Part of resource limits QoS policy to apply when feeding a late joiner.

[default] ResourceLimitsQosPolicy.LENGTH UNLIMITED (p. 102)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

776 Class Documentation

8.72 Duration t Class Reference

Type for duration representation.

Inherits Struct, and java.io.Externalizable.

Public Member Functions

ˆ Duration t (Duration t duration)
Copy constructor.

ˆ Duration t (int sec, int nanosec)
ˆ boolean is zero ()
ˆ boolean is infinite ()
ˆ boolean is auto ()

Public Attributes

ˆ int sec

seconds

ˆ int nanosec

nanoseconds

Static Public Attributes

ˆ static final int DURATION ZERO SEC

A zero-length second period of time.

ˆ static final int DURATION ZERO NSEC

A zero-length nano-second period of time.

ˆ static final int DURATION INFINITE SEC

An infinite second period of time.

ˆ static final int DURATION INFINITE NSEC

An infinite nano-second period of time.

ˆ static final int DURATION AUTO SEC

An auto second period of time.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.72 Duration t Class Reference 777

ˆ static final int DURATION AUTO NSEC

An auto nano-second period of time.

8.72.1 Detailed Description

Type for duration representation.

Represents a time interval.

8.72.2 Constructor & Destructor Documentation

8.72.2.1 Duration t (Duration t duration)

Copy constructor.

Parameters:

duration The duration instance to copy. It must not be null.

8.72.2.2 Duration t (int sec, int nanosec)

Parameters:

sec must be >=0

nanosec must be >=0

Exceptions:

RETCODE BAD PARAMETER (p. 1363) if either value is nega-
tive

8.72.3 Member Function Documentation

8.72.3.1 boolean is zero ()

Returns:

true if the given duration is of zero length.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

778 Class Documentation

8.72.3.2 boolean is infinite ()

Returns:

true if the given duration is of infinite length.

8.72.3.3 boolean is auto ()

Returns:

true if the given duration has auto value.

8.72.4 Member Data Documentation

8.72.4.1 final int DURATION ZERO SEC [static]

A zero-length second period of time.

8.72.4.2 final int DURATION ZERO NSEC [static]

A zero-length nano-second period of time.

8.72.4.3 final int DURATION INFINITE SEC [static]

An infinite second period of time.

8.72.4.4 final int DURATION INFINITE NSEC [static]

An infinite nano-second period of time.

8.72.4.5 final int DURATION AUTO SEC [static]

An auto second period of time.

8.72.4.6 final int DURATION AUTO NSEC [static]

An auto nano-second period of time.

8.72.4.7 int sec

seconds

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.72 Duration t Class Reference 779

8.72.4.8 int nanosec

nanoseconds

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

780 Class Documentation

8.73 DynamicData Class Reference

A sample of any complex data type, which can be inspected and manipulated
reflectively.

Inheritance diagram for DynamicData::

Public Member Functions

ˆ void delete ()
Finalize and deallocate this com.rti.dds.dynamicdata.DynamicData
(p. 780) sample.

ˆ boolean equals (Object o)
Indicate whether the contents of another
com.rti.dds.dynamicdata.DynamicData (p. 780) sample are the
same as those of this one.

ˆ Object copy from (Object src)
Deeply copy from the given object to this object.

ˆ void clear all members ()
Clear the contents of all data members of this object, including key members.

ˆ void clear nonkey members ()
Clear the contents of all data members of this object, not including key mem-
bers.

ˆ void clear member (String member name, int member id)
Clear the contents of a single data member of this object.

ˆ void print (File fp, int indent)
Output a textual representation of this object and its contents to the given
file.

ˆ void get info (DynamicDataInfo info out)
Fill in the given descriptor with information about this
com.rti.dds.dynamicdata.DynamicData (p. 780).

ˆ void bind type (TypeCode type)
If this com.rti.dds.dynamicdata.DynamicData (p. 780) object is not yet
associated with a data type, set that type now to the given TypeCode.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.73 DynamicData Class Reference 781

ˆ void unbind type ()
Dissociate this com.rti.dds.dynamicdata.DynamicData (p. 780) object
from any particular data type.

ˆ void bind complex member (DynamicData value out, String mem-
ber name, int member id)

Use another com.rti.dds.dynamicdata.DynamicData
(p. 780) object to provide access to a complex field of this
com.rti.dds.dynamicdata.DynamicData (p. 780) object.

ˆ void unbind complex member (DynamicData value)
Tear down the association created by a
com.rti.dds.dynamicdata.DynamicData.bind complex member
(p. 800) operation, committing any changes to the outer object since then.

ˆ TypeCode get type ()
Get the data type, of which this com.rti.dds.dynamicdata.DynamicData
(p. 780) represents an instance.

ˆ TCKind get type kind ()
Get the kind of this object’s data type.

ˆ int get member count ()
Get the number of members in this sample.

ˆ boolean member exists (String member name, int member id)
Indicates whether a member of a particular name/ID exists in this data sam-
ple.

ˆ boolean member exists in type (String member name, int member -
id)

Indicates whether a member of a particular name/ID exists in this data sam-
ple’s type.

ˆ void get member info (DynamicDataMemberInfo info, String mem-
ber name, int member id)

Fill in the given descriptor with information about the identified member of
this com.rti.dds.dynamicdata.DynamicData (p. 780) sample.

ˆ void get member info by index (DynamicDataMemberInfo info,
int index)

Fill in the given descriptor with information about the identified member of
this com.rti.dds.dynamicdata.DynamicData (p. 780) sample.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

782 Class Documentation

ˆ TypeCode get member type (String member name, int member id)
Get the type of the given member of this sample.

ˆ boolean is member key (String member name, int member id)
Indicates whether a given member forms part of the key of this sample’s data
type.

ˆ int get int (String member name, int member id)
Get the value of the given field, which is of type int or another type implic-
itly convertible to it (byte, char, short, short, or com.rti.dds.util.Enum
(p. 925)).

ˆ int get int array (int[] array, String member name, int member id)
Get a copy of the given array member.

ˆ void get int seq (IntSeq seq, String member name, int member id)
Get a copy of the given sequence member.

ˆ short get short (String member name, int member id)
Get the value of the given field, which is of type short or another type im-
plicitly convertible to it (byte or char).

ˆ int get short array (short[] array, String member name, int member -
id)

Get a copy of the given array member.

ˆ void get short seq (ShortSeq seq, String member name, int member -
id)

Get a copy of the given sequence member.

ˆ float get float (String member name, int member id)
Get the value of the given field, which is of type float.

ˆ int get float array (float[] array, String member name, int member id)
Get a copy of the given array member.

ˆ void get float seq (FloatSeq seq, String member name, int member -
id)

Get a copy of the given sequence member.

ˆ double get double (String member name, int member id)
Get the value of the given field, which is of type double or another type
implicitly convertible to it (float).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.73 DynamicData Class Reference 783

ˆ int get double array (double[] array, String member name, int mem-
ber id)

Get a copy of the given array member.

ˆ void get double seq (DoubleSeq seq, String member name, int mem-
ber id)

Get a copy of the given sequence member.

ˆ boolean get boolean (String member name, int member id)
Get the value of the given field, which is of type boolean.

ˆ int get boolean array (boolean[] array, String member name, int mem-
ber id)

Get a copy of the given array member.

ˆ void get boolean seq (BooleanSeq seq, String member name, int mem-
ber id)

Get a copy of the given sequence member.

ˆ char get char (String member name, int member id)
Get the value of the given field, which is of type char.

ˆ int get char array (char[] array, String member name, int member id)
Get a copy of the given array member.

ˆ void get char seq (CharSeq seq, String member name, int member -
id)

Get a copy of the given sequence member.

ˆ byte get byte (String member name, int member id)
Get the value of the given field, which is of type byte.

ˆ int get byte array (byte[] array, String member name, int member id)
Get a copy of the given array member.

ˆ void get byte seq (ByteSeq seq, String member name, int member -
id)

Get a copy of the given sequence member.

ˆ long get long (String member name, int member id)
Get the value of the given field, which is of type long or another
type implicitly convertible to it (byte, char, short, short, int, long, or
com.rti.dds.util.Enum (p. 925)).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

784 Class Documentation

ˆ int get long array (long[] array, String member name, int member id)

Get a copy of the given array member.

ˆ void get long seq (LongSeq seq, String member name, int member -
id)

Get a copy of the given sequence member.

ˆ String get string (String member name, int member id)

Get the value of the given field, which is of type String.

ˆ void get complex member (DynamicData value out, String mem-
ber name, int member id)

Get a copy of the value of the given field, which is of some composed type.

ˆ void set int (String member name, int member id, int value)

Set the value of the given field, which is of type int.

ˆ void set int array (String member name, int member id, int[] array)

Set the contents of the given array member.

ˆ void set int seq (String member name, int member id, IntSeq value)

Set the contents of the given sequence member.

ˆ void set short (String member name, int member id, short value)

Set the value of the given field, which is of type short.

ˆ void set short array (String member name, int member id, short[] ar-
ray)

Set the contents of the given array member.

ˆ void set short seq (String member name, int member id, ShortSeq
value)

Set the contents of the given sequence member.

ˆ void set float (String member name, int member id, float value)

Set the value of the given field, which is of type float.

ˆ void set float array (String member name, int member id, float[] ar-
ray)

Set the contents of the given array member.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.73 DynamicData Class Reference 785

ˆ void set float seq (String member name, int member id, FloatSeq
value)

Set the contents of the given sequence member.

ˆ void set double (String member name, int member id, double value)
Set the value of the given field, which is of type double.

ˆ void set double array (String member name, int member id, double[]
array)

Set the contents of the given array member.

ˆ void set double seq (String member name, int member id, DoubleSeq
value)

Set the contents of the given sequence member.

ˆ void set boolean (String member name, int member id, boolean value)
Set the value of the given field, which is of type boolean.

ˆ void set boolean array (String member name, int member id, boolean[]
array)

Set the contents of the given array member.

ˆ void set boolean seq (String member name, int member id,
BooleanSeq value)

Set the contents of the given sequence member.

ˆ void set char (String member name, int member id, char value)
Set the value of the given field, which is of type char.

ˆ void set char array (String member name, int member id, char[] ar-
ray)

Set the contents of the given array member.

ˆ void set char seq (String member name, int member id, CharSeq
value)

Set the contents of the given sequence member.

ˆ void set byte (String member name, int member id, byte value)
Set the value of the given field, which is of type byte.

ˆ void set byte array (String member name, int member id, byte[] ar-
ray)

Set the contents of the given array member.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

786 Class Documentation

ˆ void set byte seq (String member name, int member id, ByteSeq
value)

Set the contents of the given sequence member.

ˆ void set long (String member name, int member id, long value)

Set the value of the given field, which is of type long.

ˆ void set long array (String member name, int member id, long[] ar-
ray)

Set the contents of the given array member.

ˆ void set long seq (String member name, int member id, LongSeq
value)

Set the contents of the given sequence member.

ˆ void set string (String member name, int member id, String value)

Set the value of the given field of type String.

ˆ void set complex member (String member name, int member id, Dy-
namicData value)

Copy the state of the given com.rti.dds.dynamicdata.DynamicData
(p. 780) object into a member of this object.

ˆ DynamicData (TypeCode type, DynamicDataProperty t prop-
erty)

The constructor for new com.rti.dds.dynamicdata.DynamicData
(p. 780) objects.

Static Public Attributes

ˆ static final int MEMBER ID UNSPECIFIED

A sentinel value that indicates that no member ID is needed in order to
perform some operation.

ˆ static final DynamicDataProperty t PROPERTY DEFAULT

Sentinel constant indicating default values for
com.rti.dds.dynamicdata.DynamicDataProperty t (p. 849).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.73 DynamicData Class Reference 787

8.73.1 Detailed Description

A sample of any complex data type, which can be inspected and manipulated
reflectively.

Objects of type com.rti.dds.dynamicdata.DynamicData (p. 780) represent
corresponding objects of the type identified by their TypeCode. Because the
definition of these types may not have existed at compile time on the system on
which the application is running, you will interact with the data using an API
of reflective getters and setters.

For example, if you had access to your data types at compile time, you could
do this:

theValue = theObject.theField;

Instead, you will do something like this:

theValue = get(theObject, "theField");

com.rti.dds.dynamicdata.DynamicData (p. 780) objects can represent any
complex data type, including those of type kinds TCKind.TK ARRAY
(p. 1529), TCKind.TK SEQUENCE (p. 1529), TCKind.TK STRUCT
(p. 1529), TCKind.TK UNION (p. 1529), TCKind.TK VALUE (p. 1530),
and TCKind.TK SPARSE (p. 1530). They cannot represent objects of basic
types (e.g. integers and strings). Since those type definitions always exist on
every system, you can examine their objects directly.

8.73.2 Member Names and IDs

The members of a data type can be identified in one of two ways: by their name
or by their numeric ID. The former is often more transparent to human users;
the latter is typically faster.

You define the name and ID of a type member when you add that member
to that type. When you define a sparse type, you will typically choose both
explicitly. If you define your type in IDL or XML, the name will be the field
name that appears in the type definition; the ID will be the one-based index of
the field in declaration order. For example, in the following IDL structure, the
ID of theLong is 2.

struct MyType {

short theShort;

long theLong;

};

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

788 Class Documentation

IDs work the same way for com.rti.dds.dynamicdata.DynamicData
(p. 780) objects representing arrays and sequences, since the elements of these
collections have no explicit IDs: the ID is one more than the index. (The first
element is ID 1, the second is 2, etc.) Array and sequence elements do not have
names.

Multi-dimensional arrays are effectively flattened by the
com.rti.dds.dynamicdata.DynamicData (p. 780) API. For example,
for an array theArray[4][5], accessing ID 7 is equivalent to index 6, or the
second element of the second group of 5.

For unions (TCKind.TK UNION (p. 1529)), the ID of a member is the dis-
criminator value corresponding to that member.

8.73.3 Available Functionality

The Dynamic Data API is large when measured by the number of methods it
contains. But each method falls into one of a very small number of categories.
You will find it easier to navigate this documentation if you understand these
categories.

8.73.3.1 Lifecycle and Utility Methods

Managing the lifecycle of com.rti.dds.dynamicdata.DynamicData (p. 780)
objects is simple. You have two choices:

1. Usually, you will go through a com.rti.dds.dynamicdata.DynamicDataTypeSupport
(p. 887) factory object, which will ensure that the type and property
information for the new com.rti.dds.dynamicdata.DynamicData
(p. 780) object corresponds to a registered type in your system.

2. In certain advanced cases, such as when you’re navigating a nested struc-
ture, you will want to have a com.rti.dds.dynamicdata.DynamicData
(p. 780) object that is not bound up front to any particular type, or you
will want to initialize the object in a custom way. In that case, you can
call the constructor directly.

You can also copy com.rti.dds.dynamicdata.DynamicData (p. 780) ob-
jects:

ˆ com.rti.dds.dynamicdata.DynamicData.copy

You can test them for equality:

ˆ DynamicData.equals (p. 795)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.73 DynamicData Class Reference 789

com.rti.dds.dynamicdata.DynamicDataTypeSupport
(p. 887)

com.rti.dds.dynamicdata.DynamicData
(p. 780)

com.rti.dds.dynamicdata.DynamicDataTypeSupport.create -
data
(p. 891)

DynamicData.DynamicData

Table 8.1: Lifecycle

And you can print their contents:

ˆ com.rti.dds.dynamicdata.DynamicData.print (p. 797)

ˆ com.rti.dds.dynamicdata.DynamicDataTypeSupport.print data
(p. 891)

8.73.3.2 Getters and Setters

Most methods get or set the value of some field. These methods are named
according to the type of the field they access.

The names of integer types vary across languages. The programming API for
each language reflects that programming language. However, if your chosen lan-
guage does not use the same names as the language that you used to define your
types (e.g., IDL), or if you need to interoperate among programming languages,
you will need to understand these differences. They are explained the following
table.

Type IDL C, C++ C# Java
16-bit
integer

short DDS Short short short

32-bit
integer

long DDS Long int int

64-bit
integer

long long DDS -
LongLong

long long

Table 8.2: Integer Type Names Across Languages

When working with a com.rti.dds.dynamicdata.DynamicData (p. 780) ob-
ject representing an array or sequence, calling one of the ”get” methods below
for an index that is out of bounds will result in RETCODE NO DATA. Calling
”set” for an index that is past the end of a sequence will cause that sequence to
automatically lengthen (filling with default contents).

In addition to getting or setting a field, you can ”clear” its value; that is, set it
to a default zero value.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

790 Class Documentation

Get Set
DynamicData.get int (p. 808) DynamicData.set int (p. 825)

com.rti.dds.dynamicdata.DynamicData.get -
short
(p. 810)

com.rti.dds.dynamicdata.DynamicData.set -
short
(p. 827)

DynamicData.get long (p. 822) DynamicData.set long (p. 839)

com.rti.dds.dynamicdata.DynamicData.get -
float
(p. 812)

com.rti.dds.dynamicdata.DynamicData.set -
float
(p. 829)

com.rti.dds.dynamicdata.DynamicData.get -
double
(p. 814)

com.rti.dds.dynamicdata.DynamicData.set -
double
(p. 831)

com.rti.dds.dynamicdata.DynamicData.get -
boolean
(p. 816)

com.rti.dds.dynamicdata.DynamicData.set -
boolean
(p. 833)

DynamicData.get byte (p. 820) DynamicData.set byte (p. 837)

com.rti.dds.dynamicdata.DynamicData.get -
char
(p. 818)

com.rti.dds.dynamicdata.DynamicData.set -
char
(p. 835)

com.rti.dds.dynamicdata.DynamicData.get -
string
(p. 824)

com.rti.dds.dynamicdata.DynamicData.set -
string
(p. 841)

Table 8.3: Basic Types

ˆ com.rti.dds.dynamicdata.DynamicData.clear member (p. 797)

ˆ com.rti.dds.dynamicdata.DynamicData.clear all members
(p. 796)

ˆ com.rti.dds.dynamicdata.DynamicData.clear nonkey members
(p. 796)

8.73.3.3 Query and Iteration

Not all components of your application will have static knowledge of all of the
fields of your type. Sometimes, you will want to query meta-data about the
fields that appear in a given data sample.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.73 DynamicData Class Reference 791

Get Set

com.rti.dds.dynamicdata.DynamicData.get -
complex member
(p. 824)

com.rti.dds.dynamicdata.DynamicData.set -
complex member
(p. 842)

Table 8.4: Structures, Arrays, and Other Complex Types

ˆ com.rti.dds.dynamicdata.DynamicData.get type (p. 802)

ˆ com.rti.dds.dynamicdata.DynamicData.get type kind (p. 803)

ˆ com.rti.dds.dynamicdata.DynamicData.get member type
(p. 806)

ˆ com.rti.dds.dynamicdata.DynamicData.get member info (p. 805)

ˆ com.rti.dds.dynamicdata.DynamicData.get member count
(p. 803)

ˆ com.rti.dds.dynamicdata.DynamicData.get member info by -
index (p. 805)

ˆ com.rti.dds.dynamicdata.DynamicData.member exists (p. 803)

ˆ com.rti.dds.dynamicdata.DynamicData.member exists in type
(p. 804)

ˆ com.rti.dds.dynamicdata.DynamicData.is member key (p. 807)

8.73.3.4 Type/Object Association

Sometimes, you may want to change the association between a data ob-
ject and its type. This is not something you can do with a typ-
ical object, but with com.rti.dds.dynamicdata.DynamicData (p. 780)
objects, it is a powerful capability. It allows you to, for example,
examine nested structures without copying them by using a ”bound”
com.rti.dds.dynamicdata.DynamicData (p. 780) object as a view into an
enclosing com.rti.dds.dynamicdata.DynamicData (p. 780) object.

ˆ com.rti.dds.dynamicdata.DynamicData.bind type (p. 798)

ˆ com.rti.dds.dynamicdata.DynamicData.unbind type (p. 799)

ˆ com.rti.dds.dynamicdata.DynamicData.bind complex member
(p. 800)

ˆ com.rti.dds.dynamicdata.DynamicData.unbind complex -
member (p. 802)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

792 Class Documentation

Get Set
DynamicData.get int array
(p. 808)

DynamicData.set int array
(p. 826)

com.rti.dds.dynamicdata.DynamicData.get -
short array
(p. 810)

com.rti.dds.dynamicdata.DynamicData.set -
short array
(p. 828)

DynamicData.get long array
(p. 822)

DynamicData.set long array
(p. 840)

com.rti.dds.dynamicdata.DynamicData.get -
float array
(p. 812)

com.rti.dds.dynamicdata.DynamicData.set -
float array
(p. 830)

com.rti.dds.dynamicdata.DynamicData.get -
double array
(p. 814)

com.rti.dds.dynamicdata.DynamicData.set -
double array
(p. 832)

com.rti.dds.dynamicdata.DynamicData.get -
boolean array
(p. 816)

com.rti.dds.dynamicdata.DynamicData.set -
boolean
(p. 833)

DynamicData.get byte array
(p. 820)

DynamicData.set byte array
(p. 838)

com.rti.dds.dynamicdata.DynamicData.get -
char array
(p. 818)

com.rti.dds.dynamicdata.DynamicData.set -
char array
(p. 836)

Table 8.5: Arrays of Basic Types

8.73.3.5 Keys

Keys can be specified in dynamically defined types just as they can in types
defined in generated code. However, there are some minor restrictions when
sparse value types are involved (see TCKind.TK SPARSE (p. 1530)).

ˆ If a type has a member that is of a sparse value type, that member cannot
be a key for the enclosing type.

ˆ Sparse value types themselves may have at most a single key field. That
field may itself be of any type.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.73 DynamicData Class Reference 793

Get Set
DynamicData.get int seq
(p. 809)

DynamicData.set int seq
(p. 826)

com.rti.dds.dynamicdata.DynamicData.get -
short seq
(p. 811)

com.rti.dds.dynamicdata.DynamicData.set -
short seq
(p. 828)

DynamicData.get long seq
(p. 823)

DynamicData.set long seq
(p. 840)

com.rti.dds.dynamicdata.DynamicData.get -
float seq
(p. 813)

com.rti.dds.dynamicdata.DynamicData.set -
float seq
(p. 830)

com.rti.dds.dynamicdata.DynamicData.get -
double seq
(p. 815)

com.rti.dds.dynamicdata.DynamicData.set -
double seq
(p. 832)

com.rti.dds.dynamicdata.DynamicData.get -
boolean seq
(p. 817)

com.rti.dds.dynamicdata.DynamicData.set -
boolean seq
(p. 834)

DynamicData.get byte seq
(p. 821)

DynamicData.set byte seq
(p. 838)

com.rti.dds.dynamicdata.DynamicData.get -
char seq
(p. 819)

com.rti.dds.dynamicdata.DynamicData.set -
char seq
(p. 836)

Table 8.6: Sequences of Basic Types

8.73.4 Performance

Due to the way in which com.rti.dds.dynamicdata.DynamicData (p. 780)
objects manage their internal state, it is typically more efficient, when setting
the field values of a com.rti.dds.dynamicdata.DynamicData (p. 780) for
the first time, to do so in the declared order of those fields.

For example, suppose a type definition like the following:

struct MyType {

float my_float;

sequence<octet> my_bytes;

short my_short;

};

The richness of the type system makes it difficult to fully characterize the per-
formance differences between all access patterns. Nevertheless, the following are

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

794 Class Documentation

generally true:

ˆ It will be most performant to set the value of my float, then my bytes,
and finally my short.

ˆ The order of modification has a greater impact for types of kind
TCKind.TK STRUCT (p. 1529) and TCKind.TK VALUE (p. 1530)
than it does for types of kind TCKind.TK SPARSE (p. 1530).

ˆ Modifications to variable-sized types (i.e. those containing strings, se-
quences, unions, or optional members) are more expensive than modifica-
tions to fixed-size types.

MT Safety:

UNSAFE. In general, using a single com.rti.dds.dynamicdata.DynamicData
(p. 780) object concurrently from multiple threads is unsafe.

8.73.5 Constructor & Destructor Documentation

8.73.5.1 DynamicData (TypeCode type, DynamicDataProperty t
property)

The constructor for new com.rti.dds.dynamicdata.DynamicData (p. 780)
objects.

The type parameter may be null. In that case, this
com.rti.dds.dynamicdata.DynamicData (p. 780) must be bound
with com.rti.dds.dynamicdata.DynamicData.bind type (p. 798)
or com.rti.dds.dynamicdata.DynamicData.bind complex member
(p. 800) before it can be used.

If the TypeCode is not null, the newly constructed
com.rti.dds.dynamicdata.DynamicData (p. 780) object will retain a
reference to it. It is not safe to delete the TypeCode until all samples that use
it have themselves been deleted. You have two options:

ˆ Keep a reference to the TypeCode object yourself, and delete it with
TypeCodeFactory.delete tc (p. 1650) after you’ve deleted all of the
objects that use it.

ˆ Do not keep a reference to the TypeCode. The garbage collector will
delete it when it’s eligible for collection.

In most cases, it is not necessary to call this constructor explicitly. Instead,
use com.rti.dds.dynamicdata.DynamicDataTypeSupport.create -
data (p. 891), and the TypeCode and properties will be specified for

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.73 DynamicData Class Reference 795

you. Using the factory method also ensures that the memory man-
agement contract documented above is followed correctly, because the
com.rti.dds.dynamicdata.DynamicDataTypeSupport (p. 887) object
maintains the TypeCode used by the samples it creates.

Parameters:

type <<in>> (p. 271) The type of which the new object will represent
an object.

property <<in>> (p. 271) Properties that configure the be-
havior of the new object. Most users can simply use
com.rti.dds.dynamicdata.DYNAMIC DATA PROPERTY -
DEFAULT.

See also:

com.rti.dds.dynamicdata.DynamicDataTypeSupport.create data
(p. 891)

8.73.6 Member Function Documentation

8.73.6.1 void delete ()

Finalize and deallocate this com.rti.dds.dynamicdata.DynamicData
(p. 780) sample.

MT Safety:

UNSAFE.

See also:

DynamicData.DynamicData

8.73.6.2 boolean equals (Object o)

Indicate whether the contents of another
com.rti.dds.dynamicdata.DynamicData (p. 780) sample are the same
as those of this one.

This operation compares the data and type of existing members. The types of
non-instantiated members may differ in sparse types.

MT Safety:

UNSAFE.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

796 Class Documentation

See also:

http://java.sun.com/javase/6/docs/api/java/lang/Object.html#equals(java.lang.Object)
TCKind.TK SPARSE (p. 1530)

8.73.6.3 Object copy from (Object src)

Deeply copy from the given object to this object.

MT Safety:

UNSAFE.

Exceptions:

One of the Standard Return Codes (p. 104) or RETCODE OUT OF -
RESOURCES

Implements Copyable (p. 466).

8.73.6.4 void clear all members ()

Clear the contents of all data members of this object, including key members.

MT Safety:

UNSAFE.

Exceptions:

One of the Standard Return Codes (p. 104)

See also:

com.rti.dds.dynamicdata.DynamicData.clear nonkey members
(p. 796)
com.rti.dds.dynamicdata.DynamicData.clear member (p. 797)

8.73.6.5 void clear nonkey members ()

Clear the contents of all data members of this object, not including key members.

This method is only applicable to sparse value types.

MT Safety:

UNSAFE.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.73 DynamicData Class Reference 797

Exceptions:

One of the Standard Return Codes (p. 104)

See also:

TCKind.TK SPARSE (p. 1530)
com.rti.dds.dynamicdata.DynamicData.clear all members (p. 796)
com.rti.dds.dynamicdata.DynamicData.clear member (p. 797)

8.73.6.6 void clear member (String member name, int member id)

Clear the contents of a single data member of this object.

This method is only applicable to sparse value types.

MT Safety:

UNSAFE.

Parameters:

member name <<in>> (p. 271) The name of the member or null to
look up the member by its ID.

member id <<in>> (p. 271) The ID of the member or
com.rti.dds.dynamicdata.DynamicData.MEMBER ID -
UNSPECIFIED (p. 843) to look up by name. See Member
Names and IDs (p. 787).

Exceptions:

One of the Standard Return Codes (p. 104)

See also:

TCKind.TK SPARSE (p. 1530)
com.rti.dds.dynamicdata.DynamicData.clear all members (p. 796)
com.rti.dds.dynamicdata.DynamicData.clear nonkey members
(p. 796)

8.73.6.7 void print (File fp, int indent)

Output a textual representation of this object and its contents to the given file.

This method is equivalent to com.rti.dds.dynamicdata.DynamicDataTypeSupport.print -
data (p. 891).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

798 Class Documentation

Warning: This operation may not display any data for members at the end
of a data structure that have not been explicitly set before the data sample is
serialized. This will not be a problem on a received data sample, which should
always correctly display all members.

MT Safety:

UNSAFE.

Parameters:

fp <<in>> (p. 271) The file to which the object should be printed.
indent <<in>> (p. 271) The output of this method will be pretty-

printed. This argument indicates the amount of initial indentation
of the output.

Exceptions:

One of the Standard Return Codes (p. 104)

See also:

com.rti.dds.dynamicdata.DynamicDataTypeSupport.print data
(p. 891)

8.73.6.8 void get info (DynamicDataInfo info out)

Fill in the given descriptor with information about this
com.rti.dds.dynamicdata.DynamicData (p. 780).

MT Safety:

UNSAFE.

Parameters:

info out <<out>> (p. 271) The descriptor object whose contents will be
overwritten by this operation.

8.73.6.9 void bind type (TypeCode type)

If this com.rti.dds.dynamicdata.DynamicData (p. 780) object is not yet
associated with a data type, set that type now to the given TypeCode.

This advanced operation allows you to reuse a single
com.rti.dds.dynamicdata.DynamicData (p. 780) object with multiple
data types.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.73 DynamicData Class Reference 799

DynamicData myData = new DynamicData(null, myProperties);

TypeCode myType = ...;

myData.bind_type(myType);

try {

// Do something...

} finally {

myData.unbind_type();

}

myData.delete();

Note that the com.rti.dds.dynamicdata.DynamicData (p. 780) object will
retain a reference to the TypeCode object you provide. It is not safe to delete
the TypeCode until after it is unbound. You have two options:

ˆ Keep a reference to the TypeCode object yourself, and delete it with
TypeCodeFactory.delete tc (p. 1650) after you’ve finished using it.

ˆ Do not keep a reference to the TypeCode. The garbage collector will
delete it when it’s eligible for collection.

MT Safety:

UNSAFE.

Parameters:

type <<in>> (p. 271) The type to associate with this
com.rti.dds.dynamicdata.DynamicData (p. 780) object.

Exceptions:

One of the Standard Return Codes (p. 104)

See also:

com.rti.dds.dynamicdata.DynamicData.unbind type (p. 799)

8.73.6.10 void unbind type ()

Dissociate this com.rti.dds.dynamicdata.DynamicData (p. 780) object
from any particular data type.

This step is necessary before the object can be associated with a new data type.

This operation clears all members as a side effect.

MT Safety:

UNSAFE.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

800 Class Documentation

Exceptions:

One of the Standard Return Codes (p. 104)

See also:

com.rti.dds.dynamicdata.DynamicData.bind type (p. 798)
com.rti.dds.dynamicdata.DynamicData.clear all members (p. 796)

8.73.6.11 void bind complex member (DynamicData value out,
String member name, int member id)

Use another com.rti.dds.dynamicdata.DynamicData
(p. 780) object to provide access to a complex field of this
com.rti.dds.dynamicdata.DynamicData (p. 780) object.

For example, consider the following data types:

struct MyFieldType {

float theFloat;

};

struct MyOuterType {

MyFieldType complexMember;

};

Suppose you have an instance of MyOuterType, and you would like to examine
the contents of its member complexMember. To do this, you must bind an-
other com.rti.dds.dynamicdata.DynamicData (p. 780) object to that mem-
ber. This operation will bind the type code of the member to the provided
com.rti.dds.dynamicdata.DynamicData (p. 780) object and perform addi-
tional initialization.

The following example demonstrates the usage pattern. Note that error handling
has been omitted for brevity.

DynamicData outer = ...;

DynamicData toBeBound = new DynamicData(null, myProperties);

outer.bind_complex_member(

toBeBound,

"complexMember",

DynamicData.MEMBER_ID_UNSPECIFIED);

try {

float theFloatValue = toBeBound.get_float(

"theFloat"

DynamicData.MEMBER_ID_UNSPECIFIED);

} finally {

outer.unbind_complex_member(toBeBound);

}

toBeBound.delete();

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.73 DynamicData Class Reference 801

This operation is only permitted when the object toBeBound (named as in the
example above) is not currently associated with any type, including already
being bound to another member. You can see in the example that this object
is created directly with the constructer and is not provided with a TypeCode.

Only a single member of a given com.rti.dds.dynamicdata.DynamicData
(p. 780) object may be bound at one time – however, members of members
may be recursively bound to any depth. Furthermore, while the outer object
has a bound member, it may only be modified through that bound member.
That is, after calling this member, all ”set” operations on the outer object
will be disabled until com.rti.dds.dynamicdata.DynamicData.unbind -
complex member (p. 802) has been called. Furthermore, any bound member
must be unbound before a sample can be written or deleted.

This method is logically related to com.rti.dds.dynamicdata.DynamicData.get -
complex member (p. 824) in that both allow you to examine the
state of nested objects. They are different in an important way: this
method provides a view into an outer object, such that any change
made to the inner object will be reflected in the outer. But the
com.rti.dds.dynamicdata.DynamicData.get complex member (p. 824)
operation copies the state of the nested object; changes to it will not be
reflected in the source object.

Note that you can bind to a member of a sequence at an index that is past the
current length of that sequence. In that case, this method behaves like a ”set”
method: it automatically lengthens the sequence (filling in default elements) to
allow the bind to take place. See Getters and Setters (p. 789).

MT Safety:

UNSAFE.

Parameters:

value out <<out>> (p. 271) The object that you wish to bind to the
field.

member name <<in>> (p. 271) The name of the member or null to
look up the member by its ID.

member id <<in>> (p. 271) The ID of the member or
com.rti.dds.dynamicdata.DynamicData.MEMBER ID -
UNSPECIFIED (p. 843) to look up by name. See Member
Names and IDs (p. 787).

Exceptions:

One of the Standard Return Codes (p. 104)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

802 Class Documentation

See also:

com.rti.dds.dynamicdata.DynamicData.unbind complex member
(p. 802)
com.rti.dds.dynamicdata.DynamicData.get complex member
(p. 824)

8.73.6.12 void unbind complex member (DynamicData value)

Tear down the association created by a
com.rti.dds.dynamicdata.DynamicData.bind complex member
(p. 800) operation, committing any changes to the outer object since then.

Some changes to the outer object will not be observable until after you have
performed this operation.

If you have called com.rti.dds.dynamicdata.DynamicData.bind -
complex member (p. 800) on a data sample, you must unbind before writing
or deleting the sample.

MT Safety:

UNSAFE.

Parameters:

value <<in>> (p. 271) The same object you passed to
com.rti.dds.dynamicdata.DynamicData.bind complex -
member (p. 800). This argument is used for error checking purposes.

Exceptions:

One of the Standard Return Codes (p. 104) or RETCODE OUT OF -
RESOURCES

See also:

com.rti.dds.dynamicdata.DynamicData.bind complex member
(p. 800)

8.73.6.13 TypeCode get type ()

Get the data type, of which this com.rti.dds.dynamicdata.DynamicData
(p. 780) represents an instance.

MT Safety:

UNSAFE.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.73 DynamicData Class Reference 803

8.73.6.14 TCKind get type kind ()

Get the kind of this object’s data type.

This is a convenience method. It’s equivalent to calling
com.rti.dds.dynamicdata.DynamicData.get type (p. 802) followed
by TypeCode.kind (p. 1615).

MT Safety:

UNSAFE.

8.73.6.15 int get member count ()

Get the number of members in this sample.

For objects of type kind TCKind.TK ARRAY (p. 1529) or TCKind.TK -
SEQUENCE (p. 1529), this method returns the number of elements in the
collection.

For objects of type kind TCKind.TK STRUCT (p. 1529) or TCKind.TK -
VALUE (p. 1530), it returns the number of fields in the sample, which will
always be the same as the number of fields in the type.

For objects of type kind TCKind.TK SPARSE (p. 1530), it returns the num-
ber of fields in the sample, which may be less than or equal to the number of
fields in the type.

MT Safety:

UNSAFE.

See also:

com.rti.dds.dynamicdata.DynamicData.get member info by -
index (p. 805)

8.73.6.16 boolean member exists (String member name, int
member id)

Indicates whether a member of a particular name/ID exists in this data sample.

Only one of the name and/or ID need by specified.

For objects of type kinds other than TCKind.TK SPARSE (p. 1530),
the result of this method will always be the same as that of
com.rti.dds.dynamicdata.DynamicData.member exists in type
(p. 804).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

804 Class Documentation

MT Safety:

UNSAFE.

Parameters:

member name <<in>> (p. 271) The name of the member or null to
look up the member by its ID.

member id <<in>> (p. 271) The ID of the member or
com.rti.dds.dynamicdata.DynamicData.MEMBER ID -
UNSPECIFIED (p. 843) to look up by name. See Member
Names and IDs (p. 787).

See also:

com.rti.dds.dynamicdata.DynamicData.member exists in type
(p. 804)
com.rti.dds.dynamicdata.DynamicData.MEMBER ID -
UNSPECIFIED (p. 843)

8.73.6.17 boolean member exists in type (String member name,
int member id)

Indicates whether a member of a particular name/ID exists in this data sample’s
type.

Only one of the name and/or ID need by specified.

For objects of type kinds other than TCKind.TK SPARSE (p. 1530),
the result of this method will always be the same as that of
com.rti.dds.dynamicdata.DynamicData.member exists (p. 803).

MT Safety:

UNSAFE.

Parameters:

member name <<in>> (p. 271) The name of the member or null to
look up the member by its ID.

member id <<in>> (p. 271) The ID of the member or
com.rti.dds.dynamicdata.DynamicData.MEMBER ID -
UNSPECIFIED (p. 843) to look up by name. See Member
Names and IDs (p. 787).

See also:

com.rti.dds.dynamicdata.DynamicData.member exists (p. 803)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.73 DynamicData Class Reference 805

com.rti.dds.dynamicdata.DynamicData.MEMBER ID -
UNSPECIFIED (p. 843)

8.73.6.18 void get member info (DynamicDataMemberInfo info,
String member name, int member id)

Fill in the given descriptor with information about the identified member of this
com.rti.dds.dynamicdata.DynamicData (p. 780) sample.

This operation is valid for objects of TCKind TCKind.TK ARRAY (p. 1529),
TCKind.TK SEQUENCE (p. 1529), TCKind.TK STRUCT (p. 1529),
TCKind.TK VALUE (p. 1530), and TCKind.TK SPARSE (p. 1530).

MT Safety:

UNSAFE.

Parameters:

info <<out>> (p. 271) The descriptor object whose contents will be over-
written by this operations.

member name <<in>> (p. 271) The name of the member for which to
get the info or null to look up the member by its ID. Only one of the
name and the ID may be unspecified.

member id <<in>> (p. 271) The ID of the member for which to get the
info, or com.rti.dds.dynamicdata.DynamicData.MEMBER -
ID UNSPECIFIED (p. 843) to look up by name. See Member
Names and IDs (p. 787).

Exceptions:

One of the Standard Return Codes (p. 104)

See also:

com.rti.dds.dynamicdata.DynamicData.get member info by -
index (p. 805)
com.rti.dds.dynamicdata.DynamicData.MEMBER ID -
UNSPECIFIED (p. 843)

8.73.6.19 void get member info by index
(DynamicDataMemberInfo info, int index)

Fill in the given descriptor with information about the identified member of this
com.rti.dds.dynamicdata.DynamicData (p. 780) sample.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

806 Class Documentation

This operation is valid for objects of TCKind TCKind.TK ARRAY (p. 1529),
TCKind.TK SEQUENCE (p. 1529), TCKind.TK STRUCT (p. 1529),
TCKind.TK VALUE (p. 1530), and TCKind.TK SPARSE (p. 1530).

MT Safety:

UNSAFE.

Parameters:

info <<out>> (p. 271) The descriptor object whose contents will be over-
written by this operations.

index <<in>> (p. 271) The zero-based of the member for which to get
the info.

Exceptions:

One of the Standard Return Codes (p. 104)

See also:

com.rti.dds.dynamicdata.DynamicData.get member info (p. 805)
com.rti.dds.dynamicdata.DynamicData.get member count
(p. 803)
com.rti.dds.dynamicdata.DynamicData.MEMBER ID -
UNSPECIFIED (p. 843)

8.73.6.20 TypeCode get member type (String member name, int
member id)

Get the type of the given member of this sample.

The member can be looked up either by name or by ID.

This operation is valid for objects of TCKind TCKind.TK ARRAY (p. 1529),
TCKind.TK SEQUENCE (p. 1529), TCKind.TK STRUCT (p. 1529),
TCKind.TK VALUE (p. 1530), and TCKind.TK SPARSE (p. 1530).
For type kinds TCKind.TK ARRAY (p. 1529) and TCKind.TK -
SEQUENCE (p. 1529), the index into the collection is taken to be one less
than the ID, if specified. If this index is valid, this operation will return the
content type of this collection.

MT Safety:

UNSAFE.

Parameters:

member name <<in>> (p. 271) The name of the member or null to
look up the member by its ID.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.73 DynamicData Class Reference 807

member id <<in>> (p. 271) The ID of the member or
com.rti.dds.dynamicdata.DynamicData.MEMBER ID -
UNSPECIFIED (p. 843) to look up by name. See Member
Names and IDs (p. 787).

Exceptions:

One of the Standard Return Codes (p. 104)

See also:

com.rti.dds.dynamicdata.DynamicData.get member info (p. 805)
com.rti.dds.dynamicdata.DynamicData.MEMBER ID -
UNSPECIFIED (p. 843)

8.73.6.21 boolean is member key (String member name, int
member id)

Indicates whether a given member forms part of the key of this sample’s data
type.

This operation is only valid for samples of types of kind TCKind.TK -
STRUCT (p. 1529), TCKind.TK VALUE (p. 1530), or TCKind.TK -
SPARSE (p. 1530).

Note to users of sparse types: A key member may only have a single represen-
tation and is required to exist in every sample.

MT Safety:

UNSAFE.

Parameters:

member name <<in>> (p. 271) The name of the member or null to
look up the member by its ID.

member id <<in>> (p. 271) The ID of the member or
com.rti.dds.dynamicdata.DynamicData.MEMBER ID -
UNSPECIFIED (p. 843) to look up by name. See Member
Names and IDs (p. 787).

Exceptions:

One of the Standard Return Codes (p. 104)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

808 Class Documentation

8.73.6.22 int get int (String member name, int member id)

Get the value of the given field, which is of type int or another type implicitly
convertible to it (byte, char, short, short, or com.rti.dds.util.Enum (p. 925)).

The member may be specified by name or by ID.

MT Safety:

UNSAFE.

Parameters:

member name <<in>> (p. 271) The name of the member or null to
look up the member by its ID.

member id <<in>> (p. 271) The ID of the member or
com.rti.dds.dynamicdata.DynamicData.MEMBER ID -
UNSPECIFIED (p. 843) to look up by name. See Member
Names and IDs (p. 787).

Exceptions:

One of the Standard Return Codes (p. 104)

See also:

DynamicData.set int (p. 825)

8.73.6.23 int get int array (int[] array, String member name, int
member id)

Get a copy of the given array member.

This method will perform an automatic conversion from IntSeq.

If the destination array is insufficiently long to store the data, this operation
will fail without copying anything.

MT Safety:

UNSAFE.

Parameters:

array <<out>> (p. 271) An already-allocated array, into which the ele-
ments will be copied.

member name <<in>> (p. 271) The name of the member or null to
look up the member by its ID.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.73 DynamicData Class Reference 809

member id <<in>> (p. 271) The ID of the member or
com.rti.dds.dynamicdata.DynamicData.MEMBER ID -
UNSPECIFIED (p. 843) to look up by name. See Member
Names and IDs (p. 787).

Exceptions:

One of the Standard Return Codes (p. 104)

See also:

DynamicData.set int array (p. 826)
DynamicData.get int seq (p. 809)

8.73.6.24 void get int seq (IntSeq seq, String member name, int
member id)

Get a copy of the given sequence member.

The provided sequence will be automatically resized as necessary.

This method will perform an automatic conversion from an array of int.

MT Safety:

UNSAFE.

Parameters:

seq <<out>> (p. 271) A sequence, into which the elements will be copied.

member name <<in>> (p. 271) The name of the member or null to
look up the member by its ID.

member id <<in>> (p. 271) The ID of the member or
com.rti.dds.dynamicdata.DynamicData.MEMBER ID -
UNSPECIFIED (p. 843) to look up by name. See Member
Names and IDs (p. 787).

Exceptions:

One of the Standard Return Codes (p. 104) or RETCODE OUT OF -
RESOURCES

See also:

DynamicData.set int seq (p. 826)
DynamicData.get int array (p. 808)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

810 Class Documentation

8.73.6.25 short get short (String member name, int member id)

Get the value of the given field, which is of type short or another type implicitly
convertible to it (byte or char).

The member may be specified by name or by ID.

MT Safety:

UNSAFE.

Parameters:

member name <<in>> (p. 271) The name of the member or null to
look up the member by its ID.

member id <<in>> (p. 271) The ID of the member or
com.rti.dds.dynamicdata.DynamicData.MEMBER ID -
UNSPECIFIED (p. 843) to look up by name. See Member
Names and IDs (p. 787).

Exceptions:

One of the Standard Return Codes (p. 104)

See also:

com.rti.dds.dynamicdata.DynamicData.set short (p. 827)

8.73.6.26 int get short array (short[] array, String member name,
int member id)

Get a copy of the given array member.

This method will perform an automatic conversion from
com.rti.dds.infrastructure.ShortSeq (p. 1446).

If the destination array is insufficiently long to store the data, this operation
will fail without copying anything.

MT Safety:

UNSAFE.

Parameters:

array <<out>> (p. 271) An already-allocated array, into which the ele-
ments will be copied.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.73 DynamicData Class Reference 811

member name <<in>> (p. 271) The name of the member or null to
look up the member by its ID.

member id <<in>> (p. 271) The ID of the member or
com.rti.dds.dynamicdata.DynamicData.MEMBER ID -
UNSPECIFIED (p. 843) to look up by name. See Member
Names and IDs (p. 787).

Exceptions:

One of the Standard Return Codes (p. 104)

See also:

com.rti.dds.dynamicdata.DynamicData.set short array (p. 828)
com.rti.dds.dynamicdata.DynamicData.get short seq (p. 811)

8.73.6.27 void get short seq (ShortSeq seq, String member name,
int member id)

Get a copy of the given sequence member.

The provided sequence will be automatically resized as necessary.

This method will perform an automatic conversion from an array of short.

MT Safety:

UNSAFE.

Parameters:

seq <<out>> (p. 271) A sequence, into which the elements will be copied.
member name <<in>> (p. 271) The name of the member or null to

look up the member by its ID.
member id <<in>> (p. 271) The ID of the member or

com.rti.dds.dynamicdata.DynamicData.MEMBER ID -
UNSPECIFIED (p. 843) to look up by name. See Member
Names and IDs (p. 787).

Exceptions:

One of the Standard Return Codes (p. 104) or RETCODE OUT OF -
RESOURCES

See also:

com.rti.dds.dynamicdata.DynamicData.set short seq (p. 828)
com.rti.dds.dynamicdata.DynamicData.get short array (p. 810)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

812 Class Documentation

8.73.6.28 float get float (String member name, int member id)

Get the value of the given field, which is of type float.

The member may be specified by name or by ID.

MT Safety:

UNSAFE.

Parameters:

member name <<in>> (p. 271) The name of the member or null to
look up the member by its ID.

member id <<in>> (p. 271) The ID of the member or
com.rti.dds.dynamicdata.DynamicData.MEMBER ID -
UNSPECIFIED (p. 843) to look up by name. See Member
Names and IDs (p. 787).

Exceptions:

One of the Standard Return Codes (p. 104)

See also:

com.rti.dds.dynamicdata.DynamicData.set float (p. 829)

8.73.6.29 int get float array (float[] array, String member name,
int member id)

Get a copy of the given array member.

This method will perform an automatic conversion from
com.rti.dds.infrastructure.FloatSeq (p. 936).

If the destination array is insufficiently long to store the data, this operation
will fail without copying anything.

MT Safety:

UNSAFE.

Parameters:

array <<out>> (p. 271) An already-allocated array, into which the ele-
ments will be copied.

member name <<in>> (p. 271) The name of the member or null to
look up the member by its ID.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.73 DynamicData Class Reference 813

member id <<in>> (p. 271) The ID of the member or
com.rti.dds.dynamicdata.DynamicData.MEMBER ID -
UNSPECIFIED (p. 843) to look up by name. See Member
Names and IDs (p. 787).

Exceptions:

One of the Standard Return Codes (p. 104)

See also:

com.rti.dds.dynamicdata.DynamicData.set float array (p. 830)
com.rti.dds.dynamicdata.DynamicData.get float seq (p. 813)

8.73.6.30 void get float seq (FloatSeq seq, String member name,
int member id)

Get a copy of the given sequence member.

The provided sequence will be automatically resized as necessary.

This method will perform an automatic conversion from an array of float.

MT Safety:

UNSAFE.

Parameters:

seq <<out>> (p. 271) A sequence, into which the elements will be copied.

member name <<in>> (p. 271) The name of the member or null to
look up the member by its ID.

member id <<in>> (p. 271) The ID of the member or
com.rti.dds.dynamicdata.DynamicData.MEMBER ID -
UNSPECIFIED (p. 843) to look up by name. See Member
Names and IDs (p. 787).

Exceptions:

One of the Standard Return Codes (p. 104) or RETCODE OUT OF -
RESOURCES

See also:

com.rti.dds.dynamicdata.DynamicData.set float seq (p. 830)
com.rti.dds.dynamicdata.DynamicData.get float array (p. 812)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

814 Class Documentation

8.73.6.31 double get double (String member name, int member id)

Get the value of the given field, which is of type double or another type implicitly
convertible to it (float).

The member may be specified by name or by ID.

MT Safety:

UNSAFE.

Parameters:

member name <<in>> (p. 271) The name of the member or null to
look up the member by its ID.

member id <<in>> (p. 271) The ID of the member or
com.rti.dds.dynamicdata.DynamicData.MEMBER ID -
UNSPECIFIED (p. 843) to look up by name. See Member
Names and IDs (p. 787).

Exceptions:

One of the Standard Return Codes (p. 104)

See also:

com.rti.dds.dynamicdata.DynamicData.set double (p. 831)

8.73.6.32 int get double array (double[] array, String
member name, int member id)

Get a copy of the given array member.

This method will perform an automatic conversion from
com.rti.dds.infrastructure.DoubleSeq (p. 759).

If the destination array is insufficiently long to store the data, this operation
will fail without copying anything.

MT Safety:

UNSAFE.

Parameters:

array <<out>> (p. 271) An already-allocated array, into which the ele-
ments will be copied.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.73 DynamicData Class Reference 815

member name <<in>> (p. 271) The name of the member or null to
look up the member by its ID.

member id <<in>> (p. 271) The ID of the member or
com.rti.dds.dynamicdata.DynamicData.MEMBER ID -
UNSPECIFIED (p. 843) to look up by name. See Member
Names and IDs (p. 787).

Exceptions:

One of the Standard Return Codes (p. 104)

See also:

com.rti.dds.dynamicdata.DynamicData.set double array (p. 832)
com.rti.dds.dynamicdata.DynamicData.get double seq (p. 815)

8.73.6.33 void get double seq (DoubleSeq seq, String
member name, int member id)

Get a copy of the given sequence member.

The provided sequence will be automatically resized as necessary.

This method will perform an automatic conversion from an array of double.

MT Safety:

UNSAFE.

Parameters:

seq <<out>> (p. 271) A sequence, into which the elements will be copied.
member name <<in>> (p. 271) The name of the member or null to

look up the member by its ID.
member id <<in>> (p. 271) The ID of the member or

com.rti.dds.dynamicdata.DynamicData.MEMBER ID -
UNSPECIFIED (p. 843) to look up by name. See Member
Names and IDs (p. 787).

Exceptions:

One of the Standard Return Codes (p. 104) or RETCODE OUT OF -
RESOURCES

See also:

com.rti.dds.dynamicdata.DynamicData.set double seq (p. 832)
com.rti.dds.dynamicdata.DynamicData.get double array (p. 814)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

816 Class Documentation

8.73.6.34 boolean get boolean (String member name, int
member id)

Get the value of the given field, which is of type boolean.

The member may be specified by name or by ID.

MT Safety:

UNSAFE.

Parameters:

member name <<in>> (p. 271) The name of the member or null to
look up the member by its ID.

member id <<in>> (p. 271) The ID of the member or
com.rti.dds.dynamicdata.DynamicData.MEMBER ID -
UNSPECIFIED (p. 843) to look up by name. See Member
Names and IDs (p. 787).

Exceptions:

One of the Standard Return Codes (p. 104)

See also:

com.rti.dds.dynamicdata.DynamicData.set boolean (p. 833)

8.73.6.35 int get boolean array (boolean[] array, String
member name, int member id)

Get a copy of the given array member.

This method will perform an automatic conversion from
com.rti.dds.infrastructure.BooleanSeq (p. 405).

If the destination array is insufficiently long to store the data, this operation
will fail without copying anything.

MT Safety:

UNSAFE.

Parameters:

array <<out>> (p. 271) An already-allocated array, into which the ele-
ments will be copied.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.73 DynamicData Class Reference 817

member name <<in>> (p. 271) The name of the member or null to
look up the member by its ID.

member id <<in>> (p. 271) The ID of the member or
com.rti.dds.dynamicdata.DynamicData.MEMBER ID -
UNSPECIFIED (p. 843) to look up by name. See Member
Names and IDs (p. 787).

Exceptions:

One of the Standard Return Codes (p. 104)

See also:

com.rti.dds.dynamicdata.DynamicData.set boolean array (p. 834)
com.rti.dds.dynamicdata.DynamicData.get boolean seq (p. 817)

8.73.6.36 void get boolean seq (BooleanSeq seq, String
member name, int member id)

Get a copy of the given sequence member.

The provided sequence will be automatically resized as necessary.

This method will perform an automatic conversion from an array of boolean.

MT Safety:

UNSAFE.

Parameters:

seq <<out>> (p. 271) A sequence, into which the elements will be copied.
member name <<in>> (p. 271) The name of the member or null to

look up the member by its ID.
member id <<in>> (p. 271) The ID of the member or

com.rti.dds.dynamicdata.DynamicData.MEMBER ID -
UNSPECIFIED (p. 843) to look up by name. See Member
Names and IDs (p. 787).

Exceptions:

One of the Standard Return Codes (p. 104) or RETCODE OUT OF -
RESOURCES

See also:

com.rti.dds.dynamicdata.DynamicData.set boolean seq (p. 834)
com.rti.dds.dynamicdata.DynamicData.get boolean array (p. 816)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

818 Class Documentation

8.73.6.37 char get char (String member name, int member id)

Get the value of the given field, which is of type char.

The member may be specified by name or by ID.

MT Safety:

UNSAFE.

Parameters:

member name <<in>> (p. 271) The name of the member or null to
look up the member by its ID.

member id <<in>> (p. 271) The ID of the member or
com.rti.dds.dynamicdata.DynamicData.MEMBER ID -
UNSPECIFIED (p. 843) to look up by name. See Member
Names and IDs (p. 787).

Exceptions:

One of the Standard Return Codes (p. 104)

See also:

com.rti.dds.dynamicdata.DynamicData.set char (p. 835)

8.73.6.38 int get char array (char[] array, String member name,
int member id)

Get a copy of the given array member.

This method will perform an automatic conversion from
com.rti.dds.infrastructure.CharSeq (p. 445).

If the destination array is insufficiently long to store the data, this operation
will fail without copying anything.

MT Safety:

UNSAFE.

Parameters:

array <<out>> (p. 271) An already-allocated array, into which the ele-
ments will be copied.

member name <<in>> (p. 271) The name of the member or null to
look up the member by its ID.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.73 DynamicData Class Reference 819

member id <<in>> (p. 271) The ID of the member or
com.rti.dds.dynamicdata.DynamicData.MEMBER ID -
UNSPECIFIED (p. 843) to look up by name. See Member
Names and IDs (p. 787).

Exceptions:

One of the Standard Return Codes (p. 104)

See also:

com.rti.dds.dynamicdata.DynamicData.set char array (p. 836)
com.rti.dds.dynamicdata.DynamicData.get char seq (p. 819)

8.73.6.39 void get char seq (CharSeq seq, String member name,
int member id)

Get a copy of the given sequence member.

The provided sequence will be automatically resized as necessary.

This method will perform an automatic conversion from an array of char.

MT Safety:

UNSAFE.

Parameters:

seq <<out>> (p. 271) A sequence, into which the elements will be copied.

member name <<in>> (p. 271) The name of the member or null to
look up the member by its ID.

member id <<in>> (p. 271) The ID of the member or
com.rti.dds.dynamicdata.DynamicData.MEMBER ID -
UNSPECIFIED (p. 843) to look up by name. See Member
Names and IDs (p. 787).

Exceptions:

One of the Standard Return Codes (p. 104) or RETCODE OUT OF -
RESOURCES

See also:

com.rti.dds.dynamicdata.DynamicData.set char seq (p. 836)
com.rti.dds.dynamicdata.DynamicData.get char array (p. 818)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

820 Class Documentation

8.73.6.40 byte get byte (String member name, int member id)

Get the value of the given field, which is of type byte.

The member may be specified by name or by ID.

MT Safety:

UNSAFE.

Parameters:

member name <<in>> (p. 271) The name of the member or null to
look up the member by its ID.

member id <<in>> (p. 271) The ID of the member or
com.rti.dds.dynamicdata.DynamicData.MEMBER ID -
UNSPECIFIED (p. 843) to look up by name. See Member
Names and IDs (p. 787).

Exceptions:

One of the Standard Return Codes (p. 104)

See also:

DynamicData.set byte (p. 837)

8.73.6.41 int get byte array (byte[] array, String member name,
int member id)

Get a copy of the given array member.

This method will perform an automatic conversion from ByteSeq.

If the destination array is insufficiently long to store the data, this operation
will fail without copying anything.

MT Safety:

UNSAFE.

Parameters:

array <<out>> (p. 271) An already-allocated array, into which the ele-
ments will be copied.

member name <<in>> (p. 271) The name of the member or null to
look up the member by its ID.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.73 DynamicData Class Reference 821

member id <<in>> (p. 271) The ID of the member or
com.rti.dds.dynamicdata.DynamicData.MEMBER ID -
UNSPECIFIED (p. 843) to look up by name. See Member
Names and IDs (p. 787).

Exceptions:

One of the Standard Return Codes (p. 104)

See also:

DynamicData.set byte array (p. 838)
DynamicData.get byte seq (p. 821)

8.73.6.42 void get byte seq (ByteSeq seq, String member name,
int member id)

Get a copy of the given sequence member.

The provided sequence will be automatically resized as necessary.

This method will perform an automatic conversion from an array of byte.

MT Safety:

UNSAFE.

Parameters:

seq <<out>> (p. 271) A sequence, into which the elements will be copied.

member name <<in>> (p. 271) The name of the member or null to
look up the member by its ID.

member id <<in>> (p. 271) The ID of the member or
com.rti.dds.dynamicdata.DynamicData.MEMBER ID -
UNSPECIFIED (p. 843) to look up by name. See Member
Names and IDs (p. 787).

Exceptions:

One of the Standard Return Codes (p. 104) or RETCODE OUT OF -
RESOURCES

See also:

DynamicData.set byte seq (p. 838)
DynamicData.get byte array (p. 820)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

822 Class Documentation

8.73.6.43 long get long (String member name, int member id)

Get the value of the given field, which is of type long or another type implicitly
convertible to it (byte, char, short, short, int, long, or com.rti.dds.util.Enum
(p. 925)).

The member may be specified by name or by ID.

MT Safety:

UNSAFE.

Parameters:

member name <<in>> (p. 271) The name of the member or null to
look up the member by its ID.

member id <<in>> (p. 271) The ID of the member or
com.rti.dds.dynamicdata.DynamicData.MEMBER ID -
UNSPECIFIED (p. 843) to look up by name. See Member
Names and IDs (p. 787).

Exceptions:

One of the Standard Return Codes (p. 104)

See also:

DynamicData.set long (p. 839)

8.73.6.44 int get long array (long[] array, String member name,
int member id)

Get a copy of the given array member.

This method will perform an automatic conversion from LongSeq.

If the destination array is insufficiently long to store the data, this operation
will fail without copying anything.

MT Safety:

UNSAFE.

Parameters:

array <<out>> (p. 271) An already-allocated array, into which the ele-
ments will be copied.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.73 DynamicData Class Reference 823

member name <<in>> (p. 271) The name of the member or null to
look up the member by its ID.

member id <<in>> (p. 271) The ID of the member or
com.rti.dds.dynamicdata.DynamicData.MEMBER ID -
UNSPECIFIED (p. 843) to look up by name. See Member
Names and IDs (p. 787).

Exceptions:

One of the Standard Return Codes (p. 104)

See also:

DynamicData.set long array (p. 840)
DynamicData.get long seq (p. 823)

8.73.6.45 void get long seq (LongSeq seq, String member name,
int member id)

Get a copy of the given sequence member.

The provided sequence will be automatically resized as necessary.

This method will perform an automatic conversion from an array of long.

MT Safety:

UNSAFE.

Parameters:

seq <<out>> (p. 271) A sequence, into which the elements will be copied.
member name <<in>> (p. 271) The name of the member or null to

look up the member by its ID.
member id <<in>> (p. 271) The ID of the member or

com.rti.dds.dynamicdata.DynamicData.MEMBER ID -
UNSPECIFIED (p. 843) to look up by name. See Member
Names and IDs (p. 787).

Exceptions:

One of the Standard Return Codes (p. 104) or RETCODE OUT OF -
RESOURCES

See also:

DynamicData.set long seq (p. 840)
DynamicData.get long array (p. 822)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

824 Class Documentation

8.73.6.46 String get string (String member name, int member id)

Get the value of the given field, which is of type String.

The member may be specified by name or by ID.

MT Safety:

UNSAFE.

Parameters:

member name <<in>> (p. 271) The name of the member or null to
look up the member by its ID.

member id <<in>> (p. 271) The ID of the member or
com.rti.dds.dynamicdata.DynamicData.MEMBER ID -
UNSPECIFIED (p. 843) to look up by name. See Member
Names and IDs (p. 787).

Exceptions:

One of the Standard Return Codes (p. 104) or RETCODE OUT OF -
RESOURCES

See also:

com.rti.dds.dynamicdata.DynamicData.set string (p. 841)

8.73.6.47 void get complex member (DynamicData value out,
String member name, int member id)

Get a copy of the value of the given field, which is of some composed type.

The member may be of type kind TCKind.TK ARRAY (p. 1529),
TCKind.TK SEQUENCE (p. 1529), TCKind.TK STRUCT (p. 1529),
TCKind.TK VALUE (p. 1530), TCKind.TK UNION (p. 1529), or
TCKind.TK SPARSE (p. 1530). It may be specified by name or by ID.

This method is logically related to com.rti.dds.dynamicdata.DynamicData.bind -
complex member (p. 800) in that both allow you to examine the state of
nested objects. They are different in an important way: this method provides
a copy of the data; changes to it will not be reflected in the source object.

MT Safety:

UNSAFE.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.73 DynamicData Class Reference 825

Parameters:

value out <<out>> (p. 271) The com.rti.dds.dynamicdata.DynamicData
(p. 780) sample whose contents will be overwritten by this opera-
tion. This object must not be a bound member of another
com.rti.dds.dynamicdata.DynamicData (p. 780) sample.

member name <<in>> (p. 271) The name of the member or null to
look up the member by its ID.

member id <<in>> (p. 271) The ID of the member or
com.rti.dds.dynamicdata.DynamicData.MEMBER ID -
UNSPECIFIED (p. 843) to look up by name. See Member
Names and IDs (p. 787).

Exceptions:

One of the Standard Return Codes (p. 104) or RETCODE OUT OF -
RESOURCES

See also:

com.rti.dds.dynamicdata.DynamicData.set complex member
(p. 842)
com.rti.dds.dynamicdata.DynamicData.bind complex member
(p. 800)

8.73.6.48 void set int (String member name, int member id, int
value)

Set the value of the given field, which is of type int.

MT Safety:

UNSAFE.

Parameters:

member name <<in>> (p. 271) The name of the member or null to
look up the member by its ID.

member id <<in>> (p. 271) The ID of the member or
com.rti.dds.dynamicdata.DynamicData.MEMBER ID -
UNSPECIFIED (p. 843) to look up by name. See Member
Names and IDs (p. 787).

value <<in>> (p. 271) The value to which to set the member.

Exceptions:

One of the Standard Return Codes (p. 104) or RETCODE OUT OF -
RESOURCES

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

826 Class Documentation

See also:

DynamicData.get int (p. 808)

8.73.6.49 void set int array (String member name, int member id,
int[] array)

Set the contents of the given array member.

This method will perform an automatic conversion to IntSeq.

If the destination array is insufficiently long to store the data, this operation
will fail without copying anything.

MT Safety:

UNSAFE.

Parameters:

member name <<in>> (p. 271) The name of the member or null to
look up the member by its ID.

member id <<in>> (p. 271) The ID of the member or
com.rti.dds.dynamicdata.DynamicData.MEMBER ID -
UNSPECIFIED (p. 843) to look up by name. See Member
Names and IDs (p. 787).

array <<in>> (p. 271) The elements to copy.

Exceptions:

One of the Standard Return Codes (p. 104) or RETCODE OUT OF -
RESOURCES

See also:

DynamicData.get int array (p. 808)
DynamicData.set int seq (p. 826)

8.73.6.50 void set int seq (String member name, int member id,
IntSeq value)

Set the contents of the given sequence member.

This method will perform an automatic conversion to an array of int.

MT Safety:

UNSAFE.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.73 DynamicData Class Reference 827

Parameters:

member name <<in>> (p. 271) The name of the member or null to
look up the member by its ID.

member id <<in>> (p. 271) The ID of the member or
com.rti.dds.dynamicdata.DynamicData.MEMBER ID -
UNSPECIFIED (p. 843) to look up by name. See Member
Names and IDs (p. 787).

value <<out>> (p. 271) A sequence, from which the elements will be
copied.

Exceptions:

One of the Standard Return Codes (p. 104) or RETCODE OUT OF -
RESOURCES

See also:

DynamicData.get int seq (p. 809)
DynamicData.set int array (p. 826)

8.73.6.51 void set short (String member name, int member id,
short value)

Set the value of the given field, which is of type short.

MT Safety:

UNSAFE.

Parameters:

member name <<in>> (p. 271) The name of the member or null to
look up the member by its ID.

member id <<in>> (p. 271) The ID of the member or
com.rti.dds.dynamicdata.DynamicData.MEMBER ID -
UNSPECIFIED (p. 843) to look up by name. See Member
Names and IDs (p. 787).

value <<in>> (p. 271) The value to which to set the member.

Exceptions:

One of the Standard Return Codes (p. 104) or RETCODE OUT OF -
RESOURCES

See also:

com.rti.dds.dynamicdata.DynamicData.get short (p. 810)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

828 Class Documentation

8.73.6.52 void set short array (String member name, int
member id, short[] array)

Set the contents of the given array member.

This method will perform an automatic conversion to
com.rti.dds.infrastructure.ShortSeq (p. 1446).

If the destination array is insufficiently long to store the data, this operation
will fail without copying anything.

MT Safety:

UNSAFE.

Parameters:

member name <<in>> (p. 271) The name of the member or null to
look up the member by its ID.

member id <<in>> (p. 271) The ID of the member or
com.rti.dds.dynamicdata.DynamicData.MEMBER ID -
UNSPECIFIED (p. 843) to look up by name. See Member
Names and IDs (p. 787).

array <<in>> (p. 271) The elements to copy.

Exceptions:

One of the Standard Return Codes (p. 104) or RETCODE OUT OF -
RESOURCES

See also:

com.rti.dds.dynamicdata.DynamicData.get short array (p. 810)
com.rti.dds.dynamicdata.DynamicData.set short seq (p. 828)

8.73.6.53 void set short seq (String member name, int member id,
ShortSeq value)

Set the contents of the given sequence member.

This method will perform an automatic conversion to an array of short.

MT Safety:

UNSAFE.

Parameters:

member name <<in>> (p. 271) The name of the member or null to
look up the member by its ID.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.73 DynamicData Class Reference 829

member id <<in>> (p. 271) The ID of the member or
com.rti.dds.dynamicdata.DynamicData.MEMBER ID -
UNSPECIFIED (p. 843) to look up by name. See Member
Names and IDs (p. 787).

value <<out>> (p. 271) A sequence, from which the elements will be
copied.

Exceptions:

One of the Standard Return Codes (p. 104) or RETCODE OUT OF -
RESOURCES

See also:

com.rti.dds.dynamicdata.DynamicData.get short seq (p. 811)
com.rti.dds.dynamicdata.DynamicData.set short array (p. 828)

8.73.6.54 void set float (String member name, int member id,
float value)

Set the value of the given field, which is of type float.

MT Safety:

UNSAFE.

Parameters:

member name <<in>> (p. 271) The name of the member or null to
look up the member by its ID.

member id <<in>> (p. 271) The ID of the member or
com.rti.dds.dynamicdata.DynamicData.MEMBER ID -
UNSPECIFIED (p. 843) to look up by name. See Member
Names and IDs (p. 787).

value <<in>> (p. 271) The value to which to set the member.

Exceptions:

One of the Standard Return Codes (p. 104) or RETCODE OUT OF -
RESOURCES

See also:

com.rti.dds.dynamicdata.DynamicData.get float (p. 812)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

830 Class Documentation

8.73.6.55 void set float array (String member name, int
member id, float[] array)

Set the contents of the given array member.

This method will perform an automatic conversion to
com.rti.dds.infrastructure.FloatSeq (p. 936).

If the destination array is insufficiently long to store the data, this operation
will fail without copying anything.

MT Safety:

UNSAFE.

Parameters:

member name <<in>> (p. 271) The name of the member or null to
look up the member by its ID.

member id <<in>> (p. 271) The ID of the member or
com.rti.dds.dynamicdata.DynamicData.MEMBER ID -
UNSPECIFIED (p. 843) to look up by name. See Member
Names and IDs (p. 787).

array <<in>> (p. 271) The elements to copy.

Exceptions:

One of the Standard Return Codes (p. 104) or RETCODE OUT OF -
RESOURCES

See also:

com.rti.dds.dynamicdata.DynamicData.get float array (p. 812)
com.rti.dds.dynamicdata.DynamicData.set float seq (p. 830)

8.73.6.56 void set float seq (String member name, int member id,
FloatSeq value)

Set the contents of the given sequence member.

This method will perform an automatic conversion to an array of float.

MT Safety:

UNSAFE.

Parameters:

member name <<in>> (p. 271) The name of the member or null to
look up the member by its ID.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.73 DynamicData Class Reference 831

member id <<in>> (p. 271) The ID of the member or
com.rti.dds.dynamicdata.DynamicData.MEMBER ID -
UNSPECIFIED (p. 843) to look up by name. See Member
Names and IDs (p. 787).

value <<out>> (p. 271) A sequence, from which the elements will be
copied.

Exceptions:

One of the Standard Return Codes (p. 104) or RETCODE OUT OF -
RESOURCES

See also:

com.rti.dds.dynamicdata.DynamicData.get float seq (p. 813)
com.rti.dds.dynamicdata.DynamicData.set float array (p. 830)

8.73.6.57 void set double (String member name, int member id,
double value)

Set the value of the given field, which is of type double.

MT Safety:

UNSAFE.

Parameters:

member name <<in>> (p. 271) The name of the member or null to
look up the member by its ID.

member id <<in>> (p. 271) The ID of the member or
com.rti.dds.dynamicdata.DynamicData.MEMBER ID -
UNSPECIFIED (p. 843) to look up by name. See Member
Names and IDs (p. 787).

value <<in>> (p. 271) The value to which to set the member.

Exceptions:

One of the Standard Return Codes (p. 104) or RETCODE OUT OF -
RESOURCES

See also:

com.rti.dds.dynamicdata.DynamicData.get double (p. 814)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

832 Class Documentation

8.73.6.58 void set double array (String member name, int
member id, double[] array)

Set the contents of the given array member.

This method will perform an automatic conversion to
com.rti.dds.infrastructure.DoubleSeq (p. 759).

If the destination array is insufficiently long to store the data, this operation
will fail without copying anything.

MT Safety:

UNSAFE.

Parameters:

member name <<in>> (p. 271) The name of the member or null to
look up the member by its ID.

member id <<in>> (p. 271) The ID of the member or
com.rti.dds.dynamicdata.DynamicData.MEMBER ID -
UNSPECIFIED (p. 843) to look up by name. See Member
Names and IDs (p. 787).

array <<in>> (p. 271) The elements to copy.

Exceptions:

One of the Standard Return Codes (p. 104) or RETCODE OUT OF -
RESOURCES

See also:

com.rti.dds.dynamicdata.DynamicData.get double array (p. 814)
com.rti.dds.dynamicdata.DynamicData.set double seq (p. 832)

8.73.6.59 void set double seq (String member name, int
member id, DoubleSeq value)

Set the contents of the given sequence member.

This method will perform an automatic conversion to an array of double.

MT Safety:

UNSAFE.

Parameters:

member name <<in>> (p. 271) The name of the member or null to
look up the member by its ID.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.73 DynamicData Class Reference 833

member id <<in>> (p. 271) The ID of the member or
com.rti.dds.dynamicdata.DynamicData.MEMBER ID -
UNSPECIFIED (p. 843) to look up by name. See Member
Names and IDs (p. 787).

value <<out>> (p. 271) A sequence, from which the elements will be
copied.

Exceptions:

One of the Standard Return Codes (p. 104) or RETCODE OUT OF -
RESOURCES

See also:

com.rti.dds.dynamicdata.DynamicData.get double seq (p. 815)
com.rti.dds.dynamicdata.DynamicData.set double array (p. 832)

8.73.6.60 void set boolean (String member name, int member id,
boolean value)

Set the value of the given field, which is of type boolean.

MT Safety:

UNSAFE.

Parameters:

member name <<in>> (p. 271) The name of the member or null to
look up the member by its ID.

member id <<in>> (p. 271) The ID of the member or
com.rti.dds.dynamicdata.DynamicData.MEMBER ID -
UNSPECIFIED (p. 843) to look up by name. See Member
Names and IDs (p. 787).

value <<in>> (p. 271) The value to which to set the member.

Exceptions:

One of the Standard Return Codes (p. 104) or RETCODE OUT OF -
RESOURCES

See also:

com.rti.dds.dynamicdata.DynamicData.get boolean (p. 816)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

834 Class Documentation

8.73.6.61 void set boolean array (String member name, int
member id, boolean[] array)

Set the contents of the given array member.

This method will perform an automatic conversion to
com.rti.dds.infrastructure.BooleanSeq (p. 405).

If the destination array is insufficiently long to store the data, this operation
will fail without copying anything.

MT Safety:

UNSAFE.

Parameters:

member name <<in>> (p. 271) The name of the member or null to
look up the member by its ID.

member id <<in>> (p. 271) The ID of the member or
com.rti.dds.dynamicdata.DynamicData.MEMBER ID -
UNSPECIFIED (p. 843) to look up by name. See Member
Names and IDs (p. 787).

array <<in>> (p. 271) The elements to copy.

Exceptions:

One of the Standard Return Codes (p. 104) or RETCODE OUT OF -
RESOURCES

See also:

com.rti.dds.dynamicdata.DynamicData.get boolean array (p. 816)
com.rti.dds.dynamicdata.DynamicData.set boolean seq (p. 834)

8.73.6.62 void set boolean seq (String member name, int
member id, BooleanSeq value)

Set the contents of the given sequence member.

This method will perform an automatic conversion to an array of boolean.

MT Safety:

UNSAFE.

Parameters:

member name <<in>> (p. 271) The name of the member or null to
look up the member by its ID.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.73 DynamicData Class Reference 835

member id <<in>> (p. 271) The ID of the member or
com.rti.dds.dynamicdata.DynamicData.MEMBER ID -
UNSPECIFIED (p. 843) to look up by name. See Member
Names and IDs (p. 787).

value <<out>> (p. 271) A sequence, from which the elements will be
copied.

Exceptions:

One of the Standard Return Codes (p. 104) or RETCODE OUT OF -
RESOURCES

See also:

com.rti.dds.dynamicdata.DynamicData.get boolean seq (p. 817)
com.rti.dds.dynamicdata.DynamicData.set boolean array (p. 834)

8.73.6.63 void set char (String member name, int member id,
char value)

Set the value of the given field, which is of type char.

MT Safety:

UNSAFE.

Parameters:

member name <<in>> (p. 271) The name of the member or null to
look up the member by its ID.

member id <<in>> (p. 271) The ID of the member or
com.rti.dds.dynamicdata.DynamicData.MEMBER ID -
UNSPECIFIED (p. 843) to look up by name. See Member
Names and IDs (p. 787).

value <<in>> (p. 271) The value to which to set the member.

Exceptions:

One of the Standard Return Codes (p. 104) or RETCODE OUT OF -
RESOURCES

See also:

com.rti.dds.dynamicdata.DynamicData.get char (p. 818)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

836 Class Documentation

8.73.6.64 void set char array (String member name, int
member id, char[] array)

Set the contents of the given array member.

This method will perform an automatic conversion to
com.rti.dds.infrastructure.CharSeq (p. 445).

If the destination array is insufficiently long to store the data, this operation
will fail without copying anything.

MT Safety:

UNSAFE.

Parameters:

member name <<in>> (p. 271) The name of the member or null to
look up the member by its ID.

member id <<in>> (p. 271) The ID of the member or
com.rti.dds.dynamicdata.DynamicData.MEMBER ID -
UNSPECIFIED (p. 843) to look up by name. See Member
Names and IDs (p. 787).

array <<in>> (p. 271) The elements to copy.

Exceptions:

One of the Standard Return Codes (p. 104) or RETCODE OUT OF -
RESOURCES

See also:

com.rti.dds.dynamicdata.DynamicData.get char array (p. 818)
com.rti.dds.dynamicdata.DynamicData.set char seq (p. 836)

8.73.6.65 void set char seq (String member name, int member id,
CharSeq value)

Set the contents of the given sequence member.

This method will perform an automatic conversion to an array of char.

MT Safety:

UNSAFE.

Parameters:

member name <<in>> (p. 271) The name of the member or null to
look up the member by its ID.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.73 DynamicData Class Reference 837

member id <<in>> (p. 271) The ID of the member or
com.rti.dds.dynamicdata.DynamicData.MEMBER ID -
UNSPECIFIED (p. 843) to look up by name. See Member
Names and IDs (p. 787).

value <<out>> (p. 271) A sequence, from which the elements will be
copied.

Exceptions:

One of the Standard Return Codes (p. 104) or RETCODE OUT OF -
RESOURCES

See also:

com.rti.dds.dynamicdata.DynamicData.get char seq (p. 819)
com.rti.dds.dynamicdata.DynamicData.set char array (p. 836)

8.73.6.66 void set byte (String member name, int member id,
byte value)

Set the value of the given field, which is of type byte.

MT Safety:

UNSAFE.

Parameters:

member name <<in>> (p. 271) The name of the member or null to
look up the member by its ID.

member id <<in>> (p. 271) The ID of the member or
com.rti.dds.dynamicdata.DynamicData.MEMBER ID -
UNSPECIFIED (p. 843) to look up by name. See Member
Names and IDs (p. 787).

value <<in>> (p. 271) The value to which to set the member.

Exceptions:

One of the Standard Return Codes (p. 104) or RETCODE OUT OF -
RESOURCES

See also:

DynamicData.get byte (p. 820)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

838 Class Documentation

8.73.6.67 void set byte array (String member name, int
member id, byte[] array)

Set the contents of the given array member.

This method will perform an automatic conversion to ByteSeq.

If the destination array is insufficiently long to store the data, this operation
will fail without copying anything.

MT Safety:

UNSAFE.

Parameters:

member name <<in>> (p. 271) The name of the member or null to
look up the member by its ID.

member id <<in>> (p. 271) The ID of the member or
com.rti.dds.dynamicdata.DynamicData.MEMBER ID -
UNSPECIFIED (p. 843) to look up by name. See Member
Names and IDs (p. 787).

array <<in>> (p. 271) The elements to copy.

Exceptions:

One of the Standard Return Codes (p. 104) or RETCODE OUT OF -
RESOURCES

See also:

DynamicData.get byte array (p. 820)
DynamicData.set byte seq (p. 838)

8.73.6.68 void set byte seq (String member name, int member id,
ByteSeq value)

Set the contents of the given sequence member.

This method will perform an automatic conversion to an array of byte.

MT Safety:

UNSAFE.

Parameters:

member name <<in>> (p. 271) The name of the member or null to
look up the member by its ID.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.73 DynamicData Class Reference 839

member id <<in>> (p. 271) The ID of the member or
com.rti.dds.dynamicdata.DynamicData.MEMBER ID -
UNSPECIFIED (p. 843) to look up by name. See Member
Names and IDs (p. 787).

value <<out>> (p. 271) A sequence, from which the elements will be
copied.

Exceptions:

One of the Standard Return Codes (p. 104) or RETCODE OUT OF -
RESOURCES

See also:

DynamicData.get byte seq (p. 821)
DynamicData.set byte array (p. 838)

8.73.6.69 void set long (String member name, int member id, long
value)

Set the value of the given field, which is of type long.

MT Safety:

UNSAFE.

Parameters:

member name <<in>> (p. 271) The name of the member or null to
look up the member by its ID.

member id <<in>> (p. 271) The ID of the member or
com.rti.dds.dynamicdata.DynamicData.MEMBER ID -
UNSPECIFIED (p. 843) to look up by name. See Member
Names and IDs (p. 787).

value <<in>> (p. 271) The value to which to set the member.

Exceptions:

One of the Standard Return Codes (p. 104) or RETCODE OUT OF -
RESOURCES

See also:

DynamicData.get long (p. 822)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

840 Class Documentation

8.73.6.70 void set long array (String member name, int
member id, long[] array)

Set the contents of the given array member.

This method will perform an automatic conversion to LongSeq.

If the destination array is insufficiently long to store the data, this operation
will fail without copying anything.

MT Safety:

UNSAFE.

Parameters:

member name <<in>> (p. 271) The name of the member or null to
look up the member by its ID.

member id <<in>> (p. 271) The ID of the member or
com.rti.dds.dynamicdata.DynamicData.MEMBER ID -
UNSPECIFIED (p. 843) to look up by name. See Member
Names and IDs (p. 787).

array <<in>> (p. 271) The elements to copy.

Exceptions:

One of the Standard Return Codes (p. 104) or RETCODE OUT OF -
RESOURCES

See also:

DynamicData.get long array (p. 822)
DynamicData.set long seq (p. 840)

8.73.6.71 void set long seq (String member name, int member id,
LongSeq value)

Set the contents of the given sequence member.

This method will perform an automatic conversion to an array of long.

MT Safety:

UNSAFE.

Parameters:

member name <<in>> (p. 271) The name of the member or null to
look up the member by its ID.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.73 DynamicData Class Reference 841

member id <<in>> (p. 271) The ID of the member or
com.rti.dds.dynamicdata.DynamicData.MEMBER ID -
UNSPECIFIED (p. 843) to look up by name. See Member
Names and IDs (p. 787).

value <<out>> (p. 271) A sequence, from which the elements will be
copied.

Exceptions:

One of the Standard Return Codes (p. 104) or RETCODE OUT OF -
RESOURCES

See also:

DynamicData.get long seq (p. 823)
DynamicData.set long array (p. 840)

8.73.6.72 void set string (String member name, int member id,
String value)

Set the value of the given field of type String.

MT Safety:

UNSAFE.

Parameters:

member name <<in>> (p. 271) The name of the member or null to
look up the member by its ID.

member id <<in>> (p. 271) The ID of the member or
com.rti.dds.dynamicdata.DynamicData.MEMBER ID -
UNSPECIFIED (p. 843) to look up by name. See Member
Names and IDs (p. 787).

value <<in>> (p. 271) The value to which to set the member.

Exceptions:

One of the Standard Return Codes (p. 104) or RETCODE OUT OF -
RESOURCES

See also:

com.rti.dds.dynamicdata.DynamicData.get string (p. 824)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

842 Class Documentation

8.73.6.73 void set complex member (String member name, int
member id, DynamicData value)

Copy the state of the given com.rti.dds.dynamicdata.DynamicData
(p. 780) object into a member of this object.

The member may be of type kind TCKind.TK ARRAY (p. 1529),
TCKind.TK SEQUENCE (p. 1529), TCKind.TK STRUCT (p. 1529),
TCKind.TK VALUE (p. 1530), TCKind.TK UNION (p. 1529), or
TCKind.TK SPARSE (p. 1530). It may be specified by name or by ID.

Example: Copying Data

This method can be used with com.rti.dds.dynamicdata.DynamicData.bind -
complex member (p. 800) to copy from one
com.rti.dds.dynamicdata.DynamicData (p. 780) object to another
efficiently. Suppose the following data structure:

struct Bar {

short theShort;

};

struct Foo {

Bar theBar;

};

Support we have two instances of Foo: foo dst and foo src. We want to
replace the contents of foo dst.theBar with the contents of foo src.theBar.
Error handling has been omitted for the sake of brevity.

DynamicData foo_dst = ...;

DynamicData foo_src = ...;

DynamicData bar = new DynamicData(null, myProperties);

// Point to the source of the copy:

foo_src.bind_complex_member(

"theBar",

DynamicData.MEMBER_ID_UNSPECIFIED,

bar);

try {

// Just one copy:

foo_dst.set_complex_member(

"theBar",

DynamicData.MEMBER_ID_UNSPECIFIED,

bar);

} finally {

// Tear down:

foo_src.unbind_complex_member(bar);

}

bar.delete();

MT Safety:

UNSAFE.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.73 DynamicData Class Reference 843

Parameters:

member name <<in>> (p. 271) The name of the member or null to
look up the member by its ID.

member id <<in>> (p. 271) The ID of the member or
com.rti.dds.dynamicdata.DynamicData.MEMBER ID -
UNSPECIFIED (p. 843) to look up by name. See Member
Names and IDs (p. 787).

value <<in>> (p. 271) The source com.rti.dds.dynamicdata.DynamicData
(p. 780) object whose contents will be copied.

Exceptions:

One of the Standard Return Codes (p. 104) or RETCODE OUT OF -
RESOURCES

See also:

com.rti.dds.dynamicdata.DynamicData.get complex member
(p. 824)
com.rti.dds.dynamicdata.DynamicData.bind complex member
(p. 800)

8.73.7 Member Data Documentation

8.73.7.1 final int MEMBER ID UNSPECIFIED [static]

A sentinel value that indicates that no member ID is needed in order to perform
some operation.

Most commonly, this constant will be used in ”get” operations to indicate that
a lookup should be performed based on a name, not on an ID.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

844 Class Documentation

8.74 DynamicDataInfo Class Reference

A descriptor for a com.rti.dds.dynamicdata.DynamicData (p. 780) object.

Inherits Struct.

Public Member Functions

ˆ DynamicDataInfo ()
A descriptor for a com.rti.dds.dynamicdata.DynamicData (p. 780) ob-
ject.

ˆ DynamicDataInfo (int member count, int stored size, boolean is -
optimized storage)

A descriptor for a com.rti.dds.dynamicdata.DynamicData (p. 780) ob-
ject.

Public Attributes

ˆ int member count

The number of data members in this
com.rti.dds.dynamicdata.DynamicData (p. 780) sample.

ˆ int stored size

The number of bytes currently used to store the data of this
com.rti.dds.dynamicdata.DynamicData (p. 780) sample.

8.74.1 Detailed Description

A descriptor for a com.rti.dds.dynamicdata.DynamicData (p. 780) object.

See also:

com.rti.dds.dynamicdata.DynamicData.get info (p. 798)

8.74.2 Member Data Documentation

8.74.2.1 int member count

The number of data members in this com.rti.dds.dynamicdata.DynamicData
(p. 780) sample.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.74 DynamicDataInfo Class Reference 845

8.74.2.2 int stored size

The number of bytes currently used to store the data of this
com.rti.dds.dynamicdata.DynamicData (p. 780) sample.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

846 Class Documentation

8.75 DynamicDataMemberInfo Class Reference

A descriptor for a single member (i.e. field) of dynamically defined data type.

Inherits Struct.

Public Member Functions

ˆ DynamicDataMemberInfo ()

A descriptor for a single member (i.e. field) of dynamically defined data type.

ˆ DynamicDataMemberInfo (int member id, String member name,
boolean member exists, TCKind member kind, int representation -
count, int element count, TCKind element kind)

A descriptor for a single member (i.e. field) of dynamically defined data type.

Public Attributes

ˆ int member id

An integer that uniquely identifies the data member within this
com.rti.dds.dynamicdata.DynamicData (p. 780) sample’s type.

ˆ String member name

The string name of the data member.

ˆ boolean member exists

Indicates whether the corresponding member of the data type actually exists
in this sample.

ˆ TCKind member kind

The kind of type of this data member (e.g. integer, structure, etc.).

ˆ int element count

The number of elements within this data member.

ˆ TCKind element kind

The kind of type of the elements within this data member.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.75 DynamicDataMemberInfo Class Reference 847

8.75.1 Detailed Description

A descriptor for a single member (i.e. field) of dynamically defined data type.

See also:

com.rti.dds.dynamicdata.DynamicData.get member info (p. 805)

8.75.2 Member Data Documentation

8.75.2.1 int member id

An integer that uniquely identifies the data member within this
com.rti.dds.dynamicdata.DynamicData (p. 780) sample’s type.

For sparse data types, this value will be assigned by the type designer. For
types defined in IDL, it will be assigned automatically by the middleware based
on the member’s declaration order within the type.

See also:

TCKind

8.75.2.2 String member name

The string name of the data member.

This name will be unique among members of the same type. However, a single
named member may have multiple type representations.

See also:

com.rti.dds.dynamicdata.DynamicDataMemberInfo.representation count

8.75.2.3 boolean member exists

Indicates whether the corresponding member of the data type actually exists in
this sample.

For non-sparse data types, this value will always be true.

See also:

TCKind

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

848 Class Documentation

8.75.2.4 TCKind member kind

The kind of type of this data member (e.g. integer, structure, etc.).

This is a convenience field; it is equivalent to looking up the member in the
TypeCode and getting the TCKind from there.

8.75.2.5 int element count

The number of elements within this data member.

This information is only valid for members of array or sequence types. Members
of other types will always report zero (0) here.

8.75.2.6 TCKind element kind

The kind of type of the elements within this data member.

This information is only valid for members of array or sequence types. Members
of other types will always report TCKind.TK NULL (p. 1528) here.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.76 DynamicDataProperty t Class Reference 849

8.76 DynamicDataProperty t Class Reference

A collection of attributes used to configure
com.rti.dds.dynamicdata.DynamicData (p. 780) objects.

Public Member Functions

ˆ DynamicDataProperty t ()
The constructor.

ˆ DynamicDataProperty t (int buffer initial size, int buffer max -
size, int buffer max size increment)

The constructor.

Public Attributes

ˆ int buffer initial size = 0
The initial amount of memory used by this
com.rti.dds.dynamicdata.DynamicData (p. 780) object, in bytes.

ˆ int buffer max size = 65536
The maximum amount of memory that this
com.rti.dds.dynamicdata.DynamicData (p. 780) object may use,
in bytes.

8.76.1 Detailed Description

A collection of attributes used to configure
com.rti.dds.dynamicdata.DynamicData (p. 780) objects.

8.76.2 Constructor & Destructor Documentation

8.76.2.1 DynamicDataProperty t ()

The constructor.

8.76.2.2 DynamicDataProperty t (int buffer initial size, int
buffer max size, int buffer max size increment)

The constructor.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

850 Class Documentation

8.76.3 Member Data Documentation

8.76.3.1 int buffer initial size = 0

The initial amount of memory used by this
com.rti.dds.dynamicdata.DynamicData (p. 780) object, in bytes.

See also:

com.rti.dds.dynamicdata.DynamicDataProperty t.buffer max -
size (p. 850)

8.76.3.2 int buffer max size = 65536

The maximum amount of memory that this
com.rti.dds.dynamicdata.DynamicData (p. 780) object may use, in
bytes.

It will grow to this size from the initial size as needed.

See also:

com.rti.dds.dynamicdata.DynamicDataProperty t.buffer initial -
size (p. 850)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.77 DynamicDataReader Class Reference 851

8.77 DynamicDataReader Class Reference

Reads (subscribes to) objects of type com.rti.dds.dynamicdata.DynamicData
(p. 780).

Inheritance diagram for DynamicDataReader::

Public Member Functions

ˆ void read (DynamicDataSeq received data, SampleInfoSeq info seq,
int max samples, int sample states, int view states, int instance states)

Access a collection of data samples from the
com.rti.dds.subscription.DataReader (p. 473).

ˆ void take (DynamicDataSeq received data, SampleInfoSeq info seq,
int max samples, int sample states, int view states, int instance states)

Access a collection of data-samples from the
com.rti.dds.subscription.DataReader (p. 473).

ˆ void read w condition (DynamicDataSeq received data, SampleIn-
foSeq info seq, int max samples, ReadCondition condition)

Accesses via com.rti.dds.topic.example.FooDataReader.read
the samples that match the criteria specified in the
com.rti.dds.subscription.ReadCondition (p. 1326).

ˆ void take w condition (DynamicDataSeq received data, SampleIn-
foSeq info seq, int max samples, ReadCondition condition)

Analogous to com.rti.dds.topic.example.FooDataReader.read -
w condition except it accesses samples via the
com.rti.dds.topic.example.FooDataReader.take operation.

ˆ void read next sample (DynamicData received data, SampleInfo
sample info)

Copies the next not-previously-accessed data value from the
com.rti.dds.subscription.DataReader (p. 473).

ˆ void take next sample (DynamicData received data, SampleInfo
sample info)

Copies the next not-previously-accessed data value from the
com.rti.dds.subscription.DataReader (p. 473).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

852 Class Documentation

ˆ void read instance (DynamicDataSeq received data, SampleIn-
foSeq info seq, int max samples, InstanceHandle t a handle, int sam-
ple states, int view states, int instance states)

Access a collection of data samples from the
com.rti.dds.subscription.DataReader (p. 473).

ˆ void take instance (DynamicDataSeq received data, SampleInfoSeq
info seq, int max samples, InstanceHandle t a handle, int sample -
states, int view states, int instance states)

Access a collection of data samples from the
com.rti.dds.subscription.DataReader (p. 473).

ˆ void read instance w condition (DynamicDataSeq received data,
SampleInfoSeq info seq, int max samples, InstanceHandle t previ-
ous handle, ReadCondition condition)

ˆ void take instance w condition (DynamicDataSeq received data,
SampleInfoSeq info seq, int max samples, InstanceHandle t previ-
ous handle, ReadCondition condition)

ˆ void read next instance (DynamicDataSeq received data, Sample-
InfoSeq info seq, int max samples, InstanceHandle t previous handle,
int sample states, int view states, int instance states)

Access a collection of data samples from the
com.rti.dds.subscription.DataReader (p. 473).

ˆ void take next instance (DynamicDataSeq received data, Sample-
InfoSeq info seq, int max samples, InstanceHandle t previous handle,
int sample states, int view states, int instance states)

Access a collection of data samples from the
com.rti.dds.subscription.DataReader (p. 473).

ˆ void read next instance w condition (DynamicDataSeq received -
data, SampleInfoSeq info seq, int max samples, InstanceHandle t
previous handle, ReadCondition condition)

Accesses via com.rti.dds.topic.example.FooDataReader.read next -
instance the samples that match the criteria specified in the
com.rti.dds.subscription.ReadCondition (p. 1326).

ˆ void take next instance w condition (DynamicDataSeq received -
data, SampleInfoSeq info seq, int max samples, InstanceHandle t
previous handle, ReadCondition condition)

Accesses via com.rti.dds.topic.example.FooDataReader.take next -
instance the samples that match the criteria specified in the
com.rti.dds.subscription.ReadCondition (p. 1326).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.77 DynamicDataReader Class Reference 853

ˆ void return loan (DynamicDataSeq received data, SampleInfoSeq
info seq)

Indicates to the com.rti.dds.subscription.DataReader (p. 473) that
the application is done accessing the collection of received data and
info seq obtained by some earlier invocation of read or take on the
com.rti.dds.subscription.DataReader (p. 473).

ˆ void get key value (DynamicData key holder, InstanceHandle t
handle)

Retrieve the instance key that corresponds to an instance handle.

ˆ InstanceHandle t lookup instance (DynamicData key holder)
Retrieves the instance handle that corresponds to an instance key holder.

8.77.1 Detailed Description

Reads (subscribes to) objects of type com.rti.dds.dynamicdata.DynamicData
(p. 780).

Instantiates com.rti.dds.subscription.DataReader (p. 473) <
com.rti.dds.dynamicdata.DynamicData (p. 780) > .

See also:

com.rti.dds.subscription.DataReader (p. 473)
com.rti.dds.topic.example.FooDataReader
com.rti.dds.dynamicdata.DynamicData (p. 780)

8.77.2 Member Function Documentation

8.77.2.1 void read (DynamicDataSeq received data, SampleInfoSeq
info seq, int max samples, int sample states, int
view states, int instance states)

Access a collection of data samples from the
com.rti.dds.subscription.DataReader (p. 473).

This operation offers the same functionality and API as
com.rti.dds.topic.example.FooDataReader.take except that the samples
returned remain in the com.rti.dds.subscription.DataReader (p. 473) such
that they can be retrieved again by means of a read or take operation.

Please refer to the documentation of com.rti.dds.topic.example.FooDataReader.take()
for details on the number of samples returned within the received data and
info seq as well as the order in which the samples appear in these sequences.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

854 Class Documentation

The act of reading a sample changes its sample state to Sam-
pleStateKind.READ SAMPLE STATE. If the sample belongs to the most re-
cent generation of the instance, it will also set the view state of the instance to
be ViewStateKind.NOT NEW VIEW STATE. It will not affect the instance -
state of the instance.

Important: If the samples ”returned” by this method are loaned from RTI Con-
next (see com.rti.dds.topic.example.FooDataReader.take for more information
on memory loaning), it is important that their contents not be changed. Be-
cause the memory in which the data is stored belongs to the middleware, any
modifications made to the data will be seen the next time the same samples
are read or taken; the samples will no longer reflect the state that was received
from the network.

Parameters:

received data <<inout>> (p. 271) User data type-specific
com.rti.dds.util.Sequence (p. 1432) object where the received
data samples will be returned. Must be a valid non-NULL FooSeq.
The method will fail with RETCODE BAD PARAMETER if it is
NULL.

info seq <<inout>> (p. 271) A com.rti.dds.subscription.SampleInfoSeq
(p. 1414) object where the received sample info will be returned. Must
be a valid non-NULL com.rti.dds.subscription.SampleInfoSeq
(p. 1414). The method will fail with RETCODE BAD PARAMETER
if it is NULL.

max samples <<in>> (p. 271) The maximum number of samples to be
returned. If the special value ResourceLimitsQosPolicy.LENGTH -
UNLIMITED is provided, as many samples will be returned as
are available, up to the limits described in the documentation for
com.rti.dds.topic.example.FooDataReader.take().

sample states <<in>> (p. 271) Data samples matching one of these
sample states are returned.

view states <<in>> (p. 271) Data samples matching one of these
view state are returned.

instance states <<in>> (p. 271) Data samples matching ones of these
instance state are returned.

Exceptions:

One of the Standard Return Codes (p. 104), RETCODE -
PRECONDITION NOT MET, RETCODE NO DATA or RET-
CODE NOT ENABLED.

See also:

com.rti.dds.topic.example.FooDataReader.read w -
condition, com.rti.dds.topic.example.FooDataReader.take,

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.77 DynamicDataReader Class Reference 855

com.rti.dds.topic.example.FooDataReader.take w condition
ResourceLimitsQosPolicy.LENGTH UNLIMITED

8.77.2.2 void take (DynamicDataSeq received data, SampleInfoSeq
info seq, int max samples, int sample states, int
view states, int instance states)

Access a collection of data-samples from the
com.rti.dds.subscription.DataReader (p. 473).

The operation will return the list of samples received by
the com.rti.dds.subscription.DataReader (p. 473) since the
last com.rti.dds.topic.example.FooDataReader.take operation that
match the specified com.rti.dds.subscription.SampleStateMask,
com.rti.dds.subscription.ViewStateMask and com.rti.dds.subscription.InstanceStateMask.

This operation may fail with RETCODE ERROR if
com.rti.dds.infrastructure.DataReaderResourceLimitsQosPolicy.max -
outstanding reads (p. 530) limit has been exceeded.

The actual number of samples returned depends on the infor-
mation that has been received by the middleware as well as
the com.rti.dds.infrastructure.HistoryQosPolicy (p. 1071),
com.rti.dds.infrastructure.ResourceLimitsQosPolicy (p. 1356),
com.rti.dds.infrastructure.DataReaderResourceLimitsQosPolicy
(p. 524) and the characteristics of the data-type that is associated with the
com.rti.dds.subscription.DataReader (p. 473):

ˆ In the case where the com.rti.dds.infrastructure.HistoryQosPolicy.kind
(p. 1073) is HistoryQosPolicyKind.KEEP LAST -
HISTORY QOS, the call will return at most
com.rti.dds.infrastructure.HistoryQosPolicy.depth (p. 1074)
samples per instance.

ˆ The maximum number of samples returned is limited by
com.rti.dds.infrastructure.ResourceLimitsQosPolicy.max -
samples (p. 1359), and by com.rti.dds.infrastructure.DataReaderResourceLimitsQosPolicy.max -
samples per read (p. 530).

ˆ For multiple instances, the number of samples re-
turned is additionally limited by the product
(com.rti.dds.infrastructure.ResourceLimitsQosPolicy.max -
samples per instance (p. 1360) ∗ com.rti.dds.infrastructure.ResourceLimitsQosPolicy.max -
instances (p. 1360))

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

856 Class Documentation

ˆ If com.rti.dds.infrastructure.DataReaderResourceLimitsQosPolicy.max -
infos (p. 528) is limited, the number of samples returned may also be
limited if insufficient com.rti.dds.subscription.SampleInfo (p. 1404)
resources are available.

If the read or take succeeds and the number of samples returned has been
limited (by means of a maximum limit, as listed above, or insufficient
com.rti.dds.subscription.SampleInfo (p. 1404) resources), the call will com-
plete successfully and provide those samples the reader is able to return. The
user may need to make additional calls, or return outstanding loaned buffers in
the case of insuffificient resources, in order to access remaining samples.

Note that in the case where the com.rti.dds.topic.Topic (p. 1545) associated
with the com.rti.dds.subscription.DataReader (p. 473) is bound to a data-
type that has no key definition, then there will be at most one instance in the
com.rti.dds.subscription.DataReader (p. 473). So the per-sample limits
will apply.

The act of taking a sample removes it from RTI Connext so it cannot be read or
taken again. If the sample belongs to the most recent generation of the instance,
it will also set the view state of the sample’s instance to ViewStateKind.NOT -
NEW VIEW STATE. It will not affect the instance state of the sample’s
instance.

After com.rti.dds.topic.example.FooDataReader.take completes, received -
data and info seq will be of the same length and contain the received data.

If the sequences are empty (maximum size equals 0) when the
com.rti.dds.topic.example.FooDataReader.take is called, the samples returned
in the received data and the corresponding info seq are ’loaned’ to the appli-
cation from buffers provided by the com.rti.dds.subscription.DataReader
(p. 473). The application can use them as desired and has guaranteed exclusive
access to them.

Once the application completes its use of the samples it must ’return the
loan’ to the com.rti.dds.subscription.DataReader (p. 473) by calling the
com.rti.dds.topic.example.FooDataReader.return loan operation.

Important: When you loan data from the middleware, you must
not keep any pointers to any part of the data samples or the
com.rti.dds.subscription.SampleInfo (p. 1404) objects after the call to
com.rti.dds.topic.example.FooDataReader.return loan. Returning the loan
places the objects back into a pool, allowing the middleware to overwrite them
with new data.

Note: While you must call com.rti.dds.topic.example.FooDataReader.return -
loan at some point, you do not have to do so before the next
com.rti.dds.topic.example.FooDataReader.take call. However, failure to return
the loan will eventually deplete the com.rti.dds.subscription.DataReader

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.77 DynamicDataReader Class Reference 857

(p. 473) of the buffers it needs to receive new samples and eventually
samples will start to be lost. The total number of buffers available to
the com.rti.dds.subscription.DataReader (p. 473) is specified by the
com.rti.dds.infrastructure.ResourceLimitsQosPolicy (p. 1356) and
the com.rti.dds.infrastructure.DataReaderResourceLimitsQosPolicy
(p. 524).

If the sequences are not empty (maximum size not equal to 0 and length not
equal to 0) when com.rti.dds.topic.example.FooDataReader.take is called, sam-
ples are copied to received data and info seq. The application will not need to
call com.rti.dds.topic.example.FooDataReader.return loan.

The order of the samples returned to the caller depends on the
com.rti.dds.infrastructure.PresentationQosPolicy (p. 1237).

ˆ If com.rti.dds.infrastructure.PresentationQosPolicy.access -
scope (p. 1241) is PresentationQosPolicyAccessScopeKind.INSTANCE -
PRESENTATION QOS, the returned collection is a list where samples
belonging to the same data instance are consecutive.

ˆ If com.rti.dds.infrastructure.PresentationQosPolicy.access -
scope (p. 1241) is PresentationQosPolicyAc-
cessScopeKind.TOPIC PRESENTATION QOS and
com.rti.dds.infrastructure.PresentationQosPolicy.ordered -
access (p. 1241) is set to false, then returned collection is a list where
samples belonging to the same data instance are consecutive.

ˆ If com.rti.dds.infrastructure.PresentationQosPolicy.access -
scope (p. 1241) is PresentationQosPolicyAc-
cessScopeKind.TOPIC PRESENTATION QOS and
com.rti.dds.infrastructure.PresentationQosPolicy.ordered -
access (p. 1241) is set to true, then the returned collection is a list were
the relative order of samples is preserved also accross different instances.
Note that samples belonging to the same instance may or may not be
consecutive. This is because to preserve order it may be necessary to mix
samples from different instances.

ˆ If com.rti.dds.infrastructure.PresentationQosPolicy.access -
scope (p. 1241) is PresentationQosPolicyAccessS-
copeKind.GROUP PRESENTATION QOS and
com.rti.dds.infrastructure.PresentationQosPolicy.ordered -
access (p. 1241) is set to false, then returned collection is a list where
samples belonging to the same data instance are consecutive. [Not
supported (optional)]

ˆ If com.rti.dds.infrastructure.PresentationQosPolicy.access -
scope (p. 1241) is PresentationQosPolicyAccessS-

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

858 Class Documentation

copeKind.GROUP PRESENTATION QOS and
com.rti.dds.infrastructure.PresentationQosPolicy.ordered -
access (p. 1241) is set to true, then the returned collection contains at
most one sample. The difference in this case is due to the fact that is
required that the application is able to read samples belonging to different
com.rti.dds.subscription.DataReader (p. 473) objects in a specific
order. [Not supported (optional)]

In any case, the relative order between the samples of one instance is consistent
with the DESTINATION ORDER (p. 51) policy:

ˆ If com.rti.dds.infrastructure.DestinationOrderQosPolicy.kind
(p. 609) is DestinationOrderQosPolicyKind.BY RECEPTION -
TIMESTAMP DESTINATIONORDER QOS, samples belonging to
the same instances will appear in the relative order in which there were
received (FIFO, earlier samples ahead of the later samples).

ˆ If com.rti.dds.infrastructure.DestinationOrderQosPolicy.kind
(p. 609) is DestinationOrderQosPolicyKind.BY SOURCE -
TIMESTAMP DESTINATIONORDER QOS, samples belonging to
the same instances will appear in the relative order implied by the
source timestamp (FIFO, smaller values of source timestamp ahead of
the larger values).

If the com.rti.dds.subscription.DataReader (p. 473) has no samples that
meet the constraints, the method will fail with RETCODE NO DATA.

In addition to the collection of samples, the read and take operations also use
a collection of com.rti.dds.subscription.SampleInfo (p. 1404) structures.

8.77.3 SEQUENCES USAGE IN TAKE AND READ

The initial (input) properties of the received data and info seq collections
will determine the precise behavior of the read or take operation. For the pur-
poses of this description, the collections are modeled as having these properties:

ˆ the current-length (len, see Sequence.size())

ˆ the maximum length (max len, see Sequence.getMaximum (p. 1433))

The initial values of the len and max len properties for the received data and
info seq collections govern the behavior of the read and take operations as
specified by the following rules:

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.77 DynamicDataReader Class Reference 859

1. The values of len and max len properties for the two collections
must be identical. Otherwise read/take will fail with RETCODE -
PRECONDITION NOT MET.

2. On successful output, the values of len and max len will be the same for
both collections.

3. If the initial max len==0, then the received data and info seq
collections will be filled with elements that are loaned by the
com.rti.dds.subscription.DataReader (p. 473). On output, len will
be set to the number of values returned, and max len will be set to
a value verifying max len >= len. The use of this variant allows for
zero-copy access to the data and the application will need to return
the loan to the com.rti.dds.publication.DataWriter (p. 538) using
com.rti.dds.topic.example.FooDataReader.return loan.

4. If the initial max len>0 then the read or take operation will fail with RET-
CODE PRECONDITION NOT MET. This avoids the potential hard-to-
detect memory leaks caused by an application forgetting to return the
loan.

5. If initial max len>0 then the read or take operation will copy
the received data values and com.rti.dds.subscription.SampleInfo
(p. 1404) values into the elements already inside the collections. On out-
put, len will be set to the number of values copied and max len will
remain unchanged. The use of this variant forces a copy but the appli-
cation can control where the copy is placed and the application will not
need to return the loan. The number of samples copied depends on the
relative values of max len and max samples:

ˆ If max samples == LENGTH UNLIMITED, then at most max len
values will be copied. The use of this variant lets the application
limit the number of samples returned to what the sequence can ac-
commodate.

ˆ If max samples <= max len, then at most max samples values will be
copied. The use of this variant lets the application limit the number of
samples returned to fewer that what the sequence can accommodate.

ˆ If max samples > max len, then the read or take operation will fail
with RETCODE PRECONDITION NOT MET. This avoids the po-
tential confusion where the application expects to be able to access
up to max samples, but that number can never be returned, even if
they are available in the com.rti.dds.subscription.DataReader
(p. 473), because the output sequence cannot accommodate them.

As described above, upon completion, the received data and
info seq collections may contain elements loaned from the

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

860 Class Documentation

com.rti.dds.subscription.DataReader (p. 473). If this is the case, the ap-
plication will need to use com.rti.dds.topic.example.FooDataReader.return loan
to return the loan once it is no longer using the received data in the collection.
When com.rti.dds.topic.example.FooDataReader.return loan completes, the
collection will have max len=0. The application can determine whether it is
necessary to return the loan or not based on how the state of the collections
when the read/take operation was called However, in many cases it may be
simpler to always call com.rti.dds.topic.example.FooDataReader.return loan,
as this operation is harmless (i.e., it leaves all elements unchanged) if the
collection does not have a loan.

On output, the collection of Foo values and the collection of
com.rti.dds.subscription.SampleInfo (p. 1404) structures are of
the same length and are in a one-to-one correspondence. Each
com.rti.dds.subscription.SampleInfo (p. 1404) provides information,
such as the source timestamp, the sample state, view state, and instance state,
etc., about the corresponding sample.

Some elements in the returned collection may not have valid data. If
the instance state in the com.rti.dds.subscription.SampleInfo (p. 1404)
is InstanceStateKind.NOT ALIVE DISPOSED INSTANCE STATE or In-
stanceStateKind.NOT ALIVE NO WRITERS INSTANCE STATE, then the
last sample for that instance in the collection (that is, the one whose
com.rti.dds.subscription.SampleInfo (p. 1404) has sample rank==0) does
not contain valid data.

Samples that contain no data do not count towards the limits imposed by the
com.rti.dds.infrastructure.ResourceLimitsQosPolicy (p. 1356). The act
of reading/taking a sample sets its sample state to SampleStateKind.READ -
SAMPLE STATE.

If the sample belongs to the most recent generation of the instance, it will also
set the view state of the instance to ViewStateKind.NOT NEW VIEW STATE.
It will not affect the instance state of the instance.

This operation must be provided on the specialized class that is generated
for the particular application data-type that is being read (Foo). If the
com.rti.dds.subscription.DataReader (p. 473) has no samples that meet
the constraints, the operations fails with RETCODE NO DATA.

For an example on how take can be used, please refer to the receive example
(p. 246).

Parameters:

received data <<inout>> (p. 271) User data type-specific
com.rti.dds.util.Sequence (p. 1432) object where the received
data samples will be returned. Must be a valid non-NULL FooSeq.
The method will fail with RETCODE BAD PARAMETER if it is

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.77 DynamicDataReader Class Reference 861

NULL.

Parameters:

info seq <<inout>> (p. 271) A com.rti.dds.subscription.SampleInfoSeq
(p. 1414) object where the received sample info will be returned. Must
be a valid non-NULL com.rti.dds.subscription.SampleInfoSeq
(p. 1414). The method will fail with RETCODE BAD PARAMETER
if it is NULL.

max samples <<in>> (p. 271) The maximum number of samples to be
returned. If the special value ResourceLimitsQosPolicy.LENGTH -
UNLIMITED is provided, as many samples will be returned as are
available, up to the limits described above.

sample states <<in>> (p. 271) Data samples matching one of these
sample states are returned.

view states <<in>> (p. 271) Data samples matching one of these
view state are returned.

instance states <<in>> (p. 271) Data samples matching one of these
instance state are returned.

Exceptions:

One of the Standard Return Codes (p. 104), RETCODE -
PRECONDITION NOT MET, RETCODE NO DATA or RET-
CODE NOT ENABLED.

See also:

com.rti.dds.topic.example.FooDataReader.read
com.rti.dds.topic.example.FooDataReader.read w condition,
com.rti.dds.topic.example.FooDataReader.take w condition
ResourceLimitsQosPolicy.LENGTH UNLIMITED

8.77.3.1 void read w condition (DynamicDataSeq received data,
SampleInfoSeq info seq, int max samples, ReadCondition
condition)

Accesses via com.rti.dds.topic.example.FooDataReader.read the samples that
match the criteria specified in the com.rti.dds.subscription.ReadCondition
(p. 1326).

This operation is especially useful in combination with
com.rti.dds.subscription.QueryCondition (p. 1324) to filter data samples
based on the content.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

862 Class Documentation

The specified com.rti.dds.subscription.ReadCondition (p. 1326) must be
attached to the com.rti.dds.subscription.DataReader (p. 473); otherwise
the operation will fail with RETCODE PRECONDITION NOT MET.

In case the com.rti.dds.subscription.ReadCondition (p. 1326) is a plain
com.rti.dds.subscription.ReadCondition (p. 1326) and not the special-
ized com.rti.dds.subscription.QueryCondition (p. 1324), the operation is
equivalent to calling com.rti.dds.topic.example.FooDataReader.read and pass-
ing as sample states, view states and instance states the value of the
corresponding attributes in the read condition. Using this operation, the ap-
plication can avoid repeating the same parameters specified when creating the
com.rti.dds.subscription.ReadCondition (p. 1326).

The samples are accessed with the same semantics as
com.rti.dds.topic.example.FooDataReader.read.

If the com.rti.dds.subscription.DataReader (p. 473) has no samples that
meet the constraints, the operation will fail with RETCODE NO DATA.

Parameters:

received data <<inout>> (p. 271) user data type-specific
com.rti.dds.util.Sequence (p. 1432) object where the received
data samples will be returned. Must be a valid non-NULL FooSeq.
The method will fail with RETCODE BAD PARAMETER if it is
NULL.

info seq <<inout>> (p. 271) a com.rti.dds.subscription.SampleInfoSeq
(p. 1414) object where the received sample info will be returned. Must
be a valid non-NULL com.rti.dds.subscription.SampleInfoSeq
(p. 1414). The method will fail with RETCODE BAD PARAMETER
if it is NULL.

max samples <<in>> (p. 271) The maximum number of samples to be
returned. If the special value ResourceLimitsQosPolicy.LENGTH -
UNLIMITED is provided, as many samples will be returned as
are available, up to the limits described in the documentation for
com.rti.dds.topic.example.FooDataReader.take().

condition <<in>> (p. 271) the com.rti.dds.subscription.ReadCondition
(p. 1326) to select samples of interest. Cannot be NULL.

Exceptions:

One of the Standard Return Codes (p. 104), RETCODE -
PRECONDITION NOT MET, RETCODE NO DATA or RET-
CODE NOT ENABLED.

See also:

com.rti.dds.topic.example.FooDataReader.read

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.77 DynamicDataReader Class Reference 863

com.rti.dds.topic.example.FooDataReader.take,
com.rti.dds.topic.example.FooDataReader.take w condition
ResourceLimitsQosPolicy.LENGTH UNLIMITED

8.77.3.2 void take w condition (DynamicDataSeq received data,
SampleInfoSeq info seq, int max samples, ReadCondition
condition)

Analogous to com.rti.dds.topic.example.FooDataReader.read w condition ex-
cept it accesses samples via the com.rti.dds.topic.example.FooDataReader.take
operation.

This operation is analogous to com.rti.dds.topic.example.FooDataReader.read -
w condition except that it accesses samples via the
com.rti.dds.topic.example.FooDataReader.take operation.

The specified com.rti.dds.subscription.ReadCondition (p. 1326) must be
attached to the com.rti.dds.subscription.DataReader (p. 473); otherwise
the operation will fail with RETCODE PRECONDITION NOT MET.

The samples are accessed with the same semantics as
com.rti.dds.topic.example.FooDataReader.take.

This operation is especially useful in combination with
com.rti.dds.subscription.QueryCondition (p. 1324) to filter data samples
based on the content.

If the com.rti.dds.subscription.DataReader (p. 473) has no samples that
meet the constraints, the method will fail with RETCODE NO DATA.

Parameters:

received data <<inout>> (p. 271) user data type-specific
com.rti.dds.util.Sequence (p. 1432) object where the received
data samples will be returned. Must be a valid non-NULL FooSeq.
The method will fail with RETCODE BAD PARAMETER if it is
NULL.

info seq <<inout>> (p. 271) a com.rti.dds.subscription.SampleInfoSeq
(p. 1414) object where the received sample info will be returned. Must
be a valid non-NULL com.rti.dds.subscription.SampleInfoSeq
(p. 1414). The method will fail with RETCODE BAD PARAMETER
if it is NULL.

max samples <<in>> (p. 271) The maximum number of samples to be
returned. If the special value ResourceLimitsQosPolicy.LENGTH -
UNLIMITED is provided, as many samples will be returned as
are available, up to the limits described in the documentation for
com.rti.dds.topic.example.FooDataReader.take().

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

864 Class Documentation

condition <<in>> (p. 271) the com.rti.dds.subscription.ReadCondition
(p. 1326) to select samples of interest. Cannot be NULL.

Exceptions:

One of the Standard Return Codes (p. 104), RETCODE -
PRECONDITION NOT MET, RETCODE NO DATA or RET-
CODE NOT ENABLED.

See also:

com.rti.dds.topic.example.FooDataReader.read w condition,
com.rti.dds.topic.example.FooDataReader.read
com.rti.dds.topic.example.FooDataReader.take
ResourceLimitsQosPolicy.LENGTH UNLIMITED

8.77.3.3 void read next sample (DynamicData received data,
SampleInfo sample info)

Copies the next not-previously-accessed data value from the
com.rti.dds.subscription.DataReader (p. 473).

This operation copies the next not-previously-accessed data value from
the com.rti.dds.subscription.DataReader (p. 473). This operation
also copies the corresponding com.rti.dds.subscription.SampleInfo
(p. 1404). The implied order among the samples stored in the
com.rti.dds.subscription.DataReader (p. 473) is the same as for the
com.rti.dds.topic.example.FooDataReader.read operation.

The com.rti.dds.topic.example.FooDataReader.read next sample operation is
semantically equivalent to the com.rti.dds.topic.example.FooDataReader.read
operation, where the input data sequences has max len=1, the sample -
states=NOT READ, the view states=ANY VIEW STATE, and the instance -
states=ANY INSTANCE STATE.

The com.rti.dds.topic.example.FooDataReader.read next sample operation pro-
vides a simplified API to ’read’ samples, avoiding the need for the application
to manage sequences and specify states.

If there is no unread data in the com.rti.dds.subscription.DataReader
(p. 473), the operation will fail with RETCODE NO DATA and nothing is
copied.

Parameters:

received data <<inout>> (p. 271) user data type-specific Foo object
where the next received data sample will be returned. The received -
data must have been fully allocated. Otherwise, this operation may

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.77 DynamicDataReader Class Reference 865

fail. Must be a valid non-NULL Foo. The method will fail with
RETCODE BAD PARAMETER if it is NULL.

sample info <<inout>> (p. 271) a com.rti.dds.subscription.SampleInfo
(p. 1404) object where the next received sample info will be returned.
Must be a valid non-NULL com.rti.dds.subscription.SampleInfo
(p. 1404). The method will fail with RETCODE BAD PARAMETER
if it is NULL.

Exceptions:

One of the Standard Return Codes (p. 104), RETCODE NO DATA or
RETCODE NOT ENABLED.

See also:

com.rti.dds.topic.example.FooDataReader.read

8.77.3.4 void take next sample (DynamicData received data,
SampleInfo sample info)

Copies the next not-previously-accessed data value from the
com.rti.dds.subscription.DataReader (p. 473).

This operation copies the next not-previously-accessed data value from
the com.rti.dds.subscription.DataReader (p. 473) and ’removes’ it
from the com.rti.dds.subscription.DataReader (p. 473) so that it is
no longer accessible. This operation also copies the correspond-
ing com.rti.dds.subscription.SampleInfo (p. 1404). This operation
is analogous to the com.rti.dds.topic.example.FooDataReader.read next -
sample except for the fact that the sample is removed from the
com.rti.dds.subscription.DataReader (p. 473).

The com.rti.dds.topic.example.FooDataReader.take next sample operation is
semantically equivalent to the com.rti.dds.topic.example.FooDataReader.take
operation, where the input data sequences has max len=1, the sample -
states=NOT READ, the view states=ANY VIEW STATE, and the instance -
states=ANY INSTANCE STATE.

The com.rti.dds.topic.example.FooDataReader.read next sample operation pro-
vides a simplified API to ’take’ samples, avoiding the need for the application
to manage sequences and specify states.

If there is no unread data in the com.rti.dds.subscription.DataReader
(p. 473), the operation will fail with RETCODE NO DATA and nothing is
copied.

Parameters:

received data <<inout>> (p. 271) user data type-specific Foo object

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

866 Class Documentation

where the next received data sample will be returned. The received -
data must have been fully allocated. Otherwise, this operation may
fail. Must be a valid non-NULL Foo. The method will fail with
RETCODE BAD PARAMETER if it is NULL.

sample info <<inout>> (p. 271) a com.rti.dds.subscription.SampleInfo
(p. 1404) object where the next received sample info will be returned.
Must be a valid non-NULL com.rti.dds.subscription.SampleInfo
(p. 1404). The method will fail with RETCODE BAD PARAMETER
if it is NULL.

Exceptions:

One of the Standard Return Codes (p. 104), RETCODE NO DATA or
RETCODE NOT ENABLED.

See also:

com.rti.dds.topic.example.FooDataReader.take

8.77.3.5 void read instance (DynamicDataSeq received data,
SampleInfoSeq info seq, int max samples,
InstanceHandle t a handle, int sample states, int
view states, int instance states)

Access a collection of data samples from the
com.rti.dds.subscription.DataReader (p. 473).

This operation accesses a collection of data values from the
com.rti.dds.subscription.DataReader (p. 473). The behavior is iden-
tical to com.rti.dds.topic.example.FooDataReader.read, except that all samples
returned belong to the single specified instance whose handle is a handle.

Upon successful completion, the data collection will contain
samples all belonging to the same instance. The correspond-
ing com.rti.dds.subscription.SampleInfo (p. 1404) verifies
com.rti.dds.subscription.SampleInfo.instance handle (p. 1410) ==
a handle.

The com.rti.dds.topic.example.FooDataReader.read instance operation is
semantically equivalent to the com.rti.dds.topic.example.FooDataReader.read
operation, except in building the collection, the
com.rti.dds.subscription.DataReader (p. 473) will check that the sample
belongs to the specified instance and otherwise it will not place the sample in
the returned collection.

The behavior of the com.rti.dds.topic.example.FooDataReader.read -
instance operation follows the same rules as the

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.77 DynamicDataReader Class Reference 867

com.rti.dds.topic.example.FooDataReader.read operation regarding the
pre-conditions and post-conditions for the received data and sample -
info. Similar to the com.rti.dds.topic.example.FooDataReader.read, the
com.rti.dds.topic.example.FooDataReader.read instance operation may ’loan’
elements to the output collections, which must then be returned by means of
com.rti.dds.topic.example.FooDataReader.return loan.

Similar to the com.rti.dds.topic.example.FooDataReader.read, this operation
must be provided on the specialized class that is generated for the particular
application data-type that is being taken.

If the com.rti.dds.subscription.DataReader (p. 473) has no samples that
meet the constraints, the method will fail with RETCODE NO DATA.

This operation may fail with RETCODE BAD PARAMETER if
the com.rti.dds.infrastructure.InstanceHandle t (p. 1080) a -
handle does not correspond to an existing data-object known to the
com.rti.dds.subscription.DataReader (p. 473).

Parameters:

received data <<inout>> (p. 271) user data type-specific
com.rti.dds.util.Sequence (p. 1432) object where the received
data samples will be returned. Must be a valid non-NULL FooSeq.
The method will fail with RETCODE BAD PARAMETER if it is
NULL.

info seq <<inout>> (p. 271) a com.rti.dds.subscription.SampleInfoSeq
(p. 1414) object where the received sample info will be returned. Must
be a valid non-NULL com.rti.dds.subscription.SampleInfoSeq
(p. 1414). The method will fail with RETCODE BAD PARAMETER
if it is NULL.

max samples <<in>> (p. 271) The maximum number of samples to be
returned. If the special value ResourceLimitsQosPolicy.LENGTH -
UNLIMITED is provided, as many samples will be returned as
are available, up to the limits described in the documentation for
com.rti.dds.topic.example.FooDataReader.take().

a handle <<in>> (p. 271) The specified instance to re-
turn samples for. Must be a valid non-NULL
com.rti.dds.infrastructure.InstanceHandle t (p. 1080). The
method will fail with RETCODE BAD PARAMETER if it is NULL
The method will fail with RETCODE BAD PARAMETER if the
handle does not correspond to an existing data-object known to the
com.rti.dds.subscription.DataReader (p. 473).

sample states <<in>> (p. 271) data samples matching ones of these
sample states are returned

view states <<in>> (p. 271) data samples matching ones of these
view state are returned

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

868 Class Documentation

instance states <<in>> (p. 271) data samples matching ones of these
instance state are returned

Exceptions:

One of the Standard Return Codes (p. 104), RETCODE -
PRECONDITION NOT MET, RETCODE NO DATA or RET-
CODE NOT ENABLED.

See also:

com.rti.dds.topic.example.FooDataReader.read
ResourceLimitsQosPolicy.LENGTH UNLIMITED

8.77.3.6 void take instance (DynamicDataSeq received data,
SampleInfoSeq info seq, int max samples,
InstanceHandle t a handle, int sample states, int
view states, int instance states)

Access a collection of data samples from the
com.rti.dds.subscription.DataReader (p. 473).

This operation accesses a collection of data values from the
com.rti.dds.subscription.DataReader (p. 473). The behavior is iden-
tical to com.rti.dds.topic.example.FooDataReader.take, except for that all
samples returned belong to the single specified instance whose handle is
a handle.

The semantics are the same for the com.rti.dds.topic.example.FooDataReader.take
operation, except in building the collection, the
com.rti.dds.subscription.DataReader (p. 473) will check that the sample
belongs to the specified instance, and otherwise it will not place the sample in
the returned collection.

The behavior of the com.rti.dds.topic.example.FooDataReader.take -
instance operation follows the same rules as the
com.rti.dds.topic.example.FooDataReader.read operation regarding the
pre-conditions and post-conditions for the received data and sample -
info. Similar to the com.rti.dds.topic.example.FooDataReader.read, the
com.rti.dds.topic.example.FooDataReader.take instance operation may ’loan’
elements to the output collections, which must then be returned by means of
com.rti.dds.topic.example.FooDataReader.return loan.

Similar to the com.rti.dds.topic.example.FooDataReader.read, this operation
must be provided on the specialized class that is generated for the particular
application data-type that is being taken.

If the com.rti.dds.subscription.DataReader (p. 473) has no samples that
meet the constraints, the method fails with RETCODE NO DATA.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.77 DynamicDataReader Class Reference 869

This operation may fail with RETCODE BAD PARAMETER if
the com.rti.dds.infrastructure.InstanceHandle t (p. 1080) a -
handle does not correspond to an existing data-object known to the
com.rti.dds.subscription.DataReader (p. 473).

Parameters:

received data <<inout>> (p. 271) user data type-specific
com.rti.dds.util.Sequence (p. 1432) object where the received
data samples will be returned. Must be a valid non-NULL FooSeq.
The method will fail with RETCODE BAD PARAMETER if it is
NULL.

info seq <<inout>> (p. 271) a com.rti.dds.subscription.SampleInfoSeq
(p. 1414) object where the received sample info will be returned. Must
be a valid non-NULL com.rti.dds.subscription.SampleInfoSeq
(p. 1414). The method will fail with RETCODE BAD PARAMETER
if it is NULL.

max samples <<in>> (p. 271) The maximum number of samples to be
returned. If the special value ResourceLimitsQosPolicy.LENGTH -
UNLIMITED is provided, as many samples will be returned as
are available, up to the limits described in the documentation for
com.rti.dds.topic.example.FooDataReader.take().

a handle <<in>> (p. 271) The specified instance to re-
turn samples for. Must be a valid non-NULL
com.rti.dds.infrastructure.InstanceHandle t (p. 1080). The
method will fail with RETCODE BAD PARAMETER if it is NULL.
The method will fail with RETCODE BAD PARAMETER if the
handle does not correspond to an existing data-object known to the
com.rti.dds.subscription.DataReader (p. 473).

sample states <<in>> (p. 271) data samples matching ones of these
sample states are returned

view states <<in>> (p. 271) data samples matching ones of these
view state are returned

instance states <<in>> (p. 271) data samples matching ones of these
instance state are returned

Exceptions:

One of the Standard Return Codes (p. 104), RETCODE -
PRECONDITION NOT MET, RETCODE NO DATA or RET-
CODE NOT ENABLED.

See also:

com.rti.dds.topic.example.FooDataReader.take
ResourceLimitsQosPolicy.LENGTH UNLIMITED

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

870 Class Documentation

8.77.3.7 void read instance w condition (DynamicDataSeq
received data, SampleInfoSeq info seq, int max samples,
InstanceHandle t previous handle, ReadCondition
condition)

8.77.3.8 void take instance w condition (DynamicDataSeq
received data, SampleInfoSeq info seq, int max samples,
InstanceHandle t previous handle, ReadCondition
condition)

8.77.3.9 void read next instance (DynamicDataSeq received data,
SampleInfoSeq info seq, int max samples,
InstanceHandle t previous handle, int sample states, int
view states, int instance states)

Access a collection of data samples from the
com.rti.dds.subscription.DataReader (p. 473).

This operation accesses a collection of data values from the
com.rti.dds.subscription.DataReader (p. 473) where all the sam-
ples belong to a single instance. The behavior is similar to
com.rti.dds.topic.example.FooDataReader.read instance, except that the
actual instance is not directly specified. Rather, the samples will all belong
to the ’next’ instance with instance handle ’greater’ than the specified
’previous handle’ that has available samples.

This operation implies the existence of a total order ’greater-than’ relation-
ship between the instance handles. The specifics of this relationship are not
all important and are implementation specific. The important thing is that,
according to the middleware, all instances are ordered relative to each other.
This ordering is between the instance handles; It should not depend on the
state of the instance (e.g. whether it has data or not) and must be defined even
for instance handles that do not correspond to instances currently managed by
the com.rti.dds.subscription.DataReader (p. 473). For the purposes of the
ordering, it should be ’as if’ each instance handle was represented as unique
integer.

The behavior of com.rti.dds.topic.example.FooDataReader.read next instance
is ’as if’ the com.rti.dds.subscription.DataReader (p. 473) invoked
com.rti.dds.topic.example.FooDataReader.read instance, passing the smallest
instance handle among all the ones that: (a) are greater than previous -
handle, and (b) have available samples (i.e. samples that meet the constraints
imposed by the specified states).

The special value InstanceHandle t.HANDLE NIL (p. 1082) is guaranteed
to be ’less than’ any valid instance handle. So the use of the parameter
value previous handle == InstanceHandle t.HANDLE NIL (p. 1082) will
return the samples for the instance which has the smallest instance handle

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.77 DynamicDataReader Class Reference 871

among all the instances that contain available samples.

The operation com.rti.dds.topic.example.FooDataReader.read next instance is
intended to be used in an application-driven iteration, where the applica-
tion starts by passing previous handle == InstanceHandle t.HANDLE -
NIL (p. 1082), examines the samples returned, and then uses the instance -
handle returned in the com.rti.dds.subscription.SampleInfo (p. 1404)
as the value of the previous handle argument to the next call to
com.rti.dds.topic.example.FooDataReader.read next instance. The iteration
continues until com.rti.dds.topic.example.FooDataReader.read next instance
fails with the value RETCODE NO DATA.

Note that it is possible to call the com.rti.dds.topic.example.FooDataReader.read -
next instance operation with a previous handle that does not correspond to an
instance currently managed by the com.rti.dds.subscription.DataReader
(p. 473). This is because as stated earlier the ’greater-than’
relationship is defined even for handles not managed by the
com.rti.dds.subscription.DataReader (p. 473). One practical situa-
tion where this may occur is when an application is iterating though all the
instances, takes all the samples of a InstanceStateKind.NOT ALIVE NO -
WRITERS INSTANCE STATE instance, returns the loan (at which point the
instance information may be removed, and thus the handle becomes invalid),
and tries to read the next instance.

The behavior of the com.rti.dds.topic.example.FooDataReader.read -
next instance operation follows the same rules as the
com.rti.dds.topic.example.FooDataReader.read operation regarding the
pre-conditions and post-conditions for the received data and sample -
info. Similar to the com.rti.dds.topic.example.FooDataReader.read, the
com.rti.dds.topic.example.FooDataReader.read instance operation may ’loan’
elements to the output collections, which must then be returned by means of
com.rti.dds.topic.example.FooDataReader.return loan.

Similar to the com.rti.dds.topic.example.FooDataReader.read, this operation
must be provided on the specialized class that is generated for the particular
application data-type that is being taken.

If the com.rti.dds.subscription.DataReader (p. 473) has no samples that
meet the constraints, the method will fail with RETCODE NO DATA.

Parameters:

received data <<inout>> (p. 271) user data type-specific
com.rti.dds.util.Sequence (p. 1432) object where the received
data samples will be returned. Must be a valid non-NULL FooSeq.
The method will fail with RETCODE BAD PARAMETER if it is
NULL.

info seq <<inout>> (p. 271) a com.rti.dds.subscription.SampleInfoSeq
(p. 1414) object where the received sample info will be returned. Must

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

872 Class Documentation

be a valid non-NULL com.rti.dds.subscription.SampleInfoSeq
(p. 1414). The method will fail with RETCODE BAD PARAMETER
if it is NULL.

max samples <<in>> (p. 271) The maximum number of samples to be
returned. If the special value ResourceLimitsQosPolicy.LENGTH -
UNLIMITED is provided, as many samples will be returned as
are available, up to the limits described in the documentation for
com.rti.dds.topic.example.FooDataReader.take().

previous handle <<in>> (p. 271) The ’next smallest’ in-
stance with a value greater than this value that has avail-
able samples will be returned. Must be a valid non-NULL
com.rti.dds.infrastructure.InstanceHandle t (p. 1080). The
method will fail with RETCODE BAD PARAMETER if it is NULL.

sample states <<in>> (p. 271) data samples matching ones of these
sample states are returned

view states <<in>> (p. 271) data samples matching ones of these
view state are returned

instance states <<in>> (p. 271) data samples matching ones of these
instance state are returned

Exceptions:

One of the Standard Return Codes (p. 104), RETCODE -
PRECONDITION NOT MET RETCODE NO DATA or RET-
CODE NOT ENABLED.

See also:

com.rti.dds.topic.example.FooDataReader.read
ResourceLimitsQosPolicy.LENGTH UNLIMITED

8.77.3.10 void take next instance (DynamicDataSeq received data,
SampleInfoSeq info seq, int max samples,
InstanceHandle t previous handle, int sample states, int
view states, int instance states)

Access a collection of data samples from the
com.rti.dds.subscription.DataReader (p. 473).

This operation accesses a collection of data values from the
com.rti.dds.subscription.DataReader (p. 473) and ’removes’ them from
the com.rti.dds.subscription.DataReader (p. 473).

This operation has the same behavior as
com.rti.dds.topic.example.FooDataReader.read next instance, except that

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.77 DynamicDataReader Class Reference 873

the samples are ’taken’ from the com.rti.dds.subscription.DataReader
(p. 473) such that they are no longer accessible via subsequent ’read’ or ’take’
operations.

Similar to the operation com.rti.dds.topic.example.FooDataReader.read next -
instance, it is possible to call com.rti.dds.topic.example.FooDataReader.take -
next instance with a previous handle that does not correspond to an instance
currently managed by the com.rti.dds.subscription.DataReader (p. 473).

The behavior of the com.rti.dds.topic.example.FooDataReader.take -
next instance operation follows the same rules as the
com.rti.dds.topic.example.FooDataReader.read operation regarding the
pre-conditions and post-conditions for the received data and sample -
info. Similar to the com.rti.dds.topic.example.FooDataReader.read, the
com.rti.dds.topic.example.FooDataReader.take next instance operation may
’loan’ elements to the output collections, which must then be returned by
means of com.rti.dds.topic.example.FooDataReader.return loan.

Similar to the com.rti.dds.topic.example.FooDataReader.read, this operation
must be provided on the specialized class that is generated for the particular
application data-type that is being taken.

If the com.rti.dds.subscription.DataReader (p. 473) has no samples that
meet the constraints, the method will fail with RETCODE NO DATA.

Parameters:

received data <<inout>> (p. 271) user data type-specific
com.rti.dds.util.Sequence (p. 1432) object where the received
data samples will be returned. Must be a valid non-NULL FooSeq.
The method will fail with RETCODE BAD PARAMETER if it is
NULL.

info seq <<inout>> (p. 271) a com.rti.dds.subscription.SampleInfoSeq
(p. 1414) object where the received sample info will be returned. Must
be a valid non-NULL com.rti.dds.subscription.SampleInfoSeq
(p. 1414). The method will fail with RETCODE BAD PARAMETER
if it is NULL.

max samples <<in>> (p. 271) The maximum number of samples to be
returned. If the special value ResourceLimitsQosPolicy.LENGTH -
UNLIMITED is provided, as many samples will be returned as
are available, up to the limits described in the documentation for
com.rti.dds.topic.example.FooDataReader.take().

previous handle <<in>> (p. 271) The ’next smallest’ in-
stance with a value greater than this value that has avail-
able samples will be returned. Must be a valid non-NULL
com.rti.dds.infrastructure.InstanceHandle t (p. 1080). The
method will fail with RETCODE BAD PARAMETER if it is NULL.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

874 Class Documentation

sample states <<in>> (p. 271) data samples matching ones of these
sample states are returned

view states <<in>> (p. 271) data samples matching ones of these
view state are returned

instance states <<in>> (p. 271) data samples matching ones of these
instance state are returned

Exceptions:

One of the Standard Return Codes (p. 104), RETCODE -
PRECONDITION NOT MET, RETCODE NO DATA or RET-
CODE NOT ENABLED.

See also:

com.rti.dds.topic.example.FooDataReader.take
ResourceLimitsQosPolicy.LENGTH UNLIMITED

8.77.3.11 void read next instance w condition (DynamicDataSeq
received data, SampleInfoSeq info seq, int max samples,
InstanceHandle t previous handle, ReadCondition
condition)

Accesses via com.rti.dds.topic.example.FooDataReader.read next -
instance the samples that match the criteria specified in the
com.rti.dds.subscription.ReadCondition (p. 1326).

This operation accesses a collection of data values from the
com.rti.dds.subscription.DataReader (p. 473). The behavior is iden-
tical to com.rti.dds.topic.example.FooDataReader.read next instance, except
that all returned samples satisfy the specified condition. In other words, on
success, all returned samples belong to the same instance, and the instance is
the instance with ’smallest’ instance handle among the ones that verify: (a)
instance handle >= previous handle, and (b) have samples for which the
specified com.rti.dds.subscription.ReadCondition (p. 1326) evaluates to
TRUE.

Similar to the operation com.rti.dds.topic.example.FooDataReader.read next -
instance, it is possible to call com.rti.dds.topic.example.FooDataReader.read -
next instance w condition with a previous handle that does
not correspond to an instance currently managed by the
com.rti.dds.subscription.DataReader (p. 473).

The behavior of the com.rti.dds.topic.example.FooDataReader.read -
next instance w condition operation follows the same rules as the
com.rti.dds.topic.example.FooDataReader.read operation regarding the

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.77 DynamicDataReader Class Reference 875

pre-conditions and post-conditions for the received data and sample -
info. Similar to the com.rti.dds.topic.example.FooDataReader.read, the
com.rti.dds.topic.example.FooDataReader.read next instance w condition op-
eration may ’loan’ elements to the output collections, which must then be
returned by means of com.rti.dds.topic.example.FooDataReader.return loan.

Similar to the com.rti.dds.topic.example.FooDataReader.read, this operation
must be provided on the specialized class that is generated for the particular
application data-type that is being taken.

If the com.rti.dds.subscription.DataReader (p. 473) has no samples that
meet the constraints, the method will fail with RETCODE NO DATA.

Parameters:

received data <<inout>> (p. 271) user data type-specific
com.rti.dds.util.Sequence (p. 1432) object where the received
data samples will be returned. Must be a valid non-NULL FooSeq.
The method will fail with RETCODE BAD PARAMETER if it is
NULL.

info seq <<inout>> (p. 271) a com.rti.dds.subscription.SampleInfoSeq
(p. 1414) object where the received sample info will be returned. Must
be a valid non-NULL com.rti.dds.subscription.SampleInfoSeq
(p. 1414). The method will fail with RETCODE BAD PARAMETER
if it is NULL.

max samples <<in>> (p. 271) The maximum number of samples to be
returned. If the special value ResourceLimitsQosPolicy.LENGTH -
UNLIMITED is provided, as many samples will be returned as
are available, up to the limits described in the documentation for
com.rti.dds.topic.example.FooDataReader.take().

previous handle <<in>> (p. 271) The ’next smallest’ in-
stance with a value greater than this value that has avail-
able samples will be returned. Must be a valid non-NULL
com.rti.dds.infrastructure.InstanceHandle t (p. 1080). The
method will fail with RETCODE BAD PARAMETER if it is NULL.

condition <<in>> (p. 271) the com.rti.dds.subscription.ReadCondition
(p. 1326) to select samples of interest. Cannot be NULL.

Exceptions:

One of the Standard Return Codes (p. 104), RETCODE -
PRECONDITION NOT MET RETCODE NO DATA or RET-
CODE NOT ENABLED.

See also:

com.rti.dds.topic.example.FooDataReader.read next instance
ResourceLimitsQosPolicy.LENGTH UNLIMITED

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

876 Class Documentation

8.77.3.12 void take next instance w condition (DynamicDataSeq
received data, SampleInfoSeq info seq, int max samples,
InstanceHandle t previous handle, ReadCondition
condition)

Accesses via com.rti.dds.topic.example.FooDataReader.take next -
instance the samples that match the criteria specified in the
com.rti.dds.subscription.ReadCondition (p. 1326).

This operation accesses a collection of data values from the
com.rti.dds.subscription.DataReader (p. 473) and ’removes’ them from
the com.rti.dds.subscription.DataReader (p. 473).

The operation has the same behavior as
com.rti.dds.topic.example.FooDataReader.read next instance w -
condition, except that the samples are ’taken’ from the
com.rti.dds.subscription.DataReader (p. 473) such that they are no
longer accessible via subsequent ’read’ or ’take’ operations.

Similar to the operation com.rti.dds.topic.example.FooDataReader.read next -
instance, it is possible to call com.rti.dds.topic.example.FooDataReader.take -
next instance w condition with a previous handle that does
not correspond to an instance currently managed by the
com.rti.dds.subscription.DataReader (p. 473).

The behavior of the com.rti.dds.topic.example.FooDataReader.take -
next instance w condition operation follows the same rules as the
com.rti.dds.topic.example.FooDataReader.read operation regarding the
pre-conditions and post-conditions for the received data and sample -
info. Similar to com.rti.dds.topic.example.FooDataReader.read, the
com.rti.dds.topic.example.FooDataReader.take next instance w condition
operation may ’loan’ elements to the output collections, which must then be
returned by means of com.rti.dds.topic.example.FooDataReader.return loan.

Similar to the com.rti.dds.topic.example.FooDataReader.read, this operation
must be provided on the specialized class that is generated for the particular
application data-type that is being taken.

If the com.rti.dds.subscription.DataReader (p. 473) has no samples that
meet the constraints, the method will fail with RETCODE NO DATA.

Parameters:

received data <<inout>> (p. 271) user data type-specific
com.rti.dds.util.Sequence (p. 1432) object where the received
data samples will be returned. Must be a valid non-NULL FooSeq.
The method will fail with RETCODE BAD PARAMETER if it is
NULL.

info seq <<inout>> (p. 271) a com.rti.dds.subscription.SampleInfoSeq

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.77 DynamicDataReader Class Reference 877

(p. 1414) object where the received sample info will be returned. Must
be a valid non-NULL com.rti.dds.subscription.SampleInfoSeq
(p. 1414). The method will fail with RETCODE BAD PARAMETER
if it is NULL.

max samples <<in>> (p. 271) The maximum number of samples to be
returned. If the special value ResourceLimitsQosPolicy.LENGTH -
UNLIMITED is provided, as many samples will be returned as
are available, up to the limits described in the documentation for
com.rti.dds.topic.example.FooDataReader.take().

previous handle <<in>> (p. 271) The ’next smallest’ in-
stance with a value greater than this value that has avail-
able samples will be returned. Must be a valid non-NULL
com.rti.dds.infrastructure.InstanceHandle t (p. 1080). The
method will fail with RETCODE BAD PARAMETER if it is NULL.

condition <<in>> (p. 271) the com.rti.dds.subscription.ReadCondition
(p. 1326) to select samples of interest. Cannot be NULL.

Exceptions:

One of the Standard Return Codes (p. 104), RETCODE -
PRECONDITION NOT MET, or RETCODE NO DATA, RET-
CODE NOT ENABLED.

See also:

com.rti.dds.topic.example.FooDataReader.take next instance
ResourceLimitsQosPolicy.LENGTH UNLIMITED

8.77.3.13 void return loan (DynamicDataSeq received data,
SampleInfoSeq info seq)

Indicates to the com.rti.dds.subscription.DataReader (p. 473) that
the application is done accessing the collection of received data and
info seq obtained by some earlier invocation of read or take on the
com.rti.dds.subscription.DataReader (p. 473).

This operation indicates to the com.rti.dds.subscription.DataReader
(p. 473) that the application is done accessing the collection of received -
data and info seq obtained by some earlier invocation of read or take on the
com.rti.dds.subscription.DataReader (p. 473).

The received data and info seq must belong to a single related ”pair”; that
is, they should correspond to a pair returned from a single call to read or take.
The received data and info seq must also have been obtained from the same
com.rti.dds.subscription.DataReader (p. 473) to which they are returned.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

878 Class Documentation

If either of these conditions is not met, the operation will fail with RETCODE -
PRECONDITION NOT MET.

The operation com.rti.dds.topic.example.FooDataReader.return loan allows im-
plementations of the read and take operations to ”loan” buffers from the
com.rti.dds.subscription.DataReader (p. 473) to the application and in
this manner provide ”zerocopy” access to the data. During the loan, the
com.rti.dds.subscription.DataReader (p. 473) will guarantee that the data
and sample-information are not modified.

It is not necessary for an application to return the loans immediately after the
read or take calls. However, as these buffers correspond to internal resources
inside the com.rti.dds.subscription.DataReader (p. 473), the application
should not retain them indefinitely.

The use of com.rti.dds.topic.example.FooDataReader.return loan is only neces-
sary if the read or take calls ”loaned” buffers to the application. This only
occurs if the received data and info Seq collections had max len=0 at the
time read or take was called.

If the collections had a loan, upon completion of
com.rti.dds.topic.example.FooDataReader.return loan, the collections will
have max len=0.

Similar to read, this operation must be provided on the specialized class that is
generated for the particular application data-type that is being taken.

Parameters:

received data <<in>> (p. 271) user data type-specific
com.rti.dds.util.Sequence (p. 1432) object where the received
data samples was obtained from earlier invocation of read or take
on the com.rti.dds.subscription.DataReader (p. 473). Must be
a valid non-NULL FooSeq. The method will fail with RETCODE -
BAD PARAMETER if it is NULL.

Parameters:

info seq <<in>> (p. 271) a com.rti.dds.subscription.SampleInfoSeq
(p. 1414) object where the received sample info was ob-
tained from earlier invocation of read or take on the
com.rti.dds.subscription.DataReader (p. 473). Must be a valid
non-NULL com.rti.dds.subscription.SampleInfoSeq (p. 1414).
The method will fail with RETCODE BAD PARAMETER if it is
NULL.

Exceptions:

One of the Standard Return Codes (p. 104), RETCODE -
PRECONDITION NOT MET or RETCODE NOT ENABLED.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.77 DynamicDataReader Class Reference 879

8.77.3.14 void get key value (DynamicData key holder,
InstanceHandle t handle)

Retrieve the instance key that corresponds to an instance handle.

Useful for keyed data types.

The operation will only fill the fields that form the key inside the key holder
instance.

For keyed data types, this operation may fail with RETCODE BAD -
PARAMETER if the handle does not correspond to an existing data-object
known to the com.rti.dds.subscription.DataReader (p. 473).

Parameters:

key holder <<inout>> (p. 271) a user data type specific key holder,
whose key fields are filled by this operation. If Foo has no key, this
method has no effect. This method will fail with RETCODE BAD -
PARAMETER if key holder is NULL.

handle <<in>> (p. 271) the instance whose key is to be retrieved.
If Foo has a key, handle must represent an existing instance of
type Foo known to the com.rti.dds.subscription.DataReader
(p. 473). Otherwise, this method will fail with RETCODE BAD -
PARAMETER. If Foo has a key and handle is InstanceHandle -
t.HANDLE NIL (p. 1082), this method will fail with RETCODE -
BAD PARAMETER. If Foo has a key and handle represents an in-
stance of another type or an instance of type Foo that has been unreg-
istered, this method will fail with RETCODE BAD PARAMETER.
If Foo has no key, this method has no effect. This method will fail
with RETCODE BAD PARAMETER if handle is NULL.

Exceptions:

One of the Standard Return Codes (p. 104) or RETCODE NOT -
ENABLED.

See also:

com.rti.dds.topic.example.FooDataWriter.get key value

8.77.3.15 InstanceHandle t lookup instance (DynamicData
key holder)

Retrieves the instance handle that corresponds to an instance key holder.

Useful for keyed data types.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

880 Class Documentation

This operation takes as a parameter an instance and returns a handle that can
be used in subsequent operations that accept an instance handle as an argument.
The instance parameter is only used for the purpose of examining the fields that
define the key. This operation does not register the instance in question. If the
instance has not been previously registered, or if for any other reason the Service
is unable to provide an instance handle, the Service will return the special value
HANDLE NIL.

Parameters:

key holder <<in>> (p. 271) a user data type specific key holder.

Returns:

the instance handle associated with this instance. If Foo has no key,
this method has no effect and returns InstanceHandle t.HANDLE -
NIL (p. 1082)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.78 DynamicDataSeq Class Reference 881

8.78 DynamicDataSeq Class Reference

An ordered collection of com.rti.dds.dynamicdata.DynamicData (p. 780)
elements.

Inheritance diagram for DynamicDataSeq::

Public Member Functions

ˆ DynamicDataSeq ()
Construct a new empty com.rti.dds.dynamicdata.DynamicDataSeq
(p. 881).

ˆ DynamicDataSeq (int initialMaximum)
Construct a new empty com.rti.dds.dynamicdata.DynamicDataSeq
(p. 881).

ˆ DynamicDataSeq (Collection elements)
Construct a new com.rti.dds.dynamicdata.DynamicDataSeq (p. 881)
containing the same elements as the given collection.

8.78.1 Detailed Description

An ordered collection of com.rti.dds.dynamicdata.DynamicData (p. 780)
elements.

Instantiates com.rti.dds.util.Sequence (p. 1432) <
com.rti.dds.dynamicdata.DynamicData (p. 780) > .

See also:

com.rti.dds.util.Sequence (p. 1432)
com.rti.dds.dynamicdata.DynamicData (p. 780)
http://java.sun.com/javase/6/docs/api/java/util/List.html

8.78.2 Constructor & Destructor Documentation

8.78.2.1 DynamicDataSeq ()

Construct a new empty com.rti.dds.dynamicdata.DynamicDataSeq
(p. 881).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

882 Class Documentation

8.78.2.2 DynamicDataSeq (int initialMaximum)

Construct a new empty com.rti.dds.dynamicdata.DynamicDataSeq
(p. 881).

The new sequence will have the given maximum. (The maximum of the sequence
is equivalent to what, in an ArrayList, is called the capacity .)

See also:

Sequence.getMaximum (p. 1433)
http://java.sun.com/javase/6/docs/api/java/util/ArrayList.html

8.78.2.3 DynamicDataSeq (Collection elements)

Construct a new com.rti.dds.dynamicdata.DynamicDataSeq (p. 881) con-
taining the same elements as the given collection.

See also:

http://java.sun.com/javase/6/docs/api/java/util/Collection.html

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.79 DynamicDataTypeProperty t Class Reference 883

8.79 DynamicDataTypeProperty t Class Refer-
ence

A collection of attributes used to configure
com.rti.dds.dynamicdata.DynamicData (p. 780) objects.

Public Member Functions

ˆ DynamicDataTypeProperty t ()

The constructor.

ˆ DynamicDataTypeProperty t (DynamicDataProperty t data,
DynamicDataTypeSerializationProperty t serialization)

The constructor.

Public Attributes

ˆ final DynamicDataProperty t data

These properties will be provided to every new
com.rti.dds.dynamicdata.DynamicData (p. 780) sample created from
the com.rti.dds.dynamicdata.DynamicDataTypeSupport (p. 887).

ˆ final DynamicDataTypeSerializationProperty t serialization

Properties that govern how the data of this type will be serialized on the
network.

8.79.1 Detailed Description

A collection of attributes used to configure
com.rti.dds.dynamicdata.DynamicData (p. 780) objects.

8.79.2 Constructor & Destructor Documentation

8.79.2.1 DynamicDataTypeProperty t ()

The constructor.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

884 Class Documentation

8.79.2.2 DynamicDataTypeProperty t (DynamicDataProperty t
data, DynamicDataTypeSerializationProperty t
serialization)

The constructor.

8.79.3 Member Data Documentation

8.79.3.1 final DynamicDataProperty t data

Initial value:

new DynamicDataProperty_t()

These properties will be provided to every new
com.rti.dds.dynamicdata.DynamicData (p. 780) sample created from
the com.rti.dds.dynamicdata.DynamicDataTypeSupport (p. 887).

8.79.3.2 final DynamicDataTypeSerializationProperty t
serialization

Initial value:

new DynamicDataTypeSerializationProperty_t()

Properties that govern how the data of this type will be serialized on the net-
work.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.80 DynamicDataTypeSerializationProperty t Class Reference 885

8.80 DynamicDataTypeSerializationProperty t
Class Reference

Properties that govern how data of a certain type will be serialized on the
network.

Public Member Functions

ˆ DynamicDataTypeSerializationProperty t ()
The constructor.

ˆ DynamicDataTypeSerializationProperty t (boolean use 42e -
compatible alignment, int max size serialized)

The constructor.

Public Attributes

ˆ boolean use 42e compatible alignment = false
Use RTI Connext 4.2e-compatible alignment for large primitive types.

ˆ int max size serialized = 0xffffffff
The maximum number of bytes that objects of a given type could consume
when serialized on the network.

8.80.1 Detailed Description

Properties that govern how data of a certain type will be serialized on the
network.

8.80.2 Constructor & Destructor Documentation

8.80.2.1 DynamicDataTypeSerializationProperty t ()

The constructor.

8.80.2.2 DynamicDataTypeSerializationProperty t (boolean
use 42e compatible alignment, int max size serialized)

The constructor.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

886 Class Documentation

8.80.3 Member Data Documentation

8.80.3.1 boolean use 42e compatible alignment = false

Use RTI Connext 4.2e-compatible alignment for large primitive types.

In RTI Connext 4.2e, the default alignment for large primitive types – long, long,
double, and com.rti.dds.infrastructure.LongDouble – was not RTPS-compliant.
This compatibility mode allows applications targeting post-4.2e versions of RTI
Connext to interoperate with 4.2e-based applications, regardless of the data
types they use.

If this flag is not set, all data will be serialized in an RTPS-compliant manner,
which for the types listed above, will not be interoperable with RTI Connext
4.2e.

8.80.3.2 int max size serialized = 0xffffffff

The maximum number of bytes that objects of a given type could consume when
serialized on the network.

This value is used to set the sizes of certain internal middleware buffers.

The effective value of the maximum serialized size will be the value of this field or
the size automatically inferred from the type’s TypeCode, whichever is smaller.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.81 DynamicDataTypeSupport Class Reference 887

8.81 DynamicDataTypeSupport Class Refer-
ence

A factory for registering a dynamically defined type and creating
com.rti.dds.dynamicdata.DynamicData (p. 780) objects.

Inheritance diagram for DynamicDataTypeSupport::

Public Member Functions

ˆ final void register type (DomainParticipant participant, String type -
name)

Associate the TypeCode with the given
com.rti.dds.domain.DomainParticipant (p. 629) under the given
logical name.

ˆ final void unregister type (DomainParticipant participant, String
type name)

Remove the definition of this type from the
com.rti.dds.domain.DomainParticipant (p. 629).

ˆ final String get type name ()
Get the default name of this type.

ˆ final TypeCode get data type ()
Get the TypeCode wrapped by this com.rti.dds.dynamicdata.DynamicDataTypeSupport
(p. 887).

ˆ Object create data ()
Create a new com.rti.dds.dynamicdata.DynamicData (p. 780)
sample initialized with the TypeCode and properties of this
com.rti.dds.dynamicdata.DynamicDataTypeSupport (p. 887).

ˆ void destroy data (Object data)
Finalize and deallocate the com.rti.dds.dynamicdata.DynamicData
(p. 780) sample.

ˆ void print data (DynamicData data)
Print a string representation of the given sample to the given file.

ˆ void copy data (DynamicData dst, DynamicData src)
Deeply copy the given data samples.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

888 Class Documentation

ˆ void delete ()
Delete a com.rti.dds.dynamicdata.DynamicDataTypeSupport (p. 887)
object.

ˆ DynamicDataTypeSupport (TypeCode type, DynamicDataType-
Property t props)

Construct a new com.rti.dds.dynamicdata.DynamicDataTypeSupport
(p. 887) object.

Static Public Attributes

ˆ static final DynamicDataTypeProperty t TYPE PROPERTY -
DEFAULT

Sentinel constant indicating default values for
com.rti.dds.dynamicdata.DynamicDataTypeProperty t (p. 883).

Static Protected Attributes

ˆ static final RuntimeException DYNAMICDATA TYPE NOT -
SUPPORTED = new RETCODE ERROR(”not a top-level type”)

8.81.1 Detailed Description

A factory for registering a dynamically defined type and creating
com.rti.dds.dynamicdata.DynamicData (p. 780) objects.

A com.rti.dds.dynamicdata.DynamicDataTypeSupport (p. 887) has
three roles:

1. It associates a TypeCode with policies for managing objects
of that type. See the constructor, DynamicDataTypeSup-
port.DynamicDataTypeSupport (p. 889).

2. It registers its type under logical names with a
com.rti.dds.domain.DomainParticipant (p. 629). See
com.rti.dds.dynamicdata.DynamicDataTypeSupport.register -
type (p. 889).

3. It creates com.rti.dds.dynamicdata.DynamicData (p. 780) samples
pre-initialized with the type and properties of the type support itself. See
com.rti.dds.dynamicdata.DynamicDataTypeSupport.create -
data (p. 891).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.81 DynamicDataTypeSupport Class Reference 889

8.81.2 Constructor & Destructor Documentation

8.81.2.1 DynamicDataTypeSupport (TypeCode type,
DynamicDataTypeProperty t props)

Construct a new com.rti.dds.dynamicdata.DynamicDataTypeSupport
(p. 887) object.

This step is usually followed by type registration.

The new object created by this constructor retains a reference to the Type-
Code that is passed in. It is not safe to delete the TypeCode until
the com.rti.dds.dynamicdata.DynamicDataTypeSupport (p. 887) itself
is deleted. You have two options:

ˆ Keep a reference to the TypeCode object yourself, and delete it
with TypeCodeFactory.delete tc (p. 1650) after you’ve deleted the
com.rti.dds.dynamicdata.DynamicDataTypeSupport (p. 887).

ˆ Do not keep a reference to the TypeCode. The garbage collector will
delete it when it’s eligible for collection.

Parameters:

type The TypeCode that describes the members of this type.

props Policies that describe how to manage the memory and other prop-
erties of the data samples created by this factory. In most cases,
the default values will be appropriate; see DynamicDataTypeSup-
port.TYPE PROPERTY DEFAULT (p. 174).

See also:

com.rti.dds.dynamicdata.DynamicDataTypeSupport.register -
type (p. 889)

8.81.3 Member Function Documentation

8.81.3.1 final void register type (DomainParticipant participant,
String type name)

Associate the TypeCode with the given com.rti.dds.domain.DomainParticipant
(p. 629) under the given logical name.

Once a type has been registered, it can be referenced by name when creating a
topic (p. 350). Statically and dynamically defined types behave the same way
in this respect.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

890 Class Documentation

See also:

com.rti.dds.topic.example.FooTypeSupport.register type (p. 1060)
com.rti.dds.domain.DomainParticipant.create topic (p. 670)
com.rti.dds.dynamicdata.DynamicDataTypeSupport.unregister -
type (p. 890)

8.81.3.2 final void unregister type (DomainParticipant participant,
String type name)

Remove the definition of this type from the
com.rti.dds.domain.DomainParticipant (p. 629).

This operation is optional; all types are automatically unregistered when a
com.rti.dds.domain.DomainParticipant (p. 629) is deleted. Most appli-
cation will not need to manually unregister types.

A type cannot be unregistered while it is still in use; that is, while any
com.rti.dds.topic.Topic (p. 1545) is still referring to it.

See also:

com.rti.dds.topic.example.FooTypeSupport.unregister type
com.rti.dds.dynamicdata.DynamicDataTypeSupport.register -
type (p. 889)

8.81.3.3 final String get type name ()

Get the default name of this type.

The TypeCode that is wrapped by this
com.rti.dds.dynamicdata.DynamicDataTypeSupport (p. 887) includes
a name; this operation returns that name.

This operation is useful when registering a type, because in most cases it is not
necessary for the physical and logical names of the type to be different.

myTypeSupport.register_type(myParticipant, myTypeSupport.get_type_name());

See also:

com.rti.dds.topic.example.FooTypeSupport.get type name

8.81.3.4 final TypeCode get data type ()

Get the TypeCode wrapped by this com.rti.dds.dynamicdata.DynamicDataTypeSupport
(p. 887).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.81 DynamicDataTypeSupport Class Reference 891

8.81.3.5 Object create data ()

Create a new com.rti.dds.dynamicdata.DynamicData (p. 780)
sample initialized with the TypeCode and properties of this
com.rti.dds.dynamicdata.DynamicDataTypeSupport (p. 887).

See also:

com.rti.dds.topic.example.FooTypeSupport.create data
DynamicData.DynamicData
com.rti.dds.dynamicdata.DynamicDataTypeProperty t.data
(p. 884)

8.81.3.6 void destroy data (Object data)

Finalize and deallocate the com.rti.dds.dynamicdata.DynamicData
(p. 780) sample.

See also:

com.rti.dds.topic.example.FooTypeSupport.delete data
com.rti.dds.dynamicdata.DynamicDataTypeSupport.create data
(p. 891)

8.81.3.7 void print data (DynamicData data)

Print a string representation of the given sample to the given file.

This method is equivalent to com.rti.dds.dynamicdata.DynamicData.print
(p. 797).

See also:

com.rti.dds.dynamicdata.DynamicData.print (p. 797)

8.81.3.8 void copy data (DynamicData dst, DynamicData src)

Deeply copy the given data samples.

8.81.3.9 void delete ()

Delete a com.rti.dds.dynamicdata.DynamicDataTypeSupport (p. 887)
object.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

892 Class Documentation

A com.rti.dds.dynamicdata.DynamicDataTypeSupport
(p. 887) cannot be deleted while it is still in use. For each
com.rti.dds.domain.DomainParticipant (p. 629) with which the
com.rti.dds.dynamicdata.DynamicDataTypeSupport (p. 887) is reg-
istered, either the type must be unregistered or the participant must be
deleted.

Calling this method is optional. If you do not call it, the garbage collector will
perform the deletion when it is able.

See also:

com.rti.dds.dynamicdata.DynamicDataTypeSupport.unregister -
type (p. 890)
DynamicDataTypeSupport.DynamicDataTypeSupport (p. 889)

8.81.4 Member Data Documentation

8.81.4.1 final RuntimeException DYNAMICDATA TYPE NOT -
SUPPORTED = new RETCODE ERROR(”not a
top-level type”) [static, protected]

Cached exception to be thrown in the event that we can’t create native type
support.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.82 DynamicDataWriter Class Reference 893

8.82 DynamicDataWriter Class Reference

Writes (publishes) objects of type com.rti.dds.dynamicdata.DynamicData
(p. 780).

Inheritance diagram for DynamicDataWriter::

Public Member Functions

ˆ InstanceHandle t register instance (DynamicData instance -
data)

Informs RTI Connext that the application will be modifying a particular in-
stance.

ˆ InstanceHandle t register instance w timestamp (DynamicData
instance data, Time t source timestamp)

Performs the same functions as register instance except that the application
provides the value for the source timestamp.

ˆ void unregister instance (DynamicData instance data, Instance-
Handle t handle)

Reverses the action of com.rti.dds.topic.example.FooDataWriter.register -
instance.

ˆ void unregister instance w timestamp (DynamicData instance -
data, InstanceHandle t handle, Time t source timestamp)

Performs the same function as com.rti.dds.topic.example.FooDataWriter.unregister -
instance except that it also provides the value for the source timestamp.

ˆ void write (DynamicData instance data, InstanceHandle t handle)

Modifies the value of a data instance.

ˆ void write w timestamp (DynamicData instance data, Instance-
Handle t handle, Time t source timestamp)

Performs the same function as com.rti.dds.topic.example.FooDataWriter.write
except that it also provides the value for the source timestamp.

ˆ void dispose (DynamicData instance data, InstanceHandle t in-
stance handle)

Requests the middleware to delete the data.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

894 Class Documentation

ˆ void dispose w timestamp (DynamicData instance data, Instance-
Handle t instance handle, Time t source timestamp)

Performs the same functions as dispose except that the applica-
tion provides the value for the source timestamp that is made
available to com.rti.dds.subscription.DataReader (p. 473) ob-
jects by means of the source timestamp attribute inside the
com.rti.dds.subscription.SampleInfo (p. 1404).

ˆ void get key value (DynamicData key holder, InstanceHandle t
handle)

Retrieve the instance key that corresponds to an instance handle.

ˆ InstanceHandle t lookup instance (DynamicData key holder)
Retrieve the instance handle that corresponds to an instance key holder.

8.82.1 Detailed Description

Writes (publishes) objects of type com.rti.dds.dynamicdata.DynamicData
(p. 780).

Instantiates com.rti.dds.publication.DataWriter (p. 538) <
com.rti.dds.dynamicdata.DynamicData (p. 780) > .

See also:

com.rti.dds.publication.DataWriter (p. 538)
com.rti.dds.topic.example.FooDataWriter
com.rti.dds.dynamicdata.DynamicData (p. 780)

8.82.2 Member Function Documentation

8.82.2.1 InstanceHandle t register instance (DynamicData
instance data)

Informs RTI Connext that the application will be modifying a particular in-
stance.

This operation is only useful for keyed data types. Using it for non-keyed types
causes no effect and returns InstanceHandle t.HANDLE NIL (p. 1082).
The operation takes as a parameter an instance (of which only the key value is
examined) and returns a handle that can be used in successive write() (p. 900)
or dispose() (p. 904) operations.

The operation gives RTI Connext an opportunity to pre-configure itself to im-
prove performance.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.82 DynamicDataWriter Class Reference 895

The use of this operation by an application is optional even for keyed
types. If an instance has not been pre-registered, the application can
use the special value InstanceHandle t.HANDLE NIL (p. 1082) as the
com.rti.dds.infrastructure.InstanceHandle t (p. 1080) paramater to the
write or dispose operation and RTI Connext will auto-register the instance.

For best performance, the operation should be invoked
prior to calling any operation that modifies the in-
stance, such as com.rti.dds.topic.example.FooDataWriter.write,
com.rti.dds.topic.example.FooDataWriter.write w timestamp,
com.rti.dds.topic.example.FooDataWriter.dispose and
com.rti.dds.topic.example.FooDataWriter.dispose w timestamp and the handle
used in conjunction with the data for those calls.

When this operation is used, RTI Connext will automatically supply the value
of the source timestamp that is used.

This operation may fail and return InstanceHandle t.HANDLE NIL
(p. 1082) if com.rti.dds.infrastructure.ResourceLimitsQosPolicy.max -
instances (p. 1360) limit has been exceeded.

The operation is idempotent. If it is called for an already registered instance,
it just returns the already allocated handle. This may be used to lookup and
retrieve the handle allocated to a given instance.

This operation can only be called after com.rti.dds.publication.DataWriter
(p. 538) has been enabled. Otherwise, InstanceHandle t.HANDLE NIL
(p. 1082) will be returned.

Parameters:

instance data <<in>> (p. 271) The instance that should be registered.
Of this instance, only the fields that represent the key are examined
by the function. Cannot be NULL..

Returns:

For keyed data type, a handle that can be used in the calls that take a
com.rti.dds.infrastructure.InstanceHandle t (p. 1080), such as write,
dispose, unregister instance, or return InstanceHandle t.HANDLE -
NIL (p. 1082) on failure. If the instance data is of a data type that has
no keys, this function always return InstanceHandle t.HANDLE NIL
(p. 1082).

See also:

com.rti.dds.topic.example.FooDataWriter.unregister instance,
com.rti.dds.topic.example.FooDataWriter.get key value, RELATION-
SHIP BETWEEN REGISTRATION, LIVELINESS and OWN-
ERSHIP (p. 1218)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

896 Class Documentation

8.82.2.2 InstanceHandle t register instance w timestamp
(DynamicData instance data, Time t source timestamp)

Performs the same functions as register instance except that the application
provides the value for the source timestamp.

The provided source timestamp potentially affects the relative order in which
readers observe events from multiple writers. Refer to DESTINATION -
ORDER (p. 51) QoS policy for details.

This operation may fail and return InstanceHandle t.HANDLE NIL
(p. 1082) if com.rti.dds.infrastructure.ResourceLimitsQosPolicy.max -
instances (p. 1360) limit has been exceeded.

This operation can only be called after com.rti.dds.publication.DataWriter
(p. 538) has been enabled. Otherwise, InstanceHandle t.HANDLE NIL
(p. 1082) will be returned.

Parameters:

instance data <<in>> (p. 271) The instance that should be registered.
Of this instance, only the fields that represent the key are examined
by the function. Cannot be NULL.

source timestamp <<in>> (p. 271) The timestamp value must be
greater than or equal to the timestamp value used in the last writer
operation (used in a register , unregister , dispose, or write, with ei-
ther the automatically supplied timestamp or the application provided
timestamp). This timestamp may potentially affect the order in which
readers observe events from multiple writers. Cannot be NULL.

Returns:

For keyed data type, return a handle that can be used in the calls that take a
com.rti.dds.infrastructure.InstanceHandle t (p. 1080), such as write,
dispose, unregister instance, or return InstanceHandle t.HANDLE -
NIL (p. 1082) on failure. If the instance data is of a data type that has
no keys, this function always return InstanceHandle t.HANDLE NIL
(p. 1082).

See also:

com.rti.dds.topic.example.FooDataWriter.unregister instance,
com.rti.dds.topic.example.FooDataWriter.get key value

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.82 DynamicDataWriter Class Reference 897

8.82.2.3 void unregister instance (DynamicData instance data,
InstanceHandle t handle)

Reverses the action of com.rti.dds.topic.example.FooDataWriter.register -
instance.

This operation is useful only for keyed data types. Using it for non-keyed types
causes no effect and reports no error. The operation takes as a parameter an
instance (of which only the key value is examined) and a handle.

This operation should only be called on an instance that is cur-
rently registered. This includes instances that have been auto-
registered by calling operations such as write or dispose as described in
com.rti.dds.topic.example.FooDataWriter.register instance. Otherwise, this op-
eration may fail with RETCODE BAD PARAMETER.

This only need be called just once per instance, regardless of how many times
register instance was called for that instance.

When this operation is used, RTI Connext will automatically supply the value
of the source timestamp that is used.

This operation informs RTI Connext that the
com.rti.dds.publication.DataWriter (p. 538) is no longer going to provide
any information about the instance. This operation also indicates that RTI
Connext can locally remove all information regarding that instance. The
application should not attempt to use the handle previously allocated to that
instance after calling com.rti.dds.topic.example.FooDataWriter.unregister -
instance().

The special value InstanceHandle t.HANDLE NIL (p. 1082) can be used
for the parameter handle. This indicates that the identity of the instance should
be automatically deduced from the instance data (by means of the key).

If handle is any value other than InstanceHandle t.HANDLE NIL
(p. 1082), then it must correspond to an instance that has been registered.
If there is no correspondence, the operation will fail with RETCODE BAD -
PARAMETER.

RTI Connext will not detect the error when the handle is any value other than
InstanceHandle t.HANDLE NIL (p. 1082), corresponds to an instance that
has been registered, but does not correspond to the instance deduced from
the instance data (by means of the key). RTI Connext will treat as if the
unregister instance() (p. 897) operation is for the instance as indicated by
the handle.

If after a com.rti.dds.topic.example.FooDataWriter.unregister instance, the ap-
plication wants to modify (com.rti.dds.topic.example.FooDataWriter.write or
com.rti.dds.topic.example.FooDataWriter.dispose) an instance, it has to register
it again, or else use the special handle value InstanceHandle t.HANDLE -

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

898 Class Documentation

NIL (p. 1082).

This operation does not indicate that the instance is deleted (that is the
purpose of com.rti.dds.topic.example.FooDataWriter.dispose). The opera-
tion com.rti.dds.topic.example.FooDataWriter.unregister instance just indicates
that the com.rti.dds.publication.DataWriter (p. 538) no longer has any-
thing to say about the instance. com.rti.dds.subscription.DataReader
(p. 473) entities that are reading the instance may receive a sample with In-
stanceStateKind.NOT ALIVE NO WRITERS INSTANCE STATE for the in-
stance, unless there are other com.rti.dds.publication.DataWriter (p. 538)
objects writing that same instance.

This operation can affect the ownership of the data instance (see OWNER-
SHIP (p. 83)). If the com.rti.dds.publication.DataWriter (p. 538) was the
exclusive owner of the instance, then calling unregister instance() (p. 897)
will relinquish that ownership.

If com.rti.dds.infrastructure.ReliabilityQosPolicy.kind (p. 1339)
is set to ReliabilityQosPolicyKind.RELIABLE RELIABILITY -
QOS and the unregistration would overflow the resource limits of
this writer or of a reader, this operation may block for up to
com.rti.dds.infrastructure.ReliabilityQosPolicy.max blocking time
(p. 1339); if this writer is still unable to unregister after that period, this
method will fail with RETCODE TIMEOUT.

Parameters:

instance data <<in>> (p. 271) The instance that should be unregis-
tered. If Foo has a key and instance handle is InstanceHandle -
t.HANDLE NIL (p. 1082), only the fields that represent the key are
examined by the function. Otherwise, instance data is not used. If
instance data is used, it must represent an instance that has been
registerd. Otherwise, this method may fail with RETCODE BAD -
PARAMETER . If Foo has a key, instance data can be NULL only
if handle is not InstanceHandle t.HANDLE NIL (p. 1082). Oth-
erwise, this method will fail with RETCODE BAD PARAMETER.

handle <<in>> (p. 271) represents the instance to be unregistered.
If Foo has a key and handle is InstanceHandle t.HANDLE -
NIL (p. 1082), handle is not used and instance is deduced from
instance data. If Foo has no key, handle is not used. If handle is
used, it must represent an instance that has been registered. Oth-
erwise, this method may fail with RETCODE BAD PARAMETER.
This method will fail with RETCODE BAD PARAMETER if handle
is NULL. If Foo has a key, handle cannot be InstanceHandle -
t.HANDLE NIL (p. 1082) if instance data is NULL. Otherwise,
this method will report the error RETCODE BAD PARAMETER.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.82 DynamicDataWriter Class Reference 899

Exceptions:

One of the Standard Return Codes (p. 104), RETCODE TIMEOUT
or RETCODE NOT ENABLED

See also:

com.rti.dds.topic.example.FooDataWriter.register instance
FooDataWriter.unregister instance w timestamp
com.rti.dds.topic.example.FooDataWriter.get key value
RELATIONSHIP BETWEEN REGISTRATION, LIVELINESS
and OWNERSHIP (p. 1218)

8.82.2.4 void unregister instance w timestamp (DynamicData
instance data, InstanceHandle t handle, Time t
source timestamp)

Performs the same function as com.rti.dds.topic.example.FooDataWriter.unregister -
instance except that it also provides the value for the source timestamp.

The provided source timestamp potentially affects the relative order in which
readers observe events from multiple writers. Refer to DESTINATION -
ORDER (p. 51) QoS policy for details.

The constraints on the values of the handle parameter and
the corresponding error behavior are the same specified for the
com.rti.dds.topic.example.FooDataWriter.unregister instance operation.

This operation may block and may time out (RETCODE TIMEOUT) under
the same circumtances described for the unregister instance operation.

Parameters:

instance data <<in>> (p. 271) The instance that should be unregis-
tered. If Foo has a key and instance handle is InstanceHandle -
t.HANDLE NIL (p. 1082), only the fields that represent the key are
examined by the function. Otherwise, instance data is not used. If
instance data is used, it must represent an instance that has been
registerd. Otherwise, this method may fail with RETCODE BAD -
PARAMETER. If Foo has a key, instance data can be NULL only
if handle is not InstanceHandle t.HANDLE NIL (p. 1082). Oth-
erwise, this method will fail with RETCODE BAD PARAMETER.

handle <<in>> (p. 271) represents the instance to be unregistered.
If Foo has a key and handle is InstanceHandle t.HANDLE -
NIL (p. 1082), handle is not used and instance is deduced from
instance data. If Foo has no key, handle is not used. If handle is
used, it must represent an instance that has been registered. Oth-
erwise, this method may fail with RETCODE BAD PARAMETER.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

900 Class Documentation

This method will fail with RETCODE BAD PARAMETER if handle
is NULL. If Foo has a key, handle cannot be InstanceHandle -
t.HANDLE NIL (p. 1082) if instance data is NULL. Otherwise,
this method will fail with RETCODE BAD PARAMETER.

source timestamp <<in>> (p. 271) The timestamp value must be
greater than or equal to the timestamp value used in the last writer
operation (used in a register , unregister , dispose, or write, with ei-
ther the automatically supplied timestamp or the application provided
timestamp). This timestamp may potentially affect the order in which
readers observe events from multiple writers. Cannot be NULL.

Exceptions:

One of the Standard Return Codes (p. 104), RETCODE TIMEOUT
or RETCODE NOT ENABLED.

See also:

com.rti.dds.topic.example.FooDataWriter.register instance
com.rti.dds.topic.example.FooDataWriter.unregister instance
com.rti.dds.topic.example.FooDataWriter.get key value

8.82.2.5 void write (DynamicData instance data, InstanceHandle t
handle)

Modifies the value of a data instance.

When this operation is used, RTI Connext will automatically
supply the value of the source timestamp that is made avail-
able to com.rti.dds.subscription.DataReader (p. 473) ob-
jects by means of the source timestamp attribute inside the
com.rti.dds.subscription.SampleInfo (p. 1404). (Refer to
com.rti.dds.subscription.SampleInfo (p. 1404) and DESTINATION -
ORDER (p. 51) QoS policy for details).

As a side effect, this operation asserts liveliness on
the com.rti.dds.publication.DataWriter (p. 538) itself,
the com.rti.dds.publication.Publisher (p. 1277) and the
com.rti.dds.domain.DomainParticipant (p. 629).

Note that the special value InstanceHandle t.HANDLE NIL (p. 1082) can
be used for the parameter handle. This indicates the identity of the instance
should be automatically deduced from the instance data (by means of the
key).

If handle is any value other than InstanceHandle t.HANDLE NIL
(p. 1082), then it must correspond to an instance that has been registered.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.82 DynamicDataWriter Class Reference 901

If there is no correspondence, the operation will fail with RETCODE BAD -
PARAMETER.

RTI Connext will not detect the error when the handle is any value other than
InstanceHandle t.HANDLE NIL (p. 1082), corresponds to an instance that
has been registered, but does not correspond to the instance deduced from the
instance data (by means of the key). RTI Connext will treat as if the write()
(p. 900) operation is for the instance as indicated by the handle.

This operation may block if the RELIABILITY (p. 101) kind is set to Re-
liabilityQosPolicyKind.RELIABLE RELIABILITY QOS and the modification
would cause data to be lost or else cause one of the limits specified in the
RESOURCE LIMITS (p. 102) to be exceeded.

Specifically, this operation may block in the following situa-
tions (note that the list may not be exhaustive), even if its
com.rti.dds.infrastructure.HistoryQosPolicyKind (p. 1075) is Histo-
ryQosPolicyKind.KEEP LAST HISTORY QOS:

ˆ If (com.rti.dds.infrastructure.ResourceLimitsQosPolicy.max -
samples (p. 1359) < com.rti.dds.infrastructure.ResourceLimitsQosPolicy.max -
instances (p. 1360) ∗ com.rti.dds.infrastructure.HistoryQosPolicy.depth
(p. 1074)), then in the situation where the max samples resource limit
is exhausted, RTI Connext is allowed to discard samples of some other
instance, as long as at least one sample remains for such an instance. If
it is still not possible to make space available to store the modification,
the writer is allowed to block.

ˆ If (com.rti.dds.infrastructure.ResourceLimitsQosPolicy.max -
samples (p. 1359) < com.rti.dds.infrastructure.ResourceLimitsQosPolicy.max -
instances (p. 1360)), then the DataWriter may block regardless of the
com.rti.dds.infrastructure.HistoryQosPolicy.depth (p. 1074).

ˆ If (com.rti.dds.infrastructure.RtpsReliableWriterProtocol -
t.min send window size (p. 1389) < com.rti.dds.infrastructure.ResourceLimitsQosPolicy.max -
samples (p. 1359)), then it is possible for the send window size limit to
be reached before RTI Connext is allowed to discard samples, in which
case the com.rti.dds.publication.DataWriter (p. 538) will block.

This operation may also block when using ReliabilityQosPoli-
cyKind.BEST EFFORT RELIABILITY QOS and PublishModeQosPol-
icyKind.ASYNCHRONOUS PUBLISH MODE QOS. In this case,
the com.rti.dds.publication.DataWriter (p. 538) will queue sam-
ples until they are sent by the asynchronous publishing thread.
The number of samples that can be stored is determined by the
com.rti.dds.infrastructure.HistoryQosPolicy (p. 1071). If the asyn-
chronous thread does not send samples fast enough (e.g., when using a slow

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

902 Class Documentation

com.rti.dds.publication.FlowController (p. 942)), the queue may fill up.
In that case, subsequent write calls will block.

If this operation does block for any of the above reasons, the RELIABIL-
ITY (p. 101) max blocking time configures the maximum time the write oper-
ation may block (waiting for space to become available). If max blocking time
elapses before the com.rti.dds.publication.DataWriter (p. 538) is able to
store the modification without exceeding the limits, the operation will time out
(RETCODE TIMEOUT).

If there are no instance resources left, this operation
may fail with RETCODE OUT OF RESOURCES. Calling
com.rti.dds.topic.example.FooDataWriter.unregister instance may help freeing
up some resources.

This operation will fail with RETCODE PRECONDITION NOT MET if the
timestamp is less than the timestamp used in the last writer operation (register ,
unregister , dispose, or write, with either the automatically supplied timestamp
or the application-provided timestamp).

Parameters:

instance data <<in>> (p. 271) The data to write.

This method will fail with RETCODE BAD PARAMETER if instance data
is NULL.

Parameters:

handle <<in>> (p. 271) Either the handle returned by a previous call
to com.rti.dds.topic.example.FooDataWriter.register instance, or else
the special value InstanceHandle t.HANDLE NIL (p. 1082). If
Foo has a key and handle is not InstanceHandle t.HANDLE -
NIL (p. 1082), handle must represent a registered instance of
type Foo. Otherwise, this method may fail with RETCODE -
BAD PARAMETER. This method will fail with RETCODE BAD -
PARAMETER if handle is NULL.

Exceptions:

One of the Standard Return Codes (p. 104), RETCODE TIMEOUT,
RETCODE PRECONDITION NOT MET, RETCODE OUT OF -
RESOURCES, or RETCODE NOT ENABLED.

See also:

com.rti.dds.subscription.DataReader (p. 473)
com.rti.dds.topic.example.FooDataWriter.write w timestamp
DESTINATION ORDER (p. 51)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.82 DynamicDataWriter Class Reference 903

8.82.2.6 void write w timestamp (DynamicData instance data,
InstanceHandle t handle, Time t source timestamp)

Performs the same function as com.rti.dds.topic.example.FooDataWriter.write
except that it also provides the value for the source timestamp.

Explicitly provides the timestamp that will be available
to the com.rti.dds.subscription.DataReader (p. 473) ob-
jects by means of the source timestamp attribute inside the
com.rti.dds.subscription.SampleInfo (p. 1404). (Refer to
com.rti.dds.subscription.SampleInfo (p. 1404) and DESTINATION -
ORDER (p. 51) QoS policy for details)

The constraints on the values of the handle parameter and
the corresponding error behavior are the same specified for the
com.rti.dds.topic.example.FooDataWriter.write operation.

This operation may block and time out (RETCODE -
TIMEOUT) under the same circumtances described for
com.rti.dds.topic.example.FooDataWriter.write.

If there are no instance resources left, this operation
may fail with RETCODE OUT OF RESOURCES. Calling
com.rti.dds.topic.example.FooDataWriter.unregister instance may help free up
some resources.

This operation may fail with RETCODE BAD PARAMETER under the same
circumstances described for the write operation.

Parameters:

instance data <<in>> (p. 271) The data to write. This method will fail
with RETCODE BAD PARAMETER if instance data is NULL.

handle <<in>> (p. 271) Either the handle returned by a previous call
to com.rti.dds.topic.example.FooDataWriter.register instance, or else
the special value InstanceHandle t.HANDLE NIL (p. 1082). If
Foo has a key and handle is not InstanceHandle t.HANDLE -
NIL (p. 1082), handle must represent a registered instance of
type Foo. Otherwise, this method may fail with RETCODE -
BAD PARAMETER. This method will fail with RETCODE BAD -
PARAMETER if handle is NULL.

source timestamp <<in>> (p. 271) When using Desti-
nationOrderQosPolicyKind.BY SOURCE TIMESTAMP -
DESTINATIONORDER QOS the timestamp value must be
greater than or equal to the timestamp value used in the last
writer operation (register , unregister , dispose, or write, with
either the automatically supplied timestamp or the application-
provided timestamp) However, if it is less than the timestamp

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

904 Class Documentation

of the previous operation but the difference is less than the
com.rti.dds.infrastructure.DestinationOrderQosPolicy.source -
timestamp tolerance (p. 609), the timestamp of the pre-
vious operation will be used as the source timestamp of
this sample. Otherwise, if the difference is greater than
com.rti.dds.infrastructure.DestinationOrderQosPolicy.source -
timestamp tolerance (p. 609), the function will return RETCODE -
BAD PARAMETER.

Cannot be NULL.

Exceptions:

One of the Standard Return Codes (p. 104), RETCODE TIMEOUT,
RETCODE OUT OF RESOURCES, or RETCODE NOT -
ENABLED.

See also:

com.rti.dds.topic.example.FooDataWriter.write
com.rti.dds.subscription.DataReader (p. 473)
DESTINATION ORDER (p. 51)

8.82.2.7 void dispose (DynamicData instance data,
InstanceHandle t instance handle)

Requests the middleware to delete the data.

This operation is useful only for keyed data types. Using it for non-keyed types
has no effect and reports no error.

The actual deletion is postponed until there is no more use for that data in the
whole system.

Applications are made aware of the deletion by means of operations on the
com.rti.dds.subscription.DataReader (p. 473) objects that already knew
that instance. com.rti.dds.subscription.DataReader (p. 473) objects that
didn’t know the instance will never see it.

This operation does not modify the value of the instance. The instance data
parameter is passed just for the purposes of identifying the instance.

When this operation is used, RTI Connext will automatically
supply the value of the source timestamp that is made avail-
able to com.rti.dds.subscription.DataReader (p. 473) ob-
jects by means of the source timestamp attribute inside the
com.rti.dds.subscription.SampleInfo (p. 1404).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.82 DynamicDataWriter Class Reference 905

The constraints on the values of the handle parameter and
the corresponding error behavior are the same specified for the
com.rti.dds.topic.example.FooDataWriter.unregister instance operation.

The special value InstanceHandle t.HANDLE NIL (p. 1082) can be used
for the parameter instance handle. This indicates the identity of the instance
should be automatically deduced from the instance data (by means of the
key).

If handle is any value other than InstanceHandle t.HANDLE NIL
(p. 1082), then it must correspond to an instance that has been registered.
If there is no correspondence, the operation will fail with RETCODE BAD -
PARAMETER.

RTI Connext will not detect the error when the handle is any value other than
InstanceHandle t.HANDLE NIL (p. 1082), corresponds to an instance that
has been registered, but does not correspond to the instance deduced from
the instance data (by means of the key). RTI Connext will treat as if the
dispose() (p. 904) operation is for the instance as indicated by the handle.

This operation may block and time out (RETCODE -
TIMEOUT) under the same circumtances described for
com.rti.dds.topic.example.FooDataWriter.write().

If there are no instance resources left, this operation
may fail with RETCODE OUT OF RESOURCES. Calling
com.rti.dds.topic.example.FooDataWriter.unregister instance may help freeing
up some resources.

Parameters:

instance data <<in>> (p. 271) The data to dispose. If Foo has a
key and instance handle is InstanceHandle t.HANDLE NIL
(p. 1082), only the fields that represent the key are examined by the
function. Otherwise, instance data is not used. If Foo has a key,
instance data can be NULL only if instance handle is not In-
stanceHandle t.HANDLE NIL (p. 1082). Otherwise, this method
will fail with RETCODE BAD PARAMETER.

instance handle <<in>> (p. 271) Either the handle returned by a
previous call to com.rti.dds.topic.example.FooDataWriter.register -
instance, or else the special value InstanceHandle t.HANDLE -
NIL (p. 1082). If Foo has a key and instance handle is Instance-
Handle t.HANDLE NIL (p. 1082), instance handle is not used
and instance is deduced from instance data. If Foo has no key,
instance handle is not used. If handle is used, it must represent a
registered instance of type Foo. Otherwise, this method fail with RET-
CODE BAD PARAMETER. This method will fail with RETCODE -
BAD PARAMETER if handle is NULL. If Foo has a key, instance -
handle cannot be InstanceHandle t.HANDLE NIL (p. 1082) if

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

906 Class Documentation

instance data is NULL. Otherwise, this method will fail with RET-
CODE BAD PARAMETER.

Exceptions:

One of the Standard Return Codes (p. 104), RETCODE -
TIMEOUT, RETCODE OUT OF RESOURCES or RETCODE -
NOT ENABLED.

See also:

com.rti.dds.topic.example.FooDataWriter.dispose w timestamp
RELATIONSHIP BETWEEN REGISTRATION, LIVELINESS
and OWNERSHIP (p. 1218)

8.82.2.8 void dispose w timestamp (DynamicData instance data,
InstanceHandle t instance handle, Time t
source timestamp)

Performs the same functions as dispose except that the applica-
tion provides the value for the source timestamp that is made
available to com.rti.dds.subscription.DataReader (p. 473) ob-
jects by means of the source timestamp attribute inside the
com.rti.dds.subscription.SampleInfo (p. 1404).

The constraints on the values of the handle parameter and
the corresponding error behavior are the same specified for the
com.rti.dds.topic.example.FooDataWriter.dispose operation.

This operation may block and time out (RETCODE -
TIMEOUT) under the same circumtances described for
com.rti.dds.topic.example.FooDataWriter.write.

If there are no instance resources left, this operation
may fail with RETCODE OUT OF RESOURCES. Calling
com.rti.dds.topic.example.FooDataWriter.unregister instance may help freeing
up some resources.

Parameters:

instance data <<in>> (p. 271) The data to dispose. If Foo has a
key and instance handle is InstanceHandle t.HANDLE NIL
(p. 1082), only the fields that represent the key are examined by the
function. Otherwise, instance data is not used. If Foo has a key,
instance data can be NULL only if instance handle is not In-
stanceHandle t.HANDLE NIL (p. 1082). Otherwise, this method
will fail with RETCODE BAD PARAMETER.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.82 DynamicDataWriter Class Reference 907

instance handle <<in>> (p. 271) Either the handle returned by a
previous call to com.rti.dds.topic.example.FooDataWriter.register -
instance, or else the special value InstanceHandle t.HANDLE -
NIL (p. 1082). If Foo has a key and instance handle is Instance-
Handle t.HANDLE NIL (p. 1082), instance handle is not used
and instance is deduced from instance data. If Foo has no key,
instance handle is not used. If handle is used, it must repre-
sent a registered instance of type Foo. Otherwise, this method may
fail with RETCODE BAD PARAMETER This method will fail with
RETCODE BAD PARAMETER if handle is NULL. If Foo has a
key, instance handle cannot be InstanceHandle t.HANDLE -
NIL (p. 1082) if instance data is NULL. Otherwise, this method
will fail with RETCODE BAD PARAMETER.

source timestamp <<in>> (p. 271) The timestamp value must be
greater than or equal to the timestamp value used in the last writer
operation (used in a register , unregister , dispose, or write, with ei-
ther the automatically supplied timestamp or the application pro-
vided timestamp). This timestamp may potentially affect the order in
which readers observe events from multiple writers. This timestamp
will be available to the com.rti.dds.subscription.DataReader
(p. 473) objects by means of the source timestamp attribute inside
the com.rti.dds.subscription.SampleInfo (p. 1404). Cannot be
NULL.

Exceptions:

One of the Standard Return Codes (p. 104), RETCODE -
TIMEOUT, RETCODE OUT OF RESOURCES or RETCODE -
NOT ENABLED.

See also:

com.rti.dds.topic.example.FooDataWriter.dispose

8.82.2.9 void get key value (DynamicData key holder,
InstanceHandle t handle)

Retrieve the instance key that corresponds to an instance handle.

Useful for keyed data types.

The operation will only fill the fields that form the key inside the key holder
instance. If Foo has no key, this method has no effect and exit with no error.

For keyed data types, this operation may fail with RETCODE BAD -
PARAMETER if the handle does not correspond to an existing data-object
known to the com.rti.dds.publication.DataWriter (p. 538).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

908 Class Documentation

Parameters:

key holder <<inout>> (p. 271) a user data type specific key holder,
whose key fields are filled by this operation. If Foo has no key, this
method has no effect. This method will fail with RETCODE BAD -
PARAMETER if key holder is NULL.

handle <<in>> (p. 271) the instance whose key is to be retrieved.
If Foo has a key, handle must represent a registered instance of
type Foo. Otherwise, this method will fail with RETCODE BAD -
PARAMETER. If Foo has a key and handle is InstanceHandle -
t.HANDLE NIL (p. 1082), this method will fail with RETCODE -
BAD PARAMETER. This method will fail with RETCODE BAD -
PARAMETER if handle is NULL.

Exceptions:

One of the Standard Return Codes (p. 104) or RETCODE NOT -
ENABLED.

See also:

com.rti.dds.topic.example.FooDataReader.get key value

8.82.2.10 InstanceHandle t lookup instance (DynamicData
key holder)

Retrieve the instance handle that corresponds to an instance key holder.

Useful for keyed data types.

This operation takes as a parameter an instance and returns a handle that can be
used in subsequent operations that accept an instance handle as an argument.
The instance parameter is only used for the purpose of examining the fields
that define the key. This operation does not register the instance in question. If
the instance has not been previously registered, or if for any other reason RTI
Connext is unable to provide an instance handle, RTI Connext will return the
special value HANDLE NIL.

Parameters:

key holder <<in>> (p. 271) a user data type specific key holder.

Returns:

the instance handle associated with this instance. If Foo has no key,
this method has no effect and returns InstanceHandle t.HANDLE -
NIL (p. 1082)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.83 EndpointGroup t Class Reference 909

8.83 EndpointGroup t Class Reference

Specifies a group of endpoints that can be collectively identified by a name and
satisfied by a quorum.

Inherits Struct.

Public Member Functions

ˆ EndpointGroup t ()
Constructor.

ˆ EndpointGroup t (EndpointGroup t src)
Copy constructor.

ˆ EndpointGroup t (String role name, int quorum count)
Construct an EndpointGroup t (p. 909) with the given parameters.

Public Attributes

ˆ String role name = null
Defines the role name of the endpoint group.

ˆ int quorum count = 0
Defines the minimum number of members that satisfies the endpoint group.

8.83.1 Detailed Description

Specifies a group of endpoints that can be collectively identified by a name and
satisfied by a quorum.

8.83.2 Constructor & Destructor Documentation

8.83.2.1 EndpointGroup t ()

Constructor.

8.83.2.2 EndpointGroup t (EndpointGroup t src)

Copy constructor.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

910 Class Documentation

8.83.2.3 EndpointGroup t (String role name, int quorum count)

Construct an EndpointGroup t (p. 909) with the given parameters.

8.83.3 Member Data Documentation

8.83.3.1 String role name = null

Defines the role name of the endpoint group.

8.83.3.2 int quorum count = 0

Defines the minimum number of members that satisfies the endpoint group.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.84 EndpointGroupSeq Class Reference 911

8.84 EndpointGroupSeq Class Reference

A sequence of com.rti.dds.infrastructure.EndpointGroup t (p. 909).

Inherits ArraySequence.

8.84.1 Detailed Description

A sequence of com.rti.dds.infrastructure.EndpointGroup t (p. 909).

In the context of Collaborative DataWriters, it can be used by a
com.rti.dds.subscription.DataReader (p. 473) to define a group of remote
DataWriters that the com.rti.dds.subscription.DataReader (p. 473) will
wait to discover before skipping missing samples.

Instantiates:

<<generic>> (p. 271) com.rti.dds.util.Sequence (p. 1432)

See also:

com.rti.dds.infrastructure.EndpointGroup t (p. 909)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

912 Class Documentation

8.85 Entity Interface Reference

<<interface>> (p. 271) Abstract base class for all the DDS objects that sup-
port QoS policies, a listener, and a status condition.

Inheritance diagram for Entity::

Public Member Functions

ˆ void enable ()
Enables the com.rti.dds.infrastructure.Entity (p. 912).

ˆ StatusCondition get statuscondition ()
Allows access to the com.rti.dds.infrastructure.StatusCondition
(p. 1452) associated with the com.rti.dds.infrastructure.Entity (p. 912).

ˆ int get status changes ()
Retrieves the list of communication statuses in the
com.rti.dds.infrastructure.Entity (p. 912) that are triggered.

ˆ InstanceHandle t get instance handle ()
Allows access to the com.rti.dds.infrastructure.InstanceHandle t
(p. 1080) associated with the com.rti.dds.infrastructure.Entity (p. 912).

8.85.1 Detailed Description

<<interface>> (p. 271) Abstract base class for all the DDS objects that sup-
port QoS policies, a listener, and a status condition.

All operations except for set qos(), get qos(), set listener(), get listener() and
enable() (p. 915), may return the value RETCODE NOT ENABLED
(p. 1369).

QoS:

QoS Policies (p. 90)

Status:

Status Kinds (p. 106)

Listener:

com.rti.dds.infrastructure.Listener (p. 1154)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.85 Entity Interface Reference 913

8.85.2 Abstract operations

Each derived entity provides the following operations specific to its role in RTI
Connext.

8.85.2.1 set qos (abstract)

This operation sets the QoS policies of the
com.rti.dds.infrastructure.Entity (p. 912).

This operation must be provided by each of the de-
rived com.rti.dds.infrastructure.Entity (p. 912) classes
(com.rti.dds.domain.DomainParticipant (p. 629),
com.rti.dds.topic.Topic (p. 1545), com.rti.dds.publication.Publisher
(p. 1277), com.rti.dds.publication.DataWriter (p. 538),
com.rti.dds.subscription.Subscriber (p. 1478), and
com.rti.dds.subscription.DataReader (p. 473)) so that the policies
that are meaningful to each com.rti.dds.infrastructure.Entity (p. 912) can
be set.

Precondition:

Certain policies are immutable (see QoS Policies (p. 90)): they can
only be set at com.rti.dds.infrastructure.Entity (p. 912) creation time
or before the entity is enabled. If set qos() is invoked after the
com.rti.dds.infrastructure.Entity (p. 912) is enabled and it attempts
to change the value of an immutable policy, the operation will fail and
return RETCODE IMMUTABLE POLICY (p. 1366).
Certain values of QoS policies can be incompatible with the settings of the
other policies. The set qos() operation will also fail if it specifies a set
of values that, once combined with the existing values, would result in an
inconsistent set of policies. In this case, the operation will fail and return
RETCODE INCONSISTENT POLICY (p. 1367).
If the application supplies a non-default value for a QoS policy that is not
supported by the implementation of the service, the set qos operation will
fail and return RETCODE UNSUPPORTED (p. 1373).

Postcondition:

The existing set of policies is only changed if the set qos() operation
succeeds. This is indicated by a return code of RETCODE OK. In all
other cases, none of the policies are modified.

Each derived com.rti.dds.infrastructure.Entity (p. 912)
class (com.rti.dds.domain.DomainParticipant (p. 629),
com.rti.dds.topic.Topic (p. 1545), com.rti.dds.publication.Publisher

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

914 Class Documentation

(p. 1277), com.rti.dds.publication.DataWriter
(p. 538), com.rti.dds.subscription.Subscriber (p. 1478),
com.rti.dds.subscription.DataReader (p. 473)) has a corresponding
special value of the QoS (DomainParticipantFactory.PARTICIPANT -
QOS DEFAULT, DomainParticipant.PUBLISHER QOS DEFAULT,
DomainParticipant.SUBSCRIBER QOS DEFAULT, DomainPartici-
pant.TOPIC QOS DEFAULT, Publisher.DATAWRITER QOS DEFAULT,
Subscriber.DATAREADER QOS DEFAULT). This special value may be used
as a parameter to the set qos operation to indicate that the QoS of the
com.rti.dds.infrastructure.Entity (p. 912) should be changed to match
the current default QoS set in the com.rti.dds.infrastructure.Entity
(p. 912)’s factory. The operation set qos cannot modify the immutable QoS,
so a successful return of the operation indicates that the mutable QoS for
the Entity (p. 912) has been modified to match the current default for the
com.rti.dds.infrastructure.Entity (p. 912)’s factory.

The set of policies specified in the qos parameter are applied on top of the
existing QoS, replacing the values of any policies previously set.

Possible error codes returned in addition to Standard Return Codes
(p. 104) : RETCODE IMMUTABLE POLICY (p. 1366), or RET-
CODE INCONSISTENT POLICY (p. 1367).

8.85.2.2 get qos (abstract)

This operation allows access to the existing set of QoS policies for the
com.rti.dds.infrastructure.Entity (p. 912). This operation must be
provided by each of the derived com.rti.dds.infrastructure.Entity
(p. 912) classes (com.rti.dds.domain.DomainParticipant (p. 629),
com.rti.dds.topic.Topic (p. 1545), com.rti.dds.publication.Publisher
(p. 1277), com.rti.dds.publication.DataWriter (p. 538),
com.rti.dds.subscription.Subscriber (p. 1478), and
com.rti.dds.subscription.DataReader (p. 473)), so that the policies
that are meaningful to each com.rti.dds.infrastructure.Entity (p. 912) can
be retrieved.

Possible error codes are Standard Return Codes (p. 104).

8.85.2.3 set listener (abstract)

This operation installs a com.rti.dds.infrastructure.Listener (p. 1154) on
the com.rti.dds.infrastructure.Entity (p. 912). The listener will only be
invoked on the changes of communication status indicated by the specified mask.

This operation must be provided by each of the de-
rived com.rti.dds.infrastructure.Entity (p. 912) classes

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.85 Entity Interface Reference 915

(com.rti.dds.domain.DomainParticipant (p. 629),
com.rti.dds.topic.Topic (p. 1545), com.rti.dds.publication.Publisher
(p. 1277), com.rti.dds.publication.DataWriter (p. 538),
com.rti.dds.subscription.Subscriber (p. 1478), and
com.rti.dds.subscription.DataReader (p. 473)), so that the listener is of the
concrete type suitable to the particular com.rti.dds.infrastructure.Entity
(p. 912).

It is permitted to use null as the value of the listener. The null listener behaves
as if the mask is StatusKind.STATUS MASK NONE (p. 109).

Postcondition:

Only one listener can be attached to each
com.rti.dds.infrastructure.Entity (p. 912). If a listener was al-
ready set, the operation set listener() will replace it with the new one.
Consequently, if the value null is passed for the listener parameter to the
set listener operation, any existing listener will be removed.

8.85.2.4 get listener (abstract)

This operation allows access to the existing
com.rti.dds.infrastructure.Listener (p. 1154) attached to the
com.rti.dds.infrastructure.Entity (p. 912).

This operation must be provided by each of the de-
rived com.rti.dds.infrastructure.Entity (p. 912) classes
(com.rti.dds.domain.DomainParticipant (p. 629),
com.rti.dds.topic.Topic (p. 1545), com.rti.dds.publication.Publisher
(p. 1277), com.rti.dds.publication.DataWriter (p. 538),
com.rti.dds.subscription.Subscriber (p. 1478), and
com.rti.dds.subscription.DataReader (p. 473)) so that the listener is of the
concrete type suitable to the particular com.rti.dds.infrastructure.Entity
(p. 912).

If no listener is installed on the com.rti.dds.infrastructure.Entity (p. 912),
this operation will return null.

8.85.3 Member Function Documentation

8.85.3.1 void enable ()

Enables the com.rti.dds.infrastructure.Entity (p. 912).

This operation enables the Entity (p. 912). Entity (p. 912) objects can be
created either enabled or disabled. This is controlled by the value of the EN-
TITY FACTORY (p. 69) QoS policy on the corresponding factory for the

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

916 Class Documentation

com.rti.dds.infrastructure.Entity (p. 912).

By default, ENTITY FACTORY (p. 69) is set so that it is not necessary to
explicitly call com.rti.dds.infrastructure.Entity.enable (p. 915) on newly
created entities.

The com.rti.dds.infrastructure.Entity.enable (p. 915) operation is idempo-
tent. Calling enable on an already enabled Entity (p. 912) returns OK and has
no effect.

If a com.rti.dds.infrastructure.Entity (p. 912) has not yet been enabled, the
following kinds of operations may be invoked on it:

ˆ set or get the QoS policies (including default QoS policies) and listener

ˆ com.rti.dds.infrastructure.Entity.get statuscondition (p. 917)

ˆ ’factory’ operations

ˆ com.rti.dds.infrastructure.Entity.get status changes (p. 917) and
other get status operations (although the status of a disabled entity never
changes)

ˆ ’lookup’ operations

Other operations may explicitly state that they may be called on disabled en-
tities; those that do not will return the error RETCODE NOT ENABLED
(p. 1369).

It is legal to delete an com.rti.dds.infrastructure.Entity (p. 912) that has
not been enabled by calling the proper operation on its factory.

Entities created from a factory that is disabled are created disabled, regardless
of the setting of the com.rti.dds.infrastructure.EntityFactoryQosPolicy
(p. 919).

Calling enable on an Entity (p. 912) whose factory is not enabled will fail and
return RETCODE PRECONDITION NOT MET (p. 1371).

If com.rti.dds.infrastructure.EntityFactoryQosPolicy.autoenable -
created entities (p. 920) is TRUE, the enable operation on a factory will
automatically enable all entities created from that factory.

Listeners associated with an entity are not called until the entity is enabled.

Conditions associated with a disabled entity are ”inactive,” that is, they have a
trigger value == FALSE.

Exceptions:

One of the Standard Return Codes (p. 104), Standard Return
Codes (p. 104) or RETCODE PRECONDITION NOT MET
(p. 1371).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.85 Entity Interface Reference 917

8.85.3.2 StatusCondition get statuscondition ()

Allows access to the com.rti.dds.infrastructure.StatusCondition (p. 1452)
associated with the com.rti.dds.infrastructure.Entity (p. 912).

The returned condition can then be added to a
com.rti.dds.infrastructure.WaitSet (p. 1695) so that the ap-
plication can wait for specific status changes that affect the
com.rti.dds.infrastructure.Entity (p. 912).

Returns:

the status condition associated with this entity.

8.85.3.3 int get status changes ()

Retrieves the list of communication statuses in the
com.rti.dds.infrastructure.Entity (p. 912) that are triggered.

That is, the list of statuses whose value has changed since the last time the
application read the status using the get ∗ status() method.

When the entity is first created or if the entity is not enabled, all communication
statuses are in the ”untriggered” state so the list returned by the get status -
changes operation will be empty.

The list of statuses returned by the get status changes operation refers to the
status that are triggered on the Entity (p. 912) itself and does not include
statuses that apply to contained entities.

Returns:

list of communication statuses in the com.rti.dds.infrastructure.Entity
(p. 912) that are triggered.

See also:

Status Kinds (p. 106)

8.85.3.4 InstanceHandle t get instance handle ()

Allows access to the com.rti.dds.infrastructure.InstanceHandle t
(p. 1080) associated with the com.rti.dds.infrastructure.Entity (p. 912).

This operation returns the com.rti.dds.infrastructure.InstanceHandle t
(p. 1080) that represents the com.rti.dds.infrastructure.Entity (p. 912).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

918 Class Documentation

Returns:

the instance handle associated with this entity.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.86 EntityFactoryQosPolicy Class Reference 919

8.86 EntityFactoryQosPolicy Class Reference

A QoS policy for all com.rti.dds.infrastructure.Entity (p. 912) types that
can act as factories for one or more other com.rti.dds.infrastructure.Entity
(p. 912) types.

Inheritance diagram for EntityFactoryQosPolicy::

Public Attributes

ˆ boolean autoenable created entities
Specifies whether the entity acting as a factory automatically enables the
instances it creates.

8.86.1 Detailed Description

A QoS policy for all com.rti.dds.infrastructure.Entity (p. 912) types that
can act as factories for one or more other com.rti.dds.infrastructure.Entity
(p. 912) types.

Entity:

com.rti.dds.domain.DomainParticipantFactory
(p. 708), com.rti.dds.domain.DomainParticipant
(p. 629), com.rti.dds.publication.Publisher (p. 1277),
com.rti.dds.subscription.Subscriber (p. 1478)

Properties:

RxO (p. 97) = NO
Changeable (p. 98) = YES (p. 98)

8.86.2 Usage

This policy controls the behavior of the com.rti.dds.infrastructure.Entity
(p. 912) as a factory for other entities. It controls whether or not child entities
are created in the enabled state.

RTI Connext uses a factory design pattern for creating DDS Entities. That is,
a parent entity must be used to create child entities. DomainParticipants create
Topics, Publishers and Subscribers. Publishers create DataWriters. Subscribers
create DataReaders.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

920 Class Documentation

By default, a child object is enabled upon creation (initialized and may be
actively used). With this QoS policy, a child object can be created in a disabled
state. A disabled entity is only partially initialized and cannot be used until
the entity is enabled. Note: an entity can only be enabled ; it cannot be disabled
after it has been enabled.

This QoS policy is useful to synchronize the initialization of DDS En-
tities. For example, when a com.rti.dds.subscription.DataReader
(p. 473) is created in an enabled state, its existence is immediately propa-
gated for discovery and the com.rti.dds.subscription.DataReader (p. 473)
object’s listener called as soon as data is received. The initializa-
tion process for an application may extend beyond the creation of the
com.rti.dds.subscription.DataReader (p. 473), and thus, it may not be de-
sireable for the com.rti.dds.subscription.DataReader (p. 473) to start to
receive or process any data until the initialization process is complete. So by
creating readers in a disabled state, your application can make sure that no
data is received until the rest of the application initialization is complete, and
at that time, enable the them.

Note: if an entity is disabled, then all of the child entities it creates will be
disabled too, regardless of the setting of this QoS policy. However, enabling a
disabled entity will enable all of its children if this QoS policy is set to auto-
matically enable children entities.

This policy is mutable. A change in the policy affects only the entities created
after the change, not any previously created entities.

8.86.3 Member Data Documentation

8.86.3.1 boolean autoenable created entities

Specifies whether the entity acting as a factory automatically enables the in-
stances it creates.

The setting of autoenable created entities to true indicates that
the factory create <entity> operation(s) will automatically in-
voke the com.rti.dds.infrastructure.Entity.enable (p. 915) operation
each time a new com.rti.dds.infrastructure.Entity (p. 912) is cre-
ated. Therefore, the com.rti.dds.infrastructure.Entity (p. 912) re-
turned by create <entity> will already be enabled. A setting of
false indicates that the com.rti.dds.infrastructure.Entity (p. 912)
will not be automatically enabled. Your application will need to call
com.rti.dds.infrastructure.Entity.enable (p. 915) itself.

The default setting of autoenable created entities = true
means that, by default, it is not necessary to explicitly call
com.rti.dds.infrastructure.Entity.enable (p. 915) on newly created

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.86 EntityFactoryQosPolicy Class Reference 921

entities.

[default] true

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

922 Class Documentation

8.87 EntityHowTo.MyEntityListener Class Ref-
erence

Inheritance diagram for EntityHowTo.MyEntityListener::

8.87.1 Detailed Description

{

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.88 EntityNameQosPolicy Class Reference 923

8.88 EntityNameQosPolicy Class Reference

Assigns a name and a role name to a
com.rti.dds.domain.DomainParticipant (p. 629),
com.rti.dds.publication.DataWriter (p. 538) or
com.rti.dds.subscription.DataReader (p. 473). These names will be
visible during the discovery process and in RTI tools to help you visualize and
debug your system.

Inheritance diagram for EntityNameQosPolicy::

Public Attributes

ˆ String name
The name of the entity.

ˆ String role name
The entity role name.

8.88.1 Detailed Description

Assigns a name and a role name to a
com.rti.dds.domain.DomainParticipant (p. 629),
com.rti.dds.publication.DataWriter (p. 538) or
com.rti.dds.subscription.DataReader (p. 473). These names will be
visible during the discovery process and in RTI tools to help you visualize and
debug your system.

Entity:

com.rti.dds.domain.DomainParticipant (p. 629),
com.rti.dds.subscription.DataReader (p. 473),
com.rti.dds.publication.DataWriter (p. 538)

Properties:

RxO (p. 97) = NO;
Changeable (p. 98) = UNTIL ENABLE (p. 98)

8.88.2 Usage

The name and role name can only be 255 characters in length.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

924 Class Documentation

8.88.3 Member Data Documentation

8.88.3.1 String name

The name of the entity.

[default] ”[ENTITY]” for com.rti.dds.domain.DomainParticipant
(p. 629). null for com.rti.dds.subscription.DataReader (p. 473) and
com.rti.dds.publication.DataWriter (p. 538)

[range] Null terminated string with length not exceeding 255. It can be null.

8.88.3.2 String role name

The entity role name.

With Collaborative DataWriters this name is used to specify to which endpoint
group the com.rti.dds.publication.DataWriter (p. 538) belongs.

[range] Null terminated string with length not exceeding 255. It can be null.

[default] null

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.89 Enum Class Reference 925

8.89 Enum Class Reference

A superclass for all type-safe enumerated types.

Inheritance diagram for Enum::

Public Member Functions

ˆ final int ordinal ()

The integral value of this enumerated constant.

ˆ Object copy from (Object src)
ˆ final String name ()

The name of this enum constant, as declared in the enum declaration.

ˆ final String toString ()

The string value of this enum constant.

Protected Member Functions

ˆ Enum (String name, int ordinal)

The constructor.

8.89.1 Detailed Description

A superclass for all type-safe enumerated types.

This class is not part of the DDS specification per se. It has been in-
troduced to facilitate the implementation of the numerous enumerated
types in the specification and is based on the Java enumeration JSR. See
<http://www.jcp.org/aboutJava/communityprocess/jsr/tiger/enum.html>.

8.89.2 Constructor & Destructor Documentation

8.89.2.1 Enum (String name, int ordinal) [protected]

The constructor.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

926 Class Documentation

Parameters:

ordinal The value of the ordinal field of the new enumerated constant.

name The value of the name field of the new enumerated constant.

See also:

com.rti.dds.util.Enum.ordinal (p. 926)
com.rti.dds.util.Enum.name (p. 927)

8.89.3 Member Function Documentation

8.89.3.1 final int ordinal ()

The integral value of this enumerated constant.

For example, in an IDL definition like this:

enum Foo {

BAR = 2

};

...the value of Foo.BAR.ordinal() will be 2. If the assignment (”<code>=
2</code>”) is omitted, the ordinal value will be 0.

8.89.3.2 Object copy from (Object src)

This is the implementation of the Copyable interface. While this implemen-
tation is not strictly a copy it can have the same effect. In order to use
it properly, assign the result of the operation to the member that is the
target of the copy. So, for example: myEnumField = myEnumField.copy -
from(anotherInstanceOfEnum); Since Enum (p. 925)s are immutable there can-
not be a true copy made but this method will return a reference to the same
enumerate as anotherInstanceOfEnum.

Returns:

returns src

See also:

com.rti.dds.infrastructure.Copyable.copy from
(p. 466)(java.lang.Object)

Implements Copyable (p. 466).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.89 Enum Class Reference 927

8.89.3.3 final String name ()

The name of this enum constant, as declared in the enum declaration.

Most programmers should use the com.rti.dds.util.Enum.toString (p. 927)
method rather than accessing this field.

8.89.3.4 final String toString ()

The string value of this enum constant.

See also:

com.rti.dds.util.Enum.name (p. 927)

Returns:

the name of this enum constant

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

928 Class Documentation

8.90 EnumMember Class Reference

A description of a member of an enumeration.

Inherits java.io.Serializable.

Public Member Functions

ˆ EnumMember (String name, int ordinal)

Public Attributes

ˆ String name

The name of the enumeration member.

ˆ int ordinal

The value associated the the enumeration member.

8.90.1 Detailed Description

A description of a member of an enumeration.

See also:

TypeCodeFactory.create enum tc (p. 1646)

8.90.2 Constructor & Destructor Documentation

8.90.2.1 EnumMember (String name, int ordinal)

Constructs an EnumMember (p. 928) object initialized with the given values.

8.90.3 Member Data Documentation

8.90.3.1 String name

The name of the enumeration member.

Cannot be null.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.90 EnumMember Class Reference 929

8.90.3.2 int ordinal

The value associated the the enumeration member.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

930 Class Documentation

8.91 EventQosPolicy Class Reference

Settings for event.

Inheritance diagram for EventQosPolicy::

Public Attributes

ˆ final ThreadSettings t thread

Event thread QoS.

ˆ int initial count

The initial number of events.

ˆ int max count

The maximum number of events.

8.91.1 Detailed Description

Settings for event.

In a com.rti.dds.domain.DomainParticipant (p. 629), a thread is dedi-
cated to handle all timed events, including checking for timeouts and dead-
lines and executing internal and user-defined timeout or exception handling
routines/callbacks.

This QoS policy allows you to configure thread properties such as pri-
ority level and stack size. You can also configure the maximum num-
ber of events that can be posted to the event thread. By default, a
com.rti.dds.domain.DomainParticipant (p. 629) will dynamically allocate
memory as needed for events posted to the event thread. However, by setting a
maximum value or setting the initial and maximum value to be the same, you
can either bound the amount of memory allocated for the event thread or pre-
vent a com.rti.dds.domain.DomainParticipant (p. 629) from dynamically
allocating memory for the event thread after initialization.

This QoS policy is an extension to the DDS standard.

Entity:

com.rti.dds.domain.DomainParticipant (p. 629)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.91 EventQosPolicy Class Reference 931

Properties:

RxO (p. 97) = N/A
Changeable (p. 98) = NO (p. 98)

8.91.2 Member Data Documentation

8.91.2.1 final ThreadSettings t thread

Event thread QoS.

There is only one event thread.

Priority:

[default] The actual value depends on your architecture:

For Windows: -2

For Solaris: OS default priority

For Linux: OS default priority

For LynxOS: 13

For INTEGRITY: 80

For VxWorks: 110

For all others: OS default priority.

Stack Size:

[default] The actual value depends on your architecture:

For Windows: OS default stack size

For Solaris: OS default stack size

For Linux: OS default stack size

For LynxOS: 4∗16∗1024

For INTEGRITY: 4∗20∗1024

For VxWorks: 4∗16∗1024

For all others: OS default stack size.

Mask:

[default] mask = com.rti.dds.infrastructure.ThreadSettingsKind.THREAD -
SETTINGS FLOATING POINT (p. 1536) |
com.rti.dds.infrastructure.ThreadSettingsKind.THREAD -
SETTINGS STDIO (p. 1536)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

932 Class Documentation

8.91.2.2 int initial count

The initial number of events.

[default] 256

[range] [1, 1 million], <= max count

8.91.2.3 int max count

The maximum number of events.

The maximum number of events. If the limit is reached, no new event can be
added.

[default] ResourceLimitsQosPolicy.LENGTH UNLIMITED (p. 102)

[range] [1, 1 million] or ResourceLimitsQosPolicy.LENGTH -
UNLIMITED (p. 102), >= initial count

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.92 ExclusiveAreaQosPolicy Class Reference 933

8.92 ExclusiveAreaQosPolicy Class Reference

Configures multi-thread concurrency and deadlock prevention capabilities.

Inheritance diagram for ExclusiveAreaQosPolicy::

Public Attributes

ˆ boolean use shared exclusive area

Whether the com.rti.dds.infrastructure.Entity (p. 912) is protected by its
own exclusive area or the shared exclusive area.

8.92.1 Detailed Description

Configures multi-thread concurrency and deadlock prevention capabilities.

An ”exclusive area” is an abstraction of a multi-thread-safe region. Each entity
is protected by one and only one exclusive area, although a single exclusive area
may be shared by multiple entities.

Conceptually, an exclusive area is a mutex or monitor with additional dead-
lock protection features. If a com.rti.dds.infrastructure.Entity (p. 912)
has ”entered” its exclusive area to perform a protected operation, no other
com.rti.dds.infrastructure.Entity (p. 912) sharing the same exclusive area
may enter it until the first com.rti.dds.infrastructure.Entity (p. 912) ”exits”
the exclusive area.

Entity:

com.rti.dds.publication.Publisher (p. 1277),
com.rti.dds.subscription.Subscriber (p. 1478)

Properties:

RxO (p. 97) = N/A
Changeable (p. 98) = NO (p. 98)

See also:

com.rti.dds.infrastructure.Listener (p. 1154)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

934 Class Documentation

8.92.2 Usage

Exclusive Areas (EAs) allow RTI Connext to be multi-threaded while
preventing deadlock in multi-threaded applications. EAs prevent a
com.rti.dds.domain.DomainParticipant (p. 629) object’s internal threads
from deadlocking with each other when executing internal code as well as when
executing the code of user-registered listener callbacks.

Within an EA, all calls to the code protected by the EA are sin-
gle threaded. Each com.rti.dds.domain.DomainParticipant
(p. 629), com.rti.dds.publication.Publisher (p. 1277) and
com.rti.dds.subscription.Subscriber (p. 1478) entity represents a sep-
arate EA. Thus all DataWriters of the same Publisher and all DataReaders
of the same Subscriber share the EA of its parent. Note: this means that
operations on the DataWriters of the same Publisher and on the DataReaders
of the same Subscriber will be serialized, even when invoked from multiple
concurrent application threads.

Within an EA, there are limitations on how code protected by a different
EA can be accessed. For example, when received data is being processed by
user code in the DataReader Listener (p. 1154), within a Subscriber EA, the
user code may call the com.rti.dds.topic.example.FooDataWriter.write opera-
tion of a DataWriter that is protected by the EA of its Publisher, so you
can send data in the function called to process received data. However, you
cannot create entities or call functions that are protected by the EA of the
com.rti.dds.domain.DomainParticipant (p. 629). See Chapter 4 in the RTI
Connext User’s Manual for complete documentation on Exclusive Areas.

With this QoS policy, you can force a com.rti.dds.publication.Publisher
(p. 1277) or com.rti.dds.subscription.Subscriber (p. 1478) to share the same
EA as its com.rti.dds.domain.DomainParticipant (p. 629). Using this ca-
pability, the restriction of not being able to create entities in a DataReader
Listener’s on data available() callback is lifted. However, the tradeoff is that
the application has reduced concurrency through the Entities that share an EA.

Note that the restrictions on calling methods in a different EA only exist for user
code that is called in registered DDS Listeners by internal DomainParticipant
threads. User code may call all RTI Connext functions for any DDS Entities
from their own threads at any time.

8.92.3 Member Data Documentation

8.92.3.1 boolean use shared exclusive area

Whether the com.rti.dds.infrastructure.Entity (p. 912) is protected by its
own exclusive area or the shared exclusive area.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.92 ExclusiveAreaQosPolicy Class Reference 935

All writers belonging to the same com.rti.dds.publication.Publisher
(p. 1277) are protected by the same exclusive area as the
com.rti.dds.publication.Publisher (p. 1277) itself. The same is true
of all readers belonging to the same com.rti.dds.subscription.Subscriber
(p. 1478). Typically, the publishers and subscribers themselves do not share
their exclusive areas with each other; each has its own. This configuration
maximizes the concurrency of the system because independent readers and
writers do not need to take the same mutexes in order to operate. However,
it places some restrictions on the operations that may be invoked from
within listener callbacks because of the possibility of a deadlock. See the
com.rti.dds.infrastructure.Listener (p. 1154) documentation for more
details.

If this field is set to false, the default more concurrent behavior will be used. In
the event that this behavior is insufficiently flexible for your application, you may
set this value to true. In that case, the com.rti.dds.subscription.Subscriber
(p. 1478) or com.rti.dds.publication.Publisher (p. 1277) in question, and all
of the readers or writers (as appropriate) created from it, will share a global
exclusive area. This global exclusive area is shared by all entities whose value
for this QoS field is true. By sharing the same exclusive area across a larger
number of entities, the concurrency of the system will be decreased; however,
some of the callback restrictions will be relaxed.

[default] false

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

936 Class Documentation

8.93 FloatSeq Class Reference

Instantiates com.rti.dds.util.Sequence (p. 1432) < float >.

Inheritance diagram for FloatSeq::

Public Member Functions

ˆ FloatSeq ()
Constructs an empty sequence of floats with an initial maximum of zero.

ˆ FloatSeq (int initialMaximum)
Constructs an empty sequence of floats with the given initial maximum.

ˆ FloatSeq (float[] floats)
Constructs a new sequence containing the given floats.

ˆ boolean addAllFloat (float[] elements, int offset, int length)
Append length elements from the given array to this sequence, starting at
index offset in that array.

ˆ boolean addAllFloat (float[] elements)
ˆ void addFloat (float element)

Append the element to the end of the sequence.

ˆ void addFloat (int index, float element)
Shift all elements in the sequence starting from the given index and add the
element to the given index.

ˆ float getFloat (int index)
Returns the float at the given index.

ˆ float setFloat (int index, float element)
Set the new float at the given index and return the old float.

ˆ void setFloat (int dstIndex, float[] elements, int srcIndex, int length)
Copy a portion of the given array into this sequence.

ˆ float[] toArrayFloat (float[] array)
Return an array containing copy of the contents of this sequence.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.93 FloatSeq Class Reference 937

ˆ int getMaximum ()
Get the current maximum number of elements that can be stored in this
sequence.

ˆ Object get (int index)
A wrapper for getFloat(int) (p. 938) that returns a java.lang.Float.

ˆ Object set (int index, Object element)
A wrapper for setFloat() (p. 939).

ˆ void add (int index, Object element)
A wrapper for addFloat(int, int).

8.93.1 Detailed Description

Instantiates com.rti.dds.util.Sequence (p. 1432) < float >.

Instantiates:

<<generic>> (p. 271) com.rti.dds.util.Sequence (p. 1432)

See also:

float
com.rti.dds.util.Sequence (p. 1432)

8.93.2 Constructor & Destructor Documentation

8.93.2.1 FloatSeq ()

Constructs an empty sequence of floats with an initial maximum of zero.

8.93.2.2 FloatSeq (int initialMaximum)

Constructs an empty sequence of floats with the given initial maximum.

8.93.2.3 FloatSeq (float[] floats)

Constructs a new sequence containing the given floats.

Parameters:

floats the initial contents of this sequence

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

938 Class Documentation

Exceptions:

NullPointerException if the input array is null

8.93.3 Member Function Documentation

8.93.3.1 boolean addAllFloat (float[] elements, int offset, int
length)

Append length elements from the given array to this sequence, starting at index
offset in that array.

Exceptions:

NullPointerException if the given array is null.

8.93.3.2 boolean addAllFloat (float[] elements)

Exceptions:

NullPointerException if the given array is null

8.93.3.3 void addFloat (float element)

Append the element to the end of the sequence.

8.93.3.4 void addFloat (int index, float element)

Shift all elements in the sequence starting from the given index and add the
element to the given index.

8.93.3.5 float getFloat (int index)

Returns the float at the given index.

Exceptions:

IndexOutOfBoundsException if the index is out of bounds.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.93 FloatSeq Class Reference 939

8.93.3.6 float setFloat (int index, float element)

Set the new float at the given index and return the old float.

Exceptions:

IndexOutOfBoundsException if the index is out of bounds.

8.93.3.7 void setFloat (int dstIndex, float[] elements, int srcIndex,
int length)

Copy a portion of the given array into this sequence.

Parameters:

dstIndex the index at which to start copying into this sequence.

elements an array of primitive elements.

srcIndex the index at which to start copying from the given array.

length the number of elements to copy.

Exceptions:

IndexOutOfBoundsException if copying would cause access of data
outside array bounds.

8.93.3.8 float [] toArrayFloat (float[] array)

Return an array containing copy of the contents of this sequence.

Parameters:

array The array into which this sequence should be copied. It may be
null. If it is, or if array length is too small, the array will be ignored,
and a new array of the necessary length will be created and copied
into instead.

Returns:

A non-null array containing a copy of the contents of this sequence.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

940 Class Documentation

8.93.3.9 int getMaximum ()

Get the current maximum number of elements that can be stored in this se-
quence.

The maximum of the sequence represents the maximum number of elements that
the underlying buffer can hold. It does not represent the current number of
elements.

The maximum is a non-negative number. It is initialized when the sequence is
first created.

The maximum can be changed implicitly by adding an element to the sequence
with add() (p. 941), or explicitly by calling Sequence.setMaximum.

Returns:

the current maximum of the sequence.

See also:

Sequence.size()

Implements Sequence (p. 1433).

8.93.3.10 Object get (int index) [virtual]

A wrapper for getFloat(int) (p. 938) that returns a java.lang.Float.

See also:

java.util.List.get(int)

Implements AbstractPrimitiveSequence (p. 377).

8.93.3.11 Object set (int index, Object element) [virtual]

A wrapper for setFloat() (p. 939).

Exceptions:

ClassCastException if the element is not of type Float.

See also:

java.util.List.set(int, java.lang.Object)

Implements AbstractPrimitiveSequence (p. 377).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.93 FloatSeq Class Reference 941

8.93.3.12 void add (int index, Object element) [virtual]

A wrapper for addFloat(int, int).

Exceptions:

ClassCastException if the element is not of type Float.

See also:

java.util.List.add(int, java.lang.Object)

Implements AbstractPrimitiveSequence (p. 378).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

942 Class Documentation

8.94 FlowController Interface Reference

<<interface>> (p. 271) A flow controller is the object responsible for
shaping the network traffic by determining when attached asynchronous
com.rti.dds.publication.DataWriter (p. 538) instances are allowed to write
data.

Public Member Functions

ˆ String get name ()

Returns the name of the com.rti.dds.publication.FlowController
(p. 942).

ˆ DomainParticipant get participant ()

Returns the com.rti.dds.domain.DomainParticipant (p. 629) to which
the com.rti.dds.publication.FlowController (p. 942) belongs.

ˆ void set property (FlowControllerProperty t prop)

Sets the com.rti.dds.publication.FlowController (p. 942) property.

ˆ void get property (FlowControllerProperty t prop)

Gets the com.rti.dds.publication.FlowController (p. 942) property.

ˆ void trigger flow ()

Provides an external trigger to the com.rti.dds.publication.FlowController
(p. 942).

Static Public Attributes

ˆ static final String DEFAULT FLOW CONTROLLER NAME

[default] Special value of com.rti.dds.infrastructure.PublishModeQosPolicy.flow -
controller name (p. 1310) that refers to the built-in default flow controller.

ˆ static final String FIXED RATE FLOW CONTROLLER -
NAME

Special value of com.rti.dds.infrastructure.PublishModeQosPolicy.flow -
controller name (p. 1310) that refers to the built-in fixed-rate flow
controller.

ˆ static final String ON DEMAND FLOW CONTROLLER -
NAME

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.94 FlowController Interface Reference 943

Special value of com.rti.dds.infrastructure.PublishModeQosPolicy.flow -
controller name (p. 1310) that refers to the built-in on-demand flow
controller.

8.94.1 Detailed Description

<<interface>> (p. 271) A flow controller is the object responsible for
shaping the network traffic by determining when attached asynchronous
com.rti.dds.publication.DataWriter (p. 538) instances are allowed to write
data.

QoS:

com.rti.dds.publication.FlowControllerProperty t (p. 946)

8.94.2 Member Function Documentation

8.94.2.1 String get name ()

Returns the name of the com.rti.dds.publication.FlowController (p. 942).

Returns:

The name of the com.rti.dds.publication.FlowController (p. 942).

8.94.2.2 DomainParticipant get participant ()

Returns the com.rti.dds.domain.DomainParticipant (p. 629) to which the
com.rti.dds.publication.FlowController (p. 942) belongs.

Returns:

The com.rti.dds.domain.DomainParticipant (p. 629) to which the
com.rti.dds.publication.FlowController (p. 942) belongs.

8.94.2.3 void set property (FlowControllerProperty t prop)

Sets the com.rti.dds.publication.FlowController (p. 942) property.

This operation modifies the property of the
com.rti.dds.publication.FlowController (p. 942).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

944 Class Documentation

Once a com.rti.dds.publication.FlowController (p. 942) has been instan-
tiated, only the com.rti.dds.publication.FlowControllerProperty -
t.token bucket (p. 947) can be changed. The
com.rti.dds.publication.FlowControllerProperty t.scheduling policy
(p. 947) is immutable.

A new com.rti.dds.publication.FlowControllerTokenBucketProperty -
t.period (p. 953) only takes effect at the next scheduled token distribution time
(as determined by its previous value).

Parameters:

prop <<in>> (p. 271) The new com.rti.dds.publication.FlowControllerProperty -
t (p. 946). Property must be consistent. Immutable fields cannot
be changed after com.rti.dds.publication.FlowController
(p. 942) has been created. The special value Domain-
Participant.FLOW CONTROLLER PROPERTY -
DEFAULT (p. 150) can be used to indicate that the
property of the com.rti.dds.publication.FlowController
(p. 942) should be changed to match the current default
com.rti.dds.publication.FlowControllerProperty t (p. 946)
set in the com.rti.dds.domain.DomainParticipant (p. 629).
Cannot be NULL.

Exceptions:

One of the Standard Return Codes (p. 104), RETCODE -
IMMUTABLE POLICY, or RETCODE INCONSISTENT POLICY.

See also:

com.rti.dds.publication.FlowControllerProperty t (p. 946) for rules
on consistency among property values.

8.94.2.4 void get property (FlowControllerProperty t prop)

Gets the com.rti.dds.publication.FlowController (p. 942) property.

Parameters:

prop <<in>> (p. 271) com.rti.dds.publication.FlowController
(p. 942) to be filled in. Cannot be NULL.

Exceptions:

One of the Standard Return Codes (p. 104)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.94 FlowController Interface Reference 945

8.94.2.5 void trigger flow ()

Provides an external trigger to the com.rti.dds.publication.FlowController
(p. 942).

Typically, a com.rti.dds.publication.FlowController (p. 942)
uses an internal trigger to periodically replenish its tokens. The
period by which this trigger is called is determined by the
com.rti.dds.publication.FlowControllerTokenBucketProperty -
t.period (p. 953) property setting.

This function provides an additional, external trigger to the
com.rti.dds.publication.FlowController (p. 942). This trigger adds
com.rti.dds.publication.FlowControllerTokenBucketProperty -
t.tokens added per period (p. 952) tokens each time it is called (subject to
the other property settings of the com.rti.dds.publication.FlowController
(p. 942)).

An on-demand com.rti.dds.publication.FlowController (p. 942) can
be created with a com.rti.dds.infrastructure.Duration t.INFINITE as
com.rti.dds.publication.FlowControllerTokenBucketProperty -
t.period (p. 953), in which case the only trigger source is external (i.e.
the com.rti.dds.publication.FlowController (p. 942) is solely triggered by
the user on demand).

com.rti.dds.publication.FlowController.trigger flow (p. 945) can be
called on both strict on-demand com.rti.dds.publication.FlowController
(p. 942) and hybrid com.rti.dds.publication.FlowController (p. 942) (in-
ternally and externally triggered).

Exceptions:

One of the Standard Return Codes (p. 104)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

946 Class Documentation

8.95 FlowControllerProperty t Class Reference

Determines the flow control characteristics of the
com.rti.dds.publication.FlowController (p. 942).

Inherits Struct.

Public Attributes

ˆ FlowControllerSchedulingPolicy scheduling policy
Scheduling policy.

ˆ FlowControllerTokenBucketProperty t token bucket
Settings for the token bucket.

8.95.1 Detailed Description

Determines the flow control characteristics of the
com.rti.dds.publication.FlowController (p. 942).

The flow control characteristics shape the network traffic by de-
termining how often and in what order associated asynchronous
com.rti.dds.publication.DataWriter (p. 538) instances are serviced
and how much data they are allowed to send.

Note that these settings apply directly to the
com.rti.dds.publication.FlowController (p. 942), and does not de-
pend on the number of com.rti.dds.publication.DataWriter (p. 538)
instances the com.rti.dds.publication.FlowController (p. 942) is servicing.
For instance, the specified flow rate does not double simply because two
com.rti.dds.publication.DataWriter (p. 538) instances are waiting to
write.

Entity:

com.rti.dds.publication.FlowController (p. 942)

Properties:

RxO (p. 97) = N/A

Changeable (p. 98) = NO (p. 98) for com.rti.dds.publication.FlowControllerProperty -
t.scheduling policy (p. 947), YES (p. 98) for
com.rti.dds.publication.FlowControllerProperty -
t.token bucket (p. 947). However, the special value

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.95 FlowControllerProperty t Class Reference 947

of com.rti.dds.infrastructure.Duration t.INFINITE as
com.rti.dds.publication.FlowControllerTokenBucketProperty -
t.period (p. 953) is strictly used to create an on-demand
com.rti.dds.publication.FlowController (p. 942). The token period
cannot toggle from an infinite to finite value (or vice versa). It can, however,
change from one finite value to another.

8.95.2 Member Data Documentation

8.95.2.1 FlowControllerSchedulingPolicy scheduling policy

Scheduling policy.

Determines the scheduling policy for servicing the
com.rti.dds.publication.DataWriter (p. 538) instances associated with
the com.rti.dds.publication.FlowController (p. 942).

[default] idref FlowControllerSchedulingPolicy EDF FLOW -
CONTROLLER SCHED POLICY

8.95.2.2 FlowControllerTokenBucketProperty t token bucket

Settings for the token bucket.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

948 Class Documentation

8.96 FlowControllerSchedulingPolicy Class Ref-
erence

Kinds of flow controller scheduling policy.

Inheritance diagram for FlowControllerSchedulingPolicy::

Static Public Attributes

ˆ static final FlowControllerSchedulingPolicy RR FLOW -
CONTROLLER SCHED POLICY

Indicates to flow control in a round-robin fashion.

ˆ static final FlowControllerSchedulingPolicy EDF FLOW -
CONTROLLER SCHED POLICY

Indicates to flow control in an earliest-deadline-first fashion.

8.96.1 Detailed Description

Kinds of flow controller scheduling policy.

Samples written by an asynchronous com.rti.dds.publication.DataWriter
(p. 538) are not sent in the context of the
com.rti.dds.topic.example.FooDataWriter.write call. Instead, the mid-
dleware puts the samples in a queue for future processing. The
com.rti.dds.publication.FlowController (p. 942) associated with each
asynchronous DataWriter (p. 538) instance determines when the samples are
actually sent.

Each com.rti.dds.publication.FlowController (p. 942) maintains a separate
FIFO queue for each unique destination (remote application). Samples written
by asynchronous com.rti.dds.publication.DataWriter (p. 538) instances as-
sociated with the flow controller, are placed in the queues that correspond to
the intended destinations of the sample.

When tokens become available, a flow controller must decide which queue(s)
to grant tokens first. This is determined by the flow controller’s scheduling
policy. Once a queue has been granted tokens, it is serviced by the asynchronous
publishing thread. The queued up samples will be coalesced and sent to the
corresponding destination. The number of samples sent depends on the data
size and the number of tokens granted.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.96 FlowControllerSchedulingPolicy Class Reference 949

QoS:

com.rti.dds.publication.FlowControllerProperty t (p. 946)

8.96.2 Member Data Documentation

8.96.2.1 final FlowControllerSchedulingPolicy
RR FLOW CONTROLLER SCHED POLICY [static]

Indicates to flow control in a round-robin fashion.

Whenever tokens become available, the flow controller distributes the tokens
uniformly across all of its (non-empty) destination queues. No destinations are
prioritized. Instead, all destinations are treated equally and are serviced in a
round-robin fashion.

8.96.2.2 final FlowControllerSchedulingPolicy
EDF FLOW CONTROLLER SCHED POLICY [static]

Indicates to flow control in an earliest-deadline-first fashion.

A sample’s deadline is determined by the time it was written plus the latency
budget of the DataWriter (p. 538) at the time of the write call (as specified in
the com.rti.dds.infrastructure.LatencyBudgetQosPolicy (p. 1148)). The
relative priority of a flow controller’s destination queue is determined by the
earliest deadline across all samples it contains.

When tokens become available, the com.rti.dds.publication.FlowController
(p. 942) distributes tokens to the destination queues in order of their deadline
priority. In other words, the queue containing the sample with the earliest
deadline is serviced first. The number of tokens granted equals the number of
tokens required to send the first sample in the queue. Note that the priority
of a queue may change as samples are sent (i.e. removed from the queue).
If a sample must be sent to multiple destinations or two samples have an
equal deadline value, the corresponding destination queues are serviced in a
round-robin fashion.

Hence, under the default com.rti.dds.infrastructure.LatencyBudgetQosPolicy.duration
(p. 1149) setting, an EDF FLOW CONTROLLER SCHED POLICY
com.rti.dds.publication.FlowController (p. 942) preserves the order
in which the user calls com.rti.dds.topic.example.FooDataWriter.write across
the DataWriters associated with the flow controller.

Since the com.rti.dds.infrastructure.LatencyBudgetQosPolicy
(p. 1148) is mutable, a sample written second may con-
tain an earlier deadline than the sample written first if the
com.rti.dds.infrastructure.LatencyBudgetQosPolicy.duration (p. 1149)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

950 Class Documentation

value is sufficiently decreased in between writing the two samples. In that
case, if the first sample is not yet written (still in queue waiting for its turn),
it inherits the priority corresponding to the (earlier) deadline from the second
sample.

In other words, the priority of a destination queue is always determined by
the earliest deadline among all samples contained in the queue. This pri-
ority inheritance approach is required in order to both honor the updated
com.rti.dds.infrastructure.LatencyBudgetQosPolicy.duration (p. 1149)
and adhere to the com.rti.dds.publication.DataWriter (p. 538) in-order
data delivery guarantee.

[default] for com.rti.dds.publication.DataWriter (p. 538)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.97 FlowControllerTokenBucketProperty t Class Reference 951

8.97 FlowControllerTokenBucketProperty t
Class Reference

com.rti.dds.publication.FlowController (p. 942) uses the popular token
bucket approach for open loop network flow control. The flow control char-
acteristics are determined by the token bucket properties.

Inherits Struct.

Public Attributes

ˆ int max tokens

Maximum number of tokens than can accumulate in the token bucket.

ˆ int tokens added per period

The number of tokens added to the token bucket per specified period.

ˆ int tokens leaked per period

The number of tokens removed from the token bucket per specified period.

ˆ Duration t period

Period for adding tokens to and removing tokens from the bucket.

ˆ int bytes per token

Maximum number of bytes allowed to send for each token available.

8.97.1 Detailed Description

com.rti.dds.publication.FlowController (p. 942) uses the popular token
bucket approach for open loop network flow control. The flow control char-
acteristics are determined by the token bucket properties.

Asynchronously published samples are queued up and transmitted based on the
token bucket flow control scheme. The token bucket contains tokens, each of
which represents a number of bytes. Samples can be sent only when there are
sufficient tokens in the bucket. As samples are sent, tokens are consumed. The
number of tokens consumed is proportional to the size of the data being sent.
Tokens are replenished on a periodic basis.

The rate at which tokens become available and other token bucket properties
determine the network traffic flow.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

952 Class Documentation

Note that if the same sample must be sent to multiple destinations, separate
tokens are required for each destination. Only when multiple samples are des-
tined to the same destination will they be co-alesced and sent using the same
token(s). In other words, each token can only contribute to a single network
packet.

Entity:

com.rti.dds.publication.FlowController (p. 942)

Properties:

RxO (p. 97) = N/A

Changeable (p. 98) = YES (p. 98). However, the spe-
cial value of com.rti.dds.infrastructure.Duration t.INFINITE as
com.rti.dds.publication.FlowControllerTokenBucketProperty -
t.period (p. 953) is strictly used to create an on-demand
com.rti.dds.publication.FlowController (p. 942). The token period
cannot toggle from an infinite to finite value (or vice versa). It can, however,
change from one finite value to another.

8.97.2 Member Data Documentation

8.97.2.1 int max tokens

Maximum number of tokens than can accumulate in the token bucket.

The number of tokens in the bucket will never exceed this value. Any
excess tokens are discarded. This property value, combined with
com.rti.dds.publication.FlowControllerTokenBucketProperty -
t.bytes per token (p. 954), determines the maximum allowable data
burst.

Use ResourceLimitsQosPolicy.LENGTH UNLIMITED (p. 102) to allow
accumulation of an unlimited amount of tokens (and therefore potentially an
unlimited burst size).

[default] ResourceLimitsQosPolicy.LENGTH UNLIMITED (p. 102)

8.97.2.2 int tokens added per period

The number of tokens added to the token bucket per specified period.

com.rti.dds.publication.FlowController (p. 942) transmits data only when
tokens are available. Tokens are periodically replenished. This field determines

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.97 FlowControllerTokenBucketProperty t Class Reference 953

the number of tokens added to the token bucket with each periodic replenish-
ment.

Available tokens are distributed to associated
com.rti.dds.publication.DataWriter (p. 538) instances based on the
com.rti.dds.publication.FlowControllerProperty t.scheduling policy
(p. 947).

Use ResourceLimitsQosPolicy.LENGTH UNLIMITED
(p. 102) to add the maximum number of tokens allowed by
com.rti.dds.publication.FlowControllerTokenBucketProperty -
t.max tokens (p. 952).

[default] ResourceLimitsQosPolicy.LENGTH UNLIMITED (p. 102)

8.97.2.3 int tokens leaked per period

The number of tokens removed from the token bucket per specified period.

com.rti.dds.publication.FlowController (p. 942) transmits data only when
tokens are available. When tokens are replenished and there are sufficient tokens
to send all samples in the queue, this property determines whether any or all of
the leftover tokens remain in the bucket.

Use ResourceLimitsQosPolicy.LENGTH UNLIMITED (p. 102) to re-
move all excess tokens from the token bucket once all samples have been sent. In
other words, no token accumulation is allowed. When new samples are written
after tokens were purged, the earliest point in time at which they can be sent
is at the next periodic replenishment.

[default] 0

8.97.2.4 Duration t period

Period for adding tokens to and removing tokens from the bucket.

com.rti.dds.publication.FlowController (p. 942) transmits data only when
tokens are available. This field determines the period by which tokens are added
or removed from the token bucket.

The special value com.rti.dds.infrastructure.Duration t.INFINITE can be
used to create an on-demand com.rti.dds.publication.FlowController
(p. 942), for which tokens are no longer replenished pe-
riodically. Instead, tokens must be added explicitly by
calling com.rti.dds.publication.FlowController.trigger -
flow (p. 945). This external trigger adds
com.rti.dds.publication.FlowControllerTokenBucketProperty -
t.tokens added per period (p. 952) tokens each time it is called (subject to
the other property settings).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

954 Class Documentation

[default] 1 second

[range] [0,1 year] or com.rti.dds.infrastructure.Duration t.INFINITE

8.97.2.5 int bytes per token

Maximum number of bytes allowed to send for each token available.

com.rti.dds.publication.FlowController (p. 942) transmits data only when
tokens are available. This field determines the number of bytes that can actually
be transmitted based on the number of tokens.

Tokens are always consumed in whole by each
com.rti.dds.publication.DataWriter (p. 538). That is, in cases where
com.rti.dds.publication.FlowControllerTokenBucketProperty -
t.bytes per token (p. 954) is greater than the sample size, multiple
samples may be sent to the same destination using a single token (regardless of
com.rti.dds.publication.FlowControllerProperty t.scheduling policy
(p. 947)).

Where fragmentation is required, the fragment size will be
com.rti.dds.publication.FlowControllerTokenBucketProperty -
t.bytes per token (p. 954) or the minimum largest message size across
all transports installed with the com.rti.dds.publication.DataWriter
(p. 538), whichever is less.

Use ResourceLimitsQosPolicy.LENGTH UNLIMITED (p. 102)
to indicate that an unlimited number of bytes can be transmit-
ted per token. In other words, a single token allows the recipient
com.rti.dds.publication.DataWriter (p. 538) to transmit all its queued
samples to a single destination. A separate token is required to send to each
additional destination.

[default] ResourceLimitsQosPolicy.LENGTH UNLIMITED (p. 102)

[range] [1024,ResourceLimitsQosPolicy.LENGTH UNLIMITED
(p. 102)]

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.98 Foo Class Reference 955

8.98 Foo Class Reference

A representative user-defined data type.

8.98.1 Detailed Description

A representative user-defined data type.

Foo (p. 955) represents a user-defined data-type that is intended to be dis-
tributed using DDS.

The type Foo (p. 955) is usually defined using IDL syntax and placed in a
”.idl” file that is then processed using rtiddsgen (p. 290). The rtiddsgen
(p. 290) utility generates the helper classes com.rti.dds.util.Sequence
(p. 1432) as well as the necessary code for DDS to manipulate
the type (serialize it so that it can be sent over the network) as
well as the implied com.rti.dds.topic.example.FooDataReader and
com.rti.dds.topic.example.FooDataWriter types that allow the application
to send and receive data of this type.

See also:

com.rti.dds.util.Sequence (p. 1432), com.rti.dds.topic.example.FooDataWriter,
com.rti.dds.topic.example.FooDataReader, com.rti.dds.topic.example.FooTypeSupport
(p. 1060), rtiddsgen (p. 290)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

956 Class Documentation

8.99 Foo Class Reference

A representative user-defined data type.

Inheritance diagram for Foo::

Public Member Functions

ˆ Object copy from (Object src)

8.99.1 Detailed Description

A representative user-defined data type.

Foo (p. 956) represents a user-defined data-type that is intended to be dis-
tributed using DDS.

The type Foo (p. 956) is usually defined using IDL syntax and placed in a
”.idl” file that is then processed using rtiddsgen (p. 290). The rtiddsgen
(p. 290) utility generates the helper classes com.rti.dds.util.Sequence
(p. 1432) as well as the necessary code for DDS to manipulate
the type (serialize it so that it can be sent over the network) as
well as the implied com.rti.dds.topic.example.FooDataReader and
com.rti.dds.topic.example.FooDataWriter types that allow the application
to send and receive data of this type.

See also:

com.rti.dds.util.Sequence (p. 1432), com.rti.dds.topic.example.FooDataWriter,
com.rti.dds.topic.example.FooDataReader, com.rti.dds.topic.example.FooTypeSupport
(p. 1060), rtiddsgen (p. 290)

8.99.2 Member Function Documentation

8.99.2.1 Object copy from (Object src)

This is the implementation of the Copyable interface. This method will per-
form a deep copy of src. This method could be placed into FooTypeSupport
(p. 1063).

rather than here by using the -noCopyable option to rtiddsgen.

Parameters:

src The Object which contains the data to be copied.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.99 Foo Class Reference 957

Returns:

Returns this

Exceptions:

NullPointerException If src is null.

ClassCastException If src is not the same type as this.

See also:

com.rti.dds.infrastructure.Copyable.copy from
(p. 466)(java.lang.Object)

Implements Copyable (p. 466).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

958 Class Documentation

8.100 FooDataReader Class Reference

<<interface>> (p. 271) <<generic>> (p. 271) User data type-specific data
reader.

Inheritance diagram for FooDataReader::

Public Member Functions

ˆ void read (FooSeq received data, SampleInfoSeq info seq, int max -
samples, int sample states, int view states, int instance states)

Access a collection of data samples from the
com.rti.dds.subscription.DataReader (p. 473).

ˆ void take (FooSeq received data, SampleInfoSeq info seq, int max -
samples, int sample states, int view states, int instance states)

Access a collection of data-samples from the
com.rti.dds.subscription.DataReader (p. 473).

ˆ void read w condition (FooSeq received data, SampleInfoSeq info -
seq, int max samples, ReadCondition condition)

Accesses via com.rti.dds.topic.example.FooDataReader.read
the samples that match the criteria specified in the
com.rti.dds.subscription.ReadCondition (p. 1326).

ˆ void take w condition (FooSeq received data, SampleInfoSeq info -
seq, int max samples, ReadCondition condition)

Analogous to com.rti.dds.topic.example.FooDataReader.read -
w condition except it accesses samples via the
com.rti.dds.topic.example.FooDataReader.take operation.

ˆ void read next sample (Foo received data, SampleInfo sample info)

Copies the next not-previously-accessed data value from the
com.rti.dds.subscription.DataReader (p. 473).

ˆ void take next sample (Foo received data, SampleInfo sample info)

Copies the next not-previously-accessed data value from the
com.rti.dds.subscription.DataReader (p. 473).

ˆ void read instance (FooSeq received data, SampleInfoSeq info seq,
int max samples, InstanceHandle t a handle, int sample states, int
view states, int instance states)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.100 FooDataReader Class Reference 959

Access a collection of data samples from the
com.rti.dds.subscription.DataReader (p. 473).

ˆ void take instance (FooSeq received data, SampleInfoSeq info seq,
int max samples, InstanceHandle t a handle, int sample states, int
view states, int instance states)

Access a collection of data samples from the
com.rti.dds.subscription.DataReader (p. 473).

ˆ void read next instance (FooSeq received data, SampleInfoSeq
info seq, int max samples, InstanceHandle t previous handle, int sam-
ple states, int view states, int instance states)

Access a collection of data samples from the
com.rti.dds.subscription.DataReader (p. 473).

ˆ void take next instance (FooSeq received data, SampleInfoSeq
info seq, int max samples, InstanceHandle t previous handle, int sam-
ple states, int view states, int instance states)

Access a collection of data samples from the
com.rti.dds.subscription.DataReader (p. 473).

ˆ void read next instance w condition (FooSeq received data, Sam-
pleInfoSeq info seq, int max samples, InstanceHandle t previous -
handle, ReadCondition condition)

Accesses via com.rti.dds.topic.example.FooDataReader.read next -
instance the samples that match the criteria specified in the
com.rti.dds.subscription.ReadCondition (p. 1326).

ˆ void take next instance w condition (FooSeq received data, Sam-
pleInfoSeq info seq, int max samples, InstanceHandle t previous -
handle, ReadCondition condition)

Accesses via com.rti.dds.topic.example.FooDataReader.take next -
instance the samples that match the criteria specified in the
com.rti.dds.subscription.ReadCondition (p. 1326).

ˆ void return loan (FooSeq received data, SampleInfoSeq info seq)
Indicates to the com.rti.dds.subscription.DataReader (p. 473) that
the application is done accessing the collection of received data and
info seq obtained by some earlier invocation of read or take on the
com.rti.dds.subscription.DataReader (p. 473).

ˆ void get key value (Foo key holder, InstanceHandle t handle)
Retrieve the instance key that corresponds to an instance handle.

ˆ InstanceHandle t lookup instance (Foo key holder)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

960 Class Documentation

Retrieves the instance handle that corresponds to an instance key holder.

8.100.1 Detailed Description

<<interface>> (p. 271) <<generic>> (p. 271) User data type-specific data
reader.

Defines the user data type specific reader interface generated for each application
class.

The concrete user data type reader automatically generated by the implemen-
tation is an incarnation of this class.

See also:

com.rti.dds.subscription.DataReader (p. 473)
Foo (p. 956)
com.rti.dds.topic.example.FooDataWriter
rtiddsgen (p. 290)

8.100.2 Member Function Documentation

8.100.2.1 void read (FooSeq received data, SampleInfoSeq info seq,
int max samples, int sample states, int view states, int
instance states)

Access a collection of data samples from the
com.rti.dds.subscription.DataReader (p. 473).

This operation offers the same functionality and API as
com.rti.dds.topic.example.FooDataReader.take except that the samples
returned remain in the com.rti.dds.subscription.DataReader (p. 473) such
that they can be retrieved again by means of a read or take operation.

Please refer to the documentation of com.rti.dds.topic.example.FooDataReader.take()
for details on the number of samples returned within the received data and
info seq as well as the order in which the samples appear in these sequences.

The act of reading a sample changes its sample state to Sam-
pleStateKind.READ SAMPLE STATE (p. 1430). If the sample belongs
to the most recent generation of the instance, it will also set the view state of
the instance to be ViewStateKind.NOT NEW VIEW STATE (p. 1690).
It will not affect the instance state of the instance.

Important: If the samples ”returned” by this method are loaned from RTI Con-
next (see com.rti.dds.topic.example.FooDataReader.take for more information

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.100 FooDataReader Class Reference 961

on memory loaning), it is important that their contents not be changed. Be-
cause the memory in which the data is stored belongs to the middleware, any
modifications made to the data will be seen the next time the same samples
are read or taken; the samples will no longer reflect the state that was received
from the network.

Parameters:

received data <<inout>> (p. 271) User data type-specific
com.rti.dds.util.Sequence (p. 1432) object where the received
data samples will be returned. Must be a valid non-NULL FooSeq
(p. 1058). The method will fail with RETCODE BAD PARAMETER
if it is NULL.

info seq <<inout>> (p. 271) A com.rti.dds.subscription.SampleInfoSeq
(p. 1414) object where the received sample info will be returned. Must
be a valid non-NULL com.rti.dds.subscription.SampleInfoSeq
(p. 1414). The method will fail with RETCODE BAD PARAMETER
if it is NULL.

max samples <<in>> (p. 271) The maximum number of samples
to be returned. If the special value ResourceLimitsQosPol-
icy.LENGTH UNLIMITED (p. 102) is provided, as many samples
will be returned as are available, up to the limits described in the
documentation for com.rti.dds.topic.example.FooDataReader.take().

sample states <<in>> (p. 271) Data samples matching one of these
sample states are returned.

view states <<in>> (p. 271) Data samples matching one of these
view state are returned.

instance states <<in>> (p. 271) Data samples matching ones of these
instance state are returned.

Exceptions:

One of the Standard Return Codes (p. 104), RETCODE -
PRECONDITION NOT MET, RETCODE NO DATA or RET-
CODE NOT ENABLED.

See also:

com.rti.dds.topic.example.FooDataReader.read w -
condition, com.rti.dds.topic.example.FooDataReader.take,
com.rti.dds.topic.example.FooDataReader.take w condition
ResourceLimitsQosPolicy.LENGTH UNLIMITED (p. 102)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

962 Class Documentation

8.100.2.2 void take (FooSeq received data, SampleInfoSeq info seq,
int max samples, int sample states, int view states, int
instance states)

Access a collection of data-samples from the
com.rti.dds.subscription.DataReader (p. 473).

The operation will return the list of samples received by
the com.rti.dds.subscription.DataReader (p. 473) since the
last com.rti.dds.topic.example.FooDataReader.take operation that
match the specified com.rti.dds.subscription.SampleStateMask,
com.rti.dds.subscription.ViewStateMask and com.rti.dds.subscription.InstanceStateMask.

This operation may fail with RETCODE ERROR if
com.rti.dds.infrastructure.DataReaderResourceLimitsQosPolicy.max -
outstanding reads (p. 530) limit has been exceeded.

The actual number of samples returned depends on the infor-
mation that has been received by the middleware as well as
the com.rti.dds.infrastructure.HistoryQosPolicy (p. 1071),
com.rti.dds.infrastructure.ResourceLimitsQosPolicy (p. 1356),
com.rti.dds.infrastructure.DataReaderResourceLimitsQosPolicy
(p. 524) and the characteristics of the data-type that is associated with the
com.rti.dds.subscription.DataReader (p. 473):

ˆ In the case where the com.rti.dds.infrastructure.HistoryQosPolicy.kind
(p. 1073) is HistoryQosPolicyKind.KEEP LAST -
HISTORY QOS, the call will return at most
com.rti.dds.infrastructure.HistoryQosPolicy.depth (p. 1074)
samples per instance.

ˆ The maximum number of samples returned is limited by
com.rti.dds.infrastructure.ResourceLimitsQosPolicy.max -
samples (p. 1359), and by com.rti.dds.infrastructure.DataReaderResourceLimitsQosPolicy.max -
samples per read (p. 530).

ˆ For multiple instances, the number of samples re-
turned is additionally limited by the product
(com.rti.dds.infrastructure.ResourceLimitsQosPolicy.max -
samples per instance (p. 1360) ∗ com.rti.dds.infrastructure.ResourceLimitsQosPolicy.max -
instances (p. 1360))

ˆ If com.rti.dds.infrastructure.DataReaderResourceLimitsQosPolicy.max -
infos (p. 528) is limited, the number of samples returned may also be
limited if insufficient com.rti.dds.subscription.SampleInfo (p. 1404)
resources are available.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.100 FooDataReader Class Reference 963

If the read or take succeeds and the number of samples returned has been
limited (by means of a maximum limit, as listed above, or insufficient
com.rti.dds.subscription.SampleInfo (p. 1404) resources), the call will com-
plete successfully and provide those samples the reader is able to return. The
user may need to make additional calls, or return outstanding loaned buffers in
the case of insuffificient resources, in order to access remaining samples.

Note that in the case where the com.rti.dds.topic.Topic (p. 1545) associated
with the com.rti.dds.subscription.DataReader (p. 473) is bound to a data-
type that has no key definition, then there will be at most one instance in the
com.rti.dds.subscription.DataReader (p. 473). So the per-sample limits
will apply.

The act of taking a sample removes it from RTI Connext so it cannot be
read or taken again. If the sample belongs to the most recent generation
of the instance, it will also set the view state of the sample’s instance to
ViewStateKind.NOT NEW VIEW STATE (p. 1690). It will not affect
the instance state of the sample’s instance.

After com.rti.dds.topic.example.FooDataReader.take completes, received -
data and info seq will be of the same length and contain the received data.

If the sequences are empty (maximum size equals 0) when the
com.rti.dds.topic.example.FooDataReader.take is called, the samples returned
in the received data and the corresponding info seq are ’loaned’ to the appli-
cation from buffers provided by the com.rti.dds.subscription.DataReader
(p. 473). The application can use them as desired and has guaranteed exclusive
access to them.

Once the application completes its use of the samples it must ’return the
loan’ to the com.rti.dds.subscription.DataReader (p. 473) by calling the
com.rti.dds.topic.example.FooDataReader.return loan operation.

Important: When you loan data from the middleware, you must
not keep any pointers to any part of the data samples or the
com.rti.dds.subscription.SampleInfo (p. 1404) objects after the call to
com.rti.dds.topic.example.FooDataReader.return loan. Returning the loan
places the objects back into a pool, allowing the middleware to overwrite them
with new data.

Note: While you must call com.rti.dds.topic.example.FooDataReader.return -
loan at some point, you do not have to do so before the next
com.rti.dds.topic.example.FooDataReader.take call. However, failure to return
the loan will eventually deplete the com.rti.dds.subscription.DataReader
(p. 473) of the buffers it needs to receive new samples and eventually
samples will start to be lost. The total number of buffers available to
the com.rti.dds.subscription.DataReader (p. 473) is specified by the
com.rti.dds.infrastructure.ResourceLimitsQosPolicy (p. 1356) and
the com.rti.dds.infrastructure.DataReaderResourceLimitsQosPolicy

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

964 Class Documentation

(p. 524).

If the sequences are not empty (maximum size not equal to 0 and length not
equal to 0) when com.rti.dds.topic.example.FooDataReader.take is called, sam-
ples are copied to received data and info seq. The application will not need to
call com.rti.dds.topic.example.FooDataReader.return loan.

The order of the samples returned to the caller depends on the
com.rti.dds.infrastructure.PresentationQosPolicy (p. 1237).

ˆ If com.rti.dds.infrastructure.PresentationQosPolicy.access -
scope (p. 1241) is PresentationQosPolicyAccessScopeKind.INSTANCE -
PRESENTATION QOS, the returned collection is a list where samples
belonging to the same data instance are consecutive.

ˆ If com.rti.dds.infrastructure.PresentationQosPolicy.access -
scope (p. 1241) is PresentationQosPolicyAc-
cessScopeKind.TOPIC PRESENTATION QOS and
com.rti.dds.infrastructure.PresentationQosPolicy.ordered -
access (p. 1241) is set to false, then returned collection is a list where
samples belonging to the same data instance are consecutive.

ˆ If com.rti.dds.infrastructure.PresentationQosPolicy.access -
scope (p. 1241) is PresentationQosPolicyAc-
cessScopeKind.TOPIC PRESENTATION QOS and
com.rti.dds.infrastructure.PresentationQosPolicy.ordered -
access (p. 1241) is set to true, then the returned collection is a list were
the relative order of samples is preserved also accross different instances.
Note that samples belonging to the same instance may or may not be
consecutive. This is because to preserve order it may be necessary to mix
samples from different instances.

ˆ If com.rti.dds.infrastructure.PresentationQosPolicy.access -
scope (p. 1241) is PresentationQosPolicyAccessS-
copeKind.GROUP PRESENTATION QOS and
com.rti.dds.infrastructure.PresentationQosPolicy.ordered -
access (p. 1241) is set to false, then returned collection is a list where
samples belonging to the same data instance are consecutive. [Not
supported (optional)]

ˆ If com.rti.dds.infrastructure.PresentationQosPolicy.access -
scope (p. 1241) is PresentationQosPolicyAccessS-
copeKind.GROUP PRESENTATION QOS and
com.rti.dds.infrastructure.PresentationQosPolicy.ordered -
access (p. 1241) is set to true, then the returned collection contains at
most one sample. The difference in this case is due to the fact that is

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.100 FooDataReader Class Reference 965

required that the application is able to read samples belonging to different
com.rti.dds.subscription.DataReader (p. 473) objects in a specific
order. [Not supported (optional)]

In any case, the relative order between the samples of one instance is consistent
with the DESTINATION ORDER (p. 51) policy:

ˆ If com.rti.dds.infrastructure.DestinationOrderQosPolicy.kind
(p. 609) is DestinationOrderQosPolicyKind.BY RECEPTION -
TIMESTAMP DESTINATIONORDER QOS, samples belonging to
the same instances will appear in the relative order in which there were
received (FIFO, earlier samples ahead of the later samples).

ˆ If com.rti.dds.infrastructure.DestinationOrderQosPolicy.kind
(p. 609) is DestinationOrderQosPolicyKind.BY SOURCE -
TIMESTAMP DESTINATIONORDER QOS, samples belonging to
the same instances will appear in the relative order implied by the
source timestamp (FIFO, smaller values of source timestamp ahead of
the larger values).

If the com.rti.dds.subscription.DataReader (p. 473) has no samples that
meet the constraints, the method will fail with RETCODE NO DATA.

In addition to the collection of samples, the read and take operations also use
a collection of com.rti.dds.subscription.SampleInfo (p. 1404) structures.

8.100.3 SEQUENCES USAGE IN TAKE AND READ

The initial (input) properties of the received data and info seq collections
will determine the precise behavior of the read or take operation. For the pur-
poses of this description, the collections are modeled as having these properties:

ˆ the current-length (len, see Sequence.size())

ˆ the maximum length (max len, see Sequence.getMaximum (p. 1433))

The initial values of the len and max len properties for the received data and
info seq collections govern the behavior of the read and take operations as
specified by the following rules:

1. The values of len and max len properties for the two collections
must be identical. Otherwise read/take will fail with RETCODE -
PRECONDITION NOT MET.

2. On successful output, the values of len and max len will be the same for
both collections.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

966 Class Documentation

3. If the initial max len==0, then the received data and info seq
collections will be filled with elements that are loaned by the
com.rti.dds.subscription.DataReader (p. 473). On output, len will
be set to the number of values returned, and max len will be set to
a value verifying max len >= len. The use of this variant allows for
zero-copy access to the data and the application will need to return
the loan to the com.rti.dds.publication.DataWriter (p. 538) using
com.rti.dds.topic.example.FooDataReader.return loan.

4. If the initial max len>0 then the read or take operation will fail with RET-
CODE PRECONDITION NOT MET. This avoids the potential hard-to-
detect memory leaks caused by an application forgetting to return the
loan.

5. If initial max len>0 then the read or take operation will copy
the received data values and com.rti.dds.subscription.SampleInfo
(p. 1404) values into the elements already inside the collections. On out-
put, len will be set to the number of values copied and max len will
remain unchanged. The use of this variant forces a copy but the appli-
cation can control where the copy is placed and the application will not
need to return the loan. The number of samples copied depends on the
relative values of max len and max samples:

ˆ If max samples == LENGTH UNLIMITED, then at most max len
values will be copied. The use of this variant lets the application
limit the number of samples returned to what the sequence can ac-
commodate.

ˆ If max samples <= max len, then at most max samples values will be
copied. The use of this variant lets the application limit the number of
samples returned to fewer that what the sequence can accommodate.

ˆ If max samples > max len, then the read or take operation will fail
with RETCODE PRECONDITION NOT MET. This avoids the po-
tential confusion where the application expects to be able to access
up to max samples, but that number can never be returned, even if
they are available in the com.rti.dds.subscription.DataReader
(p. 473), because the output sequence cannot accommodate them.

As described above, upon completion, the received data and
info seq collections may contain elements loaned from the
com.rti.dds.subscription.DataReader (p. 473). If this is the case, the ap-
plication will need to use com.rti.dds.topic.example.FooDataReader.return loan
to return the loan once it is no longer using the received data in the collection.
When com.rti.dds.topic.example.FooDataReader.return loan completes, the
collection will have max len=0. The application can determine whether it is
necessary to return the loan or not based on how the state of the collections
when the read/take operation was called However, in many cases it may be

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.100 FooDataReader Class Reference 967

simpler to always call com.rti.dds.topic.example.FooDataReader.return loan,
as this operation is harmless (i.e., it leaves all elements unchanged) if the
collection does not have a loan.

On output, the collection of Foo (p. 956) values and the collec-
tion of com.rti.dds.subscription.SampleInfo (p. 1404) structures are
of the same length and are in a one-to-one correspondence. Each
com.rti.dds.subscription.SampleInfo (p. 1404) provides information, such
as the source timestamp, the sample state, view state, and instance state, etc.,
about the corresponding sample.

Some elements in the returned collection may not have valid data. If the
instance state in the com.rti.dds.subscription.SampleInfo (p. 1404) is In-
stanceStateKind.NOT ALIVE DISPOSED INSTANCE STATE
(p. 1088) or InstanceStateKind.NOT ALIVE NO WRITERS -
INSTANCE STATE (p. 1088), then the last sample for that instance in the
collection (that is, the one whose com.rti.dds.subscription.SampleInfo
(p. 1404) has sample rank==0) does not contain valid data.

Samples that contain no data do not count towards the limits imposed
by the com.rti.dds.infrastructure.ResourceLimitsQosPolicy (p. 1356).
The act of reading/taking a sample sets its sample state to Sam-
pleStateKind.READ SAMPLE STATE (p. 1430).

If the sample belongs to the most recent generation of the instance, it will also
set the view state of the instance to ViewStateKind.NOT NEW VIEW -
STATE (p. 1690). It will not affect the instance state of the instance.

This operation must be provided on the specialized class that is generated for
the particular application data-type that is being read (Foo (p. 956)). If the
com.rti.dds.subscription.DataReader (p. 473) has no samples that meet
the constraints, the operations fails with RETCODE NO DATA.

For an example (p. 366) on how take can be used, please refer to the receive
example (p. 246).

Parameters:

received data <<inout>> (p. 271) User data type-specific
com.rti.dds.util.Sequence (p. 1432) object where the received
data samples will be returned. Must be a valid non-NULL FooSeq
(p. 1058). The method will fail with RETCODE BAD PARAMETER
if it is NULL.

Parameters:

info seq <<inout>> (p. 271) A com.rti.dds.subscription.SampleInfoSeq
(p. 1414) object where the received sample info will be returned. Must
be a valid non-NULL com.rti.dds.subscription.SampleInfoSeq
(p. 1414). The method will fail with RETCODE BAD PARAMETER

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

968 Class Documentation

if it is NULL.

max samples <<in>> (p. 271) The maximum number of samples
to be returned. If the special value ResourceLimitsQosPol-
icy.LENGTH UNLIMITED (p. 102) is provided, as many samples
will be returned as are available, up to the limits described above.

sample states <<in>> (p. 271) Data samples matching one of these
sample states are returned.

view states <<in>> (p. 271) Data samples matching one of these
view state are returned.

instance states <<in>> (p. 271) Data samples matching one of these
instance state are returned.

Exceptions:

One of the Standard Return Codes (p. 104), RETCODE -
PRECONDITION NOT MET, RETCODE NO DATA or RET-
CODE NOT ENABLED.

See also:

com.rti.dds.topic.example.FooDataReader.read
com.rti.dds.topic.example.FooDataReader.read w condition,
com.rti.dds.topic.example.FooDataReader.take w condition
ResourceLimitsQosPolicy.LENGTH UNLIMITED (p. 102)

8.100.3.1 void read w condition (FooSeq received data,
SampleInfoSeq info seq, int max samples,
ReadCondition condition)

Accesses via com.rti.dds.topic.example.FooDataReader.read the samples that
match the criteria specified in the com.rti.dds.subscription.ReadCondition
(p. 1326).

This operation is especially useful in combination with
com.rti.dds.subscription.QueryCondition (p. 1324) to filter data samples
based on the content.

The specified com.rti.dds.subscription.ReadCondition (p. 1326) must be
attached to the com.rti.dds.subscription.DataReader (p. 473); otherwise
the operation will fail with RETCODE PRECONDITION NOT MET.

In case the com.rti.dds.subscription.ReadCondition (p. 1326) is a plain
com.rti.dds.subscription.ReadCondition (p. 1326) and not the special-
ized com.rti.dds.subscription.QueryCondition (p. 1324), the operation is
equivalent to calling com.rti.dds.topic.example.FooDataReader.read and pass-
ing as sample states, view states and instance states the value of the

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.100 FooDataReader Class Reference 969

corresponding attributes in the read condition. Using this operation, the ap-
plication can avoid repeating the same parameters specified when creating the
com.rti.dds.subscription.ReadCondition (p. 1326).

The samples are accessed with the same semantics as
com.rti.dds.topic.example.FooDataReader.read.

If the com.rti.dds.subscription.DataReader (p. 473) has no samples that
meet the constraints, the operation will fail with RETCODE NO DATA.

Parameters:

received data <<inout>> (p. 271) user data type-specific
com.rti.dds.util.Sequence (p. 1432) object where the received
data samples will be returned. Must be a valid non-NULL FooSeq
(p. 1058). The method will fail with RETCODE BAD PARAMETER
if it is NULL.

info seq <<inout>> (p. 271) a com.rti.dds.subscription.SampleInfoSeq
(p. 1414) object where the received sample info will be returned. Must
be a valid non-NULL com.rti.dds.subscription.SampleInfoSeq
(p. 1414). The method will fail with RETCODE BAD PARAMETER
if it is NULL.

max samples <<in>> (p. 271) The maximum number of samples
to be returned. If the special value ResourceLimitsQosPol-
icy.LENGTH UNLIMITED (p. 102) is provided, as many samples
will be returned as are available, up to the limits described in the
documentation for com.rti.dds.topic.example.FooDataReader.take().

condition <<in>> (p. 271) the com.rti.dds.subscription.ReadCondition
(p. 1326) to select samples of interest. Cannot be NULL.

Exceptions:

One of the Standard Return Codes (p. 104), RETCODE -
PRECONDITION NOT MET, RETCODE NO DATA or RET-
CODE NOT ENABLED.

See also:

com.rti.dds.topic.example.FooDataReader.read
com.rti.dds.topic.example.FooDataReader.take,
com.rti.dds.topic.example.FooDataReader.take w condition
ResourceLimitsQosPolicy.LENGTH UNLIMITED (p. 102)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

970 Class Documentation

8.100.3.2 void take w condition (FooSeq received data,
SampleInfoSeq info seq, int max samples,
ReadCondition condition)

Analogous to com.rti.dds.topic.example.FooDataReader.read w condition ex-
cept it accesses samples via the com.rti.dds.topic.example.FooDataReader.take
operation.

This operation is analogous to com.rti.dds.topic.example.FooDataReader.read -
w condition except that it accesses samples via the
com.rti.dds.topic.example.FooDataReader.take operation.

The specified com.rti.dds.subscription.ReadCondition (p. 1326) must be
attached to the com.rti.dds.subscription.DataReader (p. 473); otherwise
the operation will fail with RETCODE PRECONDITION NOT MET.

The samples are accessed with the same semantics as
com.rti.dds.topic.example.FooDataReader.take.

This operation is especially useful in combination with
com.rti.dds.subscription.QueryCondition (p. 1324) to filter data samples
based on the content.

If the com.rti.dds.subscription.DataReader (p. 473) has no samples that
meet the constraints, the method will fail with RETCODE NO DATA.

Parameters:

received data <<inout>> (p. 271) user data type-specific
com.rti.dds.util.Sequence (p. 1432) object where the received
data samples will be returned. Must be a valid non-NULL FooSeq
(p. 1058). The method will fail with RETCODE BAD PARAMETER
if it is NULL.

info seq <<inout>> (p. 271) a com.rti.dds.subscription.SampleInfoSeq
(p. 1414) object where the received sample info will be returned. Must
be a valid non-NULL com.rti.dds.subscription.SampleInfoSeq
(p. 1414). The method will fail with RETCODE BAD PARAMETER
if it is NULL.

max samples <<in>> (p. 271) The maximum number of samples
to be returned. If the special value ResourceLimitsQosPol-
icy.LENGTH UNLIMITED (p. 102) is provided, as many samples
will be returned as are available, up to the limits described in the
documentation for com.rti.dds.topic.example.FooDataReader.take().

condition <<in>> (p. 271) the com.rti.dds.subscription.ReadCondition
(p. 1326) to select samples of interest. Cannot be NULL.

Exceptions:

One of the Standard Return Codes (p. 104), RETCODE -

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.100 FooDataReader Class Reference 971

PRECONDITION NOT MET, RETCODE NO DATA or RET-
CODE NOT ENABLED.

See also:

com.rti.dds.topic.example.FooDataReader.read w condition,
com.rti.dds.topic.example.FooDataReader.read
com.rti.dds.topic.example.FooDataReader.take
ResourceLimitsQosPolicy.LENGTH UNLIMITED (p. 102)

8.100.3.3 void read next sample (Foo received data, SampleInfo
sample info)

Copies the next not-previously-accessed data value from the
com.rti.dds.subscription.DataReader (p. 473).

This operation copies the next not-previously-accessed data value from
the com.rti.dds.subscription.DataReader (p. 473). This operation
also copies the corresponding com.rti.dds.subscription.SampleInfo
(p. 1404). The implied order among the samples stored in the
com.rti.dds.subscription.DataReader (p. 473) is the same as for the
com.rti.dds.topic.example.FooDataReader.read operation.

The com.rti.dds.topic.example.FooDataReader.read next sample operation is
semantically equivalent to the com.rti.dds.topic.example.FooDataReader.read
operation, where the input data sequences has max len=1, the sample -
states=NOT READ, the view states=ANY VIEW STATE, and the instance -
states=ANY INSTANCE STATE.

The com.rti.dds.topic.example.FooDataReader.read next sample operation pro-
vides a simplified API to ’read’ samples, avoiding the need for the application
to manage sequences and specify states.

If there is no unread data in the com.rti.dds.subscription.DataReader
(p. 473), the operation will fail with RETCODE NO DATA and nothing is
copied.

Parameters:

received data <<inout>> (p. 271) user data type-specific Foo (p. 956)
object where the next received data sample will be returned. The re-
ceived data must have been fully allocated. Otherwise, this operation
may fail. Must be a valid non-NULL Foo (p. 956). The method will
fail with RETCODE BAD PARAMETER if it is NULL.

sample info <<inout>> (p. 271) a com.rti.dds.subscription.SampleInfo
(p. 1404) object where the next received sample info will be returned.
Must be a valid non-NULL com.rti.dds.subscription.SampleInfo

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

972 Class Documentation

(p. 1404). The method will fail with RETCODE BAD PARAMETER
if it is NULL.

Exceptions:

One of the Standard Return Codes (p. 104), RETCODE NO DATA or
RETCODE NOT ENABLED.

See also:

com.rti.dds.topic.example.FooDataReader.read

8.100.3.4 void take next sample (Foo received data, SampleInfo
sample info)

Copies the next not-previously-accessed data value from the
com.rti.dds.subscription.DataReader (p. 473).

This operation copies the next not-previously-accessed data value from
the com.rti.dds.subscription.DataReader (p. 473) and ’removes’ it
from the com.rti.dds.subscription.DataReader (p. 473) so that it is
no longer accessible. This operation also copies the correspond-
ing com.rti.dds.subscription.SampleInfo (p. 1404). This operation
is analogous to the com.rti.dds.topic.example.FooDataReader.read next -
sample except for the fact that the sample is removed from the
com.rti.dds.subscription.DataReader (p. 473).

The com.rti.dds.topic.example.FooDataReader.take next sample operation is
semantically equivalent to the com.rti.dds.topic.example.FooDataReader.take
operation, where the input data sequences has max len=1, the sample -
states=NOT READ, the view states=ANY VIEW STATE, and the instance -
states=ANY INSTANCE STATE.

The com.rti.dds.topic.example.FooDataReader.read next sample operation pro-
vides a simplified API to ’take’ samples, avoiding the need for the application
to manage sequences and specify states.

If there is no unread data in the com.rti.dds.subscription.DataReader
(p. 473), the operation will fail with RETCODE NO DATA and nothing is
copied.

Parameters:

received data <<inout>> (p. 271) user data type-specific Foo (p. 956)
object where the next received data sample will be returned. The re-
ceived data must have been fully allocated. Otherwise, this operation
may fail. Must be a valid non-NULL Foo (p. 956). The method will
fail with RETCODE BAD PARAMETER if it is NULL.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.100 FooDataReader Class Reference 973

sample info <<inout>> (p. 271) a com.rti.dds.subscription.SampleInfo
(p. 1404) object where the next received sample info will be returned.
Must be a valid non-NULL com.rti.dds.subscription.SampleInfo
(p. 1404). The method will fail with RETCODE BAD PARAMETER
if it is NULL.

Exceptions:

One of the Standard Return Codes (p. 104), RETCODE NO DATA or
RETCODE NOT ENABLED.

See also:

com.rti.dds.topic.example.FooDataReader.take

8.100.3.5 void read instance (FooSeq received data, SampleInfoSeq
info seq, int max samples, InstanceHandle t a handle,
int sample states, int view states, int instance states)

Access a collection of data samples from the
com.rti.dds.subscription.DataReader (p. 473).

This operation accesses a collection of data values from the
com.rti.dds.subscription.DataReader (p. 473). The behavior is iden-
tical to com.rti.dds.topic.example.FooDataReader.read, except that all samples
returned belong to the single specified instance whose handle is a handle.

Upon successful completion, the data collection will contain
samples all belonging to the same instance. The correspond-
ing com.rti.dds.subscription.SampleInfo (p. 1404) verifies
com.rti.dds.subscription.SampleInfo.instance handle (p. 1410) ==
a handle.

The com.rti.dds.topic.example.FooDataReader.read instance operation is
semantically equivalent to the com.rti.dds.topic.example.FooDataReader.read
operation, except in building the collection, the
com.rti.dds.subscription.DataReader (p. 473) will check that the sample
belongs to the specified instance and otherwise it will not place the sample in
the returned collection.

The behavior of the com.rti.dds.topic.example.FooDataReader.read -
instance operation follows the same rules as the
com.rti.dds.topic.example.FooDataReader.read operation regarding the
pre-conditions and post-conditions for the received data and sample -
info. Similar to the com.rti.dds.topic.example.FooDataReader.read, the
com.rti.dds.topic.example.FooDataReader.read instance operation may ’loan’
elements to the output collections, which must then be returned by means of
com.rti.dds.topic.example.FooDataReader.return loan.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

974 Class Documentation

Similar to the com.rti.dds.topic.example.FooDataReader.read, this operation
must be provided on the specialized class that is generated for the particular
application data-type that is being taken.

If the com.rti.dds.subscription.DataReader (p. 473) has no samples that
meet the constraints, the method will fail with RETCODE NO DATA.

This operation may fail with RETCODE BAD PARAMETER if
the com.rti.dds.infrastructure.InstanceHandle t (p. 1080) a -
handle does not correspond to an existing data-object known to the
com.rti.dds.subscription.DataReader (p. 473).

Parameters:

received data <<inout>> (p. 271) user data type-specific
com.rti.dds.util.Sequence (p. 1432) object where the received
data samples will be returned. Must be a valid non-NULL FooSeq
(p. 1058). The method will fail with RETCODE BAD PARAMETER
if it is NULL.

info seq <<inout>> (p. 271) a com.rti.dds.subscription.SampleInfoSeq
(p. 1414) object where the received sample info will be returned. Must
be a valid non-NULL com.rti.dds.subscription.SampleInfoSeq
(p. 1414). The method will fail with RETCODE BAD PARAMETER
if it is NULL.

max samples <<in>> (p. 271) The maximum number of samples
to be returned. If the special value ResourceLimitsQosPol-
icy.LENGTH UNLIMITED (p. 102) is provided, as many samples
will be returned as are available, up to the limits described in the
documentation for com.rti.dds.topic.example.FooDataReader.take().

a handle <<in>> (p. 271) The specified instance to re-
turn samples for. Must be a valid non-NULL
com.rti.dds.infrastructure.InstanceHandle t (p. 1080). The
method will fail with RETCODE BAD PARAMETER if it is NULL
The method will fail with RETCODE BAD PARAMETER if the
handle does not correspond to an existing data-object known to the
com.rti.dds.subscription.DataReader (p. 473).

sample states <<in>> (p. 271) data samples matching ones of these
sample states are returned

view states <<in>> (p. 271) data samples matching ones of these
view state are returned

instance states <<in>> (p. 271) data samples matching ones of these
instance state are returned

Exceptions:

One of the Standard Return Codes (p. 104), RETCODE -

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.100 FooDataReader Class Reference 975

PRECONDITION NOT MET, RETCODE NO DATA or RET-
CODE NOT ENABLED.

See also:

com.rti.dds.topic.example.FooDataReader.read
ResourceLimitsQosPolicy.LENGTH UNLIMITED (p. 102)

8.100.3.6 void take instance (FooSeq received data, SampleInfoSeq
info seq, int max samples, InstanceHandle t a handle,
int sample states, int view states, int instance states)

Access a collection of data samples from the
com.rti.dds.subscription.DataReader (p. 473).

This operation accesses a collection of data values from the
com.rti.dds.subscription.DataReader (p. 473). The behavior is iden-
tical to com.rti.dds.topic.example.FooDataReader.take, except for that all
samples returned belong to the single specified instance whose handle is
a handle.

The semantics are the same for the com.rti.dds.topic.example.FooDataReader.take
operation, except in building the collection, the
com.rti.dds.subscription.DataReader (p. 473) will check that the sample
belongs to the specified instance, and otherwise it will not place the sample in
the returned collection.

The behavior of the com.rti.dds.topic.example.FooDataReader.take -
instance operation follows the same rules as the
com.rti.dds.topic.example.FooDataReader.read operation regarding the
pre-conditions and post-conditions for the received data and sample -
info. Similar to the com.rti.dds.topic.example.FooDataReader.read, the
com.rti.dds.topic.example.FooDataReader.take instance operation may ’loan’
elements to the output collections, which must then be returned by means of
com.rti.dds.topic.example.FooDataReader.return loan.

Similar to the com.rti.dds.topic.example.FooDataReader.read, this operation
must be provided on the specialized class that is generated for the particular
application data-type that is being taken.

If the com.rti.dds.subscription.DataReader (p. 473) has no samples that
meet the constraints, the method fails with RETCODE NO DATA.

This operation may fail with RETCODE BAD PARAMETER if
the com.rti.dds.infrastructure.InstanceHandle t (p. 1080) a -
handle does not correspond to an existing data-object known to the
com.rti.dds.subscription.DataReader (p. 473).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

976 Class Documentation

Parameters:

received data <<inout>> (p. 271) user data type-specific
com.rti.dds.util.Sequence (p. 1432) object where the received
data samples will be returned. Must be a valid non-NULL FooSeq
(p. 1058). The method will fail with RETCODE BAD PARAMETER
if it is NULL.

info seq <<inout>> (p. 271) a com.rti.dds.subscription.SampleInfoSeq
(p. 1414) object where the received sample info will be returned. Must
be a valid non-NULL com.rti.dds.subscription.SampleInfoSeq
(p. 1414). The method will fail with RETCODE BAD PARAMETER
if it is NULL.

max samples <<in>> (p. 271) The maximum number of samples
to be returned. If the special value ResourceLimitsQosPol-
icy.LENGTH UNLIMITED (p. 102) is provided, as many samples
will be returned as are available, up to the limits described in the
documentation for com.rti.dds.topic.example.FooDataReader.take().

a handle <<in>> (p. 271) The specified instance to re-
turn samples for. Must be a valid non-NULL
com.rti.dds.infrastructure.InstanceHandle t (p. 1080). The
method will fail with RETCODE BAD PARAMETER if it is NULL.
The method will fail with RETCODE BAD PARAMETER if the
handle does not correspond to an existing data-object known to the
com.rti.dds.subscription.DataReader (p. 473).

sample states <<in>> (p. 271) data samples matching ones of these
sample states are returned

view states <<in>> (p. 271) data samples matching ones of these
view state are returned

instance states <<in>> (p. 271) data samples matching ones of these
instance state are returned

Exceptions:

One of the Standard Return Codes (p. 104), RETCODE -
PRECONDITION NOT MET, RETCODE NO DATA or RET-
CODE NOT ENABLED.

See also:

com.rti.dds.topic.example.FooDataReader.take
ResourceLimitsQosPolicy.LENGTH UNLIMITED (p. 102)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.100 FooDataReader Class Reference 977

8.100.3.7 void read next instance (FooSeq received data,
SampleInfoSeq info seq, int max samples,
InstanceHandle t previous handle, int sample states, int
view states, int instance states)

Access a collection of data samples from the
com.rti.dds.subscription.DataReader (p. 473).

This operation accesses a collection of data values from the
com.rti.dds.subscription.DataReader (p. 473) where all the sam-
ples belong to a single instance. The behavior is similar to
com.rti.dds.topic.example.FooDataReader.read instance, except that the
actual instance is not directly specified. Rather, the samples will all belong
to the ’next’ instance with instance handle ’greater’ than the specified
’previous handle’ that has available samples.

This operation implies the existence of a total order ’greater-than’ relation-
ship between the instance handles. The specifics of this relationship are not
all important and are implementation specific. The important thing is that,
according to the middleware, all instances are ordered relative to each other.
This ordering is between the instance handles; It should not depend on the
state of the instance (e.g. whether it has data or not) and must be defined even
for instance handles that do not correspond to instances currently managed by
the com.rti.dds.subscription.DataReader (p. 473). For the purposes of the
ordering, it should be ’as if’ each instance handle was represented as unique
integer.

The behavior of com.rti.dds.topic.example.FooDataReader.read next instance
is ’as if’ the com.rti.dds.subscription.DataReader (p. 473) invoked
com.rti.dds.topic.example.FooDataReader.read instance, passing the smallest
instance handle among all the ones that: (a) are greater than previous -
handle, and (b) have available samples (i.e. samples that meet the constraints
imposed by the specified states).

The special value InstanceHandle t.HANDLE NIL (p. 1082) is guaranteed
to be ’less than’ any valid instance handle. So the use of the parameter
value previous handle == InstanceHandle t.HANDLE NIL (p. 1082) will
return the samples for the instance which has the smallest instance handle
among all the instances that contain available samples.

The operation com.rti.dds.topic.example.FooDataReader.read next instance is
intended to be used in an application-driven iteration, where the applica-
tion starts by passing previous handle == InstanceHandle t.HANDLE -
NIL (p. 1082), examines the samples returned, and then uses the instance -
handle returned in the com.rti.dds.subscription.SampleInfo (p. 1404)
as the value of the previous handle argument to the next call to
com.rti.dds.topic.example.FooDataReader.read next instance. The iteration
continues until com.rti.dds.topic.example.FooDataReader.read next instance

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

978 Class Documentation

fails with the value RETCODE NO DATA.

Note that it is possible to call the com.rti.dds.topic.example.FooDataReader.read -
next instance operation with a previous handle that does not correspond to an
instance currently managed by the com.rti.dds.subscription.DataReader
(p. 473). This is because as stated earlier the ’greater-than’
relationship is defined even for handles not managed by the
com.rti.dds.subscription.DataReader (p. 473). One practical situa-
tion where this may occur is when an application is iterating though all the
instances, takes all the samples of a InstanceStateKind.NOT ALIVE -
NO WRITERS INSTANCE STATE (p. 1088) instance, returns the loan
(at which point the instance information may be removed, and thus the handle
becomes invalid), and tries to read the next instance.

The behavior of the com.rti.dds.topic.example.FooDataReader.read -
next instance operation follows the same rules as the
com.rti.dds.topic.example.FooDataReader.read operation regarding the
pre-conditions and post-conditions for the received data and sample -
info. Similar to the com.rti.dds.topic.example.FooDataReader.read, the
com.rti.dds.topic.example.FooDataReader.read instance operation may ’loan’
elements to the output collections, which must then be returned by means of
com.rti.dds.topic.example.FooDataReader.return loan.

Similar to the com.rti.dds.topic.example.FooDataReader.read, this operation
must be provided on the specialized class that is generated for the particular
application data-type that is being taken.

If the com.rti.dds.subscription.DataReader (p. 473) has no samples that
meet the constraints, the method will fail with RETCODE NO DATA.

Parameters:

received data <<inout>> (p. 271) user data type-specific
com.rti.dds.util.Sequence (p. 1432) object where the received
data samples will be returned. Must be a valid non-NULL FooSeq
(p. 1058). The method will fail with RETCODE BAD PARAMETER
if it is NULL.

info seq <<inout>> (p. 271) a com.rti.dds.subscription.SampleInfoSeq
(p. 1414) object where the received sample info will be returned. Must
be a valid non-NULL com.rti.dds.subscription.SampleInfoSeq
(p. 1414). The method will fail with RETCODE BAD PARAMETER
if it is NULL.

max samples <<in>> (p. 271) The maximum number of samples
to be returned. If the special value ResourceLimitsQosPol-
icy.LENGTH UNLIMITED (p. 102) is provided, as many samples
will be returned as are available, up to the limits described in the
documentation for com.rti.dds.topic.example.FooDataReader.take().

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.100 FooDataReader Class Reference 979

previous handle <<in>> (p. 271) The ’next smallest’ in-
stance with a value greater than this value that has avail-
able samples will be returned. Must be a valid non-NULL
com.rti.dds.infrastructure.InstanceHandle t (p. 1080). The
method will fail with RETCODE BAD PARAMETER if it is NULL.

sample states <<in>> (p. 271) data samples matching ones of these
sample states are returned

view states <<in>> (p. 271) data samples matching ones of these
view state are returned

instance states <<in>> (p. 271) data samples matching ones of these
instance state are returned

Exceptions:

One of the Standard Return Codes (p. 104), RETCODE -
PRECONDITION NOT MET RETCODE NO DATA or RET-
CODE NOT ENABLED.

See also:

com.rti.dds.topic.example.FooDataReader.read
ResourceLimitsQosPolicy.LENGTH UNLIMITED (p. 102)

8.100.3.8 void take next instance (FooSeq received data,
SampleInfoSeq info seq, int max samples,
InstanceHandle t previous handle, int sample states, int
view states, int instance states)

Access a collection of data samples from the
com.rti.dds.subscription.DataReader (p. 473).

This operation accesses a collection of data values from the
com.rti.dds.subscription.DataReader (p. 473) and ’removes’ them from
the com.rti.dds.subscription.DataReader (p. 473).

This operation has the same behavior as
com.rti.dds.topic.example.FooDataReader.read next instance, except that
the samples are ’taken’ from the com.rti.dds.subscription.DataReader
(p. 473) such that they are no longer accessible via subsequent ’read’ or ’take’
operations.

Similar to the operation com.rti.dds.topic.example.FooDataReader.read next -
instance, it is possible to call com.rti.dds.topic.example.FooDataReader.take -
next instance with a previous handle that does not correspond to an instance
currently managed by the com.rti.dds.subscription.DataReader (p. 473).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

980 Class Documentation

The behavior of the com.rti.dds.topic.example.FooDataReader.take -
next instance operation follows the same rules as the
com.rti.dds.topic.example.FooDataReader.read operation regarding the
pre-conditions and post-conditions for the received data and sample -
info. Similar to the com.rti.dds.topic.example.FooDataReader.read, the
com.rti.dds.topic.example.FooDataReader.take next instance operation may
’loan’ elements to the output collections, which must then be returned by
means of com.rti.dds.topic.example.FooDataReader.return loan.

Similar to the com.rti.dds.topic.example.FooDataReader.read, this operation
must be provided on the specialized class that is generated for the particular
application data-type that is being taken.

If the com.rti.dds.subscription.DataReader (p. 473) has no samples that
meet the constraints, the method will fail with RETCODE NO DATA.

Parameters:

received data <<inout>> (p. 271) user data type-specific
com.rti.dds.util.Sequence (p. 1432) object where the received
data samples will be returned. Must be a valid non-NULL FooSeq
(p. 1058). The method will fail with RETCODE BAD PARAMETER
if it is NULL.

info seq <<inout>> (p. 271) a com.rti.dds.subscription.SampleInfoSeq
(p. 1414) object where the received sample info will be returned. Must
be a valid non-NULL com.rti.dds.subscription.SampleInfoSeq
(p. 1414). The method will fail with RETCODE BAD PARAMETER
if it is NULL.

max samples <<in>> (p. 271) The maximum number of samples
to be returned. If the special value ResourceLimitsQosPol-
icy.LENGTH UNLIMITED (p. 102) is provided, as many samples
will be returned as are available, up to the limits described in the
documentation for com.rti.dds.topic.example.FooDataReader.take().

previous handle <<in>> (p. 271) The ’next smallest’ in-
stance with a value greater than this value that has avail-
able samples will be returned. Must be a valid non-NULL
com.rti.dds.infrastructure.InstanceHandle t (p. 1080). The
method will fail with RETCODE BAD PARAMETER if it is NULL.

sample states <<in>> (p. 271) data samples matching ones of these
sample states are returned

view states <<in>> (p. 271) data samples matching ones of these
view state are returned

instance states <<in>> (p. 271) data samples matching ones of these
instance state are returned

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.100 FooDataReader Class Reference 981

Exceptions:

One of the Standard Return Codes (p. 104), RETCODE -
PRECONDITION NOT MET, RETCODE NO DATA or RET-
CODE NOT ENABLED.

See also:

com.rti.dds.topic.example.FooDataReader.take
ResourceLimitsQosPolicy.LENGTH UNLIMITED (p. 102)

8.100.3.9 void read next instance w condition (FooSeq
received data, SampleInfoSeq info seq, int max samples,
InstanceHandle t previous handle, ReadCondition
condition)

Accesses via com.rti.dds.topic.example.FooDataReader.read next -
instance the samples that match the criteria specified in the
com.rti.dds.subscription.ReadCondition (p. 1326).

This operation accesses a collection of data values from the
com.rti.dds.subscription.DataReader (p. 473). The behavior is iden-
tical to com.rti.dds.topic.example.FooDataReader.read next instance, except
that all returned samples satisfy the specified condition. In other words, on
success, all returned samples belong to the same instance, and the instance is
the instance with ’smallest’ instance handle among the ones that verify: (a)
instance handle >= previous handle, and (b) have samples for which the
specified com.rti.dds.subscription.ReadCondition (p. 1326) evaluates to
TRUE.

Similar to the operation com.rti.dds.topic.example.FooDataReader.read next -
instance, it is possible to call com.rti.dds.topic.example.FooDataReader.read -
next instance w condition with a previous handle that does
not correspond to an instance currently managed by the
com.rti.dds.subscription.DataReader (p. 473).

The behavior of the com.rti.dds.topic.example.FooDataReader.read -
next instance w condition operation follows the same rules as the
com.rti.dds.topic.example.FooDataReader.read operation regarding the
pre-conditions and post-conditions for the received data and sample -
info. Similar to the com.rti.dds.topic.example.FooDataReader.read, the
com.rti.dds.topic.example.FooDataReader.read next instance w condition op-
eration may ’loan’ elements to the output collections, which must then be
returned by means of com.rti.dds.topic.example.FooDataReader.return loan.

Similar to the com.rti.dds.topic.example.FooDataReader.read, this operation
must be provided on the specialized class that is generated for the particular
application data-type that is being taken.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

982 Class Documentation

If the com.rti.dds.subscription.DataReader (p. 473) has no samples that
meet the constraints, the method will fail with RETCODE NO DATA.

Parameters:

received data <<inout>> (p. 271) user data type-specific
com.rti.dds.util.Sequence (p. 1432) object where the received
data samples will be returned. Must be a valid non-NULL FooSeq
(p. 1058). The method will fail with RETCODE BAD PARAMETER
if it is NULL.

info seq <<inout>> (p. 271) a com.rti.dds.subscription.SampleInfoSeq
(p. 1414) object where the received sample info will be returned. Must
be a valid non-NULL com.rti.dds.subscription.SampleInfoSeq
(p. 1414). The method will fail with RETCODE BAD PARAMETER
if it is NULL.

max samples <<in>> (p. 271) The maximum number of samples
to be returned. If the special value ResourceLimitsQosPol-
icy.LENGTH UNLIMITED (p. 102) is provided, as many samples
will be returned as are available, up to the limits described in the
documentation for com.rti.dds.topic.example.FooDataReader.take().

previous handle <<in>> (p. 271) The ’next smallest’ in-
stance with a value greater than this value that has avail-
able samples will be returned. Must be a valid non-NULL
com.rti.dds.infrastructure.InstanceHandle t (p. 1080). The
method will fail with RETCODE BAD PARAMETER if it is NULL.

condition <<in>> (p. 271) the com.rti.dds.subscription.ReadCondition
(p. 1326) to select samples of interest. Cannot be NULL.

Exceptions:

One of the Standard Return Codes (p. 104), RETCODE -
PRECONDITION NOT MET RETCODE NO DATA or RET-
CODE NOT ENABLED.

See also:

com.rti.dds.topic.example.FooDataReader.read next instance
ResourceLimitsQosPolicy.LENGTH UNLIMITED (p. 102)

8.100.3.10 void take next instance w condition (FooSeq
received data, SampleInfoSeq info seq, int
max samples, InstanceHandle t previous handle,
ReadCondition condition)

Accesses via com.rti.dds.topic.example.FooDataReader.take next -
instance the samples that match the criteria specified in the

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.100 FooDataReader Class Reference 983

com.rti.dds.subscription.ReadCondition (p. 1326).

This operation accesses a collection of data values from the
com.rti.dds.subscription.DataReader (p. 473) and ’removes’ them from
the com.rti.dds.subscription.DataReader (p. 473).

The operation has the same behavior as
com.rti.dds.topic.example.FooDataReader.read next instance w -
condition, except that the samples are ’taken’ from the
com.rti.dds.subscription.DataReader (p. 473) such that they are no
longer accessible via subsequent ’read’ or ’take’ operations.

Similar to the operation com.rti.dds.topic.example.FooDataReader.read next -
instance, it is possible to call com.rti.dds.topic.example.FooDataReader.take -
next instance w condition with a previous handle that does
not correspond to an instance currently managed by the
com.rti.dds.subscription.DataReader (p. 473).

The behavior of the com.rti.dds.topic.example.FooDataReader.take -
next instance w condition operation follows the same rules as the
com.rti.dds.topic.example.FooDataReader.read operation regarding the
pre-conditions and post-conditions for the received data and sample -
info. Similar to com.rti.dds.topic.example.FooDataReader.read, the
com.rti.dds.topic.example.FooDataReader.take next instance w condition
operation may ’loan’ elements to the output collections, which must then be
returned by means of com.rti.dds.topic.example.FooDataReader.return loan.

Similar to the com.rti.dds.topic.example.FooDataReader.read, this operation
must be provided on the specialized class that is generated for the particular
application data-type that is being taken.

If the com.rti.dds.subscription.DataReader (p. 473) has no samples that
meet the constraints, the method will fail with RETCODE NO DATA.

Parameters:

received data <<inout>> (p. 271) user data type-specific
com.rti.dds.util.Sequence (p. 1432) object where the received
data samples will be returned. Must be a valid non-NULL FooSeq
(p. 1058). The method will fail with RETCODE BAD PARAMETER
if it is NULL.

info seq <<inout>> (p. 271) a com.rti.dds.subscription.SampleInfoSeq
(p. 1414) object where the received sample info will be returned. Must
be a valid non-NULL com.rti.dds.subscription.SampleInfoSeq
(p. 1414). The method will fail with RETCODE BAD PARAMETER
if it is NULL.

max samples <<in>> (p. 271) The maximum number of samples
to be returned. If the special value ResourceLimitsQosPol-
icy.LENGTH UNLIMITED (p. 102) is provided, as many samples

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

984 Class Documentation

will be returned as are available, up to the limits described in the
documentation for com.rti.dds.topic.example.FooDataReader.take().

previous handle <<in>> (p. 271) The ’next smallest’ in-
stance with a value greater than this value that has avail-
able samples will be returned. Must be a valid non-NULL
com.rti.dds.infrastructure.InstanceHandle t (p. 1080). The
method will fail with RETCODE BAD PARAMETER if it is NULL.

condition <<in>> (p. 271) the com.rti.dds.subscription.ReadCondition
(p. 1326) to select samples of interest. Cannot be NULL.

Exceptions:

One of the Standard Return Codes (p. 104), RETCODE -
PRECONDITION NOT MET, or RETCODE NO DATA, RET-
CODE NOT ENABLED.

See also:

com.rti.dds.topic.example.FooDataReader.take next instance
ResourceLimitsQosPolicy.LENGTH UNLIMITED (p. 102)

8.100.3.11 void return loan (FooSeq received data, SampleInfoSeq
info seq)

Indicates to the com.rti.dds.subscription.DataReader (p. 473) that
the application is done accessing the collection of received data and
info seq obtained by some earlier invocation of read or take on the
com.rti.dds.subscription.DataReader (p. 473).

This operation indicates to the com.rti.dds.subscription.DataReader
(p. 473) that the application is done accessing the collection of received -
data and info seq obtained by some earlier invocation of read or take on the
com.rti.dds.subscription.DataReader (p. 473).

The received data and info seq must belong to a single related ”pair”; that
is, they should correspond to a pair returned from a single call to read or take.
The received data and info seq must also have been obtained from the same
com.rti.dds.subscription.DataReader (p. 473) to which they are returned.
If either of these conditions is not met, the operation will fail with RETCODE -
PRECONDITION NOT MET.

The operation com.rti.dds.topic.example.FooDataReader.return loan allows im-
plementations of the read and take operations to ”loan” buffers from the
com.rti.dds.subscription.DataReader (p. 473) to the application and in
this manner provide ”zerocopy” access to the data. During the loan, the
com.rti.dds.subscription.DataReader (p. 473) will guarantee that the data
and sample-information are not modified.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.100 FooDataReader Class Reference 985

It is not necessary for an application to return the loans immediately after the
read or take calls. However, as these buffers correspond to internal resources
inside the com.rti.dds.subscription.DataReader (p. 473), the application
should not retain them indefinitely.

The use of com.rti.dds.topic.example.FooDataReader.return loan is only neces-
sary if the read or take calls ”loaned” buffers to the application. This only
occurs if the received data and info Seq collections had max len=0 at the
time read or take was called.

If the collections had a loan, upon completion of
com.rti.dds.topic.example.FooDataReader.return loan, the collections will
have max len=0.

Similar to read, this operation must be provided on the specialized class that is
generated for the particular application data-type that is being taken.

Parameters:

received data <<in>> (p. 271) user data type-specific
com.rti.dds.util.Sequence (p. 1432) object where the received
data samples was obtained from earlier invocation of read or take
on the com.rti.dds.subscription.DataReader (p. 473). Must be
a valid non-NULL FooSeq (p. 1058). The method will fail with
RETCODE BAD PARAMETER if it is NULL.

Parameters:

info seq <<in>> (p. 271) a com.rti.dds.subscription.SampleInfoSeq
(p. 1414) object where the received sample info was ob-
tained from earlier invocation of read or take on the
com.rti.dds.subscription.DataReader (p. 473). Must be a valid
non-NULL com.rti.dds.subscription.SampleInfoSeq (p. 1414).
The method will fail with RETCODE BAD PARAMETER if it is
NULL.

Exceptions:

One of the Standard Return Codes (p. 104), RETCODE -
PRECONDITION NOT MET or RETCODE NOT ENABLED.

8.100.3.12 void get key value (Foo key holder, InstanceHandle t
handle)

Retrieve the instance key that corresponds to an instance handle.

Useful for keyed data types.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

986 Class Documentation

The operation will only fill the fields that form the key inside the key holder
instance.

For keyed data types, this operation may fail with RETCODE BAD -
PARAMETER if the handle does not correspond to an existing data-object
known to the com.rti.dds.subscription.DataReader (p. 473).

Parameters:

key holder <<inout>> (p. 271) a user data type specific key holder,
whose key fields are filled by this operation. If Foo (p. 956) has no
key, this method has no effect. This method will fail with RETCODE -
BAD PARAMETER if key holder is NULL.

handle <<in>> (p. 271) the instance whose key is to be re-
trieved. If Foo (p. 956) has a key, handle must repre-
sent an existing instance of type Foo (p. 956) known to the
com.rti.dds.subscription.DataReader (p. 473). Otherwise, this
method will fail with RETCODE BAD PARAMETER. If Foo
(p. 956) has a key and handle is InstanceHandle t.HANDLE NIL
(p. 1082), this method will fail with RETCODE BAD PARAMETER.
If Foo (p. 956) has a key and handle represents an instance of another
type or an instance of type Foo (p. 956) that has been unregistered,
this method will fail with RETCODE BAD PARAMETER. If Foo
(p. 956) has no key, this method has no effect. This method will fail
with RETCODE BAD PARAMETER if handle is NULL.

Exceptions:

One of the Standard Return Codes (p. 104) or RETCODE NOT -
ENABLED.

See also:

com.rti.dds.topic.example.FooDataWriter.get key value

8.100.3.13 InstanceHandle t lookup instance (Foo key holder)

Retrieves the instance handle that corresponds to an instance key holder.

Useful for keyed data types.

This operation takes as a parameter an instance and returns a handle that can
be used in subsequent operations that accept an instance handle as an argument.
The instance parameter is only used for the purpose of examining the fields that
define the key. This operation does not register the instance in question. If the
instance has not been previously registered, or if for any other reason the Service
is unable to provide an instance handle, the Service will return the special value
HANDLE NIL.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.100 FooDataReader Class Reference 987

Parameters:

key holder <<in>> (p. 271) a user data type specific key holder.

Returns:

the instance handle associated with this instance. If Foo (p. 956) has no key,
this method has no effect and returns InstanceHandle t.HANDLE NIL
(p. 1082)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

988 Class Documentation

8.101 FooDataReader Interface Reference

<<interface>> (p. 271) <<generic>> (p. 271) User data type-specific data
reader.

Public Member Functions

ˆ void read (FooSeq received data, SampleInfoSeq info seq, int max -
samples, int sample states, int view states, int instance states)

Access a collection of data samples from the
com.rti.dds.subscription.DataReader (p. 473).

ˆ void take (FooSeq received data, SampleInfoSeq info seq, int max -
samples, int instance states, int sample states, int view states)

Access a collection of data-samples from the
com.rti.dds.subscription.DataReader (p. 473).

ˆ void read w condition (FooSeq received data, SampleInfo info seq,
int max samples, ReadCondition condition)

Accesses via com.rti.dds.topic.example.FooDataReader.read
the samples that match the criteria specified in the
com.rti.dds.subscription.ReadCondition (p. 1326).

ˆ void take w condition (FooSeq received data, SampleInfo info seq,
int max samples, ReadCondition condition)

Analogous to com.rti.dds.topic.example.FooDataReader.read -
w condition except it accesses samples via the
com.rti.dds.topic.example.FooDataReader.take operation.

ˆ void read next sample (Foo received data, SampleInfo sample info)

Copies the next not-previously-accessed data value from the
com.rti.dds.subscription.DataReader (p. 473).

ˆ void take next sample (Foo received data, SampleInfo sample info)

Copies the next not-previously-accessed data value from the
com.rti.dds.subscription.DataReader (p. 473).

ˆ void read instance (FooSeq received data, SampleInfoSeq info seq,
int max samples, InstanceHandle t a handle, int sample states, int
view states, int instance states)

Access a collection of data samples from the
com.rti.dds.subscription.DataReader (p. 473).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.101 FooDataReader Interface Reference 989

ˆ void take instance (FooSeq received data, SampleInfoSeq info seq,
int max samples, InstanceHandle t a handle, int sample states, int
view states, int instance states)

Access a collection of data samples from the
com.rti.dds.subscription.DataReader (p. 473).

ˆ void read instance w condition (FooSeq received data, SampleIn-
foSeq info seq, int max samples, InstanceHandle t previous handle,
ReadCondition condition)

Accesses via com.rti.dds.topic.example.FooDataReader.read -
instance the samples that match the criteria specified in the
com.rti.dds.subscription.ReadCondition (p. 1326).

ˆ void take instance w condition (FooSeq received data, SampleIn-
foSeq info seq, int max samples, InstanceHandle t previous handle,
ReadCondition condition)

Accesses via com.rti.dds.topic.example.FooDataReader.take -
instance the samples that match the criteria specified in the
com.rti.dds.subscription.ReadCondition (p. 1326).

ˆ void read next instance (FooSeq received data, SampleInfoSeq
info seq, int max samples, InstanceHandle t previous handle, int sam-
ple states, int view states, int instance states)

Access a collection of data samples from the
com.rti.dds.subscription.DataReader (p. 473).

ˆ void take next instance (FooSeq received data, SampleInfoSeq
info seq, int max samples, InstanceHandle t previous handle, int sam-
ple states, int view states, int instance states)

Access a collection of data samples from the
com.rti.dds.subscription.DataReader (p. 473).

ˆ void read next instance w condition (FooSeq received data, Sam-
pleInfoSeq info seq, int max samples, InstanceHandle t previous -
handle, ReadCondition condition)

Accesses via com.rti.dds.topic.example.FooDataReader.read next -
instance the samples that match the criteria specified in the
com.rti.dds.subscription.ReadCondition (p. 1326).

ˆ void take next instance w condition (FooSeq received data, Sam-
pleInfoSeq info seq, int max samples, InstanceHandle t previous -
handle, ReadCondition condition)

Accesses via com.rti.dds.topic.example.FooDataReader.take next -
instance the samples that match the criteria specified in the
com.rti.dds.subscription.ReadCondition (p. 1326).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

990 Class Documentation

ˆ void return loan (FooSeq received data, SampleInfoSeq info seq)

Indicates to the com.rti.dds.subscription.DataReader (p. 473) that
the application is done accessing the collection of received data and
info seq obtained by some earlier invocation of read or take on the
com.rti.dds.subscription.DataReader (p. 473).

ˆ void get key value (Foo key holder, InstanceHandle t handle)

Retrieve the instance key that corresponds to an instance handle.

ˆ InstanceHandle t lookup instance (Foo key holder)

Retrieves the instance handle that corresponds to an instance key holder.

8.101.1 Detailed Description

<<interface>> (p. 271) <<generic>> (p. 271) User data type-specific data
reader.

Defines the user data type specific reader interface generated for each application
class.

The concrete user data type reader automatically generated by the implemen-
tation is an incarnation of this class.

See also:

com.rti.dds.subscription.DataReader (p. 473)
Foo
com.rti.dds.topic.example.FooDataWriter
rtiddsgen (p. 290)

8.101.2 Member Function Documentation

8.101.2.1 void read (FooSeq received data, SampleInfoSeq info seq,
int max samples, int sample states, int view states, int
instance states)

Access a collection of data samples from the
com.rti.dds.subscription.DataReader (p. 473).

This operation offers the same functionality and API as
com.rti.dds.topic.example.FooDataReader.take except that the samples
returned remain in the com.rti.dds.subscription.DataReader (p. 473) such
that they can be retrieved again by means of a read or take operation.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.101 FooDataReader Interface Reference 991

Please refer to the documentation of com.rti.dds.topic.example.FooDataReader.take()
for details on the number of samples returned within the received data and
info seq as well as the order in which the samples appear in these sequences.

The act of reading a sample changes its sample state to Sam-
pleStateKind.READ SAMPLE STATE (p. 1430). If the sample belongs
to the most recent generation of the instance, it will also set the view state of
the instance to be ViewStateKind.NOT NEW VIEW STATE (p. 1690).
It will not affect the instance state of the instance.

Important: If the samples ”returned” by this method are loaned from RTI Con-
next (see com.rti.dds.topic.example.FooDataReader.take for more information
on memory loaning), it is important that their contents not be changed. Be-
cause the memory in which the data is stored belongs to the middleware, any
modifications made to the data will be seen the next time the same samples
are read or taken; the samples will no longer reflect the state that was received
from the network.

Parameters:

received data <<inout>> (p. 271) User data type-specific
com.rti.dds.util.Sequence (p. 1432) object where the received
data samples will be returned. Must be a valid non-NULL FooSeq.
The method will fail with RETCODE BAD PARAMETER if it is
NULL.

info seq <<inout>> (p. 271) A com.rti.dds.subscription.SampleInfoSeq
(p. 1414) object where the received sample info will be returned. Must
be a valid non-NULL com.rti.dds.subscription.SampleInfoSeq
(p. 1414). The method will fail with RETCODE BAD PARAMETER
if it is NULL.

max samples <<in>> (p. 271) The maximum number of samples
to be returned. If the special value ResourceLimitsQosPol-
icy.LENGTH UNLIMITED (p. 102) is provided, as many samples
will be returned as are available, up to the limits described in the
documentation for com.rti.dds.topic.example.FooDataReader.take().

sample states <<in>> (p. 271) Data samples matching one of these
sample states are returned.

view states <<in>> (p. 271) Data samples matching one of these
view state are returned.

instance states <<in>> (p. 271) Data samples matching ones of these
instance state are returned.

Exceptions:

One of the Standard Return Codes (p. 104), RETCODE -
PRECONDITION NOT MET, RETCODE NO DATA or RET-
CODE NOT ENABLED.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

992 Class Documentation

See also:

com.rti.dds.topic.example.FooDataReader.read w -
condition, com.rti.dds.topic.example.FooDataReader.take,
com.rti.dds.topic.example.FooDataReader.take w condition
ResourceLimitsQosPolicy.LENGTH UNLIMITED (p. 102)

8.101.2.2 void take (FooSeq received data, SampleInfoSeq info seq,
int max samples, int instance states, int sample states,
int view states)

Access a collection of data-samples from the
com.rti.dds.subscription.DataReader (p. 473).

The operation will return the list of samples received by
the com.rti.dds.subscription.DataReader (p. 473) since the
last com.rti.dds.topic.example.FooDataReader.take operation that
match the specified com.rti.dds.subscription.SampleStateMask,
com.rti.dds.subscription.ViewStateMask and com.rti.dds.subscription.InstanceStateMask.

This operation may fail with RETCODE ERROR if
com.rti.dds.infrastructure.DataReaderResourceLimitsQosPolicy.max -
outstanding reads (p. 530) limit has been exceeded.

The actual number of samples returned depends on the infor-
mation that has been received by the middleware as well as
the com.rti.dds.infrastructure.HistoryQosPolicy (p. 1071),
com.rti.dds.infrastructure.ResourceLimitsQosPolicy (p. 1356),
com.rti.dds.infrastructure.DataReaderResourceLimitsQosPolicy
(p. 524) and the characteristics of the data-type that is associated with the
com.rti.dds.subscription.DataReader (p. 473):

ˆ In the case where the com.rti.dds.infrastructure.HistoryQosPolicy.kind
(p. 1073) is HistoryQosPolicyKind.KEEP LAST -
HISTORY QOS, the call will return at most
com.rti.dds.infrastructure.HistoryQosPolicy.depth (p. 1074)
samples per instance.

ˆ The maximum number of samples returned is limited by
com.rti.dds.infrastructure.ResourceLimitsQosPolicy.max -
samples (p. 1359), and by com.rti.dds.infrastructure.DataReaderResourceLimitsQosPolicy.max -
samples per read (p. 530).

ˆ For multiple instances, the number of samples re-
turned is additionally limited by the product

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.101 FooDataReader Interface Reference 993

(com.rti.dds.infrastructure.ResourceLimitsQosPolicy.max -
samples per instance (p. 1360) ∗ com.rti.dds.infrastructure.ResourceLimitsQosPolicy.max -
instances (p. 1360))

ˆ If com.rti.dds.infrastructure.DataReaderResourceLimitsQosPolicy.max -
infos (p. 528) is limited, the number of samples returned may also be
limited if insufficient com.rti.dds.subscription.SampleInfo (p. 1404)
resources are available.

If the read or take succeeds and the number of samples returned has been
limited (by means of a maximum limit, as listed above, or insufficient
com.rti.dds.subscription.SampleInfo (p. 1404) resources), the call will com-
plete successfully and provide those samples the reader is able to return. The
user may need to make additional calls, or return outstanding loaned buffers in
the case of insuffificient resources, in order to access remaining samples.

Note that in the case where the com.rti.dds.topic.Topic (p. 1545) associated
with the com.rti.dds.subscription.DataReader (p. 473) is bound to a data-
type that has no key definition, then there will be at most one instance in the
com.rti.dds.subscription.DataReader (p. 473). So the per-sample limits
will apply.

The act of taking a sample removes it from RTI Connext so it cannot be
read or taken again. If the sample belongs to the most recent generation
of the instance, it will also set the view state of the sample’s instance to
ViewStateKind.NOT NEW VIEW STATE (p. 1690). It will not affect
the instance state of the sample’s instance.

After com.rti.dds.topic.example.FooDataReader.take completes, received -
data and info seq will be of the same length and contain the received data.

If the sequences are empty (maximum size equals 0) when the
com.rti.dds.topic.example.FooDataReader.take is called, the samples returned
in the received data and the corresponding info seq are ’loaned’ to the appli-
cation from buffers provided by the com.rti.dds.subscription.DataReader
(p. 473). The application can use them as desired and has guaranteed exclusive
access to them.

Once the application completes its use of the samples it must ’return the
loan’ to the com.rti.dds.subscription.DataReader (p. 473) by calling the
com.rti.dds.topic.example.FooDataReader.return loan operation.

Important: When you loan data from the middleware, you must
not keep any pointers to any part of the data samples or the
com.rti.dds.subscription.SampleInfo (p. 1404) objects after the call to
com.rti.dds.topic.example.FooDataReader.return loan. Returning the loan
places the objects back into a pool, allowing the middleware to overwrite them
with new data.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

994 Class Documentation

Note: While you must call com.rti.dds.topic.example.FooDataReader.return -
loan at some point, you do not have to do so before the next
com.rti.dds.topic.example.FooDataReader.take call. However, failure to return
the loan will eventually deplete the com.rti.dds.subscription.DataReader
(p. 473) of the buffers it needs to receive new samples and eventually
samples will start to be lost. The total number of buffers available to
the com.rti.dds.subscription.DataReader (p. 473) is specified by the
com.rti.dds.infrastructure.ResourceLimitsQosPolicy (p. 1356) and
the com.rti.dds.infrastructure.DataReaderResourceLimitsQosPolicy
(p. 524).

If the sequences are not empty (maximum size not equal to 0 and length not
equal to 0) when com.rti.dds.topic.example.FooDataReader.take is called, sam-
ples are copied to received data and info seq. The application will not need to
call com.rti.dds.topic.example.FooDataReader.return loan.

The order of the samples returned to the caller depends on the
com.rti.dds.infrastructure.PresentationQosPolicy (p. 1237).

ˆ If com.rti.dds.infrastructure.PresentationQosPolicy.access -
scope (p. 1241) is PresentationQosPolicyAccessScopeKind.INSTANCE -
PRESENTATION QOS, the returned collection is a list where samples
belonging to the same data instance are consecutive.

ˆ If com.rti.dds.infrastructure.PresentationQosPolicy.access -
scope (p. 1241) is PresentationQosPolicyAc-
cessScopeKind.TOPIC PRESENTATION QOS and
com.rti.dds.infrastructure.PresentationQosPolicy.ordered -
access (p. 1241) is set to false, then returned collection is a list where
samples belonging to the same data instance are consecutive.

ˆ If com.rti.dds.infrastructure.PresentationQosPolicy.access -
scope (p. 1241) is PresentationQosPolicyAc-
cessScopeKind.TOPIC PRESENTATION QOS and
com.rti.dds.infrastructure.PresentationQosPolicy.ordered -
access (p. 1241) is set to true, then the returned collection is a list were
the relative order of samples is preserved also accross different instances.
Note that samples belonging to the same instance may or may not be
consecutive. This is because to preserve order it may be necessary to mix
samples from different instances.

ˆ If com.rti.dds.infrastructure.PresentationQosPolicy.access -
scope (p. 1241) is PresentationQosPolicyAccessS-
copeKind.GROUP PRESENTATION QOS and
com.rti.dds.infrastructure.PresentationQosPolicy.ordered -
access (p. 1241) is set to false, then returned collection is a list where

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.101 FooDataReader Interface Reference 995

samples belonging to the same data instance are consecutive. [Not
supported (optional)]

ˆ If com.rti.dds.infrastructure.PresentationQosPolicy.access -
scope (p. 1241) is PresentationQosPolicyAccessS-
copeKind.GROUP PRESENTATION QOS and
com.rti.dds.infrastructure.PresentationQosPolicy.ordered -
access (p. 1241) is set to true, then the returned collection contains at
most one sample. The difference in this case is due to the fact that is
required that the application is able to read samples belonging to different
com.rti.dds.subscription.DataReader (p. 473) objects in a specific
order. [Not supported (optional)]

In any case, the relative order between the samples of one instance is consistent
with the DESTINATION ORDER (p. 51) policy:

ˆ If com.rti.dds.infrastructure.DestinationOrderQosPolicy.kind
(p. 609) is DestinationOrderQosPolicyKind.BY RECEPTION -
TIMESTAMP DESTINATIONORDER QOS, samples belonging to
the same instances will appear in the relative order in which there were
received (FIFO, earlier samples ahead of the later samples).

ˆ If com.rti.dds.infrastructure.DestinationOrderQosPolicy.kind
(p. 609) is DestinationOrderQosPolicyKind.BY SOURCE -
TIMESTAMP DESTINATIONORDER QOS, samples belonging to
the same instances will appear in the relative order implied by the
source timestamp (FIFO, smaller values of source timestamp ahead of
the larger values).

If the com.rti.dds.subscription.DataReader (p. 473) has no samples that
meet the constraints, the method will fail with RETCODE NO DATA.

In addition to the collection of samples, the read and take operations also use
a collection of com.rti.dds.subscription.SampleInfo (p. 1404) structures.

8.101.3 SEQUENCES USAGE IN TAKE AND READ

The initial (input) properties of the received data and info seq collections
will determine the precise behavior of the read or take operation. For the pur-
poses of this description, the collections are modeled as having these properties:

ˆ the current-length (len, see Sequence.size())

ˆ the maximum length (max len, see Sequence.getMaximum (p. 1433))

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

996 Class Documentation

The initial values of the len and max len properties for the received data and
info seq collections govern the behavior of the read and take operations as
specified by the following rules:

1. The values of len and max len properties for the two collections
must be identical. Otherwise read/take will fail with RETCODE -
PRECONDITION NOT MET.

2. On successful output, the values of len and max len will be the same for
both collections.

3. If the initial max len==0, then the received data and info seq
collections will be filled with elements that are loaned by the
com.rti.dds.subscription.DataReader (p. 473). On output, len will
be set to the number of values returned, and max len will be set to
a value verifying max len >= len. The use of this variant allows for
zero-copy access to the data and the application will need to return
the loan to the com.rti.dds.publication.DataWriter (p. 538) using
com.rti.dds.topic.example.FooDataReader.return loan.

4. If the initial max len>0 then the read or take operation will fail with RET-
CODE PRECONDITION NOT MET. This avoids the potential hard-to-
detect memory leaks caused by an application forgetting to return the
loan.

5. If initial max len>0 then the read or take operation will copy
the received data values and com.rti.dds.subscription.SampleInfo
(p. 1404) values into the elements already inside the collections. On out-
put, len will be set to the number of values copied and max len will
remain unchanged. The use of this variant forces a copy but the appli-
cation can control where the copy is placed and the application will not
need to return the loan. The number of samples copied depends on the
relative values of max len and max samples:

ˆ If max samples == LENGTH UNLIMITED, then at most max len
values will be copied. The use of this variant lets the application
limit the number of samples returned to what the sequence can ac-
commodate.

ˆ If max samples <= max len, then at most max samples values will be
copied. The use of this variant lets the application limit the number of
samples returned to fewer that what the sequence can accommodate.

ˆ If max samples > max len, then the read or take operation will fail
with RETCODE PRECONDITION NOT MET. This avoids the po-
tential confusion where the application expects to be able to access
up to max samples, but that number can never be returned, even if
they are available in the com.rti.dds.subscription.DataReader
(p. 473), because the output sequence cannot accommodate them.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.101 FooDataReader Interface Reference 997

As described above, upon completion, the received data and
info seq collections may contain elements loaned from the
com.rti.dds.subscription.DataReader (p. 473). If this is the case, the ap-
plication will need to use com.rti.dds.topic.example.FooDataReader.return loan
to return the loan once it is no longer using the received data in the collection.
When com.rti.dds.topic.example.FooDataReader.return loan completes, the
collection will have max len=0. The application can determine whether it is
necessary to return the loan or not based on how the state of the collections
when the read/take operation was called However, in many cases it may be
simpler to always call com.rti.dds.topic.example.FooDataReader.return loan,
as this operation is harmless (i.e., it leaves all elements unchanged) if the
collection does not have a loan.

On output, the collection of Foo values and the collection of
com.rti.dds.subscription.SampleInfo (p. 1404) structures are of
the same length and are in a one-to-one correspondence. Each
com.rti.dds.subscription.SampleInfo (p. 1404) provides information,
such as the source timestamp, the sample state, view state, and instance state,
etc., about the corresponding sample.

Some elements in the returned collection may not have valid data. If the
instance state in the com.rti.dds.subscription.SampleInfo (p. 1404) is In-
stanceStateKind.NOT ALIVE DISPOSED INSTANCE STATE
(p. 1088) or InstanceStateKind.NOT ALIVE NO WRITERS -
INSTANCE STATE (p. 1088), then the last sample for that instance in the
collection (that is, the one whose com.rti.dds.subscription.SampleInfo
(p. 1404) has sample rank==0) does not contain valid data.

Samples that contain no data do not count towards the limits imposed
by the com.rti.dds.infrastructure.ResourceLimitsQosPolicy (p. 1356).
The act of reading/taking a sample sets its sample state to Sam-
pleStateKind.READ SAMPLE STATE (p. 1430).

If the sample belongs to the most recent generation of the instance, it will also
set the view state of the instance to ViewStateKind.NOT NEW VIEW -
STATE (p. 1690). It will not affect the instance state of the instance.

This operation must be provided on the specialized class that is generated
for the particular application data-type that is being read (Foo). If the
com.rti.dds.subscription.DataReader (p. 473) has no samples that meet
the constraints, the operations fails with RETCODE NO DATA.

For an example (p. 349) on how take can be used, please refer to the receive
example (p. 246).

Parameters:

received data <<inout>> (p. 271) User data type-specific
com.rti.dds.util.Sequence (p. 1432) object where the received

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

998 Class Documentation

data samples will be returned. Must be a valid non-NULL FooSeq.
The method will fail with RETCODE BAD PARAMETER if it is
NULL.

Parameters:

info seq <<inout>> (p. 271) A com.rti.dds.subscription.SampleInfoSeq
(p. 1414) object where the received sample info will be returned. Must
be a valid non-NULL com.rti.dds.subscription.SampleInfoSeq
(p. 1414). The method will fail with RETCODE BAD PARAMETER
if it is NULL.

max samples <<in>> (p. 271) The maximum number of samples
to be returned. If the special value ResourceLimitsQosPol-
icy.LENGTH UNLIMITED (p. 102) is provided, as many samples
will be returned as are available, up to the limits described above.

sample states <<in>> (p. 271) Data samples matching one of these
sample states are returned.

view states <<in>> (p. 271) Data samples matching one of these
view state are returned.

instance states <<in>> (p. 271) Data samples matching one of these
instance state are returned.

Exceptions:

One of the Standard Return Codes (p. 104), RETCODE -
PRECONDITION NOT MET, RETCODE NO DATA or RET-
CODE NOT ENABLED.

See also:

com.rti.dds.topic.example.FooDataReader.read
com.rti.dds.topic.example.FooDataReader.read w condition,
com.rti.dds.topic.example.FooDataReader.take w condition
ResourceLimitsQosPolicy.LENGTH UNLIMITED (p. 102)

8.101.3.1 void read w condition (FooSeq received data, SampleInfo
info seq, int max samples, ReadCondition condition)

Accesses via com.rti.dds.topic.example.FooDataReader.read the samples that
match the criteria specified in the com.rti.dds.subscription.ReadCondition
(p. 1326).

This operation is especially useful in combination with
com.rti.dds.subscription.QueryCondition (p. 1324) to filter data samples
based on the content.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.101 FooDataReader Interface Reference 999

The specified com.rti.dds.subscription.ReadCondition (p. 1326) must be
attached to the com.rti.dds.subscription.DataReader (p. 473); otherwise
the operation will fail with RETCODE PRECONDITION NOT MET.

In case the com.rti.dds.subscription.ReadCondition (p. 1326) is a plain
com.rti.dds.subscription.ReadCondition (p. 1326) and not the special-
ized com.rti.dds.subscription.QueryCondition (p. 1324), the operation is
equivalent to calling com.rti.dds.topic.example.FooDataReader.read and pass-
ing as sample states, view states and instance states the value of the
corresponding attributes in the read condition. Using this operation, the ap-
plication can avoid repeating the same parameters specified when creating the
com.rti.dds.subscription.ReadCondition (p. 1326).

The samples are accessed with the same semantics as
com.rti.dds.topic.example.FooDataReader.read.

If the com.rti.dds.subscription.DataReader (p. 473) has no samples that
meet the constraints, the operation will fail with RETCODE NO DATA.

Parameters:

received data <<inout>> (p. 271) user data type-specific
com.rti.dds.util.Sequence (p. 1432) object where the received
data samples will be returned. Must be a valid non-NULL FooSeq.
The method will fail with RETCODE BAD PARAMETER if it is
NULL.

info seq <<inout>> (p. 271) a com.rti.dds.subscription.SampleInfoSeq
(p. 1414) object where the received sample info will be returned. Must
be a valid non-NULL com.rti.dds.subscription.SampleInfoSeq
(p. 1414). The method will fail with RETCODE BAD PARAMETER
if it is NULL.

max samples <<in>> (p. 271) The maximum number of samples
to be returned. If the special value ResourceLimitsQosPol-
icy.LENGTH UNLIMITED (p. 102) is provided, as many samples
will be returned as are available, up to the limits described in the
documentation for com.rti.dds.topic.example.FooDataReader.take().

condition <<in>> (p. 271) the com.rti.dds.subscription.ReadCondition
(p. 1326) to select samples of interest. Cannot be NULL.

Exceptions:

One of the Standard Return Codes (p. 104), RETCODE -
PRECONDITION NOT MET, RETCODE NO DATA or RET-
CODE NOT ENABLED.

See also:

com.rti.dds.topic.example.FooDataReader.read

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1000 Class Documentation

com.rti.dds.topic.example.FooDataReader.take,
com.rti.dds.topic.example.FooDataReader.take w condition
ResourceLimitsQosPolicy.LENGTH UNLIMITED (p. 102)

8.101.3.2 void take w condition (FooSeq received data, SampleInfo
info seq, int max samples, ReadCondition condition)

Analogous to com.rti.dds.topic.example.FooDataReader.read w condition ex-
cept it accesses samples via the com.rti.dds.topic.example.FooDataReader.take
operation.

This operation is analogous to com.rti.dds.topic.example.FooDataReader.read -
w condition except that it accesses samples via the
com.rti.dds.topic.example.FooDataReader.take operation.

The specified com.rti.dds.subscription.ReadCondition (p. 1326) must be
attached to the com.rti.dds.subscription.DataReader (p. 473); otherwise
the operation will fail with RETCODE PRECONDITION NOT MET.

The samples are accessed with the same semantics as
com.rti.dds.topic.example.FooDataReader.take.

This operation is especially useful in combination with
com.rti.dds.subscription.QueryCondition (p. 1324) to filter data samples
based on the content.

If the com.rti.dds.subscription.DataReader (p. 473) has no samples that
meet the constraints, the method will fail with RETCODE NO DATA.

Parameters:

received data <<inout>> (p. 271) user data type-specific
com.rti.dds.util.Sequence (p. 1432) object where the received
data samples will be returned. Must be a valid non-NULL FooSeq.
The method will fail with RETCODE BAD PARAMETER if it is
NULL.

info seq <<inout>> (p. 271) a com.rti.dds.subscription.SampleInfoSeq
(p. 1414) object where the received sample info will be returned. Must
be a valid non-NULL com.rti.dds.subscription.SampleInfoSeq
(p. 1414). The method will fail with RETCODE BAD PARAMETER
if it is NULL.

max samples <<in>> (p. 271) The maximum number of samples
to be returned. If the special value ResourceLimitsQosPol-
icy.LENGTH UNLIMITED (p. 102) is provided, as many samples
will be returned as are available, up to the limits described in the
documentation for com.rti.dds.topic.example.FooDataReader.take().

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.101 FooDataReader Interface Reference 1001

condition <<in>> (p. 271) the com.rti.dds.subscription.ReadCondition
(p. 1326) to select samples of interest. Cannot be NULL.

Exceptions:

One of the Standard Return Codes (p. 104), RETCODE -
PRECONDITION NOT MET, RETCODE NO DATA or RET-
CODE NOT ENABLED.

See also:

com.rti.dds.topic.example.FooDataReader.read w condition,
com.rti.dds.topic.example.FooDataReader.read
com.rti.dds.topic.example.FooDataReader.take
ResourceLimitsQosPolicy.LENGTH UNLIMITED (p. 102)

8.101.3.3 void read next sample (Foo received data, SampleInfo
sample info)

Copies the next not-previously-accessed data value from the
com.rti.dds.subscription.DataReader (p. 473).

This operation copies the next not-previously-accessed data value from
the com.rti.dds.subscription.DataReader (p. 473). This operation
also copies the corresponding com.rti.dds.subscription.SampleInfo
(p. 1404). The implied order among the samples stored in the
com.rti.dds.subscription.DataReader (p. 473) is the same as for the
com.rti.dds.topic.example.FooDataReader.read operation.

The com.rti.dds.topic.example.FooDataReader.read next sample operation is
semantically equivalent to the com.rti.dds.topic.example.FooDataReader.read
operation, where the input data sequences has max len=1, the sample -
states=NOT READ, the view states=ANY VIEW STATE, and the instance -
states=ANY INSTANCE STATE.

The com.rti.dds.topic.example.FooDataReader.read next sample operation pro-
vides a simplified API to ’read’ samples, avoiding the need for the application
to manage sequences and specify states.

If there is no unread data in the com.rti.dds.subscription.DataReader
(p. 473), the operation will fail with RETCODE NO DATA and nothing is
copied.

Parameters:

received data <<inout>> (p. 271) user data type-specific Foo object
where the next received data sample will be returned. The received -
data must have been fully allocated. Otherwise, this operation may

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1002 Class Documentation

fail. Must be a valid non-NULL Foo. The method will fail with
RETCODE BAD PARAMETER if it is NULL.

sample info <<inout>> (p. 271) a com.rti.dds.subscription.SampleInfo
(p. 1404) object where the next received sample info will be returned.
Must be a valid non-NULL com.rti.dds.subscription.SampleInfo
(p. 1404). The method will fail with RETCODE BAD PARAMETER
if it is NULL.

Exceptions:

One of the Standard Return Codes (p. 104), RETCODE NO DATA or
RETCODE NOT ENABLED.

See also:

com.rti.dds.topic.example.FooDataReader.read

8.101.3.4 void take next sample (Foo received data, SampleInfo
sample info)

Copies the next not-previously-accessed data value from the
com.rti.dds.subscription.DataReader (p. 473).

This operation copies the next not-previously-accessed data value from
the com.rti.dds.subscription.DataReader (p. 473) and ’removes’ it
from the com.rti.dds.subscription.DataReader (p. 473) so that it is
no longer accessible. This operation also copies the correspond-
ing com.rti.dds.subscription.SampleInfo (p. 1404). This operation
is analogous to the com.rti.dds.topic.example.FooDataReader.read next -
sample except for the fact that the sample is removed from the
com.rti.dds.subscription.DataReader (p. 473).

The com.rti.dds.topic.example.FooDataReader.take next sample operation is
semantically equivalent to the com.rti.dds.topic.example.FooDataReader.take
operation, where the input data sequences has max len=1, the sample -
states=NOT READ, the view states=ANY VIEW STATE, and the instance -
states=ANY INSTANCE STATE.

The com.rti.dds.topic.example.FooDataReader.read next sample operation pro-
vides a simplified API to ’take’ samples, avoiding the need for the application
to manage sequences and specify states.

If there is no unread data in the com.rti.dds.subscription.DataReader
(p. 473), the operation will fail with RETCODE NO DATA and nothing is
copied.

Parameters:

received data <<inout>> (p. 271) user data type-specific Foo object

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.101 FooDataReader Interface Reference 1003

where the next received data sample will be returned. The received -
data must have been fully allocated. Otherwise, this operation may
fail. Must be a valid non-NULL Foo. The method will fail with
RETCODE BAD PARAMETER if it is NULL.

sample info <<inout>> (p. 271) a com.rti.dds.subscription.SampleInfo
(p. 1404) object where the next received sample info will be returned.
Must be a valid non-NULL com.rti.dds.subscription.SampleInfo
(p. 1404). The method will fail with RETCODE BAD PARAMETER
if it is NULL.

Exceptions:

One of the Standard Return Codes (p. 104), RETCODE NO DATA or
RETCODE NOT ENABLED.

See also:

com.rti.dds.topic.example.FooDataReader.take

8.101.3.5 void read instance (FooSeq received data, SampleInfoSeq
info seq, int max samples, InstanceHandle t a handle,
int sample states, int view states, int instance states)

Access a collection of data samples from the
com.rti.dds.subscription.DataReader (p. 473).

This operation accesses a collection of data values from the
com.rti.dds.subscription.DataReader (p. 473). The behavior is iden-
tical to com.rti.dds.topic.example.FooDataReader.read, except that all samples
returned belong to the single specified instance whose handle is a handle.

Upon successful completion, the data collection will contain
samples all belonging to the same instance. The correspond-
ing com.rti.dds.subscription.SampleInfo (p. 1404) verifies
com.rti.dds.subscription.SampleInfo.instance handle (p. 1410) ==
a handle.

The com.rti.dds.topic.example.FooDataReader.read instance operation is
semantically equivalent to the com.rti.dds.topic.example.FooDataReader.read
operation, except in building the collection, the
com.rti.dds.subscription.DataReader (p. 473) will check that the sample
belongs to the specified instance and otherwise it will not place the sample in
the returned collection.

The behavior of the com.rti.dds.topic.example.FooDataReader.read -
instance operation follows the same rules as the
com.rti.dds.topic.example.FooDataReader.read operation regarding the

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1004 Class Documentation

pre-conditions and post-conditions for the received data and sample -
info. Similar to the com.rti.dds.topic.example.FooDataReader.read, the
com.rti.dds.topic.example.FooDataReader.read instance operation may ’loan’
elements to the output collections, which must then be returned by means of
com.rti.dds.topic.example.FooDataReader.return loan.

Similar to the com.rti.dds.topic.example.FooDataReader.read, this operation
must be provided on the specialized class that is generated for the particular
application data-type that is being taken.

If the com.rti.dds.subscription.DataReader (p. 473) has no samples that
meet the constraints, the method will fail with RETCODE NO DATA.

This operation may fail with RETCODE BAD PARAMETER if
the com.rti.dds.infrastructure.InstanceHandle t (p. 1080) a -
handle does not correspond to an existing data-object known to the
com.rti.dds.subscription.DataReader (p. 473).

Parameters:

received data <<inout>> (p. 271) user data type-specific
com.rti.dds.util.Sequence (p. 1432) object where the received
data samples will be returned. Must be a valid non-NULL FooSeq.
The method will fail with RETCODE BAD PARAMETER if it is
NULL.

info seq <<inout>> (p. 271) a com.rti.dds.subscription.SampleInfoSeq
(p. 1414) object where the received sample info will be returned. Must
be a valid non-NULL com.rti.dds.subscription.SampleInfoSeq
(p. 1414). The method will fail with RETCODE BAD PARAMETER
if it is NULL.

max samples <<in>> (p. 271) The maximum number of samples
to be returned. If the special value ResourceLimitsQosPol-
icy.LENGTH UNLIMITED (p. 102) is provided, as many samples
will be returned as are available, up to the limits described in the
documentation for com.rti.dds.topic.example.FooDataReader.take().

a handle <<in>> (p. 271) The specified instance to re-
turn samples for. Must be a valid non-NULL
com.rti.dds.infrastructure.InstanceHandle t (p. 1080). The
method will fail with RETCODE BAD PARAMETER if it is NULL
The method will fail with RETCODE BAD PARAMETER if the
handle does not correspond to an existing data-object known to the
com.rti.dds.subscription.DataReader (p. 473).

sample states <<in>> (p. 271) data samples matching ones of these
sample states are returned

view states <<in>> (p. 271) data samples matching ones of these
view state are returned

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.101 FooDataReader Interface Reference 1005

instance states <<in>> (p. 271) data samples matching ones of these
instance state are returned

Exceptions:

One of the Standard Return Codes (p. 104), RETCODE -
PRECONDITION NOT MET, RETCODE NO DATA or RET-
CODE NOT ENABLED.

See also:

com.rti.dds.topic.example.FooDataReader.read
ResourceLimitsQosPolicy.LENGTH UNLIMITED (p. 102)

8.101.3.6 void take instance (FooSeq received data, SampleInfoSeq
info seq, int max samples, InstanceHandle t a handle,
int sample states, int view states, int instance states)

Access a collection of data samples from the
com.rti.dds.subscription.DataReader (p. 473).

This operation accesses a collection of data values from the
com.rti.dds.subscription.DataReader (p. 473). The behavior is iden-
tical to com.rti.dds.topic.example.FooDataReader.take, except for that all
samples returned belong to the single specified instance whose handle is
a handle.

The semantics are the same for the com.rti.dds.topic.example.FooDataReader.take
operation, except in building the collection, the
com.rti.dds.subscription.DataReader (p. 473) will check that the sample
belongs to the specified instance, and otherwise it will not place the sample in
the returned collection.

The behavior of the com.rti.dds.topic.example.FooDataReader.take -
instance operation follows the same rules as the
com.rti.dds.topic.example.FooDataReader.read operation regarding the
pre-conditions and post-conditions for the received data and sample -
info. Similar to the com.rti.dds.topic.example.FooDataReader.read, the
com.rti.dds.topic.example.FooDataReader.take instance operation may ’loan’
elements to the output collections, which must then be returned by means of
com.rti.dds.topic.example.FooDataReader.return loan.

Similar to the com.rti.dds.topic.example.FooDataReader.read, this operation
must be provided on the specialized class that is generated for the particular
application data-type that is being taken.

If the com.rti.dds.subscription.DataReader (p. 473) has no samples that
meet the constraints, the method fails with RETCODE NO DATA.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1006 Class Documentation

This operation may fail with RETCODE BAD PARAMETER if
the com.rti.dds.infrastructure.InstanceHandle t (p. 1080) a -
handle does not correspond to an existing data-object known to the
com.rti.dds.subscription.DataReader (p. 473).

Parameters:

received data <<inout>> (p. 271) user data type-specific
com.rti.dds.util.Sequence (p. 1432) object where the received
data samples will be returned. Must be a valid non-NULL FooSeq.
The method will fail with RETCODE BAD PARAMETER if it is
NULL.

info seq <<inout>> (p. 271) a com.rti.dds.subscription.SampleInfoSeq
(p. 1414) object where the received sample info will be returned. Must
be a valid non-NULL com.rti.dds.subscription.SampleInfoSeq
(p. 1414). The method will fail with RETCODE BAD PARAMETER
if it is NULL.

max samples <<in>> (p. 271) The maximum number of samples
to be returned. If the special value ResourceLimitsQosPol-
icy.LENGTH UNLIMITED (p. 102) is provided, as many samples
will be returned as are available, up to the limits described in the
documentation for com.rti.dds.topic.example.FooDataReader.take().

a handle <<in>> (p. 271) The specified instance to re-
turn samples for. Must be a valid non-NULL
com.rti.dds.infrastructure.InstanceHandle t (p. 1080). The
method will fail with RETCODE BAD PARAMETER if it is NULL.
The method will fail with RETCODE BAD PARAMETER if the
handle does not correspond to an existing data-object known to the
com.rti.dds.subscription.DataReader (p. 473).

sample states <<in>> (p. 271) data samples matching ones of these
sample states are returned

view states <<in>> (p. 271) data samples matching ones of these
view state are returned

instance states <<in>> (p. 271) data samples matching ones of these
instance state are returned

Exceptions:

One of the Standard Return Codes (p. 104), RETCODE -
PRECONDITION NOT MET, RETCODE NO DATA or RET-
CODE NOT ENABLED.

See also:

com.rti.dds.topic.example.FooDataReader.take
ResourceLimitsQosPolicy.LENGTH UNLIMITED (p. 102)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.101 FooDataReader Interface Reference 1007

8.101.3.7 void read instance w condition (FooSeq received data,
SampleInfoSeq info seq, int max samples,
InstanceHandle t previous handle, ReadCondition
condition)

Accesses via com.rti.dds.topic.example.FooDataReader.read -
instance the samples that match the criteria specified in the
com.rti.dds.subscription.ReadCondition (p. 1326).

This operation accesses a collection of data values from the
com.rti.dds.subscription.DataReader (p. 473). The behavior is
identical to com.rti.dds.topic.example.FooDataReader.read instance, ex-
cept that all returned samples satisfy the specified condition. In other
words, on success, all returned samples belong to belong the single
specified instance whose handle is a handle, and for which the specified
com.rti.dds.subscription.ReadCondition (p. 1326) evaluates to TRUE.

The behavior of the com.rti.dds.topic.example.FooDataReader.read -
instance w condition operation follows the same rules as the
com.rti.dds.topic.example.FooDataReader.read operation regarding the
pre-conditions and post-conditions for the received data and sample -
info. Similar to the com.rti.dds.topic.example.FooDataReader.read, the
com.rti.dds.topic.example.FooDataReader.read instance w condition operation
may ’loan’ elements to the output collections, which must then be returned by
means of com.rti.dds.topic.example.FooDataReader.return loan.

Similar to com.rti.dds.topic.example.FooDataReader.read, this operation must
be provided on the specialized class that is generated for the particular appli-
cation data-type that is being taken.

If the com.rti.dds.subscription.DataReader (p. 473) has no samples that
meet the constraints, the method will fail with RETCODE NO DATA.

Parameters:

received data <<inout>> (p. 271) user data type-specific
com.rti.dds.util.Sequence (p. 1432) object where the received
data samples will be returned. Must be a valid non-NULL FooSeq.
The method will fail with RETCODE BAD PARAMETER if it is
NULL.

info seq <<inout>> (p. 271) a com.rti.dds.subscription.SampleInfoSeq
(p. 1414) object where the received sample info will be returned. Must
be a valid non-NULL com.rti.dds.subscription.SampleInfoSeq
(p. 1414). The method will fail with RETCODE BAD PARAMETER
if it is NULL.

max samples <<in>> (p. 271) The maximum number of samples
to be returned. If the special value ResourceLimitsQosPol-
icy.LENGTH UNLIMITED (p. 102) is provided, as many samples

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1008 Class Documentation

will be returned as are available, up to the limits described in the
documentation for com.rti.dds.topic.example.FooDataReader.take().

previous handle <<in>> (p. 271) The ’next smallest’ in-
stance with a value greater than this value that has avail-
able samples will be returned. Must be a valid non-NULL
com.rti.dds.infrastructure.InstanceHandle t (p. 1080). The
method will fail with RETCODE BAD PARAMETER if it is NULL.

condition <<in>> (p. 271) the com.rti.dds.subscription.ReadCondition
(p. 1326) to select samples of interest. Cannot be NULL.

Exceptions:

One of the Standard Return Codes (p. 104), RETCODE -
PRECONDITION NOT MET RETCODE NO DATA or RET-
CODE NOT ENABLED.

See also:

com.rti.dds.topic.example.FooDataReader.read next instance
ResourceLimitsQosPolicy.LENGTH UNLIMITED (p. 102)

8.101.3.8 void take instance w condition (FooSeq received data,
SampleInfoSeq info seq, int max samples,
InstanceHandle t previous handle, ReadCondition
condition)

Accesses via com.rti.dds.topic.example.FooDataReader.take -
instance the samples that match the criteria specified in the
com.rti.dds.subscription.ReadCondition (p. 1326).

This operation accesses a collection of data values from the
com.rti.dds.subscription.DataReader (p. 473) and ’removes’ them
from the com.rti.dds.subscription.DataReader (p. 473). The behav-
ior is identical to com.rti.dds.topic.example.FooDataReader.take instance,
except that all returned samples satisfy the specified condition. In other
words, on success, all returned samples belong to belong the single
specified instance whose handle is a handle, and for which the specified
com.rti.dds.subscription.ReadCondition (p. 1326) evaluates to TRUE.

The operation has the same behavior as
com.rti.dds.topic.example.FooDataReader.read instance w condition, except
that the samples are ’taken’ from the com.rti.dds.subscription.DataReader
(p. 473) such that they are no longer accessible via subsequent ’read’ or ’take’
operations.

The behavior of the com.rti.dds.topic.example.FooDataReader.take -
instance w condition operation follows the same rules as the

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.101 FooDataReader Interface Reference 1009

com.rti.dds.topic.example.FooDataReader.read operation regarding the
pre-conditions and post-conditions for the received data and sample -
info. Similar to the com.rti.dds.topic.example.FooDataReader.read, the
com.rti.dds.topic.example.FooDataReader.take instance w condition operation
may ’loan’ elements to the output collections, which must then be returned by
means of com.rti.dds.topic.example.FooDataReader.return loan.

Similar to the com.rti.dds.topic.example.FooDataReader.read, this operation
must be provided on the specialized class that is generated for the particular
application data-type that is being taken.

If the com.rti.dds.subscription.DataReader (p. 473) has no samples that
meet the constraints, the method will fail with RETCODE NO DATA.

Parameters:

received data <<inout>> (p. 271) user data type-specific
com.rti.dds.util.Sequence (p. 1432) object where the received
data samples will be returned. Must be a valid non-NULL FooSeq.
The method will fail with RETCODE BAD PARAMETER if it is
NULL.

info seq <<inout>> (p. 271) a com.rti.dds.subscription.SampleInfoSeq
(p. 1414) object where the received sample info will be returned. Must
be a valid non-NULL com.rti.dds.subscription.SampleInfoSeq
(p. 1414). The method will fail with RETCODE BAD PARAMETER
if it is NULL.

max samples <<in>> (p. 271) The maximum number of samples
to be returned. If the special value ResourceLimitsQosPol-
icy.LENGTH UNLIMITED (p. 102) is provided, as many samples
will be returned as are available, up to the limits described in the
documentation for com.rti.dds.topic.example.FooDataReader.take().

previous handle <<in>> (p. 271) The ’next smallest’ in-
stance with a value greater than this value that has avail-
able samples will be returned. Must be a valid non-NULL
com.rti.dds.infrastructure.InstanceHandle t (p. 1080). The
method will fail with RETCODE BAD PARAMETER if it is NULL.

condition <<in>> (p. 271) the com.rti.dds.subscription.ReadCondition
(p. 1326) to select samples of interest. Cannot be NULL.

Exceptions:

One of the Standard Return Codes (p. 104), RETCODE -
PRECONDITION NOT MET, or RETCODE NO DATA, RET-
CODE NOT ENABLED.

See also:

com.rti.dds.topic.example.FooDataReader.take next instance

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1010 Class Documentation

ResourceLimitsQosPolicy.LENGTH UNLIMITED (p. 102)

8.101.3.9 void read next instance (FooSeq received data,
SampleInfoSeq info seq, int max samples,
InstanceHandle t previous handle, int sample states, int
view states, int instance states)

Access a collection of data samples from the
com.rti.dds.subscription.DataReader (p. 473).

This operation accesses a collection of data values from the
com.rti.dds.subscription.DataReader (p. 473) where all the sam-
ples belong to a single instance. The behavior is similar to
com.rti.dds.topic.example.FooDataReader.read instance, except that the
actual instance is not directly specified. Rather, the samples will all belong
to the ’next’ instance with instance handle ’greater’ than the specified
’previous handle’ that has available samples.

This operation implies the existence of a total order ’greater-than’ relation-
ship between the instance handles. The specifics of this relationship are not
all important and are implementation specific. The important thing is that,
according to the middleware, all instances are ordered relative to each other.
This ordering is between the instance handles; It should not depend on the
state of the instance (e.g. whether it has data or not) and must be defined even
for instance handles that do not correspond to instances currently managed by
the com.rti.dds.subscription.DataReader (p. 473). For the purposes of the
ordering, it should be ’as if’ each instance handle was represented as unique
integer.

The behavior of com.rti.dds.topic.example.FooDataReader.read next instance
is ’as if’ the com.rti.dds.subscription.DataReader (p. 473) invoked
com.rti.dds.topic.example.FooDataReader.read instance, passing the smallest
instance handle among all the ones that: (a) are greater than previous -
handle, and (b) have available samples (i.e. samples that meet the constraints
imposed by the specified states).

The special value InstanceHandle t.HANDLE NIL (p. 1082) is guaranteed
to be ’less than’ any valid instance handle. So the use of the parameter
value previous handle == InstanceHandle t.HANDLE NIL (p. 1082) will
return the samples for the instance which has the smallest instance handle
among all the instances that contain available samples.

The operation com.rti.dds.topic.example.FooDataReader.read next instance is
intended to be used in an application-driven iteration, where the applica-
tion starts by passing previous handle == InstanceHandle t.HANDLE -
NIL (p. 1082), examines the samples returned, and then uses the instance -
handle returned in the com.rti.dds.subscription.SampleInfo (p. 1404)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.101 FooDataReader Interface Reference 1011

as the value of the previous handle argument to the next call to
com.rti.dds.topic.example.FooDataReader.read next instance. The iteration
continues until com.rti.dds.topic.example.FooDataReader.read next instance
fails with the value RETCODE NO DATA.

Note that it is possible to call the com.rti.dds.topic.example.FooDataReader.read -
next instance operation with a previous handle that does not correspond to an
instance currently managed by the com.rti.dds.subscription.DataReader
(p. 473). This is because as stated earlier the ’greater-than’
relationship is defined even for handles not managed by the
com.rti.dds.subscription.DataReader (p. 473). One practical situa-
tion where this may occur is when an application is iterating though all the
instances, takes all the samples of a InstanceStateKind.NOT ALIVE -
NO WRITERS INSTANCE STATE (p. 1088) instance, returns the loan
(at which point the instance information may be removed, and thus the handle
becomes invalid), and tries to read the next instance.

The behavior of the com.rti.dds.topic.example.FooDataReader.read -
next instance operation follows the same rules as the
com.rti.dds.topic.example.FooDataReader.read operation regarding the
pre-conditions and post-conditions for the received data and sample -
info. Similar to the com.rti.dds.topic.example.FooDataReader.read, the
com.rti.dds.topic.example.FooDataReader.read instance operation may ’loan’
elements to the output collections, which must then be returned by means of
com.rti.dds.topic.example.FooDataReader.return loan.

Similar to the com.rti.dds.topic.example.FooDataReader.read, this operation
must be provided on the specialized class that is generated for the particular
application data-type that is being taken.

If the com.rti.dds.subscription.DataReader (p. 473) has no samples that
meet the constraints, the method will fail with RETCODE NO DATA.

Parameters:

received data <<inout>> (p. 271) user data type-specific
com.rti.dds.util.Sequence (p. 1432) object where the received
data samples will be returned. Must be a valid non-NULL FooSeq.
The method will fail with RETCODE BAD PARAMETER if it is
NULL.

info seq <<inout>> (p. 271) a com.rti.dds.subscription.SampleInfoSeq
(p. 1414) object where the received sample info will be returned. Must
be a valid non-NULL com.rti.dds.subscription.SampleInfoSeq
(p. 1414). The method will fail with RETCODE BAD PARAMETER
if it is NULL.

max samples <<in>> (p. 271) The maximum number of samples
to be returned. If the special value ResourceLimitsQosPol-
icy.LENGTH UNLIMITED (p. 102) is provided, as many samples

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1012 Class Documentation

will be returned as are available, up to the limits described in the
documentation for com.rti.dds.topic.example.FooDataReader.take().

previous handle <<in>> (p. 271) The ’next smallest’ in-
stance with a value greater than this value that has avail-
able samples will be returned. Must be a valid non-NULL
com.rti.dds.infrastructure.InstanceHandle t (p. 1080). The
method will fail with RETCODE BAD PARAMETER if it is NULL.

sample states <<in>> (p. 271) data samples matching ones of these
sample states are returned

view states <<in>> (p. 271) data samples matching ones of these
view state are returned

instance states <<in>> (p. 271) data samples matching ones of these
instance state are returned

Exceptions:

One of the Standard Return Codes (p. 104), RETCODE -
PRECONDITION NOT MET RETCODE NO DATA or RET-
CODE NOT ENABLED.

See also:

com.rti.dds.topic.example.FooDataReader.read
ResourceLimitsQosPolicy.LENGTH UNLIMITED (p. 102)

8.101.3.10 void take next instance (FooSeq received data,
SampleInfoSeq info seq, int max samples,
InstanceHandle t previous handle, int sample states,
int view states, int instance states)

Access a collection of data samples from the
com.rti.dds.subscription.DataReader (p. 473).

This operation accesses a collection of data values from the
com.rti.dds.subscription.DataReader (p. 473) and ’removes’ them from
the com.rti.dds.subscription.DataReader (p. 473).

This operation has the same behavior as
com.rti.dds.topic.example.FooDataReader.read next instance, except that
the samples are ’taken’ from the com.rti.dds.subscription.DataReader
(p. 473) such that they are no longer accessible via subsequent ’read’ or ’take’
operations.

Similar to the operation com.rti.dds.topic.example.FooDataReader.read next -
instance, it is possible to call com.rti.dds.topic.example.FooDataReader.take -
next instance with a previous handle that does not correspond to an instance
currently managed by the com.rti.dds.subscription.DataReader (p. 473).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.101 FooDataReader Interface Reference 1013

The behavior of the com.rti.dds.topic.example.FooDataReader.take -
next instance operation follows the same rules as the
com.rti.dds.topic.example.FooDataReader.read operation regarding the
pre-conditions and post-conditions for the received data and sample -
info. Similar to the com.rti.dds.topic.example.FooDataReader.read, the
com.rti.dds.topic.example.FooDataReader.take next instance operation may
’loan’ elements to the output collections, which must then be returned by
means of com.rti.dds.topic.example.FooDataReader.return loan.

Similar to the com.rti.dds.topic.example.FooDataReader.read, this operation
must be provided on the specialized class that is generated for the particular
application data-type that is being taken.

If the com.rti.dds.subscription.DataReader (p. 473) has no samples that
meet the constraints, the method will fail with RETCODE NO DATA.

Parameters:

received data <<inout>> (p. 271) user data type-specific
com.rti.dds.util.Sequence (p. 1432) object where the received
data samples will be returned. Must be a valid non-NULL FooSeq.
The method will fail with RETCODE BAD PARAMETER if it is
NULL.

info seq <<inout>> (p. 271) a com.rti.dds.subscription.SampleInfoSeq
(p. 1414) object where the received sample info will be returned. Must
be a valid non-NULL com.rti.dds.subscription.SampleInfoSeq
(p. 1414). The method will fail with RETCODE BAD PARAMETER
if it is NULL.

max samples <<in>> (p. 271) The maximum number of samples
to be returned. If the special value ResourceLimitsQosPol-
icy.LENGTH UNLIMITED (p. 102) is provided, as many samples
will be returned as are available, up to the limits described in the
documentation for com.rti.dds.topic.example.FooDataReader.take().

previous handle <<in>> (p. 271) The ’next smallest’ in-
stance with a value greater than this value that has avail-
able samples will be returned. Must be a valid non-NULL
com.rti.dds.infrastructure.InstanceHandle t (p. 1080). The
method will fail with RETCODE BAD PARAMETER if it is NULL.

sample states <<in>> (p. 271) data samples matching ones of these
sample states are returned

view states <<in>> (p. 271) data samples matching ones of these
view state are returned

instance states <<in>> (p. 271) data samples matching ones of these
instance state are returned

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1014 Class Documentation

Exceptions:

One of the Standard Return Codes (p. 104), RETCODE -
PRECONDITION NOT MET, RETCODE NO DATA or RET-
CODE NOT ENABLED.

See also:

com.rti.dds.topic.example.FooDataReader.take
ResourceLimitsQosPolicy.LENGTH UNLIMITED (p. 102)

8.101.3.11 void read next instance w condition (FooSeq
received data, SampleInfoSeq info seq, int
max samples, InstanceHandle t previous handle,
ReadCondition condition)

Accesses via com.rti.dds.topic.example.FooDataReader.read next -
instance the samples that match the criteria specified in the
com.rti.dds.subscription.ReadCondition (p. 1326).

This operation accesses a collection of data values from the
com.rti.dds.subscription.DataReader (p. 473). The behavior is iden-
tical to com.rti.dds.topic.example.FooDataReader.read next instance, except
that all returned samples satisfy the specified condition. In other words, on
success, all returned samples belong to the same instance, and the instance is
the instance with ’smallest’ instance handle among the ones that verify: (a)
instance handle >= previous handle, and (b) have samples for which the
specified com.rti.dds.subscription.ReadCondition (p. 1326) evaluates to
TRUE.

Similar to the operation com.rti.dds.topic.example.FooDataReader.read next -
instance, it is possible to call com.rti.dds.topic.example.FooDataReader.read -
next instance w condition with a previous handle that does
not correspond to an instance currently managed by the
com.rti.dds.subscription.DataReader (p. 473).

The behavior of the com.rti.dds.topic.example.FooDataReader.read -
next instance w condition operation follows the same rules as the
com.rti.dds.topic.example.FooDataReader.read operation regarding the
pre-conditions and post-conditions for the received data and sample -
info. Similar to the com.rti.dds.topic.example.FooDataReader.read, the
com.rti.dds.topic.example.FooDataReader.read next instance w condition op-
eration may ’loan’ elements to the output collections, which must then be
returned by means of com.rti.dds.topic.example.FooDataReader.return loan.

Similar to the com.rti.dds.topic.example.FooDataReader.read, this operation
must be provided on the specialized class that is generated for the particular
application data-type that is being taken.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.101 FooDataReader Interface Reference 1015

If the com.rti.dds.subscription.DataReader (p. 473) has no samples that
meet the constraints, the method will fail with RETCODE NO DATA.

Parameters:

received data <<inout>> (p. 271) user data type-specific
com.rti.dds.util.Sequence (p. 1432) object where the received
data samples will be returned. Must be a valid non-NULL FooSeq.
The method will fail with RETCODE BAD PARAMETER if it is
NULL.

info seq <<inout>> (p. 271) a com.rti.dds.subscription.SampleInfoSeq
(p. 1414) object where the received sample info will be returned. Must
be a valid non-NULL com.rti.dds.subscription.SampleInfoSeq
(p. 1414). The method will fail with RETCODE BAD PARAMETER
if it is NULL.

max samples <<in>> (p. 271) The maximum number of samples
to be returned. If the special value ResourceLimitsQosPol-
icy.LENGTH UNLIMITED (p. 102) is provided, as many samples
will be returned as are available, up to the limits described in the
documentation for com.rti.dds.topic.example.FooDataReader.take().

previous handle <<in>> (p. 271) The ’next smallest’ in-
stance with a value greater than this value that has avail-
able samples will be returned. Must be a valid non-NULL
com.rti.dds.infrastructure.InstanceHandle t (p. 1080). The
method will fail with RETCODE BAD PARAMETER if it is NULL.

condition <<in>> (p. 271) the com.rti.dds.subscription.ReadCondition
(p. 1326) to select samples of interest. Cannot be NULL.

Exceptions:

One of the Standard Return Codes (p. 104), RETCODE -
PRECONDITION NOT MET RETCODE NO DATA or RET-
CODE NOT ENABLED.

See also:

com.rti.dds.topic.example.FooDataReader.read next instance
ResourceLimitsQosPolicy.LENGTH UNLIMITED (p. 102)

8.101.3.12 void take next instance w condition (FooSeq
received data, SampleInfoSeq info seq, int
max samples, InstanceHandle t previous handle,
ReadCondition condition)

Accesses via com.rti.dds.topic.example.FooDataReader.take next -
instance the samples that match the criteria specified in the

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1016 Class Documentation

com.rti.dds.subscription.ReadCondition (p. 1326).

This operation accesses a collection of data values from the
com.rti.dds.subscription.DataReader (p. 473) and ’removes’ them from
the com.rti.dds.subscription.DataReader (p. 473).

The operation has the same behavior as
com.rti.dds.topic.example.FooDataReader.read next instance w -
condition, except that the samples are ’taken’ from the
com.rti.dds.subscription.DataReader (p. 473) such that they are no
longer accessible via subsequent ’read’ or ’take’ operations.

Similar to the operation com.rti.dds.topic.example.FooDataReader.read next -
instance, it is possible to call com.rti.dds.topic.example.FooDataReader.take -
next instance w condition with a previous handle that does
not correspond to an instance currently managed by the
com.rti.dds.subscription.DataReader (p. 473).

The behavior of the com.rti.dds.topic.example.FooDataReader.take -
next instance w condition operation follows the same rules as the
com.rti.dds.topic.example.FooDataReader.read operation regarding the
pre-conditions and post-conditions for the received data and sample -
info. Similar to com.rti.dds.topic.example.FooDataReader.read, the
com.rti.dds.topic.example.FooDataReader.take next instance w condition
operation may ’loan’ elements to the output collections, which must then be
returned by means of com.rti.dds.topic.example.FooDataReader.return loan.

Similar to the com.rti.dds.topic.example.FooDataReader.read, this operation
must be provided on the specialized class that is generated for the particular
application data-type that is being taken.

If the com.rti.dds.subscription.DataReader (p. 473) has no samples that
meet the constraints, the method will fail with RETCODE NO DATA.

Parameters:

received data <<inout>> (p. 271) user data type-specific
com.rti.dds.util.Sequence (p. 1432) object where the received
data samples will be returned. Must be a valid non-NULL FooSeq.
The method will fail with RETCODE BAD PARAMETER if it is
NULL.

info seq <<inout>> (p. 271) a com.rti.dds.subscription.SampleInfoSeq
(p. 1414) object where the received sample info will be returned. Must
be a valid non-NULL com.rti.dds.subscription.SampleInfoSeq
(p. 1414). The method will fail with RETCODE BAD PARAMETER
if it is NULL.

max samples <<in>> (p. 271) The maximum number of samples
to be returned. If the special value ResourceLimitsQosPol-
icy.LENGTH UNLIMITED (p. 102) is provided, as many samples

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.101 FooDataReader Interface Reference 1017

will be returned as are available, up to the limits described in the
documentation for com.rti.dds.topic.example.FooDataReader.take().

previous handle <<in>> (p. 271) The ’next smallest’ in-
stance with a value greater than this value that has avail-
able samples will be returned. Must be a valid non-NULL
com.rti.dds.infrastructure.InstanceHandle t (p. 1080). The
method will fail with RETCODE BAD PARAMETER if it is NULL.

condition <<in>> (p. 271) the com.rti.dds.subscription.ReadCondition
(p. 1326) to select samples of interest. Cannot be NULL.

Exceptions:

One of the Standard Return Codes (p. 104), RETCODE -
PRECONDITION NOT MET, or RETCODE NO DATA, RET-
CODE NOT ENABLED.

See also:

com.rti.dds.topic.example.FooDataReader.take next instance
ResourceLimitsQosPolicy.LENGTH UNLIMITED (p. 102)

8.101.3.13 void return loan (FooSeq received data, SampleInfoSeq
info seq)

Indicates to the com.rti.dds.subscription.DataReader (p. 473) that
the application is done accessing the collection of received data and
info seq obtained by some earlier invocation of read or take on the
com.rti.dds.subscription.DataReader (p. 473).

This operation indicates to the com.rti.dds.subscription.DataReader
(p. 473) that the application is done accessing the collection of received -
data and info seq obtained by some earlier invocation of read or take on the
com.rti.dds.subscription.DataReader (p. 473).

The received data and info seq must belong to a single related ”pair”; that
is, they should correspond to a pair returned from a single call to read or take.
The received data and info seq must also have been obtained from the same
com.rti.dds.subscription.DataReader (p. 473) to which they are returned.
If either of these conditions is not met, the operation will fail with RETCODE -
PRECONDITION NOT MET.

The operation com.rti.dds.topic.example.FooDataReader.return loan allows im-
plementations of the read and take operations to ”loan” buffers from the
com.rti.dds.subscription.DataReader (p. 473) to the application and in
this manner provide ”zerocopy” access to the data. During the loan, the
com.rti.dds.subscription.DataReader (p. 473) will guarantee that the data
and sample-information are not modified.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1018 Class Documentation

It is not necessary for an application to return the loans immediately after the
read or take calls. However, as these buffers correspond to internal resources
inside the com.rti.dds.subscription.DataReader (p. 473), the application
should not retain them indefinitely.

The use of com.rti.dds.topic.example.FooDataReader.return loan is only neces-
sary if the read or take calls ”loaned” buffers to the application. This only
occurs if the received data and info Seq collections had max len=0 at the
time read or take was called.

If the collections had a loan, upon completion of
com.rti.dds.topic.example.FooDataReader.return loan, the collections will
have max len=0.

Similar to read, this operation must be provided on the specialized class that is
generated for the particular application data-type that is being taken.

Parameters:

received data <<in>> (p. 271) user data type-specific
com.rti.dds.util.Sequence (p. 1432) object where the received
data samples was obtained from earlier invocation of read or take
on the com.rti.dds.subscription.DataReader (p. 473). Must be
a valid non-NULL FooSeq. The method will fail with RETCODE -
BAD PARAMETER if it is NULL.

Parameters:

info seq <<in>> (p. 271) a com.rti.dds.subscription.SampleInfoSeq
(p. 1414) object where the received sample info was ob-
tained from earlier invocation of read or take on the
com.rti.dds.subscription.DataReader (p. 473). Must be a valid
non-NULL com.rti.dds.subscription.SampleInfoSeq (p. 1414).
The method will fail with RETCODE BAD PARAMETER if it is
NULL.

Exceptions:

One of the Standard Return Codes (p. 104), RETCODE -
PRECONDITION NOT MET or RETCODE NOT ENABLED.

8.101.3.14 void get key value (Foo key holder, InstanceHandle t
handle)

Retrieve the instance key that corresponds to an instance handle.

Useful for keyed data types.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.101 FooDataReader Interface Reference 1019

The operation will only fill the fields that form the key inside the key holder
instance.

For keyed data types, this operation may fail with RETCODE BAD -
PARAMETER if the handle does not correspond to an existing data-object
known to the com.rti.dds.subscription.DataReader (p. 473).

Parameters:

key holder <<inout>> (p. 271) a user data type specific key holder,
whose key fields are filled by this operation. If Foo has no key, this
method has no effect. This method will fail with RETCODE BAD -
PARAMETER if key holder is NULL.

handle <<in>> (p. 271) the instance whose key is to be retrieved.
If Foo has a key, handle must represent an existing instance of
type Foo known to the com.rti.dds.subscription.DataReader
(p. 473). Otherwise, this method will fail with RETCODE BAD -
PARAMETER. If Foo has a key and handle is InstanceHandle -
t.HANDLE NIL (p. 1082), this method will fail with RETCODE -
BAD PARAMETER. If Foo has a key and handle represents an in-
stance of another type or an instance of type Foo that has been unreg-
istered, this method will fail with RETCODE BAD PARAMETER.
If Foo has no key, this method has no effect. This method will fail
with RETCODE BAD PARAMETER if handle is NULL.

Exceptions:

One of the Standard Return Codes (p. 104) or RETCODE NOT -
ENABLED.

See also:

com.rti.dds.topic.example.FooDataWriter.get key value

8.101.3.15 InstanceHandle t lookup instance (Foo key holder)

Retrieves the instance handle that corresponds to an instance key holder.

Useful for keyed data types.

This operation takes as a parameter an instance and returns a handle that can
be used in subsequent operations that accept an instance handle as an argument.
The instance parameter is only used for the purpose of examining the fields that
define the key. This operation does not register the instance in question. If the
instance has not been previously registered, or if for any other reason the Service
is unable to provide an instance handle, the Service will return the special value
HANDLE NIL.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1020 Class Documentation

Parameters:

key holder <<in>> (p. 271) a user data type specific key holder.

Returns:

the instance handle associated with this instance. If Foo has no key,
this method has no effect and returns InstanceHandle t.HANDLE -
NIL (p. 1082)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.102 FooDataWriter Class Reference 1021

8.102 FooDataWriter Class Reference

<<interface>> (p. 271) <<generic>> (p. 271) User data type specific data
writer.

Inheritance diagram for FooDataWriter::

Public Member Functions

ˆ InstanceHandle t register instance (Foo instance data)

Informs RTI Connext that the application will be modifying a particular in-
stance.

ˆ InstanceHandle t register instance w timestamp (Foo instance -
data, Time t source timestamp)

Performs the same functions as register instance except that the application
provides the value for the source timestamp.

ˆ InstanceHandle t register instance w params (Foo instance data,
WriteParams t params)

Performs the same function as com.rti.dds.topic.example.FooDataWriter.register -
instance and com.rti.dds.topic.example.FooDataWriter.register instance w -
timestamp except that it also provides the values contained in params.

ˆ void unregister instance (Foo instance data, InstanceHandle t han-
dle)

Reverses the action of com.rti.dds.topic.example.FooDataWriter.register -
instance.

ˆ void unregister instance w timestamp (Foo instance data, In-
stanceHandle t handle, Time t source timestamp)

Performs the same function as com.rti.dds.topic.example.FooDataWriter.unregister -
instance except that it also provides the value for the source timestamp.

ˆ void unregister instance w params (Foo instance data,
WriteParams t params)

Performs the same function as com.rti.dds.topic.example.FooDataWriter.unregister -
instance and FooDataWriter.unregister instance w timestamp
(p. 1028) except that it also provides the values contained in params.

ˆ void write (Foo instance data, InstanceHandle t handle)

Modifies the value of a data instance.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1022 Class Documentation

ˆ void write w timestamp (Foo instance data, InstanceHandle t han-
dle, Time t source timestamp)

Performs the same function as com.rti.dds.topic.example.FooDataWriter.write
except that it also provides the value for the source timestamp.

ˆ void write w params (Foo instance data, WriteParams t params)
Performs the same function as com.rti.dds.topic.example.FooDataWriter.write
and com.rti.dds.topic.example.FooDataWriter.write w timestamp except that
it also provides the values contained in params.

ˆ void dispose (Foo instance data, InstanceHandle t instance handle)
Requests the middleware to delete the data.

ˆ void dispose w timestamp (Foo instance data, InstanceHandle t in-
stance handle, Time t source timestamp)

Performs the same functions as dispose except that the applica-
tion provides the value for the source timestamp that is made
available to com.rti.dds.subscription.DataReader (p. 473) ob-
jects by means of the source timestamp attribute inside the
com.rti.dds.subscription.SampleInfo (p. 1404).

ˆ void dispose w params (Foo instance data, WriteParams t
params)

Performs the same function as com.rti.dds.topic.example.FooDataWriter.dispose
and com.rti.dds.topic.example.FooDataWriter.dispose w timestamp except
that it also provides the values contained in params.

ˆ void get key value (Foo key holder, InstanceHandle t handle)
Retrieve the instance key that corresponds to an instance handle.

ˆ InstanceHandle t lookup instance (Foo key holder)
Retrieve the instance handle that corresponds to an instance key holder.

8.102.1 Detailed Description

<<interface>> (p. 271) <<generic>> (p. 271) User data type specific data
writer.

Defines the user data type specific writer interface generated for each application
class.

The concrete user data type writer automatically generated by the implemen-
tation is an incarnation of this class.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.102 FooDataWriter Class Reference 1023

See also:

com.rti.dds.publication.DataWriter (p. 538)
Foo (p. 956)
com.rti.dds.topic.example.FooDataReader
rtiddsgen (p. 290)

8.102.2 Member Function Documentation

8.102.2.1 InstanceHandle t register instance (Foo instance data)

Informs RTI Connext that the application will be modifying a particular in-
stance.

This operation is only useful for keyed data types. Using it for non-keyed types
causes no effect and returns InstanceHandle t.HANDLE NIL (p. 1082).
The operation takes as a parameter an instance (of which only the key value is
examined) and returns a handle that can be used in successive write() (p. 1029)
or dispose() (p. 1034) operations.

The operation gives RTI Connext an opportunity to pre-configure itself to im-
prove performance.

The use of this operation by an application is optional even for keyed
types. If an instance has not been pre-registered, the application can
use the special value InstanceHandle t.HANDLE NIL (p. 1082) as the
com.rti.dds.infrastructure.InstanceHandle t (p. 1080) paramater to the
write or dispose operation and RTI Connext will auto-register the instance.

For best performance, the operation should be invoked
prior to calling any operation that modifies the in-
stance, such as com.rti.dds.topic.example.FooDataWriter.write,
com.rti.dds.topic.example.FooDataWriter.write w timestamp,
com.rti.dds.topic.example.FooDataWriter.dispose and
com.rti.dds.topic.example.FooDataWriter.dispose w timestamp and the handle
used in conjunction with the data for those calls.

When this operation is used, RTI Connext will automatically supply the value
of the source timestamp that is used.

This operation may fail and return InstanceHandle t.HANDLE NIL
(p. 1082) if com.rti.dds.infrastructure.ResourceLimitsQosPolicy.max -
instances (p. 1360) limit has been exceeded.

The operation is idempotent. If it is called for an already registered instance,
it just returns the already allocated handle. This may be used to lookup and
retrieve the handle allocated to a given instance.

This operation can only be called after com.rti.dds.publication.DataWriter
(p. 538) has been enabled. Otherwise, InstanceHandle t.HANDLE NIL

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1024 Class Documentation

(p. 1082) will be returned.

Parameters:

instance data <<in>> (p. 271) The instance that should be registered.
Of this instance, only the fields that represent the key are examined
by the function. Cannot be NULL..

Returns:

For keyed data type, a handle that can be used in the calls that take a
com.rti.dds.infrastructure.InstanceHandle t (p. 1080), such as write,
dispose, unregister instance, or return InstanceHandle t.HANDLE -
NIL (p. 1082) on failure. If the instance data is of a data type that has
no keys, this function always return InstanceHandle t.HANDLE NIL
(p. 1082).

See also:

com.rti.dds.topic.example.FooDataWriter.unregister instance,
com.rti.dds.topic.example.FooDataWriter.get key value, RELATION-
SHIP BETWEEN REGISTRATION, LIVELINESS and OWN-
ERSHIP (p. 1218)

8.102.2.2 InstanceHandle t register instance w timestamp (Foo
instance data, Time t source timestamp)

Performs the same functions as register instance except that the application
provides the value for the source timestamp.

The provided source timestamp potentially affects the relative order in which
readers observe events from multiple writers. Refer to DESTINATION -
ORDER (p. 51) QoS policy for details.

This operation may fail and return InstanceHandle t.HANDLE NIL
(p. 1082) if com.rti.dds.infrastructure.ResourceLimitsQosPolicy.max -
instances (p. 1360) limit has been exceeded.

This operation can only be called after com.rti.dds.publication.DataWriter
(p. 538) has been enabled. Otherwise, InstanceHandle t.HANDLE NIL
(p. 1082) will be returned.

Parameters:

instance data <<in>> (p. 271) The instance that should be registered.
Of this instance, only the fields that represent the key are examined
by the function. Cannot be NULL.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.102 FooDataWriter Class Reference 1025

source timestamp <<in>> (p. 271) The timestamp value must be
greater than or equal to the timestamp value used in the last writer
operation (used in a register , unregister , dispose, or write, with ei-
ther the automatically supplied timestamp or the application provided
timestamp). This timestamp may potentially affect the order in which
readers observe events from multiple writers. Cannot be NULL.

Returns:

For keyed data type, return a handle that can be used in the calls that take a
com.rti.dds.infrastructure.InstanceHandle t (p. 1080), such as write,
dispose, unregister instance, or return InstanceHandle t.HANDLE -
NIL (p. 1082) on failure. If the instance data is of a data type that has
no keys, this function always return InstanceHandle t.HANDLE NIL
(p. 1082).

See also:

com.rti.dds.topic.example.FooDataWriter.unregister instance,
com.rti.dds.topic.example.FooDataWriter.get key value

8.102.2.3 InstanceHandle t register instance w params (Foo
instance data, WriteParams t params)

Performs the same function as com.rti.dds.topic.example.FooDataWriter.register -
instance and com.rti.dds.topic.example.FooDataWriter.register instance w -
timestamp except that it also provides the values contained in params.

8.102.2.4 void unregister instance (Foo instance data,
InstanceHandle t handle)

Reverses the action of com.rti.dds.topic.example.FooDataWriter.register -
instance.

This operation is useful only for keyed data types. Using it for non-keyed types
causes no effect and reports no error. The operation takes as a parameter an
instance (of which only the key value is examined) and a handle.

This operation should only be called on an instance that is cur-
rently registered. This includes instances that have been auto-
registered by calling operations such as write or dispose as described in
com.rti.dds.topic.example.FooDataWriter.register instance. Otherwise, this op-
eration may fail with RETCODE BAD PARAMETER.

This only need be called just once per instance, regardless of how many times
register instance was called for that instance.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1026 Class Documentation

When this operation is used, RTI Connext will automatically supply the value
of the source timestamp that is used.

This operation informs RTI Connext that the
com.rti.dds.publication.DataWriter (p. 538) is no longer going to provide
any information about the instance. This operation also indicates that RTI
Connext can locally remove all information regarding that instance. The
application should not attempt to use the handle previously allocated to that
instance after calling com.rti.dds.topic.example.FooDataWriter.unregister -
instance().

The special value InstanceHandle t.HANDLE NIL (p. 1082) can be used
for the parameter handle. This indicates that the identity of the instance should
be automatically deduced from the instance data (by means of the key).

If handle is any value other than InstanceHandle t.HANDLE NIL
(p. 1082), then it must correspond to an instance that has been registered.
If there is no correspondence, the operation will fail with RETCODE BAD -
PARAMETER.

RTI Connext will not detect the error when the handle is any value other than
InstanceHandle t.HANDLE NIL (p. 1082), corresponds to an instance that
has been registered, but does not correspond to the instance deduced from
the instance data (by means of the key). RTI Connext will treat as if the
unregister instance() (p. 1025) operation is for the instance as indicated by
the handle.

If after a com.rti.dds.topic.example.FooDataWriter.unregister instance, the ap-
plication wants to modify (com.rti.dds.topic.example.FooDataWriter.write or
com.rti.dds.topic.example.FooDataWriter.dispose) an instance, it has to register
it again, or else use the special handle value InstanceHandle t.HANDLE -
NIL (p. 1082).

This operation does not indicate that the instance is deleted (that is the
purpose of com.rti.dds.topic.example.FooDataWriter.dispose). The operation
com.rti.dds.topic.example.FooDataWriter.unregister instance just indicates
that the com.rti.dds.publication.DataWriter (p. 538) no longer has any-
thing to say about the instance. com.rti.dds.subscription.DataReader
(p. 473) entities that are reading the instance may receive a sam-
ple with InstanceStateKind.NOT ALIVE NO WRITERS -
INSTANCE STATE (p. 1088) for the instance, unless there are other
com.rti.dds.publication.DataWriter (p. 538) objects writing that same
instance.

This operation can affect the ownership of the data instance (see OWNER-
SHIP (p. 83)). If the com.rti.dds.publication.DataWriter (p. 538) was the
exclusive owner of the instance, then calling unregister instance() (p. 1025)
will relinquish that ownership.

If com.rti.dds.infrastructure.ReliabilityQosPolicy.kind (p. 1339)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.102 FooDataWriter Class Reference 1027

is set to ReliabilityQosPolicyKind.RELIABLE RELIABILITY -
QOS and the unregistration would overflow the resource limits of
this writer or of a reader, this operation may block for up to
com.rti.dds.infrastructure.ReliabilityQosPolicy.max blocking time
(p. 1339); if this writer is still unable to unregister after that period, this
method will fail with RETCODE TIMEOUT.

Parameters:

instance data <<in>> (p. 271) The instance that should be unregis-
tered. If Foo (p. 956) has a key and instance handle is Instance-
Handle t.HANDLE NIL (p. 1082), only the fields that represent
the key are examined by the function. Otherwise, instance data is
not used. If instance data is used, it must represent an instance that
has been registerd. Otherwise, this method may fail with RETCODE -
BAD PARAMETER . If Foo (p. 956) has a key, instance data can
be NULL only if handle is not InstanceHandle t.HANDLE NIL
(p. 1082). Otherwise, this method will fail with RETCODE BAD -
PARAMETER.

handle <<in>> (p. 271) represents the instance to be unregistered.
If Foo (p. 956) has a key and handle is InstanceHandle -
t.HANDLE NIL (p. 1082), handle is not used and instance is
deduced from instance data. If Foo (p. 956) has no key, handle
is not used. If handle is used, it must represent an instance that
has been registered. Otherwise, this method may fail with RET-
CODE BAD PARAMETER. This method will fail with RETCODE -
BAD PARAMETER if handle is NULL. If Foo (p. 956) has a key,
handle cannot be InstanceHandle t.HANDLE NIL (p. 1082) if
instance data is NULL. Otherwise, this method will report the error
RETCODE BAD PARAMETER.

Exceptions:

One of the Standard Return Codes (p. 104), RETCODE TIMEOUT
or RETCODE NOT ENABLED

See also:

com.rti.dds.topic.example.FooDataWriter.register instance
FooDataWriter.unregister instance w timestamp (p. 1028)
com.rti.dds.topic.example.FooDataWriter.get key value
RELATIONSHIP BETWEEN REGISTRATION, LIVELINESS
and OWNERSHIP (p. 1218)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1028 Class Documentation

8.102.2.5 void unregister instance w timestamp (Foo instance data,
InstanceHandle t handle, Time t source timestamp)

Performs the same function as com.rti.dds.topic.example.FooDataWriter.unregister -
instance except that it also provides the value for the source timestamp.

The provided source timestamp potentially affects the relative order in which
readers observe events from multiple writers. Refer to DESTINATION -
ORDER (p. 51) QoS policy for details.

The constraints on the values of the handle parameter and
the corresponding error behavior are the same specified for the
com.rti.dds.topic.example.FooDataWriter.unregister instance operation.

This operation may block and may time out (RETCODE TIMEOUT) under
the same circumtances described for the unregister instance operation.

Parameters:

instance data <<in>> (p. 271) The instance that should be unregis-
tered. If Foo (p. 956) has a key and instance handle is Instance-
Handle t.HANDLE NIL (p. 1082), only the fields that represent
the key are examined by the function. Otherwise, instance data is
not used. If instance data is used, it must represent an instance that
has been registerd. Otherwise, this method may fail with RETCODE -
BAD PARAMETER. If Foo (p. 956) has a key, instance data can
be NULL only if handle is not InstanceHandle t.HANDLE NIL
(p. 1082). Otherwise, this method will fail with RETCODE BAD -
PARAMETER.

handle <<in>> (p. 271) represents the instance to be unregistered.
If Foo (p. 956) has a key and handle is InstanceHandle -
t.HANDLE NIL (p. 1082), handle is not used and instance is
deduced from instance data. If Foo (p. 956) has no key, handle
is not used. If handle is used, it must represent an instance that
has been registered. Otherwise, this method may fail with RET-
CODE BAD PARAMETER. This method will fail with RETCODE -
BAD PARAMETER if handle is NULL. If Foo (p. 956) has a key,
handle cannot be InstanceHandle t.HANDLE NIL (p. 1082) if
instance data is NULL. Otherwise, this method will fail with RET-
CODE BAD PARAMETER.

source timestamp <<in>> (p. 271) The timestamp value must be
greater than or equal to the timestamp value used in the last writer
operation (used in a register , unregister , dispose, or write, with ei-
ther the automatically supplied timestamp or the application provided
timestamp). This timestamp may potentially affect the order in which
readers observe events from multiple writers. Cannot be NULL.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.102 FooDataWriter Class Reference 1029

Exceptions:

One of the Standard Return Codes (p. 104), RETCODE TIMEOUT
or RETCODE NOT ENABLED.

See also:

com.rti.dds.topic.example.FooDataWriter.register instance
com.rti.dds.topic.example.FooDataWriter.unregister instance
com.rti.dds.topic.example.FooDataWriter.get key value

8.102.2.6 void unregister instance w params (Foo instance data,
WriteParams t params)

Performs the same function as com.rti.dds.topic.example.FooDataWriter.unregister -
instance and FooDataWriter.unregister instance w timestamp (p. 1028)
except that it also provides the values contained in params.

8.102.2.7 void write (Foo instance data, InstanceHandle t handle)

Modifies the value of a data instance.

When this operation is used, RTI Connext will automatically
supply the value of the source timestamp that is made avail-
able to com.rti.dds.subscription.DataReader (p. 473) ob-
jects by means of the source timestamp attribute inside the
com.rti.dds.subscription.SampleInfo (p. 1404). (Refer to
com.rti.dds.subscription.SampleInfo (p. 1404) and DESTINATION -
ORDER (p. 51) QoS policy for details).

As a side effect, this operation asserts liveliness on
the com.rti.dds.publication.DataWriter (p. 538) itself,
the com.rti.dds.publication.Publisher (p. 1277) and the
com.rti.dds.domain.DomainParticipant (p. 629).

Note that the special value InstanceHandle t.HANDLE NIL (p. 1082) can
be used for the parameter handle. This indicates the identity of the instance
should be automatically deduced from the instance data (by means of the
key).

If handle is any value other than InstanceHandle t.HANDLE NIL
(p. 1082), then it must correspond to an instance that has been registered.
If there is no correspondence, the operation will fail with RETCODE BAD -
PARAMETER.

RTI Connext will not detect the error when the handle is any value other than
InstanceHandle t.HANDLE NIL (p. 1082), corresponds to an instance that
has been registered, but does not correspond to the instance deduced from the

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1030 Class Documentation

instance data (by means of the key). RTI Connext will treat as if the write()
(p. 1029) operation is for the instance as indicated by the handle.

This operation may block if the RELIABILITY (p. 101) kind is set to Re-
liabilityQosPolicyKind.RELIABLE RELIABILITY QOS and the modification
would cause data to be lost or else cause one of the limits specified in the
RESOURCE LIMITS (p. 102) to be exceeded.

Specifically, this operation may block in the following situa-
tions (note that the list may not be exhaustive), even if its
com.rti.dds.infrastructure.HistoryQosPolicyKind (p. 1075) is Histo-
ryQosPolicyKind.KEEP LAST HISTORY QOS:

ˆ If (com.rti.dds.infrastructure.ResourceLimitsQosPolicy.max -
samples (p. 1359) < com.rti.dds.infrastructure.ResourceLimitsQosPolicy.max -
instances (p. 1360) ∗ com.rti.dds.infrastructure.HistoryQosPolicy.depth
(p. 1074)), then in the situation where the max samples resource limit
is exhausted, RTI Connext is allowed to discard samples of some other
instance, as long as at least one sample remains for such an instance. If
it is still not possible to make space available to store the modification,
the writer is allowed to block.

ˆ If (com.rti.dds.infrastructure.ResourceLimitsQosPolicy.max -
samples (p. 1359) < com.rti.dds.infrastructure.ResourceLimitsQosPolicy.max -
instances (p. 1360)), then the DataWriter may block regardless of the
com.rti.dds.infrastructure.HistoryQosPolicy.depth (p. 1074).

ˆ If (com.rti.dds.infrastructure.RtpsReliableWriterProtocol -
t.min send window size (p. 1389) < com.rti.dds.infrastructure.ResourceLimitsQosPolicy.max -
samples (p. 1359)), then it is possible for the send window size limit to
be reached before RTI Connext is allowed to discard samples, in which
case the com.rti.dds.publication.DataWriter (p. 538) will block.

This operation may also block when using ReliabilityQosPoli-
cyKind.BEST EFFORT RELIABILITY QOS and PublishModeQosPol-
icyKind.ASYNCHRONOUS PUBLISH MODE QOS. In this case,
the com.rti.dds.publication.DataWriter (p. 538) will queue sam-
ples until they are sent by the asynchronous publishing thread.
The number of samples that can be stored is determined by the
com.rti.dds.infrastructure.HistoryQosPolicy (p. 1071). If the asyn-
chronous thread does not send samples fast enough (e.g., when using a slow
com.rti.dds.publication.FlowController (p. 942)), the queue may fill up.
In that case, subsequent write calls will block.

If this operation does block for any of the above reasons, the RELIABIL-
ITY (p. 101) max blocking time configures the maximum time the write oper-
ation may block (waiting for space to become available). If max blocking time
elapses before the com.rti.dds.publication.DataWriter (p. 538) is able to

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.102 FooDataWriter Class Reference 1031

store the modification without exceeding the limits, the operation will time out
(RETCODE TIMEOUT).

If there are no instance resources left, this operation
may fail with RETCODE OUT OF RESOURCES. Calling
com.rti.dds.topic.example.FooDataWriter.unregister instance may help freeing
up some resources.

This operation will fail with RETCODE PRECONDITION NOT MET if the
timestamp is less than the timestamp used in the last writer operation (register ,
unregister , dispose, or write, with either the automatically supplied timestamp
or the application-provided timestamp).

Parameters:

instance data <<in>> (p. 271) The data to write.

This method will fail with RETCODE BAD PARAMETER if instance data
is NULL.

Parameters:

handle <<in>> (p. 271) Either the handle returned by a previous call to
com.rti.dds.topic.example.FooDataWriter.register instance, or else the
special value InstanceHandle t.HANDLE NIL (p. 1082). If Foo
(p. 956) has a key and handle is not InstanceHandle t.HANDLE -
NIL (p. 1082), handle must represent a registered instance of type
Foo (p. 956). Otherwise, this method may fail with RETCODE -
BAD PARAMETER. This method will fail with RETCODE BAD -
PARAMETER if handle is NULL.

Exceptions:

One of the Standard Return Codes (p. 104), RETCODE TIMEOUT,
RETCODE PRECONDITION NOT MET, RETCODE OUT OF -
RESOURCES, or RETCODE NOT ENABLED.

See also:

com.rti.dds.subscription.DataReader (p. 473)
com.rti.dds.topic.example.FooDataWriter.write w timestamp
DESTINATION ORDER (p. 51)

8.102.2.8 void write w timestamp (Foo instance data,
InstanceHandle t handle, Time t source timestamp)

Performs the same function as com.rti.dds.topic.example.FooDataWriter.write
except that it also provides the value for the source timestamp.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1032 Class Documentation

Explicitly provides the timestamp that will be available
to the com.rti.dds.subscription.DataReader (p. 473) ob-
jects by means of the source timestamp attribute inside the
com.rti.dds.subscription.SampleInfo (p. 1404). (Refer to
com.rti.dds.subscription.SampleInfo (p. 1404) and DESTINATION -
ORDER (p. 51) QoS policy for details)

The constraints on the values of the handle parameter and
the corresponding error behavior are the same specified for the
com.rti.dds.topic.example.FooDataWriter.write operation.

This operation may block and time out (RETCODE -
TIMEOUT) under the same circumtances described for
com.rti.dds.topic.example.FooDataWriter.write.

If there are no instance resources left, this operation
may fail with RETCODE OUT OF RESOURCES. Calling
com.rti.dds.topic.example.FooDataWriter.unregister instance may help free up
some resources.

This operation may fail with RETCODE BAD PARAMETER under the same
circumstances described for the write operation.

Parameters:

instance data <<in>> (p. 271) The data to write. This method will fail
with RETCODE BAD PARAMETER if instance data is NULL.

handle <<in>> (p. 271) Either the handle returned by a previous call to
com.rti.dds.topic.example.FooDataWriter.register instance, or else the
special value InstanceHandle t.HANDLE NIL (p. 1082). If Foo
(p. 956) has a key and handle is not InstanceHandle t.HANDLE -
NIL (p. 1082), handle must represent a registered instance of type
Foo (p. 956). Otherwise, this method may fail with RETCODE -
BAD PARAMETER. This method will fail with RETCODE BAD -
PARAMETER if handle is NULL.

source timestamp <<in>> (p. 271) When using Desti-
nationOrderQosPolicyKind.BY SOURCE TIMESTAMP -
DESTINATIONORDER QOS the timestamp value must be
greater than or equal to the timestamp value used in the last
writer operation (register , unregister , dispose, or write, with
either the automatically supplied timestamp or the application-
provided timestamp) However, if it is less than the timestamp
of the previous operation but the difference is less than the
com.rti.dds.infrastructure.DestinationOrderQosPolicy.source -
timestamp tolerance (p. 609), the timestamp of the pre-
vious operation will be used as the source timestamp of
this sample. Otherwise, if the difference is greater than
com.rti.dds.infrastructure.DestinationOrderQosPolicy.source -

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.102 FooDataWriter Class Reference 1033

timestamp tolerance (p. 609), the function will return RETCODE -
BAD PARAMETER.

Cannot be NULL.

Exceptions:

One of the Standard Return Codes (p. 104), RETCODE TIMEOUT,
RETCODE OUT OF RESOURCES, or RETCODE NOT -
ENABLED.

See also:

com.rti.dds.topic.example.FooDataWriter.write
com.rti.dds.subscription.DataReader (p. 473)
DESTINATION ORDER (p. 51)

8.102.2.9 void write w params (Foo instance data, WriteParams t
params)

Performs the same function as com.rti.dds.topic.example.FooDataWriter.write
and com.rti.dds.topic.example.FooDataWriter.write w timestamp except that it
also provides the values contained in params.

Allows provision of the instance handle, source timestamp, publication priority,
and cookie, in params.

The constraints on the values of the handle parameter and
the corresponding error behavior are the same specified for the
com.rti.dds.topic.example.FooDataWriter.write operation.

The cookie is a sequence of bytes tagging the data being written, and is used to
retrieve the data when it is not available to the writer when needed.

This operation may block and time out (RETCODE -
TIMEOUT) under the same circumtances described for
com.rti.dds.topic.example.FooDataWriter.write.

If there are no instance resources left, this operation
may fail with RETCODE OUT OF RESOURCES. Calling
com.rti.dds.topic.example.FooDataWriter.unregister instance w params may
help free up some resources.

This operation may fail with RETCODE BAD PARAMETER under the same
circumstances described for the write operation.

Parameters:

instance data <<in>> (p. 271) The data to write. This method will fail
with RETCODE BAD PARAMETER if instance data is NULL.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1034 Class Documentation

params <<in>> (p. 271)

The handle is either returned by a previous call to
com.rti.dds.topic.example.FooDataWriter.register instance, or else the special
value InstanceHandle t.HANDLE NIL (p. 1082). If Foo (p. 956) has a
key and handle is not InstanceHandle t.HANDLE NIL (p. 1082), handle
must represent a registered instance of type Foo (p. 956). Otherwise, this
method may fail with RETCODE BAD PARAMETER. This method will fail
with RETCODE BAD PARAMETER if handle is NULL.

The source timestamp value must be greater than or equal to the times-
tamp value used in the last writer operation (used in a register , unregis-
ter , dispose, or write, with either the automatically supplied timestamp or
the application provided timestamp). This timestamp may potentially af-
fect the order in which readers observe events from multiple writers. This
timestamp will be available to the com.rti.dds.subscription.DataReader
(p. 473) objects by means of the source timestamp attribute inside the
com.rti.dds.subscription.SampleInfo (p. 1404).

Exceptions:

One of the Standard Return Codes (p. 104), RETCODE -
TIMEOUT, RETCODE OUT OF RESOURCES or RETCODE -
NOT ENABLED.

See also:

com.rti.dds.topic.example.FooDataWriter.write
com.rti.dds.subscription.DataReader (p. 473)
DESTINATION ORDER (p. 51)

8.102.2.10 void dispose (Foo instance data, InstanceHandle t
instance handle)

Requests the middleware to delete the data.

This operation is useful only for keyed data types. Using it for non-keyed types
has no effect and reports no error.

The actual deletion is postponed until there is no more use for that data in the
whole system.

Applications are made aware of the deletion by means of operations on the
com.rti.dds.subscription.DataReader (p. 473) objects that already knew
that instance. com.rti.dds.subscription.DataReader (p. 473) objects that
didn’t know the instance will never see it.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.102 FooDataWriter Class Reference 1035

This operation does not modify the value of the instance. The instance data
parameter is passed just for the purposes of identifying the instance.

When this operation is used, RTI Connext will automatically
supply the value of the source timestamp that is made avail-
able to com.rti.dds.subscription.DataReader (p. 473) ob-
jects by means of the source timestamp attribute inside the
com.rti.dds.subscription.SampleInfo (p. 1404).

The constraints on the values of the handle parameter and
the corresponding error behavior are the same specified for the
com.rti.dds.topic.example.FooDataWriter.unregister instance operation.

The special value InstanceHandle t.HANDLE NIL (p. 1082) can be used
for the parameter instance handle. This indicates the identity of the instance
should be automatically deduced from the instance data (by means of the
key).

If handle is any value other than InstanceHandle t.HANDLE NIL
(p. 1082), then it must correspond to an instance that has been registered.
If there is no correspondence, the operation will fail with RETCODE BAD -
PARAMETER.

RTI Connext will not detect the error when the handle is any value other than
InstanceHandle t.HANDLE NIL (p. 1082), corresponds to an instance that
has been registered, but does not correspond to the instance deduced from
the instance data (by means of the key). RTI Connext will treat as if the
dispose() (p. 1034) operation is for the instance as indicated by the handle.

This operation may block and time out (RETCODE -
TIMEOUT) under the same circumtances described for
com.rti.dds.topic.example.FooDataWriter.write().

If there are no instance resources left, this operation
may fail with RETCODE OUT OF RESOURCES. Calling
com.rti.dds.topic.example.FooDataWriter.unregister instance may help freeing
up some resources.

Parameters:

instance data <<in>> (p. 271) The data to dispose. If Foo (p. 956)
has a key and instance handle is InstanceHandle t.HANDLE -
NIL (p. 1082), only the fields that represent the key are examined by
the function. Otherwise, instance data is not used. If Foo (p. 956)
has a key, instance data can be NULL only if instance handle is
not InstanceHandle t.HANDLE NIL (p. 1082). Otherwise, this
method will fail with RETCODE BAD PARAMETER.

instance handle <<in>> (p. 271) Either the handle returned by a
previous call to com.rti.dds.topic.example.FooDataWriter.register -
instance, or else the special value InstanceHandle t.HANDLE -

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1036 Class Documentation

NIL (p. 1082). If Foo (p. 956) has a key and instance handle is In-
stanceHandle t.HANDLE NIL (p. 1082), instance handle is not
used and instance is deduced from instance data. If Foo (p. 956)
has no key, instance handle is not used. If handle is used, it must
represent a registered instance of type Foo (p. 956). Otherwise, this
method fail with RETCODE BAD PARAMETER. This method will
fail with RETCODE BAD PARAMETER if handle is NULL. If Foo
(p. 956) has a key, instance handle cannot be InstanceHandle -
t.HANDLE NIL (p. 1082) if instance data is NULL. Otherwise,
this method will fail with RETCODE BAD PARAMETER.

Exceptions:

One of the Standard Return Codes (p. 104), RETCODE -
TIMEOUT, RETCODE OUT OF RESOURCES or RETCODE -
NOT ENABLED.

See also:

com.rti.dds.topic.example.FooDataWriter.dispose w timestamp
RELATIONSHIP BETWEEN REGISTRATION, LIVELINESS
and OWNERSHIP (p. 1218)

8.102.2.11 void dispose w timestamp (Foo instance data,
InstanceHandle t instance handle, Time t
source timestamp)

Performs the same functions as dispose except that the applica-
tion provides the value for the source timestamp that is made
available to com.rti.dds.subscription.DataReader (p. 473) ob-
jects by means of the source timestamp attribute inside the
com.rti.dds.subscription.SampleInfo (p. 1404).

The constraints on the values of the handle parameter and
the corresponding error behavior are the same specified for the
com.rti.dds.topic.example.FooDataWriter.dispose operation.

This operation may block and time out (RETCODE -
TIMEOUT) under the same circumtances described for
com.rti.dds.topic.example.FooDataWriter.write.

If there are no instance resources left, this operation
may fail with RETCODE OUT OF RESOURCES. Calling
com.rti.dds.topic.example.FooDataWriter.unregister instance may help freeing
up some resources.

Parameters:

instance data <<in>> (p. 271) The data to dispose. If Foo (p. 956)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.102 FooDataWriter Class Reference 1037

has a key and instance handle is InstanceHandle t.HANDLE -
NIL (p. 1082), only the fields that represent the key are examined by
the function. Otherwise, instance data is not used. If Foo (p. 956)
has a key, instance data can be NULL only if instance handle is
not InstanceHandle t.HANDLE NIL (p. 1082). Otherwise, this
method will fail with RETCODE BAD PARAMETER.

instance handle <<in>> (p. 271) Either the handle returned by a
previous call to com.rti.dds.topic.example.FooDataWriter.register -
instance, or else the special value InstanceHandle t.HANDLE -
NIL (p. 1082). If Foo (p. 956) has a key and instance handle is In-
stanceHandle t.HANDLE NIL (p. 1082), instance handle is not
used and instance is deduced from instance data. If Foo (p. 956)
has no key, instance handle is not used. If handle is used, it must
represent a registered instance of type Foo (p. 956). Otherwise, this
method may fail with RETCODE BAD PARAMETER This method
will fail with RETCODE BAD PARAMETER if handle is NULL. If
Foo (p. 956) has a key, instance handle cannot be InstanceHan-
dle t.HANDLE NIL (p. 1082) if instance data is NULL. Other-
wise, this method will fail with RETCODE BAD PARAMETER.

source timestamp <<in>> (p. 271) The timestamp value must be
greater than or equal to the timestamp value used in the last writer
operation (used in a register , unregister , dispose, or write, with ei-
ther the automatically supplied timestamp or the application pro-
vided timestamp). This timestamp may potentially affect the order in
which readers observe events from multiple writers. This timestamp
will be available to the com.rti.dds.subscription.DataReader
(p. 473) objects by means of the source timestamp attribute inside
the com.rti.dds.subscription.SampleInfo (p. 1404). Cannot be
NULL.

Exceptions:

One of the Standard Return Codes (p. 104), RETCODE -
TIMEOUT, RETCODE OUT OF RESOURCES or RETCODE -
NOT ENABLED.

See also:

com.rti.dds.topic.example.FooDataWriter.dispose

8.102.2.12 void dispose w params (Foo instance data,
WriteParams t params)

Performs the same function as com.rti.dds.topic.example.FooDataWriter.dispose
and com.rti.dds.topic.example.FooDataWriter.dispose w timestamp except that
it also provides the values contained in params.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1038 Class Documentation

8.102.2.13 void get key value (Foo key holder, InstanceHandle t
handle)

Retrieve the instance key that corresponds to an instance handle.

Useful for keyed data types.

The operation will only fill the fields that form the key inside the key holder
instance. If Foo (p. 956) has no key, this method has no effect and exit with no
error.

For keyed data types, this operation may fail with RETCODE BAD -
PARAMETER if the handle does not correspond to an existing data-object
known to the com.rti.dds.publication.DataWriter (p. 538).

Parameters:

key holder <<inout>> (p. 271) a user data type specific key holder,
whose key fields are filled by this operation. If Foo (p. 956) has no
key, this method has no effect. This method will fail with RETCODE -
BAD PARAMETER if key holder is NULL.

handle <<in>> (p. 271) the instance whose key is to be retrieved. If
Foo (p. 956) has a key, handle must represent a registered instance
of type Foo (p. 956). Otherwise, this method will fail with RET-
CODE BAD PARAMETER. If Foo (p. 956) has a key and handle
is InstanceHandle t.HANDLE NIL (p. 1082), this method will
fail with RETCODE BAD PARAMETER. This method will fail with
RETCODE BAD PARAMETER if handle is NULL.

Exceptions:

One of the Standard Return Codes (p. 104) or RETCODE NOT -
ENABLED.

See also:

com.rti.dds.topic.example.FooDataReader.get key value

8.102.2.14 InstanceHandle t lookup instance (Foo key holder)

Retrieve the instance handle that corresponds to an instance key holder.

Useful for keyed data types.

This operation takes as a parameter an instance and returns a handle that can be
used in subsequent operations that accept an instance handle as an argument.
The instance parameter is only used for the purpose of examining the fields
that define the key. This operation does not register the instance in question. If

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.102 FooDataWriter Class Reference 1039

the instance has not been previously registered, or if for any other reason RTI
Connext is unable to provide an instance handle, RTI Connext will return the
special value HANDLE NIL.

Parameters:

key holder <<in>> (p. 271) a user data type specific key holder.

Returns:

the instance handle associated with this instance. If Foo (p. 956) has no key,
this method has no effect and returns InstanceHandle t.HANDLE NIL
(p. 1082)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1040 Class Documentation

8.103 FooDataWriter Interface Reference

<<interface>> (p. 271) <<generic>> (p. 271) User data type specific data
writer.

Public Member Functions

ˆ InstanceHandle t register instance (Foo instance data)
Informs RTI Connext that the application will be modifying a particular in-
stance.

ˆ InstanceHandle t register instance w timestamp (Foo instance -
data, Time t source timestamp)

Performs the same functions as register instance except that the application
provides the value for the source timestamp.

ˆ void unregister instance (Foo instance data, InstanceHandle t han-
dle)

Reverses the action of com.rti.dds.topic.example.FooDataWriter.register -
instance.

ˆ void unregister instance w timestamp (Foo instance data, In-
stanceHandle t handle, Time t source timestamp)

Performs the same function as com.rti.dds.topic.example.FooDataWriter.unregister -
instance except that it also provides the value for the source timestamp.

ˆ void write (Foo instance data, InstanceHandle t handle)
Modifies the value of a data instance.

ˆ void write w timestamp (Foo instance data, InstanceHandle t han-
dle, Time t source timestamp)

Performs the same function as com.rti.dds.topic.example.FooDataWriter.write
except that it also provides the value for the source timestamp.

ˆ void dispose (Foo instance data, InstanceHandle t instance handle)
Requests the middleware to delete the data.

ˆ void dispose w timestamp (Foo instance data, InstanceHandle t in-
stance handle, Time t source timestamp)

Performs the same functions as dispose except that the applica-
tion provides the value for the source timestamp that is made
available to com.rti.dds.subscription.DataReader (p. 473) ob-
jects by means of the source timestamp attribute inside the
com.rti.dds.subscription.SampleInfo (p. 1404).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.103 FooDataWriter Interface Reference 1041

ˆ void get key value (Foo key holder, InstanceHandle t handle)
Retrieve the instance key that corresponds to an instance handle.

ˆ InstanceHandle t lookup instance (Foo key holder)
Retrieve the instance handle that corresponds to an instance key holder.

8.103.1 Detailed Description

<<interface>> (p. 271) <<generic>> (p. 271) User data type specific data
writer.

Defines the user data type specific writer interface generated for each application
class.

The concrete user data type writer automatically generated by the implemen-
tation is an incarnation of this class.

See also:

com.rti.dds.publication.DataWriter (p. 538)
Foo
com.rti.dds.topic.example.FooDataReader
rtiddsgen (p. 290)

8.103.2 Member Function Documentation

8.103.2.1 InstanceHandle t register instance (Foo instance data)

Informs RTI Connext that the application will be modifying a particular in-
stance.

This operation is only useful for keyed data types. Using it for non-keyed types
causes no effect and returns InstanceHandle t.HANDLE NIL (p. 1082).
The operation takes as a parameter an instance (of which only the key value is
examined) and returns a handle that can be used in successive write() (p. 1047)
or dispose() (p. 1051) operations.

The operation gives RTI Connext an opportunity to pre-configure itself to im-
prove performance.

The use of this operation by an application is optional even for keyed
types. If an instance has not been pre-registered, the application can
use the special value InstanceHandle t.HANDLE NIL (p. 1082) as the
com.rti.dds.infrastructure.InstanceHandle t (p. 1080) paramater to the
write or dispose operation and RTI Connext will auto-register the instance.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1042 Class Documentation

For best performance, the operation should be invoked
prior to calling any operation that modifies the in-
stance, such as com.rti.dds.topic.example.FooDataWriter.write,
com.rti.dds.topic.example.FooDataWriter.write w timestamp,
com.rti.dds.topic.example.FooDataWriter.dispose and
com.rti.dds.topic.example.FooDataWriter.dispose w timestamp and the handle
used in conjunction with the data for those calls.

When this operation is used, RTI Connext will automatically supply the value
of the source timestamp that is used.

This operation may fail and return InstanceHandle t.HANDLE NIL
(p. 1082) if com.rti.dds.infrastructure.ResourceLimitsQosPolicy.max -
instances (p. 1360) limit has been exceeded.

The operation is idempotent. If it is called for an already registered instance,
it just returns the already allocated handle. This may be used to lookup and
retrieve the handle allocated to a given instance.

This operation can only be called after com.rti.dds.publication.DataWriter
(p. 538) has been enabled. Otherwise, InstanceHandle t.HANDLE NIL
(p. 1082) will be returned.

Parameters:

instance data <<in>> (p. 271) The instance that should be registered.
Of this instance, only the fields that represent the key are examined
by the function. Cannot be NULL..

Returns:

For keyed data type, a handle that can be used in the calls that take a
com.rti.dds.infrastructure.InstanceHandle t (p. 1080), such as write,
dispose, unregister instance, or return InstanceHandle t.HANDLE -
NIL (p. 1082) on failure. If the instance data is of a data type that has
no keys, this function always return InstanceHandle t.HANDLE NIL
(p. 1082).

See also:

com.rti.dds.topic.example.FooDataWriter.unregister instance,
com.rti.dds.topic.example.FooDataWriter.get key value, RELATION-
SHIP BETWEEN REGISTRATION, LIVELINESS and OWN-
ERSHIP (p. 1218)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.103 FooDataWriter Interface Reference 1043

8.103.2.2 InstanceHandle t register instance w timestamp (Foo
instance data, Time t source timestamp)

Performs the same functions as register instance except that the application
provides the value for the source timestamp.

The provided source timestamp potentially affects the relative order in which
readers observe events from multiple writers. Refer to DESTINATION -
ORDER (p. 51) QoS policy for details.

This operation may fail and return InstanceHandle t.HANDLE NIL
(p. 1082) if com.rti.dds.infrastructure.ResourceLimitsQosPolicy.max -
instances (p. 1360) limit has been exceeded.

This operation can only be called after com.rti.dds.publication.DataWriter
(p. 538) has been enabled. Otherwise, InstanceHandle t.HANDLE NIL
(p. 1082) will be returned.

Parameters:

instance data <<in>> (p. 271) The instance that should be registered.
Of this instance, only the fields that represent the key are examined
by the function. Cannot be NULL.

source timestamp <<in>> (p. 271) The timestamp value must be
greater than or equal to the timestamp value used in the last writer
operation (used in a register , unregister , dispose, or write, with ei-
ther the automatically supplied timestamp or the application provided
timestamp). This timestamp may potentially affect the order in which
readers observe events from multiple writers. Cannot be NULL.

Returns:

For keyed data type, return a handle that can be used in the calls that take a
com.rti.dds.infrastructure.InstanceHandle t (p. 1080), such as write,
dispose, unregister instance, or return InstanceHandle t.HANDLE -
NIL (p. 1082) on failure. If the instance data is of a data type that has
no keys, this function always return InstanceHandle t.HANDLE NIL
(p. 1082).

See also:

com.rti.dds.topic.example.FooDataWriter.unregister instance,
com.rti.dds.topic.example.FooDataWriter.get key value

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1044 Class Documentation

8.103.2.3 void unregister instance (Foo instance data,
InstanceHandle t handle)

Reverses the action of com.rti.dds.topic.example.FooDataWriter.register -
instance.

This operation is useful only for keyed data types. Using it for non-keyed types
causes no effect and reports no error. The operation takes as a parameter an
instance (of which only the key value is examined) and a handle.

This operation should only be called on an instance that is cur-
rently registered. This includes instances that have been auto-
registered by calling operations such as write or dispose as described in
com.rti.dds.topic.example.FooDataWriter.register instance. Otherwise, this op-
eration may fail with RETCODE BAD PARAMETER.

This only need be called just once per instance, regardless of how many times
register instance was called for that instance.

When this operation is used, RTI Connext will automatically supply the value
of the source timestamp that is used.

This operation informs RTI Connext that the
com.rti.dds.publication.DataWriter (p. 538) is no longer going to provide
any information about the instance. This operation also indicates that RTI
Connext can locally remove all information regarding that instance. The
application should not attempt to use the handle previously allocated to that
instance after calling com.rti.dds.topic.example.FooDataWriter.unregister -
instance().

The special value InstanceHandle t.HANDLE NIL (p. 1082) can be used
for the parameter handle. This indicates that the identity of the instance should
be automatically deduced from the instance data (by means of the key).

If handle is any value other than InstanceHandle t.HANDLE NIL
(p. 1082), then it must correspond to an instance that has been registered.
If there is no correspondence, the operation will fail with RETCODE BAD -
PARAMETER.

RTI Connext will not detect the error when the handle is any value other than
InstanceHandle t.HANDLE NIL (p. 1082), corresponds to an instance that
has been registered, but does not correspond to the instance deduced from
the instance data (by means of the key). RTI Connext will treat as if the
unregister instance() (p. 1044) operation is for the instance as indicated by
the handle.

If after a com.rti.dds.topic.example.FooDataWriter.unregister instance, the ap-
plication wants to modify (com.rti.dds.topic.example.FooDataWriter.write or
com.rti.dds.topic.example.FooDataWriter.dispose) an instance, it has to register
it again, or else use the special handle value InstanceHandle t.HANDLE -

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.103 FooDataWriter Interface Reference 1045

NIL (p. 1082).

This operation does not indicate that the instance is deleted (that is the
purpose of com.rti.dds.topic.example.FooDataWriter.dispose). The opera-
tion com.rti.dds.topic.example.FooDataWriter.unregister instance just indicates
that the com.rti.dds.publication.DataWriter (p. 538) no longer has any-
thing to say about the instance. com.rti.dds.subscription.DataReader
(p. 473) entities that are reading the instance may receive a sample with In-
stanceStateKind.NOT ALIVE NO WRITERS INSTANCE STATE for the in-
stance, unless there are other com.rti.dds.publication.DataWriter (p. 538)
objects writing that same instance.

This operation can affect the ownership of the data instance (see OWNER-
SHIP (p. 83)). If the com.rti.dds.publication.DataWriter (p. 538) was the
exclusive owner of the instance, then calling unregister instance() (p. 1044)
will relinquish that ownership.

If com.rti.dds.infrastructure.ReliabilityQosPolicy.kind (p. 1339)
is set to ReliabilityQosPolicyKind.RELIABLE RELIABILITY -
QOS and the unregistration would overflow the resource limits of
this writer or of a reader, this operation may block for up to
com.rti.dds.infrastructure.ReliabilityQosPolicy.max blocking time
(p. 1339); if this writer is still unable to unregister after that period, this
method will fail with RETCODE TIMEOUT.

Parameters:

instance data <<in>> (p. 271) The instance that should be unregis-
tered. If Foo has a key and instance handle is InstanceHandle -
t.HANDLE NIL (p. 1082), only the fields that represent the key are
examined by the function. Otherwise, instance data is not used. If
instance data is used, it must represent an instance that has been
registerd. Otherwise, this method may fail with RETCODE BAD -
PARAMETER . If Foo has a key, instance data can be NULL only
if handle is not InstanceHandle t.HANDLE NIL (p. 1082). Oth-
erwise, this method will fail with RETCODE BAD PARAMETER.

handle <<in>> (p. 271) represents the instance to be unregistered.
If Foo has a key and handle is InstanceHandle t.HANDLE -
NIL (p. 1082), handle is not used and instance is deduced from
instance data. If Foo has no key, handle is not used. If handle is
used, it must represent an instance that has been registered. Oth-
erwise, this method may fail with RETCODE BAD PARAMETER.
This method will fail with RETCODE BAD PARAMETER if handle
is NULL. If Foo has a key, handle cannot be InstanceHandle -
t.HANDLE NIL (p. 1082) if instance data is NULL. Otherwise,
this method will report the error RETCODE BAD PARAMETER.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1046 Class Documentation

Exceptions:

One of the Standard Return Codes (p. 104), RETCODE TIMEOUT
or RETCODE NOT ENABLED

See also:

com.rti.dds.topic.example.FooDataWriter.register instance
FooDataWriter.unregister instance w timestamp (p. 1046)
com.rti.dds.topic.example.FooDataWriter.get key value
RELATIONSHIP BETWEEN REGISTRATION, LIVELINESS
and OWNERSHIP (p. 1218)

8.103.2.4 void unregister instance w timestamp (Foo instance data,
InstanceHandle t handle, Time t source timestamp)

Performs the same function as com.rti.dds.topic.example.FooDataWriter.unregister -
instance except that it also provides the value for the source timestamp.

The provided source timestamp potentially affects the relative order in which
readers observe events from multiple writers. Refer to DESTINATION -
ORDER (p. 51) QoS policy for details.

The constraints on the values of the handle parameter and
the corresponding error behavior are the same specified for the
com.rti.dds.topic.example.FooDataWriter.unregister instance operation.

This operation may block and may time out (RETCODE TIMEOUT) under
the same circumtances described for the unregister instance operation.

Parameters:

instance data <<in>> (p. 271) The instance that should be unregis-
tered. If Foo has a key and instance handle is InstanceHandle -
t.HANDLE NIL (p. 1082), only the fields that represent the key are
examined by the function. Otherwise, instance data is not used. If
instance data is used, it must represent an instance that has been
registerd. Otherwise, this method may fail with RETCODE BAD -
PARAMETER. If Foo has a key, instance data can be NULL only
if handle is not InstanceHandle t.HANDLE NIL (p. 1082). Oth-
erwise, this method will fail with RETCODE BAD PARAMETER.

handle <<in>> (p. 271) represents the instance to be unregistered.
If Foo has a key and handle is InstanceHandle t.HANDLE -
NIL (p. 1082), handle is not used and instance is deduced from
instance data. If Foo has no key, handle is not used. If handle is
used, it must represent an instance that has been registered. Oth-
erwise, this method may fail with RETCODE BAD PARAMETER.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.103 FooDataWriter Interface Reference 1047

This method will fail with RETCODE BAD PARAMETER if handle
is NULL. If Foo has a key, handle cannot be InstanceHandle -
t.HANDLE NIL (p. 1082) if instance data is NULL. Otherwise,
this method will fail with RETCODE BAD PARAMETER.

source timestamp <<in>> (p. 271) The timestamp value must be
greater than or equal to the timestamp value used in the last writer
operation (used in a register , unregister , dispose, or write, with ei-
ther the automatically supplied timestamp or the application provided
timestamp). This timestamp may potentially affect the order in which
readers observe events from multiple writers. Cannot be NULL.

Exceptions:

One of the Standard Return Codes (p. 104), RETCODE TIMEOUT
or RETCODE NOT ENABLED.

See also:

com.rti.dds.topic.example.FooDataWriter.register instance
com.rti.dds.topic.example.FooDataWriter.unregister instance
com.rti.dds.topic.example.FooDataWriter.get key value

8.103.2.5 void write (Foo instance data, InstanceHandle t handle)

Modifies the value of a data instance.

When this operation is used, RTI Connext will automatically
supply the value of the source timestamp that is made avail-
able to com.rti.dds.subscription.DataReader (p. 473) ob-
jects by means of the source timestamp attribute inside the
com.rti.dds.subscription.SampleInfo (p. 1404). (Refer to
com.rti.dds.subscription.SampleInfo (p. 1404) and DESTINATION -
ORDER (p. 51) QoS policy for details).

As a side effect, this operation asserts liveliness on
the com.rti.dds.publication.DataWriter (p. 538) itself,
the com.rti.dds.publication.Publisher (p. 1277) and the
com.rti.dds.domain.DomainParticipant (p. 629).

Note that the special value InstanceHandle t.HANDLE NIL (p. 1082) can
be used for the parameter handle. This indicates the identity of the instance
should be automatically deduced from the instance data (by means of the
key).

If handle is any value other than InstanceHandle t.HANDLE NIL
(p. 1082), then it must correspond to an instance that has been registered.
If there is no correspondence, the operation will fail with RETCODE BAD -
PARAMETER.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1048 Class Documentation

RTI Connext will not detect the error when the handle is any value other than
InstanceHandle t.HANDLE NIL (p. 1082), corresponds to an instance that
has been registered, but does not correspond to the instance deduced from the
instance data (by means of the key). RTI Connext will treat as if the write()
(p. 1047) operation is for the instance as indicated by the handle.

This operation may block if the RELIABILITY (p. 101) kind is set to Re-
liabilityQosPolicyKind.RELIABLE RELIABILITY QOS and the modification
would cause data to be lost or else cause one of the limits specified in the
RESOURCE LIMITS (p. 102) to be exceeded.

Specifically, this operation may block in the following situa-
tions (note that the list may not be exhaustive), even if its
com.rti.dds.infrastructure.HistoryQosPolicyKind (p. 1075) is Histo-
ryQosPolicyKind.KEEP LAST HISTORY QOS:

ˆ If (com.rti.dds.infrastructure.ResourceLimitsQosPolicy.max -
samples (p. 1359) < com.rti.dds.infrastructure.ResourceLimitsQosPolicy.max -
instances (p. 1360) ∗ com.rti.dds.infrastructure.HistoryQosPolicy.depth
(p. 1074)), then in the situation where the max samples resource limit
is exhausted, RTI Connext is allowed to discard samples of some other
instance, as long as at least one sample remains for such an instance. If
it is still not possible to make space available to store the modification,
the writer is allowed to block.

ˆ If (com.rti.dds.infrastructure.ResourceLimitsQosPolicy.max -
samples (p. 1359) < com.rti.dds.infrastructure.ResourceLimitsQosPolicy.max -
instances (p. 1360)), then the DataWriter (p. 538) may block regard-
less of the com.rti.dds.infrastructure.HistoryQosPolicy.depth
(p. 1074).

ˆ If (com.rti.dds.infrastructure.RtpsReliableWriterProtocol -
t.min send window size (p. 1389) < com.rti.dds.infrastructure.ResourceLimitsQosPolicy.max -
samples (p. 1359)), then it is possible for the send window size limit to
be reached before RTI Connext is allowed to discard samples, in which
case the com.rti.dds.publication.DataWriter (p. 538) will block.

This operation may also block when using ReliabilityQosPoli-
cyKind.BEST EFFORT RELIABILITY QOS and PublishModeQosPol-
icyKind.ASYNCHRONOUS PUBLISH MODE QOS. In this case,
the com.rti.dds.publication.DataWriter (p. 538) will queue sam-
ples until they are sent by the asynchronous publishing thread.
The number of samples that can be stored is determined by the
com.rti.dds.infrastructure.HistoryQosPolicy (p. 1071). If the asyn-
chronous thread does not send samples fast enough (e.g., when using a slow
com.rti.dds.publication.FlowController (p. 942)), the queue may fill up.
In that case, subsequent write calls will block.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.103 FooDataWriter Interface Reference 1049

If this operation does block for any of the above reasons, the RELIABIL-
ITY (p. 101) max blocking time configures the maximum time the write oper-
ation may block (waiting for space to become available). If max blocking time
elapses before the com.rti.dds.publication.DataWriter (p. 538) is able to
store the modification without exceeding the limits, the operation will time out
(RETCODE TIMEOUT).

If there are no instance resources left, this operation
may fail with RETCODE OUT OF RESOURCES. Calling
com.rti.dds.topic.example.FooDataWriter.unregister instance may help freeing
up some resources.

This operation will fail with RETCODE PRECONDITION NOT MET if the
timestamp is less than the timestamp used in the last writer operation (register ,
unregister , dispose, or write, with either the automatically supplied timestamp
or the application-provided timestamp).

Parameters:

instance data <<in>> (p. 271) The data to write.

This method will fail with RETCODE BAD PARAMETER if instance data
is NULL.

Parameters:

handle <<in>> (p. 271) Either the handle returned by a previous call
to com.rti.dds.topic.example.FooDataWriter.register instance, or else
the special value InstanceHandle t.HANDLE NIL (p. 1082). If
Foo has a key and handle is not InstanceHandle t.HANDLE -
NIL (p. 1082), handle must represent a registered instance of
type Foo. Otherwise, this method may fail with RETCODE -
BAD PARAMETER. This method will fail with RETCODE BAD -
PARAMETER if handle is NULL.

Exceptions:

One of the Standard Return Codes (p. 104), RETCODE TIMEOUT,
RETCODE PRECONDITION NOT MET, RETCODE OUT OF -
RESOURCES, or RETCODE NOT ENABLED.

See also:

com.rti.dds.subscription.DataReader (p. 473)
com.rti.dds.topic.example.FooDataWriter.write w timestamp
DESTINATION ORDER (p. 51)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1050 Class Documentation

8.103.2.6 void write w timestamp (Foo instance data,
InstanceHandle t handle, Time t source timestamp)

Performs the same function as com.rti.dds.topic.example.FooDataWriter.write
except that it also provides the value for the source timestamp.

Explicitly provides the timestamp that will be available
to the com.rti.dds.subscription.DataReader (p. 473) ob-
jects by means of the source timestamp attribute inside the
com.rti.dds.subscription.SampleInfo (p. 1404). (Refer to
com.rti.dds.subscription.SampleInfo (p. 1404) and DESTINATION -
ORDER (p. 51) QoS policy for details)

The constraints on the values of the handle parameter and
the corresponding error behavior are the same specified for the
com.rti.dds.topic.example.FooDataWriter.write operation.

This operation may block and time out (RETCODE -
TIMEOUT) under the same circumtances described for
com.rti.dds.topic.example.FooDataWriter.write.

If there are no instance resources left, this operation
may fail with RETCODE OUT OF RESOURCES. Calling
com.rti.dds.topic.example.FooDataWriter.unregister instance may help free up
some resources.

This operation may fail with RETCODE BAD PARAMETER under the same
circumstances described for the write operation.

Parameters:

instance data <<in>> (p. 271) The data to write. This method will fail
with RETCODE BAD PARAMETER if instance data is NULL.

handle <<in>> (p. 271) Either the handle returned by a previous call
to com.rti.dds.topic.example.FooDataWriter.register instance, or else
the special value InstanceHandle t.HANDLE NIL (p. 1082). If
Foo has a key and handle is not InstanceHandle t.HANDLE -
NIL (p. 1082), handle must represent a registered instance of
type Foo. Otherwise, this method may fail with RETCODE -
BAD PARAMETER. This method will fail with RETCODE BAD -
PARAMETER if handle is NULL.

source timestamp <<in>> (p. 271) When using Desti-
nationOrderQosPolicyKind.BY SOURCE TIMESTAMP -
DESTINATIONORDER QOS the timestamp value must be
greater than or equal to the timestamp value used in the last
writer operation (register , unregister , dispose, or write, with
either the automatically supplied timestamp or the application-
provided timestamp) However, if it is less than the timestamp

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.103 FooDataWriter Interface Reference 1051

of the previous operation but the difference is less than the
com.rti.dds.infrastructure.DestinationOrderQosPolicy.source -
timestamp tolerance (p. 609), the timestamp of the pre-
vious operation will be used as the source timestamp of
this sample. Otherwise, if the difference is greater than
com.rti.dds.infrastructure.DestinationOrderQosPolicy.source -
timestamp tolerance (p. 609), the function will return RETCODE -
BAD PARAMETER.

Cannot be NULL.

Exceptions:

One of the Standard Return Codes (p. 104), RETCODE TIMEOUT,
RETCODE OUT OF RESOURCES, or RETCODE NOT -
ENABLED.

See also:

com.rti.dds.topic.example.FooDataWriter.write
com.rti.dds.subscription.DataReader (p. 473)
DESTINATION ORDER (p. 51)

8.103.2.7 void dispose (Foo instance data, InstanceHandle t
instance handle)

Requests the middleware to delete the data.

This operation is useful only for keyed data types. Using it for non-keyed types
has no effect and reports no error.

The actual deletion is postponed until there is no more use for that data in the
whole system.

Applications are made aware of the deletion by means of operations on the
com.rti.dds.subscription.DataReader (p. 473) objects that already knew
that instance. com.rti.dds.subscription.DataReader (p. 473) objects that
didn’t know the instance will never see it.

This operation does not modify the value of the instance. The instance data
parameter is passed just for the purposes of identifying the instance.

When this operation is used, RTI Connext will automatically
supply the value of the source timestamp that is made avail-
able to com.rti.dds.subscription.DataReader (p. 473) ob-
jects by means of the source timestamp attribute inside the
com.rti.dds.subscription.SampleInfo (p. 1404).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1052 Class Documentation

The constraints on the values of the handle parameter and
the corresponding error behavior are the same specified for the
com.rti.dds.topic.example.FooDataWriter.unregister instance operation.

The special value InstanceHandle t.HANDLE NIL (p. 1082) can be used
for the parameter instance handle. This indicates the identity of the instance
should be automatically deduced from the instance data (by means of the
key).

If handle is any value other than InstanceHandle t.HANDLE NIL
(p. 1082), then it must correspond to an instance that has been registered.
If there is no correspondence, the operation will fail with RETCODE BAD -
PARAMETER.

RTI Connext will not detect the error when the handle is any value other than
InstanceHandle t.HANDLE NIL (p. 1082), corresponds to an instance that
has been registered, but does not correspond to the instance deduced from
the instance data (by means of the key). RTI Connext will treat as if the
dispose() (p. 1051) operation is for the instance as indicated by the handle.

This operation may block and time out (RETCODE -
TIMEOUT) under the same circumtances described for
com.rti.dds.topic.example.FooDataWriter.write().

If there are no instance resources left, this operation
may fail with RETCODE OUT OF RESOURCES. Calling
com.rti.dds.topic.example.FooDataWriter.unregister instance may help freeing
up some resources.

Parameters:

instance data <<in>> (p. 271) The data to dispose. If Foo has a
key and instance handle is InstanceHandle t.HANDLE NIL
(p. 1082), only the fields that represent the key are examined by the
function. Otherwise, instance data is not used. If Foo has a key,
instance data can be NULL only if instance handle is not In-
stanceHandle t.HANDLE NIL (p. 1082). Otherwise, this method
will fail with RETCODE BAD PARAMETER.

instance handle <<in>> (p. 271) Either the handle returned by a
previous call to com.rti.dds.topic.example.FooDataWriter.register -
instance, or else the special value InstanceHandle t.HANDLE -
NIL (p. 1082). If Foo has a key and instance handle is Instance-
Handle t.HANDLE NIL (p. 1082), instance handle is not used
and instance is deduced from instance data. If Foo has no key,
instance handle is not used. If handle is used, it must represent a
registered instance of type Foo. Otherwise, this method fail with RET-
CODE BAD PARAMETER. This method will fail with RETCODE -
BAD PARAMETER if handle is NULL. If Foo has a key, instance -
handle cannot be InstanceHandle t.HANDLE NIL (p. 1082) if

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.103 FooDataWriter Interface Reference 1053

instance data is NULL. Otherwise, this method will fail with RET-
CODE BAD PARAMETER.

Exceptions:

One of the Standard Return Codes (p. 104), RETCODE -
TIMEOUT, RETCODE OUT OF RESOURCES or RETCODE -
NOT ENABLED.

See also:

com.rti.dds.topic.example.FooDataWriter.dispose w timestamp
RELATIONSHIP BETWEEN REGISTRATION, LIVELINESS
and OWNERSHIP (p. 1218)

8.103.2.8 void dispose w timestamp (Foo instance data,
InstanceHandle t instance handle, Time t
source timestamp)

Performs the same functions as dispose except that the applica-
tion provides the value for the source timestamp that is made
available to com.rti.dds.subscription.DataReader (p. 473) ob-
jects by means of the source timestamp attribute inside the
com.rti.dds.subscription.SampleInfo (p. 1404).

The constraints on the values of the handle parameter and
the corresponding error behavior are the same specified for the
com.rti.dds.topic.example.FooDataWriter.dispose operation.

This operation may block and time out (RETCODE -
TIMEOUT) under the same circumtances described for
com.rti.dds.topic.example.FooDataWriter.write.

If there are no instance resources left, this operation
may fail with RETCODE OUT OF RESOURCES. Calling
com.rti.dds.topic.example.FooDataWriter.unregister instance may help freeing
up some resources.

Parameters:

instance data <<in>> (p. 271) The data to dispose. If Foo has a
key and instance handle is InstanceHandle t.HANDLE NIL
(p. 1082), only the fields that represent the key are examined by the
function. Otherwise, instance data is not used. If Foo has a key,
instance data can be NULL only if instance handle is not In-
stanceHandle t.HANDLE NIL (p. 1082). Otherwise, this method
will fail with RETCODE BAD PARAMETER.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1054 Class Documentation

instance handle <<in>> (p. 271) Either the handle returned by a
previous call to com.rti.dds.topic.example.FooDataWriter.register -
instance, or else the special value InstanceHandle t.HANDLE -
NIL (p. 1082). If Foo has a key and instance handle is Instance-
Handle t.HANDLE NIL (p. 1082), instance handle is not used
and instance is deduced from instance data. If Foo has no key,
instance handle is not used. If handle is used, it must repre-
sent a registered instance of type Foo. Otherwise, this method may
fail with RETCODE BAD PARAMETER This method will fail with
RETCODE BAD PARAMETER if handle is NULL. If Foo has a
key, instance handle cannot be InstanceHandle t.HANDLE -
NIL (p. 1082) if instance data is NULL. Otherwise, this method
will fail with RETCODE BAD PARAMETER.

source timestamp <<in>> (p. 271) The timestamp value must be
greater than or equal to the timestamp value used in the last writer
operation (used in a register , unregister , dispose, or write, with ei-
ther the automatically supplied timestamp or the application pro-
vided timestamp). This timestamp may potentially affect the order in
which readers observe events from multiple writers. This timestamp
will be available to the com.rti.dds.subscription.DataReader
(p. 473) objects by means of the source timestamp attribute inside
the com.rti.dds.subscription.SampleInfo (p. 1404). Cannot be
NULL.

Exceptions:

One of the Standard Return Codes (p. 104), RETCODE -
TIMEOUT, RETCODE OUT OF RESOURCES or RETCODE -
NOT ENABLED.

See also:

com.rti.dds.topic.example.FooDataWriter.dispose

8.103.2.9 void get key value (Foo key holder, InstanceHandle t
handle)

Retrieve the instance key that corresponds to an instance handle.

Useful for keyed data types.

The operation will only fill the fields that form the key inside the key holder
instance. If Foo has no key, this method has no effect and exit with no error.

For keyed data types, this operation may fail with RETCODE BAD -
PARAMETER if the handle does not correspond to an existing data-object
known to the com.rti.dds.publication.DataWriter (p. 538).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.103 FooDataWriter Interface Reference 1055

Parameters:

key holder <<inout>> (p. 271) a user data type specific key holder,
whose key fields are filled by this operation. If Foo has no key, this
method has no effect. This method will fail with RETCODE BAD -
PARAMETER if key holder is NULL.

handle <<in>> (p. 271) the instance whose key is to be retrieved.
If Foo has a key, handle must represent a registered instance of
type Foo. Otherwise, this method will fail with RETCODE BAD -
PARAMETER. If Foo has a key and handle is InstanceHandle -
t.HANDLE NIL (p. 1082), this method will fail with RETCODE -
BAD PARAMETER. This method will fail with RETCODE BAD -
PARAMETER if handle is NULL.

Exceptions:

One of the Standard Return Codes (p. 104) or RETCODE NOT -
ENABLED.

See also:

com.rti.dds.topic.example.FooDataReader.get key value

8.103.2.10 InstanceHandle t lookup instance (Foo key holder)

Retrieve the instance handle that corresponds to an instance key holder.

Useful for keyed data types.

This operation takes as a parameter an instance and returns a handle that can be
used in subsequent operations that accept an instance handle as an argument.
The instance parameter is only used for the purpose of examining the fields
that define the key. This operation does not register the instance in question. If
the instance has not been previously registered, or if for any other reason RTI
Connext is unable to provide an instance handle, RTI Connext will return the
special value HANDLE NIL.

Parameters:

key holder <<in>> (p. 271) a user data type specific key holder.

Returns:

the instance handle associated with this instance. If Foo has no key,
this method has no effect and returns InstanceHandle t.HANDLE -
NIL (p. 1082)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1056 Class Documentation

8.104 FooSeq Class Reference

<<interface>> (p. 271) <<generic>> (p. 271) A type-safe, ordered collec-
tion of elements. The type of these elements is referred to in this documentation
as Foo (p. 955).

Inheritance diagram for FooSeq::

Public Member Functions

ˆ FooSeq ()
ˆ FooSeq (int initialMaximum)
ˆ FooSeq (Collection elements)

8.104.1 Detailed Description

<<interface>> (p. 271) <<generic>> (p. 271) A type-safe, ordered collec-
tion of elements. The type of these elements is referred to in this documentation
as Foo (p. 955).

For users who define data types in OMG IDL, this type corresponds to the IDL
express sequence<Foo (p. 955)>.

For any user-data type Foo (p. 955) that an application defines for the purpose
of data-distribution with RTI Connext, a FooSeq (p. 1056) is generated. We
refer to an IDL sequence<Foo (p. 955)> as FooSeq (p. 1056).

A sequence is a type-safe List that makes a distinction between its allocated
size and its logical size (much like the ArrayList class). The Collection.size()
method returns the logical size.

A new sequence is created for elements of a particular Class, which does not
change throughout the lifetime of a sequence instance.

To add an element to a sequence, use the add() (p. 383) method inherited
from the standard interface java.util.List; this will implicitly increase the
sequence’s size. Or, to pre-allocate space for several elements at once, use
Sequence.setMaximum (p. 1433).

An attempt to add an element to a sequence that is not of the correct element
type will result in a ClassCastException. (Note that null is considered to belong
to any type.)

See also:

com.rti.dds.topic.example.FooDataWriter, com.rti.dds.topic.example.FooDataReader,

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.104 FooSeq Class Reference 1057

com.rti.dds.topic.example.FooTypeSupport (p. 1060), rtiddsgen
(p. 290)

8.104.2 Constructor & Destructor Documentation

8.104.2.1 FooSeq ()

Construct a new empty sequence with an initial maximum of 0.

8.104.2.2 FooSeq (int initialMaximum)

Construct a new empty sequence with the given initial maximum.

8.104.2.3 FooSeq (Collection elements)

Construct a new sequence containing the same elements as the given collection
and having an initial maximum equal to its size.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1058 Class Documentation

8.105 FooSeq Class Reference

<<interface>> (p. 271) <<generic>> (p. 271) A type-safe, ordered collec-
tion of elements. The type of these elements is referred to in this documentation
as Foo (p. 956).

Inheritance diagram for FooSeq::

Public Member Functions

ˆ Object copy from (Object src)

Package Attributes

ˆ Sequence loanedInfoSequence = null

8.105.1 Detailed Description

<<interface>> (p. 271) <<generic>> (p. 271) A type-safe, ordered collec-
tion of elements. The type of these elements is referred to in this documentation
as Foo (p. 956).

For users who define data types in OMG IDL, this type corresponds to the IDL
express sequence<Foo (p. 956)>.

For any user-data type Foo (p. 956) that an application defines for the purpose
of data-distribution with RTI Connext, a FooSeq (p. 1058) is generated. We
refer to an IDL sequence<Foo (p. 956)> as FooSeq (p. 1058).

A sequence is a type-safe List that makes a distinction between its allocated
size and its logical size (much like the ArrayList class). The Collection.size()
method returns the logical size.

A new sequence is created for elements of a particular Class, which does not
change throughout the lifetime of a sequence instance.

To add an element to a sequence, use the add() (p. 383) method inherited
from the standard interface java.util.List; this will implicitly increase the
sequence’s size. Or, to pre-allocate space for several elements at once, use
Sequence.setMaximum (p. 1433).

An attempt to add an element to a sequence that is not of the correct element
type will result in a ClassCastException. (Note that null is considered to belong
to any type.)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.105 FooSeq Class Reference 1059

See also:

com.rti.dds.topic.example.FooDataWriter, com.rti.dds.topic.example.FooDataReader,
com.rti.dds.topic.example.FooTypeSupport (p. 1060), rtiddsgen
(p. 290)

8.105.2 Member Function Documentation

8.105.2.1 Object copy from (Object src)

Copy data into this object from another. The result of this method is that
both this and src will be the same size and contain the same data.

Parameters:

src The Object which contains the data to be copied

Returns:

this

Exceptions:

NullPointerException If src is null.

ClassCastException If src is not a Sequence OR if one of the objects
contained in the Sequence is not of the expected type.

See also:

com.rti.dds.infrastructure.Copyable.copy from
(p. 466)(java.lang.Object)

Implements Copyable (p. 466).

8.105.3 Member Data Documentation

8.105.3.1 Sequence loanedInfoSequence = null [package]

When a memory loan has been taken out in the lower layers of NDDS, store a
pointer to the native sequence here. That way, when we call finish(), we can
give the memory back.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1060 Class Documentation

8.106 FooTypeSupport Class Reference

<<interface>> (p. 271) <<generic>> (p. 271) User data type specific in-
terface.

Static Public Member Functions

ˆ static void register type (DomainParticipant participant, String
type name)

Allows an application to communicate to RTI Connext the existence of a
data type.

ˆ static String type name ()

Get the default name for this type.

8.106.1 Detailed Description

<<interface>> (p. 271) <<generic>> (p. 271) User data type specific in-
terface.

Defines the user data type specific interface generated for each application class.

The concrete user data type automatically generated by the implementation is
an incarnation of this class.

See also:

rtiddsgen (p. 290)

8.106.2 Member Function Documentation

8.106.2.1 static void register type (DomainParticipant participant,
String type name) [static]

Allows an application to communicate to RTI Connext the existence of a data
type.

The generated implementation of the operation embeds all the knowledge that
has to be communicated to the middleware in order to make it able to manage
the contents of data of that type. This includes in particular the key definition
that will allow RTI Connext to distinguish different instances of the same type.

The same TypeSupport (p. 1651) can be registered multiple times
with a com.rti.dds.domain.DomainParticipant (p. 629) using the same

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.106 FooTypeSupport Class Reference 1061

or different values for the type name. If register type is called
multiple times on the same TypeSupport (p. 1651) with the same
com.rti.dds.domain.DomainParticipant (p. 629) and type name, the sec-
ond (and subsequent) registrations are ignored by the operation fails with RET-
CODE OK.

Precondition:

Cannot use the same type name to register two different TypeSup-
port (p. 1651) with the same com.rti.dds.domain.DomainParticipant
(p. 629), or else the operation will fail and RETCODE PRECONDITION -
NOT MET will be returned.

Parameters:

participant <<in>> (p. 271) the com.rti.dds.domain.DomainParticipant
(p. 629) to register the data type Foo (p. 955) with. Cannot be
NULL.

type name <<in>> (p. 271) the type name under with the data type
Foo (p. 955) is registered with the participant; this type name is
used when creating a new com.rti.dds.topic.Topic (p. 1545). (See
com.rti.dds.domain.DomainParticipant.create topic (p. 670).)
The name may not be NULL or longer than 255 characters.

Exceptions:

One of the Standard Return Codes (p. 104), RETCODE -
PRECONDITION NOT MET or RETCODE OUT OF -
RESOURCES.

MT Safety:

UNSAFE on the FIRST call. It is not safe for two threads to simultaneously
make the first call to register a type. Subsequent calls are thread safe.

See also:

com.rti.dds.domain.DomainParticipant.create topic (p. 670)

8.106.2.2 static String type name () [static]

Get the default name for this type.

Can be used for calling com.rti.dds.topic.example.FooTypeSupport.register -
type (p. 1060) or creating com.rti.dds.topic.Topic (p. 1545)

Returns:

default name for this type

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1062 Class Documentation

See also:

com.rti.dds.topic.example.FooTypeSupport.register type (p. 1060)
com.rti.dds.domain.DomainParticipant.create topic (p. 670)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.107 FooTypeSupport Class Reference 1063

8.107 FooTypeSupport Class Reference

Inherits TypeSupportImpl.

Public Member Functions

ˆ Object copy data (Object destination, Object source)

8.107.1 Detailed Description

A collection of useful methods for dealing with objects of type Foo (p. 956).

8.107.2 Member Function Documentation

8.107.2.1 Object copy data (Object destination, Object source)

This is a concrete implementation of this method inherited from the base class.
This method will perform a deep copy of source into destination.

Parameters:

source The Object which contains the data to be copied.

destination The object where data will be copied to.

Returns:

Returns destination.

Exceptions:

NullPointerException If destination or source is null.

ClassCastException If either destination or this is not a Foo (p. 956)
type.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1064 Class Documentation

8.108 GroupDataQosPolicy Class Reference

Attaches a buffer of opaque data that is distributed by means of Built-in
Topics (p. 153) during discovery.

Inheritance diagram for GroupDataQosPolicy::

Public Attributes

ˆ final ByteSeq value

a sequence of octets

8.108.1 Detailed Description

Attaches a buffer of opaque data that is distributed by means of Built-in
Topics (p. 153) during discovery.

Entity:

com.rti.dds.publication.Publisher (p. 1277),
com.rti.dds.subscription.Subscriber (p. 1478)

Properties:

RxO (p. 97) = NO
Changeable (p. 98) = YES (p. 98)

See also:

com.rti.dds.domain.DomainParticipant.get builtin subscriber
(p. 684)

8.108.2 Usage

The additional information is attached to a
com.rti.dds.publication.Publisher (p. 1277) or
com.rti.dds.subscription.Subscriber (p. 1478). This extra data
is not used by RTI Connext itself. When a remote applica-
tion discovers the com.rti.dds.publication.Publisher (p. 1277) or
com.rti.dds.subscription.Subscriber (p. 1478), it can access that in-
formation and use it for its own purposes.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.108 GroupDataQosPolicy Class Reference 1065

Use cases for this QoS policy, as well as the
com.rti.dds.infrastructure.TopicDataQosPolicy (p. 1559) and
com.rti.dds.infrastructure.UserDataQosPolicy (p. 1680), are often
application-to-application identification, authentication, authorization, and
encryption purposes. For example, applications can use Group or User Data to
send security certificates to each other for RSA-type security.

In combination with com.rti.dds.subscription.DataReaderListener
(p. 501), com.rti.dds.publication.DataWriterListener (p. 566) and
operations such as com.rti.dds.domain.DomainParticipant.ignore -
publication (p. 688) and com.rti.dds.domain.DomainParticipant.ignore -
subscription (p. 689), this QoS policy can help an application to
define and enforce its own security policies. For example, an ap-
plication can implement matching policies similar to those of the
com.rti.dds.infrastructure.PartitionQosPolicy (p. 1233), except the
decision can be made based on an application-defined policy.

The use of this QoS is not limited to security; it offers a simple, yet flexible
extensibility mechanism.

Important: RTI Connext stores the data placed in this policy in pre-allocated
pools. It is therefore necessary to configure RTI Connext with the maximum size
of the data that will be stored in policies of this type. This size is configured with
com.rti.dds.infrastructure.DomainParticipantResourceLimitsQosPolicy.publisher -
group data max length (p. 753) and com.rti.dds.infrastructure.DomainParticipantResourceLimitsQosPolicy.subscriber -
group data max length (p. 754).

8.108.3 Member Data Documentation

8.108.3.1 final ByteSeq value

a sequence of octets

[default] Empty (zero-sized)

[range] Octet sequence of length [0,max length]

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1066 Class Documentation

8.109 GuardCondition Class Reference

<<interface>> (p. 271) A specific com.rti.dds.infrastructure.Condition
(p. 451) whose trigger value is completely under the control of the application.

Inherits AbstractNativeObject, and NativeCondition.

Public Member Functions

ˆ GuardCondition ()
No argument constructor.

ˆ void set trigger value (boolean value)
Set the guard condition trigger value.

ˆ boolean get trigger value ()
Retrieve the trigger value.

ˆ void delete ()
Destructor.

8.109.1 Detailed Description

<<interface>> (p. 271) A specific com.rti.dds.infrastructure.Condition
(p. 451) whose trigger value is completely under the control of the application.

The com.rti.dds.infrastructure.GuardCondition (p. 1066)
provides a way for an application to manually wake up a
com.rti.dds.infrastructure.WaitSet (p. 1695). This is accom-
plished by attaching the com.rti.dds.infrastructure.GuardCondition
(p. 1066) to the com.rti.dds.infrastructure.WaitSet (p. 1695)
and then setting the trigger value by means of the
com.rti.dds.infrastructure.GuardCondition.set trigger value (p. 1067)
operation.

Important: The com.rti.dds.infrastructure.GuardCondition
(p. 1066) allocates native resources. When
com.rti.dds.infrastructure.GuardCondition (p. 1066) is no longer being
used, user should call com.rti.dds.infrastructure.GuardCondition.delete
(p. 1067) explicitly to properly cleanup all native resources.

See also:

com.rti.dds.infrastructure.WaitSet (p. 1695)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.109 GuardCondition Class Reference 1067

8.109.2 Constructor & Destructor Documentation

8.109.2.1 GuardCondition ()

No argument constructor.

Construct a new guard condition with trigger value false.

Exceptions:

RETCODE OUT OF RESOURCES (p. 1370) if a new
com.rti.dds.infrastructure.GuardCondition (p. 1066) could
not be allocated.

Important: The com.rti.dds.infrastructure.GuardCondition
(p. 1066) allocates native resources. When
com.rti.dds.infrastructure.GuardCondition (p. 1066) is no longer being
used, user should call com.rti.dds.infrastructure.GuardCondition.delete
(p. 1067) explicitly to properly cleanup all native resources.

8.109.3 Member Function Documentation

8.109.3.1 void set trigger value (boolean value)

Set the guard condition trigger value.

Parameters:

value <<in>> (p. 271) the new trigger value.

8.109.3.2 boolean get trigger value ()

Retrieve the trigger value.

Returns:

the trigger value.

Implements Condition (p. 451).

8.109.3.3 void delete ()

Destructor.

Releases the resources associated with this object.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1068 Class Documentation

Calling this method multiple times on the same object is safe; subsequent dele-
tions will have no effect.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.110 GUID t Class Reference 1069

8.110 GUID t Class Reference

Type for GUID (Global Unique Identifier) representation.

Inherits Struct.

Public Member Functions

ˆ GUID t (GUID t guid)

Copy constructor.

ˆ GUID t (byte[] value)

Constructor.

Public Attributes

ˆ byte[] value = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
A 16 byte array containing the GUID value.

Static Public Attributes

ˆ static final GUID t GUID UNKNOWN

Unknown GUID.

ˆ static final GUID t GUID AUTO

Indicates that RTI Connext should choose an appropriate virtual GUID.

8.110.1 Detailed Description

Type for GUID (Global Unique Identifier) representation.

Represents a 128 bit GUID.

8.110.2 Constructor & Destructor Documentation

8.110.2.1 GUID t (GUID t guid)

Copy constructor.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1070 Class Documentation

Parameters:

guid The GUID instance to copy. It must not be null.

8.110.2.2 GUID t (byte[] value)

Constructor.

Parameters:

value GUID value as a 16 byte array. It must not be null.

8.110.3 Member Data Documentation

8.110.3.1 final GUID t GUID UNKNOWN [static]

Unknown GUID.

8.110.3.2 final GUID t GUID AUTO [static]

Initial value:

new GUID_t(new byte[]{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0})

Indicates that RTI Connext should choose an appropriate virtual GUID.

If this special value is assigned to com.rti.dds.infrastructure.DataWriterProtocolQosPolicy.virtual -
guid (p. 572) or com.rti.dds.infrastructure.DataReaderProtocolQosPolicy.virtual -
guid (p. 505), RTI Connext will assign the virtual GUID automatically based
on the RTPS or physical GUID.

8.110.3.3 byte [] value = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}

A 16 byte array containing the GUID value.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.111 HistoryQosPolicy Class Reference 1071

8.111 HistoryQosPolicy Class Reference

Specifies the behavior of RTI Connext in the case where the value of a sample
changes (one or more times) before it can be successfully communicated to one
or more existing subscribers.

Inheritance diagram for HistoryQosPolicy::

Public Attributes

ˆ HistoryQosPolicyKind kind

Specifies the kind of history to be kept.

ˆ int depth

Specifies the number of samples to be kept, when the kind is HistoryQosPol-
icyKind.KEEP LAST HISTORY QOS (p. 1075).

ˆ RefilterQosPolicyKind refilter

<<eXtension>> (p. 270) Specifies how a writer should handle previously
written samples to a new reader.

8.111.1 Detailed Description

Specifies the behavior of RTI Connext in the case where the value of a sample
changes (one or more times) before it can be successfully communicated to one
or more existing subscribers.

This QoS policy specifies how much data must to stored by RTI
Connext for a com.rti.dds.publication.DataWriter (p. 538) or
com.rti.dds.subscription.DataReader (p. 473). It controls whether
RTI Connext should deliver only the most recent value, attempt to deliver all
intermediate values, or do something in between.

On the publishing side, this QoS policy controls the samples that should be
maintained by the com.rti.dds.publication.DataWriter (p. 538) on behalf
of existing com.rti.dds.subscription.DataReader (p. 473) entities. The be-
havior with regards to a com.rti.dds.subscription.DataReader (p. 473) en-
tities discovered after a sample is written is controlled by the DURABILITY
(p. 65) policy.

On the subscribing side, this QoS policy controls the samples that should be
maintained until the application ”takes” them from RTI Connext.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1072 Class Documentation

Entity:

com.rti.dds.topic.Topic (p. 1545), com.rti.dds.subscription.DataReader
(p. 473), com.rti.dds.publication.DataWriter (p. 538)

Properties:

RxO (p. 97) = NO
Changeable (p. 98) = UNTIL ENABLE (p. 98)

See also:

com.rti.dds.infrastructure.ReliabilityQosPolicy (p. 1336)
com.rti.dds.infrastructure.HistoryQosPolicy (p. 1071)

8.111.2 Usage

This policy controls the behavior of RTI Connext when the
value of an instance changes before it is finally communicated to
com.rti.dds.subscription.DataReader (p. 473) entities.

When a com.rti.dds.publication.DataWriter (p. 538) sends data,
or a com.rti.dds.subscription.DataReader (p. 473) receives data,
the data sent or received is stored in a cache whose contents are
controlled by this QoS policy. This QoS policy interacts with
com.rti.dds.infrastructure.ReliabilityQosPolicy (p. 1336) by control-
ling whether RTI Connext guarantees that all of the sent data is re-
ceived (HistoryQosPolicyKind.KEEP ALL HISTORY QOS (p. 1076))
or if only the last N data values sent are guaranteed to be received
(HistoryQosPolicyKind.KEEP ALL HISTORY QOS (p. 1076))–this is
a reduced level of reliability.

The amount of data that is sent to new DataReaders who have configured
their com.rti.dds.infrastructure.DurabilityQosPolicy (p. 765) to receive
previously published data is also controlled by the History QoS policy.

Note that the History QoS policy does not control the physical sizes of the send
and receive queues. The memory allocation for the queues is controlled by the
com.rti.dds.infrastructure.ResourceLimitsQosPolicy (p. 1356).

If kind is HistoryQosPolicyKind.KEEP LAST HISTORY QOS
(p. 1075) (the default), then RTI Connext will only attempt to keep the latest
values of the instance and discard the older ones. In this case, the value of
depth regulates the maximum number of values (up to and including the most
current one) RTI Connext will maintain and deliver. After N values have been
sent or received, any new data will overwrite the oldest data in the queue.
Thus the queue acts like a circular buffer of length N .

The default (and most common setting) for depth is 1, indicating that only the

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.111 HistoryQosPolicy Class Reference 1073

most recent value should be delivered.

If kind is HistoryQosPolicyKind.KEEP ALL HISTORY QOS (p. 1076),
then RTI Connext will attempt to maintain and deliver all the values of the in-
stance to existing subscribers. The resources that RTI Connext can use to
keep this history are limited by the settings of the RESOURCE LIMITS
(p. 102). If the limit is reached, then the behavior of RTI Connext will de-
pend on the RELIABILITY (p. 101). If the Reliability kind is Reliabili-
tyQosPolicyKind.BEST EFFORT RELIABILITY QOS (p. 1340), then
the old values will be discarded. If Reliability kind is RELIABLE, then RTI
Connext will block the com.rti.dds.publication.DataWriter (p. 538) until it
can deliver the necessary old values to all subscribers.

If refilter is com.rti.dds.infrastructure.RefilterQosPolicyKind.NONE -
REFILTER QOS (p. 1334), then samples written before a DataReader is
matched to a DataWriter are not refiltered by the DataWriter.

If refilter is com.rti.dds.infrastructure.RefilterQosPolicyKind.ALL -
REFILTER QOS (p. 1335), then all samples written before a DataReader is
matched to a DataWriter are refiltered by the DataWriter when the DataReader
is matched.

If refilter is com.rti.dds.infrastructure.RefilterQosPolicyKind.ON -
DEMAND REFILTER QOS (p. 1335), then a DataWriter will only refilter
samples that a DataReader requests.

8.111.3 Consistency

This QoS policy’s depth must be consistent with the RESOURCE LIMITS
(p. 102) max samples per instance. For these two QoS to be consistent, they
must verify that depth <= max samples per instance.

See also:

com.rti.dds.infrastructure.ResourceLimitsQosPolicy (p. 1356)

8.111.4 Member Data Documentation

8.111.4.1 HistoryQosPolicyKind kind

Specifies the kind of history to be kept.

[default] HistoryQosPolicyKind.KEEP LAST HISTORY QOS
(p. 1075)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1074 Class Documentation

8.111.4.2 int depth

Specifies the number of samples to be kept, when the kind is HistoryQosPol-
icyKind.KEEP LAST HISTORY QOS (p. 1075).

If a value other than 1 (the default) is specified, it should be consistent with
the settings of the RESOURCE LIMITS (p. 102) policy. That is:

depth <= com.rti.dds.infrastructure.ResourceLimitsQosPolicy.max -
samples per instance (p. 1360)

When the kind is HistoryQosPolicyKind.KEEP ALL HISTORY QOS
(p. 1076), the depth has no effect. Its implied value is infinity (in practice
limited by the settings of the RESOURCE LIMITS (p. 102) policy).

[default] 1

[range] [1,100 million], <= com.rti.dds.infrastructure.ResourceLimitsQosPolicy.max -
samples per instance (p. 1360)

8.111.4.3 RefilterQosPolicyKind refilter

<<eXtension>> (p. 270) Specifies how a writer should handle previously
written samples to a new reader.

[default] com.rti.dds.infrastructure.RefilterQosPolicyKind.NONE -
REFILTER QOS (p. 1334)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.112 HistoryQosPolicyKind Class Reference 1075

8.112 HistoryQosPolicyKind Class Reference

Kinds of history.

Inheritance diagram for HistoryQosPolicyKind::

Static Public Attributes

ˆ static final HistoryQosPolicyKind KEEP LAST HISTORY -
QOS

[default] Keep the last depth samples.

ˆ static final HistoryQosPolicyKind KEEP ALL HISTORY QOS

Keep all the samples.

8.112.1 Detailed Description

Kinds of history.

QoS:

com.rti.dds.infrastructure.HistoryQosPolicy (p. 1071)

8.112.2 Member Data Documentation

8.112.2.1 final HistoryQosPolicyKind KEEP LAST HISTORY -
QOS [static]

[default] Keep the last depth samples.

On the publishing side, RTI Connext will only attempt to keep the most recent
depth samples of each instance of data (identified by its key) managed by the
com.rti.dds.publication.DataWriter (p. 538).

On the subscribing side, the com.rti.dds.subscription.DataReader (p. 473)
will only attempt to keep the most recent depth samples received for each
instance (identified by its key) until the application takes them via the
com.rti.dds.subscription.DataReader (p. 473) ’s take() operation.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1076 Class Documentation

8.112.2.2 final HistoryQosPolicyKind KEEP ALL HISTORY QOS
[static]

Keep all the samples.

On the publishing side, RTI Connext will attempt to keep all samples (repre-
senting each value written) of each instance of data (identified by its key) man-
aged by the com.rti.dds.publication.DataWriter (p. 538) until they can be
delivered to all subscribers.

On the subscribing side, RTI Connext will attempt to keep all sam-
ples of each instance of data (identified by its key) managed by the
com.rti.dds.subscription.DataReader (p. 473). These samples are kept un-
til the application takes them from RTI Connext via the take() operation.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.113 InconsistentTopicStatus Class Reference 1077

8.113 InconsistentTopicStatus Class Reference

StatusKind.INCONSISTENT TOPIC STATUS.

Inherits Status.

Public Attributes

ˆ int total count

Total cumulative count of the Topics discovered whose name matches
the com.rti.dds.topic.Topic (p. 1545) to which this status is attached
and whose type is inconsistent with that of that com.rti.dds.topic.Topic
(p. 1545).

ˆ int total count change

The incremental number of inconsistent topics discovered since the last time
this status was read.

8.113.1 Detailed Description

StatusKind.INCONSISTENT TOPIC STATUS.

Entity:

com.rti.dds.topic.Topic (p. 1545)

Listener:

com.rti.dds.topic.TopicListener (p. 1564)

A remote com.rti.dds.topic.Topic (p. 1545) will be inconsistent with the lo-
cally created com.rti.dds.topic.Topic (p. 1545) if the type name of the two
topics are different.

8.113.2 Member Data Documentation

8.113.2.1 int total count

Total cumulative count of the Topics discovered whose name matches the
com.rti.dds.topic.Topic (p. 1545) to which this status is attached and whose
type is inconsistent with that of that com.rti.dds.topic.Topic (p. 1545).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1078 Class Documentation

8.113.2.2 int total count change

The incremental number of inconsistent topics discovered since the last time
this status was read.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.114 InetAddressSeq Class Reference 1079

8.114 InetAddressSeq Class Reference

Declares IDL sequence< java.net.InetAddress >.

Inherits ArraySequence.

Public Member Functions

ˆ InetAddressSeq ()
Construct a new empty sequence.

ˆ InetAddressSeq (int initial maximum)
Construct a new empty sequence with the given maximum.

ˆ InetAddressSeq (Collection addresses)
Construct a new sequence containing all of the given addresses.

8.114.1 Detailed Description

Declares IDL sequence< java.net.InetAddress >.

Instantiates:

<<generic>> (p. 271) com.rti.dds.util.Sequence (p. 1432)

See also:

java.net.InetAddress

8.114.2 Constructor & Destructor Documentation

8.114.2.1 InetAddressSeq ()

Construct a new empty sequence.

8.114.2.2 InetAddressSeq (int initial maximum)

Construct a new empty sequence with the given maximum.

8.114.2.3 InetAddressSeq (Collection addresses)

Construct a new sequence containing all of the given addresses.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1080 Class Documentation

8.115 InstanceHandle t Class Reference

Type definition for an instance handle.

Inheritance diagram for InstanceHandle t::

Public Member Functions

ˆ InstanceHandle t ()

ˆ InstanceHandle t (InstanceHandle t src)

ˆ boolean is nil ()

Compare this handle to InstanceHandle t.HANDLE NIL (p. 1082).

ˆ Object copy from (Object src)

Copy value of a data type from source.

ˆ boolean equals (Object other)

Compares this instance handle with another handle for equality.

Static Public Attributes

ˆ static final InstanceHandle t HANDLE NIL

The NIL instance handle.

8.115.1 Detailed Description

Type definition for an instance handle.

Handle to identiy different instances of the same com.rti.dds.topic.Topic
(p. 1545) of a certain type.

See also:

com.rti.dds.topic.example.FooDataWriter.register instance
com.rti.dds.subscription.SampleInfo.instance handle (p. 1410)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.115 InstanceHandle t Class Reference 1081

8.115.2 Constructor & Destructor Documentation

8.115.2.1 InstanceHandle t ()

Construct a new instance handle equal to the nil handle.

See also:

HANDLE NIL (p. 1082)

8.115.2.2 InstanceHandle t (InstanceHandle t src)

Construct a new instance handle equal to the given handle.

Exceptions:

NullPointerException if src is null

8.115.3 Member Function Documentation

8.115.3.1 boolean is nil ()

Compare this handle to InstanceHandle t.HANDLE NIL (p. 1082).

Returns:

true if the given instance handle is equal to InstanceHandle -
t.HANDLE NIL (p. 1082) or false otherwise.

See also:

com.rti.dds.infrastructure.InstanceHandle t.equals (p. 1082)

8.115.3.2 Object copy from (Object src)

Copy value of a data type from source.

Copy data into this object from another. This copy is intended to be a deep
copy, so that all data members (recursively) are copied (not just resetting Object
references).

This operation returns the object that is copied if copy is successful.

Parameters:

src <<in>> (p. 271) The Object which contains the data to be copied.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1082 Class Documentation

Returns:

Generally, return this but special cases (such as Enum) exist.

Exceptions:

NullPointerException If src is null.

ClassCastException If src is not the same type as this.

Implements Copyable (p. 466).

8.115.3.3 boolean equals (Object other)

Compares this instance handle with another handle for equality.

Parameters:

other <<in>> (p. 271) The other handle to be compared with this han-
dle. Cannot be null.

Returns:

true if the two handles have equal values, or false otherwise.

See also:

com.rti.dds.infrastructure.InstanceHandle t.is nil (p. 1081)

8.115.4 Member Data Documentation

8.115.4.1 final InstanceHandle t HANDLE NIL [static]

The NIL instance handle.

Special com.rti.dds.infrastructure.InstanceHandle t (p. 1080) value

See also:

com.rti.dds.infrastructure.InstanceHandle t.is nil (p. 1081)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.116 InstanceHandleSeq Class Reference 1083

8.116 InstanceHandleSeq Class Reference

Instantiates com.rti.dds.util.Sequence (p. 1432) <
com.rti.dds.infrastructure.InstanceHandle t (p. 1080) > .

Inherits ArraySequence.

Public Member Functions

ˆ InstanceHandleSeq ()

Construct a new empty sequence for
com.rti.dds.infrastructure.InstanceHandle t (p. 1080) elements.

ˆ InstanceHandleSeq (int initial maximum)

Construct a new empty sequence for
com.rti.dds.infrastructure.InstanceHandle t (p. 1080) elements.

ˆ InstanceHandleSeq (Collection elements)

Construct a new sequence containing the given
com.rti.dds.infrastructure.InstanceHandle t (p. 1080) elements.

ˆ void fill (int size)

Fill this sequence with the given number of instance handles.

8.116.1 Detailed Description

Instantiates com.rti.dds.util.Sequence (p. 1432) <
com.rti.dds.infrastructure.InstanceHandle t (p. 1080) > .

When reading into this sequence (as with
com.rti.dds.publication.DataWriter.get matched subscriptions
(p. 550) or com.rti.dds.subscription.DataReader.get matched -
publications (p. 486)), the contents of any existing handles in this sequence
will be overwritten to avoid the expense of allocating new handles. There-
fore, it is generally not a good idea to add handles to a sequence that
you obtained elsewhere (e.g. from a Status object or as a result of calling
com.rti.dds.topic.example.FooDataWriter.register instance). Any null elements
will be replaced by new handles. To avoid allocating new handles on the fly, use
the method com.rti.dds.infrastructure.InstanceHandleSeq.fill (p. 1084).

Instantiates:

<<generic>> (p. 271) com.rti.dds.util.Sequence (p. 1432)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1084 Class Documentation

See also:

com.rti.dds.infrastructure.InstanceHandle t (p. 1080)
com.rti.dds.util.Sequence (p. 1432)

8.116.2 Constructor & Destructor Documentation

8.116.2.1 InstanceHandleSeq ()

Construct a new empty sequence for com.rti.dds.infrastructure.InstanceHandle -
t (p. 1080) elements.

The maximum of the sequence will be set to a default value.

8.116.2.2 InstanceHandleSeq (int initial maximum)

Construct a new empty sequence for com.rti.dds.infrastructure.InstanceHandle -
t (p. 1080) elements.

The maximum of the sequence will be set to the given value.

Parameters:

initial maximum <<in>> (p. 271) Maximum length of sequence.

8.116.2.3 InstanceHandleSeq (Collection elements)

Construct a new sequence containing the given
com.rti.dds.infrastructure.InstanceHandle t (p. 1080) elements.

The maximum of the sequence will be set to the size of the given collection.

Parameters:

elements <<in>> (p. 271) Elements to construct a sequence with.

8.116.3 Member Function Documentation

8.116.3.1 void fill (int size)

Fill this sequence with the given number of instance handles.

Ensure that this sequence has at least the given size and that all elements up
to that count are non-null.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.116 InstanceHandleSeq Class Reference 1085

Parameters:

size <<in>> (p. 271) Size of sequence to ensure.

Exceptions:

RETCODE BAD PARAMETER (p. 1363) If size < 0

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1086 Class Documentation

8.117 InstanceStateKind Class Reference

Indicates is the samples are from a live com.rti.dds.publication.DataWriter
(p. 538) or not.

Static Public Attributes

ˆ static final int ALIVE INSTANCE STATE = 0x0001 << 0

Instance is currently in existence.

ˆ static final int NOT ALIVE DISPOSED INSTANCE STATE =
0x0001 << 1

Not alive disposed instance. The instance has been disposed by a DataWriter.

ˆ static final int NOT ALIVE NO WRITERS INSTANCE STATE
= 0x0001 << 2

Not alive no writers for instance. None of the
com.rti.dds.publication.DataWriter (p. 538) objects are currently
alive (according to the LIVELINESS (p. 78)) are writing the instance.

ˆ static final int ANY INSTANCE STATE = 0xffff

Any instance state ALIVE INSTANCE STATE | NOT ALIVE -
DISPOSED INSTANCE STATE | NOT ALIVE NO WRITERS -
INSTANCE STATE.

ˆ static final int NOT ALIVE INSTANCE STATE = 0x006

Not alive instance state NOT ALIVE DISPOSED INSTANCE STATE |
NOT ALIVE NO WRITERS INSTANCE STATE.

8.117.1 Detailed Description

Indicates is the samples are from a live com.rti.dds.publication.DataWriter
(p. 538) or not.

For each instance, the middleware internally maintains an instance state. The
instance state can be:

ˆ InstanceStateKind.ALIVE INTANCE STATE indicates that (a) sam-
ples have been received for the instance, (b) there are live
com.rti.dds.publication.DataWriter (p. 538) entities writing the in-
stance, and (c) the instance has not been explicitly disposed (or else more
samples have been received after it was disposed).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.117 InstanceStateKind Class Reference 1087

ˆ InstanceStateKind.NOT ALIVE DISPOSED INSTANCE -
STATE (p. 1088) indicates the instance was explicitly disposed by a
com.rti.dds.publication.DataWriter (p. 538) by means of the dispose
operation.

ˆ InstanceStateKind.NOT ALIVE NO WRITERS INSTANCE -
STATE (p. 1088) indicates the instance has been declared as not-alive
by the com.rti.dds.subscription.DataReader (p. 473) because it
detected that there are no live com.rti.dds.publication.DataWriter
(p. 538) entities writing that instance.

The precise behavior events that cause the instance state to change depends on
the setting of the OWNERSHIP QoS:

ˆ If OWNERSHIP (p. 83) is set to OwnershipQosPol-
icyKind.EXCLUSIVE OWNERSHIP QOS, then the in-
stance state becomes InstanceStateKind.NOT ALIVE -
DISPOSED INSTANCE STATE (p. 1088) only if the
com.rti.dds.publication.DataWriter (p. 538) that ”owns” the
instance explicitly disposes it. The instance state becomes In-
stanceStateKind.ALIVE INTANCE STATE again only if the
com.rti.dds.publication.DataWriter (p. 538) that owns the instance
writes it.

ˆ If OWNERSHIP (p. 83) is set to OwnershipQosPolicyKind.SHARED -
OWNERSHIP QOS, then the instance state becomes InstanceS-
tateKind.NOT ALIVE DISPOSED INSTANCE STATE
(p. 1088) if any com.rti.dds.publication.DataWriter (p. 538)
explicitly disposes the instance. The instance state becomes
InstanceStateKind.ALIVE INTANCE STATE as soon as any
com.rti.dds.publication.DataWriter (p. 538) writes the instance
again.

The instance state available in the com.rti.dds.subscription.SampleInfo
(p. 1404) is a snapshot of the instance state of the instance at the time the
collection was obtained (i.e. at the time read or take was called). The instance
state is therefore the same for all samples in the returned collection that refer
to the same instance.

8.117.2 Member Data Documentation

8.117.2.1 final int ALIVE INSTANCE STATE = 0x0001 << 0
[static]

Instance is currently in existence.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1088 Class Documentation

8.117.2.2 final int NOT ALIVE DISPOSED INSTANCE STATE =
0x0001 << 1 [static]

Not alive disposed instance. The instance has been disposed by a DataWriter.

8.117.2.3 final int NOT ALIVE NO WRITERS -
INSTANCE STATE = 0x0001 << 2
[static]

Not alive no writers for instance. None of the
com.rti.dds.publication.DataWriter (p. 538) objects are currently alive
(according to the LIVELINESS (p. 78)) are writing the instance.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.118 IntSeq Class Reference 1089

8.118 IntSeq Class Reference

Instantiates com.rti.dds.util.Sequence (p. 1432) < int >.

Inheritance diagram for IntSeq::

Public Member Functions

ˆ IntSeq ()
Constructs an empty sequence of integers with an initial maximum of zero.

ˆ IntSeq (int initialMaximum)
Constructs an empty sequence of integers with the given initial maximum.

ˆ IntSeq (int[] ints)
Constructs a new sequence containing the given integers.

ˆ boolean addAllInt (int[] elements, int offset, int length)
Append length elements from the given array to this sequence, starting at
index offset in that array.

ˆ boolean addAllInt (int[] elements)
ˆ void addInt (int element)

Append the element to the end of the sequence.

ˆ void addInt (int index, int element)
Shift all elements in the sequence starting from the given index and add the
element to the given index.

ˆ int getInt (int index)
Returns the integer at the given index.

ˆ int setInt (int index, int element)
Set the new integer at the given index and return the old integer.

ˆ void setInt (int dstIndex, int[] elements, int srcIndex, int length)
Copy a portion of the given array into this sequence.

ˆ int[] toArrayInt (int[] array)
Return an array containing copy of the contents of this sequence.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1090 Class Documentation

ˆ int getMaximum ()
Get the current maximum number of elements that can be stored in this
sequence.

ˆ Object get (int index)
A wrapper for getInt(int) (p. 1091) that returns a java.lang.Integer.

ˆ Object set (int index, Object element)
A wrapper for setInt() (p. 1092).

ˆ void add (int index, Object element)
A wrapper for addInt(int, int) (p. 1091).

8.118.1 Detailed Description

Instantiates com.rti.dds.util.Sequence (p. 1432) < int >.

Instantiates:

<<generic>> (p. 271) com.rti.dds.util.Sequence (p. 1432)

See also:

int
com.rti.dds.util.Sequence (p. 1432)

8.118.2 Constructor & Destructor Documentation

8.118.2.1 IntSeq ()

Constructs an empty sequence of integers with an initial maximum of zero.

8.118.2.2 IntSeq (int initialMaximum)

Constructs an empty sequence of integers with the given initial maximum.

8.118.2.3 IntSeq (int[] ints)

Constructs a new sequence containing the given integers.

Parameters:

ints the initial contents of this sequence

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.118 IntSeq Class Reference 1091

Exceptions:

NullPointerException if the input array is null

8.118.3 Member Function Documentation

8.118.3.1 boolean addAllInt (int[] elements, int offset, int length)

Append length elements from the given array to this sequence, starting at index
offset in that array.

Exceptions:

NullPointerException if the given array is null.

8.118.3.2 boolean addAllInt (int[] elements)

Exceptions:

NullPointerException if the given array is null

8.118.3.3 void addInt (int element)

Append the element to the end of the sequence.

8.118.3.4 void addInt (int index, int element)

Shift all elements in the sequence starting from the given index and add the
element to the given index.

8.118.3.5 int getInt (int index)

Returns the integer at the given index.

Exceptions:

IndexOutOfBoundsException if the index is out of bounds.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1092 Class Documentation

8.118.3.6 int setInt (int index, int element)

Set the new integer at the given index and return the old integer.

Exceptions:

IndexOutOfBoundsException if the index is out of bounds.

8.118.3.7 void setInt (int dstIndex, int[] elements, int srcIndex,
int length)

Copy a portion of the given array into this sequence.

Parameters:

dstIndex the index at which to start copying into this sequence.

elements an array of primitive elements.

srcIndex the index at which to start copying from the given array.

length the number of elements to copy.

Exceptions:

IndexOutOfBoundsException if copying would cause access of data
outside array bounds.

8.118.3.8 int [] toArrayInt (int[] array)

Return an array containing copy of the contents of this sequence.

Parameters:

array The array into which this sequence should be copied. It may be
null. If it is, or if array length is too small, the array will be ignored,
and a new array of the necessary length will be created and copied
into instead.

Returns:

A non-null array containing a copy of the contents of this sequence.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.118 IntSeq Class Reference 1093

8.118.3.9 int getMaximum ()

Get the current maximum number of elements that can be stored in this se-
quence.

The maximum of the sequence represents the maximum number of elements that
the underlying buffer can hold. It does not represent the current number of
elements.

The maximum is a non-negative number. It is initialized when the sequence is
first created.

The maximum can be changed implicitly by adding an element to the sequence
with add() (p. 1094), or explicitly by calling Sequence.setMaximum.

Returns:

the current maximum of the sequence.

See also:

Sequence.size()

Implements Sequence (p. 1433).

8.118.3.10 Object get (int index) [virtual]

A wrapper for getInt(int) (p. 1091) that returns a java.lang.Integer.

See also:

java.util.List.get(int)

Implements AbstractPrimitiveSequence (p. 377).

8.118.3.11 Object set (int index, Object element) [virtual]

A wrapper for setInt() (p. 1092).

Exceptions:

ClassCastException if the element is not of type Integer.

See also:

java.util.List.set(int, java.lang.Object)

Implements AbstractPrimitiveSequence (p. 377).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1094 Class Documentation

8.118.3.12 void add (int index, Object element) [virtual]

A wrapper for addInt(int, int) (p. 1091).

Exceptions:

ClassCastException if the element is not of type Integer.

See also:

java.util.List.add(int, java.lang.Object)

Implements AbstractPrimitiveSequence (p. 378).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.119 KeyedBytes Class Reference 1095

8.119 KeyedBytes Class Reference

Built-in type consisting of a variable-length array of opaque bytes and a string
that is the key.

Inheritance diagram for KeyedBytes::

Public Member Functions

ˆ KeyedBytes ()
Default Constructor.

ˆ KeyedBytes (KeyedBytes src)
Copy constructor.

ˆ KeyedBytes (int size)
Constructor that specifies the allocated sizes.

ˆ Object copy from (Object src)
Copy value of a data type from source.

Public Attributes

ˆ String key
Instance key associated with the specified value.

ˆ int length
Number of bytes to serialize.

ˆ int offset
Offset from which to start serializing bytes .

ˆ byte[] value
com.rti.dds.type.builtin.Bytes (p. 417) array value.

8.119.1 Detailed Description

Built-in type consisting of a variable-length array of opaque bytes and a string
that is the key.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1096 Class Documentation

8.119.2 Constructor & Destructor Documentation

8.119.2.1 KeyedBytes ()

Default Constructor.

The default constructor initializes the newly created object with empty key, null
value, zero length, and zero offset.

8.119.2.2 KeyedBytes (KeyedBytes src)

Copy constructor.

Parameters:

src <<in>> (p. 271) Object to copy from.

Exceptions:

NullPointerException if src is null.

8.119.2.3 KeyedBytes (int size)

Constructor that specifies the allocated sizes.

After this method is called, key is initialized with the empty string and length
and offset are set to zero.

Parameters:

size <<in>> (p. 271) Size of the allocated bytes array.

Exceptions:

IllegalArgumentException if size is negative

8.119.3 Member Function Documentation

8.119.3.1 Object copy from (Object src)

Copy value of a data type from source.

Copy data into this object from another. This copy is intended to be a deep
copy, so that all data members (recursively) are copied (not just resetting Object
references).

This operation returns the object that is copied if copy is successful.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.119 KeyedBytes Class Reference 1097

Parameters:

src <<in>> (p. 271) The Object which contains the data to be copied.

Returns:

Generally, return this but special cases (such as Enum) exist.

Exceptions:

NullPointerException If src is null.

ClassCastException If src is not the same type as this.

Implements Copyable (p. 466).

8.119.4 Member Data Documentation

8.119.4.1 String key

Instance key associated with the specified value.

8.119.4.2 int length

Number of bytes to serialize.

8.119.4.3 int offset

Offset from which to start serializing bytes .

The first position of the bytes array has offset 0.

8.119.4.4 byte [] value

com.rti.dds.type.builtin.Bytes (p. 417) array value.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1098 Class Documentation

8.120 KeyedBytesDataReader Class Reference

<<interface>> (p. 271) Instantiates DataReader <
com.rti.dds.type.builtin.KeyedBytes (p. 1095) >.

Inheritance diagram for KeyedBytesDataReader::

Public Member Functions

ˆ void read (KeyedBytesSeq received data, SampleInfoSeq info seq, int
max samples, int sample states, int view states, int instance states)

Access a collection of data samples from the
com.rti.dds.subscription.DataReader (p. 473).

ˆ void take (KeyedBytesSeq received data, SampleInfoSeq info seq, int
max samples, int sample states, int view states, int instance states)

Access a collection of data-samples from the
com.rti.dds.subscription.DataReader (p. 473).

ˆ void read w condition (KeyedBytesSeq received data, SampleIn-
foSeq info seq, int max samples, ReadCondition condition)

Accesses via com.rti.dds.type.builtin.KeyedBytesDataReader.read
(p. 1101) the samples that match the criteria specified in the
com.rti.dds.subscription.ReadCondition (p. 1326).

ˆ void take w condition (KeyedBytesSeq received data, SampleIn-
foSeq info seq, int max samples, ReadCondition condition)

Analogous to com.rti.dds.type.builtin.KeyedBytesDataReader.read -
w condition (p. 1101) except it accesses samples via the
com.rti.dds.type.builtin.KeyedBytesDataReader.take (p. 1101)
operation.

ˆ void read next sample (KeyedBytes received data, SampleInfo sam-
ple info)

Copies the next not-previously-accessed data value from the
com.rti.dds.subscription.DataReader (p. 473).

ˆ void take next sample (KeyedBytes received data, SampleInfo sam-
ple info)

Copies the next not-previously-accessed data value from the
com.rti.dds.subscription.DataReader (p. 473).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.120 KeyedBytesDataReader Class Reference 1099

ˆ void read instance (KeyedBytesSeq received data, SampleInfoSeq
info seq, int max samples, InstanceHandle t a handle, int sample -
states, int view states, int instance states)

Access a collection of data samples from the
com.rti.dds.subscription.DataReader (p. 473).

ˆ void take instance (KeyedBytesSeq received data, SampleInfoSeq
info seq, int max samples, InstanceHandle t a handle, int sample -
states, int view states, int instance states)

Access a collection of data samples from the
com.rti.dds.subscription.DataReader (p. 473).

ˆ void read instance w condition (KeyedBytesSeq received data,
SampleInfoSeq info seq, int max samples, InstanceHandle t a handle,
ReadCondition condition)

Accesses via com.rti.dds.type.builtin.KeyedBytesDataReader.read -
instance (p. 1102) the samples that match the criteria specified in the
com.rti.dds.subscription.ReadCondition (p. 1326).

ˆ void take instance w condition (KeyedBytesSeq received data,
SampleInfoSeq info seq, int max samples, InstanceHandle t a handle,
ReadCondition condition)

Accesses via com.rti.dds.type.builtin.KeyedBytesDataReader.take -
instance (p. 1102) the samples that match the criteria specified in the
com.rti.dds.subscription.ReadCondition (p. 1326).

ˆ void read next instance (KeyedBytesSeq received data, SampleIn-
foSeq info seq, int max samples, InstanceHandle t a handle, int sam-
ple states, int view states, int instance states)

Access a collection of data samples from the
com.rti.dds.subscription.DataReader (p. 473).

ˆ void take next instance (KeyedBytesSeq received data, SampleIn-
foSeq info seq, int max samples, InstanceHandle t a handle, int sam-
ple states, int view states, int instance states)

Access a collection of data samples from the
com.rti.dds.subscription.DataReader (p. 473).

ˆ void read next instance w condition (KeyedBytesSeq received -
data, SampleInfoSeq info seq, int max samples, InstanceHandle t a -
handle, ReadCondition condition)

Accesses via com.rti.dds.type.builtin.KeyedBytesDataReader.read -
next instance (p. 1103) the samples that match the criteria specified in the
com.rti.dds.subscription.ReadCondition (p. 1326).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1100 Class Documentation

ˆ void take next instance w condition (KeyedBytesSeq received -
data, SampleInfoSeq info seq, int max samples, InstanceHandle t a -
handle, ReadCondition condition)

Accesses via com.rti.dds.type.builtin.KeyedBytesDataReader.take -
next instance (p. 1104) the samples that match the criteria specified in the
com.rti.dds.subscription.ReadCondition (p. 1326).

ˆ void return loan (KeyedBytesSeq received data, SampleInfoSeq
info seq)

Indicates to the com.rti.dds.subscription.DataReader (p. 473) that
the application is done accessing the collection of received data and
info seq obtained by some earlier invocation of read or take on the
com.rti.dds.subscription.DataReader (p. 473).

ˆ void get key value (KeyedBytes key holder, InstanceHandle t han-
dle)

Retrieve the instance key that corresponds to an instance handle.

ˆ String get key value (InstanceHandle t handle)

<<eXtension>> (p. 270) Retrieve the instance key that corresponds to an
instance handle.

ˆ InstanceHandle t lookup instance (KeyedBytes key holder)

Retrieve the instance handle that corresponds to an instance key holder.

ˆ InstanceHandle t lookup instance (String key)

<<eXtension>> (p. 270) Retrieve the instance handle that corresponds to
an instance key.

8.120.1 Detailed Description

<<interface>> (p. 271) Instantiates DataReader <
com.rti.dds.type.builtin.KeyedBytes (p. 1095) >.

See also:

com.rti.dds.topic.example.FooDataReader
com.rti.dds.subscription.DataReader (p. 473)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.120 KeyedBytesDataReader Class Reference 1101

8.120.2 Member Function Documentation

8.120.2.1 void read (KeyedBytesSeq received data, SampleInfoSeq
info seq, int max samples, int sample states, int
view states, int instance states)

Access a collection of data samples from the
com.rti.dds.subscription.DataReader (p. 473).

See also:

com.rti.dds.topic.example.FooDataReader.read

8.120.2.2 void take (KeyedBytesSeq received data, SampleInfoSeq
info seq, int max samples, int sample states, int
view states, int instance states)

Access a collection of data-samples from the
com.rti.dds.subscription.DataReader (p. 473).

See also:

com.rti.dds.topic.example.FooDataReader.take

8.120.2.3 void read w condition (KeyedBytesSeq received data,
SampleInfoSeq info seq, int max samples,
ReadCondition condition)

Accesses via com.rti.dds.type.builtin.KeyedBytesDataReader.read
(p. 1101) the samples that match the criteria specified in the
com.rti.dds.subscription.ReadCondition (p. 1326).

See also:

com.rti.dds.topic.example.FooDataReader.read w condition

8.120.2.4 void take w condition (KeyedBytesSeq received data,
SampleInfoSeq info seq, int max samples,
ReadCondition condition)

Analogous to com.rti.dds.type.builtin.KeyedBytesDataReader.read -
w condition (p. 1101) except it accesses samples via the
com.rti.dds.type.builtin.KeyedBytesDataReader.take (p. 1101) op-
eration.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1102 Class Documentation

See also:

com.rti.dds.topic.example.FooDataReader.take w condition

8.120.2.5 void read next sample (KeyedBytes received data,
SampleInfo sample info)

Copies the next not-previously-accessed data value from the
com.rti.dds.subscription.DataReader (p. 473).

See also:

com.rti.dds.topic.example.FooDataReader.read next sample

8.120.2.6 void take next sample (KeyedBytes received data,
SampleInfo sample info)

Copies the next not-previously-accessed data value from the
com.rti.dds.subscription.DataReader (p. 473).

See also:

com.rti.dds.topic.example.FooDataReader.take next sample

8.120.2.7 void read instance (KeyedBytesSeq received data,
SampleInfoSeq info seq, int max samples,
InstanceHandle t a handle, int sample states, int
view states, int instance states)

Access a collection of data samples from the
com.rti.dds.subscription.DataReader (p. 473).

See also:

com.rti.dds.topic.example.FooDataReader.read instance

8.120.2.8 void take instance (KeyedBytesSeq received data,
SampleInfoSeq info seq, int max samples,
InstanceHandle t a handle, int sample states, int
view states, int instance states)

Access a collection of data samples from the
com.rti.dds.subscription.DataReader (p. 473).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.120 KeyedBytesDataReader Class Reference 1103

See also:

com.rti.dds.topic.example.FooDataReader.take instance

8.120.2.9 void read instance w condition (KeyedBytesSeq
received data, SampleInfoSeq info seq, int max samples,
InstanceHandle t a handle, ReadCondition condition)

Accesses via com.rti.dds.type.builtin.KeyedBytesDataReader.read -
instance (p. 1102) the samples that match the criteria specified in the
com.rti.dds.subscription.ReadCondition (p. 1326).

See also:

com.rti.dds.topic.example.FooDataReader.read instance w condition

8.120.2.10 void take instance w condition (KeyedBytesSeq
received data, SampleInfoSeq info seq, int
max samples, InstanceHandle t a handle,
ReadCondition condition)

Accesses via com.rti.dds.type.builtin.KeyedBytesDataReader.take -
instance (p. 1102) the samples that match the criteria specified in the
com.rti.dds.subscription.ReadCondition (p. 1326).

See also:

com.rti.dds.topic.example.FooDataReader.take instance w condition

8.120.2.11 void read next instance (KeyedBytesSeq received data,
SampleInfoSeq info seq, int max samples,
InstanceHandle t a handle, int sample states, int
view states, int instance states)

Access a collection of data samples from the
com.rti.dds.subscription.DataReader (p. 473).

See also:

com.rti.dds.topic.example.FooDataReader.read next instance

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1104 Class Documentation

8.120.2.12 void take next instance (KeyedBytesSeq received data,
SampleInfoSeq info seq, int max samples,
InstanceHandle t a handle, int sample states, int
view states, int instance states)

Access a collection of data samples from the
com.rti.dds.subscription.DataReader (p. 473).

See also:

com.rti.dds.topic.example.FooDataReader.take next instance

8.120.2.13 void read next instance w condition (KeyedBytesSeq
received data, SampleInfoSeq info seq, int
max samples, InstanceHandle t a handle,
ReadCondition condition)

Accesses via com.rti.dds.type.builtin.KeyedBytesDataReader.read -
next instance (p. 1103) the samples that match the criteria specified in the
com.rti.dds.subscription.ReadCondition (p. 1326).

See also:

com.rti.dds.topic.example.FooDataReader.read next instance w condition

8.120.2.14 void take next instance w condition (KeyedBytesSeq
received data, SampleInfoSeq info seq, int
max samples, InstanceHandle t a handle,
ReadCondition condition)

Accesses via com.rti.dds.type.builtin.KeyedBytesDataReader.take -
next instance (p. 1104) the samples that match the criteria specified in the
com.rti.dds.subscription.ReadCondition (p. 1326).

See also:

com.rti.dds.topic.example.FooDataReader.take next instance w condition

8.120.2.15 void return loan (KeyedBytesSeq received data,
SampleInfoSeq info seq)

Indicates to the com.rti.dds.subscription.DataReader (p. 473) that
the application is done accessing the collection of received data and

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.120 KeyedBytesDataReader Class Reference 1105

info seq obtained by some earlier invocation of read or take on the
com.rti.dds.subscription.DataReader (p. 473).

See also:

com.rti.dds.topic.example.FooDataReader.return loan

8.120.2.16 void get key value (KeyedBytes key holder,
InstanceHandle t handle)

Retrieve the instance key that corresponds to an instance handle.

See also:

com.rti.dds.topic.example.FooDataReader.get key value

8.120.2.17 String get key value (InstanceHandle t handle)

<<eXtension>> (p. 270) Retrieve the instance key that corresponds to an
instance handle.

See also:

com.rti.dds.topic.example.FooDataReader.get key value

8.120.2.18 InstanceHandle t lookup instance (KeyedBytes
key holder)

Retrieve the instance handle that corresponds to an instance key holder.

See also:

com.rti.dds.topic.example.FooDataReader.lookup instance

8.120.2.19 InstanceHandle t lookup instance (String key)

<<eXtension>> (p. 270) Retrieve the instance handle that corresponds to
an instance key.

See also:

com.rti.dds.topic.example.FooDataReader.lookup instance

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1106 Class Documentation

8.121 KeyedBytesDataWriter Class Reference

<<interface>> (p. 271) Instantiates DataWriter <
com.rti.dds.type.builtin.KeyedBytes (p. 1095) >.

Inheritance diagram for KeyedBytesDataWriter::

Public Member Functions

ˆ InstanceHandle t register instance (KeyedBytes instance data)
Informs RTI Connext that the application will be modifying a particular in-
stance.

ˆ InstanceHandle t register instance (String key)
<<eXtension>> (p. 270) Informs RTI Connext that the application will be
modifying a particular instance.

ˆ InstanceHandle t register instance w timestamp (KeyedBytes
instance data, Time t source timestamp)

Performs the same functions as com.rti.dds.type.builtin.KeyedBytesDataWriter.register -
instance (p. 1109) except that the application provides the value for the
source timestamp.

ˆ InstanceHandle t register instance w timestamp (String key,
Time t source timestamp)

<<eXtension>> (p. 270) Performs the same functions as KeyedBytes-
DataWriter.register instance (p. 1109) except that the application pro-
vides the value for the source timestamp.

ˆ void unregister instance (KeyedBytes instance data, InstanceHan-
dle t handle)

Reverses the action of com.rti.dds.type.builtin.KeyedBytesDataWriter.register -
instance (p. 1109).

ˆ void unregister instance (String key, InstanceHandle t handle)
<<eXtension>> (p. 270) Reverses the action of KeyedBytes-
DataWriter.register instance (p. 1109).

ˆ void unregister instance w timestamp (KeyedBytes instance data,
InstanceHandle t handle, Time t source timestamp)

Performs the same function as com.rti.dds.type.builtin.KeyedBytesDataWriter.unregister -
instance (p. 1110) except that it also provides the value for the source -

timestamp.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.121 KeyedBytesDataWriter Class Reference 1107

ˆ void unregister instance w timestamp (String key, InstanceHan-
dle t handle, Time t source timestamp)

<<eXtension>> (p. 270) Performs the same function as KeyedBytes-
DataWriter.unregister instance (p. 1110) except that it also provides the
value for the source timestamp.

ˆ void write (KeyedBytes instance data, InstanceHandle t handle)
Modifies the value of a com.rti.dds.type.builtin.KeyedBytes (p. 1095)
data instance.

ˆ void write (String key, byte[] octets, int offset, int length, InstanceHan-
dle t handle)

<<eXtension>> (p. 270) Modifies the value of a
com.rti.dds.type.builtin.KeyedBytes (p. 1095) data instance.

ˆ void write (String key, ByteSeq octets, InstanceHandle t handle)
<<eXtension>> (p. 270) Modifies the value of a
com.rti.dds.type.builtin.KeyedBytes (p. 1095) data instance.

ˆ void write w timestamp (KeyedBytes instance data, InstanceHan-
dle t handle, Time t source timestamp)

Performs the same function as com.rti.dds.type.builtin.KeyedBytesDataWriter.write
(p. 1111) except that it also provides the value for the source timestamp.

ˆ void write w timestamp (String key, byte[] octets, int offset, int length,
InstanceHandle t handle, Time t source timestamp)

Performs the same function as KeyedBytesDataWriter.write (p. 1111)
except that it also provides the value for the source timestamp.

ˆ void write w timestamp (String key, ByteSeq octets, InstanceHan-
dle t handle, Time t source timestamp)

Performs the same function as KeyedBytesDataWriter.write (p. 1111)
except that it also provides the value for the source timestamp.

ˆ void dispose (KeyedBytes instance data, InstanceHandle t in-
stance handle)

Requests the middleware to delete the data.

ˆ void dispose (String key, InstanceHandle t instance handle)
<<eXtension>> (p. 270) Requests the middleware to delete the data.

ˆ void dispose w timestamp (KeyedBytes instance data, Instance-
Handle t instance handle, Time t source timestamp)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1108 Class Documentation

Performs the same functions as com.rti.dds.type.builtin.KeyedBytesDataWriter.dispose
(p. 1113) except that the application provides the value
for the source timestamp that is made available to
com.rti.dds.subscription.DataReader (p. 473) objects
by means of the source timestamp attribute inside the
com.rti.dds.subscription.SampleInfo (p. 1404).

ˆ void dispose w timestamp (String key, InstanceHandle t instance -
handle, Time t source timestamp)

<<eXtension>> (p. 270) Performs the same functions as Keyed-
BytesDataWriter.dispose (p. 1113) except that the applica-
tion provides the value for the source timestamp that is made
available to com.rti.dds.subscription.DataReader (p. 473) ob-
jects by means of the source timestamp attribute inside the
com.rti.dds.subscription.SampleInfo (p. 1404).

ˆ void get key value (KeyedBytes key holder, InstanceHandle t han-
dle)

Retrieve the instance key that corresponds to an instance handle.

ˆ String get key value (InstanceHandle t handle)

<<eXtension>> (p. 270) Retrieve the instance key that corresponds to an
instance handle.

ˆ InstanceHandle t lookup instance (KeyedBytes key holder)

Retrieve the instance handle that corresponds to an instance key holder.

ˆ InstanceHandle t lookup instance (String key)

<<eXtension>> (p. 270) Retrieve the instance handle that corresponds to
an instance key.

8.121.1 Detailed Description

<<interface>> (p. 271) Instantiates DataWriter <
com.rti.dds.type.builtin.KeyedBytes (p. 1095) >.

See also:

com.rti.dds.topic.example.FooDataWriter
com.rti.dds.publication.DataWriter (p. 538)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.121 KeyedBytesDataWriter Class Reference 1109

8.121.2 Member Function Documentation

8.121.2.1 InstanceHandle t register instance (KeyedBytes
instance data)

Informs RTI Connext that the application will be modifying a particular in-
stance.

See also:

com.rti.dds.topic.example.FooDataWriter.register instance

8.121.2.2 InstanceHandle t register instance (String key)

<<eXtension>> (p. 270) Informs RTI Connext that the application will be
modifying a particular instance.

See also:

com.rti.dds.topic.example.FooDataWriter.register instance

8.121.2.3 InstanceHandle t register instance w timestamp
(KeyedBytes instance data, Time t source timestamp)

Performs the same functions as com.rti.dds.type.builtin.KeyedBytesDataWriter.register -
instance (p. 1109) except that the application provides the value for the
source timestamp.

See also:

com.rti.dds.topic.example.FooDataWriter.register instance w timestamp

8.121.2.4 InstanceHandle t register instance w timestamp (String
key, Time t source timestamp)

<<eXtension>> (p. 270) Performs the same functions as KeyedBytes-
DataWriter.register instance (p. 1109) except that the application provides
the value for the source timestamp.

See also:

com.rti.dds.topic.example.FooDataWriter.register instance w timestamp

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1110 Class Documentation

8.121.2.5 void unregister instance (KeyedBytes instance data,
InstanceHandle t handle)

Reverses the action of com.rti.dds.type.builtin.KeyedBytesDataWriter.register -
instance (p. 1109).

See also:

com.rti.dds.topic.example.FooDataWriter.unregister instance

8.121.2.6 void unregister instance (String key, InstanceHandle t
handle)

<<eXtension>> (p. 270) Reverses the action of KeyedBytes-
DataWriter.register instance (p. 1109).

See also:

com.rti.dds.topic.example.FooDataWriter.unregister instance

8.121.2.7 void unregister instance w timestamp (KeyedBytes
instance data, InstanceHandle t handle, Time t
source timestamp)

Performs the same function as com.rti.dds.type.builtin.KeyedBytesDataWriter.unregister -
instance (p. 1110) except that it also provides the value for the source -
timestamp.

See also:

FooDataWriter.unregister instance w timestamp

8.121.2.8 void unregister instance w timestamp (String key,
InstanceHandle t handle, Time t source timestamp)

<<eXtension>> (p. 270) Performs the same function as KeyedBytes-
DataWriter.unregister instance (p. 1110) except that it also provides the
value for the source timestamp.

See also:

FooDataWriter.unregister instance w timestamp

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.121 KeyedBytesDataWriter Class Reference 1111

8.121.2.9 void write (KeyedBytes instance data, InstanceHandle t
handle)

Modifies the value of a com.rti.dds.type.builtin.KeyedBytes (p. 1095) data
instance.

See also:

com.rti.dds.topic.example.FooDataWriter.write

8.121.2.10 void write (String key, byte[] octets, int offset, int
length, InstanceHandle t handle)

<<eXtension>> (p. 270) Modifies the value of a
com.rti.dds.type.builtin.KeyedBytes (p. 1095) data instance.

Parameters:

key <<in>> (p. 271) Instance key.

octets <<in>> (p. 271) Array of bytes to be published.

offset <<in>> (p. 271) Offset from which to start publishing.

length <<in>> (p. 271) Number of bytes to be published.

handle <<in>> (p. 271) Either the handle returned by a previous call
to com.rti.dds.type.builtin.KeyedBytesDataWriter.register -
instance (p. 1109), or else the special value In-
stanceHandle t.HANDLE NIL (p. 1082). See
com.rti.dds.topic.example.FooDataWriter.write.

See also:

com.rti.dds.topic.example.FooDataWriter.write

8.121.2.11 void write (String key, ByteSeq octets,
InstanceHandle t handle)

<<eXtension>> (p. 270) Modifies the value of a
com.rti.dds.type.builtin.KeyedBytes (p. 1095) data instance.

Parameters:

key <<in>> (p. 271) Instance key.

octets <<in>> (p. 271) Sequence of bytes to be published.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1112 Class Documentation

handle <<in>> (p. 271) Either the handle returned by a previous call
to com.rti.dds.type.builtin.KeyedBytesDataWriter.register -
instance (p. 1109), or else the special value In-
stanceHandle t.HANDLE NIL (p. 1082). See
com.rti.dds.topic.example.FooDataWriter.write.

See also:

com.rti.dds.topic.example.FooDataWriter.write

8.121.2.12 void write w timestamp (KeyedBytes instance data,
InstanceHandle t handle, Time t source timestamp)

Performs the same function as com.rti.dds.type.builtin.KeyedBytesDataWriter.write
(p. 1111) except that it also provides the value for the source timestamp.

See also:

com.rti.dds.topic.example.FooDataWriter.write w timestamp

8.121.2.13 void write w timestamp (String key, byte[] octets, int
offset, int length, InstanceHandle t handle, Time t
source timestamp)

Performs the same function as KeyedBytesDataWriter.write (p. 1111) ex-
cept that it also provides the value for the source timestamp.

Parameters:

key <<in>> (p. 271) Instance key.

octets <<in>> (p. 271) Array of bytes to be published.

offset <<in>> (p. 271) Offset from which to start publishing.

length <<in>> (p. 271) Number of bytes to be published.

handle <<in>> (p. 271) Either the handle returned by a previous call
to com.rti.dds.type.builtin.KeyedBytesDataWriter.register -
instance (p. 1109), or else the special value In-
stanceHandle t.HANDLE NIL (p. 1082). See
com.rti.dds.topic.example.FooDataWriter.write.

source timestamp <<in>> (p. 271) The timestamp value must be
greater than or equal to the timestamp value used in the last writer
operation. See com.rti.dds.topic.example.FooDataWriter.write w -
timestamp. Cannot be NULL.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.121 KeyedBytesDataWriter Class Reference 1113

See also:

com.rti.dds.topic.example.FooDataWriter.write

8.121.2.14 void write w timestamp (String key, ByteSeq octets,
InstanceHandle t handle, Time t source timestamp)

Performs the same function as KeyedBytesDataWriter.write (p. 1111) ex-
cept that it also provides the value for the source timestamp.

Parameters:

key <<in>> (p. 271) Instance key.
octets <<in>> (p. 271) Sequence of bytes to be published.
handle <<in>> (p. 271) Either the handle returned by a previous call

to com.rti.dds.type.builtin.KeyedBytesDataWriter.register -
instance (p. 1109), or else the special value In-
stanceHandle t.HANDLE NIL (p. 1082). See
com.rti.dds.topic.example.FooDataWriter.write.

source timestamp <<in>> (p. 271) The timestamp value must be
greater than or equal to the timestamp value used in the last writer
operation. See com.rti.dds.topic.example.FooDataWriter.write w -
timestamp. Cannot be NULL.

See also:

com.rti.dds.topic.example.FooDataWriter.write

8.121.2.15 void dispose (KeyedBytes instance data,
InstanceHandle t instance handle)

Requests the middleware to delete the data.

See also:

com.rti.dds.topic.example.FooDataWriter.dispose

8.121.2.16 void dispose (String key, InstanceHandle t
instance handle)

<<eXtension>> (p. 270) Requests the middleware to delete the data.

See also:

com.rti.dds.topic.example.FooDataWriter.dispose

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1114 Class Documentation

8.121.2.17 void dispose w timestamp (KeyedBytes instance data,
InstanceHandle t instance handle, Time t
source timestamp)

Performs the same functions as com.rti.dds.type.builtin.KeyedBytesDataWriter.dispose
(p. 1113) except that the application provides the value for the source -
timestamp that is made available to com.rti.dds.subscription.DataReader
(p. 473) objects by means of the source timestamp attribute inside the
com.rti.dds.subscription.SampleInfo (p. 1404).

See also:

com.rti.dds.topic.example.FooDataWriter.dispose w timestamp

8.121.2.18 void dispose w timestamp (String key,
InstanceHandle t instance handle, Time t
source timestamp)

<<eXtension>> (p. 270) Performs the same functions as Keyed-
BytesDataWriter.dispose (p. 1113) except that the applica-
tion provides the value for the source timestamp that is made
available to com.rti.dds.subscription.DataReader (p. 473) ob-
jects by means of the source timestamp attribute inside the
com.rti.dds.subscription.SampleInfo (p. 1404).

See also:

com.rti.dds.topic.example.FooDataWriter.dispose w timestamp

8.121.2.19 void get key value (KeyedBytes key holder,
InstanceHandle t handle)

Retrieve the instance key that corresponds to an instance handle.

See also:

com.rti.dds.topic.example.FooDataWriter.get key value

8.121.2.20 String get key value (InstanceHandle t handle)

<<eXtension>> (p. 270) Retrieve the instance key that corresponds to an
instance handle.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.121 KeyedBytesDataWriter Class Reference 1115

See also:

com.rti.dds.topic.example.FooDataWriter.get key value

8.121.2.21 InstanceHandle t lookup instance (KeyedBytes
key holder)

Retrieve the instance handle that corresponds to an instance key holder.

See also:

com.rti.dds.topic.example.FooDataWriter.lookup instance

8.121.2.22 InstanceHandle t lookup instance (String key)

<<eXtension>> (p. 270) Retrieve the instance handle that corresponds to
an instance key.

See also:

com.rti.dds.topic.example.FooDataWriter.lookup instance

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1116 Class Documentation

8.122 KeyedBytesSeq Class Reference

Instantiates com.rti.dds.util.Sequence (p. 1432) <
com.rti.dds.type.builtin.KeyedBytes (p. 1095) >.

Inheritance diagram for KeyedBytesSeq::

Public Member Functions

ˆ KeyedBytesSeq ()

Constructs an empty sequence of com.rti.dds.type.builtin.KeyedBytes
(p. 1095) objects with an initial maximum of zero.

ˆ KeyedBytesSeq (int initialMaximum)

Constructs an empty sequence of com.rti.dds.type.builtin.KeyedBytes
(p. 1095) objects with the given initial maximum.

ˆ KeyedBytesSeq (Collection elements)

Constructs a new sequence containing the given
com.rti.dds.type.builtin.KeyedBytes (p. 1095) objects.

ˆ Object copy from (Object src)

Package Attributes

ˆ transient Sequence loanedInfoSequence = null

8.122.1 Detailed Description

Instantiates com.rti.dds.util.Sequence (p. 1432) <
com.rti.dds.type.builtin.KeyedBytes (p. 1095) >.

Instantiates:

<<generic>> (p. 271) com.rti.dds.util.Sequence (p. 1432)

See also:

com.rti.dds.type.builtin.KeyedBytes (p. 1095)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.122 KeyedBytesSeq Class Reference 1117

8.122.2 Constructor & Destructor Documentation

8.122.2.1 KeyedBytesSeq ()

Constructs an empty sequence of com.rti.dds.type.builtin.KeyedBytes
(p. 1095) objects with an initial maximum of zero.

8.122.2.2 KeyedBytesSeq (int initialMaximum)

Constructs an empty sequence of com.rti.dds.type.builtin.KeyedBytes
(p. 1095) objects with the given initial maximum.

8.122.2.3 KeyedBytesSeq (Collection elements)

Constructs a new sequence containing the given
com.rti.dds.type.builtin.KeyedBytes (p. 1095) objects.

Parameters:

elements the initial contents of this sequence.

Exceptions:

NullPointerException if the input collection is null

8.122.3 Member Function Documentation

8.122.3.1 Object copy from (Object src)

Copy data into this object from another. The result of this method is that
both this and src will be the same size and contain the same data.

Parameters:

src The Object which contains the data to be copied

Returns:

this

Exceptions:

NullPointerException If src is null.

ClassCastException If src is not a Sequence OR if one of the objects
contained in the Sequence is not of the expected type.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1118 Class Documentation

See also:

com.rti.dds.infrastructure.Copyable.copy from
(p. 466)(java.lang.Object)

Implements Copyable (p. 466).

8.122.4 Member Data Documentation

8.122.4.1 transient Sequence loanedInfoSequence = null
[package]

When a memory loan has been taken out in the lower layers of NDDS, store a
pointer to the native sequence here. That way, when we call finish(), we can
give the memory back.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.123 KeyedBytesTypeSupport Class Reference 1119

8.123 KeyedBytesTypeSupport Class Reference

<<interface>> (p. 271) com.rti.dds.type.builtin.KeyedBytes (p. 1095)
type support.

Inheritance diagram for KeyedBytesTypeSupport::

Static Public Member Functions

ˆ static void register type (DomainParticipant participant, String
type name)

Allows an application to communicate to RTI Connext the existence of the
com.rti.dds.type.builtin.KeyedBytes (p. 1095) data type.

ˆ static void unregister type (DomainParticipant participant, String
type name)

Allows an application to unregister the
com.rti.dds.type.builtin.KeyedBytes (p. 1095) data type from RTI
Connext. After calling unregister type, no further communication using this
type is possible.

ˆ static String get type name ()
Get the default name for the com.rti.dds.type.builtin.KeyedBytes
(p. 1095) type.

8.123.1 Detailed Description

<<interface>> (p. 271) com.rti.dds.type.builtin.KeyedBytes (p. 1095)
type support.

8.123.2 Member Function Documentation

8.123.2.1 static void register type (DomainParticipant participant,
String type name) [static]

Allows an application to communicate to RTI Connext the existence of the
com.rti.dds.type.builtin.KeyedBytes (p. 1095) data type.

By default, The com.rti.dds.type.builtin.KeyedBytes
(p. 1095) built-in type is automatically registered when a Do-
mainParticipant is created using the type name returned by

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1120 Class Documentation

com.rti.dds.type.builtin.KeyedBytesTypeSupport.get type name
(p. 1121). Therefore, the usage of this function is optional and it is only
required when the automatic built-in type registration is disabled using the
participant property ”dds.builtin type.auto register”.

This method can also be used to register the same
com.rti.dds.type.builtin.KeyedBytesTypeSupport (p. 1119) with a
com.rti.dds.domain.DomainParticipant (p. 629) using different values for
the type name.

If register type is called multiple times with the same
com.rti.dds.domain.DomainParticipant (p. 629) and type name, the
second (and subsequent) registrations are ignored by the operation.

Parameters:

participant <<in>> (p. 271) the com.rti.dds.domain.DomainParticipant
(p. 629) to register the data type com.rti.dds.type.builtin.Bytes
(p. 417) with. Cannot be null.

type name <<in>> (p. 271) the type name under with the data
type com.rti.dds.type.builtin.KeyedBytes (p. 1095) is reg-
istered with the participant; this type name is used when
creating a new com.rti.dds.topic.Topic (p. 1545). (See
com.rti.dds.domain.DomainParticipant.create topic (p. 670).)
The name may not be null or longer than 255 characters.

Exceptions:

One of the Standard Return Codes (p. 104), RETCODE -
PRECONDITION NOT MET or RETCODE OUT OF -
RESOURCES.

MT Safety:

UNSAFE on the FIRST call. It is not safe for two threads to simultaneously
make the first call to register a type. Subsequent calls are thread safe.

See also:

com.rti.dds.domain.DomainParticipant.create topic (p. 670)

8.123.2.2 static void unregister type (DomainParticipant
participant, String type name) [static]

Allows an application to unregister the com.rti.dds.type.builtin.KeyedBytes
(p. 1095) data type from RTI Connext. After calling unregister type, no further
communication using this type is possible.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.123 KeyedBytesTypeSupport Class Reference 1121

Precondition:

The com.rti.dds.type.builtin.KeyedBytes (p. 1095) type with type -
name is registered with the participant and all com.rti.dds.topic.Topic
(p. 1545) objects referencing the type have been destroyed. If the type is
not registered with the participant, or if any com.rti.dds.topic.Topic
(p. 1545) is associated with the type, the operation will fail with RET-
CODE ERROR.

Postcondition:

All information about the type is removed from RTI Connext. No further
communication using this type is possible.

Parameters:

participant <<in>> (p. 271) the com.rti.dds.domain.DomainParticipant
(p. 629) to unregister the data type
com.rti.dds.type.builtin.KeyedBytes (p. 1095) from. Cannot be
null.

type name <<in>> (p. 271) the type name under with the data type
com.rti.dds.type.builtin.KeyedBytes (p. 1095) is registered with
the participant. The name should match a name that has been previ-
ously used to register a type with the participant. Cannot be null.

Exceptions:

One of the Standard Return Codes (p. 104), RETCODE BAD -
PARAMETER or RETCODE ERROR

MT Safety:

SAFE.

See also:

com.rti.dds.type.builtin.KeyedBytesTypeSupport.register type
(p. 1119)

8.123.2.3 static String get type name () [static]

Get the default name for the com.rti.dds.type.builtin.KeyedBytes (p. 1095)
type.

Can be used for calling com.rti.dds.type.builtin.KeyedBytesTypeSupport.register -
type (p. 1119) or creating com.rti.dds.topic.Topic (p. 1545).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1122 Class Documentation

Returns:

default name for the com.rti.dds.type.builtin.KeyedBytes (p. 1095)
type.

See also:

com.rti.dds.type.builtin.KeyedBytesTypeSupport.register type
(p. 1119)
com.rti.dds.domain.DomainParticipant.create topic (p. 670)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.124 KeyedString Class Reference 1123

8.124 KeyedString Class Reference

Keyed string built-in type.

Inheritance diagram for KeyedString::

Public Member Functions

ˆ KeyedString ()

Default Constructor.

ˆ KeyedString (KeyedString src)

Copy constructor.

ˆ Object copy from (Object src)

Copy value of a data type from source.

Public Attributes

ˆ String key

Instance key associated with the specified value.

ˆ String value

String value.

8.124.1 Detailed Description

Keyed string built-in type.

8.124.2 Constructor & Destructor Documentation

8.124.2.1 KeyedString ()

Default Constructor.

The default constructor initializes the newly created object with empty key and
value.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1124 Class Documentation

8.124.2.2 KeyedString (KeyedString src)

Copy constructor.

Parameters:

src <<in>> (p. 271) Object to copy from.

Exceptions:

NullPointerException if src is null.

8.124.3 Member Function Documentation

8.124.3.1 Object copy from (Object src)

Copy value of a data type from source.

Copy data into this object from another. This copy is intended to be a deep
copy, so that all data members (recursively) are copied (not just resetting Object
references).

This operation returns the object that is copied if copy is successful.

Parameters:

src <<in>> (p. 271) The Object which contains the data to be copied.

Returns:

Generally, return this but special cases (such as Enum) exist.

Exceptions:

NullPointerException If src is null.
ClassCastException If src is not the same type as this.

Implements Copyable (p. 466).

8.124.4 Member Data Documentation

8.124.4.1 String key

Instance key associated with the specified value.

8.124.4.2 String value

String value.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.125 KeyedStringDataReader Class Reference 1125

8.125 KeyedStringDataReader Class Reference

<<interface>> (p. 271) Instantiates DataReader <
com.rti.dds.type.builtin.KeyedString (p. 1123) >.

Inheritance diagram for KeyedStringDataReader::

Public Member Functions

ˆ void read (KeyedStringSeq received data, SampleInfoSeq info seq,
int max samples, int sample states, int view states, int instance states)

Access a collection of data samples from the
com.rti.dds.subscription.DataReader (p. 473).

ˆ void take (KeyedStringSeq received data, SampleInfoSeq info seq,
int max samples, int sample states, int view states, int instance states)

Access a collection of data-samples from the
com.rti.dds.subscription.DataReader (p. 473).

ˆ void read w condition (KeyedStringSeq received data, SampleIn-
foSeq info seq, int max samples, ReadCondition condition)

Accesses via com.rti.dds.type.builtin.KeyedStringDataReader.read
(p. 1128) the samples that match the criteria specified in the
com.rti.dds.subscription.ReadCondition (p. 1326).

ˆ void take w condition (KeyedStringSeq received data, SampleIn-
foSeq info seq, int max samples, ReadCondition condition)

Analogous to com.rti.dds.type.builtin.KeyedStringDataReader.read -
w condition (p. 1128) except it accesses samples via the
com.rti.dds.type.builtin.KeyedStringDataReader.take (p. 1128)
operation.

ˆ void read next sample (KeyedString received data, SampleInfo
sample info)

Copies the next not-previously-accessed data value from the
com.rti.dds.subscription.DataReader (p. 473).

ˆ void take next sample (KeyedString received data, SampleInfo
sample info)

Copies the next not-previously-accessed data value from the
com.rti.dds.subscription.DataReader (p. 473).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1126 Class Documentation

ˆ void read instance (KeyedStringSeq received data, SampleInfoSeq
info seq, int max samples, InstanceHandle t a handle, int sample -
states, int view states, int instance states)

Access a collection of data samples from the
com.rti.dds.subscription.DataReader (p. 473).

ˆ void take instance (KeyedStringSeq received data, SampleInfoSeq
info seq, int max samples, InstanceHandle t a handle, int sample -
states, int view states, int instance states)

Access a collection of data samples from the
com.rti.dds.subscription.DataReader (p. 473).

ˆ void read instance w condition (KeyedStringSeq received data,
SampleInfoSeq info seq, int max samples, InstanceHandle t a handle,
ReadCondition condition)

Accesses via com.rti.dds.type.builtin.KeyedStringDataReader.read -
instance (p. 1129) the samples that match the criteria specified in the
com.rti.dds.subscription.ReadCondition (p. 1326).

ˆ void take instance w condition (KeyedStringSeq received data,
SampleInfoSeq info seq, int max samples, InstanceHandle t a handle,
ReadCondition condition)

Accesses via com.rti.dds.type.builtin.KeyedStringDataReader.take -
instance (p. 1129) the samples that match the criteria specified in the
com.rti.dds.subscription.ReadCondition (p. 1326).

ˆ void read next instance (KeyedStringSeq received data, SampleIn-
foSeq info seq, int max samples, InstanceHandle t a handle, int sam-
ple states, int view states, int instance states)

Access a collection of data samples from the
com.rti.dds.subscription.DataReader (p. 473).

ˆ void take next instance (KeyedStringSeq received data, SampleIn-
foSeq info seq, int max samples, InstanceHandle t a handle, int sam-
ple states, int view states, int instance states)

Access a collection of data samples from the
com.rti.dds.subscription.DataReader (p. 473).

ˆ void read next instance w condition (KeyedStringSeq received -
data, SampleInfoSeq info seq, int max samples, InstanceHandle t a -
handle, ReadCondition condition)

Accesses via com.rti.dds.type.builtin.KeyedStringDataReader.read -
next instance (p. 1130) the samples that match the criteria specified in the
com.rti.dds.subscription.ReadCondition (p. 1326).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.125 KeyedStringDataReader Class Reference 1127

ˆ void take next instance w condition (KeyedStringSeq received -
data, SampleInfoSeq info seq, int max samples, InstanceHandle t a -
handle, ReadCondition condition)

Accesses via com.rti.dds.type.builtin.KeyedStringDataReader.take -
next instance (p. 1131) the samples that match the criteria specified in the
com.rti.dds.subscription.ReadCondition (p. 1326).

ˆ void return loan (KeyedStringSeq received data, SampleInfoSeq
info seq)

Indicates to the com.rti.dds.subscription.DataReader (p. 473) that
the application is done accessing the collection of received data and
info seq obtained by some earlier invocation of read or take on the
com.rti.dds.subscription.DataReader (p. 473).

ˆ void get key value (KeyedString key holder, InstanceHandle t han-
dle)

Retrieve the instance key that corresponds to an instance handle.

ˆ String get key value (InstanceHandle t handle)

<<eXtension>> (p. 270) Retrieve the instance key that corresponds to an
instance handle.

ˆ InstanceHandle t lookup instance (KeyedString key holder)

Retrieve the instance handle that corresponds to an instance key holder.

ˆ InstanceHandle t lookup instance (String key)

<<eXtension>> (p. 270) Retrieve the instance handle that corresponds to
an instance key.

8.125.1 Detailed Description

<<interface>> (p. 271) Instantiates DataReader <
com.rti.dds.type.builtin.KeyedString (p. 1123) >.

See also:

com.rti.dds.topic.example.FooDataReader
com.rti.dds.subscription.DataReader (p. 473)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1128 Class Documentation

8.125.2 Member Function Documentation

8.125.2.1 void read (KeyedStringSeq received data, SampleInfoSeq
info seq, int max samples, int sample states, int
view states, int instance states)

Access a collection of data samples from the
com.rti.dds.subscription.DataReader (p. 473).

See also:

com.rti.dds.topic.example.FooDataReader.read

8.125.2.2 void take (KeyedStringSeq received data, SampleInfoSeq
info seq, int max samples, int sample states, int
view states, int instance states)

Access a collection of data-samples from the
com.rti.dds.subscription.DataReader (p. 473).

See also:

com.rti.dds.topic.example.FooDataReader.take

8.125.2.3 void read w condition (KeyedStringSeq received data,
SampleInfoSeq info seq, int max samples,
ReadCondition condition)

Accesses via com.rti.dds.type.builtin.KeyedStringDataReader.read
(p. 1128) the samples that match the criteria specified in the
com.rti.dds.subscription.ReadCondition (p. 1326).

See also:

com.rti.dds.topic.example.FooDataReader.read w condition

8.125.2.4 void take w condition (KeyedStringSeq received data,
SampleInfoSeq info seq, int max samples,
ReadCondition condition)

Analogous to com.rti.dds.type.builtin.KeyedStringDataReader.read -
w condition (p. 1128) except it accesses samples via the
com.rti.dds.type.builtin.KeyedStringDataReader.take (p. 1128) op-
eration.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.125 KeyedStringDataReader Class Reference 1129

See also:

com.rti.dds.topic.example.FooDataReader.take w condition

8.125.2.5 void read next sample (KeyedString received data,
SampleInfo sample info)

Copies the next not-previously-accessed data value from the
com.rti.dds.subscription.DataReader (p. 473).

See also:

com.rti.dds.topic.example.FooDataReader.read next sample

8.125.2.6 void take next sample (KeyedString received data,
SampleInfo sample info)

Copies the next not-previously-accessed data value from the
com.rti.dds.subscription.DataReader (p. 473).

See also:

com.rti.dds.topic.example.FooDataReader.take next sample

8.125.2.7 void read instance (KeyedStringSeq received data,
SampleInfoSeq info seq, int max samples,
InstanceHandle t a handle, int sample states, int
view states, int instance states)

Access a collection of data samples from the
com.rti.dds.subscription.DataReader (p. 473).

See also:

com.rti.dds.topic.example.FooDataReader.read instance

8.125.2.8 void take instance (KeyedStringSeq received data,
SampleInfoSeq info seq, int max samples,
InstanceHandle t a handle, int sample states, int
view states, int instance states)

Access a collection of data samples from the
com.rti.dds.subscription.DataReader (p. 473).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1130 Class Documentation

See also:

com.rti.dds.topic.example.FooDataReader.take instance

8.125.2.9 void read instance w condition (KeyedStringSeq
received data, SampleInfoSeq info seq, int max samples,
InstanceHandle t a handle, ReadCondition condition)

Accesses via com.rti.dds.type.builtin.KeyedStringDataReader.read -
instance (p. 1129) the samples that match the criteria specified in the
com.rti.dds.subscription.ReadCondition (p. 1326).

See also:

com.rti.dds.topic.example.FooDataReader.read instance w condition

8.125.2.10 void take instance w condition (KeyedStringSeq
received data, SampleInfoSeq info seq, int
max samples, InstanceHandle t a handle,
ReadCondition condition)

Accesses via com.rti.dds.type.builtin.KeyedStringDataReader.take -
instance (p. 1129) the samples that match the criteria specified in the
com.rti.dds.subscription.ReadCondition (p. 1326).

See also:

com.rti.dds.topic.example.FooDataReader.take instance w condition

8.125.2.11 void read next instance (KeyedStringSeq received data,
SampleInfoSeq info seq, int max samples,
InstanceHandle t a handle, int sample states, int
view states, int instance states)

Access a collection of data samples from the
com.rti.dds.subscription.DataReader (p. 473).

See also:

com.rti.dds.topic.example.FooDataReader.read next instance

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.125 KeyedStringDataReader Class Reference 1131

8.125.2.12 void take next instance (KeyedStringSeq received data,
SampleInfoSeq info seq, int max samples,
InstanceHandle t a handle, int sample states, int
view states, int instance states)

Access a collection of data samples from the
com.rti.dds.subscription.DataReader (p. 473).

See also:

com.rti.dds.topic.example.FooDataReader.take next instance

8.125.2.13 void read next instance w condition (KeyedStringSeq
received data, SampleInfoSeq info seq, int
max samples, InstanceHandle t a handle,
ReadCondition condition)

Accesses via com.rti.dds.type.builtin.KeyedStringDataReader.read -
next instance (p. 1130) the samples that match the criteria specified in the
com.rti.dds.subscription.ReadCondition (p. 1326).

See also:

com.rti.dds.topic.example.FooDataReader.read next instance w condition

8.125.2.14 void take next instance w condition (KeyedStringSeq
received data, SampleInfoSeq info seq, int
max samples, InstanceHandle t a handle,
ReadCondition condition)

Accesses via com.rti.dds.type.builtin.KeyedStringDataReader.take -
next instance (p. 1131) the samples that match the criteria specified in the
com.rti.dds.subscription.ReadCondition (p. 1326).

See also:

com.rti.dds.topic.example.FooDataReader.take next instance w condition

8.125.2.15 void return loan (KeyedStringSeq received data,
SampleInfoSeq info seq)

Indicates to the com.rti.dds.subscription.DataReader (p. 473) that
the application is done accessing the collection of received data and

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1132 Class Documentation

info seq obtained by some earlier invocation of read or take on the
com.rti.dds.subscription.DataReader (p. 473).

See also:

com.rti.dds.topic.example.FooDataReader.return loan

8.125.2.16 void get key value (KeyedString key holder,
InstanceHandle t handle)

Retrieve the instance key that corresponds to an instance handle.

See also:

com.rti.dds.topic.example.FooDataReader.get key value

8.125.2.17 String get key value (InstanceHandle t handle)

<<eXtension>> (p. 270) Retrieve the instance key that corresponds to an
instance handle.

See also:

com.rti.dds.topic.example.FooDataReader.get key value

8.125.2.18 InstanceHandle t lookup instance (KeyedString
key holder)

Retrieve the instance handle that corresponds to an instance key holder.

See also:

com.rti.dds.topic.example.FooDataReader.lookup instance

8.125.2.19 InstanceHandle t lookup instance (String key)

<<eXtension>> (p. 270) Retrieve the instance handle that corresponds to
an instance key.

See also:

com.rti.dds.topic.example.FooDataReader.lookup instance

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.126 KeyedStringDataWriter Class Reference 1133

8.126 KeyedStringDataWriter Class Reference

<<interface>> (p. 271) Instantiates DataWriter <
com.rti.dds.type.builtin.KeyedString (p. 1123) >.

Inheritance diagram for KeyedStringDataWriter::

Public Member Functions

ˆ InstanceHandle t register instance (KeyedString instance data)
Informs RTI Connext that the application will be modifying a particular in-
stance.

ˆ InstanceHandle t register instance (String key)
<<eXtension>> (p. 270) Informs RTI Connext that the application will be
modifying a particular instance.

ˆ InstanceHandle t register instance w timestamp (KeyedString
instance data, Time t source timestamp)

Performs the same functions as com.rti.dds.type.builtin.KeyedStringDataWriter.register -
instance (p. 1135) except that the application provides the value for the
source timestamp.

ˆ InstanceHandle t register instance w timestamp (String key,
Time t source timestamp)

<<eXtension>> (p. 270) Performs the same functions as KeyedString-
DataWriter.register instance (p. 1135) except that the application pro-
vides the value for the source timestamp.

ˆ void unregister instance (KeyedString instance data, InstanceHan-
dle t handle)

Reverses the action of com.rti.dds.type.builtin.KeyedStringDataWriter.register -
instance (p. 1135).

ˆ void unregister instance (String key, InstanceHandle t handle)
<<eXtension>> (p. 270) Reverses the action of KeyedString-
DataWriter.register instance (p. 1135).

ˆ void unregister instance w timestamp (KeyedString instance data,
InstanceHandle t handle, Time t source timestamp)

Performs the same function as com.rti.dds.type.builtin.KeyedStringDataWriter.unregister -
instance (p. 1136) except that it also provides the value for the source -

timestamp.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1134 Class Documentation

ˆ void unregister instance w timestamp (String key, InstanceHan-
dle t handle, Time t source timestamp)

<<eXtension>> (p. 270) Performs the same function as KeyedString-
DataWriter.unregister instance (p. 1136) except that it also provides the
value for the source timestamp.

ˆ void write (KeyedString instance data, InstanceHandle t handle)

Modifies the value of a com.rti.dds.type.builtin.KeyedString (p. 1123)
data instance.

ˆ void write (String key, String str, InstanceHandle t handle)

<<eXtension>> (p. 270) Modifies the value of a
com.rti.dds.type.builtin.KeyedString (p. 1123) data instance.

ˆ void write w timestamp (KeyedString instance data, InstanceHan-
dle t handle, Time t source timestamp)

Performs the same function as com.rti.dds.type.builtin.KeyedStringDataWriter.write
(p. 1137) except that it also provides the value for the source timestamp.

ˆ void write w timestamp (String key, String str, InstanceHandle t
handle, Time t source timestamp)

<<eXtension>> (p. 270) Performs the same function as KeyedString-
DataWriter.write (p. 1137) except that it also provides the value for the
source timestamp.

ˆ void dispose (KeyedString instance data, InstanceHandle t in-
stance handle)

Requests the middleware to delete the data.

ˆ void dispose (String key, InstanceHandle t instance handle)

<<eXtension>> (p. 270) Requests the middleware to delete the data.

ˆ void dispose w timestamp (KeyedString instance data, Instance-
Handle t instance handle, Time t source timestamp)

Performs the same functions as com.rti.dds.type.builtin.KeyedStringDataWriter.dispose
(p. 1138) except that the application provides the value
for the source timestamp that is made available to
com.rti.dds.subscription.DataReader (p. 473) objects
by means of the source timestamp attribute inside the
com.rti.dds.subscription.SampleInfo (p. 1404).

ˆ void dispose w timestamp (String key, InstanceHandle t instance -
handle, Time t source timestamp)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.126 KeyedStringDataWriter Class Reference 1135

<<eXtension>> (p. 270) Performs the same functions as Keyed-
StringDataWriter.dispose (p. 1138) except that the applica-
tion provides the value for the source timestamp that is made
available to com.rti.dds.subscription.DataReader (p. 473) ob-
jects by means of the source timestamp attribute inside the
com.rti.dds.subscription.SampleInfo (p. 1404).

ˆ void get key value (KeyedString key holder, InstanceHandle t han-
dle)

Retrieve the instance key that corresponds to an instance handle.

ˆ String get key value (InstanceHandle t handle)
<<eXtension>> (p. 270) Retrieve the instance key that corresponds to an
instance handle.

ˆ InstanceHandle t lookup instance (KeyedString key holder)
Retrieve the instance handle that corresponds to an instance key holder.

ˆ InstanceHandle t lookup instance (String key)
<<eXtension>> (p. 270) Retrieve the instance handle that corresponds to
an instance key.

8.126.1 Detailed Description

<<interface>> (p. 271) Instantiates DataWriter <
com.rti.dds.type.builtin.KeyedString (p. 1123) >.

See also:

com.rti.dds.topic.example.FooDataWriter
com.rti.dds.publication.DataWriter (p. 538)

8.126.2 Member Function Documentation

8.126.2.1 InstanceHandle t register instance (KeyedString
instance data)

Informs RTI Connext that the application will be modifying a particular in-
stance.

See also:

com.rti.dds.topic.example.FooDataWriter.register instance

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1136 Class Documentation

8.126.2.2 InstanceHandle t register instance (String key)

<<eXtension>> (p. 270) Informs RTI Connext that the application will be
modifying a particular instance.

See also:

com.rti.dds.topic.example.FooDataWriter.register instance

8.126.2.3 InstanceHandle t register instance w timestamp
(KeyedString instance data, Time t source timestamp)

Performs the same functions as com.rti.dds.type.builtin.KeyedStringDataWriter.register -
instance (p. 1135) except that the application provides the value for the
source timestamp.

See also:

com.rti.dds.topic.example.FooDataWriter.register instance w timestamp

8.126.2.4 InstanceHandle t register instance w timestamp (String
key, Time t source timestamp)

<<eXtension>> (p. 270) Performs the same functions as KeyedString-
DataWriter.register instance (p. 1135) except that the application provides
the value for the source timestamp.

See also:

com.rti.dds.topic.example.FooDataWriter.register instance w timestamp

8.126.2.5 void unregister instance (KeyedString instance data,
InstanceHandle t handle)

Reverses the action of com.rti.dds.type.builtin.KeyedStringDataWriter.register -
instance (p. 1135).

See also:

com.rti.dds.topic.example.FooDataWriter.unregister instance

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.126 KeyedStringDataWriter Class Reference 1137

8.126.2.6 void unregister instance (String key, InstanceHandle t
handle)

<<eXtension>> (p. 270) Reverses the action of KeyedString-
DataWriter.register instance (p. 1135).

See also:

com.rti.dds.topic.example.FooDataWriter.unregister instance

8.126.2.7 void unregister instance w timestamp (KeyedString
instance data, InstanceHandle t handle, Time t
source timestamp)

Performs the same function as com.rti.dds.type.builtin.KeyedStringDataWriter.unregister -
instance (p. 1136) except that it also provides the value for the source -
timestamp.

See also:

FooDataWriter.unregister instance w timestamp

8.126.2.8 void unregister instance w timestamp (String key,
InstanceHandle t handle, Time t source timestamp)

<<eXtension>> (p. 270) Performs the same function as KeyedString-
DataWriter.unregister instance (p. 1136) except that it also provides the
value for the source timestamp.

See also:

FooDataWriter.unregister instance w timestamp

8.126.2.9 void write (KeyedString instance data, InstanceHandle t
handle)

Modifies the value of a com.rti.dds.type.builtin.KeyedString (p. 1123) data
instance.

See also:

com.rti.dds.topic.example.FooDataWriter.write

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1138 Class Documentation

8.126.2.10 void write (String key, String str, InstanceHandle t
handle)

<<eXtension>> (p. 270) Modifies the value of a
com.rti.dds.type.builtin.KeyedString (p. 1123) data instance.

See also:

com.rti.dds.topic.example.FooDataWriter.write

8.126.2.11 void write w timestamp (KeyedString instance data,
InstanceHandle t handle, Time t source timestamp)

Performs the same function as com.rti.dds.type.builtin.KeyedStringDataWriter.write
(p. 1137) except that it also provides the value for the source timestamp.

See also:

com.rti.dds.topic.example.FooDataWriter.write w timestamp

8.126.2.12 void write w timestamp (String key, String str,
InstanceHandle t handle, Time t source timestamp)

<<eXtension>> (p. 270) Performs the same function as KeyedString-
DataWriter.write (p. 1137) except that it also provides the value for the
source timestamp.

See also:

com.rti.dds.topic.example.FooDataWriter.write w timestamp

8.126.2.13 void dispose (KeyedString instance data,
InstanceHandle t instance handle)

Requests the middleware to delete the data.

See also:

com.rti.dds.topic.example.FooDataWriter.dispose

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.126 KeyedStringDataWriter Class Reference 1139

8.126.2.14 void dispose (String key, InstanceHandle t
instance handle)

<<eXtension>> (p. 270) Requests the middleware to delete the data.

See also:

com.rti.dds.topic.example.FooDataWriter.dispose

8.126.2.15 void dispose w timestamp (KeyedString instance data,
InstanceHandle t instance handle, Time t
source timestamp)

Performs the same functions as com.rti.dds.type.builtin.KeyedStringDataWriter.dispose
(p. 1138) except that the application provides the value for the source -
timestamp that is made available to com.rti.dds.subscription.DataReader
(p. 473) objects by means of the source timestamp attribute inside the
com.rti.dds.subscription.SampleInfo (p. 1404).

See also:

com.rti.dds.topic.example.FooDataWriter.dispose w timestamp

8.126.2.16 void dispose w timestamp (String key,
InstanceHandle t instance handle, Time t
source timestamp)

<<eXtension>> (p. 270) Performs the same functions as Keyed-
StringDataWriter.dispose (p. 1138) except that the applica-
tion provides the value for the source timestamp that is made
available to com.rti.dds.subscription.DataReader (p. 473) ob-
jects by means of the source timestamp attribute inside the
com.rti.dds.subscription.SampleInfo (p. 1404).

See also:

com.rti.dds.topic.example.FooDataWriter.dispose w timestamp

8.126.2.17 void get key value (KeyedString key holder,
InstanceHandle t handle)

Retrieve the instance key that corresponds to an instance handle.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1140 Class Documentation

See also:

com.rti.dds.topic.example.FooDataWriter.get key value

8.126.2.18 String get key value (InstanceHandle t handle)

<<eXtension>> (p. 270) Retrieve the instance key that corresponds to an
instance handle.

See also:

com.rti.dds.topic.example.FooDataWriter.get key value

8.126.2.19 InstanceHandle t lookup instance (KeyedString
key holder)

Retrieve the instance handle that corresponds to an instance key holder.

See also:

com.rti.dds.topic.example.FooDataWriter.lookup instance

8.126.2.20 InstanceHandle t lookup instance (String key)

<<eXtension>> (p. 270) Retrieve the instance handle that corresponds to
an instance key.

See also:

com.rti.dds.topic.example.FooDataWriter.lookup instance

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.127 KeyedStringSeq Class Reference 1141

8.127 KeyedStringSeq Class Reference

Instantiates com.rti.dds.util.Sequence (p. 1432) <
com.rti.dds.type.builtin.KeyedString (p. 1123) > .

Inheritance diagram for KeyedStringSeq::

Public Member Functions

ˆ KeyedStringSeq ()

Constructs an empty sequence of com.rti.dds.type.builtin.KeyedString
(p. 1123) objects with an initial maximum of zero.

ˆ KeyedStringSeq (int initialMaximum)

Constructs an empty sequence of com.rti.dds.type.builtin.KeyedString
(p. 1123) objects with the given initial maximum.

ˆ KeyedStringSeq (Collection elements)

Constructs a new sequence containing the given
com.rti.dds.type.builtin.KeyedString (p. 1123) objects.

ˆ Object copy from (Object src)

Package Attributes

ˆ transient Sequence loanedInfoSequence = null

8.127.1 Detailed Description

Instantiates com.rti.dds.util.Sequence (p. 1432) <
com.rti.dds.type.builtin.KeyedString (p. 1123) > .

Instantiates:

<<generic>> (p. 271) com.rti.dds.util.Sequence (p. 1432)

See also:

com.rti.dds.type.builtin.KeyedString (p. 1123)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1142 Class Documentation

8.127.2 Constructor & Destructor Documentation

8.127.2.1 KeyedStringSeq ()

Constructs an empty sequence of com.rti.dds.type.builtin.KeyedString
(p. 1123) objects with an initial maximum of zero.

8.127.2.2 KeyedStringSeq (int initialMaximum)

Constructs an empty sequence of com.rti.dds.type.builtin.KeyedString
(p. 1123) objects with the given initial maximum.

8.127.2.3 KeyedStringSeq (Collection elements)

Constructs a new sequence containing the given
com.rti.dds.type.builtin.KeyedString (p. 1123) objects.

Parameters:

elements the initial contents of this sequence.

Exceptions:

NullPointerException if the input collection is null

8.127.3 Member Function Documentation

8.127.3.1 Object copy from (Object src)

Copy data into this object from another. The result of this method is that
both this and src will be the same size and contain the same data.

Parameters:

src The Object which contains the data to be copied

Returns:

this

Exceptions:

NullPointerException If src is null.

ClassCastException If src is not a Sequence OR if one of the objects
contained in the Sequence is not of the expected type.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.127 KeyedStringSeq Class Reference 1143

See also:

com.rti.dds.infrastructure.Copyable.copy from
(p. 466)(java.lang.Object)

Implements Copyable (p. 466).

8.127.4 Member Data Documentation

8.127.4.1 transient Sequence loanedInfoSequence = null
[package]

When a memory loan has been taken out in the lower layers of NDDS, store a
pointer to the native sequence here. That way, when we call finish(), we can
give the memory back.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1144 Class Documentation

8.128 KeyedStringTypeSupport Class Refer-
ence

<<interface>> (p. 271) Keyed string type support.

Inheritance diagram for KeyedStringTypeSupport::

Static Public Member Functions

ˆ static void register type (DomainParticipant participant, String
type name)

Allows an application to communicate to RTI Connext the existence of the
com.rti.dds.type.builtin.KeyedString (p. 1123) data type.

ˆ static void unregister type (DomainParticipant participant, String
type name)

Allows an application to unregister the
com.rti.dds.type.builtin.KeyedString (p. 1123) data type from RTI
Connext. After calling unregister type, no further communication using this
type is possible.

ˆ static String get type name ()

Get the default name for the com.rti.dds.type.builtin.KeyedString
(p. 1123) type.

8.128.1 Detailed Description

<<interface>> (p. 271) Keyed string type support.

8.128.2 Member Function Documentation

8.128.2.1 static void register type (DomainParticipant participant,
String type name) [static]

Allows an application to communicate to RTI Connext the existence of the
com.rti.dds.type.builtin.KeyedString (p. 1123) data type.

By default, The com.rti.dds.type.builtin.KeyedString
(p. 1123) built-in type is automatically registered when a Do-
mainParticipant is created using the type name returned by

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.128 KeyedStringTypeSupport Class Reference 1145

com.rti.dds.type.builtin.KeyedStringTypeSupport.get type name
(p. 1146). Therefore, the usage of this function is optional and it is only
required when the automatic built-in type registration is disabled using the
participant property ”dds.builtin type.auto register”.

This method can also be used to register the same
com.rti.dds.type.builtin.KeyedStringTypeSupport (p. 1144) with a
com.rti.dds.domain.DomainParticipant (p. 629) using different values for
the type name.

If register type is called multiple times with the same
com.rti.dds.domain.DomainParticipant (p. 629) and type name, the
second (and subsequent) registrations are ignored by the operation.

Parameters:

participant <<in>> (p. 271) the com.rti.dds.domain.DomainParticipant
(p. 629) to register the data type
com.rti.dds.type.builtin.KeyedString (p. 1123) with. Can-
not be null.

type name <<in>> (p. 271) the type name under with the data
type com.rti.dds.type.builtin.KeyedString (p. 1123) is reg-
istered with the participant; this type name is used when
creating a new com.rti.dds.topic.Topic (p. 1545). (See
com.rti.dds.domain.DomainParticipant.create topic (p. 670).)
The name may not be null or longer than 255 characters.

Exceptions:

One of the Standard Return Codes (p. 104), RETCODE -
PRECONDITION NOT MET or RETCODE OUT OF -
RESOURCES.

MT Safety:

UNSAFE on the FIRST call. It is not safe for two threads to simultaneously
make the first call to register a type. Subsequent calls are thread safe.

See also:

com.rti.dds.domain.DomainParticipant.create topic (p. 670)

8.128.2.2 static void unregister type (DomainParticipant
participant, String type name) [static]

Allows an application to unregister the com.rti.dds.type.builtin.KeyedString
(p. 1123) data type from RTI Connext. After calling unregister type, no further
communication using this type is possible.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1146 Class Documentation

Precondition:

The com.rti.dds.type.builtin.KeyedString (p. 1123) type with type -
name is registered with the participant and all com.rti.dds.topic.Topic
(p. 1545) objects referencing the type have been destroyed. If the type is
not registered with the participant, or if any com.rti.dds.topic.Topic
(p. 1545) is associated with the type, the operation will fail with RET-
CODE ERROR.

Postcondition:

All information about the type is removed from RTI Connext. No further
communication using this type is possible.

Parameters:

participant <<in>> (p. 271) the com.rti.dds.domain.DomainParticipant
(p. 629) to unregister the data type
com.rti.dds.type.builtin.KeyedString (p. 1123) from. Can-
not be null.

type name <<in>> (p. 271) the type name under with the data type
com.rti.dds.type.builtin.KeyedString (p. 1123) is registered with
the participant. The name should match a name that has been previ-
ously used to register a type with the participant. Cannot be null.

Exceptions:

One of the Standard Return Codes (p. 104), RETCODE BAD -
PARAMETER or RETCODE ERROR

MT Safety:

SAFE.

See also:

com.rti.dds.type.builtin.KeyedStringTypeSupport.register type
(p. 1144)

8.128.2.3 static String get type name () [static]

Get the default name for the com.rti.dds.type.builtin.KeyedString
(p. 1123) type.

Can be used for calling com.rti.dds.type.builtin.KeyedStringTypeSupport.register -
type (p. 1144) or creating com.rti.dds.topic.Topic (p. 1545).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.128 KeyedStringTypeSupport Class Reference 1147

Returns:

default name for the com.rti.dds.type.builtin.KeyedString (p. 1123)
type.

See also:

com.rti.dds.type.builtin.KeyedStringTypeSupport.register type
(p. 1144)
com.rti.dds.domain.DomainParticipant.create topic (p. 670)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1148 Class Documentation

8.129 LatencyBudgetQosPolicy Class Reference

Provides a hint as to the maximum acceptable delay from the time the data is
written to the time it is received by the subscribing applications.

Inheritance diagram for LatencyBudgetQosPolicy::

Public Attributes

ˆ final Duration t duration

Duration of the maximum acceptable delay.

8.129.1 Detailed Description

Provides a hint as to the maximum acceptable delay from the time the data is
written to the time it is received by the subscribing applications.

This policy is a hint to a DDS implementation; it can be used to change how it
processes and sends data that has low latency requirements. The DDS specifi-
cation does not mandate whether or how this policy is used.

Entity:

com.rti.dds.topic.Topic (p. 1545), com.rti.dds.subscription.DataReader
(p. 473), com.rti.dds.publication.DataWriter (p. 538)

Status:

StatusKind.OFFERED INCOMPATIBLE QOS STATUS
(p. 1459), StatusKind.REQUESTED INCOMPATIBLE QOS -
STATUS (p. 1459)

Properties:

RxO (p. 97) = YES
Changeable (p. 98) = YES (p. 98)

See also:

com.rti.dds.infrastructure.PublishModeQosPolicy (p. 1308)
com.rti.dds.publication.FlowController (p. 942)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.129 LatencyBudgetQosPolicy Class Reference 1149

8.129.2 Usage

This policy provides a means for the application to indicate to the middleware
the urgency of the data communication. By having a non-zero duration, RTI
Connext can optimize its internal operation.

RTI Connext uses it in conjunction with PublishModeQosPoli-
cyKind.ASYNCHRONOUS PUBLISH MODE QOS (p. 1312)
com.rti.dds.publication.DataWriter (p. 538) instances associated
with a FlowControllerSchedulingPolicy.EDF FLOW CONTROLLER -
SCHED POLICY com.rti.dds.publication.FlowController
(p. 942) only. Together with the time of write,
com.rti.dds.infrastructure.LatencyBudgetQosPolicy.duration (p. 1149)
determines the deadline of each individual sample. RTI Connext uses this
information to prioritize the sending of asynchronously published data; see
com.rti.dds.infrastructure.AsynchronousPublisherQosPolicy (p. 387).

8.129.3 Compatibility

The value offered is considered compatible with the value requested if and only
if the inequality offered duration <= requested duration evaluates to ’TRUE’.

8.129.4 Member Data Documentation

8.129.4.1 final Duration t duration

Duration of the maximum acceptable delay.

[default] 0 (meaning minimize the delay)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1150 Class Documentation

8.130 LibraryVersion t Class Reference

The version of a single library shipped as part of an RTI Connext distribution.

Public Attributes

ˆ final int major

The major version of a single RTI Connext library.

ˆ final int minor

The minor version of a single RTI Connext library.

ˆ final char release

The release letter of a single RTI Connext library.

ˆ final int build

The build number of a single RTI Connext library.

8.130.1 Detailed Description

The version of a single library shipped as part of an RTI Connext distribution.

RTI Connext is comprised of a number of separate libraries. Although RTI
Connext as a whole has a version, the individual libraries each have their own
versions as well. It may be necessary to check these individual library versions
when seeking technical support.

8.130.2 Member Data Documentation

8.130.2.1 final int major

The major version of a single RTI Connext library.

8.130.2.2 final int minor

The minor version of a single RTI Connext library.

8.130.2.3 final char release

The release letter of a single RTI Connext library.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.130 LibraryVersion t Class Reference 1151

8.130.2.4 final int build

The build number of a single RTI Connext library.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1152 Class Documentation

8.131 LifespanQosPolicy Class Reference

Specifies how long the data written by the
com.rti.dds.publication.DataWriter (p. 538) is considered valid.

Inheritance diagram for LifespanQosPolicy::

Public Attributes

ˆ final Duration t duration
Maximum duration for the data’s validity.

8.131.1 Detailed Description

Specifies how long the data written by the
com.rti.dds.publication.DataWriter (p. 538) is considered valid.

Each data sample written by the com.rti.dds.publication.DataWriter
(p. 538) has an associated expiration time beyond which the data should not
be delivered to any application. Once the sample expires, the data will be
removed from the com.rti.dds.subscription.DataReader (p. 473) caches as
well as from the transient and persistent information caches.

The expiration time of each sample from the
com.rti.dds.publication.DataWriter (p. 538)’s cache is computed
by adding the duration specified by this QoS policy to the sam-
ple’s source timestamp. The expiration time of each sample from the
com.rti.dds.subscription.DataReader (p. 473)’s cache is computed by
adding the duration to the reception timestamp.

See also:

com.rti.dds.topic.example.FooDataWriter.write
com.rti.dds.topic.example.FooDataWriter.write w timestamp

Entity:

com.rti.dds.topic.Topic (p. 1545), com.rti.dds.publication.DataWriter
(p. 538)

Properties:

RxO (p. 97) = N/A
Changeable (p. 98) = YES (p. 98)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.131 LifespanQosPolicy Class Reference 1153

8.131.2 Usage

The Lifespan QoS policy can be used to control how much data is stored by
RTI Connext. Even if it is configured to store ”all” of the data sent or received
for a topic (p. 350) (see com.rti.dds.infrastructure.HistoryQosPolicy
(p. 1071)), the total amount of data it stores may be limited by this QoS policy.

You may also use this QoS policy to ensure that applications do not receive or
act on data, commands or messages that are too old and have ’expired.’

To avoid inconsistencies, multiple writers of the same instance should have the
same lifespan.

See also:

com.rti.dds.subscription.SampleInfo.source timestamp (p. 1410)
com.rti.dds.subscription.SampleInfo.reception timestamp
(p. 1412)

8.131.3 Member Data Documentation

8.131.3.1 final Duration t duration

Maximum duration for the data’s validity.

[default] com.rti.dds.infrastructure.Duration t.INFINITE

[range] [1 nanosec, 1 year] or com.rti.dds.infrastructure.Duration t.INFINITE

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1154 Class Documentation

8.132 Listener Interface Reference

<<interface>> (p. 271) Abstract base class for all Listener (p. 1154) inter-
faces.

Inheritance diagram for Listener::

8.132.1 Detailed Description

<<interface>> (p. 271) Abstract base class for all Listener (p. 1154) inter-
faces.

Entity:

com.rti.dds.infrastructure.Entity (p. 912)

QoS:

QoS Policies (p. 90)

Status:

Status Kinds (p. 106)

All the supported kinds of concrete com.rti.dds.infrastructure.Listener
(p. 1154) interfaces (one per concrete com.rti.dds.infrastructure.Entity
(p. 912) type) derive from this root and add methods whose prototype depends
on the concrete Listener (p. 1154).

Listeners provide a way for RTI Connext to asynchronously alert the application
when there are relevant status changes.

Almost every application will have to implement listener interfaces.

Each dedicated listener presents a list of operations that correspond to the
relevant communication status changes to which an application may respond.

The same com.rti.dds.infrastructure.Listener (p. 1154) instance
may be shared among multiple entities if you so desire. Conse-
quently, the provided parameter contains a reference to the concerned
com.rti.dds.infrastructure.Entity (p. 912).

8.132.2 Access to Plain Communication Status

The general mapping between the plain communication statuses (see Status
Kinds (p. 106)) and the listeners’ operations is as follows:

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.132 Listener Interface Reference 1155

ˆ For each communication status, there is a corresponding operation whose
name is on <communication status>(), which takes a parameter of type
<communication status> as listed in Status Kinds (p. 106).

ˆ on <communication status> is available on the relevant
com.rti.dds.infrastructure.Entity (p. 912) as well as those that
embed it, as expressed in the following figure:

ˆ When the application attaches a listener on an entity, it must set a mask.
The mask indicates to RTI Connext which operations are enabled within
the listener (cf. operation com.rti.dds.infrastructure.Entity (p. 912)
set listener()).

ˆ When a plain communication status changes, RTI Connext triggers the
most specific relevant listener operation that is enabled. In case the most
specific relevant listener operation corresponds to an application-installed
’nil’ listener the operation will be considered handled by a NO-OP oper-
ation that does not reset the communication status.

This behavior allows the application to set a default behavior (e.g., in the listener
associated with the com.rti.dds.domain.DomainParticipant (p. 629)) and
to set dedicated behaviors only where needed.

8.132.3 Access to Read Communication Status

The two statuses related to data arrival are treated slightly differently. Since
they constitute the core purpose of the Data Distribution Service, there is no
need to provide a default mechanism (as is done for the plain communication
statuses above).

The rule is as follows. Each time the read communication status changes:

ˆ First, RTI Connext tries to trigger the
com.rti.dds.subscription.SubscriberListener.on data -
on readers (p. 1505) with a parameter of the related
com.rti.dds.subscription.Subscriber (p. 1478);

ˆ If this does not succeed (there is no listener or the
operation is not enabled), RTI Connext tries to trig-
ger com.rti.dds.subscription.DataReaderListener.on -
data available (p. 503) on all the related
com.rti.dds.subscription.DataReaderListener (p. 501) objects, with
a parameter of the related com.rti.dds.subscription.DataReader
(p. 473).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1156 Class Documentation

The rationale is that either the application is interested in relations among
data arrivals and it must use the first option (and then get the cor-
responding com.rti.dds.subscription.DataReader (p. 473) objects by
calling com.rti.dds.subscription.Subscriber.get datareaders (p. 1491)
on the related com.rti.dds.subscription.Subscriber (p. 1478) and then
get the data by calling com.rti.dds.topic.example.FooDataReader.read
or com.rti.dds.topic.example.FooDataReader.take on the returned
com.rti.dds.subscription.DataReader (p. 473) objects), or it wants
to treat each com.rti.dds.subscription.DataReader (p. 473) in-
dependently and it may choose the second option (and then get
the data by calling com.rti.dds.topic.example.FooDataReader.read
or com.rti.dds.topic.example.FooDataReader.take on the related
com.rti.dds.subscription.DataReader (p. 473)).

Note that if com.rti.dds.subscription.SubscriberListener.on -
data on readers (p. 1505) is called, RTI Connext will not try
to call com.rti.dds.subscription.DataReaderListener.on data -
available (p. 503). However, an application can force a call to the
com.rti.dds.subscription.DataReader (p. 473) objects that have data
by calling com.rti.dds.subscription.Subscriber.notify datareaders
(p. 1493).

8.132.4 Operations Allowed in Listener Callbacks

The operations that are allowed in com.rti.dds.infrastructure.Listener
(p. 1154) callbacks depend on the com.rti.dds.infrastructure.ExclusiveAreaQosPolicy
(p. 933) QoS policy of the com.rti.dds.infrastructure.Entity (p. 912)
to which the com.rti.dds.infrastructure.Listener (p. 1154) is at-
tached – or in the case of a com.rti.dds.publication.DataWriter
(p. 538) of com.rti.dds.subscription.DataReader (p. 473) listener,
on the com.rti.dds.infrastructure.ExclusiveAreaQosPolicy (p. 933)
QoS of the parent com.rti.dds.publication.Publisher (p. 1277) or
com.rti.dds.subscription.Subscriber (p. 1478). For instance, the
com.rti.dds.infrastructure.ExclusiveAreaQosPolicy (p. 933) settings
of a com.rti.dds.subscription.Subscriber (p. 1478) will determine which
operations are allowed within the callbacks of the listeners associated with all
the DataReaders created through that com.rti.dds.subscription.Subscriber
(p. 1478).

Note: these restrictions do not apply to builtin topic (p. 350) listener callbacks.

Regardless of whether com.rti.dds.infrastructure.ExclusiveAreaQosPolicy.use -
shared exclusive area (p. 934) is set to true or false, the following operations
are not allowed:

ˆ Within any listener callback, deleting the entity to which the
com.rti.dds.infrastructure.Listener (p. 1154) is attached

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.132 Listener Interface Reference 1157

ˆ Within a com.rti.dds.topic.Topic (p. 1545) listener callback, any oper-
ations on any subscribers, readers, publishers or writers

An attempt to call a disallowed method from within a callback will result in
RETCODE ILLEGAL OPERATION (p. 1365).

If com.rti.dds.infrastructure.ExclusiveAreaQosPolicy.use shared -
exclusive area (p. 934) is set to false, the setting which allows more
concurrency among RTI Connext threads, the following are not allowed:

ˆ Within any listener callback, creating any entity

ˆ Within any listener callback, deleting any entity

ˆ Within any listener callback, enabling any entity

ˆ Within any listener callback, setting the QoS of any entities

ˆ Within a com.rti.dds.subscription.DataReader (p. 473)
or com.rti.dds.subscription.Subscriber (p. 1478) lis-
tener callback, invoking any operation on any other
com.rti.dds.subscription.Subscriber (p. 1478) or on any
com.rti.dds.subscription.DataReader (p. 473) belonging to an-
other com.rti.dds.subscription.Subscriber (p. 1478).

ˆ Within a com.rti.dds.subscription.DataReader (p. 473) or
com.rti.dds.subscription.Subscriber (p. 1478) listener callback,
invoking any operation on any com.rti.dds.publication.Publisher
(p. 1277) (or on any com.rti.dds.publication.DataWriter (p. 538)
belonging to such a com.rti.dds.publication.Publisher (p. 1277))
that has com.rti.dds.infrastructure.ExclusiveAreaQosPolicy.use -
shared exclusive area (p. 934) set to true.

ˆ Within a com.rti.dds.publication.DataWriter (p. 538) of
com.rti.dds.publication.Publisher (p. 1277) listener call-
back, invoking any operation on another Publisher or on a
com.rti.dds.publication.DataWriter (p. 538) belonging to another
com.rti.dds.publication.Publisher (p. 1277).

ˆ Within a com.rti.dds.publication.DataWriter (p. 538) of
com.rti.dds.publication.Publisher (p. 1277) listener callback, in-
voking any operation on any com.rti.dds.subscription.Subscriber
(p. 1478) or com.rti.dds.subscription.DataReader (p. 473).

An attempt to call a disallowed method from within a callback will result in
RETCODE ILLEGAL OPERATION (p. 1365).

The above limitations can be lifted by setting
com.rti.dds.infrastructure.ExclusiveAreaQosPolicy.use shared -
exclusive area (p. 934) to true on the com.rti.dds.publication.Publisher

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1158 Class Documentation

(p. 1277) or com.rti.dds.subscription.Subscriber
(p. 1478) (or on the com.rti.dds.publication.Publisher
(p. 1277)/ com.rti.dds.subscription.Subscriber
(p. 1478) of the com.rti.dds.publication.DataWriter
(p. 538)/com.rti.dds.subscription.DataReader (p. 473)) to which the
listener is attached. However, the application will pay the cost of reduced
concurrency between the affected publishers and subscribers.

See also:

EXCLUSIVE AREA (p. 72)
Status Kinds (p. 106)
com.rti.dds.infrastructure.WaitSet (p. 1695),
com.rti.dds.infrastructure.Condition (p. 451)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.133 LivelinessChangedStatus Class Reference 1159

8.133 LivelinessChangedStatus Class Reference

StatusKind.LIVELINESS CHANGED STATUS.

Inherits Status.

Public Member Functions

ˆ LivelinessChangedStatus ()
The no-argument constructor for this status object.

ˆ LivelinessChangedStatus (LivelinessChangedStatus src)
A copy constructor.

Public Attributes

ˆ int alive count

The total count of currently alive com.rti.dds.publication.DataWriter
(p. 538) entities that write the com.rti.dds.topic.Topic (p. 1545) the
com.rti.dds.subscription.DataReader (p. 473) reads.

ˆ int not alive count

The total count of currently not alive
com.rti.dds.publication.DataWriter (p. 538) entities
that write the com.rti.dds.topic.Topic (p. 1545) the
com.rti.dds.subscription.DataReader (p. 473) reads.

ˆ int alive count change

The change in the alive count since the last time the listener was called or
the status was read.

ˆ int not alive count change

The change in the not alive count since the last time the listener was called
or the status was read.

ˆ final InstanceHandle t last publication handle

An instance handle to the last remote writer to change its liveliness.

8.133.1 Detailed Description

StatusKind.LIVELINESS CHANGED STATUS.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1160 Class Documentation

The com.rti.dds.subscription.DataReaderListener.on liveliness -
changed (p. 503) callback may be invoked for the following reasons:

ˆ Liveliness is truly lost - a sample has not
been received within the timeframe specified in
com.rti.dds.infrastructure.LivelinessQosPolicy.lease duration
(p. 1167)

ˆ Liveliness is recovered after being lost.

ˆ A new matching entity has been discovered.

ˆ A QoS has changed such that a pair of matching en-
tities are no longer matching (such as a change to the
com.rti.dds.infrastructure.PartitionQosPolicy (p. 1233)). In
this case, RTI Connext will no longer keep track of the entities’ liveliness.
Furthermore:

– If liveliness was maintained: com.rti.dds.subscription.LivelinessChangedStatus.alive -
count (p. 1161) will decrease and
com.rti.dds.subscription.LivelinessChangedStatus.not -
alive count (p. 1161) will remain the same.

– If liveliness had been lost: com.rti.dds.subscription.LivelinessChangedStatus.alive -
count (p. 1161) will remain the same and
com.rti.dds.subscription.LivelinessChangedStatus.not -
alive count (p. 1161) will decrease.

8.133.2 Constructor & Destructor Documentation

8.133.2.1 LivelinessChangedStatus ()

The no-argument constructor for this status object.

8.133.2.2 LivelinessChangedStatus (LivelinessChangedStatus src)

A copy constructor.

Exceptions:

NullPointerException if the given status is null.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.133 LivelinessChangedStatus Class Reference 1161

8.133.3 Member Data Documentation

8.133.3.1 int alive count

The total count of currently alive com.rti.dds.publication.DataWriter
(p. 538) entities that write the com.rti.dds.topic.Topic (p. 1545) the
com.rti.dds.subscription.DataReader (p. 473) reads.

8.133.3.2 int not alive count

The total count of currently not alive com.rti.dds.publication.DataWriter
(p. 538) entities that write the com.rti.dds.topic.Topic (p. 1545) the
com.rti.dds.subscription.DataReader (p. 473) reads.

8.133.3.3 int alive count change

The change in the alive count since the last time the listener was called or the
status was read.

8.133.3.4 int not alive count change

The change in the not alive count since the last time the listener was called or
the status was read.

8.133.3.5 final InstanceHandle t last publication handle

An instance handle to the last remote writer to change its liveliness.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1162 Class Documentation

8.134 LivelinessLostStatus Class Reference

StatusKind.LIVELINESS LOST STATUS.

Inherits Status.

Public Attributes

ˆ int total count

Total cumulative number of times that a previously-alive
com.rti.dds.publication.DataWriter (p. 538) became not alive due
to a failure to to actively signal its liveliness within the offered liveliness
period.

ˆ int total count change

The incremental changees in total count since the last time the listener was
called or the status was read.

8.134.1 Detailed Description

StatusKind.LIVELINESS LOST STATUS.

Entity:

com.rti.dds.publication.DataWriter (p. 538)

Listener:

com.rti.dds.publication.DataWriterListener (p. 566)

The liveliness that the com.rti.dds.publication.DataWriter (p. 538) has
committed through its com.rti.dds.infrastructure.LivelinessQosPolicy
(p. 1164) was not respected; thus com.rti.dds.subscription.DataReader
(p. 473) entities will consider the com.rti.dds.publication.DataWriter
(p. 538) as no longer ”alive/active”.

8.134.2 Member Data Documentation

8.134.2.1 int total count

Total cumulative number of times that a previously-alive
com.rti.dds.publication.DataWriter (p. 538) became not alive due to
a failure to to actively signal its liveliness within the offered liveliness period.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.134 LivelinessLostStatus Class Reference 1163

This count does not change when an already not alive
com.rti.dds.publication.DataWriter (p. 538) simply remains not alive
for another liveliness period.

8.134.2.2 int total count change

The incremental changees in total count since the last time the listener was
called or the status was read.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1164 Class Documentation

8.135 LivelinessQosPolicy Class Reference

Specifies and configures the mechanism that allows
com.rti.dds.subscription.DataReader (p. 473) entities to detect when
com.rti.dds.publication.DataWriter (p. 538) entities become disconnected
or ”dead.”.

Inheritance diagram for LivelinessQosPolicy::

Public Attributes

ˆ LivelinessQosPolicyKind kind

The kind of liveliness desired.

ˆ final Duration t lease duration

The duration within which a com.rti.dds.infrastructure.Entity (p. 912)
must be asserted, or else it is assumed to be not alive.

8.135.1 Detailed Description

Specifies and configures the mechanism that allows
com.rti.dds.subscription.DataReader (p. 473) entities to detect when
com.rti.dds.publication.DataWriter (p. 538) entities become disconnected
or ”dead.”.

Liveliness must be asserted at least once every lease duration otherwise RTI
Connext will assume the corresponding com.rti.dds.infrastructure.Entity
(p. 912) or is no longer alive.

The liveliness status of a com.rti.dds.infrastructure.Entity (p. 912)
is used to maintain instance ownership in combination with the set-
ting of the OWNERSHIP (p. 83) policy. The application is also
informed via com.rti.dds.infrastructure.Listener (p. 1154) when an
com.rti.dds.infrastructure.Entity (p. 912) is no longer alive.

A com.rti.dds.subscription.DataReader (p. 473) requests that liveliness of
writers is maintained by the requested means and loss of liveliness is detected
with delay not to exceed the lease duration.

A com.rti.dds.publication.DataWriter (p. 538) commits to signalling its
liveliness using the stated means at intervals not to exceed the lease duration.

Listeners are used to notify a com.rti.dds.subscription.DataReader (p. 473)
of loss of liveliness and com.rti.dds.publication.DataWriter (p. 538) of vi-

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.135 LivelinessQosPolicy Class Reference 1165

olations to the liveliness contract. The on liveliness lost() callback is only
called once, after the first time the lease duration is exceeded (when the
com.rti.dds.publication.DataWriter (p. 538) first loses liveliness).

This QoS policy can be used during system integration to ensure that applica-
tions have been coded to meet design specifications. It can also be used during
run time to detect when systems are performing outside of design specifications.
Receiving applications can take appropriate actions in response to disconnected
DataWriters.

Entity:

com.rti.dds.topic.Topic (p. 1545), com.rti.dds.subscription.DataReader
(p. 473), com.rti.dds.publication.DataWriter (p. 538)

Status:

StatusKind.LIVELINESS LOST STATUS (p. 1461),
com.rti.dds.publication.LivelinessLostStatus (p. 1162);
StatusKind.LIVELINESS CHANGED STATUS (p. 1461),
com.rti.dds.subscription.LivelinessChangedStatus (p. 1159);
StatusKind.REQUESTED INCOMPATIBLE QOS STATUS
(p. 1459), StatusKind.OFFERED INCOMPATIBLE QOS -
STATUS (p. 1459)

Properties:

RxO (p. 97) = YES
Changeable (p. 98) = UNTIL ENABLE (p. 98)

8.135.2 Usage

This policy controls the mechanism and parameters used by RTI Connext to
ensure that particular entities on the network are still alive. The liveliness
can also affect the ownership of a particular instance, as determined by the
OWNERSHIP (p. 83) policy.

This policy has several settings to support both data types that are updated
periodically as well as those that are changed sporadically. It also allows cus-
tomisation for different application requirements in terms of the kinds of failures
that will be detected by the liveliness mechanism.

The LivelinessQosPolicyKind.AUTOMATIC LIVELINESS QOS
(p. 1169) liveliness setting is most appropriate for applications that only
need to detect failures at the process-level, but not application-logic fail-
ures within a process. RTI Connext takes responsibility for renewing the
leases at the required rates and thus, as long as the local process where a
com.rti.dds.domain.DomainParticipant (p. 629) is running and the link

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1166 Class Documentation

connecting it to remote participants remains connected, the entities within the
com.rti.dds.domain.DomainParticipant (p. 629) will be considered alive.
This requires the lowest overhead.

The manual settings (LivelinessQosPolicyKind.MANUAL BY -
PARTICIPANT LIVELINESS QOS (p. 1169), LivelinessQosPol-
icyKind.MANUAL BY TOPIC LIVELINESS QOS (p. 1169)) re-
quire the application on the publishing side to periodically assert
the liveliness before the lease expires to indicate the corresponding
com.rti.dds.infrastructure.Entity (p. 912) is still alive. The action
can be explicit by calling the com.rti.dds.publication.DataWriter.assert -
liveliness (p. 554) operation or implicit by writing some data.

The two possible manual settings control the granularity at which the applica-
tion must assert liveliness.

ˆ The setting LivelinessQosPolicyKind.MANUAL BY -
PARTICIPANT LIVELINESS QOS (p. 1169) requires only
that one com.rti.dds.infrastructure.Entity (p. 912) within
a participant is asserted to be alive to deduce all other
com.rti.dds.infrastructure.Entity (p. 912) objects within the same
com.rti.dds.domain.DomainParticipant (p. 629) are also alive.

ˆ The setting LivelinessQosPolicyKind.MANUAL BY TOPIC -
LIVELINESS QOS (p. 1169) requires that at least one instance within
the com.rti.dds.publication.DataWriter (p. 538) is asserted.

Changes in LIVELINESS (p. 78) must be detected by the Service with a time-
granularity greater or equal to the lease duration. This ensures that the value
of the com.rti.dds.subscription.LivelinessChangedStatus (p. 1159) is up-
dated at least once during each lease duration and the related Listeners and
com.rti.dds.infrastructure.WaitSet (p. 1695) s are notified within a lease -
duration from the time the LIVELINESS (p. 78) changed.

8.135.3 Compatibility

The value offered is considered compatible with the value requested if and only
if the following conditions are met:

ˆ the inequality offered kind >= requested kind evaluates to
’TRUE’. For the purposes of this inequality, the values
of com.rti.dds.infrastructure.LivelinessQosPolicyKind
(p. 1168) kind are considered ordered such that: Liveli-
nessQosPolicyKind.AUTOMATIC LIVELINESS QOS

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.135 LivelinessQosPolicy Class Reference 1167

(p. 1169) < LivelinessQosPolicyKind.MANUAL BY -
PARTICIPANT LIVELINESS QOS (p. 1169) < Liveli-
nessQosPolicyKind.MANUAL BY TOPIC LIVELINESS QOS
(p. 1169).

ˆ the inequality offered lease duration <= requested lease duration
evaluates to true.

See also:

RELATIONSHIP BETWEEN REGISTRATION, LIVELINESS
and OWNERSHIP (p. 1218)

8.135.4 Member Data Documentation

8.135.4.1 LivelinessQosPolicyKind kind

The kind of liveliness desired.

[default] LivelinessQosPolicyKind.AUTOMATIC LIVELINESS QOS
(p. 1169)

8.135.4.2 final Duration t lease duration

The duration within which a com.rti.dds.infrastructure.Entity (p. 912)
must be asserted, or else it is assumed to be not alive.

[default] com.rti.dds.infrastructure.Duration t.INFINITE

[range] [0,1 year] or com.rti.dds.infrastructure.Duration t.INFINITE

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1168 Class Documentation

8.136 LivelinessQosPolicyKind Class Reference

Kinds of liveliness.

Inheritance diagram for LivelinessQosPolicyKind::

Static Public Attributes

ˆ static final LivelinessQosPolicyKind AUTOMATIC -
LIVELINESS QOS

[default] The infrastructure (p. 323) will automatically signal liveliness
for the com.rti.dds.publication.DataWriter (p. 538) (s) at least as often
as required by the lease duration.

ˆ static final LivelinessQosPolicyKind MANUAL BY -
PARTICIPANT LIVELINESS QOS

RTI Connext will assume that as long as at least one
com.rti.dds.publication.DataWriter (p. 538) belonging to
the com.rti.dds.domain.DomainParticipant (p. 629) (or the
com.rti.dds.domain.DomainParticipant (p. 629) itself) has as-
serted its liveliness, then the other Entities belonging to that same
com.rti.dds.domain.DomainParticipant (p. 629) are also alive.

ˆ static final LivelinessQosPolicyKind MANUAL BY TOPIC -
LIVELINESS QOS

RTI Connext will only assume liveliness of the
com.rti.dds.publication.DataWriter (p. 538) if the application has
asserted liveliness of that com.rti.dds.publication.DataWriter (p. 538)
itself.

8.136.1 Detailed Description

Kinds of liveliness.

QoS:

com.rti.dds.infrastructure.LivelinessQosPolicy (p. 1164)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.136 LivelinessQosPolicyKind Class Reference 1169

8.136.2 Member Data Documentation

8.136.2.1 final LivelinessQosPolicyKind AUTOMATIC -
LIVELINESS QOS [static]

[default] The infrastructure (p. 323) will automatically signal liveliness for
the com.rti.dds.publication.DataWriter (p. 538) (s) at least as often as re-
quired by the lease duration.

A com.rti.dds.publication.DataWriter (p. 538) with this setting does not
need to take any specific action in order to be considered ’alive.’ The
com.rti.dds.publication.DataWriter (p. 538) is only ’not alive’ when the
participant to which it belongs terminates (gracefully or not), or when there is
a network problem that prevents the current participant from contacting that
remote participant.

8.136.2.2 final LivelinessQosPolicyKind MANUAL -
BY PARTICIPANT LIVELINESS QOS
[static]

RTI Connext will assume that as long as at least one
com.rti.dds.publication.DataWriter (p. 538) belonging to
the com.rti.dds.domain.DomainParticipant (p. 629) (or the
com.rti.dds.domain.DomainParticipant (p. 629) itself) has as-
serted its liveliness, then the other Entities belonging to that same
com.rti.dds.domain.DomainParticipant (p. 629) are also alive.

The user application takes responsibility to signal liveliness to RTI Connext ei-
ther by calling com.rti.dds.domain.DomainParticipant.assert liveliness
(p. 690), or by calling com.rti.dds.publication.DataWriter.assert -
liveliness (p. 554), or com.rti.dds.topic.example.FooDataWriter.write on
any com.rti.dds.publication.DataWriter (p. 538) belonging to the
com.rti.dds.domain.DomainParticipant (p. 629).

8.136.2.3 final LivelinessQosPolicyKind MANUAL BY TOPIC -
LIVELINESS QOS [static]

RTI Connext will only assume liveliness of the
com.rti.dds.publication.DataWriter (p. 538) if the application has as-
serted liveliness of that com.rti.dds.publication.DataWriter (p. 538)
itself.

The user application takes responsibility to signal liveliness to RTI Connext
using the com.rti.dds.publication.DataWriter.assert liveliness (p. 554)
method, or by writing some data.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1170 Class Documentation

8.137 LoanableSequence Class Reference

A sequence capable of storing its elements directly or taking out a loan on them
from an internal middleware store.

Inheritance diagram for LoanableSequence::

Public Member Functions

ˆ LoanableSequence (Class elementType)

Construct a new sequence for elements of the given type.

ˆ LoanableSequence (Class elementType, int maximum)

Construct a new sequence for elements of the given type.

ˆ LoanableSequence (Class elementType, Collection elements)

Construct a new sequence for elements of the given type.

ˆ final boolean hasOwnership ()

Return the value of the owned flag.

ˆ int getMaximum ()

Get the current maximum number of elements that can be stored in this
sequence.

ˆ void setMaximum (int new max)

Resize this sequence to a new desired maximum.

ˆ Object set (int index, Object element)

Replaces the element at the specified position in this sequence with the spec-
ified element.

ˆ Object get (int index)

Returns the element at the specified position in this sequence.

ˆ int size ()

Returns the length of the sequence.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.137 LoanableSequence Class Reference 1171

8.137.1 Detailed Description

A sequence capable of storing its elements directly or taking out a loan on them
from an internal middleware store.

See also:

com.rti.dds.subscription.DataReader.read untyped
(p. 490)(java.util.List, com.rti.dds.subscription.SampleInfoSeq
(p. 1414), int, int, int, int)
com.rti.dds.subscription.DataReader.take untyped
(p. 490)(java.util.List, com.rti.dds.subscription.SampleInfoSeq
(p. 1414), int, int, int, int)

8.137.2 Constructor & Destructor Documentation

8.137.2.1 LoanableSequence (Class elementType)

Construct a new sequence for elements of the given type.

8.137.2.2 LoanableSequence (Class elementType, int maximum)

Construct a new sequence for elements of the given type.

8.137.2.3 LoanableSequence (Class elementType, Collection
elements)

Construct a new sequence for elements of the given type.

8.137.3 Member Function Documentation

8.137.3.1 final boolean hasOwnership ()

Return the value of the owned flag.

Returns:

true if sequence owns the underlying buffer, or false if it has an outstanding
loan.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1172 Class Documentation

8.137.3.2 int getMaximum ()

Get the current maximum number of elements that can be stored in this se-
quence.

The maximum of the sequence represents the maximum number of elements that
the underlying buffer can hold. It does not represent the current number of
elements.

The maximum is a non-negative number. It is initialized when the sequence is
first created.

The maximum can be changed implicitly by adding an element to the se-
quence with add() (p. 383), or explicitly by calling Sequence.setMaximum
(p. 1433).

Returns:

the current maximum of the sequence.

See also:

Sequence.size()

Implements Sequence (p. 1433).

8.137.3.3 void setMaximum (int new max)

Resize this sequence to a new desired maximum.

This operation does nothing if the new desired maximum matches the current
maximum.

Note: If you add an element with add() (p. 383), the sequence’s size is in-
creased implicitly.

Postcondition:

length == MINIMUM(original length, new max)

Parameters:

new max Must be >= 0.

Returns:

true on success, false if the preconditions are not met. In that case the
sequence is not modified.

Reimplemented from AbstractSequence (p. 382).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.137 LoanableSequence Class Reference 1173

8.137.3.4 Object set (int index, Object element)

Replaces the element at the specified position in this sequence with the specified
element.

See also:

java.util.List.set(int, java.lang.Object)

8.137.3.5 Object get (int index)

Returns the element at the specified position in this sequence.

See also:

java.util.List.get(int)

8.137.3.6 int size ()

Returns the length of the sequence.

See also:

java.util.List.get(int)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1174 Class Documentation

8.138 Locator t Class Reference

<<eXtension>> (p. 270) Type used to represent the addressing information
needed to send a message to an RTPS Endpoint using one of the supported
transports.

Inherits Struct.

Public Member Functions

ˆ Locator t ()
Constructor.

Public Attributes

ˆ int kind

The kind of locator.

ˆ int port

the port number

ˆ final byte[] address = new byte[ADDRESS LENGTH MAX]
A com.rti.dds.infrastructure.Locator t.ADDRESS LENGTH MAX
(p. 1176) octet field to hold the IP address.

Static Public Attributes

ˆ static final int KIND INVALID

Locator of this kind is invalid.

ˆ static final int PORT INVALID

An invalid port.

ˆ static final byte[] ADDRESS INVALID

An invalid address.

ˆ static final Locator t INVALID

An invalid locator.

ˆ static final int KIND UDPv4

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.138 Locator t Class Reference 1175

A locator for a UDPv4 address.

ˆ static final int KIND SHMEM

A locator for an address acessed via shared memory.

ˆ static final int KIND UDPv6

A locator for a UDPv6 address.

ˆ static final int KIND RESERVED

Locator of this kind is reserved.

ˆ static final int ADDRESS LENGTH MAX = 16

Declares length of address field in locator.

8.138.1 Detailed Description

<<eXtension>> (p. 270) Type used to represent the addressing information
needed to send a message to an RTPS Endpoint using one of the supported
transports.

8.138.2 Constructor & Destructor Documentation

8.138.2.1 Locator t ()

Constructor.

8.138.3 Member Data Documentation

8.138.3.1 final int KIND INVALID [static]

Locator of this kind is invalid.

8.138.3.2 final int PORT INVALID [static]

An invalid port.

8.138.3.3 final byte [] ADDRESS INVALID [static]

Initial value:

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1176 Class Documentation

{0,0,0,0,

0,0,0,0,

0,0,0,0,

0,0,0,0}

An invalid address.

8.138.3.4 final Locator t INVALID [static]

Initial value:

new Locator_t(

KIND_INVALID, PORT_INVALID, ADDRESS_INVALID)

An invalid locator.

8.138.3.5 final int KIND UDPv4 [static]

A locator for a UDPv4 address.

8.138.3.6 final int KIND SHMEM [static]

A locator for an address acessed via shared memory.

8.138.3.7 final int KIND UDPv6 [static]

A locator for a UDPv6 address.

8.138.3.8 final int KIND RESERVED [static]

Locator of this kind is reserved.

8.138.3.9 final int ADDRESS LENGTH MAX = 16 [static]

Declares length of address field in locator.

8.138.3.10 int kind

The kind of locator.

If the Locator t (p. 1174) kind is com.rti.dds.infrastructure.Locator -
t.KIND UDPv4 (p. 1176), the address contains an IPv4 address. In this

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.138 Locator t Class Reference 1177

case, the leading 12 octets of the com.rti.dds.infrastructure.Locator -
t.address (p. 1177) must be zero. The last 4 octets of
com.rti.dds.infrastructure.Locator t.address (p. 1177) are used to
store the IPv4 address.

If the Locator t (p. 1174) kind is com.rti.dds.infrastructure.Locator -
t.KIND UDPv6 (p. 1176), the address contains an IPv6 address. IPv6 ad-
dresses typically use a shorthand hexadecimal notation that maps one-to-one to
the 16 octets in the com.rti.dds.infrastructure.Locator t.address (p. 1177)
field.

8.138.3.11 int port

the port number

8.138.3.12 final byte [] address = new byte[ADDRESS LENGTH -
MAX]

A com.rti.dds.infrastructure.Locator t.ADDRESS LENGTH MAX
(p. 1176) octet field to hold the IP address.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1178 Class Documentation

8.139 LocatorFilter t Class Reference

Specifies the configuration of an individual channel within a MultiChannel
DataWriter.

Inherits Struct.

Public Member Functions

ˆ LocatorFilter t ()

Constructor.

ˆ LocatorFilter t (LocatorFilter t src)

Constructor.

ˆ LocatorFilter t (LocatorSeq locators, String filter expression)

Constructor.

Public Attributes

ˆ LocatorSeq locators

Sequence containing from one to four
com.rti.dds.infrastructure.Locator t (p. 1174), used to specify the
multicast address locators of an individual channel within a MultiChannel
DataWriter.

ˆ String filter expression

A logical expression used to determine the data that will be published in the
channel.

8.139.1 Detailed Description

Specifies the configuration of an individual channel within a MultiChannel
DataWriter.

QoS:

com.rti.dds.infrastructure.LocatorFilterQosPolicy (p. 1181)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.139 LocatorFilter t Class Reference 1179

8.139.2 Constructor & Destructor Documentation

8.139.2.1 LocatorFilter t ()

Constructor.

8.139.2.2 LocatorFilter t (LocatorFilter t src)

Constructor.

Parameters:

src <<in>> (p. 271) Locator used to initialized the new locator.

8.139.2.3 LocatorFilter t (LocatorSeq locators, String
filter expression)

Constructor.

Parameters:

locators <<in>> (p. 271) Locators.

filter expression <<in>> (p. 271) Filter expression.

8.139.3 Member Data Documentation

8.139.3.1 LocatorSeq locators

Initial value:

new LocatorSeq()

Sequence containing from one to four com.rti.dds.infrastructure.Locator t
(p. 1174), used to specify the multicast address locators of an individual channel
within a MultiChannel DataWriter.

[default] Empty sequence.

8.139.3.2 String filter expression

A logical expression used to determine the data that will be published in the
channel.

If the expression evaluates to TRUE, a sample will be published on the channel.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1180 Class Documentation

An empty string always evaluates the expression to TRUE.

A NULL value is not allowed.

The syntax of the expression will depend on the value of
com.rti.dds.infrastructure.LocatorFilterQosPolicy.filter name
(p. 1182)

See also:

Queries and Filters Syntax (p. 278)

[default] NULL (invalid value)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.140 LocatorFilterQosPolicy Class Reference 1181

8.140 LocatorFilterQosPolicy Class Reference

The QoS policy used to report the configuration of a MultiChannel DataWriter
as part of builtin.PublicationBuiltinTopicData.

Inheritance diagram for LocatorFilterQosPolicy::

Public Attributes

ˆ final LocatorFilterSeq locator filters
A sequence of com.rti.dds.infrastructure.LocatorFilter t (p. 1178).
Each com.rti.dds.infrastructure.LocatorFilter t (p. 1178) reports the
configuration of a single channel of a MultiChannel DataWriter.

ˆ String filter name
Name of the filter class used to describe the filter expressions of a Multi-
Channel DataWriter.

8.140.1 Detailed Description

The QoS policy used to report the configuration of a MultiChannel DataWriter
as part of builtin.PublicationBuiltinTopicData.

Entity:

builtin.PublicationBuiltinTopicData

Properties:

RxO (p. 97) = N/A
Changeable (p. 98) = NO (p. 98)

8.140.2 Member Data Documentation

8.140.2.1 final LocatorFilterSeq locator filters

A sequence of com.rti.dds.infrastructure.LocatorFilter t (p. 1178). Each
com.rti.dds.infrastructure.LocatorFilter t (p. 1178) reports the configura-
tion of a single channel of a MultiChannel DataWriter.

A sequence length of zero indicates the com.rti.dds.infrastructure.MultiChannelQosPolicy
(p. 1205) is not in use.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1182 Class Documentation

[default] Empty sequence.

8.140.2.2 String filter name

Name of the filter class used to describe the filter expressions of a MultiChannel
DataWriter.

The following builtin filters are supported: DomainParticipant.SQLFILTER -
NAME and DomainParticipant.STRINGMATCHFILTER NAME.

[default] DomainParticipant.STRINGMATCHFILTER NAME

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.141 LocatorFilterSeq Class Reference 1183

8.141 LocatorFilterSeq Class Reference

Declares IDL sequence< com.rti.dds.infrastructure.LocatorFilter t
(p. 1178) >.

Inherits ArraySequence.

8.141.1 Detailed Description

Declares IDL sequence< com.rti.dds.infrastructure.LocatorFilter t
(p. 1178) >.

A sequence of com.rti.dds.infrastructure.LocatorFilter t (p. 1178) used
to report the channels’ properties. If the length of the sequence is zero,
the com.rti.dds.infrastructure.MultiChannelQosPolicy (p. 1205) is not in
use.

Instantiates:

<<generic>> (p. 271) com.rti.dds.util.Sequence (p. 1432)

See also:

com.rti.dds.infrastructure.LocatorFilter t (p. 1178)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1184 Class Documentation

8.142 LocatorSeq Class Reference

Declares IDL sequence < com.rti.dds.infrastructure.Locator t (p. 1174)
>.

Inherits ArraySequence.

8.142.1 Detailed Description

Declares IDL sequence < com.rti.dds.infrastructure.Locator t (p. 1174)
>.

See also:

com.rti.dds.infrastructure.Locator t (p. 1174)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.143 LogCategory Class Reference 1185

8.143 LogCategory Class Reference

Categories of logged messages.

Inheritance diagram for LogCategory::

Static Public Attributes

ˆ static final LogCategory NDDS CONFIG LOG CATEGORY -
PLATFORM

Log messages pertaining to the underlying platform (hardware and OS) on
which RTI Connext is running are in this category.

ˆ static final LogCategory NDDS CONFIG LOG CATEGORY -
COMMUNICATION

Log messages pertaining to data serialization and deserialization and network
traffic are in this category.

ˆ static final LogCategory NDDS CONFIG LOG CATEGORY -
DATABASE

Log messages pertaining to the internal database in which RTI Connext ob-
jects are stored are in this category.

ˆ static final LogCategory NDDS CONFIG LOG CATEGORY -
ENTITIES

Log messages pertaining to local and remote entities and to the discovery
process are in this category.

ˆ static final LogCategory NDDS CONFIG LOG CATEGORY -
API

Log messages pertaining to the API layer of RTI Connext (such as method
argument validation) are in this category.

8.143.1 Detailed Description

Categories of logged messages.

The com.rti.ndds.config.Logger.get verbosity by category (p. 1188) and
com.rti.ndds.config.Logger.set verbosity by category (p. 1189) can be
used to specify different verbosities for different categories of messages.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1186 Class Documentation

8.143.2 Member Data Documentation

8.143.2.1 final LogCategory NDDS CONFIG LOG CATEGORY -
PLATFORM [static]

Log messages pertaining to the underlying platform (hardware and OS) on which
RTI Connext is running are in this category.

8.143.2.2 final LogCategory NDDS CONFIG -
LOG CATEGORY COMMUNICATION
[static]

Log messages pertaining to data serialization and deserialization and network
traffic are in this category.

8.143.2.3 final LogCategory NDDS CONFIG LOG CATEGORY -
DATABASE [static]

Log messages pertaining to the internal database in which RTI Connext objects
are stored are in this category.

8.143.2.4 final LogCategory NDDS CONFIG LOG CATEGORY -
ENTITIES [static]

Log messages pertaining to local and remote entities and to the discovery process
are in this category.

8.143.2.5 final LogCategory NDDS CONFIG LOG CATEGORY -
API [static]

Log messages pertaining to the API layer of RTI Connext (such as method
argument validation) are in this category.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.144 Logger Class Reference 1187

8.144 Logger Class Reference

<<interface>> (p. 271) The singleton type used to configure RTI Connext
logging.

Public Member Functions

ˆ LogVerbosity get verbosity ()
Get the verbosity at which RTI Connext is currently logging diagnostic in-
formation.

ˆ LogVerbosity get verbosity by category (LogCategory cate-
gory)

Get the verbosity at which RTI Connext is currently logging diagnostic in-
formation in the given category.

ˆ void set verbosity (LogVerbosity verbosity)
Set the verbosity at which RTI Connext will log diagnostic information.

ˆ void set verbosity by category (LogCategory category, LogVer-
bosity verbosity)

Set the verbosity at which RTI Connext will log diagnostic information in
the given category.

ˆ File get output file ()
Get the file to which the logged output is redirected.

ˆ void set output file (File out) throws IOException
Set the file to which the logged output is redirected.

ˆ LogPrintFormat get print format ()
Get the current message format that RTI Connext is using to log diagnostic
information.

ˆ boolean set print format (LogPrintFormat print format)
Set the message format that RTI Connext will use to log diagnostic informa-
tion.

Static Public Member Functions

ˆ static Logger get instance ()
Get the singleton instance of this type.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1188 Class Documentation

8.144.1 Detailed Description

<<interface>> (p. 271) The singleton type used to configure RTI Connext
logging.

8.144.2 Member Function Documentation

8.144.2.1 static Logger get instance () [static]

Get the singleton instance of this type.

8.144.2.2 LogVerbosity get verbosity ()

Get the verbosity at which RTI Connext is currently logging diagnostic infor-
mation.

The default verbosity if com.rti.ndds.config.Logger.set verbosity (p. 1188)
is never called is com.rti.ndds.config.LogVerbosity.NDDS CONFIG -
LOG VERBOSITY ERROR (p. 1196).

If com.rti.ndds.config.Logger.set verbosity by category (p. 1189) has
been used to set different verbosities for different categories of messages, this
method will return the maximum verbosity of all categories.

8.144.2.3 LogVerbosity get verbosity by category (LogCategory
category)

Get the verbosity at which RTI Connext is currently logging diagnostic infor-
mation in the given category.

The default verbosity if com.rti.ndds.config.Logger.set verbosity (p. 1188)
and com.rti.ndds.config.Logger.set verbosity by category (p. 1189) are
never called is com.rti.ndds.config.LogVerbosity.NDDS CONFIG -
LOG VERBOSITY ERROR (p. 1196).

8.144.2.4 void set verbosity (LogVerbosity verbosity)

Set the verbosity at which RTI Connext will log diagnostic information.

Note: Logging at high verbosities will be detrimental to your ap-
plication’s performance. Your default setting should typically re-
main at com.rti.ndds.config.LogVerbosity.NDDS CONFIG LOG -
VERBOSITY WARNING (p. 1196) or below. (The default verbosity if
you never set it is com.rti.ndds.config.LogVerbosity.NDDS CONFIG -
LOG VERBOSITY ERROR (p. 1196).)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.144 Logger Class Reference 1189

8.144.2.5 void set verbosity by category (LogCategory category,
LogVerbosity verbosity)

Set the verbosity at which RTI Connext will log diagnostic information in the
given category.

8.144.2.6 File get output file ()

Get the file to which the logged output is redirected.

If no output file has been registered through
com.rti.ndds.config.Logger.set output file (p. 1189), this method will
return NULL. In this case, logged output will on most platforms go to standard
out as if through printf.

8.144.2.7 void set output file (File out) throws IOException

Set the file to which the logged output is redirected.

The file passed may be NULL, in which case further logged output will be
redirected to the platform-specific default output location (standard out on
most platforms).

8.144.2.8 LogPrintFormat get print format ()

Get the current message format that RTI Connext is using to log diagnostic
information.

If com.rti.ndds.config.Logger.set print format (p. 1189) is never called,
the default format is com.rti.ndds.config.LogPrintFormat.NDDS -
CONFIG LOG PRINT FORMAT DEFAULT (p. 1193).

8.144.2.9 boolean set print format (LogPrintFormat print format)

Set the message format that RTI Connext will use to log diagnostic information.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1190 Class Documentation

8.145 LoggingQosPolicy Class Reference

Configures the RTI Connext logging facility.

Inheritance diagram for LoggingQosPolicy::

Public Attributes

ˆ LogVerbosity verbosity
The verbosities at which RTI Connext diagnostic information is logged.

ˆ LogCategory category
Categories of logged messages.

ˆ LogPrintFormat print format
The format used to output RTI Connext diagnostic information.

ˆ String output file
Specifies the file to which log messages will be redirected to.

8.145.1 Detailed Description

Configures the RTI Connext logging facility.

All the properties associated with RTI Connext logging can be configured using
this QoS policy. This allows you to configure logging using XML QoS Profiles.
See the Troubleshooting chapter in the User’s Manual for details.

Entity:

com.rti.dds.domain.DomainParticipantFactory (p. 708)

Properties:

RxO (p. 97) = NO
Changeable (p. 98) = Changeable (p. 98)

8.145.2 Member Data Documentation

8.145.2.1 LogVerbosity verbosity

The verbosities at which RTI Connext diagnostic information is logged.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.145 LoggingQosPolicy Class Reference 1191

[default] com.rti.ndds.config.LogVerbosity.NDDS CONFIG LOG -
VERBOSITY ERROR (p. 1196)

8.145.2.2 LogCategory category

Categories of logged messages.

[default] Logging will be enabled for all the categories.

8.145.2.3 LogPrintFormat print format

The format used to output RTI Connext diagnostic information.

[default] com.rti.ndds.config.LogPrintFormat.NDDS CONFIG -
LOG PRINT FORMAT DEFAULT (p. 1193).

8.145.2.4 String output file

Specifies the file to which log messages will be redirected to.

If the value of ouput file is set to NULL, log messages will sent to standard
output.

[default] NULL

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1192 Class Documentation

8.146 LogPrintFormat Class Reference

The format used to output RTI Connext diagnostic information.

Inheritance diagram for LogPrintFormat::

Static Public Attributes

ˆ static final LogPrintFormat NDDS CONFIG LOG PRINT -
FORMAT DEFAULT

Print message, method name, and activity context (default).

ˆ static final LogPrintFormat NDDS CONFIG LOG PRINT -
FORMAT TIMESTAMPED

Print message, method name, activity context, and timestamp.

ˆ static final LogPrintFormat NDDS CONFIG LOG PRINT -
FORMAT VERBOSE

Print message with all available context information (includes thread identi-
fier, activity context).

ˆ static final LogPrintFormat NDDS CONFIG LOG PRINT -
FORMAT VERBOSE TIMESTAMPED

Print message with all available context information, and timestamp.

ˆ static final LogPrintFormat NDDS CONFIG LOG PRINT -
FORMAT DEBUG

Print a set of field that may be useful for internal debug.

ˆ static final LogPrintFormat NDDS CONFIG LOG PRINT -
FORMAT MINIMAL

Print only message number and method name.

ˆ static final LogPrintFormat NDDS CONFIG LOG PRINT -
FORMAT MAXIMAL

Print all available fields.

8.146.1 Detailed Description

The format used to output RTI Connext diagnostic information.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.146 LogPrintFormat Class Reference 1193

8.146.2 Member Data Documentation

8.146.2.1 final LogPrintFormat NDDS CONFIG -
LOG PRINT FORMAT DEFAULT
[static]

Print message, method name, and activity context (default).

8.146.2.2 final LogPrintFormat NDDS CONFIG -
LOG PRINT FORMAT TIMESTAMPED
[static]

Print message, method name, activity context, and timestamp.

8.146.2.3 final LogPrintFormat NDDS CONFIG -
LOG PRINT FORMAT VERBOSE
[static]

Print message with all available context information (includes thread identifier,
activity context).

8.146.2.4 final LogPrintFormat NDDS CONFIG LOG -
PRINT FORMAT VERBOSE TIMESTAMPED
[static]

Print message with all available context information, and timestamp.

8.146.2.5 final LogPrintFormat NDDS CONFIG LOG PRINT -
FORMAT DEBUG [static]

Print a set of field that may be useful for internal debug.

8.146.2.6 final LogPrintFormat NDDS CONFIG -
LOG PRINT FORMAT MINIMAL
[static]

Print only message number and method name.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1194 Class Documentation

8.146.2.7 final LogPrintFormat NDDS CONFIG -
LOG PRINT FORMAT MAXIMAL
[static]

Print all available fields.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.147 LogVerbosity Class Reference 1195

8.147 LogVerbosity Class Reference

The verbosities at which RTI Connext diagnostic information is logged.

Inheritance diagram for LogVerbosity::

Static Public Attributes

ˆ static final LogVerbosity NDDS CONFIG LOG VERBOSITY -
SILENT

No further output will be logged.

ˆ static final LogVerbosity NDDS CONFIG LOG VERBOSITY -
ERROR

Only error messages will be logged.

ˆ static final LogVerbosity NDDS CONFIG LOG VERBOSITY -
WARNING

Both error and warning messages will be logged.

ˆ static final LogVerbosity NDDS CONFIG LOG VERBOSITY -
STATUS LOCAL

Errors, warnings, and verbose information about the lifecycles of local RTI
Connext objects will be logged.

ˆ static final LogVerbosity NDDS CONFIG LOG VERBOSITY -
STATUS REMOTE

Errors, warnings, and verbose information about the lifecycles of remote RTI
Connext objects will be logged.

ˆ static final LogVerbosity NDDS CONFIG LOG VERBOSITY -
STATUS ALL

Errors, warnings, verbose information about the lifecycles of local and remote
RTI Connext objects, and periodic information about RTI Connext threads
will be logged.

8.147.1 Detailed Description

The verbosities at which RTI Connext diagnostic information is logged.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1196 Class Documentation

8.147.2 Member Data Documentation

8.147.2.1 final LogVerbosity NDDS CONFIG LOG VERBOSITY -
SILENT [static]

No further output will be logged.

8.147.2.2 final LogVerbosity NDDS CONFIG LOG VERBOSITY -
ERROR [static]

Only error messages will be logged.

An error indicates something wrong in the functioning of RTI Connext. The
most common cause of errors is incorrect configuration.

8.147.2.3 final LogVerbosity NDDS CONFIG LOG VERBOSITY -
WARNING [static]

Both error and warning messages will be logged.

A warning indicates that RTI Connext is taking an action that may or may not
be what you intended. Some configuration information is also logged at this
verbosity to aid in debugging.

8.147.2.4 final LogVerbosity NDDS CONFIG -
LOG VERBOSITY STATUS LOCAL
[static]

Errors, warnings, and verbose information about the lifecycles of local RTI
Connext objects will be logged.

8.147.2.5 final LogVerbosity NDDS CONFIG -
LOG VERBOSITY STATUS REMOTE
[static]

Errors, warnings, and verbose information about the lifecycles of remote RTI
Connext objects will be logged.

8.147.2.6 final LogVerbosity NDDS CONFIG LOG VERBOSITY -
STATUS ALL [static]

Errors, warnings, verbose information about the lifecycles of local and remote
RTI Connext objects, and periodic information about RTI Connext threads will
be logged.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.148 LongDoubleSeq Class Reference 1197

8.148 LongDoubleSeq Class Reference

Instantiates com.rti.dds.util.Sequence (p. 1432) <
com.rti.dds.infrastructure.LongDouble >.

Inheritance diagram for LongDoubleSeq::

Public Member Functions

ˆ LongDoubleSeq ()

Constructs an empty sequence of long doubles with an initial maximum of
zero.

ˆ LongDoubleSeq (int initialMaximum)

Constructs an empty sequence of long doubles with the given initial maxi-
mum.

ˆ LongDoubleSeq (double[] doubles)

Constructs a new sequence containing the given long doubles.

8.148.1 Detailed Description

Instantiates com.rti.dds.util.Sequence (p. 1432) <
com.rti.dds.infrastructure.LongDouble >.

Instantiates:

<<generic>> (p. 271) com.rti.dds.util.Sequence (p. 1432)

See also:

com.rti.dds.infrastructure.LongDouble
com.rti.dds.util.Sequence (p. 1432)

8.148.2 Constructor & Destructor Documentation

8.148.2.1 LongDoubleSeq ()

Constructs an empty sequence of long doubles with an initial maximum of zero.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1198 Class Documentation

8.148.2.2 LongDoubleSeq (int initialMaximum)

Constructs an empty sequence of long doubles with the given initial maximum.

8.148.2.3 LongDoubleSeq (double[] doubles)

Constructs a new sequence containing the given long doubles.

Parameters:

doubles the initial contents of this sequence

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.149 LongSeq Class Reference 1199

8.149 LongSeq Class Reference

Instantiates com.rti.dds.util.Sequence (p. 1432) < long >.

Inheritance diagram for LongSeq::

Public Member Functions

ˆ LongSeq ()

Constructs an empty sequence of long integers with an initial maximum of
zero.

ˆ LongSeq (int initialMaximum)

Constructs an empty sequence of long integers with the given initial maxi-
mum.

ˆ LongSeq (long[] longs)

Constructs a new sequence containing the given longs.

ˆ boolean addAllLong (long[] elements, int offset, int length)

Append length elements from the given array to this sequence, starting at
index offset in that array.

ˆ boolean addAllLong (long[] elements)
ˆ void addLong (long element)

Append the element to the end of the sequence.

ˆ void addLong (int index, long element)

Shift all elements in the sequence starting from the given index and add the
element to the given index.

ˆ long getLong (int index)

Returns the long at the given index.

ˆ long setLong (int index, long element)

Set the new long at the given index and return the old long.

ˆ void setLong (int dstIndex, long[] elements, int srcIndex, int length)

Copy a portion of the given array into this sequence.

ˆ long[] toArrayLong (long[] array)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1200 Class Documentation

Return an array containing copy of the contents of this sequence.

ˆ int getMaximum ()

Get the current maximum number of elements that can be stored in this
sequence.

ˆ Object get (int index)

A wrapper for getLong(int) (p. 1201) that return a java.lang.Long.

ˆ Object set (int index, Object element)

A wrapper for setLong() (p. 1202).

ˆ void add (int index, Object element)

A wrapper for addLong(int, int).

8.149.1 Detailed Description

Instantiates com.rti.dds.util.Sequence (p. 1432) < long >.

Instantiates:

<<generic>> (p. 271) com.rti.dds.util.Sequence (p. 1432)

See also:

long
com.rti.dds.util.Sequence (p. 1432)

8.149.2 Constructor & Destructor Documentation

8.149.2.1 LongSeq ()

Constructs an empty sequence of long integers with an initial maximum of zero.

8.149.2.2 LongSeq (int initialMaximum)

Constructs an empty sequence of long integers with the given initial maximum.

8.149.2.3 LongSeq (long[] longs)

Constructs a new sequence containing the given longs.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.149 LongSeq Class Reference 1201

Parameters:

longs the initial contents of this sequence

Exceptions:

NullPointerException if the input array is null

8.149.3 Member Function Documentation

8.149.3.1 boolean addAllLong (long[] elements, int offset, int
length)

Append length elements from the given array to this sequence, starting at index
offset in that array.

Exceptions:

NullPointerException if the given array is null.

8.149.3.2 boolean addAllLong (long[] elements)

Exceptions:

NullPointerException if the given array is null

8.149.3.3 void addLong (long element)

Append the element to the end of the sequence.

8.149.3.4 void addLong (int index, long element)

Shift all elements in the sequence starting from the given index and add the
element to the given index.

8.149.3.5 long getLong (int index)

Returns the long at the given index.

Exceptions:

IndexOutOfBoundsException if the index is out of bounds.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1202 Class Documentation

8.149.3.6 long setLong (int index, long element)

Set the new long at the given index and return the old long.

Exceptions:

IndexOutOfBoundsException if the index is out of bounds.

8.149.3.7 void setLong (int dstIndex, long[] elements, int
srcIndex, int length)

Copy a portion of the given array into this sequence.

Parameters:

dstIndex the index at which to start copying into this sequence.

elements an array of primitive elements.

srcIndex the index at which to start copying from the given array.

length the number of elements to copy.

Exceptions:

IndexOutOfBoundsException if copying would cause access of data
outside array bounds.

8.149.3.8 long [] toArrayLong (long[] array)

Return an array containing copy of the contents of this sequence.

Parameters:

array The array into which this sequence should be copied. It may be
null. If it is, or if array length is too small, the array will be ignored,
and a new array of the necessary length will be created and copied
into instead.

Returns:

A non-null array containing a copy of the contents of this sequence.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.149 LongSeq Class Reference 1203

8.149.3.9 int getMaximum ()

Get the current maximum number of elements that can be stored in this se-
quence.

The maximum of the sequence represents the maximum number of elements that
the underlying buffer can hold. It does not represent the current number of
elements.

The maximum is a non-negative number. It is initialized when the sequence is
first created.

The maximum can be changed implicitly by adding an element to the sequence
with add() (p. 1204), or explicitly by calling Sequence.setMaximum.

Returns:

the current maximum of the sequence.

See also:

Sequence.size()

Implements Sequence (p. 1433).

8.149.3.10 Object get (int index) [virtual]

A wrapper for getLong(int) (p. 1201) that return a java.lang.Long.

See also:

java.util.List.get(int)

Implements AbstractPrimitiveSequence (p. 377).

8.149.3.11 Object set (int index, Object element) [virtual]

A wrapper for setLong() (p. 1202).

Exceptions:

ClassCastException if the element is not of type Long.

See also:

java.util.List.set(int, java.lang.Object)

Implements AbstractPrimitiveSequence (p. 377).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1204 Class Documentation

8.149.3.12 void add (int index, Object element) [virtual]

A wrapper for addLong(int, int).

Exceptions:

ClassCastException if the element is not of type Long.

See also:

java.util.List.add(int, java.lang.Object)

Implements AbstractPrimitiveSequence (p. 378).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.150 MultiChannelQosPolicy Class Reference 1205

8.150 MultiChannelQosPolicy Class Reference

Configures the ability of a DataWriter to send data on different multicast groups
(addresses) based on the value of the data.

Inheritance diagram for MultiChannelQosPolicy::

Public Attributes

ˆ final ChannelSettingsSeq channels
A sequence of com.rti.dds.infrastructure.ChannelSettings t (p. 441)
used to configure the channels’ properties. If the length of the sequence is
zero, the QoS policy will be ignored.

ˆ String filter name
Name of the filter class used to describe the filter expressions of a Multi-
Channel DataWriter.

8.150.1 Detailed Description

Configures the ability of a DataWriter to send data on different multicast groups
(addresses) based on the value of the data.

This QoS policy is used to partition the data published by a
com.rti.dds.publication.DataWriter (p. 538) across multiple channels.
A channel is defined by a filter expression and a sequence of multicast locators.

Entity:

com.rti.dds.publication.DataWriter (p. 538)

Properties:

RxO (p. 97) = N/A
Changeable (p. 98) = NO (p. 98)

8.150.2 Usage

By using this QoS, a com.rti.dds.publication.DataWriter (p. 538) can be
configured to send data to different multicast groups based on the content of
the data. Using syntax similar to those used in Content-Based Filters, you can
associate different multicast addresses with filter expressions that operate on

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1206 Class Documentation

the values of the fields within the data. When your application’s code calls
com.rti.dds.topic.example.FooDataWriter.write, data is sent to any multicast
address for which the data passes the filter.

Multi-channel DataWriters can be used to trade off network bandwidth with the
unnecessary processing of unwanted data for situations where there are multiple
DataReaders that are interested in different subsets of data that come from the
same data stream (Topic). For example, in Financial applications, the data
stream may be quotes for different stocks at an exchange. Applications usually
only want to receive data (quotes) for only a subset of the stocks being traded.
In tracking applications, a data stream may carry information on hundreds
or thousands of objects being tracked, but again, applications may only be
interested in a subset.

The problem is that the most efficient way to deliver data to multiple applica-
tions is to use multicast, so that a data value is only sent once on the network
for any number of subscribers to the data. However, using multicast, an ap-
plication will receive all of the data sent and not just the data in which it is
interested, thus extra CPU time is wasted to throw away unwanted data. With
this QoS, you can analyze the data-usage patterns of your applications and op-
timize network vs. CPU usage by partitioning the data into multiple multicast
streams. While network bandwidth is still being conserved by sending data only
once using multicast, most applications will only need to listen to a subset of
the multicast addresses and receive a reduced amount of unwanted data.

Your system can gain more of the benefits of using multiple multicast groups if
your network uses Layer 2 Ethernet switches. Layer 2 switches can be configured
to only route multicast packets to those ports that have added membership
to specific multicast groups. Using those switches will ensure that only the
multicast packets used by applications on a node are routed to the node; all
others are filtered-out by the switch.

8.150.3 Member Data Documentation

8.150.3.1 final ChannelSettingsSeq channels

A sequence of com.rti.dds.infrastructure.ChannelSettings t (p. 441) used
to configure the channels’ properties. If the length of the sequence is zero, the
QoS policy will be ignored.

A sequence length of zero indicates the com.rti.dds.infrastructure.MultiChannelQosPolicy
(p. 1205) is not in use.

The sequence length cannot be greater than
com.rti.dds.infrastructure.DomainParticipantResourceLimitsQosPolicy.channel -
seq max length (p. 756).

[default] Empty sequence.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.150 MultiChannelQosPolicy Class Reference 1207

8.150.3.2 String filter name

Name of the filter class used to describe the filter expressions of a MultiChannel
DataWriter.

The following builtin filters are supported: DomainParticipant.SQLFILTER -
NAME and DomainParticipant.STRINGMATCHFILTER NAME.

[default] DomainParticipant.STRINGMATCHFILTER NAME

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1208 Class Documentation

8.151 MultiTopic Interface Reference

[Not supported (optional)] <<interface>> (p. 271) A specialization of
com.rti.dds.topic.TopicDescription (p. 1561) that allows subscriptions that
combine/filter/rearrange data coming from several topics.

Inheritance diagram for MultiTopic::

Public Member Functions

ˆ String get subscription expression ()

Get the expression for this com.rti.dds.topic.MultiTopic (p. 1208).

ˆ void get expression parameters (StringSeq parameters)

Get the expression parameters.

ˆ void set expression parameters (StringSeq parameters)

Set the expression parameters.

8.151.1 Detailed Description

[Not supported (optional)] <<interface>> (p. 271) A specialization of
com.rti.dds.topic.TopicDescription (p. 1561) that allows subscriptions that
combine/filter/rearrange data coming from several topics.

com.rti.dds.topic.MultiTopic (p. 1208) allows a more sophisticated sub-
scription (p. 343) that can select and combine data received from multi-
ple topics into a single resulting type (specified by the inherited type name).
The data will then be filtered (selection) and possibly re-arranged (aggrega-
tion/projection) according to a subscription expression with parameters
expression parameters.

ˆ The subscription expression is a string that identifies the selection
and re-arrangement of data from the associated topics. It is similar to an
SQL statement where the SELECT part provides the fields to be kept,
the FROM part provides the names of the topics that are searched for
those fields, and the WHERE clause gives the content filter. The Topics
combined may have different types but they are restricted in that the type
of the fields used for the NATURAL JOIN operation must be the same.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.151 MultiTopic Interface Reference 1209

ˆ The expression parameters attribute is a sequence of strings that give
values to the ’parameters’ (i.e. ”%n” tokens) in the subscription -
expression. The number of supplied parameters must fit with the re-
quested values in the subscription expression (i.e. the number of n
tokens).

ˆ com.rti.dds.subscription.DataReader (p. 473) entities associated
with a com.rti.dds.topic.MultiTopic (p. 1208) are alerted of data
modifications by the usual com.rti.dds.infrastructure.Listener
(p. 1154) or com.rti.dds.infrastructure.WaitSet (p. 1695) /
com.rti.dds.infrastructure.Condition (p. 451) mechanisms whenever
modifications occur to the data associated with any of the topics relevant
to the com.rti.dds.topic.MultiTopic (p. 1208).

Note that the source for data may not be restricted to a single topic (p. 350).

com.rti.dds.subscription.DataReader (p. 473) entities associated with a
com.rti.dds.topic.MultiTopic (p. 1208) may access instances that are ”con-
structed” at the com.rti.dds.subscription.DataReader (p. 473) side from
the instances written by multiple com.rti.dds.publication.DataWriter
(p. 538) entities. The com.rti.dds.topic.MultiTopic (p. 1208) access instance
will begin to exist as soon as all the constituting com.rti.dds.topic.Topic
(p. 1545) instances are in existence. The view state and instance state is
computed from the corresponding states of the constituting instances:

ˆ The view state of the com.rti.dds.topic.MultiTopic (p. 1208) in-
stance is ViewStateKind.NEW VIEW STATE if at least one of the consti-
tuting instances has view state = ViewStateKind.NEW VIEW STATE.
Otherwise, it will be ViewStateKind.NOT NEW VIEW STATE.

ˆ The instance state of the com.rti.dds.topic.MultiTopic (p. 1208) in-
stance is InstanceStateKind.ALIVE INTANCE STATE if the instance -
state of all the constituting com.rti.dds.topic.Topic (p. 1545) in-
stances is InstanceStateKind.ALIVE INTANCE STATE. It is InstanceS-
tateKind.NOT ALIVE DISPOSED INSTANCE STATE if at least one
of the constituting com.rti.dds.topic.Topic (p. 1545) instances is In-
stanceStateKind.NOT ALIVE DISPOSED INSTANCE STATE. Other-
wise, it is InstanceStateKind.NOT ALIVE NO WRITERS INSTANCE -
STATE.

Queries and Filters Syntax (p. 278) describes the syntax of subscription -
expression and expression parameters.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1210 Class Documentation

8.151.2 Member Function Documentation

8.151.2.1 String get subscription expression ()

Get the expression for this com.rti.dds.topic.MultiTopic (p. 1208).

The expressions syntax is described in the DDS specification. It is specified
when the com.rti.dds.topic.MultiTopic (p. 1208) is created.

Returns:

subscription expression of the com.rti.dds.topic.MultiTopic
(p. 1208).

8.151.2.2 void get expression parameters (StringSeq parameters)

Get the expression parameters.

The expressions syntax is described in the DDS specification.

The parameters is either specified on the last successful call to
com.rti.dds.topic.MultiTopic.set expression parameters (p. 1210),
or if com.rti.dds.topic.MultiTopic.set expression parameters
(p. 1210) was never called, the parameters specified when the
com.rti.dds.topic.MultiTopic (p. 1208) was created.

Parameters:

parameters <<inout>> (p. 271) Fill in this sequence with the expres-
sion parameters. Cannot be NULL.

Exceptions:

One of the Standard Return Codes (p. 104)

8.151.2.3 void set expression parameters (StringSeq parameters)

Set the expression parameters.

Changes the expression parameters associated with the
com.rti.dds.topic.MultiTopic (p. 1208).

Parameters:

parameters <<in>> (p. 271) the filter expression parameters

Returns:

One of the Standard Return Codes (p. 104).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.152 ObjectHolder Class Reference 1211

8.152 ObjectHolder Class Reference

<<eXtension>> (p. 270) Holder of object instance

Public Attributes

ˆ Object value = null
Instance of Object embedded in ObjectHolder (p. 1211).

8.152.1 Detailed Description

<<eXtension>> (p. 270) Holder of object instance

Holder of object instance. Can be used as an output parameter in a method for
non-primitive types.

8.152.2 Member Data Documentation

8.152.2.1 Object value = null

Instance of Object embedded in ObjectHolder (p. 1211).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1212 Class Documentation

8.153 OfferedDeadlineMissedStatus Class Ref-
erence

StatusKind.OFFERED DEADLINE MISSED STATUS.

Inherits Status.

Public Attributes

ˆ int total count
Total cumulative count of the number of times the
com.rti.dds.publication.DataWriter (p. 538) failed to write within
its offered deadline.

ˆ int total count change
The incremental changes in total count since the last time the listener was
called or the status was read.

ˆ final InstanceHandle t last instance handle
Handle to the last instance in the com.rti.dds.publication.DataWriter
(p. 538) for which an offered deadline was missed.

8.153.1 Detailed Description

StatusKind.OFFERED DEADLINE MISSED STATUS.

Entity:

com.rti.dds.publication.DataWriter (p. 538)

Listener:

com.rti.dds.publication.DataWriterListener (p. 566)

The deadline that the com.rti.dds.publication.DataWriter (p. 538) has
committed through its com.rti.dds.infrastructure.DeadlineQosPolicy
(p. 604) was not respected for a specific instance.

8.153.2 Member Data Documentation

8.153.2.1 int total count

Total cumulative count of the number of times the
com.rti.dds.publication.DataWriter (p. 538) failed to write within its

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.153 OfferedDeadlineMissedStatus Class Reference 1213

offered deadline.

Missed deadlines accumulate; that is, each deadline period the total count will
be incremented by one.

8.153.2.2 int total count change

The incremental changes in total count since the last time the listener was called
or the status was read.

8.153.2.3 final InstanceHandle t last instance handle

Handle to the last instance in the com.rti.dds.publication.DataWriter
(p. 538) for which an offered deadline was missed.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1214 Class Documentation

8.154 OfferedIncompatibleQosStatus Class Ref-
erence

StatusKind.OFFERED INCOMPATIBLE QOS STATUS.

Inherits Status.

Public Attributes

ˆ int total count
Total cumulative number of times the concerned
com.rti.dds.publication.DataWriter (p. 538) discovered a
com.rti.dds.subscription.DataReader (p. 473) for the same
com.rti.dds.topic.Topic (p. 1545), common partition with a
requested QoS that is incompatible with that offered by the
com.rti.dds.publication.DataWriter (p. 538).

ˆ int total count change
The incremental changes in total count since the last time the listener was
called or the status was read.

ˆ QosPolicyId t last policy id
The com.rti.dds.infrastructure.QosPolicyId t (p. 1318) of one of the
policies that was found to be incompatible the last time an incompatibility
was detected.

ˆ final QosPolicyCountSeq policies
A list containing for each policy the total number of times that
the concerned com.rti.dds.publication.DataWriter (p. 538) dis-
covered a com.rti.dds.subscription.DataReader (p. 473) for the
same com.rti.dds.topic.Topic (p. 1545) and common partition
with a requested QoS that is incompatible with that offered by the
com.rti.dds.publication.DataWriter (p. 538).

8.154.1 Detailed Description

StatusKind.OFFERED INCOMPATIBLE QOS STATUS.

Entity:

com.rti.dds.publication.DataWriter (p. 538)

Listener:

com.rti.dds.publication.DataWriterListener (p. 566)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.154 OfferedIncompatibleQosStatus Class Reference 1215

The qos policy value was incompatible with what was requested.

8.154.2 Member Data Documentation

8.154.2.1 int total count

Total cumulative number of times the concerned
com.rti.dds.publication.DataWriter (p. 538) discovered a
com.rti.dds.subscription.DataReader (p. 473) for the same
com.rti.dds.topic.Topic (p. 1545), common partition with a re-
quested QoS that is incompatible with that offered by the
com.rti.dds.publication.DataWriter (p. 538).

8.154.2.2 int total count change

The incremental changes in total count since the last time the listener was called
or the status was read.

8.154.2.3 QosPolicyId t last policy id

The com.rti.dds.infrastructure.QosPolicyId t (p. 1318) of one of the poli-
cies that was found to be incompatible the last time an incompatibility was
detected.

8.154.2.4 final QosPolicyCountSeq policies

A list containing for each policy the total number of times that
the concerned com.rti.dds.publication.DataWriter (p. 538) dis-
covered a com.rti.dds.subscription.DataReader (p. 473) for the
same com.rti.dds.topic.Topic (p. 1545) and common partition with
a requested QoS that is incompatible with that offered by the
com.rti.dds.publication.DataWriter (p. 538).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1216 Class Documentation

8.155 OwnershipQosPolicy Class Reference

Specifies whether it is allowed for multiple
com.rti.dds.publication.DataWriter (p. 538) (s) to write the same
instance of the data and if so, how these modifications should be arbitrated.

Inheritance diagram for OwnershipQosPolicy::

Public Attributes

ˆ OwnershipQosPolicyKind kind
The kind of ownership.

8.155.1 Detailed Description

Specifies whether it is allowed for multiple
com.rti.dds.publication.DataWriter (p. 538) (s) to write the same
instance of the data and if so, how these modifications should be arbitrated.

Entity:

com.rti.dds.topic.Topic (p. 1545), com.rti.dds.subscription.DataReader
(p. 473), com.rti.dds.publication.DataWriter (p. 538)

Status:

StatusKind.OFFERED INCOMPATIBLE QOS STATUS
(p. 1459), StatusKind.REQUESTED INCOMPATIBLE QOS -
STATUS (p. 1459)

Properties:

RxO (p. 97) = YES
Changeable (p. 98) = UNTIL ENABLE (p. 98)

See also:

OWNERSHIP STRENGTH (p. 84)

8.155.2 Usage

Along with the OWNERSHIP STRENGTH (p. 84), this QoS policy
specifies if com.rti.dds.subscription.DataReader (p. 473) entities can re-

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.155 OwnershipQosPolicy Class Reference 1217

ceive updates to the same instance (identified by its key) from multiple
com.rti.dds.publication.DataWriter (p. 538) entities at the same time.

There are two kinds of ownership, selected by the setting of the kind: SHARED
and EXCLUSIVE.

8.155.2.1 SHARED ownership

OwnershipQosPolicyKind.SHARED OWNERSHIP QOS (p. 1223) in-
dicates that RTI Connext does not enforce unique ownership for each instance.
In this case, multiple writers can update the same data type instance. The
subscriber to the com.rti.dds.topic.Topic (p. 1545) will be able to access
modifications from all com.rti.dds.publication.DataWriter (p. 538) objects,
subject to the settings of other QoS that may filter particular samples (e.g.
the TIME BASED FILTER (p. 113) or HISTORY (p. 75) policy). In any
case, there is no ”filtering” of modifications made based on the identity of the
com.rti.dds.publication.DataWriter (p. 538) that causes the modification.

8.155.2.2 EXCLUSIVE ownership

OwnershipQosPolicyKind.EXCLUSIVE OWNERSHIP QOS (p. 1224)
indicates that each instance of a data type can only be modified by
one com.rti.dds.publication.DataWriter (p. 538). In other words,
at any point in time, a single com.rti.dds.publication.DataWriter
(p. 538) owns each instance and is the only one whose modifica-
tions will be visible to the com.rti.dds.subscription.DataReader
(p. 473) objects. The owner is determined by selecting the
com.rti.dds.publication.DataWriter (p. 538) with the highest value of
the com.rti.dds.infrastructure.OwnershipStrengthQosPolicy.value
(p. 1226) that is currently alive, as defined by the LIVELINESS (p. 78) policy,
and has not violated its DEADLINE (p. 50) contract with regards to the data
instance.

Ownership can therefore change as a result of:

ˆ a com.rti.dds.publication.DataWriter (p. 538) in the system with a
higher value of the strength that modifies the instance,

ˆ a change in the strength value of the
com.rti.dds.publication.DataWriter (p. 538) that owns the instance,
and

ˆ a change in the liveliness of the com.rti.dds.publication.DataWriter
(p. 538) that owns the instance.

ˆ a deadline with regards to the instance that is missed by the
com.rti.dds.publication.DataWriter (p. 538) that owns the instance.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1218 Class Documentation

The behavior of the system is as if the determination was made inde-
pendently by each com.rti.dds.subscription.DataReader (p. 473). Each
com.rti.dds.subscription.DataReader (p. 473) may detect the change of
ownership at a different time. It is not a requirement that at a particular
point in time all the com.rti.dds.subscription.DataReader (p. 473) objects
for that com.rti.dds.topic.Topic (p. 1545) have a consistent picture of who
owns each instance.

It is also not a requirement that the com.rti.dds.publication.DataWriter
(p. 538) objects are aware of whether they own a particular instance. There
is no error or notification given to a com.rti.dds.publication.DataWriter
(p. 538) that modifies an instance it does not currently own.

The requirements are chosen to (a) preserve the decoupling of publishers and
subscriber, and (b) allow the policy to be implemented efficiently.

It is possible that multiple com.rti.dds.publication.DataWriter (p. 538)
objects with the same strength modify the same instance. If this occurs
RTI Connext will pick one of the com.rti.dds.publication.DataWriter
(p. 538) objects as the owner. It is not specified how the owner is se-
lected. However, the algorithm used to select the owner guarantees that all
com.rti.dds.subscription.DataReader (p. 473) objects will make the same
choice of the particular com.rti.dds.publication.DataWriter (p. 538) that is
the owner. It also guarantees that the owner remains the same until there is
a change in strength, liveliness, the owner misses a deadline on the instance,
or a new com.rti.dds.publication.DataWriter (p. 538) with higher same
strength, or a new com.rti.dds.publication.DataWriter (p. 538) with same
strength that should be deemed the owner according to the policy of the Service,
modifies the instance.

Exclusive ownership is on an instance-by-instance basis. That
is, a subscriber can receive values written by a lower strength
com.rti.dds.publication.DataWriter (p. 538) as long as they af-
fect instances whose values have not been set by the higher-strength
com.rti.dds.publication.DataWriter (p. 538).

8.155.3 Compatibility

The value of the com.rti.dds.infrastructure.OwnershipQosPolicyKind
(p. 1223) offered must exactly match the one requested or else they are con-
sidered incompatible.

8.155.4 RELATIONSHIP BETWEEN REGISTRATION,
LIVELINESS and OWNERSHIP

The need for registering/unregistering instances stems from two use cases:

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.155 OwnershipQosPolicy Class Reference 1219

ˆ Ownership resolution on redundant systems

ˆ Detection of loss in topological connectivity

These two use cases also illustrate the semantic differences between
the com.rti.dds.topic.example.FooDataWriter.unregister instance and
com.rti.dds.topic.example.FooDataWriter.dispose.

8.155.4.1 Ownership Resolution on Redundant Systems

It is expected that users may use DDS to set up redundant sys-
tems where multiple com.rti.dds.publication.DataWriter (p. 538) enti-
ties are ”capable” of writing the same instance. In this situation, the
com.rti.dds.publication.DataWriter (p. 538) entities are configured such
that:

ˆ Either both are writing the instance ”constantly”

ˆ Or else they use some mechanism to classify each other as ”primary”
and ”secondary”, such that the primary is the only one writing, and the
secondary monitors the primary and only writes when it detects that the
primary ”writer” is no longer writing.

Both cases above use the OwnershipQosPolicyKind.EXCLUSIVE -
OWNERSHIP QOS (p. 1224) and arbitrate themselves by means
of the com.rti.dds.infrastructure.OwnershipStrengthQosPolicy
(p. 1225). Regardless of the scheme, the desired behavior from the
com.rti.dds.subscription.DataReader (p. 473) point of view is that
com.rti.dds.subscription.DataReader (p. 473) normally receives data from
the primary unless the ”primary” writer stops writing, in which case the
com.rti.dds.subscription.DataReader (p. 473) starts to receive data from
the secondary com.rti.dds.publication.DataWriter (p. 538).

This approach requires some mechanism to detect that a
com.rti.dds.publication.DataWriter (p. 538) (the primary) is no longer
”writing” the data as it should. There are several reasons why this may happen
and all must be detected (but not necessarily distinguished):

crash The writing process is no longer running (e.g. the whole application has
crashed)

connectivity loss Connectivity to the writing application has been lost (e.g. network dis-
connection)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1220 Class Documentation

application fault The application logic that was writing the data is faulty and has stopped
calling com.rti.dds.topic.example.FooDataWriter.write.

Arbitrating from a com.rti.dds.publication.DataWriter (p. 538) to one of
a higher strength is simple and the decision can be taken autonomously by the
com.rti.dds.subscription.DataReader (p. 473). Switching ownership from
a higher strength com.rti.dds.publication.DataWriter (p. 538) to one of a
lower strength com.rti.dds.publication.DataWriter (p. 538) requires that
the com.rti.dds.subscription.DataReader (p. 473) can make a determina-
tion that the stronger com.rti.dds.publication.DataWriter (p. 538) is ”no
longer writing the instance”.

Case where the data is periodically updated This determina-
tion is reasonably simple when the data is being written periodically
at some rate. The com.rti.dds.publication.DataWriter (p. 538) sim-
ply states its offered com.rti.dds.infrastructure.DeadlineQosPolicy
(p. 604) (maximum interval between updates) and the
com.rti.dds.subscription.DataReader (p. 473) automati-
cally monitors that the com.rti.dds.publication.DataWriter
(p. 538) indeed updates the instance at least once per
com.rti.dds.infrastructure.DeadlineQosPolicy.period (p. 606). If
the deadline is missed, the com.rti.dds.subscription.DataReader
(p. 473) considers the com.rti.dds.publication.DataWriter (p. 538)
”not alive” and automatically gives ownership to the next highest-strength
com.rti.dds.publication.DataWriter (p. 538) that is alive.

Case where data is not periodically updated The case where the
com.rti.dds.publication.DataWriter (p. 538) is not writing data peri-
odically is also a very important use-case. Since the instance is not being
updated at any fixed period, the ”deadline” mechanism cannot be used
to determine ownership. The liveliness solves this situation. Ownership
is maintained while the com.rti.dds.publication.DataWriter (p. 538) is
”alive” and for the com.rti.dds.publication.DataWriter (p. 538) to be
alive it must fulfill its com.rti.dds.infrastructure.LivelinessQosPolicy
(p. 1164) contract. The different means to renew liveliness (automatic,
manual) combined by the implied renewal each time data is written han-
dle the three conditions above [crash], [connectivity loss], and [application
fault]. Note that to handle [application fault], LIVELINESS must be
LivelinessQosPolicyKind.MANUAL BY TOPIC LIVELINESS -
QOS (p. 1169). The com.rti.dds.publication.DataWriter (p. 538)
can retain ownership by periodically writing data or else calling assert -
liveliness if it has no data to write. Alternatively if only protection against
[crash] or [connectivity loss] is desired, it is sufficient that some task on
the com.rti.dds.publication.DataWriter (p. 538) process periodically

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.155 OwnershipQosPolicy Class Reference 1221

writes data or calls com.rti.dds.domain.DomainParticipant.assert -
liveliness (p. 690). However, this scenario requires that the
com.rti.dds.subscription.DataReader (p. 473) knows what instances
are being ”written” by the com.rti.dds.publication.DataWriter (p. 538).
That is the only way that the com.rti.dds.subscription.DataReader
(p. 473) deduces the ownership of specific instances from the fact that the
com.rti.dds.publication.DataWriter (p. 538) is still ”alive”. Hence the
need for the com.rti.dds.publication.DataWriter (p. 538) to ”register”
and ”unregister” instances. Note that while ”registration” can be done lazily
the first time the com.rti.dds.publication.DataWriter (p. 538) writes the
instance, ”unregistration,” in general, cannot. Similar reasoning will lead
to the fact that unregistration will also require a message to be sent to the
com.rti.dds.subscription.DataReader (p. 473).

8.155.4.2 Detection of Loss in Topological Connectivity

There are applications that are designed in such a way that their correct oper-
ation requires some minimal topological connectivity, that is, the writer needs
to have a minimum number of readers or alternatively the reader must have a
minimum number of writers.

A common scenario is that the application does not start doing its logic until it
knows that some specific writers have the minimum configured readers (e.g the
alarm monitor is up).

A more common scenario is that the application logic will wait until some writers
appear that can provide some needed source of information (e.g. the raw sensor
data that must be processed).

Furthermore, once the application is running it is a requirement that this
minimal connectivity (from the source of the data) is monitored and the
application informed if it is ever lost. For the case where data is being
written periodically, the com.rti.dds.infrastructure.DeadlineQosPolicy
(p. 604) and the on deadline missed listener provides the notification. The
case where data is not periodically updated requires the use of the
com.rti.dds.infrastructure.LivelinessQosPolicy (p. 1164) in combination
with register instance/unregister instance to detect whether the ”connectiv-
ity” has been lost, and the notification is provided by means of InstanceS-
tateKind.NOT ALIVE NO WRITERS INSTANCE STATE.

In terms of the required mechanisms, the scenario is very similar to the case
of maintaining ownership. In both cases, the reader needs to know whether a
writer is still ”managing the current value of an instance” even though it is not
continually writing it and this knowledge requires the writer to keep its liveliness
plus some means to know which instances the writer is currently ”managing”
(i.e. the registered instances).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1222 Class Documentation

8.155.4.3 Semantic Difference between unregister instance and dis-
pose

com.rti.dds.topic.example.FooDataWriter.dispose is semantically differ-
ent from com.rti.dds.topic.example.FooDataWriter.unregister instance.
com.rti.dds.topic.example.FooDataWriter.dispose indicates that the data
instance no longer exists (e.g. a track that has disappeared, a simulation entity
that has been destroyed, a record entry that has been deleted, etc.) whereas
com.rti.dds.topic.example.FooDataWriter.unregister instance indicates that the
writer is no longer taking responsibility for updating the value of the instance.

Deleting a com.rti.dds.publication.DataWriter (p. 538) is equivalent to un-
registering all the instances it was writing, but is not the same as ”disposing”
all the instances.

For a com.rti.dds.topic.Topic (p. 1545) with OwnershipQosPoli-
cyKind.EXCLUSIVE OWNERSHIP QOS (p. 1224), if the current
owner of an instance disposes it, the readers accessing the instance will see the
instance state as being ”DISPOSED” and not see the values being written by
the weaker writer (even after the stronger one has disposed the instance). This
is because the com.rti.dds.publication.DataWriter (p. 538) that owns the
instance is saying that the instance no longer exists (e.g. the master of the
database is saying that a record has been deleted) and thus the readers should
see it as such.

For a com.rti.dds.topic.Topic (p. 1545) with OwnershipQosPoli-
cyKind.EXCLUSIVE OWNERSHIP QOS (p. 1224), if the current
owner of an instance unregisters it, then it will relinquish ownership of the
instance and thus the readers may see the value updated by another writer
(which will then become the owner). This is because the owner said that it no
longer will be providing values for the instance and thus another writer can
take ownership and provide those values.

8.155.5 Member Data Documentation

8.155.5.1 OwnershipQosPolicyKind kind

The kind of ownership.

[default] OwnershipQosPolicyKind.SHARED OWNERSHIP QOS
(p. 1223)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.156 OwnershipQosPolicyKind Class Reference 1223

8.156 OwnershipQosPolicyKind Class Refer-
ence

Kinds of ownership.

Inheritance diagram for OwnershipQosPolicyKind::

Static Public Attributes

ˆ static final OwnershipQosPolicyKind SHARED OWNERSHIP -
QOS

[default] Indicates shared ownership for each instance.

ˆ static final OwnershipQosPolicyKind EXCLUSIVE -
OWNERSHIP QOS

Indicates each instance can only be owned by one
com.rti.dds.publication.DataWriter (p. 538), but the owner of an
instance can change dynamically.

8.156.1 Detailed Description

Kinds of ownership.

QoS:

com.rti.dds.infrastructure.OwnershipQosPolicy (p. 1216)

8.156.2 Member Data Documentation

8.156.2.1 final OwnershipQosPolicyKind SHARED -
OWNERSHIP QOS [static]

[default] Indicates shared ownership for each instance.

Multiple writers are allowed to update the same instance and all the updates are
made available to the readers. In other words there is no concept of an owner
for the instances.

This is the default behavior if the OWNERSHIP (p. 83) policy is not specified
or supported.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1224 Class Documentation

8.156.2.2 final OwnershipQosPolicyKind EXCLUSIVE -
OWNERSHIP QOS [static]

Indicates each instance can only be owned by one
com.rti.dds.publication.DataWriter (p. 538), but the owner of an in-
stance can change dynamically.

The selection of the owner is controlled by the setting of the OWNERSHIP -
STRENGTH (p. 84) policy. The owner is always set to be the highest-strength
com.rti.dds.publication.DataWriter (p. 538) object among the ones cur-
rently active (as determined by the LIVELINESS (p. 78)).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.157 OwnershipStrengthQosPolicy Class Reference 1225

8.157 OwnershipStrengthQosPolicy Class Ref-
erence

Specifies the value of the strength used to arbitrate among multiple
com.rti.dds.publication.DataWriter (p. 538) objects that attempt to mod-
ify the same instance of a data type (identified by com.rti.dds.topic.Topic
(p. 1545) + key).

Inheritance diagram for OwnershipStrengthQosPolicy::

Public Attributes

ˆ int value

The strength value used to arbitrate among multiple writers.

8.157.1 Detailed Description

Specifies the value of the strength used to arbitrate among multiple
com.rti.dds.publication.DataWriter (p. 538) objects that attempt to mod-
ify the same instance of a data type (identified by com.rti.dds.topic.Topic
(p. 1545) + key).

This policy only applies if the OWNERSHIP (p. 83) policy is of kind Own-
ershipQosPolicyKind.EXCLUSIVE OWNERSHIP QOS (p. 1224).

Entity:

com.rti.dds.publication.DataWriter (p. 538)

Properties:

RxO (p. 97) = N/A
Changeable (p. 98) = YES (p. 98)

The value of the OWNERSHIP STRENGTH (p. 84) is used to determine
the ownership of a data instance (identified by the key). The arbitration is
performed by the com.rti.dds.subscription.DataReader (p. 473).

See also:

EXCLUSIVE ownership (p. 1217)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1226 Class Documentation

8.157.2 Member Data Documentation

8.157.2.1 int value

The strength value used to arbitrate among multiple writers.

[default] 0

[range] [0, 1 million]

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.158 ParticipantBuiltinTopicData Class Reference 1227

8.158 ParticipantBuiltinTopicData Class Refer-
ence

Entry created when a DomainParticipant (p. 629) object is discovered.

Inherits AbstractBuiltinTopicData.

Public Attributes

ˆ final BuiltinTopicKey t key

DCPS key to distinguish entries.

ˆ final UserDataQosPolicy user data

Policy of the corresponding DomainParticipant (p. 629).

ˆ final PropertyQosPolicy property

<<eXtension>> (p. 270) Name value pair properties to be stored with do-
main (p. 317) participant

ˆ final ProtocolVersion t rtps protocol version

<<eXtension>> (p. 270) Version number of the RTPS wire protocol used.

ˆ final VendorId t rtps vendor id

<<eXtension>> (p. 270) ID of vendor implementing the RTPS wire pro-
tocol.

ˆ int dds builtin endpoints

<<eXtension>> (p. 270) Bitmap of builtin (p. 319) endpoints supported
by the participant.

ˆ final LocatorSeq default unicast locators

<<eXtension>> (p. 270) Unicast locators used when individual entities do
not specify unicast locators.

ˆ final ProductVersion t product version

<<eXtension>> (p. 270) This is a vendor specific parameter. It gives the
current version for rti-dds.

ˆ final EntityNameQosPolicy participant name

<<eXtension>> (p. 270) The participant name and role name.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1228 Class Documentation

8.158.1 Detailed Description

Entry created when a DomainParticipant (p. 629) object is discovered.

Data associated with the built-in topic (p. 350) ParticipantBuiltinTopic-
DataTypeSupport.PARTICIPANT TOPIC NAME (p. 1232). It con-
tains QoS policies and additional information that apply to the remote
com.rti.dds.domain.DomainParticipant (p. 629).

See also:

ParticipantBuiltinTopicDataTypeSupport.PARTICIPANT -
TOPIC NAME (p. 1232)
builtin.ParticipantBuiltinTopicDataDataReader (p. 1230)

8.158.2 Member Data Documentation

8.158.2.1 final BuiltinTopicKey t key

DCPS key to distinguish entries.

8.158.2.2 final UserDataQosPolicy user data

Policy of the corresponding DomainParticipant (p. 629).

8.158.2.3 final PropertyQosPolicy property

<<eXtension>> (p. 270) Name value pair properties to be stored with do-
main (p. 317) participant

8.158.2.4 final ProtocolVersion t rtps protocol version

<<eXtension>> (p. 270) Version number of the RTPS wire protocol used.

8.158.2.5 final VendorId t rtps vendor id

<<eXtension>> (p. 270) ID of vendor implementing the RTPS wire protocol.

8.158.2.6 int dds builtin endpoints

<<eXtension>> (p. 270) Bitmap of builtin (p. 319) endpoints supported by
the participant.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.158 ParticipantBuiltinTopicData Class Reference 1229

Each bit indicates a builtin (p. 319) endpoint that may be available on the
participant for use in discovery.

8.158.2.7 final LocatorSeq default unicast locators

<<eXtension>> (p. 270) Unicast locators used when individual entities do
not specify unicast locators.

8.158.2.8 final ProductVersion t product version

<<eXtension>> (p. 270) This is a vendor specific parameter. It gives the
current version for rti-dds.

8.158.2.9 final EntityNameQosPolicy participant name

<<eXtension>> (p. 270) The participant name and role name.

This parameter contains the name and the role name of the discovered partici-
pant.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1230 Class Documentation

8.159 ParticipantBuiltinTopicDataDataReader
Class Reference

Instantiates DataReader < builtin.ParticipantBuiltinTopicData (p. 1227)
> .

Inherits DataReaderImpl.

8.159.1 Detailed Description

Instantiates DataReader < builtin.ParticipantBuiltinTopicData (p. 1227)
> .

com.rti.dds.subscription.DataReader (p. 473) of topic (p. 350) Partici-
pantBuiltinTopicDataTypeSupport.PARTICIPANT TOPIC NAME
(p. 1232) used for accessing builtin.ParticipantBuiltinTopicData (p. 1227)
of the remote com.rti.dds.domain.DomainParticipant (p. 629).

Instantiates:

<<generic>> (p. 271) com.rti.dds.topic.example.FooDataReader

See also:

builtin.ParticipantBuiltinTopicData (p. 1227)
ParticipantBuiltinTopicDataTypeSupport.PARTICIPANT -
TOPIC NAME (p. 1232)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.160 ParticipantBuiltinTopicDataSeq Class Reference 1231

8.160 ParticipantBuiltinTopicDataSeq Class
Reference

Instantiates com.rti.dds.util.Sequence (p. 1432) <
builtin.ParticipantBuiltinTopicData (p. 1227) > .

Inherits AbstractBuiltinTopicDataSeq.

8.160.1 Detailed Description

Instantiates com.rti.dds.util.Sequence (p. 1432) <
builtin.ParticipantBuiltinTopicData (p. 1227) > .

Instantiates:

<<generic>> (p. 271) com.rti.dds.util.Sequence (p. 1432)

See also:

builtin.ParticipantBuiltinTopicData (p. 1227)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1232 Class Documentation

8.161 ParticipantBuiltinTopicDataTypeSupport
Class Reference

Instantiates TypeSupport < builtin.ParticipantBuiltinTopicData (p. 1227)
> .

Inheritance diagram for ParticipantBuiltinTopicDataTypeSupport::

Static Public Attributes

ˆ static final String PARTICIPANT TOPIC NAME = DDS -
PARTICIPANT TOPIC NAME()

Participant topic (p. 350) name.

8.161.1 Detailed Description

Instantiates TypeSupport < builtin.ParticipantBuiltinTopicData (p. 1227)
> .

Instantiates:

<<generic>> (p. 271) com.rti.dds.topic.example.FooTypeSupport
(p. 1060)

See also:

builtin.ParticipantBuiltinTopicData (p. 1227)

8.161.2 Member Data Documentation

8.161.2.1 final String PARTICIPANT TOPIC NAME =
DDS PARTICIPANT TOPIC NAME() [static]

Participant topic (p. 350) name.

Topic name of builtin.ParticipantBuiltinTopicDataDataReader (p. 1230)

See also:

builtin.ParticipantBuiltinTopicData (p. 1227)
builtin.ParticipantBuiltinTopicDataDataReader (p. 1230)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.162 PartitionQosPolicy Class Reference 1233

8.162 PartitionQosPolicy Class Reference

Set of strings that introduces a logical partition among the top-
ics visible by a com.rti.dds.publication.Publisher (p. 1277) and a
com.rti.dds.subscription.Subscriber (p. 1478).

Inheritance diagram for PartitionQosPolicy::

Public Attributes

ˆ final StringSeq name

A list of partition names.

8.162.1 Detailed Description

Set of strings that introduces a logical partition among the top-
ics visible by a com.rti.dds.publication.Publisher (p. 1277) and a
com.rti.dds.subscription.Subscriber (p. 1478).

This QoS policy is used to set string identifiers that are used for matching
DataReaders and DataWriters for the same Topic.

A com.rti.dds.publication.DataWriter (p. 538) within a
com.rti.dds.publication.Publisher (p. 1277) only communicates
with a com.rti.dds.subscription.DataReader (p. 473) in a
com.rti.dds.subscription.Subscriber (p. 1478) if (in addition to
matching the com.rti.dds.topic.Topic (p. 1545) and having com-
patible QoS) the com.rti.dds.publication.Publisher (p. 1277) and
com.rti.dds.subscription.Subscriber (p. 1478) have a common parti-
tion name string.

Entity:

com.rti.dds.publication.Publisher (p. 1277),
com.rti.dds.subscription.Subscriber (p. 1478)

Properties:

RxO (p. 97) = NO
Changeable (p. 98) = YES (p. 98)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1234 Class Documentation

8.162.2 Usage

This policy allows the introduction of a logical partition concept inside the
’physical’ partition induced by a domain (p. 317).

Usually DataReaders and DataWriters are matched only by their topic (p. 350)
(so that data are only sent by DataWriters to DataReaders for the same topic
(p. 350)). The Partition QoS policy allows you to add one or more strings,
”partitions”, to a Publisher and/or Subscriber. If partitions are added, then
a DataWriter and DataReader for the same topic (p. 350) are only considered
matched if their Publishers and Subscribers have partitions in common (inter-
secting partitions).

Since the set of partitions for a publisher or subscriber can be dynamically
changed, the Partition QoS policy is useful to control which DataWriters can
send data to which DataReaders and vice versa – even if all of the DataWriters
and DataReaders are for the same topic (p. 350). This facility is useful for
creating temporary separation groups among entities that would otherwise be
connected to and exchange data each other.

Failure to match partitions is not considered an incompatible QoS and does
not trigger any listeners or conditions. A change in this policy can potentially
modify the ”match” of existing DataReader and DataWriter entities. It may
establish new ”matches” that did not exist before, or break existing matches.

Partition strings are usually directly matched via string comparisons. However,
partition strings can also contain wildcard symbols so that partitions can be
matched via pattern matching. As long as the partitions or wildcard patterns
of a Publisher intersect with the partitions or wildcard patterns of a Subscriber,
their DataWriters and DataReaders of the same topic (p. 350) are able to match;
otherwise they are not.

These partition name patterns are regular expressions as
defined by the POSIX fnmatch API (1003.2-1992 section
B.6). Either com.rti.dds.publication.Publisher (p. 1277) or
com.rti.dds.subscription.Subscriber (p. 1478) may include regular ex-
pressions in partition names, but no two names that both contain wildcards
will ever be considered to match. This means that although regular expressions
may be used both at publisher as well as subscriber side, RTI Connext will not
try to match two regular expressions (between publishers and subscribers).

Each publisher and subscriber must belong to at least one logical partition. A
regular expression is not considered to be a logical partition. If a publisher or
subscriber has not specify a logical partition, it is assumed to be in the default
partition. The default partition is defined to be an empty string (””). Put
another way:

ˆ An empty sequence of strings in this QoS policy is considered equivalent
to a sequence containing only a single string, the empty string.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.162 PartitionQosPolicy Class Reference 1235

ˆ A string sequence that contains only regular expressions and no literal
strings, it is treated as if it had an additional element, the empty string.

Partitions are different from creating com.rti.dds.infrastructure.Entity
(p. 912) objects in different domains in several ways.

ˆ First, entities belonging to different domains are completely isolated from
each other; there is no traffic, meta-traffic or any other way for an appli-
cation or RTI Connext itself to see entities in a domain (p. 317) it does
not belong to.

ˆ Second, a com.rti.dds.infrastructure.Entity (p. 912) can only belong
to one domain (p. 317) whereas a com.rti.dds.infrastructure.Entity
(p. 912) can be in multiple partitions.

ˆ Finally, as far as RTI Connext is concerned, each unique data in-
stance is identified by the tuple (DomainID, com.rti.dds.topic.Topic
(p. 1545), key). Therefore two com.rti.dds.infrastructure.Entity
(p. 912) objects in different domains cannot refer to the same data in-
stance. On the other hand, the same data instance can be made available
(published) or requested (subscribed) on one or more partitions.

8.162.3 Member Data Documentation

8.162.3.1 final StringSeq name

A list of partition names.

Several restrictions apply to the partition names in this sequence. A violation
of one of the following rules will result in a RETCODE INCONSISTENT -
POLICY (p. 1367) when setting a com.rti.dds.publication.Publisher
(p. 1277)’s or com.rti.dds.subscription.Subscriber (p. 1478)’s QoS.

ˆ A partition name string cannot be NULL, nor can it contain the reserved
comma character (’,’).

ˆ The maximum number of partition name strings allow-
able in a com.rti.dds.infrastructure.PartitionQosPolicy
(p. 1233) is specified on a domain (p. 317) basis in
com.rti.dds.infrastructure.DomainParticipantResourceLimitsQosPolicy.max -
partitions (p. 754). The length of this sequence may not be greater than
that value.

ˆ The maximum cumulative length of all partition name
strings in a com.rti.dds.infrastructure.PartitionQosPolicy

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1236 Class Documentation

(p. 1233) is specified on a domain (p. 317) basis in
com.rti.dds.infrastructure.DomainParticipantResourceLimitsQosPolicy.max -
partition cumulative characters (p. 754).

[default] Empty sequence (zero-length sequence). Since no logical partition is
specified, RTI Connext will assume the entity to be in default partition (empty
string partition ””).

[range] List of partition name with above restrictions

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.163 PresentationQosPolicy Class Reference 1237

8.163 PresentationQosPolicy Class Reference

Specifies how the samples representing changes to data instances are presented
to a subscribing application.

Inheritance diagram for PresentationQosPolicy::

Public Attributes

ˆ PresentationQosPolicyAccessScopeKind access scope

Determines the largest scope spanning the entities for which the order and
coherency of changes can be preserved.

ˆ boolean coherent access

Specifies support for coherent access. Controls whether coherent access is
supported within the scope access scope.

ˆ boolean ordered access

Specifies support for ordered access to the samples received at the subscrip-
tion (p. 343) end. Controls whether ordered access is supported within the
scope access scope.

8.163.1 Detailed Description

Specifies how the samples representing changes to data instances are presented
to a subscribing application.

This QoS policy controls the extent to which changes to data instances can be
made dependent on each other and also the kind of dependencies that can be
propagated and maintained by RTI Connext. Specifically, this policy affects the
application’s ability to:

ˆ specify and receive coherent changes to instances

ˆ specify the relative order in which changes are presented

Entity:

com.rti.dds.publication.Publisher (p. 1277),
com.rti.dds.subscription.Subscriber (p. 1478)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1238 Class Documentation

Status:

StatusKind.OFFERED INCOMPATIBLE QOS STATUS
(p. 1459), StatusKind.REQUESTED INCOMPATIBLE QOS -
STATUS (p. 1459)

Properties:

RxO (p. 97) = YES
Changeable (p. 98) = UNTIL ENABLE (p. 98)

8.163.2 Usage

A com.rti.dds.subscription.DataReader (p. 473) will usually receive data in
the order that it was sent by a com.rti.dds.publication.DataWriter (p. 538),
and the data is presented to the com.rti.dds.subscription.DataReader
(p. 473) as soon as the application receives the next expected value. However,
sometimes, you may want a set of data for the same topic (p. 350) to be pre-
sented to the com.rti.dds.subscription.DataReader (p. 473) only after all
of the elements of the set have been received. Or you may want the data to be
presented in a different order than that in which it was received. Specifically for
keyed data, you may want the middleware to present the data in keyed – or in-
stance – order, such that samples pertaining to the same instance are presented
together.

The Presentation QoS policy allows you to specify different scopes of presen-
tation: within a topic (p. 350), across instances of a single topic (p. 350), and
even across multiple topics used by different writers of a publisher. It also con-
trols whether or not a set of changes within the scope is delivered at the same
time or can be delivered as soon as each element is received.

ˆ coherent access controls whether RTI Connext will preserve the
groupings of changes made by a publishing application by means of
the operations com.rti.dds.publication.Publisher.begin coherent -
changes (p. 1296) and com.rti.dds.publication.Publisher.end -
coherent changes (p. 1297).

ˆ ordered access controls whether RTI Connext will preserve the order of
changes.

ˆ access scope controls the granularity of the other settings. See below:

If coherent access is set, then the access scope controls the maximum extent
of coherent changes. The behavior is as follows:

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.163 PresentationQosPolicy Class Reference 1239

ˆ If access scope is set to PresentationQosPolicy-
AccessScopeKind.INSTANCE PRESENTATION -
QOS (p. 1243) (the default), the use of
com.rti.dds.publication.Publisher.begin coherent changes
(p. 1296) and com.rti.dds.publication.Publisher.end coherent -
changes (p. 1297) has no effect on how the subscriber can access the
data, because with the scope limited to each instance, changes to separate
instances are considered independent and thus cannot be grouped into a
coherent set.

ˆ If access scope is set to PresentationQosPolicyAccessS-
copeKind.TOPIC PRESENTATION QOS (p. 1243), then
coherent changes (indicated by their enclosure within calls to
com.rti.dds.publication.Publisher.begin coherent changes
(p. 1296) and com.rti.dds.publication.Publisher.end coherent -
changes (p. 1297)) will be made available as such to each re-
mote com.rti.dds.subscription.DataReader (p. 473) indepen-
dently. That is, changes made to instances within each individual
com.rti.dds.publication.DataWriter (p. 538) will be available as
coherent with respect to other changes to instances in that same
com.rti.dds.publication.DataWriter (p. 538), but will not be
grouped with changes made to instances belonging to a different
com.rti.dds.publication.DataWriter (p. 538).

ˆ If access scope is set to PresentationQosPolicyAccessS-
copeKind.GROUP PRESENTATION QOS (p. 1243),
then coherent changes made to instances through a
com.rti.dds.publication.DataWriter (p. 538) attached to a com-
mon com.rti.dds.publication.Publisher (p. 1277) are made available
as a unit to remote subscribers. (RTI does not currently support this
access scope.)

If ordered access is set, then the access scope controls the maximum extent
for which order will be preserved by RTI Connext.

ˆ If access scope is set to PresentationQosPolicyAccessS-
copeKind.INSTANCE PRESENTATION QOS (p. 1243) (the
lowest level), then changes to each instance are considered unordered
relative to changes to any other instance. That means that changes
(creations, deletions, modifications) made to two instances are not
necessarily seen in the order they occur. This is the case even if it
is the same application thread making the changes using the same
com.rti.dds.publication.DataWriter (p. 538).

ˆ If access scope is set to PresentationQosPolicyAc-
cessScopeKind.TOPIC PRESENTATION QOS (p. 1243),

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1240 Class Documentation

changes (creations, deletions, modifications) made by a single
com.rti.dds.publication.DataWriter (p. 538) are made available
to subscribers in the same order they occur. Changes made to instances
though different com.rti.dds.publication.DataWriter (p. 538) entities
are not necessarily seen in the order they occur. This is the case,
even if the changes are made by a single application thread using
com.rti.dds.publication.DataWriter (p. 538) objects attached to the
same com.rti.dds.publication.Publisher (p. 1277).

ˆ Finally, if access scope is set to PresentationQosPolicyAccessS-
copeKind.GROUP PRESENTATION QOS (p. 1243), changes
made to instances via com.rti.dds.publication.DataWriter (p. 538)
entities attached to the same com.rti.dds.publication.Publisher
(p. 1277) object are made available to subscribers on the same order they
occur.

Note that this QoS policy controls the scope at which related changes are
made available to the subscriber. This means the subscriber can access the
changes in a coherent manner and in the proper order; however, it does not
necessarily imply that the com.rti.dds.subscription.Subscriber (p. 1478)
will indeed access the changes in the correct order. For that to occur, the
application at the subscriber end must use the proper logic in reading the
com.rti.dds.subscription.DataReader (p. 473) objects.

For PresentationQosPolicyAccessScopeKind.GROUP -
PRESENTATION QOS (p. 1243) the subscribing application must
use the APIs com.rti.dds.subscription.Subscriber.begin access
(p. 1499), com.rti.dds.subscription.Subscriber.end access (p. 1500)
and com.rti.dds.subscription.Subscriber.get datareaders (p. 1491) to
access the changes in the proper order.

8.163.3 Compatibility

The value offered is considered compatible with the value requested if and only
if the following conditions are met:

ˆ the inequality offered access scope >= requested access scope evalu-
ates to ’TRUE’ or requested access scope is PresentationQosPoli-
cyAccessScopeKind.HIGHEST OFFERED PRESENTATION -
QOS (p. 1243). For the purposes of this inequality, the values of
access scope are considered ordered such that PresentationQosPol-
icyAccessScopeKind.INSTANCE PRESENTATION QOS
(p. 1243) < PresentationQosPolicyAccessScopeKind.TOPIC -
PRESENTATION QOS (p. 1243) < PresentationQosPolicyAc-
cessScopeKind.GROUP PRESENTATION QOS (p. 1243).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.163 PresentationQosPolicy Class Reference 1241

ˆ requested coherent access is false, or else both offered and requested
coherent access are true.

ˆ requested ordered access is false, or else both offered and requested
ordered access are true.

8.163.4 Member Data Documentation

8.163.4.1 PresentationQosPolicyAccessScopeKind access scope

Determines the largest scope spanning the entities for which the order and
coherency of changes can be preserved.

[default] PresentationQosPolicyAccessScopeKind.INSTANCE -
PRESENTATION QOS (p. 1243)

8.163.4.2 boolean coherent access

Specifies support for coherent access. Controls whether coherent access is sup-
ported within the scope access scope.

That is, the ability to group a set of changes as a unit on the publishing end
such that they are received as a unit at the subscribing end.

[default] false

8.163.4.3 boolean ordered access

Specifies support for ordered access to the samples received at the subscription
(p. 343) end. Controls whether ordered access is supported within the scope
access scope.

That is, the ability of the subscriber to see changes in the same order as they
occurred on the publishing end.

[default] false

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1242 Class Documentation

8.164 PresentationQosPolicyAccessScopeKind
Class Reference

Kinds of presentation ”access scope”.

Inheritance diagram for PresentationQosPolicyAccessScopeKind::

Static Public Attributes

ˆ static final PresentationQosPolicyAccessScopeKind INSTANCE -
PRESENTATION QOS

[default] Scope spans only a single instance.

ˆ static final PresentationQosPolicyAccessScopeKind TOPIC -
PRESENTATION QOS

Scope spans to all instances within the same
com.rti.dds.publication.DataWriter (p. 538) (or
com.rti.dds.subscription.DataReader (p. 473)), but not across in-
stances in different com.rti.dds.publication.DataWriter (p. 538) (or
com.rti.dds.subscription.DataReader (p. 473)).

ˆ static final PresentationQosPolicyAccessScopeKind GROUP -
PRESENTATION QOS

Scope spans to all instances belonging to
com.rti.dds.publication.DataWriter (p. 538) (or
com.rti.dds.subscription.DataReader (p. 473)) entities within
the same com.rti.dds.publication.Publisher (p. 1277) (or
com.rti.dds.subscription.Subscriber (p. 1478)).

ˆ static final PresentationQosPolicyAccessScopeKind HIGHEST -
OFFERED PRESENTATION QOS

This value only applies to a com.rti.dds.subscription.Subscriber
(p. 1478). The com.rti.dds.subscription.Subscriber
(p. 1478) will use the access scope specified by each remote
com.rti.dds.publication.Publisher (p. 1277).

8.164.1 Detailed Description

Kinds of presentation ”access scope”.

Access scope determines the largest scope spanning the entities for which the
order and coherency of changes can be preserved.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.164 PresentationQosPolicyAccessScopeKind Class Reference 1243

QoS:

com.rti.dds.infrastructure.PresentationQosPolicy (p. 1237)

8.164.2 Member Data Documentation

8.164.2.1 final PresentationQosPolicyAccessScopeKind
INSTANCE PRESENTATION QOS [static]

[default] Scope spans only a single instance.

Indicates that changes to one instance need not be coherent nor ordered with
respect to changes to any other instance. In other words, order and coherent
changes apply to each instance separately.

8.164.2.2 final PresentationQosPolicyAccessScopeKind
TOPIC PRESENTATION QOS [static]

Scope spans to all instances within the same
com.rti.dds.publication.DataWriter (p. 538) (or
com.rti.dds.subscription.DataReader (p. 473)), but not across in-
stances in different com.rti.dds.publication.DataWriter (p. 538) (or
com.rti.dds.subscription.DataReader (p. 473)).

8.164.2.3 final PresentationQosPolicyAccessScopeKind
GROUP PRESENTATION QOS [static]

Scope spans to all instances belonging to
com.rti.dds.publication.DataWriter (p. 538) (or
com.rti.dds.subscription.DataReader (p. 473)) entities within
the same com.rti.dds.publication.Publisher (p. 1277) (or
com.rti.dds.subscription.Subscriber (p. 1478)).

8.164.2.4 final PresentationQosPolicyAccessScopeKind
HIGHEST OFFERED PRESENTATION QOS [static]

This value only applies to a com.rti.dds.subscription.Subscriber (p. 1478).
The com.rti.dds.subscription.Subscriber (p. 1478) will use the access scope
specified by each remote com.rti.dds.publication.Publisher (p. 1277).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1244 Class Documentation

8.165 PRIVATE MEMBER Class Reference

Constant used to indicate that a value type member is private.

Static Public Attributes

ˆ static final short VALUE

8.165.1 Detailed Description

Constant used to indicate that a value type member is private.

See also:

PUBLIC MEMBER (p. 1263)

8.165.2 Member Data Documentation

8.165.2.1 final short VALUE [static]

Constant value.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.166 ProductVersion t Class Reference 1245

8.166 ProductVersion t Class Reference

<<eXtension>> (p. 270) Type used to represent the current version of RTI
Connext.

Inherits Struct.

Public Member Functions

ˆ ProductVersion t ()

Constructor.

Public Attributes

ˆ char major

Major product version.

ˆ char minor

Minor product version.

ˆ char release

Release letter for product version.

ˆ char revision

Revision number of product.

Static Public Attributes

ˆ static final ProductVersion t PRODUCTVERSION -
UNKNOWN

The value used when the product version is unknown.

8.166.1 Detailed Description

<<eXtension>> (p. 270) Type used to represent the current version of RTI
Connext.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1246 Class Documentation

8.166.2 Constructor & Destructor Documentation

8.166.2.1 ProductVersion t ()

Constructor.

8.166.3 Member Data Documentation

8.166.3.1 final ProductVersion t PRODUCTVERSION -
UNKNOWN [static]

Initial value:

new ProductVersion_t((char)0, (char)0, (char)0, (char)0)

The value used when the product version is unknown.

8.166.3.2 char major

Major product version.

8.166.3.3 char minor

Minor product version.

8.166.3.4 char release

Release letter for product version.

8.166.3.5 char revision

Revision number of product.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.167 ProfileQosPolicy Class Reference 1247

8.167 ProfileQosPolicy Class Reference

Configures the way that XML documents containing QoS profiles are loaded by
RTI Connext.

Inheritance diagram for ProfileQosPolicy::

Public Attributes

ˆ final StringSeq string profile

Sequence of strings containing a XML document to load.

ˆ final StringSeq url profile

Sequence of URL groups (p. 227) containing a set of XML documents to
load.

ˆ boolean ignore user profile

Ignores the file USER QOS PROFILES.xml in the current working directory.

ˆ boolean ignore environment profile

Ignores the value of the NDDS QOS PROFILES environment variable
(p. 227).

ˆ boolean ignore resource profile

Ignores the file NDDS QOS PROFILES.xml under
$NDDSHOME/resource/qos profiles 4.4d/xml.

8.167.1 Detailed Description

Configures the way that XML documents containing QoS profiles are loaded by
RTI Connext.

All QoS values for Entities can be configured in QoS profiles defined in XML
documents. XML documents can be passed to RTI Connext in string form or,
more likely, through files found on a file system.

There are also default locations where DomainParticipants will look for files to
load QoS profiles. These include the current working directory from where an
application is started, a file in the distribution directory for RTI Connext, and
the locations specified by an environment variable. You may disable any or all
of these default locations using the Profile QoS policy.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1248 Class Documentation

Entity:

com.rti.dds.domain.DomainParticipantFactory (p. 708)

Properties:

RxO (p. 97) = NO
Changeable (p. 98) = Changeable (p. 98)

8.167.2 Member Data Documentation

8.167.2.1 final StringSeq string profile

Sequence of strings containing a XML document to load.

The concatenation of the strings in this sequence must be a valid XML document
according to the XML QoS profile schema.

[default] Empty sequence (zero-length).

8.167.2.2 final StringSeq url profile

Sequence of URL groups (p. 227) containing a set of XML documents to load.

Only one of the elements of each group will be loaded by RTI Connext, starting
from the left.

[default] Empty sequence (zero-length).

8.167.2.3 boolean ignore user profile

Ignores the file USER QOS PROFILES.xml in the current working directory.

When this field is set to true, the QoS profiles contained in the file USER QOS -
PROFILES.xml in the current working directory will be ignored.

[default] false

8.167.2.4 boolean ignore environment profile

Ignores the value of the NDDS QOS PROFILES environment variable
(p. 227).

When this field is set to true, the value of the environment variable NDDS -
QOS PROFILES will be ignored.

[default] false

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.167 ProfileQosPolicy Class Reference 1249

8.167.2.5 boolean ignore resource profile

Ignores the file NDDS QOS PROFILES.xml under
$NDDSHOME/resource/qos profiles 4.4d/xml.

When this field is set to true, the QoS profiles contained in the file NDDS -
QOS PROFILES.xml under $NDDSHOME/resource/qos profiles 4.5f/xml will
be ignored.

[default] false

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1250 Class Documentation

8.168 Property t Class Reference

Properties are name/value pairs objects.

Inherits Struct.

Public Member Functions

ˆ Property t ()

Constructor.

ˆ Property t (Property t src)

Constructor.

ˆ Property t (String name, String value, boolean propagate)

Constructor.

Public Attributes

ˆ String name

Property name.

ˆ String value

Property value.

ˆ boolean propagate

Indicates if the property must be propagated on discovery.

8.168.1 Detailed Description

Properties are name/value pairs objects.

8.168.2 Constructor & Destructor Documentation

8.168.2.1 Property t ()

Constructor.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.168 Property t Class Reference 1251

8.168.2.2 Property t (Property t src)

Constructor.

Parameters:

src <<in>> (p. 271) Property used to initialized the new property.

8.168.2.3 Property t (String name, String value, boolean
propagate)

Constructor.

Parameters:

name <<in>> (p. 271) Property name.

value <<in>> (p. 271) Property value.

propagate <<in>> (p. 271) Parameter used to indicates whether or not
the property must be propagated.

8.168.3 Member Data Documentation

8.168.3.1 String name

Property name.

8.168.3.2 String value

Property value.

8.168.3.3 boolean propagate

Indicates if the property must be propagated on discovery.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1252 Class Documentation

8.169 PropertyQosPolicy Class Reference

Stores name/value(string) pairs that can be used to configure certain parameters
of RTI Connext that are not exposed through formal QoS policies. Can also be
used to store and propagate application-specific name/value pairs that can be
retrieved by user code during discovery.

Inheritance diagram for PropertyQosPolicy::

Public Attributes

ˆ final PropertySeq value

Sequence of properties.

8.169.1 Detailed Description

Stores name/value(string) pairs that can be used to configure certain parameters
of RTI Connext that are not exposed through formal QoS policies. Can also be
used to store and propagate application-specific name/value pairs that can be
retrieved by user code during discovery.

Entity:

com.rti.dds.domain.DomainParticipant (p. 629)
com.rti.dds.subscription.DataReader (p. 473)
com.rti.dds.publication.DataWriter (p. 538)

Properties:

RxO (p. 97) = N/A;
Changeable (p. 98) = YES (p. 98)

See also:

com.rti.dds.domain.DomainParticipant.get builtin subscriber
(p. 684)

8.169.2 Usage

The PROPERTY QoS policy can be used to associate a set of properties in the
form of (name,value) pairs with a com.rti.dds.subscription.DataReader

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.169 PropertyQosPolicy Class Reference 1253

(p. 473), com.rti.dds.publication.DataWriter (p. 538), or
com.rti.dds.domain.DomainParticipant (p. 629). This is similar to
the com.rti.dds.infrastructure.UserDataQosPolicy (p. 1680), except this
policy uses (name, value) pairs, and you can select whether or not a particular
pair should be propagated (included in the builtin topic (p. 350)).

This QoS policy may be used to configure:

ˆ Durable Writer History, see Configuring Durable Writer History
(p. 221)

ˆ Durable Reader State, see Configuring Durable Reader State (p. 221)

ˆ Builtin Transport Plugins, see UDPv4 Transport Property Names
in Property QoS Policy of Domain Participant (p. 1655), UDPv6
Transport Property Names in Property QoS Policy of Domain
Participant (p. 1667), and Shared Memory Transport Property
Names in Property QoS Policy of Domain Participant (p. 1441)

ˆ Extension Transport Plugins, see Loading Transport Plugins through
Property QoS Policy of Domain Participant (p. 213)

ˆ Clock Selection (p. 141)

In addition, you may add your own name/value pairs to the Property
QoS policy of an Entity (p. 912). Via this QoS policy, you can direct
RTI Connext to propagate these name/value pairs with the discovery in-
formation for the Entity (p. 912). Applications that discover the En-
tity (p. 912) can then access the user-specific name/value pairs in the dis-
covery information of the remote Entity (p. 912). This allows you to
add meta-information about an Entity (p. 912) for application-specific use,
for example, authentication/authorization certificates (which can also be
done using the com.rti.dds.infrastructure.UserDataQosPolicy (p. 1680)
or com.rti.dds.infrastructure.GroupDataQosPolicy (p. 1064)).

8.169.2.1 Reasons for Using the PropertyQosPolicy

ˆ Supports dynamic loading of extension transports (such as RTI Secure
WAN Transport)

ˆ Supports multiple instances of the builtin transports

ˆ Allows full pluggable transport configuration for non-C/C++ language
bindings (Java, .NET, etc.)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1254 Class Documentation

ˆ Avoids the process of creating entities disabled, changing their QoS set-
tings, then enabling them

ˆ Allows selection of clock

Some of the RTI Connext capabilities configurable via the Property QoS policy
can also be configured in code via APIs. However, the Property QoS policy
allows you to configure those parameters via XML files. In addition, some of
the configuration APIs will only work if the Entity (p. 912) was created in
a disabled state and then enabled after the configuration change was applied.
By configuring those parameters using the Property QoS policy during entity
creation, you avoid the additional work of first creating a disabled entity and
then enabling it afterwards.

There are helper functions to facilitate working with properties, see the
com.rti.dds.infrastructure.PropertyQosPolicyHelper (p. 1255) class on
the PROPERTY (p. 88) page.

8.169.3 Member Data Documentation

8.169.3.1 final PropertySeq value

Initial value:

new PropertySeq()

Sequence of properties.

[default] An empty list.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.170 PropertyQosPolicyHelper Class Reference 1255

8.170 PropertyQosPolicyHelper Class Refer-
ence

Policy Helpers which facilitate management of the properties in the input policy.

Static Public Member Functions

ˆ static int get number of properties (PropertyQosPolicy policy)

Gets the number of properties in the input policy.

ˆ static void assert property (PropertyQosPolicy policy, String name,
String value, boolean propagate)

Asserts the property identified by name in the input policy.

ˆ static void add property (PropertyQosPolicy policy, String name,
String value, boolean propagate)

Adds a new property to the input policy.

ˆ static Property t lookup property (PropertyQosPolicy policy,
String name)

Searches for a property in the input policy given its name.

ˆ static void remove property (PropertyQosPolicy policy, String
name)

Removes a property from the input policy.

ˆ static void get properties (PropertyQosPolicy policy, PropertySeq
properties, String name prefix)

Retrieves a list of properties whose names match the input prefix.

8.170.1 Detailed Description

Policy Helpers which facilitate management of the properties in the input policy.

8.170.2 Member Function Documentation

8.170.2.1 static int get number of properties (PropertyQosPolicy
policy) [static]

Gets the number of properties in the input policy.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1256 Class Documentation

Precondition:

policy cannot be null.

Parameters:

policy <<in>> (p. 271) Input policy.

Returns:

Number of properties.

8.170.2.2 static void assert property (PropertyQosPolicy policy,
String name, String value, boolean propagate) [static]

Asserts the property identified by name in the input policy.

If the property already exists, this function replaces its current value with the
new one.

If the property identified by name does not exist, this function adds it to the
property set.

This function increases the maximum number of elements of the policy sequence
when this number is not enough to store the new property.

Precondition:

policy, name and value cannot be null.

Parameters:

policy <<in>> (p. 271) Input policy.

name <<in>> (p. 271) Property name.

value <<in>> (p. 271) Property value.

propagate <<in>> (p. 271) Indicates if the property will be propagated
on discovery.

Returns:

One of the Standard Return Codes (p. 104) or RETCODE OUT -
OF RESOURCES (p. 1370).

8.170.2.3 static void add property (PropertyQosPolicy policy,
String name, String value, boolean propagate) [static]

Adds a new property to the input policy.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.170 PropertyQosPolicyHelper Class Reference 1257

This function will allocate memory to store the (name,value) pair. The memory
allocated is owned by RTI Connext.

If the maximum number of elements of the policy sequence is not enough to
store the new property, this function will increase it.

If the property already exists the function fails with RETCODE -
PRECONDITION NOT MET (p. 1371).

Precondition:

policy, name and value cannot be null.
The property is not in the policy.

Parameters:

policy <<in>> (p. 271) Input policy.

name <<in>> (p. 271) Property name.

value <<in>> (p. 271) Property value.

propagate <<in>> (p. 271) Indicates if the property will be propagated
on discovery.

Returns:

One of the Standard Return Codes (p. 104) or RETCODE OUT -
OF RESOURCES (p. 1370) or RETCODE PRECONDITION -
NOT MET (p. 1371)

8.170.2.4 static Property t lookup property (PropertyQosPolicy
policy, String name) [static]

Searches for a property in the input policy given its name.

Precondition:

policy, name and value cannot be null.

Parameters:

policy <<in>> (p. 271) Input policy.

name <<in>> (p. 271) Property name.

Returns:

On success, the function returns the first property with the given name.
Otherwise, the function returns NULL.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1258 Class Documentation

8.170.2.5 static void remove property (PropertyQosPolicy policy,
String name) [static]

Removes a property from the input policy.

If the property does not exist, the function fails with RETCODE -
PRECONDITION NOT MET (p. 1371).

Precondition:

policy and name cannot be null.
The property is in the policy.

Parameters:

policy <<in>> (p. 271) Input policy.
name <<in>> (p. 271) Property name.

Returns:

One of the Standard Return Codes (p. 104) or RETCODE -
PRECONDITION NOT MET (p. 1371).

8.170.2.6 static void get properties (PropertyQosPolicy policy,
PropertySeq properties, String name prefix) [static]

Retrieves a list of properties whose names match the input prefix.

If the properties sequence doesn’t own its buffer, and its maximum is less than
the total number of properties matching the input prefix, it will be filled up to
its maximum and fail with an error of RETCODE OUT OF RESOURCES
(p. 1370).

Precondition:

policy, properties and name prefix cannot be null.

Parameters:

policy <<in>> (p. 271) Input policy.
properties <<inout>> (p. 271) A com.rti.dds.infrastructure.PropertySeq

(p. 1259) object where the set or list of properties will be returned.
name prefix Name prefix.

Returns:

One of the Standard Return Codes (p. 104) or RETCODE OUT -
OF RESOURCES (p. 1370).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.171 PropertySeq Class Reference 1259

8.171 PropertySeq Class Reference

Declares IDL sequence < com.rti.dds.infrastructure.Property t (p. 1250)
>.

Inherits ArraySequence.

8.171.1 Detailed Description

Declares IDL sequence < com.rti.dds.infrastructure.Property t (p. 1250)
>.

See also:

com.rti.dds.infrastructure.Property t (p. 1250)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1260 Class Documentation

8.172 ProtocolVersion t Class Reference

<<eXtension>> (p. 270) Type used to represent the version of the RTPS
protocol.

Inherits Struct.

Public Member Functions

ˆ ProtocolVersion t ()
Constructor.

Public Attributes

ˆ byte major

Major protocol version number.

ˆ byte minor

Minor protocol version number.

Static Public Attributes

ˆ static final ProtocolVersion t PROTOCOLVERSION 1 0

The protocol version 1.0.

ˆ static final ProtocolVersion t PROTOCOLVERSION 1 1

The protocol version 1.1.

ˆ static final ProtocolVersion t PROTOCOLVERSION 1 2

The protocol version 1.2.

ˆ static final ProtocolVersion t PROTOCOLVERSION 2 0

The protocol version 2.0.

ˆ static final ProtocolVersion t PROTOCOLVERSION 2 1

The protocol version 2.1.

ˆ static final ProtocolVersion t PROTOCOLVERSION

The most recent protocol version. Currently 1.2.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.172 ProtocolVersion t Class Reference 1261

8.172.1 Detailed Description

<<eXtension>> (p. 270) Type used to represent the version of the RTPS
protocol.

8.172.2 Constructor & Destructor Documentation

8.172.2.1 ProtocolVersion t ()

Constructor.

8.172.3 Member Data Documentation

8.172.3.1 final ProtocolVersion t PROTOCOLVERSION 1 0
[static]

Initial value:

new ProtocolVersion_t((byte)1, (byte)0)

The protocol version 1.0.

8.172.3.2 final ProtocolVersion t PROTOCOLVERSION 1 1
[static]

Initial value:

new ProtocolVersion_t((byte)1, (byte)1)

The protocol version 1.1.

8.172.3.3 final ProtocolVersion t PROTOCOLVERSION 1 2
[static]

Initial value:

new ProtocolVersion_t((byte)1, (byte)2)

The protocol version 1.2.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1262 Class Documentation

8.172.3.4 final ProtocolVersion t PROTOCOLVERSION 2 0
[static]

Initial value:

new ProtocolVersion_t((byte)2, (byte)0)

The protocol version 2.0.

8.172.3.5 final ProtocolVersion t PROTOCOLVERSION 2 1
[static]

Initial value:

new ProtocolVersion_t((byte)2, (byte)1)

The protocol version 2.1.

8.172.3.6 final ProtocolVersion t PROTOCOLVERSION [static]

Initial value:

new ProtocolVersion_t((byte)2, (byte)1)

The most recent protocol version. Currently 1.2.

8.172.3.7 byte major

Major protocol version number.

8.172.3.8 byte minor

Minor protocol version number.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.173 PUBLIC MEMBER Class Reference 1263

8.173 PUBLIC MEMBER Class Reference

Constant used to indicate that a value type member is public.

Static Public Attributes

ˆ static final short VALUE

8.173.1 Detailed Description

Constant used to indicate that a value type member is public.

See also:

PRIVATE MEMBER (p. 1244)

8.173.2 Member Data Documentation

8.173.2.1 final short VALUE [static]

Constant value.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1264 Class Documentation

8.174 PublicationBuiltinTopicData Class Refer-
ence

Entry created when a com.rti.dds.publication.DataWriter (p. 538) is dis-
covered in association with its Publisher (p. 1277).

Inherits AbstractBuiltinTopicData.

Public Attributes

ˆ final BuiltinTopicKey t key

DCPS key to distinguish entries.

ˆ final BuiltinTopicKey t participant key

DCPS key of the participant to which the DataWriter (p. 538) belongs.

ˆ String topic name

Name of the related com.rti.dds.topic.Topic (p. 1545).

ˆ String type name

Name of the type attached to the com.rti.dds.topic.Topic (p. 1545).

ˆ final DurabilityQosPolicy durability

durability policy of the corresponding DataWriter (p. 538)

ˆ final DurabilityServiceQosPolicy durability service

durability service policy of the corresponding DataWriter (p. 538)

ˆ final DeadlineQosPolicy deadline

Policy of the corresponding DataWriter (p. 538).

ˆ final LatencyBudgetQosPolicy latency budget

Policy of the corresponding DataWriter (p. 538).

ˆ final LivelinessQosPolicy liveliness

Policy of the corresponding DataWriter (p. 538).

ˆ final ReliabilityQosPolicy reliability

Policy of the corresponding DataWriter (p. 538).

ˆ final LifespanQosPolicy lifespan

Policy of the corresponding DataWriter (p. 538).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.174 PublicationBuiltinTopicData Class Reference 1265

ˆ final UserDataQosPolicy user data

Policy of the corresponding DataWriter (p. 538).

ˆ final OwnershipQosPolicy ownership

Policy of the corresponding DataWriter (p. 538).

ˆ final OwnershipStrengthQosPolicy ownership strength

Policy of the corresponding DataWriter (p. 538).

ˆ final DestinationOrderQosPolicy destination order

Policy of the corresponding DataWriter (p. 538).

ˆ final PresentationQosPolicy presentation

Policy of the Publisher (p. 1277) to which the DataWriter (p. 538) be-
longs.

ˆ final PartitionQosPolicy partition

Policy of the Publisher (p. 1277) to which the DataWriter (p. 538) be-
longs.

ˆ final TopicDataQosPolicy topic data

Policy of the related Topic.

ˆ final GroupDataQosPolicy group data

Policy of the Publisher (p. 1277) to which the DataWriter (p. 538) be-
longs.

ˆ TypeCode type code

<<eXtension>> (p. 270) Type code information of the corresponding Topic

ˆ final BuiltinTopicKey t publisher key

<<eXtension>> (p. 270) DCPS key of the publisher to which the
DataWriter (p. 538) belongs

ˆ final PropertyQosPolicy property

<<eXtension>> (p. 270) Properties of the corresponding DataWriter
(p. 538).

ˆ final LocatorSeq unicast locators

<<eXtension>> (p. 270) Custom unicast locators that the endpoint can
specify. The default locators will be used if this is not specified.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1266 Class Documentation

ˆ final GUID t virtual guid

<<eXtension>> (p. 270) Virtual GUID associated to the DataWriter
(p. 538).

ˆ final ProtocolVersion t rtps protocol version

<<eXtension>> (p. 270) Version number of the RTPS wire protocol used.

ˆ final VendorId t rtps vendor id

<<eXtension>> (p. 270) ID of vendor implementing the RTPS wire pro-
tocol.

ˆ final ProductVersion t product version

<<eXtension>> (p. 270) This is a vendor specific parameter. It gives the
current version for rti-dds.

ˆ final LocatorFilterQosPolicy locator filter

<<eXtension>> (p. 270) Policy of the corresponding DataWriter
(p. 538)

ˆ boolean disable positive acks

<<eXtension>> (p. 270) This is a vendor specific parameter. Determines
whether matching DataReaders send positive acknowledgements for reliabil-
ity.

ˆ final EntityNameQosPolicy publication name

<<eXtension>> (p. 270) The publication (p. 338) name and role name.

8.174.1 Detailed Description

Entry created when a com.rti.dds.publication.DataWriter (p. 538) is dis-
covered in association with its Publisher (p. 1277).

Data associated with the built-in topic (p. 350) PublicationBuilt-
inTopicDataTypeSupport.PUBLICATION TOPIC NAME (p. 1273).
It contains QoS policies and additional information that apply to
the remote com.rti.dds.publication.DataWriter (p. 538) the related
com.rti.dds.publication.Publisher (p. 1277).

See also:

PublicationBuiltinTopicDataTypeSupport.PUBLICATION -
TOPIC NAME (p. 1273)
builtin.PublicationBuiltinTopicDataDataReader (p. 1271)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.174 PublicationBuiltinTopicData Class Reference 1267

8.174.2 Member Data Documentation

8.174.2.1 final BuiltinTopicKey t key

DCPS key to distinguish entries.

8.174.2.2 final BuiltinTopicKey t participant key

DCPS key of the participant to which the DataWriter (p. 538) belongs.

8.174.2.3 String topic name

Name of the related com.rti.dds.topic.Topic (p. 1545).

The length of this string is limited to 255 characters.

8.174.2.4 String type name

Name of the type attached to the com.rti.dds.topic.Topic (p. 1545).

The length of this string is limited to 255 characters.

8.174.2.5 final DurabilityQosPolicy durability

durability policy of the corresponding DataWriter (p. 538)

8.174.2.6 final DurabilityServiceQosPolicy durability service

durability service policy of the corresponding DataWriter (p. 538)

8.174.2.7 final DeadlineQosPolicy deadline

Policy of the corresponding DataWriter (p. 538).

8.174.2.8 final LatencyBudgetQosPolicy latency budget

Policy of the corresponding DataWriter (p. 538).

8.174.2.9 final LivelinessQosPolicy liveliness

Policy of the corresponding DataWriter (p. 538).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1268 Class Documentation

8.174.2.10 final ReliabilityQosPolicy reliability

Policy of the corresponding DataWriter (p. 538).

8.174.2.11 final LifespanQosPolicy lifespan

Policy of the corresponding DataWriter (p. 538).

8.174.2.12 final UserDataQosPolicy user data

Policy of the corresponding DataWriter (p. 538).

8.174.2.13 final OwnershipQosPolicy ownership

Policy of the corresponding DataWriter (p. 538).

8.174.2.14 final OwnershipStrengthQosPolicy ownership strength

Policy of the corresponding DataWriter (p. 538).

8.174.2.15 final DestinationOrderQosPolicy destination order

Policy of the corresponding DataWriter (p. 538).

8.174.2.16 final PresentationQosPolicy presentation

Policy of the Publisher (p. 1277) to which the DataWriter (p. 538) belongs.

8.174.2.17 final PartitionQosPolicy partition

Policy of the Publisher (p. 1277) to which the DataWriter (p. 538) belongs.

8.174.2.18 final TopicDataQosPolicy topic data

Policy of the related Topic.

8.174.2.19 final GroupDataQosPolicy group data

Policy of the Publisher (p. 1277) to which the DataWriter (p. 538) belongs.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.174 PublicationBuiltinTopicData Class Reference 1269

8.174.2.20 TypeCode type code

<<eXtension>> (p. 270) Type code information of the corresponding Topic

8.174.2.21 final BuiltinTopicKey t publisher key

<<eXtension>> (p. 270) DCPS key of the publisher to which the
DataWriter (p. 538) belongs

8.174.2.22 final PropertyQosPolicy property

<<eXtension>> (p. 270) Properties of the corresponding DataWriter
(p. 538).

8.174.2.23 final LocatorSeq unicast locators

<<eXtension>> (p. 270) Custom unicast locators that the endpoint can spec-
ify. The default locators will be used if this is not specified.

8.174.2.24 final GUID t virtual guid

<<eXtension>> (p. 270) Virtual GUID associated to the DataWriter
(p. 538).

See also:

com.rti.dds.infrastructure.GUID t (p. 1069)

8.174.2.25 final ProtocolVersion t rtps protocol version

<<eXtension>> (p. 270) Version number of the RTPS wire protocol used.

8.174.2.26 final VendorId t rtps vendor id

<<eXtension>> (p. 270) ID of vendor implementing the RTPS wire protocol.

8.174.2.27 final ProductVersion t product version

<<eXtension>> (p. 270) This is a vendor specific parameter. It gives the
current version for rti-dds.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1270 Class Documentation

8.174.2.28 final LocatorFilterQosPolicy locator filter

<<eXtension>> (p. 270) Policy of the corresponding DataWriter (p. 538)

Related to com.rti.dds.infrastructure.MultiChannelQosPolicy (p. 1205).

8.174.2.29 boolean disable positive acks

<<eXtension>> (p. 270) This is a vendor specific parameter. Determines
whether matching DataReaders send positive acknowledgements for reliability.

8.174.2.30 final EntityNameQosPolicy publication name

<<eXtension>> (p. 270) The publication (p. 338) name and role name.

This member contains the name and the role name of the discovered publica-
tion (p. 338).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.175 PublicationBuiltinTopicDataDataReader Class Reference 1271

8.175 PublicationBuiltinTopicDataDataReader
Class Reference

Instantiates DataReader < builtin.PublicationBuiltinTopicData (p. 1264)
> .

Inherits DataReaderImpl.

8.175.1 Detailed Description

Instantiates DataReader < builtin.PublicationBuiltinTopicData (p. 1264)
> .

com.rti.dds.subscription.DataReader (p. 473) of topic (p. 350) Publica-
tionBuiltinTopicDataTypeSupport.PUBLICATION TOPIC NAME
(p. 1273) used for accessing builtin.PublicationBuiltinTopicData (p. 1264)
of the remote com.rti.dds.publication.DataWriter (p. 538) and the
associated com.rti.dds.publication.Publisher (p. 1277).

Instantiates:

<<generic>> (p. 271) com.rti.dds.topic.example.FooDataReader

See also:

builtin.PublicationBuiltinTopicData (p. 1264)
PublicationBuiltinTopicDataTypeSupport.PUBLICATION -
TOPIC NAME (p. 1273)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1272 Class Documentation

8.176 PublicationBuiltinTopicDataSeq Class
Reference

Instantiates com.rti.dds.util.Sequence (p. 1432) <
builtin.PublicationBuiltinTopicData (p. 1264) > .

Inherits AbstractBuiltinTopicDataSeq.

8.176.1 Detailed Description

Instantiates com.rti.dds.util.Sequence (p. 1432) <
builtin.PublicationBuiltinTopicData (p. 1264) > .

Instantiates:

<<generic>> (p. 271) com.rti.dds.util.Sequence (p. 1432)

See also:

builtin.PublicationBuiltinTopicData (p. 1264)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.177 PublicationBuiltinTopicDataTypeSupport Class Reference1273

8.177 PublicationBuiltinTopicDataTypeSupport
Class Reference

Instantiates TypeSupport < builtin.PublicationBuiltinTopicData (p. 1264)
> .

Inheritance diagram for PublicationBuiltinTopicDataTypeSupport::

Static Public Attributes

ˆ static final String PUBLICATION TOPIC NAME = DDS -
PUBLICATION TOPIC NAME()

Publication topic (p. 350) name.

8.177.1 Detailed Description

Instantiates TypeSupport < builtin.PublicationBuiltinTopicData (p. 1264)
> .

Instantiates:

<<generic>> (p. 271) com.rti.dds.topic.example.FooTypeSupport
(p. 1060)

See also:

builtin.PublicationBuiltinTopicData (p. 1264)

8.177.2 Member Data Documentation

8.177.2.1 final String PUBLICATION TOPIC NAME =
DDS PUBLICATION TOPIC NAME() [static]

Publication topic (p. 350) name.

Topic name of builtin.PublicationBuiltinTopicDataDataReader (p. 1271)

See also:

builtin.PublicationBuiltinTopicData (p. 1264)
builtin.PublicationBuiltinTopicDataDataReader (p. 1271)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1274 Class Documentation

8.178 PublicationMatchedStatus Class Refer-
ence

StatusKind.PUBLICATION MATCHED STATUS.

Inherits Status.

Public Attributes

ˆ int total count

The total cumulative number of times the concerned
com.rti.dds.publication.DataWriter (p. 538) discovered a ”match”
with a com.rti.dds.subscription.DataReader (p. 473).

ˆ int total count change

The incremental changes in total count since the last time the listener was
called or the status was read.

ˆ int current count

The current number of readers with which the
com.rti.dds.publication.DataWriter (p. 538) is matched.

ˆ int current count peak

<<eXtension>> (p. 270) The highest value that current count has reached
until now.

ˆ int current count change

The change in current count since the last time the listener was called or the
status was read.

ˆ final InstanceHandle t last subscription handle

A handle to the last com.rti.dds.subscription.DataReader (p. 473) that
caused the the com.rti.dds.publication.DataWriter (p. 538)’s status to
change.

8.178.1 Detailed Description

StatusKind.PUBLICATION MATCHED STATUS.

A ”match” happens when the com.rti.dds.publication.DataWriter
(p. 538) finds a com.rti.dds.subscription.DataReader (p. 473) for
the same com.rti.dds.topic.Topic (p. 1545) and common partition

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.178 PublicationMatchedStatus Class Reference 1275

with a requested QoS that is compatible with that offered by the
com.rti.dds.publication.DataWriter (p. 538).

This status is also changed (and the listener, if any, called) when a match is
ended. A local com.rti.dds.publication.DataWriter (p. 538) will become
”unmatched” from a remote com.rti.dds.subscription.DataReader (p. 473)
when that com.rti.dds.subscription.DataReader (p. 473) goes away for any
reason.

8.178.2 Member Data Documentation

8.178.2.1 int total count

The total cumulative number of times the concerned
com.rti.dds.publication.DataWriter (p. 538) discovered a ”match”
with a com.rti.dds.subscription.DataReader (p. 473).

This number increases whenever a new match is discovered. It does not change
when an existing match goes away.

8.178.2.2 int total count change

The incremental changes in total count since the last time the listener was called
or the status was read.

8.178.2.3 int current count

The current number of readers with which the
com.rti.dds.publication.DataWriter (p. 538) is matched.

This number increases when a new match is discovered and decreases when an
existing match goes away.

8.178.2.4 int current count peak

<<eXtension>> (p. 270) The highest value that current count has reached
until now.

8.178.2.5 int current count change

The change in current count since the last time the listener was called or the
status was read.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1276 Class Documentation

8.178.2.6 final InstanceHandle t last subscription handle

A handle to the last com.rti.dds.subscription.DataReader (p. 473) that
caused the the com.rti.dds.publication.DataWriter (p. 538)’s status to
change.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.179 Publisher Interface Reference 1277

8.179 Publisher Interface Reference

<<interface>> (p. 271) A publisher is the object responsible for the actual
dissemination of publications.

Inheritance diagram for Publisher::

Public Member Functions

ˆ void get default datawriter qos (DataWriterQos qos)
Copies the default com.rti.dds.publication.DataWriterQos (p. 588) val-
ues into the provided com.rti.dds.publication.DataWriterQos (p. 588)
instance.

ˆ void set default datawriter qos (DataWriterQos qos)
Sets the default com.rti.dds.publication.DataWriterQos (p. 588) values
for this publisher.

ˆ void set default datawriter qos with profile (String library name,
String profile name)

<<eXtension>> (p. 270) Set the default
com.rti.dds.publication.DataWriterQos (p. 588) values for this
publisher based on the input XML QoS profile.

ˆ DataWriter create datawriter (Topic topic, DataWriterQos qos,
DataWriterListener listener, int mask)

Creates a com.rti.dds.publication.DataWriter (p. 538) that will be at-
tached and belong to the com.rti.dds.publication.Publisher (p. 1277).

ˆ DataWriter create datawriter with profile (Topic topic, String li-
brary name, String profile name, DataWriterListener listener, int
mask)

<<eXtension>> (p. 270) Creates a com.rti.dds.publication.DataWriter
(p. 538) object using the com.rti.dds.publication.DataWriterQos
(p. 588) associated with the input XML QoS profile.

ˆ void delete datawriter (DataWriter a datawriter)
Deletes a com.rti.dds.publication.DataWriter (p. 538) that belongs to the
com.rti.dds.publication.Publisher (p. 1277).

ˆ DataWriter lookup datawriter (String topic name)
Retrieves the com.rti.dds.publication.DataWriter (p. 538) for a specific
com.rti.dds.topic.Topic (p. 1545).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1278 Class Documentation

ˆ void set qos (PublisherQos qos)

Sets the publisher QoS.

ˆ void set qos with profile (String library name, String profile name)

<<eXtension>> (p. 270) Change the QoS of this publisher using the input
XML QoS profile.

ˆ void get qos (PublisherQos qos)

Gets the publisher QoS.

ˆ String get default library ()

<<eXtension>> (p. 270) Gets the default XML library associated with a
com.rti.dds.publication.Publisher (p. 1277).

ˆ void set default library (String library name)

<<eXtension>> (p. 270) Sets the default XML library for a
com.rti.dds.publication.Publisher (p. 1277).

ˆ String get default profile ()

<<eXtension>> (p. 270) Gets the default XML profile associated with a
com.rti.dds.publication.Publisher (p. 1277).

ˆ void set default profile (String library name, String profile name)

<<eXtension>> (p. 270) Sets the default XML profile for a
com.rti.dds.publication.Publisher (p. 1277).

ˆ String get default profile library ()

<<eXtension>> (p. 270) Gets the library where the default XML QoS pro-
file is contained for a com.rti.dds.publication.Publisher (p. 1277).

ˆ void set listener (PublisherListener l, int mask)

Sets the publisher listener.

ˆ PublisherListener get listener ()

Get the publisher listener.

ˆ void suspend publications ()

Indicates to RTI Connext that the application is about to make multiple mod-
ifications using com.rti.dds.publication.DataWriter (p. 538) objects be-
longing to the com.rti.dds.publication.Publisher (p. 1277).

ˆ void resume publications ()

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.179 Publisher Interface Reference 1279

Indicates to RTI Connext that the application has com-
pleted the multiple changes initiated by the previous
com.rti.dds.publication.Publisher.suspend publications (p. 1294).

ˆ void begin coherent changes ()

Indicates that the application will begin a coherent set of modifications us-
ing com.rti.dds.publication.DataWriter (p. 538) objects attached to the
com.rti.dds.publication.Publisher (p. 1277).

ˆ void end coherent changes ()

Terminates the coherent set initiated by the matching call to
com.rti.dds.publication.Publisher.begin coherent changes (p. 1296).

ˆ void copy from topic qos (DataWriterQos a datawriter qos, Topic-
Qos a topic qos)

Copies the policies in the com.rti.dds.topic.TopicQos (p. 1566) to the
corresponding policies in the com.rti.dds.publication.DataWriterQos
(p. 588).

ˆ void get all datawriters (DataWriterSeq writers)

Retrieve all the DataWriters created from this Publisher (p. 1277).

ˆ DomainParticipant get participant ()

Returns the com.rti.dds.domain.DomainParticipant (p. 629) to which
the com.rti.dds.publication.Publisher (p. 1277) belongs.

ˆ void delete contained entities ()

Deletes all the entities that were created by means of the ”create” operation
on the com.rti.dds.publication.Publisher (p. 1277).

ˆ void wait for acknowledgments (Duration t max wait)

Blocks the calling thread until all data written by reliable
com.rti.dds.publication.DataWriter (p. 538) entities is acknowledged,
or until timeout expires.

ˆ void wait for asynchronous publishing (Duration t max wait)

<<eXtension>> (p. 270) Blocks the calling thread until asynchronous send-
ing is complete.

Static Public Attributes

ˆ static final DataWriterQos DATAWRITER QOS DEFAULT

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1280 Class Documentation

Special value for creating com.rti.dds.publication.DataWriter (p. 538)
with default QoS.

ˆ static final DataWriterQos DATAWRITER QOS USE TOPIC -
QOS = new DataWriterQos()

Special value for creating com.rti.dds.publication.DataWriter
(p. 538) with a combination of the default
com.rti.dds.publication.DataWriterQos (p. 588) and the
com.rti.dds.topic.TopicQos (p. 1566).

8.179.1 Detailed Description

<<interface>> (p. 271) A publisher is the object responsible for the actual
dissemination of publications.

QoS:

com.rti.dds.publication.PublisherQos (p. 1303)

Listener:

com.rti.dds.publication.PublisherListener (p. 1302)

A publisher acts on the behalf of one or several
com.rti.dds.publication.DataWriter (p. 538) objects that belong to
it. When it is informed of a change to the data associated with one of its
com.rti.dds.publication.DataWriter (p. 538) objects, it decides when it is
appropriate to actually send the data-update message. In making this decision,
it considers any extra information that goes with the data (timestamp, writer,
etc.) as well as the QoS of the com.rti.dds.publication.Publisher (p. 1277)
and the com.rti.dds.publication.DataWriter (p. 538).

The following operations may be called even if the
com.rti.dds.publication.Publisher (p. 1277) is not enabled. Other op-
erations will fail with the value RETCODE NOT ENABLED if called on a
disabled com.rti.dds.publication.Publisher (p. 1277):

ˆ The base-class operations com.rti.dds.publication.Publisher.set -
qos (p. 1289), com.rti.dds.publication.Publisher.set qos -
with profile (p. 1290), com.rti.dds.publication.Publisher.get -
qos (p. 1291), com.rti.dds.publication.Publisher.set listener
(p. 1294), com.rti.dds.publication.Publisher.get listener
(p. 1294), com.rti.dds.infrastructure.Entity.enable (p. 915),
com.rti.dds.infrastructure.Entity.get statuscondition (p. 917),
com.rti.dds.infrastructure.Entity.get status changes (p. 917)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.179 Publisher Interface Reference 1281

ˆ com.rti.dds.publication.Publisher.create datawriter (p. 1284),
com.rti.dds.publication.Publisher.create datawriter with profile
(p. 1286), com.rti.dds.publication.Publisher.delete datawriter
(p. 1287), com.rti.dds.publication.Publisher.delete contained -
entities (p. 1299), com.rti.dds.publication.Publisher.set default -
datawriter qos (p. 1282), com.rti.dds.publication.Publisher.set -
default datawriter qos with profile (p. 1283),
com.rti.dds.publication.Publisher.get default datawriter -
qos (p. 1281), com.rti.dds.publication.Publisher.wait for -
acknowledgments (p. 1299), com.rti.dds.publication.Publisher.set -
default library (p. 1291), com.rti.dds.publication.Publisher.set -
default profile (p. 1292),

See also:

Operations Allowed in Listener Callbacks (p. 1156)

8.179.2 Member Function Documentation

8.179.2.1 void get default datawriter qos (DataWriterQos qos)

Copies the default com.rti.dds.publication.DataWriterQos (p. 588) val-
ues into the provided com.rti.dds.publication.DataWriterQos (p. 588) in-
stance.

The retreived qos will match the set of values specified on the last success-
ful call to com.rti.dds.publication.Publisher.set default datawriter qos
(p. 1282) or com.rti.dds.publication.Publisher.set default datawriter -
qos with profile (p. 1283), or else, if the call was never made, the default
values from is owning com.rti.dds.domain.DomainParticipant (p. 629).

This method may potentially allocate memory depending on the sequences con-
tained in some QoS policies.

MT Safety:

UNSAFE. It is not safe to retrieve the default QoS value from
a com.rti.dds.publication.Publisher (p. 1277) while another thread
may be simultaneously calling com.rti.dds.publication.Publisher.set -
default datawriter qos (p. 1282).

Parameters:

qos <<inout>> (p. 271) com.rti.dds.publication.DataWriterQos
(p. 588) to be filled-up. Cannot be NULL.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1282 Class Documentation

Exceptions:

One of the Standard Return Codes (p. 104)

See also:

Publisher.DATAWRITER QOS DEFAULT (p. 177)
com.rti.dds.publication.Publisher.create datawriter (p. 1284)

8.179.2.2 void set default datawriter qos (DataWriterQos qos)

Sets the default com.rti.dds.publication.DataWriterQos (p. 588) values for
this publisher.

This call causes the default values inherited from the owning
com.rti.dds.domain.DomainParticipant (p. 629) to be overridden.

This default value will be used for newly created
com.rti.dds.publication.DataWriter (p. 538) if Pub-
lisher.DATAWRITER QOS DEFAULT (p. 177) is specified as the qos
parameter when com.rti.dds.publication.Publisher.create datawriter
(p. 1284) is called.

Precondition:

The specified QoS policies must be consistent, or else the operation will
have no effect and fail with RETCODE INCONSISTENT POLICY

MT Safety:

UNSAFE. It is not safe to set the default QoS value
from a com.rti.dds.publication.Publisher (p. 1277)
while another thread may be simultaneously calling
com.rti.dds.publication.Publisher.set default datawriter -
qos (p. 1282), com.rti.dds.publication.Publisher.get -
default datawriter qos (p. 1281) or calling
com.rti.dds.publication.Publisher.create datawriter (p. 1284)
with Publisher.DATAWRITER QOS DEFAULT (p. 177) as the qos
parameter.

Parameters:

qos <<in>> (p. 271) Default qos to be set. The special value Sub-
scriber.DATAREADER QOS DEFAULT may be passed as qos to in-
dicate that the default QoS should be reset back to the initial values
the factory would used if com.rti.dds.publication.Publisher.set -
default datawriter qos (p. 1282) had never been called. Cannot be
NULL.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.179 Publisher Interface Reference 1283

Exceptions:

One of the Standard Return Codes (p. 104), or RETCODE -
INCONSISTENT POLICY

8.179.2.3 void set default datawriter qos with profile (String
library name, String profile name)

<<eXtension>> (p. 270) Set the default
com.rti.dds.publication.DataWriterQos (p. 588) values for this pub-
lisher based on the input XML QoS profile.

This default value will be used for newly created
com.rti.dds.publication.DataWriter (p. 538) if Pub-
lisher.DATAWRITER QOS DEFAULT (p. 177) is specified as the qos
parameter when com.rti.dds.publication.Publisher.create datawriter
(p. 1284) is called.

Precondition:

The com.rti.dds.publication.DataWriterQos (p. 588) contained in the
specified XML QoS profile must be consistent, or else the operation will
have no effect and fail with RETCODE INCONSISTENT POLICY

MT Safety:

UNSAFE. It is not safe to set the default QoS value
from a com.rti.dds.publication.Publisher (p. 1277)
while another thread may be simultaneously calling
com.rti.dds.publication.Publisher.set default datawriter -
qos (p. 1282), com.rti.dds.publication.Publisher.get -
default datawriter qos (p. 1281) or calling
com.rti.dds.publication.Publisher.create datawriter (p. 1284)
with Publisher.DATAWRITER QOS DEFAULT (p. 177) as the qos
parameter.

Parameters:

library name <<in>> (p. 271) Library name containing the XML
QoS profile. If library name is null RTI Connext will use
the default library (see com.rti.dds.publication.Publisher.set -
default library (p. 1291)).

profile name <<in>> (p. 271) XML QoS Profile name. If pro-
file name is null RTI Connext will use the default pro-
file (see com.rti.dds.publication.Publisher.set default profile
(p. 1292)).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1284 Class Documentation

If the input profile cannot be found, the method fails with RETCODE ERROR.

Exceptions:

One of the Standard Return Codes (p. 104), or RETCODE -
INCONSISTENT POLICY

See also:

Publisher.DATAWRITER QOS DEFAULT (p. 177)
com.rti.dds.publication.Publisher.create datawriter with profile
(p. 1286)

8.179.2.4 DataWriter create datawriter (Topic topic,
DataWriterQos qos, DataWriterListener listener, int
mask)

Creates a com.rti.dds.publication.DataWriter (p. 538) that will be attached
and belong to the com.rti.dds.publication.Publisher (p. 1277).

For each application-defined type, Foo, there is an implied, auto-
generated class com.rti.dds.topic.example.FooDataWriter that extends
com.rti.dds.publication.DataWriter (p. 538) and contains the operations
to write data of type Foo.

Note that a common application pattern to construct the QoS for the
com.rti.dds.publication.DataWriter (p. 538) is to:

ˆ Retrieve the QoS policies on the associated com.rti.dds.topic.Topic
(p. 1545) by means of the com.rti.dds.topic.Topic.get qos (p. 1548)
operation.

ˆ Retrieve the default com.rti.dds.publication.DataWriter (p. 538) qos
by means of the com.rti.dds.publication.Publisher.get default -
datawriter qos (p. 1281) operation.

ˆ Combine those two QoS policies (for example (p. 342), using
com.rti.dds.publication.Publisher.copy from topic qos (p. 1297))
and selectively modify policies as desired.

When a com.rti.dds.publication.DataWriter (p. 538) is cre-
ated, only those transports already registered are available to the
com.rti.dds.publication.DataWriter (p. 538). See Built-in Trans-
port Plugins (p. 216) for details on when a builtin (p. 341) transport is
registered.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.179 Publisher Interface Reference 1285

Precondition:

If publisher is enabled, topic (p. 350) must have been enabled. Otherwise,
this operation will fail and no com.rti.dds.publication.DataWriter
(p. 538) will be created.
The given com.rti.dds.topic.Topic (p. 1545) must have been created from
the same participant as this publisher. If it was created from a different
participant, this method will fail.

MT Safety:

UNSAFE. If Publisher.DATAWRITER QOS DEFAULT
(p. 177) is used for the qos parameter, it is not safe to create
the datawriter while another thread may be simultaneously calling
com.rti.dds.publication.Publisher.set default datawriter qos
(p. 1282).

Parameters:

topic (p. 350) <<in>> (p. 271) The com.rti.dds.topic.Topic
(p. 1545) that the com.rti.dds.publication.DataWriter (p. 538)
will be associated with. Cannot be NULL.

qos <<in>> (p. 271) QoS to be used for creating the
new com.rti.dds.publication.DataWriter (p. 538).
The special value Publisher.DATAWRITER QOS -
DEFAULT (p. 177) can be used to indicate that the
com.rti.dds.publication.DataWriter (p. 538) should be cre-
ated with the default com.rti.dds.publication.DataWriterQos
(p. 588) set in the com.rti.dds.publication.Publisher
(p. 1277). The special value Publisher.DATAWRITER -
QOS USE TOPIC QOS (p. 178) can be used to in-
dicate that the com.rti.dds.publication.DataWriter
(p. 538) should be created with the combination of the de-
fault com.rti.dds.publication.DataWriterQos (p. 588)
set on the com.rti.dds.publication.Publisher (p. 1277)
and the com.rti.dds.topic.TopicQos (p. 1566) of the
com.rti.dds.topic.Topic (p. 1545). Cannot be NULL.

listener <<in>> (p. 271) The listener of the
com.rti.dds.publication.DataWriter (p. 538).

mask <<in>> (p. 271). Changes of communication status to be invoked
on the listener.

Returns:

A com.rti.dds.publication.DataWriter (p. 538) of a derived class spe-
cific to the data type associated with the com.rti.dds.topic.Topic
(p. 1545) or NULL if an error occurred.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1286 Class Documentation

See also:

com.rti.dds.topic.example.FooDataWriter
Specifying QoS on entities (p. 96) for information on setting QoS before
entity creation
com.rti.dds.publication.DataWriterQos (p. 588) for rules on consis-
tency among QoS
Publisher.DATAWRITER QOS DEFAULT (p. 177)
Publisher.DATAWRITER QOS USE TOPIC QOS (p. 178)
com.rti.dds.publication.Publisher.create datawriter with profile
(p. 1286)
com.rti.dds.publication.Publisher.get default datawriter qos
(p. 1281)
com.rti.dds.topic.Topic.set qos (p. 1547)
com.rti.dds.publication.Publisher.copy from topic qos (p. 1297)
com.rti.dds.publication.DataWriter.set listener (p. 545)

8.179.2.5 DataWriter create datawriter with profile (Topic
topic, String library name, String profile name,
DataWriterListener listener, int mask)

<<eXtension>> (p. 270) Creates a com.rti.dds.publication.DataWriter
(p. 538) object using the com.rti.dds.publication.DataWriterQos (p. 588)
associated with the input XML QoS profile.

The com.rti.dds.publication.DataWriter (p. 538) will be attached and be-
long to the com.rti.dds.publication.Publisher (p. 1277).

For each application-defined type, Foo, there is an implied, auto-
generated class com.rti.dds.topic.example.FooDataWriter that extends
com.rti.dds.publication.DataWriter (p. 538) and contains the operations
to write data of type Foo.

When a com.rti.dds.publication.DataWriter (p. 538) is cre-
ated, only those transports already registered are available to the
com.rti.dds.publication.DataWriter (p. 538). See Built-in Trans-
port Plugins (p. 216) for details on when a builtin (p. 341) transport is
registered.

Precondition:

If publisher is enabled, topic (p. 350) must have been enabled. Otherwise,
this operation will fail and no com.rti.dds.publication.DataWriter
(p. 538) will be created.
The given com.rti.dds.topic.Topic (p. 1545) must have been created from
the same participant as this publisher. If it was created from a different
participant, this method will return NULL.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.179 Publisher Interface Reference 1287

Parameters:

topic (p. 350) <<in>> (p. 271) The com.rti.dds.topic.Topic
(p. 1545) that the com.rti.dds.publication.DataWriter (p. 538)
will be associated with. Cannot be NULL.

library name <<in>> (p. 271) Library name containing the XML
QoS profile. If library name is null RTI Connext will use
the default library (see com.rti.dds.publication.Publisher.set -
default library (p. 1291)).

profile name <<in>> (p. 271) XML QoS Profile name. If pro-
file name is null RTI Connext will use the default pro-
file (see com.rti.dds.publication.Publisher.set default profile
(p. 1292)).

listener <<in>> (p. 271) The listener of the
com.rti.dds.publication.DataWriter (p. 538).

mask <<in>> (p. 271). Changes of communication status to be invoked
on the listener.

Returns:

A com.rti.dds.publication.DataWriter (p. 538) of a derived class spe-
cific to the data type associated with the com.rti.dds.topic.Topic
(p. 1545) or NULL if an error occurred.

See also:

com.rti.dds.topic.example.FooDataWriter
Specifying QoS on entities (p. 96) for information on setting QoS before
entity creation
com.rti.dds.publication.DataWriterQos (p. 588) for rules on consis-
tency among QoS
com.rti.dds.publication.Publisher.create datawriter (p. 1284)
com.rti.dds.publication.Publisher.get default datawriter qos
(p. 1281)
com.rti.dds.topic.Topic.set qos (p. 1547)
com.rti.dds.publication.Publisher.copy from topic qos (p. 1297)
com.rti.dds.publication.DataWriter.set listener (p. 545)

8.179.2.6 void delete datawriter (DataWriter a datawriter)

Deletes a com.rti.dds.publication.DataWriter (p. 538) that belongs to the
com.rti.dds.publication.Publisher (p. 1277).

The deletion of the com.rti.dds.publication.DataWriter (p. 538) will au-
tomatically unregister all instances. Depending on the settings of the
WRITER DATA LIFECYCLE (p. 134) QosPolicy, the deletion of the
com.rti.dds.publication.DataWriter (p. 538) may also dispose all instances.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1288 Class Documentation

8.179.3 Special Instructions if Using ’Timestamp’ APIs
and BY SOURCE TIMESTAMP Destination Or-
dering:

If the DataWriter’s com.rti.dds.infrastructure.DestinationOrderQosPolicy.kind
(p. 609) is DestinationOrderQosPolicyKind.BY SOURCE TIMESTAMP -
DESTINATIONORDER QOS, calls to delete datawriter() (p. 1287) may
fail if your application has previously used the ’with timestamp’ APIs
(write w timestamp(), register instance w timestamp(), unregister instance -
w timestamp(), or dispose w timestamp()) with a timestamp larger (later)
than the time at which delete datawriter() (p. 1287) is called. To prevent
delete datawriter() (p. 1287) from failing in this situation, either:

ˆ Change the WRITER DATA LIFECYCLE (p. 134) QosPolicy
so that RTI Connext will not autodispose unregistered instances (set
com.rti.dds.infrastructure.WriterDataLifecycleQosPolicy.autodispose -
unregistered instances (p. 1723) to false.) or

ˆ Explicitly call unregister instance w timestamp() for all instances modi-
fied with the ∗ w timestamp() APIs before calling delete datawriter()
(p. 1287).

Precondition:

If the com.rti.dds.publication.DataWriter (p. 538) does not belong to
the com.rti.dds.publication.Publisher (p. 1277), the operation will fail
with RETCODE PRECONDITION NOT MET.

Postcondition:

Listener installed on the com.rti.dds.publication.DataWriter (p. 538)
will not be called after this method completes successfully.

Parameters:

a datawriter <<in>> (p. 271) The com.rti.dds.publication.DataWriter
(p. 538) to be deleted.

Exceptions:

One of the Standard Return Codes (p. 104) or RETCODE -
PRECONDITION NOT MET.

8.179.3.1 DataWriter lookup datawriter (String topic name)

Retrieves the com.rti.dds.publication.DataWriter (p. 538) for a specific
com.rti.dds.topic.Topic (p. 1545).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.179 Publisher Interface Reference 1289

This returned com.rti.dds.publication.DataWriter (p. 538) is either enabled
or disabled.

Parameters:

topic name <<in>> (p. 271) Name of the com.rti.dds.topic.Topic
(p. 1545) associated with the com.rti.dds.publication.DataWriter
(p. 538) that is to be looked up. Cannot be NULL.

Returns:

A com.rti.dds.publication.DataWriter (p. 538) that belongs to
the com.rti.dds.publication.Publisher (p. 1277) attached to the
com.rti.dds.topic.Topic (p. 1545) with topic name. If no such
com.rti.dds.publication.DataWriter (p. 538) exists, this operation re-
turns NULL.

If more than one com.rti.dds.publication.DataWriter (p. 538) is attached to
the com.rti.dds.publication.Publisher (p. 1277) with the same topic name,
then this operation may return any one of them.

MT Safety:

UNSAFE. It is not safe to lookup a
com.rti.dds.publication.DataWriter (p. 538) in one thread
while another thread is simultaneously creating or destroying that
com.rti.dds.publication.DataWriter (p. 538).

8.179.3.2 void set qos (PublisherQos qos)

Sets the publisher QoS.

This operation modifies the QoS of the com.rti.dds.publication.Publisher
(p. 1277).

The com.rti.dds.publication.PublisherQos.group data (p. 1304),
com.rti.dds.publication.PublisherQos.partition (p. 1304) and
com.rti.dds.publication.PublisherQos.entity factory (p. 1304) can
be changed. The other policies are immutable.

Parameters:

qos <<in>> (p. 271) com.rti.dds.publication.PublisherQos
(p. 1303) to be set to. Policies must be consistent. Immutable policies
cannot be changed after com.rti.dds.publication.Publisher
(p. 1277) is enabled. The special value DomainPartici-
pant.PUBLISHER QOS DEFAULT (p. 149) can be used to

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1290 Class Documentation

indicate that the QoS of the com.rti.dds.publication.Publisher
(p. 1277) should be changed to match the current default
com.rti.dds.publication.PublisherQos (p. 1303) set in the
com.rti.dds.domain.DomainParticipant (p. 629). Cannot be
NULL.

Exceptions:

One of the Standard Return Codes (p. 104), RETCODE -
IMMUTABLE POLICY, or RETCODE INCONSISTENT POLICY.

See also:

com.rti.dds.publication.PublisherQos (p. 1303) for rules on consis-
tency among QoS
set qos (abstract) (p. 913)
Operations Allowed in Listener Callbacks (p. 1156)

8.179.3.3 void set qos with profile (String library name, String
profile name)

<<eXtension>> (p. 270) Change the QoS of this publisher using the input
XML QoS profile.

This operation modifies the QoS of the com.rti.dds.publication.Publisher
(p. 1277).

The com.rti.dds.publication.PublisherQos.group data (p. 1304),
com.rti.dds.publication.PublisherQos.partition (p. 1304) and
com.rti.dds.publication.PublisherQos.entity factory (p. 1304) can
be changed. The other policies are immutable.

Parameters:

library name <<in>> (p. 271) Library name containing the XML
QoS profile. If library name is null RTI Connext will use
the default library (see com.rti.dds.publication.Publisher.set -
default library (p. 1291)).

profile name <<in>> (p. 271) XML QoS Profile name. If pro-
file name is null RTI Connext will use the default pro-
file (see com.rti.dds.publication.Publisher.set default profile
(p. 1292)).

Exceptions:

One of the Standard Return Codes (p. 104), RETCODE -
IMMUTABLE POLICY, or RETCODE INCONSISTENT POLICY.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.179 Publisher Interface Reference 1291

See also:

com.rti.dds.publication.PublisherQos (p. 1303) for rules on consis-
tency among QoS
Operations Allowed in Listener Callbacks (p. 1156)

8.179.3.4 void get qos (PublisherQos qos)

Gets the publisher QoS.

This method may potentially allocate memory depending on the sequences con-
tained in some QoS policies.

Parameters:

qos <<in>> (p. 271) com.rti.dds.publication.PublisherQos
(p. 1303) to be filled in. Cannot be NULL.

Exceptions:

One of the Standard Return Codes (p. 104)

See also:

get qos (abstract) (p. 914)

8.179.3.5 String get default library ()

<<eXtension>> (p. 270) Gets the default XML library associated with a
com.rti.dds.publication.Publisher (p. 1277).

Returns:

The default library or null if the default library was not set.

See also:

com.rti.dds.publication.Publisher.set default library (p. 1291)

8.179.3.6 void set default library (String library name)

<<eXtension>> (p. 270) Sets the default XML library for a
com.rti.dds.publication.Publisher (p. 1277).

This method specifies the library that will be used as the default the next time
a default library is needed during a call to one of this Publisher’s operations.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1292 Class Documentation

Any API requiring a library name as a parameter can use null to refer to the
default library.

If the default library is not set, the com.rti.dds.publication.Publisher
(p. 1277) inherits the default from the com.rti.dds.domain.DomainParticipant
(p. 629) (see com.rti.dds.domain.DomainParticipant.set default library
(p. 679)).

Parameters:

library name <<in>> (p. 271) Library name. If library name is null
any previous default is unset.

Exceptions:

One of the Standard Return Codes (p. 104)

See also:

com.rti.dds.publication.Publisher.get default library (p. 1291)

8.179.3.7 String get default profile ()

<<eXtension>> (p. 270) Gets the default XML profile associated with a
com.rti.dds.publication.Publisher (p. 1277).

Returns:

The default profile or null if the default profile was not set.

See also:

com.rti.dds.publication.Publisher.set default profile (p. 1292)

8.179.3.8 void set default profile (String library name, String
profile name)

<<eXtension>> (p. 270) Sets the default XML profile for a
com.rti.dds.publication.Publisher (p. 1277).

This method specifies the profile that will be used as the default the next time
a default Publisher (p. 1277) profile is needed during a call to one of this
Publisher’s operations. When calling a com.rti.dds.publication.Publisher
(p. 1277) method that requires a profile name parameter, you can use NULL
to refer to the default profile. (This same information applies to setting a default
library.)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.179 Publisher Interface Reference 1293

If the default profile is not set, the com.rti.dds.publication.Publisher
(p. 1277) inherits the default from the com.rti.dds.domain.DomainParticipant
(p. 629) (see com.rti.dds.domain.DomainParticipant.set default profile
(p. 680)).

This method does not set the default QoS for
com.rti.dds.publication.DataWriter (p. 538) objects created by the
com.rti.dds.publication.Publisher (p. 1277); for this functionality, use
com.rti.dds.publication.Publisher.set default datawriter qos with -
profile (p. 1283) (you may pass in NULL after having called set default -
profile() (p. 1292)).

This method does not set the default QoS for newly created Publishers;
for this functionality, use com.rti.dds.domain.DomainParticipant.set -
default publisher qos with profile (p. 645).

Parameters:

library name <<in>> (p. 271) The library name containing the profile.

profile name <<in>> (p. 271) The profile name. If profile name is null
any previous default is unset.

Exceptions:

One of the Standard Return Codes (p. 104)

See also:

com.rti.dds.publication.Publisher.get default profile (p. 1292)
com.rti.dds.publication.Publisher.get default profile library
(p. 1293)

8.179.3.9 String get default profile library ()

<<eXtension>> (p. 270) Gets the library where the default XML QoS profile
is contained for a com.rti.dds.publication.Publisher (p. 1277).

The default profile library is automatically set when
com.rti.dds.publication.Publisher.set default profile (p. 1292) is called.

This library can be different than the com.rti.dds.publication.Publisher
(p. 1277) default library (see com.rti.dds.publication.Publisher.get -
default library (p. 1291)).

Returns:

The default profile library or null if the default profile was not set.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1294 Class Documentation

See also:

com.rti.dds.publication.Publisher.set default profile (p. 1292)

8.179.3.10 void set listener (PublisherListener l, int mask)

Sets the publisher listener.

Parameters:

l <<in>> (p. 271) com.rti.dds.publication.PublisherListener
(p. 1302) to set to.

mask <<in>> (p. 271) com.rti.dds.infrastructure.StatusMask associated
with the com.rti.dds.publication.PublisherListener (p. 1302).

Exceptions:

One of the Standard Return Codes (p. 104)

See also:

set listener (abstract) (p. 914)

8.179.3.11 PublisherListener get listener ()

Get the publisher listener.

Returns:

com.rti.dds.publication.PublisherListener (p. 1302) of the
com.rti.dds.publication.Publisher (p. 1277).

See also:

get listener (abstract) (p. 915)

8.179.3.12 void suspend publications ()

Indicates to RTI Connext that the application is about to make multiple modi-
fications using com.rti.dds.publication.DataWriter (p. 538) objects belong-
ing to the com.rti.dds.publication.Publisher (p. 1277).

It is a hint to RTI Connext so it can optimize its performance by e.g., holding
the dissemination of the modifications and then batching them.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.179 Publisher Interface Reference 1295

The use of this operation must be matched by a corresponding call
to com.rti.dds.publication.Publisher.resume publications (p. 1295) indi-
cating that the set of modifications has completed.

If the com.rti.dds.publication.Publisher (p. 1277) is deleted before
com.rti.dds.publication.Publisher.resume publications (p. 1295) is
called, any suspended updates yet to be published will be discarded.

RTI Connext is not required and does not currently make use of this hint
in any way. However, similar results can be achieved by using asynchronous
publishing . Combined with com.rti.dds.publication.FlowController
(p. 942), PublishModeQosPolicyKind.ASYNCHRONOUS PUBLISH MODE -
QOS com.rti.dds.publication.DataWriter (p. 538) instances allow the user
even finer control of traffic shaping and sample coalescing.

Exceptions:

One of the Standard Return Codes (p. 104) or RETCODE NOT -
ENABLED.

See also:

com.rti.dds.publication.FlowController (p. 942)
com.rti.dds.publication.FlowController.trigger flow (p. 945)
FlowController.ON DEMAND FLOW CONTROLLER NAME
(p. 184)
com.rti.dds.infrastructure.PublishModeQosPolicy (p. 1308)

8.179.3.13 void resume publications ()

Indicates to RTI Connext that the application has com-
pleted the multiple changes initiated by the previous
com.rti.dds.publication.Publisher.suspend publications (p. 1294).

This is a hint to RTI Connext that can be used for ex-
ample (p. 342), to batch all the modifications made since the
com.rti.dds.publication.Publisher.suspend publications (p. 1294).

RTI Connext is not required and does not currently make use of this hint
in any way. However, similar results can be achieved by using asynchronous
publishing . Combined with com.rti.dds.publication.FlowController
(p. 942), PublishModeQosPolicyKind.ASYNCHRONOUS PUBLISH MODE -
QOS com.rti.dds.publication.DataWriter (p. 538) instances allow the user
even finer control of traffic shaping and sample coalescing.

Precondition:

A call to com.rti.dds.publication.Publisher.resume -
publications (p. 1295) must match a previous call to

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1296 Class Documentation

com.rti.dds.publication.Publisher.suspend publications (p. 1294).
Otherwise the operation will fail with RETCODE PRECONDITION -
NOT MET.

Exceptions:

One of the Standard Return Codes (p. 104) or RETCODE -
PRECONDITION NOT MET or RETCODE NOT ENABLED.

See also:

com.rti.dds.publication.FlowController (p. 942)
com.rti.dds.publication.FlowController.trigger flow (p. 945)
FlowController.ON DEMAND FLOW CONTROLLER NAME
(p. 184)
com.rti.dds.infrastructure.PublishModeQosPolicy (p. 1308)

8.179.3.14 void begin coherent changes ()

Indicates that the application will begin a coherent set of modifications us-
ing com.rti.dds.publication.DataWriter (p. 538) objects attached to the
com.rti.dds.publication.Publisher (p. 1277).

A ’coherent set’ is a set of modifications that must be propagated in such a
way that they are interpreted at the receiver’s side as a consistent set of mod-
ifications; that is, the receiver will only be able to access the data after all the
modifications in the set are available at the receiver end.

A connectivity change may occur in the middle of a set of co-
herent changes; for example (p. 342), the set of partitions used
by the com.rti.dds.publication.Publisher (p. 1277) or one of its
com.rti.dds.subscription.Subscriber (p. 1478) s may change, a late-joining
com.rti.dds.subscription.DataReader (p. 473) may appear on the network,
or a communication failure may occur. In the event that such a change pre-
vents an entity from receiving the entire set of coherent changes, that entity
must behave as if it had received none of the set.

These calls can be nested. In that case, the coherent set terminates only with
the last call to com.rti.dds.publication.Publisher.end coherent changes
(p. 1297).

The support for coherent changes enables a publishing application to change the
value of several data-instances that could belong to the same or different topics
and have those changes be seen atomically by the readers. This is useful in
cases where the values are inter-related (for example (p. 342), if there are two
data-instances representing the altitude and velocity vector of the same aircraft
and both are changed, it may be useful to communicate those values in a way

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.179 Publisher Interface Reference 1297

the reader can see both together; otherwise, it may e.g., erroneously interpret
that the aircraft is on a collision course).

Exceptions:

One of the Standard Return Codes (p. 104) or RETCODE NOT -
ENABLED.

8.179.3.15 void end coherent changes ()

Terminates the coherent set initiated by the matching call to
com.rti.dds.publication.Publisher.begin coherent changes (p. 1296).

Precondition:

If there is no matching call to com.rti.dds.publication.Publisher.begin -
coherent changes (p. 1296) the operation will fail with RETCODE -
PRECONDITION NOT MET.

Exceptions:

One of the Standard Return Codes (p. 104), RETCODE -
PRECONDITION NOT MET or RETCODE NOT ENABLED.

8.179.3.16 void copy from topic qos (DataWriterQos
a datawriter qos, TopicQos a topic qos)

Copies the policies in the com.rti.dds.topic.TopicQos (p. 1566) to the corre-
sponding policies in the com.rti.dds.publication.DataWriterQos (p. 588).

Copies the policies in the com.rti.dds.topic.TopicQos (p. 1566) to the cor-
responding policies in the com.rti.dds.publication.DataWriterQos (p. 588)
(replacing values in the com.rti.dds.publication.DataWriterQos (p. 588),
if present).

This is a ”convenience” operation most useful in combination with the op-
erations com.rti.dds.publication.Publisher.get default datawriter qos
(p. 1281) and com.rti.dds.topic.Topic.get qos (p. 1548). The operation
com.rti.dds.publication.Publisher.copy from topic qos (p. 1297) can be
used to merge the com.rti.dds.publication.DataWriter (p. 538) default
QoS policies with the corresponding ones on the com.rti.dds.topic.Topic
(p. 1545). The resulting QoS can then be used to create a new
com.rti.dds.publication.DataWriter (p. 538), or set its QoS.

This operation does not check the resulting
com.rti.dds.publication.DataWriterQos (p. 588) for consistency. This

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1298 Class Documentation

is because the ’merged’ com.rti.dds.publication.DataWriterQos (p. 588)
may not be the final one, as the application can still modify some policies
prior to applying the policies to the com.rti.dds.publication.DataWriter
(p. 538).

Parameters:

a datawriter qos <<inout>> (p. 271) com.rti.dds.publication.DataWriterQos
(p. 588) to be filled-up. Cannot be NULL.

a topic qos <<in>> (p. 271) com.rti.dds.topic.TopicQos (p. 1566)
to be merged with com.rti.dds.publication.DataWriterQos
(p. 588). Cannot be NULL.

Exceptions:

One of the Standard Return Codes (p. 104)

8.179.3.17 void get all datawriters (DataWriterSeq writers)

Retrieve all the DataWriters created from this Publisher (p. 1277).

Parameters:

writers <<inout>> (p. 271) Sequence where the DataWriters will be
added

Exceptions:

One of the Standard Return Codes (p. 104)

8.179.3.18 DomainParticipant get participant ()

Returns the com.rti.dds.domain.DomainParticipant (p. 629) to which the
com.rti.dds.publication.Publisher (p. 1277) belongs.

Returns:

the com.rti.dds.domain.DomainParticipant (p. 629) to which the
com.rti.dds.publication.Publisher (p. 1277) belongs.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.179 Publisher Interface Reference 1299

8.179.3.19 void delete contained entities ()

Deletes all the entities that were created by means of the ”create” operation on
the com.rti.dds.publication.Publisher (p. 1277).

Deletes all contained com.rti.dds.publication.DataWriter (p. 538) ob-
jects. Once com.rti.dds.publication.Publisher.delete contained -
entities (p. 1299) completes successfully, the application may delete the
com.rti.dds.publication.Publisher (p. 1277), knowing that it has no
contained com.rti.dds.publication.DataWriter (p. 538) objects.

The operation will fail with RETCODE PRECONDITION NOT MET if any
of the contained entities is in a state where it cannot be deleted.

Exceptions:

One of the Standard Return Codes (p. 104) or RETCODE -
PRECONDITION NOT MET.

8.179.3.20 void wait for acknowledgments (Duration t max wait)

Blocks the calling thread until all data written by reliable
com.rti.dds.publication.DataWriter (p. 538) entities is acknowledged,
or until timeout expires.

This operation blocks the calling thread until either all data written by the re-
liable com.rti.dds.publication.DataWriter (p. 538) entities is acknowledged
by all matched reliable com.rti.dds.subscription.DataReader (p. 473) enti-
ties, or else the duration specified by the max wait parameter elapses, whichever
happens first. A successful completion indicates that all the samples written
have been acknowledged by all reliable matched data readers; a return value of
TIMEOUT indicates that max wait elapsed before all the data was acknowl-
edged.

If none of the com.rti.dds.publication.DataWriter (p. 538) instances have
com.rti.dds.infrastructure.ReliabilityQosPolicy (p. 1336) kind set to RE-
LIABLE, the operation will complete successfully.

Parameters:

max wait <<in>> (p. 271) Specifies maximum time to wait for acknowl-
edgements com.rti.dds.infrastructure.Duration t (p. 776) .

Exceptions:

One of the Standard Return Codes (p. 104), RETCODE NOT -
ENABLED, RETCODE TIMEOUT

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1300 Class Documentation

8.179.3.21 void wait for asynchronous publishing (Duration t
max wait)

<<eXtension>> (p. 270) Blocks the calling thread until asynchronous send-
ing is complete.

This operation blocks the calling thread (up to max wait) until all
data written by the asynchronous com.rti.dds.publication.DataWriter
(p. 538) entities is sent and acknowledged (if reliable) by all matched
com.rti.dds.subscription.DataReader (p. 473) entities. A successful com-
pletion indicates that all the samples written have been sent and acknowledged
where applicable; if it times out, this indicates that max wait elapsed before all
the data was sent and/or acknowledged.

In other words, this guarantees that sending to best effort
com.rti.dds.subscription.DataReader (p. 473) is complete in addition
to what com.rti.dds.publication.Publisher.wait for acknowledgments
(p. 1299) provides.

If none of the com.rti.dds.publication.DataWriter (p. 538) instances have
com.rti.dds.infrastructure.PublishModeQosPolicy.kind (p. 1310) set to
PublishModeQosPolicyKind.ASYNCHRONOUS PUBLISH MODE QOS, the
operation will complete immediately, with RETCODE OK.

Parameters:

max wait <<in>> (p. 271) Specifies maximum time to wait for acknowl-
edgements com.rti.dds.infrastructure.Duration t (p. 776).

Exceptions:

One of the Standard Return Codes (p. 104), RETCODE NOT -
ENABLED, RETCODE TIMEOUT

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.180 PublisherAdapter Class Reference 1301

8.180 PublisherAdapter Class Reference

<<eXtension>> (p. 270) A listener adapter in the spirit of the Java AWT
listener adapters. (The Adapter provides empty implementations for the listener
methods)

Inheritance diagram for PublisherAdapter::

8.180.1 Detailed Description

<<eXtension>> (p. 270) A listener adapter in the spirit of the Java AWT
listener adapters. (The Adapter provides empty implementations for the listener
methods)

Clients who do not wish to implement all listener methods can subclass this
class and override only the methods of interest.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1302 Class Documentation

8.181 PublisherListener Interface Reference

<<interface>> (p. 271) com.rti.dds.infrastructure.Listener (p. 1154) for
com.rti.dds.publication.Publisher (p. 1277) status.

Inheritance diagram for PublisherListener::

8.181.1 Detailed Description

<<interface>> (p. 271) com.rti.dds.infrastructure.Listener (p. 1154) for
com.rti.dds.publication.Publisher (p. 1277) status.

Entity:

com.rti.dds.publication.Publisher (p. 1277)

Status:

StatusKind.LIVELINESS LOST STATUS, com.rti.dds.publication.LivelinessLostStatus
(p. 1162);
StatusKind.OFFERED DEADLINE MISSED STATUS,
com.rti.dds.publication.OfferedDeadlineMissedStatus (p. 1212);
StatusKind.OFFERED INCOMPATIBLE QOS STATUS,
com.rti.dds.publication.OfferedIncompatibleQosStatus (p. 1214);
StatusKind.PUBLICATION MATCHED STATUS,
com.rti.dds.publication.PublicationMatchedStatus (p. 1274);
StatusKind.RELIABLE READER ACTIVITY CHANGED STATUS,
com.rti.dds.publication.ReliableReaderActivityChangedStatus
(p. 1342);
StatusKind.RELIABLE WRITER CACHE CHANGED STATUS,
com.rti.dds.publication.ReliableWriterCacheChangedStatus
(p. 1345)

See also:

com.rti.dds.infrastructure.Listener (p. 1154)
Status Kinds (p. 106)
Operations Allowed in Listener Callbacks (p. 1156)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.182 PublisherQos Class Reference 1303

8.182 PublisherQos Class Reference

QoS policies supported by a com.rti.dds.publication.Publisher (p. 1277) en-
tity.

Inheritance diagram for PublisherQos::

Public Attributes

ˆ final PresentationQosPolicy presentation

Presentation policy, PRESENTATION (p. 86).

ˆ final PartitionQosPolicy partition

Partition policy, PARTITION (p. 85).

ˆ final GroupDataQosPolicy group data

Group data policy, GROUP DATA (p. 73).

ˆ final EntityFactoryQosPolicy entity factory

Entity factory policy, ENTITY FACTORY (p. 69).

ˆ final AsynchronousPublisherQosPolicy asynchronous publisher

<<eXtension>> (p. 270) Asynchronous publishing settings for the
com.rti.dds.publication.Publisher (p. 1277) and all entities that are cre-
ated by it.

ˆ final ExclusiveAreaQosPolicy exclusive area

<<eXtension>> (p. 270) Exclusive area for the
com.rti.dds.publication.Publisher (p. 1277) and all entities that
are created by it.

8.182.1 Detailed Description

QoS policies supported by a com.rti.dds.publication.Publisher (p. 1277) en-
tity.

You must set certain members in a consistent manner:

length of com.rti.dds.publication.PublisherQos.group data.value <=
com.rti.dds.domain.DomainParticipantQos.resource limits (p. 739)
.publisher group data max length

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1304 Class Documentation

length of com.rti.dds.publication.PublisherQos.partition.name <=
com.rti.dds.domain.DomainParticipantQos.resource limits (p. 739)
.max partitions

combined number of characters (including terminating 0)
in com.rti.dds.publication.PublisherQos.partition.name <=
com.rti.dds.domain.DomainParticipantQos.resource limits (p. 739)
.max partition cumulative characters

If any of the above are not true, com.rti.dds.publication.Publisher.set -
qos (p. 1289) and com.rti.dds.publication.Publisher.set qos with -
profile (p. 1290) will fail with RETCODE INCONSISTENT POLICY and
com.rti.dds.domain.DomainParticipant.create publisher (p. 656) will
return NULL.

8.182.2 Member Data Documentation

8.182.2.1 final PresentationQosPolicy presentation

Presentation policy, PRESENTATION (p. 86).

8.182.2.2 final PartitionQosPolicy partition

Partition policy, PARTITION (p. 85).

8.182.2.3 final GroupDataQosPolicy group data

Group data policy, GROUP DATA (p. 73).

8.182.2.4 final EntityFactoryQosPolicy entity factory

Entity factory policy, ENTITY FACTORY (p. 69).

8.182.2.5 final AsynchronousPublisherQosPolicy
asynchronous publisher

<<eXtension>> (p. 270) Asynchronous publishing settings for the
com.rti.dds.publication.Publisher (p. 1277) and all entities that are created
by it.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.182 PublisherQos Class Reference 1305

8.182.2.6 final ExclusiveAreaQosPolicy exclusive area

<<eXtension>> (p. 270) Exclusive area for the
com.rti.dds.publication.Publisher (p. 1277) and all entities that are
created by it.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1306 Class Documentation

8.183 PublisherSeq Class Reference

Declares IDL sequence < com.rti.dds.publication.Publisher (p. 1277) > .

Inherits AbstractNativeSequence.

Public Member Functions

ˆ PublisherSeq (Collection publishers)
ˆ int getMaximum ()

Get the current maximum number of elements that can be stored in this
sequence.

8.183.1 Detailed Description

Declares IDL sequence < com.rti.dds.publication.Publisher (p. 1277) > .

See also:

com.rti.dds.util.Sequence (p. 1432)

8.183.2 Constructor & Destructor Documentation

8.183.2.1 PublisherSeq (Collection publishers)

Exceptions:

NullPointerException if the given collection is null

8.183.3 Member Function Documentation

8.183.3.1 int getMaximum ()

Get the current maximum number of elements that can be stored in this se-
quence.

The maximum of the sequence represents the maximum number of elements that
the underlying buffer can hold. It does not represent the current number of
elements.

The maximum is a non-negative number. It is initialized when the sequence is
first created.

The maximum can be changed implicitly by adding an element to the sequence
with add() (p. 383), or explicitly by calling Sequence.setMaximum.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.183 PublisherSeq Class Reference 1307

Returns:

the current maximum of the sequence.

See also:

Sequence.size()

Implements Sequence (p. 1433).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1308 Class Documentation

8.184 PublishModeQosPolicy Class Reference

Specifies how RTI Connext sends application data on the network. This QoS
policy can be used to tell RTI Connext to use its own thread to send data,
instead of the user thread.

Inheritance diagram for PublishModeQosPolicy::

Public Attributes

ˆ PublishModeQosPolicyKind kind
Publishing mode.

ˆ String flow controller name
Name of the associated flow controller.

8.184.1 Detailed Description

Specifies how RTI Connext sends application data on the network. This QoS
policy can be used to tell RTI Connext to use its own thread to send data,
instead of the user thread.

The publishing mode of a com.rti.dds.publication.DataWriter (p. 538) de-
termines whether data is written synchronously in the context of the user thread
when calling com.rti.dds.topic.example.FooDataWriter.write or asynchronously
in the context of a separate thread internal to the middleware.

Each com.rti.dds.publication.Publisher (p. 1277)
spawns a single asynchronous publishing thread
(com.rti.dds.infrastructure.AsynchronousPublisherQosPolicy.thread
(p. 389)) to serve all its asynchronous com.rti.dds.publication.DataWriter
(p. 538) instances.

See also:

com.rti.dds.infrastructure.AsynchronousPublisherQosPolicy
(p. 387)
com.rti.dds.infrastructure.HistoryQosPolicy (p. 1071)
com.rti.dds.publication.FlowController (p. 942)

Entity:

com.rti.dds.publication.DataWriter (p. 538)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.184 PublishModeQosPolicy Class Reference 1309

Properties:

RxO (p. 97) = N/A
Changeable (p. 98) = NO (p. 98)

8.184.2 Usage

The fastest way for RTI Connext to send data is for the user thread to execute
the middleware code that actually sends the data itself. However, there are
times when user applications may need or want an internal middleware thread
to send the data instead. For instance, to send large data reliably, you must use
an asynchronous thread.

When data is written asynchronously, a com.rti.dds.publication.FlowController
(p. 942), identified by flow controller name, can be used to shape
the network traffic. Shaping a data flow usually means limiting the
maximum data rates at which the middleware will send data for a
com.rti.dds.publication.DataWriter (p. 538). The flow controller will
buffer any excess data and only send it when the send rate drops below
the maximum rate. The flow controller’s properties determine when the
asynchronous publishing thread is allowed to send data and how much.

Asynchronous publishing may increase latency, but offers the following advan-
tages:

- The com.rti.dds.topic.example.FooDataWriter.write call does not make any
network calls and is therefore faster and more deterministic. This becomes
important when the user thread is executing time-critical code.

- When data is written in bursts or when sending large data types as multi-
ple fragments, a flow controller can throttle the send rate of the asynchronous
publishing thread to avoid flooding the network.

- Asynchronously written samples for the same destination will be coalesced into
a single network packet which reduces bandwidth consumption.

The maximum number of samples that will be coalesced depends on Trans-
port.Property t.gather send buffer count max (each sample requires at least 2-
4 gather-send buffers). Performance can be improved by increasing Trans-
port.Property t.gather send buffer count max. Note that the maximum value
is operating system dependent.

The middleware must queue samples until they can be sent by
the asynchronous publishing thread (as determined by the corre-
sponding com.rti.dds.publication.FlowController (p. 942)). The
number of samples that will be queued is determined by the
com.rti.dds.infrastructure.HistoryQosPolicy (p. 1071). When using
HistoryQosPolicyKind.KEEP LAST HISTORY QOS (p. 1075), only
the most recent com.rti.dds.infrastructure.HistoryQosPolicy.depth

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1310 Class Documentation

(p. 1074) samples are kept in the queue. Once unsent samples are removed
from the queue, they are no longer available to the asynchronous publishing
thread and will therefore never be sent.

8.184.3 Member Data Documentation

8.184.3.1 PublishModeQosPolicyKind kind

Publishing mode.

[default] PublishModeQosPolicyKind.SYNCHRONOUS PUBLISH -
MODE QOS (p. 1311)

8.184.3.2 String flow controller name

Name of the associated flow controller.

NULL value or zero-length string refers to FlowController.DEFAULT FLOW -
CONTROLLER NAME.

See also:

com.rti.dds.domain.DomainParticipant.create flowcontroller
(p. 654)
FlowController.DEFAULT FLOW CONTROLLER NAME
FlowController.FIXED RATE FLOW CONTROLLER NAME
FlowController.ON DEMAND FLOW CONTROLLER NAME

[default] FlowController.DEFAULT FLOW CONTROLLER NAME

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.185 PublishModeQosPolicyKind Class Reference 1311

8.185 PublishModeQosPolicyKind Class Refer-
ence

Kinds of publishing mode.

Inheritance diagram for PublishModeQosPolicyKind::

Static Public Attributes

ˆ static final PublishModeQosPolicyKind SYNCHRONOUS -
PUBLISH MODE QOS

Indicates to send data synchronously.

ˆ static final PublishModeQosPolicyKind ASYNCHRONOUS -
PUBLISH MODE QOS

Indicates to send data asynchronously.

8.185.1 Detailed Description

Kinds of publishing mode.

QoS:

com.rti.dds.infrastructure.PublishModeQosPolicy (p. 1308)

8.185.2 Member Data Documentation

8.185.2.1 final PublishModeQosPolicyKind
SYNCHRONOUS PUBLISH MODE QOS [static]

Indicates to send data synchronously.

If com.rti.dds.infrastructure.DataWriterProtocolQosPolicy.push on -
write (p. 573) is true, data is sent immediately in the context of
com.rti.dds.topic.example.FooDataWriter.write.

As data is sent immediately in the context of the user thread, no flow control
is applied.

See also:

com.rti.dds.infrastructure.DataWriterProtocolQosPolicy.push -
on write (p. 573)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1312 Class Documentation

[default] for com.rti.dds.publication.DataWriter (p. 538)

8.185.2.2 final PublishModeQosPolicyKind
ASYNCHRONOUS PUBLISH MODE QOS [static]

Indicates to send data asynchronously.

Configures the com.rti.dds.publication.DataWriter (p. 538) to delegate
the task of data transmission to a separate publishing thread. The
com.rti.dds.topic.example.FooDataWriter.write call does not send the data,
but instead schedules the data to be sent later by its associated
com.rti.dds.publication.Publisher (p. 1277).

Each com.rti.dds.publication.Publisher (p. 1277) uses its dedicated pub-
lishing thread (com.rti.dds.publication.PublisherQos.asynchronous -
publisher (p. 1304)) to send data for all its asynchronous
DataWriters. For each asynchronous DataWriter, the associated
com.rti.dds.publication.FlowController (p. 942) determines when the
publishing thread is allowed to send the data.

com.rti.dds.publication.DataWriter.wait for asynchronous -
publishing (p. 553) and com.rti.dds.publication.Publisher.wait for -
asynchronous publishing (p. 1300) enable you to determine when the data
has actually been sent.

Note: com.rti.dds.infrastructure.DataWriterProtocolQosPolicy.push -
on write (p. 573) must be TRUE for Asynchronous DataWriters. Otherwise,
samples will never be sent.

See also:

com.rti.dds.publication.FlowController (p. 942)
com.rti.dds.infrastructure.HistoryQosPolicy (p. 1071)
com.rti.dds.publication.DataWriter.wait for asynchronous -
publishing (p. 553)
com.rti.dds.publication.Publisher.wait for asynchronous -
publishing (p. 1300)
Transport.Property t.gather send buffer count max

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.186 Qos Class Reference 1313

8.186 Qos Class Reference

An abstract base class for all QoS types.

Inheritance diagram for Qos::

Public Member Functions

ˆ final boolean equals (Object other)

8.186.1 Detailed Description

An abstract base class for all QoS types.

8.186.2 Member Function Documentation

8.186.2.1 final boolean equals (Object other)

Parameters:

other <<in>> (p. 271) Other object to compare with this QoS.

Returns:

true if the given object is a QoS of the same concrete type as this QoS and
all policies are equal, false otherwise

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1314 Class Documentation

8.187 QosPolicy Class Reference

The base class for all QoS policies.

Inheritance diagram for QosPolicy::

Public Attributes

ˆ final QosPolicyId t id

The ID of this QoS policy.

ˆ final String policy name

The name of this QoS policy.

8.187.1 Detailed Description

The base class for all QoS policies.

8.187.2 Member Data Documentation

8.187.2.1 final QosPolicyId t id

The ID of this QoS policy.

This attribute is provided for more efficient comparisons of policy types that
comparing strings.

8.187.2.2 final String policy name

The name of this QoS policy.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.188 QosPolicyCount Class Reference 1315

8.188 QosPolicyCount Class Reference

Type to hold a counter for a com.rti.dds.infrastructure.QosPolicyId t
(p. 1318).

Inherits Struct.

Public Member Functions

ˆ QosPolicyCount (QosPolicyCount src)

Copy constructor.

Public Attributes

ˆ QosPolicyId t policy id

The QosPolicy (p. 1314) ID.

ˆ int count

a counter

8.188.1 Detailed Description

Type to hold a counter for a com.rti.dds.infrastructure.QosPolicyId t
(p. 1318).

8.188.2 Constructor & Destructor Documentation

8.188.2.1 QosPolicyCount (QosPolicyCount src)

Copy constructor.

Parameters:

src QosPolicyCount (p. 1315) to copy from.

Exceptions:

NullPointerException if the source object is null.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1316 Class Documentation

8.188.3 Member Data Documentation

8.188.3.1 QosPolicyId t policy id

The QosPolicy (p. 1314) ID.

8.188.3.2 int count

a counter

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.189 QosPolicyCountSeq Class Reference 1317

8.189 QosPolicyCountSeq Class Reference

Declares IDL sequence < com.rti.dds.infrastructure.QosPolicyCount
(p. 1315) >.

Inherits ArraySequence.

8.189.1 Detailed Description

Declares IDL sequence < com.rti.dds.infrastructure.QosPolicyCount
(p. 1315) >.

Instantiates:

<<generic>> (p. 271) com.rti.dds.util.Sequence (p. 1432)

See also:

com.rti.dds.infrastructure.QosPolicyCount (p. 1315)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1318 Class Documentation

8.190 QosPolicyId t Class Reference

Type to identify QosPolicies.

Inheritance diagram for QosPolicyId t::

Static Public Attributes

ˆ static final QosPolicyId t INVALID QOS POLICY ID

Identifier for an invalid QoS policy.

ˆ static final QosPolicyId t USERDATA QOS POLICY ID

Identifier for com.rti.dds.infrastructure.UserDataQosPolicy (p. 1680).

ˆ static final QosPolicyId t DURABILITY QOS POLICY ID

Identifier for com.rti.dds.infrastructure.DurabilityQosPolicy (p. 765).

ˆ static final QosPolicyId t PRESENTATION QOS POLICY ID

Identifier for com.rti.dds.infrastructure.PresentationQosPolicy
(p. 1237).

ˆ static final QosPolicyId t DEADLINE QOS POLICY ID

Identifier for com.rti.dds.infrastructure.DeadlineQosPolicy (p. 604).

ˆ static final QosPolicyId t LATENCYBUDGET QOS POLICY -
ID

Identifier for com.rti.dds.infrastructure.LatencyBudgetQosPolicy
(p. 1148).

ˆ static final QosPolicyId t OWNERSHIP QOS POLICY ID

Identifier for com.rti.dds.infrastructure.OwnershipQosPolicy
(p. 1216).

ˆ static final QosPolicyId t OWNERSHIPSTRENGTH QOS -
POLICY ID

Identifier for com.rti.dds.infrastructure.OwnershipStrengthQosPolicy
(p. 1225).

ˆ static final QosPolicyId t LIVELINESS QOS POLICY ID

Identifier for com.rti.dds.infrastructure.LivelinessQosPolicy (p. 1164).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.190 QosPolicyId t Class Reference 1319

ˆ static final QosPolicyId t TIMEBASEDFILTER QOS POLICY -
ID

Identifier for com.rti.dds.infrastructure.TimeBasedFilterQosPolicy
(p. 1541).

ˆ static final QosPolicyId t PARTITION QOS POLICY ID

Identifier for com.rti.dds.infrastructure.PartitionQosPolicy (p. 1233).

ˆ static final QosPolicyId t RELIABILITY QOS POLICY ID

Identifier for com.rti.dds.infrastructure.ReliabilityQosPolicy
(p. 1336).

ˆ static final QosPolicyId t DESTINATIONORDER QOS -
POLICY ID

Identifier for com.rti.dds.infrastructure.DestinationOrderQosPolicy
(p. 607).

ˆ static final QosPolicyId t HISTORY QOS POLICY ID

Identifier for com.rti.dds.infrastructure.HistoryQosPolicy (p. 1071).

ˆ static final QosPolicyId t RESOURCELIMITS QOS POLICY -
ID

Identifier for com.rti.dds.infrastructure.ResourceLimitsQosPolicy
(p. 1356).

ˆ static final QosPolicyId t ENTITYFACTORY QOS POLICY -
ID

Identifier for com.rti.dds.infrastructure.EntityFactoryQosPolicy
(p. 919).

ˆ static final QosPolicyId t WRITERDATALIFECYCLE QOS -
POLICY ID

Identifier for com.rti.dds.infrastructure.WriterDataLifecycleQosPolicy
(p. 1722).

ˆ static final QosPolicyId t READERDATALIFECYCLE QOS -
POLICY ID

Identifier for com.rti.dds.infrastructure.ReaderDataLifecycleQosPolicy
(p. 1328).

ˆ static final QosPolicyId t TOPICDATA QOS POLICY ID

Identifier for com.rti.dds.infrastructure.TopicDataQosPolicy
(p. 1559).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1320 Class Documentation

ˆ static final QosPolicyId t GROUPDATA QOS POLICY ID

Identifier for com.rti.dds.infrastructure.GroupDataQosPolicy
(p. 1064).

ˆ static final QosPolicyId t TRANSPORTPRIORITY QOS -
POLICY ID

Identifier for com.rti.dds.infrastructure.TransportPriorityQosPolicy
(p. 1598).

ˆ static final QosPolicyId t LIFESPAN QOS POLICY ID

Identifier for com.rti.dds.infrastructure.LifespanQosPolicy (p. 1152).

ˆ static final QosPolicyId t DURABILITY SERVICE QOS -
POLICY ID

Identifier for com.rti.dds.infrastructure.DurabilityServiceQosPolicy
(p. 773).

ˆ static final QosPolicyId t WIREPROTOCOL QOS POLICY ID

<<eXtension>> (p. 270) Identifier for
com.rti.dds.infrastructure.WireProtocolQosPolicy (p. 1709)

ˆ static final QosPolicyId t DISCOVERY QOS POLICY ID

<<eXtension>> (p. 270) Identifier for
com.rti.dds.infrastructure.DiscoveryQosPolicy (p. 624)

ˆ static final QosPolicyId t DATAREADERRESOURCELIMITS -
QOS POLICY ID

<<eXtension>> (p. 270) Identifier for
com.rti.dds.infrastructure.DataReaderResourceLimitsQosPolicy
(p. 524)

ˆ static final QosPolicyId t DATA WRITER RESOURCE -
LIMITS QOS POLICY ID

<<eXtension>> (p. 270) Identifier for
com.rti.dds.infrastructure.DataWriterResourceLimitsQosPolicy
(p. 598)

ˆ static final QosPolicyId t DATAREADERPROTOCOL QOS -
POLICY ID

<<eXtension>> (p. 270) Identifier for
com.rti.dds.infrastructure.DataReaderProtocolQosPolicy (p. 504)

ˆ static final QosPolicyId t DATAWRITERPROTOCOL QOS -
POLICY ID

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.190 QosPolicyId t Class Reference 1321

<<eXtension>> (p. 270) Identifier for
com.rti.dds.infrastructure.DataWriterProtocolQosPolicy (p. 571)

ˆ static final QosPolicyId t DOMAINPARTICIPANTRESOURCE-
LIMITS QOS POLICY ID

<<eXtension>> (p. 270) Identifier for
com.rti.dds.infrastructure.DomainParticipantResourceLimitsQosPolicy
(p. 741)

ˆ static final QosPolicyId t EVENT QOS POLICY ID
<<eXtension>> (p. 270) Identifier for
com.rti.dds.infrastructure.EventQosPolicy (p. 930)

ˆ static final QosPolicyId t DATABASE QOS POLICY ID
<<eXtension>> (p. 270) Identifier for
com.rti.dds.infrastructure.DatabaseQosPolicy (p. 468)

ˆ static final QosPolicyId t RECEIVERPOOL QOS POLICY ID
<<eXtension>> (p. 270) Identifier for
com.rti.dds.infrastructure.ReceiverPoolQosPolicy (p. 1331)

ˆ static final QosPolicyId t DISCOVERYCONFIG QOS POLICY -
ID

<<eXtension>> (p. 270) Identifier for
com.rti.dds.infrastructure.DiscoveryConfigQosPolicy (p. 615)

ˆ static final QosPolicyId t EXCLUSIVEAREA QOS POLICY -
ID

<<eXtension>> (p. 270) Identifier for
com.rti.dds.infrastructure.ExclusiveAreaQosPolicy (p. 933)

ˆ static final QosPolicyId t USEROBJECT QOS POLICY ID
<<eXtension>> (p. 270) Identifier for
com.rti.dds.infrastructure.UserObjectQosPolicy

ˆ static final QosPolicyId t SYSTEMRESOURCELIMITS QOS -
POLICY ID

<<eXtension>> (p. 270) Identifier for
com.rti.dds.infrastructure.SystemResourceLimitsQosPolicy
(p. 1524)

ˆ static final QosPolicyId t TRANSPORTSELECTION QOS -
POLICY ID

<<eXtension>> (p. 270) Identifier for
com.rti.dds.infrastructure.TransportSelectionQosPolicy (p. 1600)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1322 Class Documentation

ˆ static final QosPolicyId t TRANSPORTUNICAST QOS -
POLICY ID

<<eXtension>> (p. 270) Identifier for
com.rti.dds.infrastructure.TransportUnicastQosPolicy (p. 1605)

ˆ static final QosPolicyId t TRANSPORTMULTICAST QOS -
POLICY ID

<<eXtension>> (p. 270) Identifier for
com.rti.dds.infrastructure.TransportMulticastQosPolicy (p. 1590)

ˆ static final QosPolicyId t TRANSPORTBUILTIN QOS -
POLICY ID

<<eXtension>> (p. 270) Identifier for
com.rti.dds.infrastructure.TransportBuiltinQosPolicy (p. 1580)

ˆ static final QosPolicyId t PUBLISHMODE QOS POLICY ID

<<eXtension>> (p. 270) Identifier for
com.rti.dds.infrastructure.PublishModeQosPolicy (p. 1308)

ˆ static final QosPolicyId t ASYNCHRONOUSPUBLISHER -
QOS POLICY ID

<<eXtension>> (p. 270) Identifier for
com.rti.dds.infrastructure.AsynchronousPublisherQosPolicy
(p. 387)

ˆ static final QosPolicyId t TYPESUPPORT QOS POLICY ID

<<eXtension>> (p. 270) Identifier for
com.rti.dds.infrastructure.TypeSupportQosPolicy (p. 1652)

ˆ static final QosPolicyId t ENTITYNAME QOS POLICY ID

<<eXtension>> (p. 270) Identifier for
com.rti.dds.infrastructure.TypeSupportQosPolicy (p. 1652)

ˆ static final QosPolicyId t BATCH QOS POLICY ID

<<eXtension>> (p. 270) Identifier for
com.rti.dds.infrastructure.BatchQosPolicy (p. 401)

ˆ static final QosPolicyId t PROFILE QOS POLICY ID

<<eXtension>> (p. 270) Identifier for
com.rti.dds.infrastructure.ProfileQosPolicy (p. 1247)

ˆ static final QosPolicyId t LOCATORFILTER QOS POLICY -
ID

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.190 QosPolicyId t Class Reference 1323

<<eXtension>> (p. 270) Identifier for
com.rti.dds.infrastructure.LocatorFilterQosPolicy (p. 1181)

ˆ static final QosPolicyId t MULTICHANNEL QOS POLICY ID

<<eXtension>> (p. 270) Identifier for
com.rti.dds.infrastructure.MultiChannelQosPolicy (p. 1205)

ˆ static final QosPolicyId t AVAILABILITY QOS POLICY ID

<<eXtension>> (p. 270) Identifier for
com.rti.dds.infrastructure.AvailabilityQosPolicy (p. 392)

ˆ static final QosPolicyId t LOGGING QOS POLICY ID

<<eXtension>> (p. 270) Identifier for
com.rti.dds.infrastructure.LoggingQosPolicy (p. 1190)

8.190.1 Detailed Description

Type to identify QosPolicies.

8.190.2 Member Data Documentation

8.190.2.1 final QosPolicyId t INVALID QOS POLICY ID
[static]

Identifier for an invalid QoS policy.

8.190.2.2 final QosPolicyId t USEROBJECT QOS POLICY ID
[static]

<<eXtension>> (p. 270) Identifier for com.rti.dds.infrastructure.UserObjectQosPolicy

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1324 Class Documentation

8.191 QueryCondition Interface Reference

<<interface>> (p. 271) These are specialised
com.rti.dds.subscription.ReadCondition (p. 1326) objects that allow
the application to also specify a filter on the locally available data.

Inheritance diagram for QueryCondition::

Public Member Functions

ˆ String get query expression ()

Retrieves the query expression.

ˆ void get query parameters (StringSeq query parameters)

Retrieves the query parameters.

ˆ void set query parameters (StringSeq query parameters)

Sets the query parameters.

8.191.1 Detailed Description

<<interface>> (p. 271) These are specialised
com.rti.dds.subscription.ReadCondition (p. 1326) objects that allow
the application to also specify a filter on the locally available data.

Each query condition filter is composed of a
com.rti.dds.subscription.ReadCondition (p. 1326) state filter and a
content filter expressed as a query expression and query parameters.

The query (query expression) is similar to an SQL WHERE clause and can
be parameterised by arguments that are dynamically changeable by the set -
query parameters() (p. 1325) operation.

Two query conditions that have the same query expression will require unique
query condition content filters if their query paramters differ. Query conditions
that differ only in their state masks will share the same query condition content
filter.

Queries and Filters Syntax (p. 278) describes the syntax of query -
expression and query parameters.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.191 QueryCondition Interface Reference 1325

8.191.2 Member Function Documentation

8.191.2.1 String get query expression ()

Retrieves the query expression.

8.191.2.2 void get query parameters (StringSeq query parameters)

Retrieves the query parameters.

Parameters:

query parameters <<inout>> (p. 271) the query parameters are re-
turned here.

8.191.2.3 void set query parameters (StringSeq query parameters)

Sets the query parameters.

Parameters:

query parameters <<in>> (p. 271) the new query parameters

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1326 Class Documentation

8.192 ReadCondition Interface Reference

<<interface>> (p. 271) Conditions specifically dedicated to read operations
and attached to one com.rti.dds.subscription.DataReader (p. 473).

Inheritance diagram for ReadCondition::

Public Member Functions

ˆ int get sample state mask ()

Retrieves the set of sample states for the condition.

ˆ int get view state mask ()

Retrieves the set of view states for the condition.

ˆ int get instance state mask ()

Retrieves the set of instance states for the condition.

ˆ DataReader get datareader ()

Returns the com.rti.dds.subscription.DataReader (p. 473) associated
with the com.rti.dds.subscription.ReadCondition (p. 1326).

8.192.1 Detailed Description

<<interface>> (p. 271) Conditions specifically dedicated to read operations
and attached to one com.rti.dds.subscription.DataReader (p. 473).

com.rti.dds.subscription.ReadCondition (p. 1326) objects al-
low an application to specify the data samples it is interested in
(by specifying the desired sample states, view states as well as
instance states in com.rti.dds.topic.example.FooDataReader.read and
com.rti.dds.topic.example.FooDataReader.take variants.

This allows RTI Connext to enable the condition only when suitable information
is available. They are to be used in conjunction with a WaitSet as normal
conditions.

More than one com.rti.dds.subscription.ReadCondition (p. 1326) may be
attached to the same com.rti.dds.subscription.DataReader (p. 473).

Note: If you are using a ReadCondition (p. 1326) simply to detect the presence
of new data, consider using a com.rti.dds.infrastructure.StatusCondition

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.192 ReadCondition Interface Reference 1327

(p. 1452) with the DATA AVAILABLE STATUS instead, which will perform
better in this situation.

8.192.2 Member Function Documentation

8.192.2.1 int get sample state mask ()

Retrieves the set of sample states for the condition.

8.192.2.2 int get view state mask ()

Retrieves the set of view states for the condition.

8.192.2.3 int get instance state mask ()

Retrieves the set of instance states for the condition.

8.192.2.4 DataReader get datareader ()

Returns the com.rti.dds.subscription.DataReader (p. 473) associated with
the com.rti.dds.subscription.ReadCondition (p. 1326).

There is exactly one com.rti.dds.subscription.DataReader (p. 473) assi-
cated with each com.rti.dds.subscription.ReadCondition (p. 1326).

Returns:

com.rti.dds.subscription.DataReader (p. 473) associated with the
com.rti.dds.subscription.ReadCondition (p. 1326).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1328 Class Documentation

8.193 ReaderDataLifecycleQosPolicy Class Ref-
erence

Controls how a DataReader manages the lifecycle of the data that it has received.

Inheritance diagram for ReaderDataLifecycleQosPolicy::

Public Attributes

ˆ final Duration t autopurge nowriter samples delay

Maximum duration for which the com.rti.dds.subscription.DataReader
(p. 473) will maintain information regarding an instance once its
instance state becomes InstanceStateKind.NOT ALIVE NO WRITERS -
INSTANCE STATE.

ˆ final Duration t autopurge disposed samples delay

Maximum duration for which the com.rti.dds.subscription.DataReader
(p. 473) will maintain samples for an instance once its instance state be-
comes InstanceStateKind.NOT ALIVE DISPOSED INSTANCE STATE.

8.193.1 Detailed Description

Controls how a DataReader manages the lifecycle of the data that it has received.

When a DataReader receives data, it is stored in a receive queue for the
DataReader. The user application may either take the data from the queue
or leave it there.

This QoS policy controls whether or not RTI Connext will automatically remove
data from the receive queue (so that user applications cannot access it after-
wards) when it detects that there are no more DataWriters alive for that data.
It specifies how long a com.rti.dds.subscription.DataReader (p. 473) must
retain information regarding instances that have the instance state InstanceS-
tateKind.NOT ALIVE NO WRITERS INSTANCE STATE.

Note: This policy is not concerned with keeping reliable reader state or discovery
information.

The com.rti.dds.subscription.DataReader (p. 473) internally main-
tains the samples that have not been ”taken” by the applica-
tion, subject to the constraints imposed by other QoS policies such
as com.rti.dds.infrastructure.HistoryQosPolicy (p. 1071) and
com.rti.dds.infrastructure.ResourceLimitsQosPolicy (p. 1356).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.193 ReaderDataLifecycleQosPolicy Class Reference 1329

The com.rti.dds.subscription.DataReader (p. 473) also maintains informa-
tion regarding the identity, view state and instance state of data instances
even after all samples have been taken. This is needed to properly compute the
states when future samples arrive.

Under normal circumstances the com.rti.dds.subscription.DataReader
(p. 473) can only reclaim all resources for instances for which there
are no writers and for which all samples have been ’taken’. The
last sample the com.rti.dds.subscription.DataReader (p. 473) will
have taken for that instance will have an instance state of either
InstanceStateKind.NOT ALIVE NO WRITERS INSTANCE STATE or In-
stanceStateKind.NOT ALIVE DISPOSED INSTANCE STATE depending on
whether or not the last writer that had ownership of the instance disposed
it.

In the absence of READER DATA LIFECYCLE (p. 99), this behav-
ior could cause problems if the application forgets to take those samples.
”Untaken” samples will prevent the com.rti.dds.subscription.DataReader
(p. 473) from reclaiming the resources and they would remain in the
com.rti.dds.subscription.DataReader (p. 473) indefinitely.

For keyed Topics, the consideration of removing data samples from the receive
queue is done on a per instance (key) basis. Thus when RTI Connext detects
that there are no longer DataWriters alive for a certain key value of a Topic (an
instance of the Topic), it can be configured to remove all data samples for that
instance (key).

Entity:

com.rti.dds.subscription.DataReader (p. 473)

Properties:

RxO (p. 97) = N/A
Changeable (p. 98) = YES (p. 98)

8.193.2 Member Data Documentation

8.193.2.1 final Duration t autopurge nowriter samples delay

Maximum duration for which the com.rti.dds.subscription.DataReader
(p. 473) will maintain information regarding an instance once its instance -
state becomes InstanceStateKind.NOT ALIVE NO WRITERS INSTANCE -
STATE.

After this time elapses, the com.rti.dds.subscription.DataReader (p. 473)
will purge all internal information regarding the instance, any ”untaken” sam-
ples will also be lost.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1330 Class Documentation

[default] com.rti.dds.infrastructure.Duration t.INFINITE

[range] [1 nanosec, 1 year] or com.rti.dds.infrastructure.Duration t.INFINITE

8.193.2.2 final Duration t autopurge disposed samples delay

Maximum duration for which the com.rti.dds.subscription.DataReader
(p. 473) will maintain samples for an instance once its instance state becomes
InstanceStateKind.NOT ALIVE DISPOSED INSTANCE STATE.

After this time elapses, the com.rti.dds.subscription.DataReader (p. 473)
will purge all samples for the instance.

[default] com.rti.dds.infrastructure.Duration t.INFINITE

[range] [1 nanosec, 1 year] or com.rti.dds.infrastructure.Duration t.INFINITE

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.194 ReceiverPoolQosPolicy Class Reference 1331

8.194 ReceiverPoolQosPolicy Class Reference

Configures threads used by RTI Connext to receive and process data from trans-
ports (for example, UDP sockets).

Inheritance diagram for ReceiverPoolQosPolicy::

Public Attributes

ˆ final ThreadSettings t thread
Receiver pool thread(s).

ˆ int buffer size
The receive buffer size.

ˆ int buffer alignment
The receive buffer alignment.

8.194.1 Detailed Description

Configures threads used by RTI Connext to receive and process data from trans-
ports (for example, UDP sockets).

This QoS policy is an extension to the DDS standard.

Entity:

com.rti.dds.domain.DomainParticipant (p. 629)

Properties:

RxO (p. 97) = N/A
Changeable (p. 98) = NO (p. 98)

See also:

Controlling CPU Core Affinity for RTI Threads (p. 1534)

8.194.2 Usage

This QoS policy sets the thread properties such as priority level and stack size for
the threads used by the middleware to receive and process data from transports.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1332 Class Documentation

RTI uses a separate receive thread per port per transport plug-in. To
force RTI Connext to use a separate thread to process the data for
a com.rti.dds.subscription.DataReader (p. 473), set a unique port for
the com.rti.dds.infrastructure.TransportUnicastQosPolicy (p. 1605) or
com.rti.dds.infrastructure.TransportMulticastQosPolicy (p. 1590) for
the com.rti.dds.subscription.DataReader (p. 473).

This QoS policy also sets the size of the buffer used to store packets received
from a transport. This buffer size will limit the largest single packet of data
that a com.rti.dds.domain.DomainParticipant (p. 629) will accept from a
transport. Users will often set this size to the largest packet that any of the
transports used by their application will deliver. For many applications, the
value 65,536 (64 K) is a good choice; this value is the largest packet that can
be sent/received via UDP.

8.194.3 Member Data Documentation

8.194.3.1 final ThreadSettings t thread

Receiver pool thread(s).

There is at least one receive thread, possibly more.

[default] priority above normal.

The actual value depends on your architecture:

For Windows: 2

For Solaris: OS default priority

For Linux: OS default priority

For LynxOS: 29

For INTEGRITY: 100

For VxWorks: 71

For all others: OS default priority.

[default] The actual value depends on your architecture:

For Windows: OS default stack size

For Solaris: OS default stack size

For Linux: OS default stack size

For LynxOS: 4∗16∗1024

For INTEGRITY: 4∗20∗1024

For VxWorks: 4∗16∗1024

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.194 ReceiverPoolQosPolicy Class Reference 1333

For all others: OS default stack size.

[default] mask com.rti.dds.infrastructure.ThreadSettingsKind.THREAD -
SETTINGS FLOATING POINT (p. 1536) |
com.rti.dds.infrastructure.ThreadSettingsKind.THREAD -
SETTINGS STDIO (p. 1536)

8.194.3.2 int buffer size

The receive buffer size.

The receive buffer is used by the receive thread to store the raw data that arrives
over the transport.

In many applications, users will change the configuration of the built-in trans-
port Transport.Property t.message size max to increase the size of the largest
data packet that can be sent or received through the transport. Typically, users
will change the UDPv4 transport plugin’s Transport.Property t.message size -
max to 65536 (64 K), which is the largest packet that can be sent/received via
UDP.

Ihe ReceiverPoolQosPolicy’s buffer size should be set to be the same value
as the maximum Transport.Property t.message size max across all of the trans-
ports being used.

If you are using the default configuration of the built-in transports, you should
not need to change this buffer size.

In addition, if your application only uses transports that support zero-copy,
then you do not need to modify the value of buffer size, even if the Trans-
port.Property t.message size max of the transport is changed. Transports that
support zero-copy do not copy their data into the buffer provided by the receive
thread. Instead, they provide the receive thread data in a buffer allocated by
the transport itself. The only built-in transport that supports zero-copy is the
UDPv4 transport on VxWorks platforms.

[default] 9216

[range] [1, 1 GB]

8.194.3.3 int buffer alignment

The receive buffer alignment.

Most users will not need to change this alignment.

[default] 16

[range] [1,1024] Value must be a power of 2.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1334 Class Documentation

8.195 RefilterQosPolicyKind Class Reference

<<eXtension>> (p. 270) Kinds of Refiltering

Inheritance diagram for RefilterQosPolicyKind::

Static Public Attributes

ˆ static final RefilterQosPolicyKind NONE REFILTER QOS

[default] Do not filter existing samples for a new reader

ˆ static final RefilterQosPolicyKind ALL REFILTER QOS

Filter all existing samples for a new reader.

ˆ static final RefilterQosPolicyKind ON DEMAND REFILTER -
QOS

Filter existing samples only when they are requested by the reader.

8.195.1 Detailed Description

<<eXtension>> (p. 270) Kinds of Refiltering

QoS:

com.rti.dds.infrastructure.HistoryQosPolicy (p. 1071)

8.195.2 Member Data Documentation

8.195.2.1 final RefilterQosPolicyKind NONE REFILTER QOS
[static]

[default] Do not filter existing samples for a new reader

On the publishing side, when a new reader matches a writer, the writer can be
configured to filter previously written samples stored in the writer queue for the
new reader. This option configures the writer to not filter any existing samples
for the reader and the reader will do the filtering.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.195 RefilterQosPolicyKind Class Reference 1335

8.195.2.2 final RefilterQosPolicyKind ALL REFILTER QOS
[static]

Filter all existing samples for a new reader.

On the publishing side, when a new reader matches a writer, the writer can be
configured to filter previously written samples stored in the writer queue. This
option configures the writer to filter all existing samples for the reader when a
new reader is matched to the writer.

8.195.2.3 final RefilterQosPolicyKind ON DEMAND REFILTER -
QOS [static]

Filter existing samples only when they are requested by the reader.

On the publishing side, when a new reader matches a writer, the writer can be
configured to filter previously written samples stored in the writer queue. This
option configures the writer to filter only existing samples that are requested by
the reader.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1336 Class Documentation

8.196 ReliabilityQosPolicy Class Reference

Indicates the level of reliability offered/requested by RTI Connext.

Inheritance diagram for ReliabilityQosPolicy::

Public Attributes

ˆ ReliabilityQosPolicyKind kind
Kind of reliability.

ˆ final Duration t max blocking time
The maximum time a writer may block on a write() call.

8.196.1 Detailed Description

Indicates the level of reliability offered/requested by RTI Connext.

Entity:

com.rti.dds.topic.Topic (p. 1545), com.rti.dds.subscription.DataReader
(p. 473), com.rti.dds.publication.DataWriter (p. 538)

Status:

StatusKind.OFFERED INCOMPATIBLE QOS STATUS
(p. 1459), StatusKind.REQUESTED INCOMPATIBLE QOS -
STATUS (p. 1459)

Properties:

RxO (p. 97) = YES
Changeable (p. 98) = UNTIL ENABLE (p. 98)

8.196.2 Usage

This policy indicates the level of reliability requested by a
com.rti.dds.subscription.DataReader (p. 473) or offered by a
com.rti.dds.publication.DataWriter (p. 538).

The reliability of a connection between a DataWriter and DataReader is entirely
user configurable. It can be done on a per DataWriter/DataReader connection.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.196 ReliabilityQosPolicy Class Reference 1337

A connection may be configured to be ”best effort” which means that RTI
Connext will not use any resources to monitor or guarantee that the data sent
by a DataWriter is received by a DataReader.

For some use cases, such as the periodic update of sensor values to a GUI display-
ing the value to a person, ReliabilityQosPolicyKind.BEST EFFORT -
RELIABILITY QOS (p. 1340) delivery is often good enough. It is certainly
the fastest, most efficient, and least resource-intensive (CPU and network band-
width) method of getting the newest/latest value for a topic (p. 350) from
DataWriters to DataReaders. But there is no guarantee that the data sent will
be received. It may be lost due to a variety of factors, including data loss by
the physical transport such as wireless RF or even Ethernet.

However, there are data streams (topics) in which you want an abso-
lute guarantee that all data sent by a DataWriter is received reliably by
DataReaders. This means that RTI Connext must check whether or not
data was received, and repair any data that was lost by resending a copy
of the data as many times as it takes for the DataReader to receive the
data. RTI Connext uses a reliability protocol configured and tuned by these
QoS policies: com.rti.dds.infrastructure.HistoryQosPolicy (p. 1071),
com.rti.dds.infrastructure.DataWriterProtocolQosPolicy (p. 571),
com.rti.dds.infrastructure.DataReaderProtocolQosPolicy (p. 504), and
com.rti.dds.infrastructure.ResourceLimitsQosPolicy (p. 1356).

The Reliability QoS policy is simply a switch to turn on the reliability protocol
for a DataWriter/DataReader connection. The level of reliability provided by
RTI Connext is determined by the configuration of the aforementioned QoS
policies.

You can configure RTI Connext to deliver all data in the order they were sent
(also known as absolute or strict reliability). Or, as a tradeoff for less memory,
CPU, and network usage, you can choose a reduced level of reliability where
only the last N values are guaranteed to be delivered reliably to DataReaders
(where N is user-configurable). In the reduced level of reliability, there are no
guarantees that the data sent before the last N are received. Only the last N
data packets are monitored and repaired if necessary.

These levels are ordered, ReliabilityQosPolicyKind.BEST -
EFFORT RELIABILITY QOS (p. 1340) < ReliabilityQosPol-
icyKind.RELIABLE RELIABILITY QOS (p. 1341). A
com.rti.dds.publication.DataWriter (p. 538) offering one level is im-
plicitly offering all levels below.

Note: To send large data reliably, you will also need to set PublishMode-
QosPolicyKind.ASYNCHRONOUS PUBLISH MODE QOS (p. 1312).
Large in this context means that the data cannot be sent as a single packet by
the transport (for example, data larger than 63K when using UDP/IP).

The setting of this policy has a dependency on the setting of the RESOURCE -

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1338 Class Documentation

LIMITS (p. 102) policy. In case the reliability kind is set to Reliabili-
tyQosPolicyKind.RELIABLE RELIABILITY QOS (p. 1341) the write
operation on the com.rti.dds.publication.DataWriter (p. 538) may block
if the modification would cause data to be lost or else cause one of the limits in
specified in the RESOURCE LIMITS (p. 102) to be exceeded. Under these
circumstances, the RELIABILITY (p. 101) max blocking time configures the
maximum duration the write operation may block.

If the com.rti.dds.infrastructure.ReliabilityQosPolicy.kind
(p. 1339) is set to ReliabilityQosPolicyKind.RELIABLE -
RELIABILITY QOS (p. 1341), data samples originating from a single
com.rti.dds.publication.DataWriter (p. 538) cannot be made avail-
able to the com.rti.dds.subscription.DataReader (p. 473) if there are
previous data samples that have not been received yet due to a communi-
cation error. In other words, RTI Connext will repair the error and resend
data samples as needed in order to reconstruct a correct snapshot of the
com.rti.dds.publication.DataWriter (p. 538) history before it is accessible
by the com.rti.dds.subscription.DataReader (p. 473).

If the com.rti.dds.infrastructure.ReliabilityQosPolicy.kind (p. 1339) is
set to ReliabilityQosPolicyKind.BEST EFFORT RELIABILITY QOS
(p. 1340), the service will not re-transmit missing data samples. However, for
data samples originating from any one DataWriter the service will ensure they
are stored in the com.rti.dds.subscription.DataReader (p. 473) history in
the same order they originated in the com.rti.dds.publication.DataWriter
(p. 538). In other words, the com.rti.dds.subscription.DataReader (p. 473)
may miss some data samples, but it will never see the value of a data object
change from a newer value to an older value.

See also:

com.rti.dds.infrastructure.HistoryQosPolicy (p. 1071)
com.rti.dds.infrastructure.ResourceLimitsQosPolicy (p. 1356)

8.196.3 Compatibility

The value offered is considered compatible with the value requested
if and only if the inequality offered kind >= requested kind eval-
uates to ’TRUE’. For the purposes of this inequality, the values of
com.rti.dds.infrastructure.ReliabilityQosPolicy.kind (p. 1339) are
considered ordered such that ReliabilityQosPolicyKind.BEST -
EFFORT RELIABILITY QOS (p. 1340) < ReliabilityQosPoli-
cyKind.RELIABLE RELIABILITY QOS (p. 1341).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.196 ReliabilityQosPolicy Class Reference 1339

8.196.4 Member Data Documentation

8.196.4.1 ReliabilityQosPolicyKind kind

Kind of reliability.

[default] ReliabilityQosPolicyKind.BEST EFFORT RELIABILITY -
QOS (p. 1340) for com.rti.dds.subscription.DataReader
(p. 473) and com.rti.dds.topic.Topic (p. 1545), Reliabili-
tyQosPolicyKind.RELIABLE RELIABILITY QOS (p. 1341) for
com.rti.dds.publication.DataWriter (p. 538)

8.196.4.2 final Duration t max blocking time

The maximum time a writer may block on a write() call.

This setting applies only to the case where
com.rti.dds.infrastructure.ReliabilityQosPolicy.kind (p. 1339) = Re-
liabilityQosPolicyKind.RELIABLE RELIABILITY QOS (p. 1341).
com.rti.dds.topic.example.FooDataWriter.write is allowed to block if the
com.rti.dds.publication.DataWriter (p. 538) does not have space to store
the value written. Only applies to com.rti.dds.publication.DataWriter
(p. 538).

[default] 100 milliseconds

[range] [0,1 year] or com.rti.dds.infrastructure.Duration t.INFINITE

See also:

com.rti.dds.infrastructure.ResourceLimitsQosPolicy (p. 1356)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1340 Class Documentation

8.197 ReliabilityQosPolicyKind Class Refer-
ence

Kinds of reliability.

Inheritance diagram for ReliabilityQosPolicyKind::

Static Public Attributes

ˆ static final ReliabilityQosPolicyKind BEST EFFORT -
RELIABILITY QOS

Indicates that it is acceptable to not retry propagation of any samples.

ˆ static final ReliabilityQosPolicyKind RELIABLE -
RELIABILITY QOS

Specifies RTI Connext will attempt to deliver all samples in its history.
Missed samples may be retried.

8.197.1 Detailed Description

Kinds of reliability.

QoS:

com.rti.dds.infrastructure.ReliabilityQosPolicy (p. 1336)

8.197.2 Member Data Documentation

8.197.2.1 final ReliabilityQosPolicyKind BEST EFFORT -
RELIABILITY QOS [static]

Indicates that it is acceptable to not retry propagation of any samples.

Presumably new values for the samples are generated often enough that it is
not necessary to re-send or acknowledge any samples.

[default] for com.rti.dds.subscription.DataReader (p. 473) and
com.rti.dds.topic.Topic (p. 1545)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.197 ReliabilityQosPolicyKind Class Reference 1341

8.197.2.2 final ReliabilityQosPolicyKind RELIABLE -
RELIABILITY QOS [static]

Specifies RTI Connext will attempt to deliver all samples in its history. Missed
samples may be retried.

In steady-state (no modifications communicated via the
com.rti.dds.publication.DataWriter (p. 538)) RTI Connext guarantees
that all samples in the com.rti.dds.publication.DataWriter (p. 538) history
will eventually be delivered to all the com.rti.dds.subscription.DataReader
(p. 473) objects (subject to timeouts that indicate loss of communication with
a particular com.rti.dds.subscription.Subscriber (p. 1478)).

Outside steady state the HISTORY (p. 75) and RESOURCE LIMITS
(p. 102) policies will determine how samples become part of the history and
whether samples can be discarded from it.

[default] for com.rti.dds.publication.DataWriter (p. 538)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1342 Class Documentation

8.198 ReliableReaderActivityChangedStatus
Class Reference

<<eXtension>> (p. 270) Describes the activity (i.e. are acknowledgements
forthcoming) of reliable readers matched to a reliable writer.

Inherits Status.

Public Member Functions

ˆ ReliableReaderActivityChangedStatus ()
Construct a new status object with default contents.

ˆ ReliableReaderActivityChangedStatus (ReliableReaderActivi-
tyChangedStatus src)

Construct a new status identical to the given status.

Public Attributes

ˆ int active count
The current number of reliable readers currently matched with this reliable
writer.

ˆ int inactive count
The number of reliable readers that have been dropped by this reliable writer
because they failed to send acknowledgements in a timely fashion.

ˆ int active count change
The most recent change in the number of active remote reliable readers.

ˆ int inactive count change
The most recent change in the number of inactive remote reliable readers.

ˆ final InstanceHandle t last instance handle
The instance handle of the last reliable remote reader to be determined inac-
tive.

8.198.1 Detailed Description

<<eXtension>> (p. 270) Describes the activity (i.e. are acknowledgements
forthcoming) of reliable readers matched to a reliable writer.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.198 ReliableReaderActivityChangedStatus Class Reference 1343

Entity:

com.rti.dds.publication.DataWriter (p. 538)

Listener:

com.rti.dds.publication.DataWriterListener (p. 566)

This status is the reciprocal status to the
com.rti.dds.subscription.LivelinessChangedStatus
(p. 1159) on the reader. It is different than the
com.rti.dds.publication.LivelinessLostStatus (p. 1162) on the writer
in that the latter informs the writer about its own liveliness; this status informs
the writer about the ”liveliness” (activity) of its matched readers.

All counts in this status will remain at zero for best effort writers.

8.198.2 Constructor & Destructor Documentation

8.198.2.1 ReliableReaderActivityChangedStatus ()

Construct a new status object with default contents.

8.198.2.2 ReliableReaderActivityChangedStatus
(ReliableReaderActivityChangedStatus src)

Construct a new status identical to the given status.

Exceptions:

NullPointerException if the given status is null.

8.198.3 Member Data Documentation

8.198.3.1 int active count

The current number of reliable readers currently matched with this reliable
writer.

8.198.3.2 int inactive count

The number of reliable readers that have been dropped by this reliable writer
because they failed to send acknowledgements in a timely fashion.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1344 Class Documentation

A reader is considered to be inactive after is has been sent heart-
beats com.rti.dds.infrastructure.RtpsReliableWriterProtocol t.max -
heartbeat retries (p. 1384) times, each heartbeat having been separated from
the previous by the current heartbeat period.

8.198.3.3 int active count change

The most recent change in the number of active remote reliable readers.

8.198.3.4 int inactive count change

The most recent change in the number of inactive remote reliable readers.

8.198.3.5 final InstanceHandle t last instance handle

The instance handle of the last reliable remote reader to be determined inactive.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.199 ReliableWriterCacheChangedStatus Class Reference 1345

8.199 ReliableWriterCacheChangedStatus
Class Reference

<<eXtension>> (p. 270) A summary of the state of a data writer’s cache of
unacknowledged samples written.

Inherits Status.

Public Member Functions

ˆ ReliableWriterCacheChangedStatus ()
Construct a new status object.

ˆ ReliableWriterCacheChangedStatus (ReliableWriter-
CacheChangedStatus src)

A copy constructor.

Public Attributes

ˆ final ReliableWriterCacheEventCount empty reliable writer -
cache

The number of times the reliable writer’s cache of unacknowledged samples
has become empty.

ˆ final ReliableWriterCacheEventCount full reliable writer cache
= new ReliableWriterCacheEventCount()

The number of times the reliable writer’s cache, or send window, of unac-
knowledged samples has become full.

ˆ final ReliableWriterCacheEventCount low watermark reliable -
writer cache

The number of times the reliable writer’s cache of unacknowledged samples
has fallen to the low watermark.

ˆ final ReliableWriterCacheEventCount high watermark reliable -
writer cache

The number of times the reliable writer’s cache of unacknowledged samples
has risen to the high watermark.

ˆ int unacknowledged sample count

The current number of unacknowledged samples in the writer’s cache.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1346 Class Documentation

ˆ int unacknowledged sample count peak
The highest value that unacknowledged sample count has reached until now.

8.199.1 Detailed Description

<<eXtension>> (p. 270) A summary of the state of a data writer’s cache of
unacknowledged samples written.

Entity:

com.rti.dds.publication.DataWriter (p. 538)

Listener:

com.rti.dds.publication.DataWriterListener (p. 566)

A written sample is unacknowledged (and therefore accounted for in this status)
if the writer is reliable and one or more readers matched with the writer has
not yet sent an acknowledgement to the writer declaring that it has received the
sample.

If the low watermark is zero and the unacknowledged sample count decreases
to zero, both the low watermark and cache empty events are considered to
have taken place. A single callback will be dispatched (assuming the user has
requested one) that contains both status changes. The same logic applies when
the high watermark is set equal to the maximum number of samples and the
cache becomes full.

8.199.2 Constructor & Destructor Documentation

8.199.2.1 ReliableWriterCacheChangedStatus ()

Construct a new status object.

8.199.2.2 ReliableWriterCacheChangedStatus
(ReliableWriterCacheChangedStatus src)

A copy constructor.

Parameters:

src Source to copy from.

Exceptions:

NullPointerException if the source object is null.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.199 ReliableWriterCacheChangedStatus Class Reference 1347

8.199.3 Member Data Documentation

8.199.3.1 final ReliableWriterCacheEventCount
empty reliable writer cache

The number of times the reliable writer’s cache of unacknowledged samples has
become empty.

8.199.3.2 final ReliableWriterCacheEventCount full reliable -
writer cache = new ReliableWriterCacheEventCount()

The number of times the reliable writer’s cache, or send window, of unacknowl-
edged samples has become full.

Applies to writer’s cache when the send window is enabled (when both
com.rti.dds.infrastructure.RtpsReliableWriterProtocol t.min send -
window size (p. 1389) and com.rti.dds.infrastructure.RtpsReliableWriterProtocol -
t.max send window size (p. 1390) are ResourceLimitsQosPol-
icy.LENGTH UNLIMITED (p. 102)).

Otherwise, applies when the number of unacknowledged samples has reached
the send window limit.

8.199.3.3 final ReliableWriterCacheEventCount
low watermark reliable writer cache

The number of times the reliable writer’s cache of unacknowledged samples has
fallen to the low watermark.

A low watermark event will only be considered to have taken place when the
number of unacknowledged samples in the writer’s cache decreases to this value.
A sample count that increases to this value will not result in a callback or in a
change to the total count of low watermark events.

When the writer’s send window is enabled, the low watermark is scaled down,
if necessary, to fit within the current send window.

8.199.3.4 final ReliableWriterCacheEventCount
high watermark reliable writer cache

The number of times the reliable writer’s cache of unacknowledged samples has
risen to the high watermark.

A high watermark event will only be considered to have taken place when the
number of unacknowledged sampled increases to this value. A sample count

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1348 Class Documentation

that was above this value and then decreases back to it will not trigger an
event.

When the writer’s send window is enabled, the high watermark is scaled down,
if necessary, to fit within the current send window.

8.199.3.5 int unacknowledged sample count

The current number of unacknowledged samples in the writer’s cache.

A sample is considered unacknowledged if the writer has failed to receive an
acknowledgement from one or more reliable readers matched to it.

8.199.3.6 int unacknowledged sample count peak

The highest value that unacknowledged sample count has reached until now.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.200 ReliableWriterCacheEventCount Class Reference 1349

8.200 ReliableWriterCacheEventCount Class
Reference

<<eXtension>> (p. 270) The number of times the number of unacknowl-
edged samples in the cache of a reliable writer hit a certain well-defined thresh-
old.

Inherits Struct.

Public Attributes

ˆ int total count

The total number of times the event has occurred.

ˆ int total count change

The incremental number of times the event has occurred since the listener
was last invoked or the status read.

8.200.1 Detailed Description

<<eXtension>> (p. 270) The number of times the number of unacknowl-
edged samples in the cache of a reliable writer hit a certain well-defined thresh-
old.

See also:

com.rti.dds.publication.ReliableWriterCacheChangedStatus
(p. 1345)

8.200.2 Member Data Documentation

8.200.2.1 int total count

The total number of times the event has occurred.

8.200.2.2 int total count change

The incremental number of times the event has occurred since the listener was
last invoked or the status read.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1350 Class Documentation

8.201 RemoteParticipantPurgeKind Class Ref-
erence

Available behaviors for halting communication with remote participants (and
their contained entities) with which discovery communication has been lost.

Inheritance diagram for RemoteParticipantPurgeKind::

Static Public Attributes

ˆ static final RemoteParticipantPurgeKind LIVELINESS BASED -
REMOTE PARTICIPANT PURGE

[default] Maintain knowledge of the remote participant for as long as it
maintains its liveliness contract.

ˆ static final RemoteParticipantPurgeKind NO REMOTE -
PARTICIPANT PURGE

Never ”forget” a remote participant with which discovery communication has
been lost.

8.201.1 Detailed Description

Available behaviors for halting communication with remote participants (and
their contained entities) with which discovery communication has been lost.

When discovery communication with a remote participant has been lost, the
local participant must make a decision about whether to continue attempting
to communicate with that participant and its contained entities. This ”kind” is
used to select the desired behavior.

This ”kind” does not pertain to the situation in which a remote participant has
been gracefully deleted and notification of that deletion have been successfully
received by its peers. In that case, the local participant will immediately stop
attempting to communicate with those entities and will remove the associated
remote entity records from its internal database.

See also:

com.rti.dds.infrastructure.DiscoveryConfigQosPolicy.remote -
participant purge kind (p. 618)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.201 RemoteParticipantPurgeKind Class Reference 1351

8.201.2 Member Data Documentation

8.201.2.1 final RemoteParticipantPurgeKind LIVELINESS -
BASED REMOTE PARTICIPANT PURGE
[static]

Initial value:

new RemoteParticipantPurgeKind(

"LIVELINESS_BASED_REMOTE_PARTICIPANT_PURGE", 0)

[default] Maintain knowledge of the remote participant for as long as it main-
tains its liveliness contract.

A participant will continue attempting communication with its peers, even if
discovery communication with them is lost, as long as the remote participants
maintain their liveliness. If both discovery communication and participant live-
liness are lost, however, the local participant will remove all records of the
remote participant and its contained endpoints, and no further data communi-
cation with them will occur until and unless they are rediscovered.

The liveliness contract a participant promises to its peers
– its ”liveliness lease duration” – is specified in its
com.rti.dds.infrastructure.DiscoveryConfigQosPolicy.participant -
liveliness lease duration (p. 617) QoS field. It maintains that contract
by writing data to those other participants with a writer that has a
com.rti.dds.infrastructure.LivelinessQosPolicyKind (p. 1168) of Live-
linessQosPolicyKind.AUTOMATIC LIVELINESS QOS (p. 1169)
or LivelinessQosPolicyKind.MANUAL BY PARTICIPANT -
LIVELINESS QOS (p. 1169) and by asserting itself (at the
com.rti.dds.infrastructure.DiscoveryConfigQosPolicy.participant -
liveliness assert period (p. 618)) over the Simple Discovery Protocol.

8.201.2.2 final RemoteParticipantPurgeKind
NO REMOTE PARTICIPANT PURGE [static]

Initial value:

new RemoteParticipantPurgeKind(

"NO_REMOTE_PARTICIPANT_PURGE", 1)

Never ”forget” a remote participant with which discovery communication has
been lost.

If a participant with this behavior loses discovery communication with a re-
mote participant, it will nevertheless remember that remote participant and its
endpoints and continue attempting to communicate with them indefinitely.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1352 Class Documentation

This value has consequences for a participant’s resource usage. If discovery
communication with a remote participant is lost, but the same participant is
later rediscovered, any relevant records that remain in the database will be
reused. However, if it is not rediscovered, the records will continue to take up
space in the database for as long as the local participant remains in existence.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.202 RequestedDeadlineMissedStatus Class Reference 1353

8.202 RequestedDeadlineMissedStatus Class
Reference

StatusKind.REQUESTED DEADLINE MISSED STATUS.

Inherits Status.

Public Attributes

ˆ int total count
Total cumulative count of the deadlines detected for any instance read by the
com.rti.dds.subscription.DataReader (p. 473).

ˆ int total count change
The incremental number of deadlines detected since the last time the listener
was called or the status was read.

ˆ final InstanceHandle t last instance handle
Handle to the last instance in the com.rti.dds.subscription.DataReader
(p. 473) for which a deadline was detected.

8.202.1 Detailed Description

StatusKind.REQUESTED DEADLINE MISSED STATUS.

8.202.2 Member Data Documentation

8.202.2.1 int total count

Total cumulative count of the deadlines detected for any instance read by the
com.rti.dds.subscription.DataReader (p. 473).

8.202.2.2 int total count change

The incremental number of deadlines detected since the last time the listener
was called or the status was read.

8.202.2.3 final InstanceHandle t last instance handle

Handle to the last instance in the com.rti.dds.subscription.DataReader
(p. 473) for which a deadline was detected.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1354 Class Documentation

8.203 RequestedIncompatibleQosStatus Class
Reference

StatusKind.REQUESTED INCOMPATIBLE QOS STATUS.

Inherits Status.

Public Attributes

ˆ int total count

Total cumulative count of how many times the concerned
com.rti.dds.subscription.DataReader (p. 473) discovered a
com.rti.dds.publication.DataWriter (p. 538) for the same
com.rti.dds.topic.Topic (p. 1545) with an offered QoS that is incompatible
with that requested by the com.rti.dds.subscription.DataReader (p. 473).

ˆ int total count change

The change in total count since the last time the listener was called or the
status was read.

ˆ QosPolicyId t last policy id

The PolicyId t of one of the policies that was found to be incompatible the
last time an incompatibility was detected.

ˆ final QosPolicyCountSeq policies

A list containing, for each policy, the total number of times that
the concerned com.rti.dds.subscription.DataReader (p. 473) discov-
ered a com.rti.dds.publication.DataWriter (p. 538) for the same
com.rti.dds.topic.Topic (p. 1545) with an offered QoS that is incompatible
with that requested by the com.rti.dds.subscription.DataReader (p. 473).

8.203.1 Detailed Description

StatusKind.REQUESTED INCOMPATIBLE QOS STATUS.

See also:

DURABILITY (p. 65)
PRESENTATION (p. 86)
RELIABILITY (p. 101)
OWNERSHIP (p. 83)
LIVELINESS (p. 78)
DEADLINE (p. 50)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.203 RequestedIncompatibleQosStatus Class Reference 1355

LATENCY BUDGET (p. 76)
DESTINATION ORDER (p. 51)

8.203.2 Member Data Documentation

8.203.2.1 int total count

Total cumulative count of how many times the concerned
com.rti.dds.subscription.DataReader (p. 473) discovered a
com.rti.dds.publication.DataWriter (p. 538) for the same
com.rti.dds.topic.Topic (p. 1545) with an offered QoS that is incom-
patible with that requested by the com.rti.dds.subscription.DataReader
(p. 473).

8.203.2.2 int total count change

The change in total count since the last time the listener was called or the
status was read.

8.203.2.3 QosPolicyId t last policy id

The PolicyId t of one of the policies that was found to be incompatible the last
time an incompatibility was detected.

8.203.2.4 final QosPolicyCountSeq policies

A list containing, for each policy, the total number of times that the
concerned com.rti.dds.subscription.DataReader (p. 473) discov-
ered a com.rti.dds.publication.DataWriter (p. 538) for the same
com.rti.dds.topic.Topic (p. 1545) with an offered QoS that is incom-
patible with that requested by the com.rti.dds.subscription.DataReader
(p. 473).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1356 Class Documentation

8.204 ResourceLimitsQosPolicy Class Refer-
ence

Controls the amount of physical memory allocated for DDS entities, if dynamic
allocations are allowed, and how they occur. Also controls memory usage among
different instance values for keyed topics.

Inheritance diagram for ResourceLimitsQosPolicy::

Public Attributes

ˆ int max samples

Represents the maximum samples the middleware can store
for any one com.rti.dds.publication.DataWriter (p. 538) (or
com.rti.dds.subscription.DataReader (p. 473)).

ˆ int max instances

Represents the maximum number of instances a
com.rti.dds.publication.DataWriter (p. 538) (or
com.rti.dds.subscription.DataReader (p. 473)) can manage.

ˆ int max samples per instance

Represents the maximum number of samples of any one in-
stance a com.rti.dds.publication.DataWriter (p. 538) (or
com.rti.dds.subscription.DataReader (p. 473)) can manage.

ˆ int initial samples

<<eXtension>> (p. 270) Represents the initial samples the middleware
will store for any one com.rti.dds.publication.DataWriter (p. 538) (or
com.rti.dds.subscription.DataReader (p. 473)).

ˆ int initial instances

<<eXtension>> (p. 270) Represents the initial number of in-
stances a com.rti.dds.publication.DataWriter (p. 538) (or
com.rti.dds.subscription.DataReader (p. 473)) will manage.

ˆ int instance hash buckets

<<eXtension>> (p. 270) Number of hash buckets for instances.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.204 ResourceLimitsQosPolicy Class Reference 1357

Static Public Attributes

ˆ static final int LENGTH UNLIMITED
A special value indicating an unlimited quantity.

8.204.1 Detailed Description

Controls the amount of physical memory allocated for DDS entities, if dynamic
allocations are allowed, and how they occur. Also controls memory usage among
different instance values for keyed topics.

Entity:

com.rti.dds.topic.Topic (p. 1545), com.rti.dds.subscription.DataReader
(p. 473), com.rti.dds.publication.DataWriter (p. 538)

Status:

StatusKind.SAMPLE REJECTED STATUS (p. 1460),
com.rti.dds.subscription.SampleRejectedStatus (p. 1422)

Properties:

RxO (p. 97) = NO
Changeable (p. 98) = UNTIL ENABLE (p. 98)

8.204.2 Usage

This policy controls the resources that RTI Connext can use to meet the re-
quirements imposed by the application and other QoS settings.

For the reliability protocol (and com.rti.dds.infrastructure.DurabilityQosPolicy
(p. 765)), this QoS policy determines the actual maximum queue size when
the com.rti.dds.infrastructure.HistoryQosPolicy (p. 1071) is set to
HistoryQosPolicyKind.KEEP ALL HISTORY QOS (p. 1076).

In general, this QoS policy is used to limit the amount of system memory that
RTI Connext can allocate. For embedded real-time systems and safety-critical
systems, pre-determination of maximum memory usage is often required. In ad-
dition, dynamic memory allocation could introduce non-deterministic latencies
in time-critical paths.

This QoS policy can be set such that an entity does not dynamically allocate
any more memory after its initialization phase.

If com.rti.dds.publication.DataWriter (p. 538) objects are com-
municating samples faster than they are ultimately taken by the

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1358 Class Documentation

com.rti.dds.subscription.DataReader (p. 473) objects, the middleware will
eventually hit against some of the QoS-imposed resource limits. Note that this
may occur when just a single com.rti.dds.subscription.DataReader (p. 473)
cannot keep up with its corresponding com.rti.dds.publication.DataWriter
(p. 538). The behavior in this case depends on the setting for the RELI-
ABILITY (p. 101). If reliability is ReliabilityQosPolicyKind.BEST -
EFFORT RELIABILITY QOS (p. 1340), then RTI Connext is al-
lowed to drop samples. If the reliability is ReliabilityQosPoli-
cyKind.RELIABLE RELIABILITY QOS (p. 1341), RTI Connext
will block the com.rti.dds.publication.DataWriter (p. 538) or discard the
sample at the com.rti.dds.subscription.DataReader (p. 473) in order not
to lose existing samples.

The constant ResourceLimitsQosPolicy.LENGTH UNLIMITED
(p. 102) may be used to indicate the absence of a particular limit. For example
setting com.rti.dds.infrastructure.ResourceLimitsQosPolicy.max -
samples per instance (p. 1360) to ResourceLimitsQosPol-
icy.LENGTH UNLIMITED (p. 102) will cause RTI Connext not to
enforce this particular limit.

If these resource limits are not set sufficiently, under certain circumstances the
com.rti.dds.publication.DataWriter (p. 538) may block on a write() call
even though the com.rti.dds.infrastructure.HistoryQosPolicy (p. 1071)
is HistoryQosPolicyKind.KEEP LAST HISTORY QOS (p. 1075). To
guarantee the writer does not block for HistoryQosPolicyKind.KEEP -
LAST HISTORY QOS (p. 1075), make sure the resource limits are set such
that:

max_samples >= max_instances * max_samples_per_instance

See also:

com.rti.dds.infrastructure.ReliabilityQosPolicy (p. 1336)
com.rti.dds.infrastructure.HistoryQosPolicy (p. 1071)

8.204.3 Consistency

The setting of com.rti.dds.infrastructure.ResourceLimitsQosPolicy.max -
samples (p. 1359) must be consistent with
com.rti.dds.infrastructure.ResourceLimitsQosPolicy.max -
samples per instance (p. 1360). For these two
values to be consistent, it must be true that
com.rti.dds.infrastructure.ResourceLimitsQosPolicy.max samples
(p. 1359) >= com.rti.dds.infrastructure.ResourceLimitsQosPolicy.max -
samples per instance (p. 1360). As described above, this limit will not be
enforced if com.rti.dds.infrastructure.ResourceLimitsQosPolicy.max -

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.204 ResourceLimitsQosPolicy Class Reference 1359

samples per instance (p. 1360) is set to ResourceLimitsQosPol-
icy.LENGTH UNLIMITED (p. 102).

The setting of RESOURCE LIMITS (p. 102) max samples per instance
must be consistent with the HISTORY (p. 75) depth. For these two QoS
to be consistent, it must be true that depth <= max samples per instance.

See also:

com.rti.dds.infrastructure.HistoryQosPolicy (p. 1071)

8.204.4 Member Data Documentation

8.204.4.1 int max samples

Represents the maximum samples the middleware can store
for any one com.rti.dds.publication.DataWriter (p. 538) (or
com.rti.dds.subscription.DataReader (p. 473)).

Specifies the maximum number of data samples
a com.rti.dds.publication.DataWriter (p. 538) (or
com.rti.dds.subscription.DataReader (p. 473)) can manage across all
the instances associated with it.

For unkeyed types, this value has to be equal to max samples per -
instance if max samples per instance is not equal to ResourceLimitsQosPol-
icy.LENGTH UNLIMITED (p. 102).

When batching is enabled, the maximum number of
data samples a com.rti.dds.publication.DataWriter
(p. 538) can manage will also be limited by
com.rti.dds.infrastructure.DataWriterResourceLimitsQosPolicy.max -
batches (p. 600).

[default] ResourceLimitsQosPolicy.LENGTH UNLIMITED (p. 102)

[range] [1, 100 million] or ResourceLimitsQosPol-
icy.LENGTH UNLIMITED (p. 102), >= ini-
tial samples, >= max samples per instance, >=
com.rti.dds.infrastructure.DataReaderResourceLimitsQosPolicy.max -
samples per remote writer (p. 528) or >=
com.rti.dds.infrastructure.RtpsReliableWriterProtocol -
t.heartbeats per max samples (p. 1385)

For com.rti.dds.publication.DataWriterQos (p. 588) max samples
>= com.rti.dds.infrastructure.DataWriterProtocolQosPolicy.rtps reliable -
writer.heartbeats per max samples if batching is disabled.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1360 Class Documentation

8.204.4.2 int max instances

Represents the maximum number of instances a
com.rti.dds.publication.DataWriter (p. 538) (or
com.rti.dds.subscription.DataReader (p. 473)) can manage.

[default] ResourceLimitsQosPolicy.LENGTH UNLIMITED (p. 102)

[range] [1, 1 million] or ResourceLimitsQosPolicy.LENGTH -
UNLIMITED (p. 102), >= initial instances

8.204.4.3 int max samples per instance

Represents the maximum number of samples of any one in-
stance a com.rti.dds.publication.DataWriter (p. 538) (or
com.rti.dds.subscription.DataReader (p. 473)) can manage.

For unkeyed types, this value has to be equal to max samples or Resource-
LimitsQosPolicy.LENGTH UNLIMITED (p. 102).

[default] ResourceLimitsQosPolicy.LENGTH UNLIMITED (p. 102)

[range] [1, 100 million] or ResourceLimitsQosPolicy.LENGTH -
UNLIMITED (p. 102), <= max samples or Resource-
LimitsQosPolicy.LENGTH UNLIMITED (p. 102), >=
com.rti.dds.infrastructure.HistoryQosPolicy.depth (p. 1074)

8.204.4.4 int initial samples

<<eXtension>> (p. 270) Represents the initial samples the middleware
will store for any one com.rti.dds.publication.DataWriter (p. 538) (or
com.rti.dds.subscription.DataReader (p. 473)).

Specifies the initial number of data samples a
com.rti.dds.publication.DataWriter (p. 538) (or
com.rti.dds.subscription.DataReader (p. 473)) will manage across all
the instances associated with it.

[default] 32

[range] [1,100 million], <= max samples

8.204.4.5 int initial instances

<<eXtension>> (p. 270) Represents the initial number of in-
stances a com.rti.dds.publication.DataWriter (p. 538) (or
com.rti.dds.subscription.DataReader (p. 473)) will manage.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.204 ResourceLimitsQosPolicy Class Reference 1361

[default] 32

[range] [1,1 million], <= max instances

8.204.4.6 int instance hash buckets

<<eXtension>> (p. 270) Number of hash buckets for instances.

The instance hash table facilitates instance lookup. A higher number of buckets
decreases instance lookup time but increases the memory usage.

[default] 1 [range] [1,1 million]

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1362 Class Documentation

8.205 RETCODE ALREADY DELETED Class
Reference

The object target of this operation has already been deleted.

Inheritance diagram for RETCODE ALREADY DELETED::

8.205.1 Detailed Description

The object target of this operation has already been deleted.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.206 RETCODE BAD PARAMETER Class Reference 1363

8.206 RETCODE BAD PARAMETER Class
Reference

Illegal parameter value.

Inheritance diagram for RETCODE BAD PARAMETER::

8.206.1 Detailed Description

Illegal parameter value.

The value of the parameter that is passed in has llegal value. Things that falls
into this category includes null parameters and parameter values that are out
of range.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1364 Class Documentation

8.207 RETCODE ERROR Class Reference

Generic, unspecified error.

Inheritance diagram for RETCODE ERROR::

8.207.1 Detailed Description

Generic, unspecified error.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.208 RETCODE ILLEGAL OPERATION Class Reference 1365

8.208 RETCODE ILLEGAL OPERATION
Class Reference

The operation was called under improper circumstances.

Inheritance diagram for RETCODE ILLEGAL OPERATION::

8.208.1 Detailed Description

The operation was called under improper circumstances.

An operation was invoked on an inappropriate object or at an inappropriate
time. This return code is similar to RETCODE PRECONDITION NOT -
MET (p. 1371), except that there is no precondition that could be changed to
make the operation succeed.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1366 Class Documentation

8.209 RETCODE IMMUTABLE POLICY
Class Reference

Application attempted to modify an immutable QoS policy.

Inheritance diagram for RETCODE IMMUTABLE POLICY::

8.209.1 Detailed Description

Application attempted to modify an immutable QoS policy.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.210 RETCODE INCONSISTENT POLICY Class Reference 1367

8.210 RETCODE INCONSISTENT POLICY
Class Reference

Application specified a set of QoS policies that are not consistent with each
other.

Inheritance diagram for RETCODE INCONSISTENT POLICY::

8.210.1 Detailed Description

Application specified a set of QoS policies that are not consistent with each
other.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1368 Class Documentation

8.211 RETCODE NO DATA Class Reference

Indicates a transient situation where the operation did not return any data but
there is no inherent error.

Inheritance diagram for RETCODE NO DATA::

8.211.1 Detailed Description

Indicates a transient situation where the operation did not return any data but
there is no inherent error.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.212 RETCODE NOT ENABLED Class Reference 1369

8.212 RETCODE NOT ENABLED Class Ref-
erence

Operation invoked on a com.rti.dds.infrastructure.Entity (p. 912) that is
not yet enabled.

Inheritance diagram for RETCODE NOT ENABLED::

8.212.1 Detailed Description

Operation invoked on a com.rti.dds.infrastructure.Entity (p. 912) that is
not yet enabled.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1370 Class Documentation

8.213 RETCODE OUT OF RESOURCES
Class Reference

RTI Connext ran out of the resources needed to complete the operation.

Inheritance diagram for RETCODE OUT OF RESOURCES::

8.213.1 Detailed Description

RTI Connext ran out of the resources needed to complete the operation.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.214 RETCODE PRECONDITION NOT MET Class Reference1371

8.214 RETCODE PRECONDITION NOT -
MET Class Reference

A pre-condition for the operation was not met.

Inheritance diagram for RETCODE PRECONDITION NOT MET::

8.214.1 Detailed Description

A pre-condition for the operation was not met.

The system is not in the expected state when the function is called, or the
parameter itself is not in the expected state when the function is called.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1372 Class Documentation

8.215 RETCODE TIMEOUT Class Reference

The operation timed out.

Inheritance diagram for RETCODE TIMEOUT::

8.215.1 Detailed Description

The operation timed out.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.216 RETCODE UNSUPPORTED Class Reference 1373

8.216 RETCODE UNSUPPORTED Class Ref-
erence

Unsupported operation. Can only returned by operations that are unsupported.

Inheritance diagram for RETCODE UNSUPPORTED::

8.216.1 Detailed Description

Unsupported operation. Can only returned by operations that are unsupported.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1374 Class Documentation

8.217 RtpsReliableReaderProtocol t Class Ref-
erence

Qos (p. 1313) related to reliable reader protocol defined in RTPS.

Inherits Struct.

Public Member Functions

ˆ RtpsReliableReaderProtocol t ()

Constructor with default values.

ˆ RtpsReliableReaderProtocol t (Duration t min heartbeat -
response delay, Duration t max heartbeat response delay,
Duration t heartbeat suppression duration, Duration t nack -
period, Duration t round trip time)

Constructor with given durations.

Public Attributes

ˆ final Duration t min heartbeat response delay

The minimum delay to respond to a heartbeat.

ˆ final Duration t max heartbeat response delay

The maximum delay to respond to a heartbeat.

ˆ final Duration t heartbeat suppression duration

The duration a reader ignores consecutively received heartbeats.

ˆ final Duration t nack period

The period at which to send NACKs.

ˆ int receive window size = 256

The number of received out-of-order samples a reader can keep at a time.

ˆ final Duration t round trip time

The duration from sending a NACK to receiving a repair of a sample.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.217 RtpsReliableReaderProtocol t Class Reference 1375

8.217.1 Detailed Description

Qos (p. 1313) related to reliable reader protocol defined in RTPS.

It is used to config reliable reader according to RTPS protocol.

Properties:

RxO (p. 97) = N/A
Changeable (p. 98) = NO (p. 98)

QoS:

com.rti.dds.infrastructure.DataReaderProtocolQosPolicy (p. 504)
com.rti.dds.infrastructure.DiscoveryConfigQosPolicy (p. 615)

8.217.2 Constructor & Destructor Documentation

8.217.2.1 RtpsReliableReaderProtocol t ()

Constructor with default values.

8.217.2.2 RtpsReliableReaderProtocol t (Duration t
min heartbeat response delay, Duration t
max heartbeat response delay, Duration t
heartbeat suppression duration, Duration t nack period,
Duration t round trip time)

Constructor with given durations.

8.217.3 Member Data Documentation

8.217.3.1 final Duration t min heartbeat response delay

The minimum delay to respond to a heartbeat.

When a reliable reader receives a heartbeat from a remote writer and finds out
that it needs to send back an ACK/NACK message, the reader can choose to
delay a while. This sets the value of the minimum delay.

[default] 0 seconds

[range] [0, 1 year], <= max heartbeat response delay

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1376 Class Documentation

8.217.3.2 final Duration t max heartbeat response delay

The maximum delay to respond to a heartbeat.

When a reliable reader receives a heartbeat from a remote writer and finds out
that it needs to send back an ACK/NACK message, the reader can choose to
delay a while. This sets the value of maximum delay.

[default] The default value depends on the container policy:

For com.rti.dds.infrastructure.DiscoveryConfigQosPolicy (p. 615) : 0
seconds

For com.rti.dds.infrastructure.DataReaderProtocolQosPolicy (p. 504) :
0.5 seconds

[range] [0, 1 year], >= min heartbeat response delay

8.217.3.3 final Duration t heartbeat suppression duration

The duration a reader ignores consecutively received heartbeats.

When a reliable reader receives consecutive heartbeats within a short duration
that will trigger redundant NACKs, the reader may ignore the latter heart-
beat(s). This sets the duration during which additionally received heartbeats
are suppressed.

[default] 0.0625 seconds

[range] [0, 1 year],

8.217.3.4 final Duration t nack period

The period at which to send NACKs.

A reliable reader will send periodic NACKs at this rate when it first matches
with a reliable writer. The reader will stop sending NACKs when it has received
all available historical data from the writer.

[default] 5 seconds

[range] [1 nanosec, 1 year]

8.217.3.5 int receive window size = 256

The number of received out-of-order samples a reader can keep at a time.

A reliable reader stores the out-of-order samples it receives until it can present
them to the application in-order. The receive window is the maximum number

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.217 RtpsReliableReaderProtocol t Class Reference 1377

of out-of-order samples that a reliable reader keeps at a given time. When the
receive window is full, subsequently received out-of-order samples are dropped.

[default] 256

[range] [>= 1]

8.217.3.6 final Duration t round trip time

The duration from sending a NACK to receiving a repair of a sample.

This round-trip time is an estimate of the time starting from when the reader
sends a NACK for a specific sample to when it receives that sample. For each
sample, the reader will not send a subsequent NACK for it until the round-trip
time has passed, thus preventing inefficient redundant requests.

[default] 0 seconds

[range] [0 nanosec, 1 year]

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1378 Class Documentation

8.218 RtpsReliableWriterProtocol t Class Ref-
erence

QoS related to the reliable writer protocol defined in RTPS.

Inherits Struct.

Public Attributes

ˆ int low watermark

When the number of unacknowledged samples in the cache of a reliable
writer meets or falls below this threshold, the StatusKind.RELIABLE -
WRITER CACHE CHANGED STATUS (p. 1462) is considered to
have changed.

ˆ int high watermark

When the number of unacknowledged samples in the cache of a reliable writer
meets or exceeds this threshold, the StatusKind.RELIABLE WRITER -
CACHE CHANGED STATUS (p. 1462) is considered to have changed.

ˆ final Duration t heartbeat period

The period at which to send heartbeats.

ˆ final Duration t fast heartbeat period

An alternative heartbeat period used when a reliable writer needs to flush its
unacknowledged samples more quickly.

ˆ final Duration t late joiner heartbeat period

An alternative heartbeat period used when a reliable reader joins late and
needs to be caught up on cached samples of a reliable writer more quickly
than the normal heartbeat rate.

ˆ final Duration t virtual heartbeat period

The period at which to send virtual heartbeats. Virtual heartbeats inform the
reliable reader about the range of samples currently present, for each virtual
GUID, in the reliable writer’s queue.

ˆ int samples per virtual heartbeat

The number of samples that a reliable writer has to publish before sending a
virtual heartbeat.

ˆ int max heartbeat retries

The maximum number of periodic heartbeat retries before marking a remote
reader as inactive.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.218 RtpsReliableWriterProtocol t Class Reference 1379

ˆ boolean inactivate nonprogressing readers

Whether to treat remote readers as inactive when their NACKs do not
progress.

ˆ int heartbeats per max samples

The number of heartbeats per send queue.

ˆ final Duration t min nack response delay

The minimum delay to respond to a NACK.

ˆ final Duration t max nack response delay

The maximum delay to respond to a nack.

ˆ final Duration t nack suppression duration

The duration for ignoring consecutive NACKs that may trigger redundant
repairs.

ˆ int max bytes per nack response

The maximum total message size when resending dropped samples.

ˆ final Duration t disable positive acks min sample keep -
duration

The minimum duration a sample is queued for ACK-disabled readers.

ˆ final Duration t disable positive acks max sample keep -
duration

The maximum duration a sample is queued for ACK-disabled readers.

ˆ boolean disable positive acks enable adaptive sample keep -
duration

Enables dynamic adjustment of sample keep duration in response to conges-
tion.

ˆ int disable positive acks decrease sample keep duration factor

Controls rate of contraction of dynamic sample keep duration.

ˆ int disable positive acks increase sample keep duration factor

Controls rate of growth of dynamic sample keep duration.

ˆ int min send window size

Minimum size of send window of unacknowledged samples.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1380 Class Documentation

ˆ int max send window size

Maximum size of send window of unacknowledged samples.

ˆ final Duration t send window update period

Period in which send window may be dynamically changed.

ˆ int send window increase factor

Increases send window size by this percentage when reacting dynamically to
network conditions.

ˆ int send window decrease factor

Decreases send window size by this percentage when reacting dynamically to
network conditions.

ˆ int multicast resend threshold

The minimum number of requesting readers needed to trigger a multicast
resend.

ˆ boolean enable multicast periodic heartbeat

Whether periodic heartbeat messages are sent over multicast.

8.218.1 Detailed Description

QoS related to the reliable writer protocol defined in RTPS.

It is used to configure a reliable writer according to RTPS protocol.

The reliability protocol settings are applied to batches instead of individual data
samples when batching is enabled.

Properties:

RxO (p. 97) = N/A
Changeable (p. 98) = NO (p. 98)

QoS:

com.rti.dds.infrastructure.DataWriterProtocolQosPolicy (p. 571)
com.rti.dds.infrastructure.DiscoveryConfigQosPolicy (p. 615)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.218 RtpsReliableWriterProtocol t Class Reference 1381

8.218.2 Member Data Documentation

8.218.2.1 int low watermark

When the number of unacknowledged samples in the cache of a reliable
writer meets or falls below this threshold, the StatusKind.RELIABLE -
WRITER CACHE CHANGED STATUS (p. 1462) is considered to have
changed.

This value is measured in units of samples, except with batching configurations
in non-MultiChannel DataWriters where it is measured in units of batches.

The value must be greater than or equal to zero and strictly less than high -
watermark.

The high and low watermarks are used for switch-
ing between the regular and fast heartbeat rates
(com.rti.dds.infrastructure.RtpsReliableWriterProtocol -
t.heartbeat period (p. 1382) and com.rti.dds.infrastructure.RtpsReliableWriterProtocol -
t.fast heartbeat period (p. 1383), respectively). When the
number of unacknowledged samples in the queue of a reliable
com.rti.dds.publication.DataWriter (p. 538) meets or exceeds high -
watermark, the StatusKind.RELIABLE WRITER CACHE -
CHANGED STATUS (p. 1462) is changed, and the DataWriter will
start heartbeating at fast heartbeat rate. When the number of samples
meets or falls below low watermark, StatusKind.RELIABLE WRITER -
CACHE CHANGED STATUS (p. 1462) is changed, and the heartbeat
rate will return to the ”normal” rate (heartbeat rate).

[default] 0

[range] [0, 100 million], < high watermark

See also:

Multi-channel DataWriters (p. 204) for additional details on reliability
with MultChannel DataWriters.

8.218.2.2 int high watermark

When the number of unacknowledged samples in the cache of a reliable writer
meets or exceeds this threshold, the StatusKind.RELIABLE WRITER -
CACHE CHANGED STATUS (p. 1462) is considered to have changed.

This value is measured in units of samples, except with batching configurations
in non-MultiChannel DataWriters where it is measured in units of batches.

The value must be strictly greater than low watermark and less than or equal
to a maximum that depends on the container QoS policy:

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1382 Class Documentation

In com.rti.dds.domain.DomainParticipantQos.discovery config
(p. 739):

For com.rti.dds.infrastructure.DiscoveryConfigQosPolicy.publication -
writer (p. 621)

high watermark<=com.rti.dds.domain.DomainParticipantQos.resource -
limits.local writer allocation.max count

For com.rti.dds.infrastructure.DiscoveryConfigQosPolicy.subscription -
writer (p. 621)

high watermark<=com.rti.dds.domain.DomainParticipantQos.resource -
limits.local reader allocation.max count

In com.rti.dds.publication.DataWriterQos.protocol (p. 592):

For com.rti.dds.infrastructure.DataWriterProtocolQosPolicy.rtps -
reliable writer (p. 575),

high watermark<=com.rti.dds.infrastructure.ResourceLimitsQosPolicy.max -
samples (p. 1359) if batching is disabled or the DataWriter is a MultiChannel
DataWriter. Otherwise,

high watermark<=com.rti.dds.infrastructure.DataWriterResourceLimitsQosPolicy.max -
batches (p. 600)

[default] 1

[range] [1, 100 million] or ResourceLimitsQosPolicy.LENGTH -
UNLIMITED (p. 102), > low watermark <= maximum which depends
on the container policy

See also:

Multi-channel DataWriters (p. 204) for additional details on reliability
with MultChannel DataWriters.

8.218.2.3 final Duration t heartbeat period

The period at which to send heartbeats.

A reliable writer will send periodic heartbeats at this rate.

[default] 3 seconds

[range] [1 nanosec,1 year], >= com.rti.dds.infrastructure.RtpsReliableWriterProtocol -
t.fast heartbeat period (p. 1383), >= com.rti.dds.infrastructure.RtpsReliableWriterProtocol -
t.late joiner heartbeat period (p. 1383)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.218 RtpsReliableWriterProtocol t Class Reference 1383

8.218.2.4 final Duration t fast heartbeat period

An alternative heartbeat period used when a reliable writer needs to flush its
unacknowledged samples more quickly.

This heartbeat period will be used when the number of unacknowledged samples
in the cache of a reliable writer meets or exceeds the writer’s high watermark
and has not subsequently dropped to the low watermark. The normal period
will be used at all other times.

This period must not be slower (i.e. must be of the same or shorter duration)
than the normal heartbeat period.

[default] 3 seconds

[range] [1 nanosec,1 year], <= com.rti.dds.infrastructure.RtpsReliableWriterProtocol -
t.heartbeat period (p. 1382)

8.218.2.5 final Duration t late joiner heartbeat period

An alternative heartbeat period used when a reliable reader joins late and needs
to be caught up on cached samples of a reliable writer more quickly than the
normal heartbeat rate.

This heartbeat period will be used when a reliable reader joins after a reliable
writer with non-volatile durability has begun publishing samples. Once the
reliable reader has received all cached samples, it will be serviced at the same
rate as other reliable readers.

This period must not be slower (i.e. must be of the same or shorter duration)
than the normal heartbeat period.

[default] 3 seconds

[range] [1 nanosec,1 year], <= com.rti.dds.infrastructure.RtpsReliableWriterProtocol -
t.heartbeat period (p. 1382)

8.218.2.6 final Duration t virtual heartbeat period

The period at which to send virtual heartbeats. Virtual heartbeats inform the
reliable reader about the range of samples currently present, for each virtual
GUID, in the reliable writer’s queue.

A reliable writer will send periodic virtual heartbeats at this rate.

[default] com.rti.dds.infrastructure.Duration t.AUTO. If
com.rti.dds.infrastructure.PresentationQosPolicy.access -
scope (p. 1241) is set to PresentationQosPolicyAccessS-
copeKind.GROUP PRESENTATION QOS (p. 1243), this value

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1384 Class Documentation

is set to com.rti.dds.infrastructure.RtpsReliableWriterProtocol -
t.heartbeat period (p. 1382). Otherwise, the value is set to
com.rti.dds.infrastructure.Duration t.INFINITE.

[range] > 1 nanosec, com.rti.dds.infrastructure.Duration t.INFINITE, or
com.rti.dds.infrastructure.Duration t.AUTO

8.218.2.7 int samples per virtual heartbeat

The number of samples that a reliable writer has to publish before sending a
virtual heartbeat.

[default] ResourceLimitsQosPolicy.LENGTH UNLIMITED (p. 102)

[range] [1,1000000], ResourceLimitsQosPolicy.LENGTH UNLIMITED
(p. 102)

8.218.2.8 int max heartbeat retries

The maximum number of periodic heartbeat retries before marking a remote
reader as inactive.

When a remote reader has not acked all the samples the reliable writer has in
its queue, and max heartbeat retries number of periodic heartbeats has been
sent without receiving any ack/nack back, the remote reader will be marked as
inactive (not alive) and be ignored until it resumes sending ack/nack.

Note that piggyback heartbeats do NOT count towards this value.

[default] 10

[range] [1, 1 million] or ResourceLimitsQosPolicy.LENGTH -
UNLIMITED (p. 102)

8.218.2.9 boolean inactivate nonprogressing readers

Whether to treat remote readers as inactive when their NACKs do not progress.

Nominally, a remote reader is marked inactive when a suc-
cessive number of periodic heartbeats equal or greater than
com.rti.dds.infrastructure.RtpsReliableWriterProtocol t.max -
heartbeat retries (p. 1384) have been sent without receiving any ack/nacks
back.

By setting this true, it changes the conditions of inactivating a re-
mote reader: a reader will be considered inactive when it either does
not send any ack/nacks or keeps sending non-progressing nacks for
com.rti.dds.infrastructure.RtpsReliableWriterProtocol t.max -

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.218 RtpsReliableWriterProtocol t Class Reference 1385

heartbeat retries (p. 1384) number of heartbeat periods, where a non-
progressing nack is one whose oldest sample requested has not advanced from
the oldest sample requested of the previous nack.

[default] false

8.218.2.10 int heartbeats per max samples

The number of heartbeats per send queue.

If batching is disabled or the DataWriter is a MultiChan-
nel DataWriter: a piggyback heartbeat will be sent every
[com.rti.dds.infrastructure.ResourceLimitsQosPolicy.max samples
(p. 1359)/heartbeats per max samples] number of samples.

Otherwise: a piggyback heartbeat will be sent every
[com.rti.dds.infrastructure.DataWriterResourceLimitsQosPolicy.max -
batches (p. 600)/heartbeats per max samples] number of batches.

If set to zero, no piggyback heartbeat will be sent. If maximum is Resource-
LimitsQosPolicy.LENGTH UNLIMITED (p. 102), 100 million is assumed
as the maximum value in the calculation.

[default] 8

[range] [0, 100 million]

ˆ For com.rti.dds.infrastructure.DiscoveryConfigQosPolicy.publication -
writer (p. 621):

heartbeats per max samples<= com.rti.dds.domain.DomainParticipantQos.resource -
limits.local writer allocation.max count

ˆ For com.rti.dds.infrastructure.DiscoveryConfigQosPolicy.subscription -
writer (p. 621):

heartbeats per max samples<= com.rti.dds.domain.DomainParticipantQos.resource -
limits.local reader allocation.max count

ˆ For com.rti.dds.infrastructure.DataWriterProtocolQosPolicy.rtps -
reliable writer (p. 575):

heartbeats per max samples<= com.rti.dds.infrastructure.ResourceLimitsQosPolicy.max -
samples (p. 1359) if batching is disabled or the DataWriter is a
MultiChannel DataWriter. Otherwise:

heartbeats per max samples<= com.rti.dds.infrastructure.DataWriterResourceLimitsQosPolicy.max -
batches (p. 600).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1386 Class Documentation

8.218.2.11 final Duration t min nack response delay

The minimum delay to respond to a NACK.

When a reliable writer receives a NACK from a remote reader, the writer can
choose to delay a while before it sends repair samples or a heartbeat. This sets
the value of the minimum delay.

[default] 0 seconds

[range] [0,1 day], <= max nack response delay

8.218.2.12 final Duration t max nack response delay

The maximum delay to respond to a nack.

This set the value of maximum delay between receiving a NACK and sending
repair samples or a heartbeat.

[default] The default value depends on the container policy:

For com.rti.dds.infrastructure.DiscoveryConfigQosPolicy (p. 615) : 0
seconds

For com.rti.dds.infrastructure.DataWriterProtocolQosPolicy (p. 571) :
0.2 seconds

[range] [0,1 day], >= min nack response delay

8.218.2.13 final Duration t nack suppression duration

The duration for ignoring consecutive NACKs that may trigger redundant re-
pairs.

A reliable writer may receive consecutive NACKs within a short duration from
a remote reader that will trigger the sending of redundant repair messages.

This specifies the duration during which consecutive NACKs are ignored to
prevent redundant repairs from being sent.

[default] 0 seconds

[range] [0,1 day],

8.218.2.14 int max bytes per nack response

The maximum total message size when resending dropped samples.

As part of the reliable communication protocol, data writers send heartbeat
(HB) messages to their data readers. Each HB message contains the sequence
number of the most recent sample sent by the data writer.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.218 RtpsReliableWriterProtocol t Class Reference 1387

In response, a data reader sends an acknowledgement (ACK) message, indicating
what sequence numbers it did not receive, if any. If the data reader is missing
some samples, the data writer will send them again.

max bytes per nack response determines the maximum size of the message sent
by the data writer in response to an ACK. This message may contain multiple
samples.

If max bytes per nack response is larger than the maximum message size sup-
ported by the underlying transport, RTI Connext will send multiple messages.
If the total size of all samples that need to be resent is larger than max bytes -
per nack response, the remaining samples will be resent the next time an ACK
arrives.

[default] 131072

[range] [0, 1 GB]

8.218.2.15 final Duration t disable positive acks min sample keep -
duration

The minimum duration a sample is queued for ACK-disabled readers.

When positive ACKs are disabled for a data writer
(com.rti.dds.infrastructure.DataWriterProtocolQosPolicy.disable -
positive acks (p. 573) = true) or a data reader
(com.rti.dds.infrastructure.DataReaderProtocolQosPolicy.disable -
positive acks (p. 507) = true), a sample is available from the data writer’s
queue for at least this duration, after which the sample may be considered to
be acknowledged.

[default] 1 millisecond

[range] [0,1 year], <= com.rti.dds.infrastructure.RtpsReliableWriterProtocol -
t.disable positive acks max sample keep duration (p. 1387)

8.218.2.16 final Duration t disable positive acks max sample -
keep duration

The maximum duration a sample is queued for ACK-disabled readers.

When positive ACKs are disabled for a data writer
(com.rti.dds.infrastructure.DataWriterProtocolQosPolicy.disable -
positive acks (p. 573) = true) or a data reader
(com.rti.dds.infrastructure.DataReaderProtocolQosPolicy.disable -
positive acks (p. 507) = true), a sample is available from the data writer’s
queue for at most this duration, after which the sample is considered to be
acknowledged.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1388 Class Documentation

[default] 1 second

[range] [0,1 year], >= com.rti.dds.infrastructure.RtpsReliableWriterProtocol -
t.disable positive acks min sample keep duration (p. 1387)

8.218.2.17 boolean disable positive acks enable adaptive sample -
keep duration

Enables dynamic adjustment of sample keep duration in response to congestion.

For dynamic networks where a static minimum sample keep dura-
tion may not provide sufficient performance or reliability, setting
com.rti.dds.infrastructure.RtpsReliableWriterProtocol t.disable -
positive acks enable adaptive sample keep duration (p. 1388) = true,
enables the sample keep duration to be dynamically adjusted to adapt to
network conditions. The keep duration changes according to the detected level
of congestion, which is determined to be proportional to the rate of NACKs
received. An adaptive algorithm automatically controls the keep duration to
optimize throughput and reliability.

To relieve high congestion, the keep duration is increased to effectively de-
crease the send rate; this lengthening of the keep duration is controlled
by com.rti.dds.infrastructure.RtpsReliableWriterProtocol t.disable -
positive acks increase sample keep duration factor (p. 1389). Alterna-
tively, when congestion is low, the keep duration is decreased to effec-
tively increase send rate; this shortening of the keep duration is controlled
by com.rti.dds.infrastructure.RtpsReliableWriterProtocol t.disable -
positive acks decrease sample keep duration factor (p. 1388).

The lower and upper bounds of the dynamic sample keep duration are
set by com.rti.dds.infrastructure.RtpsReliableWriterProtocol -
t.disable positive acks min sample keep duration (p. 1387) and
com.rti.dds.infrastructure.RtpsReliableWriterProtocol t.disable -
positive acks max sample keep duration (p. 1387), respectively.

When com.rti.dds.infrastructure.RtpsReliableWriterProtocol -
t.disable positive acks enable adaptive sample keep duration
(p. 1388) = false, the sample keep duration is set to
com.rti.dds.infrastructure.RtpsReliableWriterProtocol t.disable -
positive acks min sample keep duration (p. 1387) .

[default] true

8.218.2.18 int disable positive acks decrease sample keep -
duration factor

Controls rate of contraction of dynamic sample keep duration.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.218 RtpsReliableWriterProtocol t Class Reference 1389

Used when com.rti.dds.infrastructure.RtpsReliableWriterProtocol -
t.disable positive acks enable adaptive sample keep duration
(p. 1388) = true.

When the adaptive algorithm determines that the keep duration should be de-
creased, this factor (a percentage) is multiplied with the current keep duration
to get the new shorter keep duration. For example, if the current keep duration
is 20 milliseconds, using the default factor of 95% would result in a new keep
duration of 19 milliseconds.

[default] 95

[range] <= 100

8.218.2.19 int disable positive acks increase sample keep -
duration factor

Controls rate of growth of dynamic sample keep duration.

Used when com.rti.dds.infrastructure.RtpsReliableWriterProtocol -
t.disable positive acks enable adaptive sample keep duration
(p. 1388) = true.

When the adaptive algorithm determines that the keep duration should be in-
creased, this factor (a percentage) is multiplied with the current keep duration
to get the new longer keep duration. For example, if the current keep duration
is 20 milliseconds, using the default factor of 150% would result in a new keep
duration of 30 milliseconds.

[default] 150

[range] >= 100

8.218.2.20 int min send window size

Minimum size of send window of unacknowledged samples.

A com.rti.dds.publication.DataWriter (p. 538) has a limit on the number of
unacknowledged samples in-flight at a time. This send window can be configured
to have a minimum size (this field) and a maximum size (max send window -
size). The send window can dynamically change, between the min and max sizes,
to throttle the effective send rate in response to changing network congestion,
as measured by negative acknowledgements received.

When both min send window size and max send window size are Re-
sourceLimitsQosPolicy.LENGTH UNLIMITED (p. 102), then
com.rti.dds.infrastructure.ResourceLimitsQosPolicy.max samples
(p. 1359) serves as the effective send window limit.

When com.rti.dds.infrastructure.ResourceLimitsQosPolicy.max -

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1390 Class Documentation

samples (p. 1359) is less than max send window size, then it serves as the
effective max send window. If it is less than min send window size, then
effectively both min and max send window sizes are equal to max samples. In
addition, the low and high watermarks are scaled down linearly to stay within
the send window size, and the full reliable queue status is set when the send
window is full.

[default] ResourceLimitsQosPolicy.LENGTH UNLIMITED (p. 102)

[range] > 0, <= max send window size, or ResourceLimitsQosPol-
icy.LENGTH UNLIMITED (p. 102)

See also:

com.rti.dds.infrastructure.RtpsReliableWriterProtocol t.max -
send window size (p. 1390)
com.rti.dds.infrastructure.RtpsReliableWriterProtocol t.low -
watermark (p. 1381)
com.rti.dds.infrastructure.RtpsReliableWriterProtocol t.high -
watermark (p. 1381)
com.rti.dds.publication.ReliableWriterCacheChangedStatus.full -
reliable writer cache (p. 1347)

8.218.2.21 int max send window size

Maximum size of send window of unacknowledged samples.

A com.rti.dds.publication.DataWriter (p. 538) has a limit on the number of
unacknowledged samples in-flight at a time. This send window can be configured
to have a minimum size (min send window size) and a maximum size (this field).
The send window can dynamically change, between the min and max sizes, to
throttle the effective send rate in response to changing network congestion, as
measured by negative acknowledgements received.

When both min send window size and max send window size are Re-
sourceLimitsQosPolicy.LENGTH UNLIMITED (p. 102), then
com.rti.dds.infrastructure.ResourceLimitsQosPolicy.max -
samples (p. 1359) serves as the effective send window limit. When
com.rti.dds.infrastructure.ResourceLimitsQosPolicy.max samples
(p. 1359) is less than max send window size, then it serves as the effective max
send window. If it is also less than min send window size, then effectively both
min and max send window sizes are equal to max samples. In addition, the low
and high watermarks are scaled down linearly to stay within the send window
size, and the full reliable queue status is set when the send window is full.

[default] ResourceLimitsQosPolicy.LENGTH UNLIMITED (p. 102)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.218 RtpsReliableWriterProtocol t Class Reference 1391

[range] > 0, >= min send window size, or ResourceLimitsQosPol-
icy.LENGTH UNLIMITED (p. 102)

See also:

com.rti.dds.infrastructure.RtpsReliableWriterProtocol t.min -
send window size (p. 1389)
com.rti.dds.infrastructure.RtpsReliableWriterProtocol t.low -
watermark (p. 1381)
com.rti.dds.infrastructure.RtpsReliableWriterProtocol t.high -
watermark (p. 1381)
com.rti.dds.publication.ReliableWriterCacheChangedStatus.full -
reliable writer cache (p. 1347)

8.218.2.22 final Duration t send window update period

Period in which send window may be dynamically changed.

The com.rti.dds.publication.DataWriter (p. 538)’s send window will dy-
namically change, between the min and max send window sizes, to throttle the
effective send rate in response to changing network congestion, as measured by
negative acknowledgements received.

The change in send window size happens at this update period, whereupon the
send window is either increased or decreased in size according to the increase
or decrease factors, respectively.

[default] 3 seconds

[range] > [0,1 year]

See also:

com.rti.dds.infrastructure.RtpsReliableWriterProtocol -
t.send window increase factor (p. 1391),
com.rti.dds.infrastructure.RtpsReliableWriterProtocol t.send -
window decrease factor (p. 1392)

8.218.2.23 int send window increase factor

Increases send window size by this percentage when reacting dynamically to
network conditions.

The com.rti.dds.publication.DataWriter (p. 538)’s send window will dy-
namically change, between the min and max send window sizes, to throttle the
effective send rate in response to changing network congestion, as measured by
negative acknowledgements received.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1392 Class Documentation

After an update period during which no negative acknowledgements were re-
ceived, the send window will be increased by this factor. The factor is treated
as a percentage, where a factor of 150 would increase the send window by 150%.
The increased send window size will not exceed the max send window size.

[default] 105

[range] > 100

See also:

com.rti.dds.infrastructure.RtpsReliableWriterProtocol -
t.send window update period (p. 1391),
com.rti.dds.infrastructure.RtpsReliableWriterProtocol t.send -
window decrease factor (p. 1392)

8.218.2.24 int send window decrease factor

Decreases send window size by this percentage when reacting dynamically to
network conditions.

The com.rti.dds.publication.DataWriter (p. 538)’s send window will dy-
namically change, between the min and max send window sizes, to throttle the
effective send rate in response to changing network congestion, as measured by
negative acknowledgements received.

When increased network congestion causes a negative acknowledgement to be
received by a writer, the send window will be decreased by this factor to throttle
the effective send rate. The factor is treated as a percentage, where a factor of
80 would decrease the send window to 80% of its previous size. The decreased
send window size will not be less than the min send window size.

[default] 70

[range] [0, 100]

See also:

com.rti.dds.infrastructure.RtpsReliableWriterProtocol -
t.send window update period (p. 1391),
com.rti.dds.infrastructure.RtpsReliableWriterProtocol t.send -
window increase factor (p. 1391)

8.218.2.25 int multicast resend threshold

The minimum number of requesting readers needed to trigger a multicast resend.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.218 RtpsReliableWriterProtocol t Class Reference 1393

Given readers with multicast destinations, when a reader NACKs for samples to
be resent, the writer can either resend them over unicast or multicast. In order
for the writer to resend over multicast, this threshold is the minimum number
of readers of the same multicast group that the writer must receive NACKs
from within a single response-delay. This allows the writer to coalesce near-
simultaneous unicast resends into a multicast resend. Note that a threshold of
1 means that all resends will be sent over multicast, if available.

[default] 2

[range] [>= 1]

8.218.2.26 boolean enable multicast periodic heartbeat

Whether periodic heartbeat messages are sent over multicast.

When enabled, if a reader has a multicast destination, then the writer will
send its periodic HEARTBEAT messages to that destination. Otherwise, if not
enabled or the reader does not have a multicast destination, the writer will send
its periodic HEARTBEATs over unicast.

[default] false

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1394 Class Documentation

8.219 RtpsReservedPortKind Class Reference

RTPS reserved port kind, used to identify the types of ports that can be reserved
on domain (p. 317) participant enable.

Static Public Attributes

ˆ static final int BUILTIN UNICAST = 0x0001 << 0

Select the metatraffic unicast port.

ˆ static final int BUILTIN MULTICAST = 0x0001 << 1

Select the metatraffic multicast port.

ˆ static final int USER UNICAST = 0x0001 << 2

Select the usertraffic unicast port.

ˆ static final int USER MULTICAST = 0x0001 << 3

Select the usertraffic multicast port.

ˆ static final int MASK DEFAULT = BUILTIN UNICAST |
BUILTIN MULTICAST | USER UNICAST

The default value of com.rti.dds.infrastructure.WireProtocolQosPolicy.rtps -
reserved port mask (p. 1717).

ˆ static final int MASK NONE

No bits are set.

ˆ static final int MASK ALL

All bits are set.

8.219.1 Detailed Description

RTPS reserved port kind, used to identify the types of ports that can be reserved
on domain (p. 317) participant enable.

See also:

com.rti.dds.infrastructure.WireProtocolQosPolicy.rtps -
reserved port mask (p. 1717)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.219 RtpsReservedPortKind Class Reference 1395

8.219.2 Member Data Documentation

8.219.2.1 final int BUILTIN UNICAST = 0x0001 << 0 [static]

Select the metatraffic unicast port.

8.219.2.2 final int BUILTIN MULTICAST = 0x0001 << 1
[static]

Select the metatraffic multicast port.

8.219.2.3 final int USER UNICAST = 0x0001 << 2 [static]

Select the usertraffic unicast port.

8.219.2.4 final int USER MULTICAST = 0x0001 << 3 [static]

Select the usertraffic multicast port.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1396 Class Documentation

8.220 RtpsWellKnownPorts t Class Reference

RTPS well-known port mapping configuration.

Inherits Struct.

Public Attributes

ˆ int port base

The base port offset.

ˆ int domain id gain

Tunable domain (p. 317) gain parameter.

ˆ int participant id gain

Tunable participant gain parameter.

ˆ int builtin multicast port offset

Additional offset for metatraffic multicast port.

ˆ int builtin unicast port offset

Additional offset for metatraffic unicast port.

ˆ int user multicast port offset

Additional offset for usertraffic multicast port.

ˆ int user unicast port offset

Additional offset for usertraffic unicast port.

Static Public Attributes

ˆ static final RtpsWellKnownPorts t RTI BACKWARDS -
COMPATIBLE RTPS WELL KNOWN PORTS

Assign to use well-known port mappings which are compatible with previous
versions of the RTI Connext middleware.

ˆ static final RtpsWellKnownPorts t INTEROPERABLE RTPS -
WELL KNOWN PORTS

Assign to use well-known port mappings which are compliant with OMG’s
DDS Interoperability Wire Protocol.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.220 RtpsWellKnownPorts t Class Reference 1397

8.220.1 Detailed Description

RTPS well-known port mapping configuration.

RTI Connext uses the RTPS wire protocol. The discovery protocols defined
by RTPS rely on well-known ports to initiate discovery. These well-known
ports define the multicast and unicast ports on which a Participant will listen
for discovery metatraffic from other Participants. The discovery metatraffic
contains all the information required to establish the presence of remote DDS
entities in the network.

The well-known ports are defined by RTPS in terms of port mapping expres-
sions with several tunable parameters, which allow you to customize what
network ports are used by RTI Connext. These parameters are exposed in
com.rti.dds.infrastructure.RtpsWellKnownPorts t (p. 1396). In order
for all Participants in a system to correctly discover each other, it is impor-
tant that they all use the same port mapping expressions.

The actual port mapping expressions, as defined by the RTPS specifi-
cation, can be found below. In addition to the parameters listed in
com.rti.dds.infrastructure.RtpsWellKnownPorts t (p. 1396), the port
numbers depend on:

- domain id, as specified in com.rti.dds.domain.DomainParticipantFactory.create -
participant (p. 714)

- participant id, as specified using com.rti.dds.infrastructure.WireProtocolQosPolicy.participant -
id (p. 1714)

The domain id parameter ensures no port conflicts exist between Participants
belonging to different domains. This also means that discovery metatraffic in
one domain (p. 317) is not visible to Participants in a different domain (p. 317).
The participant id parameter ensures that unique unicast port numbers are
assigned to Participants belonging to the same domain (p. 317) on a given host.

The metatraffic unicast port is used to exchange discovery metatraffic using uni-
cast.

metatraffic_unicast_port = port_base + (domain_id_gain * domain_id) + (participant_id_gain * participant_id) + builtin_unicast_port_offset

The metatraffic multicast port is used to exchange discovery metatraffic us-
ing multicast. The corresponding multicast group addresses are specified
via com.rti.dds.infrastructure.DiscoveryQosPolicy.multicast receive -
addresses (p. 625) on a com.rti.dds.domain.DomainParticipant (p. 629)
entity.

metatraffic_multicast_port = port_base + (domain_id_gain * domain_id) + builtin_multicast_port_offset

RTPS also defines the default multicast and unicast ports on which DataRead-
ers and DataWriters receive usertraffic. These default ports can be

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1398 Class Documentation

overridden using the com.rti.dds.subscription.DataReaderQos.multicast
(p. 522), com.rti.dds.subscription.DataReaderQos.unicast (p. 522), or by
the com.rti.dds.publication.DataWriterQos.unicast (p. 593) QoS policies.

The usertraffic unicast port is used to exchange user data using unicast.

usertraffic_unicast_port = port_base + (domain_id_gain * domain_id) + (participant_id_gain * participant_id) + user_unicast_port_offset

The usertraffic multicast port is used to exchange user data using multi-
cast. The corresponding multicast group addresses can be configured using
com.rti.dds.infrastructure.TransportMulticastQosPolicy (p. 1590).

usertraffic_multicast_port = port_base + (domain_id_gain * domain_id) + user_multicast_port_offset

By default, the port mapping parameters are configured to compliant with
OMG’s DDS Interoperability Wire Protocol (see also RtpsWellKnownPorts -
t.INTEROPERABLE RTPS WELL KNOWN PORTS (p. 131)).

The OMG’s DDS Interoperability Wire Protocol compliant port mapping pa-
rameters are not backwards compatible with previous versions of the RTI Con-
next middleware.

When modifying the port mapping parameters, care must be taken to avoid
port aliasing. This would result in undefined discovery behavior. The chosen
parameter values will also determine the maximum possible number of domains
in the system and the maximum number of participants per domain (p. 317).
Additionally, any resulting mapped port number must be within the range im-
posed by the underlying transport. For example, for UDPv4, this range typically
equals [1024 - 65535].

QoS:

com.rti.dds.infrastructure.WireProtocolQosPolicy (p. 1709)

8.220.2 Member Data Documentation

8.220.2.1 int port base

The base port offset.

All mapped well-known ports are offset by this value.

[default] 7400

[range] [>= 1], but resulting ports must be within the range imposed by the
underlying transport.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.220 RtpsWellKnownPorts t Class Reference 1399

8.220.2.2 int domain id gain

Tunable domain (p. 317) gain parameter.

Multiplier of the domain id. Together with participant id gain, it deter-
mines the highest domain id and participant id allowed on this network.

In general, there are two ways to setup domain id gain and participant id -
gain parameters.

If domain id gain > participant id gain, it results in a port mapping layout
where all com.rti.dds.domain.DomainParticipant (p. 629) instances within
a single domain (p. 317) occupy a consecutive range of domain id gain ports.
Precisely, all ports occupied by the domain (p. 317) fall within:

(port_base + (domain_id_gain * domain_id))

and:

(port_base + (domain_id_gain * (domain_id + 1)) - 1)

Under such a case, the highest domain id is limited only by the underlying
transport’s maximum port. The highest participant id, however, must sat-
isfy:

max_participant_id < (domain_id_gain / participant_id_gain)

On the contrary, if domain id gain <= participant id gain,
it results in a port mapping layout where a given domain’s
com.rti.dds.domain.DomainParticipant (p. 629) instances occupy ports
spanned across the entire valid port range allowed by the underlying transport.
For instance, it results in the following potential mapping:

Mapped Port Domain Id Participant ID
higher port number Domain Id = 1 Participant ID = 2

Domain Id = 0 Participant ID = 2
Domain Id = 1 Participant ID = 1
Domain Id = 0 Participant ID = 1
Domain Id = 1 Participant ID = 0

lower port number Domain Id = 0 Participant ID = 0

Under this case, the highest participant id is limited only by the underlying
transport’s maximum port. The highest domain id, however, must satisfy:

max_domain_id < (participant_id_gain / domain_id_gain)

Additionally, domain id gain also determines the range of the port-specific off-
sets.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1400 Class Documentation

domain_id_gain > abs(builtin_multicast_port_offset - user_multicast_port_offset)

domain_id_gain > abs(builtin_unicast_port_offset - user_unicast_port_offset)

Violating this may result in port aliasing and undefined discovery behavior.

[default] 250

[range] [> 0], but resulting ports must be within the range imposed by the
underlying transport.

8.220.2.3 int participant id gain

Tunable participant gain parameter.

Multiplier of the participant id. See com.rti.dds.infrastructure.RtpsWellKnownPorts -
t.domain id gain (p. 1399) for its implications on the highest domain id and
participant id allowed on this network.

Additionally, participant id gain also determines the range of builtin -
unicast port offset and user unicast port offset.

participant_id_gain > abs(builtin_unicast_port_offset - user_unicast_port_offset)

[default] 2

[range] [> 0], but resulting ports must be within the range imposed by the
underlying transport.

8.220.2.4 int builtin multicast port offset

Additional offset for metatraffic multicast port.

It must be unique from other port-specific offsets.

[default] 0

[range] [>= 0], but resulting ports must be within the range imposed by the
underlying transport.

8.220.2.5 int builtin unicast port offset

Additional offset for metatraffic unicast port.

It must be unique from other port-specific offsets.

[default] 10

[range] [>= 0], but resulting ports must be within the range imposed by the
underlying transport.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.220 RtpsWellKnownPorts t Class Reference 1401

8.220.2.6 int user multicast port offset

Additional offset for usertraffic multicast port.

It must be unique from other port-specific offsets.

[default] 1

[range] [>= 0], but resulting ports must be within the range imposed by the
underlying transport.

8.220.2.7 int user unicast port offset

Additional offset for usertraffic unicast port.

It must be unique from other port-specific offsets.

[default] 11

[range] [>= 0], but resulting ports must be within the range imposed by the
underlying transport.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1402 Class Documentation

8.221 SampleIdentity t Class Reference

Type definition for an Sample Identity.

Inherits Struct.

Public Member Functions

ˆ SampleIdentity t (SampleIdentity t other)

Public Attributes

ˆ final GUID t writer guid = new GUID t(GUID t.GUID AUTO)
16-byte identifier identifying the virtual GUID.

ˆ final SequenceNumber t sequence number
monotonically increasing 64-bit integer that identifies the sample in the data
source.

Static Public Attributes

ˆ static final SampleIdentity t AUTO SAMPLE IDENTITY

8.221.1 Detailed Description

Type definition for an Sample Identity.

A SampleIdentity defines a pair (Virtual Writer GUID, Sequence Number) that
uniquely identifies a sample within a DDS domain (p. 317) and a Topic.

8.221.2 Constructor & Destructor Documentation

8.221.2.1 SampleIdentity t (SampleIdentity t other)

8.221.3 Member Data Documentation

8.221.3.1 final SampleIdentity t AUTO SAMPLE IDENTITY
[static]

Initial value:

new SampleIdentity_t(GUID_t.GUID_AUTO, SequenceNumber_t.AUTO_SEQUENCE_NUMBER)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.221 SampleIdentity t Class Reference 1403

8.221.3.2 final GUID t writer guid = new
GUID t(GUID t.GUID AUTO)

16-byte identifier identifying the virtual GUID.

8.221.3.3 final SequenceNumber t sequence number

Initial value:

new SequenceNumber_t(SequenceNumber_t.AUTO_SEQUENCE_NUMBER)

monotonically increasing 64-bit integer that identifies the sample in the data
source.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1404 Class Documentation

8.222 SampleInfo Class Reference

Information that accompanies each sample that is read or taken.

Inheritance diagram for SampleInfo::

Public Member Functions

ˆ Object copy from (Object other)

Public Attributes

ˆ int sample state
The sample state of the sample.

ˆ int view state
The view state of the instance.

ˆ int instance state
The instance state of the instance.

ˆ final Time t source timestamp
The timestamp when the sample was written by a DataWriter.

ˆ final InstanceHandle t instance handle
Identifies locally the corresponding instance.

ˆ final InstanceHandle t publication handle
Identifies locally the DataWriter that modified the instance.

ˆ int disposed generation count
The disposed generation count of the instance at the time of sample reception.

ˆ int no writers generation count
The no writers generation count of the instance at the time of sample recep-
tion.

ˆ int sample rank
The sample rank of the sample.

ˆ int generation rank

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.222 SampleInfo Class Reference 1405

The generation rank of the sample.

ˆ int absolute generation rank

The absolute generation rank of the sample.

ˆ boolean valid data

Indicates whether the DataSample contains data or else it is only used to
communicate a change in the instance state of the instance.

ˆ final Time t reception timestamp

<<eXtension>> (p. 270) The timestamp when the sample was committed
by a DataReader (p. 473).

ˆ final SequenceNumber t publication sequence number

<<eXtension>> (p. 270) The publication (p. 338) sequence number.

ˆ final SequenceNumber t reception sequence number

<<eXtension>> (p. 270) The reception sequence number when sample was
committed by a DataReader (p. 473)

ˆ final GUID t original publication virtual guid

<<eXtension>> (p. 270) The original publication (p. 338) virtual GUID.

ˆ final SequenceNumber t original publication virtual sequence -
number

<<eXtension>> (p. 270) The original publication (p. 338) virtual se-
quence number.

Static Package Functions

ˆ static SampleInfo get from native (long native sample info)

8.222.1 Detailed Description

Information that accompanies each sample that is read or taken.

8.222.2 Interpretation of the SampleInfo

The com.rti.dds.subscription.SampleInfo (p. 1404) contains information
pertaining to the associated Data instance sample including:

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1406 Class Documentation

ˆ the sample state of the Data value (i.e., if it has already been read or
not)

ˆ the view state of the related instance (i.e., if the instance is new or not)

ˆ the instance state of the related instance (i.e., if the instance is alive or
not)

ˆ the valid data flag. This flag indicates whether there is data associated
with the sample. Some samples do not contain data indicating only a
change on the instance state of the corresponding instance.

ˆ The values of disposed generation count and no writers -
generation count for the related instance at the time the sample
was received. These counters indicate the number of times the instance
had become ALIVE (with instance state= InstanceStateKind.ALIVE -
INTANCE STATE) at the time the sample was received.

ˆ The sample rank and generation rank of the sample within the returned
sequence. These ranks provide a preview of the samples that follow within
the sequence returned by the read or take operations.

ˆ The absolute generation rank of the sample within the
com.rti.dds.subscription.DataReader (p. 473). This
rank provides a preview of what is available within the
com.rti.dds.subscription.DataReader (p. 473).

ˆ The source timestamp of the sample. This is the timestamp provided
by the com.rti.dds.publication.DataWriter (p. 538) at the time the
sample was produced.

8.222.3 Interpretation of the SampleInfo disposed -
generation count and no writers generation -
count

For each instance, RTI Connext internally maintains two counts, the
com.rti.dds.subscription.SampleInfo.disposed generation count
(p. 1410) and com.rti.dds.subscription.SampleInfo.no writers -
generation count (p. 1411), relative to each DataReader (p. 473):

ˆ The com.rti.dds.subscription.SampleInfo.disposed generation -
count (p. 1410) and com.rti.dds.subscription.SampleInfo.no -
writers generation count (p. 1411) are initialized to zero when the
com.rti.dds.subscription.DataReader (p. 473) first detects the
presence of a never-seen-before instance.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.222 SampleInfo Class Reference 1407

ˆ The com.rti.dds.subscription.SampleInfo.disposed generation -
count (p. 1410) is incremented each time the instance state of the
corresponding instance changes from InstanceStateKind.NOT -
ALIVE DISPOSED INSTANCE STATE (p. 1088) to InstanceS-
tateKind.ALIVE INTANCE STATE.

ˆ The com.rti.dds.subscription.SampleInfo.no writers generation -
count (p. 1411) is incremented each time the instance state of the
corresponding instance changes from InstanceStateKind.NOT -
ALIVE NO WRITERS INSTANCE STATE (p. 1088) to In-
stanceStateKind.ALIVE INTANCE STATE.

ˆ These ’generation counts’ are reset to zero when the instance resource is
reclaimed.

The com.rti.dds.subscription.SampleInfo.disposed generation -
count (p. 1410) and com.rti.dds.subscription.SampleInfo.no -
writers generation count (p. 1411) available in the
com.rti.dds.subscription.SampleInfo (p. 1404) capture a snapshot of
the corresponding counters at the time the sample was received.

8.222.4 Interpretation of the SampleInfo sample rank,
generation rank and absolute generation rank

The com.rti.dds.subscription.SampleInfo.sample rank (p. 1411) and
com.rti.dds.subscription.SampleInfo.generation rank (p. 1411) available
in the com.rti.dds.subscription.SampleInfo (p. 1404) are computed based
solely on the actual samples in the ordered collection returned by read or take.

ˆ The com.rti.dds.subscription.SampleInfo.sample rank (p. 1411) in-
dicates the number of samples of the same instance that follow the current
one in the collection.

ˆ The com.rti.dds.subscription.SampleInfo.generation rank
(p. 1411) available in the com.rti.dds.subscription.SampleInfo
(p. 1404) indicates the difference in ”generations” between the sample
(S) and the Most Recent Sample of the same instance that appears in
the returned Collection (MRSIC). That is, it counts the number of times
the instance transitioned from not-alive to alive in the time from the
reception of the S to the reception of MRSIC.

ˆ These ’generation ranks’ are reset to zero when the instance resource is
reclaimed.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1408 Class Documentation

The com.rti.dds.subscription.SampleInfo.generation rank (p. 1411) is
computed using the formula:

generation_rank = (MRSIC.disposed_generation_count

+ MRSIC.no_writers_generation_count)

- (S.disposed_generation_count

+ S.no_writers_generation_count)

The com.rti.dds.subscription.SampleInfo.absolute generation rank
(p. 1411) available in the com.rti.dds.subscription.SampleInfo (p. 1404)
indicates the difference in ”generations” between the sample (S) and the Most
Recent Sample of the same instance that the middleware has received (MRS).
That is, it counts the number of times the instance transitioned from not-alive
to alive in the time from the reception of the S to the time when the read or
take was called.

absolute_generation_rank = (MRS.disposed_generation_count

+ MRS.no_writers_generation_count)

- (S.disposed_generation_count

+ S.no_writers_generation_count)

8.222.5 Interpretation of the SampleInfo counters and
ranks

These counters and ranks allow the application to distinguish samples belonging
to different ”generations” of the instance. Note that it is possible for an instance
to transition from not-alive to alive (and back) several times before the appli-
cation accesses the data by means of read or take. In this case, the returned
collection may contain samples that cross generations (i.e. some samples were re-
ceived before the instance became not-alive, other after the instance re-appeared
again). Using the information in the com.rti.dds.subscription.SampleInfo
(p. 1404), the application can anticipate what other information regarding the
same instance appears in the returned collection, as well as in the infrastruc-
ture (p. 323) and thus make appropriate decisions.

For example (p. 349), an application desiring to only consider the most current
sample for each instance would only look at samples with sample rank == 0.
Similarly, an application desiring to only consider samples that correspond to the
latest generation in the collection will only look at samples with generation rank
== 0. An application desiring only samples pertaining to the latest generation
available will ignore samples for which absolute generation rank != 0. Other
application-defined criteria may also be used.

See also:

com.rti.dds.subscription.SampleStateKind (p. 1430),
com.rti.dds.subscription.InstanceStateKind (p. 1086),

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.222 SampleInfo Class Reference 1409

com.rti.dds.subscription.ViewStateKind (p. 1689),
com.rti.dds.subscription.SampleInfo.valid data (p. 1412)

8.222.6 Member Function Documentation

8.222.6.1 Object copy from (Object other)

Implementation of the Copyable interface.

See also:

com.rti.dds.infrastructure.Copyable.copy from
(p. 466)(java.lang.Object)

Implements Copyable (p. 466).

8.222.6.2 static SampleInfo get from native (long
native sample info) [static, package]

Given a pointer to a native SampleInfo (p. 1404) object from the queue, get a
reference to the corresponding Java SampleInfo (p. 1404) object.

8.222.7 Member Data Documentation

8.222.7.1 int sample state

The sample state of the sample.

Indicates whether or not the corresponding data sample has already been read.

See also:

com.rti.dds.subscription.SampleStateKind (p. 1430)

8.222.7.2 int view state

The view state of the instance.

Indicates whether the com.rti.dds.subscription.DataReader (p. 473) has al-
ready seen samples for the most-current generation of the related instance.

See also:

com.rti.dds.subscription.ViewStateKind (p. 1689)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1410 Class Documentation

8.222.7.3 int instance state

The instance state of the instance.

Indicates whether the instance is currently in existence or, if it has been dis-
posed, the reason why it was disposed.

See also:

com.rti.dds.subscription.InstanceStateKind (p. 1086)

8.222.7.4 final Time t source timestamp

The timestamp when the sample was written by a DataWriter.

8.222.7.5 final InstanceHandle t instance handle

Identifies locally the corresponding instance.

8.222.7.6 final InstanceHandle t publication handle

Identifies locally the DataWriter that modified the instance.

The publication handle is the same com.rti.dds.infrastructure.InstanceHandle -
t (p. 1080) that is returned by the operation
com.rti.dds.subscription.DataReader.get matched publications
(p. 486) and can also be used as a parameter to the operation
com.rti.dds.subscription.DataReader.get matched publication data
(p. 487).

8.222.7.7 int disposed generation count

The disposed generation count of the instance at the time of sample reception.

Indicates the number of times the instance had become alive after it was disposed
explicitly by a com.rti.dds.publication.DataWriter (p. 538), at the time the
sample was received.

See also:

Interpretation of the SampleInfo disposed generation count and
no writers generation count (p. 1406) Interpretation of the Sam-
pleInfo counters and ranks (p. 1408)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.222 SampleInfo Class Reference 1411

8.222.7.8 int no writers generation count

The no writers generation count of the instance at the time of sample reception.

Indicates the number of times the instance had become alive after it was disposed
because there were no writers, at the time the sample was received.

See also:

Interpretation of the SampleInfo disposed generation count and
no writers generation count (p. 1406) Interpretation of the Sam-
pleInfo counters and ranks (p. 1408)

8.222.7.9 int sample rank

The sample rank of the sample.

Indicates the number of samples related to the same instance that follow in the
collection returned by read or take.

See also:

Interpretation of the SampleInfo sample rank, generation rank
and absolute generation rank (p. 1407) Interpretation of the Sam-
pleInfo counters and ranks (p. 1408)

8.222.7.10 int generation rank

The generation rank of the sample.

Indicates the generation difference (number of times the instance was disposed
and become alive again) between the time the sample was received, and the
time the most recent sample in the collection related to the same instance was
received.

See also:

Interpretation of the SampleInfo sample rank, generation rank
and absolute generation rank (p. 1407) Interpretation of the Sam-
pleInfo counters and ranks (p. 1408)

8.222.7.11 int absolute generation rank

The absolute generation rank of the sample.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1412 Class Documentation

Indicates the generation difference (number of times the instance was disposed
and become alive again) between the time the sample was received, and the time
the most recent sample (which may not be in the returned collection) related
to the same instance was received.

See also:

Interpretation of the SampleInfo sample rank, generation rank
and absolute generation rank (p. 1407) Interpretation of the Sam-
pleInfo counters and ranks (p. 1408)

8.222.7.12 boolean valid data

Indicates whether the DataSample contains data or else it is only used to com-
municate a change in the instance state of the instance.

Normally each DataSample contains both a
com.rti.dds.subscription.SampleInfo (p. 1404) and some Data.
However there are situations where a DataSample contains only the
com.rti.dds.subscription.SampleInfo (p. 1404) and does not have any
associated data. This occurs when the RTI Connext notifies the applica-
tion of a change of state for an instance that was caused by some internal
mechanism (such as a timeout) for which there is no associated data. An
example (p. 349) of this situation is when the RTI Connext detects that an
instance has no writers and changes the corresponding instance state to In-
stanceStateKind.NOT ALIVE NO WRITERS INSTANCE STATE
(p. 1088).

The application can distinguish whether a particular DataSample has data by
examining the value of the valid data flag. If this flag is set to true, then
the DataSample contains valid Data. If the flag is set to false, the DataSample
contains no Data.

To ensure correctness and portability, the valid data flag must be examined
by the application prior to accessing the Data associated with the DataSample
and if the flag is set to false, the application should not access the Data as-
sociated with the DataSample, that is, the application should access only the
com.rti.dds.subscription.SampleInfo (p. 1404).

8.222.7.13 final Time t reception timestamp

<<eXtension>> (p. 270) The timestamp when the sample was committed by
a DataReader (p. 473).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.222 SampleInfo Class Reference 1413

8.222.7.14 final SequenceNumber t publication sequence number

<<eXtension>> (p. 270) The publication (p. 338) sequence number.

8.222.7.15 final SequenceNumber t reception sequence number

<<eXtension>> (p. 270) The reception sequence number when sample was
committed by a DataReader (p. 473)

8.222.7.16 final GUID t original publication virtual guid

<<eXtension>> (p. 270) The original publication (p. 338) virtual GUID.

If the com.rti.dds.infrastructure.PresentationQosPolicy.access scope
(p. 1241) of the com.rti.dds.publication.Publisher (p. 1277) is Presentation-
QosPolicyAccessScopeKind.GROUP PRESENTATION QOS, this field con-
tains the com.rti.dds.publication.Publisher (p. 1277) virtual GUID that
uniquely identifies the DataWriter group.

8.222.7.17 final SequenceNumber t original publication virtual -
sequence number

<<eXtension>> (p. 270) The original publication (p. 338) virtual sequence
number.

If the com.rti.dds.infrastructure.PresentationQosPolicy.access scope
(p. 1241) of the com.rti.dds.publication.Publisher (p. 1277) is Presentation-
QosPolicyAccessScopeKind.GROUP PRESENTATION QOS, this field con-
tains the com.rti.dds.publication.Publisher (p. 1277) virtual sequence num-
ber that uniquely identifies a sample within the DataWriter group.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1414 Class Documentation

8.223 SampleInfoSeq Class Reference

Declares IDL sequence < com.rti.dds.subscription.SampleInfo (p. 1404) >
.

Inheritance diagram for SampleInfoSeq::

8.223.1 Detailed Description

Declares IDL sequence < com.rti.dds.subscription.SampleInfo (p. 1404) >
.

See also:

com.rti.dds.util.Sequence (p. 1432)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.224 SampleLostStatus Class Reference 1415

8.224 SampleLostStatus Class Reference

StatusKind.SAMPLE LOST STATUS STATUS.

Inherits Status.

Public Attributes

ˆ int total count

Total cumulative count of all samples lost across all instances of data pub-
lished under the com.rti.dds.topic.Topic (p. 1545).

ˆ int total count change

The incremental number of samples lost since the last time the listener was
called or the status was read.

8.224.1 Detailed Description

StatusKind.SAMPLE LOST STATUS STATUS.

8.224.2 Member Data Documentation

8.224.2.1 int total count

Total cumulative count of all samples lost across all instances of data published
under the com.rti.dds.topic.Topic (p. 1545).

8.224.2.2 int total count change

The incremental number of samples lost since the last time the listener was
called or the status was read.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1416 Class Documentation

8.225 SampleLostStatusKind Class Reference

Kinds of reasons why a sample was lost.

Inheritance diagram for SampleLostStatusKind::

Static Public Attributes

ˆ static final SampleLostStatusKind NOT LOST

The sample was not lost.

ˆ static final SampleLostStatusKind LOST BY WRITER

A DataWriter removed the sample before being received by the
com.rti.dds.subscription.DataReader (p. 473).

ˆ static final SampleLostStatusKind LOST BY INSTANCES -
LIMIT

A resource limit on the number of instances was reached.

ˆ static final SampleLostStatusKind LOST BY REMOTE -
WRITERS PER INSTANCE LIMIT

A resource limit on the number of remote writers for a single instance
from which a com.rti.dds.subscription.DataReader (p. 473) may read
was reached.

ˆ static final SampleLostStatusKind LOST BY INCOMPLETE -
COHERENT SET

A sample is lost because it is part of an incomplete coherent set.

ˆ static final SampleLostStatusKind LOST BY LARGE -
COHERENT SET

A sample is lost because it is part of a large coherent set.

ˆ static final SampleLostStatusKind LOST BY SAMPLES PER -
REMOTE WRITER LIMIT

A resource limit on the number of samples from a given remote writer that
a com.rti.dds.subscription.DataReader (p. 473) may store was reached.

ˆ static final SampleLostStatusKind LOST BY VIRTUAL -
WRITERS LIMIT

A resource limit on the number of virtual writers from which a
com.rti.dds.subscription.DataReader (p. 473) may read was reached.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.225 SampleLostStatusKind Class Reference 1417

ˆ static final SampleLostStatusKind LOST BY REMOTE -
WRITERS PER SAMPLE LIMIT

A resource limit on the number of remote writers per sample was reached.

ˆ static final SampleLostStatusKind LOST BY AVAILABILITY -
WAITING TIME

com.rti.dds.infrastructure.AvailabilityQosPolicy.max data -
availability waiting time (p. 394) expired.

ˆ static final SampleLostStatusKind LOST BY REMOTE -
WRITER SAMPLES PER VIRTUAL QUEUE LIMIT

A resource limit on the number of samples published by a remote writer
on behalf of a virtual writer that a com.rti.dds.subscription.DataReader
(p. 473) may store was reached.

8.225.1 Detailed Description

Kinds of reasons why a sample was lost.

8.225.2 Member Data Documentation

8.225.2.1 final SampleLostStatusKind NOT LOST [static]

Initial value:

new com.rti.dds.subscription.SampleLostStatusKind(

"NOT_LOST", 0)

The sample was not lost.

See also:

ResourceLimitsQosPolicy

8.225.2.2 final SampleLostStatusKind LOST BY WRITER
[static]

Initial value:

new com.rti.dds.subscription.SampleLostStatusKind(

"LOST_BY_WRITER", 1)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1418 Class Documentation

A DataWriter removed the sample before being received by the
com.rti.dds.subscription.DataReader (p. 473).

This constant is an extension to the DDS standard.

8.225.2.3 final SampleLostStatusKind LOST BY INSTANCES -
LIMIT [static]

Initial value:

new com.rti.dds.subscription.SampleLostStatusKind(

"LOST_BY_INSTANCES_LIMIT", 2)

A resource limit on the number of instances was reached.

This constant is an extension to the DDS standard.

See also:

ResourceLimitsQosPolicy

8.225.2.4 final SampleLostStatusKind LOST BY -
REMOTE WRITERS PER INSTANCE LIMIT
[static]

Initial value:

new SampleLostStatusKind(

"LOST_BY_REMOTE_WRITERS_PER_INSTANCE_LIMIT", 3)

A resource limit on the number of remote writers for a single instance from which
a com.rti.dds.subscription.DataReader (p. 473) may read was reached.

This constant is an extension to the DDS standard.

See also:

com.rti.dds.infrastructure.DataReaderResourceLimitsQosPolicy
(p. 524)

8.225.2.5 final SampleLostStatusKind LOST -
BY INCOMPLETE COHERENT SET
[static]

Initial value:

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.225 SampleLostStatusKind Class Reference 1419

new SampleLostStatusKind(

"LOST_BY_INCOMPLETE_COHERENT_SET", 4)

A sample is lost because it is part of an incomplete coherent set.

This constant is an extension to the DDS standard.

8.225.2.6 final SampleLostStatusKind LOST BY LARGE -
COHERENT SET [static]

Initial value:

new SampleLostStatusKind(

"LOST_BY_LARGE_COHERENT_SET", 5)

A sample is lost because it is part of a large coherent set.

This constant is an extension to the DDS standard.

8.225.2.7 final SampleLostStatusKind LOST BY -
SAMPLES PER REMOTE WRITER LIMIT
[static]

Initial value:

new SampleLostStatusKind(

"LOST_BY_SAMPLES_PER_REMOTE_WRITER_LIMIT", 6)

A resource limit on the number of samples from a given remote writer that a
com.rti.dds.subscription.DataReader (p. 473) may store was reached.

This constant is an extension to the DDS standard.

See also:

com.rti.dds.infrastructure.DataReaderResourceLimitsQosPolicy
(p. 524)

8.225.2.8 final SampleLostStatusKind LOST BY VIRTUAL -
WRITERS LIMIT [static]

Initial value:

new SampleLostStatusKind(

"DDS_LOST_BY_VIRTUAL_WRITERS_LIMIT", 7)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1420 Class Documentation

A resource limit on the number of virtual writers from which a
com.rti.dds.subscription.DataReader (p. 473) may read was reached.

This constant is an extension to the DDS standard.

See also:

com.rti.dds.infrastructure.DataReaderResourceLimitsQosPolicy
(p. 524)

8.225.2.9 final SampleLostStatusKind LOST BY -
REMOTE WRITERS PER SAMPLE LIMIT
[static]

Initial value:

new SampleLostStatusKind(

"LOST_BY_REMOTE_WRITERS_PER_SAMPLE_LIMIT", 8)

A resource limit on the number of remote writers per sample was reached.

This constant is an extension to the DDS standard.

See also:

com.rti.dds.infrastructure.DataReaderResourceLimitsQosPolicy
(p. 524)

8.225.2.10 final SampleLostStatusKind LOST -
BY AVAILABILITY WAITING TIME
[static]

Initial value:

new SampleLostStatusKind(

"LOST_BY_AVAILABILITY_WAITING_TIME", 9)

com.rti.dds.infrastructure.AvailabilityQosPolicy.max data -
availability waiting time (p. 394) expired.

This constant is an extension to the DDS standard.

See also:

com.rti.dds.infrastructure.DataReaderResourceLimitsQosPolicy
(p. 524)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.225 SampleLostStatusKind Class Reference 1421

8.225.2.11 final SampleLostStatusKind LOST BY REMOTE -
WRITER SAMPLES PER VIRTUAL QUEUE LIMIT
[static]

Initial value:

new SampleLostStatusKind(

"LOST_BY_REMOTE_WRITER_SAMPLES_PER_VIRTUAL_QUEUE_LIMIT", 10)

A resource limit on the number of samples published by a remote writer on be-
half of a virtual writer that a com.rti.dds.subscription.DataReader (p. 473)
may store was reached.

This constant is an extension to the DDS standard.

See also:

com.rti.dds.infrastructure.DataReaderResourceLimitsQosPolicy
(p. 524)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1422 Class Documentation

8.226 SampleRejectedStatus Class Reference

StatusKind.SAMPLE REJECTED STATUS.

Inherits Status.

Public Attributes

ˆ int total count
Total cumulative count of samples rejected by the
com.rti.dds.subscription.DataReader (p. 473).

ˆ int total count change
The incremental number of samples rejected since the last time the listener
was called or the status was read.

ˆ SampleRejectedStatusKind last reason
Reason for rejecting the last sample rejected.

ˆ final InstanceHandle t last instance handle
Handle to the instance being updated by the last sample that was rejected.

8.226.1 Detailed Description

StatusKind.SAMPLE REJECTED STATUS.

8.226.2 Member Data Documentation

8.226.2.1 int total count

Total cumulative count of samples rejected by the
com.rti.dds.subscription.DataReader (p. 473).

8.226.2.2 int total count change

The incremental number of samples rejected since the last time the listener was
called or the status was read.

8.226.2.3 SampleRejectedStatusKind last reason

Reason for rejecting the last sample rejected.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.226 SampleRejectedStatus Class Reference 1423

See also:

SampleRejectedStatusKind (p. 1424)

8.226.2.4 final InstanceHandle t last instance handle

Handle to the instance being updated by the last sample that was rejected.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1424 Class Documentation

8.227 SampleRejectedStatusKind Class Refer-
ence

Kinds of reasons for rejecting a sample.

Inheritance diagram for SampleRejectedStatusKind::

Static Public Attributes

ˆ static final SampleRejectedStatusKind NOT REJECTED
Samples are never rejected.

ˆ static final SampleRejectedStatusKind REJECTED BY -
INSTANCES LIMIT

A resource limit on the number of instances was reached.

ˆ static final SampleRejectedStatusKind REJECTED BY -
SAMPLES LIMIT

A resource limit on the number of samples was reached.

ˆ static final SampleRejectedStatusKind REJECTED BY -
SAMPLES PER INSTANCE LIMIT

A resource limit on the number of samples per instance was reached.

ˆ static final SampleRejectedStatusKind REJECTED BY -
REMOTE WRITERS LIMIT

A resource limit on the number of remote writers from which a
com.rti.dds.subscription.DataReader (p. 473) may read was reached.

ˆ static final SampleRejectedStatusKind REJECTED BY -
REMOTE WRITERS PER INSTANCE LIMIT

A resource limit on the number of remote writers for a single instance
from which a com.rti.dds.subscription.DataReader (p. 473) may read
was reached.

ˆ static final SampleRejectedStatusKind REJECTED BY -
SAMPLES PER REMOTE WRITER LIMIT

A resource limit on the number of samples from a given remote writer that
a com.rti.dds.subscription.DataReader (p. 473) may store was reached.

ˆ static final SampleRejectedStatusKind REJECTED BY -
VIRTUAL WRITERS LIMIT

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.227 SampleRejectedStatusKind Class Reference 1425

A resource limit on the number of virtual writers from which a
com.rti.dds.subscription.DataReader (p. 473) may read was reached.

ˆ static final SampleRejectedStatusKind REJECTED BY -
REMOTE WRITERS PER SAMPLE LIMIT

A resource limit on the number of remote writers per sample was reached.

ˆ static final SampleRejectedStatusKind REJECTED BY -
REMOTE WRITER SAMPLES PER VIRTUAL QUEUE -
LIMIT

A resource limit on the number of samples published by a remote writer
on behalf of a virtual writer that a com.rti.dds.subscription.DataReader
(p. 473) may store was reached.

8.227.1 Detailed Description

Kinds of reasons for rejecting a sample.

8.227.2 Member Data Documentation

8.227.2.1 final SampleRejectedStatusKind NOT REJECTED
[static]

Initial value:

new com.rti.dds.subscription.SampleRejectedStatusKind(

"NOT_REJECTED", 0)

Samples are never rejected.

See also:

com.rti.dds.infrastructure.DataReaderResourceLimitsQosPolicy
(p. 524)

8.227.2.2 final SampleRejectedStatusKind
REJECTED BY INSTANCES LIMIT [static]

Initial value:

new com.rti.dds.subscription.SampleRejectedStatusKind(

"REJECTED_BY_INSTANCES_LIMIT", 1)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1426 Class Documentation

A resource limit on the number of instances was reached.

See also:

com.rti.dds.infrastructure.DataReaderResourceLimitsQosPolicy
(p. 524)

8.227.2.3 final SampleRejectedStatusKind
REJECTED BY SAMPLES LIMIT [static]

Initial value:

new SampleRejectedStatusKind(

"REJECTED_BY_SAMPLES_LIMIT", 2)

A resource limit on the number of samples was reached.

See also:

com.rti.dds.infrastructure.DataReaderResourceLimitsQosPolicy
(p. 524)

8.227.2.4 final SampleRejectedStatusKind REJECTED -
BY SAMPLES PER INSTANCE LIMIT
[static]

Initial value:

new SampleRejectedStatusKind(

"REJECTED_BY_SAMPLES_PER_INSTANCE_LIMIT", 3)

A resource limit on the number of samples per instance was reached.

See also:

ResourceLimitsQosPolicy

8.227.2.5 final SampleRejectedStatusKind
REJECTED BY REMOTE WRITERS LIMIT [static]

Initial value:

new SampleRejectedStatusKind(

"REJECTED_BY_REMOTE_WRITERS_LIMIT", 4)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.227 SampleRejectedStatusKind Class Reference 1427

A resource limit on the number of remote writers from which a
com.rti.dds.subscription.DataReader (p. 473) may read was reached.

This constant is an extension to the DDS standard.

See also:

com.rti.dds.infrastructure.DataReaderResourceLimitsQosPolicy
(p. 524)

8.227.2.6 final SampleRejectedStatusKind REJECTED BY -
REMOTE WRITERS PER INSTANCE LIMIT
[static]

Initial value:

new SampleRejectedStatusKind(

"REJECTED_BY_REMOTE_WRITERS_PER_INSTANCE_LIMIT", 5)

A resource limit on the number of remote writers for a single instance from which
a com.rti.dds.subscription.DataReader (p. 473) may read was reached.

This constant is an extension to the DDS standard.

See also:

com.rti.dds.infrastructure.DataReaderResourceLimitsQosPolicy
(p. 524)

8.227.2.7 final SampleRejectedStatusKind REJECTED -
BY SAMPLES PER REMOTE WRITER LIMIT
[static]

Initial value:

new SampleRejectedStatusKind(

"REJECTED_BY_SAMPLES_PER_REMOTE_WRITER_LIMIT", 6)

A resource limit on the number of samples from a given remote writer that a
com.rti.dds.subscription.DataReader (p. 473) may store was reached.

This constant is an extension to the DDS standard.

See also:

com.rti.dds.infrastructure.DataReaderResourceLimitsQosPolicy
(p. 524)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1428 Class Documentation

8.227.2.8 final SampleRejectedStatusKind
REJECTED BY VIRTUAL WRITERS LIMIT
[static]

Initial value:

new SampleRejectedStatusKind(

"REJECTED_BY_VIRTUAL_WRITERS_LIMIT", 7)

A resource limit on the number of virtual writers from which a
com.rti.dds.subscription.DataReader (p. 473) may read was reached.

This constant is an extension to the DDS standard.

See also:

com.rti.dds.infrastructure.DataReaderResourceLimitsQosPolicy
(p. 524)

8.227.2.9 final SampleRejectedStatusKind REJECTED -
BY REMOTE WRITERS PER SAMPLE LIMIT
[static]

Initial value:

new SampleRejectedStatusKind(

"REJECTED_BY_REMOTE_WRITERS_PER_SAMPLE_LIMIT", 8)

A resource limit on the number of remote writers per sample was reached.

This constant is an extension to the DDS standard.

See also:

com.rti.dds.infrastructure.DataReaderResourceLimitsQosPolicy
(p. 524)

8.227.2.10 final SampleRejectedStatusKind
REJECTED BY REMOTE WRITER -
SAMPLES PER VIRTUAL QUEUE LIMIT
[static]

Initial value:

new SampleRejectedStatusKind(

"REJECTED_BY_REMOTE_WRITER_SAMPLES_PER_VIRTUAL_QUEUE_LIMIT", 9)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.227 SampleRejectedStatusKind Class Reference 1429

A resource limit on the number of samples published by a remote writer on be-
half of a virtual writer that a com.rti.dds.subscription.DataReader (p. 473)
may store was reached.

This constant is an extension to the DDS standard.

See also:

com.rti.dds.infrastructure.DataReaderResourceLimitsQosPolicy
(p. 524)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1430 Class Documentation

8.228 SampleStateKind Class Reference

Indicates whether or not a sample has ever been read.

Static Public Attributes

ˆ static final int READ SAMPLE STATE = 0x0001 << 0

Sample has been read.

ˆ static final int NOT READ SAMPLE STATE = 0x0001 << 1

Sample has not been read.

ˆ static final int ANY SAMPLE STATE = 0xffff

Any sample state SampleStateKind.READ SAMPLE STATE (p. 1430)
| SampleStateKind.NOT READ SAMPLE STATE (p. 1431).

8.228.1 Detailed Description

Indicates whether or not a sample has ever been read.

For each sample received, the middleware internally maintains a sample state
relative to each com.rti.dds.subscription.DataReader (p. 473). The sample
state can be either:

ˆ SampleStateKind.READ SAMPLE STATE (p. 1430) indicates that
the com.rti.dds.subscription.DataReader (p. 473) has already ac-
cessed that sample by means of a read or take operation.

ˆ SampleStateKind.NOT READ SAMPLE STATE (p. 1431) indi-
cates that the com.rti.dds.subscription.DataReader (p. 473) has not
accessed that sample before.

The sample state will, in general, be different for each sample in the collection
returned by read or take.

8.228.2 Member Data Documentation

8.228.2.1 final int READ SAMPLE STATE = 0x0001 << 0
[static]

Sample has been read.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.228 SampleStateKind Class Reference 1431

8.228.2.2 final int NOT READ SAMPLE STATE = 0x0001 << 1
[static]

Sample has not been read.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1432 Class Documentation

8.229 Sequence Interface Reference

<<interface>> (p. 271) <<generic>> (p. 271) A type-safe, ordered collec-
tion of elements. The type of these elements is referred to in this documentation
as Foo.

Inheritance diagram for Sequence::

Public Member Functions

ˆ int getMaximum ()

Get the current maximum number of elements that can be stored in this
sequence.

ˆ void setMaximum (int new max)

Resize this sequence to a new desired maximum.

ˆ Class getElementType ()

8.229.1 Detailed Description

<<interface>> (p. 271) <<generic>> (p. 271) A type-safe, ordered collec-
tion of elements. The type of these elements is referred to in this documentation
as Foo.

For users who define data types in OMG IDL, this type corresponds to the IDL
express sequence<Foo>.

For any user-data type Foo that an application defines for the purpose of data-
distribution with RTI Connext, a FooSeq is generated. We refer to an IDL
sequence<Foo> as FooSeq.

A sequence is a type-safe List that makes a distinction between its allocated
size and its logical size (much like the ArrayList class). The Collection.size()
method returns the logical size.

A new sequence is created for elements of a particular Class, which does not
change throughout the lifetime of a sequence instance.

To add an element to a sequence, use the add() method inherited from
the standard interface java.util.List; this will implicitly increase the se-
quence’s size. Or, to pre-allocate space for several elements at once, use Se-
quence.setMaximum (p. 1433).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.229 Sequence Interface Reference 1433

An attempt to add an element to a sequence that is not of the correct element
type will result in a ClassCastException. (Note that null is considered to belong
to any type.)

See also:

com.rti.dds.topic.example.FooDataWriter, com.rti.dds.topic.example.FooDataReader,
com.rti.dds.topic.example.FooTypeSupport (p. 1060), rtiddsgen
(p. 290)

8.229.2 Member Function Documentation

8.229.2.1 int getMaximum ()

Get the current maximum number of elements that can be stored in this se-
quence.

The maximum of the sequence represents the maximum number of elements that
the underlying buffer can hold. It does not represent the current number of
elements.

The maximum is a non-negative number. It is initialized when the sequence is
first created.

The maximum can be changed implicitly by adding an element to the sequence
with add(), or explicitly by calling Sequence.setMaximum (p. 1433).

Returns:

the current maximum of the sequence.

See also:

Sequence.size()

Implemented in BooleanSeq (p. 409), ByteSeq (p. 432), CharSeq (p. 449),
ConditionSeq (p. 453), DoubleSeq (p. 763), FloatSeq (p. 940), IntSeq
(p. 1093), LongSeq (p. 1203), ShortSeq (p. 1450), PublisherSeq (p. 1306),
DataReaderSeq (p. 536), SubscriberSeq (p. 1508), and LoanableSe-
quence (p. 1172).

8.229.2.2 void setMaximum (int new max)

Resize this sequence to a new desired maximum.

This operation does nothing if the new desired maximum matches the current
maximum.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1434 Class Documentation

Note: If you add an element with add(), the sequence’s size is increased implic-
itly.

Postcondition:

length == MINIMUM(original length, new max)

Parameters:

new max Must be >= 0.

Returns:

true on success, false if the preconditions are not met. In that case the
sequence is not modified.

Implemented in AbstractSequence (p. 382), and LoanableSequence
(p. 1172).

8.229.2.3 Class getElementType ()

Returns:

a common supertype for all elements in this sequence.

Implemented in AbstractPrimitiveSequence (p. 377), and AbstractSe-
quence (p. 383).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.230 SequenceNumber t Class Reference 1435

8.230 SequenceNumber t Class Reference

Type for sequence number representation.

Inherits Struct.

Public Member Functions

ˆ SequenceNumber t ()

Constructor.

ˆ SequenceNumber t (SequenceNumber t sn)

Copy constructor.

ˆ SequenceNumber t (int high, long low)

Constructor.

ˆ int compare (SequenceNumber t sn)

Compares two sequence numbers.

ˆ void plusplus ()

Increases the value of this by one.

ˆ void minusminus ()

Decreases the value of this by one.

ˆ SequenceNumber t add (SequenceNumber t val)

Returns a sequence number whose value is (this + val).

ˆ SequenceNumber t subtract (SequenceNumber t val)

Returns a sequence number whose value is (this - val).

Public Attributes

ˆ int high

The most significant part of the sequence number.

ˆ long low

The least significant part of the sequence number.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1436 Class Documentation

Static Public Attributes

ˆ static final SequenceNumber t SEQUENCE NUMBER -
UNKNOWN

Unknown sequence number.

ˆ static final SequenceNumber t AUTO SEQUENCE NUMBER
The sequence number is internally determined by RTI Connext.

ˆ static final SequenceNumber t SEQUENCE NUMBER ZERO
Zero value for the sequence number.

ˆ static final SequenceNumber t SEQUENCE NUMBER MAX
Highest, most positive value for the sequence number.

8.230.1 Detailed Description

Type for sequence number representation.

Represents a 64-bit sequence number.

8.230.2 Constructor & Destructor Documentation

8.230.2.1 SequenceNumber t ()

Constructor.

8.230.2.2 SequenceNumber t (SequenceNumber t sn)

Copy constructor.

Parameters:

sn The sequence number instance to copy. It must not be null.

8.230.2.3 SequenceNumber t (int high, long low)

Constructor.

Parameters:

high must be in the interval [0,0xffffffff]

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.230 SequenceNumber t Class Reference 1437

low must be in the interval [0,0x00000000ffffffff]

Exceptions:

RETCODE BAD PARAMETER (p. 1363)

8.230.3 Member Function Documentation

8.230.3.1 int compare (SequenceNumber t sn)

Compares two sequence numbers.

Parameters:

sn <<in>> (p. 271) Sequence number to compare. Cannot be null.

Returns:

If the two sequence numbers are equal, the function returns 0. If sn1 is
greater than sn2 the function returns a positive number; otherwise, it re-
turns a negative number.

8.230.3.2 void plusplus ()

Increases the value of this by one.

8.230.3.3 void minusminus ()

Decreases the value of this by one.

8.230.3.4 SequenceNumber t add (SequenceNumber t val)

Returns a sequence number whose value is (this + val).

Returns:

(this+val)

8.230.3.5 SequenceNumber t subtract (SequenceNumber t val)

Returns a sequence number whose value is (this - val).

Returns:

(this-val)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1438 Class Documentation

8.230.4 Member Data Documentation

8.230.4.1 final SequenceNumber t SEQUENCE NUMBER -
UNKNOWN [static]

Unknown sequence number.

8.230.4.2 final SequenceNumber t AUTO SEQUENCE NUMBER
[static]

The sequence number is internally determined by RTI Connext.

8.230.4.3 final SequenceNumber t SEQUENCE NUMBER ZERO
[static]

Zero value for the sequence number.

8.230.4.4 final SequenceNumber t SEQUENCE NUMBER MAX
[static]

Highest, most positive value for the sequence number.

8.230.4.5 int high

The most significant part of the sequence number.

8.230.4.6 long low

The least significant part of the sequence number.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.231 ShmemTransport Interface Reference 1439

8.231 ShmemTransport Interface Reference

Built-in transport (p. 367) plug-in for inter-process communications using
shared memory.

Inheritance diagram for ShmemTransport::

Classes

ˆ class Property t

Subclass of Transport.Property t (p. 1570) allowing specification of param-
eters that are specific to the shared-memory transport (p. 367).

8.231.1 Detailed Description

Built-in transport (p. 367) plug-in for inter-process communications using
shared memory.

This plugin uses System Shared Memory to send messages between processes
on the same node.

The transport (p. 367) plugin has exactly one ”receive interface”; since the
address bit count is 0, it can be assigned any address. Thus the interface is
located by the ”network address” associated with the transport (p. 367) plugin.

8.231.2 Compatibility of Sender and Receiver Transports

Opening a receiver ”port” on shared memory corresponds to creating a shared
memory segment using a name based on the port number. The transport
(p. 367) plugin’s properties are embedded in the shared memory segment.

When a sender tries to send to the shared memory port, it verifies that properties
of the receiver’s shared memory transport (p. 367) are compatible with those
specified in its transport (p. 367) plugin. If not, the sender will fail to attach
to the port and will output messages such as below (with numbers appropriate
to the properties of the transport (p. 367) plugins involved).

NDDS_Transport_Shmem_attachShmem:failed to initialize incompatible properties

NDDS_Transport_Shmem_attachShmem:countMax 0 > -19417345 or max size -19416188 > 2147482624

In this scenario, the properties of the sender or receiver transport (p. 367)
plugin instances should be adjusted, so that they are compatible.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1440 Class Documentation

8.231.3 Crashing and Restarting Programs

If a process using shared memory crashes (say because the user typed in ∧C),
resources associated with its shared memory ports may not be properly cleaned
up. Later, if another RTI Connext process needs to open the same ports (say,
the crashed program is restarted), it will attempt to reuse the shared memory
segment left behind by the crashed process.

The reuse is allowed iff the properties of transport (p. 367) plugin are compat-
ible with those embedded in the shared memory segment (i.e., of the original
creator). Otherwise, the process will fail to open the ports, and will output
messages such as below (with numbers appropriate to the properties of the
transport (p. 367) plugins involved).

NDDS_Transport_Shmem_create_recvresource_rrEA:failed to initialize shared

memory resource Cannot recycle existing shmem: size not compatible for key 0x1234

In this scenario, the shared memory segments must be cleaned up using ap-
propriate platform specific commands. For details, please refer to the platform
notes.

8.231.4 Shared Resource Keys

The transport (p. 367) uses the shared memory segment keys, given by
the formula below.

0x400000 + port

The transport (p. 367) also uses signaling shared semaphore keys given by
the formula below.

0x800000 + port

The transport (p. 367) also uses mutex shared semaphore keys given by the
formula below.

0xb00000 + port

wher the port is a function of the domain -
id and the participant id, as described in
com.rti.dds.infrastructure.WireProtocolQosPolicy.participant id
(p. 1714)

See also:

com.rti.dds.infrastructure.WireProtocolQosPolicy.participant id
(p. 1714)
TransportSupport.set builtin transport property() (p. 1603)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.231 ShmemTransport Interface Reference 1441

8.231.5 Creating and Registering Shared Memory Trans-
port Plugin

RTI Connext can implicitly create this plugin and register with the
com.rti.dds.domain.DomainParticipant (p. 629) if this transport (p. 367)
is specified in com.rti.dds.infrastructure.TransportBuiltinQosPolicy
(p. 1580).

To specify the properties of the builtin shared memory transport (p. 367) that
is implicitly registered, you can either:

ˆ call TransportSupport.set builtin transport property (p. 1603) or

ˆ specify the pre-defined property names in
com.rti.dds.infrastructure.PropertyQosPolicy (p. 1252) associ-
ated with the com.rti.dds.domain.DomainParticipant (p. 629). (see
Shared Memory Transport Property Names in Property QoS
Policy of Domain Participant (p. 1441)).

Builtin transport (p. 367) plugin properties specified in
com.rti.dds.infrastructure.PropertyQosPolicy (p. 1252) always overwrite
the ones specified through TransportSupport.set builtin transport -
property() (p. 1603). The default value is assumed on any unspecified
property. Note that all properties should be set before the transport (p. 367)
is implicitly created and registered by RTI Connext. See Built-in Transport
Plugins (p. 216) for details on when a builtin transport (p. 367) is registered.

8.231.6 Shared Memory Transport Property Names in
Property QoS Policy of Domain Participant

The following table lists the predefined property names that can be
set in the com.rti.dds.infrastructure.PropertyQosPolicy (p. 1252) of a
com.rti.dds.domain.DomainParticipant (p. 629) to configure the builtin
shared memory transport (p. 367) plugin.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1442 Class Documentation

Name Descriptions

dds.transport.shmem.builtin.parent.address -
bit count

See Transport.Property -
t.address bit count
(p. 1573)

dds.transport.shmem.builtin.parent.properties -
bitmap

See Transport.Property -
t.properties bitmap
(p. 1574)

dds.transport.shmem.builtin.parent.gather -
send buffer count max

See Transport.Property -
t.gather send buffer count max
(p. 1574)

dds.transport.shmem.builtin.parent.message -
size max

See Transport.Property -
t.message size max
(p. 1574)

dds.transport.shmem.builtin.parent.allow -
interfaces

See Transport.Property -
t.allow interfaces list (p. 1575)
and Transport.Property t.allow -
interfaces list length.
Interfaces should be specified as
comma-separated strings, with each
comma delimiting an interface. For
example (p. 366): 127.0.0.1,eth0

dds.transport.shmem.builtin.parent.deny -
interfaces

See Transport.Property t.deny -
interfaces list (p. 1575) and
Transport.Property t.deny -
interfaces list length.
Interfaces should be specified as
comma-separated strings, with each
comma delimiting an interface. For
example (p. 366): 127.0.0.1,eth0

dds.transport.shmem.builtin.parent.allow -
multicast interfaces

See Transport.Property -
t.allow multicast interfaces list
(p. 1576) and
Transport.Property t.allow -
multicast interfaces list length.
Interfaces should be specified as
comma-separated strings, with each
comma delimiting an interface. For
example (p. 366): 127.0.0.1,eth0

dds.transport.shmem.builtin.parent.deny -
multicast interfaces

See Transport.Property t.deny -
multicast interfaces list (p. 1576)
and Transport.Property t.deny -
multicast interfaces list length.
Interfaces should be specified as
comma-separated strings, with each
comma delimiting an interface. For
example (p. 366): 127.0.0.1,eth0

dds.transport.shmem.builtin.received -
message count max

See
ShmemTransport.Property -
t.received message count max
(p. 1443)

dds.transport.shmem.builtin.receive -
buffer size

See
ShmemTransport.Property -
t.receive buffer size
(p. 1444)

Table 8.7: Property Strings for Shared Memory Transport (p. 1569)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.232 ShmemTransport.Property t Class Reference 1443

8.232 ShmemTransport.Property t Class Refer-
ence

Subclass of Transport.Property t (p. 1570) allowing specification of param-
eters that are specific to the shared-memory transport (p. 367).

Inheritance diagram for ShmemTransport.Property t::

Public Member Functions

ˆ Property t ()

Public Attributes

ˆ int received message count max
Number of messages that can be buffered in the receive queue.

ˆ int receive buffer size
The total number of bytes that can be buffered in the receive queue.

8.232.1 Detailed Description

Subclass of Transport.Property t (p. 1570) allowing specification of param-
eters that are specific to the shared-memory transport (p. 367).

See also:

TransportSupport.set builtin transport property() (p. 1603)

8.232.2 Constructor & Destructor Documentation

8.232.2.1 Property t ()

Create an empty ShmemTransport (p. 1439) property with default values

8.232.3 Member Data Documentation

8.232.3.1 int received message count max

Number of messages that can be buffered in the receive queue.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1444 Class Documentation

This does not guarantee that the Transport-Plugin will actually be able to buffer
received message count max messages of the maximum size set in Trans-
port.Property t.message size max (p. 1574). The total number of bytes
that can be buffered for a transport (p. 367) plug-in is actually controlled by
receive buffer size.

See also:

NDDS Transport Property t, NDDS TRANSPORT SHMEM -
RECEIVED MESSAGE COUNT MAX DEFAULT

8.232.3.2 int receive buffer size

The total number of bytes that can be buffered in the receive queue.

This number controls how much memory is allocated by the plugin for the
receive queue. The actual number of bytes allocated is:

size = receive_buffer_size + message_size_max +

received_message_count_max * fixedOverhead

where fixedOverhead is some small number of bytes used by the queue data
structure. The following rules are noted:

ˆ receive buffer size < message size max ∗ received message -
count max, then the transport (p. 367) plugin will not be able to store
received message count max messages of size message size max.

ˆ receive buffer size > message size max ∗ received message -
count max, then there will be memory allocated that cannot be used by
the plugin and thus wasted.

To optimize memory usage, the user is allowed to specify a size for the receive
queue to be less than that required to hold the maximum number of messages
which are all of the maximum size.

In most situations, the average message size may be far less than the maximum
message size. So for example (p. 366), if the maximum message size is 64 K
bytes, and the user configures the plugin to buffer at least 10 messages, then 640
K bytes of memory would be needed if all messages were 64 K bytes. Should
this be desired, then receive buffer size should be set to 640 K bytes.

However, if the average message size is only 10 K bytes, then the user could set
the receive buffer size to 100 K bytes. This allows the user to optimize the
memory usage of the plugin for the average case and yet allow the plugin to
handle the extreme case.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.232 ShmemTransport.Property t Class Reference 1445

NOTE, the queue will always be able to hold 1 message of message size max
bytes, no matter what the value of receive buffer size is.

See also:

NDDS TRANSPORT SHMEM RECEIVE BUFFER SIZE DEFAULT

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1446 Class Documentation

8.233 ShortSeq Class Reference

Instantiates com.rti.dds.util.Sequence (p. 1432) < short >.

Inheritance diagram for ShortSeq::

Public Member Functions

ˆ ShortSeq ()

Constructs an empty sequence of short integers with an initial maximum of
zero.

ˆ ShortSeq (int initialMaximum)

Constructs an empty sequence of short integers with the given initial maxi-
mum.

ˆ ShortSeq (short[] shorts)

Constructs a new sequence containing the given shorts.

ˆ boolean addAllShort (short[] elements, int offset, int length)

Append length elements from the given array to this sequence, starting at
index offset in that array.

ˆ boolean addAllShort (short[] elements)
ˆ void addShort (short element)

Append the element to the end of the sequence.

ˆ void addShort (int index, short element)

Shift all elements in the sequence starting from the given index and add the
element to the given index.

ˆ short getShort (int index)

Returns the short at the given index.

ˆ short setShort (int index, short element)

Set the new short at the given index and return the old short.

ˆ void setShort (int dstIndex, short[] elements, int srcIndex, int length)

Copy a portion of the given array into this sequence.

ˆ short[] toArrayShort (short[] array)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.233 ShortSeq Class Reference 1447

Return an array containing copy of the contents of this sequence.

ˆ int getMaximum ()

Get the current maximum number of elements that can be stored in this
sequence.

ˆ Object get (int index)

A wrapper for getShort(int) (p. 1448) that returns a java.lang.Short.

ˆ Object set (int index, Object element)

A wrapper for setShort() (p. 1449).

ˆ void add (int index, Object element)

A wrapper for addShort(int, int).

8.233.1 Detailed Description

Instantiates com.rti.dds.util.Sequence (p. 1432) < short >.

Instantiates:

<<generic>> (p. 271) com.rti.dds.util.Sequence (p. 1432)

See also:

short
com.rti.dds.util.Sequence (p. 1432)

8.233.2 Constructor & Destructor Documentation

8.233.2.1 ShortSeq ()

Constructs an empty sequence of short integers with an initial maximum of zero.

8.233.2.2 ShortSeq (int initialMaximum)

Constructs an empty sequence of short integers with the given initial maximum.

8.233.2.3 ShortSeq (short[] shorts)

Constructs a new sequence containing the given shorts.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1448 Class Documentation

Parameters:

shorts the initial contents of this sequence

Exceptions:

NullPointerException if the input array is null

8.233.3 Member Function Documentation

8.233.3.1 boolean addAllShort (short[] elements, int offset, int
length)

Append length elements from the given array to this sequence, starting at index
offset in that array.

Exceptions:

NullPointerException if the given array is null.

8.233.3.2 boolean addAllShort (short[] elements)

Exceptions:

NullPointerException if the given array is null

8.233.3.3 void addShort (short element)

Append the element to the end of the sequence.

8.233.3.4 void addShort (int index, short element)

Shift all elements in the sequence starting from the given index and add the
element to the given index.

8.233.3.5 short getShort (int index)

Returns the short at the given index.

Exceptions:

IndexOutOfBoundsException if the index is out of bounds.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.233 ShortSeq Class Reference 1449

8.233.3.6 short setShort (int index, short element)

Set the new short at the given index and return the old short.

Exceptions:

IndexOutOfBoundsException if the index is out of bounds.

8.233.3.7 void setShort (int dstIndex, short[] elements, int
srcIndex, int length)

Copy a portion of the given array into this sequence.

Parameters:

dstIndex the index at which to start copying into this sequence.

elements an array of primitive elements.

srcIndex the index at which to start copying from the given array.

length the number of elements to copy.

Exceptions:

IndexOutOfBoundsException if copying would cause access of data
outside array bounds.

8.233.3.8 short [] toArrayShort (short[] array)

Return an array containing copy of the contents of this sequence.

Parameters:

array The array into which this sequence should be copied. It may be
null. If it is, or if array length is too small, the array will be ignored,
and a new array of the necessary length will be created and copied
into instead.

Returns:

A non-null array containing a copy of the contents of this sequence.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1450 Class Documentation

8.233.3.9 int getMaximum ()

Get the current maximum number of elements that can be stored in this se-
quence.

The maximum of the sequence represents the maximum number of elements that
the underlying buffer can hold. It does not represent the current number of
elements.

The maximum is a non-negative number. It is initialized when the sequence is
first created.

The maximum can be changed implicitly by adding an element to the sequence
with add() (p. 1451), or explicitly by calling Sequence.setMaximum.

Returns:

the current maximum of the sequence.

See also:

Sequence.size()

Implements Sequence (p. 1433).

8.233.3.10 Object get (int index) [virtual]

A wrapper for getShort(int) (p. 1448) that returns a java.lang.Short.

See also:

java.util.List.get(int)

Implements AbstractPrimitiveSequence (p. 377).

8.233.3.11 Object set (int index, Object element) [virtual]

A wrapper for setShort() (p. 1449).

Exceptions:

ClassCastException if the element is not of type Short.

See also:

java.util.List.set(int, java.lang.Object)

Implements AbstractPrimitiveSequence (p. 377).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.233 ShortSeq Class Reference 1451

8.233.3.12 void add (int index, Object element) [virtual]

A wrapper for addShort(int, int).

Exceptions:

ClassCastException if the element is not of type Short.

See also:

java.util.List.add(int, java.lang.Object)

Implements AbstractPrimitiveSequence (p. 378).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1452 Class Documentation

8.234 StatusCondition Interface Reference

<<interface>> (p. 271) A specific com.rti.dds.infrastructure.Condition
(p. 451) that is associated with each com.rti.dds.infrastructure.Entity
(p. 912).

Inheritance diagram for StatusCondition::

Public Member Functions

ˆ int get enabled statuses ()

Get the list of statuses enabled on an com.rti.dds.infrastructure.Entity
(p. 912).

ˆ void set enabled statuses (int mask)

This operation defines the list of communication statuses that determine
the trigger value of the com.rti.dds.infrastructure.StatusCondition
(p. 1452).

ˆ Entity get entity ()

Get the com.rti.dds.infrastructure.Entity (p. 912) associated with the
com.rti.dds.infrastructure.StatusCondition (p. 1452).

8.234.1 Detailed Description

<<interface>> (p. 271) A specific com.rti.dds.infrastructure.Condition
(p. 451) that is associated with each com.rti.dds.infrastructure.Entity
(p. 912).

The trigger value of the com.rti.dds.infrastructure.StatusCondition
(p. 1452) depends on the communication status of that entity (e.g., arrival of
data, loss of information, etc.), ’filtered’ by the set of enabled statuses on the
com.rti.dds.infrastructure.StatusCondition (p. 1452).

See also:

Status Kinds (p. 106)
com.rti.dds.infrastructure.WaitSet (p. 1695),
com.rti.dds.infrastructure.Condition (p. 451)
com.rti.dds.infrastructure.Listener (p. 1154)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.234 StatusCondition Interface Reference 1453

8.234.2 Member Function Documentation

8.234.2.1 int get enabled statuses ()

Get the list of statuses enabled on an com.rti.dds.infrastructure.Entity
(p. 912).

Returns:

list of enabled statuses.

8.234.2.2 void set enabled statuses (int mask)

This operation defines the list of communication statuses that determine
the trigger value of the com.rti.dds.infrastructure.StatusCondition
(p. 1452).

This operation may change the trigger value of the
com.rti.dds.infrastructure.StatusCondition (p. 1452).

com.rti.dds.infrastructure.WaitSet (p. 1695) objects’ behavior depends on
the changes of the trigger value of their attached conditions. There-
fore, any com.rti.dds.infrastructure.WaitSet (p. 1695) to which the
com.rti.dds.infrastructure.StatusCondition (p. 1452) is attached is poten-
tially affected by this operation.

If this function is not invoked, the default list of enabled statuses includes all
the statuses.

Parameters:

mask <<in>> (p. 271) the list of enables statuses (see Status Kinds
(p. 106))

Exceptions:

One of the Standard Return Codes (p. 104)

8.234.2.3 Entity get entity ()

Get the com.rti.dds.infrastructure.Entity (p. 912) associated with the
com.rti.dds.infrastructure.StatusCondition (p. 1452).

There is exactly one com.rti.dds.infrastructure.Entity (p. 912) assocated
with each com.rti.dds.infrastructure.StatusCondition (p. 1452).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1454 Class Documentation

Returns:

com.rti.dds.infrastructure.Entity (p. 912) associated with the
com.rti.dds.infrastructure.StatusCondition (p. 1452).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.235 StatusKind Class Reference 1455

8.235 StatusKind Class Reference

Type for status kinds.

Static Public Attributes

ˆ static final int INCONSISTENT TOPIC STATUS

Another topic (p. 350) exists with the same name but different characteris-
tics.

ˆ static final int OFFERED DEADLINE MISSED STATUS

The deadline that the com.rti.dds.publication.DataWriter (p. 538) has
committed through its com.rti.dds.infrastructure.DeadlineQosPolicy
(p. 604) was not respected for a specific instance.

ˆ static final int REQUESTED DEADLINE MISSED STATUS

The deadline that the com.rti.dds.subscription.DataReader (p. 473)
was expecting through its com.rti.dds.infrastructure.DeadlineQosPolicy
(p. 604) was not respected for a specific instance.

ˆ static final int OFFERED INCOMPATIBLE QOS STATUS

A QosPolicy (p. 1314) value was incompatible with what was requested.

ˆ static final int REQUESTED INCOMPATIBLE QOS STATUS

A QosPolicy (p. 1314) value was incompatible with what is offered.

ˆ static final int SAMPLE LOST STATUS

A sample has been lost (i.e. was never received).

ˆ static final int SAMPLE REJECTED STATUS

A (received) sample has been rejected.

ˆ static final int DATA ON READERS STATUS

New data is available.

ˆ static final int DATA AVAILABLE STATUS

One or more new data samples have been received.

ˆ static final int LIVELINESS LOST STATUS

The liveliness that the com.rti.dds.publication.DataWriter
(p. 538) has committed to through its
com.rti.dds.infrastructure.LivelinessQosPolicy (p. 1164) was not
respected, thus com.rti.dds.subscription.DataReader (p. 473) entities

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1456 Class Documentation

will consider the com.rti.dds.publication.DataWriter (p. 538) as no
longer alive.

ˆ static final int LIVELINESS CHANGED STATUS

The liveliness of one or more com.rti.dds.publication.DataWriter
(p. 538) that were writing instances read through the
com.rti.dds.subscription.DataReader (p. 473) has changed. Some
com.rti.dds.publication.DataWriter (p. 538) have become alive or
not alive.

ˆ static final int PUBLICATION MATCHED STATUS

The com.rti.dds.publication.DataWriter (p. 538) has found
com.rti.dds.subscription.DataReader (p. 473) that matches the
com.rti.dds.topic.Topic (p. 1545) and has compatible QoS.

ˆ static final int SUBSCRIPTION MATCHED STATUS

The com.rti.dds.subscription.DataReader (p. 473) has found
com.rti.dds.publication.DataWriter (p. 538) that matches the
com.rti.dds.topic.Topic (p. 1545) and has compatible QoS.

ˆ static final int RELIABLE WRITER CACHE CHANGED -
STATUS

<<eXtension>> (p. 270) The number of unacknowledged samples in a reli-
able writer’s cache has changed such that it has reached a pre-defined trigger
point.

ˆ static final int RELIABLE READER ACTIVITY CHANGED -
STATUS

<<eXtension>> (p. 270) One or more reliable readers has become active
or inactive.

ˆ static final int DDS DATA WRITER CACHE STATUS

<<eXtension>> (p. 270) The status of the writer’s cache.

ˆ static final int DDS DATA WRITER PROTOCOL STATUS

<<eXtension>> (p. 270) The status of a writer’s internal protocol related
metrics

ˆ static final int DDS DATA READER CACHE STATUS

<<eXtension>> (p. 270) The status of the reader’s cache.

ˆ static final int DATA READER PROTOCOL STATUS

<<eXtension>> (p. 270) The status of a reader’s internal protocol related
metrics

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.235 StatusKind Class Reference 1457

ˆ static final int STATUS MASK NONE
No bits are set.

ˆ static final int STATUS MASK ALL
All bits are set.

8.235.1 Detailed Description

Type for status kinds.

Each concrete com.rti.dds.infrastructure.Entity (p. 912) is associated with
a set of ∗Status objects whose values represent the communication status of
that com.rti.dds.infrastructure.Entity (p. 912).

The communication statuses whose changes can be communicated to the appli-
cation depend on the com.rti.dds.infrastructure.Entity (p. 912).

Each status value can be accessed with a corresponding method
on the com.rti.dds.infrastructure.Entity (p. 912). The changes
on these status values cause activation of the corresponding
com.rti.dds.infrastructure.StatusCondition (p. 1452) objects and trigger
invocation of the proper com.rti.dds.infrastructure.Listener (p. 1154)
objects to asynchronously inform the application.

See also:

com.rti.dds.infrastructure.Entity (p. 912),
com.rti.dds.infrastructure.StatusCondition (p. 1452),
com.rti.dds.infrastructure.Listener (p. 1154)

8.235.2 Member Data Documentation

8.235.2.1 final int INCONSISTENT TOPIC STATUS [static]

Another topic (p. 350) exists with the same name but different characteristics.

Entity:

com.rti.dds.topic.Topic (p. 1545)

Status:

com.rti.dds.topic.InconsistentTopicStatus (p. 1077)

Listener:

com.rti.dds.topic.TopicListener (p. 1564)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1458 Class Documentation

8.235.2.2 final int OFFERED DEADLINE MISSED STATUS
[static]

The deadline that the com.rti.dds.publication.DataWriter (p. 538) has
committed through its com.rti.dds.infrastructure.DeadlineQosPolicy
(p. 604) was not respected for a specific instance.

Entity:

com.rti.dds.publication.DataWriter (p. 538)

QoS:

DEADLINE (p. 50)

Status:

com.rti.dds.publication.OfferedDeadlineMissedStatus (p. 1212)

Listener:

com.rti.dds.publication.DataWriterListener (p. 566)

8.235.2.3 final int REQUESTED DEADLINE MISSED STATUS
[static]

The deadline that the com.rti.dds.subscription.DataReader (p. 473)
was expecting through its com.rti.dds.infrastructure.DeadlineQosPolicy
(p. 604) was not respected for a specific instance.

Entity:

com.rti.dds.subscription.DataReader (p. 473)

QoS:

DEADLINE (p. 50)

Status:

com.rti.dds.subscription.RequestedDeadlineMissedStatus
(p. 1353)

Listener:

com.rti.dds.subscription.DataReaderListener (p. 501)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.235 StatusKind Class Reference 1459

8.235.2.4 final int OFFERED INCOMPATIBLE QOS STATUS
[static]

A QosPolicy (p. 1314) value was incompatible with what was requested.

Entity:

com.rti.dds.publication.DataWriter (p. 538)

Status:

com.rti.dds.publication.OfferedIncompatibleQosStatus (p. 1214)

Listener:

com.rti.dds.publication.DataWriterListener (p. 566)

8.235.2.5 final int REQUESTED INCOMPATIBLE QOS STATUS
[static]

A QosPolicy (p. 1314) value was incompatible with what is offered.

Entity:

com.rti.dds.subscription.DataReader (p. 473)

Status:

com.rti.dds.subscription.RequestedIncompatibleQosStatus
(p. 1354)

Listener:

com.rti.dds.subscription.DataReaderListener (p. 501)

8.235.2.6 final int SAMPLE LOST STATUS [static]

A sample has been lost (i.e. was never received).

Entity:

com.rti.dds.subscription.Subscriber (p. 1478)

Status:

com.rti.dds.subscription.SampleLostStatus (p. 1415)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1460 Class Documentation

Listener:

com.rti.dds.subscription.SubscriberListener (p. 1504)

8.235.2.7 final int SAMPLE REJECTED STATUS [static]

A (received) sample has been rejected.

Entity:

com.rti.dds.subscription.DataReader (p. 473)

QoS:

RESOURCE LIMITS (p. 102)

Status:

com.rti.dds.subscription.SampleRejectedStatus (p. 1422)

Listener:

com.rti.dds.subscription.DataReaderListener (p. 501)

8.235.2.8 final int DATA ON READERS STATUS [static]

New data is available.

Entity:

com.rti.dds.subscription.Subscriber (p. 1478)

Listener:

com.rti.dds.subscription.SubscriberListener (p. 1504)

8.235.2.9 final int DATA AVAILABLE STATUS [static]

One or more new data samples have been received.

Entity:

com.rti.dds.subscription.DataReader (p. 473)

Listener:

com.rti.dds.subscription.DataReaderListener (p. 501)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.235 StatusKind Class Reference 1461

8.235.2.10 final int LIVELINESS LOST STATUS [static]

The liveliness that the com.rti.dds.publication.DataWriter (p. 538) has
committed to through its com.rti.dds.infrastructure.LivelinessQosPolicy
(p. 1164) was not respected, thus com.rti.dds.subscription.DataReader
(p. 473) entities will consider the com.rti.dds.publication.DataWriter
(p. 538) as no longer alive.

Entity:

com.rti.dds.publication.DataWriter (p. 538)

QoS:

LIVELINESS (p. 78)

Status:

com.rti.dds.publication.LivelinessLostStatus (p. 1162)

Listener:

com.rti.dds.publication.DataWriterListener (p. 566)

8.235.2.11 final int LIVELINESS CHANGED STATUS [static]

The liveliness of one or more com.rti.dds.publication.DataWriter
(p. 538) that were writing instances read through the
com.rti.dds.subscription.DataReader (p. 473) has changed. Some
com.rti.dds.publication.DataWriter (p. 538) have become alive or not -
alive.

Entity:

com.rti.dds.subscription.DataReader (p. 473)

QoS:

LIVELINESS (p. 78)

Status:

com.rti.dds.subscription.LivelinessChangedStatus (p. 1159)

Listener:

com.rti.dds.subscription.DataReaderListener (p. 501)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1462 Class Documentation

8.235.2.12 final int PUBLICATION MATCHED STATUS
[static]

The com.rti.dds.publication.DataWriter (p. 538) has found
com.rti.dds.subscription.DataReader (p. 473) that matches the
com.rti.dds.topic.Topic (p. 1545) and has compatible QoS.

Entity:

com.rti.dds.publication.DataWriter (p. 538)

Status:

com.rti.dds.publication.PublicationMatchedStatus (p. 1274)

Listener:

com.rti.dds.publication.DataWriterListener (p. 566)

8.235.2.13 final int SUBSCRIPTION MATCHED STATUS
[static]

The com.rti.dds.subscription.DataReader (p. 473) has found
com.rti.dds.publication.DataWriter (p. 538) that matches the
com.rti.dds.topic.Topic (p. 1545) and has compatible QoS.

Entity:

com.rti.dds.subscription.DataReader (p. 473)

Status:

com.rti.dds.subscription.SubscriptionMatchedStatus (p. 1520)

Listener:

com.rti.dds.subscription.DataReaderListener (p. 501)

8.235.2.14 final int RELIABLE WRITER CACHE CHANGED -
STATUS [static]

<<eXtension>> (p. 270) The number of unacknowledged samples in a reli-
able writer’s cache has changed such that it has reached a pre-defined trigger
point.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.235 StatusKind Class Reference 1463

This status is considered changed at the following times: the
cache is empty (i.e. contains no unacknowledge samples), full
(i.e. the sample count has reached the value specified in
com.rti.dds.infrastructure.ResourceLimitsQosPolicy.max samples
(p. 1359)), or the number of samples has reached a high (see
com.rti.dds.infrastructure.RtpsReliableWriterProtocol t.high -
watermark (p. 1381)) or low (see com.rti.dds.infrastructure.RtpsReliableWriterProtocol -
t.low watermark (p. 1381)) watermark.

Entity:

com.rti.dds.publication.DataWriter (p. 538)

Status:

com.rti.dds.publication.ReliableWriterCacheChangedStatus
(p. 1345)

Listener:

com.rti.dds.publication.DataWriterListener (p. 566)

8.235.2.15 final int RELIABLE READER ACTIVITY -
CHANGED STATUS [static]

<<eXtension>> (p. 270) One or more reliable readers has become active or
inactive.

A reliable reader is considered active by a reliable writer with which
it is matched if that reader acknowledges the samples it has been sent
in a timely fashion. For the definition of ”timely” in this case, see
com.rti.dds.infrastructure.RtpsReliableWriterProtocol t (p. 1378)
and com.rti.dds.publication.ReliableReaderActivityChangedStatus
(p. 1342).

See also:

com.rti.dds.infrastructure.RtpsReliableWriterProtocol t (p. 1378)
com.rti.dds.publication.ReliableReaderActivityChangedStatus
(p. 1342)

8.235.2.16 final int DDS DATA WRITER CACHE STATUS
[static]

<<eXtension>> (p. 270) The status of the writer’s cache.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1464 Class Documentation

8.235.2.17 final int DDS DATA WRITER PROTOCOL STATUS
[static]

<<eXtension>> (p. 270) The status of a writer’s internal protocol related
metrics

The status of a writer’s internal protocol related metrics, like the number of
samples pushed, pulled, filtered; and status of wire protocol traffic.

8.235.2.18 final int DDS DATA READER CACHE STATUS
[static]

<<eXtension>> (p. 270) The status of the reader’s cache.

8.235.2.19 final int DATA READER PROTOCOL STATUS
[static]

<<eXtension>> (p. 270) The status of a reader’s internal protocol related
metrics

The status of a reader’s internal protocol related metrics, like the number of
samples received, filtered, rejected; and status of wire protocol traffic.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.236 StringDataReader Class Reference 1465

8.236 StringDataReader Class Reference

<<interface>> (p. 271) Instantiates DataReader < String >.

Inheritance diagram for StringDataReader::

Public Member Functions

ˆ void read (StringSeq received data, SampleInfoSeq info seq, int max -
samples, int sample states, int view states, int instance states)

Access a collection of data samples from the
com.rti.dds.subscription.DataReader (p. 473).

ˆ void take (StringSeq received data, SampleInfoSeq info seq, int max -
samples, int sample states, int view states, int instance states)

Access a collection of data-samples from the
com.rti.dds.subscription.DataReader (p. 473).

ˆ void read w condition (StringSeq received data, SampleInfoSeq
info seq, int max samples, ReadCondition condition)

Accesses via com.rti.dds.type.builtin.StringDataReader.read
(p. 1466) the samples that match the criteria specified in the
com.rti.dds.subscription.ReadCondition (p. 1326).

ˆ void take w condition (StringSeq received data, SampleInfoSeq
info seq, int max samples, ReadCondition condition)

Analogous to com.rti.dds.type.builtin.StringDataReader.read -
w condition (p. 1466) except it accesses samples via the
com.rti.dds.type.builtin.StringDataReader.take (p. 1466) operation.

ˆ String read next sample (SampleInfo sample info)
Copies the next not-previously-accessed data value from the
com.rti.dds.subscription.DataReader (p. 473).

ˆ String take next sample (SampleInfo sample info)
Copies the next not-previously-accessed data value from the
com.rti.dds.subscription.DataReader (p. 473).

8.236.1 Detailed Description

<<interface>> (p. 271) Instantiates DataReader < String >.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1466 Class Documentation

See also:

com.rti.dds.topic.example.FooDataReader
com.rti.dds.subscription.DataReader (p. 473)

8.236.2 Member Function Documentation

8.236.2.1 void read (StringSeq received data, SampleInfoSeq
info seq, int max samples, int sample states, int
view states, int instance states)

Access a collection of data samples from the
com.rti.dds.subscription.DataReader (p. 473).

See also:

com.rti.dds.topic.example.FooDataReader.read

8.236.2.2 void take (StringSeq received data, SampleInfoSeq
info seq, int max samples, int sample states, int
view states, int instance states)

Access a collection of data-samples from the
com.rti.dds.subscription.DataReader (p. 473).

See also:

com.rti.dds.topic.example.FooDataReader.take

8.236.2.3 void read w condition (StringSeq received data,
SampleInfoSeq info seq, int max samples,
ReadCondition condition)

Accesses via com.rti.dds.type.builtin.StringDataReader.read
(p. 1466) the samples that match the criteria specified in the
com.rti.dds.subscription.ReadCondition (p. 1326).

See also:

com.rti.dds.topic.example.FooDataReader.read w condition

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.236 StringDataReader Class Reference 1467

8.236.2.4 void take w condition (StringSeq received data,
SampleInfoSeq info seq, int max samples,
ReadCondition condition)

Analogous to com.rti.dds.type.builtin.StringDataReader.read -
w condition (p. 1466) except it accesses samples via the
com.rti.dds.type.builtin.StringDataReader.take (p. 1466) operation.

See also:

com.rti.dds.topic.example.FooDataReader.take w condition

8.236.2.5 String read next sample (SampleInfo sample info)

Copies the next not-previously-accessed data value from the
com.rti.dds.subscription.DataReader (p. 473).

See also:

com.rti.dds.topic.example.FooDataReader.read next sample

8.236.2.6 String take next sample (SampleInfo sample info)

Copies the next not-previously-accessed data value from the
com.rti.dds.subscription.DataReader (p. 473).

See also:

com.rti.dds.topic.example.FooDataReader.take next sample

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1468 Class Documentation

8.237 StringDataWriter Class Reference

<<interface>> (p. 271) Instantiates DataWriter < String >.

Inheritance diagram for StringDataWriter::

Public Member Functions

ˆ void write (String instance data, InstanceHandle t handle)
Modifies the value of a string data instance.

ˆ void write w timestamp (String instance data, InstanceHandle t
handle, Time t source timestamp)

Performs the same function as com.rti.dds.type.builtin.StringDataWriter.write
(p. 1468) except that it also provides the value for the source timestamp.

8.237.1 Detailed Description

<<interface>> (p. 271) Instantiates DataWriter < String >.

See also:

com.rti.dds.topic.example.FooDataWriter
com.rti.dds.publication.DataWriter (p. 538)

8.237.2 Member Function Documentation

8.237.2.1 void write (String instance data, InstanceHandle t
handle)

Modifies the value of a string data instance.

See also:

com.rti.dds.topic.example.FooDataWriter.write

8.237.2.2 void write w timestamp (String instance data,
InstanceHandle t handle, Time t source timestamp)

Performs the same function as com.rti.dds.type.builtin.StringDataWriter.write
(p. 1468) except that it also provides the value for the source timestamp.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.237 StringDataWriter Class Reference 1469

See also:

com.rti.dds.topic.example.FooDataWriter.write w timestamp

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1470 Class Documentation

8.238 StringSeq Class Reference

Declares IDL sequence < String > .

Inheritance diagram for StringSeq::

Public Member Functions

ˆ StringSeq ()
Constructs an empty sequence of strings with an initial maximum of zero.

ˆ StringSeq (int initialMaximum)
Constructs an empty sequence of strings with the given initial maximum.

ˆ StringSeq (Collection strings)
Constructs a new sequence containing the given strings.

ˆ final Object copy from (Object src)

Static Public Member Functions

ˆ static void readStringArray (String[] value, CdrObjectInput in, int
length) throws IOException

ˆ static void writeStringArray (String[] value, CdrObjectOutput out, int
length, int maxStringLength) throws IOException

8.238.1 Detailed Description

Declares IDL sequence < String > .

See also:

com.rti.dds.util.Sequence (p. 1432)

Instantiates com.rti.dds.util.Sequence (p. 1432) < String > with value
type semantics. StringSeq (p. 1470) is a sequence that contains strings.

Instantiates:

<<generic>> (p. 271) com.rti.dds.util.Sequence (p. 1432)

See also:

com.rti.dds.util.Sequence (p. 1432)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.238 StringSeq Class Reference 1471

8.238.2 Constructor & Destructor Documentation

8.238.2.1 StringSeq ()

Constructs an empty sequence of strings with an initial maximum of zero.

8.238.2.2 StringSeq (int initialMaximum)

Constructs an empty sequence of strings with the given initial maximum.

8.238.2.3 StringSeq (Collection strings)

Constructs a new sequence containing the given strings.

Parameters:

strings the initial contents of this sequence

Exceptions:

NullPointerException if the input collection is null

8.238.3 Member Function Documentation

8.238.3.1 final Object copy from (Object src)

Copy data into this object from another. The result of this method is that
both this and src will be the same size and contain the same data.

Parameters:

src The Object which contains the data to be copied

Returns:

Generally, return this but special cases (such as Enum) exist.

Exceptions:

NullPointerException If src is null OR if there are null objects con-
tained in this sequence.

ClassCastException If src is not the same type as this.

See also:

com.rti.dds.infrastructure.Copyable.copy from
(p. 466)(java.lang.Object)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1472 Class Documentation

Implements Copyable (p. 466).

8.238.3.2 static void readStringArray (String[] value,
CdrObjectInput in, int length) throws IOException
[static]

Read array of strings. The length specified must match the expected length of
array. Otherwise, the stream will be positioned incorrectly, leading to corrupt
reads. The length of array must be at least the value of length parameter
(otherwise, ArrayOutOfBoundException will be thrown).

Parameters:

value array to read into

in Interface for reading object in CDR encoding.

length the length of array (<= value.length)

8.238.3.3 static void writeStringArray (String[] value,
CdrObjectOutput out, int length, int maxStringLength)
throws IOException [static]

Write array of string up to the specified length

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.239 StringTypeSupport Class Reference 1473

8.239 StringTypeSupport Class Reference

<<interface>> (p. 271) String type support.

Inheritance diagram for StringTypeSupport::

Static Public Member Functions

ˆ static void register type (DomainParticipant participant, String
type name)

Allows an application to communicate to RTI Connext the existence of the
String data type.

ˆ static void unregister type (DomainParticipant participant, String
type name)

Allows an application to unregister the String data type from RTI Connext.
After calling unregister type, no further communication using this type is
possible.

ˆ static String get type name ()

Get the default name for the String type.

8.239.1 Detailed Description

<<interface>> (p. 271) String type support.

8.239.2 Member Function Documentation

8.239.2.1 static void register type (DomainParticipant participant,
String type name) [static]

Allows an application to communicate to RTI Connext the existence of the
String data type.

By default, The String built-in type is automatically registered when
a DomainParticipant is created using the type name returned by
com.rti.dds.type.builtin.StringTypeSupport.get type name (p. 1475).
Therefore, the usage of this function is optional and it is only required when the
automatic built-in type registration is disabled using the participant property
”dds.builtin type.auto register”.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1474 Class Documentation

This method can also be used to register the same
com.rti.dds.type.builtin.StringTypeSupport (p. 1473) with a
com.rti.dds.domain.DomainParticipant (p. 629) using different values for
the type name.

If register type is called multiple times with the same
com.rti.dds.domain.DomainParticipant (p. 629) and type name, the
second (and subsequent) registrations are ignored by the operation.

Parameters:

participant <<in>> (p. 271) the com.rti.dds.domain.DomainParticipant
(p. 629) to register the data type String with. Cannot be null.

type name <<in>> (p. 271) the type name under with the data type
String is registered with the participant; this type name is used
when creating a new com.rti.dds.topic.Topic (p. 1545). (See
com.rti.dds.domain.DomainParticipant.create topic (p. 670).)
The name may not be null or longer than 255 characters.

Exceptions:

One of the Standard Return Codes (p. 104), RETCODE -
PRECONDITION NOT MET or RETCODE OUT OF -
RESOURCES.

MT Safety:

UNSAFE on the FIRST call. It is not safe for two threads to simultaneously
make the first call to register a type. Subsequent calls are thread safe.

See also:

com.rti.dds.domain.DomainParticipant.create topic (p. 670)

8.239.2.2 static void unregister type (DomainParticipant
participant, String type name) [static]

Allows an application to unregister the String data type from RTI Connext.
After calling unregister type, no further communication using this type is pos-
sible.

Precondition:

The String type with type name is registered with the participant and all
com.rti.dds.topic.Topic (p. 1545) objects referencing the type have been
destroyed. If the type is not registered with the participant, or if any
com.rti.dds.topic.Topic (p. 1545) is associated with the type, the opera-
tion will fail with RETCODE ERROR.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.239 StringTypeSupport Class Reference 1475

Postcondition:

All information about the type is removed from RTI Connext. No further
communication using this type is possible.

Parameters:

participant <<in>> (p. 271) the com.rti.dds.domain.DomainParticipant
(p. 629) to unregister the data type String from. Cannot be null.

type name <<in>> (p. 271) the type name under with the data type
String is registered with the participant. The name should match
a name that has been previously used to register a type with the
participant. Cannot be null.

Exceptions:

One of the Standard Return Codes (p. 104), RETCODE BAD -
PARAMETER or RETCODE ERROR

MT Safety:

SAFE.

See also:

com.rti.dds.type.builtin.StringTypeSupport.register type
(p. 1473)

8.239.2.3 static String get type name () [static]

Get the default name for the String type.

Can be used for calling com.rti.dds.type.builtin.StringTypeSupport.register -
type (p. 1473) or creating com.rti.dds.topic.Topic (p. 1545).

Returns:

default name for the String type.

See also:

com.rti.dds.type.builtin.StringTypeSupport.register type
(p. 1473)
com.rti.dds.domain.DomainParticipant.create topic (p. 670)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1476 Class Documentation

8.240 StructMember Class Reference

A description of a member of a struct.

Inherits java.io.Serializable.

Public Member Functions

ˆ StructMember (String name, boolean is pointer, short bits, boolean
is key, TypeCode type)

Public Attributes

ˆ String name
The name of the struct member.

ˆ TypeCode type
The type of the struct member.

ˆ boolean is pointer
Indicates whether the struct member is a pointer or not.

ˆ short bits
Number of bits of a bitfield member.

ˆ boolean is key
Indicates if the struct member is a key member or not.

8.240.1 Detailed Description

A description of a member of a struct.

See also:

TypeCodeFactory.create struct tc (p. 1644)

8.240.2 Constructor & Destructor Documentation

8.240.2.1 StructMember (String name, boolean is pointer, short
bits, boolean is key, TypeCode type)

Constructs a StructMember (p. 1476) object initialized with the given values.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.240 StructMember Class Reference 1477

8.240.3 Member Data Documentation

8.240.3.1 String name

The name of the struct member.

Cannot be null.

8.240.3.2 TypeCode type

The type of the struct member.

Cannot be null.

8.240.3.3 boolean is pointer

Indicates whether the struct member is a pointer or not.

8.240.3.4 short bits

Number of bits of a bitfield member.

If the struct member is a bitfield, this field contains the number of bits of
the bitfield. Otherwise, bits should contain TypeCode.NOT BITFIELD
(p. 1640).

8.240.3.5 boolean is key

Indicates if the struct member is a key member or not.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1478 Class Documentation

8.241 Subscriber Interface Reference

<<interface>> (p. 271) A subscriber is the object responsible for actually
receiving data from a subscription (p. 343).

Inheritance diagram for Subscriber::

Public Member Functions

ˆ void get default datareader qos (DataReaderQos qos)

Copies the default com.rti.dds.subscription.DataReaderQos (p. 518)
values into the provided com.rti.dds.subscription.DataReaderQos
(p. 518) instance.

ˆ void set default datareader qos (DataReaderQos qos)

Sets the default com.rti.dds.subscription.DataReaderQos (p. 518) val-
ues for this subscriber.

ˆ void set default datareader qos with profile (String library name,
String profile name)

<<eXtension>> (p. 270) Set the default
com.rti.dds.subscription.DataReaderQos (p. 518) values for this
subscriber based on the input XML QoS profile.

ˆ DataReader create datareader (TopicDescription topic,
DataReaderQos qos, DataReaderListener listener, int mask)

Creates a com.rti.dds.subscription.DataReader (p. 473) that will be at-
tached and belong to the com.rti.dds.subscription.Subscriber (p. 1478).

ˆ DataReader create datareader with profile (TopicDescription
topic, String library name, String profile name, DataReaderListener
listener, int mask)

<<eXtension>> (p. 270) Creates a com.rti.dds.subscription.DataReader
(p. 473) object using the com.rti.dds.subscription.DataReaderQos
(p. 518) associated with the input XML QoS profile.

ˆ void delete datareader (DataReader a datareader)

Deletes a com.rti.dds.subscription.DataReader (p. 473) that belongs to
the com.rti.dds.subscription.Subscriber (p. 1478).

ˆ DataReader lookup datareader (String topic name)

Retrieves an existing com.rti.dds.subscription.DataReader (p. 473).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.241 Subscriber Interface Reference 1479

ˆ void get datareaders (DataReaderSeq readers, int sample states, int
view states, int instance states)

Allows the application to access the com.rti.dds.subscription.DataReader
(p. 473) objects that contain samples with the specified sample states,
view states and instance states.

ˆ void get all datareaders (DataReaderSeq readers)

Retrieve all the DataReaders created from this Subscriber (p. 1478).

ˆ void notify datareaders ()

Invokes the operation com.rti.dds.subscription.DataReaderListener.on -
data available() (p. 503) on the com.rti.dds.subscription.DataReaderListener
(p. 501) objects attached to contained
com.rti.dds.subscription.DataReader (p. 473) entities with Sta-
tusKind.DATA AVAILABLE STATUS that is considered changed as
described in Changes in read communication status (p. 108).

ˆ void set qos (SubscriberQos qos)

Sets the subscriber QoS.

ˆ void set qos with profile (String library name, String profile name)

<<eXtension>> (p. 270) Change the QoS of this subscriber using the input
XML QoS profile.

ˆ void get qos (SubscriberQos qos)

Gets the subscriber QoS.

ˆ String get default library ()

<<eXtension>> (p. 270) Gets the default XML library associated with a
com.rti.dds.subscription.Subscriber (p. 1478).

ˆ void set default library (String library name)

<<eXtension>> (p. 270) Sets the default XML library for a
com.rti.dds.subscription.Subscriber (p. 1478).

ˆ String get default profile ()

<<eXtension>> (p. 270) Gets the default XML profile associated with a
com.rti.dds.subscription.Subscriber (p. 1478).

ˆ void set default profile (String library name, String profile name)

<<eXtension>> (p. 270) Sets the default XML profile for a
com.rti.dds.subscription.Subscriber (p. 1478).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1480 Class Documentation

ˆ String get default profile library ()

<<eXtension>> (p. 270) Gets the library where the default XML QoS pro-
file is contained for a com.rti.dds.subscription.Subscriber (p. 1478).

ˆ void set listener (SubscriberListener l, int mask)

Sets the subscriber listener.

ˆ SubscriberListener get listener ()

Get the subscriber listener.

ˆ void call listenerT (int mask)

Call the subscriber listener.

ˆ void begin access ()

Indicates that the application is about to access the data samples in any of
the com.rti.dds.subscription.DataReader (p. 473) objects attached to the
com.rti.dds.subscription.Subscriber (p. 1478).

ˆ void end access ()

Indicates that the application has finished accessing the data samples in
com.rti.dds.subscription.DataReader (p. 473) objects managed by the
com.rti.dds.subscription.Subscriber (p. 1478).

ˆ void copy from topic qos (DataReaderQos datareader qos, Topic-
Qos topic qos)

Copies the policies in the com.rti.dds.topic.TopicQos (p. 1566) to the
corresponding policies in the com.rti.dds.subscription.DataReaderQos
(p. 518).

ˆ DomainParticipant get participant ()

Returns the com.rti.dds.domain.DomainParticipant (p. 629) to which
the com.rti.dds.subscription.Subscriber (p. 1478) belongs.

ˆ void delete contained entities ()

Deletes all the entities that were created by means of the ”create” operation
on the com.rti.dds.subscription.Subscriber (p. 1478).

Static Public Attributes

ˆ static final DataReaderQos DATAREADER QOS DEFAULT

Special value for creating data reader with default QoS.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.241 Subscriber Interface Reference 1481

ˆ static final DataReaderQos DATAREADER QOS USE TOPIC -
QOS = new DataReaderQos()

Special value for creating com.rti.dds.subscription.DataReader
(p. 473) with a combination of the default
com.rti.dds.subscription.DataReaderQos (p. 518) and the
com.rti.dds.topic.TopicQos (p. 1566).

8.241.1 Detailed Description

<<interface>> (p. 271) A subscriber is the object responsible for actually
receiving data from a subscription (p. 343).

QoS:

com.rti.dds.subscription.SubscriberQos (p. 1506)

Status:

StatusKind.DATA ON READERS STATUS

Listener:

com.rti.dds.subscription.SubscriberListener (p. 1504)

A subscriber acts on the behalf of one or several
com.rti.dds.subscription.DataReader (p. 473) objects that are related to
it. When it receives data (from the other parts of the system), it builds the list
of concerned com.rti.dds.subscription.DataReader (p. 473) objects and
then indicates to the application that data is available through its listener or
by enabling related conditions.

The application can access the list of concerned
com.rti.dds.subscription.DataReader (p. 473) objects through the
operation get datareaders() (p. 1491) and then access the data available
through operations on the com.rti.dds.subscription.DataReader (p. 473).

The following operations may be called even if the
com.rti.dds.subscription.Subscriber (p. 1478) is not enabled. Other
operations will the value RETCODE NOT ENABLED if called on a disabled
com.rti.dds.subscription.Subscriber (p. 1478):

ˆ The base-class operations com.rti.dds.subscription.Subscriber.set -
qos (p. 1493), com.rti.dds.subscription.Subscriber.set qos -
with profile (p. 1494), com.rti.dds.subscription.Subscriber.get -
qos (p. 1495), com.rti.dds.subscription.Subscriber.set listener
(p. 1498), com.rti.dds.subscription.Subscriber.get listener

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1482 Class Documentation

(p. 1498), com.rti.dds.infrastructure.Entity.enable (p. 915),
com.rti.dds.infrastructure.Entity.get statuscondition (p. 917),
com.rti.dds.infrastructure.Entity.get status changes (p. 917)

ˆ com.rti.dds.subscription.Subscriber.create datareader (p. 1485),
com.rti.dds.subscription.Subscriber.create datareader with -
profile (p. 1487), com.rti.dds.subscription.Subscriber.delete -
datareader (p. 1489), com.rti.dds.subscription.Subscriber.delete -
contained entities (p. 1501), com.rti.dds.subscription.Subscriber.set -
default datareader qos (p. 1483), com.rti.dds.subscription.Subscriber.set -
default datareader qos with profile (p. 1484),
com.rti.dds.subscription.Subscriber.get default datareader qos
(p. 1482), com.rti.dds.subscription.Subscriber.set default library
(p. 1495), com.rti.dds.subscription.Subscriber.set default profile
(p. 1496)

All operations except for the base-class operations set qos() (p. 1493), set -
qos with profile() (p. 1494), get qos() (p. 1495), set listener() (p. 1498),
get listener() (p. 1498), enable() (p. 915) and create datareader()
(p. 1485) may fail with RETCODE NOT ENABLED.

See also:

Operations Allowed in Listener Callbacks (p. 1156)

8.241.2 Member Function Documentation

8.241.2.1 void get default datareader qos (DataReaderQos qos)

Copies the default com.rti.dds.subscription.DataReaderQos (p. 518) val-
ues into the provided com.rti.dds.subscription.DataReaderQos (p. 518) in-
stance.

The retrieved qos will match the set of values specified on the last successful
call to com.rti.dds.subscription.Subscriber.set default datareader -
qos (p. 1483), or com.rti.dds.subscription.Subscriber.set default -
datareader qos with profile (p. 1484), or else, if the call was never made,
the default values from is owning com.rti.dds.domain.DomainParticipant
(p. 629).

This method may potentially allocate memory depending on the sequences con-
tained in some QoS policies.

MT Safety:

UNSAFE. It is not safe to retrieve the default QoS value from
a subscriber while another thread may be simultaneously calling

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.241 Subscriber Interface Reference 1483

com.rti.dds.subscription.Subscriber.set default datareader qos
(p. 1483)

Parameters:

qos <<inout>> (p. 271) com.rti.dds.subscription.DataReaderQos
(p. 518) to be filled-up. Cannot be NULL.

Exceptions:

One of the Standard Return Codes (p. 104)

See also:

Subscriber.DATAREADER QOS DEFAULT (p. 190)
com.rti.dds.subscription.Subscriber.create datareader (p. 1485)

8.241.2.2 void set default datareader qos (DataReaderQos qos)

Sets the default com.rti.dds.subscription.DataReaderQos (p. 518) values
for this subscriber.

This call causes the default values inherited from the owning
com.rti.dds.domain.DomainParticipant (p. 629) to be overridden.

This default value will be used for newly created
com.rti.dds.subscription.DataReader (p. 473) if Sub-
scriber.DATAREADER QOS DEFAULT (p. 190) is specified as the qos
parameter when com.rti.dds.subscription.Subscriber.create datareader
(p. 1485) is called.

Precondition:

The specified QoS policies must be consistent, or else the operation will
have no effect and fail with RETCODE INCONSISTENT POLICY

MT Safety:

UNSAFE. It is not safe to set the default QoS value from a
subscriber while another thread may be simultaneously calling
com.rti.dds.subscription.Subscriber.set default datareader -
qos (p. 1483), com.rti.dds.subscription.Subscriber.get -
default datareader qos (p. 1482) or calling
com.rti.dds.subscription.Subscriber.create datareader (p. 1485)
with Subscriber.DATAREADER QOS DEFAULT (p. 190) as the
qos parameter.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1484 Class Documentation

Parameters:

qos <<in>> (p. 271) The default com.rti.dds.subscription.DataReaderQos
(p. 518) to be set to. The special value Sub-
scriber.DATAREADER QOS DEFAULT (p. 190) may
be passed as qos to indicate that the default QoS should
be reset back to the initial values the factory would used if
com.rti.dds.subscription.Subscriber.set default datareader -
qos (p. 1483) had never been called. Cannot be NULL.

Exceptions:

One of the Standard Return Codes (p. 104), or or RETCODE -
INCONSISTENT POLICY

8.241.2.3 void set default datareader qos with profile (String
library name, String profile name)

<<eXtension>> (p. 270) Set the default
com.rti.dds.subscription.DataReaderQos (p. 518) values for this sub-
scriber based on the input XML QoS profile.

This default value will be used for newly created
com.rti.dds.subscription.DataReader (p. 473) if Sub-
scriber.DATAREADER QOS DEFAULT (p. 190) is specified as the qos
parameter when com.rti.dds.subscription.Subscriber.create datareader
(p. 1485) is called.

Precondition:

The com.rti.dds.subscription.DataReaderQos (p. 518) contained in
the specified XML QoS profile must be consistent, or else the operation
will have no effect and fail with RETCODE INCONSISTENT POLICY

MT Safety:

UNSAFE. It is not safe to set the default QoS value
from a com.rti.dds.subscription.Subscriber (p. 1478)
while another thread may be simultaneously calling
com.rti.dds.subscription.Subscriber.set default datareader -
qos (p. 1483), com.rti.dds.subscription.Subscriber.get -
default datareader qos (p. 1482) or calling
com.rti.dds.subscription.Subscriber.create datareader (p. 1485)
with Subscriber.DATAREADER QOS DEFAULT (p. 190) as the
qos parameter.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.241 Subscriber Interface Reference 1485

Parameters:

library name <<in>> (p. 271) Library name containing the XML QoS
profile. If library name is null RTI Connext will use the default
library (see com.rti.dds.subscription.Subscriber.set default -
library (p. 1495)).

profile name <<in>> (p. 271) XML QoS Profile name. If pro-
file name is null RTI Connext will use the default profile (see
com.rti.dds.subscription.Subscriber.set default profile
(p. 1496)).

If the input profile cannot be found the method fails with RETCODE ERROR.

Exceptions:

One of the Standard Return Codes (p. 104), or RETCODE -
INCONSISTENT POLICY

See also:

Subscriber.DATAREADER QOS DEFAULT (p. 190)
com.rti.dds.subscription.Subscriber.create datareader with -
profile (p. 1487)

8.241.2.4 DataReader create datareader (TopicDescription topic,
DataReaderQos qos, DataReaderListener listener, int
mask)

Creates a com.rti.dds.subscription.DataReader (p. 473) that will be at-
tached and belong to the com.rti.dds.subscription.Subscriber (p. 1478).

For each application-defined type Foo, there is an implied, auto-generated
class com.rti.dds.topic.example.FooDataReader (an incarnation of Foo-
DataReader) that extends com.rti.dds.subscription.DataReader (p. 473)
and contains the operations to read data of type Foo.

Note that a common application pattern to construct the QoS for the
com.rti.dds.subscription.DataReader (p. 473) is to:

ˆ Retrieve the QoS policies on the associated com.rti.dds.topic.Topic
(p. 1545) by means of the com.rti.dds.topic.Topic.get qos (p. 1548)
operation.

ˆ Retrieve the default com.rti.dds.subscription.DataReader (p. 473)
qos by means of the com.rti.dds.subscription.Subscriber.get -
default datareader qos (p. 1482) operation.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1486 Class Documentation

ˆ Combine those two QoS policies (for example (p. 349), us-
ing com.rti.dds.subscription.Subscriber.copy from topic qos
(p. 1500)) and selectively modify policies as desired

ˆ Use the resulting QoS policies to construct the
com.rti.dds.subscription.DataReader (p. 473).

When a com.rti.dds.subscription.DataReader (p. 473) is cre-
ated, only those transports already registered are available to the
com.rti.dds.subscription.DataReader (p. 473). See Built-in Trans-
port Plugins (p. 216) for details on when a builtin (p. 348) transport is
registered.

MT Safety:

UNSAFE. If Subscriber.DATAREADER QOS DEFAULT
(p. 190) is used for the qos parameter, it is not safe to create
the datareader while another thread may be simultaneously calling
com.rti.dds.subscription.Subscriber.set default datareader qos
(p. 1483).

Precondition:

If subscriber is enabled, the topic (p. 350) must be enabled. If it is not,
this operation will fail and no com.rti.dds.subscription.DataReader
(p. 473) will be created.
The given com.rti.dds.topic.TopicDescription (p. 1561) must have
been created from the same participant as this subscriber. If it was created
from a different participant, this method will return NULL.
If qos is Subscriber.DATAREADER QOS USE TOPIC QOS
(p. 191), topic (p. 350) cannot be com.rti.dds.topic.MultiTopic
(p. 1208), or else this method will return NULL.

Parameters:

topic (p. 350) <<in>> (p. 271) The com.rti.dds.topic.TopicDescription
(p. 1561) that the com.rti.dds.subscription.DataReader (p. 473)
will be associated with. Cannot be NULL.

qos <<in>> (p. 271) The qos of the
com.rti.dds.subscription.DataReader (p. 473). The
special value Subscriber.DATAREADER QOS -
DEFAULT (p. 190) can be used to indicate that the
com.rti.dds.subscription.DataReader (p. 473) should be created
with the default com.rti.dds.subscription.DataReaderQos
(p. 518) set in the com.rti.dds.subscription.Subscriber
(p. 1478). If com.rti.dds.topic.TopicDescription
(p. 1561) is of type com.rti.dds.topic.Topic (p. 1545)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.241 Subscriber Interface Reference 1487

or com.rti.dds.topic.ContentFilteredTopic (p. 458),
the special value Subscriber.DATAREADER QOS -
USE TOPIC QOS (p. 191) can be used to indicate
that the com.rti.dds.subscription.DataReader (p. 473)
should be created with the combination of the default
com.rti.dds.subscription.DataReaderQos (p. 518) set
on the com.rti.dds.subscription.Subscriber (p. 1478)
and the com.rti.dds.topic.TopicQos (p. 1566) (in the
case of a com.rti.dds.topic.ContentFilteredTopic
(p. 458), the com.rti.dds.topic.TopicQos (p. 1566) of
the related com.rti.dds.topic.Topic (p. 1545)). if Sub-
scriber.DATAREADER QOS USE TOPIC QOS (p. 191)
is used, topic (p. 350) cannot be a com.rti.dds.topic.MultiTopic
(p. 1208). Cannot be NULL.

listener <<in>> (p. 271) The listener of the
com.rti.dds.subscription.DataReader (p. 473).

mask <<in>> (p. 271). Changes of communication status to be invoked
on the listener.

Returns:

A com.rti.dds.subscription.DataReader (p. 473) of a derived class
specific to the data-type associated with the com.rti.dds.topic.Topic
(p. 1545) or NULL if an error occurred.

See also:

com.rti.dds.topic.example.FooDataReader
Specifying QoS on entities (p. 96) for information on setting QoS before
entity creation
com.rti.dds.subscription.DataReaderQos (p. 518) for rules on consis-
tency among QoS
com.rti.dds.subscription.Subscriber.create datareader with -
profile (p. 1487)
com.rti.dds.subscription.Subscriber.get default datareader qos
(p. 1482)
com.rti.dds.topic.Topic.set qos (p. 1547)
com.rti.dds.subscription.Subscriber.copy from topic qos (p. 1500)
com.rti.dds.subscription.DataReader.set listener (p. 482)

8.241.2.5 DataReader create datareader with profile
(TopicDescription topic, String library name, String
profile name, DataReaderListener listener, int mask)

<<eXtension>> (p. 270) Creates a com.rti.dds.subscription.DataReader

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1488 Class Documentation

(p. 473) object using the com.rti.dds.subscription.DataReaderQos (p. 518)
associated with the input XML QoS profile.

The com.rti.dds.subscription.DataReader (p. 473) will be attached and be-
long to the com.rti.dds.subscription.Subscriber (p. 1478).

For each application-defined type Foo, there is an implied, auto-generated
class com.rti.dds.topic.example.FooDataReader (an incarnation of Foo-
DataReader) that extends com.rti.dds.subscription.DataReader (p. 473)
and contains the operations to read data of type Foo.

When a com.rti.dds.subscription.DataReader (p. 473) is cre-
ated, only those transports already registered are available to the
com.rti.dds.subscription.DataReader (p. 473). See Built-in Trans-
port Plugins (p. 216) for details on when a builtin (p. 348) transport is
registered.

Precondition:

If subscriber is enabled, the topic (p. 350) must be enabled. If it is not,
this operation will fail and no com.rti.dds.subscription.DataReader
(p. 473) will be created.
The given com.rti.dds.topic.TopicDescription (p. 1561) must have
been created from the same participant as this subscriber. If it was created
from a different participant, this method will return NULL.

Parameters:

topic (p. 350) <<in>> (p. 271) The com.rti.dds.topic.TopicDescription
(p. 1561) that the com.rti.dds.subscription.DataReader (p. 473)
will be associated with. Cannot be NULL.

library name <<in>> (p. 271) Library name containing the XML QoS
profile. If library name is null RTI Connext will use the default
library (see com.rti.dds.subscription.Subscriber.set default -
library (p. 1495)).

profile name <<in>> (p. 271) XML QoS Profile name. If pro-
file name is null RTI Connext will use the default profile (see
com.rti.dds.subscription.Subscriber.set default profile
(p. 1496)).

listener <<in>> (p. 271) The listener of the
com.rti.dds.subscription.DataReader (p. 473).

mask <<in>> (p. 271). Changes of communication status to be invoked
on the listener.

Returns:

A com.rti.dds.subscription.DataReader (p. 473) of a derived class
specific to the data-type associated with the com.rti.dds.topic.Topic
(p. 1545) or NULL if an error occurred.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.241 Subscriber Interface Reference 1489

See also:

com.rti.dds.topic.example.FooDataReader
Specifying QoS on entities (p. 96) for information on setting QoS before
entity creation
com.rti.dds.subscription.DataReaderQos (p. 518) for rules on consis-
tency among QoS
Subscriber.DATAREADER QOS DEFAULT (p. 190)
Subscriber.DATAREADER QOS USE TOPIC QOS (p. 191)
com.rti.dds.subscription.Subscriber.create datareader (p. 1485)
com.rti.dds.subscription.Subscriber.get default datareader qos
(p. 1482)
com.rti.dds.topic.Topic.set qos (p. 1547)
com.rti.dds.subscription.Subscriber.copy from topic qos (p. 1500)
com.rti.dds.subscription.DataReader.set listener (p. 482)

8.241.2.6 void delete datareader (DataReader a datareader)

Deletes a com.rti.dds.subscription.DataReader (p. 473) that belongs to the
com.rti.dds.subscription.Subscriber (p. 1478).

Precondition:

If the com.rti.dds.subscription.DataReader (p. 473) does not be-
long to the com.rti.dds.subscription.Subscriber (p. 1478), or if ther
are any existing com.rti.dds.subscription.ReadCondition (p. 1326) or
com.rti.dds.subscription.QueryCondition (p. 1324) objects that are
attached to the com.rti.dds.subscription.DataReader (p. 473), or if
there are outstanding loans on samples (as a result of a call to read(),
take(), or one of the variants thereof), the operation fails with the error
RETCODE PRECONDITION NOT MET.

Postcondition:

Listener installed on the com.rti.dds.subscription.DataReader (p. 473)
will not be called after this method completes successfully.

Parameters:

a datareader <<in>> (p. 271) The com.rti.dds.subscription.DataReader
(p. 473) to be deleted.

Exceptions:

One of the Standard Return Codes (p. 104) or RETCODE -
PRECONDITION NOT MET.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1490 Class Documentation

8.241.2.7 DataReader lookup datareader (String topic name)

Retrieves an existing com.rti.dds.subscription.DataReader (p. 473).

Use this operation on the built-in com.rti.dds.subscription.Subscriber
(p. 1478) (Built-in Topics (p. 153)) to access the built-in
com.rti.dds.subscription.DataReader (p. 473) entities for the built-in
topics.

The built-in com.rti.dds.subscription.DataReader (p. 473) is created when
this operation is called on a built-in topic (p. 350) for the first time. The built-
in com.rti.dds.subscription.DataReader (p. 473) is deleted automatically
when the com.rti.dds.domain.DomainParticipant (p. 629) is deleted.

To ensure that builtin (p. 348) com.rti.dds.subscription.DataReader
(p. 473) entities receive all the discovery traffic, it is suggested that you
lookup the builtin (p. 348) com.rti.dds.subscription.DataReader (p. 473)
before the com.rti.dds.domain.DomainParticipant (p. 629) is enabled.
Looking up builtin (p. 348) com.rti.dds.subscription.DataReader (p. 473)
may implicitly register builtin (p. 348) transports due to creation of
com.rti.dds.subscription.DataReader (p. 473) (see Built-in Transport
Plugins (p. 216) for details on when a builtin (p. 348) transport is registered).
Therefore, if you are want to modify builtin (p. 348) transport properties, do
so before using this operation.

Therefore the suggested sequence when looking up builtin (p. 348) DataReaders
is:

ˆ Create a disabled com.rti.dds.domain.DomainParticipant (p. 629).

ˆ (optional) Modify builtin (p. 348) transport properties

ˆ Call com.rti.dds.domain.DomainParticipant.get builtin -
subscriber() (p. 684).

ˆ Call lookup datareader() (p. 1490).

ˆ Call enable() (p. 915) on the DomainParticipant.

Parameters:

topic name <<in>> (p. 271) Name of the
com.rti.dds.topic.TopicDescription (p. 1561) that the retrieved
com.rti.dds.subscription.DataReader (p. 473) is attached to.
Cannot be NULL.

Returns:

A com.rti.dds.subscription.DataReader (p. 473) that belongs to
the com.rti.dds.subscription.Subscriber (p. 1478) attached to the

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.241 Subscriber Interface Reference 1491

com.rti.dds.topic.TopicDescription (p. 1561) with topic name. If no
such com.rti.dds.subscription.DataReader (p. 473) exists, this opera-
tion returns NULL.

The returned com.rti.dds.subscription.DataReader (p. 473) may be en-
abled or disabled.

If more than one com.rti.dds.subscription.DataReader (p. 473) is attached
to the com.rti.dds.subscription.Subscriber (p. 1478), this operation may
return any one of them.

MT Safety:

UNSAFE. It is not safe to lookup a
com.rti.dds.subscription.DataReader (p. 473) in one thread
while another thread is simultaneously creating or destroying that
com.rti.dds.subscription.DataReader (p. 473).

8.241.2.8 void get datareaders (DataReaderSeq readers, int
sample states, int view states, int instance states)

Allows the application to access the com.rti.dds.subscription.DataReader
(p. 473) objects that contain samples with the specified sample states, view -
states and instance states.

If the application is outside a begin access() (p. 1499)/end access() block,
or if the com.rti.dds.infrastructure.PresentationQosPolicy.access -
scope (p. 1241) of the com.rti.dds.subscription.Subscriber (p. 1478) is
PresentationQosPolicyAccessScopeKind.INSTANCE PRESENTATION QOS
or PresentationQosPolicyAccessScopeKind.TOPIC PRESENTATION QOS, or
if the com.rti.dds.infrastructure.PresentationQosPolicy.ordered -
access (p. 1241) of the com.rti.dds.subscription.Subscriber
(p. 1478) is false, the returned collection is a ’set’ containing each
com.rti.dds.subscription.DataReader (p. 473) at most once, in no
specified order.

If the application is within a begin access() (p. 1499)/end -
access() block, and the PRESENTATION (p. 86) policy of the
com.rti.dds.subscription.Subscriber (p. 1478) is PresentationQosPoli-
cyAccessScopeKind.GROUP PRESENTATION QOS or PresentationQosPol-
icyAccessScopeKind.HIGHEST OFFERED PRESENTATION QOS, and
com.rti.dds.infrastructure.PresentationQosPolicy.ordered access
(p. 1241) in the com.rti.dds.subscription.Subscriber (p. 1478) is true, the
returned collection is a ’list’ of DataReaders where a DataReader (p. 473)
may appear more than one time.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1492 Class Documentation

To retrieve the samples in the order they were published across
DataWriters of the same group (com.rti.dds.publication.Publisher
(p. 1277) configured with PresentationQosPolicyAccessScopeKind.GROUP -
PRESENTATION QOS), the application should read()/take() from each
DataReader (p. 473) in the same order as it appears in the output se-
quence. The application will move to the next DataReader (p. 473) when
the read()/take() operation fails with RETCODE NO DATA.

Parameters:

readers <<inout>> (p. 271) a com.rti.dds.subscription.DataReaderSeq
(p. 536) object where the set or list of readers will be returned. Cannot
be NULL.

sample states <<in>> (p. 271) the returned DataReader (p. 473)
must contain samples that have one of these sample states.

view states <<in>> (p. 271) the returned DataReader (p. 473) must
contain samples that have one of these view states.

instance states <<in>> (p. 271) the returned DataReader (p. 473)
must contain samples that have one of these instance states.

Exceptions:

One of the Standard Return Codes (p. 104) or RETCODE NOT -
ENABLED.

See also:

Access to data samples (p. 346)
com.rti.dds.subscription.Subscriber.begin access (p. 1499)
com.rti.dds.subscription.Subscriber.end access (p. 1500)
PRESENTATION (p. 86)

8.241.2.9 void get all datareaders (DataReaderSeq readers)

Retrieve all the DataReaders created from this Subscriber (p. 1478).

Parameters:

readers <<inout>> (p. 271) Sequence where the DataReaders will be
added

Exceptions:

One of the Standard Return Codes (p. 104)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.241 Subscriber Interface Reference 1493

8.241.2.10 void notify datareaders ()

Invokes the operation com.rti.dds.subscription.DataReaderListener.on -
data available() (p. 503) on the com.rti.dds.subscription.DataReaderListener
(p. 501) objects attached to contained com.rti.dds.subscription.DataReader
(p. 473) entities with StatusKind.DATA AVAILABLE STATUS that is con-
sidered changed as described in Changes in read communication status
(p. 108).

This operation is typically invoked from the
com.rti.dds.subscription.SubscriberListener.on -
data on readers (p. 1505) operation in the
com.rti.dds.subscription.SubscriberListener (p. 1504). That way
the com.rti.dds.subscription.SubscriberListener (p. 1504) can delegate
to the com.rti.dds.subscription.DataReaderListener (p. 501) objects the
handling of the data.

The operation will notify the data readers that have a sample state of Sam-
pleStateKind.NOT READ SAMPLE STATE (p. 1431), view state of
SampleStateKind.ANY SAMPLE STATE (p. 197) and instance state
of InstanceStateKind.ANY INSTANCE STATE (p. 199).

Exceptions:

One of the Standard Return Codes (p. 104), or RETCODE NOT -
ENABLED.

8.241.2.11 void set qos (SubscriberQos qos)

Sets the subscriber QoS.

This operation modifies the QoS of the com.rti.dds.subscription.Subscriber
(p. 1478).

The com.rti.dds.subscription.SubscriberQos.group data (p. 1507),
com.rti.dds.subscription.SubscriberQos.partition (p. 1507) and
com.rti.dds.subscription.SubscriberQos.entity factory (p. 1507) can
be changed. The other policies are immutable.

Parameters:

qos <<in>> (p. 271) com.rti.dds.subscription.SubscriberQos
(p. 1506) to be set to. Policies must be consistent. Immutable policies
cannot be changed after com.rti.dds.subscription.Subscriber
(p. 1478) is enabled. The special value DomainPartici-
pant.SUBSCRIBER QOS DEFAULT (p. 149) can be used to
indicate that the QoS of the com.rti.dds.subscription.Subscriber

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1494 Class Documentation

(p. 1478) should be changed to match the current default
com.rti.dds.subscription.SubscriberQos (p. 1506) set in the
com.rti.dds.domain.DomainParticipant (p. 629). Cannot be
NULL.

Exceptions:

One of the Standard Return Codes (p. 104), RETCODE -
IMMUTABLE POLICY, or RETCODE INCONSISTENT POLICY.

See also:

com.rti.dds.subscription.SubscriberQos (p. 1506) for rules on consis-
tency among QoS
set qos (abstract) (p. 913)
Operations Allowed in Listener Callbacks (p. 1156)

8.241.2.12 void set qos with profile (String library name, String
profile name)

<<eXtension>> (p. 270) Change the QoS of this subscriber using the input
XML QoS profile.

This operation modifies the QoS of the com.rti.dds.subscription.Subscriber
(p. 1478).

The com.rti.dds.subscription.SubscriberQos.group data (p. 1507),
com.rti.dds.subscription.SubscriberQos.partition (p. 1507) and
com.rti.dds.subscription.SubscriberQos.entity factory (p. 1507) can
be changed. The other policies are immutable.

Parameters:

library name <<in>> (p. 271) Library name containing the XML QoS
profile. If library name is null RTI Connext will use the default
library (see com.rti.dds.subscription.Subscriber.set default -
library (p. 1495)).

profile name <<in>> (p. 271) XML QoS Profile name. If pro-
file name is null RTI Connext will use the default profile (see
com.rti.dds.subscription.Subscriber.set default profile
(p. 1496)).

Exceptions:

One of the Standard Return Codes (p. 104), RETCODE -
IMMUTABLE POLICY, or RETCODE INCONSISTENT POLICY.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.241 Subscriber Interface Reference 1495

See also:

com.rti.dds.subscription.SubscriberQos (p. 1506) for rules on consis-
tency among QoS
Operations Allowed in Listener Callbacks (p. 1156)

8.241.2.13 void get qos (SubscriberQos qos)

Gets the subscriber QoS.

This method may potentially allocate memory depending on the sequences con-
tained in some QoS policies.

Parameters:

qos <<in>> (p. 271) com.rti.dds.subscription.SubscriberQos
(p. 1506) to be filled in. Cannot be NULL.

Exceptions:

One of the Standard Return Codes (p. 104)

See also:

get qos (abstract) (p. 914)

8.241.2.14 String get default library ()

<<eXtension>> (p. 270) Gets the default XML library associated with a
com.rti.dds.subscription.Subscriber (p. 1478).

Returns:

The default library or null if the default library was not set.

See also:

com.rti.dds.subscription.Subscriber.set default library (p. 1495)

8.241.2.15 void set default library (String library name)

<<eXtension>> (p. 270) Sets the default XML library for a
com.rti.dds.subscription.Subscriber (p. 1478).

This method specifies the library that will be used as the default the next time
a default library is needed during a call to one of this Subscriber’s operations.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1496 Class Documentation

Any API requiring a library name as a parameter can use null to refer to the
default library.

If the default library is not set, the com.rti.dds.subscription.Subscriber
(p. 1478) inherits the default from the com.rti.dds.domain.DomainParticipant
(p. 629) (see com.rti.dds.domain.DomainParticipant.set default library
(p. 679)).

Parameters:

library name <<in>> (p. 271) Library name. If library name is null
any previous default is unset.

Exceptions:

One of the Standard Return Codes (p. 104)

See also:

com.rti.dds.subscription.Subscriber.get default library (p. 1495)

8.241.2.16 String get default profile ()

<<eXtension>> (p. 270) Gets the default XML profile associated with a
com.rti.dds.subscription.Subscriber (p. 1478).

Returns:

The default profile or null if the default profile was not set.

See also:

com.rti.dds.subscription.Subscriber.set default profile (p. 1496)

8.241.2.17 void set default profile (String library name, String
profile name)

<<eXtension>> (p. 270) Sets the default XML profile for a
com.rti.dds.subscription.Subscriber (p. 1478).

This method specifies the profile that will be used as the default the next time a
default Subscriber (p. 1478) profile is needed during a call to one of this Sub-
scriber’s operations. When calling a com.rti.dds.subscription.Subscriber
(p. 1478) method that requires a profile name parameter, you can use NULL
to refer to the default profile. (This same information applies to setting a default
library.)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.241 Subscriber Interface Reference 1497

If the default profile is not set, the com.rti.dds.subscription.Subscriber
(p. 1478) inherits the default from the com.rti.dds.domain.DomainParticipant
(p. 629) (see com.rti.dds.domain.DomainParticipant.set default profile
(p. 680)).

This method does not set the default QoS for
com.rti.dds.subscription.DataReader (p. 473) objects created by this
com.rti.dds.subscription.Subscriber (p. 1478); for this functionality,
use com.rti.dds.subscription.Subscriber.set default datareader -
qos with profile (p. 1484) (you may pass in NULL after having called
set default profile() (p. 1496)).

This method does not set the default QoS for newly created Subscribers;
for this functionality, use com.rti.dds.domain.DomainParticipant.set -
default subscriber qos with profile (p. 650).

Parameters:

library name <<in>> (p. 271) The library name containing the profile.

profile name <<in>> (p. 271) The profile name. If profile name is null
any previous default is unset.

Exceptions:

One of the Standard Return Codes (p. 104)

See also:

com.rti.dds.subscription.Subscriber.get default profile (p. 1496)
com.rti.dds.subscription.Subscriber.get default profile library
(p. 1497)

8.241.2.18 String get default profile library ()

<<eXtension>> (p. 270) Gets the library where the default XML QoS profile
is contained for a com.rti.dds.subscription.Subscriber (p. 1478).

The default profile library is automatically set when
com.rti.dds.subscription.Subscriber.set default profile (p. 1496) is
called.

This library can be different than the com.rti.dds.subscription.Subscriber
(p. 1478) default library (see com.rti.dds.subscription.Subscriber.get -
default library (p. 1495)).

Returns:

The default profile library or null if the default profile was not set.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1498 Class Documentation

See also:

com.rti.dds.subscription.Subscriber.set default profile (p. 1496)

8.241.2.19 void set listener (SubscriberListener l, int mask)

Sets the subscriber listener.

Parameters:

l <<in>> (p. 271) com.rti.dds.subscription.SubscriberListener
(p. 1504) to set to.

mask <<in>> (p. 271) com.rti.dds.infrastructure.StatusMask associated
with the com.rti.dds.subscription.SubscriberListener (p. 1504).

Exceptions:

One of the Standard Return Codes (p. 104)

See also:

set listener (abstract) (p. 914)

8.241.2.20 SubscriberListener get listener ()

Get the subscriber listener.

Returns:

com.rti.dds.subscription.SubscriberListener (p. 1504) of the
com.rti.dds.subscription.Subscriber (p. 1478).

See also:

get listener (abstract) (p. 915)

8.241.2.21 void call listenerT (int mask)

Call the subscriber listener.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.241 Subscriber Interface Reference 1499

8.241.2.22 void begin access ()

Indicates that the application is about to access the data samples in any of
the com.rti.dds.subscription.DataReader (p. 473) objects attached to the
com.rti.dds.subscription.Subscriber (p. 1478).

If the com.rti.dds.infrastructure.PresentationQosPolicy.access scope
(p. 1241) of the com.rti.dds.subscription.Subscriber (p. 1478) is Presen-
tationQosPolicyAccessScopeKind.GROUP PRESENTATION QOS or Presen-
tationQosPolicyAccessScopeKind.HIGHEST OFFERED PRESENTATION -
QOS and com.rti.dds.infrastructure.PresentationQosPolicy.ordered -
access (p. 1241) is true, the application is required to use this op-
eration to access the samples in order across DataWriters of the
same group (com.rti.dds.publication.Publisher (p. 1277) with
com.rti.dds.infrastructure.PresentationQosPolicy.access scope
(p. 1241) set to PresentationQosPolicyAccessScopeKind.GROUP -
PRESENTATION QOS).

In the above case, the operation begin access() (p. 1499) must
be called prior to calling any of the sample-accessing opera-
tions, com.rti.dds.subscription.Subscriber.get datareaders
(p. 1491) on the com.rti.dds.subscription.Subscriber
(p. 1478), and com.rti.dds.topic.example.FooDataReader.read,
com.rti.dds.topic.example.FooDataReader.take, com.rti.dds.topic.example.FooDataReader.read -
w condition, and com.rti.dds.topic.example.FooDataReader.take w condition
on any com.rti.dds.subscription.DataReader (p. 473).

Once the application has finished accessing the data samples, it must call
com.rti.dds.subscription.Subscriber.end access (p. 1500).

The application is not required to call begin access() (p. 1499) /
end access() (p. 1500) to access the samples in order if the PRE-
SENTATION (p. 86) policy in the com.rti.dds.publication.Publisher
(p. 1277) has com.rti.dds.infrastructure.PresentationQosPolicy.access -
scope (p. 1241) set to something other than PresentationQosPolicyAc-
cessScopeKind.GROUP PRESENTATION QOS. In this case, calling begin -
access() (p. 1499) / end access() (p. 1500) is not considered an error and has
no effect.

Calls to begin access() (p. 1499) / end access() (p. 1500) may be nested and
must be balanced.

Exceptions:

One of the Standard Return Codes (p. 104) or RETCODE NOT -
ENABLED.

See also:

Access to data samples (p. 346)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1500 Class Documentation

com.rti.dds.subscription.Subscriber.get datareaders (p. 1491)
PRESENTATION (p. 86)

8.241.2.23 void end access ()

Indicates that the application has finished accessing the data samples in
com.rti.dds.subscription.DataReader (p. 473) objects managed by the
com.rti.dds.subscription.Subscriber (p. 1478).

This operation must be used to close a corresponding begin access() (p. 1499).

This call must close a previous call to
com.rti.dds.subscription.Subscriber.begin access() (p. 1499), otherwise
the operation will fail with the error RETCODE PRECONDITION NOT -
MET.

Exceptions:

One of the Standard Return Codes (p. 104) or RETCODE -
PRECONDITION NOT MET or RETCODE NOT ENABLED.

8.241.2.24 void copy from topic qos (DataReaderQos
datareader qos, TopicQos topic qos)

Copies the policies in the com.rti.dds.topic.TopicQos (p. 1566) to the corre-
sponding policies in the com.rti.dds.subscription.DataReaderQos (p. 518).

Copies the policies in the com.rti.dds.topic.TopicQos (p. 1566) to the corre-
sponding policies in the com.rti.dds.subscription.DataReaderQos (p. 518)
(replacing values in the com.rti.dds.subscription.DataReaderQos (p. 518),
if present).

This is a ”convenience” operation most useful in combination with the oper-
ations com.rti.dds.subscription.Subscriber.get default datareader qos
(p. 1482) and com.rti.dds.topic.Topic.get qos (p. 1548). The operation
com.rti.dds.subscription.Subscriber.copy from topic qos (p. 1500) can
be used to merge the com.rti.dds.subscription.DataReader (p. 473) default
QoS policies with the corresponding ones on the com.rti.dds.topic.Topic
(p. 1545). The resulting QoS can then be used to create a new
com.rti.dds.subscription.DataReader (p. 473), or set its QoS.

This operation does not check the resulting
com.rti.dds.subscription.DataReaderQos (p. 518) for consistency. This is
because the ’merged’ com.rti.dds.subscription.DataReaderQos (p. 518)
may not be the final one, as the application can still modify some policies
prior to applying the policies to the com.rti.dds.subscription.DataReader
(p. 473).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.241 Subscriber Interface Reference 1501

Parameters:

datareader qos <<inout>> (p. 271) com.rti.dds.subscription.DataReaderQos
(p. 518) to be filled-up. Cannot be NULL.

topic qos <<in>> (p. 271) com.rti.dds.topic.TopicQos (p. 1566)
to be merged with com.rti.dds.subscription.DataReaderQos
(p. 518). Cannot be NULL.

Exceptions:

One of the Standard Return Codes (p. 104)

8.241.2.25 DomainParticipant get participant ()

Returns the com.rti.dds.domain.DomainParticipant (p. 629) to which the
com.rti.dds.subscription.Subscriber (p. 1478) belongs.

Returns:

the com.rti.dds.domain.DomainParticipant (p. 629) to which the
com.rti.dds.subscription.Subscriber (p. 1478) belongs.

8.241.2.26 void delete contained entities ()

Deletes all the entities that were created by means of the ”create” operation on
the com.rti.dds.subscription.Subscriber (p. 1478).

Deletes all contained com.rti.dds.subscription.DataReader (p. 473)
objects. This pattern is applied recursively. In this manner, the
operation com.rti.dds.subscription.Subscriber.delete contained -
entities (p. 1501) on the com.rti.dds.subscription.Subscriber
(p. 1478) will end up deleting all the entities recursively contained
in the com.rti.dds.subscription.Subscriber (p. 1478), that is
also the com.rti.dds.subscription.QueryCondition (p. 1324) and
com.rti.dds.subscription.ReadCondition (p. 1326) objects belonging
to the contained com.rti.dds.subscription.DataReader (p. 473).

The operation will fail with RETCODE PRECONDITION NOT MET if
any of the contained entities is in a state where it cannot be
deleted. This will occur, for example (p. 349), if a contained
com.rti.dds.subscription.DataReader (p. 473) cannot be deleted because
the application has called a com.rti.dds.topic.example.FooDataReader.read or
com.rti.dds.topic.example.FooDataReader.take operation and has not called the
corresponding com.rti.dds.topic.example.FooDataReader.return loan operation
to return the loaned samples.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1502 Class Documentation

Once com.rti.dds.subscription.Subscriber.delete contained -
entities (p. 1501) completes successfully, the application may delete the
com.rti.dds.subscription.Subscriber (p. 1478), knowing that it has no
contained com.rti.dds.subscription.DataReader (p. 473) objects.

Exceptions:

One of the Standard Return Codes (p. 104), or RETCODE -
PRECONDITION NOT MET

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.242 SubscriberAdapter Class Reference 1503

8.242 SubscriberAdapter Class Reference

A listener adapter in the spirit of the Java AWT listener adapters. (The Adapter
provides empty implementations for the listener methods).

Inheritance diagram for SubscriberAdapter::

Public Member Functions

ˆ void on data on readers (Subscriber subs)
Handles the StatusKind.DATA ON READERS STATUS communication
status.

8.242.1 Detailed Description

A listener adapter in the spirit of the Java AWT listener adapters. (The Adapter
provides empty implementations for the listener methods).

Clients who do not wish to implement all listener methods can subclass this
class and override only the methods of interest.

8.242.2 Member Function Documentation

8.242.2.1 void on data on readers (Subscriber subs)

Handles the StatusKind.DATA ON READERS STATUS communication sta-
tus.

Implements SubscriberListener (p. 1505).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1504 Class Documentation

8.243 SubscriberListener Interface Reference

<<interface>> (p. 271) com.rti.dds.infrastructure.Listener (p. 1154) for
status about a subscriber.

Inheritance diagram for SubscriberListener::

Public Member Functions

ˆ void on data on readers (Subscriber subs)
Handles the StatusKind.DATA ON READERS STATUS communication
status.

8.243.1 Detailed Description

<<interface>> (p. 271) com.rti.dds.infrastructure.Listener (p. 1154) for
status about a subscriber.

Entity:

com.rti.dds.subscription.Subscriber (p. 1478)

Status:

StatusKind.DATA AVAILABLE STATUS;
StatusKind.DATA ON READERS STATUS;
StatusKind.LIVELINESS CHANGED STATUS,
com.rti.dds.subscription.LivelinessChangedStatus (p. 1159);
StatusKind.REQUESTED DEADLINE MISSED STATUS,
com.rti.dds.subscription.RequestedDeadlineMissedStatus
(p. 1353);
StatusKind.REQUESTED INCOMPATIBLE QOS STATUS,
com.rti.dds.subscription.RequestedIncompatibleQosStatus
(p. 1354);
StatusKind.SAMPLE LOST STATUS STATUS,
com.rti.dds.subscription.SampleLostStatus (p. 1415);
StatusKind.SAMPLE REJECTED STATUS,
com.rti.dds.subscription.SampleRejectedStatus (p. 1422);
StatusKind.SUBSCRIPTION MATCHED STATUS,
com.rti.dds.subscription.SubscriptionMatchedStatus (p. 1520)

See also:

com.rti.dds.infrastructure.Listener (p. 1154)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.243 SubscriberListener Interface Reference 1505

Status Kinds (p. 106)
Operations Allowed in Listener Callbacks (p. 1156)

8.243.2 Member Function Documentation

8.243.2.1 void on data on readers (Subscriber subs)

Handles the StatusKind.DATA ON READERS STATUS communication sta-
tus.

Implemented in SubscriberAdapter (p. 1503).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1506 Class Documentation

8.244 SubscriberQos Class Reference

QoS policies supported by a com.rti.dds.subscription.Subscriber (p. 1478)
entity.

Inheritance diagram for SubscriberQos::

Public Attributes

ˆ final PresentationQosPolicy presentation
Presentation policy, PRESENTATION (p. 86).

ˆ final PartitionQosPolicy partition
Partition policy, PARTITION (p. 85).

ˆ final GroupDataQosPolicy group data
Group data policy, GROUP DATA (p. 73).

ˆ final EntityFactoryQosPolicy entity factory
Entity factory policy, ENTITY FACTORY (p. 69).

ˆ final ExclusiveAreaQosPolicy exclusive area
<<eXtension>> (p. 270) Exclusive area for the subscriber and all entities
that are created by the subscriber.

8.244.1 Detailed Description

QoS policies supported by a com.rti.dds.subscription.Subscriber (p. 1478)
entity.

You must set certain members in a consistent manner:

length of com.rti.dds.subscription.SubscriberQos.group data.value <=
com.rti.dds.domain.DomainParticipantQos.resource limits.subscriber group -
data max length

length of com.rti.dds.subscription.SubscriberQos.partition.name <=
com.rti.dds.domain.DomainParticipantQos.resource limits.max partitions

combined number of characters (including terminating 0)
in com.rti.dds.subscription.SubscriberQos.partition.name <=
com.rti.dds.domain.DomainParticipantQos.resource limits.max partition -
cumulative characters

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.244 SubscriberQos Class Reference 1507

If any of the above are not true, com.rti.dds.subscription.Subscriber.set -
qos (p. 1493) and com.rti.dds.subscription.Subscriber.set qos with -
profile (p. 1494) will fail with RETCODE INCONSISTENT POLICY

8.244.2 Member Data Documentation

8.244.2.1 final PresentationQosPolicy presentation

Presentation policy, PRESENTATION (p. 86).

8.244.2.2 final PartitionQosPolicy partition

Partition policy, PARTITION (p. 85).

8.244.2.3 final GroupDataQosPolicy group data

Group data policy, GROUP DATA (p. 73).

8.244.2.4 final EntityFactoryQosPolicy entity factory

Entity factory policy, ENTITY FACTORY (p. 69).

8.244.2.5 final ExclusiveAreaQosPolicy exclusive area

<<eXtension>> (p. 270) Exclusive area for the subscriber and all entities
that are created by the subscriber.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1508 Class Documentation

8.245 SubscriberSeq Class Reference

Declares IDL sequence < com.rti.dds.subscription.Subscriber (p. 1478) >
.

Inherits AbstractNativeSequence.

Public Member Functions

ˆ SubscriberSeq (Collection subscribers)
ˆ int getMaximum ()

Get the current maximum number of elements that can be stored in this
sequence.

8.245.1 Detailed Description

Declares IDL sequence < com.rti.dds.subscription.Subscriber (p. 1478) >
.

See also:

com.rti.dds.util.Sequence (p. 1432)

8.245.2 Constructor & Destructor Documentation

8.245.2.1 SubscriberSeq (Collection subscribers)

Exceptions:

NullPointerException if the given collection is null

8.245.3 Member Function Documentation

8.245.3.1 int getMaximum ()

Get the current maximum number of elements that can be stored in this se-
quence.

The maximum of the sequence represents the maximum number of elements that
the underlying buffer can hold. It does not represent the current number of
elements.

The maximum is a non-negative number. It is initialized when the sequence is
first created.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.245 SubscriberSeq Class Reference 1509

The maximum can be changed implicitly by adding an element to the se-
quence with add() (p. 383), or explicitly by calling Sequence.setMaximum
(p. 1433).

Returns:

the current maximum of the sequence.

See also:

Sequence.size()

Implements Sequence (p. 1433).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1510 Class Documentation

8.246 SubscriptionBuiltinTopicData Class Ref-
erence

Entry created when a com.rti.dds.subscription.DataReader (p. 473) is dis-
covered in association with its Subscriber (p. 1478).

Inherits AbstractBuiltinTopicData.

Public Attributes

ˆ final BuiltinTopicKey t key

DCPS key to distinguish entries.

ˆ final BuiltinTopicKey t participant key

DCPS key of the participant to which the DataReader (p. 473) belongs.

ˆ String topic name

Name of the related com.rti.dds.topic.Topic (p. 1545).

ˆ String type name

Name of the type attached to the com.rti.dds.topic.Topic (p. 1545).

ˆ final DurabilityQosPolicy durability

Policy of the corresponding DataReader (p. 473).

ˆ final DeadlineQosPolicy deadline

Policy of the corresponding DataReader (p. 473).

ˆ final LatencyBudgetQosPolicy latency budget

Policy of the corresponding DataReader (p. 473).

ˆ final LivelinessQosPolicy liveliness

Policy of the corresponding DataReader (p. 473).

ˆ final ReliabilityQosPolicy reliability

Policy of the corresponding DataReader (p. 473).

ˆ final OwnershipQosPolicy ownership

Policy of the corresponding DataReader (p. 473).

ˆ final DestinationOrderQosPolicy destination order

Policy of the corresponding DataReader (p. 473).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.246 SubscriptionBuiltinTopicData Class Reference 1511

ˆ final UserDataQosPolicy user data
Policy of the corresponding DataReader (p. 473).

ˆ final TimeBasedFilterQosPolicy time based filter
Policy of the corresponding DataReader (p. 473).

ˆ final PresentationQosPolicy presentation
Policy of the Subscriber (p. 1478) to which the DataReader (p. 473) be-
longs.

ˆ final PartitionQosPolicy partition
Policy of the Subscriber (p. 1478) to which the DataReader (p. 473) be-
longs.

ˆ final TopicDataQosPolicy topic data
Policy of the related Topic.

ˆ final GroupDataQosPolicy group data
Policy of the Subscriber (p. 1478) to which the DataReader (p. 473) be-
longs.

ˆ TypeCode type code
<<eXtension>> (p. 270) Type code information of the corresponding Topic

ˆ final BuiltinTopicKey t subscriber key
<<eXtension>> (p. 270) DCPS key of the subscriber to which the
DataReader (p. 473) belongs.

ˆ final PropertyQosPolicy property
<<eXtension>> (p. 270) Properties of the corresponding DataReader
(p. 473).

ˆ final LocatorSeq unicast locators
<<eXtension>> (p. 270) Custom unicast locators that the endpoint can
specify. The default locators will be used if this is not specified.

ˆ final LocatorSeq multicast locators
<<eXtension>> (p. 270) Custom multicast locators that the endpoint can
specify. The default locators will be used if this is not specified.

ˆ final ContentFilterProperty t content filter property
<<eXtension>> (p. 270) This field provides all the required information to
enable content filtering on the Writer side.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1512 Class Documentation

ˆ final GUID t virtual guid

<<eXtension>> (p. 270) Virtual GUID associated to the DataReader
(p. 473).

ˆ final ProtocolVersion t rtps protocol version

<<eXtension>> (p. 270) Version number of the RTPS wire protocol used.

ˆ final VendorId t rtps vendor id

<<eXtension>> (p. 270) ID of vendor implementing the RTPS wire pro-
tocol.

ˆ final ProductVersion t product version

<<eXtension>> (p. 270) This is a vendor specific parameter. It gives the
current version for rti-dds.

ˆ boolean disable positive acks

<<eXtension>> (p. 270) This is a vendor specific parameter. Determines
whether the corresponding DataReader (p. 473) sends positive acknowledge-
ments for reliability.

ˆ final EntityNameQosPolicy subscription name

<<eXtension>> (p. 270) The subscription (p. 343) name and role name.

8.246.1 Detailed Description

Entry created when a com.rti.dds.subscription.DataReader (p. 473) is dis-
covered in association with its Subscriber (p. 1478).

Data associated with the built-in topic (p. 350) SubscriptionBuilt-
inTopicDataTypeSupport.SUBSCRIPTION TOPIC NAME (p. 1519).
It contains QoS policies and additional information that apply to
the remote com.rti.dds.subscription.DataReader (p. 473) the related
com.rti.dds.subscription.Subscriber (p. 1478).

See also:

SubscriptionBuiltinTopicDataTypeSupport.SUBSCRIPTION -
TOPIC NAME (p. 1519)
builtin.SubscriptionBuiltinTopicDataDataReader (p. 1517)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.246 SubscriptionBuiltinTopicData Class Reference 1513

8.246.2 Member Data Documentation

8.246.2.1 final BuiltinTopicKey t key

DCPS key to distinguish entries.

8.246.2.2 final BuiltinTopicKey t participant key

DCPS key of the participant to which the DataReader (p. 473) belongs.

8.246.2.3 String topic name

Name of the related com.rti.dds.topic.Topic (p. 1545).

The length of this string is limited to 255 characters.

8.246.2.4 String type name

Name of the type attached to the com.rti.dds.topic.Topic (p. 1545).

The length of this string is limited to 255 characters.

8.246.2.5 final DurabilityQosPolicy durability

Policy of the corresponding DataReader (p. 473).

8.246.2.6 final DeadlineQosPolicy deadline

Policy of the corresponding DataReader (p. 473).

8.246.2.7 final LatencyBudgetQosPolicy latency budget

Policy of the corresponding DataReader (p. 473).

8.246.2.8 final LivelinessQosPolicy liveliness

Policy of the corresponding DataReader (p. 473).

8.246.2.9 final ReliabilityQosPolicy reliability

Policy of the corresponding DataReader (p. 473).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1514 Class Documentation

8.246.2.10 final OwnershipQosPolicy ownership

Policy of the corresponding DataReader (p. 473).

8.246.2.11 final DestinationOrderQosPolicy destination order

Policy of the corresponding DataReader (p. 473).

8.246.2.12 final UserDataQosPolicy user data

Policy of the corresponding DataReader (p. 473).

8.246.2.13 final TimeBasedFilterQosPolicy time based filter

Policy of the corresponding DataReader (p. 473).

8.246.2.14 final PresentationQosPolicy presentation

Policy of the Subscriber (p. 1478) to which the DataReader (p. 473) belongs.

8.246.2.15 final PartitionQosPolicy partition

Policy of the Subscriber (p. 1478) to which the DataReader (p. 473) belongs.

8.246.2.16 final TopicDataQosPolicy topic data

Policy of the related Topic.

8.246.2.17 final GroupDataQosPolicy group data

Policy of the Subscriber (p. 1478) to which the DataReader (p. 473) belongs.

8.246.2.18 TypeCode type code

<<eXtension>> (p. 270) Type code information of the corresponding Topic

8.246.2.19 final BuiltinTopicKey t subscriber key

<<eXtension>> (p. 270) DCPS key of the subscriber to which the
DataReader (p. 473) belongs.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.246 SubscriptionBuiltinTopicData Class Reference 1515

8.246.2.20 final PropertyQosPolicy property

<<eXtension>> (p. 270) Properties of the corresponding DataReader
(p. 473).

8.246.2.21 final LocatorSeq unicast locators

<<eXtension>> (p. 270) Custom unicast locators that the endpoint can spec-
ify. The default locators will be used if this is not specified.

8.246.2.22 final LocatorSeq multicast locators

<<eXtension>> (p. 270) Custom multicast locators that the endpoint can
specify. The default locators will be used if this is not specified.

8.246.2.23 final ContentFilterProperty t content filter property

<<eXtension>> (p. 270) This field provides all the required information to
enable content filtering on the Writer side.

8.246.2.24 final GUID t virtual guid

<<eXtension>> (p. 270) Virtual GUID associated to the DataReader
(p. 473).

See also:

com.rti.dds.infrastructure.GUID t (p. 1069)

8.246.2.25 final ProtocolVersion t rtps protocol version

<<eXtension>> (p. 270) Version number of the RTPS wire protocol used.

8.246.2.26 final VendorId t rtps vendor id

<<eXtension>> (p. 270) ID of vendor implementing the RTPS wire protocol.

8.246.2.27 final ProductVersion t product version

<<eXtension>> (p. 270) This is a vendor specific parameter. It gives the
current version for rti-dds.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1516 Class Documentation

8.246.2.28 boolean disable positive acks

<<eXtension>> (p. 270) This is a vendor specific parameter. Determines
whether the corresponding DataReader (p. 473) sends positive acknowledge-
ments for reliability.

8.246.2.29 final EntityNameQosPolicy subscription name

<<eXtension>> (p. 270) The subscription (p. 343) name and role name.

This member contains the name and the role name of the discovered subscrip-
tion (p. 343).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.247 SubscriptionBuiltinTopicDataDataReader Class Reference1517

8.247 SubscriptionBuiltinTopicDataDataReader
Class Reference

Instantiates DataReader (p. 473) < builtin.SubscriptionBuiltinTopicData
(p. 1510) > .

Inherits DataReaderImpl.

8.247.1 Detailed Description

Instantiates DataReader (p. 473) < builtin.SubscriptionBuiltinTopicData
(p. 1510) > .

com.rti.dds.subscription.DataReader (p. 473) of topic (p. 350) Sub-
scriptionBuiltinTopicDataTypeSupport.SUBSCRIPTION TOPIC -
NAME (p. 1519) used for accessing builtin.SubscriptionBuiltinTopicData
(p. 1510) of the remote com.rti.dds.subscription.DataReader (p. 473) and
the associated com.rti.dds.subscription.Subscriber (p. 1478).

Instantiates:

<<generic>> (p. 271) com.rti.dds.topic.example.FooDataReader

See also:

builtin.SubscriptionBuiltinTopicData (p. 1510)
SubscriptionBuiltinTopicDataTypeSupport.SUBSCRIPTION -
TOPIC NAME (p. 1519)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1518 Class Documentation

8.248 SubscriptionBuiltinTopicDataSeq Class
Reference

Instantiates com.rti.dds.util.Sequence (p. 1432) <
builtin.SubscriptionBuiltinTopicData (p. 1510) > .

Inherits AbstractBuiltinTopicDataSeq.

8.248.1 Detailed Description

Instantiates com.rti.dds.util.Sequence (p. 1432) <
builtin.SubscriptionBuiltinTopicData (p. 1510) > .

Instantiates:

<<generic>> (p. 271) com.rti.dds.util.Sequence (p. 1432)

See also:

builtin.SubscriptionBuiltinTopicData (p. 1510)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.249 SubscriptionBuiltinTopicDataTypeSupport Class Reference1519

8.249 SubscriptionBuiltinTopicDataTypeSupport
Class Reference

Instantiates TypeSupport < builtin.SubscriptionBuiltinTopicData
(p. 1510) > .

Inheritance diagram for SubscriptionBuiltinTopicDataTypeSupport::

Static Public Attributes

ˆ static final String SUBSCRIPTION TOPIC NAME = DDS -
SUBSCRIPTION TOPIC NAME()

Subscription topic (p. 350) name.

8.249.1 Detailed Description

Instantiates TypeSupport < builtin.SubscriptionBuiltinTopicData
(p. 1510) > .

Instantiates:

<<generic>> (p. 271) com.rti.dds.topic.example.FooTypeSupport
(p. 1060)

See also:

builtin.SubscriptionBuiltinTopicData (p. 1510)

8.249.2 Member Data Documentation

8.249.2.1 final String SUBSCRIPTION TOPIC NAME =
DDS SUBSCRIPTION TOPIC NAME() [static]

Subscription topic (p. 350) name.

Topic name of builtin.SubscriptionBuiltinTopicDataDataReader
(p. 1517)

See also:

builtin.SubscriptionBuiltinTopicData (p. 1510)
builtin.SubscriptionBuiltinTopicDataDataReader (p. 1517)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1520 Class Documentation

8.250 SubscriptionMatchedStatus Class Refer-
ence

StatusKind.SUBSCRIPTION MATCHED STATUS.

Inherits Status.

Public Attributes

ˆ int total count

The total cumulative number of times the concerned
com.rti.dds.subscription.DataReader (p. 473) discovered a ”match”
with a com.rti.dds.publication.DataWriter (p. 538).

ˆ int total count change

The change in total count since the last time the listener was called or the
status was read.

ˆ int current count

The current number of writers with which the
com.rti.dds.subscription.DataReader (p. 473) is matched.

ˆ int current count peak

<<eXtension>> (p. 270) The highest value that current count has reached
until now.

ˆ int current count change

The change in current count since the last time the listener was called or the
status was read.

ˆ final InstanceHandle t last publication handle

A handle to the last com.rti.dds.publication.DataWriter (p. 538) that
caused the status to change.

8.250.1 Detailed Description

StatusKind.SUBSCRIPTION MATCHED STATUS.

A ”match” happens when the com.rti.dds.subscription.DataReader
(p. 473) finds a com.rti.dds.publication.DataWriter (p. 538) for the same
com.rti.dds.topic.Topic (p. 1545) with an offered QoS that is compatible with
that requested by the com.rti.dds.subscription.DataReader (p. 473).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.250 SubscriptionMatchedStatus Class Reference 1521

This status is also changed (and the listener, if any, called) when a match is
ended. A local com.rti.dds.subscription.DataReader (p. 473) will become
”unmatched” from a remote com.rti.dds.publication.DataWriter (p. 538)
when that com.rti.dds.publication.DataWriter (p. 538) goes away for any
reason.

8.250.2 Member Data Documentation

8.250.2.1 int total count

The total cumulative number of times the concerned
com.rti.dds.subscription.DataReader (p. 473) discovered a ”match”
with a com.rti.dds.publication.DataWriter (p. 538).

This number increases whenever a new match is discovered. It does not change
when an existing match goes away.

8.250.2.2 int total count change

The change in total count since the last time the listener was called or the status
was read.

8.250.2.3 int current count

The current number of writers with which the
com.rti.dds.subscription.DataReader (p. 473) is matched.

This number increases when a new match is discovered and decreases when an
existing match goes away.

8.250.2.4 int current count peak

<<eXtension>> (p. 270) The highest value that current count has reached
until now.

8.250.2.5 int current count change

The change in current count since the last time the listener was called or the
status was read.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1522 Class Documentation

8.250.2.6 final InstanceHandle t last publication handle

A handle to the last com.rti.dds.publication.DataWriter (p. 538) that
caused the status to change.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.251 SystemException Class Reference 1523

8.251 SystemException Class Reference

System exception.

Inheritance diagram for SystemException::

8.251.1 Detailed Description

System exception.

This class is based on a similar class in CORBA.

See also:

http://java.sun.com/javase/6/docs/api/org/omg/CORBA/SystemException.html

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1524 Class Documentation

8.252 SystemResourceLimitsQosPolicy Class
Reference

Configures com.rti.dds.domain.DomainParticipant (p. 629)-independent
resources used by RTI Connext. Mainly used to change the maximum num-
ber of com.rti.dds.domain.DomainParticipant (p. 629) entities that can
be created within a single process (address space).

Inheritance diagram for SystemResourceLimitsQosPolicy::

Public Attributes

ˆ int max objects per thread
The maximum number of objects that can be stored per thread for a
com.rti.dds.domain.DomainParticipantFactory (p. 708).

8.252.1 Detailed Description

Configures com.rti.dds.domain.DomainParticipant (p. 629)-independent
resources used by RTI Connext. Mainly used to change the maximum num-
ber of com.rti.dds.domain.DomainParticipant (p. 629) entities that can
be created within a single process (address space).

This QoS policy is an extension to the DDS standard.

Entity:

com.rti.dds.domain.DomainParticipantFactory (p. 708)

Properties:

RxO (p. 97) = N/A
Changeable (p. 98) = NO (p. 98)

8.252.2 Usage

Within a single process (or address space for some supported real-
time operating systems), applications may create and use multiple
com.rti.dds.domain.DomainParticipant (p. 629) entities. This QoS policy
sets a parameter that places an effective upper bound on the maximum num-
ber of com.rti.dds.domain.DomainParticipant (p. 629) entities that can be
created in a single process/address space.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.252 SystemResourceLimitsQosPolicy Class Reference 1525

8.252.3 Member Data Documentation

8.252.3.1 int max objects per thread

The maximum number of objects that can be stored per thread for a
com.rti.dds.domain.DomainParticipantFactory (p. 708).

Before increasing this value to allow you to create more participants, carefully
consider the application design that requires you to create so many partici-
pants. Remember: a com.rti.dds.domain.DomainParticipant (p. 629) is
a heavy-weight object. It spawns several threads and maintains its own dis-
covery database (see DISCOVERY (p. 54)). Creating more participants than
RTI Connext strictly requires – one per domain (p. 317) per process/address
space – can adversely affect the performance and resource utilization of your
application.

[default] 1024; this value allows you to create about 10 or 11
com.rti.dds.domain.DomainParticipant (p. 629) entities.

[range] [1, 1 billion]

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1526 Class Documentation

8.253 TCKind Class Reference

Enumeration type for TypeCode (p. 1611) kinds.

Inheritance diagram for TCKind::

Static Public Attributes

ˆ static final TCKind TK NULL
Indicates that a type code does not describe anything.

ˆ static final TCKind TK SHORT
short type.

ˆ static final TCKind TK LONG
long type.

ˆ static final TCKind TK USHORT
unsigned short type.

ˆ static final TCKind TK ULONG
unsigned long type.

ˆ static final TCKind TK FLOAT
float type.

ˆ static final TCKind TK DOUBLE
double type.

ˆ static final TCKind TK BOOLEAN
boolean type.

ˆ static final TCKind TK CHAR
char type.

ˆ static final TCKind TK OCTET
octet type.

ˆ static final TCKind TK STRUCT
struct type.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.253 TCKind Class Reference 1527

ˆ static final TCKind TK UNION

union type.

ˆ static final TCKind TK ENUM

enumerated type.

ˆ static final TCKind TK STRING

string type.

ˆ static final TCKind TK SEQUENCE

sequence type.

ˆ static final TCKind TK ARRAY

array type.

ˆ static final TCKind TK ALIAS

alias (typedef) type.

ˆ static final TCKind TK LONGLONG

long long type.

ˆ static final TCKind TK ULONGLONG

unsigned long long type.

ˆ static final TCKind TK LONGDOUBLE

long double type.

ˆ static final TCKind TK WCHAR

wide char type.

ˆ static final TCKind TK WSTRING

wide string type.

ˆ static final TCKind TK VALUE

value type.

ˆ static final TCKind TK SPARSE

A sparse value type.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1528 Class Documentation

8.253.1 Detailed Description

Enumeration type for TypeCode (p. 1611) kinds.

Type code kinds are modeled as values of this type.

8.253.2 Member Data Documentation

8.253.2.1 final TCKind TK NULL [static]

Indicates that a type code does not describe anything.

8.253.2.2 final TCKind TK SHORT [static]

short type.

8.253.2.3 final TCKind TK LONG [static]

long type.

8.253.2.4 final TCKind TK USHORT [static]

unsigned short type.

8.253.2.5 final TCKind TK ULONG [static]

unsigned long type.

8.253.2.6 final TCKind TK FLOAT [static]

float type.

8.253.2.7 final TCKind TK DOUBLE [static]

double type.

8.253.2.8 final TCKind TK BOOLEAN [static]

boolean type.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.253 TCKind Class Reference 1529

8.253.2.9 final TCKind TK CHAR [static]

char type.

8.253.2.10 final TCKind TK OCTET [static]

octet type.

8.253.2.11 final TCKind TK STRUCT [static]

struct type.

8.253.2.12 final TCKind TK UNION [static]

union type.

8.253.2.13 final TCKind TK ENUM [static]

enumerated type.

8.253.2.14 final TCKind TK STRING [static]

string type.

8.253.2.15 final TCKind TK SEQUENCE [static]

sequence type.

8.253.2.16 final TCKind TK ARRAY [static]

array type.

8.253.2.17 final TCKind TK ALIAS [static]

alias (typedef) type.

8.253.2.18 final TCKind TK LONGLONG [static]

long long type.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1530 Class Documentation

8.253.2.19 final TCKind TK ULONGLONG [static]

unsigned long long type.

8.253.2.20 final TCKind TK LONGDOUBLE [static]

long double type.

8.253.2.21 final TCKind TK WCHAR [static]

wide char type.

8.253.2.22 final TCKind TK WSTRING [static]

wide string type.

8.253.2.23 final TCKind TK VALUE [static]

value type.

8.253.2.24 final TCKind TK SPARSE [static]

A sparse value type.

A sparse value type is one in which all of the fields are not necessarily sent on
the network as a part of every sample.

Fields of a sparse value type fall into one of three categories:

ˆ Key fields (see TypeCode.KEY MEMBER (p. 1639))

ˆ Non-key, but required members (see TypeCode.NONKEY -
REQUIRED MEMBER (p. 1639))

ˆ Non-key, optional members (see TypeCode.NONKEY MEMBER
(p. 1638))

Fields of the first two kinds must appear in every sample. These are also
the only kinds of fields on which you can perform content filtering (see
com.rti.dds.topic.ContentFilteredTopic (p. 458)), because filter evaluation
on a non-existent field is not well defined.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.254 ThreadSettings t Class Reference 1531

8.254 ThreadSettings t Class Reference

The properties of a thread of execution.

Inherits Struct.

Public Attributes

ˆ int mask

Describes the type of thread.

ˆ int priority

Thread priority.

ˆ int stack size

The thread stack-size.

ˆ final IntSeq cpu list = new IntSeq()

The list of processors on which the thread(s) may run.

ˆ ThreadSettingsCpuRotationKind cpu rotation

Determines how processor affinity is applied to multiple threads.

8.254.1 Detailed Description

The properties of a thread of execution.

QoS:

com.rti.dds.infrastructure.EventQosPolicy (p. 930)
com.rti.dds.infrastructure.DatabaseQosPolicy (p. 468)
com.rti.dds.infrastructure.ReceiverPoolQosPolicy (p. 1331)
com.rti.dds.infrastructure.AsynchronousPublisherQosPolicy
(p. 387)

8.254.2 Member Data Documentation

8.254.2.1 int mask

Describes the type of thread.

[default] 0, use default options of the OS

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1532 Class Documentation

8.254.2.2 int priority

Thread priority.

Important : The interpretation of numeric thread priority values is different
based on whether the priority is specified in your application code or in an XML
QoS profile document. This is because QoS profile documents are intended to
be usable across programming languages.

[range] java.lang.Thread.MIN PRIORITY to MAX PRIORITY if set program-
matically in Java code [range] Platform-dependent if set in a QoS profile doc-
ument

8.254.2.3 int stack size

The thread stack-size.

[range] Platform-dependent.

8.254.2.4 final IntSeq cpu list = new IntSeq()

The list of processors on which the thread(s) may run.

A sequence of integers that represent the set of processors on which the thread(s)
controlled by this QoS may run. An empty sequence (the default) means the
middleware wlll make no CPU affinity adjustments.

Note: This feature is currently only supported on a subset of architectures (see
the Platform Notes). The API may change as more architectures are added
in future releases.

This value is only relevant to the com.rti.dds.infrastructure.ReceiverPoolQosPolicy
(p. 1331). It is ignored within other QoS policies that include
com.rti.dds.infrastructure.ThreadSettings t (p. 1531).

See also:

Controlling CPU Core Affinity for RTI Threads (p. 1534)

[default] Empty sequence

8.254.2.5 ThreadSettingsCpuRotationKind cpu rotation

Initial value:

ThreadSettingsCpuRotationKind.THREAD_SETTINGS_CPU_NO_ROTATION

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.254 ThreadSettings t Class Reference 1533

Determines how processor affinity is applied to multiple threads.

This value is only relevant to the com.rti.dds.infrastructure.ReceiverPoolQosPolicy
(p. 1331). It is ignored within other QoS policies that include
com.rti.dds.infrastructure.ThreadSettings t (p. 1531).

See also:

Controlling CPU Core Affinity for RTI Threads (p. 1534)

Note: This feature is currently only supported on a subset of architectures (see
the Platform Notes). The API may change as more architectures are added
in future releases.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1534 Class Documentation

8.255 ThreadSettingsCpuRotationKind Class
Reference

Determines how com.rti.dds.infrastructure.ThreadSettings t.cpu list
(p. 1532) affects processor affinity for thread-related QoS policies that apply
to multiple threads.

Inheritance diagram for ThreadSettingsCpuRotationKind::

Static Public Attributes

ˆ static final ThreadSettingsCpuRotationKind THREAD -
SETTINGS CPU NO ROTATION

Any thread controlled by this QoS can run on any listed processor, as deter-
mined by OS scheduling.

ˆ static final ThreadSettingsCpuRotationKind THREAD -
SETTINGS CPU RR ROTATION

Threads controlled by this QoS will be assigned one processor from the list in
round-robin order.

8.255.1 Detailed Description

Determines how com.rti.dds.infrastructure.ThreadSettings t.cpu list
(p. 1532) affects processor affinity for thread-related QoS policies that apply
to multiple threads.

8.255.2 Controlling CPU Core Affinity for RTI Threads

Most thread-related QoS settings apply to a single thread (such
as for the com.rti.dds.infrastructure.EventQosPolicy (p. 930),
com.rti.dds.infrastructure.DatabaseQosPolicy (p. 468), and
com.rti.dds.infrastructure.AsynchronousPublisherQosPolicy
(p. 387)). However, the thread settings in the
com.rti.dds.infrastructure.ReceiverPoolQosPolicy (p. 1331) control
every receive thread created. In this case, there are several schemes to map M
threads to N processors; the rotation kind controls which scheme is used.

If com.rti.dds.infrastructure.ThreadSettings t.cpu -
list (p. 1532) is empty, the rotation is irrelevant since

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.255 ThreadSettingsCpuRotationKind Class Reference 1535

no affinity adjustment will occur. Suppose instead that
com.rti.dds.infrastructure.ThreadSettings t.cpu list (p. 1532) = {0,
1} and that the middleware creates three receive threads: {A, B, C}. If
com.rti.dds.infrastructure.ThreadSettings t.cpu rotation (p. 1532) is
com.rti.dds.infrastructure.ThreadSettingsCpuRotationKind.THREAD -
SETTINGS CPU NO ROTATION (p. 1535), threads A, B and C will have
the same processor affinities (0-1), and the OS will control thread scheduling
within this bound. It is common to denote CPU affinities as a bitmask, where
set bits represent allowed processors to run on. This mask is printed in hex, so
a CPU core affinity of 0-1 can be represented by the mask 0x3.

If com.rti.dds.infrastructure.ThreadSettings t.cpu rotation (p. 1532) is
com.rti.dds.infrastructure.ThreadSettingsCpuRotationKind.THREAD -
SETTINGS CPU RR ROTATION (p. 1535), each thread will
be assigned in round-robin fashion to one of the processors in
com.rti.dds.infrastructure.ThreadSettings t.cpu list (p. 1532); per-
haps thread A to 0, B to 1, and C to 0. Note that the order in which internal
middleware threads spawn is unspecified.

Not all of these options may be relevant for all operating systems.

8.255.3 Member Data Documentation

8.255.3.1 final ThreadSettingsCpuRotationKind
THREAD SETTINGS CPU NO ROTATION [static]

Any thread controlled by this QoS can run on any listed processor, as determined
by OS scheduling.

8.255.3.2 final ThreadSettingsCpuRotationKind
THREAD SETTINGS CPU RR ROTATION [static]

Threads controlled by this QoS will be assigned one processor from the list in
round-robin order.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1536 Class Documentation

8.256 ThreadSettingsKind Class Reference

A collection of flags used to configure threads of execution.

Static Public Attributes

ˆ static final int THREAD SETTINGS KIND MASK DEFAULT

The mask of default thread options.

ˆ static final int THREAD SETTINGS FLOATING POINT

Code executed within the thread may perform floating point operations.

ˆ static final int THREAD SETTINGS STDIO

Code executed within the thread may access standard I/O.

ˆ static final int THREAD SETTINGS REALTIME PRIORITY

The thread will be schedule on a real-time basis.

ˆ static final int THREAD SETTINGS PRIORITY ENFORCE

Strictly enforce this thread’s priority.

8.256.1 Detailed Description

A collection of flags used to configure threads of execution.

Not all of these options may be relevant for all operating systems.

See also:

com.rti.dds.infrastructure.ThreadSettingsKindMask

8.256.2 Member Data Documentation

8.256.2.1 final int THREAD SETTINGS FLOATING POINT
[static]

Code executed within the thread may perform floating point operations.

8.256.2.2 final int THREAD SETTINGS STDIO [static]

Code executed within the thread may access standard I/O.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.256 ThreadSettingsKind Class Reference 1537

8.256.2.3 final int THREAD SETTINGS REALTIME PRIORITY
[static]

The thread will be schedule on a real-time basis.

8.256.2.4 final int THREAD SETTINGS PRIORITY ENFORCE
[static]

Strictly enforce this thread’s priority.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1538 Class Documentation

8.257 Time t Class Reference

Type for time representation.

Inherits Struct, and java.io.Externalizable.

Public Member Functions

ˆ Time t (Time t time)
Copy constructor.

ˆ Time t (int sec, int nanosec)
Constructor.

ˆ boolean is invalid ()
ˆ boolean is zero ()

Check if time is zero.

Public Attributes

ˆ int sec

seconds

ˆ int nanosec

nanoseconds

Static Public Attributes

ˆ static final int TIME INVALID SEC

A sentinel indicating an invalid second of time.

ˆ static final int TIME INVALID NSEC

A sentinel indicating an invalid nano-second of time.

8.257.1 Detailed Description

Type for time representation.

A com.rti.dds.infrastructure.Time t (p. 1538) represents a moment in time.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.257 Time t Class Reference 1539

8.257.2 Constructor & Destructor Documentation

8.257.2.1 Time t (Time t time)

Copy constructor.

Parameters:

time The instance to copy. It must not be null.

8.257.2.2 Time t (int sec, int nanosec)

Constructor.

Parameters:

sec must be >=0
nanosec must be >=0

Exceptions:

RETCODE BAD PARAMETER (p. 1363) if either time value is
negative

8.257.3 Member Function Documentation

8.257.3.1 boolean is invalid ()

Returns:

true if the given time is not valid (i.e. is negative)

8.257.3.2 boolean is zero ()

Check if time is zero.

Returns:

true if the given time is equal to com.rti.dds.infrastructure.Time t.ZERO
or false otherwise.

8.257.4 Member Data Documentation

8.257.4.1 final int TIME INVALID SEC [static]

A sentinel indicating an invalid second of time.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1540 Class Documentation

8.257.4.2 final int TIME INVALID NSEC [static]

A sentinel indicating an invalid nano-second of time.

8.257.4.3 int sec

seconds

8.257.4.4 int nanosec

nanoseconds

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.258 TimeBasedFilterQosPolicy Class Reference 1541

8.258 TimeBasedFilterQosPolicy Class Refer-
ence

Filter that allows a com.rti.dds.subscription.DataReader (p. 473) to spec-
ify that it is interested only in (potentially) a subset of the values of the data.

Inheritance diagram for TimeBasedFilterQosPolicy::

Public Attributes

ˆ final Duration t minimum separation

The minimum separation duration between subequent samples.

8.258.1 Detailed Description

Filter that allows a com.rti.dds.subscription.DataReader (p. 473) to spec-
ify that it is interested only in (potentially) a subset of the values of the data.

The filter states that the com.rti.dds.subscription.DataReader (p. 473)
does not want to receive more than one value each minimum separation, re-
gardless of how fast the changes occur.

Entity:

com.rti.dds.subscription.DataReader (p. 473)

Properties:

RxO (p. 97) = N/A
Changeable (p. 98) = YES (p. 98)

8.258.2 Usage

You can use this QoS policy to reduce the amount of data re-
ceived by a com.rti.dds.subscription.DataReader (p. 473).
com.rti.dds.publication.DataWriter (p. 538) entities may send data
faster than needed by a com.rti.dds.subscription.DataReader (p. 473).
For example, a com.rti.dds.subscription.DataReader (p. 473) of sensor
data that is displayed to a human operator in a GUI application does not need
to receive data updates faster than a user can reasonably perceive changes in
data values. This is often measured in tenths (0.1) of a second up to several

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1542 Class Documentation

seconds. However, a com.rti.dds.publication.DataWriter (p. 538) of sensor
information may have other com.rti.dds.subscription.DataReader (p. 473)
entities that are processing the sensor information to control parts of the
system and thus need new data updates in measures of hundredths (0.01) or
thousandths (0.001) of a second.

With this QoS policy, different com.rti.dds.subscription.DataReader
(p. 473) entities can set their own time-based filters, so that data published
faster than the period set by a each com.rti.dds.subscription.DataReader
(p. 473) will not be delivered to that com.rti.dds.subscription.DataReader
(p. 473).

The TIME BASED FILTER (p. 113) also applies to each
instance separately; that is, the constraint is that the
com.rti.dds.subscription.DataReader (p. 473) does not want to see
more than one sample of each instance per minimum separation period.

This QoS policy allows you to optimize resource usage (CPU and possi-
bly network bandwidth) by only delivering the required amount of data to
each com.rti.dds.subscription.DataReader (p. 473), accommodating the
fact that, for rapidly-changing data, different subscribers may have different
requirements and constraints as to how frequently they need or can handle be-
ing notified of the most current values. As such, it can also be used to protect
applications that are running on a heterogeneous network where some nodes are
capable of generating data much faster than others can consume it.

For best effort data delivery, if the data type is unkeyed and
the com.rti.dds.publication.DataWriter (p. 538) has an in-
finite com.rti.dds.infrastructure.LivelinessQosPolicy.lease -
duration (p. 1167), RTI Connext will only send as many pack-
ets to a com.rti.dds.subscription.DataReader (p. 473) as re-
quired by the TIME BASED FILTER, no matter how fast
com.rti.dds.topic.example.FooDataWriter.write is called.

For multicast data delivery to multiple DataReaders, the one with the low-
est minimum separation determines the DataWriter’s send rate. For example,
if a com.rti.dds.publication.DataWriter (p. 538) sends over multicast to
two DataReaders, one with minimum separation of 2 seconds and one with
minimum separation of 1 second, the DataWriter will send every 1 second.

In configurations where RTI Connext must send all the data published by
the com.rti.dds.publication.DataWriter (p. 538) (for example, when the
com.rti.dds.publication.DataWriter (p. 538) is reliable, when the data type
is keyed, or when the com.rti.dds.publication.DataWriter (p. 538) has
a finite com.rti.dds.infrastructure.LivelinessQosPolicy.lease duration
(p. 1167)), only the data that passes the TIME BASED FILTER will be stored
in the receive queue of the com.rti.dds.subscription.DataReader (p. 473).
Extra data will be accepted but dropped. Note that filtering is only applied on
alive samples (that is, samples that have not been disposed/unregistered).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.258 TimeBasedFilterQosPolicy Class Reference 1543

8.258.3 Consistency

It is inconsistent for a com.rti.dds.subscription.DataReader (p. 473) to
have a minimum separation longer than its DEADLINE (p. 50) period.

However, it is important to be aware of certain edge cases that can occur when
your publication (p. 338) rate, minimum separation, and deadline period align
and that can cause missed deadlines that you may not expect. For example,
suppose that you nominally publish samples every second but that this rate can
vary somewhat over time. You declare a minimum separation of 1 second to
filter out rapid updates and set a deadline of two seconds so that you will be
aware if the rate falls too low. Even if your update rate never wavers, you can
still miss deadlines! Here’s why:

Suppose you publish the first sample at time t=0 seconds. You then publish
your next sample at t=1 seconds. Depending on how your operating system
schedules the time-based filter execution relative to the publication (p. 338),
this second sample may be filtered. You then publish your third sample at t=2
seconds, and depending on how your OS schedules this publication (p. 338) in
relation to the deadline check, you could miss the deadline.

This scenario demonstrates a couple of rules of thumb:

ˆ Beware of setting your minimum separation to a value very close to your
publication (p. 338) rate: you may filter more data than you intend to.

ˆ Beware of setting your minimum separation to a value that is too close
to your deadline period relative to your publication (p. 338) rate. You
may miss deadlines.

See com.rti.dds.infrastructure.DeadlineQosPolicy (p. 604) for more infor-
mation about the interactions between deadlines and time-based filters.

The setting of a TIME BASED FILTER (p. 113) – that is, the selection
of a minimum separation with a value greater than zero – is consistent with
all settings of the HISTORY (p. 75) and RELIABILITY (p. 101) QoS. The
TIME BASED FILTER (p. 113) specifies the samples that are of interest
to the com.rti.dds.subscription.DataReader (p. 473). The HISTORY
(p. 75) and RELIABILITY (p. 101) QoS affect the behavior of the middle-
ware with respect to the samples that have been determined to be of interest to
the com.rti.dds.subscription.DataReader (p. 473); that is, they apply after
the TIME BASED FILTER (p. 113) has been applied.

In the case where the reliability QoS kind is ReliabilityQosPoli-
cyKind.RELIABLE RELIABILITY QOS (p. 1341), in steady-state –
defined as the situation where the com.rti.dds.publication.DataWriter
(p. 538) does not write new samples for a period ”long” compared to the
minimum separation – the system should guarantee delivery of the last sample
to the com.rti.dds.subscription.DataReader (p. 473).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1544 Class Documentation

See also:

DeadlineQosPolicy (p. 604)
HistoryQosPolicy (p. 1071)
ReliabilityQosPolicy (p. 1336)

8.258.4 Member Data Documentation

8.258.4.1 final Duration t minimum separation

The minimum separation duration between subequent samples.

[default] 0 (meaning the com.rti.dds.subscription.DataReader (p. 473) is
potentially interested in all values)

[range] [0,1 year], < com.rti.dds.infrastructure.DeadlineQosPolicy.period
(p. 606)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.259 Topic Interface Reference 1545

8.259 Topic Interface Reference

<<interface>> (p. 271) The most basic description of the data to be pub-
lished and subscribed.

Inheritance diagram for Topic::

Public Member Functions

ˆ void get inconsistent topic status (InconsistentTopicStatus sta-
tus)

Allows the application to retrieve the StatusKind.INCONSISTENT TOPIC -
STATUS status of a com.rti.dds.topic.Topic (p. 1545).

ˆ void set qos (TopicQos qos)

Set the topic (p. 350) QoS.

ˆ void set qos with profile (String library name, String profile name)

<<eXtension>> (p. 270) Change the QoS of this topic (p. 350) using the
input XML QoS profile.

ˆ void get qos (TopicQos qos)

Get the topic (p. 350) QoS.

ˆ void set listener (TopicListener l, int mask)

Set the topic (p. 350) listener.

ˆ TopicListener get listener ()

Get the topic (p. 350) listener.

8.259.1 Detailed Description

<<interface>> (p. 271) The most basic description of the data to be pub-
lished and subscribed.

QoS:

com.rti.dds.topic.TopicQos (p. 1566)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1546 Class Documentation

Status:

StatusKind.INCONSISTENT TOPIC STATUS,
com.rti.dds.topic.InconsistentTopicStatus (p. 1077)

Listener:

com.rti.dds.topic.TopicListener (p. 1564)

A com.rti.dds.topic.Topic (p. 1545) is identified by its name, which must
be unique in the whole domain (p. 317). In addition (by virtue of extend-
ing com.rti.dds.topic.TopicDescription (p. 1561)) it fully specifies the type
of the data that can be communicated when publishing or subscribing to the
com.rti.dds.topic.Topic (p. 1545).

com.rti.dds.topic.Topic (p. 1545) is the only
com.rti.dds.topic.TopicDescription (p. 1561) that can be used for publica-
tions and therefore associated with a com.rti.dds.publication.DataWriter
(p. 538).

The following operations may be called even if the com.rti.dds.topic.Topic
(p. 1545) is not enabled. Other operations will fail with the value RETCODE -
NOT ENABLED if called on a disabled com.rti.dds.topic.Topic (p. 1545):

ˆ All the base-class operations set qos() (p. 1547), set qos with profile()
(p. 1548), get qos() (p. 1548), set listener() (p. 1549), get listener()
(p. 1549) enable() (p. 915), get statuscondition() (p. 917) and get -
status changes() (p. 917)

ˆ get inconsistent topic status() (p. 1546)

See also:

Operations Allowed in Listener Callbacks (p. 1156)

8.259.2 Member Function Documentation

8.259.2.1 void get inconsistent topic status
(InconsistentTopicStatus status)

Allows the application to retrieve the StatusKind.INCONSISTENT TOPIC -
STATUS status of a com.rti.dds.topic.Topic (p. 1545).

Retrieve the current com.rti.dds.topic.InconsistentTopicStatus (p. 1077)

Parameters:

status <<inout>> (p. 271) Status to be retrieved. Cannot be NULL.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.259 Topic Interface Reference 1547

Exceptions:

One of the Standard Return Codes (p. 104)

See also:

com.rti.dds.topic.InconsistentTopicStatus (p. 1077)

8.259.2.2 void set qos (TopicQos qos)

Set the topic (p. 350) QoS.

The com.rti.dds.topic.TopicQos.topic data (p. 1567)
and com.rti.dds.topic.TopicQos.deadline (p. 1568),
com.rti.dds.topic.TopicQos.latency budget (p. 1568),
com.rti.dds.topic.TopicQos.transport priority (p. 1568) and
com.rti.dds.topic.TopicQos.lifespan (p. 1568) can be changed. The
other policies are immutable.

Parameters:

qos <<in>> (p. 271) Set of policies to be applied to
com.rti.dds.topic.Topic (p. 1545).

Policies must be consistent. Immutable policies cannot be changed after
com.rti.dds.topic.Topic (p. 1545) is enabled. The special value Domain-
Participant.TOPIC QOS DEFAULT (p. 148) can be used to indicate that
the QoS of the com.rti.dds.topic.Topic (p. 1545) should be changed to
match the current default com.rti.dds.topic.TopicQos (p. 1566) set in the
com.rti.dds.domain.DomainParticipant (p. 629). Cannot be NULL.

Exceptions:

One of the Standard Return Codes (p. 104), RETCODE -
IMMUTABLE POLICY if immutable policy is changed, or RET-
CODE INCONSISTENT POLICY if policies are inconsistent

See also:

com.rti.dds.topic.TopicQos (p. 1566) for rules on consistency among
QoS
set qos (abstract) (p. 913)
Operations Allowed in Listener Callbacks (p. 1156)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1548 Class Documentation

8.259.2.3 void set qos with profile (String library name, String
profile name)

<<eXtension>> (p. 270) Change the QoS of this topic (p. 350) using the
input XML QoS profile.

The com.rti.dds.topic.TopicQos.topic data (p. 1567)
and com.rti.dds.topic.TopicQos.deadline (p. 1568),
com.rti.dds.topic.TopicQos.latency budget (p. 1568),
com.rti.dds.topic.TopicQos.transport priority (p. 1568) and
com.rti.dds.topic.TopicQos.lifespan (p. 1568) can be changed. The
other policies are immutable.

Parameters:

library name <<in>> (p. 271) Library name containing the XML QoS
profile. If library name is null RTI Connext will use the de-
fault library (see com.rti.dds.domain.DomainParticipant.set -
default library (p. 679)).

profile name <<in>> (p. 271) XML QoS Profile name. If pro-
file name is null RTI Connext will use the default pro-
file (see com.rti.dds.domain.DomainParticipant.set default -
profile (p. 680)).

Exceptions:

One of the Standard Return Codes (p. 104), RETCODE -
IMMUTABLE POLICY if immutable policy is changed, or RET-
CODE INCONSISTENT POLICY if policies are inconsistent

See also:

com.rti.dds.topic.TopicQos (p. 1566) for rules on consistency among
QoS
Operations Allowed in Listener Callbacks (p. 1156)

8.259.2.4 void get qos (TopicQos qos)

Get the topic (p. 350) QoS.

This method may potentially allocate memory depending on the sequences con-
tained in some QoS policies.

Parameters:

qos <<inout>> (p. 271) QoS to be filled up. Cannot be NULL.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.259 Topic Interface Reference 1549

Exceptions:

One of the Standard Return Codes (p. 104)

See also:

get qos (abstract) (p. 914)

8.259.2.5 void set listener (TopicListener l, int mask)

Set the topic (p. 350) listener.

Parameters:

l <<in>> (p. 271) Listener to be installed on entity.

mask <<in>> (p. 271) Changes of communication status to be invoked
on the listener.

Exceptions:

One of the Standard Return Codes (p. 104)

See also:

set listener (abstract) (p. 914)

8.259.2.6 TopicListener get listener ()

Get the topic (p. 350) listener.

Returns:

Existing listener attached to the com.rti.dds.topic.Topic (p. 1545).

See also:

get listener (abstract) (p. 915)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1550 Class Documentation

8.260 TopicAdapter Class Reference

<<eXtension>> (p. 270) A listener adapter in the spirit of the Java AWT
listener adapters. (The Adapter provides empty implementations for the listener
methods)

Inheritance diagram for TopicAdapter::

Public Member Functions

ˆ void on inconsistent topic (Topic topic, InconsistentTopicStatus
status)

Handle the StatusKind.INCONSISTENT TOPIC STATUS status.

8.260.1 Detailed Description

<<eXtension>> (p. 270) A listener adapter in the spirit of the Java AWT
listener adapters. (The Adapter provides empty implementations for the listener
methods)

Clients who do not wish to implement all listener methods can subclass this
class and override only the methods of interest.

8.260.2 Member Function Documentation

8.260.2.1 void on inconsistent topic (Topic topic,
InconsistentTopicStatus status)

Handle the StatusKind.INCONSISTENT TOPIC STATUS status.

This callback is called when a remote com.rti.dds.topic.Topic (p. 1545) is
discovered but is inconsistent with the locally created com.rti.dds.topic.Topic
(p. 1545) of the same topic (p. 350) name.

Parameters:

topic (p. 350) <<out>> (p. 271) Locally created
com.rti.dds.topic.Topic (p. 1545) that triggers the listener
callback

status <<out>> (p. 271) Current inconsistent status of locally created
com.rti.dds.topic.Topic (p. 1545)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.260 TopicAdapter Class Reference 1551

Implements TopicListener (p. 1565).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1552 Class Documentation

8.261 TopicBuiltinTopicData Class Reference

Entry created when a Topic (p. 1545) object discovered.

Inherits AbstractBuiltinTopicData.

Public Attributes

ˆ final BuiltinTopicKey t key
DCPS key to distinguish entries.

ˆ String name
Name of the com.rti.dds.topic.Topic (p. 1545).

ˆ String type name
Name of the type attached to the com.rti.dds.topic.Topic (p. 1545).

ˆ final DurabilityQosPolicy durability
durability policy of the corresponding Topic (p. 1545)

ˆ final DurabilityServiceQosPolicy durability service
durability service policy of the corresponding Topic (p. 1545)

ˆ final DeadlineQosPolicy deadline
Policy of the corresponding Topic (p. 1545).

ˆ final LatencyBudgetQosPolicy latency budget
Policy of the corresponding Topic (p. 1545).

ˆ final LivelinessQosPolicy liveliness
Policy of the corresponding Topic (p. 1545).

ˆ final ReliabilityQosPolicy reliability
Policy of the corresponding Topic (p. 1545).

ˆ final TransportPriorityQosPolicy transport priority
Policy of the corresponding Topic (p. 1545).

ˆ final LifespanQosPolicy lifespan
Policy of the corresponding Topic (p. 1545).

ˆ final DestinationOrderQosPolicy destination order
Policy of the corresponding Topic (p. 1545).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.261 TopicBuiltinTopicData Class Reference 1553

ˆ final HistoryQosPolicy history

Policy of the corresponding Topic (p. 1545).

ˆ final ResourceLimitsQosPolicy resource limits

Policy of the corresponding Topic (p. 1545).

ˆ final OwnershipQosPolicy ownership

Policy of the corresponding Topic (p. 1545).

ˆ final TopicDataQosPolicy topic data

Policy of the corresponding Topic (p. 1545).

8.261.1 Detailed Description

Entry created when a Topic (p. 1545) object discovered.

Data associated with the built-in topic (p. 350) TopicBuiltinTopic-
DataTypeSupport.TOPIC TOPIC NAME (p. 1558). It contains
QoS policies and additional information that apply to the remote
com.rti.dds.topic.Topic (p. 1545).

Note: The DDS TopicBuiltinTopicData built-in topic (p. 350) is meant to con-
vey information about discovered Topics. This Topic’s samples are not propa-
gated in a separate packet on the wire. Instead, the data is sent as part of the in-
formation carried by other built-in topics (builtin.PublicationBuiltinTopicData
and builtin.SubscriptionBuiltinTopicData). Therefore TopicBuiltinTopic-
Data (p. 1552) DataReaders will not receive any data.

See also:

TopicBuiltinTopicDataTypeSupport.TOPIC TOPIC NAME
(p. 1558)
builtin.TopicBuiltinTopicDataDataReader (p. 1556)

8.261.2 Member Data Documentation

8.261.2.1 final BuiltinTopicKey t key

DCPS key to distinguish entries.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1554 Class Documentation

8.261.2.2 String name

Name of the com.rti.dds.topic.Topic (p. 1545).

The length of this string is limited to 255 characters.

8.261.2.3 String type name

Name of the type attached to the com.rti.dds.topic.Topic (p. 1545).

The length of this string is limited to 255 characters.

8.261.2.4 final DurabilityQosPolicy durability

durability policy of the corresponding Topic (p. 1545)

8.261.2.5 final DurabilityServiceQosPolicy durability service

durability service policy of the corresponding Topic (p. 1545)

8.261.2.6 final DeadlineQosPolicy deadline

Policy of the corresponding Topic (p. 1545).

8.261.2.7 final LatencyBudgetQosPolicy latency budget

Policy of the corresponding Topic (p. 1545).

8.261.2.8 final LivelinessQosPolicy liveliness

Policy of the corresponding Topic (p. 1545).

8.261.2.9 final ReliabilityQosPolicy reliability

Policy of the corresponding Topic (p. 1545).

8.261.2.10 final TransportPriorityQosPolicy transport priority

Policy of the corresponding Topic (p. 1545).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.261 TopicBuiltinTopicData Class Reference 1555

8.261.2.11 final LifespanQosPolicy lifespan

Policy of the corresponding Topic (p. 1545).

8.261.2.12 final DestinationOrderQosPolicy destination order

Policy of the corresponding Topic (p. 1545).

8.261.2.13 final HistoryQosPolicy history

Policy of the corresponding Topic (p. 1545).

8.261.2.14 final ResourceLimitsQosPolicy resource limits

Policy of the corresponding Topic (p. 1545).

8.261.2.15 final OwnershipQosPolicy ownership

Policy of the corresponding Topic (p. 1545).

8.261.2.16 final TopicDataQosPolicy topic data

Policy of the corresponding Topic (p. 1545).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1556 Class Documentation

8.262 TopicBuiltinTopicDataDataReader Class
Reference

Instantiates DataReader < builtin.TopicBuiltinTopicData (p. 1552) > .

Inherits DataReaderImpl.

8.262.1 Detailed Description

Instantiates DataReader < builtin.TopicBuiltinTopicData (p. 1552) > .

com.rti.dds.subscription.DataReader (p. 473) of topic (p. 350) Top-
icBuiltinTopicDataTypeSupport.TOPIC TOPIC NAME (p. 1558)
used for accessing builtin.TopicBuiltinTopicData (p. 1552) of the remote
com.rti.dds.topic.Topic (p. 1545).

Note: The builtin.TopicBuiltinTopicData (p. 1552) built-in topic
(p. 350) is meant to convey information about discovered Topics. This
Topic’s samples are not propagated in a separate packet on the
wire. Instead, the data is sent as part of the information car-
ried by other built-in topics (builtin.PublicationBuiltinTopicData and
builtin.SubscriptionBuiltinTopicData). Therefore TopicBuiltinTopicData
(p. 1552) DataReaders will not receive any data.

Instantiates:

<<generic>> (p. 271) com.rti.dds.topic.example.FooDataReader

See also:

builtin.TopicBuiltinTopicData (p. 1552)
TopicBuiltinTopicDataTypeSupport.TOPIC TOPIC NAME
(p. 1558)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.263 TopicBuiltinTopicDataSeq Class Reference 1557

8.263 TopicBuiltinTopicDataSeq Class Refer-
ence

Instantiates com.rti.dds.util.Sequence (p. 1432) <
builtin.TopicBuiltinTopicData (p. 1552) > .

Inherits AbstractBuiltinTopicDataSeq.

8.263.1 Detailed Description

Instantiates com.rti.dds.util.Sequence (p. 1432) <
builtin.TopicBuiltinTopicData (p. 1552) > .

Instantiates:

<<generic>> (p. 271) com.rti.dds.util.Sequence (p. 1432)

See also:

builtin.TopicBuiltinTopicData (p. 1552)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1558 Class Documentation

8.264 TopicBuiltinTopicDataTypeSupport
Class Reference

Instantiates TypeSupport (p. 1651) < builtin.TopicBuiltinTopicData
(p. 1552) > .

Inheritance diagram for TopicBuiltinTopicDataTypeSupport::

Static Public Attributes

ˆ static final String TOPIC TOPIC NAME = DDS TOPIC TOPIC -
NAME()

Topic (p. 1545) topic (p. 350) name.

8.264.1 Detailed Description

Instantiates TypeSupport (p. 1651) < builtin.TopicBuiltinTopicData
(p. 1552) > .

Instantiates:

<<generic>> (p. 271) com.rti.dds.topic.example.FooTypeSupport
(p. 1060)

See also:

builtin.TopicBuiltinTopicData (p. 1552)

8.264.2 Member Data Documentation

8.264.2.1 final String TOPIC TOPIC NAME =
DDS TOPIC TOPIC NAME() [static]

Topic (p. 1545) topic (p. 350) name.

Topic (p. 1545) name of builtin.TopicBuiltinTopicDataDataReader
(p. 1556)

See also:

builtin.TopicBuiltinTopicData (p. 1552)
builtin.TopicBuiltinTopicDataDataReader (p. 1556)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.265 TopicDataQosPolicy Class Reference 1559

8.265 TopicDataQosPolicy Class Reference

Attaches a buffer of opaque data that is distributed by means of Built-in
Topics (p. 153) during discovery.

Inheritance diagram for TopicDataQosPolicy::

Public Attributes

ˆ final ByteSeq value

a sequence of octets

8.265.1 Detailed Description

Attaches a buffer of opaque data that is distributed by means of Built-in
Topics (p. 153) during discovery.

Entity:

com.rti.dds.topic.Topic (p. 1545)

Properties:

RxO (p. 97) = NO
Changeable (p. 98) = YES (p. 98)

See also:

com.rti.dds.domain.DomainParticipant.get builtin subscriber
(p. 684)

8.265.2 Usage

The purpose of this QoS is to allow the application to attach additional informa-
tion to the created com.rti.dds.topic.Topic (p. 1545) objects, so that when a
remote application discovers their existence, it can access that information and
use it for its own purposes. This extra data is not used by RTI Connext.

One possible use of this QoS is to attach security credentials or some other
information that can be used by the remote application to authenticate the
source.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1560 Class Documentation

In combination with com.rti.dds.subscription.DataReaderListener
(p. 501), com.rti.dds.publication.DataWriterListener (p. 566), or op-
erations such as com.rti.dds.domain.DomainParticipant.ignore topic
(p. 687), this QoS policy can assist an application in defining and enforcing its
own security policies.

The use of this QoS is not limited to security; it offers a simple, yet flexible
extensibility mechanism.

Important: RTI Connext stores the data placed in this policy in pre-allocated
pools. It is therefore necessary to configure RTI Connext with the maximum size
of the data that will be stored in policies of this type. This size is configured with
com.rti.dds.infrastructure.DomainParticipantResourceLimitsQosPolicy.topic -
data max length (p. 753).

8.265.3 Member Data Documentation

8.265.3.1 final ByteSeq value

a sequence of octets

[default] empty (zero-length)

[range] Octet sequence of length [0,max length]

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.266 TopicDescription Interface Reference 1561

8.266 TopicDescription Interface Reference

com.rti.dds.topic.Topic (p. 1545) entity and associated elements

Inheritance diagram for TopicDescription::

Public Member Functions

ˆ String get type name ()

Get the associated type name.

ˆ String get name ()

Get the name used to create this com.rti.dds.topic.TopicDescription
(p. 1561) .

ˆ DomainParticipant get participant ()

Get the com.rti.dds.domain.DomainParticipant (p. 629) to which the
com.rti.dds.topic.TopicDescription (p. 1561) belongs.

8.266.1 Detailed Description

com.rti.dds.topic.Topic (p. 1545) entity and associated elements

<<interface>> (p. 271) Base class for com.rti.dds.topic.Topic
(p. 1545), com.rti.dds.topic.ContentFilteredTopic
(p. 458), and com.rti.dds.topic.MultiTopic (p. 1208).
com.rti.dds.topic.TopicDescription (p. 1561) represents the fact that
both publications and subscriptions are tied to a single data-type. Its attribute
type name defines a unique resulting type for the publication (p. 338) or the
subscription (p. 343) and therefore creates an implicit association with a
TypeSupport (p. 1651).

com.rti.dds.topic.TopicDescription (p. 1561) has also a name that allows it
to be retrieved locally.

See also:

TypeSupport (p. 1651), com.rti.dds.topic.example.FooTypeSupport
(p. 1060)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1562 Class Documentation

8.266.2 Member Function Documentation

8.266.2.1 String get type name ()

Get the associated type name.

The type name defines a locally unique type for the publication (p. 338) or the
subscription (p. 343).

The type name corresponds to a unique string used to register a type via
the com.rti.dds.topic.example.FooTypeSupport.register type (p. 1060)
method.

Thus, the type name implies an association with a corresponding TypeSup-
port (p. 1651) and this com.rti.dds.topic.TopicDescription (p. 1561).

Returns:

the type name. The returned type name is valid until the
com.rti.dds.topic.TopicDescription (p. 1561) is deleted.

Postcondition:

The result is non-NULL.

See also:

TypeSupport (p. 1651), com.rti.dds.topic.example.FooTypeSupport
(p. 1060)

8.266.2.2 String get name ()

Get the name used to create this com.rti.dds.topic.TopicDescription
(p. 1561) .

Returns:

the name used to create this com.rti.dds.topic.TopicDescription
(p. 1561). The returned topic (p. 350) name is valid until the
com.rti.dds.topic.TopicDescription (p. 1561) is deleted.

Postcondition:

The result is non-NULL.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.266 TopicDescription Interface Reference 1563

8.266.2.3 DomainParticipant get participant ()

Get the com.rti.dds.domain.DomainParticipant (p. 629) to which the
com.rti.dds.topic.TopicDescription (p. 1561) belongs.

Returns:

The com.rti.dds.domain.DomainParticipant (p. 629) to which the
com.rti.dds.topic.TopicDescription (p. 1561) belongs.

Postcondition:

The result is non-NULL.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1564 Class Documentation

8.267 TopicListener Interface Reference

<<interface>> (p. 271) com.rti.dds.infrastructure.Listener (p. 1154) for
com.rti.dds.topic.Topic (p. 1545) entities.

Inheritance diagram for TopicListener::

Public Member Functions

ˆ void on inconsistent topic (Topic topic, InconsistentTopicStatus
status)

Handle the StatusKind.INCONSISTENT TOPIC STATUS status.

8.267.1 Detailed Description

<<interface>> (p. 271) com.rti.dds.infrastructure.Listener (p. 1154) for
com.rti.dds.topic.Topic (p. 1545) entities.

Entity:

com.rti.dds.topic.Topic (p. 1545)

Status:

StatusKind.INCONSISTENT TOPIC STATUS,
com.rti.dds.topic.InconsistentTopicStatus (p. 1077)

This is the interface that can be implemented by an application-provided class
and then registered with the com.rti.dds.topic.Topic (p. 1545) such that the
application can be notified by RTI Connext of relevant status changes.

See also:

Status Kinds (p. 106)
com.rti.dds.infrastructure.Listener (p. 1154)
com.rti.dds.topic.Topic.set listener (p. 1549)
Operations Allowed in Listener Callbacks (p. 1156)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.267 TopicListener Interface Reference 1565

8.267.2 Member Function Documentation

8.267.2.1 void on inconsistent topic (Topic topic,
InconsistentTopicStatus status)

Handle the StatusKind.INCONSISTENT TOPIC STATUS status.

This callback is called when a remote com.rti.dds.topic.Topic (p. 1545) is
discovered but is inconsistent with the locally created com.rti.dds.topic.Topic
(p. 1545) of the same topic (p. 350) name.

Parameters:

topic (p. 350) <<out>> (p. 271) Locally created
com.rti.dds.topic.Topic (p. 1545) that triggers the listener
callback

status <<out>> (p. 271) Current inconsistent status of locally created
com.rti.dds.topic.Topic (p. 1545)

Implemented in DomainParticipantAdapter (p. 704), and TopicAdapter
(p. 1550).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1566 Class Documentation

8.268 TopicQos Class Reference

QoS policies supported by a com.rti.dds.topic.Topic (p. 1545) entity.

Inheritance diagram for TopicQos::

Public Attributes

ˆ final TopicDataQosPolicy topic data
Topic (p. 1545) data policy, TOPIC DATA (p. 114).

ˆ final DurabilityQosPolicy durability
Durability policy, DURABILITY (p. 65).

ˆ final DurabilityServiceQosPolicy durability service
DurabilityService policy, DURABILITY SERVICE (p. 66).

ˆ final DeadlineQosPolicy deadline
Deadline policy, DEADLINE (p. 50).

ˆ final LatencyBudgetQosPolicy latency budget
Latency budget policy, LATENCY BUDGET (p. 76).

ˆ final LivelinessQosPolicy liveliness
Liveliness policy, LIVELINESS (p. 78).

ˆ final ReliabilityQosPolicy reliability
Reliability policy, RELIABILITY (p. 101).

ˆ final DestinationOrderQosPolicy destination order
Destination order policy, DESTINATION ORDER (p. 51).

ˆ final HistoryQosPolicy history
History policy, HISTORY (p. 75).

ˆ final ResourceLimitsQosPolicy resource limits
Resource limits policy, RESOURCE LIMITS (p. 102).

ˆ final TransportPriorityQosPolicy transport priority
Transport priority policy, TRANSPORT PRIORITY (p. 121).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.268 TopicQos Class Reference 1567

ˆ final LifespanQosPolicy lifespan
Lifespan policy, LIFESPAN (p. 77).

ˆ final OwnershipQosPolicy ownership
Ownership policy, OWNERSHIP (p. 83).

8.268.1 Detailed Description

QoS policies supported by a com.rti.dds.topic.Topic (p. 1545) entity.

You must set certain members in a consistent manner:

length of com.rti.dds.topic.TopicQos.topic data (p. 1567) .value <=
com.rti.dds.domain.DomainParticipantQos.resource limits (p. 739)
.topic data max length

If any of the above are not true, com.rti.dds.topic.Topic.set qos
(p. 1547), com.rti.dds.topic.Topic.set qos with profile (p. 1548)
and com.rti.dds.domain.DomainParticipant.set default topic -
qos (p. 642) will fail with RETCODE INCONSISTENT POLICY and
com.rti.dds.domain.DomainParticipant.create topic (p. 670) will return
NULL.

Entity:

com.rti.dds.topic.Topic (p. 1545)

See also:

QoS Policies (p. 90) allowed ranges within each Qos.

8.268.2 Member Data Documentation

8.268.2.1 final TopicDataQosPolicy topic data

Topic (p. 1545) data policy, TOPIC DATA (p. 114).

8.268.2.2 final DurabilityQosPolicy durability

Durability policy, DURABILITY (p. 65).

8.268.2.3 final DurabilityServiceQosPolicy durability service

DurabilityService policy, DURABILITY SERVICE (p. 66).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1568 Class Documentation

8.268.2.4 final DeadlineQosPolicy deadline

Deadline policy, DEADLINE (p. 50).

8.268.2.5 final LatencyBudgetQosPolicy latency budget

Latency budget policy, LATENCY BUDGET (p. 76).

8.268.2.6 final LivelinessQosPolicy liveliness

Liveliness policy, LIVELINESS (p. 78).

8.268.2.7 final ReliabilityQosPolicy reliability

Reliability policy, RELIABILITY (p. 101).

8.268.2.8 final DestinationOrderQosPolicy destination order

Destination order policy, DESTINATION ORDER (p. 51).

8.268.2.9 final HistoryQosPolicy history

History policy, HISTORY (p. 75).

8.268.2.10 final ResourceLimitsQosPolicy resource limits

Resource limits policy, RESOURCE LIMITS (p. 102).

8.268.2.11 final TransportPriorityQosPolicy transport priority

Transport priority policy, TRANSPORT PRIORITY (p. 121).

8.268.2.12 final LifespanQosPolicy lifespan

Lifespan policy, LIFESPAN (p. 77).

8.268.2.13 final OwnershipQosPolicy ownership

Ownership policy, OWNERSHIP (p. 83).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.269 Transport Interface Reference 1569

8.269 Transport Interface Reference

RTI Connext’s abstract pluggable transport (p. 367) interface.

Inheritance diagram for Transport::

Classes

ˆ class Property t

Base structure that must be inherited by derived Transport (p. 1569) Plugin
classes.

8.269.1 Detailed Description

RTI Connext’s abstract pluggable transport (p. 367) interface.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1570 Class Documentation

8.270 Transport.Property t Class Reference

Base structure that must be inherited by derived Transport (p. 1569) Plugin
classes.

Inheritance diagram for Transport.Property t::

Public Attributes

ˆ final int classid

The Transport-Plugin Class ID.

ˆ final int address bit count

Number of bits in a 16-byte address that are used by the transport (p. 367).
Should be between 0 and 128.

ˆ final int properties bitmap

A bitmap that defines various properties of the transport (p. 367) to the
RTI Connext core.

ˆ int gather send buffer count max

Specifies the maximum number of buffers that RTI Connext can pass to the
send() method of a transport (p. 367) plugin.

ˆ int message size max

The maximum size of a message in bytes that can be sent or received by the
transport (p. 367) plugin.

ˆ final StringSeq allow interfaces list

A list of strings, each identifying a range of interface addresses or an inter-
face name. If the list is non-empty (i.e., allow interfaces list length >
0), allow the use of only these interfaces. If the list is empty, allow the use
of all interfaces.

ˆ final StringSeq deny interfaces list

A list of strings, each identifying a range of interface addresses or an inter-
face name. If the list is non-empty (i.e., deny interfaces list length >
0), deny the use of these interfaces.

ˆ final StringSeq allow multicast interfaces list

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.270 Transport.Property t Class Reference 1571

A list of strings, each identifying a range of interface addresses or an in-
terface name. If the list is non-empty (i.e., allow multicast interfaces -

list length > 0), allow the use of multicast only on these interfaces; oth-
erwise allow the use of all the allowed interfaces.

ˆ final StringSeq deny multicast interfaces list

A list of strings, each identifying a range of interface addresses or an in-
terface name. If the list is non-empty (i.e., deny multicast interfaces -

list length > 0), deny the use of those interfaces for multicast.

Static Public Attributes

ˆ static final int NDDS TRANSPORT CLASSID INVALID = -1

Invalid Transport (p. 1569) Class ID.

ˆ static final int NDDS TRANSPORT CLASSID RESERVED -
RANGE = 1000

Transport-Plugin class IDs below this are reserved by RTI.

ˆ static final int NDDS TRANSPORT PROPERTY BIT -
BUFFER ALWAYS LOANED = 0x2

Specified zero-copy behavior of transport (p. 367).

ˆ static final int NDDS TRANSPORT PROPERTY GATHER -
SEND BUFFER COUNT MIN = 3

Minimum number of gather-send buffers that must be supported by a Trans-
port (p. 1569) Plugin implementation.

8.270.1 Detailed Description

Base structure that must be inherited by derived Transport (p. 1569) Plugin
classes.

This structure contains properties that must be set before registration of any
transport (p. 367) plugin with RTI Connext. The RTI Connext core will con-
figure itself to use the plugin based on the properties set within this structure.

A transport (p. 367) plugin may extend from this structure to add transport-
specific properties.

WARNING: The transport (p. 367) properties of an instance of a Transport
(p. 1569) Plugin should be considered immutable after the plugin has been cre-
ated. That means the values contained in the property structure stored as a

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1572 Class Documentation

part of the transport (p. 367) plugin itself should not be changed. If those
values are modified, the results are undefined.

8.270.2 Member Data Documentation

8.270.2.1 final int NDDS TRANSPORT CLASSID INVALID = -1
[static]

Invalid Transport (p. 1569) Class ID.

Transport-Plugins implementations should set their class ID to a value different
than this.

8.270.2.2 final int NDDS TRANSPORT CLASSID RESERVED -
RANGE = 1000 [static]

Transport-Plugin class IDs below this are reserved by RTI.

User-defined Transport-Plugins should use a class ID greater than this number.

8.270.2.3 final int NDDS TRANSPORT PROPERTY -
BIT BUFFER ALWAYS LOANED = 0x2
[static]

Specified zero-copy behavior of transport (p. 367).

A Transport (p. 1569) Plugin may commit to one of three behaviors for zero
copy receives:

1. Always does zero copy.

2. Sometimes does zero copy, up to the transport (p. 367) discretion.

3. Never does zero copy.

This bit should be set only if the Transport (p. 1569) Plugin commits to always
doing a zero copy receive, or more specifically, always loaning a buffer through
its receive rEA() call.

In that case, the NDDS core will not need to allocate storage for a message that
it retrieves with the receive rEA() call.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.270 Transport.Property t Class Reference 1573

8.270.2.4 final int NDDS TRANSPORT PROPERTY -
GATHER SEND BUFFER COUNT MIN = 3
[static]

Minimum number of gather-send buffers that must be supported by a Trans-
port (p. 1569) Plugin implementation.

For the NDDS Transport Property t structure to be valid, the value of Trans-
port.Property t.gather send buffer count max (p. 1574) must be greater
than or equal to this value.

8.270.2.5 final int classid

The Transport-Plugin Class ID.

Assigned by the implementor of the transport (p. 367) plugin, Class ID’s be-
low NDDS TRANSPORT CLASSID RESERVED RANGE (p. 1572)
are reserved for RTI (Real-Time Innovations) usage.

User-defined transports should set an ID above this range.

The ID should be globally unique for each Transport-Plugin class. Transport-
Plugin implementors should ensure that the class IDs do not conflict with each
other amongst different Transport-Plugin classes.

Invariant:

The classid is invariant for the lifecycle of a transport (p. 367) plugin.

8.270.2.6 final int address bit count

Number of bits in a 16-byte address that are used by the transport (p. 367).
Should be between 0 and 128.

A transport (p. 367) plugin should define the range of addresses (starting from
0x0) that are meaningful to the plugin. It does this by setting the number of
bits of an IPv6 address that will be used to designate an address in the network
to which the transport (p. 367) plugin is connected.

For example (p. 366), for an address range of 0-255, the address bit count
should be set to 8. For the range of addresses used by IPv4 (4 bytes), it should
be set to 32.

See also:

Transport Class Attributes (p. 370)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1574 Class Documentation

8.270.2.7 final int properties bitmap

A bitmap that defines various properties of the transport (p. 367) to the RTI
Connext core.

Currently, the only property supported is whether or not the transport (p. 367)
plugin will always loan a buffer when RTI Connext tries to receive a message
using the plugin. This is in support of a zero-copy interface.

See also:

NDDS TRANSPORT PROPERTY BIT BUFFER ALWAYS -
LOANED (p. 1572)

8.270.2.8 int gather send buffer count max

Specifies the maximum number of buffers that RTI Connext can pass to the
send() method of a transport (p. 367) plugin.

The transport (p. 367) plugin send() API supports a gather-send concept,
where the send() call can take several discontiguous buffers, assemble and send
them in a single message. This enables RTI Connext to send a message from
parts obtained from different sources without first having to copy the parts into
a single contiguous buffer.

However, most transports that support a gather-send concept have an upper
limit on the number of buffers that can be gathered and sent. Setting this value
will prevent RTI Connext from trying to gather too many buffers into a send
call for the transport (p. 367) plugin.

RTI Connext requires all transport-plugin implementations to support a gather-
send of least a minimum number of buffers. This minimum number is defined to
be NDDS TRANSPORT PROPERTY GATHER SEND BUFFER -
COUNT MIN (p. 1573).

If the underlying transport (p. 367) does not support a gather-send concept
directly, then the transport (p. 367) plugin itself must copy the separate buffers
passed into the send() call into a single buffer for sending or otherwise send each
buffer individually. However this is done by the transport (p. 367) plugin, the
receive rEA() call of the destination application should assemble, if needed,
all of the pieces of the message into a single buffer before the message is passed
to the RTI Connext layer.

8.270.2.9 int message size max

The maximum size of a message in bytes that can be sent or received by the
transport (p. 367) plugin.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.270 Transport.Property t Class Reference 1575

If the maximum size of a message that can be sent by a transport (p. 367) plu-
gin is user configurable, the transport (p. 367) plugin should provide a default
value for this property. In any case, this value must be set before the transport
(p. 367) plugin is registered, so that RTI Connext can properly use the plugin.

Note:

ˆ If this value is increased from the default for any of the
built-in transports, or if custom transports are used, then the
com.rti.dds.infrastructure.ReceiverPoolQosPolicy.buffer size
(p. 1333) on the com.rti.dds.domain.DomainParticipant (p. 629)
should also be changed.

8.270.2.10 final StringSeq allow interfaces list

A list of strings, each identifying a range of interface addresses or an interface
name. If the list is non-empty (i.e., allow interfaces list length > 0), allow
the use of only these interfaces. If the list is empty, allow the use of all interfaces.

The ”white” list restricts reception to a particular set of interfaces for unicast
UDP.

Multicast output will be sent and may be received over the interfaces in the list.

It is up to the transport (p. 367) plugin to interpret the list of strings passed
in.

For example (p. 366), the following are acceptable strings in IPv4 format:
192.168.1.1, 192.168.1.∗, 192.168.∗, 192.∗, ether0

This property is not interpreted by the RTI Connext core; it is provided merely
as a convenient and standardized way to specify the interfaces for the benefit of
the transport (p. 367) plugin developer and user.

The caller (user) must manage the memory of the list. The memory may be
freed after the com.rti.dds.domain.DomainParticipant (p. 629) is deleted.

8.270.2.11 final StringSeq deny interfaces list

A list of strings, each identifying a range of interface addresses or an interface
name. If the list is non-empty (i.e., deny interfaces list length > 0), deny
the use of these interfaces.

This ”black” list is applied after the allow interfaces list and filters out the
interfaces that should not be used.

The resulting list restricts reception to a particular set of interfaces for unicast

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1576 Class Documentation

UDP. Multicast output will be sent and may be received over the interfaces in
the list.

It is up to the transport (p. 367) plugin to interpret the list of strings passed
in.

For example (p. 366), the following are acceptable strings in IPv4 format:
192.168.1.1, 192.168.1.∗, 192.168.∗, 192.∗, ether0

This property is not interpreted by the RTI Connext core; it is provided merely
as a convenient and standardized way to specify the interfaces for the benefit of
the transport (p. 367) plugin developer and user.

The caller (user) must manage the memory of the list. The memory may be
freed after the com.rti.dds.domain.DomainParticipant (p. 629) is deleted.

8.270.2.12 final StringSeq allow multicast interfaces list

A list of strings, each identifying a range of interface addresses or an interface
name. If the list is non-empty (i.e., allow multicast interfaces list length
> 0), allow the use of multicast only on these interfaces; otherwise allow the use
of all the allowed interfaces.

This ”white” list sub-selects from the allowed interfaces obtained after apply-
ing the allow interfaces list ”white” list and the deny interfaces list
”black” list.

After allow multicast interfaces list, the deny multicast interfaces -
list is applied. Multicast output will be sent and may be received over the
interfaces in the resulting list.

If this list is empty, all the allowed interfaces will be potentially used for mul-
ticast. It is up to the transport (p. 367) plugin to interpret the list of strings
passed in.

This property is not interpreted by the RTI Connext core; it is provided merely
as a convenient and standardized way to specify the interfaces for the benefit of
the transport (p. 367) plugin developer and user.

The caller (user) must manage the memory of the list. The memory may be
freed after the com.rti.dds.domain.DomainParticipant (p. 629) is deleted.

8.270.2.13 final StringSeq deny multicast interfaces list

A list of strings, each identifying a range of interface addresses or an interface
name. If the list is non-empty (i.e., deny multicast interfaces list length
> 0), deny the use of those interfaces for multicast.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.270 Transport.Property t Class Reference 1577

This ”black” list is applied after allow multicast interfaces list and filters
out interfaces that should not be used for multicast.

Multicast output will be sent and may be received over the interfaces in the
resulting list.

It is up to the transport (p. 367) plugin to interpret the list of strings passed
in.

This property is not interpreted by the RTI Connext core; it is provided merely
as a convenient and standardized way to specify the interfaces for the benefit of
the transport (p. 367) plugin developer and user.

The caller (user) must manage the memory of the list. The memory may be
freed after the com.rti.dds.domain.DomainParticipant (p. 629) is deleted.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1578 Class Documentation

8.271 TransportBuiltinKind Class Reference

Built-in transport kind.

Static Public Attributes

ˆ static final int UDPv4

Built-in UDPv4 transport, UDPv4Transport.

ˆ static final String UDPv4 ALIAS

Alias name for the UDPv4 built-in transport.

ˆ static final int SHMEM

Built-in shared memory transport, ShmemTransport.

ˆ static final String SHMEM ALIAS

Alias name for the shared memory built-in transport.

ˆ static final int UDPv6

Built-in UDPv6 transport, UDPv6Transport.

ˆ static final String UDPv6 ALIAS

Alias name for the UDPv6 built-in transport.

ˆ static final int MASK NONE

None of the built-in transports will be registered automatically when the
com.rti.dds.domain.DomainParticipant (p. 629) is enabled. The user
must explictly register transports using TransportSupport.register transport.

ˆ static final int MASK DEFAULT

The default value of com.rti.dds.infrastructure.TransportBuiltinQosPolicy.mask
(p. 1581).

ˆ static final int MASK ALL

All the available built-in transports are registered automatically when the
com.rti.dds.domain.DomainParticipant (p. 629) is enabled.

8.271.1 Detailed Description

Built-in transport kind.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.271 TransportBuiltinKind Class Reference 1579

See also:

com.rti.dds.infrastructure.TransportBuiltinKindMask

8.271.2 Member Data Documentation

8.271.2.1 final int UDPv4 [static]

Built-in UDPv4 transport, UDPv4Transport.

8.271.2.2 final int SHMEM [static]

Built-in shared memory transport, ShmemTransport.

8.271.2.3 final int UDPv6 [static]

Built-in UDPv6 transport, UDPv6Transport.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1580 Class Documentation

8.272 TransportBuiltinQosPolicy Class Refer-
ence

Specifies which built-in transports are used.

Inheritance diagram for TransportBuiltinQosPolicy::

Public Attributes

ˆ int mask
Specifies the built-in transports that are registered automatically when the
com.rti.dds.domain.DomainParticipant (p. 629) is enabled.

8.272.1 Detailed Description

Specifies which built-in transports are used.

Three different transport plug-ins are built into the core RTI Connext libraries
(for most supported target platforms): UDPv4, shared memory, and UDPv6.

This QoS policy allows you to control which of these built-in transport plug-ins
are used by a com.rti.dds.domain.DomainParticipant (p. 629). By default,
only the UDPv4 and shared memory plug-ins are enabled (although on some
embedded platforms, the shared memory plug-in is not available). In some
cases, users will disable the shared memory transport when they do not want
applications to use shared memory to communicate when running on the same
node.

Note: If one application is configured to use UDPv4 and shared memory, while
another application is only configured for UDPv4, and these two applications
run on the same node, they will not communicate. This is due to an inter-
nal optimization which will default to use shared memory instead of loopback.
However if the other peer application does not enable shared memory there is
no common transport, therefore they will not communicate.

Entity:

com.rti.dds.domain.DomainParticipant (p. 629)

Properties:

RxO (p. 97) = N/A
Changeable (p. 98) = NO (p. 98)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.272 TransportBuiltinQosPolicy Class Reference 1581

8.272.2 Member Data Documentation

8.272.2.1 int mask

Specifies the built-in transports that are registered automatically when the
com.rti.dds.domain.DomainParticipant (p. 629) is enabled.

RTI Connext provides several built-in transports. Only those that
are specified with this mask are registered automatically when the
com.rti.dds.domain.DomainParticipant (p. 629) is enabled.

[default] TransportBuiltinKind.MASK DEFAULT (p. 116)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1582 Class Documentation

8.273 TransportMulticastMapping t Class Ref-
erence

Type representing a list of multicast mapping elements.

Inherits Struct.

Public Member Functions

ˆ TransportMulticastMapping t ()

Constructor.

ˆ TransportMulticastMapping t (TransportMulticastMapping t
src)

Copy constructor.

Public Attributes

ˆ String addresses

A string containing a comma-separated list of IP addresses
or IP address ranges to be used to receive multicast traf-
fic for the entity with a topic (p. 350) that matches the
com.rti.dds.infrastructure.TransportMulticastMapping t.topic -
expression (p. 1584).

ˆ String topic expression

A regular expression that will be used to map topic (p. 350) names to cor-
responding multicast receive addresses.

ˆ TransportMulticastMappingFunction t mapping function

Specifies a function that will define the mapping between a topic (p. 350)
name and a specific multicast address from a list of addresses.

8.273.1 Detailed Description

Type representing a list of multicast mapping elements.

A multicast mapping element specifies a string containing a list of IP addresses,
a topic (p. 350) expression and a mapping function.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.273 TransportMulticastMapping t Class Reference 1583

QoS:

com.rti.dds.infrastructure.TransportMulticastMappingQosPolicy
(p. 1587)

8.273.2 Constructor & Destructor Documentation

8.273.2.1 TransportMulticastMapping t ()

Constructor.

8.273.2.2 TransportMulticastMapping t
(TransportMulticastMapping t src)

Copy constructor.

8.273.3 Member Data Documentation

8.273.3.1 String addresses

A string containing a comma-separated list of IP addresses or IP address ranges
to be used to receive multicast traffic for the entity with a topic (p. 350) that
matches the com.rti.dds.infrastructure.TransportMulticastMapping -
t.topic expression (p. 1584).

The string must contain IPv4 or IPv6 addresses separated by commas. For
example: ”239.255.100.1,239.255.100.2,239.255.100.3”

You may specify ranges of addresses by enclosing the start address and the end
address in square brackets. For example: ”[239.255.100.1,239.255.100.3]”

You may combine the two approaches. For example:

”239.255.200.1,[239.255.100.1,239.255.100.3], 239.255.200.3”

IPv4 addresses must be specified in Dot-decimal notation.

IPv6 addresses must be specified using 8 groups of 16-bit hexadecimal values
separated by colons. For example: FF00:0000:0000:0000:0202:B3FF:FE1E:8329

Leading zeroes can be skipped. For example:
”FF00:0:0:0:202:B3FF:FE1E:8329”

You may replace a consecutive number of zeroes with a double colon, but only
once within an address. For example: ”FF00::202:B3FF:FE1E:8329”

[default] NULL

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1584 Class Documentation

8.273.3.2 String topic expression

A regular expression that will be used to map topic (p. 350) names to corre-
sponding multicast receive addresses.

A topic (p. 350) name must match the expression before a corresponding ad-
dress is assigned.

[default] NULL

8.273.3.3 TransportMulticastMappingFunction t mapping function

Specifies a function that will define the mapping between a topic (p. 350) name
and a specific multicast address from a list of addresses.

This function is optional. If not specified, the middleware will use a hash func-
tion to perform the mapping.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.274 TransportMulticastMappingFunction t Class Reference 1585

8.274 TransportMulticastMappingFunction t
Class Reference

Type representing an external mapping function.

Inherits Struct.

Public Member Functions

ˆ TransportMulticastMappingFunction t ()

Constructor.

ˆ TransportMulticastMappingFunction t (TransportMulticas-
tMappingFunction t src)

Copy constructor.

Public Attributes

ˆ String dll

Specifies a dynamic library that contains a mapping function.

ˆ String function name

Specifies the name of a mapping function.

8.274.1 Detailed Description

Type representing an external mapping function.

A mapping function is defined by a dynamic library name and a function name.

QoS:

com.rti.dds.infrastructure.TransportMulticastMappingQosPolicy
(p. 1587)

8.274.2 Constructor & Destructor Documentation

8.274.2.1 TransportMulticastMappingFunction t ()

Constructor.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1586 Class Documentation

8.274.2.2 TransportMulticastMappingFunction t
(TransportMulticastMappingFunction t src)

Copy constructor.

8.274.3 Member Data Documentation

8.274.3.1 String dll

Specifies a dynamic library that contains a mapping function.

A relative or absolute path can be specified.

If the name is specified as ”foo”, the library name on Linux systems will be
libfoo.so; on Windows systems it will be foo.dll.

[default] NULL

8.274.3.2 String function name

Specifies the name of a mapping function.

This function must be implemented in the library specified in
com.rti.dds.infrastructure.TransportMulticastMappingFunction -
t.dll (p. 1586).

The function must implement the following interface:

int function(const char∗ topic name, int numberOfAddresses);

The function must return an integer that indicates the index of the address to
use for the given topic name. For example, if the first address in the list should
be used, it must return 0; if the second address in the list should be used, it
must return 1, etc.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.275 TransportMulticastMappingQosPolicy Class Reference 1587

8.275 TransportMulticastMappingQosPolicy
Class Reference

Specifies the multicast address on which a
com.rti.dds.subscription.DataReader (p. 473) wants to receive its
data. It can also specify a port number as well as a subset of the available (at
the com.rti.dds.domain.DomainParticipant (p. 629) level) transports with
which to receive the multicast data.

Inheritance diagram for TransportMulticastMappingQosPolicy::

Public Attributes

ˆ final TransportMulticastMappingSeq value

A sequence of multicast communications settings.

8.275.1 Detailed Description

Specifies the multicast address on which a
com.rti.dds.subscription.DataReader (p. 473) wants to receive its
data. It can also specify a port number as well as a subset of the available (at
the com.rti.dds.domain.DomainParticipant (p. 629) level) transports with
which to receive the multicast data.

By default, a com.rti.dds.publication.DataWriter (p. 538) will send indi-
vidually addressed packets for each com.rti.dds.subscription.DataReader
(p. 473) that subscribes to the topic (p. 350) of the DataWriter – this is known
as unicast delivery. Thus, as many copies of the data will be sent over the net-
work as there are DataReaders for the data. The network bandwidth used by a
DataWriter will thus increase linearly with the number of DataReaders.

Multicast addressing (on UDP/IP transports) allows multiple DataRead-
ers to receive the same network packet. By using multicast, a
com.rti.dds.publication.DataWriter (p. 538) can send a single network
packet that is received by all subscribing applications. Thus the network band-
width usage will be constant, independent of the number of DataReaders.

Coordinating the multicast address specified by DataReaders can help optimize
network bandwidth usage in systems where there are multiple DataReaders for
the same com.rti.dds.topic.Topic (p. 1545).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1588 Class Documentation

Entity:

com.rti.dds.subscription.DataReader (p. 473)

Properties:

RxO (p. 97) = N/A
Changeable (p. 98) = NO (p. 98)

8.275.2 Member Data Documentation

8.275.2.1 final TransportMulticastMappingSeq value

A sequence of multicast communications settings.

An empty sequence means that multicast is not used by the entity.

The RTPS wire protocol currently limits the maximum number of multicast
locators to four.

[default] Empty sequence.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.276 TransportMulticastMappingSeq Class Reference 1589

8.276 TransportMulticastMappingSeq Class
Reference

Declares IDL sequence< com.rti.dds.infrastructure.TransportMulticastSettings -
t (p. 1594) >.

Inherits ArraySequence.

8.276.1 Detailed Description

Declares IDL sequence< com.rti.dds.infrastructure.TransportMulticastSettings -
t (p. 1594) >.

Instantiates:

<<generic>> (p. 271) com.rti.dds.util.Sequence (p. 1432)

See also:

com.rti.dds.infrastructure.TransportMulticastSettings t (p. 1594)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1590 Class Documentation

8.277 TransportMulticastQosPolicy Class Ref-
erence

Specifies the multicast address on which a
com.rti.dds.subscription.DataReader (p. 473) wants to receive its
data. It can also specify a port number as well as a subset of the available (at
the com.rti.dds.domain.DomainParticipant (p. 629) level) transports with
which to receive the multicast data.

Inheritance diagram for TransportMulticastQosPolicy::

Public Attributes

ˆ final TransportMulticastSettingsSeq value
A sequence of multicast communications settings.

ˆ TransportMulticastQosPolicyKind kind
A value that specifies a way to determine how to obtain the multicast address.

8.277.1 Detailed Description

Specifies the multicast address on which a
com.rti.dds.subscription.DataReader (p. 473) wants to receive its
data. It can also specify a port number as well as a subset of the available (at
the com.rti.dds.domain.DomainParticipant (p. 629) level) transports with
which to receive the multicast data.

By default, a com.rti.dds.publication.DataWriter (p. 538) will send indi-
vidually addressed packets for each com.rti.dds.subscription.DataReader
(p. 473) that subscribes to the topic (p. 350) of the DataWriter – this is known
as unicast delivery. Thus, as many copies of the data will be sent over the net-
work as there are DataReaders for the data. The network bandwidth used by a
DataWriter will thus increase linearly with the number of DataReaders.

Multicast addressing (on UDP/IP transports) allows multiple DataRead-
ers to receive the same network packet. By using multicast, a
com.rti.dds.publication.DataWriter (p. 538) can send a single network
packet that is received by all subscribing applications. Thus the network band-
width usage will be constant, independent of the number of DataReaders.

Coordinating the multicast address specified by DataReaders can help optimize
network bandwidth usage in systems where there are multiple DataReaders for
the same com.rti.dds.topic.Topic (p. 1545).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.277 TransportMulticastQosPolicy Class Reference 1591

Entity:

com.rti.dds.subscription.DataReader (p. 473)

Properties:

RxO (p. 97) = N/A
Changeable (p. 98) = NO (p. 98)

8.277.2 Member Data Documentation

8.277.2.1 final TransportMulticastSettingsSeq value

A sequence of multicast communications settings.

An empty sequence means that multicast is not used by the entity.

The RTPS wire protocol currently limits the maximum number of multicast
locators to four.

[default] Empty sequence.

8.277.2.2 TransportMulticastQosPolicyKind kind

A value that specifies a way to determine how to obtain the multicast address.

This field can have two values.

ˆ If it is set to com.rti.dds.infrastructure.TransportMulticastQosPolicyKind.AUTOMATIC -
TRANSPORT MULTICAST QOS (p. 119) and the
com.rti.dds.infrastructure.TransportMulticastQosPolicy.value
(p. 1591) does not have any elements, then multicast will not be used.

ˆ If it is set to com.rti.dds.infrastructure.TransportMulticastQosPolicyKind.AUTOMATIC -
TRANSPORT MULTICAST QOS (p. 119) and the
com.rti.dds.infrastructure.TransportMulticastQosPolicy.value
(p. 1591) has at least one element with a valid address, then that address
will be used.

ˆ If it is set to com.rti.dds.infrastructure.TransportMulticastQosPolicyKind.AUTOMATIC -
TRANSPORT MULTICAST QOS (p. 119) and the
com.rti.dds.infrastructure.TransportMulticastQosPolicy.value
(p. 1591) has at least one element with an empty
address, then the address will be obtained from
com.rti.dds.infrastructure.TransportMulticastMappingQosPolicy
(p. 1587).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1592 Class Documentation

ˆ If it is set to com.rti.dds.infrastructure.TransportMulticastQosPolicyKind.UNICAST -
ONLY TRANSPORT MULTICAST QOS (p. 119), then multicast
will not be used.

[default] com.rti.dds.infrastructure.TransportMulticastQosPolicyKind.AUTOMATIC -
TRANSPORT MULTICAST QOS (p. 119)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.278 TransportMulticastQosPolicyKind Class Reference 1593

8.278 TransportMulticastQosPolicyKind Class
Reference

Transport Multicast Policy Kind.

Inheritance diagram for TransportMulticastQosPolicyKind::

Static Public Attributes

ˆ static final TransportMulticastQosPolicyKind AUTOMATIC -
TRANSPORT MULTICAST QOS

Transport Multicast Policy Kind.

ˆ static final TransportMulticastQosPolicyKind UNICAST -
ONLY TRANSPORT MULTICAST QOS = new Trans-
portMulticastQosPolicyKind(”UNICAST ONLY TRANSPORT -
MULTICAST QOS”, 1)

Transport Multicast Policy Kind.

8.278.1 Detailed Description

Transport Multicast Policy Kind.

See also:

com.rti.dds.infrastructure.TransportMulticastQosPolicy (p. 1590)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1594 Class Documentation

8.279 TransportMulticastSettings t Class Ref-
erence

Type representing a list of multicast locators.

Inherits Struct.

Public Member Functions

ˆ TransportMulticastSettings t ()

Constructor with default values.

ˆ TransportMulticastSettings t (TransportMulticastSettings t
src)

Copy constructor.

Public Attributes

ˆ final StringSeq transports

A sequence of transport aliases that specifies the transports on which to re-
ceive multicast traffic for the entity.

ˆ InetAddress receive address

The multicast group address on which the entity can receive data.

ˆ int receive port

The multicast port on which the entity can receive data.

8.279.1 Detailed Description

Type representing a list of multicast locators.

A multicast locator specifies a transport class, a multicast address, and a mul-
ticast port number on which messages can be received by an entity.

QoS:

com.rti.dds.infrastructure.TransportMulticastQosPolicy (p. 1590)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.279 TransportMulticastSettings t Class Reference 1595

8.279.2 Constructor & Destructor Documentation

8.279.2.1 TransportMulticastSettings t ()

Constructor with default values.

8.279.2.2 TransportMulticastSettings t
(TransportMulticastSettings t src)

Copy constructor.

8.279.3 Member Data Documentation

8.279.3.1 final StringSeq transports

A sequence of transport aliases that specifies the transports on which to receive
multicast traffic for the entity.

Of the transport instances available to the entity, only those with aliases match-
ing an alias in this sequence are used to subscribe to the multicast group ad-
dresses. Thus, this list of aliases sub-selects from the transport s available to
the entity.

An empty sequence is a special value that specifies all the transports available
to the entity.

Alias names for the builtin transports are defined in TRANSPORT -
BUILTIN (p. 115).

[default] Empty sequence; i.e. all the transports available to the entity.

[range] Any sequence of non-null, non-empty strings.

8.279.3.2 InetAddress receive address

The multicast group address on which the entity can receive data.

Must must be an address in the proper format (see Address Format (p. 57)).

[default] NONE/INVALID. Required to specify a multicast group address to
join.

[range] A valid IPv4 or IPv6 multicast address.

See also:

Address Format (p. 57)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1596 Class Documentation

8.279.3.3 int receive port

The multicast port on which the entity can receive data.

[default] 0, which implies that the actual port number is de-
termined by a formula as a function of the domain id (see
com.rti.dds.infrastructure.WireProtocolQosPolicy.participant id
(p. 1714)).

[range] [0,0xffffffff]

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.280 TransportMulticastSettingsSeq Class Reference 1597

8.280 TransportMulticastSettingsSeq Class
Reference

Declares IDL sequence< com.rti.dds.infrastructure.TransportMulticastSettings -
t (p. 1594) >.

Inherits ArraySequence.

8.280.1 Detailed Description

Declares IDL sequence< com.rti.dds.infrastructure.TransportMulticastSettings -
t (p. 1594) >.

Instantiates:

<<generic>> (p. 271) com.rti.dds.util.Sequence (p. 1432)

See also:

com.rti.dds.infrastructure.TransportMulticastSettings t (p. 1594)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1598 Class Documentation

8.281 TransportPriorityQosPolicy Class Refer-
ence

This QoS policy allows the application to take advantage of transports that are
capable of sending messages with different priorities.

Inheritance diagram for TransportPriorityQosPolicy::

Public Attributes

ˆ int value

This policy is a hint to the infrastructure (p. 323) as to how to set the
priority of the underlying transport used to send the data.

8.281.1 Detailed Description

This QoS policy allows the application to take advantage of transports that are
capable of sending messages with different priorities.

The Transport Priority QoS policy is optional and only supported
on certain OSs and transports. It allows you to specify on a
per-com.rti.dds.publication.DataWriter basis that the data sent by that
com.rti.dds.publication.DataWriter (p. 538) is of a different priority.

The DDS specification does not indicate how a DDS implementation should
treat data of different priorities. It is often difficult or impossible for DDS
implementations to treat data of higher priority differently than data of lower
priority, especially when data is being sent (delivered to a physical transport) di-
rectly by the thread that called com.rti.dds.topic.example.FooDataWriter.write.
Also, many physical network transports themselves do not have a end-user con-
trollable level of data packet priority.

Entity:

com.rti.dds.publication.DataWriter (p. 538),
com.rti.dds.topic.Topic (p. 1545)

Properties:

RxO (p. 97) = N/A
Changeable (p. 98) = YES (p. 98)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.281 TransportPriorityQosPolicy Class Reference 1599

8.281.2 Usage

In RTI Connext, for the UDPv4Transport, the value set in the Trans-
port Priority QoS policy is used in a setsockopt call to set the TOS
(type of service) bits of the IPv4 header for datagrams sent by a
com.rti.dds.publication.DataWriter (p. 538). It is platform-dependent how
and whether the setsockopt has an effect. On some platforms, such as Win-
dows and Linux, external permissions must be given to the user application in
order to set the TOS bits.

It is incorrect to assume that using the Transport Priority QoS
policy will have any effect at all on the end-to-end delivery of
data from a com.rti.dds.publication.DataWriter (p. 538) to a
com.rti.dds.subscription.DataReader (p. 473). All network elements,
including switches and routers must have the capability and be enabled to
actually use the TOS bits to treat higher priority packets differently. Thus
the ability to use the Transport Priority QoS policy must be designed and
configured at a system level; just turning it on in an application may have no
effect at all.

8.281.3 Member Data Documentation

8.281.3.1 int value

This policy is a hint to the infrastructure (p. 323) as to how to set the priority
of the underlying transport used to send the data.

You may choose any value within the range of a 32-bit signed integer; higher
values indicate higher priority. However, any further interpretation of this policy
is specific to a particular transport and a particular DDS implementation. For
example, a particular transport is permitted to treat a range of priority values
as equivalent to one another.

[default] 0

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1600 Class Documentation

8.282 TransportSelectionQosPolicy Class Refer-
ence

Specifies the physical transports a com.rti.dds.publication.DataWriter
(p. 538) or com.rti.dds.subscription.DataReader (p. 473) may use to send
or receive data.

Inheritance diagram for TransportSelectionQosPolicy::

Public Attributes

ˆ final StringSeq enabled transports

A sequence of transport aliases that specifies the transport instances available
for use by the entity.

8.282.1 Detailed Description

Specifies the physical transports a com.rti.dds.publication.DataWriter
(p. 538) or com.rti.dds.subscription.DataReader (p. 473) may use to send
or receive data.

An application may be simultaneously connected to many different physical
transports, e.g., Ethernet, Infiniband, shared memory, VME backplane, and
wireless. By default, RTI Connext will use up to 4 transports to deliver data
from a DataWriter to a DataReader.

This QoS policy can be used to both limit and control which of the application’s
available transports may be used by a com.rti.dds.publication.DataWriter
(p. 538) to send data or by a com.rti.dds.subscription.DataReader (p. 473)
to receive data.

Entity:

com.rti.dds.subscription.DataReader (p. 473),
com.rti.dds.publication.DataWriter (p. 538)

Properties:

RxO (p. 97) = N/A
Changeable (p. 98) = NO (p. 98)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.282 TransportSelectionQosPolicy Class Reference 1601

8.282.2 Member Data Documentation

8.282.2.1 final StringSeq enabled transports

A sequence of transport aliases that specifies the transport instances available
for use by the entity.

Of the transport instances installed with the
com.rti.dds.domain.DomainParticipant (p. 629), only those with aliases
matching an alias in this sequence are available to the entity.

Thus, this list of aliases sub-selects from the transports available to the
com.rti.dds.domain.DomainParticipant (p. 629).

An empty sequence is a special value that specifies all the transports installed
with the com.rti.dds.domain.DomainParticipant (p. 629).

Alias names for the builtin transports are defined in TRANSPORT -
BUILTIN (p. 115).

[default] Empty sequence; i.e. all the transports installed with and available
to the com.rti.dds.domain.DomainParticipant (p. 629).

[range] A sequence of non-null, non-empty strings.

See also:

com.rti.dds.domain.DomainParticipantQos.transport builtin
(p. 738).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1602 Class Documentation

8.283 TransportSupport Class Reference

<<interface>> (p. 271) The utility class used to configure RTI Connext plug-
gable transports.

Static Public Member Functions

ˆ static void get builtin transport property (DomainParticipant
participant in, Transport.Property t builtin transport property inout)

Get the properties used to create a builtin transport (p. 367) plugin.

ˆ static void set builtin transport property (DomainParticipant par-
ticipant in, Transport.Property t builtin transport property in)

Set the properties used to create a builtin transport (p. 367) plugin.

8.283.1 Detailed Description

<<interface>> (p. 271) The utility class used to configure RTI Connext plug-
gable transports.

8.283.2 Member Function Documentation

8.283.2.1 static void get builtin transport property
(DomainParticipant participant in, Transport.Property t
builtin transport property inout) [static]

Get the properties used to create a builtin transport (p. 367) plugin.

Retrieves the properties that will be used to create a builtin transport (p. 367)
plugin.

Precondition:

The builtin transport property inout parameter must be of the type
specified by the builtin transport kind in.

Parameters:

participant in <<in>> (p. 271) A valid non-null
com.rti.dds.domain.DomainParticipant (p. 629)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.283 TransportSupport Class Reference 1603

Parameters:

builtin transport property inout <<inout>> (p. 271) The storage
area where the retrieved property will be output. The specific type
required by the builtin transport kind in must be used.

Returns:

One of the Standard Return Codes (p. 104), or RETCODE -
PRECONDITION NOT MET.

See also:

TransportSupport.set builtin transport property() (p. 1603)

8.283.2.2 static void set builtin transport property
(DomainParticipant participant in, Transport.Property t
builtin transport property in) [static]

Set the properties used to create a builtin transport (p. 367) plugin.

Specifies the properties that will be used to create a builtin transport (p. 367)
plugin.

If the builtin transport (p. 367) is already registered when this operation is
called, these property changes will not have any effect. Builtin transport
(p. 367) properties should always be set before the transport (p. 367) is regis-
tered. See Built-in Transport Plugins (p. 216) for details on when a builtin
transport (p. 367) is registered.

Precondition:

A disabled com.rti.dds.domain.DomainParticipant (p. 629). The
builtin transport property inout parameter must be of the type spec-
ified by the builtin transport kind in.

Parameters:

participant in <<in>> (p. 271) A valid non-null
com.rti.dds.domain.DomainParticipant (p. 629) that has
not been enabled.

Parameters:

builtin transport property in <<inout>> (p. 271) The new trans-
port (p. 367) property that will be used to the create the builtin
transport (p. 367) plugin. The specific type required by the
builtin transport kind in must be used.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1604 Class Documentation

Returns:

One of the Standard Return Codes (p. 104), or RETCODE -
PRECONDITION NOT MET.

See also:

TransportSupport.get builtin transport property() (p. 1602)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.284 TransportUnicastQosPolicy Class Reference 1605

8.284 TransportUnicastQosPolicy Class Refer-
ence

Specifies a subset of transports and a port number that can be used by an
Entity (p. 912) to receive data.

Inheritance diagram for TransportUnicastQosPolicy::

Public Attributes

ˆ final TransportUnicastSettingsSeq value

A sequence of unicast communication settings.

8.284.1 Detailed Description

Specifies a subset of transports and a port number that can be used by an
Entity (p. 912) to receive data.

Entity:

com.rti.dds.domain.DomainParticipant (p. 629),
com.rti.dds.subscription.DataReader (p. 473),
com.rti.dds.publication.DataWriter (p. 538)

Properties:

RxO (p. 97) = N/A
Changeable (p. 98) = NO (p. 98)

8.284.2 Usage

RTI Connext may send data to a variety of Entities, not just DataReaders. For
example, reliable DataWriters may receive ACK/NACK packets from reliable
DataReaders.

During discovery, each com.rti.dds.infrastructure.Entity (p. 912) announces
to remote applications a list of (up to 4) unicast addresses to which the remote
application should send data (either user data packets or reliable protocol meta-
data such as ACK/NACKs and heartbeats).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1606 Class Documentation

By default, the list of addresses is populated automatically with values ob-
tained from the enabled transport plug-ins allowed to be used by the En-
tity (p. 912) (see com.rti.dds.infrastructure.TransportBuiltinQosPolicy
(p. 1580) and com.rti.dds.infrastructure.TransportSelectionQosPolicy
(p. 1600)). Also, the associated ports are automatically determined (see
com.rti.dds.infrastructure.RtpsWellKnownPorts t (p. 1396)).

Use this QoS policy to manually set the receive address list for an Entity
(p. 912). You may optionally set a port to use a non-default receive port as
well. Only the first 4 addresses will be used.

RTI Connext will create a receive thread for every unique port number that it
encounters (on a per transport basis).

ˆ For a com.rti.dds.domain.DomainParticipant (p. 629), this QoS pol-
icy sets the default list of addresses used by other applications to send
user data for local DataReaders.

ˆ For a com.rti.dds.subscription.DataReader (p. 473), if set, then other
applications will use the specified list of addresses to send user data
(and reliable protocol packets for reliable DataReaders). Otherwise,
if not set, the other applications will use the addresses set by the
com.rti.dds.domain.DomainParticipant (p. 629).

ˆ For a reliable com.rti.dds.publication.DataWriter (p. 538), if set,
then other applications will use the specified list of addresses to send reli-
able protocol packets (ACKS/NACKS) on the behalf of reliable DataRead-
ers. Otherwise, if not set, the other applications will use the addresses set
by the com.rti.dds.domain.DomainParticipant (p. 629).

8.284.3 Member Data Documentation

8.284.3.1 final TransportUnicastSettingsSeq value

A sequence of unicast communication settings.

An empty sequence means that applicable defaults specified by else-
where (e.g. com.rti.dds.domain.DomainParticipantQos.default unicast
(p. 738)) should be used.

The RTPS wire protocol currently limits the maximum number of unicast loca-
tors to four.

[default] Empty sequence.

See also:

com.rti.dds.domain.DomainParticipantQos.default unicast

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.284 TransportUnicastQosPolicy Class Reference 1607

(p. 738)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1608 Class Documentation

8.285 TransportUnicastSettings t Class Refer-
ence

Type representing a list of unicast locators.

Inherits Struct.

Public Member Functions

ˆ TransportUnicastSettings t ()

Constructor.

ˆ TransportUnicastSettings t (TransportUnicastSettings t src)

Copy constructor.

Public Attributes

ˆ final StringSeq transports

A sequence of transport aliases that specifies the unicast interfaces on which
to receive unicast traffic for the entity.

ˆ int receive port

The unicast port on which the entity can receive data.

8.285.1 Detailed Description

Type representing a list of unicast locators.

A unicast locator specifies a transport class, a unicast address, and a unicast
port number on which messages can be received by an entity.

QoS:

com.rti.dds.infrastructure.TransportUnicastQosPolicy (p. 1605)

8.285.2 Constructor & Destructor Documentation

8.285.2.1 TransportUnicastSettings t ()

Constructor.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.285 TransportUnicastSettings t Class Reference 1609

8.285.2.2 TransportUnicastSettings t (TransportUnicastSettings t
src)

Copy constructor.

8.285.3 Member Data Documentation

8.285.3.1 final StringSeq transports

A sequence of transport aliases that specifies the unicast interfaces on which to
receive unicast traffic for the entity.

Of the transport instances available to the entity, only those with aliases match-
ing an alias on this sequence are used to determine the unicast interfaces used
by the entity.

Thus, this list of aliases sub-selects from the transports available to the entity.

Each unicast interface on a transport results in a unicast locator for the entity.

An empty sequence is a special value that specifies all the transports available
to the entity.

Alias names for the builtin transports are defined in TRANSPORT -
BUILTIN (p. 115).

[default] Empty sequence; i.e. all the transports available to the entity.

[range] Any sequence of non-null, non-empty strings.

8.285.3.2 int receive port

The unicast port on which the entity can receive data.

Must be an unused unicast port on the system.

[default] 0, which implies that the actual port number is de-
termined by a formula as a function of the domain id, and the
com.rti.dds.infrastructure.WireProtocolQosPolicy.participant id
(p. 1714).

[range] [0,0xffffffff]

See also:

com.rti.dds.infrastructure.WireProtocolQosPolicy.participant id
(p. 1714).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1610 Class Documentation

8.286 TransportUnicastSettingsSeq Class Ref-
erence

Declares IDL sequence< com.rti.dds.infrastructure.TransportUnicastSettings -
t (p. 1608) >.

Inherits ArraySequence.

8.286.1 Detailed Description

Declares IDL sequence< com.rti.dds.infrastructure.TransportUnicastSettings -
t (p. 1608) >.

Instantiates:

<<generic>> (p. 271) com.rti.dds.util.Sequence (p. 1432)

See also:

com.rti.dds.infrastructure.TransportUnicastSettings t (p. 1608)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.287 TypeCode Class Reference 1611

8.287 TypeCode Class Reference

The definition of a particular data type, which you can use to inspect the name,
members, and other properties of types generated with rtiddsgen (p. 290) or
to modify types you define yourself at runtime.

Inherits java.io.Serializable.

Public Member Functions

ˆ TCKind kind ()
Gets the TCKind (p. 1526) value of a type code.

ˆ boolean equal (TypeCode tc)
Compares two TypeCode (p. 1611) objects for equality.

ˆ boolean equals (Object tc)
Compares two TypeCode (p. 1611) objects for equality.

ˆ int length () throws BadKind
Returns the number of elements in the type described by this type code.

ˆ String name () throws BadKind
Retrieves the simple name identifying this TypeCode (p. 1611) object within
its enclosing scope.

ˆ boolean is alias pointer () throws BadKind
Function that tells if an alias is a pointer or not.

ˆ short type modifier () throws BadKind
Returns a constant indicating the modifier of the value type that this Type-
Code (p. 1611) object describes.

ˆ TypeCode concrete base type () throws BadKind
Returns the TypeCode (p. 1611) that describes the concrete base type of the
value type that this TypeCode (p. 1611) object describes.

ˆ TypeCode content type () throws BadKind
Returns the TypeCode (p. 1611) object representing the type for the mem-
bers of the object described by this TypeCode (p. 1611) object.

ˆ int array dimension count () throws BadKind
This function returns the number of dimensions of an array type code.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1612 Class Documentation

ˆ int array dimension (int index) throws BadKind,Bounds
This function returns the index-th dimension of an array type code.

ˆ int element count () throws BadKind
The number of elements in an array.

ˆ int member count () throws BadKind
Returns the number of members of the type code.

ˆ String member name (int index) throws BadKind,Bounds
Returns the name of a type code member identified by the given index.

ˆ TypeCode member type (int index) throws BadKind,Bounds
Retrieves the TypeCode (p. 1611) object describing the type of the member
identified by the given index.

ˆ int member id (int index) throws BadKind,Bounds
Returns the ID of a sparse type code member identified by the given index.

ˆ int member label count (int index) throws BadKind,Bounds
Returns the number of labels associated to the index-th union member.

ˆ int member label (int member index, int label index) throws Bad-
Kind,Bounds

Return the label index-th label associated to the member index-th member.

ˆ int member ordinal (int index) throws BadKind,Bounds
Returns the ordinal that corresponds to the index-th enum value.

ˆ boolean is member key (int index) throws BadKind,Bounds
Function that tells if a member is a key or not.

ˆ boolean is member required (int index) throws BadKind,Bounds
Indicates whether a given member of a type is required to be present in every
sample of that type.

ˆ boolean is member pointer (int index) throws BadKind,Bounds
Function that tells if a member is a pointer or not.

ˆ boolean is member bitfield (int index) throws BadKind,Bounds
Function that tells if a member is a bitfield or not.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.287 TypeCode Class Reference 1613

ˆ short member bitfield bits (int index) throws BadKind,Bounds
Returns the number of bits of a bitfield member.

ˆ short member visibility (int index) throws BadKind,Bounds
Returns the constant that indicates the visibility of the index-th member.

ˆ TypeCode discriminator type () throws BadKind
Returns the discriminator type code.

ˆ int default index () throws BadKind
Returns the index of the default member, or -1 if there is no default member.

ˆ int find member by id (int id) throws BadKind
Get the index of the member of the given ID.

ˆ int find member by name (String name) throws BadKind
Get the index of the member of the given name.

ˆ void print IDL (int indent)
Prints a TypeCode (p. 1611) in a pseudo-IDL notation.

ˆ int add member (String name, int id, TypeCode tc, byte member flags)
throws BadKind,BadMemberName,BadMemberId

Add a new member to this TypeCode (p. 1611).

ˆ int add member (String name, int id, TypeCode tc, byte mem-
ber flags, short visibility, boolean is pointer, short bits) throws Bad-
Kind,BadMemberName,BadMemberId,BAD PARAM

Add a new member to this TypeCode (p. 1611).

ˆ int add member to enum (String name, int ordinal) throws Bad-
Kind,BadMemberName

Add a new enumerated constant to this enum TypeCode (p. 1611).

Static Public Attributes

ˆ static final TypeCode TC NULL

Basic null type.

ˆ static final TypeCode TC SHORT

Basic 16-bit signed integer type.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1614 Class Documentation

ˆ static final TypeCode TC LONG

Basic 32-bit signed integer type.

ˆ static final TypeCode TC USHORT

Basic unsigned 16-bit integer type.

ˆ static final TypeCode TC ULONG

Basic unsigned 32-bit integer type.

ˆ static final TypeCode TC FLOAT

Basic 32-bit floating point type.

ˆ static final TypeCode TC DOUBLE

Basic 64-bit floating point type.

ˆ static final TypeCode TC BOOLEAN

Basic Boolean type.

ˆ static final TypeCode TC CHAR

Basic single-byte character type.

ˆ static final TypeCode TC OCTET

Basic octet/byte type.

ˆ static final TypeCode TC LONGLONG

Basic 64-bit integer type.

ˆ static final TypeCode TC ULONGLONG

Basic unsigned 64-bit integer type.

ˆ static final TypeCode TC LONGDOUBLE

Basic 128-bit floating point type.

ˆ static final TypeCode TC WCHAR

Basic four-byte character type.

ˆ static final int MEMBER ID INVALID

A sentinel indicating an invalid TypeCode (p. 1611) member ID.

ˆ static final int INDEX INVALID

A sentinel indicating an invalid TypeCode (p. 1611) member index.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.287 TypeCode Class Reference 1615

ˆ static final byte NONKEY MEMBER
A flag indicating that a type member is optional and not part of the key.

ˆ static final byte KEY MEMBER
A flag indicating that a type member is part of the key for that type, and
therefore required.

ˆ static final byte NONKEY REQUIRED MEMBER
A flag indicating that a type member is not part of the key but is nevertheless
required.

ˆ static final short NOT BITFIELD
Indicates that a member of a type is not a bitfield.

8.287.1 Detailed Description

The definition of a particular data type, which you can use to inspect the name,
members, and other properties of types generated with rtiddsgen (p. 290) or
to modify types you define yourself at runtime.

You create TypeCode (p. 1611) objects using the TypeCodeFactory
(p. 1641) singleton. Then you can use the methods on this class to inspect
and modify the data type definition.

This class is based on a similar class from CORBA.

MT Safety:

SAFE for read-only access, UNSAFE for modification. Modifying a single
TypeCode (p. 1611) object concurrently from multiple threads is unsafe.
Modifying a TypeCode (p. 1611) from a single thread while concurrently
reading the state of that TypeCode (p. 1611) from another thread is also
unsafe. However, reading the state of a TypeCode (p. 1611) concurrently
from multiple threads, without any modification, is safe.

See also:

http://java.sun.com/javase/6/docs/api/org/omg/CORBA/TypeCode.html

8.287.2 Member Function Documentation

8.287.2.1 TCKind kind ()

Gets the TCKind (p. 1526) value of a type code.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1616 Class Documentation

Retrieves the kind of this TypeCode (p. 1611) object. The kind of a type code
determines which TypeCode (p. 1611) methods may legally be invoked on it.

MT Safety:

SAFE.

Returns:

The type code kind.

8.287.2.2 boolean equal (TypeCode tc)

Compares two TypeCode (p. 1611) objects for equality.

MT Safety:

SAFE.

Parameters:

tc <<in>> (p. 271) Type code that will be compared with this Type-
Code (p. 1611).

Exceptions:

com.rti.dds.infrastructure.BAD PARAM (p. 396) if tc is null.

Returns:

true if the type codes are equal. Otherwise, false.

See also:

http://java.sun.com/javase/6/docs/api/org/omg/CORBA/TypeCode.html#equal(org.omg.CORBA.TypeCode)

8.287.2.3 boolean equals (Object tc)

Compares two TypeCode (p. 1611) objects for equality.

MT Safety:

SAFE.

Parameters:

tc <<in>> (p. 271) Type code that will be compared with this Type-
Code (p. 1611).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.287 TypeCode Class Reference 1617

Returns:

true if the type codes are equal. Otherwise, false.

See also:

http://java.sun.com/javase/6/docs/api/java/lang/Object.html#equals(java.lang.Object)

8.287.2.4 int length () throws BadKind

Returns the number of elements in the type described by this type code.

Length is:

ˆ The maximum length of the string for string type codes.

ˆ The maximum length of the sequence for sequence type codes.

ˆ The first dimension of the array for array type codes.

Precondition:

self kind is TCKind.TK ARRAY (p. 1529), TCKind.TK -
SEQUENCE (p. 1529), TCKind.TK STRING (p. 1529) or
TCKind.TK WSTRING (p. 1530).

MT Safety:

SAFE.

Exceptions:

com.rti.dds.infrastructure.BadKind (p. 398) if the method is in-
voked on an inappropriate kind of TypeCode (p. 1611) object.

Returns:

The bound for strings and sequences, or the number of elements for arrays
if no errors.

8.287.2.5 String name () throws BadKind

Retrieves the simple name identifying this TypeCode (p. 1611) object within
its enclosing scope.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1618 Class Documentation

Precondition:

self kind is TCKind.TK STRUCT (p. 1529), TCKind.TK UNION
(p. 1529), TCKind.TK ENUM (p. 1529), TCKind.TK VALUE
(p. 1530), TCKind.TK SPARSE (p. 1530) or TCKind.TK ALIAS
(p. 1529).

MT Safety:

SAFE.

Exceptions:

com.rti.dds.infrastructure.BadKind (p. 398) if the method is in-
voked on an inappropriate kind of TypeCode (p. 1611) object.

Returns:

Name of the type code if no errors.

8.287.2.6 boolean is alias pointer () throws BadKind

Function that tells if an alias is a pointer or not.

This function is an RTI Connext extension to the CORBA Type Code Specifi-
cation.

Precondition:

self kind is TCKind.TK ALIAS (p. 1529).

MT Safety:

SAFE.

Exceptions:

com.rti.dds.infrastructure.BadKind (p. 398) if the method is in-
voked on an inappropriate kind of TypeCode (p. 1611) object.

Returns:

true if an alias is a pointer to the aliased type. Otherwise, false.

8.287.2.7 short type modifier () throws BadKind

Returns a constant indicating the modifier of the value type that this Type-
Code (p. 1611) object describes.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.287 TypeCode Class Reference 1619

Precondition:

self kind is TCKind.TK VALUE (p. 1530).

MT Safety:

SAFE.

Exceptions:

com.rti.dds.infrastructure.BadKind (p. 398) if the method is in-
voked on an inappropriate kind of TypeCode (p. 1611) object.

Returns:

One of the following type modifiers: VM NONE (p. 1693),
VM ABSTRACT (p. 1691), VM CUSTOM (p. 1692) or VM -
TRUNCATABLE (p. 1694).

8.287.2.8 TypeCode concrete base type () throws BadKind

Returns the TypeCode (p. 1611) that describes the concrete base type of the
value type that this TypeCode (p. 1611) object describes.

Precondition:

self kind is TCKind.TK VALUE (p. 1530) or TCKind.TK SPARSE
(p. 1530).

MT Safety:

SAFE.

Exceptions:

com.rti.dds.infrastructure.BadKind (p. 398) if the method is in-
voked on an inappropriate kind of TypeCode (p. 1611) object.

Returns:

TypeCode (p. 1611) that describes the concrete base type or null if there
is no a concrete base type.

8.287.2.9 TypeCode content type () throws BadKind

Returns the TypeCode (p. 1611) object representing the type for the members
of the object described by this TypeCode (p. 1611) object.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1620 Class Documentation

For sequences and arrays, it returns the element type. For aliases, it returns
the original type.

Precondition:

self kind is TCKind.TK ARRAY (p. 1529), TCKind.TK -
SEQUENCE (p. 1529) or TCKind.TK ALIAS (p. 1529).

MT Safety:

SAFE.

Exceptions:

com.rti.dds.infrastructure.BadKind (p. 398) if the method is in-
voked on an inappropriate kind of TypeCode (p. 1611) object.

Returns:

A TypeCode (p. 1611) object representing the element type for sequences
and arrays, and the original type for aliases.

8.287.2.10 int array dimension count () throws BadKind

This function returns the number of dimensions of an array type code.

This function is an RTI Connext extension to the CORBA Type Code Specifi-
cation.

Precondition:

self kind is TCKind.TK ARRAY (p. 1529).

MT Safety:

SAFE.

Exceptions:

com.rti.dds.infrastructure.BadKind (p. 398) if the method is in-
voked on an inappropriate kind of TypeCode (p. 1611) object.

Returns:

Number of dimensions if no errors.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.287 TypeCode Class Reference 1621

8.287.2.11 int array dimension (int index) throws BadKind,Bounds

This function returns the index-th dimension of an array type code.

This function is an RTI Connext extension to the CORBA Type Code Specifi-
cation.

Precondition:

self kind is TCKind.TK ARRAY (p. 1529).
Dimension index in the interval [0,(dimensions count-1)].

MT Safety:

SAFE.

Parameters:

index <<in>> (p. 271) Dimension index in the interval [0,(dimensions
count-1)].

Exceptions:

com.rti.dds.infrastructure.BadKind (p. 398) if the method is in-
voked on an inappropriate kind of TypeCode (p. 1611) object.

com.rti.dds.infrastructure.Bounds (p. 411) - if the index parame-
ter/s are out of range.

Returns:

Requested dimension if no errors.

8.287.2.12 int element count () throws BadKind

The number of elements in an array.

This operation isn’t relevant for other kinds of types.

MT Safety:

SAFE.

8.287.2.13 int member count () throws BadKind

Returns the number of members of the type code.

The method member count can be invoked on structure, union, and enumeration
TypeCode (p. 1611) objects.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1622 Class Documentation

Precondition:

self kind is TCKind.TK STRUCT (p. 1529), TCKind.TK UNION
(p. 1529), TCKind.TK ENUM (p. 1529), TCKind.TK VALUE
(p. 1530) or TCKind.TK SPARSE (p. 1530).

MT Safety:

SAFE.

Exceptions:

com.rti.dds.infrastructure.BadKind (p. 398) if the method is in-
voked on an inappropriate kind of TypeCode (p. 1611) object.

Returns:

The number of members constituting the type described by this TypeCode
(p. 1611) object if no errors.

8.287.2.14 String member name (int index) throws
BadKind,Bounds

Returns the name of a type code member identified by the given index.

The method member name can be invoked on structure, union, and enumeration
TypeCode (p. 1611) objects.

Precondition:

self kind is TCKind.TK STRUCT (p. 1529), TCKind.TK UNION
(p. 1529), TCKind.TK ENUM (p. 1529), TCKind.TK VALUE
(p. 1530) or TCKind.TK SPARSE (p. 1530).
The index param must be in the interval [0,(member count-1)].

MT Safety:

SAFE.

Parameters:

index <<in>> (p. 271) Member index in the interval [0,(member count-
1)].

Exceptions:

com.rti.dds.infrastructure.BadKind (p. 398) if the method is in-
voked on an inappropriate kind of TypeCode (p. 1611) object.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.287 TypeCode Class Reference 1623

com.rti.dds.infrastructure.Bounds (p. 411) - if the index parame-
ter/s are out of range.

Returns:

Name of the member if no errors.

8.287.2.15 TypeCode member type (int index) throws
BadKind,Bounds

Retrieves the TypeCode (p. 1611) object describing the type of the member
identified by the given index.

The method member type can be invoked on structure and union type codes.

Precondition:

self kind is TCKind.TK STRUCT (p. 1529), TCKind.TK UNION
(p. 1529), TCKind.TK VALUE (p. 1530) or TCKind.TK SPARSE
(p. 1530).
The index param must be in the interval [0,(member count-1)].

MT Safety:

SAFE.

Parameters:

index <<in>> (p. 271) Member index in the interval [0,(member count-
1)].

Exceptions:

com.rti.dds.infrastructure.BadKind (p. 398) if the method is in-
voked on an inappropriate kind of TypeCode (p. 1611) object.

com.rti.dds.infrastructure.Bounds (p. 411) - if the index parame-
ter/s are out of range.

Returns:

The TypeCode (p. 1611) object describing the member at the given index
if no errors.

8.287.2.16 int member id (int index) throws BadKind,Bounds

Returns the ID of a sparse type code member identified by the given index.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1624 Class Documentation

The method can be invoked on sparse TypeCode (p. 1611) objects.

This function is an RTI Connext extension to the CORBA Type Code Specifi-
cation.

Precondition:

self kind is TCKind.TK SPARSE (p. 1530).
Member index in the interval [0,(member count-1)].

MT Safety:

SAFE.

Parameters:

index <<in>> (p. 271) Member index in the interval [0,(member count-
1)].

Exceptions:

com.rti.dds.infrastructure.BadKind (p. 398) if the method is in-
voked on an inappropriate kind of TypeCode (p. 1611) object.

com.rti.dds.infrastructure.Bounds (p. 411) - if the index parame-
ter/s are out of range.

Returns:

ID of the member if no errors.

8.287.2.17 int member label count (int index) throws
BadKind,Bounds

Returns the number of labels associated to the index-th union member.

The method can be invoked on union TypeCode (p. 1611) objects.

This function is an RTI Connext extension to the CORBA Type Code Specifi-
cation.

Precondition:

self kind is TCKind.TK UNION (p. 1529).
The index param must be in the interval [0,(member count-1)].

MT Safety:

SAFE.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.287 TypeCode Class Reference 1625

Parameters:

index <<in>> (p. 271) Member index in the interval [0,(member count-
1)].

Exceptions:

com.rti.dds.infrastructure.BadKind (p. 398) if the method is in-
voked on an inappropriate kind of TypeCode (p. 1611) object.

com.rti.dds.infrastructure.Bounds (p. 411) - if the index parame-
ter/s are out of range.

Returns:

Number of labels if no errors.

8.287.2.18 int member label (int member index, int label index)
throws BadKind,Bounds

Return the label index-th label associated to the member index-th member.

This method has been modified for RTI Connext from the CORBA Type code
Specification.

Example:

case 1: Label index 0

case 2: Label index 1

short short member;

The method can be invoked on union TypeCode (p. 1611) objects.

Precondition:

self kind is TCKind.TK UNION (p. 1529).
The member index param must be in the interval [0,(member count-1)].
The label index param must be in the interval [0,(member labels count-1)].

MT Safety:

SAFE.

Parameters:

member index <<in>> (p. 271) Member index.

label index <<in>> (p. 271) Label index.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1626 Class Documentation

Exceptions:

com.rti.dds.infrastructure.BadKind (p. 398) if the method is in-
voked on an inappropriate kind of TypeCode (p. 1611) object.

com.rti.dds.infrastructure.Bounds (p. 411) - if the index parame-
ter/s are out of range.

Returns:

The evaluated value of the label if no errors.

8.287.2.19 int member ordinal (int index) throws BadKind,Bounds

Returns the ordinal that corresponds to the index-th enum value.

The method can be invoked on enum TypeCode (p. 1611) objects.

This function is an RTI Connext extension to the CORBA Type Code Specifi-
cation.

Precondition:

self kind is TCKind.TK ENUM (p. 1529).
Member index in the interval [0,(member count-1)].

MT Safety:

SAFE.

Parameters:

index <<in>> (p. 271) Member index in the interval [0,(member count-
1)].

Exceptions:

com.rti.dds.infrastructure.BadKind (p. 398) if the method is in-
voked on an inappropriate kind of TypeCode (p. 1611) object.

com.rti.dds.infrastructure.Bounds (p. 411) - if the index parame-
ter/s are out of range.

Returns:

Ordinal that corresponds to the index-th enumerator if no errors.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.287 TypeCode Class Reference 1627

8.287.2.20 boolean is member key (int index) throws
BadKind,Bounds

Function that tells if a member is a key or not.

This function is an RTI Connext extension to the CORBA Type Code Specifi-
cation.

Precondition:

self kind is TCKind.TK STRUCT (p. 1529), TCKind.TK VALUE
(p. 1530) or TCKind.TK SPARSE (p. 1530).
The index param must be in the interval [0,(member count-1)].

MT Safety:

SAFE.

Parameters:

index <<in>> (p. 271) Member index in the interval [0,(member count-
1)].

Exceptions:

com.rti.dds.infrastructure.BadKind (p. 398) if the method is in-
voked on an inappropriate kind of TypeCode (p. 1611) object.

com.rti.dds.infrastructure.Bounds (p. 411) - if the index parame-
ter/s are out of range.

Returns:

true if the member is a key. Otherwise, false.

8.287.2.21 boolean is member required (int index) throws
BadKind,Bounds

Indicates whether a given member of a type is required to be present in every
sample of that type.

Which fields are required depends on the TCKind (p. 1526) of the type. For
example, in a type of kind TCKind.TK SPARSE (p. 1530), key fields are
required. In TCKind.TK STRUCT (p. 1529) and TCKind.TK VALUE
(p. 1530) types, all fields are required.

MT Safety:

SAFE.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1628 Class Documentation

8.287.2.22 boolean is member pointer (int index) throws
BadKind,Bounds

Function that tells if a member is a pointer or not.

The method is member pointer can be invoked on union and structs type objects

This function is an RTI Connext extension to the CORBA Type Code Specifi-
cation.

Precondition:

self kind is TCKind.TK STRUCT (p. 1529), TCKind.TK UNION
(p. 1529) or TCKind.TK VALUE (p. 1530).
The index param must be in the interval [0,(member count-1)].

MT Safety:

SAFE.

Parameters:

index <<in>> (p. 271) Index of the member for which type information
is begin requested.

Exceptions:

com.rti.dds.infrastructure.BadKind (p. 398) if the method is in-
voked on an inappropriate kind of TypeCode (p. 1611) object.

com.rti.dds.infrastructure.Bounds (p. 411) - if the index parame-
ter/s are out of range.

Returns:

true if the member is a pointer. Otherwise, false.

8.287.2.23 boolean is member bitfield (int index) throws
BadKind,Bounds

Function that tells if a member is a bitfield or not.

The method can be invoked on struct type objects.

This function is an RTI Connext extension to the CORBA Type Code Specifi-
cation.

Precondition:

self kind is TCKind.TK STRUCT (p. 1529) or TCKind.TK VALUE
(p. 1530).
The index param must be in the interval [0,(member count-1)].

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.287 TypeCode Class Reference 1629

MT Safety:

SAFE.

Parameters:

index <<in>> (p. 271) Member index in the interval [0,(member count-
1)].

Exceptions:

com.rti.dds.infrastructure.BadKind (p. 398) if the method is in-
voked on an inappropriate kind of TypeCode (p. 1611) object.

com.rti.dds.infrastructure.Bounds (p. 411) - if the index parame-
ter/s are out of range.

Returns:

true if the member is a bitfield. Otherwise, false.

8.287.2.24 short member bitfield bits (int index) throws
BadKind,Bounds

Returns the number of bits of a bitfield member.

The method can be invoked on struct type objects.

This function is an RTI Connext extension to the CORBA Type Code Specifi-
cation.

Precondition:

self kind is TCKind.TK STRUCT (p. 1529) or TCKind.TK VALUE
(p. 1530).
The index param must be in the interval [0,(member count-1)].

MT Safety:

SAFE.

Parameters:

index <<in>> (p. 271) Member index in the interval [0,(member count-
1)].

Exceptions:

com.rti.dds.infrastructure.BadKind (p. 398) if the method is in-
voked on an inappropriate kind of TypeCode (p. 1611) object.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1630 Class Documentation

com.rti.dds.infrastructure.Bounds (p. 411) - if the index parame-
ter/s are out of range.

Returns:

The number of bits of the bitfield or TypeCode.NOT BITFIELD
(p. 1640) if the member is not a bitfield.

8.287.2.25 short member visibility (int index) throws
BadKind,Bounds

Returns the constant that indicates the visibility of the index-th member.

Precondition:

self kind is TCKind.TK VALUE (p. 1530). The index param must be in
the interval [0,(member count-1)].

MT Safety:

SAFE.

Parameters:

index <<in>> (p. 271) Member index in the interval [0,(member count-
1)].

Exceptions:

com.rti.dds.infrastructure.BadKind (p. 398) if the method is in-
voked on an inappropriate kind of TypeCode (p. 1611) object.

com.rti.dds.infrastructure.Bounds (p. 411) - if the index parame-
ter/s are out of range.

Returns:

One of the following constants: PRIVATE MEMBER (p. 1244) or
PUBLIC MEMBER (p. 1263).

8.287.2.26 TypeCode discriminator type () throws BadKind

Returns the discriminator type code.

The method discriminator type can be invoked only on union TypeCode
(p. 1611) objects.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.287 TypeCode Class Reference 1631

Precondition:

self kind is TCKind.TK UNION (p. 1529).

MT Safety:

SAFE.

Exceptions:

com.rti.dds.infrastructure.BadKind (p. 398) if the method is in-
voked on an inappropriate kind of TypeCode (p. 1611) object.

Returns:

TypeCode (p. 1611) object describing the discriminator of the union type
if no errors.

8.287.2.27 int default index () throws BadKind

Returns the index of the default member, or -1 if there is no default member.

The method default index can be invoked only on union TypeCode (p. 1611)
objects.

Precondition:

self kind is TCKind.TK UNION (p. 1529)

MT Safety:

SAFE.

Exceptions:

com.rti.dds.infrastructure.BadKind (p. 398) if the method is in-
voked on an inappropriate kind of TypeCode (p. 1611) object.

Returns:

The index of the default member, or -1 if there is no default member.

8.287.2.28 int find member by id (int id) throws BadKind

Get the index of the member of the given ID.

MT Safety:

SAFE.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1632 Class Documentation

8.287.2.29 int find member by name (String name) throws
BadKind

Get the index of the member of the given name.

MT Safety:

SAFE.

8.287.2.30 void print IDL (int indent)

Prints a TypeCode (p. 1611) in a pseudo-IDL notation.

MT Safety:

SAFE.

Parameters:

indent <<in>> (p. 271) Indent.

8.287.2.31 int add member (String name, int id,
TypeCode tc, byte member flags) throws
BadKind,BadMemberName,BadMemberId

Add a new member to this TypeCode (p. 1611).

This method is applicable to TypeCode (p. 1611) objects representing
structures (TCKind.TK STRUCT (p. 1529)), value types (TCKind.TK -
VALUE (p. 1530)), sparse value types (TCKind.TK SPARSE (p. 1530)),
and unions (TCKind.TK UNION (p. 1529)). To add a constant to an enu-
meration, see TypeCode.add member to enum (p. 1634).

Modifying a TypeCode (p. 1611) – such as by adding a member – is important
if you are using the Dynamic Data (p. 170) APIs.

Here’s a simple code example that adds two fields to a data type, one an integer
and another a sequence of integers.

// Integer:

myTypeCode.add_member(

"myFieldName",

// If the type is sparse, specify an ID. Otherwise, use this sentinel:

TypeCode.MEMBER_ID_INVALID,

TypeCode.TC_LONG,

// New field is not a key:

TypeCode.NONKEY_REQUIRED_MEMBER);

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.287 TypeCode Class Reference 1633

// Sequence of 10 or fewer integers:

myTypeCode.add_member(

"myFieldName",

// If the type is sparse, specify an ID. Otherwise, use this sentinel:

TypeCode.MEMBER_ID_INVALID,

TypeCodeFactory.get_instance().create_sequence_tc(10, TypeCode.TC_LONG),

// New field is not a key:

TypeCode.NONKEY_REQUIRED_MEMBER);

MT Safety:

UNSAFE.

Parameters:

name <<in>> (p. 271) The name of the new member.

id <<in>> (p. 271) The ID of the new member. This should only
be specified for members of kind TCKind.TK SPARSE (p. 1530)
and TCKind.TK UNION (p. 1529); otherwise, it should be Type-
Code.MEMBER ID INVALID (p. 1638).

tc <<in>> (p. 271) The type of the new member. You can get or create
this TypeCode (p. 1611) with the TypeCodeFactory (p. 1641).

member flags <<in>> (p. 271) Indicates whether the member is part
of the key and whether it is required.

Returns:

The zero-based index of the new member relative to any other members
that previously existed.

See also:

TypeCode.add member (p. 1632)
TypeCode.add member to enum (p. 1634)
TypeCodeFactory (p. 1641)
TypeCode.NONKEY MEMBER (p. 1638)
TypeCode.KEY MEMBER (p. 1639)
TypeCode.NONKEY REQUIRED MEMBER (p. 1639)

8.287.2.32 int add member (String name, int id,
TypeCode tc, byte member flags, short
visibility, boolean is pointer, short bits) throws
BadKind,BadMemberName,BadMemberId,BAD -
PARAM

Add a new member to this TypeCode (p. 1611).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1634 Class Documentation

Modifying a TypeCode (p. 1611) – such as by adding a member – is important
if you are using the Dynamic Data (p. 170) APIs.

MT Safety:

UNSAFE.

Parameters:

name <<in>> (p. 271) The name of the new member.

id <<in>> (p. 271) The ID of the new member. This should only
be specified for members of kind TCKind.TK SPARSE (p. 1530)
and TCKind.TK UNION (p. 1529); otherwise, it should be Type-
Code.MEMBER ID INVALID (p. 1638).

tc <<in>> (p. 271) The type of the new member. You can get or create
this TypeCode (p. 1611) with the TypeCodeFactory (p. 1641).

member flags <<in>> (p. 271) Indicates whether the member is part
of the key and whether it is required.

visibility <<in>> (p. 271) Whether the new member is public or
private. Non-public members are only relevant for types of
kind TCKind.TK VALUE (p. 1530) and TCKind.TK SPARSE
(p. 1530).

is pointer <<in>> (p. 271) Whether the data member, in its deserial-
ized form, should be stored by pointer as opposed to by value.

bits <<in>> (p. 271) The number of bits, if this new member is a bit
field, or TypeCode.NOT BITFIELD (p. 1640).

Returns:

The zero-based index of the new member relative to any other members
that previously existed.

See also:

TypeCode.add member (p. 1632)
TypeCodeFactory (p. 1641)
TypeCode.NONKEY MEMBER (p. 1638)
TypeCode.KEY MEMBER (p. 1639)
TypeCode.NONKEY REQUIRED MEMBER (p. 1639)

8.287.2.33 int add member to enum (String name, int ordinal)
throws BadKind,BadMemberName

Add a new enumerated constant to this enum TypeCode (p. 1611).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.287 TypeCode Class Reference 1635

This method is applicable to TypeCode (p. 1611) objects representing enumer-
ations (TCKind.TK ENUM (p. 1529)). To add a field to a structured type,
see TypeCode.add member to enum (p. 1634).

Modifying a TypeCode (p. 1611) – such as by adding a member – is important
if you are using the Dynamic Data (p. 170) APIs.

MT Safety:

UNSAFE.

Parameters:

name <<in>> (p. 271) The name of the new member. This string must
be unique within this type and must not be null.

ordinal <<in>> (p. 271) The relative order of the new member in this
enum or a custom integer value. The value must be unique within the
type.

Returns:

The zero-based index of the new member relative to any other members
that previously existed.

See also:

TypeCode.add member (p. 1632)
TypeCode.add member (p. 1632)
TypeCodeFactory (p. 1641)

8.287.3 Member Data Documentation

8.287.3.1 final TypeCode TC NULL [static]

Basic null type.

See also:

TypeCodeFactory.get primitive tc (p. 1650)

8.287.3.2 final TypeCode TC SHORT [static]

Basic 16-bit signed integer type.

See also:

TypeCodeFactory.get primitive tc (p. 1650)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1636 Class Documentation

8.287.3.3 final TypeCode TC LONG [static]

Basic 32-bit signed integer type.

See also:

TypeCodeFactory.get primitive tc (p. 1650)

8.287.3.4 final TypeCode TC USHORT [static]

Basic unsigned 16-bit integer type.

See also:

TypeCodeFactory.get primitive tc (p. 1650)

8.287.3.5 final TypeCode TC ULONG [static]

Basic unsigned 32-bit integer type.

See also:

TypeCodeFactory.get primitive tc (p. 1650)

8.287.3.6 final TypeCode TC FLOAT [static]

Basic 32-bit floating point type.

See also:

TypeCodeFactory.get primitive tc (p. 1650)

8.287.3.7 final TypeCode TC DOUBLE [static]

Basic 64-bit floating point type.

See also:

TypeCodeFactory.get primitive tc (p. 1650)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.287 TypeCode Class Reference 1637

8.287.3.8 final TypeCode TC BOOLEAN [static]

Basic Boolean type.

See also:

TypeCodeFactory.get primitive tc (p. 1650)

8.287.3.9 final TypeCode TC CHAR [static]

Basic single-byte character type.

See also:

TypeCodeFactory.get primitive tc (p. 1650)

8.287.3.10 final TypeCode TC OCTET [static]

Basic octet/byte type.

See also:

TypeCodeFactory.get primitive tc (p. 1650)

8.287.3.11 final TypeCode TC LONGLONG [static]

Basic 64-bit integer type.

See also:

TypeCodeFactory.get primitive tc (p. 1650)

8.287.3.12 final TypeCode TC ULONGLONG [static]

Basic unsigned 64-bit integer type.

See also:

TypeCodeFactory.get primitive tc (p. 1650)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1638 Class Documentation

8.287.3.13 final TypeCode TC LONGDOUBLE [static]

Basic 128-bit floating point type.

See also:

TypeCodeFactory.get primitive tc (p. 1650)

8.287.3.14 final TypeCode TC WCHAR [static]

Basic four-byte character type.

See also:

TypeCodeFactory.get primitive tc (p. 1650)

8.287.3.15 final int MEMBER ID INVALID [static]

A sentinel indicating an invalid TypeCode (p. 1611) member ID.

8.287.3.16 final int INDEX INVALID [static]

A sentinel indicating an invalid TypeCode (p. 1611) member index.

8.287.3.17 final byte NONKEY MEMBER [static]

A flag indicating that a type member is optional and not part of the key.

Only sparse value types (i.e. types of TCKind (p. 1526) TCKind.TK -
SPARSE (p. 1530)) support this flag. Non-key members of other type
kinds should use the flag TypeCode.NONKEY REQUIRED MEMBER
(p. 1639).

If a type is used with the Dynamic Data (p. 170) facility, a
com.rti.dds.dynamicdata.DynamicData (p. 780) sample of the type will
only contain a value for a TypeCode.NONKEY MEMBER (p. 1638) field
if one has been explicitly set (see, for example, DynamicData.set int). The
middleware will not assume any default value.

See also:

TypeCode.KEY MEMBER (p. 1639)
TypeCode.NONKEY REQUIRED MEMBER (p. 1639)
TypeCode.KEY MEMBER (p. 1639)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.287 TypeCode Class Reference 1639

TypeCode.add member (p. 1632)
TypeCode.add member (p. 1632)
TypeCode.is member key (p. 1627)
TypeCode.is member required (p. 1627)
StructMember.is key (p. 1477)
ValueMember.is key (p. 1684)

8.287.3.18 final byte KEY MEMBER [static]

A flag indicating that a type member is part of the key for that type, and
therefore required.

If a type is used with the Dynamic Data (p. 170) facility, all
com.rti.dds.dynamicdata.DynamicData (p. 780) samples of the type will
contain a value for all TypeCode.KEY MEMBER (p. 1639) fields, even if
the type is a sparse value type (i.e. of kind TCKind.TK SPARSE (p. 1530)).
If you do not set a value of the member explicitly (see, for example, Dynamic-
Data.set int), the middleware will assume a default ”zero” value: numeric values
will be set to zero; strings and sequences will be of zero length.

See also:

TypeCode.NONKEY REQUIRED MEMBER (p. 1639)
TypeCode.NONKEY MEMBER (p. 1638)
TypeCode.add member (p. 1632)
TypeCode.add member (p. 1632)
TypeCode.is member key (p. 1627)
TypeCode.is member required (p. 1627)
StructMember.is key (p. 1477)
ValueMember.is key (p. 1684)

8.287.3.19 final byte NONKEY REQUIRED MEMBER [static]

A flag indicating that a type member is not part of the key but is nevertheless
required.

This is the most common kind of member.

If a type is used with the Dynamic Data (p. 170) facility, all
com.rti.dds.dynamicdata.DynamicData (p. 780) samples of the type will
contain a value for all TypeCode.NONKEY REQUIRED MEMBER
(p. 1639) fields, even if the type is a sparse value type (i.e. of kind
TCKind.TK SPARSE (p. 1530)). If you do not set a value of the member
explicitly (see, for example, DynamicData.set int), the middleware will assume
a default ”zero” value: numeric values will be set to zero; strings and sequences
will be of zero length.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1640 Class Documentation

See also:

TypeCode.KEY MEMBER (p. 1639)
TypeCode.NONKEY MEMBER (p. 1638)
TypeCode.KEY MEMBER (p. 1639)
TypeCode.add member (p. 1632)
TypeCode.add member (p. 1632)
TypeCode.is member key (p. 1627)
TypeCode.is member required (p. 1627)
StructMember.is key (p. 1477)
ValueMember.is key (p. 1684)

8.287.3.20 final short NOT BITFIELD [static]

Indicates that a member of a type is not a bitfield.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.288 TypeCodeFactory Class Reference 1641

8.288 TypeCodeFactory Class Reference

A singleton factory for creating, copying, and deleting data type definitions
dynamically.

Public Member Functions

ˆ TypeCode create struct tc (String name, StructMember[] mem-
bers) throws BAD PARAM

Constructs a TCKind.TK STRUCT (p. 1529) TypeCode (p. 1611).

ˆ TypeCode create value tc (String name, short type modifier, Type-
Code concrete base, ValueMember[] members) throws BAD -
PARAM

Constructs a TCKind.TK VALUE (p. 1530) TypeCode (p. 1611).

ˆ TypeCode create sparse tc (String name, short type modifier, Type-
Code concrete base) throws BAD PARAM

Constructs a TCKind.TK SPARSE (p. 1530) TypeCode (p. 1611).

ˆ TypeCode create union tc (String name, TypeCode discrimina-
tor type, int default index, UnionMember[] members) throws BAD -
PARAM

Constructs a TCKind.TK UNION (p. 1529) TypeCode (p. 1611).

ˆ TypeCode create enum tc (String name, EnumMember[] members)
throws BAD PARAM

Constructs a TCKind.TK ENUM (p. 1529) TypeCode (p. 1611).

ˆ TypeCode create alias tc (String name, TypeCode original type,
boolean is pointer) throws BAD PARAM

Constructs a TCKind.TK ALIAS (p. 1529) (typedef) TypeCode
(p. 1611).

ˆ TypeCode create string tc (int bound) throws BAD PARAM
Constructs a TCKind.TK STRING (p. 1529) TypeCode (p. 1611).

ˆ TypeCode create wstring tc (int bound) throws BAD PARAM
Constructs a TCKind.TK WSTRING (p. 1530) TypeCode (p. 1611).

ˆ TypeCode create sequence tc (int bound, TypeCode element type)
throws BAD PARAM

Constructs a TCKind.TK SEQUENCE (p. 1529) TypeCode (p. 1611).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1642 Class Documentation

ˆ TypeCode create array tc (int[] dimensions, TypeCode element -
type) throws BAD PARAM

Constructs a TCKind.TK ARRAY (p. 1529) TypeCode (p. 1611).

ˆ TypeCode create array tc (int length, TypeCode element type)
throws BAD PARAM

Constructs a TCKind.TK ARRAY (p. 1529) TypeCode (p. 1611) for a
single-dimensional array.

ˆ TypeCode clone tc (TypeCode tc)

Creates and returns a copy of the input TypeCode (p. 1611).

ˆ void delete tc (TypeCode tc)

Deletes the input TypeCode (p. 1611).

ˆ TypeCode get primitive tc (TCKind kind) throws BAD PARAM

Get the TypeCode (p. 1611) for a primitive type (integers, floating point
values, etc.) identified by the given TCKind (p. 1526).

Static Public Member Functions

ˆ static final TypeCodeFactory get instance ()

Gets the singleton instance of this class.

8.288.1 Detailed Description

A singleton factory for creating, copying, and deleting data type definitions
dynamically.

You can access the singleton with the TypeCodeFactory.get instance
(p. 1644) method.

If you want to publish and subscribe to data of types that are not known to
you at system design time, this class will be your starting point. After creating
a data type definition with this class, you will modify that definition using
the TypeCode (p. 1611) class and then register it with the Dynamic Data
(p. 170) API.

The methods of this class fall into several categories:

Getting definitions for primitive types:

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.288 TypeCodeFactory Class Reference 1643

Type definitions for primitive types (e.g. integers, floating point values, etc.)
are pre-defined; your application only needs to get them, not create them.

ˆ TypeCodeFactory.get primitive tc (p. 1650)

Creating definitions for strings, arrays, and sequences:

Type definitions for strings, arrays, and sequences (i.e. variables-size lists) must
be created as you need them, because the type definition includes the maximum
length of those containers.

ˆ TypeCodeFactory.create string tc (p. 1647)

ˆ TypeCodeFactory.create wstring tc (p. 1648)

ˆ TypeCodeFactory.create array tc (p. 1649)

ˆ TypeCodeFactory.create array tc (p. 1649)

ˆ TypeCodeFactory.create sequence tc (p. 1648)

Creating definitions for structured types:

Structured types include structures, value types, sparse value types, and unions.

ˆ TypeCodeFactory.create struct tc (p. 1644)

ˆ TypeCodeFactory.create value tc (p. 1644)

ˆ TypeCodeFactory.create sparse tc (p. 1645)

ˆ TypeCodeFactory.create union tc (p. 1646)

Creating definitions for other types:

The type system also supports enumerations and aliases (i.e. typedefs in C
and C++).

ˆ TypeCodeFactory.create enum tc (p. 1646)

ˆ TypeCodeFactory.create alias tc (p. 1647)

Deleting type definitions:

When you’re finished using a type definition, you should delete it. (Note that
you only need to delete a TypeCode (p. 1611) that you created ; if you got
the object from TypeCodeFactory.get primitive tc (p. 1650), you must not
delete it.)

ˆ TypeCodeFactory.delete tc (p. 1650)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1644 Class Documentation

Copying type definitions:

You can also create deep copies of type definitions:

ˆ TypeCodeFactory.clone tc (p. 1649)

8.288.2 Member Function Documentation

8.288.2.1 static final TypeCodeFactory get instance () [static]

Gets the singleton instance of this class.

Returns:

The TypeCodeFactory (p. 1641) instance if no errors. Otherwise, null.

8.288.2.2 TypeCode create struct tc (String name,
StructMember[] members) throws BAD PARAM

Constructs a TCKind.TK STRUCT (p. 1529) TypeCode (p. 1611).

Parameters:

name <<in>> (p. 271) Name of the struct type. Cannot be null.

members <<in>> (p. 271) Initial members of the structure. This list
may be empty (that is, Sequence.size() may return zero). If the list
is not empty, the elements must describe valid struct members. (For
example, the names must be unique within the type.) This argument
may be null.

Exceptions:

com.rti.dds.infrastructure.BAD PARAM. Illegal parameter value.

Returns:

A newly-created TypeCode (p. 1611) object describing a struct.

8.288.2.3 TypeCode create value tc (String name, short
type modifier, TypeCode concrete base, ValueMember[]
members) throws BAD PARAM

Constructs a TCKind.TK VALUE (p. 1530) TypeCode (p. 1611).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.288 TypeCodeFactory Class Reference 1645

Parameters:

name <<in>> (p. 271) Name of the value type. Cannot be null.

type modifier <<in>> (p. 271) One of the value type modifier con-
stants: VM NONE (p. 1693), VM CUSTOM (p. 1692), VM -
ABSTRACT (p. 1691) or VM TRUNCATABLE (p. 1694).

concrete base <<in>> (p. 271) TypeCode (p. 1611) object describing
the concrete valuetype base. It may be null if the valuetype does not
have a concrete base.

members <<in>> (p. 271) Initial members of the value type. This list
may be empty. If the list is not empty, the elements must describe
valid value type members. (For example, the names must be unique
within the type.) This argument may be null.

Exceptions:

com.rti.dds.infrastructure.BAD PARAM. Illegal parameter value.

Returns:

A newly-created TypeCode (p. 1611) object describing a value.

8.288.2.4 TypeCode create sparse tc (String name, short
type modifier, TypeCode concrete base) throws
BAD PARAM

Constructs a TCKind.TK SPARSE (p. 1530) TypeCode (p. 1611).

A sparse value type is similar to other value types but with one major difference:
not all members need to be present in every sample.

It is not possible to generate code for sparse value types; they must be created
at runtime using these APIs. You will interact with samples of sparse types
using the Dynamic Data (p. 170) APIs.

Parameters:

name <<in>> (p. 271) Name of the value type. Cannot be null.

type modifier <<in>> (p. 271) One of the value type modifier con-
stants: VM NONE (p. 1693), VM CUSTOM (p. 1692), VM -
ABSTRACT (p. 1691) or VM TRUNCATABLE (p. 1694).

concrete base <<in>> (p. 271) TypeCode (p. 1611) object describing
the concrete valuetype base. It may be null if the valuetype does not
have a concrete base.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1646 Class Documentation

Exceptions:

com.rti.dds.infrastructure.BAD PARAM. Illegal parameter value.

Returns:

A newly-created TypeCode (p. 1611) object describing a value.

8.288.2.5 TypeCode create union tc (String name, TypeCode
discriminator type, int default index, UnionMember[]
members) throws BAD PARAM

Constructs a TCKind.TK UNION (p. 1529) TypeCode (p. 1611).

Parameters:

name <<in>> (p. 271) Name of the union type. Cannot be null.

discriminator type <<in>> (p. 271) Discriminator Type Code. Can-
not be null.

default index <<in>> (p. 271) Index of the default member, or -1 if
there is no default member.

members <<in>> (p. 271) Initial members of the union. This list may
be empty. If the list is not empty, the elements must describe valid
struct members. (For example, the names must be unique within the
type.) This argument may be null.

Exceptions:

com.rti.dds.infrastructure.BAD PARAM. Illegal parameter value.

Returns:

A newly-created TypeCode (p. 1611) object describing a union.

8.288.2.6 TypeCode create enum tc (String name, EnumMember[]
members) throws BAD PARAM

Constructs a TCKind.TK ENUM (p. 1529) TypeCode (p. 1611).

Parameters:

name <<in>> (p. 271) Name of the enum type. Cannot be null.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.288 TypeCodeFactory Class Reference 1647

members <<in>> (p. 271) Initial members of the enumeration. All
members must have non-null names, and both names and ordinal
values must be unique within the type. Note that it is also possi-
ble to add members later with TypeCode.add member to enum
(p. 1634). This argument may be null.

Exceptions:

com.rti.dds.infrastructure.BAD PARAM. Illegal parameter value.

Returns:

A newly-created TypeCode (p. 1611) object describing an enumeration.

8.288.2.7 TypeCode create alias tc (String name, TypeCode
original type, boolean is pointer) throws BAD PARAM

Constructs a TCKind.TK ALIAS (p. 1529) (typedef) TypeCode (p. 1611).

Parameters:

name <<in>> (p. 271) Name of the alias. Cannot be null.

original type <<in>> (p. 271) Aliased type code. Cannot be null.

is pointer <<in>> (p. 271) Indicates if the alias is a pointer to the
aliased type code.

Exceptions:

com.rti.dds.infrastructure.BAD PARAM. Illegal parameter value.

Returns:

A newly-created TypeCode (p. 1611) object describing an alias.

8.288.2.8 TypeCode create string tc (int bound) throws
BAD PARAM

Constructs a TCKind.TK STRING (p. 1529) TypeCode (p. 1611).

Parameters:

bound <<in>> (p. 271) Maximum length of the string. It cannot be
negative.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1648 Class Documentation

Exceptions:

com.rti.dds.infrastructure.BAD PARAM. Illegal parameter value.

Returns:

A newly-created TypeCode (p. 1611) object describing a string.

8.288.2.9 TypeCode create wstring tc (int bound) throws
BAD PARAM

Constructs a TCKind.TK WSTRING (p. 1530) TypeCode (p. 1611).

Parameters:

bound <<in>> (p. 271) Maximum length of the wide string. It cannot
be negative.

Exceptions:

com.rti.dds.infrastructure.BAD PARAM. Illegal parameter value.

Returns:

A newly-created TypeCode (p. 1611) object describing a wide string.

8.288.2.10 TypeCode create sequence tc (int bound, TypeCode
element type) throws BAD PARAM

Constructs a TCKind.TK SEQUENCE (p. 1529) TypeCode (p. 1611).

Parameters:

bound <<in>> (p. 271) The bound for the sequence (> 0).

element type <<in>> (p. 271) TypeCode (p. 1611) object describing
the sequence elements.

Exceptions:

com.rti.dds.infrastructure.BAD PARAM. Illegal parameter value.

Returns:

A newly-created TypeCode (p. 1611) object describing a sequence.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.288 TypeCodeFactory Class Reference 1649

8.288.2.11 TypeCode create array tc (int[] dimensions, TypeCode
element type) throws BAD PARAM

Constructs a TCKind.TK ARRAY (p. 1529) TypeCode (p. 1611).

Parameters:

dimensions <<in>> (p. 271) Dimensions of the array. Each dimension
has to be greater than 0.

element type <<in>> (p. 271) TypeCode (p. 1611) describing the ar-
ray elements. Cannot be null.

Exceptions:

com.rti.dds.infrastructure.BAD PARAM. Illegal parameter value.

Returns:

A newly-created TypeCode (p. 1611) object describing a sequence.

8.288.2.12 TypeCode create array tc (int length, TypeCode
element type) throws BAD PARAM

Constructs a TCKind.TK ARRAY (p. 1529) TypeCode (p. 1611) for a
single-dimensional array.

Parameters:

length <<in>> (p. 271) Length of the single-dimensional array.

element type <<in>> (p. 271) TypeCode (p. 1611) describing the ar-
ray elements. Cannot be null.

Exceptions:

com.rti.dds.infrastructure.BAD PARAM. Illegal parameter value.

Returns:

A newly-created TypeCode (p. 1611) object describing a sequence.

8.288.2.13 TypeCode clone tc (TypeCode tc)

Creates and returns a copy of the input TypeCode (p. 1611).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1650 Class Documentation

Parameters:

tc <<in>> (p. 271) Type code that will be copied. Cannot be null.

Returns:

A clone of tc.

8.288.2.14 void delete tc (TypeCode tc)

Deletes the input TypeCode (p. 1611).

Calling this method is optional. If you do not call it, the garbage collector will
perform the deletion when it is able.

Parameters:

tc <<inout>> (p. 271) Type code that will be deleted. Cannot be null.

8.288.2.15 TypeCode get primitive tc (TCKind kind) throws
BAD PARAM

Get the TypeCode (p. 1611) for a primitive type (integers, floating point val-
ues, etc.) identified by the given TCKind (p. 1526).

See also:

TypeCode.TC LONG (p. 1636)
TypeCode.TC ULONG (p. 1636)
TypeCode.TC SHORT (p. 1635)
TypeCode.TC USHORT (p. 1636)
TypeCode.TC FLOAT (p. 1636)
TypeCode.TC DOUBLE (p. 1636)
TypeCode.TC LONGDOUBLE (p. 1638)
TypeCode.TC OCTET (p. 1637)
TypeCode.TC BOOLEAN (p. 1637)
TypeCode.TC CHAR (p. 1637)
TypeCode.TC WCHAR (p. 1638)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.289 TypeSupport Interface Reference 1651

8.289 TypeSupport Interface Reference

<<interface>> (p. 271) An abstract marker interface that has to be special-
ized for each concrete user data type that will be used by the application.

Inheritance diagram for TypeSupport::

8.289.1 Detailed Description

<<interface>> (p. 271) An abstract marker interface that has to be special-
ized for each concrete user data type that will be used by the application.

The implementation provides an automatic means to generate a type-specific
class, com.rti.dds.topic.example.FooTypeSupport (p. 1060), from a de-
scription of the type in IDL.

A TypeSupport (p. 1651) must be registered using the
com.rti.dds.topic.example.FooTypeSupport.register type (p. 1060)
operation on this type-specific class before it can be used to create
com.rti.dds.topic.Topic (p. 1545) objects.

See also:

com.rti.dds.topic.example.FooTypeSupport (p. 1060)
rtiddsgen (p. 290)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1652 Class Documentation

8.290 TypeSupportQosPolicy Class Reference

Allows you to attach application-specific values to a DataWriter or DataReader
that are passed to the serialization or deserialization routine of the associated
data type.

Inheritance diagram for TypeSupportQosPolicy::

Public Attributes

ˆ transient Object plugin data
Value to pass into the type plugin’s de-/serialization function.

8.290.1 Detailed Description

Allows you to attach application-specific values to a DataWriter or DataReader
that are passed to the serialization or deserialization routine of the associated
data type.

The purpose of this QoS is to allow a user application to pass data to a type
plugin’s support functions.

Entity:

com.rti.dds.subscription.DataReader (p. 473),
com.rti.dds.publication.DataWriter (p. 538)

Properties:

RxO (p. 97) = N/A

Changeable (p. 98) = YES (p. 98)

8.290.2 Usage

This QoS policy allows you to associate a pointer to an ob-
ject with a com.rti.dds.publication.DataWriter (p. 538) or
com.rti.dds.subscription.DataReader (p. 473). This object pointer is
passed to the serialization routine of the data type associated with the
com.rti.dds.publication.DataWriter (p. 538) or the deserialization routine
of the data type associated with the com.rti.dds.subscription.DataReader
(p. 473).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.290 TypeSupportQosPolicy Class Reference 1653

You can modify the rtiddsgen-generated code so that the de/serialization rou-
tines act differently depending on the information passed in via the object
pointer. (The generated serialization and deserialization code does not use the
pointer.)

This functionality can be used to change how data sent by a
com.rti.dds.publication.DataWriter (p. 538) or received by a
com.rti.dds.subscription.DataReader (p. 473) is serialized or deserial-
ized on a per DataWriter and DataReader basis.

It can also be used to dynamically change how serialization (or for a less common
case, deserialization) occurs. For example, a data type could represent a table,
including the names of the rows and columns. However, since the row/column
names of an instance of the table (a Topic) don’t change, they only need to
be sent once. The information passed in through the TypeSupport QoS pol-
icy could be used to signal the serialization routine to send the row/column
names the first time a com.rti.dds.publication.DataWriter (p. 538) calls
com.rti.dds.topic.example.FooDataWriter.write, and then never again.

8.290.3 Member Data Documentation

8.290.3.1 transient Object plugin data

Value to pass into the type plugin’s de-/serialization function.

[default] NULL

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1654 Class Documentation

8.291 UDPv4Transport Interface Reference

Built-in transport (p. 367) plug-in using UDP/IPv4.

Inheritance diagram for UDPv4Transport::

Static Public Attributes

ˆ static final int BLOCKING NEVER

Value for UDPv4Transport.Property t.send blocking (p. 1663) to spec-
ify non-blocking sockets.

ˆ static final int BLOCKING ALWAYS

[default] Value for UDPv4Transport.Property t.send blocking
(p. 1663) to specify blocking sockets.

Classes

ˆ class Property t

Configurable IPv4/UDP Transport-Plugin properties.

8.291.1 Detailed Description

Built-in transport (p. 367) plug-in using UDP/IPv4.

This transport (p. 367) plugin uses UDPv4 sockets to send and receive mes-
sages. It supports both unicast and multicast communications in a single in-
stance of the plugin. By default, this plugin will use all interfaces that it finds
enabled and ”UP” at instantiation time to send and receive messages.

The user can configure an instance of this plugin to only use unicast or only
use multicast, see UDPv4Transport.Property t.unicast enabled (p. 1660)
and UDPv4Transport.Property t.multicast enabled (p. 1660).

In addition, the user can configure an instance of this plugin to selectively
use the network interfaces of a node (and restrict a plugin from sending
multicast messages on specific interfaces) by specifying the ”white” and
”black” lists in the base property’s fields (Transport.Property t.allow -
interfaces list (p. 1575), Transport.Property t.deny interfaces list
(p. 1575), Transport.Property t.allow multicast interfaces list (p. 1576),
Transport.Property t.deny multicast interfaces list (p. 1576)).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.291 UDPv4Transport Interface Reference 1655

RTI Connext can implicitly create this plugin and register with the
com.rti.dds.domain.DomainParticipant (p. 629) if this transport (p. 367)
is specified in com.rti.dds.infrastructure.TransportBuiltinQosPolicy
(p. 1580).

To specify the properties of the builtin UDPv4 transport (p. 367) that is im-
plicitly registered, you can either:

ˆ call TransportSupport.set builtin transport property (p. 1603) or

ˆ specify the predefined property names in
com.rti.dds.infrastructure.PropertyQosPolicy (p. 1252) associ-
ated with the com.rti.dds.domain.DomainParticipant (p. 629). (see
UDPv4 Transport Property Names in Property QoS Policy of
Domain Participant (p. 1655)). Builtin transport (p. 367) plugin prop-
erties specified in com.rti.dds.infrastructure.PropertyQosPolicy
(p. 1252) always overwrite the ones specified through TransportSup-
port.set builtin transport property() (p. 1603). The default value is
assumed on any unspecified property.

Note that all properties should be set before the transport (p. 367) is implic-
itly created and registered by RTI Connext. Any properties set after the builtin
transport (p. 367) is registered will be ignored. See Built-in Transport Plu-
gins (p. 216) for details on when a builtin transport (p. 367) is registered.

8.291.2 UDPv4 Transport Property Names in Property
QoS Policy of Domain Participant

The following table lists the predefined property names that can be
set in com.rti.dds.infrastructure.PropertyQosPolicy (p. 1252) of a
com.rti.dds.domain.DomainParticipant (p. 629) to configure the builtin
UDPv4 transport (p. 367) plugin.

See also:

TransportSupport.set builtin transport property() (p. 1603)

8.291.3 Member Data Documentation

8.291.3.1 final int BLOCKING NEVER [static]

Value for UDPv4Transport.Property t.send blocking (p. 1663) to specify
non-blocking sockets.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1656 Class Documentation

8.291.3.2 final int BLOCKING ALWAYS [static]

[default] Value for UDPv4Transport.Property t.send blocking (p. 1663)
to specify blocking sockets.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.291 UDPv4Transport Interface Reference 1657

Property Name Description

dds.transport.UDPv4.builtin.parent.address -
bit count

See Transport.Property -
t.address bit count
(p. 1573)

dds.transport.UDPv4.builtin.parent.properties -
bitmap

See Transport.Property -
t.properties bitmap
(p. 1574)

dds.transport.UDPv4.builtin.parent.gather -
send buffer count max

See Transport.Property -
t.gather send buffer count max
(p. 1574)

dds.transport.UDPv4.builtin.parent.message -
size max

See Transport.Property -
t.message size max
(p. 1574)

dds.transport.UDPv4.builtin.parent.allow -
interfaces

See Transport.Property -
t.allow interfaces list (p. 1575)
and Transport.Property t.allow -
interfaces list length.
Interfaces should be specified as
comma-separated strings, with each
comma delimiting an interface. For
example (p. 366), 127.0.0.1,eth0

dds.transport.UDPv4.builtin.parent.deny -
interfaces

See Transport.Property t.deny -
interfaces list (p. 1575) and
Transport.Property t.deny -
interfaces list length.
Interfaces should be specified as
comma-separated strings, with each
comma delimiting an interface. For
example (p. 366): 127.0.0.1,eth0

dds.transport.UDPv4.builtin.parent.allow -
multicast interfaces

See Transport.Property -
t.allow multicast interfaces list
(p. 1576) and
Transport.Property t.allow -
multicast interfaces list length.
Interfaces should be specified as
comma-separated strings, with each
comma delimiting an interface. For
example (p. 366): 127.0.0.1,eth0

dds.transport.UDPv4.builtin.parent.deny -
multicast interfaces

See Transport.Property t.deny -
multicast interfaces list (p. 1576)
and Transport.Property t.deny -
multicast interfaces list length.
Interfaces should be specified as
comma-separated strings, with each
comma delimiting an interface. For
example (p. 366): 127.0.0.1,eth0

dds.transport.UDPv4.builtin.send -
socket buffer size

See
UDPv4Transport.Property -
t.send socket buffer size
(p. 1660)

dds.transport.UDPv4.builtin.recv -
socket buffer size

See
UDPv4Transport.Property -
t.recv socket buffer size
(p. 1660)

dds.transport.UDPv4.builtin.unicast -
enabled

See
UDPv4Transport.Property -
t.unicast enabled
(p. 1660)

dds.transport.UDPv4.builtin.multicast -
enabled

See
UDPv4Transport.Property -
t.multicast enabled
(p. 1660)

dds.transport.UDPv4.builtin.multicast -
ttl

See
UDPv4Transport.Property -
t.multicast ttl
(p. 1661)

dds.transport.UDPv4.builtin.multicast -
loopback disabled

See
UDPv4Transport.Property -
t.multicast loopback disabled
(p. 1661)

dds.transport.UDPv4.builtin.ignore -
loopback interface

See
UDPv4Transport.Property -
t.ignore loopback interface
(p. 1661)

dds.transport.UDPv4.builtin.ignore -
nonrunning interfaces

See
UDPv4Transport.Property -
t.ignore nonrunning interfaces
(p. 1662)

dds.transport.UDPv4.builtin.no -
zero copy

See
UDPv4Transport.Property -
t.no zero copy
(p. 1663)

dds.transport.UDPv4.builtin.send -
blocking

See
UDPv4Transport.Property -
t.send blocking
(p. 1663)

dds.transport.UDPv4.builtin.transport -
priority mask

See
UDPv4Transport.Property -
t.transport priority mask
(p. 1663)

dds.transport.UDPv4.builtin.transport -
priority mapping low

See
UDPv4Transport.Property -
t.transport priority mapping -
low
(p. 1664)

dds.transport.UDPv4.builtin.transport -
priority mapping high

See
UDPv4Transport.Property -
t.transport priority mapping -
high
(p. 1664)

dds.transport.UDPv4.builtin.interface -
poll period

See
UDPv4Transport.Property -
t.interface poll period
(p. 1664)

dds.transport.UDPv4.builtin.reuse -
multicast receive resource

See
UDPv4Transport.Property -
t.reuse multicast receive -
resource
(p. 1665)

dds.transport.UDPv4.builtin.protocol -
overhead max

See
UDPv4Transport.Property -
t.protocol overhead max
(p. 1665)

Table 8.8: Property Names for UDPv4 Transport (p. 1569) Plugin

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1658 Class Documentation

8.292 UDPv4Transport.Property t Class Refer-
ence

Configurable IPv4/UDP Transport-Plugin properties.

Inheritance diagram for UDPv4Transport.Property t::

Public Member Functions

ˆ Property t ()

Public Attributes

ˆ int send socket buffer size
Size in bytes of the send buffer of a socket used for sending.

ˆ int recv socket buffer size
Size in bytes of the receive buffer of a socket used for receiving.

ˆ int unicast enabled
Allows the transport (p. 367) plugin to use unicast for sending and receiving.

ˆ int multicast enabled
Allows the transport (p. 367) plugin to use multicast for sending and receiv-
ing.

ˆ int multicast ttl
Value for the time-to-live parameter for all multicast sends using this plugin.

ˆ int multicast loopback disabled
Prevents the transport (p. 367) plugin from putting multicast packets onto
the loopback interface.

ˆ int ignore loopback interface
Prevents the transport (p. 367) plugin from using the IP loopback interface.

ˆ int ignore nonup interfaces
Prevents the transport (p. 367) plugin from using a network interface that
is not reported as UP by the operating system.

ˆ int ignore nonrunning interfaces

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.292 UDPv4Transport.Property t Class Reference 1659

Prevents the transport (p. 367) plugin from using a network interface that
is not reported as RUNNING by the operating system.

ˆ int no zero copy

Prevents the transport (p. 367) plugin from doing a zero copy.

ˆ int send blocking

Control blocking behavior of send sockets. CHANGING THIS FROM THE
DEFAULT CAN CAUSE SIGNIFICANT PERFORMANCE PROBLEMS.

ˆ long transport priority mask

Set mask for use of transport (p. 367) priority field.

ˆ int transport priority mapping low

Set low value of output range to IPv4 TOS.

ˆ int transport priority mapping high

Set high value of output range to IPv4 TOS.

ˆ long interface poll period

Specifies the period in milliseconds to query for changes in the state of all
the interfaces.

ˆ int reuse multicast receive resource

Controls whether or not to reuse multicast receive resources.

ˆ int protocol overhead max

Maximum size in bytes of protocol overhead, including headers.

8.292.1 Detailed Description

Configurable IPv4/UDP Transport-Plugin properties.

The properties in this structure can be modified by the end user to configure the
plugin. However, the properties must be set before the plugin is instantiated.

See also:

TransportSupport.set builtin transport property() (p. 1603)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1660 Class Documentation

8.292.2 Constructor & Destructor Documentation

8.292.2.1 Property t ()

Create an empty UDPv4Transport (p. 1654) property with default values

8.292.3 Member Data Documentation

8.292.3.1 int send socket buffer size

Size in bytes of the send buffer of a socket used for sending.

On most operating systems, setsockopt() will be called to set the SENDBUF
to the value of this parameter.

This value must be greater than or equal to Transport.Property t.message -
size max (p. 1574). The maximum value is operating system-dependent.

8.292.3.2 int recv socket buffer size

Size in bytes of the receive buffer of a socket used for receiving.

On most operating systems, setsockopt() will be called to set the RECVBUF
to the value of this parameter.

This value must be greater than or equal to Transport.Property t.message -
size max (p. 1574). The maximum value is operating system-dependent.

8.292.3.3 int unicast enabled

Allows the transport (p. 367) plugin to use unicast for sending and receiving.

This value turns unicast UDP on (if set to 1) or off (if set to 0) for this plugin.
By default, it will be turned on (1). Also by default, the plugin will use all
the allowed network interfaces that it finds up and running when the plugin is
instanced.

8.292.3.4 int multicast enabled

Allows the transport (p. 367) plugin to use multicast for sending and receiving.

This value turns multicast UDP on (if set to 1) or off (if set to 0) for this
plugin. By default, it will be turned on (1) for those platforms that support
multicast. Also by default, the plugin will use the all network interfaces allowed
for multicast that it finds up and running when the plugin is instanced.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.292 UDPv4Transport.Property t Class Reference 1661

8.292.3.5 int multicast ttl

Value for the time-to-live parameter for all multicast sends using this plugin.

This value is used to set the TTL of multicast packets sent by this transport
(p. 367) plugin.

See also:

NDDS TRANSPORT UDPV4 MULTICAST TTL DEFAULT

8.292.3.6 int multicast loopback disabled

Prevents the transport (p. 367) plugin from putting multicast packets onto the
loopback interface.

If multicast loopback is disabled (this value is set to 1), then when sending mul-
ticast packets, RTI Connext will not put a copy of the packets on the loopback
interface. This prevents applications on the same node (including itself) from
receiving those packets.

This value is set to 0 by default, meaning multicast loopback is enabled .

Disabling multicast loopback (setting this value to 1) may result in minor per-
formance gains when using multicast.

[NOTE: Windows CE systems do not support multicast loopback. This field is
ignored for Windows CE targets.]

8.292.3.7 int ignore loopback interface

Prevents the transport (p. 367) plugin from using the IP loopback interface.

Currently three values are allowed:

ˆ 0: Forces local traffic to be sent over loopback, even if a more efficient
transport (p. 367) (such as shared memory) is installed (in which case
traffic will be sent over both transports).

ˆ 1: Disables local traffic via this plugin. The IP loopback interface is
not used, even if no NICs are discovered. This is useful when you want
applications running on the same node to use a more efficient plugin (such
as shared memory) instead of the IP loopback.

ˆ -1: Automatic. Lets RTI Connext decide between the above two choices.

The current ”automatic” (-1) RTI Connext policy is as follows.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1662 Class Documentation

ˆ If a shared memory transport (p. 367) plugin is available for local traffic,
the effective value is 1 (i.e., disable UPV4 local traffic).

ˆ Otherwise, the effective value is 0 (i.e., use UDPv4 for local traffic also).

[default] -1 Automatic RTI Connext policy based on availability of the shared
memory transport (p. 367).

8.292.3.8 int ignore nonup interfaces

Prevents the transport (p. 367) plugin from using a network interface that is
not reported as UP by the operating system.

The transport (p. 367) checks the flags reported by the operating system for
each network interface upon initialization. An interface which is not reported as
UP will not be used. This property allows the user to configure the transport
(p. 367) to start using even the interfaces which were not reported as UP.

Two values are allowed:

ˆ 0: Allow the use of interfaces which were not reported as UP.

ˆ 1: Do not use interfaces which were not reported as UP.

[default] 1

8.292.3.9 int ignore nonrunning interfaces

Prevents the transport (p. 367) plugin from using a network interface that is
not reported as RUNNING by the operating system.

The transport (p. 367) checks the flags reported by the operating system for
each network interface upon initialization. An interface which is not reported as
UP will not be used. This property allows the same check to be extended to the
IFF RUNNING flag implemented by some operating systems. The RUNNING
flag is defined to mean that ”all resources are allocated”, and may be off if there
is no link detected, e.g., the network cable is unplugged.

Two values are allowed:

ˆ 0: Do not check the RUNNING flag when enumerating interfaces, just
make sure the interface is UP.

ˆ 1: Check the flag when enumerating interfaces, and ignore those that are
not reported as RUNNING. This can be used on some operating systems
to cause the transport (p. 367) to ignore interfaces that are enabled but
not connected to the network.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.292 UDPv4Transport.Property t Class Reference 1663

[default] 0 (i.e., do not check RUNNING flag)

8.292.3.10 int no zero copy

Prevents the transport (p. 367) plugin from doing a zero copy.

By default, this plugin will use the zero copy on OSs that offer it. While this is
good for performance, it may sometime tax the OS resources in a manner that
cannot be overcome by the application.

The best example (p. 366) is if the hardware/device driver lends the buffer to
the application itself. If the application does not return the loaned buffers soon
enough, the node may error or malfunction. In case you cannot reconfigure the
H/W, device driver, or the OS to allow the zero copy feature to work for your
application, you may have no choice but to turn off zero copy use.

By default this is set to 0, so RTI Connext will use the zero-copy API if offered
by the OS.

8.292.3.11 int send blocking

Control blocking behavior of send sockets. CHANGING THIS FROM THE
DEFAULT CAN CAUSE SIGNIFICANT PERFORMANCE PROBLEMS.

Currently two values are defined:

ˆ NDDS TRANSPORT UDPV4 BLOCKING ALWAYS: Sockets
are blocking (default socket options for Operating System).

ˆ NDDS TRANSPORT UDPV4 BLOCKING NEVER: Sockets
are modified to make them non-blocking. THIS IS NOT A SUP-
PORTED CONFIGURATION AND MAY CAUSE SIGNIFICANT
PERFORMANCE PROBLEMS.

[default] NDDS TRANSPORT UDPV4 BLOCKING ALWAYS.

8.292.3.12 long transport priority mask

Set mask for use of transport (p. 367) priority field.

This is used in conjunction with UDPv4Transport.Property t.transport -
priority mapping low (p. 1664) and UDPv4Transport.Property -
t.transport priority mapping high (p. 1664) to define the mapping from
DDS transport (p. 367) priority (see TRANSPORT PRIORITY (p. 121))
to the IPv4 TOS field. Defines a contiguous region of bits in the 32-bit

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1664 Class Documentation

transport (p. 367) priority value that is used to generate values for the IPv4
TOS field on an outgoing socket.

For example (p. 366), the value 0x0000ff00 causes bits 9-16 (8 bits) to be used
in the mapping. The value will be scaled from the mask range (0x0000 - 0xff00
in this case) to the range specified by low and high.

If the mask is set to zero, then the transport (p. 367) will not set IPv4 TOS
for send sockets.

[default] 0.

8.292.3.13 int transport priority mapping low

Set low value of output range to IPv4 TOS.

This is used in conjunction with UDPv4Transport.Property t.transport -
priority mask (p. 1663) and UDPv4Transport.Property t.transport -
priority mapping high (p. 1664) to define the mapping from DDS transport
(p. 367) priority to the IPv4 TOS field. Defines the low value of the output range
for scaling.

Note that IPv4 TOS is generally an 8-bit value.

[default] 0.

8.292.3.14 int transport priority mapping high

Set high value of output range to IPv4 TOS.

This is used in conjunction with UDPv4Transport.Property t.transport -
priority mask (p. 1663) and UDPv4Transport.Property t.transport -
priority mapping low (p. 1664) to define the mapping from DDS transport
(p. 367) priority to the IPv4 TOS field. Defines the high value of the output
range for scaling.

Note that IPv4 TOS is generally an 8-bit value.

[default] 0xff.

8.292.3.15 long interface poll period

Specifies the period in milliseconds to query for changes in the state of all the
interfaces.

The value of this property is ignored if ignore non interfaces is 1. If ignore -
nonup interfaces is 0 then the UDPv4 transport (p. 367) creates a new thread
to query the status of the interfaces. This property specifies the polling period
in milliseconds for performing this query.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.292 UDPv4Transport.Property t Class Reference 1665

[default] 500 milliseconds.

8.292.3.16 int reuse multicast receive resource

Controls whether or not to reuse multicast receive resources.

Setting this to 0 (FALSE) prevents multicast crosstalk by uniquely configuring
a port and creating a receive thread for each multicast group address.

[default] 0.

8.292.3.17 int protocol overhead max

Maximum size in bytes of protocol overhead, including headers.

This value is the maximum size, in bytes, of protocol-related overhead. Nor-
mally, the overhead accounts for UDP and IP headers. The default value is set
to accommodate the most common UDP/IP header size.

Note that when Transport.Property t.message size max (p. 1574) plus
this overhead is larger than the UDPv4 maximum message size (65535 bytes),
the middleware will automatically reduce the effective message size max, to
65535 minus this overhead.

[default] 28.

See also:

Transport.Property t.message size max (p. 1574)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1666 Class Documentation

8.293 UDPv6Transport Interface Reference

Built-in transport (p. 367) plug-in using UDP/IPv6.

Inheritance diagram for UDPv6Transport::

Static Public Attributes

ˆ static final int BLOCKING NEVER

Value for UDPv6Transport.Property t.send blocking (p. 1674) to spec-
ify non-blocking sockets.

ˆ static final int BLOCKING ALWAYS

[default] Value for UDPv6Transport.Property t.send blocking
(p. 1674) to specify blocking sockets.

Classes

ˆ class Property t

Configurable IPv6/UDP Transport-Plugin properties.

8.293.1 Detailed Description

Built-in transport (p. 367) plug-in using UDP/IPv6.

This transport (p. 367) plugin uses UDPv6 sockets to send and receive mes-
sages. It supports both unicast and multicast communications in a single in-
stance of the plugin. By default, this plugin will use all interfaces that it finds
enabled and ”UP” at instantiation time to send and receive messages.

The user can configure an instance of this plugin to only use unicast or only
use multicast, see UDPv6Transport.Property t.unicast enabled (p. 1672)
and UDPv6Transport.Property t.multicast enabled (p. 1672).

In addition, the user can configure an instance of this plugin to selectively
use the network interfaces of a node (and restrict a plugin from sending
multicast messages on specific interfaces) by specifying the ”white” and
”black” lists in the base property’s fields (Transport.Property t.allow -
interfaces list (p. 1575), Transport.Property t.deny interfaces list
(p. 1575), Transport.Property t.allow multicast interfaces list (p. 1576),
Transport.Property t.deny multicast interfaces list (p. 1576)).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.293 UDPv6Transport Interface Reference 1667

RTI Connext can implicitly create this plugin and register it with the
com.rti.dds.domain.DomainParticipant (p. 629) if this transport (p. 367)
is specified in the com.rti.dds.infrastructure.TransportBuiltinQosPolicy
(p. 1580).

To specify the properties of the builtin UDPv6 transport (p. 367) that is im-
plicitly registered, you can either:

ˆ call TransportSupport.set builtin transport property (p. 1603) or

ˆ specify the predefined property names in
com.rti.dds.infrastructure.PropertyQosPolicy (p. 1252) associ-
ated with the com.rti.dds.domain.DomainParticipant (p. 629). (see
UDPv6 Transport Property Names in Property QoS Policy of
Domain Participant (p. 1667)). Builtin transport (p. 367) plugin prop-
erties specified in com.rti.dds.infrastructure.PropertyQosPolicy
(p. 1252) always overwrite the ones specified through TransportSup-
port.set builtin transport property() (p. 1603). The default value is
assumed on any unspecified property.

Note that all properties should be set before the transport (p. 367) is im-
plicitly created and registered by RTI Connext. Any properties that are set
after the builtin transport (p. 367) is registered will be ignored. See Built-in
Transport Plugins (p. 216) for details on when a builtin transport (p. 367)
is registered.

8.293.2 UDPv6 Transport Property Names in Property
QoS Policy of Domain Participant

The following table lists the predefined property names that can be
set in com.rti.dds.infrastructure.PropertyQosPolicy (p. 1252) of a
com.rti.dds.domain.DomainParticipant (p. 629) to configure the builtin
UDPv6 transport (p. 367) plugin.

See also:

TransportSupport.set builtin transport property() (p. 1603)

8.293.3 Member Data Documentation

8.293.3.1 final int BLOCKING NEVER [static]

Value for UDPv6Transport.Property t.send blocking (p. 1674) to specify
non-blocking sockets.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1668 Class Documentation

8.293.3.2 final int BLOCKING ALWAYS [static]

[default] Value for UDPv6Transport.Property t.send blocking (p. 1674)
to specify blocking sockets.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.293 UDPv6Transport Interface Reference 1669

Property Name Description

dds.transport.UDPv6.builtin.parent.address -
bit count

See Transport.Property -
t.address bit count
(p. 1573)

dds.transport.UDPv6.builtin.parent.properties -
bitmap

See Transport.Property -
t.properties bitmap
(p. 1574)

dds.transport.UDPv6.builtin.parent.gather -
send buffer count max

See Transport.Property -
t.gather send buffer count max
(p. 1574)

dds.transport.UDPv6.builtin.parent.message -
size max

See Transport.Property -
t.message size max
(p. 1574)

dds.transport.UDPv6.builtin.parent.allow -
interfaces

See Transport.Property -
t.allow interfaces list (p. 1575)
and Transport.Property t.allow -
interfaces list length.
Interfaces should be specified as
comma-separated strings, with each
comma delimiting an interface. For
example (p. 366): 127.0.0.1,eth0

dds.transport.UDPv6.builtin.parent.deny -
interfaces

See Transport.Property t.deny -
interfaces list (p. 1575) and
Transport.Property t.deny -
interfaces list length.
Interfaces should be specified as
comma-separated strings, with each
comma delimiting an interface. For
example (p. 366): 127.0.0.1,eth0

dds.transport.UDPv6.builtin.parent.allow -
multicast interfaces

See Transport.Property -
t.allow multicast interfaces list
(p. 1576) and
Transport.Property t.allow -
multicast interfaces list length.
Interfaces should be specified as
comma-separated strings, with each
comma delimiting an interface. For
example (p. 366): 127.0.0.1,eth0

dds.transport.UDPv6.builtin.parent.deny -
multicast interfaces

See Transport.Property t.deny -
multicast interfaces list (p. 1576)
and Transport.Property t.deny -
multicast interfaces list length.
Interfaces should be specified as
comma-separated strings, with each
comma delimiting an interface. For
example (p. 366): 127.0.0.1,eth0

dds.transport.UDPv6.builtin.send -
socket buffer size

See
UDPv6Transport.Property -
t.send socket buffer size
(p. 1671)

dds.transport.UDPv6.builtin.recv -
socket buffer size

See
UDPv6Transport.Property -
t.recv socket buffer size
(p. 1672)

dds.transport.UDPv6.builtin.unicast -
enabled

See
UDPv6Transport.Property -
t.unicast enabled
(p. 1672)

dds.transport.UDPv6.builtin.multicast -
enabled

See
UDPv6Transport.Property -
t.multicast enabled
(p. 1672)

dds.transport.UDPv6.builtin.multicast -
ttl

See
UDPv6Transport.Property -
t.multicast ttl
(p. 1672)

dds.transport.UDPv6.builtin.multicast -
loopback disabled

See
UDPv6Transport.Property -
t.multicast loopback disabled
(p. 1672)

dds.transport.UDPv6.builtin.ignore -
loopback interface

See
UDPv6Transport.Property -
t.ignore loopback interface
(p. 1673)

dds.transport.UDPv6.builtin.ignore -
nonrunning interfaces

See
UDPv6Transport.Property -
t.ignore nonrunning interfaces
(p. 1673)

dds.transport.UDPv6.builtin.no -
zero copy

See
UDPv6Transport.Property -
t.no zero copy
(p. 1674)

dds.transport.UDPv6.builtin.send -
blocking

See
UDPv6Transport.Property -
t.send blocking
(p. 1674)

dds.transport.UDPv6.builtin.enable -
v4mapped

See
UDPv6Transport.Property -
t.enable v4mapped
(p. 1675)

dds.transport.UDPv6.builtin.transport -
priority mask

See
UDPv6Transport.Property -
t.transport priority mask
(p. 1675)

dds.transport.UDPv6.builtin.transport -
priority mapping low

See
UDPv6Transport.Property -
t.transport priority mapping -
low
(p. 1675)

dds.transport.UDPv6.builtin.transport -
priority mapping high

See
UDPv6Transport.Property -
t.transport priority mapping -
high
(p. 1676)

Table 8.9: Property Names for UDPv6 Transport (p. 1569) Plugin

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1670 Class Documentation

8.294 UDPv6Transport.Property t Class Refer-
ence

Configurable IPv6/UDP Transport-Plugin properties.

Inheritance diagram for UDPv6Transport.Property t::

Public Member Functions

ˆ Property t ()

Public Attributes

ˆ int send socket buffer size
Size in bytes of the send buffer of a socket used for sending.

ˆ int recv socket buffer size
Size in bytes of the receive buffer of a socket used for receiving.

ˆ int unicast enabled
Allows the transport (p. 367) plugin to use unicast for sending and receiving.

ˆ int multicast enabled
Allows the transport (p. 367) plugin to use multicast for sending and receiv-
ing.

ˆ int multicast ttl
Value for the time-to-live parameter for all multicast sends using this plugin.

ˆ int multicast loopback disabled
Prevents the transport (p. 367) plugin from putting multicast packets onto
the loopback interface.

ˆ int ignore loopback interface
Prevents the transport (p. 367) plugin from using the IP loopback interface.

ˆ int ignore nonrunning interfaces
Prevents the transport (p. 367) plugin from using a network interface that
is not reported as RUNNING by the operating system.

ˆ int no zero copy

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.294 UDPv6Transport.Property t Class Reference 1671

Prevents the transport (p. 367) plugin from doing zero copy.

ˆ int send blocking
Control blocking behavior of send sockets. CHANGING THIS FROM THE
DEFAULT CAN CAUSE SIGNIFICANT PERFORMANCE PROBLEMS.

ˆ int enable v4mapped
Specify whether UDPv6 transport (p. 367) will process IPv4 addresses.

ˆ long transport priority mask
Set mask for use of transport (p. 367) priority field.

ˆ int transport priority mapping low
Set low value of output range to IPv6 TCLASS.

ˆ int transport priority mapping high
Set high value of output range to IPv6 TCLASS.

8.294.1 Detailed Description

Configurable IPv6/UDP Transport-Plugin properties.

The properties in this structure can be modified by the end user to configure the
plugin. However, the properties must be set before the plugin is instantiated.

See also:

TransportSupport.set builtin transport property() (p. 1603)

8.294.2 Constructor & Destructor Documentation

8.294.2.1 Property t ()

Create an empty UDPv6Transport (p. 1666) property with default values

8.294.3 Member Data Documentation

8.294.3.1 int send socket buffer size

Size in bytes of the send buffer of a socket used for sending.

On most operating systems, setsockopt() will be called to set the SENDBUF
to the value of this parameter.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1672 Class Documentation

This value must be greater than or equal to Transport.Property t.message -
size max (p. 1574). The maximum value is operating system-dependent.

8.294.3.2 int recv socket buffer size

Size in bytes of the receive buffer of a socket used for receiving.

On most operating systems, setsockopt() will be called to set the RECVBUF
to the value of this parameter.

This value must be greater than or equal to Transport.Property t.message -
size max (p. 1574). The maximum value is operating system-dependent.

8.294.3.3 int unicast enabled

Allows the transport (p. 367) plugin to use unicast for sending and receiving.

This value turns unicast UDP on (if set to 1) or off (if set to 0) for this plugin.
By default, it will be turned on (1). Also by default, the plugin will use all
the allowed network interfaces that it finds up and running when the plugin is
instanced.

8.294.3.4 int multicast enabled

Allows the transport (p. 367) plugin to use multicast for sending and receiving.

This value turns multicast UDP on (if set to 1) or off (if set to 0) for this
plugin. By default, it will be turned on (1) for those platforms that support
multicast. Also by default, the plugin will use the all network interfaces allowed
for multicast that it finds up and running when the plugin is instanced.

8.294.3.5 int multicast ttl

Value for the time-to-live parameter for all multicast sends using this plugin.

This is used to set the TTL of multicast packets sent by this transport (p. 367)
plugin.

See also:

NDDS TRANSPORT UDPV6 MULTICAST TTL DEFAULT

8.294.3.6 int multicast loopback disabled

Prevents the transport (p. 367) plugin from putting multicast packets onto the
loopback interface.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.294 UDPv6Transport.Property t Class Reference 1673

If multicast loopback is disabled (this value is set to 1), then when sending mul-
ticast packets, RTI Connext will not put a copy of the packets on the loopback
interface. This prevents applications on the same node (including itself) from
receiving those packets.

This value is set to 0 by default, meaning multicast loopback is enabled .

Disabling multicast loopback (setting this value to 1) may result in minor per-
formance gains when using multicast.

8.294.3.7 int ignore loopback interface

Prevents the transport (p. 367) plugin from using the IP loopback interface.

Currently three values are allowed:

ˆ 0: Forces local traffic to be sent over loopback, even if a more efficient
transport (p. 367) (such as shared memory) is installed (in which case
traffic will be sent over both transports).

ˆ 1: Disables local traffic via this plugin. Do not use the IP loopback
interface even if no NICs are discovered. This is useful when you want
applications running on the same node to use a more efficient transport
(p. 367) (such as shared memory) instead of the IP loopback.

ˆ -1: Automatic. Lets RTI Connext decide between the above two choices.

The current ”automatic” (-1) RTI Connext policy is as follows.

ˆ If a shared memory transport (p. 367) plugin is available for local traffic,
the effective value is 1 (i.e., disable UDPv6 local traffic).

ˆ Otherwise, the effective value is 0 (i.e., use UDPv6 for local traffic also).

[default] -1 Automatic RTI Connext policy based on availability of the shared
memory transport (p. 367).

8.294.3.8 int ignore nonrunning interfaces

Prevents the transport (p. 367) plugin from using a network interface that is
not reported as RUNNING by the operating system.

The transport (p. 367) checks the flags reported by the operating system for
each network interface upon initialization. An interface which is not reported as
UP will not be used. This property allows the same check to be extended to the
IFF RUNNING flag implemented by some operating systems. The RUNNING

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1674 Class Documentation

flag is defined to mean that ”all resources are allocated”, and may be off if there
is no link detected, e.g., the network cable is unplugged.

Two values are allowed:

ˆ 0: Do not check the RUNNING flag when enumerating interfaces, just
make sure interface is UP.

ˆ 1: Check flag when enumerating interfaces and ignore those that are not
reported as RUNNING. This can be used on some operating systems to
cause the transport (p. 367) to ignore interfaces that are enabled but not
connected to the network.

[default] 0 (i.e., do not check RUNNING flag)

8.294.3.9 int no zero copy

Prevents the transport (p. 367) plugin from doing zero copy.

By default, this plugin will use the zero copy on OSs that offer it. While this is
good for performance, it may sometimes tax the OS resources in a manner that
cannot be overcome by the application.

The best example (p. 366) is if the hardware/device driver lends the buffer
to the application itself. If the application does not return the loaned buffers
soon enough, the node may error or malfunction. If you cannot reconfigure the
H/W, device driver, or the OS to allow the zero copy feature to work for your
application, you may have no choice but to turn off the use of zero copy.

By default this is set to 0, so RTI Connext will use the zero copy API if offered
by the OS.

8.294.3.10 int send blocking

Control blocking behavior of send sockets. CHANGING THIS FROM THE
DEFAULT CAN CAUSE SIGNIFICANT PERFORMANCE PROBLEMS.

Currently two values are defined:

ˆ NDDS TRANSPORT UDPV6 BLOCKING ALWAYS: Sockets
are blocking (default socket options for Operating System).

ˆ NDDS TRANSPORT UDPV6 BLOCKING NEVER: Sockets
are modified to make them non-blocking. THIS IS NOT A SUP-
PORTED CONFIGURATION AND MAY CAUSE SIGNIFICANT
PERFORMANCE PROBLEMS.

[default] NDDS TRANSPORT UDPV6 BLOCKING ALWAYS.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.294 UDPv6Transport.Property t Class Reference 1675

8.294.3.11 int enable v4mapped

Specify whether UDPv6 transport (p. 367) will process IPv4 addresses.

Set this to 1 to turn on processing of IPv4 addresses. Note that this may make
it incompatible with use of the UDPv4 transport (p. 367) within the same
domain participant.

[default] 0.

8.294.3.12 long transport priority mask

Set mask for use of transport (p. 367) priority field.

If transport (p. 367) priority mapping is supported on the platform, this mask
is used in conjunction with UDPv6Transport.Property t.transport -
priority mapping low (p. 1675) and UDPv6Transport.Property -
t.transport priority mapping high (p. 1676) to define the mapping from
DDS transport (p. 367) priority (see TRANSPORT PRIORITY (p. 121))
to the IPv6 TCLASS field. Defines a contiguous region of bits in the 32-bit
transport (p. 367) priority value that is used to generate values for the IPv6
TCLASS field on an outgoing socket. (See the Platform Notes to find out if
the transport (p. 367) priority is supported on a specific platform.)

For example (p. 366), the value 0x0000ff00 causes bits 9-16 (8 bits) to be used
in the mapping. The value will be scaled from the mask range (0x0000 - 0xff00
in this case) to the range specified by low and high.

If the mask is set to zero, then the transport (p. 367) will not set IPv6 TCLASS
for send sockets.

[default] 0.

8.294.3.13 int transport priority mapping low

Set low value of output range to IPv6 TCLASS.

This is used in conjunction with UDPv6Transport.Property t.transport -
priority mask (p. 1675) and UDPv6Transport.Property t.transport -
priority mapping high (p. 1676) to define the mapping from DDS transport
(p. 367) priority to the IPv6 TCLASS field. Defines the low value of the output
range for scaling.

Note that IPv6 TCLASS is generally an 8-bit value.

[default] 0.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1676 Class Documentation

8.294.3.14 int transport priority mapping high

Set high value of output range to IPv6 TCLASS.

This is used in conjunction with UDPv6Transport.Property t.transport -
priority mask (p. 1675) and UDPv6Transport.Property t.transport -
priority mapping low (p. 1675) to define the mapping from DDS transport
(p. 367) priority to the IPv6 TCLASS field. Defines the high value of the output
range for scaling.

Note that IPv6 TCLASS is generally an 8-bit value.

[default] 0xff.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.295 Union Class Reference 1677

8.295 Union Class Reference

8.295.1 Detailed Description

Base class for all generated unions. The purpose of this class is to recognize a
nddsgen generated union using reflection

Author:

jaime c

Version:

Revision

1.2

Date

2006/09/24 08:28:59

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1678 Class Documentation

8.296 UnionMember Class Reference

A description of a member of a union.

Inherits java.io.Serializable.

Public Member Functions

ˆ UnionMember (String name, boolean is pointer, int[] labels, Type-
Code type)

Public Attributes

ˆ String name

The name of the union member.

ˆ boolean is pointer

Indicates whether the union member is a pointer or not.

ˆ int[] labels

The labels of the union member.

ˆ TypeCode type

The type of the union member.

8.296.1 Detailed Description

A description of a member of a union.

See also:

TypeCodeFactory.create union tc (p. 1646)

8.296.2 Constructor & Destructor Documentation

8.296.2.1 UnionMember (String name, boolean is pointer, int[]
labels, TypeCode type)

Constructs a UnionMember (p. 1678) object initialized with the given values.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.296 UnionMember Class Reference 1679

8.296.3 Member Data Documentation

8.296.3.1 String name

The name of the union member.

Cannot be null.

8.296.3.2 boolean is pointer

Indicates whether the union member is a pointer or not.

8.296.3.3 int [] labels

The labels of the union member.

Each union member should contain at least one label. If the union discriminator
type is not int the label value should be evaluated to an integer value. For
instance, ’a’ would be evaluated to 97.

8.296.3.4 TypeCode type

The type of the union member.

Cannot be null.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1680 Class Documentation

8.297 UserDataQosPolicy Class Reference

Attaches a buffer of opaque data that is distributed by means of Built-in
Topics (p. 153) during discovery.

Inheritance diagram for UserDataQosPolicy::

Public Attributes

ˆ final ByteSeq value

a sequence of octets

8.297.1 Detailed Description

Attaches a buffer of opaque data that is distributed by means of Built-in
Topics (p. 153) during discovery.

Entity:

com.rti.dds.domain.DomainParticipant (p. 629),
com.rti.dds.subscription.DataReader (p. 473),
com.rti.dds.publication.DataWriter (p. 538)

Properties:

RxO (p. 97) = NO;
Changeable (p. 98) = YES (p. 98)

See also:

com.rti.dds.domain.DomainParticipant.get builtin subscriber
(p. 684)

8.297.2 Usage

The purpose of this QoS is to allow the application to attach additional in-
formation to the created com.rti.dds.infrastructure.Entity (p. 912) objects,
so that when a remote application discovers their existence, it can access that
information and use it for its own purposes. This information is not used by
RTI Connext.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.297 UserDataQosPolicy Class Reference 1681

One possible use of this QoS is to attach security credentials or some other
information that can be used by the remote application to authenticate the
source.

In combination with operations such as com.rti.dds.domain.DomainParticipant.ignore -
participant (p. 686), com.rti.dds.domain.DomainParticipant.ignore -
publication (p. 688), com.rti.dds.domain.DomainParticipant.ignore -
subscription (p. 689), and com.rti.dds.domain.DomainParticipant.ignore -
topic (p. 687), this QoS policy can assist an application to define and enforce
its own security policies.

The use of this QoS is not limited to security; it offers a simple, yet flexible
extensibility mechanism.

Important: RTI Connext stores the data placed in this policy in pre-allocated
pools. It is therefore necessary to configure RTI Connext with the maximum size
of the data that will be stored in policies of this type. This size is configured with
com.rti.dds.infrastructure.DomainParticipantResourceLimitsQosPolicy.participant -
user data max length (p. 753), com.rti.dds.infrastructure.DomainParticipantResourceLimitsQosPolicy.writer -
user data max length (p. 754), and com.rti.dds.infrastructure.DomainParticipantResourceLimitsQosPolicy.reader -
user data max length (p. 754).

8.297.3 Member Data Documentation

8.297.3.1 final ByteSeq value

a sequence of octets

[default] empty (zero-length)

[range] Octet sequence of length [0,max length]

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1682 Class Documentation

8.298 UserException Class Reference

User exception.

Inheritance diagram for UserException::

8.298.1 Detailed Description

User exception.

This class is based on a similar class in CORBA.

See also:

http://java.sun.com/javase/6/docs/api/org/omg/CORBA/UserException.html

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.299 ValueMember Class Reference 1683

8.299 ValueMember Class Reference

A description of a member of a value type.

Inherits java.io.Serializable.

Public Member Functions

ˆ ValueMember (String name, boolean is pointer, short bits, boolean
is key, short access, TypeCode type)

Public Attributes

ˆ String name

The name of the value member.

ˆ TypeCode type

The type of the value member.

ˆ boolean is pointer

Indicates whether the value member is a pointer or not.

ˆ short bits

Number of bits of a bitfield member.

ˆ boolean is key

Indicates if the value member is a key member or not.

ˆ short access

The type of access (public, private) for the value member.

8.299.1 Detailed Description

A description of a member of a value type.

See also:

TypeCodeFactory.create value tc (p. 1644)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1684 Class Documentation

8.299.2 Constructor & Destructor Documentation

8.299.2.1 ValueMember (String name, boolean is pointer, short
bits, boolean is key, short access, TypeCode type)

Constructs a ValueMember (p. 1683) object initialized with the given values.

8.299.3 Member Data Documentation

8.299.3.1 String name

The name of the value member.

Cannot be null.

8.299.3.2 TypeCode type

The type of the value member.

Cannot be null.

8.299.3.3 boolean is pointer

Indicates whether the value member is a pointer or not.

8.299.3.4 short bits

Number of bits of a bitfield member.

If the struct member is a bitfield, this field contains the number of bits of
the bitfield. Otherwise, bits should contain TypeCode.NOT BITFIELD
(p. 1640).

8.299.3.5 boolean is key

Indicates if the value member is a key member or not.

8.299.3.6 short access

The type of access (public, private) for the value member.

It can take the values: PRIVATE MEMBER (p. 1244) or PUBLIC -
MEMBER (p. 1263).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.300 VendorId t Class Reference 1685

8.300 VendorId t Class Reference

<<eXtension>> (p. 270) Type used to represent the vendor of the service
implementing the RTPS protocol.

Inherits Struct.

Public Member Functions

ˆ VendorId t ()

Constructor.

Public Attributes

ˆ final byte[] vendorId = new byte[LENGTH MAX]

The vendor Id.

Static Public Attributes

ˆ static final VendorId t UNKNOWN

The ID used when the vendor of the service implementing the RTPS protocol
is not known.

ˆ static final int LENGTH MAX = 2

Length of vendor id.

8.300.1 Detailed Description

<<eXtension>> (p. 270) Type used to represent the vendor of the service
implementing the RTPS protocol.

8.300.2 Constructor & Destructor Documentation

8.300.2.1 VendorId t ()

Constructor.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1686 Class Documentation

8.300.3 Member Data Documentation

8.300.3.1 final VendorId t UNKNOWN [static]

The ID used when the vendor of the service implementing the RTPS protocol
is not known.

8.300.3.2 final int LENGTH MAX = 2 [static]

Length of vendor id.

8.300.3.3 final byte [] vendorId = new byte[LENGTH MAX]

The vendor Id.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.301 Version Class Reference 1687

8.301 Version Class Reference

<<interface>> (p. 271) The version of an RTI Connext distribution.

Public Member Functions

ˆ ProductVersion t get product version ()

Get the RTI Connext product version.

ˆ LibraryVersion t get java api version ()

Get the version of the Java API library.

ˆ LibraryVersion t get c api version ()

Get the version of the C API library.

ˆ LibraryVersion t get core version ()

Get the version of the core library.

ˆ String toString ()

Get this version in string form.

Static Public Member Functions

ˆ static Version get instance ()

Get the singleton instance of this type.

8.301.1 Detailed Description

<<interface>> (p. 271) The version of an RTI Connext distribution.

The complete version is made up of the versions of the individual libraries that
make up the product distribution.

8.301.2 Member Function Documentation

8.301.2.1 static Version get instance () [static]

Get the singleton instance of this type.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1688 Class Documentation

8.301.2.2 ProductVersion t get product version ()

Get the RTI Connext product version.

8.301.2.3 LibraryVersion t get java api version ()

Get the version of the Java API library.

8.301.2.4 LibraryVersion t get c api version ()

Get the version of the C API library.

8.301.2.5 LibraryVersion t get core version ()

Get the version of the core library.

8.301.2.6 String toString ()

Get this version in string form.

Combine all of the constituent library versions into a single string.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.302 ViewStateKind Class Reference 1689

8.302 ViewStateKind Class Reference

Indicates whether or not an instance is new.

Static Public Attributes

ˆ static final int NEW VIEW STATE = 0x0001 << 0

New instance. This latest generation of the instance has not previously been
accessed.

ˆ static final int NOT NEW VIEW STATE = 0x0001 << 1

Not a new instance. This latest generation of the instance has previously
been accessed.

ˆ static final int ANY VIEW STATE = 0xffff

Any view state ViewStateKind.NEW VIEW STATE (p. 1690) | View-
StateKind.NOT NEW VIEW STATE (p. 1690).

8.302.1 Detailed Description

Indicates whether or not an instance is new.

For each instance (identified by the key), the middleware internally maintains a
view state relative to each com.rti.dds.subscription.DataReader (p. 473).
The view state can be either:

ˆ ViewStateKind.NEW VIEW STATE (p. 1690) indicates that either
this is the first time that the com.rti.dds.subscription.DataReader
(p. 473) has ever accessed samples of that instance, or else
that the com.rti.dds.subscription.DataReader (p. 473) has
accessed previous samples of the instance, but the instance
has since been reborn (i.e. become not-alive and then alive
again). These two cases are distinguished by examining the
com.rti.dds.subscription.SampleInfo.disposed generation count
(p. 1410) and the com.rti.dds.subscription.SampleInfo.no writers -
generation count (p. 1411).

ˆ ViewStateKind.NOT NEW VIEW STATE (p. 1690) indicates that
the com.rti.dds.subscription.DataReader (p. 473) has already ac-
cessed samples of the same instance and that the instance has not been
reborn since.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1690 Class Documentation

The view state available in the com.rti.dds.subscription.SampleInfo
(p. 1404) is a snapshot of the view state of the instance relative to the
com.rti.dds.subscription.DataReader (p. 473) used to access the samples
at the time the collection was obtained (i.e. at the time read or take was
called). The view state is therefore the same for all samples in the returned
collection that refer to the same instance.

Once an instance has been detected as not having any ”live” writers
and all the samples associated with the instance are ”taken” from the
com.rti.dds.subscription.DataReader (p. 473), the middleware can reclaim
all local resources regarding the instance. Future samples will be treated as
”never seen.”

8.302.2 Member Data Documentation

8.302.2.1 final int NEW VIEW STATE = 0x0001 << 0 [static]

New instance. This latest generation of the instance has not previously been
accessed.

8.302.2.2 final int NOT NEW VIEW STATE = 0x0001 << 1
[static]

Not a new instance. This latest generation of the instance has previously been
accessed.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.303 VM ABSTRACT Class Reference 1691

8.303 VM ABSTRACT Class Reference

Constant used to indicate that a value type has the abstract modifier.

Static Public Attributes

ˆ static final short VALUE

8.303.1 Detailed Description

Constant used to indicate that a value type has the abstract modifier.

An abstract value type may not be instantiated.

8.303.2 Member Data Documentation

8.303.2.1 final short VALUE [static]

Constant value.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1692 Class Documentation

8.304 VM CUSTOM Class Reference

Constant used to indicate that a value type has the custom modifier.

Static Public Attributes

ˆ static final short VALUE

8.304.1 Detailed Description

Constant used to indicate that a value type has the custom modifier.

This modifier is used to specify whether the value type uses custom marshaling.

8.304.2 Member Data Documentation

8.304.2.1 final short VALUE [static]

Constant value.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.305 VM NONE Class Reference 1693

8.305 VM NONE Class Reference

Constant used to indicate that a value type has no modifiers.

Static Public Attributes

ˆ static final short VALUE

8.305.1 Detailed Description

Constant used to indicate that a value type has no modifiers.

8.305.2 Member Data Documentation

8.305.2.1 final short VALUE [static]

Constant value.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1694 Class Documentation

8.306 VM TRUNCATABLE Class Reference

Constant used to indicate that a value type has the truncatable modifier.

Static Public Attributes

ˆ static final short VALUE

8.306.1 Detailed Description

Constant used to indicate that a value type has the truncatable modifier.

A value with a state that derives from another value with a state can be declared
as truncatable. A truncatable type means the object can be truncated to the
base type.

8.306.2 Member Data Documentation

8.306.2.1 final short VALUE [static]

Constant value.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.307 WaitSet Class Reference 1695

8.307 WaitSet Class Reference

<<interface>> (p. 271) Allows an application to wait until one or more of
the attached com.rti.dds.infrastructure.Condition (p. 451) objects has a
trigger value of true or else until the timeout expires.

Inherits AbstractNativeObject.

Public Member Functions

ˆ WaitSet ()

Default no-argument constructor.

ˆ WaitSet (WaitSetProperty t prop)

<<eXtension>> (p. 270) Constructor for a
com.rti.dds.infrastructure.WaitSet (p. 1695) that may delay for
more while specifying that will be woken up after the given number of events
or delay period, whichever happens first

ˆ void wait (ConditionSeq active conditions, Duration t timeout)

Allows an application thread to wait for the occurrence of certain conditions.

ˆ void attach condition (Condition cond)

Attaches a com.rti.dds.infrastructure.Condition (p. 451) to the
com.rti.dds.infrastructure.WaitSet (p. 1695).

ˆ void detach condition (Condition cond)

Detaches a com.rti.dds.infrastructure.Condition (p. 451) from the
com.rti.dds.infrastructure.WaitSet (p. 1695).

ˆ void get conditions (ConditionSeq attached conditions)

Retrieves the list of attached com.rti.dds.infrastructure.Condition
(p. 451) (s).

ˆ void set property (WaitSetProperty t prop)

<<eXtension>> (p. 270) Sets the com.rti.dds.infrastructure.WaitSetProperty -
t (p. 1705), to configure the associated
com.rti.dds.infrastructure.WaitSet (p. 1695) to return after one
or more trigger events have occurred.

ˆ void get property (WaitSetProperty t prop)

<<eXtension>> (p. 270) Retrieves the
com.rti.dds.infrastructure.WaitSetProperty t (p. 1705) configura-
tion of the associated com.rti.dds.infrastructure.WaitSet (p. 1695).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1696 Class Documentation

ˆ void delete ()
Destructor.

8.307.1 Detailed Description

<<interface>> (p. 271) Allows an application to wait until one or more of
the attached com.rti.dds.infrastructure.Condition (p. 451) objects has a
trigger value of true or else until the timeout expires.

8.307.2 Usage

com.rti.dds.infrastructure.Condition (p. 451) (s) (in conjunction with wait-
sets) provide an alternative mechanism to allow the middleware to communicate
communication status changes (including arrival of data) to the application.

This mechanism is wait-based. Its general use pattern is as follows:

ˆ The application indicates which relevant information it wants
to get by creating com.rti.dds.infrastructure.Condition
(p. 451) objects (com.rti.dds.infrastructure.StatusCondition
(p. 1452), com.rti.dds.subscription.ReadCondition (p. 1326) or
com.rti.dds.subscription.QueryCondition (p. 1324)) and attaching
them to a com.rti.dds.infrastructure.WaitSet (p. 1695).

ˆ It then waits on that com.rti.dds.infrastructure.WaitSet
(p. 1695) until the trigger value of one or several
com.rti.dds.infrastructure.Condition (p. 451) objects become
true.

ˆ It then uses the result of the wait (i.e., active conditions, the
list of com.rti.dds.infrastructure.Condition (p. 451) objects with
trigger value == true) to actually get the information:

– by calling com.rti.dds.infrastructure.Entity.get status -
changes (p. 917) and then get <communication status>() on
the relevant com.rti.dds.infrastructure.Entity (p. 912), if the
condition is a com.rti.dds.infrastructure.StatusCondition
(p. 1452) and the status changes, refer to plain communication
status;

– by calling com.rti.dds.infrastructure.Entity.get -
status changes (p. 917) and then
com.rti.dds.subscription.Subscriber.get datareaders

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.307 WaitSet Class Reference 1697

(p. 1491) on the relevant com.rti.dds.subscription.Subscriber
(p. 1478) (and then com.rti.dds.topic.example.FooDataReader.read()
or com.rti.dds.topic.example.FooDataReader.take on the returned
com.rti.dds.subscription.DataReader (p. 473) objects), if the
condition is a com.rti.dds.infrastructure.StatusCondition
(p. 1452) and the status changes refers to StatusKind.DATA -
ON READERS STATUS (p. 1460);

– by calling com.rti.dds.infrastructure.Entity.get -
status changes (p. 917) and then
com.rti.dds.topic.example.FooDataReader.read() or
com.rti.dds.topic.example.FooDataReader.take on the relevant
com.rti.dds.subscription.DataReader (p. 473), if the condition
is a com.rti.dds.infrastructure.StatusCondition (p. 1452) and
the status changes refers to StatusKind.DATA AVAILABLE -
STATUS (p. 1460);

– by calling directly com.rti.dds.topic.example.FooDataReader.read -
w condition or com.rti.dds.topic.example.FooDataReader.take w -
condition on a com.rti.dds.subscription.DataReader (p. 473)
with the com.rti.dds.infrastructure.Condition (p. 451) as a
parameter if it is a com.rti.dds.subscription.ReadCondition
(p. 1326) or a com.rti.dds.subscription.QueryCondition
(p. 1324).

Usually the first step is done in an initialization phase, while the others are put
in the application main loop.

As there is no extra information passed from the middleware
to the application when a wait returns (only the list of trig-
gered com.rti.dds.infrastructure.Condition (p. 451) objects),
com.rti.dds.infrastructure.Condition (p. 451) objects are meant to
embed all that is needed to react properly when enabled. In particular,
com.rti.dds.infrastructure.Entity (p. 912)-related conditions are related
to exactly one com.rti.dds.infrastructure.Entity (p. 912) and cannot be
shared.

The blocking behavior of the com.rti.dds.infrastructure.WaitSet (p. 1695)
is illustrated below.

The result of a WaitSet.wait (p. 1701) operation depends on the state of the
com.rti.dds.infrastructure.WaitSet (p. 1695), which in turn depends on
whether at least one attached com.rti.dds.infrastructure.Condition
(p. 451) has a trigger value of true. If the wait operation is
called on com.rti.dds.infrastructure.WaitSet (p. 1695) with state
BLOCKED, it will block the calling thread. If wait is called on
a com.rti.dds.infrastructure.WaitSet (p. 1695) with state UN-
BLOCKED, it will return immediately. In addition, when the

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1698 Class Documentation

com.rti.dds.infrastructure.WaitSet (p. 1695) transitions from BLOCKED
to UNBLOCKED it wakes up any threads that had called wait on it.

A key aspect of the com.rti.dds.infrastructure.Condition
(p. 451)/com.rti.dds.infrastructure.WaitSet (p. 1695) mechanism is the
setting of the trigger value of each com.rti.dds.infrastructure.Condition
(p. 451).

8.307.3 Trigger State of a com.rti.dds.infrastructure.StatusCondition

The trigger value of a com.rti.dds.infrastructure.StatusCondition
(p. 1452) is the boolean OR of the ChangedStatusFlag of all the communi-
cation statuses (see Status Kinds (p. 106)) to which it is sensitive. That is,
trigger value == false only if all the values of the ChangedStatusFlags are
false.

The sensitivity of the com.rti.dds.infrastructure.StatusCondition
(p. 1452) to a particular communication status is controlled by the
list of enabled statuses set on the condition by means of the
com.rti.dds.infrastructure.StatusCondition.set enabled statuses
(p. 1453) operation.

8.307.4 Trigger State of a com.rti.dds.subscription.ReadCondition

Similar to the com.rti.dds.infrastructure.StatusCondition
(p. 1452), a com.rti.dds.subscription.ReadCondition
(p. 1326) also has a trigger value that determines whether
the attached com.rti.dds.infrastructure.WaitSet (p. 1695)
is BLOCKED or UNBLOCKED. However, unlike the
com.rti.dds.infrastructure.StatusCondition (p. 1452), the trigger -
value of the com.rti.dds.subscription.ReadCondition (p. 1326)
is tied to the presence of at least a sample managed by RTI Con-
next with com.rti.dds.subscription.SampleStateKind (p. 1430) and
com.rti.dds.subscription.ViewStateKind (p. 1689) matching those of
the com.rti.dds.subscription.ReadCondition (p. 1326). Furthermore,
for the com.rti.dds.subscription.QueryCondition (p. 1324) to have a
trigger value == true, the data associated with the sample must be such
that the query expression evaluates to true.

The fact that the trigger value of a com.rti.dds.subscription.ReadCondition
(p. 1326) depends on the presence of samples on the associated
com.rti.dds.subscription.DataReader (p. 473) implies that a sin-
gle take operation can potentially change the trigger value of
several com.rti.dds.subscription.ReadCondition (p. 1326) or
com.rti.dds.subscription.QueryCondition (p. 1324) conditions. For exam-
ple, if all samples are taken, any com.rti.dds.subscription.ReadCondition

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.307 WaitSet Class Reference 1699

(p. 1326) and com.rti.dds.subscription.QueryCondition (p. 1324) condi-
tions associated with the com.rti.dds.subscription.DataReader (p. 473)
that had their trigger value==TRUE before will see the trigger -
value change to FALSE. Note that this does not guarantee that
com.rti.dds.infrastructure.WaitSet (p. 1695) objects that were sep-
arately attached to those conditions will not be woken up. Once we
have trigger value==TRUE on a condition, it may wake up the attached
com.rti.dds.infrastructure.WaitSet (p. 1695), the condition transitioning
to trigger value==FALSE does not necessarily ’unwakeup’ the WaitSet
(p. 1695) as ’unwakening’ may not be possible in general.

The consequence is that an application blocked on a
com.rti.dds.infrastructure.WaitSet (p. 1695) may return from the
wait with a list of conditions, some of which are not no longer ’active’.
This is unavoidable if multiple threads are concurrently waiting on separate
com.rti.dds.infrastructure.WaitSet (p. 1695) objects and taking data
associated with the same com.rti.dds.subscription.DataReader (p. 473)
entity.

To elaborate further, consider the following example: A
com.rti.dds.subscription.ReadCondition (p. 1326) that has a sample -
state mask = {SampleStateKind.NOT READ SAMPLE STATE} will have
trigger value of true whenever a new sample arrives and will transition to false
as soon as all the newly-arrived samples are either read (so their sample state
changes to READ) or taken (so they are no longer managed by RTI Connext).
However if the same com.rti.dds.subscription.ReadCondition (p. 1326)
had a sample state mask = { SampleStateKind.READ SAMPLE STATE,
SampleStateKind.NOT READ SAMPLE STATE }, then the trigger value
would only become false once all the newly-arrived samples are taken (it is not
sufficient to read them as that would only change the sample state to READ),
which overlaps the mask on the com.rti.dds.subscription.ReadCondition
(p. 1326).

8.307.5 Trigger State of a com.rti.dds.infrastructure.GuardCondition

The trigger value of a com.rti.dds.infrastructure.GuardCondition
(p. 1066) is completely controlled by the application via the operation
com.rti.dds.infrastructure.GuardCondition.set trigger value (p. 1067).

Important: The com.rti.dds.infrastructure.WaitSet (p. 1695) allocates na-
tive resources. When com.rti.dds.infrastructure.WaitSet (p. 1695) is no
longer being used, user should call WaitSet.delete (p. 1703) explicitly to prop-
erly cleanup all native resources.

See also:

Status Kinds (p. 106)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1700 Class Documentation

com.rti.dds.infrastructure.StatusCondition (p. 1452),
com.rti.dds.infrastructure.GuardCondition (p. 1066)
com.rti.dds.infrastructure.Listener (p. 1154)

8.307.6 Constructor & Destructor Documentation

8.307.6.1 WaitSet ()

Default no-argument constructor.

Construct a new com.rti.dds.infrastructure.WaitSet (p. 1695).

Important: The com.rti.dds.infrastructure.WaitSet (p. 1695) allocates na-
tive resources. When the com.rti.dds.infrastructure.WaitSet (p. 1695) is
no longer being used, users should call WaitSet.delete (p. 1703) explicitly to
properly clean up all native resources.

Exceptions:

RETCODE OUT OF RESOURCES (p. 1370) if a new
com.rti.dds.infrastructure.WaitSet (p. 1695) could not be
allocated.

8.307.6.2 WaitSet (WaitSetProperty t prop)

<<eXtension>> (p. 270) Constructor for a
com.rti.dds.infrastructure.WaitSet (p. 1695) that may delay for more
while specifying that will be woken up after the given number of events or
delay period, whichever happens first

Constructs a new com.rti.dds.infrastructure.WaitSet (p. 1695).

Important: The com.rti.dds.infrastructure.WaitSet (p. 1695) allocates na-
tive resources. When the com.rti.dds.infrastructure.WaitSet (p. 1695) is
no longer being used, users should call WaitSet.delete (p. 1703) explicitly to
properly clean up all native resources.

Parameters:

prop <<in>> (p. 271) Property of wait set controlling when the wait set
should be woken up

Exceptions:

RETCODE OUT OF RESOURCES (p. 1370) if a new
com.rti.dds.infrastructure.WaitSet (p. 1695) could not be
allocated.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.307 WaitSet Class Reference 1701

8.307.7 Member Function Documentation

8.307.7.1 void wait (ConditionSeq active conditions, Duration t
timeout)

Allows an application thread to wait for the occurrence of certain conditions.

If none of the conditions attached to the com.rti.dds.infrastructure.WaitSet
(p. 1695) have a trigger value of true, the wait operation will block suspending
the calling thread.

The result of the wait operation is the list of all the attached conditions that
have a trigger value of true (i.e., the conditions that unblocked the wait).

Note: The resolution of the timeout period is constrained by the resolution of
the system clock.

The wait operation takes a timeout argument that specifies the maximum
duration for the wait. If this duration is exceeded and none of the attached
com.rti.dds.infrastructure.Condition (p. 451) objects is true, wait will re-
turn with the return code RETCODE TIMEOUT (p. 1372). In this case,
the resulting list of conditions will be empty.

RETCODE TIMEOUT (p. 1372) will not be returned when the timeout du-
ration is exceeded if attached com.rti.dds.infrastructure.Condition (p. 451)
objects are true, or in the case of a com.rti.dds.infrastructure.WaitSet
(p. 1695) waiting for more than one trigger event, if one or more trigger events
have occurred.

It is not allowable for for more than one application thread to be waiting on the
same com.rti.dds.infrastructure.WaitSet (p. 1695). If the wait operation is
invoked on a com.rti.dds.infrastructure.WaitSet (p. 1695) that already has
a thread blocking on it, the operation will return immediately with the value
RETCODE PRECONDITION NOT MET (p. 1371).

Parameters:

active conditions <<inout>> (p. 271) a valid non-null
com.rti.dds.infrastructure.ConditionSeq (p. 452) object. Note
that RTI Connext will not allocate a new object if active conditions
is null; the method will return RETCODE PRECONDITION -
NOT MET (p. 1371).

timeout <<in>> (p. 271) a wait timeout

Exceptions:

One of the Standard Return Codes (p. 104) or RETCODE -
PRECONDITION NOT MET (p. 1371) or RETCODE -
TIMEOUT (p. 1372).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1702 Class Documentation

8.307.7.2 void attach condition (Condition cond)

Attaches a com.rti.dds.infrastructure.Condition (p. 451) to the
com.rti.dds.infrastructure.WaitSet (p. 1695).

It is possible to attach a com.rti.dds.infrastructure.Condition
(p. 451) on a com.rti.dds.infrastructure.WaitSet (p. 1695) that
is currently being waited upon (via the wait operation). In this
case, if the com.rti.dds.infrastructure.Condition (p. 451) has a
trigger value of true, then attaching the condition will unblock the
com.rti.dds.infrastructure.WaitSet (p. 1695).

Parameters:

cond <<in>> (p. 271) Contition to be attached.

Exceptions:

One of the Standard Return Codes (p. 104), or RETCODE OUT -
OF RESOURCES (p. 1370).

8.307.7.3 void detach condition (Condition cond)

Detaches a com.rti.dds.infrastructure.Condition (p. 451) from the
com.rti.dds.infrastructure.WaitSet (p. 1695).

If the com.rti.dds.infrastructure.Condition (p. 451) was not attached to
the com.rti.dds.infrastructure.WaitSet (p. 1695) the operation will return
RETCODE BAD PARAMETER (p. 1363).

Parameters:

cond <<in>> (p. 271) Condition (p. 451) to be detached.

Exceptions:

One of the Standard Return Codes (p. 104), or RETCODE -
PRECONDITION NOT MET (p. 1371).

8.307.7.4 void get conditions (ConditionSeq attached conditions)

Retrieves the list of attached com.rti.dds.infrastructure.Condition (p. 451)
(s).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.307 WaitSet Class Reference 1703

Parameters:

attached conditions <<inout>> (p. 271) a
com.rti.dds.infrastructure.ConditionSeq (p. 452) object where
the list of attached conditions will be returned

Exceptions:

One of the Standard Return Codes (p. 104), or RETCODE -
PRECONDITION NOT MET (p. 1371).

8.307.7.5 void set property (WaitSetProperty t prop)

<<eXtension>> (p. 270) Sets the com.rti.dds.infrastructure.WaitSetProperty -
t (p. 1705), to configure the associated com.rti.dds.infrastructure.WaitSet
(p. 1695) to return after one or more trigger events have occurred.

Parameters:

prop <<in>> (p. 271)

Exceptions:

One of the Standard Return Codes (p. 104)

8.307.7.6 void get property (WaitSetProperty t prop)

<<eXtension>> (p. 270) Retrieves the com.rti.dds.infrastructure.WaitSetProperty -
t (p. 1705) configuration of the associated
com.rti.dds.infrastructure.WaitSet (p. 1695).

Parameters:

prop <<out>> (p. 271)

Exceptions:

One of the Standard Return Codes (p. 104)

8.307.7.7 void delete ()

Destructor.

Releases the resources asociated with this
com.rti.dds.infrastructure.WaitSet (p. 1695).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1704 Class Documentation

Calling this method multiple times on the same
com.rti.dds.infrastructure.WaitSet (p. 1695) is safe; subsequent dele-
tions will have no effect.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.308 WaitSetProperty t Class Reference 1705

8.308 WaitSetProperty t Class Reference

<<eXtension>> (p. 270) Specifies the com.rti.dds.infrastructure.WaitSet
(p. 1695) behavior for multiple trigger events.

Inherits Struct.

Public Attributes

ˆ int max event count

Maximum number of trigger events to cause a
com.rti.dds.infrastructure.WaitSet (p. 1695) to awaken.

ˆ final Duration t max event delay

Maximum delay from occurrence of first trigger event to cause a
com.rti.dds.infrastructure.WaitSet (p. 1695) to awaken.

8.308.1 Detailed Description

<<eXtension>> (p. 270) Specifies the com.rti.dds.infrastructure.WaitSet
(p. 1695) behavior for multiple trigger events.

In simple use, a com.rti.dds.infrastructure.WaitSet (p. 1695) re-
turns when a single trigger event occurs on one of its attached
com.rti.dds.infrastructure.Condition (p. 451) (s), or when the timeout
maximum wait duration specified in the WaitSet.wait (p. 1701) call expires.

The com.rti.dds.infrastructure.WaitSetProperty t (p. 1705) allows con-
figuration of the waiting behavior of a com.rti.dds.infrastructure.WaitSet
(p. 1695). If no conditions are true at the time of the call to wait, then the
max event count parameter may be used to configure the WaitSet (p. 1695)
to wait for max event count trigger events to occur before returning, or to wait
for up to max event delay time from the occurrence of the first trigger event
before returning.

The timeout maximum wait duration specified in the WaitSet.wait (p. 1701)
call continues to apply.

Entity:

com.rti.dds.infrastructure.WaitSet (p. 1695)

Properties:

RxO (p. 97) = N/A

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1706 Class Documentation

Changeable (p. 98) = YES (p. 98)

8.308.2 Member Data Documentation

8.308.2.1 int max event count

Maximum number of trigger events to cause a
com.rti.dds.infrastructure.WaitSet (p. 1695) to awaken.

The com.rti.dds.infrastructure.WaitSet (p. 1695) will wait until up to
max event count trigger events have occurred before returning. The
com.rti.dds.infrastructure.WaitSet (p. 1695) may return earlier if either the
timeout duration has expired, or max event delay has elapsed since the occur-
rence of the first trigger event. max event count may be used to ”collect”
multiple trigger events for processing at the same time.

[default] 1

[range] >= 1

8.308.2.2 final Duration t max event delay

Maximum delay from occurrence of first trigger event to cause a
com.rti.dds.infrastructure.WaitSet (p. 1695) to awaken.

The com.rti.dds.infrastructure.WaitSet (p. 1695) will return no later
than max event delay after the first trigger event. max event delay may
be used to establish a maximum latency for events reported by the
com.rti.dds.infrastructure.WaitSet (p. 1695).

Note that RETCODE TIMEOUT (p. 1372) is not returned if max event -
delay is exceeded. RETCODE TIMEOUT (p. 1372) is returned only if the
timeout duration expires before any trigger events occur.

[default] com.rti.dds.infrastructure.Duration t.INFINITE

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.309 WcharSeq Class Reference 1707

8.309 WcharSeq Class Reference

Instantiates com.rti.dds.util.Sequence (p. 1432) < char >.

Inheritance diagram for WcharSeq::

Public Member Functions

ˆ WcharSeq ()

Constructs an empty sequence of wide characters with an initial maximum
of zero.

ˆ WcharSeq (int initialMaximum)

Constructs an empty sequence of wide characters with the given initial max-
imum.

ˆ WcharSeq (char[] chars)

Constructs a new sequence containing the given wide characters.

8.309.1 Detailed Description

Instantiates com.rti.dds.util.Sequence (p. 1432) < char >.

Instantiates:

<<generic>> (p. 271) com.rti.dds.util.Sequence (p. 1432)

See also:

char
com.rti.dds.util.Sequence (p. 1432)

8.309.2 Constructor & Destructor Documentation

8.309.2.1 WcharSeq ()

Constructs an empty sequence of wide characters with an initial maximum of
zero.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1708 Class Documentation

8.309.2.2 WcharSeq (int initialMaximum)

Constructs an empty sequence of wide characters with the given initial maxi-
mum.

8.309.2.3 WcharSeq (char[] chars)

Constructs a new sequence containing the given wide characters.

Parameters:

chars the initial contents of this sequence

Exceptions:

NullPointerException if the input array is null

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.310 WireProtocolQosPolicy Class Reference 1709

8.310 WireProtocolQosPolicy Class Reference

Specifies the wire-protocol-related attributes for the
com.rti.dds.domain.DomainParticipant (p. 629).

Inheritance diagram for WireProtocolQosPolicy::

Public Attributes

ˆ int participant id

A value used to distinguish among different participants belonging to the same
domain (p. 317) on the same host.

ˆ RtpsWellKnownPorts t rtps well known ports

Configures the RTPS well-known port mappings.

ˆ int rtps host id

The RTPS Host ID of the domain (p. 317) participant.

ˆ int rtps app id

The RTPS App ID of the domain (p. 317) participant.

ˆ int rtps instance id

The RTPS Instance ID of the com.rti.dds.domain.DomainParticipant
(p. 629).

ˆ int rtps reserved port mask

Specifies which well-known ports to reserve when enabling the participant.

ˆ WireProtocolQosPolicyAutoKind rtps auto id kind = WirePro-
tocolQosPolicyAutoKind.RTPS AUTO ID FROM IP

Kind of auto mechanism used to calculate the GUID prefix.

Static Public Attributes

ˆ static final int RTPS AUTO ID = 0

Indicates that RTI Connext should choose an appropriate host, app, instance
or object ID automatically.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1710 Class Documentation

8.310.1 Detailed Description

Specifies the wire-protocol-related attributes for the
com.rti.dds.domain.DomainParticipant (p. 629).

Entity:

com.rti.dds.domain.DomainParticipant (p. 629)

Properties:

RxO (p. 97) = N/A
Changeable (p. 98) = NO (p. 98)

8.310.2 Usage

This QoS policy configures some participant-wide properties of the
DDS Real-Time Publish Subscribe (RTPS) on-the-wire protocol.
(com.rti.dds.infrastructure.DataWriterProtocolQosPolicy (p. 571)
and com.rti.dds.infrastructure.DataReaderProtocolQosPolicy
(p. 504) configure RTPS and reliability properties on
a per com.rti.dds.publication.DataWriter (p. 538) or
com.rti.dds.subscription.DataReader (p. 473) basis.)

NOTE: The default QoS policies returned by RTI Connext contain the correctly
initialized wire protocol attributes. The defaults are not normally expected to be
modified, but are available to the advanced user customizing the implementation
behavior.

The default values should not be modified without an understanding of the
underlying Real-Time Publish Subscribe (RTPS) wire protocol.

In order for the discovery process to work correctly, each
com.rti.dds.domain.DomainParticipant (p. 629) must have a unique
identifier. This QoS policy specifies how that identifier should be generated.

RTPS defines a 96-bit prefix to this identifier; each
com.rti.dds.domain.DomainParticipant (p. 629) must have a unique
value for this prefix relative to all other participants in its domain (p. 317).
To make it easier to control how this 96-bit value is generated, RTI Connext
divides it into three integers: a host ID , the value of which is based on the
identity of the identity of the machine on which the participant is executing; an
application ID , the value of which is based on the process or task in which the
particpant is contained; and an instance ID , which identifies the participant
itself.

This QoS policy provides you with a choice of algorithms for generating these
values automatically. In case none of these algorithms suit your needs, you may
also choose to specify some or all of them yourself.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.310 WireProtocolQosPolicy Class Reference 1711

The following three fields:

ˆ com.rti.dds.infrastructure.WireProtocolQosPolicy.rtps host id
(p. 1715)

ˆ com.rti.dds.infrastructure.WireProtocolQosPolicy.rtps app id
(p. 1716)

ˆ com.rti.dds.infrastructure.WireProtocolQosPolicy.rtps -
instance id (p. 1716)

comprise the GUID prefix and by default are set to
com.rti.dds.infrastructure.WireProtocolQosPolicy.RTPS AUTO -
ID (p. 1714). The meaning of this flag depends on the value assigned to the
com.rti.dds.infrastructure.WireProtocolQosPolicy.rtps auto id kind
(p. 1717) field.

Depending on the com.rti.dds.infrastructure.WireProtocolQosPolicy.rtps -
auto id kind (p. 1717) value, there are two different scenarios:

1. In the default and most common scenario,
com.rti.dds.infrastructure.WireProtocolQosPolicy.rtps auto -
id kind (p. 1717) is set to com.rti.dds.infrastructure.WireProtocolQosPolicyAutoKind.RTPS -
AUTO ID FROM IP (p. 132). Doing so, each field is interpreted as
follows:

ˆ rtps host id: The 32-bit value of the IPv4 of the first up and run-
ning interface of the host machine is assigned.

ˆ rtps app id: The process (or task) ID is assigned.

ˆ rtps instance id: A counter is assigned that is incremented per new
participant.

NOTE: If the IP assigned to the interface is not unique within the net-
work (for instance, if it is not configured), it is possible that the GUID
(specifically, the rtps host id portion) may also not be unique.

2. In this situation, RTI Connext pro-
vides a different value for rtps auto id kind:
com.rti.dds.infrastructure.WireProtocolQosPolicyAutoKind.RTPS -
AUTO ID FROM MAC (p. 133). As the name suggests, this alter-
native mechanism uses the MAC address instead of the IPv4 address.
Since the MAC address size is up to 64 bits, the logical mapping of the
host information, the application ID, and the instance identifiers has to
change.

Note to Solaris Users: To use com.rti.dds.infrastructure.WireProtocolQosPolicyAutoKind.RTPS -
AUTO ID FROM MAC (p. 133), you must run the RTI Connext
application while logged in as root.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1712 Class Documentation

Using com.rti.dds.infrastructure.WireProtocolQosPolicyAutoKind.RTPS -
AUTO ID FROM MAC (p. 133), the default value of each field is
interpreted as follows:

ˆ rtps host id: The first 32 bits of the MAC address of the first up
and running interface of the host machine are assigned.

ˆ rtps app id: The last 32 bits of the MAC address of the first up
and running interface of the host machine are assigned.

ˆ rtps instance id: This field is split into two different parts. The
process (or task) ID is assigned to the first 24 bits. A counter is
assigned to the last 8 bits. This counter is incremented per new
participant. In both scenarios, you can change the value of each field
independently.

If com.rti.dds.infrastructure.WireProtocolQosPolicyAutoKind.RTPS -
AUTO ID FROM MAC (p. 133) is used, the rtps instance id has been
logically split into two parts: 24 bits for the process/task ID and 8 bits for
the per new participant counter. To give to users the ability to manually
set the two parts independently, a bit-field mechanism has been intro-
duced for the rtps instance id field when it is used in combination with
com.rti.dds.infrastructure.WireProtocolQosPolicyAutoKind.RTPS -
AUTO ID FROM MAC (p. 133). If one of the two parts is set to 0,
only this part will be handled by RTI Connext and you will be able to
handle the other one manually.

Some examples are provided to clarify the behavior of this
QoSPolicy in case you want to change the default behavior with
com.rti.dds.infrastructure.WireProtocolQosPolicyAutoKind.RTPS -
AUTO ID FROM MAC (p. 133).

First, get the participant QoS from the DomainParticipantFactory:

DomainParticipantFactory.TheParticipantFactory.

get_default_participant_qos(participant_qos); <P>

Second, change the com.rti.dds.infrastructure.WireProtocolQosPolicy
(p. 1709) using one of the options shown below.

Third, create the com.rti.dds.domain.DomainParticipant (p. 629) as usual
using the modified QoS structure instead of the default one.

Option 1: Use com.rti.dds.infrastructure.WireProtocolQosPolicyAutoKind.RTPS -
AUTO ID FROM MAC (p. 133) to explicitly set just the application/task
identifier portion of the rtps instance id field.

participant_qos.wire_protocol.rtps_auto_id_kind =

WireProtocolQosPolicyAutoKind.RTPS_AUTO_ID_FROM_MAC;

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.310 WireProtocolQosPolicy Class Reference 1713

participant_qos.wire_protocol.rtps_host_id =

WireProtocolQosPolicy.RTPS_AUTO_ID;

participant_qos.wire_protocol.rtps_app_id =

WireProtocolQosPolicy.RTPS_AUTO_ID;

participant_qos.wire_protocol.rtps_instance_id = (/* App ID */ (12 << 8) |

/* Instance ID*/ (WireProtocolQosPolicy.RTPS_AUTO_ID));

Option 2: Handle only the per participant counter and let RTI Connext handle
the application/task identifier:

participant_qos.wire_protocol.rtps_auto_id_kind =

WireProtocolQosPolicyAutoKind.RTPS_AUTO_ID_FROM_MAC;

participant_qos.wire_protocol.rtps_host_id = WireProtocolQosPolicy.RTPS_AUTO_ID;

participant_qos.wire_protocol.rtps_app_id = WireProtocolQosPolicy.RTPS_AUTO_ID;

participant_qos.wire_protocol.rtps_instance_id = (/* App ID */ (WireProtocolQosPolicy.RTPS_AUTO_ID) |

/* Instance ID*/ (12));

Option 3: Handle the entire rtps instance id field yourself:

participant_qos.wire_protocol.rtps_auto_id_kind = WireProtocolQosPolicyAutoKind.RTPS_AUTO_ID_FROM_MAC;

participant_qos.wire_protocol.rtps_host_id = WireProtocolQosPolicy.RTPS_AUTO_ID;

participant_qos.wire_protocol.rtps_app_id = WireProtocolQosPolicy.RTPS_AUTO_ID;

participant_qos.wire_protocol.rtps_instance_id = (/* App ID */ (12 << 8)) |

/* Instance ID */ (9))

NOTE: If you are using com.rti.dds.infrastructure.WireProtocolQosPolicyAutoKind.RTPS -
AUTO ID FROM MAC (p. 133) as rtps auto id kind and you decide to
manually handle the rtps instance id field, you must ensure that both parts
are non-zero (otherwise RTI Connext will take responsibility for them). RTI
recommends that you always specify the two parts separately in order to avoid
errors.

Option 4: Let RTI Connext handle the entire rtps instance id field:

participant_qos.wire_protocol.rtps_auto_id_kind =

WireProtocolQosPolicyAutoKind.RTPS_AUTO_ID_FROM_MAC;

participant_qos.wire_protocol.rtps_host_id = WireProtocolQosPolicy.RTPS_AUTO_ID;

participant_qos.wire_protocol.rtps_app_id = WireProtocolQosPolicy.RTPS_AUTO_ID;

participant_qos.wire_protocol.rtps_instance_id = WireProtocolQosPolicy.RTPS_AUTO_ID;

NOTE: If you are using com.rti.dds.infrastructure.WireProtocolQosPolicyAutoKind.RTPS -
AUTO ID FROM MAC (p. 133) as rtps auto id kind and you decide
to manually handle the rtps instance id field, you must ensure that both
parts are non-zero (otherwise RTI Connext will take responsibility for them).
RTI recommends that you always specify the two parts separately in order to
clearly show the difference.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1714 Class Documentation

8.310.3 Member Data Documentation

8.310.3.1 final int RTPS AUTO ID = 0 [static]

Indicates that RTI Connext should choose an appropriate host, app, instance
or object ID automatically.

If this special value is assigned to com.rti.dds.infrastructure.WireProtocolQosPolicy.rtps -
host id (p. 1715), com.rti.dds.infrastructure.WireProtocolQosPolicy.rtps -
app id (p. 1716), com.rti.dds.infrastructure.WireProtocolQosPolicy.rtps -
instance id (p. 1716), com.rti.dds.infrastructure.DataWriterProtocolQosPolicy.rtps -
object id (p. 573) or com.rti.dds.infrastructure.DataReaderProtocolQosPolicy.rtps -
object id (p. 506) RTI Connext will assign the ID automatically.

The actual ID value is chosen when the QoS is set: the QoS
returned from com.rti.dds.domain.DomainParticipant.get qos
(p. 679), com.rti.dds.publication.DataWriter.get qos (p. 544) or
com.rti.dds.subscription.DataReader.get qos (p. 482) will never have
this value.

QoS:

com.rti.dds.infrastructure.WireProtocolQosPolicy.rtps host id
(p. 1715) com.rti.dds.infrastructure.WireProtocolQosPolicy.rtps -
app id (p. 1716) com.rti.dds.infrastructure.WireProtocolQosPolicy.rtps -
instance id (p. 1716)

8.310.3.2 int participant id

A value used to distinguish among different participants belonging to the same
domain (p. 317) on the same host.

Determines the unicast port on which meta-traffic is received.
Also defines the default unicast port for receiving user-traffic
for DataReaders and DataWriters (can be overridden by the
com.rti.dds.subscription.DataReaderQos.unicast (p. 522) or
com.rti.dds.publication.DataWriterQos.unicast (p. 593)).

For more information on port mapping, please refer to
com.rti.dds.infrastructure.RtpsWellKnownPorts t (p. 1396).

Each com.rti.dds.domain.DomainParticipant (p. 629) in the same domain
(p. 317) and running on the same host, must have a unique participant id.
The participants may be in the same address space or in distinct address spaces.

A negative number (-1) means that RTI Connext will automatically resolve the
participant ID as follows.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.310 WireProtocolQosPolicy Class Reference 1715

ˆ RTI Connext will pick the smallest participant ID based on the unicast
ports available on the transports enabled for discovery.

ˆ RTI Connext will attempt to resolve an automatic port index either when
a DomainPartcipant is enabled, or when a DataReader or DataWriter is
created. Therefore, all the transports enabled for discovery must have been
registered by this time. Otherwise, the discovery transports registered
after resolving the automatic port index may produce port conflicts when
the DomainPartcipant is enabled.

[default] -1 [automatic], i.e. RTI Connext will automatically pick the
participant id, as described above.

[range] [>= 0], or -1, and does not violate guidelines stated in
com.rti.dds.infrastructure.RtpsWellKnownPorts t (p. 1396).

See also:

com.rti.dds.infrastructure.Entity.enable() (p. 915)

8.310.3.3 RtpsWellKnownPorts t rtps well known ports

Configures the RTPS well-known port mappings.

Determines the well-known multicast and unicast port mappings for discovery
(meta) traffic and user traffic.

[default] RtpsWellKnownPorts t.INTEROPERABLE RTPS WELL -
KNOWN PORTS (p. 131)

8.310.3.4 int rtps host id

The RTPS Host ID of the domain (p. 317) participant.

A machine/operating system specific host ID that is unique in the domain
(p. 317).

[default] com.rti.dds.infrastructure.WireProtocolQosPolicy.RTPS -
AUTO ID (p. 1714). The default value is interpreted as follows:

If com.rti.dds.infrastructure.WireProtocolQosPolicy.rtps auto id -
kind (p. 1717) is equal to RTPS AUTO ID FROM IP (the default value),
the value will be interpreted as the IPv4 address of the first up and running
interface of the host machine.

If com.rti.dds.infrastructure.WireProtocolQosPolicy.rtps auto id -
kind (p. 1717) is equal to RTPS AUTO ID FROM MAC , the value will be

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1716 Class Documentation

interpreted as the first 32 bits of the MAC address assigned to the first up and
running interface of the host machine.

[range] [0,0xffffffff]

8.310.3.5 int rtps app id

The RTPS App ID of the domain (p. 317) participant.

A participant specific ID that, together with the rtps instance id, is unique
within the scope of the rtps host id.

If a participant dies and is restarted, it is recommended that it be given an
app ID that is distinct from the previous one so that other participants in the
domain (p. 317) can distinguish between them.

[default] com.rti.dds.infrastructure.WireProtocolQosPolicy.RTPS -
AUTO ID (p. 1714). The default value is interpreted as follows:

If com.rti.dds.infrastructure.WireProtocolQosPolicy.rtps auto id -
kind (p. 1717) is equal to RTPS AUTO ID FROM IP (default value for this
field) the value will be the process (or task) ID.

If com.rti.dds.infrastructure.WireProtocolQosPolicy.rtps auto id -
kind (p. 1717) is equal to RTPS AUTO ID FROM MAC the value will be the
last 32 bits of the MAC address assigned to the first up and running interface
of the host machine. [range] [0,0xffffffff]

8.310.3.6 int rtps instance id

The RTPS Instance ID of the com.rti.dds.domain.DomainParticipant
(p. 629).

This is an instance-specific ID of a participant that, together with the rtps -
app id, is unique within the scope of the rtps host id.

If a participant dies and is restarted, it is recommended that it be given an
instance ID that is distinct from the previous one so that other participants in
the domain (p. 317) can distinguish between them.

[default] com.rti.dds.infrastructure.WireProtocolQosPolicy.RTPS -
AUTO ID (p. 1714). The default value is interpreted as follows:

If com.rti.dds.infrastructure.WireProtocolQosPolicy.rtps auto id -
kind (p. 1717) is equal to RTPS AUTO ID FROM IP (the default value), a
counter is assigned that is incremented per new participant. For VxWorks-653,
the first 8 bits are assigned to the partition id for the application.

If com.rti.dds.infrastructure.WireProtocolQosPolicy.rtps auto id -
kind (p. 1717) is equal to RTPS AUTO ID FROM MAC , the first 24 bits are

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.310 WireProtocolQosPolicy Class Reference 1717

assigned to the application/task identifier and the last 8 bits are assigned to a
counter that is incremented per new paricipant.

[range] [0,0xffffffff] NOTE: If you use DDS RTPS AUTO ID FROM MAC as
rtps auto id kind and you decide to manually handle the rtps instance -
id field, you must ensure that both the two parts are non-zero, otherwise the
middleware will take responsibility for them. We recommend that you always
specify the two parts separately in order to avoid errors. (examples)

8.310.3.7 int rtps reserved port mask

Specifies which well-known ports to reserve when enabling the participant.

Specifies which of the well-known multicast and unicast ports will be reserved
when the DomainParticipant is enabled. Failure to allocate a port that is com-
puted based on the com.rti.dds.infrastructure.RtpsWellKnownPorts t
(p. 1396) will be detected at this time, and the enable operation will fail.

[default] RtpsReservedPortKind.MASK DEFAULT (p. 129)

8.310.3.8 WireProtocolQosPolicyAutoKind rtps auto id kind =
WireProtocolQosPolicyAutoKind.RTPS AUTO ID -
FROM IP

Kind of auto mechanism used to calculate the GUID prefix.

[default] RTPS AUTO ID FROM IP

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1718 Class Documentation

8.311 WireProtocolQosPolicyAutoKind Class
Reference

Kind of auto mechanism used to calculate the GUID prefix.

Inheritance diagram for WireProtocolQosPolicyAutoKind::

Static Public Attributes

ˆ static final WireProtocolQosPolicyAutoKind RTPS AUTO -
ID FROM IP = new WireProtocolQosPolicyAutoKind(”RTPS -
AUTO ID FROM IP”, 0)

Kind of auto mechanism used to calculate the GUID prefix.

ˆ static final WireProtocolQosPolicyAutoKind RTPS AUTO ID -
FROM MAC = new WireProtocolQosPolicyAutoKind(”RTPS -
AUTO ID FROM MAC”, 1)

Kind of auto mechanism used to calculate the GUID prefix.

8.311.1 Detailed Description

Kind of auto mechanism used to calculate the GUID prefix.

See also:

com.rti.dds.infrastructure.WireProtocolQosPolicy.rtps auto id -
kind (p. 1717)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.312 WriteParams t Class Reference 1719

8.312 WriteParams t Class Reference

<<eXtension>> (p. 270) Input parameters for writ-
ing with com.rti.dds.topic.example.FooDataWriter.write w -
params, com.rti.dds.topic.example.FooDataWriter.dispose w params,
com.rti.dds.topic.example.FooDataWriter.register instance w params,
com.rti.dds.topic.example.FooDataWriter.unregister instance w params

Inherits Struct.

Public Member Functions

ˆ WriteParams t ()
Construct a new WriteParams t (p. 1719).

ˆ WriteParams t (SampleIdentity t identity, Time t source -
timestamp, Cookie t cookie, InstanceHandle t handle)

Construct a new WriteParams t (p. 1719) with the given members.

Public Attributes

ˆ final SampleIdentity t identity
Identity of the sample.

ˆ final Time t source timestamp
Source timestamp upon write.

ˆ final Cookie t cookie = new Cookie t()
Octet sequence identifying written data sample.

ˆ final InstanceHandle t handle = InstanceHandle t.HANDLE -
NIL

Instance handle.

8.312.1 Detailed Description

<<eXtension>> (p. 270) Input parameters for writ-
ing with com.rti.dds.topic.example.FooDataWriter.write w -
params, com.rti.dds.topic.example.FooDataWriter.dispose w params,
com.rti.dds.topic.example.FooDataWriter.register instance w params,
com.rti.dds.topic.example.FooDataWriter.unregister instance w params

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1720 Class Documentation

8.312.2 Constructor & Destructor Documentation

8.312.2.1 WriteParams t ()

Construct a new WriteParams t (p. 1719).

8.312.2.2 WriteParams t (SampleIdentity t identity, Time t
source timestamp, Cookie t cookie, InstanceHandle t
handle)

Construct a new WriteParams t (p. 1719) with the given members.

8.312.3 Member Data Documentation

8.312.3.1 final SampleIdentity t identity

Initial value:

new SampleIdentity_t(SampleIdentity_t.AUTO_SAMPLE_IDENTITY)

Identity of the sample.

Identifies the sample being written. The identity consist of a pair (Vitual Writer
GUID, SequenceNumber).

Use the default value to let RTI Connext determine the sample identity as
follows:

ˆ The Virtual Writer GUID is the virtual GUID associated with the
writer writing the sample. This virtual GUID is configured using
com.rti.dds.infrastructure.DataWriterProtocolQosPolicy.virtual -
guid (p. 572).

ˆ The sequence number is increased by one with respect to the previous
value.

The virtual sequence numbers for a virtual writer must be strictly monotonically
increasing. If you try to write a sample with a sequence number smaller or equal
to the last sequence number, the write operation will fail.

[default] SampleIdentity t.AUTO SAMPLE IDENTITY (p. 1402).

8.312.3.2 final Time t source timestamp

Initial value:

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.312 WriteParams t Class Reference 1721

new Time_t(Time_t.TIME_INVALID_SEC, Time_t.TIME_INVALID_NSEC)

Source timestamp upon write.

Specifies the source timestamp that will be available to
the com.rti.dds.subscription.DataReader (p. 473) objects
by means of the source timestamp attribute within the
com.rti.dds.subscription.SampleInfo (p. 1404).

[default] com.rti.dds.infrastructure.Time t.INVALID.

8.312.3.3 final Cookie t cookie = new Cookie t()

Octet sequence identifying written data sample.

The maximum size of the cookie is configurable using the field
com.rti.dds.infrastructure.DataWriterResourceLimitsQosPolicy.cookie -
max length (p. 601).

[default] Empty sequence (zero-length).

8.312.3.4 final InstanceHandle t handle =
InstanceHandle t.HANDLE NIL

Instance handle.

Either the handle returned by a previous call to
com.rti.dds.topic.example.FooDataWriter.register instance, or else the special
value InstanceHandle t.HANDLE NIL (p. 1082).

[default] InstanceHandle t.HANDLE NIL (p. 1082)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1722 Class Documentation

8.313 WriterDataLifecycleQosPolicy Class Ref-
erence

Controls how a com.rti.dds.publication.DataWriter (p. 538) handles the
lifecycle of the instances (keys) that it is registered to manage.

Inheritance diagram for WriterDataLifecycleQosPolicy::

Public Attributes

ˆ boolean autodispose unregistered instances
Boolean flag that controls the behavior when the
com.rti.dds.publication.DataWriter (p. 538) unregisters an instance by
means of the unregister operations.

ˆ final Duration t autopurge unregistered instances delay
<<eXtension>> (p. 270) Maximum duration for which the
com.rti.dds.publication.DataWriter (p. 538) will maintain information
regarding an instance once it has unregistered the instance.

8.313.1 Detailed Description

Controls how a com.rti.dds.publication.DataWriter (p. 538) handles the
lifecycle of the instances (keys) that it is registered to manage.

Entity:

com.rti.dds.publication.DataWriter (p. 538)

Properties:

RxO (p. 97) = N/A
Changeable (p. 98) = YES (p. 98)

8.313.2 Usage

This policy determines how the com.rti.dds.publication.DataWriter
(p. 538) acts with regards to the lifecycle of the data instances it man-
ages (data instances that have been either explicitly registered with the
com.rti.dds.publication.DataWriter (p. 538) or implicitly registered by di-
rectly writing the data).

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.313 WriterDataLifecycleQosPolicy Class Reference 1723

Since the deletion of a DataWriter automatically unregisters all data
instances it manages, the setting of the autodispose unregistered -
instances flag will only determine whether instances are ultimately disposed
when the com.rti.dds.publication.DataWriter (p. 538) is deleted either
directly by means of the com.rti.dds.publication.Publisher.delete -
datawriter (p. 1287) operation or indirectly as a consequence of calling
com.rti.dds.publication.Publisher.delete contained entities (p. 1299)
or com.rti.dds.domain.DomainParticipant.delete contained entities
(p. 691) that contains the DataWriter.

You may use com.rti.dds.topic.example.FooDataWriter.unregister instance to
indicate that the com.rti.dds.publication.DataWriter (p. 538) no longer
wants to send data for a com.rti.dds.topic.Topic (p. 1545).

The behavior controlled by this QoS policy applies on a per instance (key)
basis for keyed Topics, so that when a com.rti.dds.publication.DataWriter
(p. 538) unregisters an instance, RTI Connext can automatically also dispose
that instance. This is the default behavior.

In many cases where the ownership of a Topic is shared (see
com.rti.dds.infrastructure.OwnershipQosPolicy (p. 1216)), DataWriters
may want to relinquish their ownership of a particular instance of the Topic to
allow other DataWriters to send updates for the value of that instance regard-
less of Ownership Strength. In that case, you may only want a DataWriter to
unregister an instance without disposing the instance. Disposing an instance is
a statement that an instance no longer exists. User applications may be coded
to trigger on the disposal of instances, thus the ability to unregister without
disposing may be useful to properly maintain the semantic of disposal.

8.313.3 Member Data Documentation

8.313.3.1 boolean autodispose unregistered instances

Boolean flag that controls the behavior when the
com.rti.dds.publication.DataWriter (p. 538) unregisters an instance
by means of the unregister operations.

ˆ true (default)

The com.rti.dds.publication.DataWriter (p. 538) will dispose the in-
stance each time it is unregistered. The behavior is identical to explicitly
calling one of the dispose operations on the instance prior to calling the
unregister operation.

ˆ false

The com.rti.dds.publication.DataWriter (p. 538) will not dispose the
instance. The application can still call one of the dispose operations prior

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1724 Class Documentation

to unregistering the instance and accomplish the same effect.

[default] true

8.313.3.2 final Duration t autopurge unregistered instances delay

<<eXtension>> (p. 270) Maximum duration for which the
com.rti.dds.publication.DataWriter (p. 538) will maintain information
regarding an instance once it has unregistered the instance.

After this time elapses, the com.rti.dds.publication.DataWriter (p. 538)
will purge all internal information regarding the instance, including historical
samples.

When the duration is zero, the instance is purged as soon as all the samples
have been acknowledged by all the live DataReaders.

[default] com.rti.dds.infrastructure.Duration t.INFINITE (disabled)

[range] [0, 1 year] or com.rti.dds.infrastructure.Duration t.INFINITE

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

8.314 WstringSeq Class Reference 1725

8.314 WstringSeq Class Reference

Instantiates com.rti.dds.util.Sequence (p. 1432) < char∗ >.

Inheritance diagram for WstringSeq::

Public Member Functions

ˆ WstringSeq ()

Constructs an empty sequence of wide strings with an initial maximum of
zero.

ˆ WstringSeq (int initialMaximum)

Constructs an empty sequence of wide strings with the given initial maximum.

ˆ WstringSeq (Collection strings)

Constructs a new sequence containing the given wide strings.

Static Public Member Functions

ˆ static void readWstringArray (String[] value, CdrObjectInput in, int
length) throws IOException

ˆ static void writeWstringArray (String[] value, CdrObjectOutput out,
int length, int maxStringLength) throws IOException

8.314.1 Detailed Description

Instantiates com.rti.dds.util.Sequence (p. 1432) < char∗ >.

Instantiates:

<<generic>> (p. 271) com.rti.dds.util.Sequence (p. 1432)

See also:

char
com.rti.dds.infrastructure.StringSeq (p. 1470)
com.rti.dds.util.Sequence (p. 1432)

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1726 Class Documentation

8.314.2 Constructor & Destructor Documentation

8.314.2.1 WstringSeq ()

Constructs an empty sequence of wide strings with an initial maximum of zero.

8.314.2.2 WstringSeq (int initialMaximum)

Constructs an empty sequence of wide strings with the given initial maximum.

8.314.2.3 WstringSeq (Collection strings)

Constructs a new sequence containing the given wide strings.

Parameters:

strings the initial contents of this sequence

8.314.3 Member Function Documentation

8.314.3.1 static void readWstringArray (String[] value,
CdrObjectInput in, int length) throws IOException
[static]

Read array of strings. The length specified must match the expected length of
array. Otherwise, the stream will be positioned incorrectly, leading to corrupt
reads. The length of array must be at least the value of length parameter
(otherwise, ArrayOutOfBoundException will be thrown).

Parameters:

value array to read into

in Interface for reading object in CDR encoding.

length the length of array (<= value.length)

8.314.3.2 static void writeWstringArray (String[] value,
CdrObjectOutput out, int length, int maxStringLength)
throws IOException [static]

Write array of wstring up to the specified length.

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

Chapter 9

Example Documentation

9.1 HelloWorld.idl

9.1.1 IDL Type Description

The data type to be disseminated by RTI Connext is described in language
independent IDL. The IDL file is input to rtiddsgen (p. 290), which produces
the following files.

The programming language specific type representation of the type Foo = Hel-
loWorld, for use in the application code.

ˆ HelloWorld.java

ˆ HelloWorldSeq.java

User Data Type Support (p. 160) types as required by the DDS specification
for use in the application code.

ˆ HelloWorldTypeSupport.java

ˆ HelloWorldDataWriter.java

ˆ HelloWorldDataReader.java

9.1.1.1 HelloWorld.idl

[$(NDDSHOME)/example/JAVA/helloWorld/HelloWorld.idl]

1728 Example Documentation

struct HelloWorld {

string<128> msg;

};

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

9.2 HelloWorldDataReader.java 1729

9.2 HelloWorldDataReader.java

9.2.1 User Data Type Support

Files generated by rtiddsgen (p. 290) that implement the type specific APIs
required by the DDS specification, as described in the User Data Type Sup-
port (p. 160), where:

ˆ FooTypeSupport = HelloWorldTypeSupport

ˆ FooDataWriter = HelloWorldDataWriter

ˆ FooDataReader = HelloWorldDataReader

9.2.1.1 HelloWorldTypeSupport.java

[$(NDDSHOME)/example/JAVA/helloWorld/HelloWorldTypeSupport.java]

/*

WARNING: THIS FILE IS AUTO-GENERATED. DO NOT MODIFY.

This file was generated from .idl using "rtiddsgen".

The rtiddsgen tool is part of the RTI Connext distribution.

For more information, type ’rtiddsgen -help’ at a command shell

or consult the RTI Connext manual.

*/

import com.rti.dds.cdr.CdrEncapsulation;

import com.rti.dds.cdr.CdrInputStream;

import com.rti.dds.cdr.CdrOutputStream;

import com.rti.dds.cdr.CdrPrimitiveType;

import com.rti.dds.cdr.CdrBuffer;

import com.rti.dds.cdr.CdrHelper;

import com.rti.dds.domain.DomainParticipant;

import com.rti.dds.publication.DataWriter;

import com.rti.dds.publication.DataWriterListener;

import com.rti.dds.subscription.DataReader;

import com.rti.dds.subscription.DataReaderListener;

import com.rti.dds.topic.KeyHash_t;

import com.rti.dds.topic.TypeSupportImpl;

import com.rti.dds.topic.TypeSupportType;

import com.rti.dds.util.Sequence;

import com.rti.dds.topic.DefaultEndpointData;

import com.rti.dds.infrastructure.RETCODE_ERROR;

import com.rti.dds.topic.TypeSupportParticipantInfo;

import com.rti.dds.topic.TypeSupportEndpointInfo;

import com.rti.dds.typecode.TypeCode;

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1730 Example Documentation

import com.rti.dds.infrastructure.Copyable;

public class HelloWorldTypeSupport extends TypeSupportImpl {

// ---

// Private Fields

// ---

private static final String TYPE_NAME = "HelloWorld";

private static final char[] PLUGIN_VERSION = {2, 0, 0, 0};

private static final HelloWorldTypeSupport _singleton

= new HelloWorldTypeSupport();

// ---

// Public Methods

// ---

// --- External methods: ---

/* The methods in this section are for use by users of RTI Connext

*/

public static String get_type_name() {

return _singleton.get_type_nameI();

}

public static void register_type(DomainParticipant participant,

String type_name) {

_singleton.register_typeI(participant, type_name);

}

public static void unregister_type(DomainParticipant participant,

String type_name) {

_singleton.unregister_typeI(participant, type_name);

}

/* The methods in this section are for use by RTI Connext

* itself and by the code generated by rtiddsgen for other types.

* They should be used directly or modified only by advanced users and are

* subject to change in future versions of RTI Connext.

*/

public static HelloWorldTypeSupport get_instance() {

return _singleton;

}

public static HelloWorldTypeSupport getInstance() {

return get_instance();

}

public Object create_data() {

return new HelloWorld();

}

public void destroy_data(Object data) {

return;

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

9.2 HelloWorldDataReader.java 1731

}

public Object create_key() {

return new HelloWorld();

}

public void destroy_key(Object key) {

return;

}

public Object copy_data(Object destination, Object source) {

HelloWorld typedDst = (HelloWorld) destination;

HelloWorld typedSrc = (HelloWorld) source;

return typedDst.copy_from(typedSrc);

}

public long get_serialized_sample_max_size(Object endpoint_data,boolean include_encapsulation,short encapsulation_id,long currentAlignment) {

long origAlignment = currentAlignment;

long encapsulation_size = currentAlignment;

if(include_encapsulation) {

if (!CdrEncapsulation.isValidEncapsulationKind(encapsulation_id)) {

throw new RETCODE_ERROR("Unsupported encapsulation");

}

encapsulation_size += CdrPrimitiveType.SHORT.getMaxSizeSerialized(encapsulation_size);

encapsulation_size += CdrPrimitiveType.SHORT.getMaxSizeSerialized(encapsulation_size);

encapsulation_size -= currentAlignment;

currentAlignment = 0;

origAlignment = 0;

}

currentAlignment += CdrPrimitiveType.getStringMaxSizeSerialized(currentAlignment, ((128)) + 1);

if (include_encapsulation) {

currentAlignment += encapsulation_size;

}

return currentAlignment - origAlignment;

}

public long get_serialized_sample_min_size(Object endpoint_data,boolean include_encapsulation,short encapsulation_id,long currentAlignment) {

long origAlignment = currentAlignment;

long encapsulation_size = currentAlignment;

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1732 Example Documentation

if(include_encapsulation) {

if (!CdrEncapsulation.isValidEncapsulationKind(encapsulation_id)) {

throw new RETCODE_ERROR("Unsupported encapsulation");

}

encapsulation_size += CdrPrimitiveType.SHORT.getMaxSizeSerialized(encapsulation_size);

encapsulation_size += CdrPrimitiveType.SHORT.getMaxSizeSerialized(encapsulation_size);

encapsulation_size -= currentAlignment;

currentAlignment = 0;

origAlignment = 0;

}

currentAlignment += CdrPrimitiveType.getStringMaxSizeSerialized(currentAlignment, 1);

if (include_encapsulation) {

currentAlignment += encapsulation_size;

}

return currentAlignment - origAlignment;

}

public long get_serialized_sample_size(

Object endpoint_data, boolean include_encapsulation,

short encapsulation_id, long current_alignment,

Object sample)

{

long origAlignment = current_alignment;

long encapsulation_size = current_alignment;

HelloWorld typedSrc = (HelloWorld) sample;

if(include_encapsulation) {

if (!CdrEncapsulation.isValidEncapsulationKind(encapsulation_id)) {

throw new RETCODE_ERROR("Unsupported encapsulation");

}

encapsulation_size += CdrPrimitiveType.SHORT.getMaxSizeSerialized(encapsulation_size);

encapsulation_size += CdrPrimitiveType.SHORT.getMaxSizeSerialized(encapsulation_size);

encapsulation_size -= current_alignment;

current_alignment = 0;

origAlignment = 0;

}

current_alignment += CdrPrimitiveType.getStringSerializedSize(current_alignment, typedSrc.msg);

if (include_encapsulation) {

current_alignment += encapsulation_size;

}

return current_alignment - origAlignment;

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

9.2 HelloWorldDataReader.java 1733

}

public long get_serialized_key_max_size(

Object endpoint_data,

boolean include_encapsulation,

short encapsulation_id,

long currentAlignment)

{

long encapsulation_size = currentAlignment;

long origAlignment = currentAlignment;

if(include_encapsulation) {

if (!CdrEncapsulation.isValidEncapsulationKind(encapsulation_id)) {

throw new RETCODE_ERROR("Unsupported encapsulation");

}

encapsulation_size += CdrPrimitiveType.SHORT.getMaxSizeSerialized(encapsulation_size);

encapsulation_size += CdrPrimitiveType.SHORT.getMaxSizeSerialized(encapsulation_size);

encapsulation_size -= currentAlignment;

currentAlignment = 0;

origAlignment = 0;

}

currentAlignment += get_serialized_sample_max_size(

endpoint_data,false,encapsulation_id,currentAlignment);

if (include_encapsulation) {

currentAlignment += encapsulation_size;

}

return currentAlignment - origAlignment;

}

public void serialize(Object endpoint_data,Object src, CdrOutputStream dst,boolean serialize_encapsulation,

short encapsulation_id, boolean serialize_sample, Object endpoint_plugin_qos) {

int position = 0;

if(serialize_encapsulation) {

dst.serializeAndSetCdrEncapsulation(encapsulation_id);;

position = dst.resetAlignment();

}

if(serialize_sample) {

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1734 Example Documentation

HelloWorld typedSrc = (HelloWorld) src;

dst.writeString(typedSrc.msg,(128));

}

if (serialize_encapsulation) {

dst.restoreAlignment(position);

}

}

public void serialize_key(

Object endpoint_data,

Object src,

CdrOutputStream dst,

boolean serialize_encapsulation,

short encapsulation_id,

boolean serialize_key,

Object endpoint_plugin_qos)

{

int position = 0;

if (serialize_encapsulation) {

dst.serializeAndSetCdrEncapsulation(encapsulation_id);

position = dst.resetAlignment();

}

if (serialize_key) {

HelloWorld typedSrc = (HelloWorld) src;

serialize(endpoint_data, src, dst, false, CdrEncapsulation.CDR_ENCAPSULATION_ID_CDR_BE, true, endpoint_plugin_qos);

}

if (serialize_encapsulation) {

dst.restoreAlignment(position);

}

}

public Object deserialize_sample(

Object endpoint_data,

Object dst,

CdrInputStream src, boolean deserialize_encapsulation,

boolean deserialize_sample,

Object endpoint_plugin_qos)

{

int position = 0;

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

9.2 HelloWorldDataReader.java 1735

if(deserialize_encapsulation) {

src.deserializeAndSetCdrEncapsulation();

position = src.resetAlignment();

}

if(deserialize_sample) {

HelloWorld typedDst = (HelloWorld) dst;

typedDst.msg = src.readString();

}

if (deserialize_encapsulation) {

src.restoreAlignment(position);

}

return dst;

}

public Object deserialize_key_sample(

Object endpoint_data,

Object dst,

CdrInputStream src,

boolean deserialize_encapsulation,

boolean deserialize_key,

Object endpoint_plugin_qos)

{

int position = 0;

if(deserialize_encapsulation) {

src.deserializeAndSetCdrEncapsulation();

position = src.resetAlignment();

}

if(deserialize_key) {

HelloWorld typedDst = (HelloWorld) dst;

deserialize_sample(endpoint_data, dst, src, false, true, endpoint_plugin_qos);

}

if (deserialize_encapsulation) {

src.restoreAlignment(position);

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1736 Example Documentation

}

return dst;

}

public void skip(Object endpoint_data,

CdrInputStream src,

boolean skip_encapsulation,

boolean skip_sample,

Object endpoint_plugin_qos)

{

int position = 0;

if (skip_encapsulation) {

src.skipEncapsulation();

position = src.resetAlignment();

}

if (skip_sample) {

src.skipString();

}

if (skip_encapsulation) {

src.restoreAlignment(position);

}

}

public Object serialized_sample_to_key(

Object endpoint_data,

Object sample,

CdrInputStream src,

boolean deserialize_encapsulation,

boolean deserialize_key,

Object endpoint_plugin_qos)

{

int position = 0;

if(deserialize_encapsulation) {

src.deserializeAndSetCdrEncapsulation();

position = src.resetAlignment();

}

if (deserialize_key) {

HelloWorld typedDst = (HelloWorld) sample;

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

9.2 HelloWorldDataReader.java 1737

deserialize_sample(

endpoint_data, sample, src, false,

true, endpoint_plugin_qos);

}

if (deserialize_encapsulation) {

src.restoreAlignment(position);

}

return sample;

}

// ---

// Callbacks

// ---

public Object on_participant_attached(Object registration_data,

TypeSupportParticipantInfo participant_info,

boolean top_level_registration,

Object container_plugin_context,

TypeCode type_code) {

return super.on_participant_attached(

registration_data, participant_info, top_level_registration,

container_plugin_context, type_code);

}

public void on_participant_detached(Object participant_data) {

super.on_participant_detached(participant_data);

}

public Object on_endpoint_attached(Object participantData,

TypeSupportEndpointInfo endpoint_info,

boolean top_level_registration,

Object container_plugin_context) {

return super.on_endpoint_attached(

participantData, endpoint_info,

top_level_registration, container_plugin_context);

}

public void on_endpoint_detached(Object endpoint_data) {

super.on_endpoint_detached(endpoint_data);

}

// ---

// Protected Methods

// ---

protected DataWriter create_datawriter(long native_writer,

DataWriterListener listener,

int mask) {

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1738 Example Documentation

return new HelloWorldDataWriter(native_writer, listener, mask, this);

}

protected DataReader create_datareader(long native_reader,

DataReaderListener listener,

int mask) {

return new HelloWorldDataReader(native_reader, listener, mask, this);

}

// ---

// Constructor

// ---

protected HelloWorldTypeSupport() {

/* If the user data type supports keys, then the second argument

to the constructor below should be true. Otherwise it should

be false. */

super(TYPE_NAME, false,HelloWorldTypeCode.VALUE,HelloWorld.class,TypeSupportType.TST_STRUCT, PLUGIN_VERSION);

}

protected HelloWorldTypeSupport(boolean enableKeySupport) {

super(TYPE_NAME, enableKeySupport,HelloWorldTypeCode.VALUE,HelloWorld.class,TypeSupportType.TST_STRUCT, PLUGIN_VERSION);

}

}

9.2.1.2 HelloWorldDataWriter.java

[$(NDDSHOME)/example/JAVA/helloWorld/HelloWorldDataWriter.java]

/*

WARNING: THIS FILE IS AUTO-GENERATED. DO NOT MODIFY.

This file was generated from .idl using "rtiddsgen".

The rtiddsgen tool is part of the RTI Connext distribution.

For more information, type ’rtiddsgen -help’ at a command shell

or consult the RTI Connext manual.

*/

import com.rti.dds.infrastructure.Time_t;

import com.rti.dds.infrastructure.WriteParams_t;

import com.rti.dds.infrastructure.InstanceHandle_t;

import com.rti.dds.publication.DataWriterImpl;

import com.rti.dds.publication.DataWriterListener;

import com.rti.dds.topic.TypeSupportImpl;

// ===

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

9.2 HelloWorldDataReader.java 1739

public class HelloWorldDataWriter extends DataWriterImpl {

// ---

// Public Methods

// ---

public InstanceHandle_t register_instance(HelloWorld instance_data) {

return register_instance_untyped(instance_data);

}

public InstanceHandle_t register_instance_w_timestamp(HelloWorld instance_data,

Time_t source_timestamp) {

return register_instance_w_timestamp_untyped(

instance_data, source_timestamp);

}

public InstanceHandle_t register_instance_w_params(HelloWorld instance_data,

WriteParams_t params) {

return register_instance_w_params_untyped(

instance_data, params);

}

public void unregister_instance(HelloWorld instance_data,

InstanceHandle_t handle) {

unregister_instance_untyped(instance_data, handle);

}

public void unregister_instance_w_timestamp(HelloWorld instance_data,

InstanceHandle_t handle, Time_t source_timestamp) {

unregister_instance_w_timestamp_untyped(

instance_data, handle, source_timestamp);

}

public void unregister_instance_w_params(HelloWorld instance_data,

WriteParams_t params) {

unregister_instance_w_params_untyped(

instance_data, params);

}

public void write(HelloWorld instance_data, InstanceHandle_t handle) {

write_untyped(instance_data, handle);

}

public void write_w_timestamp(HelloWorld instance_data,

InstanceHandle_t handle, Time_t source_timestamp) {

write_w_timestamp_untyped(instance_data, handle, source_timestamp);

}

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1740 Example Documentation

public void write_w_params(HelloWorld instance_data,

WriteParams_t params) {

write_w_params_untyped(instance_data, params);

}

public void dispose(HelloWorld instance_data, InstanceHandle_t instance_handle){

dispose_untyped(instance_data, instance_handle);

}

public void dispose_w_timestamp(HelloWorld instance_data,

InstanceHandle_t instance_handle, Time_t source_timestamp) {

dispose_w_timestamp_untyped(

instance_data, instance_handle, source_timestamp);

}

public void dispose_w_params(HelloWorld instance_data,

WriteParams_t params) {

dispose_w_params_untyped(instance_data, params);

}

public void get_key_value(HelloWorld key_holder, InstanceHandle_t handle) {

get_key_value_untyped(key_holder, handle);

}

public InstanceHandle_t lookup_instance(HelloWorld key_holder) {

return lookup_instance_untyped(key_holder);

}

// ---

// Package Methods

// ---

// --- Constructors: ---

/*package*/ HelloWorldDataWriter(long native_writer, DataWriterListener listener,

int mask, TypeSupportImpl type) {

super(native_writer, listener, mask, type);

}

}

9.2.1.3 HelloWorldDataReader.java

[$(NDDSHOME)/example/JAVA/helloWorld/HelloWorldDataReader.java]

/*

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

9.2 HelloWorldDataReader.java 1741

WARNING: THIS FILE IS AUTO-GENERATED. DO NOT MODIFY.

This file was generated from .idl using "rtiddsgen".

The rtiddsgen tool is part of the RTI Connext distribution.

For more information, type ’rtiddsgen -help’ at a command shell

or consult the RTI Connext manual.

*/

import com.rti.dds.infrastructure.InstanceHandle_t;

import com.rti.dds.subscription.DataReaderImpl;

import com.rti.dds.subscription.DataReaderListener;

import com.rti.dds.subscription.ReadCondition;

import com.rti.dds.subscription.SampleInfo;

import com.rti.dds.subscription.SampleInfoSeq;

import com.rti.dds.topic.TypeSupportImpl;

// ===

public class HelloWorldDataReader extends DataReaderImpl {

// ---

// Public Methods

// ---

public void read(HelloWorldSeq received_data, SampleInfoSeq info_seq,

int max_samples,

int sample_states, int view_states, int instance_states) {

read_untyped(received_data, info_seq, max_samples, sample_states,

view_states, instance_states);

}

public void take(HelloWorldSeq received_data, SampleInfoSeq info_seq,

int max_samples,

int sample_states, int view_states, int instance_states) {

take_untyped(received_data, info_seq, max_samples, sample_states,

view_states, instance_states);

}

public void read_w_condition(HelloWorldSeq received_data,

SampleInfoSeq info_seq,

int max_samples,

ReadCondition condition) {

read_w_condition_untyped(received_data, info_seq, max_samples,

condition);

}

public void take_w_condition(HelloWorldSeq received_data,

SampleInfoSeq info_seq,

int max_samples,

ReadCondition condition) {

take_w_condition_untyped(received_data, info_seq, max_samples,

condition);

}

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1742 Example Documentation

public void read_next_sample(HelloWorld received_data, SampleInfo sample_info) {

read_next_sample_untyped(received_data, sample_info);

}

public void take_next_sample(HelloWorld received_data, SampleInfo sample_info) {

take_next_sample_untyped(received_data, sample_info);

}

public void read_instance(HelloWorldSeq received_data, SampleInfoSeq info_seq,

int max_samples, InstanceHandle_t a_handle, int sample_states,

int view_states, int instance_states) {

read_instance_untyped(received_data, info_seq, max_samples, a_handle,

sample_states, view_states, instance_states);

}

public void take_instance(HelloWorldSeq received_data, SampleInfoSeq info_seq,

int max_samples, InstanceHandle_t a_handle, int sample_states,

int view_states, int instance_states) {

take_instance_untyped(received_data, info_seq, max_samples, a_handle,

sample_states, view_states, instance_states);

}

public void read_instance_w_condition(HelloWorldSeq received_data,

SampleInfoSeq info_seq, int max_samples,

InstanceHandle_t a_handle, ReadCondition condition) {

read_instance_w_condition_untyped(received_data, info_seq,

max_samples, a_handle, condition);

}

public void take_instance_w_condition(HelloWorldSeq received_data,

SampleInfoSeq info_seq, int max_samples,

InstanceHandle_t a_handle, ReadCondition condition) {

take_instance_w_condition_untyped(received_data, info_seq,

max_samples, a_handle, condition);

}

public void read_next_instance(HelloWorldSeq received_data,

SampleInfoSeq info_seq, int max_samples,

InstanceHandle_t a_handle, int sample_states, int view_states,

int instance_states) {

read_next_instance_untyped(received_data, info_seq, max_samples,

a_handle, sample_states, view_states, instance_states);

}

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

9.2 HelloWorldDataReader.java 1743

public void take_next_instance(HelloWorldSeq received_data,

SampleInfoSeq info_seq, int max_samples,

InstanceHandle_t a_handle, int sample_states, int view_states,

int instance_states) {

take_next_instance_untyped(received_data, info_seq, max_samples,

a_handle, sample_states, view_states, instance_states);

}

public void read_next_instance_w_condition(HelloWorldSeq received_data,

SampleInfoSeq info_seq, int max_samples,

InstanceHandle_t a_handle, ReadCondition condition) {

read_next_instance_w_condition_untyped(received_data, info_seq,

max_samples, a_handle, condition);

}

public void take_next_instance_w_condition(HelloWorldSeq received_data,

SampleInfoSeq info_seq, int max_samples,

InstanceHandle_t a_handle, ReadCondition condition) {

take_next_instance_w_condition_untyped(received_data, info_seq,

max_samples, a_handle, condition);

}

public void return_loan(HelloWorldSeq received_data, SampleInfoSeq info_seq) {

return_loan_untyped(received_data, info_seq);

}

public void get_key_value(HelloWorld key_holder, InstanceHandle_t handle){

get_key_value_untyped(key_holder, handle);

}

public InstanceHandle_t lookup_instance(HelloWorld key_holder) {

return lookup_instance_untyped(key_holder);

}

// ---

// Package Methods

// ---

// --- Constructors: ---

/*package*/ HelloWorldDataReader(long native_reader, DataReaderListener listener,

int mask, TypeSupportImpl data_type) {

super(native_reader, listener, mask, data_type);

}

}

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1744 Example Documentation

9.3 HelloWorldPublisher.java

9.3.1 RTI Connext Publication Example

The publication example generated by rtiddsgen (p. 290). The example has
been modified slightly to update the sample value.

9.3.1.1 HelloWorldPublisher.java

[$(NDDSHOME)/example/JAVA/helloWorld/HelloWorldPublisher.java]

/* HelloWorldPublisher.java

A publication of data of type HelloWorld

This file is derived from code automatically generated by the rtiddsgen

command:

rtiddsgen -language java -example <arch> HelloWorld.idl

Example publication of type HelloWorld automatically generated by

’rtiddsgen’. To test them follow these steps:

(1) Compile this file and the example subscription.

(2) Start the subscription on the same domain used for RTI Connext with the command

java HelloWorldSubscriber <domain_id> <sample_count>

(3) Start the publication on the same domain used for RTI Connext with the command

java HelloWorldPublisher <domain_id> <sample_count>

(4) [Optional] Specify the list of discovery initial peers and

multicast receive addresses via an environment variable or a file

(in the current working directory) called NDDS_DISCOVERY_PEERS.

You can run any number of publishers and subscribers programs, and can

add and remove them dynamically from the domain.

Example:

To run the example application on domain <domain_id>:

Ensure that $(NDDSHOME)/lib/<arch> is on the dynamic library path for

Java.

On Unix:

add $(NDDSHOME)/lib/<arch> to the ’LD_LIBRARY_PATH’ environment

variable

On Windows:

add $(NDDSHOME)\lib\<arch> to the ’Path’ environment variable

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

9.3 HelloWorldPublisher.java 1745

Run the Java applications:

java -Djava.ext.dirs=$(NDDSHOME)/class HelloWorldPublisher <domain_id>

java -Djava.ext.dirs=$(NDDSHOME)/class HelloWorldSubscriber <domain_id>

modification history

------------ -------

*/

import java.net.InetAddress;

import java.net.UnknownHostException;

import java.util.Arrays;

import com.rti.dds.domain.*;

import com.rti.dds.infrastructure.*;

import com.rti.dds.publication.*;

import com.rti.dds.topic.*;

import com.rti.ndds.config.*;

// ===

public class HelloWorldPublisher {

// ---

// Public Methods

// ---

public static void main(String[] args) {

// --- Get domain ID --- //

int domainId = 0;

if (args.length >= 1) {

domainId = Integer.valueOf(args[0]).intValue();

}

// -- Get max loop count; 0 means infinite loop --- //

int sampleCount = 0;

if (args.length >= 2) {

sampleCount = Integer.valueOf(args[1]).intValue();

}

/* Uncomment this to turn on additional logging

Logger.get_instance().set_verbosity_by_category(

LogCategory.NDDS_CONFIG_LOG_CATEGORY_API,

LogVerbosity.NDDS_CONFIG_LOG_VERBOSITY_STATUS_ALL);

*/

// --- Run --- //

publisherMain(domainId, sampleCount);

}

// ---

// Private Methods

// ---

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1746 Example Documentation

// --- Constructors: ---

private HelloWorldPublisher() {

super();

}

// ---

private static void publisherMain(int domainId, int sampleCount) {

DomainParticipant participant = null;

Publisher publisher = null;

Topic topic = null;

HelloWorldDataWriter writer = null;

try {

// --- Create participant --- //

/* To create participant with default QoS,

use DomainParticipantFactory.DomainParticipantFactory.

participant.get_default_publisher_qos() instead */

participant = DomainParticipantFactory.TheParticipantFactory.

create_participant(

domainId, DomainParticipantFactory.PARTICIPANT_QOS_DEFAULT,

null /* listener */, StatusKind.STATUS_MASK_NONE);

// --- Create publisher --- //

/* To customize publisher QoS, use

participant.get_default_publisher_qos() instead */

publisher = participant.create_publisher(

DomainParticipant.PUBLISHER_QOS_DEFAULT, null /* listener */,

StatusKind.STATUS_MASK_NONE);

// --- Create topic --- //

/* Register type before creating topic */

String typeName = HelloWorldTypeSupport.get_type_name();

HelloWorldTypeSupport.register_type(participant, typeName);

/* To customize topic QoS, use

participant.get_default_topic_qos() instead */

topic = participant.create_topic(

"Example HelloWorld",

typeName, DomainParticipant.TOPIC_QOS_DEFAULT,

null /* listener */, StatusKind.STATUS_MASK_NONE);

// --- Create writer --- //

/* To customize data writer QoS, use

publisher.get_default_datawriter_qos() instead */

writer = (HelloWorldDataWriter)

publisher.create_datawriter(

topic, Publisher.DATAWRITER_QOS_DEFAULT,

null /* listener */, StatusKind.STATUS_MASK_NONE);

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

9.3 HelloWorldPublisher.java 1747

// --- Write --- //

/* Create data sample for writing */

HelloWorld instance = new HelloWorld();

InstanceHandle_t instance_handle = InstanceHandle_t.HANDLE_NIL;

/* For data type that has key, if the same instance is going to be

written multiple times, initialize the key here

and register the keyed instance prior to writing */

//instance_handle = writer.register_instance(instance);

final long sendPeriodMillis = 4 * 1000; // 4 seconds

for (int count = 0;

(sampleCount == 0) || (count < sampleCount);

++count) {

System.out.println("Writing HelloWorld, count " + count);

/* Modify the instance to be written here */

instance.msg = "Hello World! (" + count + ")";

/* Write data */

writer.write(instance, InstanceHandle_t.HANDLE_NIL);

try {

Thread.sleep(sendPeriodMillis);

} catch (InterruptedException ix) {

System.err.println("INTERRUPTED");

break;

}

}

//writer.unregister_instance(instance, instance_handle);

} finally {

// --- Shutdown --- //

if(participant != null) {

participant.delete_contained_entities();

DomainParticipantFactory.TheParticipantFactory.

delete_participant(participant);

}

/* RTI Connext provides finalize_instance()

method for people who want to release memory used by the

participant factory singleton. Uncomment the following block of

code for clean destruction of the participant factory

singleton. */

//DomainParticipantFactory.finalize_instance();

}

}

}

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1748 Example Documentation

9.4 HelloWorldSeq.java

9.4.1 Programming Language Type Description

The following programming language specific type representation is generated
by rtiddsgen (p. 290) for use in application code, where:

ˆ Foo = HelloWorld

ˆ FooSeq = HelloWorldSeq

9.4.1.1 HelloWorld.java

[$(NDDSHOME)/example/JAVA/helloWorld/HelloWorld.java]

/*

WARNING: THIS FILE IS AUTO-GENERATED. DO NOT MODIFY.

This file was generated from .idl using "rtiddsgen".

The rtiddsgen tool is part of the RTI Connext distribution.

For more information, type ’rtiddsgen -help’ at a command shell

or consult the RTI Connext manual.

*/

import com.rti.dds.infrastructure.*;

import com.rti.dds.infrastructure.Copyable;

import java.io.Serializable;

import com.rti.dds.cdr.CdrHelper;

public class HelloWorld implements Copyable, Serializable

{

public String msg = ""; /* maximum length = (128) */

public HelloWorld() {

}

public HelloWorld(HelloWorld other) {

this();

copy_from(other);

}

public static Object create() {

return new HelloWorld();

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

9.4 HelloWorldSeq.java 1749

}

public boolean equals(Object o) {

if (o == null) {

return false;

}

if(getClass() != o.getClass()) {

return false;

}

HelloWorld otherObj = (HelloWorld)o;

if(!msg.equals(otherObj.msg)) {

return false;

}

return true;

}

public int hashCode() {

int __result = 0;

__result += msg.hashCode();

return __result;

}

public Object copy_from(Object src) {

HelloWorld typedSrc = (HelloWorld) src;

HelloWorld typedDst = this;

typedDst.msg = typedSrc.msg;

return this;

}

public String toString(){

return toString("", 0);

}

public String toString(String desc, int indent) {

StringBuffer strBuffer = new StringBuffer();

if (desc != null) {

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1750 Example Documentation

CdrHelper.printIndent(strBuffer, indent);

strBuffer.append(desc).append(":\n");

}

CdrHelper.printIndent(strBuffer, indent+1);

strBuffer.append("msg: ").append(msg).append("\n");

return strBuffer.toString();

}

}

9.4.1.2 HelloWorldSeq.java

[$(NDDSHOME)/example/JAVA/helloWorld/HelloWorldSeq.java]

/*

WARNING: THIS FILE IS AUTO-GENERATED. DO NOT MODIFY.

This file was generated from .idl using "rtiddsgen".

The rtiddsgen tool is part of the RTI Connext distribution.

For more information, type ’rtiddsgen -help’ at a command shell

or consult the RTI Connext manual.

*/

import java.util.Collection;

import com.rti.dds.infrastructure.Copyable;

import com.rti.dds.util.Enum;

import com.rti.dds.util.Sequence;

import com.rti.dds.util.LoanableSequence;

public final class HelloWorldSeq extends LoanableSequence implements Copyable {

// ---

// Package Fields

// ---

/*package*/ transient Sequence _loanedInfoSequence = null;

// ---

// Public Fields

// ---

// --- Constructors: ---

public HelloWorldSeq() {

super(HelloWorld.class);

}

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

9.4 HelloWorldSeq.java 1751

public HelloWorldSeq(int initialMaximum) {

super(HelloWorld.class, initialMaximum);

}

public HelloWorldSeq(Collection elements) {

super(HelloWorld.class, elements);

}

// --- From Copyable: --

public Object copy_from(Object src) {

Sequence typedSrc = (Sequence) src;

final int srcSize = typedSrc.size();

final int origSize = size();

// if this object’s size is less than the source, ensure we have

// enough room to store all of the objects

if (getMaximum() < srcSize) {

setMaximum(srcSize);

}

// trying to avoid clear() method here since it allocates memory

// (an Iterator)

// if the source object has fewer items than the current object,

// remove from the end until the sizes are equal

if (srcSize < origSize){

removeRange(srcSize, origSize);

}

// copy the data from source into this (into positions that already

// existed)

for(int i = 0; (i < origSize) && (i < srcSize); i++){

if (typedSrc.get(i) == null){

set(i, null);

} else {

// check to see if our entry is null, if it is, a new instance has to be allocated

if (get(i) == null){

set(i, HelloWorld.create());

}

set(i, ((Copyable) get(i)).copy_from(typedSrc.get(i)));

}

}

// copy ’new’ HelloWorld objects (beyond the original size of this object)

for(int i = origSize; i < srcSize; i++){

if (typedSrc.get(i) == null) {

add(null);

} else {

// NOTE: we need to create a new object here to hold the copy

add(HelloWorld.create());

// we need to do a set here since enums aren’t truely Copyable

set(i, ((Copyable) get(i)).copy_from(typedSrc.get(i)));

}

}

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1752 Example Documentation

return this;

}

}

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

9.5 HelloWorldSubscriber.java 1753

9.5 HelloWorldSubscriber.java

9.5.1 RTI Connext Subscription Example

The unmodified subscription example generated by rtiddsgen (p. 290).

9.5.1.1 HelloWorldPublisher.java

[$(NDDSHOME)/example/JAVA/helloWorld/HelloWorldSubscriber.java]

/* HelloWorldSubscriber.java

A publication of data of type HelloWorld

This file is derived from code automatically generated by the rtiddsgen

command:

rtiddsgen -language java -example <arch> .idl

Example publication of type HelloWorld automatically generated by

’rtiddsgen’ To test them follow these steps:

(1) Compile this file and the example subscription.

(2) Start the subscription on the same domain used for with the command

java HelloWorldSubscriber <domain_id> <sample_count>

(3) Start the publication with the command

java HelloWorldPublisher <domain_id> <sample_count>

(4) [Optional] Specify the list of discovery initial peers and

multicast receive addresses via an environment variable or a file

(in the current working directory) called NDDS_DISCOVERY_PEERS.

You can run any number of publishers and subscribers programs, and can

add and remove them dynamically from the domain.

Example:

To run the example application on domain <domain_id>:

Ensure that $(NDDSHOME)/lib/<arch> is on the dynamic library path for

Java.

On UNIX systems:

add $(NDDSHOME)/lib/<arch> to the ’LD_LIBRARY_PATH’ environment

variable

On Windows systems:

add %NDDSHOME%\lib\<arch> to the ’Path’ environment variable

Run the Java applications:

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1754 Example Documentation

java -Djava.ext.dirs=$NDDSHOME/class HelloWorldPublisher <domain_id>

java -Djava.ext.dirs=$NDDSHOME/class HelloWorldSubscriber <domain_id>

modification history

------------ -------

*/

import java.net.InetAddress;

import java.net.UnknownHostException;

import java.util.Arrays;

import com.rti.dds.domain.*;

import com.rti.dds.infrastructure.*;

import com.rti.dds.subscription.*;

import com.rti.dds.topic.*;

import com.rti.ndds.config.*;

// ===

public class HelloWorldSubscriber {

// ---

// Public Methods

// ---

public static void main(String[] args) {

// --- Get domain ID --- //

int domainId = 0;

if (args.length >= 1) {

domainId = Integer.valueOf(args[0]).intValue();

}

// -- Get max loop count; 0 means infinite loop --- //

int sampleCount = 0;

if (args.length >= 2) {

sampleCount = Integer.valueOf(args[1]).intValue();

}

/* Uncomment this to turn on additional logging

Logger.get_instance().set_verbosity_by_category(

LogCategory.NDDS_CONFIG_LOG_CATEGORY_API,

LogVerbosity.NDDS_CONFIG_LOG_VERBOSITY_STATUS_ALL);

*/

// --- Run --- //

subscriberMain(domainId, sampleCount);

}

// ---

// Private Methods

// ---

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

9.5 HelloWorldSubscriber.java 1755

// --- Constructors: ---

private HelloWorldSubscriber() {

super();

}

// ---

private static void subscriberMain(int domainId, int sampleCount) {

DomainParticipant participant = null;

Subscriber subscriber = null;

Topic topic = null;

DataReaderListener listener = null;

HelloWorldDataReader reader = null;

try {

// --- Create participant --- //

/* To customize participant QoS, use

DomainParticipantFactory.TheParticipantFactory.

get_default_participant_qos() */

participant = DomainParticipantFactory.TheParticipantFactory.

create_participant(

domainId, DomainParticipantFactory.PARTICIPANT_QOS_DEFAULT,

null /* listener */, StatusKind.STATUS_MASK_NONE);

if (participant == null) {

System.err.println("create_participant error\n");

return;

}

// --- Create subscriber --- //

/* To customize subscriber QoS, use

participant.get_default_subscriber_qos() */

subscriber = participant.create_subscriber(

DomainParticipant.SUBSCRIBER_QOS_DEFAULT, null /* listener */,

StatusKind.STATUS_MASK_NONE);

if (subscriber == null) {

System.err.println("create_subscriber error\n");

return;

}

// --- Create topic --- //

/* Register type before creating topic */

String typeName = HelloWorldTypeSupport.get_type_name();

HelloWorldTypeSupport.register_type(participant, typeName);

/* To customize topic QoS, use

participant.get_default_topic_qos() */

topic = participant.create_topic(

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

1756 Example Documentation

"Example HelloWorld",

typeName, DomainParticipant.TOPIC_QOS_DEFAULT,

null /* listener */, StatusKind.STATUS_MASK_NONE);

if (topic == null) {

System.err.println("create_topic error\n");

return;

}

// --- Create reader --- //

listener = new HelloWorldListener();

/* To customize data reader QoS, use

subscriber.get_default_datareader_qos() */

reader = (HelloWorldDataReader)

subscriber.create_datareader(

topic, Subscriber.DATAREADER_QOS_DEFAULT, listener,

StatusKind.STATUS_MASK_ALL);

if (reader == null) {

System.err.println("create_datareader error\n");

return;

}

// --- Wait for data --- //

final long receivePeriodSec = 4;

for (int count = 0;

(sampleCount == 0) || (count < sampleCount);

++count) {

System.out.println("HelloWorld subscriber sleeping for "

+ receivePeriodSec + " sec...");

try {

Thread.sleep(receivePeriodSec * 1000); // in millisec

} catch (InterruptedException ix) {

System.err.println("INTERRUPTED");

break;

}

}

} finally {

// --- Shutdown --- //

if(participant != null) {

participant.delete_contained_entities();

DomainParticipantFactory.TheParticipantFactory.

delete_participant(participant);

}

/* RTI Connext provides the finalize_instance()

method for users who want to release memory used by the

participant factory singleton. Uncomment the following block of

code for clean destruction of the participant factory

singleton. */

//DomainParticipantFactory.finalize_instance();

}

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

9.5 HelloWorldSubscriber.java 1757

}

// ---

// Private Types

// ---

// ===

private static class HelloWorldListener extends DataReaderAdapter {

HelloWorldSeq _dataSeq = new HelloWorldSeq();

SampleInfoSeq _infoSeq = new SampleInfoSeq();

public void on_data_available(DataReader reader) {

HelloWorldDataReader HelloWorldReader =

(HelloWorldDataReader)reader;

try {

HelloWorldReader.take(

_dataSeq, _infoSeq,

ResourceLimitsQosPolicy.LENGTH_UNLIMITED,

SampleStateKind.ANY_SAMPLE_STATE,

ViewStateKind.ANY_VIEW_STATE,

InstanceStateKind.ANY_INSTANCE_STATE);

for(int i = 0; i < _dataSeq.size(); ++i) {

SampleInfo info = (SampleInfo)_infoSeq.get(i);

if (info.valid_data) {

System.out.println(

((HelloWorld)_dataSeq.get(i)).toString("Received",0));

}

}

} catch (RETCODE_NO_DATA noData) {

// No data to process

} finally {

HelloWorldReader.return_loan(_dataSeq, _infoSeq);

}

}

}

}

Generated on Sat Mar 17 21:18:59 2012 for RTI Connext Java API by Doxygen

	RTI Connext
	Feedback and Support for this Release.
	Available Documentation.

	Module Index
	Modules

	Namespace Index
	Package List

	Class Index
	Class Hierarchy

	Class Index
	Class List

	Module Documentation
	ASYNCHRONOUS_PUBLISHER
	AVAILABILITY
	BATCH
	Conditions and WaitSets
	DATABASE
	DATA_READER_PROTOCOL
	DATA_READER_RESOURCE_LIMITS
	DATA_WRITER_PROTOCOL
	DATA_WRITER_RESOURCE_LIMITS
	DEADLINE
	DESTINATION_ORDER
	DISCOVERY_CONFIG
	DISCOVERY
	NDDS_DISCOVERY_PEERS
	DOMAIN_PARTICIPANT_RESOURCE_LIMITS
	DURABILITY
	DURABILITY_SERVICE
	Time Support
	Entity Support
	ENTITY_FACTORY
	ENTITY_NAME
	EVENT
	EXCLUSIVE_AREA
	GROUP_DATA
	GUID Support
	HISTORY
	LATENCY_BUDGET
	LIFESPAN
	LIVELINESS
	LOCATORFILTER
	LOGGING
	MULTICHANNEL
	Object Support
	OWNERSHIP
	OWNERSHIP_STRENGTH
	PARTITION
	PRESENTATION
	PROFILE
	PROPERTY
	PUBLISH_MODE
	QoS Policies
	READER_DATA_LIFECYCLE
	RECEIVER_POOL
	RELIABILITY
	RESOURCE_LIMITS
	Return Codes
	Sequence Number Support
	Status Kinds
	SYSTEM_RESOURCE_LIMITS
	Thread Settings
	TIME_BASED_FILTER
	TOPIC_DATA
	TRANSPORT_BUILTIN
	TRANSPORT_MULTICAST
	TRANSPORT_PRIORITY
	TRANSPORT_SELECTION
	TRANSPORT_UNICAST
	TYPESUPPORT
	USER_DATA
	Exception Codes
	WIRE_PROTOCOL
	WRITER_DATA_LIFECYCLE
	String Built-in Type
	KeyedString Built-in Type
	Octets Built-in Type
	KeyedOctets Built-in Type
	Sequence Support
	Clock Selection
	Domain Module
	DomainParticipantFactory
	DomainParticipants
	Built-in Topics
	Topic Module
	Topics
	User Data Type Support
	Type Code Support
	Built-in Types
	Dynamic Data
	Publication Module
	Publishers
	Data Writers
	Flow Controllers
	Subscription Module
	Subscribers
	DataReaders
	Read Conditions
	Query Conditions
	Data Samples
	Sample States
	View States
	Instance States
	Infrastructure Module
	Built-in Sequences
	Multi-channel DataWriters
	Pluggable Transports
	Using Transport Plugins
	Built-in Transport Plugins
	Configuration Utilities
	Durability and Persistence
	Configuring QoS Profiles with XML
	Publication Example
	Subscription Example
	Participant Use Cases
	Topic Use Cases
	FlowController Use Cases
	Publisher Use Cases
	DataWriter Use Cases
	Subscriber Use Cases
	DataReader Use Cases
	Entity Use Cases
	Waitset Use Cases
	Transport Use Cases
	Filter Use Cases
	Creating Custom Content Filters
	Large Data Use Cases
	Documentation Roadmap
	Conventions
	DDS API Reference
	Queries and Filters Syntax
	RTI Connext API Reference
	Programming How-To's
	Programming Tools
	rtiddsgen
	rtiddsping
	rtiddsspy

	Namespace Documentation
	Package com.rti.dds.domain
	Package com.rti.dds.domain.builtin
	Package com.rti.dds.dynamicdata
	Package com.rti.dds.infrastructure
	Package com.rti.dds.publication
	Package com.rti.dds.publication.builtin
	Package com.rti.dds.publication.example
	Package com.rti.dds.subscription
	Package com.rti.dds.subscription.builtin
	Package com.rti.dds.subscription.example
	Package com.rti.dds.topic
	Package com.rti.dds.topic.builtin
	Package com.rti.dds.topic.example
	Package com.rti.dds.type.builtin
	Package com.rti.dds.typecode
	Package com.rti.dds.util
	Package com.rti.ndds.config
	Package com.rti.ndds.example
	Package com.rti.ndds.transport

	Class Documentation
	AbstractBuiltinTopicDataTypeSupport Class Reference
	AbstractPrimitiveSequence Class Reference
	AbstractSequence Class Reference
	AllocationSettings_t Class Reference
	AsynchronousPublisherQosPolicy Class Reference
	AvailabilityQosPolicy Class Reference
	BAD_PARAM Class Reference
	BAD_TYPECODE Class Reference
	BadKind Class Reference
	BadMemberId Class Reference
	BadMemberName Class Reference
	BatchQosPolicy Class Reference
	BooleanSeq Class Reference
	Bounds Class Reference
	BuiltinTopicKey_t Class Reference
	BuiltinTopicReaderResourceLimits_t Class Reference
	Bytes Class Reference
	BytesDataReader Class Reference
	BytesDataWriter Class Reference
	ByteSeq Class Reference
	BytesSeq Class Reference
	BytesTypeSupport Class Reference
	ChannelSettings_t Class Reference
	ChannelSettingsSeq Class Reference
	CharSeq Class Reference
	Condition Interface Reference
	ConditionSeq Class Reference
	ContentFilter Interface Reference
	ContentFilteredTopic Interface Reference
	ContentFilterProperty_t Class Reference
	Cookie_t Class Reference
	Copyable Interface Reference
	DatabaseQosPolicy Class Reference
	DataReader Interface Reference
	DataReaderAdapter Class Reference
	DataReaderCacheStatus Class Reference
	DataReaderListener Interface Reference
	DataReaderProtocolQosPolicy Class Reference
	DataReaderProtocolStatus Class Reference
	DataReaderQos Class Reference
	DataReaderResourceLimitsQosPolicy Class Reference
	DataReaderSeq Class Reference
	DataWriter Interface Reference
	DataWriterAdapter Class Reference
	DataWriterCacheStatus Class Reference
	DataWriterListener Interface Reference
	DataWriterProtocolQosPolicy Class Reference
	DataWriterProtocolStatus Class Reference
	DataWriterQos Class Reference
	DataWriterResourceLimitsInstanceReplacementKind Class Reference
	DataWriterResourceLimitsQosPolicy Class Reference
	DeadlineQosPolicy Class Reference
	DestinationOrderQosPolicy Class Reference
	DestinationOrderQosPolicyKind Class Reference
	DiscoveryBuiltinReaderFragmentationResourceLimits_t Class Reference
	DiscoveryConfigBuiltinPluginKind Class Reference
	DiscoveryConfigQosPolicy Class Reference
	DiscoveryPluginPromiscuityKind Class Reference
	DiscoveryQosPolicy Class Reference
	DomainEntity Interface Reference
	DomainParticipant Interface Reference
	DomainParticipantAdapter Class Reference
	DomainParticipantFactory Class Reference
	DomainParticipantFactoryQos Class Reference
	DomainParticipantListener Interface Reference
	DomainParticipantQos Class Reference
	DomainParticipantResourceLimitsQosPolicy Class Reference
	DoubleSeq Class Reference
	DurabilityQosPolicy Class Reference
	DurabilityQosPolicyKind Class Reference
	DurabilityServiceQosPolicy Class Reference
	Duration_t Class Reference
	DynamicData Class Reference
	DynamicDataInfo Class Reference
	DynamicDataMemberInfo Class Reference
	DynamicDataProperty_t Class Reference
	DynamicDataReader Class Reference
	DynamicDataSeq Class Reference
	DynamicDataTypeProperty_t Class Reference
	DynamicDataTypeSerializationProperty_t Class Reference
	DynamicDataTypeSupport Class Reference
	DynamicDataWriter Class Reference
	EndpointGroup_t Class Reference
	EndpointGroupSeq Class Reference
	Entity Interface Reference
	EntityFactoryQosPolicy Class Reference
	EntityHowTo.MyEntityListener Class Reference
	EntityNameQosPolicy Class Reference
	Enum Class Reference
	EnumMember Class Reference
	EventQosPolicy Class Reference
	ExclusiveAreaQosPolicy Class Reference
	FloatSeq Class Reference
	FlowController Interface Reference
	FlowControllerProperty_t Class Reference
	FlowControllerSchedulingPolicy Class Reference
	FlowControllerTokenBucketProperty_t Class Reference
	Foo Class Reference
	Foo Class Reference
	FooDataReader Class Reference
	FooDataReader Interface Reference
	FooDataWriter Class Reference
	FooDataWriter Interface Reference
	FooSeq Class Reference
	FooSeq Class Reference
	FooTypeSupport Class Reference
	FooTypeSupport Class Reference
	GroupDataQosPolicy Class Reference
	GuardCondition Class Reference
	GUID_t Class Reference
	HistoryQosPolicy Class Reference
	HistoryQosPolicyKind Class Reference
	InconsistentTopicStatus Class Reference
	InetAddressSeq Class Reference
	InstanceHandle_t Class Reference
	InstanceHandleSeq Class Reference
	InstanceStateKind Class Reference
	IntSeq Class Reference
	KeyedBytes Class Reference
	KeyedBytesDataReader Class Reference
	KeyedBytesDataWriter Class Reference
	KeyedBytesSeq Class Reference
	KeyedBytesTypeSupport Class Reference
	KeyedString Class Reference
	KeyedStringDataReader Class Reference
	KeyedStringDataWriter Class Reference
	KeyedStringSeq Class Reference
	KeyedStringTypeSupport Class Reference
	LatencyBudgetQosPolicy Class Reference
	LibraryVersion_t Class Reference
	LifespanQosPolicy Class Reference
	Listener Interface Reference
	LivelinessChangedStatus Class Reference
	LivelinessLostStatus Class Reference
	LivelinessQosPolicy Class Reference
	LivelinessQosPolicyKind Class Reference
	LoanableSequence Class Reference
	Locator_t Class Reference
	LocatorFilter_t Class Reference
	LocatorFilterQosPolicy Class Reference
	LocatorFilterSeq Class Reference
	LocatorSeq Class Reference
	LogCategory Class Reference
	Logger Class Reference
	LoggingQosPolicy Class Reference
	LogPrintFormat Class Reference
	LogVerbosity Class Reference
	LongDoubleSeq Class Reference
	LongSeq Class Reference
	MultiChannelQosPolicy Class Reference
	MultiTopic Interface Reference
	ObjectHolder Class Reference
	OfferedDeadlineMissedStatus Class Reference
	OfferedIncompatibleQosStatus Class Reference
	OwnershipQosPolicy Class Reference
	OwnershipQosPolicyKind Class Reference
	OwnershipStrengthQosPolicy Class Reference
	ParticipantBuiltinTopicData Class Reference
	ParticipantBuiltinTopicDataDataReader Class Reference
	ParticipantBuiltinTopicDataSeq Class Reference
	ParticipantBuiltinTopicDataTypeSupport Class Reference
	PartitionQosPolicy Class Reference
	PresentationQosPolicy Class Reference
	PresentationQosPolicyAccessScopeKind Class Reference
	PRIVATE_MEMBER Class Reference
	ProductVersion_t Class Reference
	ProfileQosPolicy Class Reference
	Property_t Class Reference
	PropertyQosPolicy Class Reference
	PropertyQosPolicyHelper Class Reference
	PropertySeq Class Reference
	ProtocolVersion_t Class Reference
	PUBLIC_MEMBER Class Reference
	PublicationBuiltinTopicData Class Reference
	PublicationBuiltinTopicDataDataReader Class Reference
	PublicationBuiltinTopicDataSeq Class Reference
	PublicationBuiltinTopicDataTypeSupport Class Reference
	PublicationMatchedStatus Class Reference
	Publisher Interface Reference
	PublisherAdapter Class Reference
	PublisherListener Interface Reference
	PublisherQos Class Reference
	PublisherSeq Class Reference
	PublishModeQosPolicy Class Reference
	PublishModeQosPolicyKind Class Reference
	Qos Class Reference
	QosPolicy Class Reference
	QosPolicyCount Class Reference
	QosPolicyCountSeq Class Reference
	QosPolicyId_t Class Reference
	QueryCondition Interface Reference
	ReadCondition Interface Reference
	ReaderDataLifecycleQosPolicy Class Reference
	ReceiverPoolQosPolicy Class Reference
	RefilterQosPolicyKind Class Reference
	ReliabilityQosPolicy Class Reference
	ReliabilityQosPolicyKind Class Reference
	ReliableReaderActivityChangedStatus Class Reference
	ReliableWriterCacheChangedStatus Class Reference
	ReliableWriterCacheEventCount Class Reference
	RemoteParticipantPurgeKind Class Reference
	RequestedDeadlineMissedStatus Class Reference
	RequestedIncompatibleQosStatus Class Reference
	ResourceLimitsQosPolicy Class Reference
	RETCODE_ALREADY_DELETED Class Reference
	RETCODE_BAD_PARAMETER Class Reference
	RETCODE_ERROR Class Reference
	RETCODE_ILLEGAL_OPERATION Class Reference
	RETCODE_IMMUTABLE_POLICY Class Reference
	RETCODE_INCONSISTENT_POLICY Class Reference
	RETCODE_NO_DATA Class Reference
	RETCODE_NOT_ENABLED Class Reference
	RETCODE_OUT_OF_RESOURCES Class Reference
	RETCODE_PRECONDITION_NOT_MET Class Reference
	RETCODE_TIMEOUT Class Reference
	RETCODE_UNSUPPORTED Class Reference
	RtpsReliableReaderProtocol_t Class Reference
	RtpsReliableWriterProtocol_t Class Reference
	RtpsReservedPortKind Class Reference
	RtpsWellKnownPorts_t Class Reference
	SampleIdentity_t Class Reference
	SampleInfo Class Reference
	SampleInfoSeq Class Reference
	SampleLostStatus Class Reference
	SampleLostStatusKind Class Reference
	SampleRejectedStatus Class Reference
	SampleRejectedStatusKind Class Reference
	SampleStateKind Class Reference
	Sequence Interface Reference
	SequenceNumber_t Class Reference
	ShmemTransport Interface Reference
	ShmemTransport.Property_t Class Reference
	ShortSeq Class Reference
	StatusCondition Interface Reference
	StatusKind Class Reference
	StringDataReader Class Reference
	StringDataWriter Class Reference
	StringSeq Class Reference
	StringTypeSupport Class Reference
	StructMember Class Reference
	Subscriber Interface Reference
	SubscriberAdapter Class Reference
	SubscriberListener Interface Reference
	SubscriberQos Class Reference
	SubscriberSeq Class Reference
	SubscriptionBuiltinTopicData Class Reference
	SubscriptionBuiltinTopicDataDataReader Class Reference
	SubscriptionBuiltinTopicDataSeq Class Reference
	SubscriptionBuiltinTopicDataTypeSupport Class Reference
	SubscriptionMatchedStatus Class Reference
	SystemException Class Reference
	SystemResourceLimitsQosPolicy Class Reference
	TCKind Class Reference
	ThreadSettings_t Class Reference
	ThreadSettingsCpuRotationKind Class Reference
	ThreadSettingsKind Class Reference
	Time_t Class Reference
	TimeBasedFilterQosPolicy Class Reference
	Topic Interface Reference
	TopicAdapter Class Reference
	TopicBuiltinTopicData Class Reference
	TopicBuiltinTopicDataDataReader Class Reference
	TopicBuiltinTopicDataSeq Class Reference
	TopicBuiltinTopicDataTypeSupport Class Reference
	TopicDataQosPolicy Class Reference
	TopicDescription Interface Reference
	TopicListener Interface Reference
	TopicQos Class Reference
	Transport Interface Reference
	Transport.Property_t Class Reference
	TransportBuiltinKind Class Reference
	TransportBuiltinQosPolicy Class Reference
	TransportMulticastMapping_t Class Reference
	TransportMulticastMappingFunction_t Class Reference
	TransportMulticastMappingQosPolicy Class Reference
	TransportMulticastMappingSeq Class Reference
	TransportMulticastQosPolicy Class Reference
	TransportMulticastQosPolicyKind Class Reference
	TransportMulticastSettings_t Class Reference
	TransportMulticastSettingsSeq Class Reference
	TransportPriorityQosPolicy Class Reference
	TransportSelectionQosPolicy Class Reference
	TransportSupport Class Reference
	TransportUnicastQosPolicy Class Reference
	TransportUnicastSettings_t Class Reference
	TransportUnicastSettingsSeq Class Reference
	TypeCode Class Reference
	TypeCodeFactory Class Reference
	TypeSupport Interface Reference
	TypeSupportQosPolicy Class Reference
	UDPv4Transport Interface Reference
	UDPv4Transport.Property_t Class Reference
	UDPv6Transport Interface Reference
	UDPv6Transport.Property_t Class Reference
	Union Class Reference
	UnionMember Class Reference
	UserDataQosPolicy Class Reference
	UserException Class Reference
	ValueMember Class Reference
	VendorId_t Class Reference
	Version Class Reference
	ViewStateKind Class Reference
	VM_ABSTRACT Class Reference
	VM_CUSTOM Class Reference
	VM_NONE Class Reference
	VM_TRUNCATABLE Class Reference
	WaitSet Class Reference
	WaitSetProperty_t Class Reference
	WcharSeq Class Reference
	WireProtocolQosPolicy Class Reference
	WireProtocolQosPolicyAutoKind Class Reference
	WriteParams_t Class Reference
	WriterDataLifecycleQosPolicy Class Reference
	WstringSeq Class Reference

	Example Documentation
	HelloWorld.idl
	HelloWorldDataReader.java
	HelloWorldPublisher.java
	HelloWorldSeq.java
	HelloWorldSubscriber.java

